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Abstract 

This thesis considers constructing optimising distributions with applications in 

estimation and optimal design by exploring a class of mUltiplicative algorithms. 

Chapter 1 opens with an introduction to the area of linear design theory. It 

begins with an outline of a linear regression design problem including properties 

of the information matrix of the design. The second half of this chapter focuses 

on several design criteria and their properties. This part consists of two cases: 

when interest is in inference about all of the parameters of the model and when 

interest is in some of these parameters. The criteria include D-, A-, 0-, E-, D A-, 

L- (linear) and EA-optimality. 

Chapter 2 considers classes of optimisation problems. These include problems 

[labelled (PI), (P2)] in which the aim is to find an optimising distribution p. In 

examples of problem (P2) p is seen to define a distribution on a design space. 

Optimality conditions are determined for such optimisation problems. The em­

phasis is on a differential calculus approach in contrast to a Lagrangian one. An 

important tool is the directional derivative F</>{p, q} of a criterion function ¢(.) 

at p in the direction of q. The properties of F</>{p, q} are studied, differentiability 

is expressed in terms of it, and further properties are considered when differen­

tiability is defined. The chapter ends with providing some optimality theorems 

based on the results of the previous sections. 

Chapter 3 proposes a class of multiplicative algorithms for these problems. 

Iterations are of the form· p\r+1) ex p\r)f(x\r») where x\r) = d\r) or F(r) and .} }}' } } j 

d)r) = a¢/aPj while Ft) = F</>{p(r),ej} = d)r) - ~p~r)d~r) (a vertex directional 
~ 

derivative) at p = p(r) and f(.) satisfies some suitable properties (positive and 

strictly increasing) and may depend on one or more free parameters. We refer to 

this as algorithm (3.1) [the label it is assigned]. These iterations neatly satisfy 



the constraints of problems (PI), (P2). Some properties of this algorithm are 

demonstrated. 

Chapter 4 focuses on an estimation problem which in the first instance is a 

seeming generalisation of problem (PI). It is an example of an optimisation 

problem [labelled (P3) in chapter 2] with respect to variables which should be 

nonnegative and satisfy several linear constraints. However, it can be transformed 

to an example of problem (P2). The problem is that of determining maximum 

likelihood estimates under a hypothesis of marginal homogeneity for data in a 

square contingency table. The case of a 3 x 3 and of a 4 x 4 contingency table 

are considered. 

Chapter 5 investigates the performance of the above algorithm in constructing 

optimal designs by exploring a variety of choices of f(.) including a class of 

functions based on a distribution function. These investigations also explore 

various choices of the argument of f(.). Convergence of the above algorithm are 

compared for these choices of f(.) and it's argument. Convergence rates can also 

be controlled through judicious choice of free parameters. 

The work for this chapter along with the work in chapter 4 has appeared in 

Mandai and Torsney (2000a). 

Chapter 6 explores more objective choices of f(.). It mainly considers two ap­

proaches - approach I and approach II to improve convergence. In the first f(.) 

is based on a function h(.) which can have both positive and negative arguments. 

This approach is appropriate when taking Xj in f(xj) to be Pj , since these vertex 

directional derivatives being 'centred' on zero, take both positive and negative 

values. The second bases f(.) on a function g(.) defined only for positive argu­

ments. This is appropriate when taking Xj to be dj if theRe partial derivatives are 

positive as in the case with design criteria. These enjoy improved convergence 

rates. 

Chapter 7 is devoted to a more powerful improvement - a 'clustering approach'. 

This idea emerges while running algorithm (3.1) in a design space which is a 



discretisation of a continuous space. It can be observed that 'clusters' start 

forming in early iterations of the above algorithm. Each cluster centres on a 

support point of the optimal design on the continuous space. The idea is that, 

at an appropriate iterate p(r), the single distribution p(r) should be replaced by 

conditional distributions within clusters and a marginal distribution across the 

clusters. This approach is formulated for a general regression problem and, then 

is explored through several regression models, namely, trigonometric, quadratic, 

cubic, quartic and a second-order model in two design variables. Improvements 

in convergence are seen considerably for each of these examples. 

Chapter 8 deals with the problem of finding an 'approximate' design maximising 

a criterion under a linear model subject to an equality constraint. The constraint 

is the equality of variances of the estimates of two linear functions (gT fl. and !l fl.) of 

the parameters of interest. The criteria considered are D-, D A- and A-optimality, 

where A = [g, QJT. Initially the Lagrangian is formulated but the Lagrange pa­

rameter is removed through a substitution, using linear equation theory, in an 

approach which transforms the constrained optimisation problem to a problem 

of maximising two functions (Q and G) of the design weights simultaneously. 

They have a common maximum of zero which is simultaneously attained at the 

constrained optimal design weights. This means that established algorithms for 

finding optimising distributions can be considered. 

The work for this chapter has appeared in Torsney and MandaI (2000). 

Chapter 9 concludes with a brief review of the main findings of the thesis 

and a discussion of potential future work on three topics: estimation problems, 

optimisation with respect to several distributions and constrained optimisation 

problems. 
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Chapter 1 

Linear Design Theory 

1.1 Introduction 

An experiment can be designed to answer a variety of questions of interest. 

Values or levels of inputs must be chosen before running an experiment and ob­

serving a measurement on some (or several) variable(s) of interest. There will be 

a set of or several combinations of the inputs allowed. We must decide how many 

observations to take at each combination of inputs. This defines a design. 

In regression experiments the inputs are often numerical and the objective is good 

estimation of the parameters of the regression model. There are a variety of crite­

ria defining good estimation. We choose a design to optimise a chosen criterion. 

The general theory of optimal design was originally developed for the linear mod­

els. The aim of this chapter is to give a general description of optimal design 

theory for linear models. We give some fundamental concepts of optimal design 

theory, such as the definition of a design, variance function, information matrix, 

various criterion functions and their properties. 

1 
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We start by considering the problem of selecting an experimental design to furnish 

information on models of the type: 

y rv p(yl~, tl, a) (1.1) 

where y is the response variable. In a particular experimental condition, y is 

considered as a sum of a real-valued response function evaluated at ~, and a 

random error. 

~ = (XI, X2, ... ,xm)T are design variables. These can be chosen by the experi­

menter, their values being restricted to a space X, i.e. ~ E X ~ Rm. Thus X is 

the set of experimental conditions. X is called the design space. Typically it will 

be continuous but can be discrete. 

tl = ((h, ()2, •.. ,()k)T is a k-dimensional vector of unknown parameters. The true 

value of tl is known t.o belong to a set e E Rk. 

a is a nuisance parameter; this also is fixed and unknown but is not of primary 

interest. 

p(.) is a probability model. 

The experimenter can freely choose the experimental conditions from the given 

experimental domain X. In most applications, X is taken to be compact. For 

each x EX, an experiment can be performed whose outcome is a random variable 

y = y(~), where var(y(~)) = a2
• We generally suppose that a does not depend 

on the experimental condition ~. 

In linear regression design the model is linear in the unknown parameters tl but 

not necessarily linear in~. So in linear models y(~) has an expected value of the 
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explicit form: 

(1.2) 

where [(:!!.) = (iI(;£), 12(;£), ... ,fk(;£))T be a vector of k real-valued functions 

defined on X. The regression functions iI, 12, ... ,fk are known to the experi­

menter. 

In order to obtain an observation on y, a value for ;£ must first be selected from 

X. It is assumed that ;£ can be set to any chosen value in X. 

Given this control over the selection of ;£, a natural question to consider is at 

what values of ;£ should observations, say n, on y be taken in order to obtain 

a 'best' inference or as reliable an inference as possible for all or some of the 

parameters (). 

Such a 'best' selection of ;£ values or allocation of the n observations to the 

elements of X is termed an optimal design or optimal regression design. 

The mode of inference must first be decided upon. For the moment let us suppose 

that it is point estimation. It will be seen that the solution proposed for this case 

will hold good for other modes of inference too. 

It is desired then to choose n values (;£1' ;£2' ... , ;£n) to yield 'best' point esti­

mates ~ of some or all of the parameters ~. 

Suppose by some method of point estimation the estimator ~ of ~ is obtained. Let 

~ be unbiased for~. Typically the components OJ will be correlated. Arguably 

then the k x k matrix D(~) = E([~ - ~][~ - ~y), the dispersion matrix of ~ about 
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u.., contains information about the accuracy of ~ not only in its diagonal elements, 

which of course measure the mean squared deviation of OJ from OJ, but also in its 

off-diagonal cross product deviation terms. Generally speaking the "smaller" is 

D(~) the better is the accuracy of~. 

Suppose the model (1.2) is true. Let Yi denote the observation obtained at ~ so 

that 

It is of note that typically there will be several equalities between the ~/s, 

more than one observation being taken at the same ;f value. Suppose also that 

Yt, Y2, ... ,Yn are independent random variables with equal variance a2. The Yi'S 

then satisfy the standard linear model: 

(1.4) 

where Y = (Yl, Y2, ... ,Yn), X is the n x k matrix whose (i,j)th element is !J(;fi), 

In is the n x n identity matrix and D(Y) denotes the dispersion matrix of Y. 

Least squares estimators are a conventional choice for this model having the 

optimality of being best linear unbiased estimators (BLUE). They are solutions 

of: 

(1.5) 

The k x k matrix (XT X) is the information matrix for u... The larger (XT X), 

the greater is the information in the experiment. If all the parameters u.. are of 
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interest, then the selection of;r must at least ensure that the matrix (XT X) is 

non-singular, in which case the unique solution for (1.5) is given by: 

with 

E(~) () 

D(~) a2(XTXtl. 

The predicted value of the response at ;r is 

Y(~) JI(;r)B1 + h(;r)B2 + ... + fk(;r)Bk 

LT(;r)~ 

(1.6) 

Clearly the dispersion matrix of ~ does not depend on ~ and only depends pro­

portionally on the parameter a2. We have to select {;rl' ;r2' ... , ;rn} to make the 

matrix D(~) as small as possible, namely a {;rl' ;r2' .,. , ;rn} which makes the 

matrix (XT X) large in some sense. 
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1.2 Discretising the Design Space 

The linear model in (1.2) can be written as: 

(1.7) 

where 

Q (h (;r) , 12 (;r), ... ,fk(;r))T, Q E V, 

V {Q E]R.k : Q = (h(;r), h(;r) , .. , ,fk(;r))T, ;r EX}. 

Clearly choosing a vector ;r in the design space X is equivalent to choosing a 

k-vector Q in the closed bounded k-dimensional space V = L(X), where L is the 

vector valued function (/1,12, ... ,ik)T. That is, V is the image under f of X. 

So, V is an induced design space. Typically this design space is continuous but 

we can assume that V is discrete. A 'justification' for this will be given later on 

in this section. 

Suppose that the discrete design space V consists of J distinct vectors Q1, Q2"" ,'!b. 

In order to obtain an observation on y, a value for Q must first be chosen from 

the J elements of V to be the point at which to take this observation. That V is 

taken to be discrete suggests that this can be done without error. 

The design problem can now be expressed more precisely. At which of the points 

Qj should observations be taken and, if n observations in total are allowed, how 

many observations should be taken at these points in order to obtain 'best' least 

squares estimators of ~ ? 

Given n observations, we must decide how many of these, say n)', to take at v' 
-)' 
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J 
L: nj = n. Given these choices the matrix (XT X) can be expressed in the form: 
j=l 

where 

M(11) 
J 

""' nJov ovr: ~ -J-J 
j=l 

VNVT 

(1.8) 

We now want to choose 11 to make the matrix M(11) big in some sense. Given 

that the n/s must be integer this is an integer programming problem and in the 

design context is described as an exact design problem. 

Typically interger programming problems are difficult or at least laborious to 

solve even without additional constraints, mainly because the theory of calcu­

lus cannot be used to define the existence of or to identify optimal solutions. 

Furthermore, a solution would have to be worked out separately for different val­

ues of n. By the nature of the problem then, no formula for an optimal exact 

design could be devised that would express it as a function of n. Nevertheless 

one could not avoid having to solve such a problem if, for given n, one chose to 

seek optimal nj's directly. 

However, 

M(11) nM(p) (1.9) 
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where 

J 

M(p) "" PJ" V " v~ ~ -J-J (1.10) 
j=l 

VPVT (1.11) 

and P = diag(pl' P2, ... ,PJ); Pj=~ and so is the proportion of observations 
J • 

taken at Vj, so that Pj ~ 0, L: Pj = 1; and P = (PI, P2, ... , PJ) represents the 
- j=l 

resultant distribution on V. 

Thus our problem becomes that of choosing P to make M(p) large subject to 
J 

Pj=~. Relaxing the latter to Pj ~ 0 and L: Pj = 1 yields an approximate 
j=l 

design problem. 

This is a simpler or more flexible problem to solve and yet one that is not much 

visibly different from the original. 

Naturally an approximate solution that would be preferred to the original exact 

design problem would be np*, rounded to a 'nearest' exact design. Hopefully this 

would be a near fully optimum exact design. 

Note that we can view P as defining a probability distribution on V to yield 

(1.12) 

Thus we can think of a design as defined by a set of weights or probabilities Pj, 

Pj being assigned to 'Qj E V. Such a design may put weight Pj = O. 
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Definition 1.2.1. Design Measure 

We have referred to P above both as the vector (PI, P2, ... , PJ) and as a proba­

bility distribution on V. Of course this induces a distribution or measure on the 

original design space X. A full statement of this might be 

p={~1~2 ... ~J} 
PI P2 ... PJ 

(1.13) 

where the first line gives the locations of the design points with Pj the associated 
J 

design weights. L: Pj = 1 and 0 ~ Pj ~ 1 for all j. 
j=I 

A more conventional notation is 

~ = {:: ~ ::: ~} (1.14) 

with ~ defined to be the design measure. However, we use the same symbol (p 

usually) to represent both the vector of weights and the resultant measures on 

both X and V. We also do not distinguish notationally between a design and 

a design measure. This does not cause confusion. If P is a design measure or 

distribution, it is by definition defined on the design space. We will always be 

clear about what the design space is and about which design point receives which 

weight. 

Definition 1.2.2. Support of a Design Measure 

The support of the design measure P in the design space V is defined to be those 

vertices 'Qj with nonzero weighting under p. It is denoted by: 
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Supp(p) {Vj E V : Pj > 0, j = 1,2, ... ,J} 

Often there will be an optimal design, say p* such that Supp(p*) is a strict subset 

ofV. 

Definition 1.2.3. Standardised Variance of the Predicted 

Response 

The standardised variance of the predicted response on y at ;£ for the design 

(1.13) is given by 

d(;£, p) (1.15) 

where M(p) is the information matrix. 

If a design has N trials and Y (;£) is the predicted response at ;£, then d(;£, p) can 

be written as 

d(;£, p) N var{~(;£)} . 
a 

(1.16) 
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1.3 Properties of the Matrix M(p) 

(i) The information matrix M(p) is symmetric nonnegative definite. The sym­

metry of this matrix follows from its definition (1.9), and, the nonnegative­

ness of the appropriate quadratic form is easy to verify. 

~TEp[Q1{k 

Ep[~TQQT~] 

Ep[(~T 12.)2] ~ O. 

If a design has less that k (number of parameters) support points then the 

determinant of its information matrix is zero. 

(ii) Let M = {M(p) : p is any probability measure on V}. The set M is the 

convex hull of the set {QQT : 12. E V}. Note that if Pv is the probability 

measure that puts unit weight at the point 12. E V, then M(pv) = QQT, see 

Silvey (1980). 

Theorem 1.3.1. (Caratheodory's Theorem) Each element M of the 

convex hull M of any subset S of n-dimensional space can be expressed as a 

convex combination of at most n + 1 elements of S : 

n+l 

M = Laisi, 
i=l 

n+l 

L ai = 1, ai ~ 0, Si E S, i = 1,2, ... ,n + 1 
i=l 

(1.17) 

If M is a boundary point of the set M then an+! can be set equal to zero. 
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Such representations are not unique. [See Fedorov (1972) and Silvey (1980).] 

Now applying the problem to the case 

we have that each M E M has at least one representation of the form 

where ~ E V, 1 = 1,2, ... ,L and L ~ [k(k~H) + 1]. Also by the same theorem if 

M is a boundary point of M, the inequality involving L can be strengthened to 
L < k(k+1) 

- 2 • 

Some Remarks 

From a practical point of view this property is extremely important. It says 

that, for any experimental design p with support exceeding [k(k;l) + 1] 

points, and information matrix M(p) it is always possible to find a design 

p with a support of at most [k(k;l) + 1] points, which for this allocation 

(general number of distinct observations) will have the information matrix 

M (p) = M (p). Thus we have that any continuous measure and in particular 

any continuous optimal design measure can be replaced by at least one finite 

discrete probability distribution, and so we have an explanation for having 

initially assumed V discrete, for such an optimal design will have a discrete 

optimal support. This optimal support we could regard as the discrete 
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space. However, typically, this optimal support will not be known except 

in some instances when it, or some finite discrete subset of V containing it, 

can be identified using intuition or, geometrical or symmetry arguments. 

Typically, the optimal support must in a sense be computed, possibly only 

approximately, as a prelude to determining the optimal weights p* and 

this is essentially done by some of the algorithms which we will consider. 

Any programmed numerical technique must discretise a continuous space; 

if solutions are not discrete, numerical techniques will only produce discrete 

approximations. Effectively design algorithms will work with discrete V's, 

say VD's, containing approximations, as indicated below, to the optimal 

support Supp(p*). 

An ideal discretisation would seem intuitively to be some form of "uniform 

grid" on a continuous V, but typically this is difficult to determine when V 

is an image under some f of some X. In practice the discretisation that is 

used is the image under [ of a uniform grid on X. 
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1.4 Choice of Design Criteria and Their Prop­

erties 

1.4.1 Definition: Criteria of a Design 

It may be possible to obtain a best inference for all or some of the unknown 

parameters fl E e by making the matrix M (p) large in some sense. So we consider 

various ways in which to make the matrix M (p) large, namely by maximising some 

real valued function ¢(p) = 'ljJ{M(p)}. Note that the function ¢ is called the 

criterion function, and in turn, the criterion defined by the function ¢ is usually 

called cp-optimality. A design maximising ¢(p) is called a ¢-optimal design. 

Now we consider different design criteria of interest and their properties. 

1.4.2 Case-I 

First we consider the case when interest is in inference about all of the parameters 

fl of the linear model (1.7). The information matrix M(p) must therefore be 

non-singular and hence positive definite. Possible criteria in this case include 

D-optimality, A-optimality, G-optimality and E-optimality. 

(I) D-optimality 

The most important design criterion in applications is that of D-optimality, in 

which the criterion function is given by 
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logdet{M(p)} -log det{ M-1 (p)}. (1.18) 

That is, a measure p* is called D-optimal if 

det{M(p*)} = sup det{M(p)}. (1.19) 
p 

Kiefer and Wolfowitz (1960) show that this is equivalent to 

in! sup d(x,p) = sup d(x,p*), (1.20) 
p x x 

and also to 

sup d(x,p*) k, (1.21) 
x 

where d(x,p) is the standardised variance of the predicted response 

(1.22) 

and k, as before, is the number of parameters. 

