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Abstract

The classical Hospitals / Residents problem (HR) is a many-to-one bipartite matching prob-
lem involving preferences, motivated by centralised matching schemes arising in entry level
labour markets, the assignment of pupils to schools and higher education admissions schemes,
among its many applications. The particular requirements of these matching schemes may
lead to generalisations of HR that involve additional inputs or constraints on an acceptable
solution. In this thesis we study such variants of HR from an algorithmic and integer pro-
gramming viewpoint.

The Hospitals / Residents problem with Couples (HRC) is a variant of HR that is important in
practical applications because it models the case where couples submit joint preference lists
over pairs of (typically geographically close) hospitals. It is known that an instance of HRC

need not admit a stable matching. We show that deciding whether an instance of HRC admits
a stable matching is NP-complete even under some very severe restrictions on the lengths
and the structure of the participants’ preference lists. However, we show that under certain
restrictions on the lengths of the agents’ preference lists, it is possible to find a maximum
cardinality stable matching or report that none exists in polynomial time.

Since an instance of HRC need not admit a stable matching, it is natural to seek the ‘most
stable’ matching possible, i.e., a matching that admits the minimum number of blocking
pairs. We use a gap-introducing reduction to establish an inapproximability bound for the
problem of finding a matching in an instance of HRC that admits the minimum number of
blocking pairs. Further, we show how this result might be generalised to prove that a number
of minimisation problems based on matchings having NP-complete decision versions have
the same inapproximability bound. We also show that this result holds for more general min-
imisation problems having NP-complete decisions versions that are not based on matching
problems.

Further, we present a full description of the first Integer Programming (IP) model for finding
a maximum cardinality stable matching or reporting that none exists in an arbitrary instance



of HRC. We present empirical results showing the average size of a maximum cardinal-
ity stable matching and the percentage of instances admitting stable matching taken over a
number of randomly generated instances of HRC with varying properties. We also show how
this model might be generalised to the variant of HRC in which ties are allowed in either the
hospitals’ or the residents’ preference lists, the Hospitals / Residents problem with Couples
and Ties (HRCT). We also describe and prove the correctness of the first IP model for finding
a maximum cardinality ‘most stable’ matching in an arbitrary instance of HRC. We describe
empirical results showing the average number of blocking pairs admitted by a most-stable
matching as well as the average size of a maximum cardinality ‘most stable’ matching taken
over a number of randomly generated instances of HRC with varying properties. Further,
we examine the output when the IP model for HRCT is applied to real world instances aris-
ing from the process used to assign medical graduates to Foundation Programme places in
Scotland in the years 2010-2012.

The Hungarian Higher Education Allocation Scheme places a number of additional con-
straints on the feasibility of an allocation and this gives rise to various generalisations of HR.
We show how a number of these additional requirements may be modelled using IP tech-
niques by use of an appropriate combination of IP constraints. We present IP models for HR

with Stable Score Limits and Ties, HR with Paired Applications, Ties and Stable Score lim-
its, HR with Common Quotas, Ties and Stable Score Limits and also HR with Lower Quotas,
Ties and Stable Score limits that model these generalisations of HR.

The Teachers’ Allocation Problem (TAP) is a variant of HR that models the allocation of
trainee teachers to supervised teaching positions in Slovakia. In TAP teachers express pref-
erence lists over pairs of subjects at individual schools. It is known that deciding whether an
optimal matching exists that assigns all of the trainee teachers is NP-complete for a number
of restricted cases. We describe IP models for finding a maximum cardinality matching in an
arbitrary TAP instance and for finding a maximum cardinality stable matching, or reporting
that none exists, in a TAP instance where schools also have preferences. We show the results
when applying the first model to the real data arising from the allocation of trainee teachers
to schools carried out at P.J. Šafárik University in Košice in 2013.



Acknowledgements

I would like to thank my supervisor David Manlove for his patience, feedback and guidance
during the course of my PhD. I would also like to thank my second supervisor Patrick Prosser
for posing questions that always seemed to lead to improvements in the quality of my thesis.

My thanks also go to Rob Irving, Augustine Kwanashie and Baharak Rastegari for all of their
help and input throughout the course of my PhD. I would also like to thank the members of
the Algorithmicists and FATA groups in the School of Computing Science at the University
of Glasgow for their suggestions and comments in response to various presentations of my
work.

I would also like to thank the anonymous reviewers of submitted versions of parts of the
work contained in this thesis for their valuable comments.

I would like to thank SICSA for funding my studentship and also COST Action IC1205 for
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Chapter 1

Introduction and Thesis Outline

1.1 Introduction

In this thesis we consider problems involving matching the members of a set of agents to
one another where each agent has a preference order over its potential partners – the term
agent intuitively means any participant in a matching process. In particular we consider
matching problems in which agents have ordinal preferences; thus the agents’ preferences
have a notion of first, second, third choice etc.

In this setting the members of an agent’s preference list are its acceptable partners in order of
preference and any agent not in the preference list is an unacceptable partner. If two agents
are involved in a pair in a matching, then they are assigned to each other in the matching or
are partners in the matching. Commonly, matching problems have a notion of a capacity for
an agent – an agent can only be assigned to a restricted number of acceptable partners. A
matching is a set of pairs in which no agent is assigned to an unacceptable partner and no
agent has a number of assignees that violates its capacity. In general we seek a matching that
is optimal with respect to some predefined criteria.

Matching problems may be classified according to the quantity of disjoint subsets into which
the set of agents may be subdivided and also whether the members of each of the disjoint
subsets express preferences or not. Problems in which the agents comprise a single set
and each agent expresses preferences over some subset of the other agents are termed Non-

bipartite matching problems with preferences. The archetypal problem in this context is the
Stable Roommates problem (SR) [31, 35, 40] where we seek to assign students to two person
accommodation on the basis of their preferences over one another. However, this problem
model also applies in the context of kidney exchange programmes where a patient with a
willing but incompatible donor may obtain a transplant by swapping their donor with that of
another patient in a similar position [51, 72, 73, 74].
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Problems in which the set of agents comprises two disjoint subsets, but the agents in only
one of the subsets express preferences over the members of the opposing subset are bipartite

matching problems with one sided preferences. The archetypal problem in this context is the
House Allocation problem (HA) [21, 34, 77]; HA is the underlying abstract allocation model
in contexts involving the allocating of students to on-campus housing [19], allocating social
housing in China [82] and assigning reviewers to papers [30].

In this thesis we consider specifically bipartite matching problems with two sided prefer-

ences – problems comprising two disjoint subsets of agents where each agent in each of the
disjoint subsets has some preference ordering over members of the other subset. A num-
ber of matching programmes across the world have bipartite matching problems with two
sided preferences as their underlying abstract problem model. In the medical sphere the
National Resident Matching Program (NRMP) [92] was established in 1952, to match grad-
uating medical residents to hospitals in the US. Analogous matching schemes exist in Canada
[86] and Japan [91]. A similar process was used until recently to match medical graduates
to Foundation Programme places in Scotland; the Scottish Foundation Allocation Scheme
(SFAS) [36]. Moreover, a similar process is used in the context of Higher Education admis-
sion in Hungary [10, 89], Spain [65], Turkey [6] and Ireland [87, 90]. The reader is referred
to [88] for details of matching practices in a number of practical contexts throughout Europe.

The size of these matching programmes can vary tremendously: the SFAS programme typ-
ically involved approximately 750 applicants and 50 hospitals annually; in the Hungarian
Higher Education allocation process in 2011, 140,953 applicants participated [89]; in 2015
the NRMP process involved 52,880 residents and assigned 26,252 residents over 27,293
posts [63]; and in the case of the largest centralised allocation scheme currently known, the
Chinese Higher Education matching scheme involved approximately ten million applicants
in 2007 [83]. Clearly the efficiency with which an optimal matching might be obtained is of
great practical interest.

In practice these centralised matching schemes operate by obtaining preference information
from each of the agents involved and applying an algorithm to the preference data so obtained
to compute a matching. A given instance of a matching problem may admit many matchings
– we wish to select a matching from amongst the possible matchings that is fair, in some
sense, to all of the agents involved. However, a number of definitions of fairness are possible.

A commonly-applied definition of fairness in bipartite matching problems with two sided
preferences is the concept of stability. A matching is stable if no two agents prefer each other
to their assignees in the matching and is unstable otherwise. Free-for-all markets involving
a less structured process where individual agents compete for partners, such as the process
used in the NRMP before 1952 in the US, have been shown to lead to problems in practice
[48, 69, 70] due to their potentially unstable outcomes. The underlying abstract allocation
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problem that models the search for a stable matching in a centralised matching scheme such
as the NRMP is the Hospitals / Residents problem (HR); the nomenclature of this problem
derives from the NRMP context. Gale and Shapley [27] showed that a stable matching
always exists in an instance of HR and provided an algorithm that outputs a stable matching
in an arbitrary instance of HR in linear time.

Centralised matching schemes such as the NRMP and SFAS have had to evolve to accom-
modate couples who wish to be allocated to (geographically) compatible hospitals. The
requirement to take into account the joint preferences of couples has been in place in the
NRMP context since 1983 and since 2009 in the case of SFAS. In schemes where the agents
may be involved in couples, the underlying matching problem can be modelled by the Hos-

pitals / Residents problem with Couples (HRC). In contrast with HR, an instance of HRC

need not admit a stable matching [67] and a number of possible definitions of stability exist
[12, 31, 55]. Two key definitions of stability discussed in this thesis are MM-stability (de-
scribed by Manlove and McDermid [55]) and BIS-stability (described by Biró, Irving and
Schlotter [12]). (These stability concepts will be defined formally in Definitions 2.3.1 and
2.3.2 respectively in Section 2.3.)

Since the preference lists of the residents are often short in these schemes (e.g. in the SFAS
context residents are asked to list eight hospitals in order of preference), we investigate
the complexity of deciding whether an instance of HRC admits a stable matching when the
agents’ preference lists are of restricted length. We show that a polynomial-time algorithm
for HRC is unlikely in several restricted cases where the length of the agents’ preference lists
are of bounded length. However, we present polynomial-time algorithms for finding a stable
matching, or reporting that none exists, for two restricted cases of HRC in which the agents’
preference lists are of very restricted length.

For problems that do not admit a polynomial-time algorithm, Integer Programming (IP)
techniques can often yield exact solutions for problem instances of a useful size in a prac-
tically useful timescale. Indeed, IP is a commonly-applied technique for finding optimal
solutions in the underlying abstract matching problem applicable in kidney exchange pro-
grammes [51, 74]. In this thesis we present and prove the correctness of the first IP models
for finding a maximum cardinality stable matching in an arbitrary instance of HRC under
two commonly-considered notions of stability applicable in the HRC context; namely MM-
stability and BIS-stability [12, 55]. We further show how this model might be extended to
the more general Hospitals / Residents problem with Couples and Ties (HRCT) context where
the agents involved may be indifferent between their acceptable partners.

Finding a matching in an instance of HRC that is ‘as stable as possible’ [2] in a precise sense
is the problem of finding a ‘most stable’ matching. Clearly a stable matching, if one exists,
is a ‘most stable’ matching. We show that it is hard to approximate a ‘most stable’ matching
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in an instance of HRC. We further show that this implies that the minimisation variants of a
number of NP-complete decision problems involving stable matchings are inapproximable
to within a given bound, unless P=NP. Moreover, we show that this implies that a class
of minimisation problems related to SAT and k-colouring must also be similarly hard to
approximate. Further, we present and prove the correctness of an IP model for MIN BP HRC,
the problem of finding a maximum cardinality ‘most stable’ matching in an instance of HRC.

We provide an empirical analysis of the IP models for HRC and MIN BP HRC applied to ran-
dom instances reflecting the properties of the instances arising from the SFAS application.
We present data on the performance of the models as we vary the size of the instance; the
percentage of residents in the instance involved in couples; the number of hospitals in the in-
stance; and the length of the residents’ preference lists. Further, we examine the output when
the IP model for HRCT is applied to real world instances arising from the SFAS application
in the years 2010-2012.

In the Higher Education admission schemes in Hungary [10, 89], Spain [65], Turkey [6],
Chile [64] and Ireland [90, 87], the applicants express preferences over acceptable colleges.
However, the colleges assign each acceptable applicant an integer value or score, typically
a measure of academic aptitude derived from exam results. Higher scoring applicants are
preferable to colleges. In these schemes the outcome is represented by a set of score limits

containing an integer value or score limit for each college. An assignment is induced from
a set of score limits by assigning each applicant to the first college on his preference list at
which he meets the score limit. In matching problems involving scores a corresponding defi-
nition of fairness is applied and we seek a set of stable score limits [10]. A set of score limits
is stable if no college may lower its score limit, all other score limits remaining unchanged,
without becoming over-subscribed in the assignment induced from the reduced set of score
limits. The underlying abstract matching problem model for these schemes is the Hospitals

/ Resident problem with Stable Score Limits and Ties (HR SLT). In this context ties may arise
in the case that a number of applicants achieve the same score at a given hospital; thus the
hospital is indifferent between these applicants.

In the Hungarian Higher Education Allocation scheme there are additional restrictions placed
on the feasible matchings. In this thesis we consider two of these restrictions in detail. First,
we consider the restriction in which a hospital must have a minimum number of assignees
in a matching, specified by a lower quota. The problem of finding a stable matching in this
context is termed the Hospitals / Residents problem with Stable Score Limits, Ties and Lower

Quotas (HR LQ SLT). Then we consider the restriction in which a coalition of hospitals may
share a common upper quota – this is a bound on the total number of assignees to which
the members of the coalition as a whole may be assigned in a matching. This problem is
referred to as the Hospitals / Resident problem with Stable Score Limits, Ties and Common

Upper Quotas (HR CQ SLT). In this thesis we present and prove the correctness of the first IP
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models for finding sets of stable score limits in HR LQ SLT and HR CQ SLT instances reflecting
the properties of the instances arising in the Hungarian Higher Education Allocation scheme.

Another bipartite matching problem of interest in this thesis is motivated by the allocation
of trainee teachers to training places in Slovakia. Trainee teachers studying at P.J. Šafárik
University in Košice, Slovakia study two separate subjects selected from amongst a number
of subjects on offer at the university e.g. Mathematics, Physics, History and Geography. As
part of their training each trainee teacher is required to take part in supervised teaching of
classes at real schools under the supervision of experienced and suitably-qualified teachers.
Further, the trainee must be able to teach both subjects under appropriate supervision at the
same school. In this thesis we describe an IP model for the underlying abstract matching
problem model, the Teachers Allocation Problem (TAP) [18] and present data obtained from
the application of the model for TAP applied to real data from the allocation process for
trainee teachers at P.J. Šafárik University for the Spring 2013/14 allocation.

1.2 Thesis Outline

In Chapter 2 we review the literature on stable matching problems with a particular focus on
the algorithmic aspects of those problem variants involved in this thesis.

In Chapter 3 we present a range of complexity results for restrictions of HRC imposing upper
bounds on the length of the preference lists of agents and/or assuming structural properties
of these preference lists. For example we show that the problem of deciding whether a stable
matching exists is NP-complete even if each couple finds acceptable exactly one hospital
pair. NP-completeness also holds even if each couple and hospital has a preference list of
length at most two and there are no single residents. On the other hand we give polynomial
time algorithms for the cases: (i) when the length of each hospital’s preference list is at most
one; and (ii) when the length of each couple’s joint preference list is at most one, and the
length of the preference list of each hospital and individual resident is at most two. As far as
structural restrictions are concerned we show that the decision problem is NP-complete even
if the preference lists of each resident, couple and hospital is derived from a master list of
individual hospitals, pairs of hospitals and single residents respectively. Another structural
restriction where NP-completeness holds relates to the case where the agents in the instance
form a dual market, in a specified sense. Moreover, these results for structural restrictions
hold even if the preference lists are of bounded length.

In Chapter 4 we present the first IP model for finding a maximum cardinality stable matching
in an arbitrary instance of HRC under MM-stability. First, we present and prove the correct-
ness of an IP model for finding a maximum cardinality stable matching in an instance of
HR and then show how this model can be extended to the HRC context under MM-stability.
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We then demonstrate by means of a concrete example how an instance of the IP model for
HRC is constructed from an instance of HRC. We further show how the HRC model might be
extended to HRCT, the variant of HRC in which an agent might be indifferent between agents
in its preference list. Finally we present and prove the correctness of an IP model for finding
a ‘most stable’ matching in an instance of MIN BP HRC, the minimisation variant of HRC.

In Chapter 5 we demonstrate how BIS-stability and MM-stability differ by means of a pair
of example instances. Further, we present a cloning methodology for HRC that can be used to
construct an instance of one-to-one HRC from an instance of many-to-one HRC such that the
MM-stable matchings in the many-to-one instance correspond to the MM-stable matchings
in the one-to-one instance. We provide a small counter example that proves that this cloning
method is not applicable under BIS-stability. Finally, we present the first IP model for finding
a maximum cardinality stable matching in an arbitrary instance of HRC under BIS-stability.

In Chapter 6 we present data from an empirical evaluation of an implementation of the IP
models described in Chapters 4 and 5 for finding a maximum cardinality stable matching
in an arbitrary instance of HRC or reporting that no stable matching exists. We show how
the performance of the model and the properties of a maximum cardinality stable matching
vary as we modify a range of parameters in the constructed instances. Further, we provide
data obtained from the application of the IP model for finding a maximum cardinality stable
matching in an instance of HRCT to real world instances arising from the SFAS application
for the years 2010, 2011 and 2012.

In Chapter 7 we present data from an empirical evaluation of an implementation of the IP
model for MIN BP HRC under MM-stability described in Chapter 4, and an implementation
of the corresponding MIN BP HRC model under BIS-stability derived from the HRC model
presented in Chapter 5. The models in these experiments each find a maximum cardinality
‘most stable’ matching in an arbitrary instance of MIN BP HRC under the corresponding
stability definition. We show how the performance of the model and the properties of a ‘most
stable’ matching vary as we modify a range of parameters in the constructed instances.

In Chapter 8 we describe the first IP models for HR SLT variants with upper and lower quotas
and also the HR SLT variant in which residents may express preferences over unordered
pairs of hospitals. We present and prove the correctness of three IP models for finding a
minimal set of stable score limits in instances of an HR SLT variant – a minimal set of stable
score limits has the property that the sum over the score limits in the set is minimal taken
over all sets of stable score limits admitted by the instance. (By construction these models
can only output a minimal set of stable score limits in an instance of the corresponding
problem and are designated Type A models.) The three models for which we present Type
A models are: HR SLT; the Hospitals / Residents problem with Stable Score Limits, Ties and

Paired Applications; and the Hospitals / Residents problem with Stable Score Limits, Ties
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and Common Upper Quotas.

Further, we present and prove the correctness of two models for finding a set of stable score
limits in an instance of an HR SLT variant where the optimal sets of score limits obtained
from the model may have properties other than minimality. By amending the structure of
a Type A model we can apply an alternative objective function that allows us to choose a
measure of optimality other than minimality. These models are designated Type B models.
We present two Type B IP models for finding a set of stable score limits t̂ in an arbitrary
instance of HR SLT such that the assignment induced from t̂ is of maximum cardinality taken
over all of the matchings induced from the sets of stable score limits in the instance. The
two problems for which we present Type B models are: HR SLT; and Hospitals / Residents

problem with Ties, Lower Quotas and Stable Score Limits (HR LQ SLT).

In Chapter 9 we describe and prove the correctness of IP models for the NP-complete prob-
lems, TAP and STABLE TAP. We show empirical data from the application of the model
for TAP to the process of allocating Trainee teachers studying at P.J. Šafárik University in
Košice, Slovakia for the Spring 2013/14 allocation. Further, we demonstrate how the IP
model for the TAP problem may be adapted to the STABLE TAP context, where the applicants
and schools have a preference ordering over their acceptable partners. Further, we show
how complexity results from the TAP context allow us to prove the NP-completeness of the
problem of deciding whether an arbitrary graph involving paired vertices admits a complete
matching.

In Chapter 10 we present a framework for classifying certain minimisation problems with
NP-complete decision variants and use this to prove that such minimisation problems are in-
approximable to within a given bound, unless P=NP. We first consider the measure function
with respect to which approximation is defined in stable matching problems. For minimisa-
tion problems π such as the minimisation variants of stable matching problems, the measure
of an optimal solution may be zero – in this special case the performance guarantee of an
approximation algorithm for π as described in Section 2.4 is not well defined. We describe
an adjusted measure function that naturally extends the previous measure function for min-
imisation problems and moreover leads to a well-defined notion of a performance guarantee
in the special case of minimisation problems having an optimal solution with a measure of
zero. By defining the approximation ratio when solving minimisation problems with respect
to this new adjusted measure function we present a generalisation of the proof of the inap-
proximability of (2, 2)-MIN BP HRC described in Section 3.3.2 to show that a general class
of minimisation problems having an NP-complete decision variant are inapproximable to
within a given bound, unless P=NP.
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Chapter 2

Literature Review and Preliminary
Definitions

2.1 The Stable Marriage problem

An instance of the Stable Marriage problem (SM) [27, 31, 75] involves two set of agents;
a set {m1, . . . ,mn} containing men and a set {w1, . . . , wn} containing women. Each agent
has a strict linear order over all agents of the opposite gender, a preference list. A one-to-
one matching between men and women is sought, which is a set of man-woman pairs such
that each man and woman appear in exactly one pair. A matching is stable if no man and
woman prefer one another to their partner in the matching. Given an instance I of SM, a
man mi (1 ≤ i ≤ n) and a woman wj (1 ≤ j ≤ n), if M is a stable matching in I and
(mi, wj) ∈M , then wj is a stable partner of mi in I and vice versa.

Gale and Shapley [27] described a linear-time algorithm (GS) for finding a stable matching
in an instance of SM; their algorithm can be understood as a sequence of proposals from
one set of agents to another. The GS algorithm applied with the men proposing outputs the
man-optimal stable matching. In this matching each man is assigned the best partner he
could achieve in any stable matching, his best stable partner. By having the women play
the role of proposers in the algorithm, exactly analogous results for women are produced,
resulting in the woman-optimal stable matching in which each woman is assigned her best
stable partner. It may be the case in some instances that the man-optimal stable matching and
the woman-optimal stable matching are one and the same matching; such an instance admits
exactly one stable matching. However, in general stable marriage instances may admit many
stable matchings and the number of stable matchings can grow exponentially with the size
of the instance [39].

Gale and Shapley proved that their algorithm proceeds in at most n2− 2n+ 2 proposal steps
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[27]. Knuth established in his book on stable marriage problems that the time complexity of
the GS algorithm is O(n2) and asked if a more efficient algorithm was possible [46]. Ng and
Hirschberg proved that Ω(n2) is a lower bound on the complexity of an algorithm for finding
a stable matching in an instance of SM [58].

McVitie and Wilson [56] described a recursive algorithm for finding a stable matching in an
arbitrary instance I of SM and by extension presented an O(n3|S|) algorithm for producing
all stable matchings in I , where S is the set of stable matchings in I . A more efficient
O(n2 + n|S|) algorithm exists [31] that will output the set of all stable matchings admitted
by an arbitrary SM instance.

2.1.1 The Stable Marriage Problem with Incomplete Preference
Lists

A natural extension of SM considers the case where agents may find some members of the
opposing set unacceptable. In this case each agent expresses a preference list over some
subset of the members of the opposite sex, its acceptable partners. Any member of the
opposite sex who is not acceptable is considered unacceptable. This extension of SM is the
Stable Marriage Problem with Incomplete Lists (SMI). Given an instance I of SMI and a
matching M in I , we denote mi’s assigned partner in M by M(mi); if mi is unassigned
in M , then M(mi) = ∅ . Similarly, we denote wj’s assigned partner in M by M(wj).
Following the definition used in [27], a matching M in an instance of SMI is stable if it
admits no blocking pair.

Definition 2.1.1. A blocking pair in an instance of SMI consists of a mutually acceptable

man-woman pair (mi, wj) such that both of the following hold:

(i) either mi is unassigned in M , or mi prefers wj to M(mi) and;

(ii) either wj is unassigned in M , or wj prefers mi to M(wj).

In any instance of SMI all of the stable matchings assign exactly the same number of agents
[28]. Further, Gale and Sotomayor showed that the men and women in an instance of SMI

are each partitioned into two sets, those who are assigned in all stable matchings and those
who are assigned in no stable matching [28].

2.2 The Hospitals / Residents problem

The Hospitals / Residents problem (HR) is a many-to-one generalisation of SMI. An instance
of HR involves two sets of agents – a set R = {r1, . . . , rn1} containing residents and a set
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H = {h1, . . . , hn2} containing hospitals. Each resident ri ∈ R expresses a linear preference
over some subset of the hospitals in H , his preference list. The hospitals on ri’s preference
list are acceptable to ri, all other hospitals being unacceptable to ri. Each hospital hj ∈ H
expresses a linear preference over those residents who find it acceptable, these residents are
acceptable to hj , all other residents are unacceptable. Further, each hospital hj ∈ H has a
positive integral capacity, cj , the maximum number of residents to which it may be assigned.

Clearly, the preferences expressed in this fashion are reciprocal: if a resident ri ∈ R is
acceptable to a hospital hj ∈ H , then hj is also acceptable to ri, and vice versa. A many-to-
one matching between residents and hospitals is sought. A matchingM is a set of acceptable
resident-hospital pairs such that each resident appears in at most one pair and each hospital
hj appears in at most cj pairs. If (ri, hj) ∈ M , then ri is said to be assigned to hj in M , if
ri does not appear in a pair in M , then ri is unassigned. Similarly, if (ri, hj) ∈ M , then hj
is said to be assigned ri in M . A hospital assigned fewer residents than its capacity in M is
undersubscribed in M , moreover a hospital having no assignees in M is unassigned in M .
We denote by M(hj) the set containing hj’s assignees in M and we denote by M(ri) the
assignee of ri, if ri is assigned in M .

Following the definition used in [27], a matching M is stable if it admits no blocking pair.

Definition 2.2.1. A blocking pair consists of a mutually acceptable resident-hospital pair

(ri, hj) such that both of the following hold:

(i) either ri is unassigned, or ri prefers hj to M(ri) and;

(ii) either hj is undersubscribed in M , or hj prefers ri to at least one member of M(hj).

Were such a blocking pair to exist, they could form a private arrangement outside of the
matching, undermining the integrity of the matching [67].

It is known that every instance of HR admits at least one stable matching and such a matching
may be found in time linear in the size of the instance [27]. Also, for an arbitrary HR instance
I , any resident assigned in one stable matching in I is assigned in all stable matchings in I .
Moreover any hospital that is undersubscribed in a stable matching in I is assigned exactly
the same set of residents in every stable matching in I [28, 68, 67]. In the resident-optimal

stable matching each resident is assigned the best partner he could achieve in any stable
matching. Analogously, the hospital-optimal stable matching has each hospital assigned the
best partners it could receive in any stable matching.



2.3. The Hospitals / Residents problem with Couples 11

2.3 The Hospitals / Residents problem with Couples

2.3.1 Fundamental definitions

Centralised matching schemes have had to evolve to accommodate couples who wish to be
allocated to (geographically) compatible hospitals. The requirement to take into account the
joint preferences of couples has been in place in the NRMP context since 1983 and since
2009 in the case of SFAS. In schemes in which the agents may be involved in couples,
the underlying allocation problem can be modelled by the so-called Hospitals / Residents

problem with Couples (HRC).

As in the case of HR, an instance of HRC involves a set H = {h1, . . . , hn2} containing
hospitals and a setR = {r1, . . . , rn1} containing residents. The residents inR are partitioned
into two sets, S and S ′. The set S contains single residents and the set S ′ contains those
residents involved in couples. There is a set C = {(ri, rj) : ri ∈ S ′, rj ∈ S ′} of couples such
that each resident in S ′ belongs to exactly one pair in C.

Each single resident ri ∈ S expresses a linear preference order over his acceptable hospitals.
Each pair of residents (ri, rj) ∈ C expresses a joint linear preference order over a subset A
of H × H where (hp, hq) ∈ A represents the joint assignment of ri to hp and rj to hq. The
hospital pairs in A represent those joint assignments that are acceptable to (ri, rj), all other
joint assignments being unacceptable to (ri, rj).

Each hospital hj ∈ H expresses a linear preference order over those residents who find hj
acceptable, either as a single resident or as part of a couple. As in the HR case, each hospital
hj ∈ H has a positive integral capacity, cj .

A many-to-one matching between residents and hospitals is sought, which is defined as for
HR with the additional restriction that each couple (ri, rj) is either unassigned, meaning that
both ri and rj are unassigned, or assigned to some pair (hk, hl) that (ri, rj) find acceptable.
As in the case of HR, we seek a stable matching, which guarantees that no resident and hos-
pital, and no couple and pair of hospitals, have an incentive to deviate from their assignments
and become assigned to each other. We denote by M(hj) the set containing hj’s assignees
in M (where M(hj) = ∅ if hj has no assignees) and we denote by M(ri) the assignee of ri,
if ri is assigned in M (where M(ri) = ∅ if ri is unassigned in M ).

Roth [67] considered stability in the HRC context although he did not define the concept
explicitly. Whilst Gusfield and Irving [31] defined stability in HRC, their definition neglected
to deal with the case that both members of a couple may wish to be assigned to the same
hospital. Manlove and McDermid [55] extended their definition to deal with this possibility.
Henceforth, we refer to Manlove and McDermid’s stability definition as MM-stability. We
now define this concept formally.
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Definition 2.3.1. A matching M is MM-stable if none of the following holds:

1. The matching is blocked by a hospital hj and a single resident ri, as in the classical

HR problem as defined in Definition 2.2.1.

2. The matching is blocked by a couple (ri, rj) and a hospital hk such that either

(a) (ri, rj) prefers (hk,M(rj)) to (M(ri),M(rj)), and hk is either undersubscribed

in M or prefers ri to some member of M(hk)\{rj} or

(b) (ri, rj) prefers (M(ri), hk) to (M(ri),M(rj)), and hk is either undersubscribed

in M or prefers rj to some member of M(hk)\{ri}

3. The matching is blocked by a couple (ri, rj) and (not necessarily distinct) hospitals

hk 6= M(ri), hl 6= M(rj); that is, (ri, rj) prefers the joint assignment (hk, hl) to

(M(ri),M(rj)), and either

(a) hk 6= hl, and hk (respectively hl) is either undersubscribed in M or prefers ri
(respectively rj) to at least one of its assigned residents in M ; or

(b) hk = hl, and hk has at least two free posts in M , i.e., ck − |M(hk)|≥ 2; or

(c) hk = hl, and hk has one free post in M , i.e., ck − |M(hk)|= 1, and hk prefers at

least one of ri, rj to some member of M(hk); or

(d) hk = hl, hk is full in M , hk prefers ri to some rs ∈ M(hk), and hk prefers rj to

some rt ∈M(hk)\{rs}.

More recently Drummond et al. [22] described a notion of stability that is very closely related
to MM-stability. In fact, for a given instance I of HRC, the set of stable matchings admitted
by I under Drummond et al.’s definition of stability is a subset of the set of stable matchings
admitted under MM-stability. A further stability definition due to Biró, Irving and Schlotter
[12] (henceforth BIS-stability) ensures that if a single resident ri ∈ R is not assigned to a
hospital hj ∈ H , then all hj’s assignees in M are strictly preferable to ri. Moreover, if a
couple (ri, rj) (ri ∈ R, rj ∈ R) is not assigned to a hospital pair (hj, hj) (hj ∈ H), then all
hj’s assignees in M are strictly preferable to the worse of ri and rj according to hj . We now
define BIS-stability formally as follows.

Definition 2.3.2. A matching M is BIS-stable if none of the following holds:

1. The matching is blocked by a hospital hj and a single resident ri, as in the classical

HR problem as defined in Definition 2.2.1.

2. The matching is blocked by a hospital hk and a resident ri who is coupled, say with

rj; such that either
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(a) (ri, rj) prefers (hk,M(rj)) to (M(ri),M(rj)) and either

(i) hk 6= M(rj) and hk is either undersubscribed in M or prefers ri to some

member of M(hk) or

(ii) hk = M(rj) and hk is either undersubscribed in M or prefers both ri and

rj to some member of M(hk) \ {rj}

(b) (ri, rj) prefers (M(ri), hk) to (M(ri),M(rj)) and either (i) or (ii) as above

adapted to symmetric case

3. The matching is blocked by a couple (ri, rj) and (not necessarily distinct) hospitals

hk 6= M(ri) and hl 6= M(rj); that is, (ri, rj) prefers the joint assignment (hk, hl) to

(M(ri),M(rj)), and either

(a) hk 6= hl, and hk (respectively hl) is either undersubscribed in M or prefers ri
(respectively rj) to at least one of its assignees in M ; or

(b) hk = hl, and hk has at least two free posts in M or

(c) hk = hl, and hk has one free post in M and both ri and rj are preferred by hk to

some member of M(hk) and

(d) hk = hl, hk is full in M and either

(i) hk prefers each of ri and rj to some rp ∈ M(hk) who is a member of a

couple with some rq ∈M(hk),

(ii) the least preferred resident among ri and rj (according to hk) is preferred

by hk to two members of M(hk).

It is notable that, for an arbitrary instance I of HRC in which hospitals may have a capacity
of greater than one, an MM-stable matching need not be BIS-stable and vice versa. The
instances described in Section 5.2 demonstrate this. In the restriction of HRC in which each
hospital has capacity one, BIS-stability and MM-stability are both equivalent to the stability
definition given by Gusfield and Irving [31] since no couple (ri, rj) may express a preference
for a hospital pair (hk, hk).

The Hospitals / Residents Problem with Couples and Ties (HRCT) is a generalisation of HRC

in which hospitals (respectively single residents or couples) may find some subsets of their
acceptable residents (respectively hospitals or hospital pairs) equally preferable. Residents
(respectively hospitals or hospital pairs) that are found equally preferable by a hospital (re-
spectively resident or couple) are tied with each other in the preference list of that hospital
(respectively resident or couple). The stability concepts given by Definitions 2.3.1 and 2.3.2
remain unchanged in the HRCT context.



2.3. The Hospitals / Residents problem with Couples 14

In contrast with HR, an instance of HRC need not admit a stable matching [67]. Moreover,
an instance of HRC may admit stable matchings of differing sizes [4]. It is known that the
problem of deciding whether a stable matching exists in an instance of HRC is NP-complete,
even in the restricted case in which there are no single residents and each hospital has ca-
pacity one [58, 66]. Nguyen and Vohra [60] showed that it is always possible to find a stable
matching in an instance of HRC if the capacities of the hospitals may be adjusted by at most
three.

Residents’ Preferences

(r1, r2) : (h1, h2)

r3 : h1 h2

Hospitals’ Preferences

h1 : r1 r3

h2 : r3 r2

Figure 2.1: An instance of HRC that admits no stable matching due to Biró and Klijn. [14]

The instance shown in Figure 2.1 demonstrates that an instance of HRC need not admit a
stable matching. Let I be the instance of HRC shown in Figure 2.1 where each hospital has
capacity one. Clearly, I admits exactly three non-empty matchings, namely

M1 = {(r1, h1), (r2, h2)}

M2 = {(r3, h1)}

M3 = {(r3, h2)}.

None of these matchings are stable. Resident r3 blocks M1 in I with h2, couple (r1, r2)

blocks M2 in I with (h1, h2) and resident r3 blocks M3 in I with h1. Thus, I admits no
stable matching.

The instance shown in Figure 2.2 demonstrates that an instance of HRC can admit stable
matchings of differing sizes. Let I be the instance of HRC shown in Figure 2.2 where each
hospital has capacity one. Thus, I admits exactly two stable matchings, namely

M1 = {(r1, h1), (r4, h2), (r2, h3), (r3, h4)}

M2 = {(r2, h1), (r3, h2)}

and these matchings are not of the same size.
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Residents’ Preferences

(r1, r4) : (h1, h2)

(r2, r3) : (h1, h2) (h3, h4)

Hospitals’ Preferences

h1 : r1 r2

h2 : r3 r4

h3 : r2

h4 : r3

Figure 2.2: An instance of HRC that admits stable matchings of differing size due to Biró
and Klijn. [14]

In many practical applications of HRC the residents’ preference lists are short. Let (α, β, γ)-
HRC denote the variant of HRC in which each single resident’s preference list contains at
most α hospitals, each couple’s preference list contains at most β pairs of hospitals and each
hospital’s preference list contains at most γ residents. We will abbreviate (α, α, γ)-HRC to
(α, γ)-HRC. Manlove and McDermid [55] showed that (3, 6)-HRC is NP-complete.

A further restriction of HRC is HRC DUAL MARKET, defined as follows. Given an instance
I of HRC, let the set containing the first members of each couple in I be R1 ⊆ R, and
the set containing the second members of each co‘uple in I be R2 ⊆ R. Further, let the
set of acceptable partners of the residents in R1 in I be H1 ⊆ H and the set of acceptable
partners of the residents in R2 in I be H2 ⊆ H . We define I to be an instance of HRC DUAL

MARKET consisting of the two disjoint markets R1 ∪H1 and R2 ∪H2 if in I , H1 ∩H2 = ∅
and no single resident has acceptable partners in both H1 and H2. The problem of deciding
whether an instance of HRC DUAL MARKET admits a stable matching is also known to be
NP-complete [59] even if the instance contains no single residents and each hospital has
capacity one.

Since the existence of an efficient algorithm for finding a stable matching, or reporting that
none exists, in an instance of HRC is unlikely, in practical applications such as SFAS and
NRMP, stable matchings are found by applying heuristics [12, 71]. However, neither the
SFAS heuristic, nor the NRMP heuristic guarantee to terminate and output a stable matching,
even in instances where a stable matching does exist. Hence, a method which guarantees to
find a maximum cardinality stable matching in an arbitrary instance of HRC, where one
exists, might be of considerable interest. For further results on HRC the reader is referred to
[14] and [48].



2.3. The Hospitals / Residents problem with Couples 16

2.3.2 The Hospitals / Residents problem with Paired Applica-
tions

In the Hungarian Higher Education admission process applicants can apply for pairs of pro-
grammes in the case of teachers studies, e.g. when they want to become a teacher in both
maths and physics. In this setting with paired applications, if an applicant is not admitted to
a pair of hospitals, or to any better hospitals (or pair of hospitals) in his preference list, then
either of the hospitals involved in the pair must have filled its quota with better applicants.
We now define this problem formally as the Hospitals / Residents problem with Paired Ap-

plications (HR PA) as follows. An instance I of HR PA involves a set R = {r1, r2, . . . rn1}
containing residents, a set HS = {h1, h2, . . . hn2} containing individual hospitals and a set
HP containing acceptable unordered pairs of hospitals {hj1 , hj2} (1 ≤ j1 ≤ n2, 1 ≤ j2 ≤
n2, hj1 ∈ HS, hj2 ∈ HS, hj1 6= hj2). Further let H∗ = HS ∪ HP be the set of all possible
options over which a resident might express preferences.

Each resident ri ∈ R has a strictly ordered preference list of length l(ri) over the members
of H∗. We refer to an element of ri’s preference list as an application. We say that hj ∈
pref (ri, p) if the application at position p on ri’s preference list involves hj , either as an
application to the single hospital hj or as an application to some pair {hj, hk} ∈ HP for
some k (1 ≤ k ≤ n2, k 6= j). Further, each hospital hj ∈ H has capacity cj , the maximum
number of residents that hj may be assigned.

We define stability in the HR PA context as follows:

Definition 2.3.3. A matching M in an instance of HR PA is stable if there exists no resident

ri ∈ R and application pref (ri, p) (1 ≤ p ≤ l(ri)) such that

(i) ri is unassigned or prefers pref (ri, p) to M(ri) and

(ii) For each hj ∈ pref (ri, p) either hj is undersubscribed or prefers ri to some member

of M(hj).

We now demonstrate that an instance of HR PA need not admit a stable matching and further
that an instance of HR PA can admit stable matchings of differing sizes.

The instance shown in Figure 2.3 demonstrates that an instance of HR PA need not admit a
stable matching. Let I be the instance of HR PA shown in Figure 2.3 where each hospital has
capacity one. Thus I admits exactly three non-empty matchings, namely

M1 = {(r1, h1), (r1, h2)}

M2 = {(r2, h1)}
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Residents’ Preferences

r1 : {h1, h2}
r2 : h1 h2

Hospitals’ Preferences

h1 : r1 r2

h2 : r2 r1

Figure 2.3: An instance of HR PA that admits no stable matching

M3 = {(r2, h2)}.

Clearly, none of these matchings is stable. Resident r2 blocksM1 in I with h2, couple (r1, r2)

blocksM2 in I with (h1, h2) and resident r2 blocksM3 in I with h1. Thus, I admits no stable
matching.

Residents’ Preferences

r1 : {h1, h2}
r2 : {h1, h2} {h3, h4}

Hospitals’ Preferences

h1 : r1 r2

h2 : r2 r1

h3 : r2

h4 : r2

Figure 2.4: An instance of HR PA that admits stable matchings of differing sizes

The instance shown in Figure 2.4 demonstrates that an instance of HR PA can admit stable
matchings of differing sizes. Let I be the instance of HR PA shown in Figure 2.3 where each
hospital has capacity one. Thus, I admits exactly two stable matchings, namely

M1 = {(r1, h1), (r1, h2), (r2, h3), (r2, h4)}

M2 = {(r2, h1), (r2, h2)}

and these matchings are clearly not of the same size.
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2.4 ‘Most stable’ matchings and optimisation prob-

lems

Given an instance I of HRC that does not admit a stable matching, a natural question is to
ask whether there is some other matching that might be the best alternative amongst the
matchings admitted by I . Roth [69, 70] suggested that instability in the outcome of an
allocation process gives participants greater incentive to circumvent formal procedures – it
follows that we might seek to minimise the amount of instability in any alternative matching
selected. We suggest that it is natural to seek a matching that admits the minimum number
of blocking pairs taken over all of the matchings admitted by the instance. Eriksson and
Häggström [25] have suggested that the number of blocking pairs admitted by a matching is
a meaningful way of measuring the degree of instability of a matching. Abraham et al. [2]
described matchings with the minimum number of blocking pairs in unsolvable instances of
SR as being ‘as stable as possible’. We define a ‘most stable’ matching as follows: a matching
M in I is a ‘most stable’ matching in I if it admits the minimum number of blocking pairs
taken over all of the matchings admitted by I . Clearly a stable matching in I , if one exists,
is a ‘most stable’ matching in I .

Determining whether I admits a matching with zero blocking pairs is clearly a decision
problem – the answer is either yes or no. However the search for a ‘most stable’ matching
in I is an optimisation problem since we seek a matching where the minimum number of
blocking pairs is some non-negative integer. We now introduce and formally define the
notation used in the discussions of optimisation problems that follow in this work. We begin
with the definition of an optimisation problem.

Definition 2.4.1. An optimisation problem π is a tuple (I, SOL, m, GOAL) where:

• I is a set of instances;

• SOL is a function that maps a given instance I ∈ I to a set of feasible solutions

SOL(I);

• m is a measure function that associates a non-negative integer m(I, S) with a feasible

solution S ∈ SOL(I) for a given instance I ∈ I;

• GOAL is the objective of the optimisation problem which is either to maximise or to

minimise.

Given an instance I ∈ I, the optimal measure for I , denoted by opt(I) is defined as follows:

opt(I) = GOAL{m(I, S) : S ∈ SOL(I)}.
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An optimal solution for I is a feasible solution S∗ ∈ SOL(I) such that m(I, S∗) = opt(I).

If GOAL = min, π is called a minimisation problem, otherwise π is referred to as a max-

imisation problem.

The class NPO denotes the class of NP optimisation problems whose decision version is in
the class NP. Let π be an NPO problem and further let I be an instance of π. An approxima-

tion algorithm A for π guarantees to return a feasible solution A(I) for any instance I of π.
If π is a maximisation problem the performance guarantee of A with respect to I is defined
as follows:

RA(I) =
opt(I)

m(I, A(I))
. (2.1)

Similarly, if π is a minimisation problem the performance guarantee of A with respect to I
is defined as follows:

RA(I) =
m(I, A(I))

opt(I)
. (2.2)

An algorithm A is a c-approximation algorithm for π and has performance guarantee c for
some constant c, if RA(I) ≤ c for all instances I ∈ I. If π admits a c-approximation
algorithm, then we say that π is c-approximable. If it is possible to prove that no such
algorithm can exist, then π is inapproximable to within a factor of c.

Having introduced the required notation we now formally define MIN BP HRC, the problem
of finding a ‘most stable’ matching in an instance of HRC.

MIN BP HRC

Instance: An instance I of HRC;
Feasible solutions: All the matchings admitted by I;
Measure: The number of blocking pairs admitted by a matching in I;
Goal: min;
Optimisation version: Minimise the number of blocking pairs taken over all of the match-
ings admitted by I;
Decision version: Is there a matching in I that admits no blocking pairs?.

Let (α, β, γ)-MIN BP HRC denote the variant of MIN BP HRC in which each single resident’s
preference list contains at most α hospitals, each couple’s preference list contains at most β
pairs of hospitals and each hospital’s preference list contains at most γ residents. We will
abbreviate (α, β, γ)-MIN BP HRC to (α, γ)-MIN BP HRC. Further, we shall denote by MIN BP

HRC DUAL MARKET the minimisation variant of HRC DUAL MARKET.



2.5. The Hospitals / Residents problem with Ties 20

2.5 The Hospitals / Residents problem with Ties

The Hospitals / Residents problem with Ties (HRT) is the variant of HR in which the pref-
erence lists of the agents may contain ties. If a group of residents are involved in a tie in a
hospital’s preference list, then the hospital is indifferent between the residents involved in
the tie. Similarly if a group of hospitals are involved in a tie in a resident’s preference list,
then the resident is indifferent between all of the hospitals involved in the tie.

In this context a number of stability definitions exist. The definition which attracts most
interest in the literature is weak stability, defined as follows.

Definition 2.5.1. A matching is weakly stable if it admits no blocking pair. Following the

definition used in [48], a blocking pair in an instance of HRT is a resident-hospital pair

(ri, hj) such that both of the following conditions hold:

(i) either ri is unassigned, or ri strictly prefers hj to M(ri) and;

(ii) either hj is undersubscribed in the matching, or hj strictly prefers ri to at least one

member of M(hj)

Every instance of HRT admits a weakly stable matching – a weakly stable matching can be
obtained by breaking each of the ties in an arbitrary fashion to obtain an instance of HR and
subsequently applying the Gale Shapley algorithm to the resulting HR instance. However,
the order in which the ties are broken will lead to differing instances of HR and it is known
that the instances created in this manner may lead to weakly stable matchings of differing
sizes [50]. Manlove et al. [50] showed that the problem of finding a maximum cardinality
weakly stable matching in an instance of HRT, MAX HRT, is NP-hard and the same is true
for the problem of finding a minimum cardinality weakly stable matching. Further, they
showed that arbitrarily breaking the ties in this fashion gives an approximation algorithm
with a performance guarantee of two.

Halldórsson et al. [32] showed that it is NP-hard to approximate MAX HRT to within δ for
some δ > 1 even if each hospital has capacity one, the residents’ preference lists are of length
at most seven, the hospitals’ preference lists are of length at most four and the preference
lists of the hospitals and residents are derived from a master list of residents and hospitals
respectively. Irving et al. [42] showed that it remains NP-hard to approximate MAX HRT to
within a constant factor even if each hospital has capacity one, the residents’ preference lists
are of length at most three and the hospitals’ preference lists are of length at most four.

Halldórsson et al. proved that if the preference lists of the residents are of unbounded length,
the residents’ preference lists are strictly ordered and the hospitals’ preference lists are
strictly ordered or contain a tie of length two, then it is NP-hard to approximate MAX HRT
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to within 21/19 − ε for any ε > 0, unless P=NP. Further, Yanagisawa [81] showed that it is
NP-hard to approximate MAX HRT to within 33/29 in the case where there are ties on either
the hospitals’ or the residents’ preference lists, but the ties are of length at most two. A num-
ber of approximation algorithms exist for finding a maximum cardinality stable matching in
an instance of MAX HRT, see for example [45, 54]. The best currently described algorithm
achieving an approximation guarantee of 3/2 [45].

The instance of HRT shown in Figure 2.5 due to Roth [67] admits no resident-optimal weakly
stable matching. In an instance of HRT a group of residents (respectively hospitals) sur-
rounded by [. . . ] in the preference list of a hospital (respectively resident) indicates a group
of residents (respectively hospitals) tied in the preference list of the hospital (respectively
resident).

Residents

r1 : h1 h2
r2 : h1 h2

Hospitals

h1 : 1 : [ r1 r2 ]
h2 : 1 : r1 r2

Figure 2.5: An instance of HRT that admits no resident-optimal stable matching.

Let I be the instance of HRT shown in Figure 2.5. The instance I admits exactly two stable
matchings, namely

M1 = {(r1, h1), (r2, h2)}

M2 = {(r1, h2), (r2, h1)}

Clearly, neither M1 nor M2 is an optimal matching with respect to the residents.

2.6 The Hospitals / Residents problem with Lower /

Common Quotas

In Sections 2.6.1 and 2.6.2 we present two additional models for HR variants that have ad-
ditional restrictions on the number of residents which a hospital may be assigned. First we
formally define the Hospitals / Residents problem with Lower Quotas (HR LQ) in Section
2.6.1. Then we formally define the Hospitals / Residents problem with Common Upper
Quotas (HR CQ) in Section 2.6.2.
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2.6.1 The Hospitals / Residents problem with Lower Quotas

An instance I of HR LQ extends an instance of HR by the following additional restriction. As
well as a positive integral capacity c+j , the maximum number of residents to which it may be
assigned in any stable matching, each hospital hj ∈ H has a positive integral lower quota
c−j (0 ≤ c−j ≤ c+j ), the minimum number of residents to which it may be assigned in any
stable matching. A hospital with at least min{1, c−j } or greater assignees is open. Otherwise,
the hospital is closed and can accept no assignees.

A matching is stable if it admits no blocking pair and also admits no blocking coalition.

Definition 2.6.1. Following the definition used in [11], a matching M in an instance of HR

LQ is stable if both of the following conditions hold:

(i) (Blocking Pair) There exists no acceptable resident-hospital pair (ri, hj) such that

ri is unassigned or prefers hj to M(ri) and hj is an open hospital which is either

undersubscribed in the matching, or prefers ri to at least one member of M(hj).

(ii) (Blocking Coalition) There exists no closed hospital hj and set of at least c−j residents

and no more than c+j residents such that each of the residents is either unassigned or

prefers hj to their assigned partner.

Biró et al. [11] showed that the problem of deciding whether an instance of HR LQ admits
a stable matching is NP-complete even in the case that each hospital has upper and lower
quota equal to three, but the complexity remains open if each lower quota is at most two or if
each upper quota (and hence each lower quota) is at most two. The instance shown in Figure
2.6 due to Manlove [49] demonstrates that an instance of HR LQ may admit stable matchings
of differing sizes.

Residents’ Preferences

r1 : h2 h1
r2 : h1
r3 : h1 h2

Hospitals’ Preferences

h1 : 3 : 3 : r1 r2 r3
h2 : 2 : 2 : r1 r3

Figure 2.6: An instance of HR LQ that admits two stable matchings of differing sizes [49].

Let I be the instance of HR LQ shown in Figure 2.6. The instance I admits exactly two stable
matchings, namely M1 = {(r1, h1), (r2, h1), (r3, h1)} and M2 = {(r1, h2), (r3, h2)}. We
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demonstrate the stability of M1 and M2 as follows. First consider M1. Since (r2, h1) ∈ M1

and (r3, h1) ∈ M1, then clearly h2 cannot meet its lower quota of two since r1 is the single
remaining resident in I that prefers h2 to his assigned partner in M1. Hence, M1 must be a
stable matching in I . Now consider M2. Since (r1, h2) ∈ M2 then clearly h1 cannot meet
its lower quota of three since there are only two other residents in I that prefer h1 to their
assigned partners in M2. Hence, M2 is a stable matching in I .

2.6.2 The Hospitals / Residents problem with Common Upper
Quotas

We next consider the variant of HR in which coalitions of hospitals may share common
upper quotas. We define this variant as the Hospitals / Residents problem with Common
Upper Quotas (HR CQ). In HR CQ we generalise the concept of a hospital’s capacity as
follows. A coalition of hospitals may share a common upper quota, such that the total
number of residents admitted to hospitals in this group may not exceed this quota. Let
H∗ = {H1, H2, . . . Hn3} where each Hk ∈ H∗ is a subset of H representing a set of hospi-
tals sharing a common upper quota. For each coalitionHk ∈ H∗ let uk be the common upper
quota for the coalition (in this model the capacity of each individual hospital is represented
by ensuring that {hj} ∈ H∗).

In our HR CQ problem model we assume that each Hk ∈ H∗ has a preference list which is a
master list of preferences for each hj ∈ Hk. Thus the preferences in I satisfy the following
properties where P (Hk)(respectively P (hj)) represents the ordered list of residents on Hk’s
preference list (respectively hj’s preference list):

(i) P (Hk) =
⋃
hj∈Hk

P (hj)

(ii) P (hj) is constructed from P (Hk) by removing those residents from P (hk) who are
not in P (hj)

(iii) For any two coalitions Hk ∈ H∗ and Hl ∈ H∗, let H ′ = Hk ∩Hl and for any pair of
residents rs and rt such that rs ∈ P (H ′) and rt ∈ P (H ′), rs precedes rt in P (Hk) if
and only if rs precedes rt in P (Hl).

Definition 2.6.2. A matching in an instance of HR CQ is stable if it admits no blocking
pair. Following the definition used in [11], a blocking pair consists of a mutually acceptable

resident-hospital pair (r, h) such that both of the following conditions hold:

(i) either r is unassigned, or r prefers h to M(r) and;

(ii) for each Hk ∈ H∗ such that h ∈ Hk, either Hk is undersubscribed or prefers r to at

least one of its assigned residents.



2.6. The Hospitals / Residents problem with Lower / Common Quotas 24

Biró et al. [11] showed that an instance of HR CQ need not admit a stable matching and they
further showed that the stable matchings admitted by an instance of HR CQ need not be of
the same size. Further, Biró et al. [11] also showed that the problem of deciding whether
an instance of HR CQ admits a stable matching is NP-complete even if every coalition has
upper quota one, no coalition contains more than two hospitals and each hospital appears in
at most three coalitions (including the coalition consisting of only that hospital).

We say that the coalitions of hospitals in an instance of HR CQ are nested if for any two
coalitions Hk ∈ H∗ and Hl ∈ H∗, if Hk

⋂
Hl 6= ∅ then either Hk ⊆ Hl or Hl ⊆ Hk. Biró

et al. [11] showed that a stable matching always exists in an instance of HR CQ in which the
coalitions of hospitals are nested and further described a polynomial time algorithm which
finds a stable matching in an instance HR CQ in which the coalitions of hospitals are nested.

Residents’ Preferences
r1 : h1 h7
r2 : h5 h2
r3 : h3 h6
r4 : h4 h7

Individual Hospitals’ Preferences
h1 : 1 : r1
h2 : 1 : r2
h3 : 1 : r3
h4 : 1 : r2
h5 : 1 : r2
h6 : 1 : r3
h7 : 1 : r1 r4

Coalitions’ Master Lists
{h1, h2} : 1 : r2 r1
{h2, h3} : 1 : r2 r3
{h4, h5} : 1 : r2 r4
{h5, h6} : 1 : r3 r2

Figure 2.7: An instance of HR CQ that admits exactly two stable matchings, neither of which
is optimal with respect to the residents.

Let I be the instance of HR CQ shown in Figure 2.7. The instance I admits exactly two stable
matchings, namely M1 = {(r1, h1), (r2, h5), (r3, h3), (r4, h7)} and M2 = {(r1, h7), (r2, h2),

(r3, h6), (r4, h4)}. We demonstrate the stability of M1 and M2 as follows. First we consider
the matching M1. Assume M1 is blocked in I by (r4, h4). Now we have that the coalition
{h4, h5} is fully subscribed and moreover is assigned to its first preference r2, and hence
(r4, h4) cannot block M1 in I , a contradiction. Since all other residents are assigned to their
first preference in M1, M1 must be stable in I .
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Now consider the matching M2. Assume, M2 is blocked in I by (r1, h1). Now we have that
the coalition {h1, h2} is fully subscribed and moreover is assigned to its first preference r2,
and hence (r1, h1) cannot block M2 in I , a contradiction. Assume, M2 is blocked in I by
(r2, h5). Now we have that the coalition {h5, h6} is fully subscribed and moreover is assigned
to its first preference r3, and hence (r2, h5) cannot block M2 in I , a contradiction. Assume,
M2 is blocked in I by (r3, h3). Now we have that the coalition {h2, h3} is fully subscribed
and moreover is assigned to its first preference r2, and hence (r3, h3) cannot block M2 in I ,
a contradiction. Since no other residents may improve their allocation in M2 it follows that
M2 is stable in I . Clearly, neither M1 nor M2 is an optimal matching with respect to the
residents.

2.7 The Hospitals / Residents problem with Stable

Score Limits

2.7.1 Fundamental definitions

A number of centralised matching schemes take into account scores that are assigned to
applicants by their acceptable positions. This is the case, for example, in the context of
Higher Education admission in Hungary [10, 89], Spain [65], Turkey [6] and Ireland [90, 87].
The outcome of such schemes may be represented by a set of score limits for the programmes
involved, where the score limit of a programme represents the lowest score that would allow
an applicant to be assigned to that programme. In this section we describe the underlying
abstract allocation problem for such schemes involving score limits, defined as the Hospitals

/ Residents problem with Stable Score Limits (HR SL) [13] (we remark that Biró and Kiselgof
[13] refer to this problem as the College Admission problem with Stable Score Limits).

An instance of HR SL consists of two sets of agents: a set R = {r1, r2, . . . , rn1} containing
residents, and a set H = {h1, h2, . . . , hn2} containing hospitals. Each resident ri ∈ R

expresses a linear preference over some subset of the hospitals, his acceptable hospitals;
all other hospitals being unacceptable. The acceptable resident partners for each hospital
hj ∈ H are those residents who find hj acceptable, all other residents being unacceptable

to hj . Let si,j be a non-negative integer representing the score of ri at hj and further let s̄j
represent the maximum possible score a resident might achieve at hj . We say that hj prefers

ri1 to ri2 if si1,j > si2,j . If si1,j = si2,j then ri1 and ri2 are in a tie in hj’s list. Further, every
hospital has a positive integral capacity, cj , the maximum number of residents that may be
assigned to hj .

