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Abstract Arteries are the highways through which oxygen-rich blood flows toward oxygen-

hungry organs, such as the kidneys, heart, and brain. An arterial dissection is an axial

tear within the arterial wall, which may create a false lumen by the action of blood flow

through the tear. Propagation of the tear can quickly lead to death as a result of decreased

blood supply to other organs, damage to the aortic valve, and sometimes rupture of the

artery.

This thesis aims to develop computational models to simulate the inflation and prop-

agation of a tear in the arterial wall and to investigate the mechanical issues in arterial

dissection, with mainly focusing on the effects of the fibre orientation, geometry of the tear

and residual stress on dissection propagation. The numerical methods used in our models

include both the finite element method and the extended finite element method. We as-

sume the mechanical response of the arterial wall is nonlinear, hyperelastic and anisotropic,

and use the Holzapfel-Gasser-Ogden (HGO) strain energy function as the constitutive law.

A finite element computational framework, for the calculation of the energy release

rate for a fibre-reinforced soft tissue subject to internal pressure, is developed. This model

extends the Griffith failure theory such that we can consider pressure-driven tear propa-

gation subject to a large nonlinear deformation of the arterial wall. Using this model to

simulate the tear propagation in strips from the arterial wall, we found the increase in the

length of a tear elevates the likelihood of propagation, and if the tissues surrounding the

tear are stiff enough this leads to arrest.

Simulations of peeling- and pressure-driven tear propagation are performed through the

extended finite element method. Peeling-driven propagation is caused by a displacement

boundary condition, while pressure-driven propagation is due to pressure loading. We

found the tear is likely to propagate along the material axis with the maximum stiffness,

which is determined by the fibre orientation in the arterial wall. In models of pressure-

driven tear propagation, we investigate the effect of the radial depth and circumferential

length of a tear in the cross-section of a two-layer (media and adventitia) arterial wall

model. The results show that a shallow and long tear leads to buckling of the inner wall

(material section between tear and lumen), while a deep tear tends to propagate. Several

shapes of deformed arterial wall with a tear predicted from our simulations are similar to

CT images of arterial dissections. The critical pressure for propagation increases with the

depth for a very short tear, but decreases for a long tear.

Two methods of introducing residual stress, quantified by an opening angle, into a finite
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element model for the arterial wall are proposed. The computational programs, of using

programming languages including Linux shell script, sed, AWK, Python and Matlab, to

automatically build finite element models with both methods are developed. We have used

them to investigate the effect of residual stress on the critical pressure for tear propagation

in the cross-section of the two-layer arterial wall model. The first method is to import

the analytical residual stress into a finite element model as an initial stress field, while

the second method is to use a residual stress computed numerically. The first method is

illustrated with the neo-Hookean material model, and the second method is used with the

HGO material model. We find a similar trend of the critical pressure against the opening

angles: the critical pressure increases with the opening angle. However, the increase of

the critical pressure is less steep in the HGO model compared to the neo-Hooken model.

This is presumably due to the interaction of the fibres. When more fibres are stretched,

the loading bearing is shifted more towards the fibre structure, and the influence of the

residual stress becomes less.

The implementation of an anisotropic hyperelastic material model with growth, for a

living fibrous soft tissue, in a finite element program is presented. The problem of loss of

anisotropy in the conventional approach when using the volumetric-isochoric decomposi-

tion of deformation gradient is analysed. A possible solution is suggested: avoiding use of

this decomposition in the parts associated with anisotropy in the strain energy function.

This suggestion is demonstrated through several examples using the Fung-type and HGO

material models. The essential derivation of the HGO material model is presented for its

finite element implementation with both the conventional approach and our suggestion.

The corresponding user-subroutines used in a finite element program FEAP are included.

In addition, the growth of tissue is also considered in this subroutine by introducing a

growth tensor as a material parameter. The method on how to update this subroutine to

consider a stress-, strain- or energy-driven growth law is discussed, which could be used

to model the tear propagation in a living fibrous tissue.

In summary, this thesis presents computational techniques for modelling dissection

of the arterial wall. These models characterise the mechanical factors in the arterial

dissection, which could be adapted for other damage and failure of soft tissue. A prediction

from these models opens a window to the mechanical issues of this disease and other

injuries.
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Chapter 1

Introduction

1.1 Anatomy of arterial dissection

A large artery is composed of three layers: intima, media and adventitia (Figure 1.1). The

intima, the innermost layer, is thin and easily traumatized. This layer is in direct contact

with the blood inside the vessel and mainly lined by endothelium [Holzapfel et al., 2000].

The media is responsible for imparting strength to the artery and consists of laminated but

intertwining sheets of elastic tissue. The arrangement of these sheets in a spiral provides

the artery with its maximum allowable tensile strength. The outermost layer is adventitia,

which largely consists of collagen to prevent the artery from over inflation and stretch.
ARTERIAL WALL MECHANICS 5

Figure 1. Diagrammatic model of the major components of a healthy elastic artery composed
of three layers: intima (I), media (M), adventitia (A). I is the innermost layer consisting of a
single layer of endothelial cells that rests on a thin basal membrane and a subendothelial layer
whose thickness varies with topography, age and disease. M is composed of smooth muscle
cells, a network of elastic and collagen fibrils and elastic laminae which separate M into a
number of fiber-reinforced layers. The primary constituents of A are thick bundles of collagen
fibrils arranged in helical structures; A is the outermost layer surrounded by loose connective
tissue.

In general, arteries are roughly subdivided into two types: elastic and muscular.
Elastic arteries have relatively large diameters and are located close to the heart (for
example, the aorta and the carotid and iliac arteries), while muscular arteries are
located at the periphery (for example, femoral, celiac, cerebral arteries). However,
some arteries exhibit morphological structures of both types. Here we focus atten-
tion on the microscopic structure of arterial walls composed of three distinct layers,
the intima (tunica intima), the media (tunica media) and the adventitia (tunica
externa). We discuss the constituents of arterial walls from the mechanical per-
spective and emphasize those aspects which are important to researchers interested
in constitutive issues. Figure 1 shows a model of a healthy elastic artery.

Figure 1.1: The idealized structure analysis of the arterial wall for a large blood vessel

from [Holzapfel et al., 2000].

13
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Arterial Dissection (AD) is defined as separation of the layers or a longitudinal tear

within the arterial wall (Figure 1.2). This tear may be created by the blood flow, which

leaks into the wall through a defect in the intima. Subject to high blood pressure in the

artery, the tear may extend proximally (closer to the heart) or distally (away from the

heart) or both, so creating a false lumen in the wall and narrowing the true lumen. A true

lumen is the normal vessel, in which the blood flows through in a healthy artery.

Tear

Figure 1.2: The idealized arterial dissection is a longitudinal tear subject to the blood

pressure. It might propagate further if the critical condition is reached.

AD is most commonly found in the aorta, the main artery of the body, supplying oxy-

genated blood to the circulatory system [Hagan et al., 2000]. These AD, generally named

aortic dissections, are classified into two groups based on where the tear is located, Stan-

ford A and B. The Stanford A aortic dissection involving the ascending aorta and/or arch,

which is directly connected to the heart, generally has a high mortality rate and requires

emergency surgical interventions. Certain types of aortic dissection, if left untreated, kill

33% of patients within the first day, 50% within the first two days, and 75% within the first

two weeks [Khan and Nair, 2002]. This pattern of mortality rate has remained essentially

unchanged over the last sixty years [Foundation., 2013], so early diagnosis and treatment

are critical for survival. On the other hand, the Stanford B aortic dissection involving

the descending aorta is less life-threatening than the Stanford A and is generally treated

medically.

AD is also presented in other arteries, among which the most life-threatening is the

dissection of the arteries in the neck [Bogousslavsky et al., 1987; Showalter et al., 1997]. It

includes carotid (large) and vertebral (small) AD. After the tear, blood enters the arterial
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wall and forms a blood clot, thickening the arterial wall and often impeding blood flow.

Vertebral AD is less common than carotid AD. The two types of dissections combined

account for about 25% of strokes in young and middle-aged people [Campos-Herrera et al.,

2008].

The advancement of diagnostic and therapeutic strategies depends crucially on im-

proving our knowledge of the pathogenesis of AD. There are various hypotheses of the

pathogenesis of AD, most of which involve three stages. Firstly, haemodynamic changes

modify the loading on the arterial walls [Rajagopal et al., 2007]; secondly, remodelling of

the tissue occurs in response to the changed loading condition [de Figueiredo Borges et al.,

2008]; and thirdly, the mechanical environment changes due a presence of a small initial

lesion. Of particular importance is the development of an understanding of the factors

governing the propagation of the initial tear in the anisotropic soft tissue under blood

pressure and large deformation. This is the focus of this thesis.

1.2 Geometry of the arterial wall with a tear

The geometric characteristics of arterial wall and dissection are commonly used in the

current clinical guidelines that determine whether a surgical intervention or a medical

treatment is suggested for a patient [e.g. Tsai et al., 2009]. The impacts of dissection size

and number of dissections on the false lumen pressure were studied through experiments in

[Tsai et al., 2008]. The percentage of false lumen diastolic pressure out of the true lumen

diastolic pressure were computed: 100.4% in model A, 107.9% in model B and 104.6% in

model C. Comparison from three models (Figure 1.3) shows that the false lumen pressure

is elevated most in model B especially when the entry tear is small and the re-entry tear

is occluded.

The correlation of propagation pressure, beyond which the dissection starts to prop-

agate, on the radial depth of tear was reported in the experimental study by Tam et al.

[1998]. This study includes pressure-driven tear propagation in 16 isolated porcine tho-

racic aortas. Each thoracic aorta was cut to approximately 17−19 cm in length. These

aortas were turned inside out, and then about 4 ml of 0.9% saline solution was injected

into the media of the aorta. This injection created an elliptical bleb, simulating the false

lumen in AD, between 2.5 and 3.0 cm in length with its long axis parallel to the long axis

of the aorta. A circumferential-radial slit was made in each bleb to simulate an intimal
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Acute aortic dissection is a challenging and lethal med-
ical problem with high in-hospital and follow-up mortality
rates. Compared with the ascending aorta, acute dissections
confined to the descending aorta (Stanford type B) have
better in-hospital survival.1 Short-term and long-term
prognosis after discharge from the hospital remains less
clear. In a recent analysis from a contemporary registry of
acute type B dissection patients, one in four patients suc-
cessfully treated and discharged from the hospital were
dead at 3 years, which exceeds the cumulative incidence of
mortality in other diseases such as coronary artery disease,
moderate chronic obstructive pulmonary disease, and stage
II colon cancer.2 This suggests that current management
and follow-up strategies are suboptimal, and there is an
urgency to understand how to modify therapeutic and
surveillance strategies in order to improve outcomes.

Imaging studies suggest that complete thrombosis of
the false lumen has beneficial prognostic value while a
patent false lumen predicts poor outcomes.3-5 Partial
thrombosis of the false lumen, defined by the presence of
both flow and thrombus was recently found to be associ-
ated with a 2.7- fold increased risk of death compared with
patients with a patent false lumen.6

Previous clinical anecdotes and phantom models of
acute aortic dissection have shown that distal tears between
the true and false lumen downstream to a proximal intimal
tear, may help prevent true lumen collapse and the risk of
malperfusion syndromes during the acute dissection.7-9 A
different mechanism of risk may exist in patients with partial
thrombosis of the false lumen in the chronic phase. An
obstruction by thrombus of a previously patent distal tear
may impair outflow resulting in an elevated diastolic pres-
sure compared with a patient with a distal tear. Further-
more, in patients who receive aortic stent grafts covering

the proximal tear, remaining uncovered distal tears may
also result in an elevated diastolic pressure compared with a
patient with a uncovered proximal tear (Fig 1).10,11

We hypothesized that determinants of inflow and out-
flow, such as the size and location of intimal tears, can
significantly increase the pressure within the false lumen of
patients with Stanford type B aortic dissection. The primary
aim of this study was to assess the pressure changes within
the false lumen after simulated changes in tear size, tear
number, and tear location in an ex-vivo model of chronic
aortic dissection.

METHODS

Description of the circuit. An ex-vivo circuit was
constructed to mimic the human circulatory system. The
circuit consisted of five components: (1) a pulsatile pump,
(2) an aortic arch, (3) the dissection model connected via a
silastic polymeric silicone tubing system, (4) a compliance
chamber, and (5) a collecting system (Fig 2). A parallel bar
clamp was used before and after the compliance chamber to
adjust peripheral resistance comparable with physiologic
values.

An aluminum mold was designed and fabricated to
create a compliant dissection model mimicking a chronic
type B aortic dissection with 50% of the circumference
dissected. The dimensions of the dissection model were
selected to approximate the anatomical measurements of
aortic dissections obtained from human clinical and patho-
logic studies. The dimensions were: aortic diameter � 40
mm, aortic length � 340 mm, true lumen wall thickness �
3 mm, dissection flap thickness � 2 mm and false lumen
thickness 1 mm (Fig 3).12-14 This ratio of different thick-
nesses is consistent with patho-anatomic studies which
shows two-thirds of full thickness of the aortic wall remains

Fig 1. A, Type B aortic dissection with a patent false lumen maintained by proximal and distal tears. B, Type B aortic
dissection with partial thrombosis of the false lumen. The laminar thrombus can be seen occluding the distal tear.
C, Type B aortic dissection with proximal stent graft and patent distal tear.

JOURNAL OF VASCULAR SURGERY
Volume 47, Number 4 Tsai et al 845

Figure 1.3: Three representative consequences of type B aortic dissection in follow-up

period [Tsai et al., 2008]. Model A has both entry and re-entry tears, Model B has

a smaller entry tear and the distal tear is occluded by a thrombus, and Model C the

proximal tear is treated by a stent graft. The false lumen diastolic pressure is found to

be about 100.4% in model A, 107.9% in model B and 104.6% in model C, out of the true

lumen diastolic pressure.

tear. Both bleb and slit spanned approximately one-half the circumference of the aorta.

The aortas were then flipped right side out, cannulated, submerged in 0.9% saline and

pressurized under static conditions. Since the bleb connected the true lumen through the

slit, the pressures within the bleb and true lumen were identical. The pressure was in-

creased until each dissection propagated; the pressure at which this occurred is taken to

be the ‘propagation pressure’ of the bleb at the particular radial depth. The result (Figure

1.4) shows that the propagation pressure decreases almost linearly as the depth increases.

An aneurysms (the part of arterial wall is inflated like a balloon) is highly correlated

with arterial dissection. The size of thoracic aneurysms has a profound impact on dissec-

tion or rupture of an arterial wall [Davies et al., 2002]. The patient with an aneurysm

exceeding 6 cm in diameter can expect a yearly rate of dissection at least 6.9% and a death

rate of 11.8% statistically. However, Pape et al. [2007] postulated that the aortic diameter
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Fig. 1. A graph of propagation pressure vs number of layers in the
dissected wall (p"0.003). The open circle represents the ruptured
aorta. Bars represent standard deviations. The average total number of
layers in these aortas was 122$ 25 (S.D.).

Fig. 2. The relationship between tear depth and propagation pressure
(p(0.001). The open symbol indicates the bleb that ruptured. The bars
represents uncertainties calculated from standard deviations.

van Baardwijk and Roach (1983) showed that the num-
ber of medial elastin layers decreases linearly along the
thoracic aorta in sheep, therefore ¸ and d are not neces-
sarily related. The total number of elastin layers in the
intact wall at the propagating edges of these aortas
ranged from 81 to 150 with an average of 122$ 25. The
equations agree within standard error if (1!¸/122) is
substituted into Eq (2) in place of d.

Ultrasound measurements of in vitro porcine aortic
dissections by Sapp (1997) have shown that the acute
angle between the intact wall and dissected wall increases
with increases in tear depth. Failure at smooth muscle-
elastin connections is believed to occur at a value of
critical strain. This value will be reached at lower pres-
sures for larger values of tear depth since the amount of
force directed radially will increase with an increase in
angle. The importance of tear depth in propagation can
also be seen by examining the non-propagating edges of

blebs that expanded in only one direction. For six aortas,
samples from the opposing (non-propagating) edge of the
bleb were examined histologically like the leading edge
samples. Tear depth was higher at the leading edge in all
six cases and the number of layers in the dissected wall
was the same or lower in all but one aorta. A difference in
tear depth of as little as 2% affected the direction of
propagation. This suggests that the initiating event may
be the influential factor in how a false lumen develops.

The accepted values of blood pressure for the pig are
22.5 (95% confidence interval of 19.2—24.7) kPa systolic
and 14.4 (13.1—16.0, 95% C.I.) kPa diastolic (Altman and
Dittmer, 1964). Since the lowest propagation pressure
observed was 26.3kPa, we can conclude that propaga-
tion is possible at physiological pressures taking into
account several factors that affect the situation in vivo
that will shift the curve relating propagation pressure and
tear depth downward. These factors include thrombus
formation in the false lumen, hypertension, coarctation of
the aorta prior to dissection, and connective tissue dis-
orders such as Marfan’s syndrome, and Ehlers-Danlos
Syndrome Type IV.

Formation of a thrombus that compromises flow
through the vasa vasorum may cause necrosis, reducing
the radial strength of the affected wall over time. This
alone would increase the likelihood of propagation in the
physiological range of blood pressure and might deter-
mine the depth of the initial tear.

Hypertension is reported in 70% of patients with aor-
tic dissection (Roberts, 1981), however, no cause-effect
relationship has been determined. Hypertrophy and/or
hyperplasia can occur with hypertension (Safar, 1996),
but their effect on the elastic properties has not been
separated from the effects of age. The diameter of the
large elastic arteries increases with hypertension, accom-
panied by a decrease in change of diameter over the
cardiac cycle (Isnard et al., 1989). Using the thin wall
approximation for a cylinder and constant length and
volume assumptions, wall stress in a cylinder in both the
longitudinal and circumferential directions increases by
a factor of k2 with dilatation, where k is the ratio of the
new radius to the original. For example, a 25% increase
in radius would give an increase of stress of 1.56 times,
while a 100% increase would correspond to a four-fold
increase. Accordingly, people with ectasia will be closer
to the critical strain at which failure of the smooth muscle
cell and elastic fibre interconnections occurs.

Several connective tissue disorders such as Marfan’s
and Ehler-Danlos Type IV Syndrome (Schievink et al.,
1994) are associated with an increased risk of dissection,
presumably because of altered aortic strength. Aneurysm
formation usually occurs prior to dissection in Marfan’s
patients which is associated with a deficiency of the
normal form of a microfibrillar protein, fibrillin, caused
by a genetic mutation (Dietz et al., 1991). This pro-
tein forms a sheath surrounding elastin fibres in elastic

A.S.M. Tam et al. / Journal of Biomechanics 31 (1998) 673—676 675

Figure 1.4: The relationship between tear depth and propagation pressure, presented from

the experimental study performed by Tam et al. [1998]. The open symbol indicates the

bleb that ruptured. The bars represents uncertainties calculated from standard deviations.

>5.5 cm is not a good predictor of type A aortic dissection. This statistical study is based

on the data of 591 type A dissection patients enrolled in the International Registry of

Acute Aortic Dissection.

1.3 Residual stress and pre-stretch

The stress that exists in an unloaded solid body is called residual stress. The existence

and importance of residual stress in the arterial mechanics is recognized in many experi-

ments [e.g. Chuong and Fung, 1986; Fung, 1991]. One representative experiment (Figure

1.5) shows that one cut along a radius of a segment of artery from a rat, which results in

an open-sector sample, can release most of the residual stress. The opening angle in the

open-sector sample is a common quantification of the residual strain. The residual stress

is calculated from the residual strain via a constitutive law.

A notable study on using the opening angle in stress analysis of arterial wall is per-

formed by Holzapfel et al. [2000]. In [Holzapfel et al., 2000], the importance of residual

stress, which can decrease the stress concentration in the inner layer of arterial wall and

smooth the stress distribution through the wall, is clearly shown (Figure 1.6). In addition,

the mathematical model [Holzapfel et al., 2000] also includes the axial pre-stretch, λz. A
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FIGURE 2. The figures in the upper row show an arterial segment of  a rat before cut and after cutting 
at four positions. The lower row shows the same vessel cut into 4 pieces and reassembled in 4 ways. 
It appears that one cut is suff icient to reduce an arterial segment at no-load to the zero-stress state. 
From Fung and Liu (15). 

FIGURE 3. Photographs of the cross-sections of a rat aorta cut along "ou ts ide"  line shown in Fig. 1. 
The 1st column shows zero-stress state of  normal aorta. Other columns show changed zero-stress 
states a number of  days after a sudden onset of  hypertension. Successive rows correlate with lo- 
cations on the aorta expressed in percentage of  total length of  aorta, L, f rom the aort ic valve. The 
aort ic cross-sectional area was clamped 97% by a metal band below the diaphragm to induce the 
hypertension. From Liu and Fung (15). 

Figure 1.5: The figures in the upper row show an artery segment of a rat before cut and

after cutting at four positions. The lower row shows the same vessel cut into four pieces

and reassembled in four ways. Since the geometry of each segment in the upper row is

similar to the corresponding one in the lower row, it appears that one cut is sufficient to

reduce an unloaded arterial segment to the zero-stress state. The opening angle in the

segment after one cut is a common measure of the residual strain. This figure is from

[Fung, 1991].

value of greater than 1 for λz is commonly used, since many studies have observed that

the artery will shorten axially just after being cut off [e.g. Dobrin et al., 1990].

Residual stress and axial pre-stretch are due to the different growth rates of different

components. Cardamone et al. [2009] employed the constrained mixture theory to study

the origin of axial pre-stretch and residual stress in an artery. The arterial wall is modelled

as a mixture of the elastin, fibrillar collagens and smooth muscle. Each component is

assumed to have a different compression or stretch ratio when relaxed and exist in each

point of arterial wall. This assumption is the kernel of the constrained mixture theory,

which was originally developed by Humphrey and Rajagopal [2002]. Associating, a rule-

of-mixtures constitutive relation used in [Cardamone et al., 2009] is

Ψ = φeΨe(Fe) +

4∑
f=1

φfΨf (λf ) + φmΨm(λm), (1.1)

where φi are mass fractions for each constituent and Ψi are individual strain energy func-

tions, using subscripts e for amorphous elastin, f = 1, 2, 3, 4 for four oriented families of

collagen fibres, and m for circumferentially-oriented passive smooth muscle.
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Figure 18. Plots of the principal Cauchy stresses σθθ , σzz, σrr in the circumferential, axial
and radial directions through the deformed media and adventitia layers in the physiological
state with pi = 13.33 [kPa], λz = 1.7, γi = 0: (a) without residual stress (α = 0.0◦); (b) with
residual stress (α = 160.0◦). The abscissa is r − ri. The numerical results are obtained for the
constitutive models (67) and (68) with geometrical data and material constants as in Figure 14.

5.3. STRESS DISTRIBUTION THROUGH THE DEFORMED ARTERIAL WALL

One important aspect of the influence of residual stress is the effect that it has on
the stress distribution through the arterial wall in the physiological state. Whilst
we have seen from, for example, Figure 16 its effect on the overall pressure/radius
response its effect on the stress distribution through the arterial wall is more pro-
nounced. This is illustrated in Figure 18, in which the distributions of the principal
Cauchy stress components σθθ , σzz and σrr through the deformed wall thickness
(media and adventitia layers) are plotted against r − ri, where r is the deformed ra-
dial coordinate and ri the deformed inner radius. The geometrical data and material
constants shown in Figure 14 are again used in conjunction with the material mod-
els (67) and (68). The physiological state is taken to correspond to pi = 13.33 [kPa]
and λz = 1.7, with no torsion (γi = 0). The calculation can be carried out by using
any numerical tool. However, in order to solve the three-dimensional boundary-
value problem for the stress components σθθ , σzz and σrr (rather than for σ θθ ,
σzz and σ rr , as used throughout the text) it seems to be convenient to employ the
(mixed) finite element method. Details of the computational aspects are described
in Holzapfel and Gasser [26].

Figure 18(a) shows the Cauchy stress distributions for the case in which there
are no residual stresses (α = 0.0◦), while Figure 18(b) shows the corresponding
plot with residual stresses included (α = 160.0◦). The tangential stresses σθθ and

Figure 1.6: The stress distribution through the two-layer arterial wall of a rabbit carotid

artery subject to physiological loading (pi=100 mmHg and λz=1.7): (a) without and (b)

with residual stress. r − ri is the distance of a point in arterial wall from the inner radial

surface at ri, and α is the opening angle with respect to the center of artery. The stress

at the inner radial surface (r− ri = 0) with residual stress is significantly lower than that

without residual stress. The stress distribution with residual stress is smoother than that

without residual stress. This figure is from the Figure 18 in [Holzapfel et al., 2000].

To compare a phenomenological constitutive equation, (1.1) is used to investigate the

separate contribution of each constituent on the physiological function of the artery. In

[Cardamone et al., 2009], it is shown that the prestretched elastin contributes significantly

to both the retraction of arteries that is observed upon transection and the opening angle

that follows the introduction of a radial cut in an unloaded segment. Axial prestresses and

residual stresses in arteries contribute to the homeostatic state of stress in vivo as well as

adaptations to perturbed loads, disease, or injury.

1.4 Mechanical response of the arterial wall

The axial stretch ratio, the ratio of axial length in the physiological condition to that

after unloading, is 1.7 for the carotid artery [Holzapfel et al., 2000]. That shows the

deformation is large, so the infinitesimal strain theory, which assumes the displacement of

material particles to be much smaller than any relevant dimension of the body, is invalid
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for characterizing the dynamics of the arterial wall. Instead, the finite strain theory has to

be employed. Let the deformation gradient be denoted by F, which transforms a material

point at X to x during deformation,

x = FX. (1.2)

The Green strain tensor is

E =
1

2

(
FTF− I

)
, (1.3)

where I is the second-order identity tensor.

The constitutive law is defined through a Strain-Energy Function (SEF), from which

the stress-strain relationship is derived. A direct extension of the linear isotropic elastic

material model is the St.Venant–Kirchhoff SEF

Ψ =
λ

2
[tr (E)]2 + µ tr

(
E2
)
, (1.4)

where λ and µ are the material parameters or Lamé constants. The associated second

Piola–Kirchhoff stress is

S =
∂Ψ

∂E
= λ tr(E)I + 2µE. (1.5)

Equation (1.5) shows that the stress-strain relationship is linear, so the St.Venant–Kirchhoff

SEF characterises a deformation with geometric nonlinearity and material linearity.

Many studies have shown the mechanical response of arterial wall is nonlinear both

geometrically and materially. Holzapfel et al. [2000] made a systematic comparison study

of a range of constitutive laws for the passive mechanical response of the arterial wall and

proposed a new SEF now known as the Holzapfel–Gasser–Ogden (HGO) material model.

In [Holzapfel et al., 2000], several different SEFs are used to calculate for the equilib-

rium and stress distribution of a thick-walled circular cylindrical tube, which simulates

the arterial wall. The tube is subject to a combined extension, inflation and torsion and

with residual stress incorporated. The kinematic, equilibrium equations and constitutive

equations are also included in [Holzapfel et al., 2000]. The comparison shows that some

models [e.g. Delfino et al., 1997] oversimplify through use of isotropy, but the anisotropy of

arterial tissue is evident [e.g. Roach and Burton, 1957; Shah et al., 2014]. A phenomeno-

logical Fung-type SEF in [Humphrey, 1994], can represent the anisotropy of arterial tissues

through its material parameters. However, material parameters in this Fung-type SEF are

without any physical meanings. The values for these parameters are generally obtained

through a nonlinear curve fitting, but they can be still difficult to get, and non-uniqueness
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results in a problem. Figure 6 of [Holzapfel et al., 2000] shows that the convexity, which is

necessary to guaranty the robustness and efficiency of the computation [Holzapfel, 2006],

of this Fung-type SEF is lost for some material parameter values. In contrast, the HGO

model is based on the histology of the arterial wall (Figure 1.1). A two-layer arterial

wall model (media and adventitia), shown in Figure 1.7, is developed in [Holzapfel et al.,

2000]. Each layer of the arterial wall is assumed to consist of fibre-reinfored soft tissue, so

the HGO SEF includes two terms associated with the mechanical response of matrix and

collagen fibres. The response of the matrix is described by a neo-Hookean material model,

and the response of fibre is an exponential function. The fibres are stiffer than the matrix

with a high stretch ratio. The fibres can only take on the load in tension, and then result

in material anisotropy.

For an incompressible fibre-reinfored material with one orientated-family of fibres, the

direction of which is quantified by a unit vector say A in the stress-free configuration, the

HGO SEF is

Ψ(I1, I4) = Ψm(I1) + Ψf (I4)

=
c

2
(I1 − 3) +H(I4)ψf (I4),

(1.6)

where H(·) is the switch condition, for indicating that fibres can only take stretch load,

defined as

H(x) =


0 x 6 1

1 x > 1

and ψf (·) is the exponential stretch stiffening stored energy function for fibres

ψf (x) =
k1

k2
{exp

[
k2(x− 1)2

]
− 1}.

In (1.6), the deformation of material is quantified through invariants Ii, i = 1, 4.

I1 = tr C, (1.7)

where

C = FTF (1.8)

is the right Cauchy–Green strain tensor. The eigenvalues of C are the square of the

principal stretch ratios. A principal stretch ratio is the ratio of the length of material

along the associated principal axis after deformation to before deformation.

I4 =
a · a
A ·A = a · a = C : M, (1.9)
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where a = FA is the vector to quantify fibres orientation in the deformed configuration,

and

M = A⊗A (1.10)

is a second-order structure tensor. ⊗ denotes the tensor product, such that M is a second-

order tensor with the components Mij = AiAj , i, j = 1, 2, 3. I4 has obvious physical

meaning, it is the square of fibre stretch.
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Figure 1.7: Demonstration of the two-layer arterial wall model and the mechanical response

of arterial wall in uniaxial stretch of a unit-square sample. u is the displacement used in the

uni-axial test, dashed curves show the stress-stretch response of the adventitia, and solid

curves show the stress-stretch response of the media. For each layer, the stress response

along circumferential direction (blue curves) is different compared with that along the

axial direction (red curves). The stress-stain for each layer is nonlinear and directional.

The directional preference or anisotropy is determined by the orientation of collagen fibres

(blue lines). The two-layer assumption is because the adventitia and media have different

mechanical response.

Gasser et al. [2006] generalized the HGO model by additionally considering the dis-

persion of collagen fibres, now known as the Gasser–Ogden–Holzapfel (GOH) model. The

polarized light microscopy of arterial tissue shows the dispersion of collagen fibres is signif-

icant in both the intima and adventitia [CANHAM et al., 1989]. The degree of dispersion

is characterised by a scalar κ, which can be determined as follows. Let the density function

ρ(N) characterise the distribution of fibres with respect to the referential orientation N ,

which may be expressed in terms of two angles θ ∈ [0, π] and φ ∈ [0, 2π], which are the
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spherical coordinates of N , by

N(θ, φ) = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3, (1.11)

where e1, e2 and e3 denote the orthogonal unit vectors in a rectangular Cartesian coordi-

nate system. The density function ρ(N) is normalised such that

1

4π

∫
ω
ρ(N(θ, φ)) dω = 1, (1.12)

where ω is the unit sphere and dω = sin θ dθdφ. Then a structure tensor for quantifying

fibres orientation with dispersion is defined by

M̂ =
1

4π

∫
ω
ρ(N(θ, φ))N(θ, φ)⊗N(θ, φ) dω. (1.13)

If we assume that the collagen fibres are distributed with rotational symmetry respect to

a mean referential direction A, and let A be coincided with the Cartesian basis vector

e3, then the density function ρ(N) only depends on θ (the angle between N and A), and

then (1.13) may be simplified by

M̂ = κI + (1− 3κ)A⊗A, (1.14)

where

κ =
1

4π

∫ π

0

∫ 2π

0
ρ(θ) sin3 θ cos2 φdθdφ =

1

4

∫ π

0
ρ(θ) sin3 θ dθ. (1.15)

As a result, the stretch of fibres is quantified by an invariant of averaging-sense

Î4 = C : M̂. (1.16)

The GOH model becomes an isotropic exponential function when κ = 1/3, i.e., M̂ =

1/3I, which is independent of fibre orientations. In contrast, the GOH model is anisotropic

and does not involve fibre dispersion when κ = 0, same is true for the HGO model. In

all the fibre reinforced models, the switch for determining that fibres only takes on load

if stretched is needed. Unlike I4 in (1.9), Î4 lost the significance of physical meaning, and

is not enough to determine if a individual fibre is stretched. Î4 > 1 does not necessarily

require I4 > 1, which indicates fibres at direction A are stretched. Holzapfel and Ogden

[2015] analysed drawbacks of using Î4 and provided a possible solution by introducing a

modified fibre distribution model. In this modified fibre distribution model, a deformation-

dependent range of value for θ during which fibres are stretched, is computed. The integral

is done only in this range when computing κ in (1.15).
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Babu et al. [2015] studied the biomechanical properties of human ascending thoracic

aortic tissues excised from patients with type A aortic dissection through mechanical

biaxial stretch testing. These tissue samples were obtained from 16 patients at 7–71

years old, selected in the regions without the presence of visible calcifications or existing

dissected layers, and cut to the shape of square with edges along the longitudinal and

circumferential directions of aorta. The stress-strain curves of these tissue samples showed

that the stiffness of the aortic tissues with Type A dissection is significantly greater than

the control aorta without arterial disease, and that the stiffness of these tissue samples

does not correlate with the aortic diameter measured prior to surgery nor is there any age

dependent difference in the tissue property.