Various motivations for D-optimality exist. These extend beyond the idea of 

point estimation and all fall into the realm of explicit joint inference. There is an 

interesting statistical interpretation of D-optimal design. If we assume normality 

of the errors in the linear model (1.7), then the general form of the joint confidence 

region for the vector of unknown parameters 0.. E e is described by an ellipsoid 
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of the form: 

{.e : (.e - ~)T M(p) (.e -~) < e}, for some critical value e (1.23) 

where ~ is the least squares estimate or the maximum likelihood estimate of .e. 
The D-optimal criterion chooses M(p) to make the volume of the above ellipsoid 

as small as possible because it is the case that this volume is proportional to 

[det{M(p)}]-L The value of [logdet{M(p)}] is finite if and only if M(p) is non­

singular i.e. when all the unknown parameters are estimable. This is the most 

extensively studied of all design criteria; see Kiefer (1959), Farrell et al (1967), 

Fedorov (1972), Silvey (1980), Pazman (1986), Shah and Sinha (1989), Atkinson 

and Donev (1992), Pukelsheim (1993). 

Other motivations for D-optimality lie in hypothesis testing under a normal linear 

model, though these would be equivalent to taking the ellipsoid above to be a 

classical confidence ellipsoid. 

Properties of cPD(p) = 'l/JD{M(p)} 

(i) 'l/JD is an increasing function over the set of positive definite symmetric 

matrices. That is for M1, M2 E M, 

where M is the set of all positive definite symmetric matrices. 

(ii) 'l/JD is a concave function of the positive definite symmetric matrices. It 
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follows from theorem 1.4.2. 

(iii) ¢D is differentiable whenever it is finite, and the first derivative is given by 

8¢D TM- 1( ) -8 = 'Qj P 'Qj' 
Pj 

(1.24) 

(iv) ¢D is invariant under a non-singular linear transformation of V. 

This property can be easily seen to follow from formula (1.9) for M(p). 

Suppose V = ['QI! '12.2' ••• , 'QJ] is transformed to W = [WI! w2, ••• , wJ] under 

the linear transformation Wj = A'Qj' where A is a k x k matrix. Then a 

design assigning weight Pj to W j has information matrix: 

Then 

Mw(p) 

log det{Mw(p)} 

logdet{AVPVT AT} 

log [ det{V pVT} x det{ A}2] 

logdet{M(p)} + logdet{A}2 

¢D{M(p)} + constant. 
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Theorem 1.4.1. The weighted sum of the variances of the estimates of the 

predicted response d(J2, p), taken over all points of the design p, is equal to the 

number of parameters k. 

l.e., 

J 

LPj d(J2j' p) k. 
j=l 

In the case of a continuous design 

J d(J2, p) dp(J2) k. 
x 

Proof. From (1.15) we can write d(J2j' p) as 

So from (1.27) above 

J 

LPj d(J2j' p) 
j=l 

J 

LPj[T(J2j) M-l(p) [(J2j) 
j=l 

tr{ M-'(P) t,Pj [L(;lCj),[T(;lCj)] } 

tr{ M-l(p) M(P)} 

tr{h} 

k. 

(1.25) 

(1.26) 

(1.27) 
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Theorem 1.4.2. The function [log det{ M (p n]' where M (p) is the infor-

mation matrix, is a concave function. 

Proof. We know that the set of matrices M = {M(p) : p is any probability 

measure on V} is a convex set. Therefore to prove the theorem it is sufficient to 

show that 

10gdet{M} > (1 - a) logdet{M1} + a logdet{M2} (1.28) 

where M1, M2 E M, Ml =I- M2 and M = (1 - a) Ml + a M2, 0 < a < 1. Now 

(1.28) immediately follows from the inequality 

[det{M}] > [det{Md] (1-0) [det{M2}t· 

Equality will hold when Ml = M2 . 

See Fedorov (1972, p.20). 

(1.29) 

Theorem 1.4.3. Let 6 and 6 be two designs with distinct information 

matrices Ml and M2, Mi = M(ei), i = 1,2 for which det{Md = det{M2}. Let 

e = (1- a) 6 + a6, 0 < a < 1. (1.30) 

Then the information matrix M (e) of the design e has the determinant 

det{M(en > det{M1}. (1.31) 

Proof. The proof of this theorem follows immediately from the strict 

concavity of log det{ M} 
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(II) A-optimality 

A-optimality is defined by the following criterion function: 

(1.32) 

Thus an A-optimum design seeks to minimise the sum of the variances of the 

parameter estimates or their average -variance, but does not take correlations 

between these estimates into account. This criterion was considered by Elfving 

(1952) and Chernoff (1953). 

From the point of view of computational complexity, the criterion ¢ A (p) is partic­

ularly simple to evaluate since it only requires the computation of the k diagonal 

entries of the matrix M-l(p). 

Properties of ¢ A (p) = 'ljJ A { M (p) } 

(i) 7./JA is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 7./J A is concave on M. 

(iii) ¢A is differentiable whenever it is finite, and the first derivative is given by 

8¢A TM-2 ( ) -8 = 'Q-j p 'Qj' 
Pj 

(1.33) 
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(III) G-optimality 

G-optimality is defined by the criterion function: 

(1.34) 

This criterion seeks to minimise the maximum value of 'QT M-l (p) 'Q which is pro­

portional to the variance of 'QT~. Kiefer and Wolfowitz (1960) prove the equiva­

lence of this criterion and the D-optimal criterion. 

Properties of cPa (p) = ~a{ M (p) } 

(i) 'l/Ja is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 'l/Ja is concave on M. 

(iii) ¢a is invariant under a non-singular linear transformation of V. To see this 

consider the same linear transformation in this section for D-optimality. 