Given an instance of HR SL the objective is to compute for each hospital an integer value
representing the score limit at that hospital. Let t̂ = {t1, . . . , tn2} be a set of score limits in
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I , where tj is the score limit at hj (1 ≤ j ≤ n2). The range of score limits for a hospital
hj ∈ H ranges from zero to s̄j + 1, since the score limit can be higher than the maximal
score (when all students are rejected, e.g. because more students have maximal score than
the upper quota). An assignment M is induced in I from t̂ and the residents’ preferences as
follows. For a given resident ri, let hj be the first hospital on ri’s preference list such that
si,j ≥ tj . Add (ri, hj) to M .

In most real applications any ties between residents at a hospital are broken in some manner.
In the context of higher education admission in Turkey [6] any ties are broken according
to the applicants’ dates of birth, whilst in Spain [65] a very fine grained scoring system is
used so ties are highly unlikely in practice. In Ireland ties are broken by assigning applicants
a random number and breaking ties by ordering tied applicants according to these random
numbers. We will discuss the Hungarian context in more detail below. We now define
stability in the context where there are no ties amongst the acceptable residents for any of
the hospitals. A set of score limits, t̂ is feasible if no hospital exceeds its capacity in the
assignment induced from t̂.

Definition 2.7.1. A set of score limits, t̂ in an instance of HR SL is stable if both of the

following hold:

(i) t̂ is feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂ then t̂′ is infeasible.

We induce an instance I ′ of HR from the residents’ scores and preferences in an instance of
HR SL as follows. For each hj in I ′ create a preference list in which hj’s acceptable residents
are strictly ordered by decreasing score. Balinski and Sönmez [6] showed that in the absence
of ties the stable matchings in I ′ are in one-to-one correspondence with the sets of stable
score limits in I .

Let t̂1 = {t11, . . . , t1n2
} and t̂2 = {t21, . . . , t2n2

} be two sets of score limits in I . We say that
t̂1 is better than t̂2 for the residents in I if t1j ≤ t2j for all j (1 ≤ j ≤ n2) and t1j < t2j for at
least one j (1 ≤ j ≤ n2). The residents would consider t̂1 better than t̂2 since every resident
would be admitted to the same hospital or a better hospital under t̂1 than under t̂2.

In the Hungarian higher education admission process, ties between residents are never bro-
ken. Either all residents tied at a hospital are admitted to that hospital or none of them are;
this is known as an equal treatment policy. We denote this variant of HR SL in which resi-
dents may be tied at a hospital by HR SLT for the avoidance of ambiguity. We now define
stability in the more general HR SLT setting.
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We first describe a feasibility concept that is similar to the notion of feasibility described in
the HR SL context. Let t̂H be a set of score limits in I and let M be the assignment in I
induced from t̂H . Then t̂H is H-feasible if no hospital exceeds its capacity in M .

Definition 2.7.2. A set of score limits t̂H in an instance of HR SLT is H-stable if both of the

following hold:

(i) t̂H is H-feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂H then t̂′ is H-infeasible

Correspondingly, we define L-feasibility and L-stability as follows. Let t̂L = {t1, . . . , tn2}
be a set of score limits in I and let M be the assignment in I induced from t̂L. Given any
hj ∈ H , let t̂L,j = {tj1, . . . , tjn2

} be the set of score limits obtained from t̂L by setting tjk = tk

for all k (1 ≤ k ≤ n2, k 6= j) and tjj = tj + 1. Let M j be the assignment in I induced from
t̂L,j . Then t̂L is L-feasible if, for each hj ∈ H , either |M(hj)|≤ cj or |M j(hj)|< cj .

Definition 2.7.3. A set of score limits t̂L in an instance of HR SLT is L-stable if both of the

following hold:

(i) t̂L is L-feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂L then t̂′ is L-infeasible.

We induce an instance I ′ of HRT from the residents’ scores and preferences in an instance
I of HR SLT as follows. In I ′ create a preference list for each hj such that hj’s acceptable
residents are (not necessarily strictly) ordered by non-increasing score.

Biró and Kiselgof [13] showed that in any HR SLT instance I there exists a set of H-stable
score limits that are the best possible set of H-stable score limits for the residents in I with
respect to the “better than” relation. These are called the resident optimal H-stable score
limits in I , denoted by t̂H0 . Similarly, they showed that there exists a set of score limits
that are the worst possible set of H-stable score limits for the residents in I with respect to
the “better than” relation. These are called the resident pessimal H-stable score limits in I
denoted by t̂Hz . Biró and Kiselgof [13] showed that a resident optimal and resident pessimal
set of L-stable score limits for the residents in I , denoted t̂L0 and t̂Lz respectively also exist.
Moreover, t̂H0 and t̂L0 are upper and lower bounds respectively for the resident optimal stable
score limits in I under any random tie breaking mechanism in I . Similarly, t̂Hz and t̂Lz are
upper and lower bounds respectively for the resident pessimal stable score limits in I under
any random tie breaking mechanism in I .
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Residents’ Preferences

r1 : h1
r2 : h1

Hospitals’ Preferences

h1 : 1 : [r1 r2]

Figure 2.8: An example instance showing that the assignment M induced from a set of H-
stable score limits in an instance I of HR SLT need not be weakly stable matching in I ′, the
instance of HRT induced from the residents’ scores and preferences in I .

Intuitively, in the assignment induced from a set of H-stable score limits no hospital can
be oversubscribed. However, in the assignment induced from a set of L-stable score limits
a hospital may be over-subscribed as a result of accepting a group of residents tied at the
hospital. This can only be the case if the hospital would undersubscribed if the residents
involved in the tie were all refused entry. In the Chilean Higher Education admission scheme
[64] L-stable score limits are used and in the Hungarian Higher education admission scheme
H-stable score limits are used.

Let t̂H be a set of H-stable score limits in an instance I of HR SLT and letM be the assignment
in I induced from t̂H . Let I ′ be the instance of HRT induced from the residents’ scores and
preferences in I . It need not be the case under H-stability thatM is a weakly stable matching
in I ′. Moreover, under L-stability it need not be the case that M is a feasible matching in I ′.
We demonstrate by the following example these observations.

In I let s1,1 = 1 and s2,1 = 1 and thus both r1 and r2 achieve a score of 1 at h1. Further,
let h1 have a capacity of one and a score limit of two. Clearly this is a set of stable score
limits in I since reducing the score limit of h1 by one would create a new set of score limits,
t′ and h1 would be over-subscribed in the induced assignment from t′. Now, the assignment
M induced in I from the residents’ scores and preference lists and the hospital score limits
has no residents assigned to h1 and M = ∅.

Figure 2.8 shows the instance I ′ of HRT induced from the residents’ score and preferences in
I . Clearly, M is not a weakly stable matching in I ′ since h1 is undersubscribed and both r1
and r2 are unassigned and would prefer h1.

Now we consider the same instance under the L-stability definition. Let h1 have a score limit
of one. Clearly this is an L-stable set of score limits in I . The assignment in I induced under
L-stability from the residents’ score and preferences and the score limits of the hospitals
in I would be M = {(r1, h1), (r2, h1)} since both r1 and r2 achieve the score limit at h1.
However, now we have that h1 is oversubscribed in M and M is not a feasible matching in
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I ′.

2.7.2 The Hospitals / Residents problem with Paired Applica-
tions and Score Limits

In the Hungarian Higher Education admission process applicants can apply to pairs of pro-
grammes in the case of teachers studies, e.g. when they want to become a teacher in both
maths and physics. In this setting with paired applications if a resident is not admitted to a
pair of hospitals, or to a better hospital (or pair of hospitals) in his preference list then the
resident must not achieve the score-limit at one or more of the hospitals in the pair. In this
section we formally define HR with Paired Applications, Ties and Stable Score limits(HR PA

SLT). This problem is similar to HRCT. However, unlike in an instance of HRCT, where each
resident is either single or a member of a couple but not both, in HR PA SLT, a resident is
always single, but may express preferences over both single hospitals and pairs of hospitals
in the same preference list.

An instance I of HR PA SLT consists of a set containing residents R = {r1, r2, . . . , rn1}, a
set containing single hospitals HS = {h1, h2, . . . , hn2} and a set, HP , containing acceptable
unordered pairs of hospitals {hj, hk} (1 ≤ j ≤ n2, 1 ≤ k ≤ n2, hj, hk ∈ HS, hj 6= hk).
Further let H∗ = HS ∪ HP be the set of all possible options over which a resident might
express his preferences; the applications. Each resident ri, has a (not necessarily strictly
ordered) preference list of length l(ri) consisting of preferences over some subset of the
applications in H∗. Let si,j be a non-negative integer representing the score of ri at hj and
further let s̄j represent the maximum possible score a resident might achieve at hospital hj .
We say that hj prefers ri1 to ri2 if si1,j > si2,j . If si1,j = si2,j then ri1 and ri2 are in a tie at
hj . Further, each hospital hj ∈ H has capacity cj ≥ 1, the maximum number of residents
that hj may be assigned.

We say that hj ∈ pref (ri, p) if the application at position p on ri’s preference list in-
volves hj , either as an application to the single hospital hj or as an application to some
pair {hj, hk} ∈ HP . Let t̂ be a set of score limits in I . An assignment M is induced in I
from t̂ as follows. For a given resident ri, let p represent the first position on ri’s preference
list where ri achieves the score limit at each hj ∈ pref (ri, p). Add (ri, hj) to M for each
hj ∈ pref (ri, p).

Let t̂ = {t1, . . . , tn2} be a set of score limits in I , where tj is the score limit at hj (1 ≤ j ≤
n2). The range of score limits for a hospital hj ∈ H ranges from zero to s̄j + 1, since the
score limit can be higher than the maximal score (when all students are rejected, e.g. because
more students have maximal score than the upper quota). Given an instance of HR PA SLT

the objective is to compute for each hj an integer value tj representing the score limit at hj
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such that t̂ represents a set of stable score limits.

We first define stability in HR PA SL, the restriction of HR PA SLT in which the hospital pref-
erence lists are strictly ordered i.e. no two residents achieve the same score at any hospital.
A set of score limits t̂ is feasible if no hospital exceeds its capacity in the assignment induced
from t̂.

Definition 2.7.4. A set of score limits t̂ in an instance of HR PA SL is stable if both of the

following hold:

(i) t̂ is feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂ then t̂′ is infeasible.

Now, this definition of stability may be extended to the corresponding definitions of H-

feasibility and H-stability and also L-feasibility and L-stability in HR PA SLT as defined for
HR SL in the Section 2.7 for the HR SLT context.

2.7.3 The Hospitals / Residents problem with Lower Quotas and
Score Limits

An instance of the Hospitals / Residents problem with Ties, Lower Quotas and Stable Score

Limits (HR LQ SLT) consists of two sets of agents: a set R = {r1, r2, . . . , rn1} containing
residents, and a set H = {h1, h2, . . . , hn2} containing hospitals. Each resident ri ∈ R

expresses a linear preference over some subset of the hospitals, his acceptable hospitals; all
other hospitals being unacceptable to ri. The acceptable resident partners for each hospital
hj ∈ H are those residents who find hj acceptable; all other residents being unacceptable

to hj . Let si,j be a non-negative integer representing the score of ri at hj and further let s̄j
represent the maximum possible score a resident might achieve at hj . We say that hj prefers

ri1 to ri2 if si1,j > si2,j . If si1,j = si2,j then hj is indifferent between ri1 and ri2 and thus ri1
and ri2 are in a tie at hj . Each hj ∈ H has a positive integral upper quota c+j , (equivalent
to its capacity in the HR context) the maximum number of assignees it may receive in an
assignment. Further, each hj has an integral lower quota c−j (0 ≤ c−j ≤ c+j ) representing
the minimum number of assignees hj may receive in an assignment. A hospital with at
least min{1, c−j } or greater assignees is open. Otherwise, the hospital is closed and has no
assignees.

Let t̂ = {t1, . . . , tn2} be a set of score limits in I , where tj is the score limit at hj (1 ≤ j ≤
n2). The range of score limits for a hospital hj ∈ H ranges from zero to s̄j + 1, since the
score limit can be higher than the maximal score (when all students are rejected, e.g. because
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more students have maximal score than the upper quota). An assignment M is induced in I
from t̂ and the residents’ preferences as follows. For a given resident ri ∈ R, let hj be the
first hospital on ri’s preference list such that si,j ≥ tj . Add (ri, hj) to M . Given an instance
of HR LQ SLT the objective is to compute for each hj an integer value tj representing the
score limit at hj such that t̂ represents a set of stable score limits.

We first define stability in HR LQ SL, the restriction of HR LQ SLT where the hospital pref-
erence lists are strictly ordered, i.e. no two residents are assigned the same score at any
hospital. A set of score limits t̂ is feasible if no hospital exceeds its capacity in the assign-
ment induced from t̂. A set of score limits, t̂ is feasible if for each hj ∈ H , |M(hj)|∈
{0}

⋃
{c−j , c−j + 1, . . . , c+j } where M is the assignment induced from t̂.

Definition 2.7.5. A set of score limits, t̂ in an instance of HR LQ SL is stable if both of the

following hold:

(i) t̂ is feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂ then t̂′ is infeasible.

We now describe H-feasibility and H-stability in the HR LQ SLT context. Let t̂H be a set of
score limits in I and let M be the assignment induced in I from t̂H . Then t̂H is H-feasible if
for each hj ∈ H , |M(hj)|∈ {0}

⋃
{c−j , c−j + 1, . . . , c+j }.

Definition 2.7.6. A set of score limits, t̂H in an instance of HR LQ SLT is H-stable if both of

the following hold:

(i) t̂H is H-feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂H then t̂′ is H-infeasible.

Correspondingly, we define L-feasibility and L-stability in the HR LQ SLT context as follows.
Let t̂L = {t1, . . . , tn2} be a set of score limits in I and let M be the assignment in I induced
from t̂L. Given any hj ∈ H , let t̂L,j = {tj1, . . . , tjn2

} be the set of score limits obtained from
t̂L by setting tjk = tk for all k (1 ≤ k ≤ n2, k 6= j) and tjj = tj+1. LetM j be the assignment
in I induced from t̂L,j . Then t̂L is L-feasible if, for each hj ∈ H , either c−j ≤ |M(hj)|≤ c+j
or c−j ≤ |M j(hj)|> c+j .

Definition 2.7.7. A set of score limits, t̂L in an instance of HR LQ SLT is L-stable if both of

the following hold:
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(i) t̂L is L-feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂L then t̂′ is L-infeasible.

2.7.4 The Hospitals / Residents problem with Common Quotas
and Score Limits

An instance of the Hospitals / Residents problem with Common Quotas and Stable Score

Limits (HR CQ SLT) consists of two sets of agents: a set R = {r1, r2, . . . , rn1} containing
residents, and a set H = {h1, h2, . . . , hn2} containing hospitals. Each resident ri ∈ R

expresses a linear preference over some subset of the hospitals, his acceptable hospitals; all
other hospitals being unacceptable to ri.

As in the model HR CQ described in Section 2.6.2, coalitions of hospitals may share common
upper quotas, meaning that the total number of residents admitted to the hospitals in each
such coalition may not exceed the upper quota of the coalition. Let H∗ = {H1, H2, . . . Hn3}
where eachHk ∈ H∗ is a subset ofH representing a set of hospitals sharing a common upper
quota. For each coalition Hk ∈ H∗ let uk be the common upper quota for the coalition (in
this model the capacity of each individual hospital hj ∈ H is represented by ensuring that
{hj} ∈ H∗).

Let si,j be a non-negative integer representing the score of ri at hj and further let s̄j represent
the maximum possible score a resident might achieve at hj . We say that hj prefers ri1 to ri2
if si1,j > si2,j . If si1,j = si2,j then ri1 and ri2 are in a tie in hj’s list.

In the more general HR CQ problem model described in Section 2.6.2 we place restrictions
on the preferences of the agents and coalitions of agents in an instance. We formally stated in
Section 2.6.2 that for any two coalitionsHk ∈ H∗ andHl ∈ H∗, and for any pair of residents
rs and rt such that {rs, rt} ⊆ P (H ′) where H ′ = Hk

⋂
Hl, rs precedes rt in P (Hk) if and

only if rs precedes rt in P (Hl).

However, in the HR CQ SLT context we insist that for each resident ri who finds a given
hospital hj acceptable, where hj appears in coalition Hk, ri achieves the same score at each
hospital in Hk. This allows us to define the notation describing ri’s score at the coalition
Hk, denoted by Si,k. Let S̄k = max{s̄j : hj ∈ Hk} represent the maximum possible score a
resident might achieve at Hk. For each coalition Hk ∈ H∗ if hj1 ∈ Hk and hj2 ∈ Hk then
for any ri acceptable to both hj1 and hj2 , si,j1 = si,j2 = Si,k.

Let t̂ = {t1, . . . , tn3} be a set of score limits in I , where tk is the score limit at Hk (1 ≤
k ≤ n3). The score limit for a coalition Hk ∈ H∗ ranges from 0 to S̄k + 1, since the score
limit can be higher than the maximal score (when all students are rejected, e.g. because more
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students have maximal score than the common upper quota). An assignment M is induced

in I from t̂ and the residents’ preferences as follows. For a given resident ri, let hj be the
first hospital on ri’s preference list such that Si,k ≥ tk for all Hk ∈ H∗ such that hj ∈ Hk.
Add (ri, hj) to M .

We first define stability in the HR CQ SL context where there are no ties amongst the ac-
ceptable residents for any of the coalitions. A set t̂ of score limits is feasible if no coalition
exceeds its capacity in the induced assignment of t̂.

Definition 2.7.8. A set of score limits, t̂ in an instance of HR CQ SL is stable if both of the

following hold:

(i) t̂ is feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂ then t̂′ is infeasible.

We now define stability in the HR CQ SLT context where two residents may achieve the same
score at a given coalition. We first define H-feasibility and H-stability. Let t̂H be a set of
score limits in I and let M be the assignment in I induced from t̂H . Then t̂H is H-feasible if
no coalition exceeds its capacity in M .

Definition 2.7.9. A set of score limits, t̂H in an instance of HR CQ SLT is H-stable if both of

the following hold:

(i) t̂H is H-feasible and;

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂H then t̂′ is H-infeasible

Correspondingly, we define L-feasibility and L-stability in the HR CQ SLT context as follows.
Let t̂L = {t1, . . . , tn3} be a set of score limits in I and let M be the assignment in I induced
from t̂L. Given any Hk ∈ H∗, let t̂L,k = {tk1, . . . , tkn3

} be the set of score limits obtained
from t̂L by setting tkp = tp for all p (1 ≤ p ≤ n3, p 6= k) and tkk = tk + 1. Let Mk be
the assignment in I induced from t̂L,k. Then t̂L is L-feasible if, for each Hk ∈ H∗, either
|M(Hk)|≤ uk or |Mk(Hk)|> uk.

Definition 2.7.10. A set of score limits, t̂L in an instance of HR CQ SLT is L-stable if both of

the following hold:

(i) t̂L is L-feasible and;



2.8. The Teachers’ Allocation Problem 34

(ii) if t̂′ is a set of score limits obtained by reducing exactly one of the positive score limits

in t̂L then t̂′ is L-infeasible.

In the models in Chapter 8, we focus on H-stability, which is the stability concept applied in
the Hungarian Higher Education Admissions scheme [10, 89]. Hence, given an instance of
HR CQ SLT the objective is to compute for each Hk ∈ H∗ an integer value tk representing
the score limit at Hk such that t̂ represents a set of stable score limits.

2.8 The Teachers’ Allocation Problem

Trainee teachers studying at P.J. Šafárik University in Košice, Slovakia study two separate
subjects selected from amongst the subjects on offer at the University for example Math-
ematics, Physics, History and Geography. As part of their training each trainee teacher is
required to take part in supervised teaching of classes at real schools under the supervision
of experienced and suitably-qualified teachers.

A requirement of this process is that each trainee teacher is able to take part in supervised
teaching of both of their chosen subjects at the same school during the same term. Moreover,
in order to be supervised at a particular school each trainee must have a suitably qualified
supervising teacher for both of their subjects of choice at the school. Thus if a trainee teacher
studying Maths and Chemistry wishes to carry out their supervised teaching assignment at a
school, then that school must have a suitably-qualified supervising teacher in both Maths and
Chemistry available. The underlying abstract allocation problem in this context is defined as
the Teachers Allocation Problem (TAP) by Cechlárová et al. [18].

An instance I of TAP involves a set A = {a1, a2 . . . an1} containing applicants, a set S =

{s1, s2 . . . sn2} containing schools and a set D = {d1, d2 . . . dn3} containing subjects

(where, for example, d1 might be maths, d2 chemistry, etc). Each applicant ai ∈ A finds
a subset of the schools acceptable, all other schools being unacceptable to ai. Further, each
school sj ∈ S finds acceptable those applicants that find sj acceptable, all other applicants
being unacceptable to sj .

Each applicant ai ∈ A wishes to study a pair of distinct subjects denoted by {d1(a), d2(a)}
where d1(a) ∈ D and d2(a) ∈ D. Each school sj ∈ S has a capacity for each subject
d ∈ D. The vector of capacities is denoted by c(s) = (c1(s), . . . , cn3(s)) where the entry
of c(s) corresponding to subject dk ∈ D, denoted by ck(s), is the partial capacity of school
s with respect to subject dk. Here, ck(sj) is the maximum number of applicants whose
specialisation involves dk that sj may be assigned.

A matching M in I is a set of mutually acceptable applicant-school pairs where each appli-
cant ai ∈ A is assigned to at most one school in M and no school sj ∈ S is assigned more
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than ck(sj) applicants with respect to any subject dk ∈ D. We say M(ai) = sj if applicant
ai is assigned to school sj and thus (ai, sj) ∈ M . The set of applicants assigned to a school
sj will be denoted by M(sj) = {ai ∈ A : (ai, sj) ∈ M}. We shall also denote by Mdk(sj)

the set of applicants assigned to sj ∈ S whose specialisation includes subject dk ∈ D and
by Mdp,dq(sj) (1 ≤ p ≤ n3, 1 ≤ q ≤ n3) the set of applicants assigned to sj whose speciali-
sation is exactly the pair {dp, dq}. We say that a school sj ∈ S is full with respect to subject
dk if |Mdk(sj)|= ck(s) (1 ≤ k ≤ n3) and sj ∈ S is undersubscribed with respect to subject
dk if |Mdk(s)|< ck(s).

Given an instance I of TAP, let MAX TAP denote the problem of finding the largest integer
k such that I admits a matching of size at least k. Further, we denote by FULL TAP the
problem of deciding whether I admits an applicant complete matching. We denote by MAX

TAP D the problem of deciding, given an integer k whether I admits a matching of size at
least k. Cechlárová et al. [18] have shown that MAX TAP is polynomially solvable under the
following non-simultaneous restrictions:

(i) The total number of subjects is two.

(ii)) The total number of subjects is three and the partial capacity of a school with respect
to each subject is at most one.

We denote by (α, β)-TAP the restriction of TAP in which each applicant may list at most α
acceptable schools and where the partial capacity at each school with respect to any subject
is at most β. Moreover, we denote by (α, β)-MAX TAP the restriction of MAX TAP in which
each applicant may list at most α acceptable schools and where the partial capacity at each
school with respect to any subject is at most β. Further, given an instance I of TAP in which
each applicant may list at most α acceptable schools and where the partial capacity at each
school with respect to any subject is at most β we denote by (α, β)-FULL TAP the problem of
deciding whether I admits an applicant complete matching. Cechlárová et al. [18] showed
that (2, 1)-FULL TAP is polynomially solvable; however they also proved that (2,1)-MAX TAP

is NP-complete.

Further, Cechlárová et al. showed that FULL TAP is NP-complete even under the following
non-simultaneous restrictions:

(i) Each applicant lists at most three acceptable schools, the total number of subjects is
three and no partial capacity at any school is greater than two.

(ii) Each applicant lists at most three acceptable schools, the total number of subjects is
four and no partial capacity at any school is greater than one.

Further, Cechlárová et al. [18] demonstrated that MAX TAP is NP-complete even when each
school is acceptable to each applicant and no partial capacity is greater than two.
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2.8.1 The Teachers Allocation problem with Stability

An instance I of the Teachers Allocation problem with Stability (STABLE TAP) extends an
instance of TAP as follows. Each applicant ai ∈ A has a preference list which is a linear
preference over some subset of the schools, his acceptable schools; all other schools being
unacceptable to ai. Further, each school sj ∈ S expresses a linear preference over those
applicants who find sj acceptable, sj’s preference list.

A matching is stable if it admits no blocking pair. Following the definition used in [18], a
blocking pair consists of a mutually acceptable applicant-school pair (a, s) defined as fol-
lows:

Definition 2.8.1. An acceptable pair (ai, sj) /∈M where {d1(ai), d2(ai)} = {dp, dq} blocks

M if ai is not assigned in M or prefers sj to M(ai) and at least one of the following condi-

tions hold:

(i) sj is undersubscribed with respect to both dp and dq,

(ii) sj is undersubscribed in dp (respectively dq) and prefers ai to at least one applicant in

Mdq(sj) (respectively Mdp(sj)),

(iii) sj prefers ai to one applicant in Mdp,dq(sj),

(iv) sj prefers ai to two different applicants ax, ay such that ax ∈Mdp(s) and ay ∈Mdq(s).

Cechlárová et al. [17] showed that an instance of STABLE TAP need not admit a stable match-
ing by the example instance shown in Figure 2.9 in which s1 has partial capacity of one with
respect to subjects one and two and partial capacity of two with respect to subject three
whereas s2 has partial capacity of one with respect to each of subjects one, two and three.

Applicants’ Preferences

a1 : 1, 3 : s2 s1

a2 : 2, 3 : s1 s2

a3 : 1, 3 : s1

Schools’ Preferences

s1 : a1 a3 a2

s2 : a2 a1

Figure 2.9: An instance of STABLE TAP that admits no stable matching. [17]
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Let I be the instance of STABLE TAP shown in Figure 2.9. If M(a1) = s2, then either
M(s1) = a2 or M(s1) = a3. If M(s1) = a2, then M is blocked by (a3, s1), otherwise
M(s1) = a3 and M is blocked by (a2, s2). If M(a1) = s1, then a2 ∈ M(s1) (and thus
M(s1) = {a1, a2}) in which case M is blocked by (a1, s2). Hence I admits no stable
matching.

We demonstrate by the instance shown in Figure 2.10 that an instance of STABLE TAP may
admit stable matchings of differing sizes.

Applicants’ Preferences

a1 : 1, 2 : s2 s1

a2 : 1, 3 : s1 s2

a3 : 3, 4 : s1

Schools’ Preferences

s1 : a1 a2 a3

s2 : a2 a1

Figure 2.10: An instance of STABLE TAP that admits stable matchings of differing sizes. [49]

Let I be the instance of STABLE TAP shown in Figure 2.10 where s1 and s2 are schools with
partial capacities of one with respect to each of four subjects. Let these four subjects be d1,
d2, d3 and d4. The notation ai : x, y : . . . denotes the applicant ai (1 ≤ i ≤ 3) who expresses
a preference for subjects px and py (1 ≤ y ≤ 4, 1 ≤ x ≤ 4, x 6= y). I admits exactly two
stable matchings - M1 = {(a1, s2), (a2, s1)} and M2 = {(a1, s1), (a2, s2), (a3, s1)}. Clearly
these matchings are not the same size.

Moreover, we demonstrate by the instance shown in Figure 2.11 that an instance of STABLE

TAP need not admit a matching that is optimal with respect to either set of agents. Let I be
the instance of STABLE TAP shown in Figure 2.11 where s1 and s2 are schools with partial
capacities of one with respect to each of four subjects. Let these four subjects be d1, d2, d3
and d4 and as before the notation ai : x, y : . . . denotes the applicant ai (1 ≤ i ≤ 4) who
expresses a preference for subjects px and py (1 ≤ y ≤ 4, 1 ≤ x ≤ 4, x 6= y). Let M be
a stable matching in I . If a1 is unassigned in M , then (a1, s1) blocks M . Further, if a4 is
unassigned in M , then (a4, s2) blocks M . Now suppose that a2 is unassigned. If a1 and a4
are both assigned to s1, then (a2, s2) blocks M . Alternatively, if a1 and a4 are both assigned
to s2, then (a2, s1) blocks M . Now suppose that both (a1, s1) ∈ M and (a4, s2) ∈ M , then
(a1, s2) blocks M . Alternatively, suppose (a1, s2) ∈ M and (a4, s1) ∈ M , then (a2, s1)

blocks M . By a similar argument a3 cannot be unassigned in M .

Thus, all ai (1 ≤ i ≤ 4) must be assigned in any stable matching in I . There are exactly
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Applicants’ Preferences

a1 : 1, 4 : s2 s1

a2 : 1, 3 : s1 s2

a3 : 2, 4 : s2 s1

a4 : 2, 3 : s1 s2

Schools’ Preferences

s1 : a1 a2 a3 a4

s2 : a4 a2 a3 a1

Figure 2.11: An instance of STABLE TAP that admits exactly two stable matchings, neither
of which is optimal with respect to either set of agents.

two matchings in I in which all the applicants are assigned, namelyM1 = {(a1, s2), (a2, s1),
(a3, s1), (a4, s2)} and M2 = {(a1, s1), (a2, s2), (a3, s2), (a4, s1)}. Clearly, M1 and M2 are
the only two stable matchings admitted by I and neither M1 nor M2 is an optimal matching
with respect to either set of agents.

Further, Cechlárová et al. [17] showed that deciding whether an instance of STABLE TAP

admits a stable matching is NP-complete even when there are at most three subjects, each
partial capacity of a school is at most two and the preference list of each applicant is of length
at most three.

We denote the problem in which the preference lists of the schools are derived from a master
list of applicants as STABLE TAP AM. Similarly, we denote the problem in which the pref-
erence lists of the applicants are derived from a master list of schools as STABLE TAP SM.
Cechlárová et al [17] showed that each of STABLE TAP AM and STABLE TAP SM admits a
unique stable matching which may be found in polynomial time by the application of a serial
dictatorship mechanism. 1

2.8.2 The Teachers Allocation problem with Stability and Sub-
ject Specific Preference Lists

Cechlárová et al. [17] considered a variant of STABLE TAP in which schools may rank appli-
cants differently for different subjects. For example a school may rank an applicant higher as
a mathematician than as a chemist. We denote this variant of STABLE TAP as The Teachers

1Serial dictatorship [1] is a family of algorithms for two-sided matching problems with one-sided prefer-
ences that involves ordering the applicants in some way and then, with respect to this ordering, each applicant
in turn is considered and is given their most preferred post with sufficient available capacity.
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Allocation problem with Stability and Subject Specific Preference Lists (STABLE TAP SS).

In STABLE TAP SS, following the definition used in [17], we define stability as follows.
A matching is stable if it admits no blocking pair, a blocking pair consists of a mutually
acceptable applicant-school pair (ai, sj) defined as follows:

Definition 2.8.2. An acceptable pair (ai, sj) /∈M where {d1(ai), d2ai} = {dp, dq} blocksM

if ai is not assigned in M or prefers sj to M(ai) and at least one of the following conditions

hold:

(i) sj is undersubscribed with respect to both dp and dq,

(ii) sj is undersubscribed in dp (respectively dq) and prefers ai to at least one applicant in

Mdq(sj) (respectively Mdp(sj))

(iii) sj prefers ai with respect to both subjects dp and dq to one applicant in Mdp,dq(sj),

(iv) sj prefers ai to two different applicants ai1 , ai2 such that ai1 ∈ Mdp(sj) and ai2 ∈
Mdq(sj).

Cechlárová et al. [17] showed that the problem of deciding whether an instance of STABLE

TAP SS admits a stable matching is NP-complete even if there are at most three subjects, each
partial capacity is at most one and the preference lists of a school are derived from subject-
specific master lists of applicants and the preference lists of the applicants are derived from
a single master list of schools.

2.9 Exponential techniques applied to HR and its vari-

ants

Linear Programming (LP) formulations for HR and other matching problems have attracted
a great deal of interest in the literature. A LP formulation is represented in canonical form
as:

minimise cTx

subject to Ax ≤ b

where x is a vector of variables, c and b represent vectors of coefficients and A is a constraint
matrix of coefficients. The expression to be maximised or minimised is the objective func-

tion. Equivalently, an LP model can be viewed as comprising a set of variables, a set of linear
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inequalities in terms of those variables and an objective function. LP approaches to match-
ing problems involve creating a set of variables representing the possible assigned partners
of the agents in the instance and constructing a set of linear inequalities in terms of these
variables such that there is some useful correspondence between the set of stable matchings
in the matching problem instance and the feasible solutions to the set of inequalities.

Vande Vate [78] described an LP formulation for SM, the one-to-one variant of HR in which
all hospitals have a capacity of one, the numbers of residents and hospitals are the same, and
each of the residents finds every hospital acceptable. Vande Vate showed that the extreme
points of the polyhedron described by the system of linear inequalities in his LP model
represent the set of stable matchings in the instance of SM from which they are derived.
Rothblum [76] generalised this model to the HR context for arbitrary instances. Baı̈ou and
Balinski [5] formulated an LP model for HR that Fleiner [26] further generalised to the many-
to-many version of HR, a variant in which both hospitals and residents may have capacities
exceeding one.

In more general LP models the solutions to the LP model need not assign exclusively integer
values to the variables in the model. Such a solution would not represent a well-defined
matching. This problem may be avoided by applying IP techniques. In IP the domain values
of the variables are constrained such that only solutions in which the variables take integer
values are considered feasible solutions [79, 80]. It is known that a solution to an LP can be
found in a time polynomial in the size of the problem [44]. In contrast to the LP case, finding
a solution to an IP model is known to be NP-hard [29, 43]. Fortunately powerful IP solvers
can often be used to find solutions to instances that are of a practically useful size allowing
IP techniques to be applied to real allocation problems.

Podhradskỳ [62] empirically investigated the performance of approximation algorithms for
MAX SMTI (the 1-1 restriction of MAX HRT, the NP-hard problem of finding a maximum
cardinality stable matching given an instance of HRT) and compared them against one another
and against an IP formulation for MAX SMTI. Kwanashie and Manlove [47] described an IP
model for MAX HRT and applied their model to find maximum cardinality stable matchings
in real instances derived from the SFAS process in which no couples were present.

The problem of boolean satisfiability (SAT) is defined as follows: given a Boolean formulaB
in CNF over a set of variables V , decide whether there is an assignment of truth values to the
variables in V such that B is satisfied. Cook showed that this problem is NP-complete [20].
Very recently Drummond et al. [22] demonstrated that HRC instances where each hospital
has capacity one may be encoded as instances of SAT under a stability concept that may be
regarded as a stronger version of MM-stability. Drummond et al. [22] also compared the
performance of SAT encodings of HRC with the performance of an IP encoding of HRC. The
authors found that SAT solvers were an effective method of solving HRC problems, but found
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that their IP models did not scale as well as the SAT encodings as the size of the problem
increased.

A constraint satisfaction problem (CSP) consists of a set of variables, a set of domains for
those variables and a set of constraints restricting the values that the variables may simul-
taneously take. A solution to a CSP is an assignment of values to the variables from their
domains such that every constraint is satisfied. Manlove et al. [52] and Eirinakis et al. [23]
applied CSP techniques to HR while O’Malley [61] described a CSP formulation for HRT.
Subsequently, Eirinakis et al. [24] gave a generalised CSP formulation for many-to-many
HR. The reader is referred to Ref. [48, Sections 2.4 & 2.5] for more information about pre-
vious work involving the application of IP and CSP techniques to allocation problems such
as HR.
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Chapter 3

Complexity Results for HRC

3.1 Introduction

In this chapter we present new complexity results for HRC variants, showing that deciding
whether an instance of HRC admits a stable matching is NP-complete even under very severe
restrictions on the length of the agents’ preference lists. We begin in Section 3.2 by proving
NP-completeness for the problem of deciding whether a stable matching exists in a highly
restricted instance of HRC in which the length of each couple’s joint preference list is exactly
one and each hospital has capacity one. In Section 3.3.1 we prove that deciding whether a
stable matching exists in an instance of HRC is NP-complete even if the preference list of
each couple and hospital are of length at most two, there are no single residents and each
hospital has capacity one.

In Section 3.3.2 we consider the complexity of MIN BP HRC, the minimisation variant of HRC,
in which we seek a ‘most stable’ matching in an instance of HRC. It follows from Theorem
3.3.1 in Section 3.3.1 that this problem is NP-hard – by combining instances of (2, 2)-HRC

as constructed in the proof of Theorem 3.3.1, we arrive at a gap-introducing reduction that
establishes an inapproximability result for MIN BP HRC under the same restrictions as in the
proof of Theorem 3.3.1 in Section 3.3.1.

In Section 3.4 we show that, given an instance of HRC, the problem of deciding whether
the instance admits a stable matching is NP-complete even if the length of the preference
list of each couple is at most two, the length of the preference list of each hospital is at
most three, there are no single residents and each hospital has capacity one. Moreover, we
show that the problem is still NP-complete even if the preference lists of all of the single
residents, couples and hospitals are derived from a master list of hospitals, hospital pairs and
residents respectively. In Section 3.5 we show that, the problem of deciding whether the
instance admits a stable matching is NP-complete even if the length of the preference list of
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each couple, single resident and hospital is at most three and each hospital has capacity one.
Again, we show that the result holds under the further restriction that the preference lists of
all of the single residents, couples and hospitals are derived from a master list of hospitals,
hospital pairs and residents respectively and the agents involved comprise a dual market.

In Section 3.6.1 we show, by reduction from (∞, 1,∞)-HRC, that, given an instance of HR

PA, the problem of deciding whether the instance admits a stable matching is NP-complete
even in highly restricted instances of HR PA in which each couple’s joint preference lists is
of length one and each hospital has capacity one.

Finally in Section 3.7, we prove that in two highly restricted variants of HRC we can find a
maximum cardinality stable matching or report that no stable matching exists in polynomial-
time in two cases: (i) when the length of each hospital’s preference list is at most one; and
(ii) when the length of each couple’s joint preference list is at most one, and the length of the
preference list of each hospital and individual resident is at most two.

3.2 Complexity results for (∞, 1,∞)-HRC

We now establish that the problem of deciding whether an instance of (∞, 1,∞)-HRC admits
a stable matching is NP-complete.

Theorem 3.2.1. Given an instance of (∞, 1,∞)-HRC, the problem of deciding whether there

exists a stable matching is NP-complete. The result holds even if each hospital has capacity

one.

Proof. The proof of this result uses a polynomial-time reduction from a restricted version of
the vertex cover problem. More specifically, let VC3 denote the problem of deciding, given
a cubic graph G and an integer K, whether G contains a vertex cover of size at most K.

Deciding whether an instance of (∞, 1,∞)-HRC admits a stable matching is clearly in NP,
as a given assignment may be verified to be a stable matching in polynomial time. To show
NP-hardness we now present a polynomial time reduction from an instance of VC3 to an
instance of (∞, 1,∞)-HRC. Let 〈G,K〉 be an instance of VC3, where G = (V,E), such
that V = {v1, . . . , vn} and E = {e1, . . . , em}. For each i (1 ≤ i ≤ n), suppose that vi is
incident to edges ej1 , ej2 and ej3 in G, where without loss of generality j1 < j2 < j3. Define
ei,s = ejs (1 ≤ s ≤ 3). Similarly, for each j (1 ≤ j ≤ m), suppose that ej = {vi1 , vi2},
where without loss of generality i1 < i2. Define vj,r = vir (1 ≤ r ≤ 2).

We form an instance I of (∞, 1,∞)-HRC from 〈G,K〉 as follows. The set of residents in I
is A ∪ B ∪ F ∪ R ∪ X ∪ Y where A = {at : 1 ≤ t ≤ K}, B = {bt : 1 ≤ t ≤ n − K},
F = ∪Kt=1Ft, where Ft = {f st : 1 ≤ s ≤ 6}, R = ∪mj=1Rj , where Rj = {rsj : 1 ≤ s ≤ 4},
X = {xi : 1 ≤ i ≤ n} and Y = ∪n−Kt=1 Yt, where Yt = {yst : 1 ≤ s ≤ 6}.
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Residents’ Preferences
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6
t ) : (z3t , z

1
t ) (1 ≤ t ≤ n−K)

at : pt g
1
t (1 ≤ t ≤ K)

bt : qt z
1
t (1 ≤ t ≤ n−K)

xi : p1 p2 . . . pK h1(xi) h2(xi) h3(xi) q1 q2 . . . qn−K (1 ≤ i ≤ n)

Hospitals’ Preferences

g1t : at f
1
t f 6

t (1 ≤ t ≤ K)

g2t : f 3
t f 2

t (1 ≤ t ≤ K)

g3t : f 5
t f 4

t (1 ≤ t ≤ K)

h1j : r1j x(h1j) r3j (1 ≤ j ≤ m)

h2j : r4j x(h2j) r2j (1 ≤ j ≤ m)

pt : x1 x2 . . . xn at (1 ≤ t ≤ K)

qt : x1 x2 . . . xn bt (1 ≤ t ≤ n−K)

z1t : bt y
1
t y6t (1 ≤ t ≤ n−K)

z2t : y3t y2t (1 ≤ t ≤ n−K)

z3t : y5t y4t (1 ≤ t ≤ n−K)

Figure 3.1: Preference lists in I , the constructed instance of (∞, 1,∞)-HRC.
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The set of hospitals in I is G ∪H ∪ P ∪Q ∪ Z, where G = ∪Kt=1Gt, where Gt = {grt : 1 ≤
r ≤ 3} (1 ≤ t ≤ K), H = ∪mj=1Hj , where Hj = {hsj : 1 ≤ s ≤ 2} , P = {pt : 1 ≤ t ≤ K},
Q = {qt : 1 ≤ t ≤ n − K} and Z = ∪n−Kt=1 Zt, where Zt = {zrt : 1 ≤ r ≤ 3} and each
hospital has capacity one. The preference lists of the resident couples, single residents and
hospitals in I are shown in Figure 3.1.

In the preference list of a resident xi (1 ≤ i ≤ n) the symbol hs(xi) (1 ≤ s ≤ 3) denotes
the hospital hrj (1 ≤ r ≤ 2) such that ej = ei,s and vi = vj,r. Similarly, in the preference list
of a hospital hrj (1 ≤ j ≤ m, 1 ≤ r ≤ 2) the symbol x(hrj) denotes the resident xi such that
vi = vj,r.

We claim that G contains a vertex cover of size at most K if and only if I admits a stable
matching. Let C be a vertex cover in G such that |C|≤ K. Without loss of generality we
may assume that |C|= K for if otherwise a sufficient number of vertices can be added to C
without violating the vertex cover condition.

We show how to define a matching M in I from C as follows. Let C = {vr1 , vr2 , . . . , vrK}
where without loss of generality r1 < r2 < . . . < rK . Further let V \ C = {vs1 , vs2 , . . . ,
vsn−K

} where without loss of generality s1 < s2 < . . . < sn−k. For each vertex vri ∈ C

add the pairs {(xri , pi), (ai, g1i ), (f 3
i , g

2
i ), (f

4
i , g

3
i )} for 1 ≤ i ≤ K to M . For each vertex

vsi ∈ V \C add {(xsi , qi), (bi, z1i ), (y3i , z2i ), (y4i , z3i )} for 1 ≤ i ≤ n−K to M . For each edge
ej ∈ E at least one of vj,1 or vj,2 must be in C. If vj,1 ∈ C add the pairs {(r3j , h1j), (r4j , h2j)}
to M . Otherwise vj,2 ∈ C so add the pairs {(r1j , h1j), (r2j , h2j)} to M .

It remains to show that M is a stable matching in I . Firstly, we show that no hospital
hrj ∈ H (1 ≤ j ≤ m, 1 ≤ r ≤ 2) can form part of a blocking pair of M . Assume a hospital
hrj ∈ H is part of a blocking pair of M for some j (1 ≤ j ≤ m) and r (1 ≤ r ≤ 2).
Now, since C is a vertex cover in G, an arbitrary edge ej ∈ E must be covered by either
vj,1 or vj,2 or both. Assume firstly that vj,1 ∈ C. Then by construction (xrt , pt) ∈ M

and {(r3j , h1j), (r4j , h2j)} ⊆ M where vj,1 = vrt . Assume (x(h1j), h
1
j) blocks M for some

j (1 ≤ j ≤ m). Since vj,1 ∈ C and thus M(x(h1j)) ∈ P , x(h1j) prefers M(x(h1j)) to h1j ,
a contradiction. Now assume that ((r1j , r

2
j ), (h

1
j , h

2
j)) blocks M . However, now h2j prefers

M(h2j) = r4j to r2j , a contradiction.

Now assume vj,1 /∈ C. Then vj,2 ∈ C and by construction (xrt′ , pt′) ∈ M and {(r1j , h1j),
(r2j , h

2
j)} ⊆ M where vj,2 = vrt′ . Assume (x(h2j), h

2
j) blocks M for some j (1 ≤ j ≤ m).

Since vj,2 ∈ C and thusM(x(h2j)) ∈ P , x(h2j) prefersM(x(h2j)) to h2j , a contradiction. Now
assume ((r3j , r

4
j ), (h

1
j , h

2
j)) blocksM . However, h1j prefersM(h1j) = r1j to r3j , a contradiction.

Thus, no hrj ∈ H (1 ≤ j ≤ m, 1 ≤ r ≤ 2) can form part of a blocking pair of M .

We now show that no hospital in P ∪ Q can be involved in a blocking pair of M . By
construction M(pt) ∈ X for all t (1 ≤ t ≤ K). Assume some pair (xk1 , pl1) blocks M . Let
M(xk1) = pl2 and M(pl1) = xk2 . Since (xk1 , pl1) blocks M then l1 < 12 and k1 < k2 in
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contradiction to the construction of M . A similar argument shows that no hospital in Q may
be involved in a blocking pair of M , and thus it follows that no hospital in P ∪ Q may be
involved in a blocking pair of M .

We now show that no hospital in G ∪ Z can be involved in a blocking pair of M . Assume a
hospital gst ∈ H is part of a blocking pair of M for some t (1 ≤ t ≤ K) and s (1 ≤ s ≤ 3).
Now, since g1t and g2t are both assigned their first preference they cannot form part of a
blocking pair for M . Now, assume g3t prefers f 5

t to M(g3t ) = f 4
t . However, f 5

t is a member
of the couple (f 5

t , f
6
t ) that expresses a joint preference for the pair (g3t , g

1
t ) and g1t prefers

M(g1t ) = at to f 6
t , a contradiction. Thus, no hospital gst ∈ H (1 ≤ t ≤ K, 1 ≤ s ≤ 3)

can form part of a blocking pair of M . A similar argument may be used to show that no
zst ∈ H (1 ≤ t ≤ n −K, 1 ≤ s ≤ 3) can form part of a blocking pair of M and it follows
that no hospital in G∪Z can be involved in a blocking pair of M . Thus no hospital in I may
be part of a blocking pair of M and hence M must be a stable matching in I .

Conversely, let M be a stable matching in I . We first show that the stability of M implies
that M(xi) ∈ P ∪Q for all i (1 ≤ i ≤ n). Observe that if (at, g

1
t ) /∈ M for t (1 ≤ t ≤ K),

then no stable assignment is possible amongst the agents in Ft ∪ Gt as will be established
by Lemma 3.7.4 in Section 3.7.2. However, if {(at, g1t ), (f 3

t , g
2
t ), (f 4

t , g
3
t )} ⊆ M , then no

blocking pair exists in Ft ∪Gt. It follows that if (at, g
1
t ) ∈M , then (at, pt) blocks M unless

M(pt) ∈ X . A similar argument shows that M(qt) ∈ X for all t (1 ≤ t ≤ n −K). Now,
since |X|= n and |P ∪Q|= n, clearly all x ∈ X must be assigned a member of P ∪Q and
moreover, M(xi) /∈ H in any stable matching in I .

Now we prove that the stability of M implies that h1j and h2j are fully subscribed in M for
all j (1 ≤ j ≤ m). Clearly since the only preferences expressed for h1j and h2j are as part
of the hospital pair (h1j , h

2
j), either both h1j and h2j are fully subscribed in M or they both

have no assignees. Let j (1 ≤ j ≤ m) be given. Assume that both h1j and h2j are undersub-
scribed in M . Since M(x(hrj)) 6= hrj for all j (1 ≤ j ≤ m) and r (1 ≤ r ≤ 2), it follows
that ((r1j , r

2
j ), (h

1
j , h

2
j)) blocks M , a contradiction. Thus either {(r1j , h1j), (r2j , h2j)} ⊆ M

or {(r3j , h1j), (r4j , h2j)} ⊆ M in any stable matching in I . If {(r1j , h1j), (r2j , h2j)} ⊆ M ,
then ((r3j , r

4
j ), (h

1
j , h

2
j)) does not block M . Similarly, if {(r3j , h1j), (r4j , h2j)} ⊆ M , then

((r1j , r
2
j ), (h

1
j , h

2
j)) does not block M . Thus we have that h1j and h2j are fully subscribed

in M for all j (1 ≤ j ≤ m). Moreover, we have that all hospitals must be fully subscribed
in any stable matching M in I .

Define a set of vertices C in G as follows. For each i (1 ≤ i ≤ n) if M(xi) ∈ P , add
vi to C. Since M is a stable matching and |P |= K, this process selects exactly K of the
n vertices in V and thus |C|= K. We now show that C represents a vertex cover in G.
Consider an arbitrary edge ej ∈ E. Assume that both vj,1 /∈ C and vj,2 /∈ C and hence
that C is not a vertex cover in G. Then M(xj,1) ∈ Q and M(xj,2) ∈ Q. As M is stable
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and thus hospital complete, either {(r1j , h1j), (r2j , h2j)} ⊂ M or {(r3j , h1j), (r4j , h2j)} ⊂ M . If
{(r1j , h1j), (r2j , h2j)} ⊂ M , then (xj,2, h

2
j) blocks M , a contradiction. If {(r3j , h1j), (r4j , h2j)} ⊂

M , then (xj,1, h
1
j) blocks M , a contradiction. Hence C represents a vertex cover in G of size

K and the theorem is proven.

3.3 Complexity results for (2, 2)-HRC

3.3.1 NP-completeness result for (2, 2)-HRC

We now establish that the problem of deciding whether an instance of (2, 2)-HRC admits a
stable matching is NP-complete.

Theorem 3.3.1. Given an instance of (2, 2)-HRC, the problem of deciding whether the in-

stance admits a stable matching is NP-complete. The result holds even if there are no single

residents and each hospital has capacity one.

Proof. The proof of this result uses a reduction from a restricted version of SAT. More
specifically, let (2,2)-E3-SAT denote the problem of deciding, given a Boolean formula B in
CNF over a set of variables V , whetherB is satisfiable, whereB has the following properties:
(i) each clause contains exactly three literals and (ii) for each vi ∈ V , each of literals vi and
v̄i appears exactly twice in B. Berman et al. [9] showed that (2,2)-E3-SAT is NP-complete.

The problem (2, 2)-HRC is clearly in NP, as a given assignment may be verified to be a
stable matching in polynomial time. To show NP-hardness we now present a polynomial
time reduction from an instance of (2,2)-E3-SAT to an instance of (2, 2)-HRC. Let B be an
instance of (2,2)-E3-SAT. Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} be the set of
variables and clauses respectively in B. Then for each vi ∈ V , each of literals vi and v̄i
appears exactly twice in B. Also |cj|= 3 for each cj ∈ C. Hence m = 4n

3
. We form an

instance I of (2, 2)-HRC from an instance of (2,2)-E3-SAT as follows.

The set of residents in I is A ∪ B ∪ X ∪ Y where A = ∪ni=1Ai, Ai = {ari : 1 ≤ r ≤ 2}
(1 ≤ i ≤ n), B = ∪ni=1Bi, Bi = {bri : 1 ≤ r ≤ 2} (1 ≤ i ≤ n), X = ∪mj=1Xj ,
Xj = {xsj : 1 ≤ s ≤ 3} (1 ≤ j ≤ m) and Y = ∪mj=1Yj , Yj = {ysj : 1 ≤ s ≤ 3} (1 ≤ j ≤ m).
There are no single residents in I and the pairing of the residents into couples is as shown in
Figure 3.2.

The set of hospitals in I is H ∪ T , where H = ∪ni=1Hi, Hi = {hri : 1 ≤ r ≤ 6} (1 ≤ i ≤ n)
and T = ∪mj=1Tj , Tj = {trj : 1 ≤ r ≤ 6} (1 ≤ j ≤ m) and each hospital has capacity one.
The preference lists of the resident couples and hospitals in I are shown in Figure 3.2.

In the joint preference list of a couple (xsj , y
s
j ) (1 ≤ j ≤ m, 1 ≤ s ≤ 3) the symbol h(xsj) is

defined as follows. If the rth occurrence (1 ≤ r ≤ 2) of literal vi occurs at position s of cj
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Residents’ Preferences

(a1i , b
1
i ) : (h1i , h

3
i ) (h2i , h

4
i ) (1 ≤ i ≤ n)

(a2i , b
2
i ) : (h2i , h

5
i ) (h1i , h

6
i ) (1 ≤ i ≤ n)

(x1j , y
1
j ) : (h(x1j), t

4
j) (t1j , t

3
j) (1 ≤ j ≤ m)

(x2j , y
2
j ) : (h(x2j), t

5
j) (t2j , t

1
j) (1 ≤ j ≤ m)

(x3j , y
3
j ) : (h(x3j), t

6
j) (t3j , t

2
j) (1 ≤ j ≤ m)

Hospitals’ Preferences

h1i : a2i a
1
i (1 ≤ i ≤ n)

h2i : a1i a
2
i (1 ≤ i ≤ n)

h3i : b1i x(h3i ) (1 ≤ i ≤ n)

h4i : b1i x(h4i ) (1 ≤ i ≤ n)

h5i : b2i x(h5i ) (1 ≤ i ≤ n)

h6i : b2i x(h6i ) (1 ≤ i ≤ n)

t1j : x1j y
2
j (1 ≤ j ≤ m)

t2j : x2j y
3
j (1 ≤ j ≤ m)

t3j : x3j y
1
j (1 ≤ j ≤ m)

t4j : y1j (1 ≤ j ≤ m)

t5j : y2j (1 ≤ j ≤ m)

t6j : y3j (1 ≤ j ≤ m)

Figure 3.2: Preference lists in I , the constructed instance of (2, 2)-HRC.

then h(xsj) = h2r+1
i . If the rth occurrence (1 ≤ r ≤ 2) of literal v̄i occurs at position s of cj

then h(xsj) = h2r+2
i .

In the preference list of a hospital h2r+1
i (1 ≤ r ≤ 2), the symbol x(h2r+1

i ) denotes the
resident xsj such that the rth occurrence of literal vi occurs at position s of clause cj . Similarly
in the preference list of a hospital h2r+2

i (1 ≤ r ≤ 2), the symbol x(h2r+2
i ) denotes the

resident xsj such that the rth occurrence of literal v̄i occurs at position s of clause cj .

For each i (1 ≤ i ≤ n), let

Ti = {(a1i , h2i ), (a2i , h1i ), (b1i , h4i ), (b2i , h6i ), (x(h3i ), h
3
i ), (x(h5i ), h

5
i )}
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and
Fi = {(a1i , h1i ), (a2i , h2i ), (b1i , h3i ), (b2i , h5i ), (x(h4i ), h

4
i ), (x(h6i ), h

6
i )}.

This completes the reduction.

We claim that B is satisfiable if and only if I admits a stable matching. First, let f be a
satisfying truth assignment of B. From f we construct a matching M in I as follows. For
each variable vi ∈ V , if vi is true under f , add the pairs in Ti toM , otherwise add the pairs in
Fi to M . Let j (1 ≤ j ≤ m) be given. Then cj contains at least one literal that is true under
f . Suppose cj contains exactly one literal that is true under f . Let s be the position of cj
containing a true literal. In this case add the pairs {(xs+1

j , ts+1
j ), (ys+1

j , tsj)} (where addition
is taken modulo three) toM . Now suppose cj contains exactly two literals that are true under
f . Let s be the position of cj containing a false literal, and add the pairs {(xsj , tsj), (ysj , ts+2

j )}
(where addition is taken modulo three) to M . If cj contains three literals that are true under
f no additional pairs need be added.

It remains to prove thatM is stable in I . We prove this is the case by considering the resident
pairs in turn and showing that no resident pair may be involved in a blocking pair in M and
hence M must be stable. Firstly, no resident pair (a1i , b

1
i ) or (a2i , b

2
i ) may be involved in a

blocking pair of M , as no matching in which (a1i , b
1
i ) is assigned to (h2i , h

4
i ) is blocked by

(a1i , b
1
i ) with (h1i , h

3
i ), and similarly no matching in which (a2i , b

2
i ) is assigned to (h1i , h

6
i ) is

blocked by (a2i , b
2
i ) with (h2i , h

5
i ).

Secondly, no resident pair (xsj , y
s
j ) (1 ≤ s ≤ 3) may block M with (h(xsj), t

s+3
j ) (where

addition is taken modulo three). To prove this observe that all hri are assigned in M and
hence if some hri is not assigned to its corresponding x(hri ), then hri must be assigned to
the member of Bi in first place on its preference list. Thus (xsj , y

s
j ) may not block M with

(h(xsj), t
s+3
j ).

Finally, no resident pair (xsj , y
s
j ) (1 ≤ s ≤ 3) may block M with (tsj , t

s+2
j ) (where addition

is taken modulo three). Clearly (xsj , y
s
j ) could only block M with (tsj , t

s+2
j ) if (xsj , y

s
j ) is

unassigned in M . From the construction, this may only be the case if cj contains exactly one
literal that is true under f . In this case, (xs+2

j , ys+2
j ) is assigned to (ts+2

j , ts+4
j ) (where addition

is taken modulo three) and thus (xsj , y
s
j ) (1 ≤ s ≤ 3) does not block M with (tsj , t

s+2
j ), since

ts+2
j prefers xs+2

j to ysj . Hence M is a stable matching in I .

Conversely, suppose that M is a stable matching in I . We form a truth assignment f in B
from M as follows. For any i (1 ≤ i ≤ n), if (a1i , b

1
i ) is unassigned then M is blocked

by (a1i , b
1
i ) with (h2i , h

4
i ). Similarly, if (a2i , b

2
i ) is unassigned then M is blocked by (a2i , b

2
i )

with (h1i , h
6
i ). Hence either {(a1i , h2i ), (b1i , h4i ), (a2i , h1i ), (b2i , h6i )} ⊆ M or {(a1i , h1i ), (b1i , h

3
i ),

(a2i , h
2
i ), (b2i , h

5
i )} ⊆M .