1.5 Damage and failure models

This material complexity of arterial tissue requires the development of new macroscopic

and microscopic failure criteria.

The macroscopic failure criteria use the quantities in continuum mechanics, e.g. stress

and energy. The three most common failure criteria in fracture mechanics are defined

through the failure parameters: crack-tip Stress (field) Intensity Factor (SIF) K, Energy

Release Rate (ERR) G, and cohesive traction on separation.

The SIF represents the strength of the stress fields surrounding the crack-tip. By

comparing with fracture toughness Kc, the highest value of SIF that the material can

withstand without fracture, an engineer can predict a crack will propagate if K > Kc. K

is determined by the boundaries of the body and the loads imposed, consequently formulas

for its evaluation come from a complete stress analysis of a given configuration, loading

and asymptotic crack tip stress field expression. For example, asymptotic analysis [Tada

et al., 2000] for linear elastic fracture plain strain problem gives the stress distribution in

the vicinity of crack tip

σij(r, θ) = Kr−1/2fij(θ) + o(r−1/2), i, j = 1, 2 (1.17)

where (r, θ) is the coordinate of a point near tip in the polar coordinate system with origin
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at the crack tip (Figure 1.8), and

f11(θ) =
1√
2π

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
,

f12(θ) =
1√
2π

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

f22(θ) =
1√
2π

cos
θ

2
sin

θ

2
sin

3θ

2
.

One method to calculate the value of K of the opening mode (Figure 1.8) is via [see

Tada et al., 2000]

K = lim
r→0

√
rσ22(r, 0). (1.18)

The tip stress field is calculated generally by the Finite Element (FE) based method,

including the extended FE method [Dolbow and Belytschko, 1999], adaptive h-p FE

method [Peano et al., 1978] or some special element with reflecting singularity [Henshell

and Shaw, 1975].

1

2

r

θ

Figure 1.8: Polar coordinate system at the tear tip in a sample loaded by tension (blue

arrows), which results in an opening-mode failure.

The calculation of K depends on two key techniques, i.e. obtaining an asymptotic

crack-tip stress field in terms of K, and computing an accurate stress field. However, the

asymptotic crack-tip stress field is generally not available for non-linear materials [Allegri

and Scarpa, 2014]. One particular example is the asymptotic crack-tip stress field for finite

plane stress deformation of a neo-Hookean sample [Stephenson, 1982]. The tip Cauchy
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stress as r → 0 is different to that in a linear elastic solid [Tada et al., 2000],

Neo-Hookean (nonlinear) Linear isotropic

σ11 = µC2
1 σ11 =

K√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
σ12 = −µC1C2√

2r
sin

θ

2
σ12 =

K√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
σ22 = µ

C2
2

4r
σ22 =

K√
2πr

cos
θ

2
sin

θ

2
sin

3θ

2
,

(1.19)

where C1 and C2, analogous to K, are constants, and µ is the shear modulus in the

incompressible neo-Hookean SEF. Similar to (1.18), the values for C1 and C2 can be

determined, provided the crack-tip stress field is available, via

C1 = lim
r→0

√
σ11/µ, C2 = lim

r→0

√
4σ22r/µ. (1.20)

The stress singularity, σij →∞, i, j = 1, 2, as r → 0, exists in each component for a linear

isotropic material, with the same degree of singularity -1/2 to the power of r. While the

stress singularity in σ11 disappears for the opening mode of neo-Hookean specimen subject

to finite deformation, and the degree of singularity in σ22 is -1, which is different with that

in σ12 is -1/2. Krishnan et al. [2008] employed the FE method to compute the Cauchy

stress in the vicinity of crack tip, and used these stresses to determine the value of C1

and C2 by using (1.20). However, we do not know the asymptotic tip stress field for HGO

material model.

A cohesive zone approach was originally proposed for failure in concrete, to model the

process zone where the damage of the material takes place. A cohesive law gives equations

relating separation (normal and tangential displacement jumps across the cohesive sur-

faces) at the front of a tip to the cohesive tractions bonding the two cohesive surfaces. It

can be used to analyse tear propagation, nucleation and arrest [Volokh, 2004]. A cohesive

law requires at least two of three parameters, the maximum traction just before activation

of damage, the maximum displacement jump and the fracture energy, i.e. the area under

the curve of cohesive traction against the relative displacement of the faces of the tear.

Cohesive models have been used for the analysis of fracture in biological tissues for mod-

elling a peeling test of an arterial strip under external loading [Gasser and Holzapfel, 2006].

Elices et al. [2002] illustrated that the shape of the cohesive curve also has a significant

effect on the simulation of failure, thus detailed experiments are required to determine the

cohesive law for soft tissue [Bhattacharjee et al., 2013]. Recently, Pandolfi and colleagues
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developed the anisotropic cohesive elements based on standard finite element method for

a strongly oriented fibre reinforced material model [Ferrara and Pandolfi, 2010; Ortiz and

Pandolfi, 1999], and used a direction-dependent resistance ellipsoid surface to reflect the

anisotropic response of the material in the tearing process.

The energy approach to failure is based on calculating the ERR, G, which is the change

in total potential energy per unit extension of the tear. It is developed by, inter alios,

Griffith [1921] and extended by Irwin and Wells [1965]. Using the ERR to analyse the

effects of defects historically preceded use of the SIF and is equivalent to the cohesive zone

model in some circumstances [Willis, 1967]. The concept of ERR stems from the energy

balance principle during an infinitesimal quasi-static tear extension; it is the energy per

unit area released from the system by extending the tear surface by an infinitesimal area

dA. In plane strain, the deformation is two-dimensional and G is calculated per unit

length instead of per unit area. Given the material parameter Gc, the critical energy

required to break all bonds across dA, we can evaluate the potential for propagation of the

tear: if G > Gc, the tear may propagate (i.e. it is energetically feasible), otherwise it is

stationary. Thus G−Gc is the potential for tear propagation. In particular, ignoring any

plastic effects, G can be calculated from just the work done by loads and changes in strain

energy accompanying the increase in tear area. There are many numerical methods for

calculating G [see Zehnder, 2007], and most of them do not rely on evaluating the singular

stress field at the tip, rather on the global energy and work, so an accurate value for G

can be obtained with modest mesh refinement.

A microscopic failure model for fibre-reinforced material considers the damage and

failure at the microscopic scale, which is of a length scale of fibres. A failure criterion for

characterising the damage of individual components has been used, Ionescu et al. [2006]

assumes that the matrix fails due to over-shear while the fibres are broken when they are

over stretched (Figure 1.9). The shear strain of matrix and the stretch ratio of fibres are

the parameters for determining the status of damage. For example, when the stretch ratio

of fibres is greater than the maximum stretch ratio, the stress terms associated with the

fibres vanish in their computation.

Shah et al. [2014] introduced a multi-scale failure model. As shown in the Figure 1.10,

four length-scales are used in this computational model. The damage occurs when a fibre

at nanometer scale is broken, if the stretch ratio of this fibre is greater than a critical

value λcrit. This breaking results in the modulus of elasticity for fibres being reset to a
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algorithm. The implementation and performance of the constitu-
tive and failure models were verified using simulations of simple
mechanical tests �e.g., tensile and shear tests�. Simulations of pen-
etrating trauma to soft tissue samples were performed, along with
sensitivity studies, analysis of the wound profile, and the resultant
damage to the surrounding tissue.

Materials and Methods

Constitutive Model. The prefailure pseudoelastic material be-
havior of soft tissues is often approximated using hyperelastic
constitutive models that allow for large deformations �e.g.,
�15–22��. Many biological soft tissues are composite materials,
comprised of a matrix reinforced by one or more fiber families.
The number and direction of fiber families dictate the local mate-
rial symmetry, e.g., a single fiber family reinforcing an isotropic
matrix confers transversely isotropic material symmetry �23�.

In the present research, a transversely isotropic hyperelastic
constitutive model was used to represent a canonical anisotropic
soft tissue, comprised of an isotropic matrix reinforced by a single
fiber family �24�. The local fiber direction was described by a unit
vector field a0, which changes direction and length as the material
deforms:

F · a0 = �a , �1�

where � denotes the local fiber stretch, a is a unit vector field
representing the fiber direction after deformation, and F is the
deformation gradient tensor. The strain energy function W was
designed with uncoupled deviatoric and volumetric terms, with
separate terms for the matrix and fiber response:

W = F1�Ĩ1, Ĩ2� + F2��̃� +
K

2
�ln�J��2, �2�

where Ĩ1 and Ĩ2 are the first and second invariants of the deviatoric

part of the right Cauchy-Green deformation tensor C̃=J−2/3FTF

�25�, �̃=�a0 · C̃ ·a0 is the deviatoric fiber stretch along the local
direction a0, K is the bulk modulus and J=det�F� is the volume
ratio. The strain energy in Eq. �2� leads to the following additive
decomposition for the Cauchy stress T:

T = Tmatrix + Tfiber + Tvol. �3�
The matrix was represented with a neo-Hookean strain energy

with material coefficient C1 �representing the shear modulus for
small deformations�:

F1�Ĩ1, Ĩ2� = C1�Ĩ1 − 3� �4�
The elastic response of the fiber family was represented as expo-
nential in the toe region and linear, subsequently. The actual con-
tribution from the fiber family to the Cauchy stress is �23�:

�̃
�F2

��̃
= �0, �̃ � 1

C3eC4��̃−1�−1, �̃ � �̃*

C5�̃ + C6, �̃ � �̃*

�5�

The elastic fiber family was characterized by a coefficient C3 that
scales the exponential stresses in the toe region, a coefficient that
controls the rate of fiber uncrimping C4, and the modulus of the
straightened collagen C5. The stretch at which the collagen fibers

straighten was denoted �̃*. The coefficient C6 was determined
from the condition that the stress in the collagen fiber is C0 con-
tinuous at �*. A description of the constitutive model and its FE
implementation can be found in Weiss et al. �23�, whereas addi-
tional references illustrate its application �21,23,26,27�.

Failure Criteria. For a composite material, the failure criteria
should account for the failure mechanisms for each of the con-
stituents �28�. Strain-based failure criteria were proposed to rep-

resent two modes of failure: matrix failure under shear �Fig. 1�a��
and fiber failure under tension �Fig. 1�b��. Ultimate properties of
soft tissue reported in the literature contain both ultimate strains
and ultimate stresses �29–32�. A failure formulation based on
strains was chosen because it enabled the incorporation of differ-
ent failure criteria for the material components. Thus the failure
criteria were defined by two failure surfaces.

Local failure of the matrix was based on the maximum Green-
Lagrange shear strain �max obtained from the Green-Lagrange
strain tensor E:

�max =
E1 − E3

2
, �6�

where E1 and E3 are the first and third invariants of E. The matrix
contribution to the stress was annulled when the shear strain in the
matrix �matrix exceeded the maximum shear strain:

�matrix � �max ⇒ Tmatrix = 0 and Tvol = 0 . �7�
The fiber family was considered failed locally if the fiber strain,
�fiberª�−1, exceeded a maximum fiber strain �max. In case of
failure, the fiber contribution to the total state of stress was an-
nulled:

�fiber � �max ⇒ Tfiber = 0 . �8�
If both of the above conditions were fulfilled locally, the material
exhibited total failure at that location. An integer state variable
was defined to record if and what particular type of material fail-
ure occurred.

Material Point Method. The equations of motion were dis-
cretized in space using MPM �14�. Like other quasi-meshless
methods �see, e.g., �33� for a review�, MPM offers an attractive
alternative to traditional FE methods because it simplifies the
modeling of complex geometries, large deformations, and frag-
mentations that are typical of soft tissue failure. MPM was chosen
because numerical modeling of tissue failure using FEM is an
expensive and cumbersome task, due to the need to remesh the
geometry as it changes due to failure and/or contact.

Lagrangian particles or material points are used to discretize the
volume of a material. Each particle carries state information about
the portion of the volume that it represents, including mass, vol-
ume, velocity, stress, etc. A regular structured grid is used as a
computational scratchpad for integration and solution of the weak
form of the equations of motion. The domain of interest is dis-
cretized with particles. A computational grid, usually regular Car-

Fig. 1 Schematic indicating the two types of material failure
represented in the failure model. „a… Matrix failure via shear
strain. As the material strains under shear the fibers remain
undeformed whereas the matrix is driven to failure, cleaving
between fibers. „b… Fiber failure via elongation along the fiber
direction. Under tensile strain, the “stiffer” fibers reach their
stretch limit before the “softer” matrix.
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Figure 1.9: Two types of failure mode are assumed for fibre-reinforced soft tissue: matrix

fails to take on load when over-sheared and fibres fails when over-stretched [Ionescu et al.,

2006].

near-zero value. Through a multi-scale force relationship, the failure at nanometre scale

will be spread into the finite element calculation for equilibrium. The failure of the matrix

is not specified, but depends on the failure of the fibre network. Therefore, the breaking

of a single fibre is the only source of failure in this model.

capable of describing the mechanical behavior of the aorta, it fails
to capture complex fiber-fiber and fiber-matrix interactions or
address failure at the microscopic scale. A model employing
microscale mechanics and structure to determine the macroscale
response would have potential to incorporate greater anatomical
detail and could be applied to a broader range of conditions. This
work represents an initial attempt to apply such multiscale con-
cepts to the mechanics of the ATA.

The objectives of this study were (1) to characterize the prefai-
lure and failure response of healthy porcine ascending aorta tissue
under uniaxial and biaxial loading and (2) to describe that
response with a multiscale, FE damage model. The model has
been shown to be effective for prefailure and failure behavior of
collagen gels [14] and has been applied to prefailure behavior of
decellularized arterial wall [15].

Methods: Experiment

ATA from adolescent male swine (�6 months old,
88 6 11.5 kg) were collected following in vivo atrial ablation
studies. Immediately upon harvesting, specimens were stored in
1% phosphate-buffered saline solution (PBS) at 4 �C overnight.
All experiments were performed within 24 h of tissue dissection.

A ring from the ascending aorta was cut distal to the aortic
valve and proximal to the brachiocephalic trunk (Fig. 1(a)). The
ring was cut open at its superior edge to obtain a flat, rectangular
tissue sample, and the intima, adipose tissue, and adventitia were
removed (Fig. 1(b)). Then, the rectangular tissue specimen was
cut into dog-bones (uniaxial) and/or cruciforms (biaxial), both ax-
ially and circumferentially aligned, for mechanical testing. Sam-
ples were immersed in 1% PBS at room temperature during
mechanical testing. Verhoeff’s stain was used to texture the lumi-
nal surface of the media for optical displacement mapping
(Figs. 1(c) and 1(d)). Once prepared, the sample was subjected to
uniaxial or biaxial testing.

Uniaxial Extension to Failure. Rectangular tissue strips
(�20 mm� 5 mm) with the long axis in either the circumferential
(CIRC) or axial (AXI) orientation were cut. A 5 mm circular bi-
opsy punch was used to create a dog-bone shape (Fig. 1(c)). Sev-
eral samples in both orientations were obtained from a single
aorta. Images of each sample were taken to determine its initial
unloaded dimensions.

Mechanical testing was conducted on a computer-controlled,
uniaxial testing machine (MTS, Eden Prairie, MN). Samples were
placed in a custom rig. Samples were extended at a rate of 3 mm/
min until failure, and force was measured using a 5 N load cell.

The deformation of the tissue’s luminal surface was recorded
(�157 pixels/mm) at a rate of one image per 5 s.

The force measured was divided by the undeformed cross-
sectional area at the failure point in the neck in order to calculate
the first Piola–Kirchhoff Stress. Image analysis and strain tracking
was performed per our previous studies (e.g., Ref. [16]) to deter-
mine the local Green strain. Samples that did not fail in the neck
region of the dog-bone (�28% of samples) were not included in
the analysis. Peak tensile stress was evaluated at the point of
failure.

Equibiaxial Extension. Biaxial samples were created by cut-
ting a cruciform shape from an approximately square
(�20� 20 mm) section of tissue such that the CIRC and AXI
directions remained parallel to the arms. An unloaded biaxial sam-
ple is shown in Fig. 1(d).

The biaxial testing method was similar to that of previous stud-
ies (e.g., Ref. [16]) with a slight preload (�0.1 N) applied to each
cruciform arm. Samples were loaded onto a biaxial tester (Instron,
Norwood, MA) with four 5 N load cells using a custom rig. Each
sample was preconditioned with nine equibiaxial extensions to
40% grip strain. Following preconditioning, an experimental equi-
biaxial extension was performed at a strain rate of 3 mm/min to
40% grip strain, a subfailure load in contrast to the failure loading
for uniaxial samples. During this extension, images of the tissue’s
speckled luminal surface and the forces at each grip were
recorded.

Again, local Green strain was determined using image analysis
and strain tracking per our previous studies [16]. Forces in the
axial and circumferential arms were divided by the respective
undeformed cross-sectional areas in order to calculate the first
Piola–Kirchhoff stress.

Methods: Model

The multiscale model (Fig. 2, Refs. [14,15,17]) was made up of
elements at three scales: the finite element (FE) domain at the
millimeter (mm) scale, representative volume elements (RVE) at
the micrometer (lm) scale, and the fibers with radii at the

Fig. 1 (a) Porcine aortic arch. Black dotted lines demarcate
ascending aortic ring. White star symbolizes a marker used to
keep track of tissue sample orientation. (b) Ascending aortic
ring with intima, adventitia, adipose, and loose connective tis-
sue removed. Axial and circumferential directions shown with
white arrows. (c) Undeformed, typical uniaxial sample in CIRC
orientation with speckling prior to loading. Arrow indicates ori-
entation and direction of pull. (d) Undeformed, typical biaxial
sample with speckling prior to loading. Arrows indicate orienta-
tion and direction of pull.

Fig. 2 Synopsis of multiscale model. Uniaxial or biaxial geo-
metries are developed into millimeter sized finite element
meshes. Each element consists of eight Gauss points that dic-
tate its stress-strain response. Each Gauss point consists of
representative volume elements (RVE) that consist of a nano-
scale fiber network in parallel with a nearly incompressible neo-
Hookean matrix. Deformation of the macroscale structure
causes the fiber network to stretch and reorient to reach force
equilibrium. Fibers that stretch beyond a critical value are con-
sidered failed and their modulus of elasticity is reset to a near-
zero value.
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Figure 1.10: Four-length-scale model for characterising the failure of fibre-reinforced soft

tissue [Shah et al., 2014]. The breaking of a fibre when overstretched is only source of

failure. The failure of matrix is dedicated to the failure of fibre network.
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1.6 Mathematical models of arterial dissection

Rajagopal et al. [2007] presented a fundamental mathematical model towards understand-

ing mechanical factors for the initiation and propagation of a tear. It was postulated that

the clinical haemodynamic disturbances that render the aorta susceptible to the initiation

of dissection are principally elevated maximum systolic aortic blood pressure, whereas the

haemodynamic disturbances that facilitate propagation of dissection are principally ele-

vated pulse pressure and heart rate. The systolic pressure is the highest blood pressure,

measured when the heart beats and pushes the blood around body. The diastolic pressure

is the lowest pressure, measured when the heart relaxes between beats. The pulse pressure

is the difference between the systolic and diastolic pressure.

In this model [Rajagopal et al., 2007], the aortic wall is assumed to be a composition

of N viscoelastic layers. The Cauchy stress of the i-th layer at time t is

σi = Fi(t)

[
Ri
(
Ci(t), 0

)
+

∫ t

0

∂

∂(t− τ)
Ri
(
Ci(τ), t− τ

)
dτ

] (
Fi(t)

)T −P iI, (1.21)

where −P iI denotes the response stress due to the incompressibility, and Ri represents

a tensorial relaxation function for the i-th layer. The term Ri
(
Ci(t), 0

)
denotes the

instantaneous elastic response of the i-th layer at time t = 0.

Based on this multi-layer assumption for the aortic wall, the dissection is assumed to

be delamination between layers in [Rajagopal et al., 2007]. There are several criteria for

the initiation of this delamination. The first criterion is based on the statement that the

magnitude of normal traction at a point on the interface is greater than a critical value,

i.e.

t1(xi, t)


6 t

(1)
c the interface between layers is intact,

> t
(1)
c delamination is intiated,

(1.22)

where

t1(xi, t) = σ2
rθ(xi, t) + σ2

rz(xi, t) + σ2
rr(xi, t), (1.23)

xi is a point at the interface and t
(1)
c is the critical value for the first criterion. The second

criterion assumes that sufficiently high traction acting for a sufficient length of time leads

to delamination. Thus, the second delamination condition is

t2(xi, t)


6 t

(2)
c the interface between layers is intact,

> t
(2)
c delamination is intiated,

(1.24)
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where

t2(xi, t) =

∫ t

t−t̂
t1(xi, τ)dτ (1.25)

and t
(2)
c is the critical value for the second criterion.

Li [2013] proposed a mathematical model for arterial dissection. In that model, the

inflation of a tear is simulated as an incremental deformation in the loaded configuration.

The corresponding incremental nominal stress and incremental moduli were derived from

the HGO strain energy function, and used for characterising the tissue samples with a tear

subject to the pressure [Li, 2013]. The discontinuity at the tear is modelled as a jump

condition. A semi-analytical method, which transforms these PDEs to ordinary partial

differential equations, is also developed in [Li, 2013]. Using this model, Li solved the

deformation of an arterial wall, with both linear and nonlinear materials, including an

existing axisymmetric tear. Both lumen and tear are loaded by a static pressure. The

deformation agree with the numerical results from solving the PDEs by Finite Element

Analysis (FEA) we performed (Figure 1.11–1.13). Notably, the FE computation starts

from the stress-free configuration while Li [2013] starts from a geometry loaded by pressure

in the lumen.

lumen z

r

Figure 1.11: The deformed configuration of the arterial wall with an axisymmetric tear

subject to a pressure in both lumen and on the tear. The red curves shows the boundaries

of deformed arterial wall with a tear from the semi-analytical method in [Li, 2013], and

the green-fill region shows the deformed arterial wall with a tear from our FE computation

using the computational model in Chapter 3.
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Figure 1.12: Comparison of displacements ui, i = r, z, computed by the semi-analytical

method (A) [Li, 2013] and our numerical FE computation (N) using the computational

model in Chapter 3, of the inner tear surface.
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Figure 1.13: Comparison of displacements ui, i = r, z, computed by the semi-analytical

method (A) [Li, 2013] and our numerical FE computation (N) using the computational

model in Chapter 3, of the lumen surface.
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1.7 Numerical methods

The Finite Element Method (FEM) is the most commonly used numerical method for

solving a system of PDEs in computational solid mechanics [Bathe, 1996; Zienkiewicz and

Taylor, 2005]. Analogous to the idea that connecting many tiny straight lines can ap-

proximate a larger circle, FEM encompasses methods for connecting many simple element

equations over many small subdomains, named finite elements, to approximate a more

complex equation over a larger domain. The solution of a system of PDEs is approxi-

mated by the sequence of discrete values. For example, the displacement field u(x), where

x is the coordinate of a material point in a one-dimensional deformable body, is calculated

by solving the balance equations of elasticity. Instead of the analytical expression u(x),

FEM uses the approximation

u(x) ≈ uh(x) =
∑
i

Ni(x)ui, (1.26)

where ui is the displacement at node xi of elements and Ni(x) is the shape function for

computing the value for uh(x) inside of elements via interpolation. The nodal displacement

ui instead of displacement field u(x) becomes the unknown variables in the FEM. The

shape functions satisfy

Ni(x) =


1, x = xi

0, x = xj , j 6= i

(1.27)

and ∑
i

Ni(x) = 1 (1.28)

such that

uh(xi) = ui. (1.29)

Using the FEM to analyse crack or tear propagation requires additional development

because of the singularity of the stress field in the vicinity of tear tips and discontinuity at

tear surfaces. The failure parameters (SIF, ERR, cohesive traction or material force) can

be obtained after solving for the equilibrium, strain energy and stress as a post-process.

Therefore obtaining high accuracy of the strain energy and stress terms from the finite

element analysis is very important. There are many techniques to improve the accuracy

and cope with the challenges due to the presence of the singularity in the tip stress field.

A direct method to cope with the stress singularity is using a locally finer mesh and/or

higher order shape functions in the vicinity of tips. Because the analytical tip stress field
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is derived in a polar coordinate system, the vicinity of a tip is considered to be a special

region or a subdomain in the FE model [Knees and Mielke, 2008]. Using a subdomain is

also good strategy to overcome the difficulty caused by high gradients in mesh size with

a single domain. The posterior error is often used as the criterion to determine where

to refine mesh Alshoaibi et al. [2007]; Babuvška and Rheinboldt [1978]. The strategy for

refining the mesh locally is also important to maintain the robustness and efficiency of the

numerical calculation Phongthanapanich and Dechaumphai [2004]. For analysing the tear

propagation to get the path of propagation, the posterior-error based adaptive strategy

is important, since the region which needs finer mesh is updated as the tear tips move

during propagation. In these methods, the tear surfaces are considered to be common

boundaries. Therefore, remeshing is required when the tear propagates.

An alternative to the time-consuming remeshing is to employ cohesive elements or a

cohesive surface [e.g. Abaqus, 2014; Rahulkumar et al., 2000]. In a FE model, the cohesive

elements are governed by a cohesive law that characterises the cohesive traction on the

‘virtual separation’ quantified by the strain of the cohesive elements. When the thickness of

the cohesive elements shrinks to zero, it becomes a cohesive surface. The cohesive elements

have to specified in the pre-process of a FE model, so they are useful for investigating the

tear propagation along a pre-defined path.

Using a continuum damage model has a similar idea [e.g. Alastrué et al., 2007; Balzani

et al., 2012; Waffenschmidt et al., 2015; Wulandana and Robertson, 2005], in which the

concept of internal variables which provides a very general description of materials in-

volving irreversible effects. In this approach, every element has the potential for damage

through the degrading of stiffness or directly by setting the stress to a near-zero value

when the damage, quantified by the strain, is beyond a critical value. Consequently, the

virtual tear propagation, expressed by the degrading of stiffness, can happens anywhere

when the critical condition is satisfied.

Another approach is the eXtended Finite Element Method (XFEM) [Belytschko et al.,

2009]. The XFEM models a tear as an enriched feature by adding degrees of freedom in

elements with special displacement functions. Therefore, the XFEM does not require the

mesh to match the geometry of the discontinuity due to a tear. It can be used to simulate

initiation and propagation of a tear along an arbitrary, solution-dependent path without

the requirement of remeshing.
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1.8 Research aims

Our research aims are to develop computational models to predict the onset of AD prop-

agation and investigate the mechanical issues during dissection of the arterial wall.

The computational method we used includes both the FEM and the XFEM. Our aims

on developing computational techniques include

� to find a suitable failure criterion governing the tear propagation in the arterial wall,

assumed to be a fibre-reinforced soft tissue in Chapter 3,

� to develop methods for introducing the residual stress into a finite element model in

Chapters 5 and 6,

� to implement a modified HGO material model including a growth tensor within a

finite element program FEAP in Chapter 7.

The effects of structure and mechanical characters of the arterial wall on the dissection

are also our concern. In particular, we aim to find

� the critical pressure, beyond which the tear would propagate, in Chapter 3,

� the effect of surrounding tissues on tear propagation in Chapter 3,

� the effect of collagen fibres and their orientation on tear propagation in Chapters 3

and 4,

� the most likely direction of tear propagation and what factor determines this pref-

erence in Chapter 4,

� the effect of length and radial depth of a tear on the critical pressure for tear prop-

agation in Chapter 4,

� the effect of residual stress on tear propagation in Chapters 5 and 6.

1.9 Outline of thesis

The basic theory and formulations of finite elasticity, the FEM and the XFEM are sum-

marized in Chapter 2. Chapter 3 focuses on proposing a fundamental failure criterion for

pressure-driven tear propagation in fibre-reinforced soft tissues. Chapter 4 predicts the di-

rection of tear propagation and investigates the effect of circumferential length and radial
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depth of a tear on the critical pressure pc, beyond which the tear propagates, and direction

of propagation. Chapter 5 and 6 investigate the effect of residual stress, quantified by an

opening angle α, on pc for tear propagation. Two methods of introducing residual stress

into a FE model within Abaqus are developed: importing the analytical residual stress in

Chapter 5 and computing numerically the residual stress in Chapter 6, for a zero-loading

artery with a tear. Chapter 7 presents suggestion on how to develop a material model in

a FE program for the living fibrous soft tissues. The implementation of a modified HGO

material model with a growth tensor in FEAP is shown in Chapter 7. Finally, conclusions

and discussion are given in Chapter 8.



Chapter 2

Basic theory and formulations

In this chapter, the essential basic mathematical theory and formulations are summarized,

including the finite elasticity, FEM and XFEM.

2.1 Finite elasticity

The basic equations of solid mechanics may be found in the textbooks on nonlinear me-

chanics [e.g. Gurtin, 1982; Holzapfel, 2000; Ogden, 1997]. Here only a summary of the

basic equations is presented.

2.1.1 Description of the deformation

Let Ω0 be a reference configuration of the continuous body B that is stress-free (Figure

2.1). The configuration Ω0 is defined as a set of material points whose positions are given

by the vector X in a three-dimensional space. In Cartesian coordinates, the position

vector may be described in terms of its components as

X = XIeI ≡
3∑
I=1

XIeI (2.1)

where eI , I = 1, 2, 3 are unit base vectors. Notably, the Einstein summation convention is

used. After the B is loaded each material point X ∈ Ω0 is transformed to a new position

x = χ(X) ∈ Ω in the deformed configuration. The position vector in the deformed

configuration may be given in terms of its components as

x = xiei, i = 1, 2, 3. (2.2)

36
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e1

e2

e3
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Ω
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Figure 2.1: The deformation from the stress-free configuration Ω0 to the deformed con-

figuration Ω is defined by the one-to-one mapping x = χ(X) from each material point

X ∈ Ω0 to a new position x ∈ Ω in the deformed configuration.

Since the common origin and directions for the reference and current configurations are

used, a displacement vector, u, may be introduced as the change between the two config-

urations. Accordingly,

u = x−X = uiei, i = 1, 2, 3 (2.3)

in used. A fundamental measure of deformation is described by the deformation gradient

F =
∂χ

∂X
=

∂x

∂X
= I +

∂u

∂X
, (2.4)

where I is the second-order identity tensor. In component form we then have

FiJ =
∂xi
∂XJ

= δiJ +
∂ui
∂XJ

, i, J = 1, 2, 3, (2.5)

where

δiJ =


1, if i = J.

0, if i 6= J.

(2.6)

is the Kronecker delta. The deformation of a line element dX is defined as the the linear

transformation by F,

dx = FdX, (2.7)

where dx is the deformed line element.
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Figure 2.2: Representation of the polar decomposition of a deformation gradient.

The deformation gradient F includes both rotation and stretch. The pure rotation of

material does not result in any strain energy or stress, so it is better to use some rotation-

independent deformation measures for formulating a constitutive equation. The isolation

of rotation is done through the polar decomposition of the deformation gradient,

F = RU = VR, (2.8)

where U and V are the right and left stretch tensor, and R is a proper orthogonal tensor,

that is R−1 = RT and det R = +1. Both U and V are positive definite, i.e. X ·U ·X > 0

and x ·V · x > 0, and symmetric, i.e. U = UT and V = VT .

As shown in the Figure 2.2, both U and V are rotation-independent deformation

measures: U defines the stretch referring to the reference configuration while V is the

stretch to the deformed configuration. U is called the material stretch tensor while the

V is called the spatial stretch tensor. Furthermore, the eigenvalues of U and V are the

principal stretch, λi (i = 1, 2, 3). The principal stretches can be calculated by finding the

roots of the characteristic equations

det(λI−U) = 0 or det(λI−V) = 0. (2.9)

The U and V have the same eigenvalues but different eigenvectors. Let λi be the eigen-
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values of U corresponding to the eigenvectors Ni, such that

UNi = λiNi, i = 1, 2, 3. (2.10)

Use of (2.8) leads to

VRNi = RUNi = λiRNi, (2.11)

therefore, λi are also the eigenvalues of V, corresponding to the eigenvectors RNi.