Then 

- Mawx wTM:;l(p)W 
f!!.E 

- ~~~ (A'Qf(AVPVT ATtl(A'Q) 

- Max 'QT AT(ATtl(VPVTtlA-lAv 
:!i.EA-1W -

- M avx 'QT M- 1 (p) 'Q 
:!i.E 

'l/Ja{M(p)} = ¢a(p). 
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(iv) Suppose that uniquely yT M-l(p) 12.i = Max 12.[ M-l(p) Y.t, then </>a has 
t 

unique partial derivatives corresponding to positive weights, namely 

B</>a [ T M-l() ]2 
Bpj = 12.j P 12.j , (1.35) 

otherwise </>a is not differentiable. 

(IV) E-optimality 

In E-optimality the variance of the least well-estimated contrast g7 ~ is minimised 

subject to the constraint g7 g = 1. Thus the E in the name of this criterion stands 

for extreme. This optimality criterion is defined by the criterion function: 

where Amax[M-l(p)] denotes the largest eigenvalue of M-l(p) [see Kiefer (1974)]. 

Properties of cPE(p) = ¢E{M(p)} 

(i) 'l/JE is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 'l/JE is concave on M. 

(iii) Let AI, A2, . .. ,Ak denote the eigenvalues of M(p). If Amax is unique then </>E 

has unique partial derivatives corresponding to positive weights. Otherwise 

</>E is not differentiable. 
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Some General Discussion about A-, D- and E-optimality 

All these three criteria are special cases of 

(1.37) 

That D- and E-optimality emerge as particular cases is due to the respective 

facts that for positive definite M 

(i) lim 1Pt{ M} 
t~O 

- [det{M}]-l/k 

and 

(ii) lim 1Pt{ M} 
t~oo 

while A-optimality is clearly equivalent to the case t = 1. 

Results (i) and (ii) can be seen directly in a number of ways. In particular 

they can be established by a proof analogous to that which would prove the 

two corresponding moment results, below, of which, interestingly, (i) and (ii) are 

particular cases. 

Suppose x is a discrete positive valued random variable with probability distri­

bution given by 

qi, i = 1,2, ... ,k, 
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where Xi > 0, qi > 0 and L:qi = 1. 

Let f(t) = [E(xt)]1/t. f(t) is increasing in t. 

Then 

(i) lim f(t) 
t-+o 

and 

(ii) lim f(t) 
t-+oo 

For a proof see Beckenback and Bellman (1961, p.16). 

Since the eigenvalues AI, A2, ... ,Ak of M are positive, M being positive definite, 

and 

k 

tr(M-t) = L Ait, 
i=l 

the above matrix results are corollaries which arise in the case 

It was Kiefer (1974) who observed the above generalization which of course has 

the advantage of making possible a unified treatment of D-, A- and E-optimality. 
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1.4.3 Case-II 

Sometimes interest is not in all k parameters, but only in some of the unknown pa­

rameters or some combinations of the parameters of the linear model (1.2). Sup­

pose we are interested in s linear combinations of the parameters (h, O2 , ••• ,Ok, 

namely those s linear combinations which are elements of the vector a = Afl, 

where A is an s x k matrix of rank s ~ k. In particular when A = [Is: 0] where 

Is is the s x s identity matrix and 0 is the s x (k - s) zero matrix, then in this 

case we are interested only in estimating the first s parameters 01, O2 , ••• ,Os of 

fl E e. 

Now if M(p) is non-singular, then the variance matrix of the least squares esti­

mator of Afl is proportional to the matrix AM-l (p)AT. But if M(p) is singular, 

then the basic requirement for estimating the vector a = Afl is that the row space 

of A is in the range space (column space) of M(p) which results in the invariance 

of the matrix AM-(p)AT to the choice of generalised inverse M-(p) of M(p) [see 

Graybill (1969), theorem 6.6.9]. 

Note that a generalised inverse of a matrix M is defined as any matrix M­

satisfying the condition M M-M = M. This generalised inverse exists for each 

matrix M, but it is not unique except when M is a square non-singular matrix, 

in which case M- = M-1 uniquely. A particular example is when M- = M+, 

where M+ is the Moore-Penrose generalised inverse [some authors call it the 

pseudo inverse of the p-inverse; see Seber (1977), p.76] which not only satisfies 

MM+M = M, but also M+MM+ = M+ and symmetry of M+M and MM+. 

So a good design will be one which makes the matrix AM-(p)AT as small as 

possible. Specific criteria which have been proposed include D A-, linear and 

E A -optimali ty. 
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(I) D A-optimality 

The criterion function for this optimality is defined by 

To emphasize the dependence of the design on the matrix of coefficients A, Sibson 

(1974) called this criterion DA-optimality. 

(i) 'l/JDA is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 'l/JDA is concave on M. 

(iii) ¢DA has unique partial derivatives corresponding to positive weights, namely 

These derivatives are invariant for any generalised inverse M-(p) of M(p) 

if 12/S and A are in the column space of M(p) [see Graybill (1969), theorem 

6.6.9 and corollaries 6.6.9.1, 6.6.9.2]. 

We now consider an important special case of D A-optimality. 
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Note that if A = [Is: 0] and we partition the matrix M(p) as follows: 

[ 
MSXS MsXk- s 1 M - 11 12 

(p) - MT Mk- s x k-s 
12 22 

then the matrix (AM-(p)ATt l can be expressed as (M11 - M12 Mi.2 M'&) [see 

Rhode (1965) and Torsney (1981)] and our design criterion becomes that of choos­

ing p to maximise the determinant of this matrix. So maximising ¢ D A in this 

particular case is equivalent to maximising 

(1.40) 

which is known as the Ds-optimal criterion; see Karlin and Studden (1966), 

Atwood (1969), Silvey and Titterington (1973) and Silvey (1980). 

(II) Linear Optimality 

Let L be a k x k matrix of coefficients. The maximisation of the criterion function 

(1.41) 

leads to a linear, or L-optimum design. It is linear in the elements of the covari­

ance matrix M-(p). 

If L is of rank s ::; k it can be expressed in the form L = AT A where A is a s x k 

matrix of rank s. Then the criterion function (1.41) can be expressed as 

This form stresses the relationship with the D A-optimum design of (1.38), where 
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the determinant, rather than the trace, of {-AM-(p)AT} was maximised. 

An alternative name for this design criterion would therefore be Ak 0ptimality, 

with A-optimal recovered when L = I, the identity matrix. 

Properties of ¢L(p) = ¢L{M(p)} 

(i) 'l/JL is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 'l/JL is concave on M. 

(iii) (PL has unique partial derivatives corresponding to positive weights, namely 

(1.43) 

Note that the case A = ft, where ~ is a k x 1 vector, corresponds to an­

other standard criterion known in the literature as the c-optimality criterion; 

see Elfving (1952). The criterion function is of the form: 

(1.44) 

(III) EA-optimality 

EA-optimality is defined by the following criterion function. 

(1.45) 



CHAPTER 1. LINEAR DESIGN THEORY 29 

where Amax denotes the largest eigenvalue of the matrix AM-(p)ATj see Pazman 

(1986). 

Properties of ¢ EA (p) = 'lj; EA {M (p) } 

(i) 'lj;EA is an increasing function over the set of positive definite symmetric 

matrices. 

(ii) 'lj;EA is concave on M. 

(iii) The differentiability properties of this criterion are similar to those of E­

optimality. 



Chapter 2 

Optimality Conditions 

2.1 Introduction 

In this chapter we determine conditions for optimality, in which p* will be op­

timal for an optimisation problem. The emphasis is on a differential calculus 

approach in contrast to a Lagrangian one. An important tool is the directional 

derivative Fq,{p, q} of a criterion function ¢(.) at p in the direction of q, and 

also a normalised directional derivative. We discuss the properties of Fq,{p, q}. 

We also consider further properties of it when ¢(.) is differentiable. This plays 

an important simplifying role in the calculus of optimisation. At the end of the 

chapter we consider some optimality theorems. 

We first consider various classes of optimisation problems in which we wish to 

find an optimising distribution (or which are generalisations of this). Optimal 

regression designs are a particular example. Other examples include maximum 

likelihood estimation, stratified sampling, image processing. 

30 
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2.2 A Hierarchy of Problems 

Consider the following problems. 

Pro blem (P 1) 

Maximise a criterion </>(p) over P = {p = (PI, P2, ... ,PJ) : Pj ~ 0, t Pj = I}. 
3=1 

The equality constraint E Pj = 1 renders the problem a nondegenerate con­
j 

strained optimisation problem, the full constraint region being a closed bounded 

convex set. 

Problem (P2) 

Maximise 7.j; (x) over the convex hull (of the points G (1l.1) , . . . ,G (1l.J ) ) 

Cll{g(V)} = {x = x(P) = t,Pi G(y) : P = (p., 1'2, ... ,PJ) E 'P} (2.1) 

where G(.) is a given one to one function and V = {1l.1' ... ,1l.J} is a known set of 

vector (or matrix) vertices of fixed dimension. 

Note that we could alternatively state that x(p) = Ep[G(1l.)], where G(1l.) is a 

random variable assuming the value G(1l.j) with probability Pj. 

That is, solve (PI) for 

J 

</>(p) = 7.j;{Ep[G(1l.)]}, x = Ep[G(1l.)] = LPjG(1l.j). (2.2) 
j=1 
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Problem (P3) 

where C is an s x t matrix of rank s, and a is in the range space of C. 

Problem (P3) is clearly a generalisation of problem (PI). Of intriguing interest 

is that problem (P3) can generate an example of problem (P2) and hence of 

problem (PI). 

One such occurence of problem (P3) arises when testing linear hypothesis about 

the parameters in multinomial models for categorical data. These parameters 

are of course probabilities so that the constraint C() = a must either include as a 

component that IT() = 1, where I is a vector of I's, or state that various subsets 

of the components of () should sum to unity. We will consider an example of such 

a linear hypothesis in chapter 4. 

Clearly an example of problem (P2) is a general optimal linear regression design 

problem. Note that, as with the design problem, a generalisation of problem 

(P2) would be to seek a probability measure defined on a continuous and possibly 

unbounded space V to maximise a function ¢(.) as in problem (P2). However, 

Caratheodory's theorem guarantees that at least one optimising distribution is 

discrete. Problem (P2) may differ in a number of ways from other examples 

of problem (PI): 

• One may only be interested in an optimising x* as opposed to an optimising 

p*, x* = x(p*). 
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• While there may be a unique optimising x* there could be many optimising 

p*'s . 

• An optimising p* may put pj = 0, i.e., the optimum lies on the boundary 

ofP. 

In contrast there is almost certainly a unique optimising p* in the case of examples 

considered in chapter 4, otherwise the parameters would be inestimable. Also p* 

does not lie on the boundary of P. 

Now we consider optimality conditions for the above problems. Note that there 

are two approaches which we could adopt in solving the problems. We could 

seek out an optimising p* directly or first determine an x* maximising 'ljJ(x) over 

C1l{Q(V)} and then find a p* such that x(p*) = x*. The former approach, 

which in the main we will adopt, would require conditions explicit ely defining an 

optimising p* . 
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2.3 Directional Derivatives 

We define optimality conditions in terms of point to point directional derivatives. 

There are two derivatives of interest. We define these in terms of a function ¢(p) , 

but this could be any function with no constraints on p. 

2.3.1 Definition 2.3.1. 

Let 

Fcf>{p, q} 

g(p,q,e) ¢{(1 - e)p + eq} 

I
. g(p, q, e) - ¢(p) 
1m =----=--'---"--~---'----'-

e-.,!.O e 

dg(p, q, e) 
de 

(2.3) 

(2.4) 

Whittle (1973) called Fcf>{p, q} the directional derivative of ¢(.) at p in the direc­

tion of q. It is a derivative which can exist even if ¢(.) is not differentiable. 

The choice of notation is due to a convention which regards this derivative as 

specifically a Frechet derivative. In the later chapters generally we use the nota­

tion F{p, q} instead of Fcf>{p, q} except when we need to emphasise which func­

tion is under consideration. In another context concerning influence curves the 

term F{p, q} has been referred to by Andrews et al (1972, p.30), as a Von Mises 

derivative. They refer to Von Mises (1947). See also Hampel (1968, 1971), Eplett 

(1980). 
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2.3.2 Definition 2.3.2. 

Let 

h(p, m,e) = ¢{p+ em} (2.5) 

G { m} = lim h(p,m,e) - ¢(p) = dh(p,m,e) I 
cp p, c+O e de c=O+ 

(2.6) 

Gcp{p, m} is called Gateaux derivative of ¢(.) at p in the direction of m. Clearly 

Fcp{p,q} = Gcp{p,m} where m = q-p, while Gcp{p,m} = Fcp{p,p+m}. We note 

that differentiability of ¢(.) at p implies that Gcp is linear in its second argument 

(see Rockafellar (1970), p.241). 

Whittle (1971) uses this alternative but equivalent definition of 2.3.1. Kiefer 

(1974) also used the concept of Gateaux derivative in his design theory though 

he did not call it a directional derivative. Certainly it does not benefit from 

concavity of ¢(.). However, this representation of Fcp{p, q} in terms of G{.,.} 

proves useful. 

Note that Gcp{p, ej} = ~:;, the right hand partial derivative of ¢(.) with respect 

to the ph component of p, ej being the ph unit vector. 

We will see that definition 2.3.1, which allows the direction of interest, to be 

determined by a point q as above, is more useful and indeed leads to a generali­

sation of some standard calculus. The derivative Fcp{p, q} will serve our purpose 

better than Gcp{p, q}. 
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Now we discuss some general properties (GPl) of F¢{p, q}. 

2.4 Properties of F¢{p, q} 

(GPI) If p, q E S, where S is a convex set, then so does {(I - c)p + cq}, which is 

clearly an advantage if one wishes F¢{p, q} only for p, q E S. In contrast, 

G¢(p, q) does not particularly benefit from such convexity. 

(GP2) F¢{p, q} ~ ¢(q) -¢(p) if ¢(.) is concave. 

Proof: 

lim [¢{(I - c)p + cq} - ¢(p)]jc 
e.J..O 

> lim [(1 - c)¢(p) + c¢(q) - ¢(p)]/c 
e.J..O 

¢(q) - ¢(p). 

(GP3) F¢{p,p} = 0, a desirable property since no change is effected in ¢(.) if one 

does not move from p. In contrast G¢{p,p} = F¢{p, 2p} =F o. 

(GP4) Intuitively F¢{p, q} in some sense measures the rate of change in ¢(.) at p 

in the direction of q. However, it does so in units of measurement which 

depend on the distance between p and q. F¢{p, q} depends on this distance 

as well as on the said rate of change. 

Note that to move from p in the direction of q is to move from p in the direction 

IThe notation 'GP' is used for 'General Property' 
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of the vector m = q - p and hence in the direction of the vector em, e> O. If we 

pass along the full length of the vector em from p, we will arrive (according to 

the theory of vectors) at {p + e( q - p) }. This phenomenon is shown in figure 2.1. 

Figure 2.1. Vector diagram showing the rate of change in ¢(.) at p in directions 
which remain the same for all e > O. 

So F¢ {p, p + e( q - p)} measures the rate of change in ¢(.) at p in directions which 

remain the same for all positive e. 

We prove this in the following: 

F¢{p, p + e(q - pH lim [¢((l - c)p + c[p + e(q - p)]} - ¢(p)]jc 
e-l.O 

lim [¢{p + ec(q - pH - ¢(p)]jc 
e-l.O 

lim e [¢{p + o(q - pH - ¢(p)]/o, 0 = cc 
e-l.O 

lim e [¢{(l - o)p + oq} - ¢(p)]/o 
6-1.0 

Hence 

F¢{p, p + e(q - p)} eF¢{p, q}. (2.7) 



CHAPTER 2. OPTIMALITY CONDITIONS 38 

We can write FtjJ{p, q} = f~(O) where f(c) = ¢{(l- c)p+cq}. Since f~(O) is the 

amount of change induced in the linear approximation to f(.) at 0 by a unit in­

crease in c, it follows that FtjJ{p, q} defines the amount of change induced in a cor­

responding linear approximation to ¢(.) at p by a step towards q, the magnitude 

of which is the distance between q and p, namely, IIq - pil = J(q - p)T(q - p). 

Thus it suggests that we should calculate FtjJ{p, q} only for a q which is a unit 

distance from p. However, the problem is that we will be presented with a q of 

interest which will not typically be a unit distant from p. Such a q must be scaled 

up or down appropriately. Clearly the solution is to choose the constant above 

such that c(q - p) has unit length, namely c such that c 1 = Ilrll, r = q - p. 

Thus it creates the normalised directional derivative 

Ft {p, q} = FtjJ{p, q} / JrTr . (2.8) 

This uses only one particular norm. A more general normalised directional deriva­

tive would be 

Ft{p,q} (2.9) 

where A is symmetric nonnegative definite. 

We conclude this section by commenting on some relatives or generalisations of 

FtjJ{p, q}. 
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(i) A converse concept is the directional derivatives of ¢(.) at p as p is ap­

proached from the direction of q, namely, 

Frj>{p, q} = lim [¢{(1 + c5)p - c5q} - ¢(p)l!c5 (2.10) 
5tO 

However, 

lim [¢{p + c5(p - qn - ¢(p)l!c5 
5tO 

- lim [¢{p + c(q - pn - ¢(p)l!c, c = -c5 
g,l.O 

-Frj>{p,q}, 

a result which is to be expected. 

Thus Frj>{p, q} enjoy properties analogous to that of Frj>{p, q}. In particular, 

the left hand derivative at p of a function h(.) of one variable. 

(ii) An offspring of F¢{p, q} defines higher order directional derivatives of ¢(.) 

at p in the direction of q, namely, 
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2.5 Further Properties of F¢{p, q} when ¢ is dif­

ferentiable 

We have not so far made any assumptions about differentiability of the criterion 

function ¢. A function need not be differentiable at a point p in order that it 

should have well defined directional derivatives in all directions. Whittle (1971, 

p.61) quotes the following figure in support of this. 

p 