Now, let cj be a clause in C (1 ≤ j ≤ m). Suppose, (xsj , h(xsj)) /∈ M for all s (1 ≤ s ≤ 3).
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Clearly, at most one couple (xsj , y
s
j ) may be assigned to the hospital pair in second place on

its preference list. Since no (xsj , y
s
j ) is assigned to the pair in first place in its preference list

one of the remaining two unassigned (xsj , y
s
j )’s must block with the hospital pair in second

place on its preference list, a contradiction. Thus {(xsj , h(xsj)), (y
s
j , t

s+3
j ))} ⊆ M for some

s (1 ≤ s ≤ 3) by the stability of M

Hence, for each j (1 ≤ j ≤ m), let s (1 ≤ s ≤ 3) be given such that (xsj , y
s
j ) is assigned

to (h(xsj), t
s+3
j ). Let hri = h(xsj). If r ∈ {3, 5} then we set f(vi) = T . Thus, variable vi is

true under f and hence clause cj is true under f since the literal vi occurs in cj . Otherwise,
r ∈ {4, 6} and we set f(vi) = F . Thus, variable vi is false under f and hence clause cj is
true under f since the literal v̄i occurs in cj .

This assignment of truth values is well-defined, for if (hri , t
s+3
j ) ∈ M for r ∈ {3, 5}, then

{(b1i , h4i ), (b2i , h6i )} ⊆M , so neither h4i nor h6i is assigned a member of X in M . Similarly if
(hri , t

s+3
j ) ∈M for r ∈ {4, 6}, then {(b1i , h3i ), (b2i , h5i )} ⊆M , so neither h3i nor h5i is assigned

a member of X in M . Hence f is a satisfying truth assignment of B. Thus, we have that that
B is satisfiable if and only if I admits a stable matching and the result is proven.

3.3.2 Inapproximability of (2, 2)-MIN BP HRC

In Theorem 3.3.1 we showed that the problem of deciding whether an instance of (2, 2)-HRC

admits a stable matching is NP-complete. In Theorem 3.3.2 we prove that the minimisation
problem of finding a ‘most stable’ matching in an instance of (2, 2)-HRC, denoted by (2, 2)-
MIN BP HRC, is not approximable within n1−ε

1 , where n1 is the number of residents in a given
instance, for any ε > 0, unless P=NP.

Before beginning the statement of the theorem we first define an instance S of HRC with the
property that any non-empty matching in S admits exactly one blocking pair. This instance
is used as an element in the proof of Theorem 3.3.2 to ensure that the large instance of HRC

constructed in the proof can admit no stable matching.

Let S be an instance of (2, 2)-HRC as shown in Figure 3.3. In S the residents are a, b and c,
the hospitals are z1 and z2 and each hospital has capacity one. The instance S admits three
non-empty matchings, namely

M1 = {(a, z1), (b, z2)}

M2 = {(c, z1)}

M3 = {(c, z2)}

Clearly, none of the matchings are stable. Further each of the non-empty matchings in S
is blocked by exactly one blocking pair. Resident c blocks M1 in A with z2, couple (a, b)
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Residents’ Preferences

(a, b) : (z1, z2)

c : z1 z2

Hospitals’ Preferences

z1 : a c

z2 : c b

Figure 3.3: A small instance of (2, 2)-HRC that admits no stable matching.

blocks M2 in S with (z1, z2) and resident c blocks M3 in S with z1. Thus, S admits no stable
matching and taken over all of the non-empty matchings admitted by S, the only number
of blocking pairs possible (and thus the minimum) is one. We now present a proof that
(2, 2)-MIN BP HRC is not approximable to within a tight bound, unless P=NP.

Theorem 3.3.2. The problem (2, 2)-MIN BP HRC is not approximable within n1−ε
1 , where n1

is the number of residents in a given instance, for any ε > 0, unless P=NP. The result holds

even if there are no single residents and each hospital has capacity one.

Proof. LetB be an instance of (2,2)-E3-SAT and let I be the corresponding instance of (2, 2)-
HRC as constructed in Theorem 3.3.1. We now show how to modify I in order to obtain an
extended instance I ′′ of (2, 2)-HRC as follows.

Assume ε > 0. Choose c = d2/εe and k = nc. Now, let I1, I2, . . . , Ik be k disjoint
copies of the instance I . Let I ′ be the (2, 2)-HRC instance formed by taking the union of the
subinstances I1, I2, . . . , Ik. Let I ′′ be the instance constructed by taking the union of I ′ with
the instance S of (2, 2)-HRC shown in Figure 3.3.

If B admits a satisfying truth assignment, then by Theorem 3.3.1, I admits a stable matching
and clearly each copy of I must also admit a stable matching. Thus I ′ must admit a sta-
ble matching. Moreover, since any non-empty matching admitted by S admits exactly one
blocking pair, a matching exists in I ′′ that admits exactly one blocking pair.

IfB admits no satisfying truth assignment, then by Theorem 3.3.1, I admits no stable match-
ing. Now, any matching admitted by I ′′ must be blocked by at least k + 1 blocking pairs –
we demonstrate this as follows. Clearly, since I admits no stable matching, any matching in
I must admit at least one blocking pair. Thus any matching in each Ir (1 ≤ r ≤ k) admits
one or more blocking pairs. Now, since the only non-empty matchings admitted by S admit
a single blocking pair, any matching admitted by I ′′ must have at least k + 1 blocking pairs.

The number of residents in I ′′ is n1 = 4nk+6mk+3. From the construction of I in Theorem
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3.3.1 we know that 4n = 3m and thus n1 ≤ 12nk + 3. We lose no generality by assuming
that n ≥ 3. Thus n1 ≤ 13nk = 13nc+1.

Moreover,

13−c/(c+1)n
c/(c+1)
1 ≤ k. (3.1)

Now we know that n1 ≥ k = nc. We lose no generality by assuming that n ≥ 13 and hence
n1 ≥ 13c. It follows that

n
−1/(c+1)
1 ≤ 13−c/(c+1). (3.2)

Thus it follows from Inequality 3.1 and 3.2 that

n
(c−1)/(c+1)
1 = n

c/(c+1)
1 n

−1/(c+1)
1 ≤ 13−c/(c+1)n

c/(c+1)
1 ≤ k (3.3)

We now show that n1−ε
1 ≤ n

(c−1)/(c+1)
1 . Observe that c ≥ 2/ε and thus c+ 1 ≥ 2/ε. Hence

1− ε ≤ c+ 1− 2

c+ 1
=
c− 1

c+ 1

and hence by Inequality 3.3, n1−ε
1 ≤ k.

Assume that A is an approximation algorithm for (2, 2)-HRC with a performance guarantee
of n1−ε

1 ≤ k. Let B be an instance of (2,2)-E3-SAT and construct an instance I ′′ of (2, 2)-
HRC from B as described above. If B admits a satisfying truth assignment, then A must
return a matching in I ′′ that admits at most k blocking pairs. Otherwise, B does not admit a
satisfying assignment and A must return a matching admitting at least k + 1 blocking pairs.
Thus algorithm A may be used to determine whether B admits a satisfying truth assignment
in polynomial time, a contradiction. Hence, no such polynomial approximation algorithm
can exist, unless P=NP.

3.4 Complexity results for (2, 3)-HRC

We now establish that the problem of deciding whether an instance of (2, 3)-HRC admits a
stable matching is NP-complete.

Lemma 3.4.1. Given an instance of (2, 3)-HRC, the problem of deciding whether the in-

stance admits a stable matching is NP-complete. The result holds even if there are no single

residents and each hospital has capacity one.
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Proof. The proof of this result uses a reduction from a restricted version of SAT. More
specifically, let (2,2)-E3-SAT denote the problem of deciding, given a Boolean formula B in
CNF over a set of variables V , whetherB is satisfiable, whereB has the following properties:
(i) each clause contains exactly three literals and (ii) for each vi ∈ V , each of literals vi and
v̄i appears exactly twice in B. Berman et al. [9] showed that (2,2)-E3-SAT is NP-complete.

The problem (2, 3)-HRC is clearly in NP, as a given assignment may be verified to be a
stable matching in polynomial time. To show NP-hardness, we now present a polynomial
time reduction from an instance of (2,2)-E3-SAT to an instance of (2, 3)-HRC. Let B be an
instance of (2,2)-E3-SAT. Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} be the set of
variables and clauses respectively in B. Then for each vi ∈ V , each of literals vi and v̄i
appears exactly twice in B. Also |cj|= 3 for each cj ∈ C. Hence m = 4n

3
. We form an

instance I of (2, 3)-HRC from an instance of (2,2)-E3-SAT as follows.

The set of residents in I is X ∪ P ∪ Q, where X = ∪ni=1Xi, Xi = {xri , x̄ri : 1 ≤ r ≤ 2}
(1 ≤ i ≤ n), P = ∪mj=1Pj , Pj = {psj : 1 ≤ s ≤ 3} (1 ≤ j ≤ m), Q = ∪mj=1Qj ,
Qj = {qsj : 1 ≤ s ≤ 3} (1 ≤ j ≤ m). There are no single residents in I and the pairing of
the residents into couples is as shown in Figure 3.4. The set of hospitals in I is H∪Y , where
H = ∪ni=1Hi, Hi = {hri : 1 ≤ r ≤ 2} (1 ≤ i ≤ n) and Y = ∪Yj , Yj = {ysj : 1 ≤ s ≤ 3}
(1 ≤ j ≤ m) and each hospital has capacity one. The preference lists of the resident couples
and hospitals in I are shown in Figure 3.4.

In the joint preference list of a couple (x1i , x
2
i ) (x1i ∈ X, x2i ∈ X) the symbol y(xri ) (1 ≤ r ≤

2) denotes the hospital ysj ∈ Y such that the rth occurrence of literal vi appears at position s
of clause cj in B. Similarly in the joint preference list of a couple (x̄1i , x̄

2
i ) (x̄1i ∈ X, x̄2i ∈ X)

the symbol y(x̄ri ) (1 ≤ r ≤ 2) denotes the hospital ysj ∈ Y such that the rth occurrence of
literal v̄i appears at position s of clause cj in B. In the preference list of a hospital ysj ∈ Y , if
literal vi (respectively v̄i) appears at position s of clause cj ∈ C, the symbol x(ysj ) denotes the
resident x1i or x2i (respectively x̄1i or x̄2i ) according as this is the first or second occurrence of
the literal in B. For each i (1 ≤ i ≤ n), let Ti = {(x1i , y(x1i )), (x

2
i , y(x2i )), (x̄

1
i , h

1
i ), (x̄

2
i , h

2
i )}

and let Fi = {(x1i , h1i ), (x2i , h2i ), (x̄1i , y(x̄1i ), (x̄
2
i , y(x̄2i )}. This completes the reduction.

We claim that B is satisfiable if and only if I admits a stable matching. First, let f be a
satisfying truth assignment of B. From f we construct a matching M in I as follows. For
each variable vi ∈ V , if vi is true under f , add the pairs in Ti to M , otherwise add the pairs
in Fi to M . Let j (1 ≤ j ≤ m) be given. Then cj contains at least one literal that is true
under f . Suppose this literal occurs at position s of cj (1 ≤ s ≤ 3), then (x(ysj ), y

s
j ) ∈ M .

If no other literal in cj is true, then add the pairs {(ps+1
j , ys+1

j ), (qs+1
j , ys+2

j )} to M (where
addition is taken modulo three).

It remains to show that M is stable. We prove this is the case by considering the resident
pairs in turn and showing that no resident pair may be involved in a blocking pair in M and
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Residents’ Preferences

(x1i , x
2
i ) : (h1i , h

2
i ) (y(x1i ), y(x2i )) (1 ≤ i ≤ n)

(x̄1i , x̄
2
i ) : (h1i , h

2
i ) (y(x̄1i ), y(x̄2i )) (1 ≤ i ≤ n)

(p1j , q
1
j ) : (y1j , y

2
j ) (1 ≤ j ≤ m)

(p2j , q
2
j ) : (y2j , y

3
j ) (1 ≤ j ≤ m)

(p3j , q
3
j ) : (y3j , y

1
j ) (1 ≤ j ≤ m)

Hospitals’ Preferences

h1i : x1i x̄
1
i (1 ≤ i ≤ n)

h2i : x̄2i x
2
i (1 ≤ i ≤ n)

y1j : x(y1j ) p1j q
3
j (1 ≤ j ≤ m)

y2j : x(y2j ) p2j q
1
j (1 ≤ j ≤ m)

y3j : x(y3j ) p3j q
2
j (1 ≤ j ≤ m)

Figure 3.4: Preference lists in I , the constructed instance of (2, 3)-HRC.

hence the M must be stable.

No resident pair (x1i , x
2
i ) or (x̄1i , x̄

2
i ) may block M , as no matching in which (x1i , x

2
i ) is

assigned to (h1i , h
2
i ) is blocked by (x̄1i , x̄

2
i ) with (h1i , h

2
i ), and similarly no matching in which

(x̄1i , x̄
2
i ) is assigned to (h1i , h

2
i ) is blocked by (x1i , x

2
i ) with (h1i , h

2
i ). No resident pair (psj , q

s
j )

may block M as, if (psj , q
s
j ) is not assigned to (ysj , y

s+1
j ) (where addition is taken modulo

three), then at least one of ysj or ys+1
j is assigned to its first choice and thus (psj , q

s
j ) may not

block M with (ysj , y
s+1
j ). Hence M is a stable matching in I .

Conversely suppose that M is a stable matching in I . We form a truth assignment f in B
from M as follows. For any i (1 ≤ i ≤ n), if h1i and h2i are unassigned, then M is blocked
by (x1i , x

2
i ) with (h1i , h

2
i ). Thus, either {(x1i , h1i ), (x2i , h2i )} ⊆M or {(x̄1i , h1i ), (x̄2i , h2i )} ⊆M .

Now, suppose (x1i , x
2
i ) are unassigned in M . Then (x1i , x

2
i ) blocks M with (y(x1i ), y(x2i )).

Similarly (x̄1i , x̄
2
i ) must be assigned in M . Thus, M ∩ (Xi × (H ∪ Y )) = Ti or M ∩ (Xi ×

(H ∪ Y )) = Fi. In the former case set f(xi) = Ti and in the latter case set f(xi) = Fi.

Now let cj be a clause in C (1 ≤ j ≤ m). Suppose (x(ysj ), y
s
j ) /∈M for all s (1 ≤ s ≤ 3). If

(p1j , q
1
j ) is assigned to (y1j , y

2
j ), then (p2j , q

2
j ) blocks M with (y2j , y

3
j ). If (p2j , q

2
j ) is assigned to

(y2j , y
3
j ), then (p3j , q

3
j ) blocks M with (y3j , y

1
j ). If (p3j , q

3
j ) is assigned to (y3j , y

1
j ), then (p1j , q

1
j )

blocks M with (y1j , y
2
j ). If {(psj , ysj ), (qs, ys+1

j )} 6⊆ M for some s (1 ≤ s ≤ 3) (where
addition is taken modulo three), then (p1j , q

1
j ) blocks M with (y1j , y

2
j ). Thus (x(ysj ), y

s
j ) ∈M

for some s (1 ≤ s ≤ 3) by the stability of M .

If x(ysj ) = xri then (xri , y
s
j ) ∈ Ti. Thus vi is true under f and it follows that cj is true under
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L1
i : (h1i , h

2
i ) (y(x1i ), y(x2i )) (y(x̄1i ), y(x̄2i )) (1 ≤ i ≤ n)

L2
i : (y1j , y

2
j ) (y2j , y

3
j ) (y3j , y

1
j ) (1 ≤ j ≤ m)

Master List : L1
1 L

1
2 . . . L

1
n L

2
1 L

2
2 . . . L

2
m

Figure 3.5: Master list of preferences for resident couples in (2, 3)-HRC instance I .

L3
i : x1i x̄

1
i x̄

2
i x

2
i (1 ≤ i ≤ n)

L4
j : p1j p

2
j p

3
j (1 ≤ j ≤ m)

L5
i : q1j q

2
j q

3
j (1 ≤ j ≤ m)

Master List : L3
1 L

3
2 . . . L

3
n L

4
1 L

4
2 . . . L

4
m L5

1 L
5
2 . . . L

5
m

Figure 3.6: Master list of preferences for hospitals in (2, 3)-HRC instance I .

f . Otherwise x(ysj ) = x̄ri , so (x̄ri , y
s
j ) ∈ Fi and v̄i is false under f and it follows that cj is

true under f . Hence f is a satisfying truth assignment of B. Thus, we have that that B is
satisfiable if and only if I admits a stable matching and the result is proven.

Theorem 3.4.2. Given an instance of (2, 3)-HRC, the problem of deciding whether the in-

stance admits a stable matching exists is NP-complete. The result holds even in the case

where there are no single residents, each hospital has capacity one and the preference list of

each couple and hospital is derived from a strictly ordered master list of pairs of hospitals

and residents respectively.

Proof. We now demonstrate that NP-completeness holds under other restrictions on the
structure of the agents’ preference list than those stated in Lemma 3.4.1. Consider the in-
stance I of (2, 3)-HRC as constructed in the proof of Lemma 3.4.1, and let n andm be defined
as in the proof of Lemma 3.4.1. The master lists shown in Figures 3.5 and 3.6 indicate that
the preference list of each resident couple and hospital may be derived from a master list of
hospital pairs and residents respectively. Since there are no single residents in I , no prefer-
ences are expressed for individual hospitals in I .

As we have established in Lemma 3.4.1 that deciding whether an instance of (2, 3)-HRC of
this form admits a stable matching is NP-complete, the theorem is proven.
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3.5 Complexity results for (3, 3)-HRC DUAL MARKET

Lemma 3.5.1. Given an instance of (3, 3)-HRC, the problem of deciding whether the instance

admits a complete stable matching is NP-complete. The result holds even if each hospital

has capacity one.

Proof. The problem is clearly in NP, as a given assignment may be verified to be a complete,
stable matching in polynomial time. This proof uses a polynomial-time reduction from a
restricted version of SAT. More specifically, let (2,2)-E3-SAT denote the problem of deciding,
given a Boolean formula B in CNF over a set of variables V , whether B is satisfiable, where
B has the following properties: (i) each clause contains exactly three literals and (ii) for each
vi ∈ V , each of literals vi and v̄i appears exactly twice in B. Berman et al. [9] showed that
(2,2)-E3-SAT is NP-complete.

Let B be an instance of (2,2)-E3-SAT. We construct an instance I of (3, 3)-HRC using a
similar reduction to that employed by Irving et al. [41]. Let V = {v0, v1, . . . , vn−1} and
C = {c1, c2, . . . , cm} be the set of variables and clauses respectively in B. Then for each
vi ∈ V , each of literals vi and v̄i appears exactly twice in B. Also |cj|= 3 for each cj ∈ C.
(Hence m = 4n

3
.)

The set of residents in I isX∪K∪P∪Q∪T , whereX = ∪n−1i=0Xi,Xi = {x4i+r : 0 ≤ r ≤ 3}
(0 ≤ i ≤ n − 1), K = ∪n−1i=0Ki, Ki = {k4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1), P = ∪mj=1Pj ,
Pj = {prj : 1 ≤ r ≤ 6} (1 ≤ j ≤ m), Q = {qj : cj ∈ C} and T = {tj : cj ∈ C}. The
residents in Q ∪ T are single and the residents in X ∪K ∪ P are involved in couples.

The set of hospitals in I is Y ∪ L ∪ C ′ ∪ Z, where Y = ∪n−1i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3}
(0 ≤ i ≤ n − 1), L = ∪n−1i=0 Li, Li = {l4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1), C ′ = {csj : cj ∈
C ∧ 1 ≤ s ≤ 3} and Z = {zrj : 1 ≤ j ≤ m ∧ 1 ≤ r ≤ 5}. Each hospital has capacity one.

In the joint preference list of a couple (x4i+r, k4i+r) ∈ X × K, if r ∈ {0, 1}, the symbol
c(x4i+r) denotes the hospital csj ∈ C ′ such that the (r + 1)th occurrence of literal vi appears
at position s of cj . Similarly if r ∈ {2, 3}, then the symbol c(x4i+r) denotes the hospital
csj ∈ C ′ such that the (r − 1)th occurrence of literal v̄i appears at position s of cj . Also in
the preference list of a hospital csj ∈ C ′, if literal vi appears at position s of clause cj ∈ C,
the symbol x(csj) denotes the resident x4i+r−1 where r = 1, 2 according as this is the first or
second occurrence of literal vi in B. Otherwise if literal v̄i appears at position s of clause
cj ∈ C, the symbol x(csj) denotes the resident x4i+r+1 where r = 1, 2 according as this
is the first or second occurrence of literal v̄i in B. The preference lists of the residents
and hospitals in I are shown in Figure 3.7 and diagrammatically in Figures 3.8 and 3.9.
In these diagrams any two residents joined by a dashed line represent a couple in I . The
numbers on each outgoing edge from a single resident in the diagram represent the preference
ordering over the single hospitals expressed by the resident. For a couple, the numbers on



3.5. Complexity results for (3, 3)-HRC DUAL MARKET 57

each outgoing edge from each member of the couple represent that preference order over
the pairs of hospitals expressed by the couple. For example, for the couple (p1j , p

4
j), the first

outgoing edge from p1j is z1j and the first outgoing edge from p4j is z2j . Thus, the first joint
preference of the couple (p1j , p

4
j) is (z1j , z

2
j ). Clearly each preference list is of length at most

three.

For each i (0 ≤ i ≤ n − 1), let Ti = {(x4i+r, y4i+r) : 0 ≤ r ≤ 3} ∪ {(k4i+r, l4i+r) : 0 ≤
r ≤ 3} and Fi = {(x4i+r, y4i+r+1)} : 0 ≤ r ≤ 3} ∪ {(k4i+r, l4i+r+1)} : 0 ≤ r ≤ 3}, where
addition is taken modulo four.

We claim that B is satisfiable if and only if I admits a complete stable matching. First, sup-
pose that B is satisfiable and let f be a satisfying truth assignment of B. Define a complete
matching M in I as follows. For each variable vi ∈ V , if vi is true under f , add the pairs in
Ti to M , otherwise add the pairs in Fi to M . Let j (1 ≤ j ≤ m) be given. Now, since f is a
satisfying truth assignment of B, cj contains at least one literal that is true under f . Suppose
this literal occurs at position s of cj (1 ≤ s ≤ 3). Then add the pairs (qj, csj), (psj , z

1
j ) and

(ps+3
j , z2j ) to M . For each b (1 ≤ b ≤ 3, b 6= s) add the pairs (pbj, c

b
j) and (pb+3

j , zb+2
j ) to M .

Finally add the pair (tj, zs+2
j ) to M .

It remains to prove that M is stable. We now consider in turn those agents who might block
M and prove that no agent can be involved in a blocking pair. No resident in Q may form
part of a blocking pair since he can only potentially prefer a hospital in C, that ranks him
last. Moreover no resident in T can form part of a blocking pair since he can only potentially
prefer a hospital zj (3 ≤ j ≤ 5) that ranks him last.

Suppose that a resident couple (x4i+r, k4i+r) blocks M with (c(x4i+r), l4i+a), where 0 ≤ i ≤
n− 1, 0 ≤ r ≤ 3 and 1 ≤ a ≤ 3. Then (x4i+r, k4i+r) is assigned to their third choice pair.

Case (i): r ∈ {0, 1}. Then f(vi) = F since (x4i+r, y4i+r+1) ∈ M . It follows that (k4i+r,

l4i+r+1) ∈ M . Let csj = c(x4i+r) (1 ≤ s ≤ 3 ∧ 1 ≤ j ≤ m). As vi does not make cj true
then (psj , c

s
j) ∈ M . This means that csj is assigned in M to the resident in first place in its

preference list and thus cannot form part of a blocking pair, a contradiction.

Case (ii): r ∈ {2, 3} Then f(vi) = T since (x4i+r, y4i+r) ∈ M . It follows that (k4i+r, l4i+r)

∈ M . Let csj = c(x4i+r) (1 ≤ s ≤ 3, 1 ≤ j ≤ m). As v̄i does not make cj true then
(psj , c

s
j) ∈ M . This means that csj is assigned in M its the resident in first place in its

preference list and thus cannot form part of a blocking pair, a contradiction.

Now suppose that a resident couple (psj , p
s+3
j ) blocks M in I . Then both (psj , c

s
j) ∈ M and

(ps+3
j , zs+2

j ) ∈M , and (psj , p
s+3
j ) prefers (z1j , z

2
j ) to their joint assignee in M . At most one of

{z1j , z2j } can prefer the relevant member of {psj , ps+3
j } to their partner, whilst the other prefers

their current assignee in M and thus could not form part of a blocking pair, a contradiction.
Hence, M is a complete stable matching in I .
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Residents’ Preferences

(x4i, k4i) : (y4i, l4i) (c(x4i), l4i+1) (y4i+1, l4i+1) (0 ≤ i ≤ n− 1)
(x4i+1, k4i+1) : (y4i+1, l4i+1) (c(x4i+1), l4i+2) (y4i+2, l4i+2) (0 ≤ i ≤ n− 1)
(x4i+2, k4i+2) : (y4i+3, l4i+3) (c(x4i+2), l4i+2) (y4i+2, l4i+2) (0 ≤ i ≤ n− 1)
(x4i+3, k4i+3) : (y4i, l4i) (c(x4i+3), l4i+3) (y4i+3, l4i+3) (0 ≤ i ≤ n− 1)

(p1j , p
4
j) : (z1j , z

2
j ) (c1j , z

3
j ) (1 ≤ j ≤ m)

(p2j , p
5
j) : (z1j , z

2
j ) (c2j , z

4
j ) (1 ≤ j ≤ m)

(p3j , p
6
j) : (z1j , z

2
j ) (c3j , z

5
j ) (1 ≤ j ≤ m)

qj : c1j c
2
j c

3
j (1 ≤ j ≤ m)

tj : z3j z4j z5j (1 ≤ j ≤ m)

Hospitals’ Preferences

y4i : x4i x4i+3 (0 ≤ i ≤ n− 1)
y4i+1 : x4i+1 x4i (0 ≤ i ≤ n− 1)
y4i+2 : x4i+1 x4i+2 (0 ≤ i ≤ n− 1)
y4i+3 : x4i+2 x4i+3 (0 ≤ i ≤ n− 1)
l4i : k4i+3 k4i (0 ≤ i ≤ n− 1)

l4i+1 : k4i k4i+1 (0 ≤ i ≤ n− 1)
l4i+2 : k4i+2 k4i+1 (0 ≤ i ≤ n− 1)
l4i+3 : k4i+3 k4i+2 (0 ≤ i ≤ n− 1)
z1j : p1j p

2
j p

3
j (1 ≤ j ≤ m)

z2j : p6j p
5
j p

4
j (1 ≤ j ≤ m)

z3j : p4j tj (1 ≤ j ≤ m)

z4j : p5j tj (1 ≤ j ≤ m)

z5j : p6j tj (1 ≤ j ≤ m)

csj : psj x(csj) qj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

Figure 3.7: Preference lists in I , the constructed instance of (3, 3)-HRC.
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Figure 3.8: Diagram of subset of agents in I , the constructed instance of (3, 3)-HRC.

Figure 3.9: Diagram of subset of agents in I , the constructed instance of (3, 3)-HRC.
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Conversely suppose that M is a complete stable matching in I . We form a truth assignment
f in B as follows. For each i (0 ≤ i ≤ n − 1), M ∩ ((Xi × Yi) ∪ (Ki × Li)) is a perfect
matching of (Xi ∪ Yi) ∪ (Ki ∪ Li). If M ∩ ((Xi × Yi) ∪ (Ki × Li)) = Ti, set vi to be true
under f . Otherwise M ∩ ((Xi × Yi) ∪ (Ki × Li)) = Fi, in which case we set vi to be false
under f .

Now let cj be a clause in C (1 ≤ j ≤ m). There exists some s (1 ≤ s ≤ 3) such that
(qj, c

s
j) ∈ M . Let x4i+r = x(csj), for some i (0 ≤ i ≤ n − 1) and r (0 ≤ r ≤ 3). If

r ∈ {0, 1}, then (x4i+r, y4i+r) ∈ M and (k4i+r, l4i+r) ∈ M . Thus variable vi is true under
f , and hence clause cj is true under f , since literal vi occurs in cj . If r ∈ {2, 3}, then
(x4i+r, y4i+r+1) ∈ M and (k4i+r, l4i+r+1) ∈ M (where addition is taken modulo four). Thus
variable vi is false under f , and hence clause cj is true under f , since literal v̄i occurs in cj .
Hence f is a satisfying truth assignment of B. Thus, the claim holds and B is satisfiable if
and only if I admits a complete stable matching.

By adding an additional ‘gadget’ to the instance constructed in the proof of Lemma 3.5.1 we
may prove that not only is the problem of deciding whether an instance of (3, 3)-HRC admits
a complete stable matching NP-complete, but, the problem of deciding whether an instance
of (3, 3)-HRC admits a stable matching, complete or otherwise, is also NP-complete. We
state this result formally as Lemma 3.5.5. First we define an additional ‘gadget’ that will be
added to the instance constructed in the proof of Lemma 3.5.1 to ensure the property that the
only stable matchings admitted by the resulting instance are complete stable matchings.

Let I be the instance of (3, 3)-HRC as constructed in the proof of Lemma 3.5.1. We add
additional residents and hospitals to I to obtain a new instance I ′ of (3, 3)-HRC as follows.
For every y4i+r ∈ Y add further residents U = ∪n−1i=0 Ui, Ui = {us4i+r : 1 ≤ s ≤ 5 ∧ 0 ≤ r ≤
3} and further hospitals H = ∪n−1i=0Hi, Hi = {hs4i+r : 1 ≤ s ≤ 4 ∧ 0 ≤ r ≤ 3} where each
hospital has capacity one. The preference lists of the agents added in this fashion for a given
y4i+r ∈ Y are shown in Figure 3.10 and also diagrammatically in Figure 3.11 where Φ4i+r

represents those preferences expressed by y4i+r in I ′ \ (U ∪H).

We now show that each y4i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3) must be assigned to some resident
in X in any stable matching in I ′. We state this result formally as Lemma 3.5.2 below.

Lemma 3.5.2. In any stable matching M in I ′, for every y4i+r ∈ Y , M(y4i+r) ∈ X .

Proof. Suppose not. Then y4i+r is either unassigned in M or M(y4i+r) = u54i+r. If y4i+r is
unassigned, then (u54i+r, y4i+r) blocks M in I ′, a contradiction. Hence, M(y4i+r) = u54i+r

and thus (u54i+r, h
1
4i+r) /∈M .

Assume that h14i+r is unassigned inM . Then (u14i+r, u
2
4i+r) is unassigned inM andM((u34i+r,

u44i+r)) 6= (h14i+r, h
4
4i+r). Thus, either (u34i+r, u

4
4i+r) is unassigned in M or M((u34i+r,
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Residents’ Preferences

(u14i+r, u
2
4i+r) : (h14i+r, h

2
4i+r) (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

(u34i+r, u
4
4i+r) : (h14i+r, h

4
4i+r) (h34i+r, h

2
4i+r) (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

u54i+r : y4i+r h
1
4i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

Hospitals’ Preferences

y4i+r : Φ4i+r u
5
4i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

h14i+r : u54i+r u
1
4i+r u

3
4i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

h24i+r : u44i+r u
2
4i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

h34i+r : u34i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

h44i+r : u44i+r (0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3)

Figure 3.10: Added agents in I ′, the constructed instance of (3, 3)-HRC.

Figure 3.11: Diagram of added agents in I ′, the constructed instance of (3, 3)-HRC.
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u44i+r)) = (h34i+r, h
2
4i+r). If (u34i+r, u

4
4i+r) is unassigned in M , then (u14i+r, u

2
4i+r) blocks

M with (h14i+r, h
2
4i+r) in I ′, a contradiction. Hence (u34i+r, u

4
4i+r) must be assigned to (h34i+r,

h24i+r) inM . However, now (u34i+r, u
4
4i+r) blocksM with (h14i+r, h

4
4i+r) in I ′, a contradiction.

Thus, we have that h14i+r must be assigned in M .

Now, assume that h14i+r is assigned in M through the joint assignment of (u14i+r, u
2
4i+r) to

(h14i+r, h
2
4i+r). Now M is blocked by (u34i+r, u

4
4i+r) with (h34i+r, h

2
4i+r) in I ′, a contradic-

tion. Thus, h14i+r must be assigned in M through the joint assignment of (u34i+r, u
4
4i+r) to

(h14i+r, h
4
4i+r). However, now M is blocked by (u14i+r, u

2
4i+r) with (h14i+r, h

2
4i+r) in I ′, a

contradiction.

We now show through the following two Lemmas that if M ′ is a stable matching in I ′ and

M = M ′ \ {(up4i+r, h
q
4i+r) : 0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3, 1 ≤ p ≤ 5, 1 ≤ q ≤ 5},

then M is a complete stable matching in I , the reduced (3, 3)-HRC instance obtained by
removing all of the agents in U ∪H from I ′.

Lemma 3.5.3. No hospital in Z ∪ C may be unassigned and no resident in P ∪ T ∪Q may

be unassigned in any stable matching M in I ′.

Proof. Assume z1j is unassigned in M for some j (1 ≤ j ≤ m). Thus (psj , z
2
j ) /∈ M

(4 ≤ s ≤ 6) as z2j must also be unassigned. Hence, (z1j , z
2
j ) are unassigned and find (p1j , p

4
j)

acceptable. Further, (p1j , p
4
j) prefer (z1j , z

2
j ) to any other pair. Hence (z1j , z

2
j ) blocks M with

(p1j , p
4
j) in I ′, a contradiction. Thus, z1j must be assigned in any stable matching in I ′. By a

similar argument, z2j must be assigned in any stable matching in I ′.

Assume tj is unassigned in M for some j (1 ≤ j ≤ m). If some zsj (3 ≤ s ≤ 5) is unas-
signed, then (tsj , z

s
j ) blocksM in I ′, a contradiction. Thus, {(p4j , z3j ), (p5j , z4j ), (p6j , z5j )} ⊆M .

It follows that z2j is unassigned, a contradiction. Thus, tj must be assigned in any stable
matching in I ′.

Assume some resident psj (1 ≤ j ≤ m, 1 ≤ s ≤ 3) is unassigned in M . Then (psj , p
s+3
j )

is unassigned. Hence, (psj , p
s+3
j ) blocks M in I ′ with (csj , z

s+2
j ), a contradiction. Thus, all

psj (1 ≤ s ≤ 6) must be assigned in any stable matching in I ′.

Assume some zsj (1 ≤ j ≤ m, 3 ≤ s ≤ 5) is unassigned in M . It follows that either tj is
unassigned in M or ps+1

j is unassigned in M . As shown previously, tj cannot be unassigned
in a stable matching in I ′, thus (tj, z

b
j) ∈ M for some b ∈ {3, 4, 5} \ {s}. Further, as shown

previously ps+1
j cannot be unassigned so (ps+1

j , z2j ) ∈ M , thus pb+1
j is unassigned in M , a

contradiction. Thus, each zsj (1 ≤ j ≤ m, 3 ≤ s ≤ 5) must be assigned in any stable
matching in I ′
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Observe that no csj (1 ≤ s ≤ 3, 1 ≤ j ≤ m) can be assigned to x(csj), for otherwise
M(y4i+r) /∈ X for some y4i+r ∈ Y a contradiction to Lemma 3.5.2. Since z1j must be
assigned to some psj (1 ≤ s ≤ 3) and since no resident in P may be unassigned, then
for s′ ∈ {1, 2, 3} such that s′ 6= s, cs′j must be assigned to the corresponding ps′j . Thus,
(qj, c

s
j) ∈ M for otherwise (qj, c

s
j) blocks M in I ′. Thus all residents in Q and hospitals in

C must be assigned in any stable matching admitted by I ′.

Lemma 3.5.4. No hospital in L ∪ Y may be unassigned and no resident in K ∪X may be

unassigned in any stable matching M in I ′.

Proof. By Lemma 3.5.2, M(y4i+r) ∈ X for all y4i+r ∈ Y . Hence M(x4i+r) ∈ Y for all
x4i+r ∈ X . It follows that M(k4i+r) ∈ L for all k4i+r ∈ K and thus M(l4i+r) ∈ K for all
l4i+r ∈ L.

The proof of the previous three Lemmas allows us to now state the following more general
Lemma.

Lemma 3.5.5. Given an instance I ′ of (3, 3)-HRC, the problem of deciding whether I ′ admits

a stable matching is NP-complete.

Proof. Let B be an instance of (2,2)-E3-SAT. Construct an instance I of (3, 3)-HRC as de-
scribed in the proof of Theorem 3.5.1 and as illustrated in Figure 3.7 and extend this instance
to obtain the instance I ′ of (3, 3)-HRC as described above using the gadget described in Fig-
ure 3.10.

Let f be a satisfying truth assignment of B. Define a matching M in I as in the proof of
Theorem 3.5.1. Define a matching M ′ in I ′ as follows:

M ′ = M ∪ {(u54i+r, h14i+r), (u34i+r, h34i+r), (u44i+r, h24i+r) : 0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3}

As shown previously no agent inX∪K∪L∪P∪Q∪T∪Z∪C can blockM ′ in I ′. By Lemma
3.5.2, M ′(y4i+r) ∈ X for any stable matching M ′ in I ′. Thus, it follows that M ′(u54i+r) =

h14i+r otherwise (u54i+r, h
1
4i+r) would block M ′ in I ′. Further M ′((u34i+r, u

4
4i+r)) = (h34i+r,

h24i+r) for otherwise M ′ must admit a blocking pair amongst the agents in the sub instance
S. Thus, no agent in Y ∪ U ∪H can block M ′ in I ′. Thus M ′ is a stable matching in I ′.

Conversely, suppose that M ′ is a stable matching in I ′. By Lemma 3.5.2, every y4i+r is
assigned in M ′ to a resident in X . By Lemmas 3.5.3 and 3.5.4 every agent in K ∪X ∪ P ∪
T ∪Q ∪ Z ∪ C is assigned in M ′.
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Now let

M = M ′ \ {(up4i+r, h
q
4i+r) : 0 ≤ i ≤ n− 1, 0 ≤ r ≤ 3, 1 ≤ p ≤ 5, 1 ≤ q ≤ 5}

Then M is a complete stable matching in I , the reduced (3, 3)-HRC instance obtained by
removing all of the agents in U ∪H from I ′. By the proof of Theorem 3.5.1 we can obtain a
satisfying truth assignment for B from M .

Recall that an instance of (3, 3)-HRC DUAL MARKET is an instance of HRC DUAL MARKET

in which no resident, couple or hospital has a preference list of length greater than three. We
now show that the instance described in Theorem 3.5.5 represents a dual market and thus we
are able to show that deciding whether a stable matching exists in an instance of (3, 3)-HRC

DUAL MARKET is also NP-complete.

Theorem 3.5.6. Given an instance of (3, 3)-HRC DUAL MARKET, the problem of deciding

whether a stable matching exists is NP-complete. The result holds even if each hospital has

capacity one and the preference list of each single resident, couple and hospital is derived

from a strictly ordered master list of hospitals, pairs of hospitals and residents respectively.

Proof. Let I ′ be the instance of (3, 3)-HRC constructed in the proof of Lemma 3.5.5. The
residents in I ′ can be partitioned into two disjoint sets, R1 = X ∪ P1 ∪ Q ∪ U1, where
P1 = {psj : 1 ≤ s ≤ 3} and U1 = {us4i+r : s ∈ {1, 3, 5}}, and R2 = K ∪P2 ∪ T ∪U2, where
P2 = {psj : 4 ≤ s ≤ 6} and U2 = {us4i+r : s ∈ {2, 4}}. Further, the hospitals in I ′ may also
be partitioned into two disjoint sets, A1 = Y ∪Z1 ∪C ∪H1, where Z1 = {z1j : 1 ≤ j ≤ m}
and H1 = {hs4i+r : 0 ≤ i ≤ n − 1, 0 ≤ r ≤ 3, s ∈ {1, 3}}, and A2 = L ∪ Z2 ∪H2, where
Z2 = {zsj : 2 ≤ s ≤ 5 ∧ 1 ≤ j ≤ m} and H2 = {hs4i+r : 0 ≤ i ≤ n − 1, 0 ≤ r ≤ 3, s ∈
{2, 4}}.

A resident r ∈ Ri finds acceptable only those hospitals in Ai and a hospital h ∈ Ai finds
acceptable only those residents in Ri. From this construction it can be seen that the instance
I ′ represents a dual market consisting of two disjoint markets, (R1 ∪ A1) and (R2 ∪ A2).

The master lists shown in Figures 3.12, 3.13 and 3.14 indicate that the preference list of
each single resident, couple and hospital may be derived from a master list of hospital pairs,
residents and hospitals respectively. Thus, the result follows immediately from Lemma 3.5.5.
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3.6 Complexity results for (∞, 1,∞)-HR PA

3.6.1 (∞, 1,∞)-HR PA is NP-complete

We denote by (∞, 1,∞)-HR PA the variant of HR PA in which each resident’s preference list
contains either: (i) exactly one application to an unordered pair of hospitals and no applica-
tions to individual hospitals or (ii) an unbounded number of applications to individual hos-
pitals and no applications to unordered hospital pairs. We now establish that the problem of
deciding whether an instance of (∞, 1,∞)-HR PA admits a stable matching is NP-complete.

Theorem 3.6.1. Given an instance of (∞, 1,∞)-HR PA, the problem of deciding whether

there exists a stable matching is NP-complete. The result holds even if each hospital has

capacity one.

Proof. The proof of this result uses a reduction from (∞, 1,∞)-HRC. Theorem 3.2.1 in
Section 3.2.1 proves that deciding whether an instance of (∞, 1,∞)-HRC admits a stable
matching is NP-complete even if all of the hospitals have capacity one.

The problem (∞, 1,∞)-HR PA is in NP, as a given assignment may be verified to be a stable
matching in polynomial time. To show NP-hardness we now present a polynomial-time
reduction from an instance of (∞, 1,∞)-HRC to an instance of (∞, 1,∞)-HR PA. Let I
be an instance of (∞, 1,∞)-HRC with residents R = {r1, r2, . . . rn1} and hospitals H =

{h1, h2, . . . hn2} where each hospital hj ∈ H has a capacity cj = 1. Without loss of general-
ity let the first 2c residents in I be involved in couples of the form (r2s−1, r2s) (1 ≤ s ≤ c).
Each couple (r2s−1, r2s) (1 ≤ s ≤ c) in I expresses exactly one joint preference for a hospi-
tal pair (hj1 , hj2) (hj1 ∈ H∧hj2 ∈ H∧hj1 6= hj2). Each single resident rt (2c+1 ≤ t ≤ n1)

has a strictly ordered preference list over some subset of the hospitals in H .

We form an instance J of (∞, 1,∞)-HR PA as follows. For each couple (r2s−1, r2s) (1 ≤
s ≤ c) in I create a resident as in J . For each single resident rt (2c + 1 ≤ t ≤ n1) create
a resident at−c in J . For each hospital hj ∈ H create a hospital bj in J with capacity one.
Let A = {a1, a2, . . . an3} be the n3 = n1 − c residents created in J by this process and let
B = {b1, b2, . . . bn2} be the hospitals created in J in this process.

The preference list of as (1 ≤ s ≤ c) in J is constructed from (r2s−1, r2s)’s preference list
in I as follows. Let the pair (hj1 , hj2) (hj1 ∈ H ∧ hj2 ∈ H ∧ hj1 6= hj2) be (r2x−1, r2x)’s
acceptable hospital pair. Then, the preference list of ax in J contains only the pair {bj1 , bj2}.
The preference list of each at (c+ 1 ≤ t ≤ n3) in J is constructed from rt+c’s preference list
in I as follows. For each p (1 ≤ p ≤ l(rt+c)) such that pref (rt+c, p) = hj , let pref (at, p) =

bj in J . The preference list of bj in J is constructed from hj’s preference list in I as follows.
For each q (1 ≤ q ≤ l(hj) suppose pref (hj, q) = ri. If i ≥ 2c+ 1, then ri is a single resident
in I and we let pref (bj, q) = ai−c in J . Otherwise, i ≤ 2c and ri is a member of a couple
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in I . If i is even, then let pref (bj, q) = ak where k = i/2, otherwise i is odd and we let
pref (bj, q) = ak where k = (i+ 1)/2.

Thus, each resident ak ∈ A has a preference list of length l(ak) containing either exactly one
pair of hospitals or an unbounded number applications to individual hospitals. Further, each
hospital bj ∈ B has capacity one. This completes the reduction. Clearly, this reduction can
be carried out in polynomial-time.

We claim that I admits a stable matching if and only if J admits a stable matching. Suppose
that MI is a stable matching in I . We form a set of pairs MJ in J from MI as follows. If
(r2s−1, r2s) (1 ≤ s ≤ c) is assigned to the hospital pair (hj1 , hj2) in MI , then add the pairs
(as, bj1) and (as, bj2) to MJ . If a single resident rt (2c + 1 ≤ t ≤ n1) is assigned to an
individual hospital hj in MI , then add the pair (at−c, bj) to MJ .

Since each couple in I is assigned in MI to at most one acceptable pair or is unassigned, and
each individual resident in I is assigned in MI to at most one hospital or is unassigned, each
resident in J is assigned to at most one application. Since no hospital is oversubscribed in
MI the same is true of the hospital in MJ . Hence MJ is a matching in J .

It remains to prove that MJ is stable. Assume not. Firstly assume that there exists in J some
resident ak (c + 1 ≤ k ≤ n3) and a hospital bj (1 ≤ j ≤ n2) where pref (ak, p) = bj for
some p (1 ≤ p ≤ l(ak)), such that ak prefers bj to MJ(ak) or is unassigned in MJ and
also bj prefers ak to MJ(bj) or is undersubscribed. Now we have that in I a resident rk+c is
unassigned or prefers hj to MI(rk+c) and hj prefers rk+c to MI(hj) or is undersubscribed, a
contradiction to the stability of MI in I .

Now assume there exists in J some resident ak (1 ≤ k ≤ c) and a pair of hospitals
{bj1 , bj2} (1 ≤ j1 ≤ n2, 1 ≤ j2 ≤ n2, j1 6= j2) where pref (ak, p) = {bj1 , bj2} for some
p (1 ≤ p ≤ l(ak)) such that ak is unassigned, bj1 prefers ak to MJ(bj1) or is undersubscribed
and bj2 prefers ak to MJ(bj2) or is undersubscribed. Now we have in I that (r2k−1, r2k) is
unassigned in MI and finds acceptable one of two possible ordered hospital pairs, namely
either (hj1 , hj2) or (hj2 , hj1). Assume firstly that (r2k−1, r2k) (1 ≤ k ≤ c) finds (hj1 , hj2)

acceptable. Then hj1 prefers r2k−1 to MI(hj1) and hj2 prefers r2k to MI(bj2), a contradiction
to the stability of MI . Now, assume (r2k−1, r2k) finds (hj2 , hj1) acceptable. Then hj2 prefers
r2k−1 to MI(hj2) and hj1 prefers r2k to MI(bj1), a contradiction to the stability of MI . Thus
no agent who finds acceptable a pair of hospitals can block MJ in J . Hence, MJ must be a
stable matching in J .

Conversely, suppose that MJ is a stable matching in J . Define a set of pairs MI in I as
follows. If ak (1 ≤ k ≤ n3) is assigned to an application {bj1 , bj2} (1 ≤ j1 ≤ n2, 1 ≤
j2 ≤ n2, j1 6= j2) in MJ , then the couple (r2k−1, r2k) (1 ≤ k ≤ c) in I finds acceptable one
of two hospital pairs, namely either (hj1 , hj2) or (hj2 , hj1). In the former case add the pairs
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(r2k−1, hj1) and (r2k, hj2) to MI . In the latter case add the pairs (r2k−1, hj2) and (r2k, hj1) to
MI . If ak ∈ A is assigned to a single hospital bj in MJ , then add the pair (rk+c, hj) to MI .
It follows that: each couple is assigned to exactly one hospital pair or is unassigned (but not
both); each single resident is assigned in I to exactly one hospital or is unassigned (but not
both); and each hospital hj ∈ H has at most one assignee in MI . Thus MI is a matching in
I .

It remains to prove that MI is stable. Assume not. Suppose firstly that MI is blocked by
a single resident ry (2c + 1 ≤ y ≤ n1) and an acceptable hospital hj ∈ H . Then, ry is
unassigned or prefers hj to MI(ry) and hj prefers ry to MI(hj) or is undersubscribed. Now
we have in J , that ay−c prefers bj toMJ(ay−c) or is unassigned and bj prefers ay−c toMJ(bj)

or is unassigned, a contradiction to the stability of MJ . Thus, MI is not blocked by a single
resident R and a hospital H .

Now, suppose MI is blocked by a couple (r2x−1, r2x) (1 ≤ x ≤ c) and a hospital pair
(hj1 , hj2). Since (r2x−1, r2x) expresses only one joint preference and is part of a blocking
pair it follows that (r2x−1, r2x) must be unassigned in MI . Further, hj1 prefers r2x−1 to
MI(hj1) and hj2 prefers r2x to MI(hj2). Now we have that in J , ax is unassigned in MJ and
finds {bj1 , bj2} acceptable. Further bj1 prefers ax to M(hj1) and bj2 prefers ax to M(hj2), in
contradiction to the stability of MJ . Thus, MI is not blocked by a couple and a hospital pair.
Thus none of the agents in I may block MI in I and the result is proven.

3.7 Efficiently solvable variants of HRC

In this section we describe two highly restricted variants of HRC and prove that we can find a
maximum cardinality stable matching or report that no stable matching exists in polynomial-
time. First, in Section 3.7.1 we define formally the concept of a fixed assignment. Intuitively
a fixed assignment is a resident-hospital pair that must be assigned in any stable matching in
an instance of HRC. We apply the concept of a fixed assignment to show that any instance of
(∞,∞, 1)-HRC admits exactly one stable matching which can be found in polynomial-time.
In Section 3.7.2 we rely on the property that all the fixed assignments in an arbitrary instance
of HRC may be satisfied in polynomial-time to prove that we can find a maximum cardinality
stable matching in an instance of (2, 1, 2)-HRC or report that no stable matching exists in
polynomial-time.

3.7.1 Fixed assignments in HRC

In an instance of HRC some agents may prefer each other to any other possible partner and
hence must be assigned to each other in any stable matching in the instance. We describe
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such a pair as a fixed assignment and define this concept formally in Lemma 3.7.1.

Lemma 3.7.1. Let I be an arbitrary instance of HRC. Any pair of either of the following two

types must be assigned to each other in any stable matching in I . We describe such a pair as

a fixed assignment:

(i) If a single resident ri has a hospital hj in first place on his preference list and ri is

within the first cj places on hj’s preference list (where cj is the capacity of hj) then

(ri, hj) must be in any stable matching in I .

(ii) If a resident couple (ri, rj) has a hospital pair (hp, hq) in first place on its joint pref-

erence list and ri is within the first cp places on hp’s preference list (where cp is the

capacity of hp) and also rj is within the first cq places on hq’s preference list (where cq
is the capacity of hq) then (ri, rj) must be assigned to (hp, hq) in any stable matching

in I .

Proof. The proof of the Lemma follows immediately from the fact that any matching M in
which (ri, rj) and (hp, hq) are not assigned to each other will be blocked by (ri, rj) with
(hp, hq) and similarly any matching M in which ri is not assigned to hj will be blocked by
(ri, hj).

We satisfy a fixed assignment (ri, hj) in an arbitrary instance I of HRC by ensuring that
(ri, hj) ∈ M for any stable matching M in I . Now, if (ri, hj) ∈ M then clearly no other
hospital may be assigned in M to ri and hence ri can be deleted from the preference list
of each other hospital in which he appears. Moreover, in the event that hj becomes fully
subscribed by accepting ri as an assignee, hj can be deleted from the preference list of each
resident other than ri in which it appears. However, satisfying an arbitrary fixed assignment
in I and making the corresponding deletions from the preference lists may expose another
fixed assignment in the resulting reduced instance of HRC which must then also be satisfied
in any stable matching. If we continue satisfying fixed assignments until no more fixed
assignments are exposed then we say all fixed assignments have been iteratively satisfied in
I . We use the concept of a fixed assignment in the proof of Proposition 3.7.2 to show that a
stable solution can be found in an instance of (∞,∞, 1)-HRC in polynomial time.

Proposition 3.7.2. An instance I of (∞,∞, 1)-HRC admits exactly one stable matching and

this unique stable matching may be found in time polynomial in the number of residents in I .

Proof. Consider an arbitrary single resident r in I . Let the hospital in first place on resident
r’s preference list be h. Since r must be in first place in h’s preference list (as it is the
only preference expressed by h), the pair (r, h) represents a fixed assignment in I . Thus,
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any single resident in I must be part of exactly one fixed assignment in I and this may be
satisfied by assigning each single resident to the hospital in first place on his preference list.

Now, consider an arbitrary couple (ri, rj) in I . Let the hospital pair (hp, hq) be in first place
on couple (ri, rj)’s joint preference list. Clearly, since ri (respectively rj) is in first place
on hp’s (respectively hq’s) preference list, (ri, rj) with (hp, hq) represents a fixed assignment
in I . Thus, any resident couple in I must be part of exactly one fixed assignment in I and
this may be satisfied by assigning each couple to the hospital pair in first place on their joint
preference list.

Hence, the fixed assignments involving both the single residents and the couples in I may
be identified in time polynomial in the number of residents in I and thus the unique stable
matching admitted by I found in polynomial time.

3.7.2 (2, 1, 2)-HRC is efficiently solvable

Let I be an instance of (2, 1, 2)-HRC in which there are no remaining unsatisfied fixed as-
signments. In Lemma 3.7.3 we use the absence of fixed assignments in I to infer that I must
be constructed from the union of a finite number of disjoint discrete subinstances of (2, 1, 2)-
HRC and further that each disjoint subinstance I ′ ⊆ I must be of the form shown in Figure
3.15. Let I ′ ⊆ I be one of these disjoint subinstances of I . We prove by Lemma 3.7.4 that
whether I ′ admits a stable matching is determined by the number of couples involved in I ′;
moreover I ′ admits a stable matching if and only if the number of couples involved in I ′ is
even.

Lemma 3.7.3. An arbitrary instance of (2, 1, 2)-HRC involving at least one couple and in

which all fixed assignments have been iteratively satisfied must be constructed from sub-

instances of the form shown in Figure 3.15 in which all of the hospitals have capacity one.

Proof. Let I be an arbitrary instance of (2, 1, 2)-HRC in which all fixed assignments have
been iteratively satisfied. Observe that if a couple expresses a preference for a hospital
pair (hp, hp) this would represent a fixed assignment, a contradiction. Thus, no couple may
express such a preference in I . We now show how the absence of fixed assignments in I
allows us to infer the preference lists for all of the agents involved in I .

Let (r1c1 , r
2
c1

) be a couple in I and further let (h0c1 , h
1
c1

) be the hospital pair for which (r1c1 , r
2
c1

)

expresses a preference. Since all fixed assignments have been iteratively satisfied by con-
struction, it cannot be the case that both:

(i) h0c1 has capacity two or has r1c1 in first place in its preference list and

(ii) h1c1 has capacity two or has r2c1 in first place in its preference list.
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Residents Hospitals

(r1c1 , r
2
c1

) : (h0c1 , h
1
c1

) h0c1 : r1c1 rnN
sN

r1s1 : h2c1 h1c1 h1c1 : r1s1 r2c1
r2s1 : h3c1 h2c1 h2c1 : r2s1 r1s1

...
...

rn1
s1

: hn1+1
c1

hn1
c1

hn1
c1

: rn1
s1

rn1−1
s1

(r1c2 , r
2
c2

) : (hn1+1
c1

, h1c2) hn1+1
c1

: r1c2 rn1
s1

r1s2 : h2c2 h1c2 h1c2 : r1s2 r2c2
r2s2 : h3c2 h2c2 h2c2 : r2s2 r1s2

...
...

rn2
s2

: hn2+1
c2

hn2
c2

hn2
c2

: rn2
s2

rn2−1
c2

(r1c3 , r
2
c3

) : (hn2+1
c2

, h1c3) hn2+1
c2

: r1c3 rn2
s2

r1s3 : h2c3 h1c3 h1c3 : r1s3 r2c3
r2s3 : h3c3 h2c3 h2c3 : r2s3 r1s3

...
...

r
nN−1
sN−1 : h

nN−1+1
cN−1 h

nN−1
cN−1 h

nN−1
cN−1 : rnN−1

sN−1 r
nN−1−1
cN−1

(r1cN , r
2
cN

) : (h
nN−1+1
cN−1 , h1cN ) h

nN−1+1
cN−1 : r1cN r

nN−1
sN−1

r1sN : h2cN h1cN h1cN : r1sN r2cN
r2sN : h3cN h2cN h2cN : r2sN r1sN

...
...

rnN
sN

: h0c1 hnN
cN

hnN
cN

: rnN
sN

r
nN−1
sN

Figure 3.15: An instance of (2, 1, 2)-HRC containing an arbitrary number of couples and an
arbitrary number of residents that has no unsatisfied fixed assignments.

Without loss of generality, assume that h1c1 has capacity one and does not have r2c1 in first
place in its preference list. Hence there exists some other resident rx who is preferred by h1c1 .
Clearly, this resident is either a member of a couple or is a single resident. We now consider
both of these cases and show that the we must arrive at the same outcome in either case. In
what follows nk (1 ≤ k ≤ nN) represens the number of single residents generated following
couple ck as the preference lists of the residents are inferred in the proof.

Case (i): rx is single and thus n1 > 0. In this case let rx = r1s1 . Since r1s1 is in first place in
the preference list of h1c1 , to prevent a fixed assignment, there must exist another hospital that
is preferred by r1s1; let this be h2c1 . If h2c1 has capacity two then (r1s1 , h

2
c1

) represents a fixed
assignment, a contradiction. Hence, h2c1 must have capacity one.