Several other rotation-independent deformation measures are commonly used. The

right Cauchy–Green tensor, C, is

C = FTF = U2 or CIJ = FkIFkJ . (2.12)

Also the Green strain tensor, E, is introduced as

E =
1

2
(C− I) or EIJ =

1

2
(FkIFkJ − δIJ). (2.13)

Substituting (2.4) and (2.5) into E, we have the expression in terms of displacements as

E =
1

2

[
∂u

∂X
+

(
∂u

∂X

)T
+

(
∂u

∂X

)T ∂u

∂X

]
(2.14)

and

EIJ =
1

2

(
∂uI
∂XJ

+
∂uJ
∂XI

+
∂uK
∂XI

∂uK
∂XJ

)
. (2.15)

The last term on the RHS of (2.15) shows the geometric nonlinearity due to the large

deformation. When the deformation is small, i.e. ‖ ∂u∂X ‖ � 1, the nonlinear term can be

ignored, so the Green strain reduces to the linear strain

εIJ =
1

2

(
∂uI
∂XJ

+
∂uJ
∂XI

)
. (2.16)

With respect to the deformed configuration, a common deformation measure is the left

Cauchy-Green strain tensor, B, defined as

B = FFT = V2 or Bij = FiKFjK . (2.17)

For a fibre-reinforced material, the direction of a fibre at a point X ∈ Ω0 is defined

by a unit vector field A(X), |A| = 1. It is commonly assumed that the fibres move with

the material points of the continuum body during deformation. Therefore, the unit vector

deforms according to (2.7)

a = FA. (2.18)

The ratio between the length of a and A defines the stretch of fibres,

λf =
|a|
|A| =

√
a · a =

√
(FA)T (FA) =

√
ATCA. (2.19)
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2.1.2 Stress response

The elastic stress, generated when the body is elastically deformed, is a physical quantity

that expresses the internal forces that neighbouring particles of a continuous material exert

on each other. Analogous to the reaction force of a spring, the stress tends to restore the

material to its original undeformed state. The stress measures the amount of force per unit

area. In finite deformation problems, care must be taken to describe the configuration in

which the stress is measured. The second Piola–Kirchhoff stress, S, is defined with respect

to the reference configuration, while the Cauchy stress, σ, and the Kirchhoff stress, τ , are

defined with respect to the deformed configuration. They are related by

τ = Jσ = FSFT , (2.20)

where J = det F. τ , σ and S are all symmetric second-order tensors.

The Cauchy stress σ describes the stress distribution in the deformed configuration.

The traction at a point of a surface with outward normal n is defined as

t = σn. (2.21)

Similarly, the traction, t0, is defined as the force per area in the reference configuration,

such that

t0 dS = t ds = T , (2.22)

where dS and ds are surface elements in the reference and deformed configurations, re-

spectively, and T is the force measured in the deformed configuration. The first Piola–

Kirchhoff stress P is associated with the internal force in the deformed configuration but

with respect to area in the reference configuration, such that

t0 = PN , (2.23)

where N is an unit outward normal of the reference surface. The first Piola–Kirchhoff

stress is related to the other stress tensors through

P = FS = τF−T = JσF−T . (2.24)

2.1.3 Stress-strain relationship

For a hyperelasitc material, the relationship between an isothermal reversible deformation

and the stress response, the stress-strain relationship, is defined through a SEF, Ψ, which
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is a scalar function of the deformation measure. Given Ψ, stresses are computed by taking

a derivatives, for example,

second Piola–Kirchhoff stress is S =
∂Ψ

∂E
= 2

∂Ψ

∂C

and first Piola–Kirchhoff stress P =
∂Ψ

∂F
.

(2.25)

The other stress tensors, σ and τ , are obtained via the transformations in (2.20) or

(2.24).

A number of SEFs have been proposed for the arterial wall. It is common to write

the SEF in terms of strain tensors, strain invariants, or principal stretches. Some of most

commonly used SEFs and the associated stress are shown below. All of these are defined

for incompressible material, i.e. J = det F = 1.

Ψ in terms of a strain tensor

A general three dimensional Fung’s type SEF proposed by Humphrey [1994] is

Ψ(E) =
a

2
[exp(Q)− 1] , (2.26)

where

Q =b1E
2
11 + b2E

2
22 + b3E

2
33 + 2b4E11E22 + 2b5E22E33 + 2b6E33E11

+ b7E
2
12 + b8E

2
23 + b9E

2
31.

(2.27)

From (2.25) and (2.26), the second Piola–Kirchhoff stress is

S =
∂Ψ

∂E
−PC−1

=
a

2
exp(Q)

∂Q

∂E
−PC−1,

(2.28)

where ∂Q
∂E is a second-order symmetric tensor, the components of which are ∂Q

∂EIJ
, I, J =

1, 2, 3, and P is the Lagrangian multiplier associated with the incompressibility constraint.

The value for P is determined by the equilibrium equations and boundary conditions.

From (2.27), we have

∂Q

∂E
= 2


b1E11 + b4E22 + b6E33 b7E12 b9E13

b7E21 b2E22 + b4E11 + b5E33 b8E23

b9E31 b8E32 b3E33 + b5E22 + b6E11


Then the Cauchy stress is obtained via (2.20) giving

σ =
a

2
exp(Q)F

∂Q

∂E
FT −PI. (2.29)
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Ψ in terms of strain invariants

The strain invariants, a scalar function of strain tensor, are independent of the coordinate

transformation. For example, the most widely used invariants of right Cauchy-Green strain

tensor C in a SEF are Ii, i = 1, 2, 3:

I1 = tr C

I2 =
1

2

[
(tr C)2 − tr C2

]
I3 = det C =

1

6

[
(tr C)3 − 3(tr C)(tr C2) + 2 tr C3

]
,

where tr C, tr C2 and tr C3 are independent of the choice of basis [Ogden, 1997]. For

example, we consider two right-handed orthonormal bases, e′i and ep, such that

e′i = Qipep, i = 1, 2, 3, (2.30)

where Q is an orthogonal matrix, i.e. QipQiq = δpq. In e′i, we have the components of C

as

C ′ij = QipQjqCpq, i, j = 1, 2, 3. (2.31)

Then

tr C′ = C ′ii = QipQiqCpq = δpqCpq = Cpp = tr C. (2.32)

In other words, I1 = tr C is invariant under change of orthogonal basis. Similarly, we have

tr C′
2

= C ′ii
2

= C ′ikC
′
ki = QipQkqCpqQkrQisCrs = δpsCpqδqrCrs = CsqCqs = tr C2, (2.33)

and

tr C′
3

= C ′ii
3

= C ′ijC
′
jkC

′
ki = QipQjqCpqQjmQknCmnQkrQisCrs

= δpsCpqδqmCmnδnrCrs = CsqCqnCns = tr C3,
(2.34)

thus I2 and I3 are also invariant under change of orthogonal basis.

The three principal invariants are the coefficients of the characteristic polynomial of

C, i.e.

det(λ2I−C) = (λ2)3 − I1(λ2)2 + I2(λ2)− I3 = 0, (2.35)

where the λ2 is a eigenvalue of C, λ is the principal stretch, and we can write

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = λ2
1λ

2
2λ

2
3.
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In other words, the three invariants can be expressed in terms of principal stretches λi.

Many commonly used isotropic SEFs are in terms of these invariants. For an incom-

pressible material,

I3 = J2 = 1, (2.36)

therefore only I1 and I2 are independent variants. For example,

� the neo-Hookean model is

Ψ = c(I1 − 3), (2.37)

� and the Mooney-Rivlin model is

Ψ = c1(I1 − 3) + c2(I2 − 3), (2.38)

where c, c1 and c2 are constant material parameters.

As demonstrated in Figure 1.7, the stress-strain response is different along different

directions. This directional mechanical response is due to the presence of collagen fibres.

To model this fibre induced anisotropy, a SEF must introduce new invariants, associated

with the direction of fibres. The simplest anisotropic model is a transversely isotropic

model, which characterizes a material with one family of fibres. Assume the family of

fibres has the direction defined by the unit vector A in the reference configuration. In this

case [Spencer, 1984], two additional anisotropic invariants are introduced

I4 = ATCA, I5 = ATC2A, (2.39)

or

I4 = a · a, I5 = aTCa. (2.40)

The invariant I4 has physical meaning, it is the square of the fibre stretch λf . However, it

is difficult to relate I5 to any physical quantity. For this reason and the lack of sufficient

experimental data, it is common to neglect the effect of I5 in the definition of a SEF [e.g.

Holzapfel et al., 2000; Weiss et al., 1996]. Here we use the HGO SEF [Holzapfel et al., 2000]

to demonstrate the derivative of stress-strain relationship for a SEF in terms of invariants.

For a transversely isotropic material, the incompressible HGO SEF is

Ψ(I1, I4) = Ψm(I1) + Ψf (I4)

=
c

2
(I1 − 3) +H(I4)ψf (I4),

(2.41)
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where H(·) is used as the switch condition, to indicate that fibres can only take stretch

loading, defined as

H(x) =


0 x 6 1

1 x > 1

and ψf (·) is the exponential stretch stiffening stored energy function for fibres

ψf (x) =
k1

k2
{exp

[
k2(x− 1)2

]
− 1}.

Then the second Piola–Kirchhoff stress is

S = 2

(
dΨm

dI1

∂I1

∂C
+

dΨf

dI4

∂I4

∂C

)
−PC−1. (2.42)

Using [
∂I1

∂C

]
ij

=
∂I1

∂Cij
=
∂Ckk
∂Cij

= δkiδkj = δij = [I]ij

[
∂I4

∂C

]
ij

=
∂I4

∂Cij
=
∂(AkCklAl)

∂Cij

= Ak
∂Ckl
∂Cij

Al = AkδkiδljAl = AiAj = [A⊗A]ij

in (2.42) yields

S = cI +H(I4)4k1(I4 − 1) exp
[
k2(I4 − 1)2

]
A⊗A−PC−1, (2.43)

where A⊗A = M is a second-order tensor, called a structure tensor in [Holzapfel et al.,

2000]. In components,

Mij = AiAj . (2.44)

The following the derivation of invariants are used for obtaining the explicit expression in

(2.43):

Push forward (2.43) through (2.20) to obtain the Cauchy stress

σ =
1

J
FSFT = cB +H(I4)4k1(I4 − 1) exp

[
k2(I4 − 1)2

]
a⊗ a−PI, (2.45)

where a⊗ a is the structure tensor in the current configuration.
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Ψ in terms of principal stretches

The Ogden material model [Ogden, 1972] is the most notable SEF in terms of the principal

stretches, λi, i = 1, 2, 3 as:

Ψ =

N∑
p=1

µp
αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)
, (2.46)

where N , µp and αp are material parameters.

The principal stress is directly obtained from the derivative of (2.46) respect to the

principal stretches. The components of the principal stress are

σi = λi
∂Ψ

∂λi
−P =

N∑
p=1

µpλ
αp−1
i −P. (2.47)

2.1.4 Balance equations

The governing equations for describing the elastic deformation of a body are derived from

the conservation laws of mass, angular momentum and linear momentum [Ogden, 1997].

Denote the mass density by ρ0(X) in the reference configuration Ω0 and by ρ(x) in

the deformed configuration Ω , then from the principle of conservation of mass, we have∫
Ω
ρ(x)dv =

∫
Ω0

ρ0(X)dV, (2.48)

where volume elements dv = JdV and J = det F.

The balance of the angular momentum leads to the symmetry properties of the Cauchy

stress tensor,

σT = σ. (2.49)

In the absence of body forces the equilibrium equation is

divσ = 0 or
∂σij
∂xj

= 0, i, j = 1, 2, 3, (2.50)

at steady state, where div(·) represents the divergence with respect to the deformed con-

figuration. This relation is true for any material point if the equilibrium is satisfied locally.

The equivalent weak global equilibrium equation is∫
Ω

divσ dv = 0, (2.51)

where dv is a volume element of the deformed configuration Ω.
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The strong and weak equilibrium equations may also be written with respect to the

reference configuration as:

Div P = 0 or
∂PiJ
∂XJ

= 0, i, J = 1, 2, 3, and

∫
Ω0

Div P dV = 0. (2.52)

Alternatively, a boundary value problem of partial differential equations can be for-

mulated as a problem of the calculus of variations [Courant, 1943]. Consider a deformable

body, which is loaded by a surface traction t0. The linear momentum of the body is in

balance and it is then subject to an instantaneous, infinitesimal virtual displacement field

δu, which is consistent with all boundary conditions. The principle of virtual work states

that the internal work done by the internal stress along the virtual strain consistent with

the virtual displacements is equal to the net external work done by the external force along

the virtual displacements.

With respect to the reference configuration, we have∫
Ω0

tr (δFTP) dV =

∫
∂Ω0t

δuT t0 dS, (2.53)

where ∂Ω0t is the boundary of Ω0 where the traction t0 applies, dV and dS are the material

volume and surface elements. The tr(·) is the trace operation such that in (2.53)

tr(δFTP) = δFiJPiJ . (2.54)

Using (2.22), (2.24) and

δF = ∇(δu)F, (2.55)

equation (2.53) is transformed to the deformed configuration as∫
Ω

tr
(
∇(δu)Tσ

)
dv =

∫
∂Ωt

δuT t ds, (2.56)

where ∂Ωt is the boundary of Ω where the traction t applies, dv and ds are the spatial

volume and surface elements, and

[∇ (δu)]ij =
∂δui
∂xj

. (2.57)

2.2 FEM

The finite element method is the most commonly used method to solve the equation

(2.56) [Zienkiewicz and Taylor, 2005].
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2.2.1 Discretisation

The finite element discretization may be constructed by dividing the continuous body into

finite elements. Accordingly, we have

Ω ≈ Ωh =
∑
e

Ωe, (2.58)

where Ωe is the domain of an individual element, e, and Ωh is the domain covered by all

elements. Generally, Ωh is an approximation of the domain of the real body since the

elements only have mapped polygonal shapes. With this approximation, the integrals in

the variational equations is approximated as∫
Ω

(·) dv ≈
∫

Ωh

(·) dv =
∑
e

∫
Ωe

(·) dv. (2.59)

Using this approximation in (2.56) yields

∑
e

∫
Ωe

tr
(
∇(δu)Tσ

)
dv =

∑
e

∫
∂Ωet

δuT t ds. (2.60)

Furthermore, these continuous variables (δu and σ) are approximated through the

interpolation onto the nodal values.

Adopting an isoparametric formulation we may write for a typical element

X = NI(ξ)XI , I = 1, 2, · · · , n, (2.61)

where n is the number of nodes defining an element, NI(ξ) are shape functions for node I

which maintain suitable continuity between elements and XI are the coordinates for the

node I. Similarly, we may write approximations for the deformed configuration as

x = NI(ξ)xI (2.62)

the displacement as

u = NI(ξ)uI (2.63)

and the virtual displacements as

δu = NI(ξ)δuI . (2.64)

Substitute (2.64) into the (2.60), we have

∑
e

δuTI

(∫
Ωe

tr
(
(∇NI)

Tσ
)
dv

)
=
∑
e

δuTI

(∫
∂Ωet

NIt ds

)
. (2.65)
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Since δuI is arbitrary, the finite element formulation of the linear momentum balance is

obtained as ∑
e

(∫
Ωe

tr
(
(∇NI)

Tσ
)
dv −

∫
∂Ωet

NIt ds

)
= 0. (2.66)

which may be written in the compact matrix form

f int(σ)− f ext = 0, (2.67)

where the nodal force vector

f ext =
∑
e

∫
∂Ωet

NIt ds (2.68)

is due to external loading and

f int(σ) =
∑
e

∫
Ωe

tr
(
(∇NI)

Tσ
)
dv (2.69)

denotes the internal force vector, calculated from the Cauchy stress σ. σ depends on a

displacement field u through a material constitution and a strain measure introduced in

Section 2.1. Thorough the interpolation of displacement field (2.63), the only unknown

variables of equation (2.67) are the nodal displacement uI .

(2.67) together with the displacement boundary conditions forms a boundary value

problem. A common solution procedure is to use a Newton–Rapson method and solve a

sequence of linearised problems. As described in Section 2.2.2, a linearisation of this set

of equations gives

Ki−1∆ui = f exti−1 − f inti−1, (2.70)

where i, i − 1 denote the iteration steps associated with a global Newton iteration, ∆ui

is an incremental displacement to solve, and calculation of the tangential stiffness matrix

Ki−1 is given in (2.99).

2.2.2 Linearisation

The linearisation is considered in a referential formulation with respect to the fixed refer-

ence configuration Ω0. Accordingly, the term on the LHS of (2.53) is expressed in terms

of the second Piola–Kirchhoff stress tensor by using (2.24), i.e.∫
Ω0

tr (δFTP) dV =

∫
Ω0

tr (δFTFS) dV =

∫
Ω0

tr (δFSFT ) dV. (2.71)

A linearisation of the term on the RHS of (2.71) may be written as

∆

(∫
Ω0

tr(δFSFT ) dV

)
=

∫
Ω0

tr(δFS∆FT ) dV +

∫
Ω0

tr
(
δF∆SFT

)
dV, (2.72)
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where ∆(·) denotes an increment of (·). Using (2.55) and

∆F = ∇(∆u)F, (2.73)

(2.72) is transformed to the deformed configuration and expressed in terms of Cauchy

stress,

∆

(∫
Ω0

tr(δFSFT ) dV

)
=

∫
Ω

tr
(
∇(δu)FSFT∇(∆u)T

) 1

J
dv +

∫
Ω

tr
(
∇(δu)F∆SFT

) 1

J
dv

=

∫
Ω

tr
(
∇(δu)σ∇(∆u)T

)
dv +

∫
Ω

tr (∇(δu)∆σ) dv,

(2.74)

where

J = det F =
dv

dV
(2.75)

is the ratio of a volume element after to before deformation,

∇(∆u)T =

(
∂∆u

∂x

)T
(2.76)

and

∆σ =
1

J
F∆SFT . (2.77)

The first term on the RHS of (2.74) leads to the geometric part of the stiffness in a finite

element formulation, whereas, the second term depends on the material constitution and

leads to the material part of the stiffness.

∆S is computed via

∆S = C∆E, (2.78)

where C is a fourth-order material tangential moduli with respect to the reference config-

uration, and

∆E =
1

2
∆(FTF− I) =

1

2
(∆FTF + FT∆F). (2.79)

C is derived from a particular SEF Ψ via

C =
∂2Ψ

∂E∂E
= 4

∂2Ψ

∂C∂C
. (2.80)

Substituting (2.78) with (2.79), (2.73) into (2.77) gives

∆σ = c∆ε, (2.81)

where c is the spatial tangential moduli with respect to the deformed configuration, and

∆ε is the symmetric part of the gradient of the incremental displacement,

∆ε =
1

2

[
∂∆u

∂x
+

(
∂∆u

∂x

)T]
. (2.82)
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Substitution of the above into the second term on the RHS of (2.74) yields∫
Ω

tr (∇(δu)∆σ) =

∫
Ω

tr (δεc∆ε) dv. (2.83)

Substituting to the RHS of (2.74) with (2.83) to (2.56) gives the linearised form for the

variational equations∫
Ω

tr
(
∇(δu)σ∇(∆u)T

)
dv +

∫
Ω

tr (δεc∆ε) dv =

∫
∂Ωt

δuT t ds. (2.84)

Using the approximation (2.59) in (2.84) yields∑
e

(∫
Ωe

tr
(
∇(δu)σ∇(∆u)T

)
dv +

∫
Ωe

tr (δεc∆ε) dv

)
=
∑
e

(∫
∂Ωet

δuT t ds

)
. (2.85)

The quantities in this equation are future specified in terms of nodal displacement through

interpolations in (2.63) and (2.64).

Substitution of the interpolations described above into the first term on the LHS of

(2.85) for each element yields∫
Ωe

tr
(
∇(δu)σ∇(∆u)T

)
dv = (δuI)

TKg
IJ∆uJ , (2.86)

where the geometric part of the stiffness matrix

Kg
IJ =

∫
Ωe

tr(∇NT
I σ∇NJ) dv. (2.87)

Using Voigt’s notation for σ, δε as

σ = [σ11 σ22 σ33 σ12 σ23 σ31]T (2.88)

and

δε = [δε11 δε22 δε33 2δε12 2δε23 2δε31]T . (2.89)

Expressing the δε in terms of the virtual displacement gives

δε =

[
∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂u1

∂x2
+
∂u2

∂x1

∂u2

∂x3
+
∂u3

∂x2

∂u3

∂x1
+
∂u1

∂x3

]T
. (2.90)

Substitution of (2.64) to (2.90) yields

δε =



NI,1 0 0

0 NI,2 0

0 0 NI,3

NI,2 NI,1 0

0 NI,3 NI,2

NI,3 0 NI,1




δuI1

δuI2

δuI3


= BIδuI , (2.91)
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where

NI,i =
∂NI

∂xi
, i = 1, 2, 3. (2.92)

With Voigt’s notation, the second term on the LHS of (2.85) is∫
Ωe

tr(δεc∆ε) dv =

∫
Ωe

δεTD∆ε dv, (2.93)

where the 6×6 matrix D denotes the matrix form of the fourth-order tensor c. Use the

interpolations in the incremental strain term

∆ε = BJ∆uJ , (2.94)

and substitute to the RHS of (2.93), we have∫
Ωe

δεTD∆ε dv = (δuI)
TKm

IJ∆uJ , (2.95)

where the material part of the element stiffness matrix

Km
IJ =

∫
Ωe

BT
I DBJ dv. (2.96)

Using the interpolations on the RHS of (2.85) yields∫
Ωe

δuT tds = (δuI)
T

∫
∂Ωet

NItds = (δuI)
TfI . (2.97)

Accumulating the terms on the RHS of (2.86), (2.95) and (2.97), the variational equa-

tion (2.85) may be written as∑
e

(δuI)
T
[(

Kg
IJ + Km

IJ

)
∆uJ − fI

]
= 0, (2.98)

since δuI is arbitrary, (2.98) leads to the basic finite element equations and we have

components of the tangential stiffness matrix

KIJ =
∑
e

(Kg
IJ + Km

IJ). (2.99)

2.3 XFEM

The basic concept of XFEM is to enrich the finite element approximation space so that it

is capable of reproducing certain features of the problem of interest [Belytschko and Black,

1999; Mohammadi, 2008], in particular discontinuities such as a tear.

Consider X, a point in a FE model. Assume there is a discontinuity in the arbi-

trary domain discretized into some n node finite elements. In the XFEM, the following

approximation is utilised to calculate the displacement for the point X within the domain.
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uh(X) = uFE + uEnr =

n∑
I=1

NI(X)uI +

m∑
J=1

NJ(X)H(X)aJ , (2.100)

where uI is the vector of regular degree of nodal freedom in the FEM, aJ is the added set

of degrees of freedom to the standard FE model and H(X) is the discontinuous enrichment

function defined for the set of nodes that the discontinuity has in its influence domain.

For example, to account for displacement jump across a tear Γ, H(X) may be defined as

H(X) =


1, if (X −XΓ) · n > 0

−1, otherwise

(2.101)

where XΓ ∈ Γ is the closest point to X on the tear and n is a outward-pointing normal

vector of Γ at XΓ (Figure 2.3).

X

XΓ

n

Figure 2.3: A mesh is used for the domain including a tear (red line). X is an abitrary

point in the domain, XΓ is the closet point to X on the tear, and n is an outward-pointing

normal vector of Γ at XΓ. The displacement at nodes circled are enriched.

The first term on the RHS of (2.100) is the conventional finite element approximation,

including all nodes, while the second term is the enrichment approximation which takes

into account the existence of any discontinuities, including only nodes of elements bisected

by the tear.

The main advantage of XFEM is that the tear is not needed to be explicitly expressed

in the finite element mesh, therefore the mesh generation in XFEM is independent of the

tear. As an illustration, Figure 2.4 shows a typical mesh when using FEM and XFEM

for a strip with a tear. Before applying loading, the upper and lower tear surfaces has

same position. It is not easy to generate directly a mesh for the domain including such a

tear. As shown in Figure 2.4(a), a method is to separate the domain to six subdomains,

mesh each individually with constraint that common edges (dashed lines) have same mesh.
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Finally the mesh of subdomains except 3 and 4 will be tied together, so the repeated nodes

on the dashed lines are removed and have the mesh for both upper and lower tear surface.

(b) XFEM mesh

2

1

6

5

4

3

(a) FEM mesh

Figure 2.4: A typical FEM and XFEM mesh for a strip with a tear (red line). Dashed lines

in (a) shows the boundaries of subdomains and numbers are the labels of these subdomains.

2.4 Conclusion

In this chapter, we summarise the essential basic mathematical theory and formulations

of finite elasticity, FEM and XFEM. A comparison between FEM and XFEM shows that

the mesh generation in XFEM is easier than in FEM. Therefore, we use the FEM in

problems with a simple geometry (Chapter 3) and the XFEM in problems with complex

geometry (Chapter 4–6). The ‘simple’ here means that such a decomposition shown in

Figure 2.4(a) is easy. A complete derivative on using FEM to solve a nonlinear boundary

value problem is presented. This derivative shows where the Cauchy stress and tangential

moduli associated with a SEF is used in the computation of FEM. Understanding this

derivative is essential to my developing of a material model in a finite element program in

Chapter 7.



Chapter 3

Onset of propagation of a

dissection in a 2D strip

Prediction of soft tissue failure may yield a better understanding of the pathogenesis of AD

and help to advance diagnostic and therapeutic strategies for treatment of this and other

diseases and injuries involving the tearing of soft tissue, such as an aortic dissection. In this

chapter, we present computational models of tear propagation in fibre-reinforced soft tissue

that undergoes finite deformation, modelled by a hyperelastic anisotropic constitutive

law. We adopt the appropriate energy argument for anisotropic finite strain materials to

determine if a tear can propagate when subject to internal pressure loading. The energy

release rate is evaluated with an efficient numerical scheme that makes use of adaptive tear

lengths. As an illustration, we present the calculation of the energy release rate for a two-

dimensional strip of tissue with a pre-existing tear of length a under the internal pressure

p and show the effect of fibre orientation. This calculation allows us to locate the potential

bifurcation to tear propagation in the (a, p) plane. The numerical predictions are verified

by analytical solutions for simpler cases. We have identified a scenario of tear arrest, which

is observed clinically, when the surrounding connective tissues are accounted for. Finally,

the limitations of the models and further directions for applications are discussed. This

chapter has been published in the Journal of Engineering Mathematics, 95(1):249–265,

2015.
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3.1 Introduction

To model a tear in arteries, one may follow the approaches used to describe material failure

in damage and fracture mechanics. Two of the commonly used mathematical theories are

based on the Stress Intensity Factor (SIF) and energy arguments.

The SIF criterion requires calculation of the stress field in the vicinity of the tip [Tada

et al., 2000]. For a linear elastic isotropic material, the stress-field near the tip is char-

acterised by a SIF K which exhibits an r−1/2 singularity (Equation (1.17)), where r is

the distance from the tip (Figure 1.8). A criterion for propagation is that, for a given

mode of failure, K is greater than a specified material toughness Kc (K > Kc). However,

the asymptotic stress field near the tip is not generally known for finite deformation non-

linear elasticity, with the exception of simplified cases for isotropic power-law materials

[Stephenson, 1982].

The energy approach to failure is based on calculating the Energy Release Rate (ERR),

G, which is the change in total potential energy with per unit extension of the tear. It

was developed by inter alios Griffith [1921] and extended by Irwin and Wells [1965]. The

concept of ERR stems from the energy balance principle during an infinitesimal quasi-

static tear extension; it is the energy per unit area released from the system by extending

the tear surface by an infinitesimal area dA. In a plane strain problem, the deformation

is two-dimensional and G is calculated per unit length instead of per unit area. Given the

material parameter Gc, the critical energy required to break all the bonds across dA, we

can evaluate the potential for propagation of the tear: if G > Gc, the tear may propagate

(i.e. it is energetically feasible), otherwise it is stationary. Thus G−Gc is the potential for

tear propagation. In particular, ignoring any plastic effects, G can be calculated from the

work done by loads and changes in the strain energy accompanying the increase in the tear

area. There are many numerical methods for calculating G [e.g. Zehnder, 2007], and most

do not rely on evaluating the singular stress field at the tip, rather on the global energy

and work, so an accurate value for G can be obtained with modest mesh refinement. Hence

for the arterial dissection problem, we choose to use the energy approach in this chapter.

We use an invariant homogeneous fibre-reinforced material model, i.e. the widely

cited HGO strain energy function [Holzapfel et al., 2000], as a description for mechanics

of the arterial wall, and focus on seeking the conditions that govern the onset of tear

propagation. For simplicity, we assume that pressurised blood fills the tear hence the false

lumen is subject to the same arterial pressure as the true lumen. Tsai et al. [2008] showed
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that the false lumen diastolic pressure is slightly higher, i.e. it is 100.4%–107.9% of the

true lumen diastolic pressure as shown in Figure 1.3. We also neglect flows in small radial

tears that connect the main dissection to the lumen. A finite element model is developed

to study the finite elastic deformation of the arterial wall containing an initial tear and

analyse the potential for tear propagation. We derive a failure criterion in terms of the

ERR, and describe a computational framework to calculate this. We illustrate the ideas by

studying the behaviour of a tear in a two-dimensional strip of arterial material containing

a single parallel tear. Using this computational framework, we obtain the condition for

tear propagation in strips of material with different fibre distributions. In addition, we

simulate constraint due to surrounding connective tissues and show that this can lead to

tear arrest.

3.2 Methodology

3.2.1 The energy budget

A sample of tissue with a tear can deform and split apart when loaded, as illustrated in

Figure 3.1. From the energy balance theory in fracture mechanics [see Zehnder, 2007], the

total potential energy for the system is

E = Π +Gca, (3.1)

where the mechanical energy Π = Ue −W , Ue is the strain energy of the tissue sample at

equilibrium, Gc is the energy required for breaking bonds linking the new torn surfaces

(per unit area a in 3D, or per unit length a in 2D), and W is work done by the load.

The minimal potential energy principle requires that

dE
da

< 0 or G > Gc, (3.2)

where G = −dΠ/da is the energy release rate (ERR). In order to determine if a tear may

propagate, it is essential to first evaluate the ERR for the system.

3.2.2 Computational approach for ERR

A simplified geometry for the arterial tissue is employed. A key clinical observation is

that patients present with a dissection of fixed length at risk of further tearing. We seek

to determine the conditions under which a tear of finite length will propagate in a large
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Ω

F

F

ω

a

Ω̂

E

Gca Π

Figure 3.1: The change in the sample under force F , Ω → ω, can be approached by

two steps: creating a tear of area a, Ω → Ω̂, followed by elastic deformation, Ω̂ → ω.

Correspondingly, the total potential energy for the system, E , is decomposed to the surface

energy, Gca, and mechanical energy, Π.

artery via the criterion given in (3.2). The geometry is simplified by modelling the artery

as a cylinder with an axisymmetric tear subject to constant pressure p, approximating the

blood pressure by its mean value, neglecting the small communicating tear between lumen

and main dissection, considering a cross section through the wall and simplifying further

to a two-dimensional strip, ωa, as shown in Figure 3.2.

For the hyperelastic anisotropic soft tissues undergoing finite deformation, the criterion

(3.2) needs to be evaluated numerically. There are two methods for calculating the ERR

using the FEM. One is based on the variation of local energy at the vicinity of tip, the

other is based on variation of the global energy [Knees and Mielke, 2008]. We use the latter

approach as it avoids any difficulty when extended to finite deformation nonlinear elasticity,

even when body forces and residual stress are included. The formula for calculating a

numerical approximation to G is

G = −δΠ
δa

= −Πa+δa −Πa

δa
. (3.3)

To obtain the equilibrium value of Πa, we solve a specified boundary value problem

using the FEM package FEAP [Taylor, 2011b]. With the pressure loading, the solution can

be obtained by a ‘proportional load process’, in which the loading parameter is increased
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ωa p ωa+δap

a

Ωa

a+ δa

Ωa+δa

Πa Πa+δa

Gcδa

δE

Figure 3.2: The variation of total potential energy due to a tear propagation from ωa to

ωa+δa is δE = δΠ +Gcδa = (Πa+δa − Πa) +Gcδa. To get Π for calculating ERR in (3.3),

we calculate the equilibria of Ωa and Ωa+δa subject to a constant uniform pressure, p, on

the tear surfaces via the FEM.

(parametrised by an artificial ‘time’ t) incrementally towards its final value and the solution

is updated at each increment. Depending on the material parameters and the particular

method used to solve the discretised equations, this calculation can be time consuming.

In order to improve the computational efficiency, we incorporate interpolation tech-

niques for Πa. We evaluate Πa for a collection of lengths and use cubic spline interpolation

between these values. This gives a smooth approximation to Π(a) that can be used to

estimate G = −∂Π/∂a.