The figure demonstrates the following, as stated by Whittle: "that a function 

could have a discontinuity in slope at a point p although sloping away from this 

point in a perfectly smooth fashion in any given direction" . 

However, when the criterion function ¢ is differentiable, it plays an important 

simplifying role in the optimisation of ¢. Now we proceed to redefine the concept 

in terms of Fc/>{p, q}. 

The idea is that, at p, ¢(.) should be smoothly changing in all directions. A more 

precise definition is that, at p, the ¢(. )-surface should just touch or possibly cross 

in parallel a unique linear hyper-plane, the tangent plane to ¢(.) at p, or the 

supporting hyperplane at p if the two surfaces do not cross. Then this plane will 

provide a linear approximation to ¢(.) at p in any direction, so that the linear 

approximation to ¢(.) at p which it suggests in the direction of q and in the 

opposite direction will be the same apart from a difference in sign. 
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If two surfaces coincide in such a manner, they must have some common char­

acteristics at the point of contact p. Apart from sharing a common value they 

must be changing at the same rate, otherwise, they will not be in parallel and will 

definitely cross. They must have common first derivatives, partial, directional or 

Gateaux, and hence whatever properties are enjoyed by the derivatives of one 

function at p must be enjoyed by those of the other function. 

Then consider the form of the directional derivative of a linear function 

lim [L{p + c(q - pH - L(p)]/c 
g-l-O 

lim [aT[p + c(q - p)] - aT p]/c 
g-l-O 

aT(q _ p) 

L(q) - L(p). 

Similarly 

GL{p,q} aT q 

L(q) - b, 

and the vector of partial derivatives of L is ~~ = a. 

Thus for ¢(.) to be differentiable at p it must be that 

)T o¢ ( )T Ft/>{p,q} = (q-p op = q-p d for all q 

J 

L(qi - Pi)di, 
i=l 

di = O¢/OPi, i = 1, ... ,J, d = o¢ 
op 
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or 

Gr/>{p,q} 

The condition on Gr/>{p, q} is a familiar definition of differentiability. If we were 

to accept this as such a definition an equivalent and as we shall see a more useful 

form would be the following definition applied to any function ¢(.). 

Note that, in particular, when pEP of problem (PI), 

J 

dj - LPidi (2.12) 
i=l 

Definition 2.5.1 Differentiability (of a concave function) 

A concave function ¢(p) is differentiable at P if 

Fr/>{P' L c,.qr} = L c,.Fr/>{p, qr} + [L Cr - 1] Fr/>{p, 2p} (2.13) 
r r 

or 

(2.14) 
r 

These two conditions are equivalent as we shall see later. The latter, clearly the 

simpler, states that Gr/>{p, q} must be linear in the second argument, while in 

general this need not be the case with Fr/>{p, q}. 
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Below is a list of properties2 which follow from this definition. 

J 
(DP1) Gcf>{p, q} = qT d since q = (ql, q2, ... ,qJ)T = E qiei and 

i=l 

Conversely suppose Gcf>{p, q} = qT d for all q. 

Then 

r r 

Hence condition (2.14) is equivalent to requiring that Gcf>{p, q} = qT d. 

Of interest is that, according to Rockafellar (1970, p.244, theorem 25.2), a 

sufficient condition for (2.14) to hold in the case of concave functions, is 

that the two-sided partial derivatives exist at p and are finite. 

As in the design context, if we regard the argument of the function 1/;(.) 

as a symmetric k x k matrix A, then this result can be re-expressed in the 

form 

F~{A, B} = tr{(B - A)T ~1/;(A)}, 

where ~1/;(A) is the k x k matrix whose (i, j)th element is C;:t) (1 + bij) /2. 

2The Proeprties are denoted by 'DP' to mean that these are after assuming Differentiability 
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(DP3) A proof that (2.14) implies (2.13) is 

r r 

r 

- LCr[G</>{p,qr} - G</>{p,p}] + [LCr -1] G</>{p,p} 
r r 

- LCrF</>{p,qr} + [LCr -1]F</>{P,2p} (by GP3) 
r r 

A proof that (2.13) implies (2.14) is 

G</>{p, L Crqr} - F</>{p,P+ LCrqr} 
r r 

- F</>{p,p} + LCrF</>{p,qr} + [1 + LCr -1]F</>{P,2p} 
r r 

- L CrF</>{p, qr} + [L Cr] F</>{p, 2p} 
r r 

- L Cr [F</>{p, qr} + F</>{p, 2P}] 
r 

- L Cr [F</>{p, p} + F</>{p, qr} + F</>{p, 2p}] 
r 

- L crF</>{p, p + qr} (by (2.13)) 
r 

- L CrG</>{p, qr}. 
r 

i.e. F</>{p,2p - q} = -F</>{p, q} 

or F</>{p, 2p - q} = F</>{p, q}. 

(by GP3) 

(by GP3) 
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This is the distinguishing feature of differentiability from nondifferentiabil­

ity, that, as we pass through p in the direction of q, the rate of change.in 

¢(.) should be the same on the approach to and the departure from p. In 

the case of a function h(x) of a one-dimensional variable x, a consequence is 

that there is no need to distinguish between right and left hand derivatives, 

for 

lim [{h(x + c) - h(x)}/c] 
eto 

lim [{h(x + c) - h(x)}/c] 
e.j..O 

I.e., 

Fcp{p,p-l} = Fcp{p,p+ I}. 

(DP5) If L: Cr = 1 then clearly Fcp{p, L: Crqr} = L: crFcp{p, qr}. 
r r r 

This proves to be a very useful result for us, when the criterion ¢(.) or'lj;(.) 

is defined on a convex set S. For example, S = P in the case of problem 

(PI) and S = Cll{Q(V)} as in the case of problem (P2). For example, if 

y E Cll{Q(V)} then y = x(q) = L: qjG(1!.j) , L: qj = 1, qj ~ o. 

Hence 

j j 

FIjJ{x,y} = LqjFIjJ{x,G(1!.j)}. 
j 

In problem (PI) ¢(.) is a function of pEP. Then for q E S, 

Fcp{p, q} = L qjFcp{p, ej}. 
j 

(2.15) 

(2.16) 
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Note that if ¢(p) = ~{x(p)}, x(p) E Cll{Q(V)}, 

8¢ 
8 

- Gr/>{p, ej} 
Pj 

- G1fJ{X(p) , G(Qj)}. 

If we consider S = M and ~ is defined on M 

46 

F1fJ{M(p),M(q)} = LqjF1fJ {M(p), QjQ;}. (2.17) 
j 

In the remaining properties the set S is crucial. 

(DP6) For S = Cll{Q(V)}, EpjF1fJ{x(p), G(Qj)} = O. 
j 

This is so since EpjF1fJ{x(p),G(Qj)} = F1fJ{x(p),x(p)}. 
j 

In particular Epj F1fJ{M(p),QjQJ} = o. 
j 

Note one particular consequence of this result. 

For at least one Qr E Supp(p) , F1fJ{x(p) , G(Qr)} > 0 while for at least 

one Qa E Supp(p), F1fJ{x(p) , G('!Ls)} < 0, unless F1fJ{x(p) , G(Qj)} = 0 for all 

Qj E Supp(p). 

(DP7) If S = P then 
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Proof: Since q E P we have 

and hence 

F¢{p, q} - L qjF¢{p, ej} 
j 

The result follows since L, qj = 1. 
j 

(DP8) For S = C1i{Q(V)}, 

max F¢{ x, y} ~ 0, min F¢{ x, y} ~ O. [see problem (P2)] 
yES yES 

For S = P, 

max F¢{p, q} ~ 0, min F¢{p, q} ~ O. [see problem (PI)] 
qES qES 

These follow from (DP6) and (DP7). 

47 
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2.6 Optimality Theorems 

We are now in a position to state optimality theorems. Their truth is, in the 

main, self evident in the light of the results of the previous section. 

We have already mentioned that differentiability plays an important simplyfying 

role in optimisation. This is so because differentiability of a point x* demands 

in the case of unconstrained optimisation that x* can be a stationary value if 

it is to be an optimum. It can also prove to be the case in a constrained opti­

misation problem that a differentiable point x* requires to be what is called a 

constrained stationary value. We will see later in this section that this leads to 

simple optimality conditions. 

Theorem 2.6.1. Let S = Cll{Q(V)} and assume that 'IjJ(x) is concave 

on S, then x(p*), p* E P, maximises 'IjJ(.) on S iff 

i.e. 

F,p{x(p*),x(q)} < 0 

max F,p{x(p*) , x(q)} < 0 
qEP 

An alternative but equivalent condition is that 

i.e. 

F,p{x(q),x(p*)} > 0 

min F,p{x(q), x (p*)} > 0 
qEP 

VqEP 

V x(q) E S. 

VqEP 

Vx(q) E S. 
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Proof. 

Necessity: 'IjJ(.) is concave and x(p*), p* E P, maximises 'IjJ(.) on Simply 

'IjJ{(1 - c) x(p*) + c x(q)} - 'IjJ{x(p*)} < 0 (2.18) 

for all c E [0,1] and all q E P. 

Now from the definition of directional derivative F¢{x(p*, x(q)}, 

(2.18) implies that 

F¢{x(p*), x(q)} < 0 Vq EP. 

Sufficiency: From the definition of F¢{x(p*, x(q)} and concavity of 'IjJ(.) , 

F¢{x(p*,x(q)} - lim ['IjJ{(1 - c)x(p*) + cx(q)} - 'IjJ(x(p*)]/c 
e.,/..O 

> lim [(1 - c)'IjJ(x(p*) + c'IjJ(x(q)) - 'IjJ(x(P*)]/c 
e.,/..O 

- 'IjJ(x(q)) - 'IjJ(x(p*)). 

This is in fact 'IjJ-version of property (G P2) . 

Hence 

F¢{x(p*), x(q)} < 0 VqEP 

implies 

'IjJ(x(q)) - 'IjJ(x(p*)) < 0 VqE P. 

i.e., x(p*) maximises 'IjJ(.). 

Note that the theorem is saying that derivatives at x(p*) should in all directions 
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be nonpositive. 

The theorem has little practical value. It only will be of practicaJ yalue if it 

suggests an explicit solution for x(p*), and that is unlikely if x(p*) lies on the 

boundary of Cll{Q(V)}. The optimality conditions it defines are infinite. If 

we employ numerical techniques to compute the optimum and the solution it 

suggests is in fact the correct solution, it may not be easy to verify this. 

The above criticism can not be made of the next theorem. 

Theorem 2.6.2. Vertex Direction Optimality Theorem 

Let S = Cll{Q(V)} and assume that 1j;(x) is concave on Sand x(p*) is a differ­

entiable point of 1j;(.), then x(p*) maximises 1j;(.) on S iff 

o when pj > 0 

when pj = o. 
(2.19) 

(2.20) 

This is the key theorem in linear regression design theory, and is known as 

General Equivalence Theorem. 

A key result in proving this is that 

F¢{x(p*), x(q)} = L qjF¢{x(p*), G(Qj)} 
j 

where qj 2:: 0 and E qj = 1. [Property (DP5)]. 
j 

(2.21) 
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Clearly this is nonnegative if (2.19) and (2.20) are satisfied. Proving the oppo­

site is more involved. Suppose all Pj > 0 so that x(p*) is not on the bound­

ary of C1-£{Q(V)}. Then the need for the zero derivatives in (2.1~) is that if 

F¢{x(p*), G(Qj)} were negative then the derivative in the opposite direction would 

be positive. Hence theorem 2.6.1 would be violated. 

Theorem 2.6.2 plays an important role in constructing optimal designs, specifying 

a finite set of optimality conditions. It should be easy to check whether or not 

these are satisfied by a postulated solution obtained by numerical techniques. 

Differentiability though is an essential requirement. 

We illustrate the above in figure 2.2. If the optimum lies inside the basic feasible 

region (case-1 in figure 2.2) then under theorem 2.6.2 the directional derivatives 

at the optimum towards each vertex would be zero. 

If the optimum lies on the boundary of the feasible region, for example, on the line 

joining vertices Ql and ~ (as shown in case-2 of figure 2.2), then the directional 

derivatives at the optimum towards these two verices should be zero, but should 

be negative (or not positive) towards the other vertices. 

i.e., Fl = F5 = 0, F2 , F3 , F4 ~ O. 

Corollary (i) 

If S = M, 'IjJ(M) is concave on M and M(p*) is differentiable point of 'IjJ(.) , then 

M (p*) maximises 'IjJ (.) on M iff 

o when pj > 0 

when pj = 0 

(2.22) 

(2.23) 
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Corollary (ii) 

If S = P, ¢(p) is (weakly) concave on P and p* is a differentiable v-,:nt of ¢(.) 

on P, then p* maximises ¢(.) on P iff 

8¢ J * 8¢ 
8pj LPi 8p~ 

i=l Z 

when pj > 0 (2.24) 

8¢ J * 8¢ 
< LPi 8p~ 8pj i=l Z 

when pj = 0 (2.25) 

These follow from theorem 2.6.2 and equation (2.12). 

Corollary (iii) 

p* solves min max [F1/I{X(p),y}]. 
pEP yECll{Q(V)} 

Proof: From (DP7) max [F1/I{X,Y}] = ml/>x [F1/I{x,G(Qj)}]. 
YECll{Q(V)} l$.J$.J 

Consequently max [F1/I{x(p*),y}] = O. 
yECll{Q(V)} 

From (DP8) max [F1/I{x(p), y}] ~ 0 Vp. 
YECll{Q(V)} 

Thus p* attains what is a lower bound for other p. 

Theorem 2.6.2 was in fact derived by Whittle (1973) but with only a general opti­

mum design problem in mind. So also did Kiefer (1974) though using the Gateaux 
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derivative. Wu (1976) derived it by appealing to the Kuhn-Tucker theorem in a 

more general setting than the design problem. The latter is admittedly a stan­

dard result in constrained optimisation, but it is not one that is cOllventionally 

stated in terms of directional derivatives. 

In the D-optimum version of 'IjJ(.), Corollary (iii) establishes the equivalence of 

D-optimality and G-optimality. This follows since, 

[rank(M(p)) = k]. 

Hence corollary (iii) implies that p* solves ~i.Jl'~~f.,{:QJM-l(p)Y..j}' which is the 
P _3_ 

G-optimal criterion mentioned in section 1.4. Kiefer and Wolfowitz (1960) derived 

this result directly thereby providing theorem 2.6.2 for D-optimality as well, and 

this was the first appearance of the theorem. 

Other authors too have derived the general theorem but using Lagrangian theory 

and duality. Sibson (1974) and Silvey and Titterington (1974) have respectively 

established dual problems and corresponding duality theorems for D A-optimality 

and for a general design criterion. 
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Case -1 

• (Local) Maxima 

Pj = 0, j = 1, ... ,5 

Case - 2 

-ve 

t/ • (Local) Maxima l ;. -ve 

O~ 
-ve 

Figure 2.2. Geometrical Representation of Optimality Conditions. 



Chapter 3 

Algorithms 

3.1 Introduction 

An analytic solution of the problem of constructing optimal designs is possible 

only in simple cases. It is typically not possible to evaluate an explicit solution p* 

to problems (PI) and (P2) or in particular to derive an optimal regression design 

explicitly. Iterative techniques must be employed and so special algorithms have 

been devised for a constrained optimisation problem (particularly for the design 

problem) which requires the calculation of an optimising probability distribution. 

In chapter 1 we have introduced why there is a need for special algorithms. 

Now we know that there always exists an optimal measure with finite support 

(section 1.3). We wish to identify an optimising p*. Typically p* will be on the 

boundary of C1-l{Q(V)}. Certainly this will be the case if V is a discritisation of 

a continuous space. The implication of this is that at the optimum there will be 

zero weights. Hence we consider the following class of algorithms, indexed by a 

function which depends on derivatives and one or more free parameters. 

55 
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3.2 A Class of Algorithms 

Problems (PI) and (P2) have a distinctive set of constraints, namely the variables 

Pl,P2, ... ,PJ must be nonnegative and sum to 1. An iteration which neatly 

submits to these and has some suitable properties is the multiplicative algorithm: 

where x\r) = ir) or F~r), and 
J J J 

F~r) 
J 

8¢ 

8pj p=p(r) 

J 

d)r) _ L p~r) d~r) [a directional derivative at P = p(r»), 

while f(x) satisfies the following conditions: 

(i) f(x) is positive; 

(ii) f(x) is strictly increasing in x. 

f(x) may depend on one or more free parameters. 

(3.1) 

Thus in view of the conditions for (local) optimality, a solution to problem (PI) 

is a fixed point of the iteration but so also are the solutions to problem (P2) for 
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any subset of V. 

This type of iteration was first proposed by Torsney (1977), taking x-c- d, f(d) = 
dO, with 8 > O. This, of course, requires derivatives to be positive. Subsequent 

empirical studies include Silvey, Titterington and Torsney (1978), which is a 

study of the choice of 8 when f(d) = dO, 8 > 0; Torsney (1988), which mainly 

considers f(d) = eOd in a variety of applications, for which one criterion ¢>(.) could 

have negative derivatives; Torsney and Alahmadi (1992) consider other choices 

of f(.); MandaI and Torsney (2000a) explore systematic choices of f(.); see also 

chapters 4 and 5. 

Titterington (1976) describes a proof of monotonicity of f(d) = d in the case 

of D-optimality. Torsney (1983) explores monotonicity of particular values of 

8 for particular ¢>(p). Torsney (1983) also establishes a sufficient condition for 

monotonicity of f(d) = dO, 8 = l/(t + 1) when the criterion ¢>(p) is homogeneous 

of degree -t, t > 0 with positive derivatives and proves this condition to hold in 

the case of linear design criteria such as c-optimal and A-optimal criteria when 

t = 1 so that 8 = 1/2. In other cases the value 8 = 1 can be shown to yield an 

EM algorithm which is known to be monotonic and convergent. See Dempster 

et al (1977). The EM algorithm is known to have slow convergence. 

Convergence results depend on properties of the criterion function ¢>(.), on the 

function f(.) and on 8. In the later chapters we have tried to explore variety of 

choices of f(.) and ofits argument for constructing optimal designs and also for 

estimating maximum likelihood estimates in an estimation problem. 
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3.3 Properties of the Iteration (3.1) 

Under the conditions imposed on f(.), iterations under (3.1) possess the follow­

ing properties considered by Torsney (1988), Torsney and Alahmadi (1992) and 

MandaI and Torsney (2000a). 

3.3.1 General Properties 

(a) p(r) is always feasible. 

(b) Fct>{p(r), p(r+1)} 2:: 0 with equality when the d/s corresponding to nonzero 

p/s have a common value, d, in which case Xj = dj = d or Xj = Fj = 0 and 

so, with x = d or 0, 

(r+1) 
Pj 

p;r) f(xj) 
J 
Ep~r) f(Xi) 
i=l 

Consider the case Xj = dj • 

p;r) f(x) 
J 

f(x) E p~r) 
i=l 

The inequality property can be seen by letting a positive random variable 

D take the value l!; with probability Pj (Pj = p;r»). 

Then 

(3.2) 
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Proof: 

[p(r+1) _ p(r)] T Q 

J 

2:= [p~r+1) - p~r)] di 
i=l 

J J 

2:=p~r+1)di - 2:=p~r)di 
i=l i=l 

J 

.:...i=--=~ ____ - 2:= Pi di 

Epi!(di ) i=l 

i=l 

[~ Pi! (di) di] - [~Pi di ] [t Pi! (di ) ] 

Cov [D, f(D)] 

E[f(D)] 
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(3.3) 

(3.4) 

The argument then is that the covariance between D and f(D) must be 

nonnegative if f(D) is increasing in D. Thus an increase in the criterion 