Now, since r1s1 has h2c1 in first place in its preference list, there must exist some other resident
who is preferred by h2c1 . We consider first the case where each newly generated resident is
single. Hence, let this new resident be a single resident, r2s1 . Since r2s1 is in first place on
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Residents

(r1c1 , r
2
c1

) : (h0c1 , h
1
c1

)

(r1ck , r
2
ck

) : (h
nk−1+1
ck−1 , h1ck) 2 ≤ k ≤ N , nk−1 > 0

(r1ck , r
2
ck

) : (h1ck−1
, h1ck) 2 ≤ k ≤ N, nk = 0

rask : ha+1
ck

hack 1 ≤ k ≤ N, 1 ≤ a ≤ nk, nk > 0

Hospitals

h0c1 : r1c1 rnN
sN

if nN > 0

h0c1 : r1c1 r2cN if nN = 0

h1c1 : r1s1 r2c1 if n1 > 0

h1c1 : r1c2 r2c1 if n1 = 0

h1ck : r1sk r2ck 2 ≤ k ≤ N , if nk > 0

h1ck : r1ck+1
r2ck 2 ≤ k ≤ N , if nk = 0

hack : ra+1
sk

rask 1 ≤ k ≤ N , 1 ≤ a ≤ nk, nk > 0

Figure 3.16: An exactly equivalent description of the instance shown in Figure 3.15

the preference list of h2c1 there must exist another hospital which is preferred by r2s1; let this
new hospital be h3c1 . Assume h3c1 has capacity two. In that case (r1s1 , h

2
c1

) represents a fixed
assignment, a contradiction. Hence, h3c1 must have capacity one.

We may continue constructing a sequence of distinct single residents and hospitals of capac-
ity one, but as the number of single residents is finite, ultimately we must eventually arrive
at a resident who is a member of a couple; let this resident be r1c2 . Without loss of generality
suppose that r1c2 is the first member of the couple to which he belongs. Let rn1

s1
be the final

single resident constructed in the preceding sequence.

It follows that rn1
s1

prefers some hospital hn1+1
c1

of capacity one to hn1
c1

. If hn1+1
c1

= h0c1 then
I contains precisely one couple and the instance is of the form shown in Figure 3.15 where
N = 1 and n1 > 0. Otherwise hn1+1

c1
is a new hospital of capacity one that prefers r1c2 to rn1

s1
.

Since hn1+1
c1

has r1c2 in first place on its preference list, it must be the case that r1c2 expresses
a joint preference as part of the couple (r1c2 , r

2
c2

) for a hospital pair involving hn1+1
c1

; let this
pair be (hn1+1

c1
, h1c2). Since hn1+1

c1
has r1c2 in first place on its preference list, h1c2 must be

of capacity one and prefer some other resident to r2c2 , otherwise (r1c2 , r
2
c2

) represents a fixed
assignment with (hn1+1

c1
, h1c2), a contradiction. Now, let this other resident be ry.

Case(ii): rx is a member of a couple and thus n1 = 0. Let rx = r1c2 . Then h1c1 prefers r1c2
to r2c1 . Assume that r1c2 is part of a couple (r1c2 , r

2
c2

) and further assume that (r1c2 , r
2
c2

) finds
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(h1c1 , h
1
c2

) acceptable. If h1c2 = h0c1 then I contains exactly two couples and is of the form
shown in Figure 3.15 with N = 2 and n1 = n2 = 0. (In this case h0c1 prefers r1c1 to r2c2 .)
Otherwise, h1c2 is a new hospital which must be of capacity one, or (r1c2 , r

2
c2

) represents a
fixed assignment with (h1c1 , h

1
c2

), and moreover h1c2 must prefer some other resident to r2c2; let
this resident be ry.

Thus in both cases we have that if h1c2 6= h0c1 then h1c2 is of capacity one and prefers some
resident ry to r2c2 . Clearly, ry is either a member of a couple or is a single resident. As before,
we consider both of these cases and show that we must arrive at the same outcome in either
case.

Case(i): ry is single and thus n2 > 0; In this case let ry = r1s2 . Since r1s2 is in first place
on the preference list of h1c2 , it follows that h1c2 cannot be in first place in the preference list
of r1s2 . Hence, there must exist another hospital preferred by r1s2; let this be h2c2 . Further,
h2c2 must be of capacity one and have a resident other than r1s2 in first place in its preference
list; let this resident be r2s2 . We consider first the case where each newly generated resident
is single. Suppose r2s2 is single. Since r2s2 is in first place on the preference list of h2c2 there
must exist another hospital which is preferred by r2s2; let this new hospital be h3c2 . Hospital
h3c2 must have capacity one, otherwise (r2s2 , h

3
c2

) would represent a fixed assignment.

We may continue generating a sequence of distinct single residents and hospitals of capacity
one, but since the number of residents is finite, we must eventually arrive at a resident who
is a member of a couple; let this resident be r1c3 . Without loss of generality suppose that r1c3
is the first member of the couple to which he belongs. Let rn2

s2
be the final single resident in

the previously generated sequence. Then rn2
s2

prefers some hospital hn2+1
c2

to hn2
c2

and hn2+1
c2

must be of capacity one. If hn2+1
c2

= h0c1 then I contains precisely two couples. Otherwise
hn2+1
c2

is a new hospital of capacity one and prefers r1c3 to rn2
s2

.

Since hn2+1
c2

has r1c3 in first place on its preference list, it must be the case that r1c3 expresses
a joint preference as part of the couple (r1c3 , r

2
c3

) for a hospital pair involving hn2+1
c2

; let this
pair be (hn2+1

c2
, h1c3).

Since h1c3 has r2c3 in first place on its preference list, h2c3 must be of capacity one and prefer
some other resident to r2c3; let this resident be rz.

Case(ii): ry is a member of a couple and thus n2 = 0. Let ry = r1c2 . Then h1c2 prefers r1c3
to r2c2 . Assume that r1c3 is part of a couple (r1c3 , r

2
c3

) and further assume that (r1c3 , r
2
c3

) finds
(h1c2 , h

1
c3

) acceptable. If h1c3 = h0c1 then I contains three couples and is of the form shown in
Figure 3.15 with N = 3 and n3 = 0. (In this case h0c1 prefers r1c1 to r2c3 .) Otherwise, h1c3 is a
new hospital which must be of capacity one (or else (r1c3 , r

2
c3

) represents a fixed assignment
with (h1c2 , h

1
c3

) and must prefer some resident to r2c3; let this resident be rz.

Now, in both cases we have that if h1c3 6= h0c1 then h1c3 is of capacity one and prefers some
resident rz to r2c3 . As before, we may continue generating a sequence of distinct residents,
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couples and hospitals in this fashion, but since the number of residents and couples is finite,
we must eventually reach some resident, either single or a member of a couple who must be
in second place in h0c1’s preference list and a complete instance of (2, 1, 2)-HRC is formed.
Thus, the instance I must be of the form shown in Figure 3.15.

Now, we have that if I is an instance of (2, 1, 2)-HRC in which all fixed assignments have been
iteratively satisfied then I is the union of a finite number of disjoint discrete subinstances of
(2, 1, 2)-HRC of the form shown in Figure 3.15. Let I ′ ⊆ I be one of these arbitrary disjoint
subinstances of I . Lemma 3.7.4 proves that I ′ admits a stable matching if and only if the
number of couples involved in I ′ is even.

Lemma 3.7.4. An instance I of (2, 1, 2)-HRC of the form shown in Figure 3.15 admits a

stable matching if and only if the number of couples involved in I is even.

Proof. Let M be a stable matching in I . It is either the case that (r1c1 , r
2
c1

) is assigned in M
or (r1c1 , r

2
c1

) is unassigned in M . We now consider each of these cases and show that in either
case if I contains an odd number of couples then I cannot admit a stable matching.

Case (i): Assume (r1c1 , r
2
c1

) is assigned in M and therefore (r1c1 , h
0
c1

) ∈ M . Clearly either
n1 = 0 or n1 > 0. We now show that whether n1 = 0 or n1 > 0, if (r1c1 , r

2
c1

) is assigned in
M then (r1c2 , r

2
c2

) is unassigned in M .

If n1 = 0 and the instance contains exactly one couple, then (r1c1 , r
2
c1

) represents a fixed
assignment with (h0c1 , h

1
c1

), a contradiction. Thus, I contains more than one couple. Let the
second couple in I be (r1c2 , r

2
c2

) such that h1c1 has r1c2 in first place on its preference list. We
now have that (r1c2 , r

2
c2

) expresses a preference for (h1c1 , h
1
c2

) and since (r2c1 , h
1
c1

) ∈M , clearly
(r1c2 , r

2
c2

) cannot be assigned in M .

If n1 > 0 then h1c1 has r1s1 in first place on its preference list. Now, if r1s1 is unassigned in M
then (r1s1 , h

1
c1

) blocks M . Hence r1s1 must be assigned in M and moreover (r1s1 , h
2
c1

) ∈M . In
similar fashion we may confirm that each ras1 (1 ≤ a < n1) is assigned to the hospital ha+1

c1

in first place on its preference list.

Now consider, rn1
s1

. Again rn1
s1

must be assigned to the hospital in first place in its prefer-
ence list. If I contains exactly one couple then this hospital must be h0c1 by Lemma 3.7.3.
However, by assumption (r1c1 , h

0
c1

) ∈ M , a contradiction. Thus I must contain more than
one couple. Now, let hn1+1

c1
be the hospital in first place on rn1

s1
’s preference list. Since

(rn1
s1
, hn1+1

c1
) ∈ M , clearly (r1c2 , r

2
c2

) cannot be assigned in M as the only pair they find ac-
ceptable is (hn1+1

c1
, h1c2). Thus, we have that whether n1 = 0 or n1 > 0, if (r1c1 , r

2
c1

) is assigned
in M then (r1c2 , r

2
c2

) is not assigned in M .

Now, either n2 = 0 or n2 > 0. We now show that whether n2 = 0 or n2 > 0, if (r1c2 , r
2
c2

) is
unassigned in M then (r1c3 , r

2
c3

) must be assigned in M . If n2 = 0 and the instance contains
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exactly two couples then (r1c2 , r
2
c2

) expresses a preference for either (h1c1 , h
0
c1

) if n1 = 0 (or
(hn1+1

c1
, h0c1) if n1 > 0) and h0c1 has r2c2 in second place on its preference list. In this case,

the instance admits exactly two stable matchings of equal cardinality. If n2 = 0 and the
instance contains more than two couples then (r1c3 , r

2
c3

) expresses a preference for (h1c2 , h
1
c3

).
Now assume, h1c2 is unassigned in M . Then (r1c2 , r

2
c2

) blocks M with (h1c1 , h
0
c1

) if n1 = 0 (or
(hn1+1

c1
, h0c1) if n1 > 0), a contradiction. Thus we have that if (r1c2 , r

2
c2

) is not assigned in M
then (r1c3 , r

2
c3

) must be assigned to (h1c2 , h
1
c3

) in M .

If n2 > 0 then h1c2 has r1s2 in first place on its preference list. Now, if r1s2 is not assigned in M
then (r1s2 , h

1
c2

) blocks M , a contradiction. Hence r1s2 must be assigned in M and moreover
(r1s2 , h

2
c2

) ∈ M . In similar fashion we may confirm that each ras2 (1 ≤ a ≤ n2) must be
assigned in M to the hospital ha+1

s2
in first place in its preference list.

Now consider, rn2
s2

. If the instance contains exactly two couples then the hospital in first
place in the preference list of rn2

s2
must be h0c1 and the result follows. However, if the instance

contains more than two couples then the hospital in first place in the preference list of rn2
s2

must be a new hospital hn2+1
c2

. Now let the next couple be (r1c3 , r
2
c3

). Assume (r1c3 , r
2
c3

)

is unassigned in M . Then (rn2
s2
, hn2+1

c2
) must block M , so (r1c3 , r

2
c3

) must be assigned to
(hn2+1

c2
, h1c3) in M . Thus, whether n2 = 0 or n2 > 0, if (r1c2 , r

2
c2

) is unassigned in M then
(r1c3 , r

2
c3

) must be assigned in M .

In similar fashion either n3 = 0 or n3 > 0. Again, we show that whether n3 = 0 or n3 > 0,
if (r1c3 , r

2
c3

) is assigned in M then (r1c4 , r
2
c4

) is not assigned in M . If n3 = 0 and the instance
contains exactly three couples then (r1c3 , r

2
c3

) is assigned to (h1c2 , h
0
c1

) if n2 = 0 (or (hn2+1
c1

, h0c1
if n2 > 0) and h0c1 has r2c3 in second place on its preference list. However, by assumption
(r2c1 , h

0
c1

) ∈ M , a contradiction. Thus, I contains more than three couples and (r1c4 , r
2
c4

)

expresses a preference for (h1c3 , h
1
c4

) and since (r1c3 , h
1
c3

) ∈ M , (r1c4 , r
2
c4

) cannot be assigned
in M .

If n3 > 0 then h1c3 has r1s3 in first place on its preference list. Now, if r1s3 is not assigned in M
then (r1s3 , h

1
c3

) blocks M , a contradiction. Hence r1s3 must be assigned in M and moreover
(r1s3 , h

2
c3

) ∈M . In similar fashion we may confirm that each ras3 (1 ≤ a < n3) is assigned to
the hospital ha+1

c3
in first place on its preference list.

Now consider rn3
s3

. If the instance contains exactly three couples then the hospital in first
place in the preference list of rn3

s3
must be h0c1 . However, by construction, (r2c1 , h

0
c1

) ∈ M , a
contradiction. Hence, the instance must have more than three couples and the hospital in first
place in the preference list of rn3

s3
must be a new hospital hn3+1

c3
. Now let the next couple be

(r1c4 , r
2
c4

). Since (rn3
s3
, hn3+1

c3
) ∈M , (r1c4 , r

2
c4

) cannot be assigned in M . Thus, whether n3 = 0

or n3 > 0, if (r1c3 , r
2
c3

) is assigned in M then (r1c4 , r
2
c4

) is not assigned in M .

Finally we consider whether n4 = 0 or n4 > 0. If n4 = 0 and the instance contains exactly
four couples then (r1c4 , r

2
c4

) expresses a preference for the hospital pair (h1c4 , h
0
c1

) and h0c1
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has r2c4 in second place on its preference list and the result follows. Otherwise the instance
contains more than four couples and (r1c5 , r

2
c5

) expresses a preference for (h1c4 , h
1
c5

). Now
assume, h1c4 is unassigned in M . Then (r1c4 , r

2
c4

) blocks M with (hn4+1
c4

, h1c4), a contradiction.
Thus (r1c5 , r

2
c5

) must be assigned to (h1c4 , h
1
c5

) in M .

If n4 > 0 then h1c4 has r1s4 in first place on its preference list. If r1s4 is not assigned in M
then (r1s4 , h

1
c4

) blocks M , a contradiction. Hence r1s4 must be assigned in M and moreover
(r1s4 , h

2
c4

) ∈ M . In similar fashion we may confirm that each ras4 (1 ≤ a ≤ n4) must be
assigned in M to the hospital ha+1

s4
in first place in its preference list. Now consider, rn4

s4
. If

the instance contains exactly four couples then the hospital in first place in the preference list
of rn4

s4
must be h0c1 and the result follows.

At this point we observe that argument is similar for the case that the number of couples is
larger than four. As the preceding argument shows, if the number of couples is odd, then no
stable matching exists, a contradiction.

Case (ii): Now suppose that (r1c1 , r
2
c1

) is unassigned inM . Then essentially (r1c1 , r
2
c1

) plays the
role of (r1c2 , r

2
c2

) in the proof above and we may continue to generate a sequence of couples,
every second of which is unassigned in M . Again, the same proof above can be used to infer
that if the number of couples is odd, then no stable matching can exist.

Conversely, we show that if the number of couples in I is even then I admits a stable match-
ing. For ease of exposition we use the description of the instance I shown in Figure 3.16 for
this part of the proof. For clarity, this instance is exactly equivalent to the instance shown
in Figure 3.15. Let M be the following matching in I where hnN+1

cN
= h0c1 if nN > 0 and

h1cN = h0c1 if nN = 0:

M = {(r1c1 , h
0
c1

), (r2c1 , h
1
c1

)}⋃
{(r1ck , h

nk−1+1
ck−1 ), (r2ck , h

1
ck

) : 2 ≤ k ≤ N , nk−1 > 0, k mod 2 6= 0}⋃
{(r1ck , h

2
ck−1

), (r2ck , h
1
ck

) : 2 ≤ k ≤ N , nk−1 = 0, k mod 2 6= 0}⋃
{(rask , h

a+1
ck

) : 1 ≤ k ≤ N, 1 ≤ a ≤ nk, nk > 0}
Assume M is unstable. Then there must exist a blocking pair of M in I .

Clearly no single resident rask (1 ≤ k ≤ N, 1 ≤ a ≤ nk, nk > 0) can form part of a
blocking pair for M in I as he is assigned in M to his first preference. Further, no couple
(r1ck , r

2
ck

) (2 ≤ k ≤ N, k mod 2 6= 0} can form part of a blocking pair for M in I as they
are assigned to the hospital pair in first place on their joint preference list, (h

nk−1+1
ck−1 , h1ck) if

nk > 0 or (h2ck−1
, h1ck) if nk = 0.

Now, assume that (r1ck , r
2
ck

) (2 ≤ k ≤ N, k mod 2 = 1) blocksM . If nk−1 > 0 then (r1ck , r
2
ck

)

blocks with (h
nk−1+1
ck−1 , h1ck). However, h1ck is assigned in M to its first preference r1sk and so

cannot form part of a blocking pair, a contradiction. If nk = 0 then (r1ck , r
2
ck

) blocks M with
(h2ck−1

, h1ck). However, h1ck is assigned in M to its first preference (either r1sk if nk > 0, or
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r1ck+1
if nk = 0) and so cannot form part of a blocking pair, a contradiction. Since no other

possible blocking pairs exist for M in I it must be the case that M is a stable matching in I
and the result is proven.

Now by Lemma 3.7.3 we have that for any instance I of (2, 1, 2)-HRC in which all fixed
assignments have been iteratively satisfied, I is constructed from disjoint subinstances of the
form shown in Figure 3.15. Further, by Lemma 3.7.4 each disjoint subinstance I ′ ⊆ I of I
admits a stable matching if and only if the number of couples in I is even. However, if every
subinstance I ′ ⊆ I contains an even number of couples and we assign the residents in I ′ as
in the proof of Theorem 3.7.4 then we form a stable matching in I .

Since all of the stable matchings admitted by I are of the same size, a stable matching is
a maximum cardinality stable matching. Hence we may find a maximum cardinality stable
matching or report that none exists in an instance (2, 1, 2)-HRC in polynomial time. We state
this result formally as Theorem 3.7.5.

Theorem 3.7.5. Given an instance I of (2, 1, 2)-HRC we can find a maximum cardinality

stable matching or report that none exists in polynomial time.

Corollary 3.7.6. An instance I of (2, 1, 2)-HRC of the form shown in Figure 3.15 which does

not admit a stable matching can be transformed to an instance which does admit a stable

matching by increasing the capacity of any of the hospitals in I by exactly one.
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Chapter 4

Integer programming model for HRC

variants under MM-stability

4.1 Introduction

In this chapter we present the first IP model for finding a maximum cardinality stable match-
ing in an arbitrary instance of HRC under MM-stability. In Section 4.2 we present and prove
the correctness of an IP model for finding a maximum cardinality stable matching in in-
stances of HR and then show in Section 4.3 how this model can be extended to the HRC

context by presenting and proving the correctness of a model for finding a maximum cardi-
nality stable matching in an arbitrary instances of HRC under MM-stability. In Section 4.4
we demonstrate by means of an example instance how an instance of the IP model is con-
structed from an instance of HRC. We further show in Section 4.5 how the HRC model can be
extended to HRCT, the variant of HRC in which an agent might be indifferent between agents
in its preference list. Finally in Section 4.6 we present and prove the correctness of an IP
model for finding a maximum cardinality ‘most stable’ matching in an arbitrary instance of
MIN BP HRC, the minimisation variant of HRC.

4.2 An IP formulation for HR

The IP models presented in this thesis are designed around a series of linear inequalities that
establish the absence of blocking pairs. The variables are defined for each resident and for
each element on his preference list (with the possibility of being unassigned). Recall from the
definition of HR in Section 2.2 that an instance I of HR involves a set R = {r1, r2, . . . , rn1}
containing residents and a set H = {h1, h2, . . . , hn2} containing hospitals. Further, each
resident ri ∈ R, has a preference list of length l(ri) consisting of individual hospitals hj ∈ H ,
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each hospital hj ∈ H has a preference list of individual residents ri ∈ R of length l(hj) and
each hospital hj has a capacity cj , representing the maximum number of residents that hj can
be assigned. We describe the variables and constraints in the IP model for HR in Sections
4.2.1 and 4.2.2 respectively and in Section 4.2.3 we prove the correctness of the model.

4.2.1 Variables in the IP model for HR

Let J be the following integer programming formulation of I . In J , for each i (1 ≤ i ≤ n1)

and p (1 ≤ p ≤ l(ri)), define a variable xi,p such that

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

For p = l(ri) + 1 define a variable xi,p whose intuitive meaning is that resident ri is unas-
signed. Thus we also have

xi,l(ri)+1 =

{
1 if ri is unassigned
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri) + 1}. Let pref (ri, p) denote the hospital
at position p in ri’s preference list where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Further for an
acceptable resident-hospital pair (ri, hj), let rank(hj, ri) = q be an integer denoting the rank
that hospital hj assigns resident ri, for a given i, j (1 ≤ j ≤ n2, 1 ≤ i ≤ n1). It follows that,
1 ≤ q ≤ l(hj).

4.2.2 Constraints in the IP model for HR

The following constraint simply confirms that each variable xi,p must be binary valued for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri) + 1):

xi,p ∈ {0, 1} (4.1)

As each resident ri ∈ R is assigned to exactly one hospital or is unassigned, we introduce
the following constraint for all i (1 ≤ i ≤ n1):

l(ri)+1∑
p=1

xi,p = 1 (4.2)
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Since a hospital hj may be assigned at most cj residents, it follows that xi,p = 1 where
pref (ri, p) = hj for at most cj residents. We thus obtain the following constraint for all
j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≤ cj (4.3)

In a stable matching M in I , if a single resident ri ∈ R has a worse partner than some
hospital hj ∈ H , where pref (ri, p) = hj and rank(hj, ri) = q, then hj must be fully
subscribed with better partners than ri. Hence, either ri is assigned to hj or a better partner,
in which case

∑l(ri)+1
p′=p+1 xi,p′ = 0 or hj is fully subscribed with better partners than ri and∑q−1

q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧ pref (ri′ , p
′′) = hj)} = cj . Thus, for each i (1 ≤ i ≤ n1)

and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where pref (ri, p) = hj and
rank(hj, ri) = q:

cj

l(ri)+1∑
p′=p+1

xi,p′ ≤
q−1∑
q′=1

{xi′,p′′ : rank(hj, ri′) = q′ ∧ pref (ri′ , p
′′) = hj)} (4.4)

Objective Function - A maximum cardinality stable matching M in I is a stable matching in
which the maximum number of residents are assigned taken over all of the stable matchings
admitted by I . To maximise the size of the stable matching output from the model we apply
the following objective function:

max
n∑
i=1

l(ri)∑
p=1

xi,p (4.5)

4.2.3 Proof of correctness of the IP model for HR

We now establish the correctness of the IP model presented in Sections 4.2.1 and 4.2.2.

Theorem 4.2.1. Given an instance I of HR, let J be the corresponding IP model as defined

in Section 4.2.1 and Section 4.2.2. A stable matching in I is exactly equivalent to a feasible

solution to J .

Proof. Consider a stable matching M in I . From M we form an assignment of values to the
variables x as follows. Initially xi,p = 0 for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri) + 1).
Then for each (ri, hj) ∈ M , xi,p = 1, where hj = pref (ri, p). If ri is unassigned, then
xi,l(ri)+1 = 1. As each resident is either assigned or unassigned (but not both), for a given
i (1 ≤ i ≤ n1), it follows that xi,p = 1 for exactly one value of p in the range 1 ≤ p ≤



4.2. An IP formulation for HR 81

r(i) + 1, and for each other value of p in the same range, xi,p = 0. Hence, Constraint 4.2
holds in the assignment derived fromM . Further, since each hospital has at most cj assignees
in M , Constraint 4.3 also holds in the assignment derived from M .

Let (ri, hj) be an acceptable pair not in M where pref (ri, p) = hj and rank(hj, ri) = q. If
(ri, hj) blocksM in I it follows that ri is either unassigned or has a partner worse than rank p
while simultaneously hj is either undersubscribed or has an assignee worse than rank q. Now,
if ri has a partner worse than hj , then cj

∑l(ri)+1
p′=p+1 xi,p′ = cj . Otherwise, cj

∑l(ri)+1
p′=p+1 xi,p′ =

0. Further, if hj has cj partners better than ri, then
∑q−1

q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧
pref (ri′ , p

′′) = hj)} = cj . Otherwise,
∑q−1

q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧ pref (ri′ , p
′′) =

hj)} < cj .

Now, suppose that cj
∑l(ri)+1

p′=p+1 xi,p′ = cj . Then ri is unassigned or has a worse partner than
hj in M . Thus, by the stability of M , hj is full and prefers all of its assignees to ri. Hence∑q−1

q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧ pref (ri′ , p
′′) = hj)} = cj and Constraint 4.4 is satisfied

by the assignment derived from M .

Now, suppose cj
∑l(ri)+1

p′=p+1 xi,p′ = 0. Then ri is assigned to a better partner than hj in M .
Further, since

∑q−1
q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧ pref (ri′ , p

′′) = hj)} ≥ 0, Constraint 4.4 is
trivially satisfied by the assignment derived from M . Thus, all of the constraints in J hold
for an assignment of values to the variables in 〈x〉 derived from a stable matching M . Hence,
a stable matching M in I represents a feasible solution to J .

Conversely, consider a feasible solution 〈x〉 to J . From such a solution we form a set of
pairs, M , as follows. Initially let M = ∅. For each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri))

if xi,p = 1, then add (ri, hj) to M where hj = pref (ri, p). As 〈x〉 satisfies Constraints 4.1,
4.2 and 4.3, each resident in M has exactly one partner or is unassigned (but not both) and
each hospital hj in M has at most cj assignees. Hence the set of pairs M created from 〈x〉 is
a matching in I .

It remains to show that M is stable. Assume a mutually acceptable resident hospital pair
(ri, hj) blocks M where pref (ri, p) = hj and rank(hj, ri) = q. Thus, ri has a worse partner
than hj or is unassigned and hj is undersubscribed or prefers ri to one of its assignees.
Now we have that in 〈x〉, cj

∑l(ri)+1
p′=p+1 xi,p′ = cj and

∑q−1
q′=1{xi′,p′′ : rank(hj, ri′) = q′ ∧

pref (ri′ , p
′′) = hj)} < cj and thus Constraint 4.4 is not satisfied in 〈x〉, a contradiction to

the feasibility of 〈x〉. Hence no such (ri, hj) can block M . Thus a matching M in I derived
from a feasible solution 〈x〉 for J is stable and the theorem is proven.

The existence of the objective function (given by Inequality 4.5) immediately leads to the
following corollary.

Corollary 4.2.2. Given an instance I of HR, let J be the corresponding IP model as defined

in Section 4.2.1 and Section 4.2.2. A maximum cardinality stable matching in I is exactly
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equivalent to an optimal solution to J .

4.3 An IP formulation for HRC

The IP model presented in this section extends the model for HR presented in Section 4.2.
This extended model is designed around a series of linear inequalities that establish the ab-
sence of blocking pairs according to each of the different parts of Definition 2.3.1. The
variables are defined for each resident, whether single or a member of a couple, and for each
element on his preference list (with the possibility of being unassigned). A further consis-
tency constraint ensures that each member of a couple obtains hospitals from the same pair
in their list, if assigned. Finally, the objective of the IP is to maximise the size of a stable
matching, if one exists. The model presented is more complex than existing IP formulations
in the literature for stable matching problems [78, 68, 62, 47] simply because of the number
of blocking pair cases in Definition 2.3.1 required to adequately take account of couples.

We now define an instance of HRC and show how the projected preference lists for each of
the two residents involved in a couple may be derived from the couple;s joint preference
lists. Let I be an instance of HRC with residents R = {r1, r2, . . . , rn1} and hospitals H =

{h1, h2, . . . , hn2}. Without loss of generality, suppose residents r1, r2 . . . r2c are in couples.
Again, without loss of generality, suppose that the couples are (r2i−1, r2i) (1 ≤ i ≤ c).
Suppose that the joint preference list of a couple ci = (r2i−1, r2i) is:

ci : (hα1 , hβ1), (hα2 , hβ2) . . . (hαl
, hβl)

From this list we create the following projected preference list for resident r2i−1:

r2i−1 : hα1 , hα2 . . . hαl

and the following projected preference list for resident r2i:

r2i : hβ1 , hβ2 . . . hβl

Clearly, the projected preference list of the residents r2i−1 and r2i are the same length as the
preference list of the couple ci = (r2i−1, r2i). Let l(ci) denote the length of the preference
list of ci and let l(r2i−1) and l(r2i) denote the lengths of the projected preference lists of
r2i−1 and r2i respectively. Now we have that l(r2i−1) = l(r2i) = l(ci). A given hospital hj
may appear more than once in the projected preference list of a linked resident in a couple
ci = (r2i−1, r2i).

Let the single residents be r2c+1, r2c+2 . . . rn1 , where each single resident ri, has a preference
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list of length l(ri) consisting of individual hospitals hj ∈ H . Each hospital hj ∈ H has a
preference list of individual residents ri ∈ R of length l(hj). Further, each hospital hj ∈ H
has capacity cj ≥ 1, the maximum number of residents to which it may be assigned.

When considering the exact nature of a blocking pair in this model, the stability definition
due to Manlove and McDermid [55] (MM-stability) is applied in all cases. The text in
bold before the definition of a constraint shows the section of the MM-stability definition
with which the constraint corresponds. Hence, a constraint preceded by ‘Stability 1’ is
intended to prevent blocking pairs described by part 1 of the MM-stability definition shown
in Definition 2.3.1 in Section 2.3.

We describe the variables and constraints in the IP model for HRC under MM-stability in
Sections 4.3.1 and 4.3.2 respectively and in Section 4.3.3 we prove the correctness of the
model.

4.3.1 Variables in the IP model for HRC

Let J be the following IP formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤
l(ri)), define a variable xi,p such that

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

For p = l(ri) + 1 define a variable xi,p whose intuitive meaning is that resident ri is unas-
signed. Thus we also have that

xi,l(ri)+1 =

{
1 if ri is unassigned
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri) + 1}. Let pref (ri, p) denote the hospital at posi-
tion p of a single resident ri’s preference list or on the projected preference list of a resident
belonging to a couple for a given 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Let pref ((r2i, r2i−1), p)

denote the hospital pair at position p on the joint preference list of (r2i−1, r2i).

For ease of exposition we define some additional notation. For each j (1 ≤ j ≤ n2) and
q (1 ≤ q ≤ l(hj)) let the set R(hj, q) contain the resident-position pairs (ri, p) such that ri
is assigned a rank of q (1 ≤ q ≤ l(hj)) by hj and hj is in position p (1 ≤ p ≤ l(ri)) on ri’s
projected preference list. Hence:

R(hj, q) = {(ri, p) ∈ R× Z : rank(hj, ri) = q ∧ 1 ≤ p ≤ l(ri) ∧ pref (ri, p) = hj}
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Now, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new variable αj,q ∈ {0, 1}. The
intuitive meaning of a variable αj,q is that if hj is fully subscribed with assignees better than
rank q, then αj,q may take the value 0 or 1. However, if hj is not full with assignees better
than rank q, then αj,q = 1. Constraints 4.7 and 4.17 described in Section 4.3.2 are applied to
enforce this property.

Now, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new variable βj,q ∈ {0, 1}. The
intuitive meaning of a variable βj,q is that if hj has cj − 1 or more assignees better than rank
q, then βj,q may take a value of zero or one. However, if hj has fewer than cj − 1 assignees
better than rank q, then βj,q = 1. Constraints 4.8 and 4.18 described in Section 4.3.2 are
applied to enforce this property.

4.3.2 Constraints in the IP model for HRC

The following constraint simply confirms that each variable xi,p must be binary valued for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri) + 1):

xi,p ∈ {0, 1} (4.6)

Similarly, the following constraint confirms that each variable αj,q must be binary valued for
all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)):

αj,q ∈ {0, 1} (4.7)

Also, the following constraint confirms that each variable βj,q must be binary valued for all
j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)):

βj,q ∈ {0, 1} (4.8)

As each resident ri ∈ R is assigned to exactly one hospital or is unassigned (but not both),
we introduce the following constraint for all i (1 ≤ i ≤ n1):

l(ri)+1∑
p=1

xi,p = 1 (4.9)

Since a hospital hj may be assigned at most cj residents, xi,p = 1 where pref (ri, p) = hj for
at most cj residents. We thus obtain the following constraint for all j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≤ cj (4.10)
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For each couple (r2i−1, r2i), if resident r2i−1 is assigned to the hospital in position p in their
projected preference list, then r2i must also be assigned to the hospital in position p in their
projected preference list. We thus obtain the following constraint for all i (1 ≤ i ≤ c) and
p (1 ≤ p ≤ l(r2i−1) + 1):

x2i−1,p = x2i,p (4.11)

Stability 1 - In a stable matching M in I , if a single resident ri ∈ R has a worse partner
than some hospital hj ∈ H where pref (ri, p) = hj and rank(hj, ri) = q, then hj must be
fully subscribed with better partners than ri. Hence, either ri is assigned to hj or a better
partner and thus

∑l(ri)+1
p′=p+1 xi,p′ = 0 or hj is fully subscribed with better partners than ri and∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} = cj . Thus, for each i (2c + 1 ≤ i ≤ n1)

and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where pref (ri, p) = hj and
rank(hj, ri) = q:

cj

l(ri)+1∑
p′=p+1

xi,p′ ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (4.12)

Stability 2(a) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) prefer hospital pair
(hj1 , hj2), at position p1 in ci’s joint preference list, to (M(r2i−1),M(r2i)) , at position p2,
then, if hj2 = M(r2i), hj1 cannot be undersubscribed or prefer r2i−1 to one of its assignees in
M . In the special case where pref (r2i−1, p1) = pref (r2i, p1) = hj1 , if hj1 = hj2 = M(r2i),
then hj1 cannot be undersubscribed or prefer r2i−1 to one of its assignees inM other than r2i.
Thus, for the general case, we obtain the following constraint for all i (1 ≤ i ≤ c) and p1, p2
(1 ≤ p1 < p2 ≤ l(r2i−1)) such that pref (r2i, p1) = pref (r2i, p2) and rank(hj1 , r2i−1) = q:

cj1x2i,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj1 , q

′)} (4.13)

For the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj1 we obtain the following
constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i−1)) such that
pref (r2i, p1) = pref (r2i, p2) and rank(hj1 , r2i−1) = q:

(cj1 − 1)x2i,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj1 , r2i) ∧ (ri′ , p
′′) ∈ R(hj1 , q

′)} (4.14)

Stability 2(b) - A similar constraint is required for the second resident in each couple. Thus,
for the general case, we obtain the following constraint for all i (1 ≤ i ≤ c) and p1, p2 where
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(1 ≤ p1 < p2 ≤ l(r2i)) such that pref (r2i−1, p1) = pref (r2i−1, p2) and rank(hj2 , r2i) = q:

cj2x2i−1,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj2 , q

′)} (4.15)

Again, for the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj2 we obtain the
following constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i)) such that
pref (r2i−1, p1) = pref (r2i−1, p2) and rank(hj2 , r2i) = q:

(cj1 − 1)x2i−1,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj2 , r2i−1) ∧ (ri′ , p
′′) ∈ R(hj2 , q

′)} (4.16)

Now, we define a variable αj,q such that if hj is full with assignees better than rank q, then
αj,q may take the value of zero or one. Otherwise, hj is not full with assignees better than
rank q and αj,q = 1. Hence, we obtain the following constraint for all j (1 ≤ j ≤ n2) and
q (1 ≤ q ≤ l(hj)):

αj,q ≥ 1−

q−1∑
q′=1

{xi,p ∈ X : (ri, p) ∈ R(hj, q
′)}

cj
(4.17)

Next we define a variable βj,q such that if hj has cj − 1 or more assignees better than rank
q, then βj,q may take a value of zero or one. Otherwise, hj has fewer than cj − 1 assignees
better than rank q and βj,q = 1. Hence, we obtain the following constraint all j (1 ≤ j ≤ n2)

and q (1 ≤ q ≤ l(hj)):

βj,q ≥ 1−

q−1∑
q′=1

{xi,p ∈ X : (ri, p) ∈ R(hj, q
′)}

(cj − 1)
(4.18)

Stability 3(a) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to
a worse hospital pair than (hj1 , hj2) (where hj1 6= hj2) it must be the case that for some
t ∈ {1, 2}, hjt is full or prefers its worst assignee to r2i−2+t. Thus we obtain the following
constraint for all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) where hj1 = pref (r2i−1, p),
hj2 = pref (r2i, p), hj1 6= hj2 , rank(hj1 , r2i−1) = q1 and rank(hj2 , r2i) = q2:

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj1,q1 + αj2,q2 ≤ 2 (4.19)

Stability 3(b) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to a
worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj , then hj must not have two
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or more free posts available.

Stability 3(c) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to a
worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj , then hj must not prefer at
least one of r2i−1 or r2i to some assignee of hj in M while simultaneously having a single
free post.

Both of the preceding stability definitions may be modelled by a single constraint. Thus,
we obtain the following constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such
that pref (r2i−1, p) = pref (r2i, p) and hj = pref (r2i−1, p) where q = min{rank(hj, r2i),

rank(hj, r2i−1)} :

cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ −

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

(cj − 1)

≤
l(hj)∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (4.20)

Stability 3(d) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to
a worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj , then hj must not
be fully subscribed and also have two assigned partners rs and rt (where s 6= t) such
that hj strictly prefers r2i−1 to rs and also prefers r2i to rt. For each (hj, hj) accept-
able to (r2i−1, r2i), let rmin be the better of r2i−1 and r2i according to hospital hj with
rank(hj, rmin) = qmin. Analogously, let rmax be the worse of r2i and r2i−1 according
to hospital hj with rank(hj, rmax) = qmax. Thus we obtain the following constraint for
i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such that pref (r2i−1, p) = pref (r2i, p) = hj .

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj,qmax + βj,qmin
≤ 2 (4.21)

Objective Function - A maximum cardinality stable matching M in I is a stable matching
in which the maximum number of residents are assigned taken over all of the stable match-
ings admitted by I . Thus, to maximise the size of the stable matching found we apply the
following objective function:

max

n1∑
i=1

l(ri)∑
p=1

xi,p (4.22)

4.3.3 Proof of correctness of constraints in the IP model for HRC

We now establish the correctness of the IP model presented in Sections 4.3.1 and 4.3.2.
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Theorem 4.3.1. Given an instance I of HRC, let J be the corresponding IP model as defined

in Section 4.3.1 and Section 4.3.2. A stable matching in I is exactly equivalent to a feasible

solution to J .

Proof. Consider a stable matching M in I . We construct an assignment of values 〈 x, α, β 〉
to the variables x, α , and β as follows. Initially xi,p = 0 for all i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri) + 1). For each (ri, hj) ∈ M where ri is a single resident, xi,p = 1, where
pref (ri, p) = hj . If ri is unassigned, then xi,l(ri)+1 = 1. If some rk ∈ R is a member of a
couple, assume without loss of generality that rk = r2i−1 (respectively r2i) for some i (2c+

1 ≤ i ≤ n1) then x2i−1,p = 1 (respectively x2i,p = 1) where pref ((r2i−1, r2i), p) = (hj1 , hj2)

where hj1 = M(r2i−1) and hj2 = M(r2i). If (r2i−1, r2i) is unassigned, then x2i−1,l(r2i−1)+1 =

1 and x2i,l(r2i)+1 = 1.

For each αj,q where j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)), if hj is full with assignees better
than rank q, then αj,q = 1. Otherwise αj,q = 0. For each βj,q where j (1 ≤ j ≤ n2) and
q (1 ≤ q ≤ l(hj)), if hj has fewer than cj − 1 assignees better than rank q, then βj,q = 1.
Otherwise βj,q = 0.

We now show that 〈 x, α, β 〉 satisfies each of the constraints in the model. As each resident
is assigned or unassigned (but not both) for a given i (1 ≤ i ≤ n1), for exactly one value of p
in the range 1 ≤ p ≤ l(ri) + 1, xi,p = 1, and for all p′ (1 ≤ p′ ≤ l(ri) + 1, p′ 6= p), xi,p′ = 0,
and thus Constraint 4.9 is satisfied in 〈 x, α, β 〉. Since, each hospital hj is assigned to at
most cj acceptable residents in M , Constraint 4.10 is also satisfied in 〈 x, α, β 〉.

For each couple (r2i−1, r2i) in I , let p (1 ≤ p ≤ l(r2i−1)) be given. If r2i−1 is assigned
to hj1 = pref(r2i−1, p) in M , then r2i is assigned to hj2 = pref(r2i, p) in M . Similarly,
for each couple (r2i−1, r2i) in I , if r2i−1 is not assigned to hj1 = pref(r2i−1, p) in M , then
r2i is not assigned to hj2 = pref(r2i, p) in M . Thus, in the assignment derived from M ,
x2i−1,p = x2i,p for all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1) + 1) (where l(r2i−1) = l(r2i))
and Constraint 4.11 is satisfied in 〈 x, α, β 〉.

Assume 〈 x, α, β 〉 does not satisfy Constraint 4.12. Let i (2c+1 ≤ i ≤ n1), j (1 ≤ j ≤ n2)

and p (1 ≤ p ≤ l(r2i−1)) be given such that (ri, hj) is an acceptable pair not in M where
hj = pref (ri, p) and rank(hj, ri) = q. If cj

∑l(ri)+1
p′=p+1 xi,p′ = 0, then Constraint 4.12 is

trivially satisfied in 〈 x, α, β 〉 since
∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} ≥ 0. Hence,
cj
∑l(ri)+1

p′=p+1 xi,p′ = cj and it follows that ri must be unassigned or have a partner worse than
hj .

Now, if
∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} ≥ cj , then Constraint 4.12 is satisfied,
thus it follows that

∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj, q
′)} < cj and further hj is either

undersubscribed or has an assignee worse than ri. Thus (ri, hj) blocks M , a contradiction.
Hence, Constraint 4.12 is satisfied in 〈 x, α, β 〉.
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Assume 〈 x, α, β 〉 does not satisfy Constraint 4.13. For all x2i,p2 such that i (1 ≤ i ≤ c),
p1, p2 (1 ≤ p1 < p2 ≤ l(r2i−1)) where hj1 = pref (r2i−1, p1), pref (r2i, p1) = pref (r2i, p2) =

hj2 and rank(hj1 , r2i−1) = q. Now, if cj1x2i,p2 = 0, then Constraint 4.13 is trivially satisfied.
It follows that cj1x2i,p2 = cj1 . Now, if

∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj1 , q
′)} ≥ cj1 , then

Constraint 4.13 is satisfied in 〈 x, α, β 〉. Thus, it follows that
∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈

R(hj1 , q
′)} < cj1 .

Now since cj1x2i,p2 = cj1 in 〈 x, α, β 〉, (r2i−1, r2i) is assigned to a worse partner than
(hj1 , hj2). Further, since

∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj1 , q
′)} < cj1 in 〈 x, α, β 〉,

hj1 is either undersubscribed in M or prefers r2i−1 to some member of M(hj1) and thus
(r2i−1, r2i) blocks M with (hj1 , hj2), a contradiction. Hence Constraint 4.13 holds in the
assignment derived from M .

Assume 〈 x, α, β 〉 does not satisfy Constraint 4.14. For all x2i,p2 such that i (1 ≤ i ≤ c) and
p1, p2 (1 ≤ p1 < p2 ≤ l(r2i−1)), where hj = pref (r2i−1,p1) = pref (r2i,p1), pref (r2i, p1) =

pref (r2i, p2) = hj and rank(hj, r2i−1) = q. Now, if (cj − 1)x2i,p2 = 0, then Constraint
4.14 is trivially satisfied. Hence, (cj − 1)x2i,p2 = cj − 1. Now, if

∑q−1
q′=1{xi′,p′′ ∈ X :

(ri′ , p
′′) ∈ R(hj, q

′)} ≥ cj − 1, then Constraint 4.14 is satisfied. Thus, it follows that∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj, q
′)} < cj − 1.

Now, since (cj − 1)x2i,p2 = cj − 1 in 〈 x, α, β 〉, (r2i−1, r2i) is assigned to a worse partner
than (hj, hj). Further, since

∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj, q
′)} < (cj − 1) in 〈 x,

α, β 〉, hj is either undersubscribed in M or prefers r2i−1 to some assignee in M(hj) other
than r2i. Thus, (r2i−1, r2i) blocks M with (hj, hj), a contradiction. Hence Constraint 4.14
holds in the assignment derived from M .

A similar argument for the second member of each couples in M ensures that Constraints
4.15 and 4.16 are also satisfied in 〈 x, α, β 〉.

For each hj ∈ H , either hj has cj assignees better than rank q or it does not. We now show
that Constraint 4.17 is satisfied in either case. If hj has fewer than cj assignees better than
rank q, then

∑q−1
q′=1{xi′,p′′ ∈ X : (ri′ , p

′′) ∈ R(hj, q
′)} < cj and it follows that

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

cj
< 1.

Thus αj,q = 1 and Constraint 4.17 is satisfied in 〈 x, α, β 〉. Otherwise hj has cj assignees
better than rank q and αj,q ≥ 0 and Constraint 4.17 is satisfied in 〈 x, α, β 〉.

Similarly, for each hj ∈ H , either hj has cj − 1 assignees better than rank q or it does not.
We now show that Constraint 4.18 is satisfied in either case. If hj has fewer than cj − 1

assignees better than rank q, then
∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj − 1 and it
follows that
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q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

(cj − 1)
< 1.

Thus βj,q = 1 and Constraint 4.18 is satisfied in 〈 x,α, β 〉. Otherwise hj has cj−1 assignees
better than rank q and βj,q ≥ 0 and Constraint 4.18 is satisfied in 〈 x, α, β 〉.

Assume 〈 x, α, β 〉 does not satisfy Constraint 4.19. For all i (1 ≤ i ≤ c) and p (1 ≤ p ≤
r2i−1), where hj1 = pref (r2i−1, p), hj2 = pref (r2i, p), hj1 6= hj2 , rank(hj1 , r2i−1) = q1 and
rank(hj2 , r2i) = q2. Now, if

∑l(r2i−1)+1
p′=p+1 x2i−1,p′ = 0, then Constraint 4.19 must be satisfied

in 〈 x, α, β 〉. It follows that
∑l(r2i−1)+1

p′=p+1 x2i−1,p′ = 1. Now, if αj1,q1 = 0 (similarly αj2,q2 =

0), then Constraint 4.19 must be satisfied in 〈 x, α, β 〉. Hence
∑l(r2i−1)+1

p′=p+1 x2i−1,p′ = 1,
αj1,q1 = 1 and αj2,q2 = 1.

Since αj1,q1 = 1,
∑q1−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj1 , q

′)} < cj . Thus hj1 is undersub-
scribed in M or prefers r2i−1 to some assignee in M(hj1). Similarly, if αj2,q2 = 1, then hj2
is undersubscribed in M or prefers r2i to some assignee in M(hj2). Also in M , (r2i−1, r2i)

is unassigned or is assigned to a worse partner than (hj1 , hj2). Thus, (r2i−1, r2i) blocks M
with (hj1 , hj2), a contradiction. Thus Constraint 4.19 is satisfied in 〈 x, α, β 〉.

Let

s = cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ −

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

(cj − 1)

Further, let

t =

l(hj)∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

and let

u =

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

Assume 〈 x,α, β 〉 does not satisfy Constraint 4.3.2. Hence, s > t. If cj
∑l(r2i−1)+1

p′=p+1 x2i−1,p′ =

0, then s ≤ 0. However, t ≥ 0, a contradiction. Hence cj
∑l(r2i−1)+1

p′=p+1 x2i−1,p′ = cj .

Clearly, 0 ≤ u ≤ cj . Assume u = cj . Hence, s = cj − (cj/(cj − 1)) = cj(cj − 2)/(cj − 1).
A simple argument shows that cj − 2 < s < cj − 1. Thus t ≤ cj − 2. It follows that hj
has two free posts in M and (r2i−1, r2i) is unassigned or is assigned to a worse partner than
(hj, hj). Thus, (r2i−1, r2i) blocksM with (hj, hj) , a contradiction. Now, assume u = cj−1.
Hence s = cj − 1. Thus, t ≤ cj − 2. Again, it follows that hj has two vacant posts in M and
(r2i−1, r2i) is unassigned or is assigned to a worse partner than (hj, hj). Thus, (r2i−1, r2i)

blocks M with (hj, hj), a contradiction.
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Hence, u < cj − 1 and it follows that cj − 1 < s ≤ cj . Thus, t ≤ cj − 1. It follows that hj
has a vacant post in M , moreover, hj prefers r2i−1 or r2i to at least one of its assignees and
(r2i−1, r2i) is unassigned or is assigned to a worse partner than (hj, hj). Hence, (r2i−1, r2i)

blocks M with (hj, hj), a contradiction. Hence Constraint 4.3.2 is satisfied in 〈 x, α, β 〉.

Assume 〈 x, α, β 〉 does not satisfy Constraint 4.21. For some i (1 ≤ i ≤ c) and p (1 ≤
p ≤ l(r2i−1)) where pref (r2i−1, p) = pref (r2i, p) = hj , let rmin be the better of r2i and r2i−1
according to hospital hj with rank(hj, rmin) = qmin. Analogously, let rmax be the worse of
r2i and r2i−1 according to hospital hj with rank(hj, rmax) = qmax.

Hence
∑l(r2i−1)+1

p′=p+1 x2i−1,p′ = 1, αj,qmax = 1 and βj,qmin
= 1. Since αj,qmax = 1,

qmax−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj

and it follows that hj is undersubscribed in M or prefers r2i−1 to some assignee, rx, in
M(hj). Similarly, if βj,qmin

= 1, then

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj − 1

and it follows that hj is undersubscribed in M or prefers r2i to some assignee, ry, in M(hj).

Thus (r2i−1, r2i) is assigned in M to a worse partner than (hj, hj). Further, hj prefers r2i−1
to some rs ∈M(hj) and also prefers r2i to some rt ∈M(hj) where s 6= t. Moreover, in M ,
(r2i−1, r2i) is unassigned or is assigned to a worse partner than (hj, hj). Thus, (r2i−1, r2i)

blocks M with (hj, hj), a contradiction. Thus Constraint 4.21 is satisfied in 〈 x, α, β 〉. As
all of the constraints in J are satisfied by an assignment derived from a stable matching M ,
a stable matching M in I is equivalent to a feasible solution to J .

Conversely, consider a feasible solution, 〈 x,α, β 〉, to J . From such a solution we form a set
of pairs, M , as follows. Initially let M = ∅. For each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)),
if xi,p = 1, then add (ri, hj) toM where hj = pref (ri, p). As 〈 x,α, β 〉 satisfies Constraints
4.6, 4.9 and 4.10, each resident in M is assigned to exactly one hospital or is unassigned (but
not both) and each hospital in M must have at most cj assignees.

As 〈 x,α, β 〉 satisfies Constraint 4.11 each couple (r2i−1, r2i) is either assigned to a hospital
pair (hj1 , hj2), where pref ((r2i−1, r2i), p) = (hj1 , hj2) for some p (1 ≤ p ≤ l(r2i−1)), and
thus both (r2i−1, hj) ∈ M and (r2i, hj2) ∈ M , or is unassigned and thus both r2i−1 and r2i
are unassigned in M . Thus the set of pairs M created from the solution 〈 x, α, β 〉 to J , is a
matching in I . It remains to show that M is stable.

Type 1 Blocking Pair - Assume (ri, hj) blocks M as a Type 1 blocking pair, where ri is a
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single resident. Let pref (ri, p) = hj and rank(hj, ri) = q. Thus, ri is unassigned or, has
a worse partner than hj and hj is undersubscribed or prefers ri to some member of M(hj).
It follows that in 〈 x, α, β 〉, cj

∑l(ri)+1
p′=p+1 xi,p′ = cj and

∑q−1
q′=1{xi′,p′′ ∈ X : rank(hj, ri′) =

q′ ∧ pref (ri′ , p
′′) = hj} < cj and hence Constraint 4.12 is not satisfied in 〈 x, α, β 〉, a

contradiction. Thus no such (ri, hj) can block M as a Type 1 blocking pair.

Type 2 Blocking Pair - Assume (r2i−1, r2i) blocksM as a Type 2 blocking pair with (hj1 , hj2)

where pref ((r2i−1, r2i), p1) = (hj1 , hj2), pref ((r2i−1, r2i), p2) = (M(r2i−1),M(r2i)), 1 ≤
p1 < p2 ≤ l(r2i−1), pref (r2i, p1) = pref (r2i, p2) = hj2 and rank(hj1 , r2i−1) = q. Hence, r2i
has the same hospital in positions p1 and p2, and hj1 is undersubscribed or prefers r2i−1 to
some member of M(hj1).

Further assume pref (r2i−1, p1) 6= pref (r2i, p1). Hence cj1x2i,p2 = cj1 and

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj1 , q

′)} < cj1

as hj1 is undersubscribed or prefers r2i−1 to some member of M(hj1). Hence in J , the RHS
of Constraint 4.13 is at most (cj1 − 1) and the LHS is equal to cj1 and thus Constraint 4.13 is
not satisfied in 〈 x, α, β 〉, a contradiction. Hence no such ((r2i−1, r2i), (hj1 , hj2)) can block
M .

Thus, pref (r2i−1, p1) = pref (r2i, p1). Hence (cj1 − 1)x2i,p2 = (cj1 − 1) and moreover∑q−1
q′=1{xi′,p′′ ∈ X : q′ 6= rank(hj1 , r2i)∧ (ri′ , p

′′) ∈ R(hj1 , q
′)} < cj1−1 as hj1 is undersub-

scribed or prefers r2i−1 to some member of M(hj1) other than r2i. Hence in J , the RHS of
Constraint 4.14 is at most cj1 − 2 and the LHS is equal to cj1 − 1 and thus Constraint 4.14 is
not satisfied in 〈 x, α, β 〉, a contradiction. Hence no such ((r2i−1, r2i), (hj1 , hj2)) can block
M .

A similar argument can be used to show that the second member of each couple cannot
improve in such a blocking pair in M and thus Constraint 4.15 and 4.16 are both satisfied in
the assignment derived from M .

Type 3 Blocking Pairs - Suppose that (r2i−1, r2i) blocks M as a Type 3 blocking pair with
(hj1 , hj2) where pref ((r2i−1, r2i), (hj1 , hj2)) = p, rank(hj1 , r2i−1) = q1 and rank(hj2 , r2i)

= q2. Hence, (r2i−1, r2i) is unassigned or prefers (hj1 , hj2) to (M(r2i−1),M(r2i)) where
hj1 6= M(r2i−1) and hj2 6= M(r2i).

Type 3(a) Blocking Pair - Assume hj1 6= hj2 . Hence, hj1 is undersubscribed or prefers r2i−1
to some member of M(hj1) and hj2 is also undersubscribed or prefers r2i to some member
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of M(hj2). However, this implies that both,

q1−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj1 , q

′)} < cj1

and
q2−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj2 , q

′)} < cj2

in J . Hence αj1,q1 = 1, αj2,q2 = 1 and

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ = 1

and thus Constraint 4.19 is not satisfied in 〈 x, α, β 〉, a contradiction. Thus no such
((r2i−1, r2i), (hj1 , hj2)) can block M .

Type 3(b) Blocking Pair - Assume hj1 = hj2 = hj and hj has two unassigned posts in M . It
follows that in 〈 x, α, β 〉,

l(hj)∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} ≤ cj − 2

and further
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} ≤ cj − 2

Further,

cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ = cj

since (r2i−1, r2i) prefer (hj, hj) to (M(r2i−1,M(r2i). Hence in 〈 x, α, β 〉, the RHS of
Constraint 4.3.2 is at most cj−2 and the LHS is greater than cj−1 and thus Constraint 4.3.2
is not satisfied in 〈 x, α, β 〉, a contradiction. Thus no such ((r2i−1, r2i), (hj, hj)) can block
M .

Type 3(c) Blocking Pair - Assume hj1 = hj2 = hj and hj has a vacant post in M and more-
over hj prefers either r2i−1 or r2i to some member of M(hj). Let q = min{rank(hj, r2i−1),

rank(hj, r2i)}. It follows that in 〈 x, α, β 〉,
∑l(hj)

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} ≤
cj − 1.

Since hj prefers r2i−1 or r2i to some member of M(hj) and hj also has a free post it follows
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that
q−1∑
q′=1

{xi′,p′′ : (ri′ , p
′′) ∈ R(hj, q

′)} ≤ (cj − 2).

Further, since (r2i−1, r2i) is unassigned or prefers (hj1 , hj2) to (M(r2i−1),M(r2i)) it follows
that

cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ = cj.

Hence,
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj − 1

Thus in 〈 x, α, β 〉, the RHS of Constraint 4.3.2 is at most cj − 1 and the LHS is greater than
cj − 1 and thus Constraint 4.3.2 is not satisfied in 〈 x, α, β 〉, a contradiction. Thus no such
((r2i−1, r2i), (hj, hj)) can block M .

Type 3(d) Blocking Pair - Assume hj1 = hj2 = hj and further hj is fully subscribed and also
has two assignees rs and rt (where s 6= t and neither s nor t is equal to r2i−1 or r2i) such
that hj prefers r2i−1 to rs and hj also prefers r2i to rt. Let rmin be the better of r2i and r2i−1
according to hospital hj with rank(hj, rmin) = qmin. Analogously, let rmax be the worse of
r2i and r2i−1 according to hospital hj with rank(hj, rmax) = qmax.

Now, it follows that both

qmin−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj − 1

and
qmax−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} < cj

in 〈 x, α, β 〉. Hence βj,qmin
= 1 and αj,qmax = 1 and moreover

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ = 1

and thus Constraint 4.21 is not satisfied in 〈 x, α, β 〉, a contradiction. Hence no such
((r2i−1, r2i), (hj1 , hj2)) can block M and the result is proven.

The existence of the objective function (given by Inequality 4.22) immediately leads to the
following corollary.

Corollary 4.3.2. Given an instance I of HRC, let J be the corresponding IP model as defined

in Section 4.3.1 and Section 4.3.2. A maximum cardinality stable matching in I is exactly



4.4. Creating the IP model from an example HRC instance 95

equivalent to an optimal solution to J .