The numerical procedure described above relies on the numerical calculations of the

strain energy Ue and the work done by external load W, which we now describe.

3.2.3 Calculation of the strain energy Ue

For the arterial tissue, we use the HGO constitutive law [Holzapfel et al., 2000], that is

based on the histology of the artery. The strain energy function in the incompressible

HGO model is split into contributions from the matrix Ψm and the fibres Ψf , viz.

Ψ(C) = Ψm(I1) + Ψf (I4, I6) =
c

2
(I1 − 3) +

∑
n=4,6

ψ(In), (3.4)

where c is the shear modulus of matrix, I1 is the first invariant of the right Cauchy–Green

strain tensor to quantify the deformation of matrix and In, n = 4, 6 are invariants to
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describe the fibres stretch and ψ(·) is the strain energy density function of fibres. Assume

the deformation gradient is denoted by F and the orientations of two-family fibres are

denoted by the referential unit vector directions A1 and A2, then

I1 = tr C, In = C : Mn (n = 4, 6), (3.5)

where C = FTF, M4 = A1⊗A1 and M6 = A2⊗A2, such that in component Mij = AiAj .

It is also assumed that fibres only take on load when stretched, thus

ψ (In) =


k1

2k2

(
exp

[
k2(In − 1)2

]
− 1
)

when In > 1,

0 when In 6 1,

n = 4, 6, (3.6)

where k1 and k2 are material parameters to definite the stiffness of fibres.

To approximate the incompressible behaviour in the finite element calculation, we

employ the multiplicative decomposition of the deformation gradient [Flory, 1961] to form

a quasi-incompressible material model

Ψ(C) = Ψv(J) + Ψ̄(C̄) =
K

2
(J − 1)2 + Ψ̄(C̄), (3.7)

where J = det F and C̄ = J−2/3C. The incompressibility condition is satisfied to a good

approximation when the penalty constant K is large enough. Then the Cauchy stress is

σ = −dΨv

dJ
I + cdev(b) +

∑
n=4,6

2
dψ

dIn
dev(mn), (3.8)

where b = FFT , mn = FMnF
T and dev(·) = (·)− 1

3tr(·)I. The detailed derivation of the

quasi-incompressible HGO model (3.7) for a user subroutine in FEAP [Taylor, 2011a] is

shown in Chapter 7.

3.2.4 Calculation of the work done by pressure

Consider the tear surface specified by a position vector x = x(s, t), 0 6 s 6 a, 0 6 t 6 T ,

as shown in Figure 3.3. At time t = 0, x(s, 0) specifies the initial tear surface. The force

on a small portion of the tear of length dl is

df = −p dln = −p
∣∣∣∣∂x∂s ds

∣∣∣∣n,
and the work done in a small time dt is

dw = df · vdt = df · ∂x
∂t
dt.
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n

t
v

x(s, t)

s = 0

t = 0

s = a

t = 0
p

Figure 3.3: Sketch of the deformation of one tear surface under constant pressure: t and

n are the tangent and normal unit vectors of the deformed tear surface, respectively, and

v is the velocity of the particle at time t that originated at x = x(s, 0).

The work done by the distributed force (pressure) is then

W =

∫
dw = −p

∫ T

0

∫ a

0
n · ∂x

∂t

∣∣∣∣∂x∂s
∣∣∣∣ ds dt. (3.9)

Let k be the unit vector along the third direction into the diagram, then n = k × t, and

t = ∂x
∂s

∣∣∂x
∂s

∣∣−1
. Substituting these expression into (3.9), gives

W = −p
∫ T

0

∫ a

0

(
k × ∂x

∂s

)
· ∂x
∂t
ds dt. (3.10)

The triple scalar product is the signed volume of the parallelepiped defined by the three

vectors and |k| = 1, therefore the integral in (3.10) represents the area swept by the tear

surface.

3.3 Results

3.3.1 Numerical experiments

Consider a strip with two ends fixed in the y-axis direction as shown in Figure 3.4. To

avoid rigid body motions, the x-coordinate of the centreline of the strip is fixed. For a

tear under the pressure loading, we consider the ERR due to the tear extension for four

different materials, one without fibres and the others with different fibre orientations (see

Table 3.1). In all cases, we set the values of the material parameters in the constitutive

law (3.4) to be c = 3.0 kPa, k1 = 2.3632 kPa and k2 = 0.8393, which are typical values for

the media of rabbit’s carotid artery [Holzapfel et al., 2000].

Isotropic material

We seek a condition for the onset of tear propagation as a function of tear length and

pressure, thus we calculateG(a, p). In particular, we consider the possibility of propagation
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ap
y

x

Figure 3.4: Sketch of the strip with a single parallel tear of length a under internal pressure

p. The boundary conditions are that the two ends are fixed in the y-direction, and the

centres of the two ends are also fixed in the x-direction. The tear is exactly at the middle

of the strip. With this symmetry, we know the direction of tear extension a priori, which is

along the strip, i.e. the direction of the pre-existing tear. Recall that this model computes

the energy release rate for a given propagation path.

for a tear of length a ∈ [0.4, 10.0] mm subject to pressure p ∈ [0, 0.6] kPa. Note in this

hypothetical test case, the pressure value used is not in the physiological range of realistic

arteries. We focused on the trend of G on p and a for propagation of a pre-existing tear.

For the sake of computational efficiency, we specified the range of pressure p and tear

length a in our simulations. The value of pressure p is selected as big as possible for these

two-dimensional strips, a deeper discussion on this selection is included in Section 3.5. For

a pre-existing tear, the length a > 0, we selected a = 0.4 mm as the lower value such that

a very short tear is considered. The upper value of a = 10.0 mm is selected such that the

tear opening has already been very wide and the trend of G(a) is clear to be shown.

In numerical experiment 1, the strip has no fibres and is isotropic. The ERR G(a, p)

is a monotonically increasing function of a for each value of p, as shown in Figure 3.5.

A longer tear leads to an increased ERR and thus an increase in the likelihood of tear

propagation. This observation agrees with the results of a beam model described in Section

3.4 (see equation (3.16)). A comparison of the curves for different pressures shows that

G(a, p) is also a monotonically increasing function of p for fixed values of a, in agreement

with high pressure favouring tear propagation.
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Figure 3.5: The energy release rate G for an isotropic strip, plotted against tear length a

subject to various values of the pressure p. Gc is a material-dependent critical parameter

and, e.g., when Gc = 2 J/m and p = 0.6 kPa, it is energetically favourable for a tear of

length greater than ac to propagate.

Fibre-reinforced materials

To investigate the effect of collagen fibres on the ERR, we perform three more numerical

experiments by reinforcing the strip with fibres of different orientations. In Exp. 2 the

fibres are parallel to the tear, in Exp. 3 the fibres are aligned at π/4 to the tear, and in

Exp. 4 the fibres are normal to the tear, as specified by the alignment vectors A1 and A2

in Table 3.1.

The curves of G(a) when p = 0.6 kPa are shown in Figure 3.6. The curve for Exp. 2 is

very close to that for Exp. 1. The fibres can only support loads in tension, and the regions

with subject to stretch only occur in small regions just ahead of the tips of the tear (Figure

3.7). Consequently, the tear opening and stored energy, and thus the mechanical energy,

are similar to those for Exp. 1, as is shown in Figure 3.8.

As the fibres become more parallel to the tear going from Exp. 2 to Exp. 4, the ERR

decreases, because the fibres take a greater load to resist the opening of the tear, as shown

in Figure 3.8. Specifically, the region with stretch along the fibre direction in Exp. 4

(Figure 3.9) is greater than that in Exp. 2 (Figure 3.7).

G(a, p) is also shown as a contour plot in Figure 3.10. The region at highest risk of

tear propagation is at the top right-hand corner. These contours are similar in all the

numerical experiments.
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Table 3.1: Characterisation of the materials used in four numerical experiments on the

effect of fibres

Experiments Material type A1 A2

Exp. 1 isotropic N/A N/A

Exp. 2 transversely isotropic (1, 0, 0) N/A

Exp. 3 orthotropic (cos(π/4), sin(π/4), 0) (cos(π/4), − sin(π/4), 0)

Exp. 4 transversely isotropic (0, 1, 0) N/A
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Figure 3.6: Graphs of the ERR G(a) when p = 0.6 kPa for the four numerical experiments

listed in Table 3.1. G is the greatest in the Exp.1 for the isotropic strip, and G decreases

as the fibre direction A1 moves towards the direction of the tear from Exp.2 to Exp.4. In

other words, fibres parallel to the tear will increase the resistance of the tear propagation.
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Figure 3.7: The first component of Almansi strain tensor e11 = 1
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)
for Exp. 2.

The regions with positive values, close to the tear tips, indicate fibre stretching.
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Figure 3.8: The width of tear with pressure p = 0.6 kPa for the four numerical experiments

in Table 3.1. As the fibres become more parallel to tear, the width of tear decreases.
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Figure 3.9: The second component of Almansi strain tensor e22 = 1
2

(
1− I−1

4

)
for Exp. 4.

The positive values indicate fibre stretching.

3.3.2 Effects of the connective tissue — tear arrest

To consider the effect on tear propagation of the connective tissue around the strip, we add

two linearly elastic blocks to the sides of the strip in the computational model. To assume

both sides the tissue behaves the same is because we need to keep the symmetry, such

that we know the direction of tear extension a priori. Recall that this model computes

the energy release rate for a given propagation path. The reference configuration and

boundary conditions are shown in Figure 3.11. The central strip is the fibre-free material

used in Exp. 1. The plots of the ERR in Figure 3.12 show that arrest of the tear propaga-

tion can occur, due to the surrounding connective tissue resisting the deformation of the

strip. Arrest of the propagation of the tear is also found in simple beam model described

in Section 3.4 (see Figure 3.15). However, for softer connective tissue (with a Young’s

modulus E = 0.01 kPa instead of E = 10 kPa), the phenomenon of arrest disappears, as

shown in Figure 3.13, and so the stiffness of surrounding connective tissue is an essential

factor influencing the likelihood of tear propagation.
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Figure 3.10: Contours of G(a, p) for the four numerical experiments in Table 3.1. The

numbers on the isolines are the value of G(a, p) for particular values for a and p. The

region at highest risk of tear propagation lies at the top right-hand corner in all the

experiments. The energy release rate G(a, p) is the smallest in Exp. 4.
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Figure 3.11: The reference (left) and current configurations with maximum principal stress

(right) of a strip when constrained by the two blocks, which simulate the connective

tissues. Using tissues at both sides of the strip maintains the symmetry of geometry, and

so guarantees the tear to extend along the strip. The tear surface is subject to the pressure

p = 0.6 kPa. The red lines show the boundary conditions: the left and right are constrained

such that they cannot move horizontally, and the top and bottom are constrained such

that they cannot move vertically.
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Figure 3.12: Graphs of the ERR G for a strip constrained by two linearly elastic blocks

as shown in Figure 3.11. For example, when Gc = 0.13 J/m and p = 0.6 kPa, it is only

energetically favourable for a tear to propagate when its length a ∈ (a1, a2) for which

G > Gc. Recall that we compute the energy release rate for propagation of a pre-existing

tear. In this example, the value of a = 0.4 mm rather than a = 0 for a very short tear is

considered.
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Figure 3.13: In contrast to the Figure 3.12, where the Young’s modulus of the surrounding

tissue is E = 10 kPa, the ERR G(a) for the case with much softer surrounding tissue

(E = 0.01 kPa), is always a monotonically increasing function of the tear length, a, and

tear arrest cannot occur.

3.4 A simple beam model for ERR

The inequality (3.2) is known as the Griffith criterion when applied to linear elastic prob-

lems. The exact mathematical expression of energy release rate is available for a simplified

geometries and loading scenario. Here we derive the energy release rate for a semi-infinite

linear isotropic beam subject to pressure and external constraint, and use these theoretical

results to verify qualitatively the trend in energy release rate on tear length and pressure

obtained from our computational model for arterial wall strips.

Consider a semi-infinite beam of constant Young’s modulus E and second moment of

area J . The beam is bonded to a surface except for a region 0 ≤ x ≤ a where x measures

the length along the beam from one end. The deflection of the beam is w(x) and the

boundary conditions are

w(x) = 0 for x ≥ a, w′′(0) = 0, w′′′(0) = 0, (3.11)

where w′′(0) = 0 means that there is no bending moment at the free end of the beam, and

w′′′(0) = 0 indicates that there is no shearing force acting at the free end of the beam.

The equation satisfied by w(x) depends on the loading experienced by the beam, we take
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a general function F (x,w) so that

EJw′′′′(x) = F (x,w). (3.12)

Different choices of F (x,w) give different external loading conditions, e.g. below we simu-

late the effect of the constraint of the surrounding connective tissue. In particular, we are

interested in the calculation of the mechanical energy

Π(a) =
1

2

∫ ∞
x=0

EJ
(
w′′(x)

)2
dx+

∫ ∞
x=0

f(x,w) dx, (3.13)

where F (x,w) = −∂f/∂w and in G = −∂Π/∂a. For a given value of Gc, (3.13) enables

us to use (3.2) to determine if a tear of length a can propagate.

We now use this simple beam model to explore the type of phenomena we obtained

from the numerical experiments. To simulate the boundary condition, we set F (x,w) = p,

a constant. Solving the ordinary differential beam equation (3.12) gives

w(x) =


p

24EJ

(
x4 − 4a3x+ 3a4

)
, x < a

0, x > a

(3.14)

and, therefore, by substituting into (3.13), we find that

Π(a) = −p2a5/40EJ. (3.15)

The energy release rate is

G = −dΠ

da
=
p2a4

8EJ
. (3.16)

G is a monotonically increasing function of a and p, therefore either an increase in the

length of the unbonded region (the tear), or the pressure, results in propagation of the

tear being energetically favourable.

To consider the effect of surrounding connective tissues, we set F (x,w) = p − kw,

where the constant k is the stiffness per unit length of the springs, as shown in Figure

3.14. Consequently, f = −pw + kw2/2, and the solution for w(x) is

w(x) =
p

k
+W (x), (3.17)

where W (x) satisfies

W ′′′′ + 4λ4W (x) = 0, λ4 = k/4EJ. (3.18)
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Figure 3.14: The effect of connective tissue using the beam model. The semi-infinite

beam, of constant Young’s modulus E and second moment of area J , is bonded to a

surface except for a region 0 < x < a that represents the tear. The spring bed represents

the surrounding connective tissues.
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Figure 3.15: Tear arrest is also demonstrated by the beam model when the connective

tissue is present. The ERR G is no longer a monotonic function of a, and for a given

critical value Gc, a tear of length a where a1 < a < a2 or a > a3 will propagate. However,

the tear arrests when a2 < a < a3. Notice that the range of a is selected to show that the

tear arrest is possible. The values of a1, a2, and a3 will change depending on the value of

Gc, as well as the stiffness of the connective tissue blocks.

This is solved to give

W (x) = e−λx [A cos(λx) +B sin(λx)]

+ eλx [C cos(λx) +D sin(λx)] , (3.19)

with A, B, C and D chosen to satisfy the boundary conditions. Non-dimensionalising the

deflection with p/k and x with 1/λ, i.e. y = w/(p/k) and s = xλ, leads to the canonical
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problem
d4y

ds4
= 4− 4y, (3.20)

with boundary conditions y′′(0) = y′′′(0) = 0 and y(γ) = y′(γ) = 0 where γ = a/l. The

solution to this problem is

y(s) = 1 + [(sin s cosh s+ cos s sinh s) (cos γ sinh γ − sin γ cosh γ)

−2 cos s cosh s cos γ cosh γ] /
[
cos2 γ + cosh2 γ

]
. (3.21)

The mechanical energy is

Π =
(p
k

)2
EJ

l

l4

∫ γ

0

1

2

(
y′′(s)

)2
ds+

1

2
k
(p
k

)2
l

∫ γ

0
y(s)2 ds− p2

k
l

∫ γ

0
y(s) ds. (3.22)

This expression simplifies to

Π =
p2l

k

[∫ γ

0

1

8

(
y′′(s)2 + 4y(s)2

)
− y(s) ds

]
, (3.23)

and then we get the ERR

G = −∂Π

∂a
= −p

2

k

{
1

8

[
y′′(γ)2 + 4y(γ)2

]
− y(γ)

}
. (3.24)

We display the curve ofG(a) for a set of typical parameters in Figure 3.15. When subject to

a constant pressure, G(a) is not a monotonically increasing function of a, and propagation

arrest occurs. Comparison this result with (3.16), we observed that the arrest of tear

propagation occurs in the beam model when we consider the constraint of connective

tissues. That is qualitatively similar to what is shown in Figure 3.12 for a strip of fibre-

reinforced tissues subject to finite strain. We remark that since the two models, the

simple beam model and the 2D strip model, are very different in terms of the material and

boundary conditions, one used the linear elastic material, and the other used the HGO

model, it is not worthwhile to compare the results of the two models quantitatively, since

either model is tuned to give physiological values. The purpose of the beam model is to

demonstrate that a tear arrest is possible when the connective tissue is considered, which

supports the observation of the 2D strip model.

3.5 Discussion

In this chapter, we have developed models to evaluate the likelihood of tear propagation in

soft tissue with the failure criterion expressed in terms of the ERR. Models which build on
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energy balance apply equally well both to linearly elastic isotropic problems and to finite

strain and anisotropic problems, thus providing useful physical insight in the absence

of detailed experimental data. By assuming the tear propagation to be an isothermal

process, we have explored if a pre-existing dissection can propagate in artery wall under a

penetrating pressure, which means the pressure is immediately applied on the new created

tear surface during tear propagation. The pressure penetration is the simplest approach

to model this fluid-driven tear propagation in the arterial dissection. Such an approach

can be used to evaluate the risk of propagation of aortic dissection and other injures of

soft tissue.

A key element of the energy approach is to evaluate the change in the energy budget

with the tear size, which is non-trivial for finite strain and fibre-reinforced soft tissue prob-

lems. Using an nearly incompressible HGO orthotropic constitutive law, in conjunction

with a penalty method, we have developed a computational framework, that allows us to

calculate the ERR for incompressible soft tissues. In particular, the ERR due to the tear

extension is estimated by incorporating an interpolation technique on Π(a) for the sake of

computing efficiency.

Qualitative verification of the computational models has been carried out. This in-

cludes testing the models for simple scenarios (material and loading parameters) in which

analytical solutions are available. In addition, we find that the ERR from the computa-

tional models has qualitatively the same trend as the ERR predictions from a beam model

(Section 3.4) for the isotropic material.

Although the exact failure threshold depends on the tissue properties, the energy

behaviour of such materials due to a pre-existing tear is clearly demonstrated through the

contours of the ERR in the tear-length and pressure space, (a, p). For both isotropic and

fibre-reinforced materials with different fibre orientations, we use numerical experiments

to show that the risk of tear propagation increases with both a and p. Interestingly,

the particular fibre structure changes the gradient of the ERR curve, with non-fibrous

(isotropic) material producing the steepest increase (Exp. 1), followed by the cases when

the fibres are aligned normal (Exp. 2) and oblique (Exp. 3) to the tear. The case when

the fibres are aligned parallel to the tear is the least steep (Exp. 4). This shows that

the presence of fibres reduces the risk of tear propagation, and that the orientation of the

fibres plays an important role, too. This effect may be more pronounced in physiological

scenarios since the fibre-matrix interaction is represented simply in our models.
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Our study shows that for a given pressure, the ERR increases monotonically with the

tear length. In other words, once the tear is initiated, it will always grow. However, when

the effect of connective tissues are considered, both computational and beam models pre-

dict tear arrest. Namely, at some critical values of a, the ERR decreases with the increase

of a. Tear arrest is observed clinically, since patients that with aortic dissection that have

arrested are then at the risk of further propagation of the dissection. This is the first

time that tear arrest in soft tissues has been demonstrated in the computational models.

We also find that the tear arrest only occurs when the Young’s modulus of the surround-

ing connective tissue is sufficiently great, suggesting that disease-induced softening of the

connective tissues may lead to further tear propagation. Although our study is only qual-

itative and is not based on physiological geometries, this finding nevertheless enhances

our understanding of the relationship between pathological conditions of the connective

tissues and arterial dissection.
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Figure 3.16: The energy release rate G against tear length a with a greater p = 3 kPa for

strips in Exp. 4. G is an increasing function of a or p. The trend of G is the same as for

smaller values of pressure used in Figures 3.5 and 3.10.

Finally, we would like to mention the limitations of this study. Using these two-

dimensional strips we can not use the physiological pressure loading, p = 13.33 kPa for

this carotid artery. As shown in Figure 3.8, subject to p = 0.6 kPa the width of tear

opening has been significantly big in the Exp. 1 for this isotropic strip, more than twice

of width of strip. Using a larger value of pressure, the computation might fail due to the

extreme distortion of elements around the tear tips. Although the fibre-reinforced strips

in Exp. 4 can take on more pressure loading than strips in other experiments, we used



CHAPTER 3. ONSET OF PROPAGATION OF A DISSECTION IN A 2D STRIP 75

p = 0.6 kPa in all experiments for the sake of comparison. In addition, we used a higher

pressure p = 3 kPa in Exp. 4, and found that the trend of G on a and p as shown in

Figure 3.16, which is our focus, is the same with what we obtained with smaller pressure

p = 0.6 kPa. This good agreement shows that the trend of G(a, p) is reliable even if the

value of pressure is small in our examples. To use the physiological pressure, one has

to first develop a realistic three dimensional artery model with fibre reinforced materials

and consider other loading conditions, e.g. the residual stress and the axial pre-stretch.

However, these three dimensional models are computational expensive, and hence we have

used an alternative approach, that is to explore the important factors driving the tear

propagation using simpler models.

To establish basic concepts without going into complex numerical modelling, we con-

sider two-dimensional homogeneous tissue strips in which the tear can only propagate

along its original direction since the geometry, material and load are symmetric. However,

the direction of propagation is not known a priori in a problem with general geometry and

material. In theory, the tear will propagate along the direction, along which the energy

release rate is the greatest. To consider that by using the current computational model,

we have to introduce the extension of tear in all of directions, solve for the equilibrium

and compute the energy release rate for the extension along each direction. The imple-

mentation of such model is time-consuming, since the mesh has to be matched with the

tear, e.g. see Figure 2.4(a). In contrast, the mesh generation is independent of tear within

the XFEM, e.g. see Figure 2.4(b). Therefore, the XFEM is employed in the next chapter.

3.6 Conclusion

We have developed computational models for predicting the onset of tear propagation in

two-dimensional artery models. These models extend the Griffith energy balance principle

in linear elasticity to fibre-reinforced materials with finite deformation, and are verified

using analytical solutions for simpler cases. The results show that the presence of fibres

will in general slow down the ERR for driving tear propagation due to an existing tear,

and that the fibres aligned parallel to the tear decrease the ERR most. However, the

existence of the fibres alone cannot stop the growth of tears in our models. Tear arrest

occurs only when the surrouding connective tissues with sufficient stiffness, are included.



Chapter 4

Models of peeling- and

pressure-driven tear propagation

This chapter describes a computational model to predict tear propagation in an arterial

wall by using the XFEM with a cohesive traction-separation law. Anisotropic hyperelas-

ticity of the arterial wall is assumed and we use the HGO material model. The damage

evolution is governed by a linear cohesive traction-separation law. We have studied tear

propagation in peeling- and pressure-driven experiments using our computational models.

We consider two types of experiment. In the first, which we call peeling-driven propa-

gation, we use displacement boundary conditions to control the propagation of the tear.

Both two-dimensional strips (Figure 4.2) and three-dimensional circular disc (Figure 4.4)

with an initial tear are considered. From these models, we found that the collagen fi-

bres play an important role in the direction of propagation. In the second, which we call

pressure-driven propagation, we use pressure loading. The cross-section of an idealized

two-layer model for a rabbit carotid artery is considered. An initial tear in the shape of a

circular arc is introduced in the media (Figure 4.6). The circumferential length and radial

depth of the initial tear are parametrised, we analyse the effect of length and depth on

the critical pressure for tear propagation and the shape of the deformed arterial wall. The

effect of depth on the critical pressure agrees with observations in an experimental study

[Tam et al., 1998], the critical pressure decreases linearly as the depth increases (Figure

1.4). The shapes of the deformed arterial wall that we observe have also been observed in

CT scans of patients. Results show that a long shallow tear tends to result in buckling of

the inner wall, e.g. see Figure 4.13(a), and collapse of the lumen, e.g. see Figure 4.15(d),

76
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while a deep tear tends to propagate.

4.1 Introduction

The peeling-driven propagation is a standard test in papers on the computational mod-

elling of tear propagation. Gasser and Holzapfel [2006] developed an extended finite ele-

ment model and Ferrara and Pandolfi [2010] used the conventional finite element method.

Both of them use the HGO material model for the anisotropic hyperelasticity of the ar-

terial wall and the cohesive traction-separation law for governing the evolution of tear

propagation. The cohesive traction is an exponential isotropic function of separation in

[Gasser and Holzapfel, 2006] but is a linear function with directional preference in [Fer-

rara and Pandolfi, 2010]. The directional preference of the cohesive law in [Ferrara and

Pandolfi, 2010] is because of the presence of collagen fibres. Both of the computational

models are used to simulate the peeling experiment of human aortic media, performed

by Sommer et al. [2008]. See also [Wang et al., 2014] for peeling experiments of human

coronary arteries.

Study of the pressure-driven tear propagation is considered in fewer papers. One ex-

perimental study is performed by Tam et al. [1998] on the pressure-driven tear propagation

in the porcine aortic wall. In this study, it was predicted that the propagation pressure,

beyond which the tear propagates, decreases linearly with the depth of the tear, where

the depth is the radial distance of the initial tear from the inner radius of aorta (Figure

1.4). The AD during balloon angioplasty of atherosclerotic is modelled through Abaqus in

[Badel et al., 2014] subject to a internal expansion, by applying the displacement boundary

conditions, which simulates the balloon.

In this chapter, we simulate tear propagation subject to either peeling or pressure. We

assume the arterial wall to be a fibre-reinforced hyperelastic incompressible material, and

employ the HGO strain energy function. The tear initiation and propagation is governed

by a linear traction-separation law. The computational method is the XFEM [Dolbow and

Belytschko, 1999] implemented in Abaqus [Abaqus, 2014].

The simulations, of peeling-driven tear propagation in strips and discs of arterial wall

sample, are used to study the direction of tear propagation. Both plane-strain and three-

dimensional models are developed. The conclusions from these models agree each other:

the tear prefers to propagate along the material axis with the maximum stiffness, deter-
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mined by the fibre orientation. The simulations, of pressure-driven tear propagation in the

cross-section of an idealized two-layer arterial wall, are employed to investigate the effects

of tear circumferential length and radial depth on the critical pressure for tear propagation

and shape of the deformed arterial wall. The results show that a shallow long tear tends to

result in the buckling of inner wall, while a deep tear tends to propagate. Several shapes

of deformed arterial wall from our simulations agree with the medical images of AD in

patients.

This chapter is organized as follows. In Section 4.2, the common theoretical basis for

the two studies are shown. Section 4.3 includes the models and results of studies on the

peeling-driven tear propagation, while Section 4.4 presents the details of studies on the

pressure-driven tear propagation. Finally, we summarize our findings in Section 4.5.

4.2 The computational model

4.2.1 Mechanical response

We assume the arterial wall to be a hyperelastic incompressible material, and employ the

HGO constitutive law [Holzapfel et al., 2000]. However, in Abaqus the GOH material

model [Gasser et al., 2006] is available. As we discussed in Section 1.4, the GOH model

with κ = 0 is equivalent to the HGO model.

The implementation of the GOH material model in Abaqus is

Ψ = Ψv(J) + Ψm(Ī1) + Ψf (Ē4, Ē6)

=
1

Q

(
J2 − 1

2
− log J

)
+ c(Ī1 − 3) +

k1

2k2

∑
n=4,6

{exp[k2〈Ēn〉2]− 1},
(4.1)

where

Ēn = κ(Ī1 − 3) + (1− 3κ)(Īn − 1), (4.2)

and Q is a parameter that is adjusted in order to satisfy, approximately, the incompress-

ibility constraint. The parameters c and k1 have units of shear modulus and k2 is a

dimensionless parameter that controls the exponential stiffening of the fibres, Ī1 = tr C is

the first invariant of the deviatoric part of the right Cauchy-Green tensor C = J−2/3C,

and Īn = J−2/3In are invariants related to C and Ai. We assume there are two fibre

families aligned along the two referential directions represented by unit vectors A1 and

A2, respectively. The invariants

In = C : Mn, n = 4, 6, (4.3)
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where the fibres-structure tensors M4 = A1 ⊗A1 and M6 = A2 ⊗A2, are the square of

the stretches in the directions of A1 and A2, respectively. Therefore, I4 and I6 quantify

the deformation of fibres.

The first two terms in the strain energy function (4.1) represent the volumetric and

deviatoric contributions of the isotropic matrix and the third term represents the contri-

butions from the different families of collagen fibres. A basic assumption of the model is

that collagen fibres can only support tension. This condition is enforced by the term 〈Ēn〉,
where the operator 〈·〉 stands for the Macauley bracket and is defined as 〈x〉 = 1

2(|x|+ x).

Notably, with κ = 0, (4.2) reduces to

Ēn = Īn − 1, (4.4)

thus 〈Ēn〉 > 0 is equivalent to Īn > 1. Furthermore, note that Īn = In when the defor-

mation is isochoric. As the parameter Q → 0 theory predicts that the minimum energy

configuration is one in which the J = 1 and so the limit represents the incompressibility.

Therefore, the strain energy function (4.1) with κ = 0 and Q→ 0 approximates the HGO

incompressible material model. As shown in Section 3.1.7 of Abaqus 6.13 Benchmarks

Guide and Section 4.6.3 of Theory Guide [Abaqus, 2014], to use the HGO material model

for an incompressible material, we specify κ = 0 and Q = 0 with using hybrid element in

all of our simulations.

4.2.2 Damage and failure

We use a linear cohesive traction-separation law to govern the tear propagation. There

are three parameters in the cohesive law: the maximum traction Tc the material can

bear without any damage, the maximum separation or displacement jump ∆uc of cohesive

surfaces with maintaining bonds and the fracture energy Gc. Two of them are independent

as shown in the Figure 4.1(a).

The damage will be activated at any point where the maximum principal stress is

greater than Tc, that is

1.0 6 f 6 1.0 + ftol, (4.5)

where

f =
〈σ1〉
Tc

, (4.6)

and ftol is a tolerance. σ1 is the maximum principal stress, which is the first eigenvalue of
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(a) cohesive law

Gc

(b) cohesive zone

∆uc

r
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Figure 4.1: T is the traction between cohesive surfaces, ∆u is the separation of cohesive

surfaces. Tc, ∆uc and Gc are material-dependent parameters; (b) demonstrates that a

cohesive zone, where separation 6 ∆uc; r denotes the radial direction consistent with

Figure 4.2, and rt indicate the tear surface in the reference configuration.

the Cauchy stress tensor σ. Notably,

〈σ1〉 =


0, if σ1 < 0

σ1, if σ1 > 0.

(4.7)

The Macaulay bracket is used to signify that a purely compressive stress state does not

initiate damage.

Once the damage is activated at a material point when the initial criterion (4.5) is

satisfied. The cohesive traction-separation law in Figure 4.1(a), instead of HGO material

model, will be used on that point. Analogous to the stress-strain relation for elasticity,

the cohesive law relates the traction T and separation ∆u such that

T =


Tc

(
1− ∆u

∆uc

)
, 0 6 ∆u 6 ∆uc

0, ∆u > ∆uc,

(4.8)

where Tc and ∆uc are material parameters. Generally, the fracture energy Gc instead

of critical separation ∆uc is specified in a computational model. In the linear traction-

separation law

Gc =
1

2
Tc∆uc. (4.9)

4.2.3 Extended finite element method

The initiation and propagation of a tear is implemented under the theory of XFEM [Dol-

bow and Belytschko, 1999]. Comparing the conventional FEM, the displacement in XFEM
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can include the discontinuities, such as tears, in the displacement through enriching the

displacement field

u = ufem + uenrich, (4.10)

where uenrich = H(r)∆u/2. The function H(r) = ±1 when r ≷ rt, where rt is the location

of the tear surface in the configuration before the initialization of damage, for the example

in Figure 4.1. The advantage of XFEM is that the tear surface does not need to coincide

with the interfaces between elements. So the path of tear propagation can be automatically

calculated based on the criterion (4.5) and the cohesive traction-separation law (4.8). With

this maximum principal stress failure criterion, the direction of propagation is determined

as normal to the principal axis of σ1.