can be obtained by a partial but possibly not a full step from p(r) in the 

direction of p(r+1). 

(c) Under the above iteration supp(p(r+1») ~ supp(p(r»), but weights can con-

verge to zero. 

(d) An iterate p(r) is a fixed point of the iteration if the derivatives 8¢/8pjr) 

corresponding to nonzero Pjr) are all equal. Equivalently if the correspond­

ing vertex directional derivatives Ft) are zero. This is a necessary but not 

a sufficient condition for p(r) to solve problem (PI) or (P2). Thus in view 
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of the conditions for (local) optimality, a solution to problem (PI) is a fixed 

point of the iteration but so also are the solutions to problem (P2) for any 

subset of V, see Torsney (1988). 

(e) We mentioned earlier that f(.) may depend on one or more free parameters. 

Torsney and Alahmadi (1992) explore the following idea. 

Suppose f(.) is indexed by a free parameter 8, e.g. f(x) = exp(8x) or 

x5 (x > 0), where 8 > O. 

Consider the case x = d and let h(8) = F¢{pCr), pCr+1)}. Then from (3.3) 

J 
2: pd(di ) di J 

h( 8) = _i=_lJ -- - L Pi di 
2: pd(di ) i=l 

i=l 

and then 

h'(8) 

[ tPdi]2 
~=l 



CHAPTER 3. ALGORITHMS 

where 

pd(di ) 

J 
~ pjf(dj) 
j=l 

Hence h'(8) = Cov(D, G) 

where 

8In[J(D)] 
88 

and D is a random variable taking the value di with probability qi. 

3.3.2 Properties of some specific cases 

Case I 
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(3.5) 

We consider two choices of the function f(d), namely f(d) = d5 and f(d) = exp(8d). 

These share the follwoing two properties. 

(i) If there is a unique maximum derivative at p(r), say dm = aap I then 
Pm p=p(r) 

for the function f(d) = exp(8d): 

(3.6) 

where em is the mth unit vector. 
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Proof: 

1· (r+l) Imp· 
5-+00 J 

· pjr)exp(8dj ) 

hm J 

5-+00 exp(8d ) ~ p~r) [eXP(5d;) ] 
m ~ t exp(5dm) 

(r) [eXP(5dj )] 

· Pj exp(5dm ) 
hm -J---=----=---

5-+00 ~ (r) [eXP(5d i )] 

~ Pi exp(5dm) 
t=1 

(r) [eXP(dj )] 5 
· Pj exp(dm ) 

hm J 5 
5-+00 ~ (r) [eXP(di )] 

~Pi exp(dm ) 
t=1 

{ ~ 

Hence p(r+1) ---t em as 8 ---t 00. 

Similarly the same is true for the function f (d) = d5
• 

ifm =j 

if m :f: j 

62 

(ii) Recall the function h(8) = p¢{p(r), p(r+1)} in section (3.3.1 e). h(8) is 

nondecreasing in 8. Note that the function G is given by G(D) = In(D) 

and G(D) = D for the two above functions respectively. Both are increasing 

functions and therefore 

h'(8) Cov(D, G) > o. 

In the optimal design context the vector em corresponds to a single point design. 

For some optimal design criteria ¢(em ) = -00. The implication is that for such 
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criteria iteration (3.1) in unlikely to be monotonic and possibly not convergent if 

c5 is quite large. In fact, non-convergence occurs under the following cases. 

J 

¢J(p) n Pi,· f(d) = dO, c5 = 2; 
i=l 

J 

¢J(p) = E p-t, f(d) = dO, c5 = t~l; 
i=l 

J 

¢J(p) = E Pi In(pi) , f(d) = exp(c5d), c5 = 2. 
i=l 

In each of the above combinations iterations oscillate between two values unless 

the initial value is the optimising p*, which is p* = 1/ J for each ¢J(p). We have 

given a proof of the first case in chapter 7. 

In contrast the optimum is attained in one step from any initial p(O) if c5 = 1, 

t!l' 1 respectively in the above three cases. An implication seems to be that 

iteration (3.1) would be convergent if not monotonic at least for c5 ~ 1, c5 ~ t!l' 

c5 ~ 1 in the three cases repectively. We recall that, for large c5, property (b) 

in section (3.3.1) only guarantees an increase in the criterion if we take a small 

enough step from p(r) in the direction of p(rH). This means a different formula 

from (3.1) for the next iterate. If we adopt such a method, property (3.6) suggests 

taking c5 = 00. Then the revised iterative rule will be a vertex direction one but 

not a steepest ascent method since F¢ {p, q} depends on the distance between p 

and q. Constrained steepest ascent techniques choose directions which maximise 

normalised directional derivatives. 
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Case II 

Here we consider two other choices of f(d), namely f(d) = In(e + od) and 

f(d) = F(od) where F(x) is increasing in x and bounded above so that it must 

have asymptote as x --+ 00. Examples include cumulative distribution functions 

( c.d.f.). 

In these two choices: 

(i) p(r+1) --+ per) as 0 --+ 00; 

(ii) h(o) [= Fq,{p(r), p(r+1)}] is maximised by some finite 0, say 8*. 

The first one is trivial. Since Fq,{p, p} = 0, it implies that h(oo) = h(O) = O. 

Given that h(8) ~ 0 from (3.3.1 b), property (ii) follows. 

It will be a possibility then that convergence, if not monotonicity are obtained 

for any O. An optimal choice might be the 0* of (ii). In general, there is no 

explicit formula for 0* in terms of per) and d(r) [ = ~Ip=p(r)], but one can suggest 

an approximation to it in the case of f(d) = F(od). Note that h'(o) in section 

(3.3.1 e) is a covariance between random variables D and G where G = aln~tJD)J. 

Therefore, if 0 is such that G has a turning point in the range of d1 , d2 , ••• ,dJ , 

h' (0) is likely to be zero. 

The partial derivative of the random variable G with respect to d is 

8G(d) 
8d 

8[{ 8f(d)/80} / f(d)] 
8d 

82ln[f(d)] 
8d88 . (3.7) 
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For f(d) = F(8d), 

8f(d) = d F'(8d) and 8f(d) /f(d) = dF'(8d)/ f(d) (3.8) 
88 88 . 

Thus from (3.8) the derivatives (3.7) will be of the form: 

8G(d) 
8d 

F(8d) [8dF"(8d)] - [8d{F'(8d)P] 
[F(8d))2 (3.9) 

F'(8d) 8dF"(8d) 8d[F'(8d)]2 (3.10) 
F(8d) + F(8d) - [F(8d))2 

Let x = 8d and H(x) = 8~~d). Thus (3.10) would be 

H(x) 
F'(x) xF"(x) 
-F-(x-) + -F-(:-'-:x)--'--

x[F' (x )]2 
[F(x))2 . (3.11) 

Let H(x*) = O. A simplistic suggestion is to approximate 8* by 8* = ~ or by 
L Pidi 
i=1 

corresponding terms based on other moments of the di's. 

Other iterations for problems like (P2) have been proposed. Vertex direction 

algorithms which perturb one Pj and change the others proportionately were first 

proposed by Fedorov (1972) and Wynn (1972). These are useful when many of 

the Pj are zero at the optimum as happens in design problems. At the other 

extreme, when all Pj are positive at the optimum or when it has been established 
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which are positive, constrained steepest ascent or Newton type iterations may 

be appropriate. See Wu (1978) and Atwood (1976, 1980) on these respectively. 

Molchanov.and Zuyev (2000) consider steepest descent algorithms based on the 

gradient function. Torsney (1983) suggested that iteration (3.1) might be useful 

in a context intermediate to these, when only a few optimal weights might be 

zero. 

Certainly some modification would be needed if there are many zero optimal 

weights. We explore one such modification based on a 'clustering approach' in 

chapter 7. This is related to the fact that the support points of a discretised 

design space can be viewed as consisting of some 'clusters' of points. These 

clusters begin to emerge in early iteartions of algorithm (3.1). At this point 

the current set of weights are transformed to weights within clusters and total 

cluster weights. Optimal values of these are then sought using a modified version 

of algorithm (3.1). We explore this idea through several regression models and 

enjoy improved convergence. 



Chapter 4 

An Estimation Problem 

4.1 Introduction 

As we mentioned earlier there are many problems in statistics which demand the 

calculation of one or more optimising distributions or measures and hence are 

examples of the general problems (PI, P2 and P3) considered in chapter 2. 

We cite some examples of problem (PI). 

(El) Possibly the simplest example is that of finding the maximum likelihood 

estimators of the probability parameters of a multinomial likelihood: 

The optimum choice of Pj is pj = Xj/x, x = LXj. 
j 
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(4.1) 
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(E2) A second example is that of estimating the mixing parameters (probabil­

ities) of a mixture distribution given data y , y , ... ,y. The simplest 
-1 -2 -n 

example of this will arise when the component probability models h('l) of 

the mixture are themselves free of any unknown parameters, and then the 

likelihood function is 

(4.2) 

Some references on this include Smith and Makov (1978), Murray and 

Titterington (1978), Dempster, Laird and Rubin (1977). A useful text 

on this is Titterington, Smith and Makov (1985). 

(E3) A third example arises in the field of paired comparisons. Suppose J treat­

ments T 1, T 2 , ••• ,TJ are compared on a pairwise basis, nij comparisons 

being made on treatments Ii and Tj , i < j. Assume that in any single 

comparison of Ti and T j there is a probability 7rij that Ii will be preferred 

to Tj (i =I- j), the same for all such pairwise comparisons, with 

7rij + 7rji = 1. 

Let Oij denote the observed number of times that Ii is preferred to T j 

(i =I- j) and assume that there are no ties so that, for i < j, 

Assuming also independence between each pairwise comparison, the likeli­

hood for the data is given by 

L o (7r) = II (7rij)Oij (7rji)Oji. 

i<j 
(4.3) 



CHAPTER 4. AN ESTIMATION PROBLEM 

Many models suggest that 7fij is of the form 

Pi 
( + )' Pi> O. 
Pi Pj 

See Bradley and Terry (1952), Davidson (1969), Bradley (1965). 
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(4.4) 

However, this relationship only defines the Pi's relative to each other, for it 

will follow that 

(4.5) 

In order to find a particular set of Pi'S corresponding to the maximum 

likelihood estimator of 7fij, a restriction must be imposed on l:Pi, and 

l: Pi = 1 is a natural choice. Finding the corresponding estimates of the 

Pi'S requires solution of problem (PI) with 

¢>(p) n (Pi + pj)nij , 

i<j 

J 

Oi = L:0ij. 
j=1 
j#i 

(4.6) 

There is almost certainly a unique optimising p* in the case of examples (E1) 

to (E3) [certainly in the case of example (E1)], otherwise the parameters will 

be inestimable. Furthermore p* certainly does not lie on the boundary of P of 

problem (PI) in the case of examples (E1) and (E2) and it is unlikely to do so in 

example (E3) assuming n > J, where n = l: l: nij· 
i j 

In such a case we effectively have a simpler constrained optimisation problem, a 
J 

problem having one active constraint, the simple linear equality l: Pi = l. 
i=1 
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We consider now some of the properties of examples (El) to (E3) that will be 

seen to be relevant later. 

(i) All three functions are homogeneous. This is not all that surprising since 

independence is a common assumption in the formulation of probability 

models. 

Note that the equality EPi = 1 is an informative constraint to impose on 
i 

a function satisfying the homogeneity condition that ¢(cp) = ct¢(p). Study 

¢(p) subject to E Pi = 1 and one has an informed picture of the general 
i 

behaviour of ¢(.) on the positive quadrant at least. 

(ii) With the exception of example (E3) the functions have positive derivatives 

as is evident from the following respective expressions for :~: 

(El) ¢(p) [~] 

(E3) ¢(p) [~ - E. (P;-t-;8)] 
s::f.J 

In the case of example (E3) there will typically be both positive and negative 

derivatives when p is in the positive quadrant, because 
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a consequence of the fact that ¢(p) is a homogeneous function of degree 

zero; in fact then Fj = dj . 

(iii) In some instances the functions are concave. 

The latter property is nice in the fact that it guarantees the existence of 

a unique maximum while the first two properties, not important in them­

selves, prove basic ingredients in the formulation of an algorithm. 

It is possibly not surprising that problem (PI) crops up in various forms in the 

statistical literature given that probabilities are not infrequently parameters of 

probability models. This is particularly so in the case of likelihoods for categorical 

data. 

In addtion to the above, we now consider an estimation problem which in the first 

instance is an example of problem (P3) a seeming generalisation of problem (PI). 

We consider the problem of determining maximum likelihood estimates under the 

hypothesis of marginal homogeneity for data in a square n x n contingency table, 

first considered by Torsney (1988). This estimation problem could be transformed 

to an example of problem (P2). 

Given observed frequencies Oij, i = 1, 2, ... , n, j = 1, 2, ... , n, and assum­
n n 

ing a single multinomial distribution conditional on N = L L Oij, with cell 
i=l j=l 
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probabilities Bij , we wish to solve the following version of problem (P2). 

n n 
Maximise 'IjJ(B) = E E Oij In(Bij) subject to 

i=l j=l 

Bij 2: 0, i = 1,2, ... ,n, j = 1,2, ... ,n, 
n n 

E E Bij = 1, 
i=lj=l (4.7) 

n n 
E Brj = E Bjr for r = 1,2, ... ,n. 
j=l j=l 

Some simplification of the problem is possible in view of the fact that at the 

solution 

Oii N' i = 1, 2, ... , n, 

and also that one of the linear constraints, e.g. that corresponding to r = n, can 

be removed since they are linearly dependent. 

Let us first consider the case n = 3, i.e. a 3 x 3 contingency table. 
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4.2 Maximum Likelihood Estimation - 3 x 3 case 

It is convenient to introduce the following notation at this point. Let 

(Yl, Y2, Y3, Y4, Y5, Y6) = (012,031,023,021, 0 13 , 0 32) and 

(Xl, X2, X3, X4, X5, X6) = (E12' E 3l , E 23 , E 2l , E 13 , E 32 ), where Eij = N()ij , 

i = 1,2,3, j = 1,2,3 and hence are expected frequencies. 

Thus our simplified problem in terms of Xi'S and Yi'S is now 

6 
Maximise 'ljJ(x) = L: Yt In(xt) subject to 

t=l 

Xt ~ 0, t = 1,2, ... ,6 
6 3 
L: Xt = b = (N - L: Oii), 
t=l i=l 

Xl - X2 - X4 + X5 = 0, 

-Xl + X3 + X4 - X6 = 0. 

A standardised version of this problem is given by the transformation 

Zt = xt/b. So 

where L: Zt = l. 
t 

'ljJ(Z) 
t t 

So our problem is: Maximise 'ljJ(z) = L: Yt In(zt) subject to 
t 

Zt ~ 0, t = 1,2, ... ,6, 
6 

L: Zt = 1, 
t=l 

Zl - Z2 - Z4 + Z5 = 0, 

-Zl + Z3 + Z4 - Z6 = 0. 

(4.8) 

(4.9) 

(4.10) 
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Clearly, 

~ E Z = {~ : ~ E R6
, Zt ~ 0, t = 1,2, ... , 6, C~ = ~}. 

where 

1 1 1 1 

-1 ° -1 1 

° 1 1 ° 

This is a convex polygon, whose vertices are, in linear programming terminology, 

basic feasible solutions. In fact, vertices are given by: 

Ql = (1/2,0,0,1/2,0,0)T 

Q2 = (0,1/2,0,0,1/2,0)T 

~ = (0,0,1/2,0,0, 1/2)T 
~ = (1/3, 1/3, 1/3, 0, 0, O)T 
~ = (0,0,0, 1/3, 1/3, 1/3)T 

Thus we wish to solve a version of problem (P2) for which J = 5. 
5 

Also ~ = Ep{G(Q)} = Ep{Q} = E PjQj (As G(Q) = Q) and 
j=l 

6 5 
¢(p) = EYt1n{Epj(Qj)t} where (Qj)t = tth element ofQj' 

t=l j=l 

Now we derive the partial derivatives d. = ~. Let V = (Ql, Q2, ... , ~). 
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6 

LUt Vis 
t=l 

Thus 

where Vis = (t,s)thelement ofVandut = Yt 
Zt 

8¢ T 
d=-=Vu. - 8p -

The derivatives d/s are positive and the criterion ¢(p) is concave. 

The vertex directional derivatives are given by 

Thus 
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A particular example of data for which the hypothesis of marginal homogeneity 

is of interest is given in Plackett (1974), p.77-79. A grading of the unaided 
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distance vision of each eye of 3242 men resulted in the following frequencies, 

namely (012, 03b 0 23 , 0 21 , 0 13 , 0 32) = (230,77,87,223,62,106), b = 785. 

Taking x = d in various choices of f(x) in algorithm (3.1), we record for n=l, 2, 3 

the number of iterations needed to achieve m~x{Fj} ~ lO-n, for j = 1,2, ... ,J 
J 

starting from p;O) = 1/ J, j = 1,2, ... ,J, where Fj are the vertex directional 

derivatives. The results are given in tables 4.1-4.5 for various choices of o. 

In table 4.6 the numbers of iterations are given for best choices of 0 (Le. achieving 

fastest convergence) for each of f(.). 

From the results it is clear that numbers of iterations depends on the choice of 

f (.). Clearly the choices f (d) = dO and f (d) = exp( od) are better than the other 

three. We make some general comments about this at the end of this chapter. 
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8 n=1 n=2 n=3 

0.5 5 10 24 
1.0 2 4 11 
1.5 2 4 7 
1.6 2 4 6 
1.7 2 4 6 
2.0 3 5 7 
2.5 5 9 15 
3.0 6 14 269 

Table 4.1. 3x3 - case: f(d) = d5 : Number of iterations needed to achieve 
max{Fj} ::; lO-n for n = 1, 2, 3. 

8 n=1 n=2 n=3 

0.5 5 11 24 
1.0 3 6 11 
1.4 2 4 7 
1.5 2 3 6 
1.6 3 4 6 
2.0 3 7 9 
2.5 17 27 39 

Table 4.2. 3x3 - case: f(d) = exp(8d) : Number of iterations needed to achieve 
max{Fj } ::; lO-n for n = 1, 2, 3. 
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c> n=l n=2 n=3 
0.1 32 76 167 
0.5 9 21 48 
0.8 9 20 43 
0.9 8 19 43 
1.0 9 19 44 
1.5 13 28 65 
2.0 24 57 135 

Table 4.3. 3x3 - case: f(d) = cI>(c>d) : Number of iterations needed to achieve 
max{ Fj } ~ lO-n for n = 1, 2, 3. 

c> n=l n=2 n=3 

0.5 18 42 92 
1.0 11 27 60 
1.5 9 22 49 
2.0 9 20 45 
2.5 8 19 42 
3.0 8 18 41 
4.0 8 17 39 
5.0 7 17 39 
6.0 7 17 39 
7.0 7 17 39 
8.0 7 17 39 
9.0 7 17 39 
9.1 8 17 39 
9.2 8 17 40 
10.0 8 18 40 

Table 4.4. 3x3 - case: f(d) = In(e + 8d) : Number of iterations needed to 
achieve max{ Fj } ~ lO-n for n = 1, 2, 3. 
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8 n=1 n=2 n=3 

0.5 12 29 65 
1.0 9 20 46 
1.1 9 20 45 
1.2 9 20 45 
1.3 9 20 45 
1.4 9 20 45 
1.5 9 20 46 
2.0 11 24 54 
2.5 14 31 70 
3.0 18 42 97 

Table 4.5. 3x3 - case: f(d) = 1~:~~1d) : Number of iterations needed to achieve 
max{Fj } ~ lO-n for n = 1, 2, 3. 

f(d) 8 n=1 n=2 n=3 

exp(8d) 1.5 2 3 6 

d5 1.6 2 4 6 

<1>( 8d) 0.9 8 19 43 