4.3.4 Complexity of the IP model for HRC

The model hasO(m) binary-valued variables andO(m+cL2) constraints wherem is the total
length of the single residents’ preference lists and the coupled residents’ projected preference
lists, c is number of couples and L is the maximum length of a couple’s preference list. The
space complexity of the model is O(m(m + cL2)) and the model can be built in O(m(m +

cL2)) time in the worst case for an arbitrary instance.

4.4 Creating the IP model from an example HRC in-

stance

Residents

(r1, r2) : (h1, h2) (h2, h1) (h2, h3)

r3 : h1 h3
r4 : h2 h3
r5 : h2 h1
r6 : h1 h2

Hospitals

h1 : 2 : r1 r3 r2 r6 r5
h2 : 2 : r2 r6 r1 r4 r5
h3 : 2 : r4 r3 r2

Figure 4.1: Example instance of HRC.

Let I be the example instance of HRC shown in Figure 4.1 where the capacity of each hospital
in I is shown after the first colon, followed by the preference list after the second colon. We
shall consider the creation of the corresponding IP model J for the example instance I . For
each resident ri ∈ I (1 ≤ i ≤ 6) construct a vector xi consisting of l(ri)+1 binary variables,
xi,p (1 ≤ p ≤ l(ri) + 1), as shown in Figure 4.2, and apply the constraints as described in
Section 4.3. Thus, we form an IP model J derived from I .

Let xu denote the assignment of values to the variables in J shown in Figure 4.3. We will
show that xu is not a feasible solution for J and thus, by Theorem 4.3.1, does not corre-
spond to a stable matching in I . However, as all instantiations of Constraints 4.6 - 4.11 hold
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x1 : 〈 x1,1 x1,2 x1,3 x1,4 〉
x2 : 〈 x2,1 x2,2 x2,3 x2,4 〉
x3 : 〈 x3,1 x3,2 x2,3 〉
x4 : 〈 x4,1 x4,2 x4,3 〉
x5 : 〈 x5,1 x5,2 x5,3 〉
x6 : 〈 x6,1 x6,2 x6,3 〉

Figure 4.2: Variables created in J from the instance of HRC shown in Figure 4.1.

for xu, xu does correspond to a matching in I , namely Mu = {(r1, h2), (r2, h3), (r3, h1),
(r4, h3), (r5, h1), (r6, h2)}. We shall demonstrate that several constraints in J are violated by
xu and that these constraints correspond to blocking pairs of Mu in I .

x1 : 〈 0 0 1 0 〉
x2 : 〈 0 0 1 0 〉
x3 : 〈 1 0 0 〉
x4 : 〈 0 1 0 〉
x5 : 〈 0 1 0 〉
x6 : 〈 0 1 0 〉

Figure 4.3: The assignment of values, xu, to the variables in J corresponding to the unstable
matching Mu in the instance of HRC shown in Figure 4.1.

Inequality 4.23 represents the instantiation of Constraint 4.12 in the case that i = 6 and
p = 1. The LHS of Inequality 4.23 is the product of the capacity of h1 and the values of
the variables that represent r6 being assigned to a worse partner than h1 or being unassigned.
The RHS of Inequality 4.23 is the summation of the values of the variables that indicate
whether h1 is assigned to partners it prefers to r6.

c1(x6,2 + x6,3) ≤ x1,1 + x3,1 + x2,2 (4.23)

The acceptable pair (r6, h1) is a Type 1 blocking pair for Mu in I . In this case the LHS of
Inequality 4.23 equals two and the RHS of Inequality 4.23 equals one. Hence Inequality 4.23
is not satisfied in xu and thus xu is not a feasible solution to J .

Inequality 4.24 represents the instantiation of Constraint 4.15 in the case that p1 = 2, p2 =

3 and r = 3. In this case the LHS of Inequality 4.24 is the product of the capacity of
h1 and the value of the variable that represents r1 being assigned at position three on its
projected preference list (and thus, since no instance of Constraint 4.11 is violated, (r1, r2)

being assigned to the pair in position three on its joint projected preference list). The RHS
of Inequality 4.24 is the summation of the values of variables which indicate whether h1 is
assigned to partners it prefers to r2.
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c1(x1,3) ≤ x1,1 + x3,1 (4.24)

The acceptable pair ((r1, r2), (h2, h1)) is a Type 2 blocking pair of Mu in I . In this case the
LHS of Inequality 4.24 equals 2 and the RHS of Inequality 4.24 equals 1. Hence Inequality
4.24 is not satisfied in xu and thus xu is not a feasible solution to J .

Inequality 4.25 represents the instantiation of Constraint 4.19 in the case that i = 1 and
p = 1. In this case the summation on the LHS of Inequality 4.25 is over the variables that
represent r1 being assigned to a worse partner than h1 in position one on its projected pref-
erence or unassigned. (Since no instance of Constraint 4.11 is violated in J these variables
equally represent (r1, r2) being assigned to a worse joint partner than (h1, h2) or being unas-
signed). Also, α1,1 is a variable constrained to take a value of one in the case that h1 prefers
less than c1 residents to r1. Similarly, α2,1 is a variable constrained to take a value of one in
the case that h2 prefers less than c2 residents to r1.

(x1,2 + x1,3 + x1,4) + α1,1 + α2,1 ≤ 2 (4.25)

The acceptable pair ((r1, r2), (h1, h2)) is a Type 3(a) blocking pair of Mu in I . In this case
the summation on the LHS of Inequality 4.25 equals one. Also, since r1 is in first position
on h1’s preference list and thus h1 prefers no other assignees to r1, α1,1 ≥ (1 − (0/2)) and
hence α1,1 = 1. Similarly, α2,1 ≥ (1− (0/2)) since r2 is in first position on h2’s preference
list and hence α2,1 = 1. Thus Inequality 4.25 is not satisfied in xu and xu is not a feasible
solution to J .

x1 : 〈 1 0 0 0 〉
x2 : 〈 1 0 0 0 〉
x3 : 〈 1 0 0 〉
x4 : 〈 0 1 0 〉
x5 : 〈 0 0 1 〉
x6 : 〈 0 1 0 〉

Figure 4.4: The assignment of values, xs, to the variables in J corresponding to the stable
matching Ms in the instance of HRC shown in Figure 4.1.

Let xs denote the assignment of values to the variables in the IP model J shown in Figure
4.4. xs is a feasible solution to the IP model J and as such does correspond with a stable
matching in I , namely Ms = {(r1, h1), (r2, h2), (r3, h1), (r4, h3), (r6, h2)}.

Consider a potential blocking pair of Ms. (r5, h2) is an acceptable pair in I and r5 is unas-
signed in Ms. Inequality 4.26 represents the instantiation of Constraint 4.12 in the case that
i = 5 and p = 1. The LHS of Inequality 4.26 is the product of the capacity of h2 and the
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values of the variables that represent r5 being assigned to a worse partner than h2. The RHS
of Inequality 4.26 is the summation of the values of the variables that indicate whether h2 is
assigned to the partners it prefers to r5.

c2(x5,2 + x5,3) ≤ x2,1 + x6,2 + x1,2 + x1,3 + x4,1 (4.26)

In this case the LHS of Inequality 4.26 equals two since r5 is unassigned and the RHS of
Inequality 4.26 also equals 2 since h2 has two assignees that it prefers to r5. Hence Inequality
4.26 is satisfied in xs. A similar consideration of other possible blocking pairs of Ms in I
shows that no constraint is violated by xs and thus xs is a feasible solution of J .

4.5 An integer programming formulation for HRCT

The Hospitals / Residents Problem with Couples and Ties (HRCT) is a generalisation of
HRC in which hospitals (respectively residents or couples) may find some subsets of their
acceptable residents (respectively hospitals or hospital pairs) equally preferable. Residents
(respectively hospitals or couples) that are found equally preferable by a hospital (respec-
tively resident) are tied with each other in the preference list of that hospital (respectively
resident or couple). In this section we show how to extend the IP model for HRC presented in
Section 4.3 to the HRCT context. In order to do so we first define some additional notation.

For an acceptable resident-hospital pair (ri, hj), where ri is a single resident let rank(ri,

hj) = q denote the rank that resident ri assigns hospital hj where 1 ≤ q ≤ l(ri). Thus,
rank(ri, hj) is equal to the number of hospitals that ri prefers to hj plus one.

For an acceptable pair ((rs, rt), (hj, hk)) where c = (rs, rt) is a couple, let rank(c, (hj, hk))

= q denote the rank that the couple c assigns the hospital pair (hj, hk) where 1 ≤ q ≤ l(c).
Thus, rank(c, (hj, hk)) is equal to the number of hospital pairs that (rs, rt) prefers to (hj, hk)

plus one.

For each single resident ri ∈ R and integer p (1 ≤ p ≤ l(ri)) let

p+i = max{p′ : 1 ≤ p′ ≤ l(ri) ∧ rank(ri, pref (ri, p)) = rank(ri, pref (ri, p
′))}

Similarly, in the case of a couple ci,j and integer p (1 ≤ p ≤ l(c)) let

p+i,j = max{p′ : 1 ≤ p′ ≤ l(c) ∧ rank(c, pref (c, p)) = rank(c, pref (c, p′))}

Intuitively, for a single resident ri, p+i is the best position on ri’s preference list of a hospital
appearing in the same tie on ri’s list as the hospital in position p on ri’s preference list. Also,
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for a couple (ri, rj), p+i,j is the largest position on (ri, rj)’s joint preference list of a hospital
pair appearing in the same tie on (ri, rj)’s preference list as hospital pair in position p on
(ri, rj)’s joint preference list.

To correctly construct an IP model for HRCT we must make the following alterations to
the mechanism described in Section 4.3 for obtaining an IP model from an HRC instance.
All constraints are as before unless otherwise noted. Since, a hospital hj may rank some
members of M(hj) equally with ri in HRCT, the summations involving q in Constraints 4.12
- 4.16 and 4.3.2 and the Inequalities 4.17 and 4.18 must now range from 1 to q.

Also, since a resident ri may rank M(ri) equally with hj , the summations involving p in
Constraints 4.12, 4.19, 4.3.2 and 4.21 must now range from p+i + 1 to l(ri) + 1. Further, we
must extend the definition of p1 and p2 in Constraints 4.13 - 4.16 such that 1 ≤ p1 ≤ p+s <

p2 ≤ l(rs) where rs is the resident involved in each case.

To give an example of a modified constraint we now give a full description of the constraint
applied to ensure that no blocking pairs of Type 1 are admitted by a feasible solution in the
HRCT context:

Stability 1 - In a stable matching M in I , if a single resident ri ∈ R has a partner worse than
some hospital hj ∈ H where pref (ri, p) = hj and rank(hj, ri) = q, then hj must be fully
subscribed with partners at least as good as ri. Thus, either

l(ri)+1∑
p′=p+i +1

xi,p′ = 0

or hj is fully subscribed with partners at least as good as ri, i.e.

q∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} = cj

Thus, for each i (2c+ 1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint
where pref (ri, p) = hj and rank(hj, ri) = q:

cj

l(ri)+1∑
p′=p+i +1

xi,p′ ≤
q∑

q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (4.27)

The other constraints in the HRCT model follow by adapting the remaining stability criteria
in analogous fashion. Using a proof analogous to that of Theorem 4.3.1, the following results
may be established.

Theorem 4.5.1. Given an instance I of HRCT, let J be the corresponding IP model as defined

in Section 4.5. A stable matching in I is exactly equivalent to a feasible solution to J .
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By applying the same objective function as that applied in the HRC model we may establish
the following corollary showing that an optimal solution in the IP model for HRCT must be
equivalent to a maximum cardinality stable matching in the corresponding instance of HRCT.

Corollary 4.5.2. Given an instance I of HRCT, let J be the corresponding IP model as

defined in Section 4.5. A maximum cardinality stable matching in I is exactly equivalent to

an optimal solution to J .

4.6 An integer programming formulation for MIN BP

HRC

Let I be an instance of HRC. A matching M in I is a ‘most stable’ matching in I if it
admits the minimum number of blocking pairs taken over all of the matchings admitted by
I . Clearly a stable matching in I , if one exists, is a ‘most stable’ matching in I . Let MIN BP

HRC be the problem of finding a ‘most stable’ matching in an instance of HRC.

Let J be the IP model derived from I as described in Section 4.3. In this section we show
how to modify J to find a maximum cardinality ‘most stable’ matching in an instance of
HRC.

We demonstrate in Section 4.6.1 the additional variables required to extend J . Further, Sec-
tion 4.6.2 gives the extensions of the constraints from the original HRC models adapted for
the MIN BP HRC context.

4.6.1 Additional variables in the IP model for MIN BP HRC

For all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) let there be a variable θi,p such that:

θi,p ∈ {0, 1} (4.28)

Intuitively, θi,p = 1 if resident ri is involved in a blocking pair with the hospital at position
p on his preference list, either as a single residents or as part of a couple, and θi,p = 0

otherwise.

4.6.2 Replacement constraints in the IP model for MIN BP HRC

Stability 1 - In the MIN BP HRC model we replace Constraint 4.12 in the original HRC model
with Constraint 4.29 as follows. For each i (2c + 1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we
obtain the following constraint where pref (ri, p) = hj and rank(hj, ri) = q:
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cj

 l(ri)+1∑
p′=p+1

xi,p′

− θi,p
 ≤ q−1∑

q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (4.29)

By Theorem 4.3.1, if Constraint 4.12 does not hold, then ri is involved in a blocking pair
with the hospital at position p on his preference list (either as a single resident or as part of
a couple) for some i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)). Clearly, Constraint 4.29 may
only hold if θi,p = 1. In this way, we can count the number of blocking pairs using the
θi,p values. A similar methodology is used in all replacement constraints for the remaining
stability criteria that follow. Ultimately, the number of blocking pairs is the sum of the θi,p
values, except that to avoid counting a blocking pair twice in the case of a couple, the model
will assume that θ2i,p = 0 for all i (1 ≤ i ≤ c) and for all p (1 ≤ p ≤ l(r2i)).

Stability 2(a) - In the MIN BP HRC model we replace Constraints 4.13 and 4.14 in the original
HRC model with Constraints 4.30 and 4.31 as follows. For each i (1 ≤ i ≤ c) and p1, p2
(1 ≤ p1 < p2 ≤ l(r2i−1)) such that pref (r2i, p1) = pref (r2i, p2) and rank(hj1 , r2i−1) = q:

cj1(x2i−1,p2 − θ2i−1,p1) ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj1 , q

′)} (4.30)

However, for the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj1 we obtain the
following constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i−1)) such
that pref (r2i, p1) = pref (r2i, p2) and rank(hj1 , r2i−1) = q:

(cj1 − 1)(x2i−1,p2 − θ2i−1,p1) ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj1 , r2i)∧ (ri′ , p
′′) ∈ R(hj1 , q

′)}

(4.31)

Stability 2(b) - In the MIN BP HRC model we replace Constraints 4.15 and 4.16 in the
original HRC model with Constraints 4.32 and 4.33 as follows. For each i (1 ≤ i ≤ c)

and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i)) such that pref (r2i−1, p1) = pref (r2i−1, p2) and
rank(hj2 , r2i) = q:

cj2(x2i−1,p2 − θ2i−1,p1) ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj2 , q

′)} (4.32)

Again, for the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj2 we obtain the
following constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i)) such that
pref (r2i−1, p1) = pref (r2i−1, p2) and rank(hj2 , r2i) = q:
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(cj1−1)(x2i−1,p2−θ2i−1,p1) ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj2 , r2i−1)∧(ri′ , p
′′) ∈ R(hj2 , q

′)}

(4.33)

Stability 3(a) - In the MIN BP HRC model we replace Constraint 4.19 with Constraint 4.34
as follows. For all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) where hj1 = pref (r2i−1, p),
hj2 = pref (r2i, p), hj1 6= hj2 , rank(hj1 , r2i−1) = q1 and rank(hj2 , r2i) = q2:

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj1,q1 + αj2,q2 − θ2i−1,p ≤ 2 (4.34)

Stability 3(b) & 3(c) - In the MIN BP HRC model we replace Constraint 4.3.2 with Constraint
4.6.2 as follows. For i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such that pref (r2i−1, p)

= pref (r2i, p) and hj = pref (r2i−1, p) where q = min{rank(hj, r2i), rank(hj, r2i−1)} :

cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′

− θ2i−1,p
−

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

(cj − 1)

≤
l(hj)∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (4.35)

Stability 3(d) - In the MIN BP HRC model we replace Constraint 4.21 with Constraint 4.36
as follows. For each (hj, hj) acceptable to (r2i−1, r2i), let rmin be the better of r2i−1 and r2i
according to hospital hj with rank(hj, rmin) = qmin. Analogously, let rmax be the worse
of r2i and r2i−1 according to hospital hj with rank(hj, rmax) = qmax. Thus we obtain the
following constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such that pref (r2i−1, p) =

pref (r2i, p) = hj .

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj,qmax + βj,qmin
− θ2i−1,p ≤ 2 (4.36)

4.6.3 Objective functions in the IP model for MIN BP HRC

A maximum cardinality matching ‘most stable’ matching M is a matching in which the
maximum number of residents is assigned in M subject to having the minimum possible
number of blocking pairs taken over all of the matchings admitted by I . To this end we
apply the following objective functions in sequence.
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First we find an optimal solution to the IP model which minimises the number of blocking
pairs. To this end we apply the objective function shown in Equation 4.37 below. A matching
M in I with the minimum number of blocking pairs taken over all of the matchings in I
requires that the minimum number of θi,p must take the value of one. To minimise the sum
over all of the values of i and p we apply the following objective function:

min

n1∑
i=1

l(ri)∑
p=1

θi,p (4.37)

The matching M returned after finding an optimal solution during the first iteration will
be a ‘most stable’ matching in I . Let k be the number of blocking pairs in M . Now we
seek a maximum cardinality matching in I with at most k blocking pairs. Thus we apply a
constraint that ensures that any solution in the second run also has at most k blocking pairs
as follows:

n1∑
i=1

l(ri)∑
p=1

θi,p ≤ k (4.38)

A maximum cardinality ‘most stable’ matching M is a matching in which the maximum
number of residents are assigned in M subject to having the minimum possible number of
blocking pairs taken over all of the matchings admitted by I . To maximise the size of the
matching found, subject to Constraint 4.38 holding, we also apply the following objective
function:

max

n1∑
i=1

l(ri)∑
p=1

xi,p (4.39)

.

4.6.4 Proof of correctness the IP model for MIN BP HRC

We now establish the correctness of the IP model presented in Sections 4.6.1, 4.6.2 and 4.6.3.

Theorem 4.6.1. Given an instance I of MIN BP HRC, let J be the corresponding IP model as

defined in Section 4.6.1 and Section 4.6.2. A ‘most stable’ matching in I is exactly equivalent

to a feasible solution to J .

Proof. Let M be a matching in I . As in the proof of Theorem 4.3.1, let 〈 x, α, β 〉 be the
corresponding assignment of boolean values to the variables in the IP model derived from I

as constructed in Section 4.3. By Theorem 4.3.1, ri is involved in a blocking pair with hj ,
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either as a single resident or as part of couple, if and only if the corresponding constraint is
violated in the HRC model.

Assume that ri is single and (ri, hj) blocks M where pref (ri, p) = hj . Hence, by Theorem
4.3.1, an instance of Constraint 4.12 is violated with respect to 〈 x, α, β 〉 and thus the
corresponding instance of Constraint 4.29 must be violated if θi,p = 0. However, if θi,p = 1,
then the LHS of Constraint 4.29 becomes 0 and the constraint is satisfied.

Now, assume that ri is part of a couple, without loss of generality assume this couple be
(ri, rj). Further assume that ((ri, rj), (hk, hl)) blocks M where pref ((ri, rj), p) = (hk, hl).
Hence, by Theorem 4.3.1, one of Constraints 4.13 to 4.21 is violated with respect to 〈 x,
α, β 〉 and thus the corresponding instance of Constraint 4.30 to 4.36 must be violated if
θi,p = 0. However, if θi,p = 1, then the corresponding instances of Constraints 4.30 to 4.36
must be satisfied.

Conversely, let M be a matching in I and let 〈 x, α, β, θ 〉 be the corresponding assignment
of boolean values to the variables in the IP model derived from I as constructed in Section
4.6.

Now assume that θi,p = 1 for some i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)). If ri is not
involved in a blocking pair with hj where pref (ri, p) = hj (either as a single resident or part
of a couple), then by Theorem 4.3.1, Constraints 4.12 to 4.21 are satisfied, and hence so are
Constraints 4.29 to 4.36, with θi,p = 0, in contradiction to the objective function Equation
4.37.

Thus, if θi,p = 1 for some i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(rn1)), then ri must be involved in
a blocking pair with the hospital in position p on his preference list. Moreover, if the optimal
value of the solution obtained from the model when applying the objective function Equation
4.37 for a given model J is k, then the minimum number of blocking pairs admitted by any
matching in the corresponding HRC instance I is ≤ k. Hence, the result is proven.

The existence of the objective function (given by Inequality 4.39) immediately leads to the
following corollary.

Corollary 4.6.2. Given an instance I of MIN BP HRC, let J be the corresponding IP model

as defined in Section 4.6.1 and Section 4.6.2. A maximum cardinality ‘most stable’ matching

in I is exactly equivalent to an optimal solution to J .
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Chapter 5

An integer programming model for
HRC under BIS-stability

5.1 Introduction

In this chapter we show by means of a pair of example instances, that BIS-stability and
MM-stability are not equivalent. First, in Section 5.2, we describe two HRC instances: one
that admits an MM-stable matching, but no BIS-stable matching; and another that admits
a BIS-stable matching, but no MM-stable matching. Further, in Section 5.3 we present a
cloning methodology for HRC that can be used to construct an instance of one-to-one HRC

from an instance of many-to-one HRC such that the MM-stable matchings in the many-to-
one instance correspond to the MM-stable matchings in the one-to-one instance. We then
prove that this cloning method applies only under MM-stability and is not applicable under
BIS-stability. Finally, in Section 5.4 we present the first IP model for finding a maximum
cardinality stable matching in an arbitrary instance of HRC under BIS-stability.

5.2 MM-stability and BIS-stability are not equivalent

MM-stability and BIS-stability are not equivalent. We demonstrate this by means of the two
instances shown in Figure 5.1 and Figure 5.2. Consider the instance of HRC shown in Figure
5.1 where h has capacity two. The matching M = {(r3, h)} is BIS-stable, but the instance
admits no MM-stable matching.

Now, consider the instance of HRC shown in Figure 5.2 due to Irving [37], where h1 has
capacity two and h2 has capacity one. The instance admits three distinct matchings, namely
M1 = {(r1, h1), (r2, h1)}, M2 = {(r3, h1), (r4, h1)} and M3 = {(r3, h1), (r4, h2)}. Clearly,
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Residents

(r1, r2) : (h, h)
r3 : h

Hospitals

h : 2 : r1 r3 r2

Figure 5.1: An instance of HRC that admits a BIS-stable matching but admits no MM-stable
matching.

Residents

(r1, r2) : (h1, h1)
(r3, r4) : (h1, h1) (h1, h2)

Hospitals

h1 : 2 : r3 r1 r2 r4
h2 : 1 : r4

Figure 5.2: An instance of HRC that admits an MM-stable matching but admits no BIS-stable
matching.

M2 is MM-stable. However, M1 is BIS-blocked by (r3, r4) with (h1, h2), M2 is BIS-blocked
by (r1, r2) with (h1, h1), and M3 is BIS-blocked by (r3, r4) with (h1, h1).

5.3 A hospital cloning method for HRC that works un-

der MM-stability but not under BIS-stability

For an arbitrary instance I of HR in which the hospitals may have capacity greater than
one, Gusfield and Irving [31] describe a method of constructing a corresponding instance,
I ′ of HR in which all of the hospitals have capacity one, such that a stable matching in I
corresponds to a stable matching in I ′ and vice versa. In this section we describe a method
for producing an instance I ′ of HRC, in which all of the hospitals have capacity one, from
an arbitrary instance I of HRC, in which the hospitals may have capacity greater than one,
such that an MM-stable matching in I corresponds to an MM-stable matching in I ′ and vice
versa. We show that this correspondence breaks down in the case of BIS-stability.

Let I be an instance of HRC with residents R = {r1, r2, . . . , rn1} and hospitals H =

{h1, h2, . . . , hn2}. Let cj denote the capacity of hospital hj ∈ H (1 ≤ j ≤ n2), the number
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of available posts it has to which residents may be assigned. Without loss of generality, sup-
pose residents r1, r2, . . . , r2c are in couples. Again, without loss of generality, suppose that
the couples are (r2i−1, r2i) (1 ≤ i ≤ c). Let the single residents be r2c+1, r2c+2 . . . rn1 .

Each single resident ri ∈ R has a preference list of length l(ri) consisting of individual
hospitals hj ∈ H . Further, each couple (r2i−1, r2i) has a joint preference list of accept-
able hospital pairs of length l((r2i−1, r2i)). Each hospital hj ∈ H has a preference list of
individual residents ri ∈ R of length l(hj).

We construct an instance I ′ of one-to-one HRC from I as follows. For each hj ∈ H we create
cj clones in I ′, hj,1, hj,2 . . . hj,cj , each of capacity one, where each clone represents one of
the individual posts in hj . For each ri ∈ R in I ′ replace each hj in the preference list of a
single resident ri with the following sequence of hospitals hj,1, hj,2 . . . hj,cj .

For each couple (r2i−1, r2i) in I ′, replace each (hj1 , hj2) (where j1 6= j2) in (r2i−1, r2i)’s joint
preference list with the following sequence of hospital pairs:

L1 = (hj1,1, hj2,1), (hj1,2, hj2,1) . . . (hj1,cj1 , hj2,1),

(hj1,1, hj2,2), (hj1,2, hj2,2) . . . (hj1,cj1 , hj2,2) . . . (hj1,cj1 , hj2,cj2 )

containing all of the possible pairings of the individual clones of hj1 and hj2 . Further in I ′

we replace each (hj, hj) in (r2i−1, r2i)’s joint preference list with the following sequence of
hospital pairs:

L2 = (hj,2, hj,1), (hj,3, hj,1) . . . (hj,cj , hj,1), (hj,1, hj,2), (hj,3, hj,2) . . .

. . . (hj,cj , hj,2) . . . (hj,cj−1, hj,cj)

where {(hj,x, hj,y) : x = y} ∩ L2 = ∅. Thus L2 contains all possible pairings of distinct
individual clones of hj . We prove by the following Lemma that MM-stable matchings are
preserved under this correspondence.

Theorem 5.3.1. I admits an MM-stable matching if and only if I ′ does.

Proof. We first prove that if I admits a MM-stable matching then I ′ also admits a MM-stable
matching. Let M be an MM-stable matching in I . From M we construct an MM-stable
matchingM ′ in I ′ as follows. Take any hospital hj ∈ H and list its assignees as ri1 , ri2 . . . ritj
where tj ≤ cj . Assume without loss of generality that rank(hj, ri1) < rank(hj, ri2) . . . <

rank(hj, ritj ). For each k (1 ≤ k ≤ tj) add (rik , hj,k) to M ′.

We require to prove that M ′ is a matching in I ′ and further that M ′ is MM-stable. First we
prove thatM ′ is a matching in I ′. Clearly, all single residents ri who are assigned to a hospital
hj in M are assigned to an acceptable hospital clone hj,k in M ′, for some k (1 ≤ k ≤ cj).
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All couples (r2i−1, r2i) assigned to some (hj1 , hj2) in M are assigned in M ′ to (hj1,k1 , hj2,k2)

for some k1 (1 ≤ k1 ≤ cj1) and k2 (1 ≤ k2 ≤ cj2). Since (hj1 , hj2) is an acceptable pair of
hospitals for (r2i−1, r2i) in I , (hj1,k1 , hj2,k2) must be an acceptable pair for (r2i−1, r2i) in I ′

(note that if j1 = j2 then k1 6= k2). Thus, M ′ is a matching in I ′.

It remains to prove that M ′ is MM-stable in I ′. Suppose not. Then there exists some MM-
blocking pair for M ′ in I ′. We now prove that no such blocking pairs can exist for M ′ in I ′.
Since no preferences are expressed by a couple in I ′ for a hospital pair (hj,k, hj,k) consisting
of two identical clones, only MM-blocking pairs of Types 1, Case 2(a), Case 2(b) and 3(a)
shown in Definition 2.3.1 are possible in I ′. We now consider each of these possible types
of blocking pair in turn and show that M ′ can admit no blocking pair of each type in I ′.

Type 1 Stability: Assume a single resident ri MM-blocks M ′ in I ′ with a hospital clone hj,k
as part of a Type 1 blocking pair as defined in Definition 2.3.1. Hence, in I ′ a resident ri
is either unassigned or prefers hj,k to M ′(ri) and moreover hj,k is either undersubscribed or
prefers ri to M ′(hj,k). Now, either M ′(ri) = hj,l for some l (1 ≤ l ≤ cj) or M ′(ri) 6= hj,l

for all l (1 ≤ l ≤ cj) in I ′.

AssumeM ′(ri) = hj,l for some l (1 ≤ l ≤ cj). Then ri prefers hj,k to hj,l and k < l. Further,
hj,k prefers ri to its assignee M ′(hj,k), a contradiction to the construction of M ′ if k < l.
Now assume M ′(ri) 6= hj,l for all l (1 ≤ l ≤ cj). It follows that ri is either unassigned in M
or prefers hj to M(ri) and moreover hj is either undersubscribed in M or prefers ri to some
member of M(hj). Thus (ri, hj) forms an MM-blocking pair of M in I , a contradiction.
Hence (ri, hj,k) cannot MM-block M ′ in I ′ as part of a Type 1 blocking pair.

Type 2(a) stability: Assume a couple (r2i−1, r2i) MM-blocks M ′ with (hj1,k1 , hj2,k2) in I ′ for
some k1, k2 (1 ≤ k1 ≤ cj1 , 1 ≤ k2 ≤ cj2) where M ′(r2i) = hj2,k2 as part of a Type 2(a)
blocking pair as defined in Definition 2.3.1. Clearly either j1 6= j2 or j1 = j2.

First, we consider the case where j1 6= j2. It follows that (r2i−1, r2i) prefers (hj1,k1 , hj2,k2)

to (M ′(r2i−1),M
′(r2i)) where M ′(r2i) = hj2,k2 and hj1,k1 is either undersubscribed in M ′

or prefers r2i−1 to M ′(hj1,k1). Now, either M ′(r2i−1) = hj1,l for some l (1 ≤ l ≤ cj1) or
M ′(r2i−1) 6= hj1,l for all l (1 ≤ l ≤ cj1).

Assume M ′(r2i−1) = hj1,l for some l (1 ≤ l ≤ cj1). Then (r2i−1, r2i) prefers (hj1,k1 , hj2,k2)

to (hj1,l, hj2,k2) and thus k1 < l. Further, hj1,k1 prefers ri to M ′(hj1,k1), a contradiction to
the construction of M ′ if k1 < l. Now assume M ′(r2i−1) 6= hj1,l for all l (1 ≤ l ≤ cj1). Thus
either hj1,k1 is undersubscribed in M ′ or hj1,k1 prefers r2i−1 to M ′(hj1,k1). Now, if hj1,k1 is
undersubscribed in M ′ then hj1 must be undersubscribed in M and (r2i−1, r2i) MM-blocks
M in I with (hj1 , hj2), a contradiction. Further, if hj1,k1 prefers r2i−1 to M ′(hj1,k1) then
hj1 must prefer r2i−1 to some member of M(hj1) in M and (r2i−1, r2i) MM-blocks M with
(hj1 , hj2) in I , a contradiction. Thus we have shown that no such blocking pair can exist if
j1 6= j2.
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We now consider the case in which j1 = j2 and let j = j1 = j2. Then (r2i−1, r2i)

prefers (hj,k1 , hj,k2) to (M ′(r2i−1),M
′(r2i)) where M ′(r2i) = hj,k2 and hj,k1 is either un-

dersubscribed in M ′ or prefers r2i−1 to M ′(hj,k1). Now, either M ′(r2i−1) = hj,l for some
l (1 ≤ l ≤ cj1) or M ′(r2i−1) 6= hj,l for all l (1 ≤ l ≤ cj).

Assume M ′(r2i−1) = hj,l for some l (1 ≤ l ≤ cj). Then (r2i−1, r2i) prefers (hj,k1 , hj,k2) to
(hj,l, hj,k2) and k1 < l. Further, hj,k1 prefers ri to its assignee M ′(hj,k), a contradiction to
the construction of M ′ if k1 < l.

Now assume M ′(r2i−1) 6= hj,l for all l (1 ≤ l ≤ cj1). Thus either hj,k1 is undersubscribed
in M ′ or hj,k1 prefers r2i−1 to M ′(hj,k1). If hj,k1 is undersubscribed in M ′ then hj must
be undersubscribed in M and (r2i−1, r2i) MM-blocks M in I with (hj, hj), a contradiction.
Further, if hj,k1 prefers r2i−1 toM ′(hj,k1) then hj must prefer r2i−1 to some member ofM(hj)

and (r2i−1, r2i) MM-blocks M in I with (hj, hj), a contradiction. Thus we have shown that
no such blocking pair can exist if j1 = j2.

Type 2(b) stability: A similar argument may be applied when considering the case that
(r2i−1, r2i) prefers (hj1,k1 , hj2,k2) to (M ′(r2i−1), hj2,k2) in I ′ to show that no Type 2(b) MM-
blocking pair, as defined in Definition 2.3.1, is admitted by M ′.

Type 3(a) stability: Assume a couple (r2i−1, r2i) MM-blocks M ′ in I ′ as part of a Type 3(a)
blocking pair as defined in Definition 2.3.1. It follows that (r2i−1, r2i) MM-blocks M ′ in I ′

with (hj1,k1 , hj2,k2) (where j1 6= j2) for some k1 (1 ≤ k1 ≤ cj1) and k2 (1 ≤ k2 ≤ cj2)

where M ′(r2i−1) 6= hj1,k1 and M ′(r2i) 6= hj2,k2 . Thus (r2i−1, r2i) is either unassigned in
M ′ or assigned in M ′ to a worse hospital pair than (hj1,k1 , hj2,k2) (where j1 6= j2) for some
k1 (1 ≤ k1 ≤ cj1), k2 (1 ≤ k2 ≤ cj2) and moreover both of hj1,k1 and hj2,k2 are either
undersubscribed in M ′ or assigned to a worse partner than r2i−1 and r2i respectively in M ′.

Assume that both M ′(r2i−1) 6= hj1,l for all l (1 ≤ l ≤ cj1) and M ′(r2i) 6= hj2,l for all
l (1 ≤ l ≤ cj2). Since (r2i−1, r2i) MM-blocks M ′ in I ′ with (hj1,k1 , hj2,k2) it follows that
(r2i−1, r2i) is unassigned in M or prefers (hj1 , hj2) to (M(r2i−1),M(r2i)). Moreover both of
hj1 and hj2 are either undersubscribed or prefer r2i−1 and r2i respectively to some member
of M(hj1) and M(hj2) respectively. Thus (r2i−1, r2i) MM-blocks M in I with (hj1 , hj2), a
contradiction.

Now, assume that M ′(r2i−1) = hj1,l for some l (1 ≤ l ≤ cj). Since (r2i−1, r2i) MM-blocks
M ′ in I ′ with (hj1,k1 , hj2,k2) it follows that (r2i−1, r2i) prefers (hj1,k1 , hj2,k2) to (hj1,l,M

′(r2i))

and thus k1 < l. Further, hj1,k1 prefers ri to M ′(hj1,k1), in contradiction to the construction
of M ′ if k1 < l. A similar argument may be applied in the case that M ′(r2i) = hj2,l for
some l (1 ≤ l ≤ cj2). Thus we have that an MM-stable matching in M corresponds to an
MM-stable matching in M ′.

Conversely, we now prove that if I ′ admits a MM-stable matching then I also admits a MM-
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stable matching. Let M ′ be an MM-stable matching in I ′. We construct a set of pairs M in
I from M ′ as follows. For all pairs (ri, hj,k) in M ′ such that hj ∈ H and 1 ≤ k ≤ cj , add
(ri, hj) to M . We require to prove that M is a matching in I and further that M is stable.

First we prove that M is a matching in I . For each hj ∈ H , the assignees of hj in M are
simply the assignees of the k copies of hj in I ′ and since k ≤ cj no hj is oversubscribed in
M . All single residents ri who are assigned in M ′ to a hospital clone hj,k are assigned to
an acceptable hospital hj in M . All couples (r2i−1, r2i) assigned to some (hj1,k1 , hj2,k2) in
M ′ are assigned in M to (hj1 , hj2) (note that possibly j1 = j2). Since (hj1,k1 , hj2,k2) is an
acceptable pair of hospital clones for (r2i−1, r2i) in I ′, (hj1 , hj2) must be an acceptable pair
of hospitals for (r2i−1, r2i) in I . Hence, M is a matching in I .

It remains to prove that M is MM-stable in I . Suppose not. Then there exists an MM-
blocking pair of M in I . We now consider each of the possible MM-blocking pair types,
defined in Definition 2.3.1, in turn and show that no MM-blocking pair of each type is ad-
mitted by M .

Type 1 stability: Assume M admits a Type 1 MM-blocking pair in I as defined in Definition
2.3.1. It follows that a single resident ri and hospital hj MM-block M in I . Thus resident
ri is unassigned or prefers hj to M(ri) and moreover hj is undersubscribed or prefers ri to
some rp ∈ M(hj) in M . If hj is undersubscribed in M then some hj,k is undersubscribed
in M ′. Further, if hj prefers ri to some rp ∈ M(hj) then let k (1 ≤ k ≤ cj) be such that
rp = M ′(hj,k). From the construction, it follows that in M ′, ri is unassigned or prefers hj,k
to M ′(ri) and hj,k is also either undersubscribed or prefers ri to rp = M ′(hj,k), and thus
(ri, hj,k) MM-blocks M ′ in I ′, a contradiction. Thus M admits no Type 1 MM-blocking pair
in I .

Type 2(a) stability: Assume M admits a Type 2(a) MM-blocking pair in I as defined in
Definition 2.3.1. It follows that a couple (r2i−1, r2i) MM-blocks M in I with (hj1 ,M(hj2)).
Hence, hj1 is either undersubscribed in M or prefers r2i−1 to some rp ∈ M(hj1). Firstly,
assume hj1 is undersubscribed in M . Then there exists a hospital clone hj1,k1 for some
k1 (1 ≤ k1 ≤ cj1) that is undersubscribed in M ′. Further, since r2i is assigned to hj2 in
M there must be a hospital clone hj2,k2 for some k2 (1 ≤ k2 ≤ cj2) assigned to r2i in M ′.
Thus, (r2i−1, r2i) must MM-block M ′ in I ′ with (hj1,k1 , hj2,k2), a contradiction. Secondly,
assume that hj1 prefers r2i−1 to some rp ∈ M(hj1). Let k1 (1 ≤ k1 ≤ cj1) be such that
(rp, hj1,k1) ∈M ′. Thus hj1,k1 prefers r2i−1 to rp. Further, there exists some k2 (1 ≤ k1 ≤ cj2)

such that (r2i, hj2,k2) ∈ M ′. Hence (r2i−1, r2i) MM-blocks M ′ with (hj1,k1 , hj2,k2) in I ′, a
contradiction. Thus, M admits no Type 2(a) MM-blocking pair in I .

Type 2(b) stability: A similar argument may be applied in the symmetric case whereM(r2i−1)

= hj1) to prove that M admits no Type 2(b) MM-blocking pair in I as defined in Definition
2.3.1.
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Type 3(a) stability: Assume M admits a Type 3(a) MM-blocking pair in I as defined in
Definition 2.3.1. It follows that a couple (r2i−1, r2i) MM-blocks M with (hj1 , hj2) in I

(where j1 6= j2). Then (r2i−1, r2i) is either unassigned or assigned to a worse pair in M than
(hj1 , hj2) and moreover each of hj1 and hj2 is either undersubscribed or has a worse partner
than r2i−1 and r2i respectively amongst their assignees in M .

If hj1 (respectively hj2) is undersubscribed in M then there exists a hospital clone hj1,k1
for some k1 (1 ≤ k1 ≤ cj1) (respectively hj2,k2 for some k2 (1 ≤ k2 ≤ cj2)) that is un-
dersubscribed in M ′. Further, if hj1 (respectively hj2) has amongst its assignees in M a
worse partner than r2i−1 (respectively r2i) then there must be some hj1,k1 (1 ≤ k1 ≤ cj1)

(respectively hj2,k2 (1 ≤ k2 ≤ cj1) that has a worse assignee than r2i−1 (respectively r2i) in
M ′. From the construction, it follows that in M ′, (r2i−1, r2i) is either unassigned or prefers
(hj1,k1 , hj2,k2) to M ′(r2i−1, r2i) and also each of hj1,k1 and hj2,k2 is either undersubscribed
in M ′ or prefers r2i−1 and r2i to M ′(hj1,k1) and M ′(hj2,k2) respectively. Hence (r2i−1, r2i)

MM-blocks M ′ in I ′ with (hj1,k1 , hj2,k2), a contradiction. Thus, M admits no Type 3(a)
MM-blocking pair in I .

Type 3(b) stability: Assume M admits a Type 3(b) MM-blocking pair in I as defined in
Definition 2.3.1. It follows that a couple (r2i−1, r2i) MM-blocks M in I with (hj, hj) and
that hj also has two free posts. Then (r2i−1, r2i) is either unassigned or assigned in M to a
worse hospital pair than (hj, hj) in M . From the construction this means that in M ′ there are
two hospital clones hj,k1 and hj,k2 for some 1 ≤ k1 ≤ cj and 1 ≤ k2 ≤ cj where k1 6= k2 such
that both hj,k1 and hj,k2 are undersubscribed in M ′. Since (r2i−1, r2i) has a worse partner in
M ′ than (hj,k1 , hj,k2), it follows that (r2i−1, r2i) MM-blocks M ′ in I ′ with (hj,k1 , hj,k2), a
contradiction. Thus, M admits no Type 3(b) MM-blocking pair in I .

Type 3(c) stability: Assume M admits a Type 3(c) MM-blocking pair in I as defined in Def-
inition 2.3.1. It follows that a couple (r2i−1, r2i) MM-blocks M in I with (hj, hj) and hj has
one free post and prefers at least one of r2i−1 or r2i to some rp ∈M(hj1). Thus, (r2i−1, r2i) is
either unassigned or assigned to a worse hospital pair than (hj, hj). Now, if hj prefers r2i−1
to rp in I then (r2i−1, r2i) MM blocks M ′ with (hj,k2 , hj,k1) in I ′, a contradiction. Otherwise
hj prefers r2i to rp in I and it follows that (r2i−1, r2i) MM-blocks M ′ with (hj,k1 , hj,k2) in I ′,
a contradiction. Thus, M admits no Type 3(c) MM-blocking pair in I .

Type 3(d) stability: Assume M admits a Type 3(d) MM-blocking pair in I as defined in
Definition 2.3.1. Assume a couple (r2i−1, r2i) MM-blocks M in I with (hj, hj) where hj is
full and hj prefers r2i−1 to some rp ∈M(hj) and also prefers r2i to some rq ∈M(hj)\{rp}.
Then, (r2i−1, r2i) is either unassigned in M or assigned to a worse hospital pair than (hj, hj)

Now, if hj prefers r2i−1 in I to one of its assignees in M there exists a hospital clone hj,k1
for some k1 (1 ≤ k1 ≤ cj) that has an assignee worse than r2i−1 in M ′. Let this worse
assignee be rp. Now, if hj prefers r2i to some member of M(hj) \ {rp} there exists a
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hospital clone hj,k2 for some k2 (1 ≤ k2 ≤ cj) that has a worse assignee than r2i. From
the construction it follows that in I ′, there are two distinct hospital clones hj,k1 and hj,k2
such that (r2i−1, r2i) prefers (hj,k1 , hj,k2) to (M ′(hj,k1),M

′(hj,k2)). Also, hj,k1 prefers r2i−1
to M ′(hj,k1) and hj,k2 prefers r2i to M ′(hj,k2). Hence (r2i−1, r2i) MM-blocks M ′ in I ′ with
(hj,k1 , hj,k2), a contradiction. Thus, M admits no Type 3(d) MM-blocking pair in I . Hence,
if I ′ admits a MM-stable matching then I also admits a MM-stable matching. It follows that
I admits an MM-stable matching if and only if I ′ does and the result is proven.

Corollary 5.3.2. If I ′ admits a BIS-stable matching it need not be the case that I admits a

BIS-stable matching.

Proof. Let I be the instance of HRC as shown in Figure 5.2. Clearly, the instance admits
no BIS-stable matching. We construct the instance I ′ from I as described in Lemma 5.3.1
by creating two distinct hospital clones h1,1 and h1,2 to represent the two posts in h1 and
amending the preference lists of the couples as shown in Figure 5.3.

The instance I ′ admits the BIS-stable matching M ′ = {(r3, h1,1), (r4, h1,2)}. Since I admits
no BIS-stable matching, M ′ clearly has no corresponding BIS-stable matching in I and the
cloning method described above does not work under BIS-stability.

Residents’ Preferences

(r1, r2) : (h1,1, h1,2) (h1,2, h1,1)
(r3, r4) : (h1,1, h1,2) (h1,2, h1,1) (h1,1, h2) (h1,2, h2)

Hospitals’ Preferences

h1,1 : 1 : r3 r1 r2 r4
h1,2 : 1 : r3 r1 r2 r4
h2 : 1 : r4

Figure 5.3: An instance of HRC that shows that the cloning method does not work under
BIS-stability.

5.4 An IP formulation for HRC under BIS stability

The IP model presented in this section extends the model for HR presented in Section 4.2 in
a similar fashion to the IP model for HRC under MM-stability described in Section 4.3. This
extended model is designed around a series of linear inequalities that establish the absence
of blocking pairs according to each of the different parts of Definition 2.3.2. The variables
are defined for each resident, whether single or a member of a couple, and for each element
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on his/her preference list (with the possibility of being unassigned). A further consistency
constraint ensures that each member of a couple obtains hospitals from the same pair in their
list, if assigned. Finally, the objective of the IP is to maximise the size of a stable matching,
if one exists.

We now define an instance of HRC and show the projected preference lists for each of
the two residents involved in a couple may be derived from the couples joint preference
lists. Let I be an instance of HRC with residents R = {r1, r2, . . . , rn1} and hospitals
H = {h1, h2, . . . , hn2}. Without loss of generality, suppose residents r1, r2 . . . r2c are in cou-
ples. Again, without loss of generality, suppose that the couples are (r2i−1, r2i) (1 ≤ i ≤ c).
Suppose that the joint preference list of a couple ci = (r2i−1, r2i) is:

ci : (hα1 , hβ1), (hα2 , hβ2) . . . (hαl
, hβl)

From this list we create the following projected preference list for resident r2i−1:

r2i−1 : hα1 , hα2 . . . hαl

and the following projected preference list for resident r2i:

r2i : hβ1 , hβ2 . . . hβl

Clearly, the projected preference list of the residents r2i−1 and r2i are the same length as the
preference list of the couple ci = (r2i−1, r2i). Let l(ci) denote the length of the preference
list of ci and let l(r2i−1) and l(r2i) denote the lengths of the projected preference lists of
r2i−1 and r2i respectively. Now we have that l(r2i−1) = l(r2i) = l(ci). A given hospital hj
may appear more than once in the projected preference list of a linked resident in a couple
ci = (r2i−1, r2i).

Let the single residents be r2c+1, r2c+2 . . . rn1 , where each single resident ri, has a preference
list of length l(ri) consisting of individual hospitals hj ∈ H . Each hospital hj ∈ H has a
preference list of individual residents ri ∈ R of length l(hj). Further, each hospital hj ∈ H
has capacity cj ≥ 1, the maximum number of residents to which it may be assigned.

When considering the exact nature of a blocking pair in this model, the stability definition
due to Biró et al. [12] (BIS-stability) is applied in all cases in this section. The text in
bold before the definition of a constraint shows the section of the BIS-stability definition
with which the constraint corresponds. Hence, a constraint preceded by ‘Stability 1’ is
intended to prevent blocking pairs described by part 1 of the BIS-stability definition shown
in Definition 2.3.2 in Section 2.3.

We describe the variables and constraints in the IP model for HRC under BIS-stability in
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Sections 5.4.1 and 5.4.2 respectively. We do not prove the correctness of this IP model.
However, the correctness can be established by a proof similar to the proof of Theorem
4.3.1.

5.4.1 Variables in the IP model for HRC under BIS stability

Let I be an instance of HRC as described in Section 4.3. Let J be the following Integer
Programming (IP) formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)),
define a variable xi,p such that

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

For p = l(ri) + 1 define a variable xi,p whose intuitive meaning is that resident ri is unas-
signed. Therefore we also have

xi,l(ri)+1 =

{
1 if ri is unassigned
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri) + 1}. Let pref (ri, p) denote the hospital
at position p of a single resident ri’s preference list or on the projected preference list of a
resident belonging to a couple where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Let pref ((r2i, r2i−1), p)

denote the hospital pair at position p on the joint preference list of (r2i−1, r2i).

For an acceptable resident-hospital pair (ri, hj), let rank(hj, ri) = q denote the rank which
hospital hj assigns resident ri where 1 ≤ j ≤ n2, 1 ≤ i ≤ n1 and 1 ≤ q ≤ l(hj).

Now, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new variable αj,q ∈ {0, 1}. The
intuitive meaning of a variable αj,q is that if hj is full with assignees better than rank q then
αj,q may take the value 0 or 1. Otherwise, αj,q = 1. Constraints 5.2 and 5.21 described in
Section 5.4.2 are applied to enforce this property.

Further, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new variable βj,q ∈ {0, 1}.
The intuitive meaning of a variable βj,q is that if hj has more than cj − 2 assignees better
than rank q then βj,q may take a value of 0 or 1. Otherwise, βj,q = 1. Constraints 5.3 and
5.27 described in Section 5.4.2 are applied to enforce this property.

Also, for all j (1 ≤ j ≤ n2) define a new variable γj ∈ {0, 1}. The intuitive meaning of
a variable γj is that if hj has cj − 1 or more assignees then γj may take the value 0 or 1.
Otherwise, γj = 1. Constraints 5.4 and 5.23 described in Section 5.4.2 are applied to enforce
this property.
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Now, for all j (1 ≤ j ≤ n2) define a new variable δj ∈ {0, 1}. The intuitive meaning of
a variable δj is that if hj has cj assignees then δj may take the value of 0 or 1. Otherwise,
δj = 1. Constraints 5.5 and 5.12 described in Section 5.4.2 are applied to enforce this
property.

Finally, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new variable εj,q ∈ {0, 1}.
The intuitive meaning of a variable εj,q is that if hj has no assignees worse than rank q then
εj,q may take a value of 0 or 1. Otherwise, εj,q = 1. Constraints 5.6 and 5.11 described in
Section 5.4.2 are applied to enforce this property.

For ease of exposition we define some additional notation. For each j (1 ≤ j ≤ n2) and
q (1 ≤ q ≤ l(hj)) let the set R(hj, q) contain the resident-position pairs (ri, p) such that ri
is assigned a rank of q (1 ≤ q ≤ l(hj)) by hj and hj is in position p (1 ≤ p ≤ l(ri)) on ri’s
preference list. Hence:

R(hj, q) = {(ri, p) ∈ R× Z : rank(hj, ri) = q ∧ 1 ≤ p ≤ l(ri) ∧ pref (ri, p) = hj}

5.4.2 Constraints in the IP model for HRC under BIS stability

The following constraint simply confirms that each variable xi,p must be binary valued for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

xi,p ∈ {0, 1} (5.1)

The following constraint simply confirms that each variable αj,q must be binary valued for
all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)):

αj,q ∈ {0, 1} (5.2)

The following constraint simply confirms that each variable βj,q must be binary valued for
all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)):

βj,q ∈ {0, 1} (5.3)

The following constraint simply confirms that each variable γj must be binary valued for all
j (1 ≤ j ≤ n2):

γj ∈ {0, 1} (5.4)
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The following constraint simply confirms that each variable δj must be binary valued for all
j (1 ≤ j ≤ n2):

δj ∈ {0, 1} (5.5)

The following constraint simply confirms that each variable εj,q must be binary valued for
all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)):

εj,q ∈ {0, 1} (5.6)

As each resident ri ∈ R is either assigned to a single hospital or is unassigned, we introduce
the following constraint for all i (1 ≤ i ≤ n1):

l(ri)+1∑
p=1

xi,p = 1 (5.7)

Since a hospital hj may be assigned at most cj residents, we constrain that xi,p = 1 where
pref (ri, p) = hj for at most cj residents. We thus obtain the following constraint for all
j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≤ cj (5.8)

For each couple (r2i−1, r2i), if resident r2i−1 is assigned to the hospital in position p in their
projected preference list then r2i must also be assigned to the hospital in position p in their
projected preference list. We thus obtain the following constraint for all 1 ≤ i ≤ c and
1 ≤ p ≤ l(r2i−1) + 1:

x2i−1,p = x2i,p (5.9)

Stability 1 - In a stable matching M in I , if a single resident ri ∈ R has a worse partner than
some hospital hj ∈ H where pref (ri, p) = hj and rank(hj, ri) = q then hj must be fully
subscribed with better partners than ri. Therefore, either

∑l(ri)+1
p′=p+1 xi,p′ = 0 or hj is fully

subscribed with better partners than ri and
∑q−1

q′=1{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} = cj .

Thus, for each i (2c+ 1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint
where pref (ri, p) = hj and rank(hj, ri) = q:

cj

l(ri)+1∑
p′=p+1

xi,p′ ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)} (5.10)
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Now, for all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new constraint such that:

εj,q ≥

l(hj)∑
q′=q+1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

cj
(5.11)

Thus, if hj has an assignee worse than rank q then εj,q = 1. However, if hj has no assignees
worse than rank q then εj,q may take a value of zero or one. Further, for all j (1 ≤ j ≤ n2)

define a new constraint such that:

δj ≥ 1−

l(hj)∑
q=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q)}

cj
(5.12)

Thus, if hj is undersubscribed then δj = 1. However, if hj has cj assignees then δj may take
the value of zero or one.

Stability 2(a) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) prefers hospital pair
(hj1 , hj2), at position p1 on ci’s preference list, to (M(r2i−1),M(r2i)), at position p2, then,
if hj2 = M(r2i) then hj1 cannot be undersubscribed or prefer r2i−1 to one of its assignees in
M . In the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj1 , if hj1 = hj2 = M(r2i)

then hj1 cannot be undersubscribed or prefer the poorer of r2i−1 and r2i according to hj1 to
one of its partners in M .

Thus, for the general case, we obtain the following two constraints. For all i (1 ≤ i ≤
c) and p1, p2 (1 ≤ p1 < p2 ≤ l(r2i−1)) such that pref (r2i, p1) = pref (r2i, p2) and
rank(hj1 , r2i−1) = q:

x2i,p2 + δj1 ≤ 1 (5.13)

x2i,p2 + εj1,q ≤ 1 (5.14)

Intuitively, Constraint 5.13 ensures that hj1 is not undersubscribed and Constraint 5.14 en-
sures that hj1 does not prefer r2i to any member of M(hj1).

Now, for the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj1 we obtain the
following two constraints. For all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i−1))

such that pref (r2i, p1) = pref (r2i, p2) where rmax is the poorer of r2i−1 and r2i according to
hospital hj1 with rank(hj1 , rmax) = qmax:

x2i,p2 + δj1 ≤ 1 (5.15)

x2i,p2 + εj1,qmax ≤ 1 (5.16)
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Now, intuitively Constraint 5.15 ensures that hj1 is not undersubscribed and Constraint 5.16
ensures that hj1 does not prefer rmax to any member of M(hj1).

Stability 2(b) - A similar constraint is required for the odd members of each couple. Thus,
for the general case, we obtain the following constraint for all i (1 ≤ i ≤ c) and p1, p2 where
(1 ≤ p1 < p2 ≤ l(r2i)) such that pref (r2i−1, p1) = pref (r2i−1, p2) and rank(hj2 , r2i) = q:

x2i,p2 + δj2 ≤ 1 (5.17)

x2i,p2 + εj2,q ≤ 1 (5.18)

Intuitively Constraint 5.17 ensures that hj2 is not undersubscribed and Constraint 5.18 en-
sures that hj2 does not prefer r2i−1 to any member of M(hj2).

Again, for the special case in which pref (r2i−1, p1) = pref (r2i, p1) = hj2 we obtain the
following two constraints. For all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i)) such
that pref (r2i−1, p1) = pref (r2i−1, p2) where rmax is the poorer of r2i−1 and r2i according to
hospital hj2 with rank(hj2 , rmax) = qmax:

x2i,p2 + δj2 ≤ 1 (5.19)

x2i,p2 + εj2,qmax ≤ 1 (5.20)

Now, intuitively Constraint 5.19 ensures that hj2 is not undersubscribed and Constraint 5.20
ensures that hj2 does not prefer rmax to any member of M(hj2).

Stability 3(a) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to a
worse pair than hospital pair (hj1 , hj2) (where hj1 6= hj2) it must be the case that for some
t ∈ {1, 2}, hjt is full and prefers its worst assignee to r2i−2+t. Now we define the variables
αj,q such that if hj is full with assignees better than rank q then αj,q may take the value zero
or one. However, if hj is not full with assignees better than rank q then αj,q = 1. For all
j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new constraint such that:

αj,q ≥ 1−

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

cj
(5.21)

Thus we obtain the following constraint for all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1))

where hj1 = pref (r2i−1, p), hj2 = pref (r2i, p), hj1 6= hj2 , rank(hj1 , r2i−1) = q1 and
rank(hj2 , r2i) = q2:
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l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj1,q1 + αj2,q2 ≤ 2 (5.22)

Stability 3(b) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to a
worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj then hj must not have two
or more free posts available. For all j (1 ≤ j ≤ n2) define a new constraint such that:

γj ≥ 1−

l(hj)∑
q=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q)}

(cj − 1)
(5.23)

Thus, if hj has cj − 1 or more assignees then γj may take the value zero or one. However,
if hj has less than cj − 1 assignees then γj = 1. Thus we obtain the following constraint for
all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) where pref ((r2i−1, r2i), p) = (hj, hj):

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + γj ≤ 1 (5.24)

Stability 3(c) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to an
acceptable pair worse than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj then hj must not
prefer both r2i−1 and r2i to some assignee of hj in M and also have a single free post.