4.3 Peeling-driven propagation

4.3.1 Tear propagation in strips

Geometry and boundary conditions

The peeling test performed in [Sommer et al., 2008] is a representative experimental study

to characterise the failure properties of a material (in this case an arterial wall). In this

experiment, a strip is cut out from the arterial wall and then the media layer is isolated by

removing the adventitia and intima. An initial tear is introduced at one end of the middle

radial plane. Subject to the displacement boundary condition (Figure 4.2), we solve this

as a two-dimensional plane strain problem.

The two families of fibres are distributed in the θ-z plane and with 5◦ to the z-axis

direction [Ferrara and Pandolfi, 2010]. The values for other parameters in the SEF (4.1)

and cohesive law (4.8) are shown in Table 4.1. The geometry of the strip is same with

that in [Ferrara and Pandolfi, 2010; Gasser and Holzapfel, 2006; Sommer et al., 2008]: its

width is 4 mm and its height is 1.2 mm. The height is actually the radial thickness of

arterial wall. The length of the initial tear (red dash in Figure 4.2) is 0.4 mm.

The Strip 1 is totally torn when the displacement is u = 3.28 mm and the other two

strips can still take on loads until u = 4 mm. Thus we conclude that the tear is likely

to propagate along the z-axis direction. The length of undamaged part of Strip 3 is the

longest in the three simulations. Thus the circumferential strip (Strip 3) has the most

resistance to the tear propagation.
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Figure 4.2: The sketch of the strip used in the peeling test [Sommer et al., 2008], the

cross-section (pink-shading area) of which is the geometry we are using. Blue lines show

the fibre distribution. Displacement boundary conditions with same magnitude u but

opposite directions are applied on the two arms.

What results in this preference in direction of propagation? The orientation of collagen-

fibre is 5◦ to the z-axis direction (Figure 4.3), therefore the stiffness along the z-axis is

maximum. The results (Figure 4.3) show that the likely direction of propagation is also

the z-axis, since Strip 1 is totally torn. Therefore, from these simulations it might be

concluded that the tear prefers to propagate along the material axis with the maximum

stiffness.

Table 4.1: The material parameters of the HGO SEF and cohesive traction-separation law

for the samples used in simulations of the peeling test.

c [kPa] k1 [kPa] k2 Tc [kPa] Gc [N/m]

1 1 10 5 0.001

Results

In order to find where the tear prefers to propagate, three strips with different orientations

are simulated and their deformed configurations after tear propagation are shown in Figure

4.3.
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Figure 4.3: The failure status of three strips: red indicates the elements are torn, blue

for elements without any damage and other colours for cohesive zone. In the deformed

configuration, each strip has length 4 mm, width 1.2 mm and an initial tear of length

0.4 mm. The Strip 1 is totally torn when the displacement is u = 3.28 mm and the other

two strips can still take on loads until u = 4 mm. The length of undamaged strip in Strip

3 is greater than that in Strip 2.

4.3.2 Tear propagation in discs

Geometry and boundary conditions

To further confirm our findings on the directional preference of tear propagation, we per-

formed another simulation of the peeling of a circular disc. The disc is cut off from the

same sample of arterial wall (Figure 4.4), which is used for the selection of strips in Figure

4.3.

The geometry of this disc is consistent with that of the strips. The radius is 4 mm

and thickness is 1.2 mm. An initial tear with depth 0.4 mm along the radial direction is

introduced. Therefore, all three of two-dimensional strips are included in this model, the

cross-section at the black lines of Figure 4.4. This three-dimensional model includes strips

with all of possible orientations.

The boundary conditions are also consistent with those in the simulation of peeling

strips. The center of top and bottom circles are fixed to avoid the rigid body motion.

The displacement ±4 mm is gradually applied on the surrounding surfaces (pink areas in

Figure 4.4).
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Figure 4.4: A circular disc is cut off from the same sample used for the selection of strips

in the previous section. The radius of this disc is 4 mm, which is the same with the length

of strips, and its thickness is 1.2 mm, which is the same with the width of strips in Figure

4.3. A circular tear (red lines) is initialized at the circumference of disc and the depth

of the tear is 0.4 mm towards the center, which is the same with that in the simulations

for strips. Apply displacement boundary condition (black arrows) on the upper and lower

surrounding surfaces (pink areas). In the control simulation, the disc does not include

fibres.
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Results

The peeling of a disc with and without fibres are simulated. Subject to the displacement

boundary conditions applied on the surrounding surfaces (pink areas in Figure 4.4), the

undamaged fibrous disc becomes elliptical (Figure 4.5(b)). The short axis of the ellipse is

the z-axis direction. That means the tear prefers to propagate along the z-axis direction.

This phenomenon agrees with what we find from the simulations of peeling strips. On

the other hand, the undamaged fibre-free disc is still a circular (Figure 4.5(a)). This

comparison confirms that the directional preference of tear propagation is due to the

orientation of collagen fibres.

(a) without fibre (b) with fibre

(c) top view of (a) (d) top view of (b)

Figure 4.5: The grey regions are the undeformed configurations while the coloured ones

show the deformed configurations after tear propagation. From the top view, it is clear

that the undamaged fibrous disc becomes elliptical, while the undamaged fibre-free disc is

still circular. The short axis of the ellipse is the z-axis.
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4.4 Pressure-driven propagation

4.4.1 Geometry and boundary conditions

The length and depth of a tear are very important factors when diagnosing arterial dis-

sections. In this section we investigate the effects of length and depth of a tear on its

propagation.

In clinical cases, the length and depth of a tear are generally extracted from the images,

for example a CT scan, about the cross-section of the arterial wall. Similar to the CT

images of an arterial wall, we consider the propagation of an arterial dissection in a cross-

section of the arterial wall (Figure 4.6) as a plane-strain problem. An idealized tear, the

shape of an arc, is introduced in the media. The circumferential length of the initial tear

is quantified by the central angle η. Assume the initial tear is only located in the media

and its radial depth from the inner surface is normalized by the thickness of media as

d = D/Dm, where D and Dm are denoted in Figure 4.6. If d = 0, this means the initial

tear is on the inner surface and if d = 1, this means the tear is on the interface between

media and adventitia. The different values for 0◦ < η < 360◦ and 0 < d < 1 are employed

in individual simulation of pressure-driven tear propagation. We compare the results to

observe the effects of length and depth of a tear. The results include the critical pressure,

beyond which the tear propagates, and the shape of deformed arterial wall with a tear

subject to the critical pressure.

Some boundary conditions are applied to avoid rigid body motion. The radii 1 and

3 (Figure 4.6) are fixed at the y-axis direction such that both of them can only have the

horizontal movement. The radii 2 and 4 are fixed at the x-axis direction such that both

of them can only have the vertical movement.

We assume the pressure p is the same both in the lumen and on two faces of the tear

and solve a quasi-static problem. In our simulations the pressure is ramped from zero,

this means that initially the boundary value problem is solved with p = 0, the value of

p is then increased by some increment, ∆p, and the problem solved again. The value

of ∆p is determined by the program automatically, such that ∆p is large enough and a

convergent solution is obtained. The pressure is increased in this way until the tear begins

to propagate, after which ∆p→ 0.

At the onset of propagation the pressure is recorded and is called the critical pressure

pc. The value of pc for a particular arterial dissection depends on the material parameters,
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Figure 4.6: The cross-section of the two-layer model for a rabbit carotid arterial wall is

considered with the plane-strain condition. This model has inner radius Ri=0.74 mm,

thickness of media Dm=0.26 mm and thickness of adventitia Da=0.12 mm. The inflation

of lumen and the initial tear (black arc) in the media subject to pressure (blue arrows)

is simulated. The circumferential length of the tear is characterised by the central angle

η. The radial depth of tear D is normalized by the thickness of the media Dm to get the

dimensionless depth d = D/Dm.
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the geometry of the artery and the geometry of the tear. In particular, the maximum

cohesive traction Tc plays an important role. The value of Tc is not easy to be estimated

for a given tissue, Ferrara and Pandolfi [2010] used Tc ≈ 8.6 c, where c is the shear modulus

of matrix in (4.1), when modelling the peeling apart of strips using the standard FEM with

cohesive surfaces. We found that simulations in Abaqus did not converge unless Tc 6 2cm,

where cm is the shear modulus of the matrix in the media, see Table 4.2. This ratio of

Tc/cm is lower than that achieved in the literature [Ferrara and Pandolfi, 2010], but the

aim of the present study is to identify the trend in the variation of the critical pressure

with d and η, and so we simply use the value of Tc/cm = 2. For the purposes of reporting

results, the critical pressure pc we find from the simulation is also scaled by the shear

modulus cm to form a dimensionless critical pressure

p′c = pc/cm. (4.11)

As discussed in Section 1.1, the carotid artery is a common site of occurrence of arterial

dissection. In this study, for the sake of illustration we use the two-layer arterial wall model,

which originally is used for a rabbit carotid artery to propose the HGO SEF [Holzapfel

et al., 2000]. Each layer is modelled by the SEF (4.1) and the material parameters are

shown in Table 4.2. The geometric parameters are inner radius Ri=0.74 mm, thickness of

the media Dm=0.26 mm and adventitia Da=0.12 mm.

Table 4.2: The material parameters in the two-layer model for a rabbit carotid artery:

the values for the parameters in HGO SEF (c, k1, k2 and β) are from the Figure 14 in

[Holzapfel et al., 2000].

c [kPa] k1 [kPa] k2 β [◦] Tc [kPa] Gc [N/m]

media 1.5 2.3632 0.8393 29 3.0 0.001

adventitia 0.15 0.5620 0.7112 62 0.3 0.0001

4.4.2 Simulations and Results

Verification

As a verification, we compare the deformation and the Cauchy stress computed in Abaqus

with the analytical solutions for the two-layer arterial wall (without a tear) subject to
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Table 4.3: Meshes used for the grid-independence test

Mesh Nodes Elements Relative error in stress

media adventitia circumference total computed via (4.15)

coarse 864 5 2 108 756 15.43%

intermediate 3740 11 5 220 3520 4.83%

fine 15260 23 11 436 14824 4.03%

internal pressure pi = 13.33 kPa (corresponding to 100 mmHg). The analytical solutions

are obtained using the HGO SEF with incompressibility:

Ψ = Ψm(I1) + Ψf (I4, I6) = c(I1 − 3) +
∑
n=4,6

ψ(In), (4.12)

where

ψ (In) =


k1

2k2

{
exp

[
k2(In − 1)2

]
− 1
}

when In > 1

0 when In 6 1.

(4.13)

The associated Cauchy stress is

σ = −PI + 2cB +
∑
n=4,6

2ψ′(In)mn, (4.14)

where B = FFT , mn = FMnF
T , and P is the Lagrange multiplier for the incompress-

ibility constraint. The value of P is determined through the equilibrium equation and the

boundary conditions in any particular problem. The details of the method and formulae for

the analytical solutions are included in Section 5.3. Solve this boundary value problem for

inflation of the artery to obtain the value of inner radius ri in the deformed configuration,

and then the radius of each point across the wall is obtained from the incompressibility as

r =
√
R2 −R2

i + r2
i ,

where R is the radius of a point inside and Ri is the inner radius of the undeformed arterial

wall. The deformation gradient of each point across the arterial wall is then computed as

F = diag [λr, λθ, 1], where

λr =
R

r
and λθ =

r

R
.

Finally, we compute the analytical stress through (4.14).
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In the numerical calculations we use a number of different mesh sizes, the details of

which are shown in Table 4.3. The coarse mesh is illustrated in Figure 4.7. When using

the intermediate mesh, we obtain the inner radius rni = 1.332 mm, which is similar to the

value rai = 1.326 mm from the analytical solution with a relative error of about 0.45%.

In addition, a comparison between analytical and numerical values of components of the

Cauchy stress shows convergence and agreement of the numerical solutions to analytical

solutions within the maximum relative error of 4.83%, as shown in Figure 4.8. This

maximum relative error is computed by

max

{‖σrr − σarr‖
‖σarr‖

,
‖σθθ − σaθθ‖
‖σaθθ‖

}
, (4.15)

where σarr and σaθθ are the vectors of all the nodal values of the exact analytical expression

for the two components of the residual stress across the wall, and ‖ · ‖ denotes standard

L2-norm, i.e. ‖x‖ =

(∑
i
x2
i

)1/2

for any vector x. The intermediate mesh was then chosen

in all the simulations.

Figure 4.7: The coarse mesh we use in the numerical computations includes 7 elements

along the radial direction (5 in media and 2 in adventitia) and 27 elements along the

circumferential direction in a quarter of the arterial wall.

Selection of values for d and η

Recall that the tear length is measured by the angle the tear subtends, η, and the tear

depth is measured by the normalised depth d, as shown in Figure 4.6. Then, as the tear
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Figure 4.8: The Cauchy stress components of the arterial wall subject to pi = 13.33 kPa

are plotted against the radial distance r − ri from the inner surface in the deformed con-

figuration. Numerical results with different mesh sizes and analytical results are plotted,

and the relative error of numerical results with the intermediate mesh is less than 4.83%.

depth measures the depth within the medial layer and we only consider tears within the

medial layer we have 0 < d < 1 and the angular extent of the tear is 0◦ < η < 360◦.

The values of d and η chosen for simulations are such that the initial tear always bisects

an element. In the XFEM, the tear is expressed in terms of its relative distances to the

nodes of finite elements [e.g. Mohammadi, 2008]. The computation of a relative distance

involves subtraction between coordinates of a node and its projection on the tear. Recall

that all these coordinates are floating-point numbers, they have finite accurate (significant)

digits, so the numerical subtraction of two close number may lead to that the number of

significant digits in the result is reduced unacceptably. In order to avoid this numerical

error, the initial tear should not coincide with the interface between elements. In practice,

the best place to specify an initial tear is the bisector of an element. The mesh used in

these simulations includes 11 elements along the radial direction in the media. Therefore,

we use 11 values for d, that is dk = (k + 0.5)∆d, where ∆d = 1.0/11 and k = 0, . . . , 10,

such that the initial tear is located at the bisector of an element. For a fixed value of η,

we have 11 simulations for these values of d. From these simulations we obtain the critical

pressure pc, and plot the trend of the dimensionless critical pressure p′c on d.

For η, we use the increment ∆η = 20◦ from 20◦ to 340◦ to investigate the effect of

circumferential length or angle η. Additionally, a smaller increment ∆η = 5◦ is used

because we identify the trend of p′c against d changes quickly when η < 40◦.
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Effects of d and η on the dimensionless critical pressure p′c

The trends of dimensionless critical pressure p′c against the radial depth d for different

values of 20◦ 6 η < 180◦ and 180◦ < η 6 340◦ are plotted in Figures 4.9 and 4.10,

respectively. The Figure 4.9 shows that p′c firstly increases and then decreases as d increases

when η = 20◦. As the angle η increases to 60◦ and greater, the trend of p′c(d) becomes

monotonically decreasing.

In order to understand the change in trend of p′c(d), we perform more simulations

in the region between 20◦ < η < 40◦ with a smaller increment between values of η. In

these simulations, we use ∆η = 5◦ from 5◦ to 40◦. The trends p′c(d) obtained from these

simulations are plotted in Figure 4.11. It shows that p′c increases monotonically with d

when η = 5◦, while p′c almost decreases as d increases when η = 40◦. To compare the

trends p′c(d) for other values of η in Figure 4.11, it is evident that the trend p′c(d) changes

gradually from an increasing function to a decreasing function.
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Figure 4.9: The dimensionless critical pressure p′c is plotted against the radial depth d for

different values of 20◦ 6 η 6 160◦. When η = 20◦, p′c increases and then decreases as d

increases. The trend p′c of d gradually becomes decreasing as η increases. For η > 60◦, p′c

decreases as d increases, and the trends p′c(d) are similar when η > 80◦.
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Figure 4.10: The dimensionless critical pressure p′c is plotted against the radial depth d

for different values of 200◦ 6 η 6 320◦. p′c decreases as d increases. p′c is the maximum

when η = 200◦. With a smaller depth d 6 0.32 we do not have value for p′c, because the

buckling of inner wall occurred and the tear does not propagate, e.g. see Figure 4.15.
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Figure 4.11: The dimensionless critical pressure p′c is plotted against the radial depth d

for different values of 5◦ 6 η 6 40◦. When the tear is very short η = 5◦, the critical

pressure increases with d. As η increases, p′c increases and then decreases as d increases,

for example when η = 20◦. These results show that the trend p′c of d changes gradually

from an increasing function to a decreasing function as η increases.
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(a) d = 0.23 (b) d = 0.59 (c) d = 0.77 (d) d = 0.95

Figure 4.12: The representative shapes of deformed arterial wall with a short tear of

η = 20◦ for different radial depth d, subject to the critical pressure. The direction of

initial propagation changes gradually from the radial (a) to the circumferential (d) as d

increases.
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The dimensionless critical pressure p′c for a fixed η increases firstly and then decreases

as d increases when 10◦ 6 η < 40◦. This change may be related to the change in direction

of tear propagation. For example, in Figure 4.12 we show the failure patterns of deformed

arterial wall with a tear η = 20◦ subject to the critical pressure for different values of

d. When d = 0.23 in Figure 4.12(a), it is evident that the tear propagates radially, but

when d = 0.95 in Figure 4.12(d) it propagates circumferentially. When d = 0.59 and 0.77,

the direction of propagation is between the radial and the circumferential directions. The

direction of propagation changes gradually from the radial to the circumferential with the

increase in d for η = 20◦. In other simulations where the trends p′(d) are also nonlinear,

e.g. for η = 10◦, 15◦ and 25◦, we have also observed this phenomenon in the failure

patterns. Therefore, this nonlinear trend of p′c(d) for 10◦ 6 η < 40◦ may be due to this

change in the direction of tear propagation.

Our results for η > 60◦ show that p′c decreases almost linearly as the depth d increases.

This conclusion agrees with the observation in the experimental study [Tam et al., 1998],

although the geometry and material are different. The experiment [Tam et al., 1998] in-

troduced an initial tear inside of the porcine aortic wall while varying the radial depth of

the tear and then inflated this aorta with a gradually increasing pressure. At the instan-

taneous time of tear propagation, the pressure was regarded as the critical pressure. In

[Tam et al., 1998], this critical pressure is called “propagation pressure”. The relationship

showing that the critical pressure is a linearly decreasing function of the depth as shown

in Figure 1.4, was reported in [Tam et al., 1998]. A detailed summary of this experimental

study is also included in Section 1.2.

Effects of d and η on the deformed shapes

With angle η = 160◦, the buckling of the inner wall—the layer between the true and

false lumen—occurs when d is small as shown in Figure 4.13(a)–(c). This buckling of

the inner wall is also observed in CT scans of acute aortic dissections. For example, the

buckling mode of the inner wall obtained from our simulation in Figure 4.13(a) is similar

to that observed in the CT scan in Figure 4.14 (a) [Sun et al., 2014], and the buckling

mode in Figure 4.13(b) is similar to that observed in the CT scan of a dissection in the

ascending aorta in Figure 4.14 (b) [Braverman, 2010]. Of course, the geometry, loading

and material of our computational models are different to those of the patients represented

in the CT scans, and so these results are simply an acknowledgement that similar patterns
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are observed in the clinical environment. Performing a detailed study is difficult in part

due to the measurement of d from CT scans, since the inner wall is generally very thin.

(a) d = 0.14, p = 0.26 kPa

TL

(b) d = 0.32, pc = 0.49 kPa

TLFL

(c) d = 0.68, pc = 0.34 kPa

TLFL

(d) d = 0.95, pc = 0.2 kPa

TL

Figure 4.13: The representative shapes of deformed arterial wall with an initial tear η =

160◦ for different radial depth d. TL stands for true lumen and FL stands for false lumen.

The buckling of the inner wall, the material between TL and FL, occurs, as shown in

(a) and (b), which are similar to the CT scans of aortic dissection in patients in Figures

4.14 (a) and (b), respectively.

(a) (b) (c)

Figure 4.14: CT scans with buckling of the inner wall in type A aortic dissection: (a)

Figure 9 in [Sun et al., 2014], (b) Figure 2 in [Braverman, 2010], and (c) Figure 2 in

[Makarawate and Chaosuwannakit, 2013].

The comparison in deformed shapes of the arterial wall with a tear for different values

of d suggests the radial depth of a tear plays an important role in the deformation. Com-

parison of the results in Figures 4.13 (a)–(d) shows that the buckling mode is the highest

in (a), and this tear does not propagate. The buckling mode decreases as d increases from

(a) to (c), and the buckling of the inner wall does not occur with a deeper tear in (d).

In addition, we plot the deformed shapes of the arterial wall with a longer tear η = 340◦

for different values of d in Figure 4.15. In these results, we also observed that the buckling

mode of the inner wall with d = 0.23 in Figure 4.15(c) is similar to that in the CT scan of

the aortic dissection in Figure 4.14 (c) [Makarawate and Chaosuwannakit, 2013]. Again,
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this comparison is not one-to-one comparison, but just to show the buckling observed in

our simulations exists in the aortic dissection. With d = 0.32 and 0.50 in Figures 4.15(d)

and (e), we observed the collapse of the true lumen occurs as a result of buckling of the

inner wall.

From the deformed shapes of the arterial wall in Figures 4.12, 4.13, 4.15 and others

with different values of η and d, we conclude that a long shallow tear is more likely to

result in buckling of the inner wall, in contrast a deep tear tends to propagate.

(a) d = 0.05, p = 0.039 kPa (b) d = 0.14, p = 0.083 kPa
(c) d = 0.23, p = 0.24 kPa

TLFL

(d) d = 0.32, p = 0.32 kPa

TLFL

(e) d = 0.50, pc = 0.36 kPa (f) d = 0.86, pc = 0.17 kPa

Figure 4.15: The representative deformed shapes of arterial wall with a long tear η = 340◦

for different radial depth d. When the depth is small (a–d), the propagation does not

occur. Instead, buckling of the inner wall occurs and the true lumen is collapsed in (d)

and (e). The shape of the buckled inner wall in (c) is similar to that in the CT scan of

the aortic dissection for a patient in Figure 4.14 (c).

4.5 Conclusion

In this chapter, the peeling- and pressure-driven tear propagation are simulated. The

simulations for the peeling of strips and discs show a tear is likely to propagate along the

material axis with the maximum stiffness, which is determined by the fibre orientation. We

investigate the effect of radial depth and circumferential length on the critical pressure for
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tear propagation and shape of deformed arterial wall with a tear, through the simulations

of pressure-driven tear propagation in the cross-section of an idealized two-layer arterial

wall. We found the tear with the least length and largest depth is the most difficult to

extend, while the tears with the largest depth and η = 120◦ to 160◦ and 300◦ to 340◦ are

the most likely to propagate. A shallow long tear leads to buckling of the inner wall and

collapse of true lumen, while a deep tear tends to propagate.



Chapter 5

Effect of residual stress in an

isotropic material

In the absence of external loading, many biological soft tissues are not stress-free, but

subject to residual stress. In artery, residual stress reduces variation in the stress stress

distribution across the arterial wall and decreases the peak stress in the inner layer of the

arterial wall. We study the effect of residual stress on the critical pressure for propagation

of arterial dissection. Fung [1991] was the first to show that a radial cut along artery

can release most of the residual stress. Hence using an opening angle is a theoretical

approach to recover the stress-free configuration, and the value of the opening angle is

often used to quantify the residual stress. For example, Holzapfel et al. [2000] employed

this approach to obtain the deformation and stress, with residual stress, in a two-layer

model for a rabbit carotid arterial wall subject to the physiological loading. For this

idealized two-layer model, we introduce different values of residual stress calculated from

exact mathematical expression, associated with different values of opening angle, into the

finite element model as an initial stress field. The extended finite element method is used

to simulate the inflation of both the lumen and tear. We plot the trend of critical pressure,

beyond which the tear propagates, on the opening angle. The critical pressure increases

almost linearly with the opening angle. In conclusion, the residual stress can protect the

arterial wall by elevating the critical pressure for the initial propagation of the dissection.

99
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5.1 Introduction

The stress that exists in a unloaded solid body is called residual stress. Most biological soft

tissues include residual stress, which maybe because of the different growth rates at differ-

ent locations or the coherent structure by composing multiple components. The residual

stress in the blood vessels has been observed in many studies [e.g. Cardamone et al., 2009;

Chuong and Fung, 1986]. Fung [1991] showed that a radial cut along artery without any

loading opens out and releases most of the residual stress (Figure 1.5). The value of the

opening angle is often used to quantify the residual strain. Using a constitutive law, the

residual stress is calculated from the residual strain. Holzapfel et al. [2000] employed this

method to get the residual stress in a two-layer model for a rabbit carotid arterial wall,

followed by inflated subject to internal pressure and stretched axially. The comparison

of Cauchy stress across the arterial wall at the physiological loading condition [Holzapfel

et al., 2000], showed that residual stress reduces variation in the stress distribution, and

decreases the peak stress (Figure 1.6). A discussion, on how important to the physiological

function of artery the residual stress is, was presented by Fung [1991].

In this chapter, we study what role the residual stress plays in the critical pressure

for initial propagation of the dissection. Our models simulate the pressure-driven tear

propagation in the two-layer model for a rabbit carotid artery wall, which was originally

used to analyse the effect of residual stress on stress distribution across the intact arterial

wall [Holzapfel et al., 2000]. An initial tear is introduced at the centre of the media

and we employ the XFEM to simulate the inflation of both the lumen and tear until

the tear propagates. We introduce different values of residual stress, associated with

different values of the opening angle, into the computational models. The residual stress

is computed analytically in this study, and then is imported into the FE model as an

initial stress field. This is an easy method for introducing different values of residual

stress into the FE model with the same geometry. For all simulations, we only build

one FE model in the commercial FE solver Abaqus, and then import different values of

residual stress. However, this technique cannot be used for a model with an anisotropic

hyperelastic material in Abaqus 6.13. For comparison with the HGO model in Chapter

6, we use the incompressible neo-Hookean strain energy function as a hypothetical test

case in this chapter. Comparing the results of these simulations, we obtain the effect

of residual stress on the critical pressure for tear propagation. Finally, we find that the

critical pressure increases almost linearly with the opening angle.
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This chapter is organized as follows. The key ingredients of the computational model

are summarized in Section 5.2. Section 5.3 includes the techniques about how to compute

analytical residual stress. Before using this model to investigate the effect of residual stress

on the arterial dissection in Section 5.6, we verify this model in Section 5.5. The discussion

and limitations of this computational model are presented in Section 5.7.

5.2 Methods

5.2.1 Material

We use an incompressible neo-Hookean material for the two-layer rabbit carotid arterial

wall with residual stress, the cross-section of which is shown in Figure 5.1. The incom-

pressible neo-Hookean strain energy function is for the media and adventitia layer

W = cj(I1 − 3), (5.1)

where I1 = tr C is the first invariant of the right Cauchy-Green strain tensor C = FTF.

The tensor F is the deformation gradient, the linear mapping from the stress-free con-

figuration to the deformed configuration at equilibrium. The material parameters cj ,

(j = m, a), are the shear moduli of the media and adventitia layers. These are determined

by requiring that the deformation from the stress-free configuration Ω0 to the deformed

configuration Ωp subject to the physiological loading (see Table 5.1), agrees with that in

the experiment 71 in [Chuong and Fung, 1983], i.e. the absolute value of the difference

between the inner radius ri in the model and the experiment is minimal. Assuming that

cm = 10 ca, as in [Holzapfel et al., 2000], we obtain cm = 38.45 kPa and ca = 3.845 kPa.

5.2.2 Geometry

A fixed geometry, Ωr in Table 5.1, with various values of residual stresses, associated with

different values of the opening angle, is used. This fixed geometry is obtained from the

equilibrium of Ω0, through the forward analysis when letting pi = 0. This geometry Ωr is

the target configuration in our following calculation when introducing different values of

residual stress.

An initial tear, spreading an angle of 90◦ at the centre of the tube, along an arc at the

mid-radius of the media, is then introduced in Ωr (Figure 5.1).
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Table 5.1: The geometries of the two-layer arterial wall in different loading conditions. ri

is the inner radius, dm is the thickness of media, da is the thickness of adventitia, α is the

opening angle, pi is the pressure applied on the inner radial surface and λz is the axial

stretch.

geometry loading

configuration notation ri[mm] dm[mm] da[mm] α[◦] pi[kPa] λz

stress-free Ω0 1.43 0.26 0.13 160 0 1

unloaded Ωr 0.7395 0.2595 0.1197 0 0 1

physiological Ωp 1.2738 0.1001 0.0532 0 13.33 1.7

A

Ωr

Ω0

α

Figure 5.1: An initial tear (black arc) is introduced into the unloaded configuration Ωr with

residual stress, which is associated with the opening angle α in the stress-free configuration

Ω0. In the simulation, the analytical residual stress is imported to the FE model, the point

A is fixed to avoid rigid body motion, and then a pressure (arrows), gradually increasing

from zero, is applied on both the inner radial and tear surfaces. The transmural pressure

governs the dynamics of the wall. Since the material is incompressible, without loss of

generality we assume that the external pressure is zero. If that is not the case, then the

internal pressure can be replaced by the transmural pressure.
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5.2.3 Damage and failure

Following the theory introduced in Section 4.2.2, we use the XFEM with the linear cohesive

traction-separation law (Figure 4.1) to model the propagation of a tear. In the simulation,

all elements are enriched by this cohesive law. After calculation of equilibrium in each with

a loading incremental, the maximum principal stress at the centroid of each element is used

to compares to the Tc: if it is greater than Tc, the tear tends to propagate in that element;

so a displacement jump ∆u is calculated. When the displacement jump ∆u > ∆uc,

the tear propagates perpendicular to the principal axis, which is along the direction of

the maximum tensile principal stress. The values for parameters in the cohesive law are

shown in Table 5.2.

Table 5.2: Cohesive law parameters

Tc [kPa] Gc [J/m2] ∆uc [mm]

media 76.9 0.001 2.6× 10−5

adventitia 7.69 0.0001 2.6× 10−5

5.2.4 Boundary conditions

The analytical residual stress is introduced into the finite element model in the initial step

via an user subroutine ‘sigini.f’. The details of ‘sigini.f’ are presented in Section 5.4. To

avoid the rigid body motion, the point A in Figure 5.1 is fixed. A gradually increasing

pressure is applied on both the inner radial and tear surface after the initial step. The

critical pressure is identified as that at which the tear starts to propagate.

5.3 Residual stress calculation

Due to the geometrical and constitutive symmetry, the equilibrium equation for the two-

layer arterial wall is
dσrr
dr

=
σθθ − σrr

r
. (5.2)

Thus the radial Cauchy stress σrr is

σrr(ξ)− σrr(ri) =

∫ ξ

ri

(σθθ − σrr)
dr

r
, ri 6 ξ 6 ro, (5.3)
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where ri and ro are the inner and outer radii of Ωr.

The inner and outer radial surfaces are traction-free, so that

σrr(ξ) = 0, at ξ = ri, ro. (5.4)

Substituting (5.4) into the equilibrium equation (5.3) yields∫ ro

ri

(σθθ − σrr)
dr

r
= 0. (5.5)

5.3.1 Forward analysis

The forward analysis is to find the unloaded configuration Ωr from the stress-free config-

uration Ω0, for which

Ri 6 R 6 Ro, 0 6 Θ 6 (2π − α), (5.6)

where Ri, Ro, and α denote the inner and outer radii, and the opening angle, respectively.

The unloaded configuration Ωr is defined by

ri 6 r 6 ro, 0 6 θ 6 2π. (5.7)

Incompressibility requires that

r =

√
R2 −R2

i

k
+ r2

i , θ = kΘ, (5.8)

where k = 2π/(2π − α). The principal stretches are,

λr(R) =
∂r

∂R
=
R

rk
, λθ(R) =

r

R

∂θ

∂Θ
=
kr

R
, (5.9)

and the deformation gradient F = diag[λr, λθ, 1]. The Cauchy stress is

σ = −PI + 2F
∂Ψ

∂C
FT = −PI + σ̄, (5.10)

where P is the Lagrangian multiplier associated with the incompressibility constraint.

From (5.8),

ro(ri) =

√
R2
o −R2

i

k
+ r2

i . (5.11)

Substitute (5.8), (5.10), and (5.11) into (5.5), we obtain a non-linear integral equation,

I(ri) =

∫ ro

ri

(σθθ − σrr)
dr

r
=

∫ ro

ri

(σ̄θθ − σ̄rr)
(
R2 −R2

i

k
+ r2

i

)−1/2

dr = 0, (5.12)

which is solved for ri using Newton iteration.
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5.3.2 Inverse analysis

The inverse analysis determines the stress-free configuration Ω0 for a given unloaded con-

figuration Ωr, specifically inner radius Ri in Ω0 when the inner radius ri in Ωr is given.

From (5.8),

R =
√

(r2 − r2
i )k +R2

i . (5.13)

This, with together (5.5) and (5.9), can be solved analytically for Ri.