In(e + 8d) 9.0 8 17 39 

exp(8d) 
1.2 9 20 45 l+exp(8d) 

Table 4.6. 3x3 - case: Number of iterations for best choices of 8 
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4.3 Maximum Likelihood Estimation - 4 x 4 case 

As in the previous case considering only the independent constraints of the hy­

pothesis of marginal homogenity, our problem is: 

n n 
Maximise 'I/J( ()) = E E Oij In( ()ij) subject to 

Let 

i=l j=l 

()ij 2:: 0, i = 1,2, ... ,4, j = 1,2, . " ,4, 
4 4 
E E ()ij = 1, 
i=l j=l 

()12 + ()13 + ()14 - ()2l - ()3l - ()4l = 0, 

-()12 + ()2l + ()23 + ()24 - ()32 - ()42 = 0, 

-()13 - ()23 + ()3l + ()32 + ()34 - ()43 = 0. 

(4.11) 

(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Ys, Yg, YlO, Yu, Y12) = (012,031,024,043,013,021,034,042,014,041,023,032) 

and 

(X1,X2, X3, X4, X5, X6, X7, XS, Xg, XlO, xu, X12) = (E12, E31 , E24 , E43 , E 13 , E 21 , E34 , E42 , E 14 , E41 , E23 , E32 ) 

where Eij = N()ij are expected frequencies. 

In view of the fact that at the solution ()ii = Oii/ N, i = 1,2, ... ,4 and in terms 

of Xi'S and Vi'S, our simplified problem is 
12 

Maximise 'I/J(x) = E Yt In(xt) subject to 
t=l 

Xt 2:: 0, t = 1,2, ... , 12 
12 4 

EXt = b = (N - E Oii), 
t=l i=l 

Xl - X2 + X5 - X6 + Xg - XlO = 0, 

Xl - X3 - X6 + Xs - Xu + X12 = 0, 

X2 - X4 - X5 + X7 - Xu + X12 = 0. 

(4.12) 
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If we transform Xt to Zt as Zt = xt/b, t = 1,2, ... ,12 then the simplified version 

of the problem is 

Maximise 'l/J(z) = ~ Yt In(zt) subject to 
t 

Clearly, 

Zt ~ 0, t = 1,2, ... ,12 
12 

~Zt = 1 
t=1 

ZI - Z2 + Z5 - Z6 + Zg - ZlO = 0, 

ZI - Z3 - Z6 + Zs - Zn + Z12 = 0, 

Z2 - Z4 - Z5 + Z7 - Zn + Z12 = o. 

~ E Z = {~ : ~ E R12, Zt ~ 0, t = 1,2, ... ,12, C~ = g} 

where 

1 1 1 1 1 1 1 1 1 1 1 1 

1 -1 0 0 1 -1 0 0 1 -1 0 0 
c= and Q= 

1 0 -1 0 0 -1 0 1 0 0 -1 1 

0 1 0 -1 -1 0 1 0 0 0 -1 1 

(4.13) 

1 

0 

0 

0 

This is a convex polygon, where vertices (i.e. the basic feasible solutions) are 

given by 
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Ql (1/2,0,0,0,0,0,1/2,0,0,0,0,0)T 

Q2 (0,1/2,0,0,0,0,0,1/2,0,0,0,0)T 

Qa (0,0,1/2,0,0,0,0,0,1/2,0,0,0)T 

14 (0,0,0,1/2,0,0,0,0,0,1/2,0,0)T 

1L5 (0,0,0,0,1/2,0,0,0,0,0,1/2,0)T 

Q6 (0,0,0,0,0,1/2,0,0,0,0,0,1/2)T 

Q7 (1/3,0,0,1/3,0,0,0,1/3,0,0,0,0)T 

Qg (0,1/3,0,0,0,0,1/3,0,0,1/3,0,0)T 

Q9 (0,0,0,1/3,0,1/3,0,0,0,0,1/3,0)T 

QlO (0,0,0,0, 1/3,0,0,0,0, 1/3,0, 1/3)T 

Ql1 (0, 1/3,0,0,0,1/3,0,0, 1/3,0,0,0)T 

Q12 (0,0,1/3,0,0,0,0,1/3,0,0,0,1/3)T 

Q13 (1/3,0,0,0,1/3,0,0,0,1/3,0,0,0)T 

Q14 (0,0, 1/3,0,0,0, 1/3,0,0,0, 1/3,0)T 

Q15 (1/4,0,0, 1/4,0,1/4,0,0, 1/4,0,0,0)T 

Q16 (1/4,0,0,0,1/4,0,0,1/4,0,0,0,1/4)T 

Q17 (0,1/4,0,0,0, 1/4,1/4,0,0,0, 1/4,0)T 

Q18 (0, 1/4,0,0,1/4,0,0, 1/4,0,0,1/4,0)T 

Q19 (0,0, 1/4,0,0,0, 1/4,0,0, 1/4,0, 1/4)T 

Q20 (0,0, 1/4, 1/4,0,0,0,0, 1/4, 1/4, 0, O)T. 

Now we can solve a version of problem (P2) for which J = 20. 
20 12 20 

~ = E PjQj and ¢(p) = E Yt In{E pj(Qj)d where (Qj)t = tth element of v". 
j=1 t=1 j=1 -3 

The partial derivatives I!;'s are given by :~ = QJy:. 

Thus d. = VTy:, where V = (Ql,Q2"" ,Q20) and y:= (Ul,U2, ... ,UI2), Ut = 'Ili. 
Zt 

The criterion ¢(p) is concave with positive derivatives dj's. 
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We consider the same example of data as in 3 x 3 case, but as a 4 x 4 contingency 

table [Plackett (1974)]. The grading of the unaided distance vision of each eye of 

3242 men resulted in the following frequencies, namely 

b = 1013. 

For the same choices of f(d) (as in 3 x 3 case) in algorithm (3.1), we record for 

n=1, 2, 3 the number of iterations needed to achieve mt:tx{Fj} ~ lO-n , for 
J 

j = 1,2, ... ,J starting from pjO) = 1/ J, j = 1,2, ... ,J, where Fj are the 

vertex directional derivatives. For various choices of 8, results are given in tables 

4.7-4.11. 

Similar to table 4.6 the numbers of iterations for 8 achieving fastest convergence 

for each of f(.) are given in table 4.12. 
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8 n=1 n=2 n=3 

0.5 6 23 38 
1.0 3 11 18 
1.5 2 7 11 
2.0 2 5 8 
2.2 2 4 7 
2.3 2 4 6 
2.4 2 4 6 
2.5 2 4 8 

Table 4.7. 4x4 - case: f(d) = d5 
: Number of iterations needed to achieve 

max{Fj } :::; lO-n for n = 1, 2,3. 

8 n=1 n=2 n=3 

0.5 7 23 37 
1.0 4 11 18 
1.5 4 7 11 
2.0 3 5 8 
2.1 3 5 7 
2.2 3 5 7 
2.3 3 6 9 
2.5 4 7 13 
3.0 13 41 67 

Table 4.8. 4x4 - case: f(d) = exp(8d) : Number of iterations needed to achieve 
max{ Fj } :::; lO-n for n = 1, 2, 3. 
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8 n=l n=2 n=3 

0.5 13 45 75 
0.7 11 40 67 
0.8 11 39 66 
0.9 11 40 67 
1.0 12 41 69 
1.5 18 59 101 
2.0 36 116 201 

Table 4.9. 4x4 - case: f(d) = cI>(8d) : Number of iterations needed to achieve 
max{Fj } ::; lO-n for n = 1, 2, 3. 

8 n=l n=2 n=3 

0.5 24 86 144 
1.0 16 56 94 
1.5 13 46 78 
2.0 12 42 70 
2.5 11 40 66 
3.0 11 38 64 
4.0 10 37 62 
5.0 10 36 61 
6.0 10 36 61 
7.0 10 37 62 

Table 4.10. 4x4 - case: f(d) = In(e + 8d) : Number of iterations needed to 
achieve max{Fj} ::; lO-n for n = 1, 2, 3. 
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8 n=l n=2 n=3 

0.5 17 60 101 
1.0 12 43 72 
1.1 12 42 70 
1.2 12 42 70 
1.3 12 42 70 
1.4 12 42 71 
1.5 12 43 72 
2.0 15 50 85 
2.5 19 64 110 
3.0 26 87 150 

f(d) exp(t5d) N b f Table 4.11. 4x4 - case: = l+exp(t5d): urn er 0 iterations needed to 
achieve maxi Fj } ~ lO-n for n = 1, 2, 3. 

f(d) 8 n=l n=2 n=3 

exp(8d) 2.1 3 5 7 

dt5 2.3 2 4 6 

<1>( 8d) 0.8 11 39 66 

In(e + 8d) 5.0 10 36 61 
exp(8d) 1.2 12 42 70 1+exp(8d) 

Table 4.12. 4x4 - case: Number of iterations for best choices of 8 
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4.4 Comments 

(i) For all choices of f(d) and 8, convergence was to the same solution, ~;.amely 

3x3 - case: 

(EI2, E 31 , E 23 , E 21 , E 13 , E32 ) = 
(227.33, 70.26, 97.43, 225.67, 68.56, 95.74). 

4x4 - case: 

(EI2' E 31 , E 24 , E 43 , E 13 , E 21 , E 34 , E 42 , E 14 , E 41 , E 23 , E 32 ) = 

(110.02,83.10,38.28,144.30,30.13,97.60,118.13, 73.68, 39.60,151.73,30.80,95.61). 

(ii) Each choice of f(d) depends on a free parameter 8 which should be positive. 

Clearly the value of 8 is crucial in such a choice. The values of 8 reported 

in tables 4.6 and 4.12 achieve fastest convergence. 

(iii) Here d/s are positive and two of these choices of J(.) are defined for only 

positive d (d5
, In(l + 8d)). The other three are defined for both positive 

and negative d. 

(iv) Clearly exp(8d) and d5 are best in both cases. While <I>(8d), In(l + 8d) and 

l~:~~~d) take many more iterations than exp(8d) and d5• 

exp(8d) 
(v) Here dj's are positive and <I>(8d) and 1+exp(8d) change slowly for high val-

ues, say values above 1, whereas they change more quickly at zero. Noting 

that LPjFj = 0, since Fj = dj - 2;Pidi, we might consider replacing dj by 
j Z 

Fj. In the 3x3-case with J(F) = <I>(8F) and 8 = 0.9 the number of itera-

tions needed to achieve mq,x{ Fj } ::; lO-n for n = 1, 2, 3 respectively are 3, 
J 
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6, 14, whereas taking f(d) = <I>(£5d) with same £5 takes 8, 19, 43 iterations 

(from table 4.6) to achieve mg,x{ Fj } :::; lO-n for n = 1, 2, 3 respectively. 
J 

Note that iterations under f(d) = exp(£5d) and under f(F) = exp(cSF) will 

be identical. 



Chapter 5 

Construction of Optimal Designs 

5.1 Introduction 

In the previous chapter we have seen that many examples of problems (PI) and 

(P2) can arise in the area of estimation, In this chapter we consider examples in 

constructing D-optimal designs, 

These are constrained optimisation problems having the single linear equality 

constraint ~Pj = 1 as well as Pj 2: 0, j = 1, 2, '" ,J, the full constraint region 
j 

being a closed bounded convex set, 

Therefore we have an example of problem (PI) with 

(i) ¢(p) = log{ det(M(p))}; 

J 
(1'1') M() ~ V vT the information matrix, p = L.J Pj-j-j , 

j=l 

It is also an example of problem (P2) where 

89 
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(ii) Jl.. E V ~ Rk, V is the induced design space; 

(iii) x [= X(p) = M(p)] is a symmetric k x k matrix and 

(iv) ,¢(x) = log{ det(x)} [= ¢>(p)]. 

5.2 Examples 

We consider D-optimal designs for five examples considered by Silvey et al (1978), 

Wu (1978). The first example originated in Wynn (1970). The examples are 

defined by their design spaces. 

Example - 1: V = VI = {(l,-l,-W, (l,-l,W, (l,l,-W, (1,2,2)T} 

Example - 2: V = V, = {(1, -1, - W, (1, -1, l)T, (1,1, -1)T, (1,2, 3)T} 

Example - 3: V = V, = {(I, -1, -2jT, (1, -1, l)T, (1,1, -W, (1,2, 2)T} 

Example - 4: V = V4 = {(1, 1, -1, -IV, (1, -1, 1, -l)T, (1, -1, -1, -l)T, 

(1,2,2, -IV, (1,1, -1, IV, (1, -1.5, 1, IV, 
(1, -1, -1, 2)T} 

Example - 5: V = V5 = {(I, 1, -1, -l)T, (1, -1, 1, -IV, (1, -1, -1, -IV, 

(1,2,2, -IV, (1,1, -1, IV, (1, -1.5, 1, l)T, 

(1, -1, -1, 2)T, (1,1,1.5, IV} 
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These correspond to linear models with a constant term since the first component 

of each vertex (12.j) is always 1. Thus in examples 1-3 if 12.j E V then 12.j is of the 

form (1, X2, X3). 

In fact, we can assume the more realistic regression model 

E(y) = 12.T~, 12.EV 

where 

V { 'Ii = (Xl> X" X3)T X, = 1, (x" X3) E 12 } 

where Q is the quadrilateral with vertices 

(-1, -1), (-1,1), (1, -1), (2,2) for example-I, 

(-1, -1), (-1,1), (1, -1), (2,3) for example-2, 

and (-1, -2), (-1,1), (1, -1), (2,2) for example-3. 

(5.1) 

(5.2) 

These could be viewed as the design space, but it is well established that obser­

vations should only be taken at the vertices. 

Examples 4 and 5 have similar characterisations. Also 

V5 = V4 U {(I, 1, 1.5, I)T}. 
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We now derive the optimal weights (p*) for example 1. This derivation is simpli­

fied by employing symmetry arguments to justify p; = p;. 

Let Pt = q, p; = p; = r. Then P4 = 1 - q - 2r. 

Let 

P diag(pr,p~,p;,p:) 

diag(q,r,r,l -q- 2r) 

and 

[ 
-~ -~ ~ 221] 
-1 1-1 

Then the information matrix would be 

M = VPVT 

[ 
_3q_14r+2 

-3q - 4r + 2 

and its determinant is given by 

-3q- 4r+ 2 

-3q - 6r+4 

-3q -10r+4 

-3q - 4r + 2 ] 
-3q -lOr +4 

-3q- 6r+4 

(5.3) 

(5.4) 
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The above expression has two unknowns q and r. The maximum of the determi­

nant is found by differentiation, giving the pair of derivatives 

8[det{M}] 
8q 

8[det{M}] 
8r 

72r - 144qr -192r2 

- 72 q + 128 r - 72 q2 - 384 q r - 384 r2. 

At the maximum both of the above derivatives are zero. Thus solution of the 

resulting equations yields 

q 0.125 

r 0.28125. 

Hence the optimum solution p* would be 

pi 0.125 

0.28125 

0.3125. 
(5.6) 
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Note that in chapter 1 while considering the properties of different design criteria 

we mentioned that D-optimality is a special case of the standardised criteria 

This is the case in view of the fact that 

lim 7/!t { M (p) } 
t-+o 

- [det{M(p)}J-l/k. 

Thus we consider the standardised criterion 

1 
¢(p) = "klog{ det(M(p))} , k=number of parameters. (5.7) 

The criterion [logdet{M(p)}] is concave on the set of symmetric positive definite 

matrices and is invariant under non-singular linear transformation of V. 

We need to calculate the the partial derivatives .;;;. They can be derived as 

where G {M(p), ll./?LJ} is the Gateaux derivative of [log det{M(p)}]. 

J 
Note that ~ pjdj = 1. 

j=l 
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We report the performance of algorithm (3.1) in calculating D-optimal designs 

when J(.) satisfies the conditions of section (3.2). 

We first consider three choices of J(.), taking x = d : namely, J(d) = In(e + c5d); 

J(d)= l::~~~d) and J(d) = a - exp( -c5d) , a> 1. Note that for a close to 1 the 

last choice of J(d) is close to an exponential cumulative distribution function. 

These choices were also considered by Torsney and Alahmadi (1992). In contrast 

to these authors we consider taking the standardised criterion function (5.7). 

In tables 5.1-5.5 we record for n=l, 2, 3, 4 the number of iterations needed to 

achieve max {Fj } ~ lO-n, where Fj are the vertex directional derivatives. In 
195:J 

all the cases we take the initial design to be P)O) = 1/ J, j = 1, 2, ... , J. 

Convergence of the algorithm can be slow as the results in tables 5.1-5.5 demon­

strate. However arguably it is fast to begin with. If we compare the results for 

the five examples (corresponding to the best choices of c5, given in bold numbers1) 

for the three choices of the functions J(.), J(d) = 1~:~~~d) is not good whereas 

J(d) = In(e + c5d) and J(d) = a - exp( -c5d) are not bad. 

One marginally positive result is that convergence is faster under the case J(d) = 

a - exp( -c5d) with a = 1.0001. Convergence was slower for large values of a. 

Interestingly if a ~ 1 and c5 is small then J (d) ~ c5d. This suggests that J (d) = d 

is an efficient choice for D-optimality criterion. Certainly it is known to be 

monotonic for this criterion. 

1 In all tables iteration counts for best choices of 6 are given in bold font 
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Example - 1 

f(d) = In(e + 6d) 

6 n=l n=2 n=3 n=4 

2.0 3 17 44 74 
3.0 3 15 40 67 
4.0 2 15 38 64 
5.0 2 14 38 63 
6.0 2 14 38 63 
7.0 2 14 38 63 
7.8 2 14 38 63 
7.9 2 14 38 64 
8.0 2 14 38 64 

f( d) - exp(od) 
- l+exp(od) 

6 n=l n=2 n=3 n=4 

1.0 3 17 45 75 
1.2 3 16 43 73 
1.3 3 16 43 72 
1.4 3 16 43 73 
1.5 3 16 44 73 
1.6 3 17 45 75 
2.0 3 18 50 84 

f(d) = a - exp( -6d), a = 1.0001 

6 n=l n=2 n=3 n=4 

0.005 1 4 11 19 
0.01 1 4 11 18 
0.05 1 4 11 19 
0.1 1 5 11 19 
0.5 1 6 14 24 
0.8 1 7 17 29 
0.9 1 7 18 31 
1.0 1 8 20 33 
1.5 2 10 27 45 

Table 5.1. Example-1:Number of iterations needed to achieve max{Fj } ~ lO-n . 
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Example - 2 

f(d) = In(e + 8d) 

8 n=1 n=2 n=3 n=4 

3.0 3 26 69 123 
4.0 3 25 66 118 
4.5 3 25 65 117 
5.0 3 24 65 116 
6.0 3 24 65 116 
7.0 3 24 65 116 
7.5 3 24 65 116 
8.0 3 25 65 117 

f (d) - exp(8d) 
- 1+exp(8d) 

8 n=1 n=2 n=3 n=4 

1.0 3 29 78 138 
1.1 3 29 76 135 
1.3 3 28 74 132 
1.4 3 28 75 133 
1.5 3 28 75 134 
2.0 4 32 86 153 

f(d) = a - exp( -8d), a = 1.0001 

8 n=l n=2 n=3 n=4 

0.005 1 8 20 36 
0.009 1 7 20 35 
0.01 1 7 20 35 
0.05 1 8 20 36 
0.5 1 10 26 46 
1.0 2 15 44 89 
2.0 3 23 64 115 

Table 5.2. Example-2:Number of iterations needed to achieve max{ Fj } < lO-n. 
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Example - 3 

f(d) = In(e + 8d) 

8 n=1 n=2 n=3 n=4 

4.0 2 10 36 57 
4.5 2 10 36 57 
4.8 2 10 35 56 
5.0 2 10 35 56 
6.0 2 10 35 56 
7.0 2 10 35 56 
7.5 2 10 35 56 
7.7 2 10 35 56 
8.0 2 10 36 57 

f(d) - exp(6d) 
- l+exp(6d) 

8 n=1 n=2 n=3 n=4 

1.0 2 12 42 67 
1.2 2 12 41 65 
1.3 2 12 40 64 
1.4 2 12 41 65 
1.5 2 12 41 65 
2.0 3 13 47 75 

f(d) = a - exp( -8d), a = 1.0001 

8 n=1 n=2 n=3 n=4 

0.001 1 5 11 18 
0.005 1 5 10 16 
0.01 1 4 10 16 
0.05 1 5 10 16 
0.5 1 5 13 21 
2.0 2 10 35 56 

Table 5.3. Example-3:Number of iterations needed to achieve max{Fj } ~ lO-n . 
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Example - 4 

f(d) = In(e + bd) 

b n=l n=2 n=3 n=4 
4.0 5 54 192 481 
5.0 5 54 190 474 
6.0 5 53 189 473 
6.5 5 54 190 474 
7.0 5 54 190 474 

f( d) - exp(5d) 
- l+exp(5d) 

b n=l n=2 n=3 n=4 
1.1 6 61 217 543 
1.2 6 61 217 542 
1.3 6 61 216 540 
1.5 6 62 219 549 
2.0 7 71 251 629 

f(d) = a - exp( -bd), a = 1.0001 

b n=l n=2 n=3 n=4 
0.001 1 17 61 153 
0.005 1 17 61 153 
0.01 1 17 60 151 
0.05 1 17 61 153 
2.0 6 53 190 477 

Table 5.4. Example-4:Number of iterations needed to achieve max{Fj } ~ lO-n. 
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Example - 5 

f(d) = In(e + Jd) 

J n=l n=2 n=3 n=4 

4.0 5 75 299 645 
5.0 5 74 295 636 
6.0 5 74 294 634 
7.0 5 74 295 636 
8.0 5 75 297 640 

f(d) - exp(5d) 
- l+exp(5d) 

J n=l n=2 n=3 n=4 

1.2 6 85 337 726 
1.3 6 84 336 724 
1.5 6 86 341 735 
2.0 7 99 391 842 

f(d) = a - exp( -Jd), a = 1.0001 

J 1').=1 n=2 n=3 n=4 

0.005 2 24 95 205 
0.007 2 24 95 204 
0.009 2 24 95 204 
0.01 2 24 95 204 
0.05 2 24 96 206 
2.0 6 75 296 639 

Table 5.5. Example-5:Number of iterations needed to achieve max{ Fj } :s; lO-n. 
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5.3 A variation in algorithm (3.1) : Replacing 

d· by F· J J 

We now attempt to improve convergence by considering some choices of J(.) for 

which we replace dj by Fj . Some of the above choices of J (.) could be bad be­

cause D-optimal derivatives are positive and 'centred' on 1 [~pjdj = 1] j namely 
J 

the logistic cumulative distribution choice of J(.) which can accept negative ar-

guments. Similarly we noted in the previous chapter the choice of J(d) = <I>(c5d) 

is bad because the d/s are positive and 'centred' on 1. <I>(c5d) slowly changes at 

1 whereas it changes more quickly at zero. Torsney (1988) first considered such 

choices of J(.) for criterion with negative derivatives dj . In its conception algo­

rithm (3.1) was originally evolved for standard optimal design criteria which have 

positive derivatives and J(d) = dO proved to be a natural choice for particular 

values of c5j in particular c5 = 1 for D-optimality and c5 = 1/2 for c-optimality 

yield monotonic iterationsj see Titterington (1976) and Torsney (1983). 

However, any criterion has both positive and negative vertex directional deriva­

tives Fj [E pjFj = 0]. This motivates the idea of replacing dj by Fj in algorithm 
j 

(3.1) to yield 

(5.8) 

where F~r) are directional derivatives at rth iteration, and J(.) satisfies the con­
J 

ditions of section 3.2. 

Here we consider two choices of J(x) : J(x) = <I>(x), and J(x) = 1~:~~(~)' x = c5F. 

Note that the function J(x) = In(e + c5x) (considered in the previous section) 

cannot be considered since x can be negative. 
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In tables 5.6 - 5.10 we record for n=l, 2, 3, 4 the number of iterations needed to 