For a given hospital pair (hj, hj) acceptable to (r2i−1, r2i), let rmin be the better of r2i−1
and r2i according to hospital hj with rank(hj, rmin) = qmin. Analogously, let rmax be the
poorer of r2i−1 and r2i according to hospital hj with rank(hj, rmax) = qmax. Thus we
obtain the following constraint for all i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) where
pref ((r2i−1, r2i), p) = hj:

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + δj + εj,qmax ≤ 2 (5.25)

Stability 3(d)(i) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned to
a worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj then hj must not be
undersubscribed and prefer both members of ci to a resident who is a member of a couple
(r2k−1, r2k) for some k (1 ≤ k ≤ c, k 6= i) and both r2k−1 and r2k are in M(hj). Thus
we obtain the following constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such that
pref ((r2i−1, r2i), p) = (hj, hj) and pref ((r2k−1, r2k), p

′′) = (hj, hj) where max{rank(hj,

r2i−1), rank(hj, r2i)} < max{rank(hj, r2k−1), rank(hj, r2k)}.
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l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + x2k−1,p′′ ≤ 1. (5.26)

Stability 3(d)(ii) - In a stable matching M in I , if a couple ci = (r2i−1, r2i) is assigned
to a worse pair than (hj, hj) where M(r2i−1) 6= hj and M(r2i) 6= hj then hj must not be
undersubscribed and prefer the poorer of r2i−1 and r2i to two distinct members of M(hj).
For all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new constraint such that:

βj,q ≥ 1−

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj, q

′)}

(cj − 1)
(5.27)

Thus, if hj has cj − 2 or fewer assignees better than rank q then βj,q = 1. However, if hj
has more than cj − 2 assignees better than rank q then βj,q may take a value of zero or one.
For a given hospital pair (hj, hj) acceptable to (r2i−1, r2i), let rmax be the poorer of r2i−1
and r2i according to hospital hj with rank(hj, rmax) = qmax. Thus we obtain the following
constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1)) such that pref ((r2i−1, r2i), p) =

(hj, hj).

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + βj,qmax ≤ 1. (5.28)

Objective Function - A maximum cardinality stable matching M in I is a stable matching in
which the maximum number of residents are assigned taken over all of the stable matchings
admitted by I . To maximise the size of the stable matching found we apply the following
objective function:

max

n1∑
i=1

l(ri)∑
p=1

xi,p (5.29)
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Chapter 6

Empirical results from the IP models
for HRC

6.1 Introduction

In this chapter we present data from an empirical evaluation of an implementation of the
IP models for HRC described in Chapters 4 and 5 for finding a maximum cardinality stable
matching in arbitrary instances of HRC or reporting that no stable matching exists. We focus
on several properties, including the maximum and mean number of stable matchings admit-
ted by an instance; the time taken to find a maximum cardinality stable matching or report
that no stable matching exists; the size of a maximum cardinality stable matching admitted
by an instance; and the number of stable matchings admitted by an instance. We show how
these properties vary as we modify a range of parameters in the constructed instances, in-
cluding the number of residents in the instance; the percentage of the residents involved in
couples; the number of hospitals in the instance; and the lengths of the residents’ preference
lists. Further, we present data obtained from the application of the IP model for HRCT to real
world instances arising from the SFAS application for the years 2010, 2011 and 2012.

In Section 6.2 we present an overview of the experiments performed in this chapter. In
Section 6.2.1 we give details of the computational environment in which the experiments
were performed. Further, in Section 6.2.2 we describe details of the testing applied to the
implementation to attempt to increase confidence in the correctness of the implementation.
When creating random instances to solve in our experiments we sought to ensure that the
instances created reflected the properties of the instances arising in the SFAS application.

In Sections 6.2.3 and 6.2.4 we describe some of the properties of the SFAS instances that
were reflected in the properties of the random instances solved in these experiments. In
the SFAS application the individual residents forming part of a couple were each asked to
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express their own individual preference list over single hospitals. The process by which the
preference lists for the couples were derived from these individual lists is described in detail
in Section 6.2.3. Further in Section 6.2.4 we consider how best to distribute hospitals and
residents amongst each others’ preference lists by considering the notion of the popularity
of a given hospital to a given resident (or vice versa). Finally in Section 6.2.5 we show how
the preference lists of the agents may be reduced by identifying pairs who must be assigned
in any stable matching.

In Section 6.3 we present data obtained from applying the IP models described in Sections
4.3 and 5.4 to randomly generated instances of HRC reflecting the properties of the SFAS
application. We applied the IP models to 1000 randomly generated instances following the
experimental structure used by Biro et al./ in [12].

Finally, in Section 6.4 we examine the output when the IP model for HRCT described in
Section 4.5 is applied to real world instances arising from the SFAS application in the years
2010-2012.

6.2 Overview of HRC experiments

In the experiments in Section 6.3 we examine the output of the model as we vary the pa-
rameters of the instance under both MM-stability and BIS-stability. We applied the model to
randomly generated instances reflecting the properties of the instances arising in the SFAS
context and we now present data on the following outputs from the model as we vary the size
of the instance, the percentage of the residents involved in couples, the number of hospitals
in the instance and the length of the residents’ preference lists.

1. the maximum and mean number of stable matchings admitted by an instance;

2. the time taken to find maximum cardinality stable matchings or report that no stable
matching exists;

3. the size of a maximum cardinality stable matching admitted by an instance;

4. the number of stable matchings admitted by an instance;

6.2.1 Computational environment for HRC experiments

We ran experiments on a Java implementation of the IP models for HRC under MM-stability
and BIS-stability as described in Sections 4.3 and 5.4, applied to randomly-generated in-
stances of HRC reflecting the properties of the instances arising in the SFAS application. All
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experiments were carried out on a desktop PC with an Intel i5-2400 3.1Ghz processor, with
8Gb of memory running Windows 7. The IP solver used in all cases was CPLEX 12.4 and
the models were implemented in Java using CPLEX Concert.

6.2.2 Correctness testing of the implemented model

We implemented stability checkers for HRC under both MM-stability and BIS-stabilility in
Java. Every solution output by any of the IP models was tested for stability using these
stability checkers. In all cases the solutions output by the IP models were found to be stable
by the corresponding stability checker, i.e. no unstable matching was ever found by any
model under the appropriate stability definition.

To further test that our implementations correctly output a maximum cardinality stable match-
ing according to the implemented stability checker we used a brute force algorithm. The
algorithm recursively generated all feasible matchings admitted by an instance of HRC and
selected from amongst the feasible matchings found to be stable by our stability checker a
maximum cardinality stable matching, or reported that no stable matching existed if the sta-
bility checker found no stable matching. (Due to the inefficiency of this brute force algorithm
it may only be realistically applied to relatively small instances.) When solving hundreds of
thousands of HRC instances with random properties involving up to fifteen residents, our
implementation agreed with the brute force algorithm when reporting whether the instance
admitted a stable matching or not. Further, our implementation returned a stable matching of
the same size as a maximum cardinality stable matching output by the brute force algorithm
in all cases.

6.2.3 Projection of preference lists to mimic the format of the
SFAS instances

In the SFAS application, the joint preference list for a couple (ri, rj) was derived from the
submitted preference lists of the individual residents ri and rj . In order to reflect as accu-
rately as possible the properties of the instances arising in the SFAS application we con-
structed the joint preference lists of the couples in the randomly generated instances in the
experiments in the same fashion. Thus, the joint preference lists of the couples in the ran-
domly generated instances were constructed from the preferences of the two individual res-
idents involved in the couple as follows. For a couple (ri, rj), let s (respectively t) be the
length of the individual preference list of ri (respectively rj). For all the instances solved
in these experiments, the minimum length of preference list for an individual resident is five
and the maximum length is ten.
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Now, let a and b be two integers such that 1 ≤ a ≤ s and 1 ≤ b ≤ t. The rank pair (a, b)

represents the ath hospital on resident ri’s individual preference list and the bth hospital on
resident rj’s preference list and s and t represent the length of the individual preference list
of a and b respectively. Couple (ri, rj) finds acceptable all pairs (hp, hq) where ri finds hp
acceptable and rj finds hq acceptable (st pairs in total). These pairs were ordered as follows.
Let L = max{s, t}. Corresponding to every such acceptable pair (hp, hq), create an L-tuple
whose ith entry is the number of residents in the couple who obtain their ith choice (when
considering their individual lists) in the pair (hp, hq). The acceptable pairs on the couple’s
list are then listed according to a lexicographically increasing order on the reverse of the
corresponding L-tuples.

Observe that a lexicographically increasing order on the reverse of the L-tuples is not the
same as a lexicographically decreasing order on the L-tuples as demonstrated by the follow-
ing example. Let r1 and r2 be two individual residents who are part of the couple (r1, r2). We
now demonstrate the process by which the preference lists of are projected to form the joint
preference list of (r1, r2). Suppose that the residents’ individual preferences are as follows:

r1 : h3 h2 h1

r2 : h2 h1 h3

We construct the preference list for the couple (r1, r2) by creating a sequence of (r1, r2)’s
acceptable pairs as follows. The pair (h3, h2) has profile (2, 0, 0) since h3 is first in r1’s
preference list and h2 is first in r2’s preference list. Since no other hospital pair shares this
profile then (h3, h2) must be first in the projected joint preference list of (r1, r2). Next we
consider the two pairs (h2, h2) and (h3, h1) both of which have profile (1, 1, 0) since each
pair has exactly one member in first place and exactly one member in second place on the
residents’ preference lists. Since these two profiles cannot be strictly ordered lexicographi-
cally, we break this tie by randomly selecting one of these pairs to appear before the other in
the couples’ joint preference list – in this case we place (h2, h2) before (h3, h1).

Since we wish the pairs to be ordered in a lexicographically increasing order on the reverse
of the L-tuples we now consider pairs with profile (0, 2, 0) before those with profile (1, 0, 1).
This is different from a lexicographically decreasing order on the profiles in which we would
consider tuples with profile (1, 0, 1) before (0, 2, 0). Thus we consider the pair (h2, h1)

which has the profile (0, 2, 0). Since this is the only pair that has this profile, we place
(h2, h1) next in the couples’ joint preference list. We continue this process, breaking ties
where necessary to generate the joint preference list for (r1, r2) as follows. The preference
lists of the couples in the randomly generated instances in the experiments that follow are
constructed in a similar fashion.

(r1, r2) : (h3, h2) (h2, h2) (h3, h1) (h2, h1) (h3, h3) (h1, h2) (h1, h1) (h2, h3) (h1, h3)

(2, 0, 0) (1, 1, 0) (1, 1, 0) (0, 2, 0) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1) (0, 0, 2)
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6.2.4 The popularity of hospitals

In the data from the SFAS application it is clear that some hospitals receive far more ap-
plications than others. We consider that between two hospitals, the one receiving the most
applications is the more popular hospital. Clearly in most allocation processes hospitals are
not of uniform popularity. e.g. hospitals in the major urban areas are more popular than
those in more rural areas. So, how best do we distribute hospitals and residents amongst
each others’ preference lists to reflect this notion of popularity?

Typically, the most popular hospital in the SFAS context would have five to six times as
many applicants as the least popular, and the numbers of applicants to the other hospitals
were fairly uniformly distributed between the two extremes [38]. With this in mind the
instances in these experiments were generated with a skewed preference list distribution on
both sides. The process by which the preference lists were generated is explained in detail
below.

To generate the preference lists for the residents involved in an instance we use the following
process. Let n2 be the number of hospitals in the instance generated and let x be the hospital
popularity ratio. Firstly, the hospitals are assumed to be numbered in popularity order - say
Hospital n2 is the most popular and Hospital 1 the least popular. Suppose a resident is to
have a preference list of length p. Then we generate a sequence of p distinct hospitals, and
at each step in this process, Hospital n2 is x times more likely to be chosen than Hospital 1,
with the likelihood of the intermediate hospitals being interpolated linearly between the two
extremes.

To generate the preference list of a given resident we set up an array of size n2(n2 − 1)(x+

1)/2. Into this array are placed: n2 − 1 copies of Hospital 1; n2 − 1 + (x − 1) copies of
Hospital 2; n2 − 1 + 2(x − 1) copies of Hospital 3; . . .n2 − 1 + (n2 − 1)(x − 1) copies
of Hospital n2. To construct an applicants preference list we repeatedly generate a random
number s (0 ≤ s < n2(n2− 1)(x+ 1)/2) and add the hospital hj (1 ≤ j ≤ n2) at position s
in the array to the resident’s preference list. Subsequently all copies of hj are removed from
the array to ensure that the same hospital may not be chosen twice in an individual resident’s
preference list. A resident’s preference list of length p is formed by selecting p hospitals in
this fashion.

To generate the preference lists for the hospitals involved in an instance an adapted version
of this technique is applied. Let n1 be the number of residents, let c be the number of couples
and let y be the resident popularity ratio in the instance generated. If we were to assume that
the residents are numbered in popularity order where Resident n1 was the most popular and
Resident 1 was the least popular, then by applying the above mechanism Resident n1 would
be more likely to be chosen as the next resident in a hospital’s preference list. However, as
the instance generator assumes that the first 2c residents are involved in couples then this
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would imply that those residents involved in couples would be less likely to be chosen as the
next resident in an arbitrary hospital’s preference list as residents later in the list (who are
more likely to be single) are more popular.

We used the following adaptation to address this problem. For each instance generated we
construct a randomly ordered list of the n1 distinct residents. We further assume that the res-
idents in this list are in popularity order. Thus the nth1 resident in the list is the most popular
and the first resident in the list is the least popular. Suppose q residents have expressed a pref-
erence for a hospital. Then the program generates a sequence of the q acceptable residents,
and at each step in this process, the resident in position n1 in the randomly ordered list of resi-
dents is y times more likely to be chosen than the resident in position one, with the likelihood
of the intermediate residents being interpolated linearly between the two extremes. Since the
residents involved in couples are randomly positioned in the array, a resident involved in a
couple is no more or less likely to be highly popular than a single resident.

To generate the preference list of a given hospital we set up an array of size n1(n1 − 1)(y +

1)/2. Into this array are placed: n1−1 copies of the resident in first position in the randomly
ordered list; n1−1+(y−1) copies of the resident in second position in the randomly ordered
list; n1 − 1 + 2(y − 1) copies of the resident in third position in the randomly ordered list;
. . .n1 − 1 + (n1 − 1)(y − 1) copies of the resident in nth1 position in the randomly ordered
list. For each hospital hj we remove from the array all positions containing residents that
hj finds unacceptable. Let l be the length of the array which now contains only acceptable
residents.

To construct a hospital’s preference list, repeatedly generate a random number t (0 ≤ t < l)

and add the resident at position t in the array to the resident’s preference list. Subsequently
all copies of the resident at position t are removed from the array to ensure that the same
resident may not be chosen twice in a hospital’s preference list.

6.2.5 Pre-processing of instances before sending to the solver

Before constructing the model derived from a given instance of HRC we may reduce the
instance by removing some entries from the preference lists. We may remove all fixed as-

signments as described in Lemma 3.7.1 in Section 3.7. A fixed assignment in an instance I
of HRC is a pair of agents that must be assigned to each other in any stable matching in I .
We may iteratively satisfy all fixed assignments in I in linear time, thus reducing the size of
the problem that must be delivered to the solver.
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6.3 Experimental results with randomly generated in-

stances

6.3.1 HRC Experiment 1

In this first experiment, we report on data obtained as we increased the number of resi-
dents while maintaining a constant ratio of couples, hospitals and posts to residents. For
various values of x (100 ≤ x ≤ 1000) in increments of 30, 1000 randomly generated in-
stances were created containing x residents, 0.1x couples and 0.1x hospitals with x available
posts randomly distributed amongst the hospitals. The maximum and mean number of stable
matchings admitted by the instances is plotted in Figure 6.1 for all values of x. Figure 6.2
shows the mean size of a maximum cardinality stable matching for all values of x. The mean
time taken to find a maximum cardinality stable matching or report that no stable matching
existed in each instance is plotted in Figure 6.3 for all values of x. Figure 6.4 displays the
percentage of instances encountered that admitted a stable matching.

Figure 6.1 shows that the largest number of stable matchings admitted by the HRC instances
did not appear to be correlated with the number of residents involved in the instance. Figure
6.2 also shows that as the number of residents in the instances increased, the mean size of
a maximum cardinality stable matching in the instances increased. The data in Figure 6.3
shows that the mean time taken to find a maximum cardinality stable matching or report that
no stable matching existed increased as we increased the number of residents in the instance.
Figure 6.4 also shows that the percentage of HRC instances admitting a stable matching did
not appear to be correlated with the number of residents involved in the instance.
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Figure 6.1: HRC Experiment 1 - Number of stable matchings admitted by random instances.
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Figure 6.2: HRC Experiment 1 - Mean size of a maximum cardinality stable matching.



6.3. Experimental results with randomly generated instances 129

200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Number of Residents

T
im

e(
s)

BIS Stability
MM Stability

Figure 6.3: HRC Experiment 1 - Mean time to solve to optimality.
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6.3.2 HRC Experiment 2

In our second experiment, we report on results obtained as we increased the percentage of
residents involved in couples while maintaining the same total number of residents, hospitals
and posts. For various values of x (0 ≤ x ≤ 200) in increments of 25, 1000 randomly
generated instances were created containing 1000 residents, x couples (and hence 1000− 2x

single residents) and 100 hospitals with 1000 available posts that were randomly distributed
amongst the hospitals. The maximum and mean number of stable matchings admitted by
the instances is plotted in Figure 6.5 for all values of x. Figure 6.6 displays the mean size
of a maximum cardinality stable matching in the instances for all values of x. The mean
time taken to find a maximum cardinality stable matching or report that no stable matching
existed in each instance is plotted in Figure 6.7 for all values of x. Figure 6.8 displays the
percentage of instances encountered admitting a stable matching.

Figure 6.5 shows that there does not appear to be a strong correlation between the maxi-
mum number of stable matchings admitted in the instances and the number of couples in
the instances. However, the mean number of stable matchings admitted across the instances
appears to be broadly the same regardless of the number of couples in the instance.

The data in Figure 6.6 shows that as the percentage of the residents involved in couples in
the instances increased the mean size of a maximum cardinality stable matching admitted
by the instances tended to decrease under both MM-stability and BIS-stability. Further,
the mean size of a maximum cardinality stable matching admitted by the instances is very
similar under both stability definitions. We conjecture that, under both MM-stability and
BIS-stability, as the number of couples increases while the number of residents remains the
same, the problem becomes more tightly constrained as more constraints act on the couples
in the instance than on the single residents. Thus, there is a reduced likelihood of a given
matching being stable and hence the size of a maximum cardinality stable matching might
be smaller as shown in Figure 6.6.

The data in Figure 6.7 shows that the mean time taken to find a maximum cardinality stable
matching tended to increase as we increased the number of residents in the instances involved
in couples. The time taken to find a maximum cardinality stable matching in the instances
under each stability definition in instances with less than 150 couples is very similar. How-
ever as we reach 175 couples and above the mean time taken to find a maximum cardinality
stable matching increases more quickly under BIS-stability than under MM-stability. We
conjecture that as the number of couples in the instance increases and thus the number of
linked residents for whom a preference list must be projected increases (where a projected
preference list is necessarily of greater length than a single resident’s preference list), the
time taken to find a maximum cardinality stable matching increases.

Further, Figure 6.8 shows that the percentage of HRC instances admitting a stable matching
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Figure 6.5: HRC Experiment 2 - Number of stable matchings admitted by random instances.

under both stability definitions fell as the percentage of the residents in the instances involved
in couples increased under both stability definitions. However, the percentage of instances
admitting a stable matching appears to be consistently larger under BIS-stability than under
MM-stability for all instance with more than zero couples. As in the discussion of Figure
6.6, we conjecture that, under both MM-stability and BIS-stability, as the number of couples
increases while the number of residents remains the same, the problem becomes more tightly
constrained as more constraints act on the couples in the instance than on single residents.
Thus, there is a reduced likelihood of a given matching being stable.
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6.3.3 HRC Experiment 3

In our third experiment, we report on data obtained as we increased the number of hospitals
in the instance while maintaining the same total number of residents, couples and posts. For
various values of x (50 ≤ x ≤ 500) in increments of 25, 1000 randomly generated instances
were created consisting of 1000 residents in total, x hospitals, 100 couples (and hence 800

single residents) and 1000 available posts that were randomly distributed amongst the hos-
pitals. The maximum and mean number of stable matchings admitted by the instances is
plotted in Figure 6.9 for all values of x. The mean size of a maximum cardinality stable
matching for all values of x is displayed in Figure 6.10. The time taken to find a maxi-
mum cardinality stable matching or report that no stable matching existed in each instance
is plotted in Figure 6.11 for all values of x. Figure 6.12 charts the percentage of instances
encountered admitting a stable matching.

Figure 6.9 shows that there did not appear to be a strong correlation between the maximum
number of stable matchings admitted by the instances and the number of hospitals in the
instances. However, the mean number of stable matchings admitted across the instances
appeared to be broadly the same regardless of the number of hospitals in the instance.

The data in Figure 6.10 shows that as the number of hospitals in the instances increased, the
mean size of a maximum cardinality stable matching in the instances under both stability
definitions tended to decrease. This can be explained by the fact that, as the number of
hospitals increased but the residents’ preference list lengths and the total number of posts
remained constant, the number of posts per hospital decreased. Hence the total number of
posts among all hospitals on a resident’s preference list decreases and a hospital is less likely
to be available to be assigned a given resident.

Figure 6.11 shows that the mean time taken to find a maximum cardinality stable matching
tended to decrease under both stability definitions as we increased the number of hospitals
in the instances. We conjecture that this is because as the number of hospitals increases
while the residents’ preference list lengths and the total number of posts remain constant,
the length of a hospital’s preference list is likely to be shorter. Since every position in a
hospital’s preference list is constrained with every other position on that hospital’s preference
list, the number of positions constrained with each other on a given hospital’s preference list
decreases with the length of the hospital’s preference list. Thus, as the hospitals’ preference
lists become shorter, the model’s complexity reduces and the time taken to find a maximum
cardinality stable matching reduces. Finding a maximum cardinality stable matching under
BIS-stability took longer than finding a maximum cardinality stable matching under MM-
stability in all cases, with the difference being more marked when the number of hospitals in
the instance was smaller.

The data in Figure 6.12 also shows that the percentage of HRC instances admitting a stable
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Figure 6.9: HRC Experiment 3 - Number of stable matchings admitted by random instances.
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matching under each stability definition did not appear to alter in a significant fashion with
the number of hospitals involved in the instance. We conjecture that two effects may influ-
ence this outcome. As the number of hospitals increase, each hospital has a smaller number
of posts and is thus more likely to become full and hence less likely to be involved in a block-
ing pair due to being undersubscribed; however, this also has the effect that each hospital is
less likely to be available to be assigned a given resident to form a matching. Since there
is little change in the number of instances admitting a stable matching across the instances,
these two effects seem to offset each other in these experiments. It is however noticeable that
the percentage of instances admitting a stable matching was greater under BIS-stability than
under MM-stability in all cases.
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6.3.4 HRC Experiment 4

In our last experiment in this section we report on data obtained as we increased the length
of the individual preference lists for the residents in the instance while maintaining the same
total number of residents, couples, hospitals and posts. For various values of x (3 ≤ x ≤
11) in increments of one, 1000 randomly generated instances were created consisting of
1000 residents in total, 100 hospitals, 100 couples (and hence 800 single residents) and 1000

available posts that were randomly and randomly distributed amongst the hospitals. The
maximum and mean number of stable matchings admitted by the instances are plotted in
Figure 6.13 for all values of x. Figure 6.14 displays the mean size of a maximum cardinality
stable matching for all values of x. The mean time taken to find a maximum cardinality stable
matching or report that no stable matching existed in each instance is plotted in Figure 6.15
for all values of x. Figure 6.16 displays the percentage of instances encountered admitting a
stable matching.

Figure 6.13 shows that the maximum number of stable matchings admitted across the in-
stances increased as we increased the length of the individual residents’ preference lists in
the instances. The mean number of stable matchings admitted under both stability defini-
tions also increased slightly. This can perhaps be explained by the fact that as the length of
the individual residents’ preference lists increased, a resident becomes more likely to find
acceptable some hospital that has an available post and so becomes more likely to be able to
be assigned.

The data in Figure 6.14 shows that the length of the individual residents’ preference lists
in the instances increased, the mean size of a maximum cardinality stable matching in the
instances under both stability definitions tends to increase. We conjecture that as the length
of the individual residents’ preference lists increase, a resident becomes more likely to find
acceptable a hospital that has an available post and so is more likely to be able to be assigned.
However, the rate of increase of this effect in terms of producing larger matchings appears
to slow as we approach higher values for the length of the residents’ preference lists in the
instance. This can be explained by the fact that, as the length of the individual residents’
preference lists increase at these higher values, the hospitals added to the end of the resi-
dents’ preference list become less decisive in determining the size of the resulting maximum
cardinality stable matching and so their effect on the size of a maximum cardinality stable
matching reduces.

Figure 6.15 shows that the mean time taken to find a maximum cardinality stable matching
tended to increase as we increased the length of the individual residents’ preference lists
in the instances. Finding a maximum cardinality stable matching under BIS-stability took
longer than finding a maximum cardinality stable matching under MM-stability in all cases,
with the time taken increasing more quickly under BIS-stability then under MM-stability.
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Figure 6.13: HRC Experiment 4 - Number of stable matchings admitted by random instances.
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We conjecture that as we increase the length of the residents’ preference lists the size of the
resulting model increases and hence the time taken to find an optimal solution increases.

The data in Figure 6.16 also shows that the percentage of HRC instances admitting a sta-
ble matching under each stability definition does not appear to be correlated with the length
of the individual residents’ preference lists in the instance. We conjecture that this is be-
cause in a maximum cardinality stable matching a great deal of the hospitals will be fully
subscribed with residents who rank hospitals early in their preference list. Thus adding ad-
ditional preferences for hospitals which are likely to already be fully subscribed to the end
of the residents’ preference lists will not increase the likelihood of a blocking pair. Hence
they will not affect the likelihood of the instance admitting a stable matching. It is however
noticeable that, as in the previous experiments, the percentage of instances admitting a stable
matching was greater under BIS-stability than under MM-stability in all cases.
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6.4 HRCT IP models applied to instances arising from

the SFAS application

We further extended our implementation in the fashion described in Section 4.5 to find max-
imum cardinality stable matchings in instances of HRCT and were able to find optimal solu-
tions admitted by the instances arising from the real data obtained from the SFAS application
for the years 2010, 2011 and 2012.

In Section 6.4.1 we discuss the difficulties in ensuring that the instances generated from
the individual residents’ preferences are exactly the same on every occasion. We demon-
strate that the non-deterministic nature of the process by which the instances of HRCT are
constructed from the individual residents’ preference lists makes this very challenging. In
Section 6.4.2 we compare the output from the IP models under both MM-stability and BIS-
stability with that of the BIS-heuristic as applied in the SFAS application [12]. This heuristic
constructed a BIS-stable matching but could not guarantee that the matching was of maxi-
mum cardinality.

6.4.1 Comparing solved instances

We cannot guarantee that the instances solved by the BIS-heuristic as part of the SFAS
application and the instances solved by the IP models in these experiments correspond to
one another directly for any of the three years shown. We demonstrate this by considering
the process by which an instance of HRC is constructed from the expressed preferences of
the individual residents.

The instance solved by the IP models projects the preference lists of the couples as described
in Section 6.2.3 in a process that is intended to mirror that applied in the SFAS application.
As described in Section 6.2.3 the couples did not express a joint preference list in the SFAS
process, rather we generate a joint preference list for the couples from the individual pref-
erence lists that are expressed by the two residents involved in the couples. However, since
we generate a strict ordering of hospital pairs in the couples’ preference lists by breaking
ties in an arbitrary fashion within a lexicographically increasing order on the reverse of the
L-tuples as described in Section 6.2.3, the process by which the instance is created is non-
deterministic. Thus, any two instances constructed from the same sets of initial individual
residents’ preferences need not be exactly the same. Hence, any confirmation that the in-
stance solved by the BIS-heuristic at the time in each of the years concerned is one and the
same instance as that solved by the IP solver in these experiments seems unlikely.

Further, an additional process was applied in the construction of the SFAS instances at the
time that was not applied to the instances solved by the IP models in these experiments. This
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additional process sought to remove so called incompatible hospital pairs from the couples’
joint preference lists. Incompatible hospital pairs are pairs that the administrator of the
scheme had deemed unacceptable for reasons specific to the scheme. These incompatible
pairs were removed from the joint preference lists of the couple in the instance solved by
the BIS-heuristic at the time. The compatibility matrices for the three years required were
not available in these experiments and thus in the instances solved by the IP models these
incompatible hospital pairs were not removed from the joint preference lists of the couples.
Thus the instances solved by the BIS-heuristic and instances solved by the IP models are not
precisely the same.

6.4.2 Results from 2010, 2011 and 2012 SFAS instances

Table 6.5 shows: (i) the size of each maximum cardinality stable matching obtained from the
IP models for MM-stability and BIS-stability, (ii) the size of the each BIS-stable matching
found by the BIS heuristic, and (iii) the time taken to solve the IP models for each SFAS
application dataset in the years 2010, 2011 and 2012.

In 2012 the BIS heuristic found a BIS-stable matching of size 683. The IP model under
BIS-stability found that a maximum cardinality BIS-stable matching was of size 682 and the
IP model under MM-stability found that a maximum cardinality MM-stable matching was
of size 681. Clearly the data for 2012 seems inconsistent – the BIS-stable matching found by
the BIS-heuristic is larger in size than the maximum cardinality BIS-stable matching found
by the IP model under BIS-stability. However as discussed in Section 6.4.1 this may be due
to small differences in the instances solved. Indeed the matching output in 2012 by the BIS-
heuristic was found to be BIS-stable in the instance solved by the BIS-heuristic; however,
this matching was found to be BIS-unstable in the instance solved by the IP model according
to our implemented BIS-stability checker.
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Chapter 7

Empirical results from the IP models
for MIN BP HRC

7.1 Introduction

In this chapter we present data from an empirical evaluation of an implementation of the IP
model for finding a maximum cardinality ‘most stable’ matching in an instance of MIN BP

HRC under MM-stability described in Chapter 4, and an implementation of the corresponding
MIN BP HRC model under BIS-stability derived from the HRC model presented in Chapter 5.
The models in these experiments each find a maximum cardinality ‘most stable’ matching
in an arbitrary instance of MIN BP HRC under the corresponding stability definition. We
consider the following properties: the time taken to find a maximum cardinality ‘most stable’
matching; the size of a maximum cardinality ‘most stable’ matching admitted by an instance;
and the number of blocking pairs admitted by a ‘most stable’ matching. We show how these
properties vary as we modify a range of parameters in the constructed instances, including
the number of residents in the instance; the percentage of residents involved in couples; the
number of hospitals in the instance; and the lengths of the residents’ preference lists.

In Section 7.2 we present an overview of the experiments performed in this chapter. In Sec-
tion 7.3 we give details of the computational environment in which the experiments were
performed. Further, in Section 7.2.2 we describe details of the testing applied to the imple-
mentation to attempt to increase confidence in the correctness of the implementation.

In the experiments in this chapter, as in the experiments in Chapter 6 we sought to reflect the
properties of instances arising in the SFAS application. The randomly generated instances
used in these experiments differ little from those used in the experiments in Chapter 6 –
these minor differences are detailed in Section 7.2.3. In Section 7.3 we present data from
an empirical evaluation of the MIN BP HRC IP models described here to randomly generated
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instances of HRC reflecting the properties of the SFAS application. As in Chapter 6 we
applied the model to 1000 randomly generated instances following the experimental structure
used by Biro et al./ in [12].

7.2 Overview of the MIN BP HRC experiments

To find a ‘most stable’ matching in an instance I of HRC we apply the following procedure.
We first use the corresponding HRC IP model to find a maximum cardinality stable matching
M in I if such a matching exists. Clearly, if M exists, then M is a maximum cardinality
‘most stable’ matching. However, if I does not admit a stable matching, then we apply the
MIN BP HRC model to I . In this case we apply a lower bound of one on the number of
blocking pairs in a ‘most stable’ matching in I since we know no stable matching exists.

In the experiments that follow we examine the output of the model as we vary the parameters
of the instance under both MM-stability and BIS-stability. We applied the model to randomly
generated instances reflecting the properties of the instances arising in the SFAS context and
we present data on the following outputs from the model as we vary the size of the instance,
the percentage of the residents involved in couples, the number of hospitals in the instance
and the length of the residents’ preference lists:

1. the time taken to find maximum cardinality ‘most stable’ matchings;

2. the size of a maximum cardinality ‘most stable’ matching admitted by an instance;

3. the number of blocking pairs admitted by a ‘most stable’ matching;

7.2.1 Computational environments for MIN BP HRC experiments

We ran experiments on a Java implementation of the IP models as described in Section 4
applied to both randomly-generated and real data. All experiments were carried out on a
desktop PC with an Intel i5-2400 3.1Ghz processor, with 8Gb of memory running Windows
7. The IP solver used in all cases was CPLEX 12.4 and the model was implemented in Java
using CPLEX Concert.

7.2.2 Correctness testing of the implemented model

We implemented stability counters for HRC under both MM-stability and BIS-stabilility in
Java. Unlike a stability checker that returns a simple ‘yes’ or ‘no’ as to whether a matching is
stable, a stability counter returns an integer indicating how many blocking pairs are admitted
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by the matching. The number of blocking pairs admitted by every solution output by any of
the IP models was tested using these stability counters. In all cases the number of blocking
pairs returned by a solution to the IP models was found to correspond exactly to the number
of blocking pairs reported by the corresponding stability counter.

To further test that our implementations correctly output a maximum cardinality ‘most sta-
ble’ matching according to the implemented stability counter we used a brute force algo-
rithm. The algorithm recursively generated all possible matchings admitted by an instance
of MIN BP HRC and selected a matching of maximum cardinality taken over all of the match-
ings found by our stability counter to admit the minimum number of blocking pairs. Due to
the inefficiency of this algorithm it may only be realistically applied to relatively small in-
stances. When solving hundreds of thousands of randomly generated MIN BP HRC instances
involving up to fifteen residents, our implementation agreed with the brute force algorithm
and always returned a ‘most stable’ matching of the same size and admitting the same num-
ber of blocking pairs as a maximum cardinality ‘most stable’ matching output by the brute
force algorithm.

7.2.3 Construction of random instances MIN BP HRC

The random instances used in the experiments presented in the following sections were gen-
erated as described in Sections 6.2.3 and 6.2.4. However, unlike in the HRC experiments de-
scribed in Section 6 we do not remove any fixed assignments before presenting the instance
to the solver leaving open the possibility that a ‘most stable’ matching may be a matching in
which a fixed assignment is not satisfied.

7.3 Experiments with randomly generated instances

7.3.1 MIN BP HRC Experiment 1

In this first experiment, we report on data obtained as we increased the number of residents
while maintaining a constant ratio of couples, hospitals and posts to residents. For various
values of x (50 ≤ x ≤ 150) in increments of 20, 1000 randomly generated instances were
created containing x residents, 0.1x couples (and hence 0.8x single residents) and 0.1x hos-
pitals with x available posts that were randomly distributed amongst the hospitals. Each
resident’s preference list contained a minimum of three and a maximum of five hospitals.
The mean time taken to find a maximum cardinality ‘most stable’ matching is displayed in
Figure 7.1 for all values of x. Further, the mean time taken to find a maximum cardinality
‘most stable’ matching for only those instances that did not admit a stable matching is also
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displayed in Figure 7.1 for all values of x. Figure 7.2 displays the mean size of the maxi-
mum cardinality ‘most stable’ solution for all values of x and also displays the mean size of
a maximum cardinality ‘most stable’ matching taken over only those instances admitting no
stable matching for all values of x. Figure 7.3 displays the mean and maximum number of
blocking pairs admitted by the instances for all values of x.

60 80 100 120 140

0
10

20
30

40
50

Number of Residents

T
im

e(
s)

Mean MM−stability (All instances) 
Mean MM−stability (Solvable instances) 
Mean MM−stability (Unsolvable instances) 
Mean BIS−stability (All instances)
Mean BIS−stability (Solvable instances)
Mean BIS−stability (Unsolvable instances)

Figure 7.1: MIN BP HRC Experiment 1 - Time taken to find a maximum cardinality ‘most
stable’ matching.

The data in Figure 7.1 show that the mean time taken to find a maximum cardinality ‘most
stable’ matching tends to increase as we increase the number of residents in the instances.
The increase is more pronounced for those instances not admitting a stable matching. In-
stances admitting a stable matching are solved by the HRC IP model and are not considered
by the MIN BP HRC model. The instances not admitting a stable matching must be solved
by the MIN BP HRC IP model and this model takes much longer to find an optimal solution
than the corresponding HRC IP model. The time taken to find a maximum cardinality ‘most
stable’ matching for those instances that do not admit a stable matching increases much more
quickly under MM-stability than under BIS-stability.

The data in Figure 7.2 show that as the size of the instance increased the mean size of a
maximum cardinality ‘most stable’ matching admitted by the instances tended to increase
under both MM-stability and BIS-stability. However, the mean size of a maximum cardi-
nality ‘most stable’ matching for those instances not admitting a stable matching is greater
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Figure 7.2: MIN BP HRC Experiment 1 - Mean size of a maximum cardinality ‘most stable’
matching.

in all cases than the mean size of a maximum cardinality ‘most stable’ matching for those
instances that admitting a stable matching. We conjecture that the set of matchings admitting
exactly zero blocking pairs is likely to be smaller than the set of matchings admitting more
than zero blocking pairs. Hence the latter set is more likely to admit a matching with a larger
maximum cardinality ‘most stable’ matching.

The data in Figure 7.3 show that the maximum number of blocking pairs in a maximum
cardinality ‘most stable’ matching is exactly one for all of the instance sizes considered.
The mean number of blocking pairs in a maximum cardinality ‘most stable’ matching does
not appear to alter significantly with the size of the instance. However, the mean number
of blocking pairs in a maximum cardinality ‘most stable’ matching is greater under MM-
stability than under BIS-stability. This can be explained by observing that we found in
Chapter 6 that the IP model for HRC is slightly more likely to find a stable matching under
BIS-stability than under MM-stability.
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7.3.2 MIN BP HRC Experiment 2

In our second experiment, we report on results obtained as we increased the percentage of
residents involved in couples while maintaining the same total number of residents, hospitals
and posts. For various values of x (0 ≤ x ≤ 30) in increments of 5, 1000 randomly generated
instances were created containing 100 residents, x couples (and hence 100− 2x single resi-
dents) and 10 hospitals with 1000 available posts that were randomly distributed amongst the
hospitals. Each resident’s preference list contained a minimum of three and a maximum of
five hospitals. The mean time taken to find a maximum cardinality ‘most stable’ matching is
displayed in Figure 7.4 for all values of x alongside the mean time taken to find a maximum
cardinality ‘most stable’ matching for only those instances admitting a stable matching for
all values of x. Figure 7.5 displays the mean size of the maximum cardinality ‘most stable’
matching for all values of x and also displays the mean size of a maximum cardinality ‘most
stable’ matching taken over only those instances that did not admit a stable matching for all
values of x. Figure 7.6 displays the mean and maximum number of blocking pairs admitted
by the instances for all values of x.
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Figure 7.4: MIN BP HRC Experiment 2 - Time taken to find a maximum cardinality ‘most
stable’ matching.

The data in Figure 7.4 shows that the mean time taken to find a maximum cardinality ‘most
stable’ matching tended to increase as we increased the number of residents involved in
couples in the instances. Again, the increase is more pronounced for those instances that not
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Figure 7.5: MIN BP HRC Experiment 2 - Mean size of a maximum cardinality ‘most stable’
matching.

admitted a stable matching. This can be understood by observing that instances admitting
a stable matching are solved by the HRC IP model and are not considered the MIN BP HRC

model and the MIN BP HRC IP model takes much longer to find an optimal solution than the
HRC IP model in an arbitrary instance. The time taken to find a maximum cardinality ‘most
stable’ matching for those instances that did not admit a stable matching increased much
more quickly under MM-stability than under BIS-stability.

The data in Figure 7.5 shows that as the number of residents involved in couples increased
the mean size of a maximum cardinality ‘most stable’ matching in the instances under both
MM-stability and BIS-stability tended to decrease. When the number of couples is non-
zero, the mean size of a maximum cardinality ‘most stable’ matching for those instances that
did not admit a stable matching was greater than the mean size of a maximum cardinality
‘most stable’ matching for those instances that admitted a stable matching. We explain this
variance by our conjecture that the set of matchings admitting exactly zero blocking pairs
is likely to be smaller than the set of matchings admitting greater than zero blocking pairs.
Hence the latter set is more likely to admit a matching with a larger maximum cardinality
‘most stable’ matching.

The data in Figure 7.6 shows that the maximum number of blocking pairs admitted by a max-
imum cardinality ‘most stable’ matching is exactly one for all cases considered other than
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Figure 7.6: MIN BP HRC Experiment 2 - Mean and maximum number of blocking pairs in a
‘most stable’ matching.

the case in which there are no couples in the instance. Clearly, an instance of HRC with no
couples is simply an instance of HR and thus will always admit a stable matching. The mean
number of blocking pairs in a maximum cardinality ‘most stable’ matching increased as the
number of residents involved in couples increased. This can be understood by observing that
as we increase the number of residents involved in couples in an instance of HRC the instance
is less likely to admit a stable matching and thus a maximum cardinality ‘most stable’ match-
ing is more likely to admit one or more blocking pairs. Again, the mean number of blocking
pairs in a maximum cardinality ‘most stable’ matching is greater under MM-stability than
under BIS-stability. This can be explained by observing that an instance of HRC is slightly
more likely to admit a stable matching under BIS-stability than under MM-stability.
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7.3.3 MIN BP HRC Experiment 3

In our third experiment, we report on data obtained as we increased the number of hospitals
in the instance while maintaining the same total number of residents, couples and posts. For
various values of x (10 ≤ x ≤ 100) in increments of 10, 1000 randomly generated instances
were created containing 100 residents, 10 couples (and hence 80 single residents) and x hos-
pitals with 1000 available posts that were randomly distributed amongst the hospitals. Each
resident’s preference list contained a minimum of three and a maximum of five hospitals.
The mean time taken to find a maximum cardinality ‘most stable’ matching is displayed in
Figure 7.7 for all values of x alongside the mean time taken to find a maximum cardinality
‘most stable’ matching for only those instances that did not admit a stable matching for all
values of x. Figure 7.8 displays the mean size of the maximum cardinality ‘most stable’
solution for all values of x and also displays the mean size of a maximum cardinality ‘most
stable’ matching taken over only those instances that did not admit a stable matching for all
values of x. Figure 7.9 displays the mean and maximum number of blocking pairs admitted
by the instances for all values of x.
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Figure 7.7: MIN BP HRC Experiment 3 - Time taken to find a maximum cardinality ‘most
stable’ matching.

The data in Figure 7.7 shows that the mean time taken to find a maximum cardinality ‘most
stable’ matching tended to decrease as we increased the number of hospitals in the instances.
As in the previous MIN BP HRC experiments, the mean time taken to find a ‘most stable’
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Figure 7.8: MIN BP HRC Experiment 3 - Mean size of a maximum cardinality ‘most stable’
matching.

matching is greater for instances that did not admit a stable matching as instances that admit
a stable matching are solved by the HRC model only and are not considered by the MIN BP

HRC model. The mean time taken to find a maximum cardinality ‘most stable’ matching
for those instances that did not admit a stable matching is consistently greater under MM-
stability than under BIS-stability.

The data in Figure 7.8 shows that as the number of hospitals in the instance increased the
mean size of a maximum cardinality ‘most stable’ matching in the instances under both
MM-stability and BIS-stability tended to decrease. However, the mean size of a maximum
cardinality ‘most stable’ matching for those instances that did not admit a stable matching is
greater in all cases than the mean size of a maximum cardinality ‘most stable’ matching for
those instances that did admit a stable matching. As in the previous experiments we explain
this variance by our conjecture that the set of matchings admitting exactly zero blocking pairs
is likely to be smaller than the set of matchings admitting greater than zero blocking pairs
and hence the latter set is more likely to admit a matching with a larger maximum cardinality
‘most stable’ matching.

The data in Figure 7.9 shows that the maximum number of blocking pairs in a maximum
cardinality ‘most stable’ matching is either one or two for all of the instances considered.
This finding differs from the other experiments in this chapter – the maximum number of
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Figure 7.9: MIN BP HRC Experiment 3 - Mean and maximum number of blocking pairs in a
‘most stable’ matching.

blocking pairs in a maximum cardinality ‘most stable’ matching was exactly one in every
other experiment presented in this chapter. The mean number of blocking pairs in a maxi-
mum cardinality ‘most stable’ matching does not appear to alter as the number of hospitals in
the instance increased. Again, the mean number of blocking pairs in a maximum cardinality
‘most stable’ matching is greater under MM-stability than under BIS-stability. However, this
difference is less pronounced where the number of hospitals in the instance is larger.
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7.3.4 MIN BP HRC Experiment 4

In our last experiment, we report on data obtained as we increased the length of the individual
preference lists for the residents in the instance while maintaining the same total number of
residents, couples, hospitals and posts. For various values of x (2 ≤ x ≤ 6), 1000 randomly
generated instances were created containing 100 residents, 10 couples (and hence 80 single
residents) and 10 hospitals with 1000 available posts that were randomly distributed amongst
the hospitals. Each resident’s preference list contained exactly x hospitals. The mean time
taken to find a maximum cardinality ‘most stable’ matching is displayed in Figure 7.10 for
all values of x alongside the mean time taken to find a maximum cardinality ‘most stable’
matching for those instances that did not admit a stable matching for all values of x. Figure
7.11 displays the mean size of the maximum cardinality ‘most stable’ matching for all values
of x and also displays the mean size of a maximum cardinality ‘most stable’ matching taken
over only those instances that did not admit a stable matching for all values of x. Figure 7.12
displays then mean and maximum number of blocking pairs admitted by the instances for all
values of x.
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Figure 7.10: MIN BP HRC Experiment 4 - Time taken to find a maximum cardinality ‘most
stable’ matching.

The data in Figure 7.10 shows that the mean time taken to find a maximum cardinality ‘most
stable’ matching tended to increase as we increased the length of the residents’ preference
lists in the instances. As in the previous MIN BP HRC experiments, the mean time taken to
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Figure 7.11: MIN BP HRC Experiment 4 - Mean size of a maximum cardinality ‘most stable’
matching.

find a ‘most stable’ matching is greater for instances that did not admit a stable matching
as instances admitting a stable matching are solved by the HRC IP model only and are not
considered by the MIN BP HRC model. The mean time taken to find a maximum cardinality
‘most stable’ matching for those instances that did not admit a stable matching is consistently
greater under MM-stability than under BIS-stability and this difference is more pronounced
for longer resident preference lists.

The data in Figure 7.11 shows that as the length of the residents’ preference lists increased
the mean size of a maximum cardinality ‘most stable’ matching admitted by the instances
under both MM-stability and BIS-stability tended to increase. However, the mean size of a
maximum cardinality ‘most stable’ matching for those instances that did not admit a stable
matching is greater in all cases than the mean size of a maximum cardinality ‘most stable’
matching for those instances that admitted a stable matching. As in the previous experi-
ments we explain this variance by our conjecture that the set of matchings admitting exactly
zero blocking pairs is likely to be smaller than the set of matchings admitting greater than
zero blocking pairs and thus the latter set is more likely to admit a matching with a larger
maximum cardinality ‘most stable’ matching.

The data in Figure 7.12 shows that the maximum number of blocking pairs in a maximum
cardinality ‘most stable’ matching is exactly one for all of the instance considered. The mean



7.3. Experiments with randomly generated instances 166

2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Pref List Length

N
um

be
r 

of
 b

lo
ck

in
g 

pa
irs

Maximum MM−stability
Mean MM−stability
Maximum BIS−stability
Mean BIS−stability

Figure 7.12: MIN BP HRC Experiment 4 - Mean and maximum number of blocking pairs in
a ‘most stable’ matching.

number of blocking pairs in a maximum cardinality ‘most stable’ matching does not appear
to alter significantly as the length of the residents’ preference lists increased. Again, the mean
number of blocking pairs in a maximum cardinality ‘most stable’ matching is consistently
greater under MM-stability than under BIS-stability.
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Chapter 8

Integer programming models for HR

with score limits

8.1 Introduction

In this chapter we describe the first IP models for HR SLT variants with upper and lower quo-
tas and also the HR SLT variant in which residents may express preferences over unordered
pairs of hospitals. These matching problems are motivated by applications in the Hungarian
Higher Education scheme. In Sections 8.2, 8.3 and 8.4 we present and prove the correctness
of three IP models for finding a minimal set of H-stable score limits in instances of HR SLT

variants. In Section 8.2 we present and prove the correctness of an IP model for finding a
minimal set of H-stable score limits in an instance of HR SLT, in Section 8.3 we present an
IP model for finding a minimal set of H-stable score limits in an instance the Hospitals /

Residents problem with Stable Score Limits, Ties and Paired Applications, and in Section 8.4
we present an IP model for finding a minimal set of H-stable score limits in an instance of
the Hospitals / Residents problem with Stable Score Limits, Ties and Common Upper Quo-

tas. By construction these models can only output a minimal set of H-stable score limits in
an instance of the corresponding problem – a minimal set of H-stable score limits has the
property that the sum over the score limits in the set is minimal taken over all of sets of stable
score limits admitted by the instance. These models are designated Type A models.

Subsequently, we present and prove the correctness of two models for finding a set of H-
stable score limits in an instance of an HR SLT variant that may have desirable properties
other than minimality. By amending the structure of the Type A models we can create a new
type of model in which we can apply an objective function that allows us to choose some
desirable property other than minimality for an optimal set of H-stable score limits output by
the model – models of this new type are designated Type B models. We describe each of the
models and in each case apply an objective function that seeks to find a set of H-stable score
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limits t̂ in an instance such that the assignment induced from t̂ is of maximum cardinality
taken over all of the matchings induced from the sets of H-stable score limits admitted by
the instance. (By appropriate choice of objective functions these models could be made to
output solutions with other desirable properties.) In Section 8.5 we present an IP model for
finding a set of H-stable score limits in arbitrary instance of HR SLT such that the assignment
induced from the set of H-stable score limits is of maximum cardinality taken over all of the
matchings induced from the sets of H-stable score limits in the instance. In Section 8.6 we
present an IP model for finding a set of H-stable score limits in an arbitrary instance of the
Hospitals / Residents problem with Ties, Lower Quotas and Stable Score Limits such that the
assignment induced from the set of H-stable score limits is of maximum cardinality taken
over all of the matchings induced from the sets of H-stable score limits in the instance.

8.2 A Type A IP model for HR SLT

We describe the variables and constraints in the IP model for finding a minimal set of H-
stable score limits in an instance of HR SLT in Sections 8.2.1 and 8.2.2 respectively and in
Section 8.2.3 we prove the correctness of the model.

8.2.1 Variables in HR SLT A

Let I be an instance of HR SLT as described in Section 2.7. Let J be the following IP
formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)), define a variable xi,p
such that:

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri)}. Let pref (ri, p) denote the hospital at position
p of ri’s preference list where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Let Y = {y1, y2 . . . , yn2} be a
set of variables where intuitively yj is the score limit of hj in J for 1 ≤ j ≤ n2.

8.2.2 Constraints in HR SLT A

The following constraint simply confirms that each variable xi,p must be binary valued for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

xi,p ∈ {0, 1} (8.1)
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As each resident ri ∈ R is either assigned to a single hospital or is unassigned, we introduce
the following constraint for all i (1 ≤ i ≤ n1):

l(ri)∑
p=1

xi,p ≤ 1 (8.2)

Since a hospital hj may be assigned to at most cj residents, xi,p = 1 where pref (ri, p) = hj

for at most cj residents. We define the following constraint for all j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≤ cj (8.3)

The following constraint ensures that any ri assigned to a hospital hj achieves a score of at
least yj . Thus, for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we define the following
constraint where pref (ri, p) = hj:

yj ≤ (1− xi,p)(s̄j + 1) + si,j (8.4)

The following constraint ensures that any ri who is not assigned to a hospital hj either does
not achieve the score limit at hj (and thus si,j < yj) or is assigned to a better hospital. Thus,
for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where
pref (ri, p) = hj:

si,j + 1 ≤ (s̄j + 1)

p∑
p′=1

xi,p′ + yj (8.5)

Objective Function: A minimal set of H-stable score limits in I is a set of H-stable score
limits in I where

∑
t∈t̂ t is minimal taken over all the sets of H-stable score limits in I . We

apply the following objective function to ensure that an optimal solution meets this criterion:

min

n2∑
j=1

yj (8.6)

8.2.3 Proof of correctness of the constraints in HR SLT A

We now establish the correctness of the IP model presented in Sections 8.2.1 and 8.2.2.

Theorem 8.2.1. Given an instance I of HR SLT, let J be the corresponding IP model as

defined in Sections 8.2.1 and 8.2.2. A minimal set of H-stable score limits t̂ in I and the

assignment induced in I from t̂ are exactly equivalent to an optimal solution to J .
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Proof. First, let I be an instance of HR SLT. Let t̂ be a minimal set of H-stable score limits
in I and let M be the assignment in I induced from t̂. We form an assignment of values
to the variables 〈 x, y 〉 in J as follows. Initially xi,p = 0 for all i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)), then for each (ri, hj) ∈ M , xi,p = 1 where hj = pref (ri, p). For each
hj ∈ H , set yj ∈ Y to the score limit at hospital hj in I .

We now show that 〈 x, y 〉 satisfies all of the constraints in the model. As each resident has
a single partner or is unassigned (but not both), for a given i (1 ≤ i ≤ n1), it follows that
xi,p = 1 for at most one value of p in the range 1 ≤ p ≤ l(ri), and for each other value of p in
the same range, xi,p = 0. Hence, Constraints 8.1 and 8.2 are satisfied in 〈 x, y 〉. Since each
hospital is assigned in M to at most cj acceptable residents, Constraint 8.3 is also satisfied
in 〈 x, y 〉. Since M is the assignment in I induced from t̂, each resident is assigned in M
to the first hospital on his preference list at which he meets the score limit. Thus Constraints
8.4 and 8.5 must be satisfied in 〈 x, y 〉.

Since t̂ is a set of H-stable score limits in I then no hospital in I can reduce its score limit
further without exceeding its capacity. Further since t̂ is a minimal set of H-stable score
limits in I , it follows that

∑
t∈t̂ t is minimal over the sets of H-stable score limits in I and

thus
∑

y∈Y y is minimal taken over the feasible solutions in J . Hence the objective function
in Constraint 8.6 is satisfied. Thus we have that a minimal set of H-stable score limits t̂ in I
and the assignment induced from t̂ give rise to an optimal solution to J .

Conversely, consider an optimal solution 〈 x, y 〉 to J , it follows that
∑

y∈Y y is minimal
taken over all feasible solutions to J . From such a solution we form in I a set of pairs, M ,
and a set of score limits t̂ as follows. Initially let M = ∅. For each i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)), if xi,p = 1, then add (ri, hj) to M where hj = pref (ri, p). Further, for
each yj ∈ Y set the score limit at hospital hj in t̂ to yj ∈ Y .

As 〈 x, y 〉 satisfies Constraints 8.1, 8.2 and 8.3, each resident in M must have exactly
one partner or be unassigned (but not both) and each hospital hj in M must have at most cj
assignees. We now show that t̂ is a set of H-stable score limits in I . Assume an applicant ri is
assigned to a hospital hj at which he does not achieve the score limit where pref (ri, p) = hj .
Hence, both (1− xi,p)s̄j = 0 and further si,j < yj . Thus Constraint 8.4 is not satisfied in 〈 x,
y 〉, a contradiction. Now assume that some ri is not assigned to a hospital hj at which they
achieved the score limit. Further assume that ri is not assigned to a better hospital than hj .
Hence, (s̄j + 1)

∑p
p′=1 xi,p′ = 0 and si,j ≥ yj where pref (ri, p) = hj . Thus Constraint 8.5 is

not satisfied in 〈 x, y 〉, a contradiction.

Since the objective function Constraint 8.6 is satisfied in 〈 x, y 〉, no hospital may reduce its
score limit without exceeding its capacity and thus t̂ is a set of H-stable score limits in I;
moreover, M is the assignment in I induced from t̂. Further, the objective function ensures
that t̂ is a minimal set of H-stable score limits in I and the result is proven.
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8.3 A Type A IP model for HR PA SLT

We describe the variables and constraints in the IP model for finding a minimal set of H-
stable score limits in an instance of HR PA SLT in Sections 8.3.1 and 8.3.2 respectively and
in Section 8.3.3 we prove the correctness of the model.

8.3.1 Variables in HR PA SLT A

Let I be an instance of HR PA SLT as described in Section 2.7.2. Further, let J be the
following IP formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)), define a
variable xi,p such that:

xi,p =

{
1 if ri is assigned to their pth choice application
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri)}. Further, let Y = {y1, y2 . . . , yn2} be a set of
variables where intuitively yj is the score limit at hj in J for each 1 ≤ j ≤ n2.

Now, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new variable τi,p ∈ {0, 1}. The
intuitive meaning of τi,p is that if ri’s pth application is to a single hospital, then τi,p = 0.
Otherwise τi,p may take the value of zero or one. Constraints 8.7 and 8.8 described in Section
8.3.2 are applied to enforce this property.

8.3.2 Constraints in HR PA SLT A

The HR PA SLT A model is constructed by applying Constraints 8.1 and 8.2 from HR SLT A

model described in Section 8.2.2 in addition to the constraints described below.