5.3.3 Calculation of the stress

Calculation of the stress is a post-process after obtaining both the stress-free and deformed

configurations. Substitution of (5.1) into (5.10) yields

σ = −PI + 2cB, (5.14)

where B = FFT is the left Cauchy–Green tensor.

Substituting the principal stretches from (5.9) into the (5.10), we have the second term

of the Cauchy stress in (5.14).

The Lagrangian multiplier P is determined from the boundary conditions. From (5.3),

σrr(ξ) = pi +

∫ ξ

ri

(σθθ − σrr)
dr

r
, ri 6 ξ 6 ro, (5.15)

where pi is the internal pressure. Then

P(ξ) = −σrr(ξ) + 2cλr(ξ)
2, (5.16)

substituted into (5.14) yields

σθθ(ξ) = −P(ξ) + 2cλθ(ξ)
2. (5.17)

The equations (5.15) and (5.17), together with (5.8) and (5.9), are the formulations to

compute the residual stress in the cylindrical polar coordinate system.

5.4 Importing residual stress to the FE model: sigini.f

The values of the analytical expression for residual stress is imported into the FE model in

Abaqus through an user subroutine sigini.f. This is done in two steps: 1) obtaining the

residual stress components in the cylindrical polar coordinate system at every quadrature
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point, and 2) transforming these into the corresponding points in the Cartesian coordinate

system.

Isoparametric interpolation is employed in the first step. The analytical stress is com-

puted at 1/(n+1) equidistant points across the wall, with spacing ∆r = (dm+da)/n, where

dm and da are thickness of the media and adventitia. For a quadrature point Q : (x, y, z)

from the FE model, we first calculate its radius

s =
√
x2 + y2. (5.18)

The location of the point Q is determined by

m = s \∆r, t = s−m∆r, (5.19)

where \ stands for integer division, 0 6 t 6 1 is a parameter to define the position of Q in

the interval [rm, rm+1] = [m∆r, (m+ 1)∆r], and

s = (1− t)rm + trm+1. (5.20)

Following the isoparametric interpolation, we have

σ = (1− t)σm + tσm+1, (5.21)

where σm is the value of the analytical residual stress at rm.

The analytical stress in the cylindrical coordinate system is converted to that in the

Cartesian coordinate system in the second step:
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


,

where cos θ = x/s and sin θ = y/s.

5.5 Verification

The above computational method, importing the residual stress into the FE model as

an initial stress field and using it in subsequent stress analysis, is verified, by comparing

the analytical and FE results for the deformation and the Cauchy stress of this two-layer



CHAPTER 5. RESIDUAL STRESS WITH AN ISOTROPIC MATERIAL 107

arterial wall without a tear, inflated subject to an internal pressure pi = 13.33 kPa. The

opening angle in the stress-free configuration Ω0 is 160◦.

In the analytical solution, we change the boundary condition in (5.4) to,

σrr(ri) = −pi, (5.22)

and solve the equilibrium equation in (5.3) through the forward analysis.

In the numerical solution, the simulation starts from the unloaded configuration Ωr.

We import the analytical residual stress into the FE model as an initial stress field via

‘sigini.f’, and then the arterial wall is inflated by applying the pressure pi on the inner radial

surface. Finally, we compute numerically the deformed configuration and the Cauchy stress

distribution across the wall.

The inner radii of the deformed configuration are rai = 0.9535 mm and rni = 0.9523 mm

in the analytical and numerical solutions, respectively. The relative error is about 0.13%.

As shown in the first part of (5.8), the deformation of the arterial wall depends on the

value of inner radius ri. Therefore, we conclude that the deformation of the arterial wall

obtained by this numerical method agrees with the analytical solution with a relative error

of about 0.13%. In addition, the Cauchy stress across the arterial wall in the numerical

solution also agrees with the analytical solution as shown in Figure 5.2. The relative error

is less than 0.8%, which is computed by (4.15).
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Figure 5.2: Left, the distribution of each Cauchy stress component computed numerically,

across the two-layer arterial wall is shown. These numerical results are obtained with

an analytical residual stress field for α=160◦, imported into the FE model by ‘sigini.f’,

and subject to pi=13.33 kPa. The computed inner radius of the deformed configuration

is ri = 0.9523 mm, which is close to the analytical solution with a relative error of about

0.13%. Right, the comparison of the Cauchy stress across the wall from numerical and

analytical solution is shown. The maximum relative error computed by (4.15) in the

numerical results is about 0.8%. The tangent-change in σrr and the discontinuity in σθθ

occur at the interface between the media and adventitia. That is because the material

properties of the two layers are different.
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5.6 Results

For the fixed unloaded configuration Ωr, we use the inverse analysis in Section 5.3.2 to

obtain the stress-free configuration Ω0 for different values of the opening angle α. The

dimensions (inner radius, thickness of the media and adventitia) of these Ω0 are shown in

Table 5.3. The residual stress across the arterial wall in Ωr associated with each value of

α is computed analytically using the formulae in Section 5.3.3. As shown in Figure 5.3,

the magnitude of residual stress increases as the opening angle α increases.

Table 5.3: Dimensions of the stress-free configurations Ω0 for different values of the opening

angle α, Ri is the inner radius, Dm and Da are thickness of the media and adventitia

respectively. These stress-free configurations have the same unloaded configuration Ωr in

the equilibrium state, but have different values of residual stress.

α [◦] Ri [mm] Dm [mm] Da [mm]

0 0.7395 0.2593 0.1197

40 0.8472 0.2595 0.1221

80 0.9858 0.2597 0.1246

120 1.1708 0.2599 0.1272

160 1.4300 0.2600 0.1300

200 1.8191 0.2601 0.1329

We import these analytical stresses into the FE model in individual simulation for a

particular value of α, and then simulate the inflation of both the lumen and tear subject

to the pressure on both inner radial and tear surfaces. The pressure is gradually increasing

until the tear propagates. The critical pressure pc is identified as that at which the tear

starts to extend. As discussed in Section 4.4.1, the actual value of pc depends on material

parameters. We focus on the trend of the critical pressure on the opening angle, and

thus we scale the critical pressure with the shear modulus of media cm and plot the

dimensionless critical pressure p′c = pc/cm, where cm = 38.45 kPa, against α.

The maximum principal stress σmp in the deformed configuration for α = 40◦ and

subject to the critical pressure is shown in Figure 5.4. Because the stress field is singular
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Figure 5.3: The magnitudes of the residual stress components increase with the opening

angles. The tangent-change in σrr and the discontinuity in σθθ occur at the interface

between the media and adventitia. That is because the material properties of two layers

are different.

around tear tips, the greatest value of σmp appears at tips. This stress concentration also

occurs at the point A, on which we apply a fixing boundary condition to avoid rigid body

motion. This boundary condition also results in a bump, which can be avoided using an

alternative boundary condition.

The maximum principal stress σmp in deformed configurations for other values of α

is shown in Figure 5.5. These deformed configurations are subject to different values of

the critical pressure pc, which depends on the value of α. In each case, the inner wall,

i.e. the material section between the tear and lumen, is compressed since σmp < 0, and

the minimal values of σmp appear at the two ends of the inner wall along the inner radial

surface. The material between the tear and adventitia is stretched the most, and this

stretch increases as α increases.

The set-up of these simulations guarantees that the difference in results of these simu-

lations is due to the residual stress, since only is the residual stress different between these

simulations. Finally, we plot the trend of critical pressure on the opening angle in Figure

5.6. The critical pressure increases almost linearly with the opening angle.
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Figure 5.4: The contour of maximum principal stress σmp in the deformed configuration

subject to the critical pressure pc = 6.22 kPa is shown for α = 40◦. The maximum of σmp

appears at tear tips and point A, at which the fixing boundary condition is applied. The

bump and the great value of σmp at point A are due to the fixing boundary condition.

The greatest value of σmp at tips is because the tip-stress field is singular. To get rid of

the singularity of tip-stress field, the stress over the quadrature points of the first ring

elements, i.e. the red elements, around the tip is averaged, and replaces the greatest value

of σmp in following plots.
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(e) α = 160◦, Pc = 7.96 kPa
σmax = 62.94 kPa, σmin = −9.43 kPa
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(f) α = 200◦, Pc = 8.62 kPa
σmax = 65.52 kPa, σmin = −10.18 kPa

Figure 5.5: The contour of maximum principal stress σmp in the deformed configuration

subject to the critical pressure pc are shown for different values of the opening angle α.

The tip-stress field is averaged over the quadrature points of the first ring elements around

tip to obtain σmax.

pc pc

pc pc

pc pc

Figure 5.5: The contour of maximum principal stress σmp in the deformed configuration

subject to the critical pressure pc is shown for different values of the opening angle α. The

tip-stress field is averaged over the quadrature points of the first ring elements around tip

to obtain σmax.
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Figure 5.6: The dimensionless critical pressure p′c = pc/cm, where cm = 38.45 kPa, is

plotted against the opening angle α. This trend shows that the critical pressure increases

almost linearly with the opening angle.

5.7 Discussion

5.7.1 The material model

The selection of the isotropic neo-Hookean material model is a limitation of this compu-

tational approach. Although the anisotropic HGO constitutive law is better to model the

arterial wall, residual stress cannot be introduced into the FE model through this method

in Section 5.4. That is because the current version of Abaqus (6.13) does not support

including an initial stress field into a FE model with an anisotropic hyperelastic material.

In next chapter, we develop another method to cope with this limitation.

5.7.2 Boundary condition

To avoid rigid body motion, we fixed only the point A (Figure 5.1). This boundary

condition results in a bump and stress concentration at this point (Figure 5.5). This

bump appears only at the two elements, which have the point A as a common node. As

we refine the mesh, this bump is reduced. This bump is due to the numerical discretization.

Alternatively, the bump can be avoided by introducing a different boundary condition.
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Instead of fixing the point A, we employ a kinematic coupling constraint referring to the

centre O on the right half inner radial surface (Figure 5.7). All degrees of freedom at O

are fixed. This kinematic coupling constraint fixes all the degrees of freedom of the nodes

on this semi circle except the radial component. As a result, the this half circle can only

move radially.

In a comparison with the Figure 5.5, the contour of the maximum principal stress

σmp is plotted in the deformed configurations subject to the individual critical pressures

in Figure 5.8 for different values of α. The stress along the inner radial surface at the

top and bottom are less smooth along the circumferential direction than that in Figure

5.5, which is the effect of the kinematic coupling boundary condition. However, using

this boundary condition does avoid the bump due to the fixed point in Figure 5.5. This

boundary condition also slightly increases the critical pressure (Figure 5.9) by about 3.7%.

That is because the material close to tear tip with this boundary condition is constrained

more than with the previous boundary condition.

O

Figure 5.7: The right half inner radial surface is constrained through a kinematic coupling

constraint, such that the nodes on this surface can only move radially. The constraint is

defined on a polar coordinate system referred to the center O, all degrees of freedom of

which are fixed.
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(b) α = 40◦, pc = 6.45 kPa
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(c) α = 80◦, pc = 7.03 kPa
σmax = 59.38 kPa, σmin = −8.36 kPa
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(d) α = 120◦, pc = 7.58 kPa
σmax = 56.46 kPa, σmin = −9.05 kPa
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(e) α = 160◦, pc = 8.11 kPa
σmax = 61.55 kPa, σmin = −9.62 kPa
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(f) α = 200◦, pc = 8.73 kPa
σmax = 63.59 kPa, σmin = −10.33 kPa

Figure 5.8: The contour of maximum principal stress σmp in the deformed configuration

subject to the critical pressure pc is shown for different values of the opening angle α. The

tip-stress field is averaged over quadrature points of the first ring elements around tip to

obtain σmax. Using the kinematic coupling constraint in Figure 5.7 to replace the fixing

boundary condition at A in Figure 5.1, avoids the bump and stress concentration at this

point as shown in Figure 5.5. The stress patterns are similar to those in Figure 5.5, but

there is a jump in σmp at the top and bottom of the inner radial surface, which is clear

in (e) and (f). That is because these two points are the boundary of kinematic coupling

constraint as shown in Figure 5.7.
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Figure 5.9: The dimensionless critical pressure p′c = pc/cm, where cm = 38.45 kPa, is plot-

ted against the opening angle α for the boundary condition of kinematic coupling (dashed)

and fixed point (solid). The term ‘fixed point’ refers to Figure 5.1, while ‘kinematic cou-

pling’ refers to Figure 5.7. The relative difference of p′c for the two boundary conditions

is less than 3.7%, showing that the effect of the boundary conditions, used to avoid rigid

body motion, on p′c is small. The maximum relative difference 3.7% is the maximum of

the six values of the relative difference for the six values of α indicated by marks.
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5.8 Conclusion

We have developed a computational model to study the effect of residual stress on the

critical pressure for propagation of the arterial dissection. The residual stress is obtained

from the analytical solution and then imported to the finite element model as an initial

stress field. The model is verified through analysing the inflation of a two-layer arterial

wall without a tear. This computational model is easy to use: simulations for different

values of α start from a same geometry Ωr, and the different values of residual stress are

imported by ‘sigini.f’. Thus we need only to build one FE model in Abaqus for the

studies in this chapter. Using this model with different values of the residual stress, we

find that the residual stress elevates the critical pressure for tear propagation, and the

critical pressure increases almost linearly with the opening angle. However, this simple

computational method cannot be used in a FE model with an anisotropic hyperelastic

material, which is a limitation of the current version of Abaqus (6.13). Thus, in next

chapter we develop another method, which is to compute the residual stress numerically

by closing the stress-free configuration Ω0 via a sequence of novel boundary conditions,

for the HGO material.



Chapter 6

Effect of residual stress in an

anisotropic material

In this chapter, we develop a new method to introduce residual stress computed numer-

ically to a FE model for an anisotropic material. This method simulates closing of a

stress-free configuration with an opening angle to obtain the unloaded configuration by

applying a sequence of boundary conditions, and computes residual stress through the FE

analysis. To guarantee the unloaded configuration is the same for different values of the

opening angle, we use the inverse analysis of Section 5.3.2 to compute analytically the ge-

ometry of the stress-free configuration for a given opening angle. Linux shell and Python

scripts are developed to build, edit and run these models automatically. This method

costs more computational time than the method in Chapter 5. However, it can be used

for both isotropic and anisotropic materials. As a verification, we used this method to

repeat the simulations with a change in the boundary condition used to avoid rigid body

motion in Chapter 5, and obtained very similar stress patterns of the arterial wall and

critical pressure for tear propagation. With the HGO material, we find that the critical

pressure also increases with the opening angle. In addition, we also investigate the effect

of collagen fibres orientation on this trend.

6.1 Introduction

The mechanical response of soft tissues generally has directional preference. The arterial

wall, as a typical anisotropic soft tissue has been studied in many papers [e.g. Holzapfel

et al., 2000; Holzapfel and Ogden, 2010] and references therein. Notably, in the HGO

118
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SEF [Holzapfel et al., 2000], the arterial wall is assumed to consist of an isotropic matrix

reinforced by some stiffer collagen-fibres. The distribution of these collagen fibres leads

to the anisotropy of the arterial wall. We employ the HGO model for the mechanical

response of arterial wall in this chapter.

The method of importing analytical results for the residual stress into a FE model with

an anisotropic hyperelastic material in Chapter 5 is not yet supported by Abaqus. Here,

we develop a new method to introduce residual stress into a FE model. The simulation

of introducing residual stress in this method is an inverse of the process of demonstrating

the residual stress of blood vessels in the experiments of [Fung, 1991]. Those showed

that cutting the arterial wall radially along the length of the artery releases most of

residual stress, and the stress-free configuration is defined by the opening angle (Figure

1.5). In the simulation, we start from the stress-free configuration, closing which by

applying a sequence of novel boundary conditions computes the unloaded configuration

in the equilibrium state and introduces the corresponding residual stress. Directly closing

the artery results in buckling at the inner radial surface and also the contact between

two faces of the tear. Both lead to divergence of the solution or considerable increase in

computational cost. In order to deal with this challenge, we apply a pre-pressure on both

the inner radial and tear surfaces, such that the lumen and tear are inflated during closing

of the opening angle. After successfully closing the artery, the pre-pressure is removed, so

that the artery is unloaded and subject to only residual stress.

The different values of residual stress associated with different values of opening angle

α are employed in a simulation of inflating lumen and tear until the tear propagates. In

order to guarantee the difference between these simulations is only the value of residual

stress or opening angle, geometries of the unloaded configurations computed have to be

the same for different values of α. We use the inverse analysis of Section 5.3.2 to obtain

the geometry of the stress-free configurations for different values of the opening angle, so

that the same unloaded configuration is achieved.

This computational approach can be used for both isotropic and anisotropic materials.

As a verification, we use it to predict the trend of critical pressure against the opening

angle for the neo-Hookean material model, and the result is almost the same as we present

in Chapter 5. With the HGO material model, we also find that the critical pressure

increases with the opening angle.
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6.2 Methods

6.2.1 Material

For either layer, i.e. the media and adventitia, of the arterial wall, we use the incompress-

ible HGO constitutive law [Holzapfel et al., 2000] in the analytical calculation. The strain

energy function of the incompressible HGO model is

Ψ(C) = Ψm(I1) + Ψf (I4, I6) = c(I1 − 3) +
∑
n=4,6

ψ(In), (6.1)

where c is the shear modulus of matrix, I1 is a deformation measure of the matrix, In, n =

4, 6 are stretch measure of two families of fibres, and ψ is the strain energy density function

for fibres. In the numerical computation, we use an approximation of this incompressible

HGO model, i.e. (4.1), which is implemented in Abaqus.

The deformation is quantified by a deformation gradient F, and the directions of two

families of fibres are defined by vectors A1 and A2 in the reference configuration, and then

I1 = tr C, In = C : Mn, n = 4, 6, (6.2)

where C = FTF, M4 = A1⊗A1, and M6 = A2⊗A2. As shown in (2.19) and (2.40), the

invariants I4 and I6 are squares of the stretches in the directions ofA1 andA2, respectively.

Therefore, I4 and I6 quantify the deformation of fibres. A common assumption is that the

fibres only support tension loading, i.e.

ψ (In) =


k1

2k2

(
exp

[
k2(In − 1)2

]
− 1
)

when In > 1

0 when In 6 1.

(6.3)

For the cylindrical tube model, the directions A1 and A2 are measured by the angle β

between the fibre and circumferential directions, i.e. A1 = (0, cosβ, sinβ) and A2 =

(0, cosβ,− sinβ), as shown in Figure 6.1.

The associated Cauchy stress for the incompressible HGO model is

σ = −PI + 2cB +
∑
n=4,6

2ψ′(In)mn, (6.4)

where P is the Lagrange multiplier for the incompressibility constraint, B = FFT , and

mn = FMnF
T , (n = 4, 6). The value of P is determined by the equilibrium equation and

the boundary conditions in any particular problem.
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Table 6.1: The values of material parameters in the HGO strain energy function for the

two-layer arterial wall model for a carotid artery from a rabbit are obtained from Figure

14 in [Holzapfel et al., 2000]

c [kPa] k1 [kPa] k2 β [◦]

media 1.5 2.3632 0.8393 29

adventitia 0.15 0.5620 0.7112 62

6.2.2 Geometry

Each simulation starts from a stress-free configuration Ω0 (Figure 6.1). In order to guar-

antee the difference among simulations is only the value of the opening angle or residual

stress, we use the inverse analysis (Section 5.3.2) to compute analytically the stress-free

configuration of the given unloaded configuration Ωr for each value of the opening angles,

α = 40◦, 80◦, 120◦, 160◦ and 200◦, so that the same unloaded configuration Ωr in Figure

6.1 is obtained in equilibrium status, after closing Ω0 for different values of α.

The target unloaded configuration Ωr is that of the two-layer arterial wall in equilib-

rium, in the absence of pressure (pi = 0) on the inner radial surface of the stress-free config-

uration with an opening angle α = 160◦, the geometry of which is obtained from [Holzapfel

et al., 2000]. In our simulation, the geometry of this target configuration is obtained by

using the boundary conditions associated with this loading condition (pi = 0) through the

forward analysis in Section 5.3.1.

The governing equations for analytical solution are the same as those in Sections 5.3.1

and 5.3.2, but with the HGO constitutive law in (6.1).

6.2.3 Boundary conditions

Each simulation starts from a stress-free configuration Ω0 as in Figure 6.1. Two simulation

steps are performed: 1) closing Ω0 to obtain the unloaded configuration and introduce the

residual stress; 2) inflating both the lumen and tear to simulate the arterial dissection

subject to a ramping pressure.

The first step includes several boundary conditions in sequence:

� fixing the radius A along the y-axis direction such that it does not move up or down;

moving the radius B towards the y-axis such that it reaches the y-axis and does not
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Figure 6.1: We consider cross-section of the arterial wall: the stress-free Ω0 with an

opening angle α and unloaded Ωr configurations with residual stress, including an intial

tear (black arc). This tear subtends η = 90◦ and is at the centre of the media. Each layer

is assumed to be a hyperelastic fibre-reinforced material, modelled by the HGO strain

energy function. βm and βa define the angles between the two families of fibres in the

media and adventitia, respectively. The radii A, B, C, D and E are equally spaced and

separate the inner surfaces labelled 1,2,3 and 4. In simulations, Ω0 is closed to obtain Ωr

with residual stress, and then an increasing pressure (arrows) is applied on the inner radial

and tear surfaces to simulate the inflation and tear propagation.
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move right or left from now on; applying a pre-pressure p0
i on both the inner radial

surface 1 and tear surface to avoid contact, which would increase the computational

cost extremely and cause the divergence of computation.

� moving the radius C towards the x-axis such that it reaches the x-axis and does not

move up or down from now on; applying p0
i on the inner radial surface 2,

� moving the radius D towards the y-axis such that it reaches the y-axis and does not

move right or left from now on; applying p0
i on the inner radial surface 3,

� moving the radius E towards the x-axis such that it reaches the x-axis and does not

move up or down from now on; applying p0
i on the inner radial surface 4,

� applying the −p0
i on both the inner radial surfaces 1–4 and tear surface to obtain

the target unloaded configuration Ωr.

After the first step, the target unloaded configuration is obtained and the residual

stress is included. In the second step, both tear and lumen are inflated subject to the

same ramping pressure on both the inner radial surfaces 1–4 and two faces of the tear.

The critical pressure is identified as that at which the tear starts to propagate.

6.2.4 Damage and failure

The constitutive law for material damage and failure is the linear cohesive law in the

Section 5.2.3. The parameters we used for these simulations with the HGO material

model are shown in the Table 6.2.

Table 6.2: Cohesive law parameters for each layer of the two-layer HGO arterial wall

Tc [kPa] Gc [J/m2] uc [mm]

media 3 0.001 6.67× 10−4

adventitia 0.3 0.0001 6.67× 10−4

6.3 Results

As a verification, this method for introducing the residual stress into the FE model, is

firstly used in an example for the neo-Hookean material. The critical pressure obtained
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by this method is compared to that calculated by the method of Chapter 5, which uses

the analytical expression of the residual stress. Then several simulations with the HGO

material are performed with different values of the opening angle α. To plot the trend

of p′c against α, we present the effect of residual stress on the critical pressure for tear

propagation with the HGO material.

6.3.1 The neo-Hookean material

Inflation of the artery

This simulation is to verify this new method of introducing residual stress computed

numerically. Similarly to Section 5.5, inflation of the two-layer arterial wall with the

opening angle α = 160◦ is analysed. The tear is not included in the example of inflation.

The internal pressure is pi=13.33 kPa. For verification purposes, we compare the residual

stress before inflation and the total Cauchy stress across the arterial wall after inflation,

calculated in three ways.

We use three methods to calculate the deformation and stress. They are referred

to as analytical, numerical and combined. The direct numerical method is introduced

in this chapter: the simulation starts from the stress-free configuration Ω0, and then

the unloaded configuration and following deformation subject to an internal pressure are

calculated numerically. The combined method is introduced in Chapter 5: the simulation

starts from the unloaded configuration Ωr, and the analytical results for the values of the

residual stress are imported into the FE model before any boundary condition is applied.

The analytical method solves the problem mathematically using the equations in Section

5.3.

The boundary conditions in Figure 6.2 are used to avoid rigid body motion in the com-

bined method. The other techniques are same with those in Chapter 5. These boundary

conditions are equivalent to those (Figure 6.1) in the direct numerical method. Using this

boundary condition guarantees that the results from the numerical and combined method

are comparable.

The comparison of results in Figure 6.3 shows that the residual stress computed numer-

ically similar to the analytical solutions, and the relative error is less than 4.74%, which

is computed via (4.15). The residual stresses in the simulation with the combined method

are exactly the same as in the analytical solutions. That verifies the implementation of

‘sigini.f’, which imports the analytical residual stress into the FE model.
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The total Cauchy stresses across the arterial wall inflated subject to pi = 13.33 kPa

through three methods are also compared in Figure 6.4. Both the numerical and combined

methods can compute the stress accurately with very small error: the relative error from

the direct numerical method is 0.46%, and the relative error from the combined method

0.49%.

Ωr

M
ed

ia
Ad
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nt
iti
a

A

B

C

D

x

y

Figure 6.2: The radii A and C are fixed in the y direction, and the radii B and D are fixed

in the x direction, to avoid rigid body motion. These boundary conditions are referred to

as the quarter boundary conditions. The pressure (arrows) is increased on both the inner

radial and tear surfaces.
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Figure 6.3: Left, the contours of residual stress components computed numerically are

shown in the unloaded configuration Ωr subject to pi = 0 for the stress-free configuration

with opening angle α = 160◦. This computation uses the neo-Hookean material. In

this unloaded configuration, the inner radius ri = 0.74 mm, thickness of the media and

advenetitia are 0.26 mm and 0.12 mm, respectively. Right, the components of residual

stress across the deformed arterial wall are plotted. The residual stress computed by the

direct numerical method is similar to the analytical solutions with a relative error of less

than 4.74%, and residual stress used in the combined method is the same as the analytical

solution. The changes in the tangent of curve σrr and discontinuity in σθθ occur at the

interface between the media and adventitia. That is because the material properties of

two layers are different.
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Figure 6.4: Left, the contours of Cauchy stress components calculated numerically are

shown in the deformed arterial wall subject to pi=13.33 kPa for the stress-free configuration

with opening angle α = 160◦. This computation uses the neo-Hookean material. In

this deformed configuration, the inner radius ri = 0.95 mm, thickness of the media and

advenetitia are 0.21 mm and 0.10 mm, respectively. Right, the components of Cauchy

stress across the deformed arterial wall are plotted. The stress computed by numerical

and combined methods is similar to analytical solutions with relative errors of less than

0.46% and 0.49%, respectively.
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Tear propagation

The simulations leading to tear propagation are performed in the two-layer neo-Hookean

arterial wall with residual stress using the combined and direct numerical methods. Recall

that the combined method in Chapter 5 uses the analytical residual stress, while the direct

numerical method in this chapter computes the residual stress numerically in Abaqus, and

then simulates the subsequent tear opening. The critical pressures are obtained from each

simulation for a particular opening angle. Figure 6.5 confirms our finding, that critical

pressure increases almost linearly with the opening angle. The trend in p′c(α) predicted

from two methods is similar with a relative error of less than 2.8%. The good agreement

in values of p′c obtained with these two methods shows that the direct numerical method

works as well as the combined method. The direct numerical method can be used in a

model with the HGO material, but the combined method cannot.

The stress patterns in the deformed arterial wall subject to the critical pressure for

different values of opening angle (Figure 6.6) computed by the direct numerical method

are also very similar to those (Figure 6.7) computed by the combined method. As the

opening angle increases, the critical pressure increases. Therefore, the greatest value σmax

of the maximum principal stress σmp increases and the least value σmin decreases as the

opening angle increases. As shown in Figure 5.4, σmax is obtained by averaging σmp over

the quadrature points of the first ring elements around the tear tip.

The comparison of the critical pressure obtained by the combined method with three

different boundary conditions used to avoid rigid body motion is shown in Figure 6.8.

The term ‘quarter’ refers to the boundary condition in Figure 6.2, ‘kinematic coupling’

refers to Figure 5.7, and ‘fixed point’ refers to Figure 5.1. The comparison shows that

the critical pressures with the quarter BC is similar to others, and the difference in the

critical pressures is less when compared to that with the kinematic coupling BC (relative

difference of less than 0.6%) than with the fixed point BC (relative difference of less than

3.7%). That is because the stress patterns (Figure 6.7) are more similar to those (Figure

5.8) with the kinematic coupling BC than those (Figure 5.5) with the fixed point BC. This

good agreement shows that the effect of these three boundary conditions used to avoid

rigid body motion is small on the computation of critical pressure.
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Figure 6.5: The dimensionless critical pressure p′c = pc/cm, where cm = 38.45 kPa is the

shear modulus of the media, is plotted against the opening angle α. These computations

use the neo-Hookean material. The trend in p′c(α), predicted by the combined and direct

numerical methods, are similar with a relative error of less than 2.8%.
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(a) α = 0◦, pc = 5.79 kPa
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(e) α = 160◦, pc = 8.00 kPa
σmax = 67.63 kPa, σmin = −9.41 kPa
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(f) α = 200◦, pc = 8.48 kPa
σmax = 69.38 kPa, σmin = −9.89 kPa

Figure 6.6: The contour of maximum principal stress σmp in the deformed configurations

subject to the critical pressure pc is shown for different values of the opening angle α.

The tip-stress field is averaged over quadrature points of the first ring elements around

tip to obtain σmax. In these simulations, the material model is the neo-Hookean, and the

residual stress is introduced by the direct numerical method.
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(b) α = 40◦, pc = 6.45 kPa
σmax = 56.09 kPa, σmin = −7.67 kPa
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(c) α = 80◦, pc = 7.03 kPa
σmax = 59.38 kPa, σmin = −8.35 kPa
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(d) α = 120◦, pc = 7.62 kPa
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(e) α = 160◦, pc = 8.10 kPa
σmax = 60.72 kPa, σmin = −9.61 kPa

−10.40
 −4.26
  1.88
  8.02
 14.17
 20.31
 26.45
 32.59
 38.73
 44.88
 51.02
 57.16
 63.30
135.17

(f) α = 200◦, pc = 8.73 kPa
σmax = 63.26 kPa, σmin = −10.34 kPa

Figure 6.7: The contour of maximum principal stress σmp in the deformed configuration

subject to the critical pressure pc is shown for different values of the opening angle α.

The tip-stress field is averaged over quadrature points of the first ring elements around

tip to obtain σmax. In these simulations, the material model is the neo-Hookean, and the

residual stress is introduced by the combined method with the quarter boundary condition

(Figure 6.2).
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Figure 6.8: The dimensionless critical pressure p′c = pc/cm, where cm = 38.45 kPa is shear

modulus of the media, is plotted against the opening angle α, with different boundary

conditions used to avoid rigid body motion. These simulations use the combined method

with the neo-Hookean material. The critical pressures with the quarter BC (Figure 6.2)

are almost the same with those with the kinematic coupling BC (Figure 5.7), and the

relative difference is less than 0.6%. The critical pressures with the quarter BC are also

similar to those with the fixed point BC (Figure 5.1), and the relative difference is less

than 3.7%.
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6.3.2 HGO material

Inflation of artery

The accuracy of this direct numerical method with the HGO material is checked through

the simulation for inflation of the two-layer arterial wall without a tear. Applying boundary

conditions in Section 6.2.3 on the arterial wall with the opening angle α = 160◦, the

simulation obtains the unloaded configuration Ωr in equilibrium and residual stress. The

computed inner radius of Ωr is rni = 0.738 mm, which is similar to the analytical solution

rai = 0.739 mm with a relative error of 0.14%. The computed residual stress σ through

the arterial wall in Ωr agrees with analytical results, as shown in Figure 6.9 with a relative

error of less than 5.17%, which is computed by (4.15). After obtaining Ωr and computing

residual stress numerically, the lumen is inflated subject to a pressure pi=13.33 kPa. As

shown in Figure 6.10, the computed inner radius of the deformed configuration is rni =

1.429 mm, which is similar to the analytical solution rai = 1.427 mm with a relative error

of 0.14%. As shown in (5.8), the deformation of the arterial wall depends on the inner

radius. The computed Cauchy stress across the deformed arterial wall also agrees with the

analytical results with a relative error of less than 1.74%. Therefore, the good agreement

in inner radius ri and stress σ verifies this direct numerical method for introducing residual

stress with the HGO material.
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Figure 6.9: Left, the contours of residual stress components computed numerically in

the unloaded configuration Ωr subject to pi = 0 for the stress-free configuration with

the opening angle α = 160◦. The computed inner radius of Ωr is ri=0.739 mm, which

is close to the analytical solution with a relative error of 0.14%, and thickness of the

media and adventitia are 0.259 mm and 0.120 mm, respectively. The material model is

the HGO constitutive law. Right, components of residual stress across the arterial wall

in Ωr are plotted against the radial distance r − ri from the inner radial surface. The

change of gradient in σrr and discontinuity in σθθ occur at the interface between the

media and adventitia. That is because the material properties of the media and adventitia

are different. The residual stress computed numerically agrees with analytical solution

with a relative error of less than 5.17%.
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Figure 6.10: Left, the contours of Cauchy stress components computed numerically in the

deformed arterial wall subject to pi=13.33 kPa for the stress-free configuration Ω0 with

the opening angle α = 160◦. In this deformed configuration, the computed inner radius

ri=1.429 mm, which is close to the analytical solution with a relative error of 0.14%, and

thickness of the media and adventitia are 0.150 mm and 0.078 mm, respectively. The

material model is the HGO constitutive law. Right, components of Cauchy stress across

the arterial wall in Ωr are plotted against the radial distance r − ri from the inner radial

surface. The Cauchy stress computed numerically agrees with analytical solution with a

relative error of less than 1.74%.
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Tear propagation

Obtaining the stress-free configurations associated with different values of the opening

angle, for a fixed unloaded configuration, is a crucial step before the FE simulation. Using

the inverse analysis in Section 5.3.2, we solve analytically the stress-free configuration

associated with a particular value of the opening angle for this HGO arterial wall. These

stress-free configurations are used in the simulations. In the meantime, the analytical

residual stress is computed. As shown in Figure 6.11, the magnitude of residual stress

increases as the opening angle increases.