achieve max {FJ'} < lO-n for these two choices. The initial design is p\O) = I/J 
1< '<J - J , _L 

j = 1,2, ... , J. 

Results in tables 5.6 - 5.10 clearly illustrate that convergence is improved con­

siderably (for both of the choices f(x) = ~(x) and f(x) = 1~::~~)) over all 

the choices of f(.) in the previous section. For example, in example-2 with 

f(x) = 1~:~~~)' x = 8F and 8 = 3.0 the number of iterations needed to achieve 

max {Fj } < lO-n for n = 1, 2, 3, 4 respectively are 2, 4, 12, 22 (table 5.7) 
l$j$,J -

whereas with the same function f(x) but taking x = 8d with 8 = 1.3 takes 3, 28, 

74, 132 iterations (table 5.2). 

Example - 1 

f(x) = ~(x), x = 8F 

8 n=1 n=2 n=3 n=4 

1.0 1 6 14 24 
1.5 1 4 9 15 
2.0 1 3 7 10 
2.5 1 9 21 33 

f() exp{x) 8F x = l+exp{x) ' X = 
8 n=1 n=2 n=3 n=4 

2.0 1 4 11 18 
2.5 1 3 8 14 
3.0 1 3 6 11 
3.5 1 5 9 13 
4.0 1 9 23 35 

Table 5.6. Example - 1 : Iteration counts: Replacing dj by Fj • 
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Example - 2 

f(x) = <I>(x), x = 8F 

8 n=1 n=2 n=3 n=4 

1.0 1 9 25 45 
1.5 1 6 16 29 
2.0 2 4 12 21 
2.5 3 21 49 77 

f( ) - exp{x) X - 8F x - l+exp{x) ' -

8 n=1 n=2 n=3 n=4 

2.0 1 7 20 35 
2.5 1 6 15 27 
3.0 2 4 12 22 
4.0 3 21 55 81 

Table 5.7. Example - 2 : Iteration counts: Replacing dj by Fj • 

Example - 3 

f(x) = <I>(x), x = 8F 

8 n=1 n=2 n=3 n=4 
1.0 1 5 13 21 
1.5 1 4 8 13 
2.0 1 3 6 8 
2.5 2 7 17 25 

f( ) - exp{x) - 8F x - l+exp{x) ' x-

8 n=1 n=2 n=3 n=4 

2.0 1 4 10 16 
2.5 1 3 8 12 
3.0 1 2 6 9 
4.0 2 7 17 27 

Table 5.8. Example - 3 : Iteration counts: Replacing dj by Fj • 
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Example - 4 

f(x) = <I>(x), x = 8F 

8 n=1 n=2 n=3 n=4 
1.0 2 21 75 188 
1.5 1 14 49 124 
2.0 1 11 37 93 
2.5 1 10 29 74 

f( ) - exp(x) - 8F x - l+exp(x) ' x-

8 n=1 n=2 n=3 n=4 
2.0 1 17 60 149 
3.0 1 11 39 99 
3.5 1 10 33 84 
4.0 1 10 29 73 

Table 5.9. Example - 4 : Iteration counts: Replacing dj by Fj . 

Example - 5 

f(x) = <I>(x), x = 8F 

8 n=1 n=2 n=3 n=4 
1.0 2 30 117 252 
1.5 1 20 78 167 
2.0 1 15 58 125 
2.5 1 12 46 100 

f () exp(x) 8F x = l+exp(x) ' X = 

8 n=1 n=2 n=3 n=4 

2.0 2 24 93 201 
3.0 1 16 62 133 
3.5 1 14 53 114 
4.0 1 12 46 99 

Table 5.10. Example - 5 : Iteration counts: Replacing dj by Fj • 
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5.4 A further variation 

Consider functions f(d) defined for only positive d. We cannot replace dj by F
j 

since at least one Fj must be negative. However, noting that Fj = dj - c where 
J 

c = LPidi, we might improve convergence by replacing dj by Xj = (dj - c) and 
i=l 

choosing c to be a value in the range (0, min{ dj }). 

One possible choice of c would be a lower limit on the dj if such were known. 

One example of this arises in the case of a linear model with a constant term. 

Then the standardised D-optimal derivatives have a lower limit of l/k. In fact, 

the following is true. 

(5.9) 

where the iD) are the raw partial derivatives of log{det(M(p))} and the iDs) 
J J 

are the (nonnegative) partial derivatives of the Ds-criteria when interest is in all 

parameters excepting the constant term. See Silverman and Titterington (1980) 

and Torsney (1981). 

Since iDs) > 0 iD) > 1, and of course, 
J -, J 

(5.10) 

As an alternative to this choice of c we consider c = min{dj }/2 with f(x) = 
In(e + c5x). 

Iteration counts in tables 5.11 and 5.12 show that convergence is improved by 

replacing dj by (dj - c), c = min{dj }/2. For example, in example-1 with 
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f (d) = (d - c), c = min{ dj } /2 and 8 = 8.0 the number of iterations needed 

to achieve max {Fj} ~ lO-n for n = 1, 2, 3, 4 respectively are 2, 8, 19,31 (table 
15:j5:J 

5.11) whereas taking f(d) = In(e+8d) with 8 = 5.0 takes 2,14,38,63 iLrations 

(table 5.1). Similar results are true for the other examples as well. 

Further improvement is possible through taking Xj = (dj - c).B with a suitable 

choice of (3. Iteration counts are reported in table 5.13. 

Table 5.13 clearly illustrates that convergence is further improved by taking Xj 

as (dj - c).B than by taking simply (dj - c), c = min{dj }/2. In example-5 with 

f(d) = (d - c).B, c = min{dj }/2, 8 = 10.0, fJ = 2.0 the number of iterations 

needed to achieve max {Fj } ~ lO-n for n = 1,2,3,4 respectively are 1, 21, 82, 
15:j5:J 

176 whereas taking f(d) = (d - c), c = min{ dj }/2, 8 = 10.0 takes 3, 39, 152,327 

iterations. Similar results are true for the other examples as well (see table 5.13). 
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f(x) = In(e + ox), Xj = dj - C, C = min{dj }/2 

Example - 1 

0 n=l n=2 n=3 n=4 
1.0 3 18 47 77 
2.0 2 12 30 49 
5.0 2 8 21 34 
6.0 2 8 20 33 
8.0 2 8 19 31 

Example - 2 

0 n=l n=2 n=3 n=4 

2.0 2 20 52 91 
3.0 2 17 42 75 
4.0 2 15 38 67 
5.0 2 14 36 63 
6.0 2 14 35 61 
7.0 2 13 34 60 
8.0 2 13 33 59 
9.0 2 13 33 58 

Example - 3 

0 n=l n=2 n=3 n=4 

5.0 1 6 19 30 
6.0 1 5 18 29 
7.0 1 5 18 28 
8.0 1 5 18 28 
9.0 1 5 17 27 
10.0 1 5 17 27 
12.0 1 5 17 27 
20.0 1 5 18 28 

Table 5.11. Iteration counts for f(x) = In(e + ox), Xj = dj - C, C = min{dj }/2, 
examples 1-3. 
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f(x) = In(e + ox), Xj = dj - C, C = min{dj }/2 

Example - 4 

0 n=l n=2 n=3 n=4 

2.0 4 43 149 370 
4.0 3 32 112 277 
6.0 3 29 102 252 
10.0 3 28 96 239 
12.0 3 28 96 238 
15.0 3 28 97 240 
20.0 3 29 99 245 

Example - 5 

0 n=l n=2 n=3 n=4 

2.0 4 59 232 501 
6.0 3 41 159 343 
8.0 3 40 154 331 

10.0 3 39 152 327 
12.0 3 39 152 327 
15.0 3 39 153 329 

Table 5.12. Iteration counts for f(x) = In(e + ox), Xj = dj - C, C = min{dj }/2, 
examples 4 & 5. 

f(x) = In(e + ox), Xj = (dj - c)!1, C = min{dj }/2 

EXAMPLES 8 f3 n=l n=2 n=3 n=4 

Example-1 8.0 3.0 1 4 9 14 
Example-2 9.0 2.0 1 7 18 31 
Example-3 9.0 2.0 1 4 9 14 
Example-4 12.0 3.0 1 11 40 101 
Example-5 10.0 2.0 1 21 82 176 

Table 5.13. Iteration counts for f(x) = In(e+8x), Xj = (dj -c)!1, C = min{dj }/2, 
examples 1-5. 
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5.5 A Class of Functions based on a Distribu­

tion Function 

We further attempt to improve convergence considering a class of functions based 

011 a distribution function. Consider functions f(.) defined for negative F. Since 

at the optimum 

{ 
= 0 for PJ~ > 0 

F* 
j ~ 0 for pj = 0 

a desirable choice of f(.) should be one which is changing at a reasonable rate at 

zero. Below is a class of such functions based on a distribution function G(.). 

{ 

= [1 + [G(8F)]P - 2(1/2)P]/2[1 - (1/2)P] for F > 0 

f(F) = Hp(F) (5.11) 
= [1 - [G( -8F)]P]/2[1 - (1/2)P] for F < 0 

More generally, 

{ 

= [1 + [G(8F)]P - 2[G(0)]P]/2[1 - [G(O)]P] for F > 0 

f(F) = Hp(F) (5.12) 
. . = [1 - [G( -8F)]PJ/2[1 - [G(O)]P] for F < 0 

Clearly Hp(F) satisfies the conditions stated in section 3.2. 

Figure 5.1 shows a plot Hp(F) versus F where G(8F) = <I>(8F), the Normal cdf; 

8 = 2.0 and f3 = 1.0. The plot shows that Hp(F) changes quickly at zero. 

We use the algorithm 

J 

(r+1) _ per) H (F~r») / ~p(r) HR(p(r») 
Pj - j P J ~ Z I' z 

i=l 
(5.13) 
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where Hf3(F) is given in (5.11). 

Iteration counts using algorithm (5.13) similar to that of the previous tahl0'3 are 

contained in tables 5.14 (for examples 1 and 2) and 5.15 (for examples 3,4 and 5). 

The results demonstrate that, convergence is improved by considering this class of 

functions [Hf3(F)] than that of considering only dj (tables 5.1-5.5). For example, 

in example-5 with f(F) = Hf3(F), G(8F) = <J?(8F) and 8 = 4.0, f3 = 3.0 the num­

ber of iterations needed to achieve max {Fj } ~ lO-n for n = 1, 2, 3, 4 respectively 
l$j$J 

are 1, 16, 64, 140 (table 5.15) whereas taking f(d) = a - exp( -8d), a = 1.0001 

with 8 =0.01 takes 2, 24, 95, 204 iterations (table 5.5). 

o 
o~ ____ ~ __ ~~ __ ~ ____ ~ 

0.0 0.5 1.0 ·1.0 .(l.S 
F 

Figure 5.1. Hf3(F) versus F, where F is directional derivative. Hf3(F) is given 
in (5.11), where G(8F) = <J?(8F), the Normal cdf; 8 = 2.0 and f3 = 1.0. 
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f(F) = Hf3(F), G(8F) = ~(8F) 

Example - 1 

8 f3 n=l n=2 n=3 n=4 

3.0 2.0 1 5 7 12 
2.0 2.0 1 4 10 16 
2.0 3.0 1 6 15 26 
3.0 2.5 1 3 7 12 
3.0 3.0 1 3 9 16 
2.5 2.5 1 3 9 16 

Example - 2 

8 f3 n=l n=2 n=3 n=4 

1.0 1.0 1 9 25 45 
1.0 2.0 2 14 38 68 
1.0 0.5 1 8 21 37 
1.0 0.1 1 7 18 31 
1.0 0.01 1 7 17 30 
2.0 0.5 2 9 23 37 
2.0 1.0 2 4 12 21 
2.0 2.0 1 6 17 32 
2.0 3.0 1 10 27 50 
3.0 2.0 2 6 10 20 
3.0 3.0 1 5 17 31 
3.0 1.5 5 31 53 73 

Table 5.14. Iteration counts for Hf3 (F), Hf3(F) is given in (5.11), where 
G(8F) = ~(8F), the Normal cdf; examples 1 & 2. 
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f(F) = Hj3(F), G(oF) = <J?(oF) 

Example - 3 

0 (3 n=1 n=2 n=3 n=4 
1.0 1.0 1 5 13 21 
1.0 2.0 1 7 20 32 
1.0 0.5 1 5 11 17 
2.0 2.0 1 4 9 14 
2.0 0.5 1 5 11 19 
2.0 1.0 1 3 6 8 
3.0 2.0 1 4 7 9 
3.0 3.0 1 3 8 14 

Example - 4 

0 (3 n=1 n=2 n=3 n=4 
1.0 1.0 2 21 75 188 
2.0 2.0 2 17 68 147 
2.5 1.0 1 10 29 74 
2.5 2.0 1 12 43 110 

Example - 5 

0 (3 n=1 n=2 n=3 n=4 
2.0 2.0 1 22 86 187 
3.0 3.0 1 22 87 189 
4.0 3.0 1 16 64 140 
4.0 4.0 1 24 101 221 

Table 5.15. Iteration counts for Hj3(F), Hj3(F) is given in (5.11), where 
G(oF) = <J?(oF), the Normal cdf; examples 3 - 5. 
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5.6 Optimal Weights 

We now report, for the five examples, the values of the weights to which conver­

gence was obtained for the choices of f(.) and 0 considered. 

These are the optimal designs. 

Example - 1: {0.125, 0.281, 0.281, 0.313} 

Example - 2: {0.074, 0.291, 0.311, 0.324} 

Example - 3: {0.243, 0.305, 0.161, 0.291} 

Example - 4: {0.030, 0.012, 0.231, 0.234, 0.183,0.208, 0.102} 

Example - 5: {0.030, 0.012, 0.231, 0.234, 0.183,0.208,0.102, O.OOO} 

Note that the design space for example 5 added a design point to that of example 

4, i.e., V5 = V4 U {(I, 1, 1.5, IV}· The optimal weight (Ps) for this vertex (Qg) 

is zero and the other optimal weights are therefore the same as in example 4. 

Also note that the optimal weights for example 1 above match with the solution 

(5.6) derived in section 5.2. 



Chapter 6 

Objective Choices of J(.) 

6.1 Introduction 

In the previous chapter we considered a variety of choices of the function f (.) in 

iteration (3.1). These were to some extent arbitrary. Convergence rates varied 

although judicious choice of a free parameter could yield improvements. We also 

considered changing the argument of f (.) from dj to Fj. This yielded further 

improvements especiaIIy through the class of iteration (5.13). 

We now consider more objective choices of f(x) for both choices of x, x = d. 
J 

and x = Fj. We mainly consider two approaches - approach I and approach II 

to improve convergence. In approach I, the criterion function ¢(p) can have both 

positive and negative partial derivatives dj , whereas in approach II it can have 

only positive dj . We consider appropriate choices of the class of functions f(x) 

for the two approaches. 

114 
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6.2 Approach I 

In this approach we replace dj by Fj • Since there are always positive and negative 

Fj CLPjFj = 0) this requires a function f(F) which is defined for positive and 
j 

negative F, where we take F to represent a directional derivative. We note that 

properties (a) to (d) of (3.2) are still satisfied provided f(F) is increasing in F. 

A suitable choice of f(.) should be governed by the fact that at the optimum 

{ 
= 0 for PJ~ > 0 

F* 
j ~ 0 for pj = 0 (6.1) 

This suggests that a suitable function is one that is 'centred' on zero and changes 

reasonably quickly about F = o. It should also be desirable to treat positive and 

negative Fj's symmetrically, at least when all Pi's are positive. 

A class of functions f(x) with the potential to satisfy these requirements has the 

following structure. 

Suppose a function h(x) is defined on JR such that 

Then take 

h(O) = 1, h(x) > 0 and h'(x) > o. 

f(x) { 
h(x) 
2 - h(-x) 

for x < 0 

for x> 0 

i.e. f(x) = (1 + s) - s h(-sx), s = sign(x). 

(6.2) 

(6.3) 
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Clearly f(x) is increasing, while for V > 0, (V, f(v)) and (-V, f( -V)) are re­

flections of each other in the point (0,1) = (0, f(O)), i.e., f( -V) = 2 - f(v). 

Equivalently J' (V) is symmetric about zero. 

Note that 0 < f(x) < 2, so that f(x) is bounded. Also f(O) = 1. 

Possible choices of h(x) with x = F and 6 being a positive free parameter are 

h(x) = 

exp(6x) 
1/(1 - 6x) 
(1 - x)-5 

2H(6x) 

where H(.) is a c.dJ. such that H(O) = 1/2. 

(6.4) 

Note that if h(x) is bounded on lR+ then a converse choice would be possible. In 

that case we need h(x) to be 

h*(x) 
h(x) - h(O) 

- 1 + h(oo) - h(O) 

so that h*(O) = 1 and h*(oo) = 2. 

Then 

f(x) 
_ { h*(x) 

2 - h*(-x) 
for x> 0 

for x < O. 
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Using the functions h(x) = exp(8x) , h(x) = 1/(1 - 8x) and h(x) = (1 - x)-5 

in (6.4) and considering f(x) in (6.3) we calculate D-optimal designs for the 5 

examples given in section (5.2). 

We use the algorithms 

where 

(r+1) 
Pj 

J 

D - L:pV) f(Ft)), 
i=l 

with f(.) as in (6.3). 

for F~r) < 0 
J 

(6.5) 

We record for n = 1, 2, 3, 4, the number of iterations needed to achieve 

mg,x {F
j

} ~ lO-n, for j = 1, 2, ... ,J. In all the cases we take the initial 
J 

design to be pjO) = 1/ J, j = 1, 2, ... ,J. 

Comparing the results in tables 6.1, 6.2 and 6.3 to those in tables 5.1-5.5 shows 

that convergence (to the same solution as in section 5.6) is improved by consider­

ing approach I. The choices of h(.) give almost same number of iterations within 

each eaxmple. Overall for all choices of h(.) the best values of 8 (written in bold 

font) seem to be somewhere between 1.5 and 2.0. Note values higher than those 

presented in the tables were investigated. 



CHAPTER 6. OBJECTIVE CHOICES OF f(.) 118 

h(x) = exp(<5x) , x = F 
Example - 1 

<5 n=1 n=2 n=3 n=4 
1.0 1 5 11 18 
1.5 1 3 7 11 
1.6 1 3 6 10 
1.7 1 3 7 11 
2.0 1 7 17 29 

Example - 2 

<5 n=l n=2 n=3 n=4 

1.0 1 8 20 36 
1.5 1 5 13 23 
1.7 2 4 12 20 
1.8 2 5 12 20 
1.9 2 7 17 29 
2.0 2 9 35 65 

Example - 3 

6 n=1 n=2 n=3 n=4 

0.5 1 6 22 35 
1.0 1 5 10 16 
1.4 1 3 7 11 
1.5 1 3 6 10 
2.0 1 5 13 23 

Example - 4 

<5 n=1 n=2 n=3 n=4 

1.0 2 17 60 150 
1.5 1 12 40 100 
1.8 1 10 33 83 
2.0 1 8 30 74 
2.1 1 10 30 92 

Example - 5 

<5 n=1 n=2 n=3 n=4 

1.0 2 24 94 202 
1.5 1 16 63 135 
2.0 1 12 47 101 
2.1 1 12 45 96 

Table 6.1. Approach I: Iteration counts: f(x) = (l+s)-sh( -sx), s = sign(x), 
h(x) = exp(ox) , x = F, examples 1-5 
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h(x) = 1/(1 - c5x),x = F 
Example - 1 

15 n=l n=2 n=3 n=4 
1.0 1 5 12 19 
1.5 1 3 7 12 
1.6 1 3 7 11 
1.7 1 3 6 10 
2.0 1 5 13 25 

Example - 2 

15 n=l n=2 n=3 n=4 
1.0 1 8 21 36 
1.5 1 6 14 23 
1.6 2 5 13 22 
1.7 1 5 12 20 
2.0 2 7 25 53 

Example - 3 

15 n=l n=2 n=3 n=4 

1.0 1 5 11 16 
1.5 1 3 7 10 
1.6 1 3 6 9 
1.7 1 3 6 8 
1.8 1 2 6 11 
2.0 1 4 11 21 

Example - 4 

15 n=l n=2 n=3 n=4 

1.0 2 18 61 151 
1.5 1 12 41 100 
2.0 1 9 30 75 
2.1 1 9 29 73 

Example - 5 

15 .n=l n=2 n=3 n=4 

1.0 2 25 95 204 
1.5 1 17 64 136 
2.0 1 13 48 102 
2.1 1 12 46 97 
2.2 1 12 44 101 

Table 6.2. Approach I: Iteration counts: f(x) = (l+s)-sh( -sx), s = sign(x), 
h(x) = 1/(1 - 6x), x = F, examples 1-5 
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.. 
./ 

h(x)=(l-x) d,x=F 

Example - 1 

is n=l n=2 n=3 n=4 
1.0 1 5 12 19 
1.5 1 3 7 12 
1.6 1 3 6 11 
1.7 1 3 7 10 
1.6 1 3 8 13 
2.0 1 5 15 27 

Example - 2 

is n=l n=2 n=3 n=4 
1.0 1 8 21 36 
1.5 1 5 13 23 
1.7 1 4 12 20 
1.8 2 4 12 18 
1.9 2 6 15 27 
2.0 2 7 31 59 

Example - 3 

is n=l n=2 n=3 n=4 

1.0 1 5 11 16 
1.5 1 3 6 10 
1.7 1 2 6 9 
1.8 1 3 7 11 
2.0 1 5 13 21 

Example - 4 

is n=l n=2 n=3 n=4 

1.0 2 18 61 151 
1.5 1 12 40 100 
2.0 1 9 30 75 
2.1 1 8 28 76 

Example - 5 

is n=l n=2 n=3 n=4 

1.0 2 25 95 204 
1.5 1 17 63 136 
2.0 1 13 48 102 
2.1 1 12 45 97 

Table 6.3. Approach I: Iteration counts: f(x) = (l+s)-sh( -sx), s = sign(x), 
h(x) = (1 - x)-5, x = F, examples 1-5 
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6.3 Approach II 

This approach can only apply to criterion ¢(p) with positive derivatives dj . This 

is true for standard optimal design criteria. In choosing f (d) we are guided by 

the fact that at the optimum 

if pj > 0 

if pi = 0 
(6.6) 

So at the optimum the derivatives corresponding to positive Pj share a common 

value, a value which equals the 'mean' 'Epidi· 

More generally, letting 

we must have, for t ~ 0, 

or, letting 

1 

[~P;(di)t] , , 

if pi > 0 

if pi = 0 

if pi > 0 

l·f * - 0 Pj - . 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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Now we consider choices of f(d) in which we replace dj by Xj. Agai; properties 

(a) to (d) of (3.2) are satisfied. A suitable choice of f(d) is now one which changes 

reasonably quickly about x = 1 and which treats values of x equidistant from 1 

equally. 

A class of functions f(x) with the potential to satisfy these requirements has the 

following structure. 

Suppose a function g(x) is defined on lR+ = {x: x > O} such that 

g(l) = 1, g(x) > 0 and g'(x) > o. 

Then take 

f(x) { 
g(x) 

l/g(l/x) 

Le. f(x) = {g(x-t)} -t, t = sign(x - 1). 

for 0 < x < 1 

for x> 1 

(6.11) 

(6.12) 

Clearly f(x) is increasing, while for 0 < y < 1, f(l/y) = 1/ f(y) or f(y)f(l/y) = 1. 

Note that g(O) ~ f(x) ~ 1/ g(O), so that f(x) is bounded if g(O) > o. Also 

1(1) = 1. 

Possible choices of x are 

x=Xj = 

dj 
{Epi{d;)tplt 

i 

~ 
EPidj 
i . 
d· 

ndfi. 
i 

(6.13) 
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With (6.11) and (6.12) in mind possible choices of g(x) are 

exp(c5(x - 1)) 

g(x) = In(e + c5(x - 1)) 

c5 being a free positive parameter. 

1+5 
l+5/x 
4>(dX) 
4>(15) 

Note that if g(x) = xd then f(x) = xd ~x and then if Xj = [M~lQ) l, 

123 

(6.14) 