The following constraint simply confirms that each variable τi,p must be binary valued for all
i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

τi,p ∈ {0, 1} (8.7)

To ensure that if |pref (ri, p)|= 1, then τi,p = 0, we apply the following constraint:

τi,p ≤ |pref (ri, p)|−1 (8.8)

Since a hospital hj may be assigned to at most cj residents, xi,p = 1 where hj ∈ pref (ri, p)

for at most cj residents. We thus obtain the following constraint for all j (1 ≤ j ≤ n2):
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n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : hj ∈ pref (ri, p)} ≤ cj (8.9)

The following constraint ensures that any ri assigned to a hospital hj achieves a score of at
least yj . Thus, for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define the following constraint
where hj ∈ pref (ri, p):

yj ≤ (1− xi,p)(s̄j + 1) + si,j (8.10)

The following constraint ensures that any ri who is not assigned to the application at position
p on his preference list where pref (ri, p) is a single hospital hj either does not achieve
the score limit at hj (and thus si,j < yj) or is assigned to a better application. Thus, for
each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where
pref (ri, p) = hj:

si,j + 1 ≤ (s̄j + 1)

p∑
p′=1

xi,p′ + yj (8.11)

The following constraint ensures that any ri who is not assigned to the application at position
p on his preference list where pref (ri, p) is a pair of hospitals {hj, hk} either does not achieve
the score limit of at least one of hj or hk or ri is assigned to a better application. Thus, for
each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where
pref (ri, p) = {hj, hk}:

si,j + 1 ≤ (s̄j + 1)

(
p∑

p′=1

xi,p′ + τi,p

)
+ yj (8.12)

si,k + 1 ≤ (s̄k + 1)

(
p∑

p′=1

xi,p′ + (1− τi,p)

)
+ yk (8.13)

Objective Function: A minimal set of H-stable score limits in I is a set of H-stable score
limits in I where

∑
t∈t̂ t is minimal taken over all of the sets of H-stable score limits in

I . We apply the following objective function to ensure that an optimal solution meets this
criterion:

min

n2∑
j=1

yj (8.14)



8.3. A Type A IP model for HR PA SLT 174

8.3.3 Proof of correctness of the constraints in HR PA SLT A

We now establish the correctness of the IP model presented in Sections 8.3.1 and 8.3.2.

Theorem 8.3.1. Given an instance I of HR PA SLT, let J be the corresponding IP model as

defined in Sections 8.3.1 and 8.3.2. A minimal set of H-stable score limits t̂ in I and the

assignment in I induced from t̂ are exactly equivalent to an optimal solution to J .

Proof. Let I be an instance of HR PA SLT. Let t̂ be a minimal set of H-stable score limits
in I and let M be the assignment induced in I from t̂. We form an assignment of values
to the variables 〈 x, y, τ 〉 in J as follows. Initially, xi,p = 0 for all i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)). For each (ri, hj) ∈ M where ri has a single partner set xi,p = 1, where
hj = pref (ri, p). Further, for each ri in I where |M(ri)|= 2, and thus ri is assigned to a
paired application, let hj ∈ H and hk ∈ H be the two distinct partners of ri, xi,p = 1, where
pref (ri, p) = {hj, hk}.

For each hj ∈ H set yj ∈ Y to the score limit at hospital hj in I . Further, for each i (1 ≤
i ≤ n1) and p (1 ≤ p ≤ l(ri)) if |pref (ri, p)|= 1, then τi,p = 0. Otherwise |pref (ri, p)|= 2.
Let pref (ri, p) = {hj, hk}. Now, if either si,j ≥ yj or si,k ≥ yk, then set τi,p = 1 otherwise
set τi,p = 0.

We now show that 〈 x, y, τ 〉 satisfies all of the constraints in the model. As each resident
is assigned to at most one of his acceptable applications or is unassigned (but not both), for
a given i (1 ≤ i ≤ n1), it follows that xi,p = 1 for at most one value of p in the range
1 ≤ p ≤ l(ri), and for each other value of p in the same range, xi,p = 0. Hence, Constraints
8.1 and 8.2 are satisfied in 〈 x, y, τ 〉. Since each hospital is assigned in M to at most cj
acceptable residents, Constraint 8.9 is also satisfied in 〈 x, y, τ 〉.

Since M is the assignment induced in I from t̂, each resident is assigned to the first applica-
tion on his preference list at which he meets the score limit of each hospital involved in the
application at that position. Thus Constraints 8.10, 8.11, 8.12 and 8.13 must be satisfied in 〈
x, y, τ 〉.

Since t̂ is a set of H-stable score limits in I it follows that no hospital in I can reduce its score
limit further without exceeding its capacity. Further since t̂ is a minimal set of H-stable score
limits in I then

∑
t∈t̂ t is minimal taken over the all of the sets of H-stable score limits in

I and thus
∑

y∈Y y is minimal taken over the feasible solutions in J . Hence the objective
function in Constraint 8.14 is satisfied in 〈 x, y, τ 〉. Thus we have that a minimal set of
H-stable score limits t̂ in I and the assignment induced in I from t̂ give rise to an optimal
solution to J .

Conversely, consider an optimal solution, 〈 x, y, τ 〉, to J . From such a solution we form
in I a set M of pairs and a set t̂ of score limits as follows. Initially let M = ∅. For each
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i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) either pref (ri, p) = hj for some hj ∈ H or
pref (ri, p) = {hj, hk} for some hj, hk where hj 6= hk. If xi,p = 1 and pref (ri, p) = hj , then
add (ri, hj) to M , otherwise if xi,p = 1 and pref (ri, p) = {hj, hk}, add both (ri, hj) and
(ri, hk) to M . Further, for each yj ∈ Y set the score limit at hospital hj in t̂ to be yj ∈ Y .

As 〈 x, y, τ 〉 satisfies Constraints 8.1, 8.2 and 8.9 each resident in M must be assigned to
exactly one application or be unassigned (but not both) and each hospital hj in M must have
at most cj assignees.

We now show that t̂ is a set of H-stable score limits in I . Assume an applicant ri is assigned
in M to an application involving a hospital hj at which he does not achieve the score limit.
Hence, (1−xi,p)s̄j = 0 where hj ∈ pref (ri, p) and further si,j < yj and thus Constraint 8.10
is not satisfied in J , a contradiction. Now assume that some ri is not assigned to a hospital
hj where pref (ri, p) is a single hospital hj at which they achieved the score limit and further
ri is not assigned to hj or to a better hospital. Hence, (s̄j + 1)

∑p
p′=1 xi,p′ = 0 and si,j ≥ yj ,

and thus Constraint 8.11 is not satisfied in 〈 x, y, τ 〉, a contradiction.

Now assume that some ri is not assigned to an application at position p or better on his
preference list, where pref (ri, p) = {hj, hk}. Further assume that ri achieves the score limit
at both hj and hk. Since ri is not assigned to the application at position p or to a better
application we have that in 〈 x, y, τ 〉, (s̄j + 1)

∑p
p′=1 xi,p′ = 0 and since ri meets the score

limit at hj , si,j ≥ yj . Now assume τi,p = 0. Then Constraint 8.12 is not satisfied in 〈 x, y,
τ 〉, a contradiction. Thus τi,p = 1. However, we now have that (s̄k + 1)

∑p
p′=1 xi,p′ = 0,

si,k ≥ yk and (1− τi,p) = 0 and Constraint 8.13 is not satisfied in J , a contradiction.

Since the objective function Constraint 8.14 is satisfied in 〈 x, y, τ 〉, no hospital may reduce
its score limit without exceeding its capacity and thus t̂ is a set of H-stable score limits in
I and moreover, M is the assignment induced in I from t̂. Further, the objective function
ensures that t̂ is a minimal set of H-stable score limits in I and the result is proven.

8.4 A Type A IP model for HR CQ SLT

We now present a model that extends the one described in Section 8.2 to allow for the possi-
bility that coalitions of hospitals may share common upper quotas. We describe the variables
and constraints in the IP model for finding a minimal set of H-stable score limits in an in-
stance of HR CQ SLT in Sections 8.4.1 and 8.4.2 respectively and in Section 8.4.3 we prove
the correctness of the model.
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8.4.1 Variables in HR CQ SLT A

Let I be an instance of HR CQ SLT as described in Section 2.7.4. Further, let J be the
following Integer Programming (IP) formulation of I . In J , for each i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)), define a variable xi,p such that:

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri)}. Let Y = {y1, y2 . . . , yn3} be a set of variables
where intuitively yk is the score limit at Hk in J for 1 ≤ k ≤ n3.

Now, for all i (1 ≤ i ≤ n1) and k (1 ≤ k ≤ n3) define a new variable θi,k ∈ {0, 1}. The
intuitive meaning of θi,k is as follows. If ri does not meet the score limit at some hj ∈ Hk,
then θi,k = 0, otherwise θi,k ∈ {0, 1}. However for the coalition Hk = {hj}, θi,k = 0 if ri is
admitted to hj or to a better partner. Constraints 8.18 and 8.19 described in the Section 8.4.2
enforce the properties required of θi,k.

8.4.2 Constraints in HR CQ SLT A

The HR CQ SLT A model is constructed by applying Constraints 8.1 and 8.2 from the HR SLT

A model described in Section 8.2.2 in addition to the constraints described below.

The following constraint simply confirms that each variable θi,k must be binary valued for
all i (1 ≤ i ≤ n1) and k (1 ≤ k ≤ n3):

θi,k ∈ {0, 1} (8.15)

Since the hospitals in any coalition inHk ∈ H∗(1 ≤ k ≤ n3) may have at most uk assignees,
xi,p = 1 where pref (ri, p) = hj and hj ∈ Hk for at most uk residents. We thus obtain the
following constraint for all k (1 ≤ k ≤ n3):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj ∧ hj ∈ Hk} ≤ uk (8.16)

The following constraint ensures that any ri assigned to a hospital hj where hj ∈ Hk (1 ≤
k ≤ n3) achieves a score of at least yk at Hk. For all i (1 ≤ i ≤ n1) and for all p (1 ≤ p ≤
l(ri)), let pref (ri, p) = hj . Then for all k (1 ≤ k ≤ n3) such that hj ∈ Hk we obtain the
following constraint:

yk ≤ (1− xi,p)(s̄k + 1) + Si,k (8.17)
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For each hj ∈ H let Nj ⊆ H∗ be the set of coalitions involving hj . We wish to enforce that
θi,k = 0 if ri achieves a score of less than yk for some coalition Hk ∈ H∗, and θi,k = {0, 1}
otherwise. However for the coalition Hk = {hj}, θi,k = 0 if ri is admitted to hj or to a
better hospital. The following two constraints are applied to ensure this property. Thus, for
all i (1 ≤ i ≤ n1) and for all p (1 ≤ p ≤ l(ri)), we obtain the following constraint where
pref (ri, p) = hj:

∑
1 ≤ k ≤ n3
hj ∈ Hk

θi,k ≤ |Nj|−1 (8.18)

The following constraint ensures that any ri who is not assigned to a hospital hj either did
not achieve the score limit of a coalition Hk containing hj or is assigned to a better hospital.
For all i (1 ≤ i ≤ n1) and for all p (1 ≤ p ≤ l(ri)), let pref (ri, p) = hj . Then for all
k (1 ≤ k ≤ n3) such that hj ∈ Hk we obtain the following constraint:

Si,k + 1 ≤ (S̄k + 1)

(
p∑

p′=1

xi,p′ + θi,k

)
+ yk (8.19)

Objective Function: A minimal set of H-stable score limits in I is a set t̂ of H-stable score
limits in I where

∑
t∈t̂ t is minimal over all sets of H-stable score limits in I . We apply the

following objective function to ensure that an optimal solution meets this criterion:

min

n3∑
k=1

yk (8.20)

8.4.3 Proof of correctness of the constraints in HR CQ SLT A

Theorem 8.4.1. Given an instance I of HR CQ SLT, let J be the corresponding IP model

as defined in Sections 8.4.1 and 8.4.2. A minimal set of H-stable score limits t̂ in I and the

assignment induced in I from t̂ are exactly equivalent to an optimal solution to J .

Proof. Let I be an instance of HR CQ SLT. Let t̂ be a minimal set of H-stable score limits in
I and let M be the assignment induced in I from t̂. We form an assignment of values 〈 x, y,
θ 〉 to the variables in J as follows. Initially set xi,p = 0 for all i and p (1 ≤ i ≤ n1, 1 ≤ p ≤
l(ri)). Then for each (ri, hj) ∈ M set xi,p = 1, where pref (ri, p) = hj . For each Hk ∈ H∗

set yk ∈ Y to the score limit of coalition Hk in I . For a given hospital hj ∈ H , let Nj ⊆ H∗

be the set of coalitions involving hj .



8.4. A Type A IP model for HR CQ SLT 178

For each Hk ∈ Nj , if ri does not achieve the score limit at Hk, set θi,k = 0. If Hk = {hj},
ri achieves the score limit at Hk and ri is assigned to hj or to a better partner, set θi,k = 0.
Otherwise set θi,k = 1

We now show that 〈 x, y, θ 〉 satisfies all of the constraints in the model. As each resident is
assigned exactly once or is unassigned (but not both), for a given i (1 ≤ i ≤ n1), it follows
that xi,p = 1 for at most one value of p in the range 1 ≤ p ≤ l(r(i)), and for each other value
of p in the same range, xi,p = 0. Hence, Constraints 8.1 and 8.2 are satisfied in 〈 x, y, θ 〉.
Since each coalition of hospitals Hk ∈ H∗ is assigned at most uk acceptable residents in M ,
Constraint 8.16 is also satisfied in 〈 x, y, θ 〉.

Since M is the assignment induced in I from t̂, each resident is assigned in M to the first
hospital on his preference list at which he meets the score limit at every coalition containing
that hospital and thus Constraint 8.17 must be satisfied in 〈 x, y, θ 〉.

We now demonstrate that Constraint 8.18 is satisfied in 〈 x, y, θ 〉 for all i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)). Let i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) be given. Let pref (ri, p) = hj .
Firstly suppose ri is assigned to hj or to a better hospital. Let Hk = {hj}. Then θi,k = 0

by construction of θ. Thus Constraint 8.18 is satisfied. Now suppose ri is unassigned or
assigned to a worse hospital than hj . Then ri does not meet the score limit at some coalition
Hk containing hj , by construction of M from t̂. Thus, θi,k = 0, by construction of θ. Hence
Constraint 8.18 is satisfied in 〈 x, y, θ 〉 for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)).

By the stability of t̂ any resident who is not assigned to some hj ∈ H is either assigned to
a better hospital or does not meet the score limit of some coalition containing hj . Let i and
p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)) be given. Let pref (ri, p) = hj and let Hk be any coalition
containing hj . Now, if ri is assigned to hj or to a better hospital, then

∑p
p′=1 xi,p′ = 1 and

thus (S̄k + 1)(
∑p

p′=1 xi,p′ + θi,k) = (S̄k + 1) and Constraint 8.19 is satisfied in J .

Otherwise, if ri is unassigned or assigned to a worse hospital than hj , then ri fails to achieve
the score limit at someHk containing hj . Hence θi,k = 0 and moreover (S̄k+1)(

∑p
p′=1 xi,p′+

θi,k) = 0. Now we have that Si,k + 1 ≤ yk and Constraint 8.19 is satisfied in J .

Since t̂ is a set of H-stable score limits in I then no coalition in I can reduce its score limit
further without exceeding its capacity. Further since t̂ is a minimal set of H-stable score
limits in I then

∑
t∈t̂ t is minimal over the sets of H-stable score limits in I and thus

∑
y∈Y y

is minimal over the feasible solutions in J . Hence the objective function in Expression 8.20
is satisfied. Thus we have that a minimal set of H-stable score limits t̂ in I and the assignment
induced in I from t̂ are equivalent to an optimal solution to J

Conversely, consider an optimal solution 〈 x, y, θ 〉, to J . Thus in 〈 x, y, θ 〉,
∑

y∈Y y is
minimal over all feasible solutions to J . From such a solution we form in I a set of pairs,
M , and a set of score limits t̂ as follows. Initially let M = ∅. For each i (1 ≤ i ≤ n1) and
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p (1 ≤ p ≤ l(ri)) if xi,p = 1, then add (ri, hj) to M where hj = pref (ri, p). Further, for
each Hk ∈ H∗ set the score limit of coalition Hk in t̂ to be yk ∈ Y .

As 〈 x, y, θ 〉 satisfies Constraints 8.1, 8.2 and 8.16, each resident in M must have exactly
one partner or be unassigned (but not both) and each coalition Hk in M must have at most
uk partners.

We now show that t̂ is a set of H-stable score limits in I . Assume an applicant ri is assigned
to a hospital hj where pref (ri, p) = hj . Further assume that ri does not achieve the score
limit at some coalition Hk containing hj . Hence, both (1− xi,p)(S̄k + 1) = 0 and Si,k < yk

and thus Constraint 8.17 is not satisfied in 〈 x, y, θ 〉, a contradiction.

Now assume that some ri is unassigned or assigned to a worse hospital than hj and moreover
that ri achieved the score limit at each Hk ∈ H∗ where hj ∈ Hk. Thus

∑p
p′=1 xi,p′ = 0, and

for each Hk ∈ H∗ such that hj ∈ Hk, Si,k ≥ yk and hence θi,k = 1 by Constraint 8.19.
Hence, Constraint 8.18 is violated, a contradiction. Hence, ri does not achieve the score
limit at some Hk ∈ H∗ such that hj ∈ Hk.

Since the objective function Expression 8.20 is satisfied in 〈 x, y, θ 〉, no coalition may reduce
its score limit without exceeding its capacity and thus t̂ is a set of H-stable score limits in
M and moreover, M is the assignment induced in I from t̂. Further, the objective function
ensures that t̂ is a minimal set of H-stable score limits in I and the result is proven.

8.5 A Type B IP model for HR SLT with a free objective

function (HR SLT B)

In the models presented in Sections 8.2, 8.3 and 8.4, the objective function is required to
ensure the stability of the set of score limits output as a solution. Thus the objective func-
tion cannot be applied to select some other optimality criterion from the feasible solution
other than minimality. In this section we present an updated model in which the objective
function is not necessary to ensure the stability of the score limits output as a solution. Thus
we may apply the objective function to select a set of score limits which produces a solu-
tion that is optimal according to some other criteria. In this case the objective function is
applied to ensure that a maximum cardinality induced assignment is the solution output. A
maximum cardinality induced assignment is only one possible objective; by choosing other
objective functions we might obtain other optimal solutions, e.g., a rank-based maximum
weight solution or a college-optimal solution.

In Sections 8.5.1 and 8.5.2 respectively we describe the variables and constraints in the IP
model for finding a set of H-stable score limits t̂ in an instance of HR SLT such that the
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assignment induced from t̂ is of maximum cardinality taken over all of the sets of H-stable
score limits admitted by the instance. In Section 8.5.3 we prove the correctness of the model.

8.5.1 Variables in HR SLT B

Let I be an instance of HR SLT as described in Section 2.7. Let J be the following Integer
Programming (IP) formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)),
define a variable xi,p such that:

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri)}. Let Y = {y1, y2 . . . , yn2} be a set of variables
where intuitively yj is the score limit of hj in J for 1 ≤ j ≤ n2.

Now, for all j (1 ≤ j ≤ n2) define a new variable γj ∈ {0, 1}. The intuitive meaning of
γj is that if hj is has a score limit of greater than zero, then γj = 1. However, if hj has a
score limit of zero, then γj may take the value of 0 or 1, Constraint 8.23 described in full in
Section 8.5.2 enforces this property.

Now, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new variable δi,p ∈ {0, 1}. The
intuitive meaning of δi,p is that if ri has an acceptable partner hj preferable to their current
assignment, to whom they would be assigned were hj to reduce its score limit by 1 then
δi,p ∈ {0, 1}. Otherwise, δi,p = 0. Constraints 8.24 and 8.25 described in full in Section
8.5.2 enforce this property.

For ease of exposition we define some additional notation. For an acceptable resident-
hospital pair (ri, hj), let rank(hj, ri) = q denote the rank that hospital hj assigns resident ri,
where 1 ≤ j ≤ n2, 1 ≤ i ≤ n1 and 1 ≤ q ≤ l(hj). Further, for each j (1 ≤ j ≤ n2) and
q (1 ≤ q ≤ l(hj)) let the set R(hj, q) contain the resident-position pairs (ri, p) such that ri
is assigned a rank of q (1 ≤ q ≤ l(hj)) by hj and hj is in position p (1 ≤ p ≤ l(ri)) on ri’s
preference list. Hence:

R(hj, q) = {(ri, p) ∈ R× Z : rank(hj, ri) = q ∧ 1 ≤ p ≤ l(ri) ∧ pref (ri, p) = hj}

8.5.2 Constraints in HR SLT B

This IP formulation for HR SLT is constructed by applying Constraints 8.1, 8.2, 8.3, 8.4 and
8.5 from the model described in Section 8.2.2 in addition to the constraints described below.

The following constraint simply ensures that each variable γj must be binary valued for all
j (1 ≤ j ≤ n2):
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γj ∈ {0, 1} (8.21)

The following constraint simply ensures that each variable δi,p must be binary valued for all
i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

δi,p ∈ {0, 1} (8.22)

We now apply constraints to enforce that the variable γj has the following properties. If hj
is has a score limit of greater than zero, then γj = 1. Otherwise, hj has a score limit of zero
and γj may take the value of 0 or 1. Thus, for all j (1 ≤ j ≤ n2) define a new constraint
such that:

γj ≥
yj

s̄j + 1
(8.23)

We now apply constraints to enforce that the variable δi,p has the following properties. If ri
has an acceptable partner hj preferable to their current assignment, to whom they would be
assigned were hj to reduce its score limit by 1 then δi,p ∈ {0, 1}. Otherwise, δi,p = 0. First
we apply a constraint to ensure that δi,p′ = 0 where M(ri), the assigned partner of ri in the
assignment induced from a set of score limits, is pref (ri, p) and p ≤ p′ ≤ l(ri). Thus, for all
i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new constraint such that:

l(ri)∑
p′=p

δi,p′ ≤ (1− xi,p)l(ri) (8.24)

Now we apply a constraint to ensure that it can only be the case that δi,p = 1 if ri has an
acceptable hospital hj to whom they could be assigned if hj reduced their score limit by 1.
Thus, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new constraint such that:

yj − 1 ≤ (1− δi,p)s̄j + si,j (8.25)

Now we apply a constraint to ensure that the set of score limits t̂ obtained from the model is
such that if some hospital hj reduced its score limit below its value in t̂ to produce a new set
of score limits t̂j , then hj would be oversubscribed in the assignment induced in I from t̂j .
Thus, for all j (1 ≤ j ≤ n2) we define a new constraint such that:

(cj + 1)(1− γj) +

l(hj)∑
q′=1

{xi′,p′ + δi′,p′ : xi′,p′ ∈ X ∧ (ri′ , p
′) ∈ R(hj, q

′)} ≥ cj + 1 (8.26)
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We seek a set of H-stable score limits t̂ such that the assignment induced in I from t̂ is
of maximum cardinality taken over all of the assignments induced from all of the sets of
H-stable score limits in I . To ensure this we apply the following objective function:

max
n∑
i=1

l(ri)∑
p=1

xi,p (8.27)

8.5.3 Proof of correctness of the constraints in HR SLT B

We now establish the correctness of the IP model presented in Sections 8.5.1 and 8.5.2.

Theorem 8.5.1. Given an instance I of HR SLT, let J be the corresponding HR SLT B IP

model as defined in Sections 8.5.1 and 8.5.2. A set of H-stable score limits t̂ in I and the

assignment induced in I from t̂ are exactly equivalent to a feasible solution to J .

Proof. Let I be an instance of HR SLT. Let t̂ be a set of H-stable score limits in I and let M
be the assignment induced in I from t̂. Let t̂j = {tj1, t

j
2, . . . , t

j
n2
} be the set of score limits

obtained by reducing the score limit at one hj ∈ H by exactly one and leaving all other score
limits unchanged. Thus tjk = tk for all k (1 ≤ k ≤ n2 ∧ j 6= k) and tjj = tj − 1.

We form an assignment of values J to the variables 〈 x, y, δ, γ 〉 as follows. Initially set
xi,p = 0 for all i and p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)). Then for each (ri, hj) ∈M set xi,p = 1,
where hj = pref (ri, p). For each hj ∈ H set yj ∈ Y to the score limit at hospital hj in I .
Further, for each i and p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri has a
hospital hj preferable to M(ri) to which they would be assigned in the assignment induced
in I from t̂j , then δi,p = 1. Otherwise δi,p = 0. For each hj ∈ H , if hj has a score limit of
greater than zero, then we set γj = 1. Otherwise set γj = 0.

We now show that 〈 x, y, δ, γ 〉 satisfies all of the constraints in the model. As each resident
has a single partner or is unassigned (but not both), for a given i (1 ≤ i ≤ n1), it follows that
xi,p = 1 for at most one value of p in the range 1 ≤ p ≤ l(r(i)), and for each other value
of p in the same range, xi,p = 0. Hence, Constraints 8.1 and 8.2 are satisfied in 〈 x, y, δ,
γ 〉. Since each hospital is assigned in M to at most cj acceptable residents, Constraint 8.3
is also satisfied in 〈 x, y, δ, γ 〉. Since M is the assignment induced in I from t̂ each resident
is assigned in M to the first hospital on his preference list at which he meets the score limit.
Thus Constraints 8.4 and 8.5 must be satisfied in 〈 x, y, δ, γ 〉. Constraint 8.23 is trivially
satisfied in 〈 x, y, δ, γ 〉.

If ri prefers M(ri) to hj where pref (ri, p) = hj , then ri could not be assigned to hj in the
assignment induced in I from t̂j and thus δi,p = 0. Hence, Constraint 8.24 is satisfied in 〈 x,
y, δ, γ 〉. Further, if ri does not achieve a score of at least yj − 1, then ri cannot be assigned
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to hj in the assignment induced from t̂j and δi,p = 0. Hence, Constraint 8.25 is satisfied in 〈
x, y, δ, γ 〉.

Now we consider whether Constraint 8.26 is satisfied in 〈 x, y, δ, γ 〉. Since Constraint 8.23 is
satisfied in 〈 x, y, δ, γ 〉, either γj = 0 or γj = 1. If γj = 1, then (cj+1)(1−γj) = 0. Further,
since t̂ is a set of H-stable score limits in I , hj must be oversubscribed in the assignment
induced in I from t̂j and

∑l(hj)
q′=1{xi′,p′′ + δi′,p′′ : xi′,p′′ ∈ X ∧ (ri′ , p

′′) ∈ R(hj, q
′)} ≥ cj + 1

in J . Hence Constraint 8.26 is satisfied in 〈 x, y, δ, γ 〉. If hj has a score limit of zero in t̂,
then γj = 0 and thus (cj + 1)(1− γj) = (cj + 1) and Constraint 8.26 is trivially satisfied in
〈 x, y, δ, γ 〉. Hence a set t̂ of H-stable score limits in I , t̂, and the assignment induced in I
from t̂ give rise to a feasible solution in J .

Conversely, consider a feasible solution, 〈 x, y, δ, γ 〉, to J . From such a solution we form
in I a set of pairs, M , and a set of score limits t̂ as follows. Initially let M = ∅. For
each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) if xi,p = 1, then add (ri, hj) to M where
hj = pref (ri, p). Further, for each yj ∈ Y set the score limit at hospital hj in t̂ to be yj ∈ Y .

As 〈 x, y, δ, γ 〉 satisfies Constraints 8.1, 8.2 and 8.3 each resident in I must have exactly
one partner or be unassigned (but not both) and each hospital hj in M must have at most
cj partners. We now show that t̂ is a set of H-stable score limits in I . Assume an applicant
ri is assigned to a hospital hj at which he does not achieve the score limit. Assume that
pref (ri, p) = hj . Hence, both (1 − xi,p)s̄j = 0 and si,j < yj . Hence Constraint 8.4 is not
satisfied in 〈 x, y, δ, γ 〉, a contradiction. Now assume that some ri is not assigned to a
hospital hj at which they achieved the score limit and moreover ri is not assigned to a better
hospital than hj . Hence, (s̄j + 1)

∑p
p′=1 xi,p′ = 0 and si,j ≥ yj , and thus Constraint 8.5 is

not satisfied in 〈 x, y, δ, γ 〉, a contradiction.

Assume that a hospital hj has a score limit of greater than zero. Further assume that γj = 0.
Now since yj > 0, we have that

yj
s̄j + 1

> 0 and Constraint 8.23 is not satisfied in J , a

contradiction. Hence, if a hospital hj has a score limit of greater than zero, then γj = 1.

Let i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) be given such that xi,p = 1 and let pref (ri, p) = hj .
Assume that δi,p′ = 1 for some xi,p′ where p ≤ p′ ≤ l(ri). Now we have that

∑l(ri)
p′=p δi,p′ > 0

and (1 − xi,p)l(ri) = 0 and Constraint 8.24 is not satisfied in 〈 x, y, δ, γ 〉, a contradiction.
Thus δi,p′ = 0 for all p ≤ p′ ≤ l(ri). Now, assume that δi,p = 1 and ri has a score of less
than yj − 1 at hj . Thus, we have that (1 − δi,p)s̄j + si,j = si,j and Constraint 8.25 is not
satisfied in 〈 x, y, δ, γ 〉, a contradiction.

Let t̂j be the set of score limits obtained from t̂ by reducing the score limit at hj by one and
leaving all other score limits unchanged. Since t̂ is a set of H-stable score limits hj must be
over-subscribed in the assignment induced in I from t̂j . Assume that hj is not oversubscribed
in the assignment induced in I from t̂j . Then

∑l(hj)
q′=1{xi′,p′′ + δi′,p′′ : xi′,p′′ ∈ X ∧ (ri′ , p

′′) ∈
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R(hj, q
′)} ≤ cj . Moreover, hj must have a score limit of one in t̂, otherwise it could not

reduce its score limit. Hence γj ≥ 1. Now we have that (cj + 1)(1 − γj) = 0 and thus
Constraint 8.26 is not satisfied in 〈 x, y, δ, γ 〉, a contradiction. Hence, a feasible solution in
J gives rise to a set of H-stable score limits t̂ and the assignment induced in I from t̂ and the
result is proven.

The existence of the objective function (given by Expression 8.27) immediately leads to the
following corollary.

Corollary 8.5.2. Given an instance I of HR SLT, let J be the corresponding HR SLT B IP

model as defined in Sections 8.5.1 and 8.5.2. A set of H-stable score limits t̂ in I such that

the assignment induced in I from t̂ assigns the maximum number of residents taken over all

sets of H-stable score limits in I is exactly equivalent to an optimal solution to J .

8.6 A Type B IP model for HR LQ SLT with a free objec-

tive function (HR LQ SLT B)

We now show how the model with free objective function presented in Section 8.5 may be
adapted to find a set of H-stable score limits in the HR LQ SLT context. Moreover, since
the objective function in this model is no longer a necessary part of ensuring the stability of
the solutions found we can apply an objective function to ensure that an optimal solution is
equivalent to a maximum cardinality induced assignment taken over all of the sets of H-stable
score limits.

In Sections 8.6.1 and 8.6.2 respectively we describe the variables and constraints in the IP
model for finding a set of H-stable score limits t̂ in an instance of HR LQ SLT such that the
assignment induced from t̂ is of maximum cardinality taken over all of the sets of H-stable
score limits admitted by the instance. In Section 8.6.3 we prove the correctness of the model.

8.6.1 Variables in HR LQ SLT B

Let I be an instance of HR LQ SLT as described in Section 2.7.3. Let J be the following
Integer Programming (IP) formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤
l(ri)), define a variable xi,p such that:

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise
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Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri)}. Let pref (ri, p) denote the hospital at position
p of ri’s preference list where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Let Y = {y1, y2 . . . , yn2} be a
set of variables where intuitively yj is the score limit of hj in J for 1 ≤ j ≤ n2.

For all j (1 ≤ j ≤ n2) define a new variable βj ∈ {0, 1}. The intuitive meaning of βj is that
if hj is closed and c−j ≥ 1, then βj = 0. Otherwise, hj has at least min{1, c−j } or greater
assignees and thus hj is open and βj = 1. Constraints 8.33 and 8.34 described in full in
Section 8.6.2 enforce this property.

Further, for all j (1 ≤ j ≤ n2) define a new variable γj ∈ {0, 1}. The intuitive meaning
of γj is that if hj has a score limit of greater than zero, then γj = 1. However, if hj has a
score limit of zero, then γj may take the value of 0 or one. Constraint 8.23 described in full
in Section 8.5.2 enforces this property.

For all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new variable δi,p ∈ {0, 1}. The intuitive
meaning of δi,p is that if ri has an acceptable partner hj to whom they would be assigned if
hj reduced their score limit by one, where hj = pref (ri, p), such that M(ri) = pref (ri, p

1)

and p < p1 or such that ri is unassigned, then δi,p = {0, 1}. Otherwise, δi,p = 0. Constraints
8.24 and 8.25 described in full in Section 8.5.2 enforce this property.

Further, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new variable ωi,p ∈ {0, 1}. The
intuitive meaning of ωi,p is that if ri meets the score limit at hj , then ωi,p = 1. Otherwise, ωi,p
may take a value of zero or one. Constraint 8.36 described in full in Section 8.5.2 enforces
this property.

Further, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) define a new variable φi,p ∈ {0, 1}.
The intuitive meaning of φi,p is that if ri meets the score limit at hj and ri is not assigned to
a better hospital than hj , then φi,p = 1. Otherwise, φi,p = 0. Constraints 8.37, 8.38 and 8.39
described in full in Section 8.5.2 enforce this property.

For all j (1 ≤ i ≤ n2) define a new variable λ−j ∈ {0, 1}. The intuitive meaning of λ−j is
that if hj has less than c−j acceptable partners who achieve the score limit at hj and prefer hj
to their current partner then λ−j = 1. Otherwise λ−j ∈ {0, 1}. Further, for all j (1 ≤ i ≤ n2)

define a new variable λ+j ∈ {0, 1}. The intuitive meaning of λ+j is that if hj has more than c+j
acceptable partners who achieve the score limit at hj and prefer hj to their current partner,
then λ+j = 1. Otherwise λ+j ∈ {0, 1}.

8.6.2 Constraints in HR LQ SLT B

The HR LQ SLT model is constructed by applying Constraints 8.1, 8.21, 8.22, 8.2, 8.4, 8.23,
8.24, 8.25 and 8.26 from the model described in Section 8.5.2 in addition to the constraints
described below.
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The following constraint simply ensures that each variable βj must be binary valued for all
j (1 ≤ j ≤ n2):

βj ∈ {0, 1} (8.28)

The following constraint simply ensures that each variable ωi,p must be binary valued for all
i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

ωi,p ∈ {0, 1} (8.29)

The following constraint simply ensures that each variable φi,p must be binary valued for all
i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)):

φi,p ∈ {0, 1} (8.30)

The following constraint simply ensures that each variable λ−j must be binary valued for all
j (1 ≤ j ≤ n2):

λ−j ∈ {0, 1} (8.31)

The following constraint simply ensures that each variable λ+j must be binary valued for all
j (1 ≤ j ≤ n2):

λ+j ∈ {0, 1} (8.32)

Constraint 8.3 from the HR SLT model in Section 8.5.2 is no longer sufficient to ensure
the hospital capacity constraints in the HR LQ SLT context. Now we apply both Constraint
8.33, to confirm that no hospital exceeds its capacity, and Constraint 8.34 to confirm that no
open hospital has fewer than c−j assignees in an induced assignment derived from a feasible
solution to the model. Since a hospital hj may be assigned to at most c+j residents, xi,p = 1

where pref (ri, p) = hj for at most c+j residents. We thus obtain the following constraint for
all j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≤ βjc
+
j (8.33)

Since an open hospital hj must be assigned at least c−j residents, xi,p = 1 where pref (ri, p) =

hj for at least c−j residents. We thus obtain the following constraint for all j (1 ≤ j ≤ n2):
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n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref (ri, p) = hj} ≥ βjc
−
j (8.34)

In the HR LQ SLT context we must adapt Constraint 8.5 from the HR SLT model in Section
8.5.2 to consider the circumstance where a hospital might be closed. The following constraint
ensures that any ri who is not assigned to an open hospital hj either did not achieve the
score limit of hj or is assigned to a better hospital. Thus, for each i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)) we obtain the following constraint where pref (ri, p) = hj:

βj(si,j + 1) ≤ (s̄j + 1)

p∑
p′=1

xi,p′ + yj (8.35)

We apply the following group of constraints to ensure that the set of H-stable score limits
derived from any feasible solution to J meets the group stability condition described in Sec-
tion 2.6.1. We apply constraints to enforce that the variable ωi,p has the following properties
where pref (ri, p) = hj . If ri meets the score limit at hj , then ωi,p = 1. Otherwise, ωi,p may
take a value of zero or one. Thus, for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) and ε = 1/2

define the following constraint where pref (ri, p) = hj:

ωi,p ≥
si,j − yj + ε

s̄j
(8.36)

We now apply constraints to enforce that the variable φi,p has the following properties where
pref (ri, p) = hj . If ri meets the score limit at hospital hj and ri is not assigned to a better
hospital than hj , then φi,p = 1. Otherwise, φi,p = 0. Thus, for all i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)) where pref (ri, p) = hj define the following constraints:

φi,p ≥ ωi,p +

(
1−

p−1∑
p′=1

xi,p′

)
− 1 (8.37)

φi,p ≤ ωi,p (8.38)

φi,p ≤ 1−
p−1∑
p′=1

xi,p′ (8.39)

We apply the following constraint to ensure that if hj has less than c−j acceptable partners
who achieve the score limit at hj and prefer hj to their current partner, then λ−j = 1 and
λ−j ∈ {0, 1} otherwise. For each j (1 ≤ j ≤ n2) we obtain the following constraint:
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λ−j ≥
c−j −

l(hj)∑
q=1

{φi,p : (ri, p) ∈ R(hj, q)}

n1

(8.40)

We apply the following constraint to ensure that if hj has more than c+j acceptable partners
who achieve the score limit at hj and prefer hj to their current partner, then λ+j = 1 and
λ+j ∈ {0, 1} otherwise. For each j (1 ≤ j ≤ n2) we obtain the following constraint:

λ+j ≥

l(hj)∑
q=1

{φi,p : (ri, p) ∈ R(hj, q)} − c+j

n1

(8.41)

We apply the following constraint to ensure that for any closed hospital hj any coalition of
residents who achieve the score limit at hj and would prefer hj to their current partner must
be of size less c−j or of size greater than c+j . Thus, For each j (1 ≤ j ≤ n2) we obtain the
following constraint:

λ−j + λ+j ≥ 1− βj (8.42)

Objective Function - Recall that the instance shown in Figure 2.6 demonstrates that an in-
stance of HR LQ may admit stable matchings of differing sizes. We seek a solution that
maximises the number of residents assigned in the induced assignment from the set of H-
stable score limits obtained. To maximise the number of residents assigned we apply the
following objective function:

max
n∑
i=1

l(ri)∑
p=1

xi,p (8.43)

8.6.3 Proof of correctness of the constraints in HR LQ SLT B

We now establish the correctness of the IP model presented in Sections 8.6.1 and 8.6.2.

Theorem 8.6.1. Given an instance I of HR LQ SLT, let J be the corresponding IP model as

defined in Sections 8.6.1 and 8.6.2. A set of H-stable score limits t̂ in I and the assignment

induced in I from t̂ are exactly equivalent to a feasible solution to J .

Proof. Let I be an instance of HR LQ SLT. Let t̂ be a set of H-stable score limits in I and
let M be the assignment induced in I from t̂ in I . Let t̂j = {tj1, t

j
2, . . . , t

j
n2
} be the set of

score limits obtained from t̂ by reducing the score limit at one hj ∈ H by exactly one and
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leaving all other score limits unchanged. Thus tjk = tk for all k (1 ≤ k ≤ n2 ∧ j 6= k) and
tjj = tj − 1.

We form an assignment of values J to the variables 〈 x, y, β, δ, γ,φ,ω, λ−, λ+ 〉 as follows.
Initially set xi,p = 0 for all i and p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)). Then for each (ri, hj) ∈ M
set xi,p = 1, where hj = pref (ri, p). For each hj ∈ H set yj ∈ Y to the score limit at
hospital hj in I . Further, if hj is closed in M , then set βj = 0 otherwise βj = 1. For each i
and p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri has a hospital hj to which
they would be assigned in the assignment induced in I from t̂j , then δi,p = 1. Otherwise
δi,p = 0. For each hj ∈ H , if hj has a score limit of greater than zero, then we set γj = 1.
Otherwise set γj = 0. For each i and p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)) where pref (ri, p) = hj ,
if ri meets the score limit at hj , then set ωi,p = 1. Otherwise set ωi,p = 0. For each i and
p (1 ≤ i ≤ n1, 1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri meets the score limit at hj and ri
is not assigned to a better hospital, then set φi,p = 1. Otherwise, set φi,p = 0.

For a given hospital hj , if a coalition of hj’s acceptable residents of size less than c−j prefer
hj to their assigned partner, then set λ−j = 1. Otherwise λ−j = 0. Further, if a coalition of
hj’s acceptable residents of size greater than c+j prefer hj to their assigned partner, then set
λ+j = 1. Otherwise λ+j = 0.

Theorem 8.5.1 proves that 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉 satisfies Constraints 8.1, 8.21,
8.22, 8.2, 8.4, 8.23, 8.24, 8.25 and 8.26. We now prove that 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉
satisfies the remaining constraints in the HR LQ SLT B model.

Now, every hj ∈ H is either open or closed. If hj is open, then βj = 1 and since t̂ is a set of
H-stable score limits in I and thus each hospital is assigned at most c+j acceptable residents
in M then

∑l(ri)
p=1{xi,p ∈ X : pref (ri, p) = hj} ≤ c+j and Constraint 8.33 is satisfied in 〈 x,

y, β, δ, γ, φ, ω, λ−, λ+ 〉. Otherwise, hj is closed (and thus has exactly zero assignees)
and βj = 0 and Constraint 8.33 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉. (Although this
constraint still holds whether βj = 1 or βj = 0 if hj has zero assignees).

Now, for every hj ∈ H such that c−j = 0 Constraint 8.34 is trivially satisfied in 〈 x, y, β, δ,
γ, φ, ω, λ−, λ+ 〉. For each hj ∈ H such that c−j > 0, hj is either open or closed. If hj is
open (and thus has more than zero partners), then βj = 1 and since hj must have at least c−j
partners in M ,

∑n1

i=1

∑l(ri)
p=1{xi,p ∈ X : pref (ri, p) = hj} ≥ c−j . Hence Constraint 8.34 is

satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉. If hj is closed and thus hj has no assignees in
M , then βj = 0 and Constraint 8.34 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

Now, if hj is closed, then βj = 0 and Constraint 8.35 is trivially satisfied in 〈 x, y, β, δ, γ, φ,
ω, λ−, λ+ 〉. Otherwise hj is open and βj = 1. Now we have that, for some i (1 ≤ i ≤ n1)

and p (1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri is assigned to hj or to a better hospital,
then (s̄j + 1)

∑p
p′=1 xi,p′ = (s̄j + 1) and Constraint 8.35 is satisfied in 〈 x, y, β, δ, γ, φ, ω,

λ−, λ+ 〉.
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Now, for some i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri meets the
score limit at hj , then clearly si,j − yj ≥ 0. Hence si,j − yj + 1/2 > 0 and it follows that
ωi,p = 1. If ri does not meet the score limit at hj , then si,j − yj ≤ −1 and it follows that
si,j − yj + 1/2 < 0 and ωi,p ∈ {0, 1}. Thus Constraint 8.36 is satisfied in 〈 x, y, β, δ, γ, φ,
ω, λ−, λ+ 〉.

Now, for some i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) where pref (ri, p) = hj , if ri does not
meet the score limit at hj , then by construction ωi,p = 0 and φi,p = 0. Hence, Constraints
8.37 and 8.38 are satisfied in J . If ri is assigned to a better hospital than hj , then φi,p = 0

and 1−
∑p−1

p′=1 xi,p′ = 0. Hence, Constraints 8.37 and 8.39 are satisfied in 〈 x, y, β, δ, γ, φ,
ω, λ−, λ+ 〉.

Now, if ri meets the score limit at hj and ri is not assigned to a better hospital than hj , then
by construction ωi,p = 1 and φi,p = 1. Now since ri meets the score limit at hj it follows
that Constraint 8.38 is satisfied in J . Further, as ri is not assigned to a better hospital than hj
then 1 −

∑p−1
p′=1 xi,p′ = 1 and Constraint 8.39 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

Now we have that ωi,p = 1 and 1−
∑p−1

p′=1 xi,p′ = 1 and thus Constraint 8.37 is satisfied in 〈
x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

For a given hospital hj if a coalition of hj’s acceptable residents of size less than c−j prefer hj
to their assigned partner, then it follows that c−j −

∑l(hj)
q=1 {φi,p : (ri, p) ∈ R(hj, q)} > 0 and

thus λ−j = 1. Hence Constraint 8.40 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉. Otherwise,
a coalition of hj’s acceptable residents of size at least c−j prefer hj to their assigned partner
and it follows that c−j −

∑l(hj)
q=1 {φi,p : (ri, p) ∈ R(hj, q)} ≤ 0 and thus λ−j ∈ {0, 1}. Hence

Constraint 8.40 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

For a given hospital hj if a coalition of hj’s acceptable residents of size greater than c+j prefer
hj to their assigned partner, then it follows that

∑l(hj)
q=1 {φi,p : (ri, p) ∈ R(hj, q)}−c+j > 0 and

thus λ+j = 1. Hence Constraint 8.41 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉. Otherwise,
a coalition of hj’s acceptable residents of size at most c+j prefer hj to their assigned partner
and it follows that

∑l(hj)
q=1 {φi,p : (ri, p) ∈ R(hj, q)} − c+j ≤ 0 and thus λ+j ∈ {0, 1}. Hence

Constraint 8.41 is satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

We now consider Constraint 8.42. For each hj ∈ H , hj is either open or closed. If hj is
open, then βj = 1 and Constraint 8.42 is trivially satisfied in J . However, if hj is closed,
then βj = 0. Since t̂ is a set of H-stable score limits in I and M is the assignment induced
in I from t̂ any coalition of hj’s acceptable residents who either prefer hj to their assigned
partner in M or are unassigned must be of size less than c−j , in which case λ−j = 1, or of size
greater than c+j , in which case λ+j = 1. Thus λ−j + λ+j ≥ 1 and Constraint 8.42 is satisfied in
〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉.

Conversely, consider a feasible solution, 〈 x, y, β, δ, γ, φ, ω, λ−
j , λ+

j 〉, to J . From such
a solution we form in I a set of pairs, M , and a set of score limits t̂ as follows. Initially let
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M = ∅. For each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) if xi,p = 1, then add (ri, hj) to M
where hj = pref (ri, p). Further, for each yj ∈ Y set the score limit at hospital hj in t̂ to be
yj ∈ Y .

Again Theorem 8.5.1 proves that as a feasible solution to J , 〈 x, y, β, δ, γ, φ, ω, λ−
j , λ+

j 〉
satisfies all of the requirements of being a set of H-stable score limits in I and the assignment
induced in I from them. It remains to consider whether the constraints intended to meet the
extended capacity requirements in the HR LQ SLT context are satisfied in 〈 x, y, β, δ, γ, φ,
ω, λ−

j , λ+
j 〉.

We now demonstrate that as 〈 x, y, β, δ, γ, φ, ω, λ−
j , λ+

j 〉 satisfies Constraints 8.33 and
8.34 then for each hj ∈ H , if hj is closed in M and c−j ≥ 1, then βj = 0. Otherwise βj = 1.
Assume not. Assume βj = 0 and further assume that hj has one or more assignees in M .
However, we now have that

∑n1

i=1

∑l(ri)
p=1{xi,p ∈ X : pref (ri, p) = hj} ≥ 1 and βjc+j = 0

and Constraint 8.33 is not satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉, a contradiction. Now
assume βj = 1 and further assume hj has zero assignees in M where c−j ≥ 1. However,
we not have that

∑n1

i=1

∑l(ri)
p=1{xi,p ∈ X : pref (ri, p) = hj} = 0 and βjc−j = c−j > 1 and

Constraint 8.34 is not satisfied in 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉, a contradiction. Hence, for
every hj ∈ H if hj is open, then βj = 1. Otherwise βj = 0.

As 〈 x, y, β, δ, γ, φ, ω, λ−
j , λ+

j 〉 satisfies Constraint 8.33 each resident in M must have at
most c+j partners. Moreover, since 〈 x, y, β, δ, γ, φ, ω, λ−

j , λ+
j 〉 satisfies Constraint 8.34

any open hospital hj ∈ H must have at least c−j partners.

Now assume that some ri is not assigned in M to an open hospital hj at which they achieved
the score limit and moreover ri is not assigned to a better hospital than hj . Hence, (s̄j +

1)
∑p

p′=1 xi,p′ = 0 and si,j ≥ yj , and thus Constraint 8.35 is not satisfied in 〈 x, y, β, δ, γ,
φ, ω, λ−, λ+ 〉, a contradiction.

Since 〈 x, y, β, δ, γ, φ, ω 〉 satisfies Constraint 8.36 it follows that if ωi,p = 0, then si,j < yj

and thus ri does not meet the score limit at hj . Further, since 〈 x, y, β, δ, γ, φ, ω 〉 satisfies
Constraint 8.38 then φi,p = 0 if ωi,p = 0.

Clearly, if 1−
∑p−1

p′=1 xi,p′ = 1, then ri is not assigned to a better partner than hj . Now, since 〈
x, y, β, δ, γ, φ, ω, λ−, λ+ 〉 satisfies Constraint 8.39 it follows that if ri is not assigned to a
better partner than hj , then φi,p = 0. Further, since 〈 x, y, β, δ, γ, φ, ω 〉 satisfies Constraint
8.37 we have that φi,p = 1 if and only if ri is not assigned to a better partner than hj and ri
meets the score limit at hj .

Since 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉 satisfies Constraint 8.40 it follows that if a given
hospital hj has less than c−j acceptable partners who achieve the score limit at hj and prefer
hj to their current partner, then λ−j = 1 and λ−j ∈ {0, 1} otherwise. Similarly since 〈 x, y,
β, δ, γ, φ, ω, λ−, λ+ 〉 satisfies Constraint 8.41 it follows that if a given hospital hj has
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greater than c+j acceptable partners who achieve the score limit at hj and prefer hj to their
current partner, then λ+j = 1 and λ+j ∈ {0, 1} otherwise.

Now since 〈 x, y, β, δ, γ, φ, ω, λ−, λ+ 〉 satisfies Constraint 8.42 it follows that for each
closed hospital hj ∈ H there are either fewer than c−j residents who meet the score limit at hj
and prefer hj to their assigned partner or are unassigned or there are more than c+j residents
who meet the score limit at hj and prefer hj to their assigned partner or are unassigned.
Thus M admits no blocking coalition in I . Hence we have that a feasible solution to J is
equivalent to a set of H-stable score limits t̂ in I and the result is proven.

The existence of the objective function (given by Expression 8.43) immediately leads to the
following corollary.

Corollary 8.6.2. Given an instance I of HR LQ SLT, let J be the corresponding IP model

as defined in Sections 8.6.1 and 8.6.2. A set of H-stable score limits t̂ in I such that the

assignment induced in I from t̂ assigns the maximum number of residents possible in a set of

H-stable score limits in I is exactly equivalent to an optimal solution in J .
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Chapter 9

Complexity results and integer
programming models for TAP variants

9.1 Introduction

In this chapter we describe and prove the correctness of IP models for the NP-complete prob-
lems, TAP and STABLE TAP. We show empirical data from the application of the IP model for
TAP to the process of allocating Trainee teachers studying at P.J. Šafárik University in Košice,
Slovakia for the Spring 2013/14 allocation. We demonstrate how the IP model for the TAP

problem may be adapted to the STABLE TAP context, where the applicants and schools have
a preference ordering over their acceptable partners. We also show how complexity results
from the TAP context allow us to prove the NP-completeness of the problem of deciding
whether an arbitrary graph involving paired vertices admits a complete matching.

In Section 9.2 we present and prove the correctness of an IP model for TAP and in Section 9.3
we show data obtained when this TAP IP model was applied to the data from the allocation
process for trainee teachers at P.J. Šafárik University for the Spring 2013/14 allocation. In
Section 9.4 we apply complexity results from the TAP context to allow us to establish the NP-
completeness of the problem of deciding whether a graph involving paired vertices admits a
complete matching.

In Section 9.5 we show how the model presented in Section 9.2 may be adapted to the
STABLE TAP context where the applicants and schools have a preference ordering over their
acceptable partners;. In Section 9.6 we show how STABLE TAP and HRC are related through
a polynomial-time reduction from STABLE TAP to HRC.
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9.2 An integer programming formulation for TAP

We now present an IP model for the Teachers Allocation Problem (TAP) as defined in Sec-
tion 2.8. Recall that an instance I of TAP comprises a set A = {a1, a2 . . . an1} containing
applicants, a set S = {s1, s2 . . . sn2} containing schools and a set D = {d1, d2 . . . dn3} con-
taining subjects (where, for example, d1 might be maths, d2 chemistry, etc.). Further, each
applicant ai ∈ A has a vector vi of length n3, such that vi,r = 1 if ai specialises in subject
dr (1 ≤ r ≤ n3) and vi,r = 0 otherwise. For a given i (1 ≤ i ≤ n1), since each applicant
specialises in exactly two subjects it follows that vi,r = 1 for exactly two values of r.

Each applicant ai ∈ A has a list of length l(ai) consisting of individual schools sj ∈ S;
these schools are acceptable to ai, all other schools being unacceptable. Each school sj ∈ S
has a list of acceptable applicants ai ∈ A of length l(sj). The lists expressed in this fashion
are reciprocal, thus each school’s list contains only those applicants for whom that school is
acceptable. Further, we define a variable cj,r for each j (1 ≤ j ≤ n2) and r (1 ≤ r ≤ n3)

such that cj,r is the partial capacity of school sj with respect to subject dr.

9.2.1 Variables in the IP model for TAP

Let J be the following IP formulation of I . In J , for each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤
l(ai)), define a variable xi,p such that

xi,p =

{
1 if ai is assigned to his pth choice school
0 otherwise

For p = l(ai) + 1 the intuitive meaning is that applicant ai is unassigned. Thus we also have

xi,l(ai)+1 =

{
1 if ai is unassigned
0 otherwise

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ai) + 1}. Let pref (ai, p) denote the school at
position p of applicant ai’s preference list where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ai).

9.2.2 Constraints in the IP model for TAP

The following constraint simply confirms that each variable xi,p must be binary valued for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ai) + 1):

xi,p ∈ {0, 1} (9.1)
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As each applicant ai ∈ A is assigned to exactly one school or is unassigned, we introduce
the following constraint for all i (1 ≤ i ≤ n1):

l(ai)+1∑
p=1

xi,p = 1 (9.2)

Since a school sj may be assigned to at most cj,r applicants in subject r (1 ≤ r ≤ n3), it
follows that xi,p = 1 for at most cj,r applicants where pref (ai, p) = sj and vi,r = 1. We thus
obtain the following constraint for all j (1 ≤ j ≤ n2) and r (1 ≤ r ≤ n3):

n1∑
i=1

l(ai)∑
p=1

{xi,p ∈ X : pref (ai, p) = sj ∧ vi,r = 1} ≤ cj,r (9.3)

Objective Function A maximum cardinality matching M in I is a matching in which the
maximum number of applicants are assigned taken over all of the matchings admitted by I .
To maximise the size of the matching derived from the solution to J we apply the following
objective function:

max

n1∑
i=1

l(ai)∑
p=1

xi,p (9.4)

9.2.3 Proof of correctness of the IP model for TAP

Theorem 9.2.1. Given an instance I of TAP, let J be the corresponding IP model as defined

in Sections 9.2.1 and 9.2.2. A matching in I is exactly equivalent to a feasible solution to J .

Proof. We first show that a matching in I represents a represents a feasible solution to J .
Let M be a matching in I . From M we form an assignment of values to the variables x as
follows. Initially xi,p = 0 for all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ai) + 1). Then for
each (ai, sj) ∈ M where sj = pref (ai, p), xi,p = 1. If ai is unassigned then xi,l(ai)+1 = 1.
Clearly, since all x ∈ X are constrained take a value of zero or one, Constraint 9.1 holds
in the assignment derived from M . As each applicant is assigned to a single school or is
unassigned (but not both), for a given i (1 ≤ i ≤ n1), for exactly one value of p in the range
1 ≤ p ≤ a(i) + 1, xi,p = 1, and for each other value of p in the same range, xi,p = 0. Thus
Constraint 9.2 holds in the assignment derived from M .

Since each school is assigned in M to at most cj,r acceptable applicants for all r (1 ≤ r ≤
n3), Constraint 9.3 also holds in the assignment derived from M . Now, since all of the
constraints in J hold for an assignment derived from a matching M in I , M represents a
feasible solution to J .
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Conversely, consider a feasible solution 〈x〉 to J . We form a set of pairs M from 〈x〉 as
follows. Initially let M = ∅. For each i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ai)), if xi,p = 1

then add (ai, sj) to M where sj = pref (ai, p). Now, since 〈x〉 satisfies Constraint 9.2 each
applicant in M must be assigned to exactly one school or be unassigned (but not both).
Further since 〈x〉 satisfies Constraint 9.3 each sj in M can have at most cj,r partners for all
r (1 ≤ r ≤ n3). Thus the set of pairs M created from 〈x〉 is a matching in I and the theorem
is proven.

The existence of the objective function (given by Inequality 9.4) immediately leads to the
following corollary.

Corollary 9.2.2. Given an instance I of TAP, let J be the corresponding IP model as defined

in Sections 9.2.1 and 9.2.2. A maximum cardinality matching in I is exactly equivalent to an

optimal solution to J .

9.3 The IP model for TAP applied to real data

We applied our model to the real data from the allocation process for trainee teachers at
P.J. Šafárik University for the Spring 2013/14 allocation. Approximately 500 students are
training to be teachers at any given time. However, during each single allocation process only
a subset of these trainee teachers will be involved in the allocation; the other trainee teachers
will be involved in other aspects of their course. In Spring 2013/14 only 138 of the trainee
teachers were to be allocated. There were 175 schools having approved supervising teachers
during this year. We show the number of approved teachers for the subjects available during
the Spring 2013/14 allocation and the number of students seeking each subject in Table 9.1.

Table 9.1 shows that during 2013/14 there were insufficient supervising teachers in Košice
for Geography, History and Psychology. Although, there were sufficient numbers for Geog-
raphy and History when the available places in the areas surrounding Košice are taken into
consideration.

However, a very limited number of positions are available for trainee teachers who wish
to study Psychology, wherever they wish to study. In practice, in the event that a teacher
cannot be assigned to a school offering a Psychology post the trainee teacher should instead
be assigned to a post teaching Ethics or Citizenship. We add the constraint which follows to
enforce this further restriction in this allocation process.