Each simulation with a particular opening angle starts from the stress-free configura-

tion with an initial tear. Four-node plane-strain hybrid elements are used to construct

the mesh for this model as shown in Figure 6.12. A grid independence test was used to

select the optimal number of elements for which the computed stresses converge to the

analytical solutions (Table 6.3 and Figure 6.13). The intermediate mesh was then chosen

in all the simulations.

The two simulation steps with the opening angle α = 160◦ are shown in Figures 6.14

and 6.15, respectively. During the simulation, the critical pressure was identified as that

at which the tear starts to propagate. Finally, we plotted the trend of the critical pressure

against the opening angle in Figure 6.16, and find that the critical pressure increases with

the opening angle.
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Figure 6.11: The residual stresses for different values of the opening angles are computed

analytically. The material model is the HGO constitutive law. The magnitude of residual

stress increases with the opening angle.
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Figure 6.12: The stress-free Ω0 (grey) and the unloaded Ωr (coloured) configurations of

the HGO arterial wall model with the coarse mesh in Table 6.3, where the colour indicates

the maximum principal stress σmp, and the opening angle in Ω0 is 160◦. The simulation

starts from Ω0 with an inner radius Ri = 1.43 mm, and computes the equilibrium state by

applying displacement boundary conditions (Figure 6.1) to obtain Ωr with an inner radius

ri = 0.74 mm and residual stress.

Table 6.3: Meshes used for the grid independence tests

Mesh Nodes Elements Relative error in stress

media adventitia circumference total computed via (4.15)

coarse 909 5 3 100 800 21.37%

intermediate 3417 11 5 200 3200 5.59%

fine 13233 23 9 400 12800 5.08%
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Figure 6.13: Values of the residual stress computed in the unloaded configuration Ωr when

α = 160◦ for the meshes shown in Table 6.3, showing convergence as the mesh is fined.
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(a) The stress-free configuration Ω0 (b) Move radius B and pre-pressure tear and surface 1

(c) Move radius C and pre-pressure surface 2 (d) Move radius D and pre-pressure surface 3

(e) Move radius E
and pre-pressure surface 4

(f) Remove pre-pressure on both tear and surfaces 1–4,
giving the unloaded configuration Ωr with residual stress

Figure 6.14: The geometries occurring during the closing process from Ω0 to Ωr, when

α = 160◦ and η = 90◦. See Figure 6.1 for definitions of the radii and surfaces.
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(a) The unloaded configuration
with residual stress, Ωr

(b) Both true and false lumens are inflated
at p = 0.35 kPa.

(c) The tear starts to propagate
at pc = 0.52 kPa.

(d) The tear propagates towards the adventitia
at pc = 0.52 kPa.

Figure 6.15: Tear propagation in an artery inflated by increased pressure loading at Ωr

when α = 160◦ and η = 90◦ for (a) p = 0 kPa, (b) p = 0.35 kPa, (c) p = pc = 0.52 kPa and

(d) p = pc = 0.52 kPa. The elements in blue are not damaged; there in red are completely

torn. Those in other colours indicate the cohesive zone. The critical pressure is defined

as that at which the tear starts to propagate as in (c). Increasing p beyond pc results in

a steady solution for which the tear has propagated radially outwards (d).
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Figure 6.16: The dimensionless critical pressure p′c = pc/cm, where cm = 1.5 kPa is the

shear modulus of matrix in media as shown in Table 6.1, is plotted against the opening

angle α, for the HGO material.
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6.3.3 The effect of fibre orientation

Here we vary the fibre orientation in the HGO model. We refer to the simulation in

previous section as the physiological or ‘true’ case, since it uses the values of the fibre

orientation from [Holzapfel et al., 2000], see Table 6.1. In other simulations, we use the

same fibre orientation for the media and the adventitia, so that βm = βa = β. Simulations

are performed with β = 0◦, 10◦, 15◦, 20◦, 30◦, 60◦ and 90◦. In addition, a group of

simulations is run without fibres (k1 = 0), referred to as the ‘free’ case.

In order to use the same unloaded configuration Ωr in each simulation, the stress-free

configurations Ω0 are estimated for each fibre orientation using the inverse analysis of

Section 5.3.2. This ensures that the difference between the simulations is only due to the

fibre orientations. The normalized thicknesses of the media and adventitia D′m = Dm/Dmr

and D′a = Da/Dar, where Dm and Da are the thicknesses of media and adventitia in Ω0,

and Dmr and Dar in Ωr, are plotted against the opening angle α in Figure 6.17 for several

fibre distributions. The thickness of media D′m decreases with the opening angle with

smaller values of β (e.g. when β = 0◦ or 10◦), but the trend changes as β increases. When

β ≥ 30◦ it increases monotonically. On the other hand, the thickness of the adventitia D′a

simply increases with the opening angle. For other fibre angles (β = 60◦, 90◦, free, true),

the results are identical to that of β = 30◦. This is because fibres beyond this angle are

no longer stretched, i.e. I4 < 1 as shown in Figure 6.18, for this deformation Ω0 → Ωr.

The critical pressure also changes for different values of β (Figure 6.19). Notice that

with the inflation, fibres with β = 30◦ also start to bear load, but fibres at greater angles

(β = 60◦ and β = 90◦) still do not take on any load, and hence the critical pressures for

these cases remain the same in the ‘free’ case. As expected, the critical pressure when

β = 0◦ is the highest since the residual stress is greatest in this case, as shown in Figure

6.20.
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Figure 6.17: Wall thickness D′m and D′a for the media and adventitia in Ω0 normalised with

respect to their values in Ωr, plotted against the opening angle for different fibre angles.

For other fibre angles (β = 60◦, 90◦, free, true), the curves overlap that for β = 30◦.
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Figure 6.18: Value of the invariant I4 plotted against the radius in Ωr for different fibre

angles.
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Figure 6.19: The dimensionless critical pressure p′c = pc/cm, where cm = 1.5 kPa is the

shear modulus of matrix in media as shown in Table 6.1. The results for β = 90◦ (not

shown) are identical to β = 60◦, and the ‘free’ case, indicating that the fibres at these

angles do not bear a load in these deformations.
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Figure 6.20: Distribution of residual stress components σθθ and σrr for α = 160◦ and fibre

angles. The values of σrr and σθθ in the cases β = 60◦, 90◦, free, true are the same as for

β = 30◦. The change in gradient of σθθ is due to the fibres being stretched, i.e. I4 > 1,

see Figure 6.18.



CHAPTER 6. RESIDUAL STRESS WITH AN ANISOTROPIC MATERIAL 145

6.4 Conclusion

Directly computing the values of the residual stress in the FE model by closing the opening

angle to obtain Ωr overcomes the limitation that an anisotropic hyperelastic material

cannot be used in the combined method of Chapter 5. We performed several simulations

with both the neo-Hookean and HGO material.

The stress-free configuration Ω0 is closed to obtain unloaded configuration Ωr, using

a sequence of boundary conditions. These boundary conditions are crucial in guarantee

of computational efficiency and accuracy. Using a pre-pressure on the inner radial face

and the two faces of the tear avoids buckling of the arterial wall and contact, reducing

the computational cost. Using the quarter boundary condition, see Figure 6.1, guarantees

that both ends of Ω0 have same size and move together in the subsequent simulation for

the inflation of the lumen and the tear.

Using this method for the neo-Hookean material shows that the values of the stress

and critical pressure are similar to the results from the combined method of Chapter 5. In

the simulation of inflation of the artery without a tear, both methods obtain values of the

deformation and stress across the wall that are close to the analytical solutions (Figures

6.3 and 6.4). The critical pressures computed by both methods are also very similar;

see Figure 6.5, showing that the direct numerical method works as well as the combined

method. In addition, the computed critical pressures with different boundary conditions

in the combined method are also in good agreement, see Figure 6.8, demonstrating that

the quarter boundary condition has only a small effect on the computation of the critical

pressure.

For the HGO material, only the direct numerical method can be used. This method

is verified by showing that the deformation and stress for inflation of the artery without

a tear agree well with the analytical solutions (Figures 6.9 and 6.10). We find that the

dimensionless critical pressure p′c increases with the opening angle α (Figure 6.16). In

addition, we investigated the effect of fibre orientation on this trend, also showed that the

critical pressure increases when the collage fibres are in tension, see Figure 6.19.



Chapter 7

FE material model for living

fibrous soft tissues

A strain energy function constructed by adding a volumetric term to an incompressible

SEF, which is a function of the isochoric deformation gradient, has been used widely to

model a nearly incompressible or compressible material. We represent the original in-

compressible SEF as Ψ. A SEF based on Ψ, which incorporates a term that depends on

the volumetric deformation is labelled by Ψ̂. In the construction of Ψ̂, the multiplicative

decomposition of deformation gradient F = J1/3F is used, such that the isochoric defor-

mation gradient F = J−1/3F is obtained for Ψ. This method of constructing of Ψ̂ from Ψ

can lead to a loss of anisotropic aspects of the material represented in Ψ, as shown when

applied to the HGO material [Nolan et al., 2014; Vergori et al., 2013]. More generally we

find this problem exists for any anisotropic SEF. Here we demonstrate and explain the

loss of anisoptropy for SEFs constructed in this way, in particular we illustrate using a

Fung-type and HGO SEF. We suggest that a possible remedy is that the multiplicative

decomposition of F into volumetric and isochoric parts should not be used in the terms

representing anisotropy in Ψ. A SEF constructed with this remedy from Ψ is denoted by

Ψ̃. The incompressible HGO SEF Ψ includes a term for the isotropic matrix and separate

terms for the collage fibres, and the anisotropy of material is represented by adding these

terms related to the fibres. The modified HGO SEF Ψ̃ uses F instead of F in these terms

related to fibres in Ψ. The anisotropy of material in an incompressible Fung-type SEF

Ψ is controlled by the values of material parameters, there is no separate terms for the

anisotropy of material. Therefore the modified Fung-type SEF Ψ̃ uses F instead of F in

146



CHAPTER 7. FE MATERIAL MODEL FOR LIVING FIBROUS SOFT TISSUES 147

all terms of Ψ. Through several analytical examples, we demonstrate that Ψ̃ for both

the Fung-type and the HGO SEFs correctly describe the behaviour of material in both

the compressible and incompressible region. In some examples, Ψ̃ also provides a faster

approximation to incompressibility than Ψ̂ by using large values of the bulk modulus. Fi-

nally, a user material subroutine is developed in a finite element program FEAP for both

Ψ̂ and Ψ̃ for the HGO SEF.

In the user material subroutine, we include the living property of soft tissues—growth.

We follow the approach of using the decomposition of the deformation gradient F =

FeFg [e.g. Ambrosi et al., 2011; Rodriguez et al., 1994; Taber, 1995], where Fe quantifies

the elastic deformation and Fg measures the growth contribution. Currently, the value for

the growth tensor Fg is specified a priori. The subroutine is validated through comparison

of stress in simple examples, where the analytical results are the control. A growth law,

of using a deformation-dependent value for Fg, is easily developed in this subroutine. The

method on how to implement explicitly and implicitly are discussed.

7.1 Introduction

There are two methods for solving the minimization of a variational problem in the FEM

with the constraint of incompressibility. In the Lagrangian Method, a Lagrangian multi-

plier is introduced as a new variable, whereas the Penalty Method does not need additional

variables. For example, when implementing an incompressible SEF Ψ using the Penalty

Method, a penalty term, which is a function of the volumetric ratio J = det F, is added

to Ψ, as shown in Table 7.1. As K → ∞, the SEF Ψ̂ approximates the incompressible

SEF Ψ in theory. Ψ̂ also describes the elasticity of compressible material when employing

a finite value for K. Therefore, the implementation of an incompressible and compressible

SEF is unified within the penalty method as shown in the Table 7.1.

When constructing a SEF, Ψ̂, the multiplicative decomposition of deformation gradient

F = J1/3F (7.1)

is employed, and the isochoric kinematic tensor F is the argument of Ψ. This decom-

position has been widely used in the many aspects of computational mechanics. This

decomposition has significant advantages to deal with difficulty within the finite element

approach due to the incompressibility of the plastic flow [Nagtegaal et al., 1974] and

rubber-like material [Cescotto and Fonder, 1979; Ogden, 1978]. The decomposition is also
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Table 7.1: The constructing SEF Ψ̂, by adding a volumetric term or penalty term Ψv onto

a incompressible SEF Ψ, unifies the implementation of a material model for compressible

and incompressible finite elasticity, and so simplifies the computation and programming.

Incompressible Nearly-incompressible Compressible

SEF Ψ(C) Ψ̂(C) = Ψv(J) + Ψ(C)

Ψv(J) = KU(J) s.t. U(1) = U ′(1) = 0

Features J2 = det C = 1 K →∞ K

is penalty parameter is bulk modulus

Stress σ = −PI +
2

J
F
dΨ

dC
FT σ = −PI +

2

J
F
dΨ

dC

dC

dC
FT

P is determined by

balance equations and BC

P = −dΨv

dJ
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employed when forming a constitutive law [Flory, 1961]. The idea has been used to pro-

pose the variational functional of mixed finite element [Simo and Taylor, 1991], where the

additional pressure and volume field are introduced for a quasi-incompressible material.

Notably, these works consider an isotropic material.

However, extending this idea directly to anisotropic material, naming, constructing a

Ψ̂ with F = J1/3F could lead to problems. Pence [2014] shows that the isotropic SEF

within the decomposition automatically satisfies the requirement of stress-free for natural

configuration, but an anisotropic SEF with this decomposition fails. Vergori et al. [2013]

reported using of the HGO SEF with the decomposition in many finite element solvers

leads to a non-physical deformation of a compressible sphere: a transversely isotropic

sphere deforms to another sphere under hydrostatic tension, but the physical deformed

configuration should be an ellipsoid. Nolan et al. [2014] presented a modified compressible

HGO SEF by employing the full anisotropic invariants.

We find that this problem, loss of anisotropy, commonly exists in the FE implementa-

tion of any anisotropic material and is independent with the particular formulation of a

SEF. In this chapter, we illustrate the problems of constructing compressible SEF Ψ̂ for

an general anisotropic material model, through an analysis of the equilibrium of a cube

subject to various loadings. In particular, we address the following questions: why does

this problem occur? How can we implement a correct SEF for an anisotropic soft tissue?

We find that avoiding the use of (7.1) in the parts associated with anisotropy of a Ψ, is

a possible solution. We propose a physically correct FE SEF, denoted by Ψ̃, for a fibrous

soft tissue.

Both Ψ̃ and Ψ̂ approximate the corresponding incompressible material SEF Ψ when

K → ∞. The effectiveness of them in this approximation is compared. The results show

that using Ψ̃ instead of Ψ̂ improve the computational efficiency and stability.

A user subroutine for the implementation of both Ψ̃ and Ψ̂ of the incompressible HGO

SEF in FEAP is presented. In this user subroutine, we include the volumetric growth

property of a living fibrous soft tissue. Currently, the values for the growth tensor are

specified a priori. This subroutine is verified through comparison of stress for simple

problems. It is easy to update to incorporate a growth law, in which the value for growth

tensor depends on mechanical qualities, like stain, stress or stored energy. Both explicit and

implicit implementations of such a law in our subroutine are discussed. This subroutine

has many applications. For example, the residual stress could be introduced by specifying
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the growth tensor as a residual strain. To consider a stress-free two-layer arterial wall, in

which we assume the inner layer of the arterial wall grows quicker than outer layer. After

some time, at the interface of the inner and outer layers, the undeformed perimeter of the

inner layer is greater than the undeformed perimeter of the outer layer due to growth. In

order to maintain compatibility (material continuity) at the interface the outer layer is

stretched and the inner layer compressed. As a result the two layers will be deformed and

reach an equilibrium in which the material is unloaded but which has a non-zero state of

stress—the residual stress. The latter approach is consistent with the common assumption

that the origin of residual stress in soft tissue is due to the growth and remodelling at a

location-dependent rate.

Notably, Ψ indicates an incompressible SEF, Ψ̂ indicates a constructing FE SEF in the

conventional approach and Ψ̃ indicates an FE SEF with our suggestion.

7.2 Problem of a Ψ̂

7.2.1 Isotropic SEF

A SEF Ψ for an incompressible isotropic hyperelastic material has several equivalent forms.

Since a rotation does not result change stored energy, the right Cauchy-Green strain tensor

C = FTF, det F = 1

is used in a SEF. Alternatively, Ψ is defined as a function of Green strain tensor

E = 1/2 (C− I) .

Based on the invariant theory [Spencer, 1971], the SEF Ψ(C) has an equivalent form in

terms of invariants

Ψ(C) = Ψ(I1, I2), (7.2)

where

I1 = tr C, I2 =
1

2

[
(tr C)2 − tr C2

]
(7.3)

Following [Flory, 1961; Ogden, 1978], the isochoric part of strain measure is obtained

from using a multiplicative decomposition of deformation gradient as

F = (J1/3I)F. (7.4)
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Then we have the isochoric right Cauchy-Green strain tensor

C = F
T
F = J−2/3C (7.5)

with J = det F and then the isochoric invariants

Ī1 = tr C, Ī2 =
1

2

[(
tr C

)2 − tr C
2
]
.

To construct a compressible or nearly-incompressible SEF for the implementation of

Ψ, a volumetric term Ψv is added, as conventional approach [e.g. Cescotto and Fonder,

1979]. So we have

Ψ̂ = Ψv(J) + Ψ(C) (7.6)

and

Ψ̂ = Ψv(J) + Ψ(Ī1, Ī2), (7.7)

where

J = det F (7.8)

is the volume ratio after to before deformation, and Ψ depends on the isochoric part of

strain measure.

To enforce the constraint of incompressibility, we introduce a penalty term Ψv

Ψv(J) = KU(J), (7.9)

where the parameter K is called bulk modulus for a compressible material and a penalty

parameter for a nearly-incompressible material. There are many models for U(J) that are

consistent with the requirement that the SEF is polyconvex and such that U(1) = U ′(1) =

0 [Hartmann and Neff, 2003]. In the undeformed state, for which J = 1, is to be energy-

and stress-free then we must have U(1) = U ′(1) = 0. For our examples, we use

U(J) =
1

2
(J − 1)2. (7.10)

The penalty method [e.g. Bathe, 1996] is such that (7.6) and (7.7) approximate the SEF

Ψ for perfectly incompressible material when a large value for K is used. In theory, the

incompressibility is satisfied when K →∞. Therefore, (7.6) and (7.7) with a big value for

K are often named by a nearly-incompressible or quasi-incompressible material model.
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7.2.2 Anisotropic SEF

Most of soft tissues, like the wall of an artery, the heart and the gallbladder, are nearly

incompressible. They are in general reinforced by collagen fibres, which are stiffer than

other components including the smooth muscle and elastin fibres, especially in the high

stretch regime. Therefore, these soft tissues have significant anisotropy, so the direction-

preferred mechanical response should be considered when forming a SEF. For exam-

ple, the anisotropy is specified through the material parameters in a general Fung-type

SEF [Humphrey, 1994], and through using a structure tensor for describing fibres ori-

entation in the Holzapfel–Gasser–Ogden SEF [Holzapfel et al., 2000]. Without loss of

generality, we consider the tissue reinforced by one family of fibres, so it has transversely

isotropic elasticity.

Fung-type SEF

A general three dimensional incompressible Fung-type SEF, formulated by Humphrey

[1994], is

Ψ(E) =
a

2
[exp(Q)− 1] , s.t. det F = 1, (7.11)

where

Q = b1E
2
11 + b2E

2
22 + b3E

2
33 + 2b4E11E22 + 2b5E22E33 + 2b6E33E11 + b7E

2
12 + b8E

2
23 + b9E

2
31.

The material parameters bi, i = 1, · · · , 9 are the entries of the fourth-order elasticity

tensor. For this transversely isotropic material, the elasticity tensor only depends on five

constants derived from the symmetry of material.

Analogous to (7.6), the constructing compressible Fung-type SEF is

Ψ̂ = Ψv(J) + Ψ(E), (7.12)

where E = 1/2(C− I).

Holzapfel-Gasser-Ogden SEF

The HGO SEF [Holzapfel et al., 2000] employs a structure tensor, which defines the ori-

entation of collagen fibres, to specify the anisotropy. Here we consider a transversely

isotropic material, which is only reinforced by one family of fibres. Assume the orientation

of fibre is defined by a unit vector A1 in the reference configuration. When the material is
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loaded, a fibre will have the deformation specified by a1 = FA1. According to [Spencer,

1984], two additional anisotropic invariants are introduced

I4 = A1 ·C ·A1, I5 = A1 ·C2 ·A1. (7.13)

or

I4 = a1 · a1, I5 = a1 ·C · a1. (7.14)

The invariant I4 is the square of the fibre stretch. However, I5 is difficult to relate to any

physical quantity. For this reason and lack of sufficient experimental data, it is common to

neglect the effect of this invariant in a strain energy function. For example, the transversely

isotropic HGO SEF is

Ψ(I1, I4) = Ψm(I1) + Ψf (I4)

=
c

2
(I1 − 3) +H(I4)ψf (I4), s.t. det F = 1,

(7.15)

where the switch condition H(·) indicating that fibres can only take on stretch load, is

defined as

H(x) =


0 x 6 1

1 x > 1

and the exponential stretch stiffening stored energy function for fibres is

ψf (x) =
k1

k2
{exp[k2(x− 1)2]− 1}.

Analogous to (7.7), the compressible HGO SEF is

Ψ̂ = Ψv(J) + Ψ(Ī1, Ī4), (7.16)

where Ī4 = A1 ·C ·A1.

7.2.3 The problem of Ψ̂ and a possible solution

Through an example we demonstrate the problem—loss of anisotropy—during an elastic

deformation of an anisotropic material, when using Ψ̂. Consider a uniform dilation,

F = λI (7.17)

and then

J = λ3, F = I.



CHAPTER 7. FE MATERIAL MODEL FOR LIVING FIBROUS SOFT TISSUES 154

Therefore, the C = F
T
F = I leads to

E = 0, Ī1 = 3 and Ī4 = 1. (7.18)

The values for these isochoric strain measures are constant for any value of λ, so they are

independent on the deformation. That results in Ψ = 0 in (7.12) for the Fung-type Ψ̂ and

in (7.16) for HGO Ψ̂. As a result

Ψ̂ = Ψv(J) (7.19)

becomes isotropic, so the anisotropy of material is lost.

In order to avoid this problem above and correctly model the anisotropy of material

in a SEF, we propose that the multiplicative decomposition of the deformation gradient

F in (7.1) should not be used in the terms, associated with the anisotropy, of a SEF Ψ.

That is to replace F by F in these terms.

In the Fung-type SEF, the anisotropy is specified by the material parameters bi, i =

1, · · · , 9. Therefore in these terms including bi we should not use the decomposition, that

is, Q(E) in (7.12) should be replaced by Q(E). It is denoted by

Ψ̃ = Ψv(J) + Ψ(E). (7.20)

In the HGO SEF, the anisotropy is introduced through the invariants associated with

fibres, so the calculation for these invariants should use F rather than F, that is, Ī4 in

(7.16) should be replaced by I4. It is denoted by

Ψ̃ = Ψv(J) + Ψ(Ī1, I4). (7.21)

In the following sections, we illustrate the suggestion by solving some equilibria and

compare the results based on Ψ̂ and Ψ̃.

7.3 Comparison of Ψ̂ and Ψ̃ through analytical examples

The equilibria of a cube subject to various loadings are solved with Ψ̂ and Ψ̃, respectively.

The cube is a transversely isotropic material with one family of fibres along e1. The

comparison between results illustrates the problems of Ψ̂ and the correctness of Ψ̃. In

addition, the performance, including speed of approximation and numerical stability, of

Ψ̂ and Ψ̃ when approximating incompressibility are compared. The values for material

parameters in the Table 7.2 and 7.3 are used in the following examples.
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Table 7.2: The values for material parameters in a compressible transversely isotropic

Fung-type SEF

K [kPa] a [kPa] b1 b2 b3 b4 b5 b6

5.0 1.0 5.0 0.3 0.3 0.1 0.1 0.1

Table 7.3: The values for material parameters in a compressible transversely isotropic

HGO SEF

K [kPa] c [kPa] k1 [kPa] k2

5.0 1.0 1.0 1.0

7.3.1 Stress in uniform dilatation

Subject to an uniform dilation, the deformation of the cube is specified by the deformation

gradient in (7.17). Substitute it to the principal Cauchy stress in components

σi =
1

J
λi
∂Ψ

∂λi
, i = 1, 2, 3 (7.22)

derived from the SEF Ψ, we obtain the following

Fung-type material Ψ̂ in (7.12),

σ1 = σ2 = σ3 = K(J − 1) = K(λ3 − 1) (7.23)

but for Ψ̃ in (7.20),

σi = K(λ3 − 1) + a
1

λ
exp(Q)qi, i = 1, 2, 3, (7.24)

where

q1 = b1E11 + b4E22 + b6E33 =
1

2
(b1 + b4 + b6)(λ2 − 1),

q2 = b2E22 + b4E11 + b5E33 =
1

2
(b2 + b4 + b5)(λ2 − 1),

q3 = b3E33 + b5E22 + b6E11 =
1

2
(b3 + b5 + b6)(λ2 − 1);

(7.25)

and
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HGO material Ψ̂ in (7.16),

σ1 = σ2 = σ3 = K(J − 1) = K(λ3 − 1), (7.26)

but for Ψ̃ in (7.21),

σ1 = K(λ3 − 1) +H(I4)2
1

λ

dψf
dI4

,

σ2 = σ3 = K(λ3 − 1).

(7.27)

Notably, the stress expression in (7.27) does not include a term related to Ī1. That is

because Ī1 ≡ 3 for this uniform dilatation, thus when we compute the derivative, the term

related to Ī1 vanishes. In general, any isochoric invariant is independent with this uniform

dilation. The principal stresses plotted against the stretch (for the Fung-type and HGO

SEF) are shown in Figure 7.1 and Figure 7.2, respectively. In Figures 7.1(a) and 7.2(a), the

three principal stresses derived from Ψ̂ are identical, denoting then the loss of anisotropy.

In contrast, the transverse isotropy is recovered when using Ψ̃ as shown in Figures 7.1(b)

and 7.2(b), since σ1 > σ2 = σ3.
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Figure 7.1: The principal stresses against the stretch λ in the uniform dilation of the cube,

with a transversely isotropic Fung-type SEF, are plotted. (a) is based on the expression

of principal stress in (7.23) derived from Ψ̂, and (b) is based on the expression of principal

stress in (7.24) derived from Ψ̃.

Figure 7.2(b) shows that the stress response derived from the HGO SEF is isotropic

when material is compressed (λ < 1), and anisotropic when stretched (λ > 1). Figure

7.1(b) shows that the stress response derived from the Fung-type SEF is anisotropic for

all values of λ. A common assumption is that collagen fibre does not take on load when
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Figure 7.2: The principal stresses against the stretch λ in the uniform dilation of the cube,

with a transversely isotropic HGO SEF, are plotted. (a) is based on the expression of

principal stress in (7.26) derived from Ψ̂, and (b) is based on the expression of principal

stress in (7.27) derived from Ψ̃.

compressed. So with a set of values for material parameters, the HGO SEF agrees with the

assumption. To be consistent with this assumption in Fung-type SEF, different values for

material parameters should be used in the region of compression and tension: a set of values

such that mechanical response is isotropic should be used in the region of compression,

while the other set of values such that mechanical response is anisotropic should be used

in the region of tension.

7.3.2 Deformation subject to a hydrostatic compression or tension

In this section, we calculate the equilibrium configuration of a cube subject to a hydro-

static compression or traction t, for different choices of SEF. When t > 0 the loading is

hydrostatic tension and when t < 0 the loading is hydrostatic compression. We consider

the cube to be composed of a transversely isotropic material with one family of fibres

oriented in the direction e1. This material symmetry means we expect the principal axes

of the Cauchy stress and left Cauchy-Green strain are the same. Therefore the equilibrium

deformation of the cube can be determined by solving

1

J
λi
∂Ψ

∂λi
= t, (7.28)

for the principal stretches λi, i = 1, 2, 3.

We substitute the Fung-type SEF in (7.12), (7.20) and the HGO SEF in (7.16), (7.21)
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to (7.28). Solve the system of equations to get deformation, presented by λi, as shown

in Figure 7.3 for Fung-type SEF and Figure 7.4 for HGO SEF. Both of comparisons, (b)

to (a) in both Figures 7.3 and 7.4, illustrate that the anisotropy of material is correctly

reflected through the proposed SEF Ψ̃ in the regions of both infinitesimal and finite strain.

−4 −2 0 2 4 6 8 10

0.6

0.8

1

1.2

1.4

t [kPa]

λ

λ1 = λ2 = λ3

(a) with Ψ̂

−4 −2 0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

t [kPa]

λ

λ1

λ2 = λ3

(b) with Ψ̃

Figure 7.3: The principal stretches λi (i = 1, 2, 3), computed with the Fung-type SEF for a

transversely isotropic cube, against the hydrostatic compression (t < 0) or tension (t > 0)

are plotted.
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Figure 7.4: The principal stretches λi (i = 1, 2, 3), computed with the HGO SEF for a

transversely isotropic cube, against the hydrostatic compression (t < 0) or tension (t > 0)

are plotted. Notice that the fibre does not support compression loading, so λ1 = λ2 = λ3

for t < 0.
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7.3.3 Performance of approximation to incompressibility

Following the theory of the penalty method, Ψ̂ and Ψ̃ approximate the incompressible

response as K → ∞. Here we show the process of approximation in some examples with

the aim of comparing the difference in using Ψ̂ and Ψ̃.

Example 1: Hydrostatic tension

In this example, we solve (7.28) with an increasing value for K until the incompressibility

is satisfied. From the results with Fung-type SEF in Figure 7.5 and with HGO SEF in

Figure 7.6, three points are obtained:

1. both Ψ̂ and Ψ̃ approximate successfully the incompressible material model Ψ as

K →∞,

2. with Ψ̂, the anisotropy of material is lost in the compressible region since λ1 = λ2 =

λ3, while the anisotropy is correctly reflected when using Ψ̃ since λ1 < λ2 = λ3,

3. the approximating rates, to incompressibility as K →∞, of Ψ̂ and Ψ̃ are similar. The

results show that the constraint of incompressibility is satisfied when K > 103 kPa.
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Figure 7.5: The principal stretches λ, computed for a transversely isotropic Fung-type

cube subject to a hydrostatic tension t=10 kPa, against bulk modulus K are plotted. The

values for λ is obtained by solving the equilibrium equations (7.28).
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Figure 7.6: The principal stretches λ, computed for a transversely isotropic HGO cube

subject to a hydrostatic tension t=10 kPa, against bulk modulus K are plotted. The values

for λ is obtained by solving the equilibrium equations (7.28).

Example 2: Uniaxial stretch along fibre direction

In this example, we calculate the stress response of a square subject to the uniaxial stretch

along the direction of fibres with the plane strain condition. The fibres are orientated along

e1. The deformation gradient is

F =


λ1 0 0

0 λ2 0

0 0 1

 . (7.29)

Given λ1, that is stretch along the fibre direction, solving the equilibrium equation in the

absence of body forces

divσ = 0, (7.30)

gives the λ2. When the incompressibility is satisfied, λ2 = 1/λ1.