Thus for each applicant who wishes to study a pair of subjects where one of those subjects
is Psychology and the other is some dr ∈ D (1 ≤ r ≤ n3) that is not Psychology we create
two new cloned applicants such that: the original applicant wishes to study Psychology and
dr; the first cloned applicant wishes to study Ethics and dr; and the second cloned applicant
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Supervising Teachers in Košice Total Supervising Teachers Applicants
Maths 74 288 13
Physics 36 158 9
Biology 50 172 43
Chemistry 38 142 21
Informatics 44 137 4
Geography 31 127 35
Slovak 54 243 31
English 57 216 14
German 35 129 22
Latin 0 3 1
Civics 24 119 21
Psychology 2 12 22
Ethics 16 80 12
History 23 135 28

Table 9.1: Places available by subject for trainee teachers in Košice and surrounding areas

wishes to study Civics and dr. Since these three applicants represent the same real trainee
teacher, it cannot be the case that more than one of these applicants is assigned. Let g be
the number of applicants wishing to study Psychology and without loss of generality the
applicants constructed as above are applicants 1 . . . 3g and those applicants who do not wish
to study Psychology are applicants 3g + 1 . . . n1.

Since only one of the three applicants representing the original applicant who wishes to study
Psychology may be assigned, at least two of these applicants must be unassigned. We thus
obtain the following constraint for all i (0 ≤ i ≤ g − 1):

3∑
z=1

x3i+z,l(a3i+z)+1 ≥ 2 (9.5)

With this additional constraint present in the model we applied the IP model to the allocation
data for Spring 2013/14 and were able to allocate 122 of 138 trainee teachers to schools in
Košice. When we also included schools in the areas surrounding Košice we were able to
allocate 137 of the 138 trainees. The single trainee teacher who could not be allocated in
the latter case wished to study Latin and only wished to study in Košice. However, since no
supervising teacher was available at any school in Košice this trainee teacher could not be
allocated to any school.
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9.4 Complexity results derived from TAP

An instance I of the Bipartite Matching Problem with Couples (BMPC) is defined as follows.
Let I be a bipartite graph (R∪H,E) where R = {r1, r2 . . . r2n1} and H = {h1, h2 . . . hn2}.

Let the members of the set R (henceforth the residents) be in pairs of the form (r2i−1, r2i)

(1 ≤ i ≤ n1) (henceforth the couples). Each couple (r2i−1, r2i) (1 ≤ i ≤ n1) has a list
of acceptable hospital pairs of the form (hj1 , hj2) where hj1 ∈ H, hj2 ∈ H and possibly
hj1 = hj2 . Any hospital pair not on this list is unacceptable to (r2i−1, r2i). Moreover, each
hospital in I has capacity cj , the maximum number of residents that it may be assigned.

If, in a matching M in I , a couple (r2i−1, r2i) (1 ≤ i ≤ n1) is assigned to an acceptable
acceptable pair (hj1 , hj2) where hj1 ∈ H, hj2 ∈ H then {(r2i−1, hj1), (r2i, hj2)} ⊆ M .
A complete matching in I is a matching in which all couples are assigned to exactly one
hospital pair.

Theorem 9.4.1. Given an instance I of BMPC, the problem of deciding whether I admits a

complete matching is NP-complete. The result holds even if each couple finds at most three

hospital pairs acceptable and all of the hospitals have capacity of one.

Proof. The proof of this result uses a polynomial-time reduction from FULL TAP as defined
in Section 2.8. Cechlárová et al. [18] showed that FULL TAP is NP-complete even when each
applicant finds at most three schools acceptable, there are fours subjects in total and each
school has a partial capacity of one with respect to each subject.

Clearly BMPC is in NP as any set of pairs in I may be verified to be a complete matching
in polynomial time. To show NP-hardness, let J be an instance of TAP with applicants
A = {a1, a2, . . . an1}, schools S = {s1, s2, . . . sn2} and subjects D = {d1, d2, . . . dn3}.
Each school sj has a vector cj,k (1 ≤ k ≤ n3), where cj,k represents the partial capacity of
school sj with respect to subject dk. Further, each applicant in J find at most three schools
acceptable, each school has a partial capacity of one with respect to each dk ∈ D and |D|= 4.

We form an instance I of BMPC from J as follows. For each school sj ∈ S and subject
dk ∈ D, if sj has a partial capacity of cj,k = 1 with respect to subject dk, create a hospital
hj,k in I with capacity cj,k. For each applicant ai ∈ A create a resident couple (r2i−1, r2i) in
I . Let dk1 ∈ D and dk2 ∈ D be the two subjects of choice for applicant ai ∈ A. If school
sj ∈ S is acceptable to applicant ai ∈ A then add the hospital pair (hj,k1 , hj,k2) to the list
of acceptable hospital pairs for the resident couple (r2i−1, r2i) in I . Thus, each couple finds
acceptable at most three hospital pairs and each hospital has capacity one.

We claim that I admits a complete matching if and only if J admits a complete matching. Let
MJ be a complete matching in J . Define a set of pairs MI in I as follows. If (ai, sj) ∈ MJ ,
where dk1 ∈ D and dk2 ∈ D are the two subjects of choice for ai ∈ A, then add the
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pairs (r2i−1, hj,k1) and (r2i, hj,k2) to MI . Since each ai in J is assigned to at most one
acceptable school, each (r2i−1, r2i) in I is assigned in MI to at most one acceptable hospital
pair. Further, since no sj is oversubscribed in MJ with respect to any subject dk ∈ D, it
follows that no hj,k in I may have greater than cj,k assignees. Hence MI is a matching in I .
Moreover, since every ai ∈ A is assigned in MJ , every couple in MI must be assigned to
exactly one acceptable hospital pair. Thus, MI is a complete matching in I .

Conversely, suppose that MI is a complete matching in I . Define a set of pairs MJ in J as
follows. If (r2i−1, r2i) is assigned to the hospital pair (hj,k1 , hj,k2), then add the pair (ai, sj)

to MI , where dk1 ∈ D and dk2 ∈ D are the two subjects of choice for ai ∈ A. Since
each (r2i−1, r2i) in I is assigned to at most one hospital pair, each ai in J has at most one
partner. Since no hj,k (1 ≤ j ≤ n2, 1 ≤ k ≤ n3) is oversubscribed in MI then no sj ∈ S
is oversubscribed with respect to any subject dk ∈ D. Hence MJ is a matching in J . Since
each couple is assigned in MI it must be the case that each applicant is assigned in MJ .
Hence, MJ is a complete matching in J and the result is proven.

9.5 An IP formulation for STABLE TAP

STABLE TAP is a variant of TAP in which the applicants express a preference order over their
acceptable schools and the schools express preferences over those applicants who find them
acceptable. In this section we show how to extend the IP model for TAP presented in Section
9.2 to the STABLE TAP context. In order to do so we first define some additional notation.

For an acceptable applicant-school pair (ai, sj), let rank(sj, ai) denote the rank that school
sj assigns to applicant ai where 1 ≤ j ≤ n2 and 1 ≤ i ≤ n1. Thus, rank(sj, ai) is an integer
in [1, 2 . . . , l(sj)} equal to the number of applicants that sj prefers to ai plus one.

For each j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(sj)), let the set A(sj, q) contain applicant-integer
pairs (ai, p) such that rank(sj, ai) = q and pref (ai, p) = sj . Hence:

A(sj, q) = {(ai, p) ∈ A× Z : rank(sj, ai) = q ∧ 1 ≤ p ≤ l(ai) ∧ pref (ai, p) = sj}.

9.5.1 Additional variables in the IP model for STABLE TAP

For each j (1 ≤ j ≤ n2), q (1 ≤ q ≤ l(sj)) and r (1 ≤ r ≤ n3) where rank(sj, ai) = q

define a new variable αj,q,r ∈ {0, 1} such that if sj is full with respect to subject dr with
assignees better than rank q then αj,q,r may take the value zero or one. However, if sj is not
full with assignees better than rank q with respect to subject dr then αj,q,r = 1.
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αj,q,r ≥ 1−

q−1∑
q′=1

{xi′,p ∈ X : (ai′ , p) ∈ A(sj, q
′) ∧ vi′,r = 1}

cj,r
(9.6)

Thus, if sj is full with respect to subject dr with assignees better than rank q then αj,q,r may
take the value zero or one. However, if sj is not full with assignees better than rank q with
respect to subject dr then αj,q,r = 1.

9.5.2 Additional constraints in the IP model for STABLE TAP

For each j (1 ≤ j ≤ n2), q (1 ≤ q ≤ l(sj)) and r (1 ≤ r ≤ n3) where rank(sj, ai) = q

define a new variable αj,q,r ∈ {0, 1} such that:

αj,q,r ≥ 1−

q−1∑
q′=1

{xi′,p ∈ X : (ai′ , p) ∈ A(sj, q
′) ∧ vi′,r = 1}

cj,r
(9.7)

Thus, if sj is full with respect to subject dr with assignees better than rank q then αj,q,r may
take the value zero or one. However, if sj is not full with assignees better than rank q with
respect to subject dr then αj,q,r = 1.

We apply the following constraint to ensure stability as defined in Definition 2.8.1 in Section
2.8.1. An applicant ai may not be assigned to a worse school than sj unless sj is fully
subscribed with partners it prefers to ai in at least one subject in which ai specialises. Let
the two subjects of choice for ai be dr1 and dr2 . Thus we obtain the following constraint for
all i (1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ai)), where pref (ai, p) = sj and rank(sj, ai) = q:

l(ai)+1∑
p′=p+1

xi,p′ + αj,q,r1 + αj,q,r2 ≤ 2 (9.8)

Objective Function A maximum cardinality stable matching M in I is a stable matching in
which the maximum number of teachers are assigned taken over all of the stable matchings
admitted by I . To maximise the size of the stable matching derived from the solution to J
we apply the following objective function:

max

n1∑
i=1

l(ai)∑
p=1

xi,p (9.9)
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9.5.3 Proof of correctness of the IP model for STABLE TAP

Theorem 9.5.1. Given an instance I of STABLE TAP, let J be the corresponding IP model as

defined in Sections 9.5.1 and 9.5.2. A stable matching in I is exactly equivalent to a feasible

solution to J .

Proof. Let M be a stable matching in I . From M we form an assignment of values to the
variables 〈 x, α 〉 as follows. We assign values to the variables 〈 x 〉 as shown in Theorem
9.2.1. Further, for each j (1 ≤ j ≤ n2), q (1 ≤ q ≤ l(sj)) and r (1 ≤ r ≤ n3) if hj is fully
subscribed with assignees with rank better than q with respect to subject r then αj,q,r = 0.
Otherwise, αj,q,r = 1.

By Theorem 9.2.1 the assignment of values to x derived from a matching in I satisfies Con-
straints 9.1, 9.2, 9.3 and 9.4. It remains to prove that 〈 x, α 〉 satisfies Constraints 9.7 and
9.8.

Assume 〈 x, α 〉 does not satisfy Constraint 9.7 for some j (1 ≤ j ≤ n2), q (1 ≤ q ≤ l(sj))

and r (1 ≤ r ≤ n3). Since Constraint 9.7 is trivially satisfied if αj,q,r = 1, it follows that
αj,q,r = 0. Now, from the construction hj is fully subscribed with assignees with rank better
than q with respect to subject r and

∑q−1
q′=1{xi′,p ∈ X : (ai′ , p) ∈ A(sj, q

′)∧ vi′,r = 1} = cj,r

and Constraint 9.7 is satisfied, a contradiction.

Assume 〈 x, α 〉 does not satisfy Constraint 9.8 where the two subjects of choice for
applicant ai are dr1 and dr2 . Thus,

∑l(ai)+1
p′=p+1 xi,p′ = 1, αj,q,r1 = 1 and αj,q,r2 = 1. Now,

from the construction, ai is assigned in M to a worse school than sj and, since αj,q,r1 = 1

(respectively αj,q,r2 = 1) sj is not fully subscribed with partners better than ai in subject dr1
(respectively dr2). Thus ai blocks M with sj , a contradiction.

Conversely, let J be an assignment of values to 〈 x,α 〉 such that all constraints are satisfied
in J . We form a set of pairsM in I as in Theorem 9.2.1. By Theorem 9.2.1, M is a matching
in I . It remains to show that M is stable.

Assume a pair (ai, sj) blocks M where rank(sj, ai) = q and dr1 ∈ D and dr2 ∈ D are
the two subjects of choice for applicant ai. It follows that ai is assigned to a worse partner
than sj or is unassigned, and simultaneously sj is not fully subscribed with better partners
than ai with respect to both subjects dr1 and dr2 . Hence,

∑l(ai)+1
p′=p+1 xi,p′ = 1, αj,q,r1 = 1 and

αj,q,r2 = 1 and Constraint 9.9 is not satisfied in J , a contradiction.

Again, the existence of the objective function (given by Inequality 9.9) immediately leads to
the following corollary.

Corollary 9.5.2. Given an instance I of STABLE TAP, let J be the corresponding IP model

as defined in Sections 9.5.1 and 9.5.2. A maximum cardinality stable matching in I is exactly

equivalent to an optimal solution to J .
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9.6 A reduction from STABLE TAP to HRC

We now present a polynomial-time reduction from STABLE TAP to HRC. We can construct
an instance of HRC from an instance of STABLE TAP in polynomial time. However, it is not
immediately obvious how a reduction in the opposite direction might be constructed.

Lemma 9.6.1. An instance I of STABLE TAP may be transformed in polynomial time to an

instance J of HRC such that I admits a stable matching if and only if J does.

Proof. Let I be an instance of STABLE TAP as defined in Section 2.8.1. We now show how
to form an instance J of HRC from I as follows. For each school sj ∈ S and subject dk ∈ D,
if sj has a partial capacity of cj,k ≥ 1 with respect to subject dk, create a hospital hj,k in
J with capacity cj,k. For each applicant ai ∈ A create a resident couple (r2i−1, r2i) in J .
Let dk1 ∈ P and dk2 ∈ D be the two subjects of choice for some applicant ai ∈ A. Clearly
k1 6= k2 since no applicant expresses a preference for the same subject twice. For each school
sj ∈ S acceptable to applicant ai ∈ A add the hospital pair (hj,k1 , hj,k2) to the preference list
of resident couple (r2i−1, r2i) in J .

Let MI be a stable matching in I . Define a set of pairs MJ in J as follows. For each
(ai, sj) ∈ MI , where dk1 ∈ D and dk2 ∈ D are the two subjects of study for ai ∈ A,
let couple (r2i−1, r2i) be assigned to the hospital pair (hj,k1 , hj,k2) in MJ . If ai finds sj
acceptable, where dk1 ∈ D and dk2 ∈ D are the two subjects of study for ai ∈ A, then
(r2i−1, r2i) must find (hj,k1 , hj,k2) acceptable. Since each ai in I has at most one partner or
is unassigned but not both, each (r2i−1, r2i) in J is assigned to at most one hospital pair or is
unassigned. Further, since no sj in I is over-subscribed with respect to any subject dk ∈ D
then no hj,k in J may have more than cj,k assignees and thus cannot be over-subscribed.
Hence MJ is a matching in J .

Assume that (r2i−1, r2i) blocksMJ with (hj,k1 , hj,k2) in J . It must be the case that (r2i−1, r2i)

is either unassigned or prefers (hj,k1 , hj,k2) to (MJ(r2i−1),MJ(r2i)). Note that hj,k1 6=
MJ(r2i−1) and hj,k2 6= MJ(r2i). It also follows that hj,k1 (respectively hj,k2) is either un-
dersubscribed or prefers r2i−1 (respectively r2i) to some member of MJ(hj,k1) (respectively
MJ(hj,k2)). However, this implies that ai either prefers sj to its assigned partner in MI or is
unassigned and sj is either undersubscribed inMI or prefers ai to one of its assigned partners
in MI with respect to both dk1 and dk2 . Thus (ai, sj) blocks MI in I , a contradiction.

Conversely, suppose that MJ is a stable matching in J . Define a set of pairs MI in I as
follows. If (r2i−1, r2i) is assigned to the hospital pair (hj,k1 , hj,k2) in MJ then add (ai, sj) to
MI ; it follows that dk1 and dk2 must be the two subjects of study for ai in J .

Since each each (r2i−1, r2i) in J is assigned to at most one hospital pair or is unassigned,
each ai in I has at most one partner or is unassigned. Further, since no hospital hj,k ∈ H is
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over-subscribed in MJ , no school is over-subscribed in I with respect to any subject dk ∈ D.

Assume that (ai, sj) blocks MI in I . Let dk1 and dk2 be the two subjects of choice for ai.
Thus, ai either prefers sj to his partner in MI or is unassigned and for each r ∈ {1, 2} either
sj is undersubscribed in dkr or prefers ai to some at ∈ MI(sj) where dkr is one of at’s
subjects.

However, this implies that in J , either (r2i−1, r2i) is unassigned in MJ or (r2i−1, r2i) prefers
(hj,k1 , hj,k2) to (MJ(r2i−1),MJ(r2i)) and hj,k1 (respectively hj,k2) is either undersubscribed
or prefers r2i−1 (respectively r2i) to some member of MJ(hj,k1) (respectively MJ(hj,k2)). It
follows that (r2i−1, r2i) blocks MJ with (hj,k1 , hj,k2) in J , a contradiction. Hence, the result
is proven.

It is not at all clear how to formulate a reduction from HRC to STABLE TAP. To see the
difficulties associated with this, observe that in the above reduction from STABLE TAP to
HRC, we modelled applicants’ preference lists and their subjects in the constructed HRC

instance by carefully choosing hospital pairs whose subscripts retained information about
the applicants’ subjects throughout. In a general HRC instance, the arbitrary nature of a
couple’s preferences implies that there is no straightforward relationship between hospital
pairs and school preferences that retains information about the applicants’ chosen subjects.
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Chapter 10

Inapproximability results for a class
of minimisation problems.

10.1 Introduction

In this chapter we present a framework for classifying certain minimisation problems in
which the measure function may take only integer values π with NP-complete decision ver-
sions which will be used to prove that π is inapproximable to within a given bound, unless
P=NP. These minimisation problems will be referred to as decomposable problems. We
first consider the measure function with respect to which approximation is defined in stable
matching problems. For minimisation problems such as the minimisation variants of stable
matching problems the measure of an optimal solution may be zero – in this special case
the performance guarantee of an approximation algorithm for π as described in Section 2.4
is not well defined. In Section 10.2 we present an adjusted measure function that naturally
extends the previous measure function for minimisation problems and moreover leads to a
well-defined notion of performance guarantee in the special case of minimisation problems
having an optimal solution with a measure of zero.

For such minimisation problems by considering the performance guarantee to be defined
relative to the adjusted measure function we are able to present a general proof in Section
10.3 that a class of minimisation problems having NP-complete decision versions must be
inapproximable to within a given bound, unless P=NP. Further, we define the members of
this class of problems to be decomposable problems.

In Section 10.4 we show how the general result in Section 10.3 implies that natural minimi-
sation variants of the stable matching problems shown to be NP-complete elsewhere in this
thesis are inapproximable to within a given bound, unless P=NP. Further, in Section 10.5 we
show that this framework might be applied to show that minimisation variants of a number
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of NP-complete decision problems involving stable matchings are inapproximable to within
a given bound, unless P=NP.

In Section 10.6 we discuss how this framework may be applied to prove that NP-complete
decision problems involving k-colouring must have inapproximable minimisation variants.
Further, we discuss how this framework may be applied to show that NP-complete decision
problems involving SAT instances must also have minimisation variants that are inapprox-
imable to within a given bound, unless P=NP.

10.2 An adjusted measure function for minimisation

problems

Given an NPO problem π and an instance I of π, if opt(I) = 0, then the performance
guarantee of an approximation algorithm for π with respect to I as described in Equation 2.2
in Section 2.4 (and shown again below) is not well-defined.

RA(I) =
m(I, A(I))

opt(I)
. (10.1)

To address this problem we define an adjusted measure function such that the properties of
an approximation algorithm for π relative to the adjusted measure function are well-defined
even in instances of the problem where the original measure function has optimal value zero.

Assume that π is a minimisation problem in which the measure function may take only inte-
ger values. Define a new adjusted measure functionm′ as follows: m′(I, S) = max{m(I, S),

1} for any instance I of π and for any S ∈ SOL(I). Further, let opt′(I) = min{m′(I, S) :

S ∈ SOL(I)}. Given any constant c ≥ 1, a c-approximation algorithm relative to m′, A is a
polynomial time algorithm that outputs a feasible solution A(I) for any instance I of π such
that m′(I,X(I)) ≤ c · opt′(I).

Proposition 10.2.1 demonstrates that the properties an approximation algorithm for some
problem in NPO relative to the adjusted measure function are well defined even in instances
of the problem where the optimal measure may take a value of zero. Further, the proposition
demonstrates that the characteristics of such an approximation algorithm fit naturally with
the expectations of an approximation algorithm.

Proposition 10.2.1. Let π be a minimisation problem. If A is a c-approximation algo-

rithm relative to m′ for π where c ≥ 1, then for any instance I of π, if opt(I) = 0, then

m(I, A(I)) ≤ c and if opt(I) > 0, then m(I, A(I)) ≤ c · opt(I).
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Proof. By definition, A returns a feasible solution S in I such that m′(I, S) ≤ c · opt′(I).
We now consider both cases in the proposition statement separately.

Case(i) – opt(I) = 0. For a contradiction suppose that m(I, S) > c. Then by the definition
of m′(I, S) it follows that m′(I, S) = m(I, S). However, since opt(I) = 0 it follows that
opt′(I) = 1. Hence,m′(I, S) ≤ c and thusm(I, S) ≤ c, a contradiction. Thus if opt(I) = 0,
then m(I, S) ≤ c.

Case (ii) – opt(I) > 0. Since opt(I) = min{m(I, S ′) : S ′ ∈ SOL(I)} it follows that
m(I, S ′) > 0 for all S ′ ∈ SOL(I). Thus m′(I, S ′) = m(I, S ′) for all S ′ ∈ SOL(I) and
it follows that opt(I) = opt′(I). Thus m(I, S) = m′(I, S) ≤ c · opt′(I) = c · opt(I) as
required.

10.3 An inapproximability bound for a class of min-

imisation problems.

In Theorem 3.3.2 we proved that (2, 2)-MIN BP HRC is not approximable within n1−ε
1 , where

n1 is the number of residents in a given instance, for any ε > 0, unless P=NP. In the proof of
Theorem 3.3.2 we added a small unsolvable instance of HRC to the instance constructed as
part of the proof to ensure that the measure of an optimal solution in the constructed instance
could never take a value of zero. We now demonstrate that the form of this proof is quite
general and may be applied to other minimisation problems. However, a generalisation of
the proof in its current form seems unlikely since to prove the result for other minimisation
problems, each problem would require a separate small unsolvable instance of the decision
problem involved to be described in each proof.

By defining approximation relative to the adjusted measure function described in Section
10.2 we may state the result in a much more general form. Hence, in Theorem 10.3.1 we
present a general proof that a group of NP-complete decision problems have a minimisation
variant that is inapproximable to within a given bound, unless P=NP, where approximation is
defined relative to the adjusted measure function described in Section 10.2. We now define
the class P of problems, called decomposable minimisation problems, that we will be able
to apply this result to.

Definition 10.3.1. Let P be a family of tuples (π, f, g, h, g′, h′) where:

• π is a minimisation problem;

• f is a polynomially computable function that maps an instance I of π to a positive real

number f(I) ≤ |I|;
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• g is a polynomially computable function that maps a positive integer and an instance

of π to an instance of π;

• h is a polynomially computable function that maps a pair of instances of π to an

instance of π;

• g′ is a polynomially computable function that maps a positive integer, an instance of π

and a feasible solution of an instance of π to a feasible solution of an instance of π;

• h′ is a polynomially computable function that maps a pair of feasible solutions to an

instance of π to a feasible solution of an instance of π.

Let I be an instance of π. Define J2 = h(g(1, I), g(2, I)), and for any i > 2 define Ji =

h(Ji−1, g(i, I)). Now let S be a feasible solution of I . Define S2 = h′(g′(1, I, S), g′(2, I, S)).

For any i > 2 define Si = h′(Si−1, g
′(i, I, S)). For k ≥ 2, let I ′ = Jk and let S ′ = Sk. The

tuple (π, f, g, h, g′, h′) must additionally satisfy the following properties:

1. f(I ′) = kf(I);

2. If S ∈ SOL(I), then S ′ = Sk ∈ SOL(I ′). Moreover m(I ′, S ′) = km(I, S) must

hold.

Conversely if S ′ ∈ SOL(I ′), then S ′ = H(T1, . . . , Tk) where Ti ∈ SOL(I) (1 ≤ i ≤
k), and H(T1, . . . , Tk) = Hk(T1, . . . , Tk), where for 3 ≤ i ≤ k,

Hi(T1, . . . , Ti) = h′(Hi−1(T1, . . . , Ti−1), g
′(i, I, Ti))

and H2(T1, T2) = h′(g′(1, I, T1), g
′(1, I, T2)). Moreover m(I ′, S ′) =

k∑
i=1

m(I, Ti)

must hold.

3. The following decision problem is NP-complete:

Instance: Any instance I of π

Question: Is opt(I) = 0? That is, is there a feasible solution S ∈ SOL(I) such that

m(I, S) = 0?

An optimisation problem π is said to be decomposable if there exist functions f , g, h, g′ and

h′ such that (π, f, g, h, g′, h′) ∈ P .

Intuitively, given an instance I of π, f(I) is some measure of a constituent component of I
that is no greater than the size of I; in our inapproximability results, hardness of approxima-
tion will be will be established relative to f(I). For example, in an instance I of HRC, f(I)

will denote the number of residents in I .
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Intuitively, g(i, I) is an instance of π formed by adding a subscript i to the entities involved
in I to differentiate between discrete copies of I . This implies that if i 6= j, then g(i, I) and
g(j, I) are two disjoint copies of I with no entities in common. For a feasible solution S
in I , Si = g′(i, S, I) is the feasible solution in g(i, I) constructed by adding the subscript i
to the entities involved in S. For example if I is an instance of HRC, g(i, I) is the instance
obtained by adding a subscript i to every agent and to every entry in each agent’s preference
list in I . Further, if S is a matching in I , then g′(i, S, I) is the matching in g(i, I) obtained
by adding the subscript i to every agent in S.

Intuitively, now let i and j be two integers and let Ii = g(i, I) and Ij = g(j, I). Define
h(Ii, Ij) as the instance of π obtained by combining the two instances of π in some fashion,
Further, h′(Si, Sj) is the feasible solution of h(Ii, Ij) obtained by combining two feasible
solutions Si in Ii and Sj in Ij in the same manner. For example if I is an instance of HRC,
h(Ii, Ij) is the instance of HRC obtained by taking the union of the two disjoint subinstances
Ii and Ij . Further, if S is a matching in I , then h′(Si, Sj) is the matching in h(Ii, Ij) obtained
by taking the union of the two disjoint solutions Si in g(i, I) and Sj in g(j, I).

Having defined the necessary notation we may now state the following inapproximability
result for decomposable minimisation problems. Intuitively Theorem 10.3.1 below implies
that if π is a decomposable minimisation problem where (π, f, g, h, g′, h′) ∈ P , then relative
to the adjusted measure function, π is not approximable within n1−ε, for any ε > 0, where
n = f(I), unless P=NP.

Theorem 10.3.1. Let π be a decomposable minimisation problem where (π, f, g, h, g′, h′) ∈
P . For an arbitrary instance I ′ of π, opt′(I ′) is not approximable within n1−ε, for any ε > 0,

where n = f(I ′), unless P=NP.

Proof. Let P = (π, f, g, h, g′, h′) be a member of P . Now, let I0 be an instance of π
and further let n0 = f(I0). Assume ε > 0. Choose c = d2/εe and k = nc0. Now, let
g(1, I0), g(2, I0), . . . , g(k + 1, I0) be k + 1 disjoint instances derived from I0 and define
Ij = g(j, I0) (1 ≤ j ≤ k + 1). Let I ′ = Jk+1 where J2 = h(g(1, I0), g(2, I0)), and
Jz+1 = h(Jz, g(z + 1, I0)) for z > 2. Now, let n = (k + 1)n0. Then by Property 1 of
Definition 10.3.1, n = f(I ′).

Clearly if I0 admits a feasible solution S0 such that m(I0, S0) = 0, then each Ij (1 ≤
j ≤ k + 1) must admit a feasible solution Sj = g′(j, I0, S0) with m(Ij, Sj) = 0. Hence,
S ′ = Sk+1 is a feasible solution in I ′, where S2 = h′(g′(1, I0, S0), g

′(2, I0, S0)) and for any
z ≥ 2, Sz+1 = h′(Sz, g

′(z + 1, I0, S0)). Moreover m(I ′, S ′) = 0 by Property 2 of Definition
10.3.1. Hence opt′(I ′) = 1.

Now suppose that I0 admits no feasible solution S with m(I0, S) = 0. Let S ′ be any feasible
solution in I ′. Then by Property 2 of Definition 10.3.1, S ′ = H(T1, . . . , Tk+1) where Tj ∈
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SOL(Ij) (1 ≤ j ≤ k + 1). Thus m(Ij, Tj) ≥ 1 for each j (1 ≤ j ≤ k + 1) and hence
m(I ′, S ′) ≥ k+ 1 by Property 2 of Definition 10.3.1. Hence opt(I ′) = opt′(I ′) ≥ k+ 1. We
now show that n1−ε ≤ k.

Firstly n = (k + 1)n0 ≤ 2kn0 = 2nc+1
0 . Hence

n

2
≤ nc+1

0

which implies (n
2

)1/(c+1)

≤ n0

Since k = nc0 it follows that (n
2

)c/(c+1)

≤ k

and hence

2−c/(c+1)nc/(c+1) ≤ k. (10.2)

We know that n = (k + 1)n0 ≥ nc+1
0 ≥ nc0 and we lose no generality by assuming that

n0 ≥ 2. Hence n ≥ 2c and it follows that n−1 ≤ 2−c and thus

n−1/(c+1) ≤ 2−c/(c+1).

Hence
n−1/(c+1)nc/(c+1) ≤ 2−c/(c+1)nc/(c+1) (10.3)

and it follows by Inequalities 10.2 and 10.3 that

n(c−1)/(c+1) = nc/(c+1)n−1/(c+1) ≤ 2−c/(c+1)nc/(c+1) ≤ k (10.4)

We now show that n1−ε ≤ n(c−1)/(c+1). Observe that c ≥ 2/ε and thus c+ 1 ≥ 2/ε. Hence

ε ≥ 2

c+ 1

and thus
1− ε ≤ 1− 2

c+ 1
=
c+ 1− 2

c+ 1
=
c− 1

c+ 1

and hence by Inequality 10.4, n1−ε ≤ k.

Now, assume that A is a polynomial-time approximation algorithm for π, relative to the
adjusted measure function m′, with a performance guarantee of n1−ε ≤ k. Let I0 be an
instance of the decision version of π and form the instance I ′ of π as described above. If
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I0 admits a feasible solution S0 with m(I0, S0) = 0, then opt′(I ′) = 1 and A must return
a feasible solution S ′ in I ′ where m′(I ′, S ′) ≤ k. Otherwise, opt′(I ′) ≥ k + 1 and A must
return a feasible solution S ′ in I ′ with m′(I ′, S ′) ≥ k + 1. Thus algorithm A may be used to
determine in polynomial time whether I0 admits a feasible solution S with m(I0, S) = 0, a
contradiction to property 3 of Definition 10.3.1, unless P=NP. Hence, no such approximation
algorithm can exist, unless P = NP.

10.4 Inapproximability bounds for problems in this

thesis

In this section we show how the proof of Theorem 10.3.1 may be used to show that NP-
complete decision problems described elsewhere in this thesis must have a decomposable
minimisation variant that is inapproximable to within a given bound, unless P=NP. For HRC

and TAP variants we will use this result to show that the number of blocking pairs in a ‘most
stable’ matching is not approximable to within n1−ε

1 , for any ε > 0, unless P=NP, where n1

is the number of residents (or applicants) in a given instance. In Section 10.4.1 we discuss
in more detail how Theorem 10.3.1 can be applied to HRC variants, whilst in Section 10.4.2
we consider how Theorem 10.3.1 can be applied to TAP variants.

10.4.1 HRC variants

We first consider MIN BP HRC as defined in Section 2.4. Let MIN BP HRC be the problem of
finding a matching in an instance I of HRC that admits the fewest blocking pairs taken over
all of the matchings in I . We describe MIN BP HRC as an optimisation problem following
the notation in Definition 2.4.1 as follows:

MIN BP HRC

Instance: An instance I of HRC;
Feasible solutions: All the matchings admitted by I;
Measure: The number of blocking pairs admitted by a matching in I;
Goal: min;
Optimisation version: Minimise the number of blocking pairs taken over all of the match-
ings admitted by I;
Decision version: Is there a matching in I that admits no blocking pairs?

We now show that MIN BP HRC is decomposable by defining functions f, g, h, g′ and h′ such
that (π, f, g, h, g′, h′) ∈ P where π represents an instance of MIN BP HRC. The generality
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of Theorem 10.3.1 implies that inapproximability bounds hold for the minimisation variants
of all of the HRC decision problems that are shown to be NP-complete in Chapter 3. These
results are stated formally as Theorems 10.4.1, 10.4.2, 10.4.3 and 10.4.4 below with the full
proof being stated for Theorem 10.4.1 only.

Theorem 10.4.1. (∞, 1,∞)-MIN BP HRC is not approximable within n1−ε
1 , for any ε > 0,

unless P=NP, where n1 is the number of residents in a given instance. The result holds even

if each hospital has capacity one.

Proof. We show that (∞, 1,∞)-MIN BP HRC is a decomposable minimisation problem. Let
I0 be an arbitrary instance of MIN BP HRC. Further, let f(I0) be the number of residents
in I0. Moreover, let I1 = g(1, I0) where g(i, I0) is the instance of MIN BP HRC formed by
adding a subscript i to every agent and to every entry in each agent’s preference list in I0.
Let h(Ii, Ij) be the instance formed by taking the union of the two instance Ii and Ij . Let S0

be a matching in I0 and more generally let Si = g′(i, S0, I0) be the matching in Ii obtained
by adding a subscript i to every agent in the matching S0 in I0. Further, let h′(Si, Sj) be the
matching formed by taking the union of the two matchings Si in Ii and Sj in Ij .

Now for any k ≥ 1 let I ′ =
⋃k+1
i=1 g(i, I0), be the instance of MIN BP HRC formed by taking

the disjoint union of k + 1 copies of I0. Since f(I0) is the number of residents in I , clearly
f(I ′) = (k + 1)f(I0) and thus Property 1 of 10.3.1 holds for all variants of HRC.

Let S0 be a matching in I0. Clearly, S1 = g(1, S0, I0) is a matching in I1 and thus a
feasible solution of I1. We may construct a feasible solution S ′ of I ′ by letting S ′ =⋃k+1
i=1 g

′(i, S0, I0). Clearly S ′ is a feasible solution of I ′ and m(I ′, S ′) = |bp(I ′, S ′)|=
k|bp(I0, S0)|= km(I0, S0) where bp(I0, S0) denotes the set of blocking pairs of the matching
S0 in I0.

Conversely, let S ′ be a feasible solution of I ′. Then S ′ must be a union of feasible solutions
to each of the individual subinstances Ij of I ′ and hence Property 2 of Definition 10.3.1
holds. We have previously shown in Theorem 3.2.1 that deciding whether an instance of
(∞, 1,∞)-HRC admits a stable matching is NP-complete and thus Property 3 of Definition
10.3.1 holds. Thus (∞, 1,∞)-MIN BP HRC is a member of P and the result is proven.

Theorem 10.4.2. (2, 2)-MIN BP HRC is not approximable within n1−ε
1 , where n1 is the num-

ber of residents in a given instance, for any ε > 0, unless P=NP. The result holds even if

there are no single residents and each hospital has capacity one.

Theorem 10.4.3. (2, 3)-MIN BP HRC is not approximable within n1−ε
1 , where n1 is the num-

ber of residents in a given instance, for any ε > 0, unless P=NP. The result holds even if

there are no single residents and each hospital has capacity one and the preference list of

each couple and hospital is derived from a strictly ordered master list of pairs of hospitals

and residents respectively.
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Theorem 10.4.4. (2, 3)-MIN BP HRC DUAL MARKET is not approximable within n1−ε
1 , where

n1 is the number of residents in a given instance, for any ε > 0, unless P=NP. The result

holds even if each hospital has capacity one and the preference list of each single resident,

couple and hospital is derived from a strictly ordered master list of hospitals, pairs of hospi-

tals and residents respectively.

10.4.2 TAP variants

In this section we consider inapproximability results for variants of TAP. Let I be an in-
stance of STABLE TAP as defined in Section 2.8. Cechlárová et al. [17] showed that deciding
whether an instance of STABLE TAP admits a stable matching is NP-complete under a num-
ber of restrictions. We define MIN BP STABLE TAP as the problem of finding a matching in an
instance of STABLE TAP that admits the fewest blocking pairs taken over all of the matchings
admitted by I . We define MIN BP STABLE TAP as an optimisation problem following the
notation in Definition 2.4.1 as follows:

MIN BP STABLE TAP

Instance: An instance I of STABLE TAP;
Feasible solutions: All the matchings admitted by I;
Measure: The number of blocking pairs admitted by a matching in I;
Goal: min;
Optimisation version: Minimise the number of blocking pairs taken over all of the match-
ings admitted by I .
Decision version: Is there a matching in I that admits no blocking pairs?

If I ′ is an instance of MIN BP STABLE TAP and the functions f, g, h, g′, h′ are as defined
in the proof of Theorem 10.4.1, then it follows that MIN BP STABLE TAP is decomposable.
It then follows from Theorem 10.3.1 that MIN BP STABLE TAP is not approximable within
n1−ε
1 , where n1 is the number of applicants in a given instance, for any ε > 0, unless P=NP,

under the same restrictions for which the NP-completeness of the decision problem variants
were proven. These results are stated formally as Theorems 10.4.5 and 10.4.6 below.

Theorem 10.4.5. MIN BP STABLE TAP is not approximable within n1−ε
1 , where n1 is the

number of applicants in a given instance, for any ε > 0, unless P=NP. The result holds even

if there are at most three subjects, each partial capacity of a school is at most two and the

preference list of each applicant is of length at most three.
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Theorem 10.4.6. MIN BP STABLE TAP is not approximable within n1−ε
1 , where n1 is the

number of applicants in a given instance, for any ε > 0, unless P=NP. The result holds

even if there are at most three subjects, each partial capacity of a school is at most one, the

preference lists of the schools are derived from subject specific master lists of applicants and

the preference lists of the applicants are derived from a master list of schools.

Now we consider the Bipartite Matching Problem with Couples (BMPC) as defined in Sec-
tion 9.4. Recall that an instance I of BPMC is a bipartite graph (R ∪ H,E) where R =

{r1, r2 . . . r2n1}, H = {h1, h2 . . . hn2} and the residents in R are in pairs of the form
(r2i−1, r2i) (1 ≤ i ≤ n1). Theorem 9.4.1 shows that deciding whether an instance of BPMC

admits a complete matching is NP-complete. We define MIN UNASSIGNED COUPLES BPMC

as an optimisation problem following the notation in Definition 2.4.1 as follows:

MIN UNASSIGNED COUPLES BPMC

Instance: An instance I of BPMC;
Feasible solutions: All the matchings admitted by I;
Measure: The number of unassigned couples in a matching in I;
Goal: min;
Optimisation version: Minimise the number of unassigned couples taken over all of the
matchings admitted by I .
Decision version: Is there a matching in I in which no couples are unassigned?

MIN UNASSIGNED COUPLES BPMC is decomposable as can be seen by defining the functions
f, g, h, g′, h′ are as defined in the proof of Theorem 10.4.1. Since Theorem 9.4.1 shows that
deciding whether an instance of BPMC admits a complete matching is NP-complete it follows
from Theorem 10.3.1 that MIN UNASSIGNED COUPLES BPMC is inapproximable to within
n1−ε
1 , where n1 is the number of residents in a given instance, for any ε > 0, unless P=NP.

This result is formally stated as Theorem 10.4.7 below; the structure of the proof follows that
applied in Theorem 10.4.1.

Theorem 10.4.7. MIN UNASSIGNED COUPLES BPMC is not approximable within n1−ε
1 ,

where n1 is the number of residents in a given instance, for any ε > 0, unless P=NP. The

result holds even if all the hospitals have capacity one.
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10.5 Inapproximability bounds for NP-complete sta-

ble matching problems

10.5.1 Introduction

In this section we show that Theorem 10.4.1 implies that the minimisation variant of a num-
ber of NP-complete decision problems involving stable matchings are inapproximable to
within a given bound, unless P=NP.

In Section 10.5.2 we show the minimisation variant of HR LQ, as defined in Section 2.6.1,
is inapproximable to within a given bound, unless P=NP and in Section 10.5.3 we show that
the minimisation variant of HR CQ, as defined in Section 2.6.2, is inapproximable to within
a given bound, unless P=NP.

In Section 10.5.4 we show that the NP-completeness of a decision problem involving com-
plete stable matchings in HRT instances may be used to show that two minimisation vari-
ants of the decision problem are necessarily inapproximable to within a given bound, unless
P=NP.

10.5.2 HR LQ

Now we consider the HR LQ problem as defined in Section 2.6.1. Biró et al. [11] showed
that the problem of deciding whether an instance of HR LQ admits a stable matching is NP-
complete in the case that each hospital has upper and lower quota equal to three. We define
MIN BP HR LQ as the problem of finding a matching in an instance of HR LQ that admits the
minimum number of blocking pairs taken over all of the matchings admitted by I . MIN BP

HR LQ may be defined as an optimisation problem following the notation in Definition 2.4.1
as follows:

MIN BP HR LQ

Instance: An instance I of HR LQ;
Feasible solutions: All the matchings admitted by I;
Measure: The number of blocking pairs admitted by a matching in I .
Goal: min;
Optimisation version: Minimise the number of blocking pairs in the matchings admitted
by I;
Decision version: Is there a stable matching in I?
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MIN BP HR LQ is decomposable which may be established by defining the functions f, g, h,
g′, h′ as in the proof of Theorem 10.4.1. It follows from Theorem 10.3.1 that MIN BP HR

LQ is not approximable within n1−ε
1 , where n1 is the number of residents in a given instance,

for any ε > 0, unless P=NP, under the same restrictions for which the NP-completeness of
the decision problem variants were proven in [11]. Thus, Theorem 10.5.1 below follows; the
proof of the result follows the same structure as the proof of Theorem 10.4.1.

Theorem 10.5.1. MIN BP HR LQ is not approximable within n1−ε
1 , where n1 is the number

of residents in a given instance, for any ε > 0, unless P=NP. The result holds even if each

hospital has upper and lower quota equal to three.

10.5.3 HR CQ

We now consider the HR CQ problem as defined in Section 2.6.2. It is known that the problem
of deciding whether an instance of HR CQ admits a stable matching is NP-complete [11] even
if the following three properties hold simultaneously: (i) each hospital and each bounded set
has upper quota one; (ii) each bounded set contains two hospitals and (iii) each hospital
appears in at most two bounded sets. We define MIN BP HR CQ as an optimisation problem
following the notation in Definition 2.4.1 as follows:

MIN BP HR CQ

Instance: An instance I of HR CQ;
Feasible solutions: All the matchings admitted by I;
Measure: The number of blocking pairs admitted by a matching in I;
Goal: min;
Optimisation version: Minimise the number of blocking pairs over the matchings admitted
by I;
Decision version: Is there a stable matching in I?

MIN BP HR CQ is decomposable which may be seen by applying the functions f, g, h, g′, h′

as defined in the proof of Theorem 10.4.1. Thus, it follows from Theorem 10.3.1 that
MIN BP HR CQ is not approximable within n1−ε

1 , where n1 is the number of residents in
a given instance, for any ε > 0, unless P=NP, under the same restrictions for which the
NP-completeness of the decision problem variants were proven in [11]. We state this result
formally as Theorem 10.5.2 below.

Theorem 10.5.2. MIN BP HR CQ is not approximable within n1−ε
1 , where n1 is the number

of residents in a given instance, for any ε > 0, unless P=NP. The result holds even if the
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following three properties hold simultaneously: (i) each hospital and each bounded set has

upper quota one; (ii) each bounded set contains two hospitals and (iii) each hospital appears

in at most two bounded sets.

10.5.4 HRT

It is known that COM HRT, the problem of deciding whether an instance of HRT admits a
complete stable matching, is NP-complete even if each agents’ preference list is of length
at most three, each resident’s list is strictly ordered, each hospital’s preference list is either
strictly ordered or is a tie of length two and each hospital has capacity one [55, 42].

We now define two optimisation problems MIN UNASSIGNED HRT and MIN BP COM HRT

following the notation in Definition 2.4.1 as follows:

MIN UNASSIGNED HRT

Instance: An instance I of HRT;
Feasible solutions: All the stable matchings admitted by I;
Measure: The number of residents who are left unassigned in a stable matching in I .
Goal: min;
Optimisation version: Minimise the number of residents who are left unassigned in a stable
matching in I;
Decision version: Is there a stable matching in I in which no residents remain unassigned?

MIN BP COM HRT

Instance: An instance I of HRT;
Feasible solutions: All the complete matchings admitted by I;
Measure: The number of blocking pairs in a complete matching in I .
Goal: min;
Optimisation version: Minimise the number of blocking pairs in a complete matching in I;
Decision version: Is there a complete stable matching in I?

MIN UNASSIGNED HRT or MIN BP COM HRT are both decomposable as can be seen by ap-
plying the functions f, g, h, g′, h′ as defined in the proof of Theorem 10.4.1. It follows from
Theorem 10.3.1 that MIN UNASSIGNED HRT and MIN BP COM HRT are not approximable
within n1−ε

1 , where n1 is the number of residents in a given instance, for any ε > 0, un-
less P=NP. This result holds under the same restrictions for which the NP-completeness of
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the decision problem variants were proven in [55, 42]. These results are stated formally as
Theorems 10.5.3 and 10.5.4.

Theorem 10.5.3. MIN UNASSIGNED HRT is not approximable within n1−ε
1 , where n1 is the

number of residents in a given instance, for any ε > 0, unless P=NP. The results holds even

if each preference list is of length at most three, each resident’s list is strictly ordered, each

hospital’s preference list is either strictly ordered or is a tie of length two and each hospital

has capacity one.

Theorem 10.5.4. MIN BP COM HRT is not approximable within n1−ε
1 , where n1 is the number

of residents in a given instance, for any ε > 0, unless P=NP. The results holds even if each

preference list is of length at most three, each resident’s list is strictly ordered, each hospital’s

preference list is either strictly ordered or is a tie of length two and each hospital has capacity

one.

Now we have two seemingly contradictory results, namely that MAX HRT is approximable to
within 3/2 [54, 45] yet MIN UNASSIGNED HRT is inapproximable within n1−ε

1 , where n1 is
the number of residents in a given instance, for any ε > 0, unless P=NP. Yet the two problems
are equivalent up to polynomial-time reductions. However, this apparent contradiction has
been shown to exist in a number of other problem contexts. For example, consider two
related problems; the problem of finding a minimum vertex cover and the problem of finding
a maximum independent set in an arbitrary graph. Given a graph G = (V,E), there is
a straightforward correspondence between a minimum vertex cover in G and a maximum
independent set in G – namely a set of vertices is only a maximum independent set if its
complement is a minimum vertex cover. However the approximation properties of the two
problems are not the same. The problem of finding a minimum vertex cover is approximable

within 2 − log log|V |
2 log|V |

[57, 7], yet the problem of computing a maximum independent set is

not approximable to within |V |1−ε, for any ε > 0, unless P=NP [85].

10.6 An inapproximability bound for k-COLOURING &

SAT problems

In this section we show that the proof of Theorem 10.3.1 may be generalised to prove that the
minimisation variants of two well known NP-complete problems are hard to approximate.
Zuckerman [84] has shown previously using a different methodology that NP-complete prob-
lems have a version that is hard to approximate. First, we show that the proof of Theorem
10.3.1 may be used to establish that a well known NP-complete combinatorial problem, the
k-COLOURING PROBLEM [29], has a natural minimisation variant that is inapproximable to
within a given bound, unless P=NP.
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The k-COLOURING PROBLEM is defined as follows. Given a graph G = (V,E), a colouring

in G is an assignment of colours to the vertices in G. In an arbitrary colouring adjacent
vertices may have the same colour. A proper colouring in G is a colouring in which no two
adjacent vertices share the same colour. A k-colouring is a colouring containing at most k
colours, a proper k-colouring is a proper colouring containing at most k colours. For each
fixed k ≥ 3, it is NP-complete to decide if an arbitrary graph G admits a proper k-colouring.
Further, the minimum value of k for which G admits a proper k-colouring is inapproximable
to within n1−ε, where n is the number of vertices in the graph, for any ε > 0, unless P=NP
[85]. We define the optimisation problem MIN IMPROPERLY COLOURED EDGES following
the notation in Definition 2.4.1 as follows:

MIN IMPROPERLY COLOURED EDGES

Instance: A graph G = (V,E) and an integer k;
Feasible solutions: All colourings (not necessarily proper) of the vertices in V using at most
k colours;
Measure: The number of edges where the two endpoints share the same colour;
Goal: min;
Optimisation version: Minimise the number of edges where the two endpoints share the
same colour taken over all of the k-colourings of G;
Decision version: Does G admit a proper k-colouring?

Thus, given a graph G = (V,E) and an integer k, MIN IMPROPERLY COLOURED EDGES is
the problem of finding a k-colouring that induces the minimum number of edges having two
endpoints sharing the same colour, taken over all of the possible k-colourings in the graph.
We define the functions f, g, h, g′, h′ in this context as follows.

Let I0 be an arbitrary instance of the k-COLOURING PROBLEM comprising a graph G0 =

(V0, E0) and an integer k. Define f(I0) to be |V0|. Moreover, for any i ≥ 1, let Ii = g(i, I0),
where g(i, I0) = 〈Gi, k〉, where Gi is the graph obtained from G0 by by adding the subscript
i to each vertex in V and to the endpoints of each edge in E0. Given two integers r and s, let
h(Ir, Is) = It where It = 〈Gt, k〉, Gt = (Vt, Et), Vt = Vr

⋃
Vs and Et = Er

⋃
Es. Let S0

be a colouring in I0 and for any i ≥ 1 let Si = g′(i, S0, I0) be the colouring in I0 obtained
by adding the subscript i to every vertex in the colouring S0 in I0. Further, let h′(Si, Sj) be
the colouring in h(Ii, Ij) formed by taking the union of the colourings Si in Ii and Sj in Ij .

If π represents an instance of MIN IMPROPERLY COLOURED EDGES and the functions
f, g, h, g′, h′ are as defined above then (π, f, g, h, g′, h′) ∈ P and hence π is a decomposable
minimisation problem. It follows from Theorem 10.3.1 that MIN IMPROPERLY COLOURED

EDGES is not approximable within n1−ε, where n is the number of vertices in a given in-
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stance, for any ε > 0, unless P=NP. This result holds under the same restrictions for which
the NP-completeness of the decision problem variant is proven. Thus, we obtain the follow-
ing result.

Theorem 10.6.1. MIN IMPROPERLY COLOURED EDGES is not approximable within n1−ε,

where n is the number of vertices in a given instance, for any ε > 0, unless P=NP. The result

holds for all fixed k ≥ 3.

We now consider how Theorem 10.3.1 might be applied to a variant of the well known
Satisfiability problem (SAT), which is the problem of deciding, given a Boolean formulaB, in
conjuctive normal form, whether B is satisfiable i.e. whether there exists a truth assignment
for B that makes every clause in B true. Cook [20] showed that SAT is NP-complete. The
restriction of SAT in which each clause in B must contain at most k variables is denoted by
k-SAT. 3-SAT was one amongst a list of 21 NP-complete problems discussed by Karp [43] in
his paper on the interreducibility of NP-complete problems. It is known that the maximum
number of clauses that may be satisfied by an assignment of truth values in an instance of
SAT is not approximable to within 7/8 + ε, for any ε > 0, unless P=NP [33]. We define the
related problem MIN UNSATISFIED CLAUSES SAT following the notation in Definition 2.4.1
as follows:

MIN UNSATISFIED CLAUSES SAT

Instance: A Boolean formula B in CNF over a set of variables V ;
Feasible solutions: All assignments of truth values to the variables in V ;
Measure: The number of clauses in B that are unsatisfied by the assignment of values to the
variables;
Goal: min;
Optimisation version: Minimise the number of clauses in B that are unsatisfied across all
possible truth assignments for B;
Decision version: Is B satisfiable?;

Thus, given a Boolean formula B in CNF over a set of variables V , MIN UNSATISFIED

CLAUSES SAT is the problem of finding an assignment of truth values to the variables in V
such that the minimum number of clauses are unsatisfied, taken over all of the assignments
of truth values to the variables in V . We define the functions f, g, h, g′, h′ in this context
as follows. Given an instance B0 of SAT, define f(B0) as the number of variables in B0.
Further, for any i ≥ 1, let Bi = g(i, B0) denote the instance of SAT obtained by adding a
subscript i to every variable in B0. Let S0 be a feasible solution in B0. We denote by Si the
feasible solution in Ii obtained by adding a subscript i to every variable in the assignment
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of variables in S0. Given any two integers i and j, let h(Bi, Bj) denote the instance of
SAT obtained by taking the conjunction of Bi and Bj . Further, let h′(Si, Sj) be the feasible
solution of h(Bi, Bj) obtained by taking the union of the truth assignments Si in Bi and Sj
in Bj .

If π represents MIN UNSATISFIED CLAUSES SAT and the functions f, g, h, g′, h′) are as de-
fined above, then (π, f, g, h, g′, h′) ∈ P . Hence π is a decomposable minimisation function.
It follows from Theorem 10.3.1 that MIN UNSATISFIED CLAUSES SAT is not approximable
within n1−ε

1 , where n1 is the number of variables in a given instance, for any ε > 0, unless
P=NP. We thus obtain the following result.

Theorem 10.6.2. MIN UNSATISFIED CLAUSES SAT is not approximable within n1−ε, where

n is the number of variables in a given instance, for any ε > 0, unless P=NP.
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Chapter 11

Conclusions and open problems

The new NP-completeness results presented in Chapter 3 suggest that an efficient algorithm
for finding a stable matching in an instance of HRC, even when the length of the agents’
preference lists are restricted, is very unlikely. However, it remains open to establish the ex-
act frontier between polynomial time solvability and NP-completeness for further restricted
variants of HRC where the length of the preference list of each couple is exactly one and
the preference list of each hospital and resident is of bounded length. For example, we have
shown that the problem of deciding whether a stable matching exists is NP-complete even for
instances of (∞, 1,∞)-HRC and (2, 2)-HRC and we presented a polynomial-time algorithm
for (2, 1, 2)-HRC. However, the complexity of (2, 1, 3)-HRC and (3, 1, 2)-HRC remains open.
It is also possible that restrictions of HRC that do not necessarily involve restrictions on the
length of the agents’ preference lists might admit polynomial-time algorithms for finding
stable matchings.

Since an efficient algorithm for problems related to HRC is unlikely, in this thesis we have
considered whether IP techniques can be successfully applied to find optimal solutions in
real world matching applications. We have presented a number of models for finding max-
imum cardinality stable matchings in a variety of centralised matching schemes and shown
the practical results from the application of these models to real and randomly generated
instances reflecting the properties of the instances arising in these schemes. The success of
IP techniques in finding maximum cardinality matchings in such instances demonstrates that
these techniques can offer a viable path to exact optimal solutions in real world allocation
problems.

The empirical work in Chapters 6 and 7 demonstrates that the IP models for finding maxi-
mum cardinality stable matchings in HRC instances presented in Chapters 4 and 5 perform
well when solving instances that are similar in structure and size to the instances arising
in the SFAS application. It remains open to investigate the performance of the model as
we increase the size of the instance substantially beyond the size of the SFAS application.
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It would also be of interest to compare an IP model producing maximum cardinality BIS-
stable matchings against the sizes of the BIS-stable matchings returned by HRC heuristics
such as those compared and contrasted by Biró et al. [12]. We demonstrated that the IP
model for HRCT can be applied to instances arising from the SFAS data from 2010-2012 and
that guaranteed optimal solutions may be obtained in a practically useful timescale. It might
be of further interest to investigate other modelling frameworks for problems of this type, for
example involving CSP strategies – previous work has investigated the application of CSP
techniques to HR [23, 52] and HRT [61] problems.

In Chapter 8 we described an IP model for finding a set of stable score limits in an instance
of HR SLT with additional restrictions reflecting the process applied in the Hungarian Higher
Education matching scheme. As we combine restrictions in the matching problems the re-
sulting IP models become much more complex to represent and prove. However decisions
on the restrictions in the application are obviously a matter for the programme co-ordinators
in the allocation scheme. Further work in this area involves implementing the IP models de-
scribed in Chapter 8 and applying them to real instances arising from the Hungarian Higher
Education matching scheme. This scheme is on a far larger scale than any of the matching
schemes to which the IP techniques have been applied in this thesis, it remains to be seen
how well an implementation of these models would perform with such large instances and
to establish how the performance varies with each additional restriction.

In Chapter 9 we demonstrated how IP techniques might be applied to the process of allo-
cating Trainee teachers studying at P.J. Šafárik University in Košice, Slovakia for the Spring
2013/14 allocation. We found that the TAP model returned a guaranteed optimal outcome in
a matter of seconds in the instances arising from this allocation. Cechlárová et al. [17, 18]
have published a number of results in this problem context. However, it remains open to
investigate other definitions of fairness in the TAP context - e.g. if the teachers are able to ex-
press a preference order over their acceptable schools and the schools remain indifferent over
all of their acceptable partners, then we might consider an alternative definition of fairness
such as Pareto optimality with respect to the teachers [3].

As the number of agents involved in a matching scheme increases, we may encounter a limit
on the size of the problems that can be solved in a practically useful timescale by IP solvers. It
may be possible to take advantage of some underlying structural properties of the problems
to be solved and thus increase the size of the instances that can be solved in a practically
useful timescale. In other problem contexts, techniques such as column generation [8] have
been applied to achieve this end. It remains open to establish whether column generation
techniques can be applied to increase the size of instances which may be solved by the
models presented in this work.

The framework presented in Chapter 10 defines the class of decomposable minimisation
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problems and we showed that such problems are inapproximable to within a given bound,
unless P=NP. The list of examples of decomposable minimisation problems is by no means
exhaustive, particularly with respect to stable matching problems, suggesting in general
terms that natural minimisation variants of a number of stable matching problems are in-
approximable to within a given bound, unless P=NP. It remains open to consider whether
this framework might be applicable in other problem contexts than those described in this
work.
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[18] K. Cechlárová, T. Fleiner, D.F. Manlove, I. McBride, and E. Potpinková. Modelling
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