The approximation to incompressibility as K →∞ with the Fung-type and HGO SEF

is shown in Figure 7.7. In Figure 7.7(a), the incompressibility with Ψ̂ is satisfied when

K > 108 kPa, while with Ψ̃ when K > 104 kPa. In Figure 7.7(b), the incompressibility

with Ψ̂ is satisfied when K > 107 kPa, while with Ψ̃ when K > 102 kPa. These results

show that the approximating rate to the incompressibility with Ψ̃ is quicker than with

Ψ̂. A small value of K, which can let Ψ̃ behave incompressible, elevates the stability of

numerical computation. In the FEM, a big value for K could lead to an ill-conditioned

stiffness matrix.
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Figure 7.7: Let λ1 = 2 in the uniaxial stretch of a square along fibre direction, the

transverse stretch λ2 in equilibrium is calculated and plotted against the bulk modulus K.

7.4 A FE subroutine for the HGO SEF

To use the HGO SEF in a finite element program FEAP, we need to develop a user

subroutine. For the incompressible HGO SEF with two families of orientated fibres

Ψ(F) = Ψm(I1) + Ψf (I4, I6), s.t. det F = 1, (7.31)

we have two compressible SEFs for its FE implementation: the conventional approach

Ψ̂(F) = Ψv(J) + Ψm(Ī1) + Ψf (Ī4, Ī6), (7.32)

and the approach suggested in this chapter

Ψ̃(F) = Ψv(J) + Ψm(Ī1) + Ψf (I4, I6), (7.33)

where Ψv is the stored energy due to a pure volumetric deformation, Ψm is the stored

energy due to isochoric deformation of matrix and Ψf is the stored energy due to the

stretch of fibres. The necessary derivatives to develop such a subroutine are summarized

in this section. In addition, the methods on how to use it and verify it in FEAP are

discussed.

7.4.1 Derivatives of Cauchy stress and spatial tangent moduli

A precondition to develop a subroutine for a user-defined material model in FEAP is to

have the Cauchy stress σ and spatial tangent moduli c explicitly in terms of deformation
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gradient F. In a subroutine, F is an input argument, while σ and c are output arguments.

We show how to derive σ and c for (7.32) and (7.33). Since the difference between (7.32)

and (7.33) is only the fibre term, so we are using the Ψ to denote both Ψ̂ and Ψ̃ in following

derivatives.

The details of each terms in (7.31) are

Ψm(I1) =
c

2
(I1 − 3)

Ψf (I4, I6) =
∑
n=4,6

H(In)ψf (In).
(7.34)

� Cauchy stress

Follow the standard formulae in the theory of finite elasticity [e.g. Holzapfel, 2000].

We firstly calculate the second Piola–Kirchhoff stress

S = 2
∂Ψ

∂C
= 2

(
∂Ψv

∂C
+
∂Ψm

∂C
+
∂Ψf

∂C

)
, (7.35)

where

∂Ψv

∂C
= Ψ′v(J)

∂J

∂C
=

1

2
Ψ′v(J)JC−1 =

K

2
(J − 1)JC−1,

∂Ψm

∂C
=
c

2

∂Ī1

∂C
=
c

2

(
J−2/3I− 1

3
Ī1C

−1

)
,

∂Ψf

∂C
=
∑
n=4,6

ψ′f (Īn)
∂Īn
∂C

for Ψ̂

=
∑
n=4,6

k1(Īn − 1) exp[k2(Īn − 1)2]

(
J−2/3M(n) − 1

3
ĪnC

−1

)
,

∂Ψf

∂C
=
∑
n=4,6

ψ′f (In)
∂In
∂C

for Ψ̃

=
∑
n=4,6

k1(In − 1) exp[k2(In − 1)2]M(n),

(7.36)

where

M(4) = A1 ⊗A1 and M(6) = A2 ⊗A2.

Substitute these into (7.35) to get the explicit expression for the second Piola–

Kirchhoff stress, pushing which forward by using

σ = J−1FSFT ,

immediately gives the Cauchy stress for Ψ̂

σ =K(J − 1)I +
c

J

(
B− 1

3
Ī1I

)
+

2

J

∑
n=4,6

k1(Īn − 1) exp[k2(Īn − 1)2]

(
J−2/3m(n) − 1

3
ĪnI

)
,

(7.37)
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and for Ψ̃

σ =K(J − 1)I +
c

J

(
B− 1

3
Ī1I

)
+

2

J

∑
n=4,6

k1(In − 1) exp[k2(In − 1)2]m(n),
(7.38)

where B = J−2/3FFT and

m(4) = a1 ⊗ a1 and m(6) = a2 ⊗ a2,

where ai = FAi (i = 1, 2) represents the deformed vector of the unit vector Ai char-

acterizing the orientation of the i-th family of fibres in the reference configuration.

� Tangent moduli

The material tangent moduli, associated with the increment of the second Piola-

Kirchoff stress S and the Green strain tensor E = 1
2(C− I), is firstly derived [e.g.

Holzapfel, 2000]:

C =
∂S

∂E
= 2

∂S

∂C
= 2

(
∂Sv

∂C
+
∂Sm

∂C
+
∂Sf

∂C

)
, (7.39)

where Sx = 2∂Ψx
∂C , x = {v,m, f}. In index notation,

∂SvIJ
∂CKL

=JC−1
IJ Ψ′′v(J)

∂J

∂CKL
+ Ψ′v(J)C−1

IJ

∂J

∂CKL
+ Ψ′v(J)J

∂C−1
IJ

∂CKL

=
1

2
JC−1

IJ C
−1
KL

[
(JΨ′′v(J) + Ψ′v(J)

]
+ JΨ′v(J)

∂C−1
IJ

∂CKL
,

∂SmIJ
∂CKL

=c

[
−1

3

(
∂Ī1

∂CKL
C−1
IJ + Ī1

∂C−1
IJ

∂CKL

)
+
∂J−2/3

∂CKL
δIJ

]
.

(7.40)

For Ψ̂

∂SfIJ
∂CKL

=
∑
n=4,6

4

[
ψ′′f (Īn)

∂Īn
∂CIJ

∂Īn
∂CKL

−1

3
ψ′f (Īn)

(
∂Īn
∂CKL

C−1
IJ + Īn

∂C−1
IJ

∂CKL
+ J−2/3C−1

KLAIJ

)]
.

(7.41)

We note some useful differentials:

∂C−1
IJ

∂CKL
= −1

2
(C−1

IKC
−1
JL + C−1

ILC
−1
JK),

∂Ī1

∂CIJ
= −1

3
Ī1C

−1
IJ + J−2/3δIJ , Ψ′v(J) = K(J − 1), Ψ′′v(J) = K,
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∂Īn
∂CIJ

= −1

3
ĪnC

−1
IJ + J−2/3AIJ , n = 4, 6,

ψ′f (Īn) = k1(Īn − 1) exp[k2(Īn − 1)2],

ψ′′f (Īn) = k1 exp[k2(Īn − 1)2][1 + 2k2(Īn − 1)2].

Substituting (7.40) and (7.41) into (7.39) gives the explicit expression for the material

tangent moduli for Ψ̂. Pushing forward it gives the spatial tangent moduli required

by a user-provided material model in FEAP. Its components are

cijkl =
1

J
FiIFjJFkKFlLCIJKL

=δijδkl
[
JΨ′′v(J) + Ψ′v(J)

]
−Ψ′v(J)(δikδjl + δilδjk)

− 2

3

c

J

[
−1

3
Ī1δklδij + δijB̄kl + δklB̄ij −

Ī1

2
(δikδjl + δilδjk)

]
+

4

J

∑
n=4,6

{
ψ′′f (Īn)

(
−1

3
Īnδij + J−2/3m(n)

ij

)(
−1

3
Īnδkl + J−2/3m(n)

kl

)

−1

3
ψ′f (Īn)

[
−1

3
Īnδijδkl −

Īn
2

(δikδjl + δilδjk) + J−2/3(m(n)
ijδkl + δijm

(n)
kl)

]}
.

(7.42)

For Ψ̃
∂SfIJ
∂CKL

=
∑
n=4,6

4

[
ψ′′f (In)

∂In
∂CIJ

∂In
∂CKL

+ ψ′f (In)
∂In

∂CIJ∂CKL

]
(7.43)

Similarly, substituting (7.40) and (7.43) into (7.39) gives the explicit expression for

the material tangent moduli for Ψ̃. Pushing forward it gives the spatial tangent

moduli required by a user-provided material model in FEAP. Its components are

cijkl =
1

J
FiIFjJFkKFlLCIJKL

=δijδkl
[
JΨ′′v(J) + Ψ′v(J)

]
−Ψ′v(J)(δikδjl + δilδjk)

− 2

3

c

J

[
−1

3
Ī1δklδij + δijB̄kl + δklB̄ij −

Ī1

2
(δikδjl + δilδjk)

]
+

4

J

∑
n=4,6

ψ′′f (In)m(n)
ijm

(n)
kl

(7.44)

Finally, transforming (7.37, 7.42) and (7.38, 7.44) to the corresponding matrix form

gives all of formulas, required for developing the user-subroutine for Ψ̂ and Ψ̃ of the HGO

SEF, respectively.
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7.4.2 Verification

Verification of a subroutine for a user-defined material model has been done through

comparisons of computation at two levels: in a quadrature point and in applications

within the whole FEAP.

In a quadrature point

In the calculation of FEM, σ and c are computed at a quadrature point, from the deforma-

tion gradient F at that point. The user subroutine is called at that time. The verification

at this level is to check whether the calculation of σ and c for a given F is correct. The

values of σ(F) and c(F) are compared to those from the Finite Difference Method (FDM).

Analogous to the sequence of derivation of explicit expression of σ(F), through the

FDM the second Piola-Kirchoff stress is computed first and compared. In component,s

SIJ = 2
∂Ψ

∂CIJ
= 2lim

δ→0

Ψ(C + δYIJ)−Ψ(C)

δ
, (7.45)

where YIJ is the second-order tensor whose IJ-th component is 1 and all the other compo-

nents vanish. If the values for S(F) from the subroutine agree with those from the FDM,

the verification can forward so check the material tangent moduli. Through the FDM, the

material moduli in component is computed as

CIJKL = 2
∂SIJ
∂CKL

= 2 lim
δ→0

SIJ(C + δYKL)− SIJ(C)

δ
. (7.46)

In applications within the whole FEAP

Using FEAP with a subroutine to solve some simple problems, where analytical solutions

are available, can check whether the subroutine works well. In this section, we consider two

examples. In both examples, the deformation of a cube, the only element in FE model, is

analysed. The cube has only one family of fibres along the x-axis direction. The material

parameters c = 3 kPa, k1 = 3 kPa, k2 = 1 and a varying value for K. Both Ψ̂ and Ψ̃ for

HGO SEF are employed.

In the first example, the cube is subject to a hydrostatic tension, referring to the de-

formed configuration. The deformation, quantified by principal stretches λi, i = 1, 2, 3,

are calculated analytically and numerically. The analytical solution is obtained by solving

(7.28). The numerical solutions are obtained within FEAP using both subroutines for Ψ̂

and Ψ̃. The comparison (Figure 7.8) shows the numerical solutions agree with analytical
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ones for both compressible (small value for K) and incompressible (big value for K) mate-

rial. The SEF Ψ̃ correctly describes the transverse isotropy of the compressible material,

since λ1 < λ2 = λ3 in Figure 7.8(b).
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Figure 7.8: The principal stretches λ, of a transversely isotropic cube subject to a uniform

traction, is plotted against the logarithm of the dimensionless bulk modulus K ′ = K/K0,

where K0 = 1 kPa. The material is incompressible or nearly-incompressible when K >

103 kPa.

In the second example, the cube is stretched along the x-axis direction subject to the

plane strain condition, such that λ3=1. λ1=2 is specified, λ2 is calculated analytically and

numerically. The comparison in Figure 7.9 shows numerical solution agrees with analytical

one. The material becomes incompressible when K > 103 kPa in Ψ̃, while K > 108 kPa in

Ψ̂. The gradient of curve λ2 of logK ′ in Figure 7.9(b) is higher than that in Figure 7.9(a).

That shows the rate of approximating to incompressibility is higher in this example with

Ψ̃ than Ψ̂.
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Figure 7.9: The principal stretch λ2, of a transversely isotropic cube subject to a uniaxial

stretch λ1=2, is plotted against the logarithm of dimensionless bulk modulus K ′ = K/K0,

where K0 = 1 kPa. A plane strain condition is considered such that λ3=1. The material is

incompressible or nearly incompressible when K > 103 kPa for Ψ̃, but when K > 108 kPa

for Ψ̂.

7.5 Add growth property of tissue in the FE subroutine

In a living tissue, the volumetric growth changes the shape of body. The growth generally

occurs with an elastic deformation, which also changes the shape of body and result in a

stress and stored energy. Therefore, the change of shape in a living tissue is the result of

both growth and elastic deformation. A computational approach for this process is that

decompose the deformation gradient as

F = FeFg, (7.47)

where Fe measures the elastic deformation and Fg measures the change in shape due to

growth. A common assumption is that only the Fe results in a stress and stored energy,

so Fe is the strain measure as an argument in a strain energy function.

In our FE subroutine, we have F as an input argument. In order to implement a SEF

with considering the growth property, we first need to calculate Fe as

Fe = FF−1
g . (7.48)

Then the stored energy Ψ(Fe), Cauchy stress σ(Fe) and spatial tangential moduli c(Fe)

are obtained from the formulae in Section 7.4.1.
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Two examples are used to demonstrate the computation using this FE subroutine and

verify this subroutine. In both examples, a uni-axial growth is considered. For example,

when the body grows g1 times in length along e1, we have

Fg =


g1 0 0

0 1 0

0 0 1

 . (7.49)

In the first example, a simple stretch of a square subject to plane strain condition is

considered (Figure 7.10).

F

Fg

Fe

Ω1

Ωt

Ω0

e1

e2

Figure 7.10: The uniaxial stretch of a body (Ω1 → Ωt) is demonstrated due to both internal

growth and external loading: dash line shows the imaginary theoretical decomposition of

F, while solid line shows the computational process in FEAP.

The square Ω1 is stretched along the direction of e1, so

F =


λ1 0 0

0 1 0

0 0 1

 , (7.50)

where 1 6 λ1 6 2.

Thus we calculate the elastic deformation gradient as

Fe = FF−1
g =


λ1g
−1
1 0 0

0 1 0

0 0 1

 . (7.51)

Here we calculate the Cauchy stress analytically and numerically when the body is in

the configuration Ωt. The analytical stress associated with the incompressible HGO SEF
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in (7.15) is

σ = −PI + cB + 2H(I4)k1(I4 − 1) exp[k2(I4 − 1)2]m, (7.52)

where B = FeF
T
e , I4 = (Fee1) · (Fee1) and m = (Fee1)⊗ (Fee1) for this deformation from

Ω0 to Ωt, and P is determined from the boundary conditions. The boundary conditions

associated with the deformation from Ω0 to Ωt are: the left boundary is fixed such that

there is no displacement in the e1 direction, the right boundary has a constant displacement

in the e1 direction, the bottom is fixed such that there is no displacement in the e2

direction, and the top is traction-free. From the top boundary condition, we know σ22 = 0,

from which we have

P = c, (7.53)

and then the analytical stress is given by

σ11 = −P + cx2 + 2H(x2)k1x
2(x2 − 1) exp[k2(x2 − 1)2]

= (x2 − 1){c+ 2H(x2)k1x
2 exp[k2(x2 − 1)2]},

(7.54)

where x = λ1g
−1
1 .

The deformation from Ω1, with initial stress associated with Fg, to Ωt is simulated in

FEAP with our FE subroutine, and the Cauchy stress is computed numerically. In the

computation, the value of Fg is specified a priori, and the deformation consistent with

F is achieved through a displacement loading on the right end of Ω1 such that we have

1 6 λ1 6 2. Other boundary conditions include the left boundary is fixed such that there is

no displacement in the e1 direction, the bottom is fixed such that there is no displacement

in the e2 direction, and the top is traction-free.

In Figure 7.11, we plot the Cauchy stress computed analytically and numerically

when the body is in the configuration Ωt, using material parameters c = 3.0 kPa, k1 =

2.3632 kPa, k2 = 0.8393, and penalty parameter K = 105 kPa in the FE computations.

The figure shows very good agreement.

In the second example, a simple shear of the square subject to plane strain condition

is considered (Figure 7.12) with

F =


1 F12 0

0 1 0

0 0 1

 , (7.55)

where 0 6 F12 6 0.5.
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Figure 7.11: Cauchy stress σ11 is plotted against the stretch ratio λ1 in the example of

uni-axial stretch. g1=1.5 is used in this example.

F
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FeΩ1

Ωt

Ω0

e1

e2

Figure 7.12: The simple shear of a body (Ω1 → Ωt) is demonstrated due to both internal

growth and external loading: dash line shows the imaginary theoretical decomposition,

while solid line shows the computational process in FEAP.

We calculate the elastic deformation gradient as

Fe = FF−1
g =


g−1

1 F12 0

0 1 0

0 0 1

 . (7.56)
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In this example, we consider a compressible material since the volume changes from

Ω0 to Ωt. To achieve this, we use a small value for K, say K = 100 kPa in our example.

Substitution of (7.56) into (7.38) yields the analytical stress

σ11 = K(g−1
1 − 1) +

2c

3
g

5/3
1 (g−2

1 + F 2
12 − 1) + 4k1g

−1
1 (g−2

1 − 1) exp
[
k2(g−2

1 − 1)2
]
,

σ22 = K(g−1
1 − 1) +

c

3
g

5/3
1 (1− g−2

1 − F 2
12),

σ12 = cg
5/3
1 F 2

12.

The deformation from Ω1, with initial stress associated with Fg, to Ωt is achieved by

specifying a displacement loading on surfaces of Ω1 in FEAP, such that we have the simple

shear deformation and the stress is computed numerically. The boundary conditions on Ω1

are: the bottom and top are fixed such that there is no displacement in the e2 direction,

and the left and right boundaries have constant displacement u = F12X2 −X1 in the e1

direction, where X1 and X2 are the coordinate of a point in the left and right boundaries

of Ω1.

The Cauchy stress computed analytically and numerically when the body is in the

configuration Ωt are plotted in Figure 7.13 and the good agreement between them is

shown.

This subroutine with growth property has many applications. The residual stress can

be introduced when F−1
g is a measure of residual strain and a corresponding constitutive

law for residual strain to residual stress is specified. Imagine that Ω1 in Figure 7.10 has a

very rigid skin and the growth, specified by Fg, has already occurred in the skin. In this

condition, Ω1 includes the residual stress due to the growth. If the skin is removed, Ω1

will relax to Ω0. Therefore, F−1
g is a measure of residual strain in this case.

The growth may be activated by over-stress, over-stretch or over-energy-stored. Asso-

ciating, a growth law

Fg = Fg(x) (7.57)

is needed. Let x=σ define a stress-driven, x=C define a strain-driven and x=Ψ de-

fine a energy-driven growth law. Our FE subroutine can be updated to cope with these

mechanics-driven growth law. An implicit implementation of this law is a fully-coupled

approach. The mechanical quality (σ, C or Ψ) in the growth law depends on Fe, so the

isolation of Fe through

Fe = FF−1
g (Fe) (7.58)
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Figure 7.13: Components of Cauchy stress are plotted against the shear F12 in the example

of simple shear. g1=2 is used in this example.
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is difficult. On the other hand, an explicit implementation is easy. Since the nonlinear

deformation is solved as a sequence of linearised problems or proportional steps. The

calculation of Fg in n-th step uses the mechanical qualities from the equilibrium at n− 1-

th step. Analogous to the simple examples above, the n-th step only solves the equations

for elastic deformation.

7.6 Conclusion

We have shown that a strain energy function Ψ̂, constructed for a nearly-incompressible or

compressible material from an incompressible material model Ψ following the conventional

approach of using Ψ in a FE program, may lead to loss of anisotropy. To avoid this

problem, we propose a possible solution: do not use of the decomposition of F in parts

of Ψ associated with anisotropy. The suggestion is demonstrated through application in

a Fung-type and HGO SEF, so we have a new compressible SEF Ψ̃. The FE subroutines

for both Ψ̂ and Ψ̃ of HGO SEF are developed. In this subroutine, the growth of living

soft tissue is also considered. The subroutines have been verified and can be used in the

FE computation for living fibrous soft tissues.



Chapter 8

Conclusions

This thesis has focussed on the development of computational models to understand me-

chanical issues in arterial dissections. The computational models use FE-based methods:

standard FEM with tears that coincide with the interfaces between elements; XFEM with

tears expressed via enrichment functions that appear in the specification of the discreti-

sation. We have developed several computational techniques and reported the effects of a

number of mechanical parameters on the criteria for tear propagation.

The computational techniques developed in this thesis include how to: calculate the

energy release rate of a fibre-reinforced soft tissue subject to internal pressure, introduce

the residual stress into a FE model, calculate the stress-free configuration through inverse

analysis and develop a material model for living fibrous soft tissue in a FE program. These

techniques are verified through comparison with theoretical analysis of simple cases. The

numerically calculated deformation and stress of a two-layer arterial wall with residual

stress inflated by internal pressure agree with analytical results. A comparison between

analytical and numerical calculations of the stress for a soft tissue that includes growth

shows good agreement.

Using the techniques above we have reported the critical pressure and direction of

propagation at the onset of propagation of a tear in soft tissue. We have investigated the

effect of several geometric, material and loading parameters on the propagation as follows:

� In the models of pressure-driven tear propagation in longitudinal strips (Chapter

3), we found the energy release rate increases with the axial length of tear, so the

critical pressure decreases with the length. In contrast, the surrounding tissues will

decrease the energy release rate and result in arrest when the surrounding tissues are

174
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stiff enough. Therefore, the decrease in stiffness of surrounding tissues will increase

the risk of dissection propagation.

� Through the simulations of peeling-driven tear propagation in strips and discs (Chap-

ter 4), we found the tear is likely to propagate along the material axis with the

maximum stiffness, which is determined by the orientation of fibres. Therefore, fibre

plays an important role in the direction of propagation.

� The study on the effect of circumferential length and radial depth of tear (Chapter

4), shows that a shallow and long tear tends to buckle inner wall and collapse lumen,

while a deep tear more likely to propagate. For a short tear, the critical pressure

increases with the depth, while decreases with the depth for a long tear. Some shapes

of the deformed arterial wall, predicted by our simulation, are similar to CT scans

of arterial dissections in the clinic.

� The residual stress can prevent tear propagation (Chapter 5 and 6). Our simulations

show the critical pressure for tear propagation increases with the opening angle or

residual stress. This results might explain why the ageing is an important factor in

diagnosis of an AD, since residual stress varies significantly with age.

In Chapter 7 we demonstrated that the implementation of a material model in a finite

element program for an anisotropic material can lead to loss of the anisotropy unless care

is taken in the implementation. The issue arises when using an incompressible material

in a compressible calculation with a volumetric term whose parameter K is adjusted so

that the constraint of incompressibility is approximately satisfied. This issue has been

shown by Nolan et al. [2014]; Vergori et al. [2013] for the HGO SEF. In this thesis, we

extended this finding to show that this issue exists for any anisotropic SEF, including

HGO and Fung-type SEF. However, the problem disappears for incompressible material,

in other words, as the controlling parameter K → ∞. To deal with the issue in the

compressible region, we found a way to avoid the loss of anisotropy, i.e. avoiding using

of the volumetric and deviatoric decomposition in terms related to the anisotropy. In

addition, a detailed derivative for implementation of a strain energy function in a FE

program was shown, and the HGO SEF was implemented in an open-source FE program

FEAP. Using this program, we also demonstrated our findings from analytical solutions

above in the numerical computations.
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The findings of this thesis might help to explain the governing mechanical factors for

many phenomena in dissection of the arterial wall.

8.1 Limitations and future directions

Biomechanical modelling of the dissection of the arterial wall and the evolution of the

dissection is challenging, what we face is a coupled fluid-solid interaction problem, com-

plicated by large deformations, a complex geometry and boundary conditions and uncer-

tainty regarding many material parameters. For instance, the mechanical properties of the

multi-layer and multi-component arterial wall are very complex, the loading on the arterial

dissection and the surrounding tissues is difficult to measure and geometry of arterial wall

is not easily determined. To explore the behaviour of a dissection we have had to make

a number of modelling assumptions. In this thesis, we have assumed that the arterial

wall is a hyperelastic, fibrous soft tissue [Holzapfel et al., 2000]. We have employed static

pressure loading on both the lumen and the tear and used idealised geometries to examine

the effects of residual stress. These simplifications may be relaxed in a number of ways to

bring us closer to modelling the behaviour of an actual tear in an actual human artery.

In Chapter 3, we proposed a computational framework to compute the energy release

rate associated with a tear extension. The advantage of this approach is that we do

not need to know the singularity of the tip-stress field a priori, which is generally un-

known for the nonlinear elastic material. However, we have to specify additionally the

direction of tear extension. For illustration of this computational framework, we used a

two-dimensional trip with a tear in the centre, subjected to pressure loading on the tear

faces. The symmetry of the geometry suggests that the tear will extend along the centre-

line, as used in our examples. However, for other geometries without the symmetry we

must choose a physical principle that selects the direction of propagation. One such choice

is that the tear proceeds in a direction that maximises the energy release rate. In order to

simulate this we would have to compute the energy release rate as a function of extension

direction. There are theoretical aspects to this approach that would be interesting to ex-

plore, e.g. the equivalent of the J-integral for nonlinear materials and the derivation from

physics and thermodynamics of a selection criterion for direction.

Using the simplified model in Chapter 3, we demonstrated that connective tissues with

larger elastic modulus can resist tear opening, decrease the energy release rate and lead
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to arrest tear extension. In the arterial dissection, the effect of connective tissues is more

complex. There are two inherited connective tissue disorder (Marfan and Ehlers-Danlos

syndromes) highly related to dissections [Braverman, 2010; Milewicz et al., 2005]. The

dissection does not tend to occur in the Marfan syndrome until the aortic root diameter

reaches about 5 cm, while in the vascular Ehlers-Danlos syndrome the dissection com-

monly occurs at normal vascular dimensions. The vascular wall is very different in these

conditions, with thickening, increased collagen and decreased elastin in the Marfan syn-

drome, but decreased collagen and normal elastin in the vascular Ehlers-Danlos syndrome.

Thus, it is worth to model this effect of collagen and elastin on the risk of dissection and

build the connection with both types of connective tissues diseases. However, to perform

this modelling, we have to develop new material models, because the HGO strain energy

function we used is a homogenised constitutive law. In addition, our current model with

the HGO strain energy function can not model the percentage change of both collagen

and elastin. An alternative to be considered in future is the strain energy function based

on the constrained mixed theory, e.g. (1.1), which allows one to control the percentage

of the each component in computation models and to investigate the effect of change in

percentages of both elastin and collagen on energy release rate.

In Chapter 4, we employed the extended finite element method with a cohesive traction-

separation law for the tear. In comparison with the approach of Chapter 3, this method

automatically calculates the path of the tear as it extends, based on the deformation and

the cohesive law. In Chapter 4, we focus on the effects of tear length and depth on critical

pressure pc for arterial dissection propagation and shapes of the deformed arterial wall.

The value of pc for a particular arterial dissection depends on the material parameters, the

geometry of the artery and the geometry of the tear. For example, the maximum cohesive

stress Tc plays an important role. However, the value of Tc is not easy to be estimated

for a given tissue. Ferrara and Pandolfi [2010] used Tc ≈ 8.6 c when modelling the peeling

apart of strips using standard FEM with cohesive surfaces. We found that simulations in

Abaqus did not converge unless Tc 6 2cm, where cm is the shear modulus of the matrix in

the media. This ratio of Tc/cm = 2 is lower than that achieved in the literature [Ferrara

and Pandolfi, 2010], and results in the value of pc being small. This limitation does not

affect our present study, the aim of which is to identify the trends in the variation of the

critical pressure with tear length and depth, and thus we also scaled pc from the simulation

by cm to form a dimensionless critical pressure p′c.
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In Chapters 5 and 6, we focused on the effect of the residual stress on the critical

pressure. The two challenges in this study are 1) how to include residual stress into a

finite element model, and 2) how to guarantee simulations start from a same stress-residual

configuration, i.e. the difference between simulations is only residual stress. In Chapter

5, we imported the analytical residual stress through a subroutine sigini.f as an initial

stress field, but this can not work for a model with an anisotropic hyperelastic material

in Abaqus 6.13. Therefore, in Chapter 6 we developed a computational protocol that

involves a sequence of novel boundary conditions to close an opening angle, starting from

the stress-free configuration. The numerical approach has the following two requirements:

after closing, the two ends should have same dimensions and this joint end can move during

the subsequent inflation. For the simplified geometry in Chapter 6, these two requirements

are automatically satisfied through our boundary conditions. However, these boundary

conditions have to be updated for a general geometry or an alternative approach may be

considered for including the residual stress in a finite element model.

In Chapter 7, we demonstrated a special care should be taken in the implementation

of a strain energy function for an anisotropic material in a finite element solver, and also

incorporated a growth tensor Fg in our formulations. With this approach, we can analyse

the elastic deformation of a body Ω1 with existing stress, e.g. initial stress consistent with

boundary conditions or residual stress. This growth tensor transforms Ω1 to the stress-free

configuration Ω0. We have implemented the HGO strain energy function with this special

care and growth tensor in FEAP, and verified this subroutine through some examples of

simple geometries and loading scenarios, for which the analytical solutions are available. In

future, we will use this approach to include the residual stress, as demonstrated in Figure

8.1, in the models of arterial dissection. The constraint of this method is that we need to

specify Fg a priori. For our simplified geometries, we can obtain the Fg analytically. For

a general geometry, Fg may be obtained by tracking the deformation from Ω1 to Ω0 using

markers.

Our work in Chapter 7 is a preliminary step towards including the growth and remod-

elling of the arterial wall in our models. Currently, we assumed the tear will extend in the

extreme loading condition like hypertension, which is true for ex-vivo tissues. However,

the living tissues can adapt the change of loading environment through its biological func-

tion. For example, Qi et al. [2015] showed how the collagen fibres redistribute through the

arterial wall subject to the internal pressure. To model a living soft tissue, both the tear
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Figure 8.1: With an implementation of strain energy function Ψ(FF−1
g ) with a given Fg

in a FE solver, the deformation from Ω0 to Ωt can be simulated using Ω1 as the initial

configuration in a computational model. That is, the computational simulation starts

from Ω1, but the computation is for the deformation from Ω0 to Ωt. Let p1 = 0, Ω1 is

the zero-loading configuration with residual stress. The residual stress is determined by

the residual strain in the deformation from Ω0 to Ω1 and a constitutive law. This is an

alternative approach to include the residual stress into a finite element model.
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Figure 8.2: Experiments performed by MacLean et al. [1999]: square tissue samples were

cut from a porcine thoracic aortas and were elongated 3.5 times in the radial direction

with a tensile testing machine. This figure shows that the elastin layers was separated and

the muscle cell nuclei (dark purple) was reorientated. Scale bar is 30µm.

extension and growth and remodelling occur as a result of loading environment change.

All of the failure criteria we used are based on the assumption that the arterial wall is a

homogeneous continuum. However, due to the complex structure of the arterial wall a new

failure criterion might be developed, which is likely to be multiscale—modelling different

components being damaged at different length-scales. Some experiments to support this

hypothesis were performed by MacLean et al. [1999], in which a histological analysis of

porcine thoracic aorta subject to a radial stretch was performed. This analysis showed that

the damage of aortic wall involves separation of the elastin layers, change in orientation

of smooth muscle cells and torn elastin fibres, as shown in Figure 8.2.

Another thing to be considered in the failure criterion may be the failure mode, be-

cause the driving force for dissection propagation in reality is different with that in many

experiments [e.g. MacLean et al., 1999; Sommer et al., 2008]. In [MacLean et al., 1999], the

damage of arterial wall was caused by a tension. In [Sommer et al., 2008], the propagation

of dissection was also caused by a tension when peeling strips of arterial wall. However, in

reality the dissection occurs in the radially compressed arterial wall subject to the luminal

blood pressure, and is highly related to the hypertension [Braverman, 2010]. Subject to the

pressure, the elastin layers should be compressed rather than stretched radially. We think

the radial separation in a dissection may be due to filling of the dissection by dynamic

blood flow. Therefore, a failure criterion including these two aspects (multiscale damage
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of the arterial wall and pressurized fluid-driven tear propagation) must be developed.

Finally, it has been observed that a fluid-structure interaction model of arterial dissec-

tion [Alimohammadi et al., 2015] is necessary to support clinicians. We used a static pres-

sure as the driving force for the extension of an arterial dissection. Pressure-penetration

technique—the new generated tear surface will be subject to pressure loading during tear

extension, was used to simulate the fluid pressure, this is a simple modelling strategy for

fluid-solid interaction. Loading from the dynamic blood flow should be considered as the

driving force for the tear extension.
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