The other choices of g(.) are attempts to identify other choices of f(.) which 

mimic the choice f (d) = dd. 

Note that if g(l) i- 1, a generalisation of (6.12) will be 

{ 
g(x)/g(l) 

f(x) = g(I)/g(l/x) 
for 0 < x < 1 

for x> 1. 

Here also f (x) is bounded as 

[
g(O)] [g(I)] 
g(l) < f(x) < g(O) 

and f(l) = 1. 

(6.15) 
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In applications, we consider 

Using the functions g(x) = x5, g(x) = exp(c5(x - 1)) and g(x) = In(e + c5(x - 1)) 

in (6.14) and considering J(x) in (6.12) we calculate D-optimal designs for the 5 

examples given in section (5.2). 

We use the algorithms 

where 

(r+l) 
Pj 

J 

D LP~r) J(x~r)), 
i=l 

with J(.) as in (6.12). 

for 0 < xy} < 1 

(6.17) 

Similar to the tables in the previous section (approach I) we record for n = 1 2 3 , , , 
4, the number of iterations in tables 6.4, 6.5 and 6.6 for the above three choices 

of g(x) respectively. We take the initial weights to be equal, i.e., p;O) = 1/ J, 

j = 1,2, ... ,J. 

Here also comparing the results in tables 6.4, 6.5 and 6.6 to those in tables 5.1-5.5 

shows that convergence (to the same solution as in section 5.6) is improved by 

considering approach II. The choices of g(.) give almost same number of iterations 

within each eaxmple. Note that values higher those presented in the tables were 

investigated. 
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./' 

g(x) = x'\x = d/Mt(d) 
Example - 1 

8 n=1 n=2 n=3 n=4 
1.0 1 3 9 17 
1.4 1 2 6 10 
1.5 1 2 5 9 
1.6 1 3 5 9 
2.0 1 9 21 35 

Example - 2 

8 n=1 n=2 n=3 n=4 
1.0 1 6 17 32 
1.5 1 4 10 19 
1.6 2 4 8 17 
1.7 2 5 10 16 
1.8 2 7 13 21 
2.0 4 21 51 81 

Example - 3 

8 n=1 n=2 n=3 n=4 
1.0 1 2 9 15 
1.5 1 2 4 8 
1.6 1 2 5 7 
1.7 1 3 5 9 
2.0 2 7 17 25 

Example - 4 

8 n=1 n=2 n=3 n=4 
1.0 3 16 57 146 
1.5 2 11 38 97 
2.0 1 7 28 72 
2.1 1 7 29 93 

Example - 5 

8 ·n=1 n=2 n=3 n=4 

1.0 2 24 91 196 
1.5 2 16 61 131 
2.0 1 12 45 98 
2.1 1 11 43 93 

Table 6.4. Approach II: Iteration counts: f(x) = {g(x-t)}-t, t = sign(x -1), 
g(x) = x5,x = d/Mt(d), examples 1-5 
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~ ... -~' 

g{x) = exp{<5{x -1)),x = d/Mt{d) 
Example - 1 

<5 n=1 n=2 n=3 n=4 
1.0 1 5 11 18 
1.5 1 4 7 11 
1.6 1 4 7 10 
1.7 1 5 9 13 
2.0 1 11 23 35 

Example - 2 

<5 n=1 n=2 n=3 n=4 

1.0 1 8 20 36 
1.5 2 5 13 23 
1.6 2 6 12 21 
1.7 2 6 12 20 
1.8 2 9 15 23 
2.0 5 27 55 85 

Example - 3 

<5 n=1 n=2 n=3 n=4 

1.0 1 5 10 16 
1.5 1 3 6 10 
1.6 1 3 6 9 
1.7 1 4 7 11 
2.0 2 7 17 27 

Example - 4 

<5 n=1 n=2 n=3 n=4 

1.0 1 17 60 150 
1.5 1 11 40 99 
2.0 3 13 30 74 
2.1 3 23 90 268 

Example - 5 

<5 "n=1 n=2 n=3 n=4 

1.0 1 24 94 202 
1.5 1 16 62 134 
2.0 1 12 47 101 
2.1 1 12 44 95 

Table 6.5. Approach II : Iteration counts: f(x) = {g(x-tn -t, t = sign(x - 1), 
g(x) = exp(o(x -l)),x = d/Mt(d), examples 1-5 
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.-/ 

g{x) = In{e + c5{x - 1)), x = d/Mt{d) 
Example - 1 

c5 n=1 n=2 n=3 n=4 
4.0 1 3 6 10 
4.2 1 3 6 10 
4.3 1 3 6 10 
4.4 1 4 7 11 
5.0 1 7 13 19 

Example - 2 

c5 n=1 n=2 n=3 n=4 
4.0 2 4 11 21 
4.4 2 6 10 18 
4.5 3 7 11 16 
4.6 3 7 13 18 
4.7 3 9 13 19 

Example - 3 

6 n=l n=2 n=3 n=4 

4.0 1 3 5 9 
4.1 1 3 5 8 
4.2 1 3 5 8 
4.3 1 3 5 8 
4.5 1 3 7 9 

Example - 4 

c5 n=1 n=2 n=3 n=4 

4.0 3 11 39 100 
4.1 3 11 38 97 
4.2 3 11 37 95 
4.3 7 10 37 93 

Example - 5 

c5 . n=1 n=2 n=3 n=4 

4.0 1 16 62 134 
5.0 1 13 49 107 
5.6 1 12 44 95 
5.7 1 12 43 93 

Table 6.6. Approach II : Iteration counts: f(x) = {g(x-tn -t, t = sign(x - 1), 
g(x) = In(e + c5(x - 1)), x = d/Mt(d), examples 1-5 



Chapter 7 

Construction of Optimal Designs 

using a Clustering Approach 

7.1 Introduction 

In the previous chapter we considered two approaches (approach I and approach II) 

for improving the convergence of algorithm (3.1). In this chapter we consider a 

more powerful improvement - a 'clustering approach'. We shall see that the sup­

port points of an optimum design on a design space V which is a discretisation of 

a continuous space consist of clusters, each cluster 'centred' on a support point of 

the design on the continuous space. We shall see also that corresponding clusters 

begin to emerge in early iterations of algorithm (3.1). Note that the finer is the 

discretisation the larger are the clusters. 

This suggests the idea that at an appropriate iterate p(r), the single distribu­

tion per) should be 'replaced' by conditional distributions within clusters and a 

marginal distribution acrosS clusters. 

128 
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We first consider constructing D-optimal designs for some examples which we will 

later use to study the performance of this approach. These are more substan­

tial problems than those so far considered. We consider five problems namely, 

trigonometric regression, quadratic regression, cubic regression, quartic regression 

and a second order model in two design variables. 

In sections 7.2 to 7.4 we first report results of using the raw form of algorithm 

(3.1) with x = d, f(x) = x5 but with one modification to aid convergence to 

the optimal design on the discretised design space, which will have many zero 

weights: namely, we ran the algorithm until m~x{Fj} ~ 10-3 was achieved' 
J , 

h - (r)'f (r) d F(r) t ereafter we set weight Pj to zero 1 Pj < cl an j < -C2, where Cl = 0.001 

and C2 = 0.001. Silvey, Titterington an? Torsney (1978) used a similar idea. 

7.2 Trigonometric Regression 

First we consider the trigonometric regression model 

E(Y!11;) = Jlfl, (7.1) 

1la; E V ='{11; : 11; = (x, x2, sin27fx, COS27fX)T, 0 ~ X ~ I}, the design space. 

Hoel (1958), Wynn (1969), Torsney (1983) consider this model. We consider the 

design space approximated by a grid of 101 points equally spaced at intervals of 

0.01 between 0 and 1. 
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So we are considering a design of the form 

P = {Xl X2 ••• XlOl}. 
PI P2 ... PIOI 

(7.2) 

Consider first the use of algorithm (3.1) with f(x) = xo, X = d. Results are 

reported in tables (7.1) and (A.l l
). We record for n = 1, 2, 3, 4 the number of 

iterations needed to achieve mJx{ Fj} ~ lO-n, for j = 1,2, ... ,J where Fj are 

the vertex directional derivatives. We take the initial design to be pjO) = 1/ J, 

j = 1,2, ... ,J (J=lOl). 

As we approximated the design space at intervals of 0.01, the solution converges 
to 

{ 
0.08 0.09 0.37 0.38 0.39 0.73 0.74 1.00} 

p - (7.3) 
0.21853 0.03147 0.00639 0.24117 0.00244 0.16808 0.08192 0.25 

We note that in (7.3) the support points can be viewed as consisting of four 

'clusters' of points - either a pair of neighbouring points or a single point. But 

this is the solution for the discretised design space. It suggests that the solution 

for the continuous design space is a 4-point design, with the 4 support points 

contained 'within' the clusters, and each point having the total design weight of 

its cluster. Atwood (1976) suggested that approximations to these support points 

are convex combinations of the relevant cluster members, convex weights being 

proportional to design weights. This yields the solution 

1 Because of the large volume of this chapter the detailed results for the iteration counts are 
given in appendix A 
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* _ {0.081 0.380 0.733 1.00}. 
P - 0.25 0.25 0.25 0.25 (7.4) 

From table (A.l) it is clear that convergence of algorithm (3.1) is very slow, 

especially after achieving max { Fj } ~ lO-n for n = 3. Convergence is much 
l~j~J 

slower for small values of 6 compared to that of higher values. For example, for 

6 = 0.5, the number of iterations needed to achieve n = 4 is 8793, whereas for 

6 = 1.9, this number is 2314. This value of 6 (1.9) turns out as the best value and 

the iteration numbers are written in bold font. Iterations are slow to attain the 

above conditions for 6 higher than 1.9. For 8 = 2.0, oscillatory features develop 

and the above condition is satisfied for n = 1 at iteration 27, but there is no 

attainment for n ~ 3 in the first 4000 iterations. 

This is consistent with results of Fellman (1989) for c-optimality. It is also con­

sistent with the following phenomenon, noted in Torsney (1981, 1983). 

In a design P with vertices 'Qj and the associated weights Pj, j = 1, 2, . " ,J, the 

information matrix M (p) is 

J 

M(p) - LPj'Qj'Qf 
j=l 

VPVT
. 

If J = k, the number of parameters, then V is a square matrix and the D-optimal 
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criterion is equivalent to 

¢(p) = det{M(p)} 

So the partial derivatives of ¢(p) are 

Let -

Pt 

[det{V} F [det{ P}] 

[det{V}]2 PIP2 ... Pk. 

I-a 
Pj 
~ I-a 
LJPi 

[from (7.5)]. 

so that qj = p;r+1) if Pj = p;r) under iteration (3.1) with f(x) = xO, x = d. 

Thus for 6 = 1, 

1 
qj = k' 

So this choice of iteration (3.1) attains the optimum in one step. 

For 6 = 2, at the first iteration 

[l/pj] 
E[l/Pi] . 
i 

At the second iteration let the weights be Sj. Then 

132 

(7.5) 
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This implies oscillatory iterations. 

[l/qj] 
~]l/qd 
i 

Pj· 

This suggests that we might usually want to keep 6 ~ 2. 

Trigonomet!ic Regression 

Number of iterations needed to 

achieve max {FJ"} < lO-n for 
1< "<J --'-

6 n=l n=2 n=3 n=4 

1.9 8 31 261 2314 

Table 7.1. Iteration Results for the best choice of 6: J(d) . d5, d = ~: 

133 
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/' 

7.3 Polynomial Regression in One Variable 

In this section we find the D-optimal solution to some polynomial regression (in 

one variable) problems for which explicit solutions can be obtained. 

In polynomial regression in one variable of order k - 1 the model is 

(7.6) 

where 1Lx = (1, X, x2, ... ,xk-l)T, X E [-1,1] and ft 

V { (1 2 k-l)T 1 < < I} h . 1Lx E = 1Lx 1Lx = ,x, x , ... ,x ,- - x _ ,t e mduced design 

space. 

Here we have a standardised continuous design space. Fedorov (1972) reports 

that the discrete D-optimal design is unique, having a minimal support of k 

points which are the k roots of the polynomials (1 - X2)P~_1(X) where Pk(x) is 

the kth Legendre polynomial 

Pk(x) -
N [(_1)" (2k - 2n)!Xk

-
2n j 

~ 2k n! (k - n)! (k - 2n)! 
(7.7) 

where 

{ k/2 if k is even 
N - (k - 1)/2 if k is odd 

Since Supp(p*) contains k points the D-optimal design on it assigns weight (11k) 

to each of these. 
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-~ 

In the cases of k = 3 (quadratic Regression), k = 4 (cubic regression) and k = 5 

(quartic regression) (7.7) simplifies to 

Quadratic Regression: (1 - x2
) P~(x) 3x (1 - x2 ), 

Cubic Regression: (1 - x2
) P~(x) (15x2 -3) (1-x2) 

(7.8) 2 

Quartic Regression : (1 - x2
) P~(x) 5x(7 x2 -3) (1-x2) 

2 

so the support points of p* are given by 

Quadratic Regression: x = 0, ±1, 

Cubic Regression: x ±1, ±1/V5 = ±0.447, (7.9) 

Quartic Regression : x 0, ±1, ±V3/7 = ±0.655. 

It will be of interest to compare numerically constructed designs with these ana­

lytic solutions. 

Note that the set of orthogonal polynomials in (7.7) can also be obtained by the 

recurrence relation 

(7.10) 

with Po(x) = 1 and Pl(X) = x. 

Fedorov also reports unique solutions to the D-optimal design problems for 

polynomial regression when the constant variance assumption is replaced by 

Var(y) = a2A(x) where A(X) is of known form. Smith (1918) also considers 

designs for A(X) of the asymmetrical form (1 + ax)2 (0 ~ a < 1) and of the 
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symmetrical form (1 + ax2)2 (a> -1). 

However, we continue to find designs for constant variance. We first consider 

constructing D-optimal designs for quadratic regression, cubic regression and 

quartic regression using algorithm (3.1) i.e. 

with f(x) = x6, X = d for various values of 8. 

In each case we approximate the design interval by a grid of 201 points equally 

spaced at intervals of 0.01 between -1 and 1. 

i.e., a design of the form: 

p - {;:: 
X201 }. 

P201 
(7.11) 

Numerical information about the performance of the algorithm similar to that of 

tables 7.1 and A.l is contained in tables A.2, A.3 and A.4 (summerised in tables 

7.2, 7.3 and 7.4) for quadratic, cubic and quartic regressions respectively. Clearly 

convergence of algorithm (3.1) is slow for each of the examples. Convergence is 

slower for small values of 8 compared to that of higher values. Here also oscillatory 

features occur for 8 = 2.0. 

For the various choices of 8 in each example the algorithm converged to the same 

design. These were as follows: 
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Quadratic Regression 

p {
-1.0 -0.01 0.00 0.01 1.00} 

0.33333 0.05922 0.21489 0.05922 0.33333 

Cubic Regression 

p - { 
-1.00 

0.25 
-0.46 -0.45 -0.44 0.44 0.45 0.46 1.00} 

0.007278 0.172138 0.070584 0.070584 0.172138 0.007278 0.25 

Quartic Regression 

_ {-1.00 -0.66 -0.65 -0.01 0.00 0.01 0.65 0.66 1.00} 
p - 0.20 0.09692 0.10305 0.01608 0.16790 0.01608 0.10305 0.09692 0.20 

In each case the support points can be viewed as consisting of 'clusters' of points. 

In the case of quadratic regression there is one cluster centred on zero with three 

points while the others are the two end points. This suggests that the solution 

for the continuous design space is a 3-point design, with the 3 SUpport points 

contained 'within' the c.lusters, and each point having the total design weight of 

its cluster. Similarly in the cases of cubic and quartic regressions the support 

points are viewed as consisting of four and five clusters of points respectively. 

Taking convex combination of the relevant cluster members (convex weights being 

proportional to design weights) yields the solutions 
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Quadratic Regression 

{ 
-1.0 0.0 1.0} 

p* = 0.33333 0.33333 0.33333 (7.12) 

Cubic Regression 

* _ {-1.00 -0.447 0.447 1.00} 
p - 0.25 0.25 0.25 0.25 (7.13) 

Quartic Regression 

p* = { -1.00 -0.655 0.00 0.655 1.00} 
0.20 0.20 0.20 0.20 0.20 

(7.14) 

Clearly these are the optimal design solutions and match those of (7.9) obtained 

by using the Legendre polynomials of (7.7). 
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Quadratic Regression 

Number of iterations needed to 

achieve max { Fj } < lO-n for 
15:';$.J -

6 n=l n=2 n=3 n=4 

1.9 7 27 262 2630 

Table 7.2. Iteration Results for the best choice of 6: J(d) = d5, d = ~: 

Cubic Regression 

Number of iterations needed to 

achieve max { Fj } < lO-n for 
l$.j$.J -

6 n=l n=2 n=3 n=4 

1.9 9 27 256 2127 

Table 7.3. Iteration Results for the best choice of 6 : J(d) = d5, d == ~: 

Quartic Regression 

Number of iterations needed to 

achieve max { Fj } ~ lO-n for 
l$.j$.J 

6 n=l n=2 n=3 n=4 

1.9 11 29 261 2571 

Table 7.4. Iteration Results for the best choice of 6: f (d) == d5, d == ~: 

139 
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----7.4 Second-Order Model in Two Variables 

Now we consider a regression model with more than one design variable. 

The second-order polynomial in m design variables is 

m m-l m m 

E(Y/{f) = (}o + L (}jXj + L L· (}jkXjXk + L (}jjX;. (7.15) 
j=l j=l k=j+l j=l 

This is a (m+1~m+2) parameter model. 

. We consider m = 2 and take the standardised case of the design space to be the 

cube, -1 ~ Xi ~ 1, i = 1,2. 

Thus the model is, with a revised parameterisation, 

E(Y/XI' X2) - (}o + (}IXI + (}2 X 2 + (}3 X I X 2 + (}4X~ + (}5X~ 

vT() -x- (7.16) 

~ E V = {Y.x : Y.x = (1, Xl, X2, XIX2, X~, x~)T, -1 ~ Xi ~ 1, i = 1,2}, the 

induced design space. 

We consider the discretised design space consisting of all pairs (Xl, X2) arising 

when the values for each Xi, i = 1,2 are those between -1 and +1 taken at steps 

of 0.1. That is, the space consists of (21)2 = 441 pairs (Xl, X2). 
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We write the design with arbitrary weights as: 

p = { 
(Xll' X2 d (Xl2' X22) 

Pl P2 

We consider the use of algorithm (3.1) with f(x) = x5, X = d. Results are 

reported in table A.5 (summarised in table 7.5). We record the number of it­

erations needed to achieve max {Fj } .::; lO-n, for n = 1, 2, 3, 4. The initial 
l~j:5.J 

design is P)O) = 1/ J, j = 1,2, ... ,J with J = 441 as we approximated the design 

space consisting of 441 pairs of (Xl, X2)' Iteration counts show that convergence 

is slow especially for smaller values of 6. For example, for 6 = 0.5, the number of 

iterations needed to achieve the above condition at n = 4 is 1310. 

The design converged to is 

{ -1.0 -1.0 -1.0 0 0 0 1.0 1.0 
1.0 } p* = -1.0 0 1.0 -1.0 0 1.0 -1.0 0 1.0 7.17) 

0.14579 0.08016 0.14579 0.08016 0.09620 0.08016 0.14579 0.08016 0.14579 

where the first two rows are the values of Xl, X2 respectively while the third row 

gives the corresponding weights. 

Second-Order Model 

Number of iterations needed to 

achieve max { Fj } .::; lO-n for 
l~j~J 

6 n=1 n=2 n=3 n=4 

2.3 6 44 171 286 

Table 7.5. Iteration Results for the best choice of 6 : f(d) = d5, d = ~: 
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7.4.1 Derivation of the exact solution of the weights in 

the second-order model in two variables 

We note the following analytic considerations about this optimal design. 

Because of the symmetry of the above support it is intuitive that the weights at 

the four mid-points [(-1, 0), (0, 1), (1, 0), (0, -1)] of the sides should be equal 

and that weights at the four corners [(-1, -1), (-1, 1), (1, 1), (1, -1)] should be 

equal. 

Let q, r be these common weights respectively and let s be the weight at the 

centre (0, 0). 

Then obviously 

4q + 4r + s 1, 

The distribution defined on Xl and X2 is then 

Xl \
X2 

-1 

o 
1 

-1 o 
r q 

q S 

r q 

q, r, S > o. (7.18) 

1 

r 

q 

r 
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Reordering the vertex 12x in (7.16) to be 

the information matrix M is 

1 E(xV E(x~) E(xd E(X2) E(XIX2) 
E(xV E(xi) E(x~x~) E(x~) E(X~X2) E(X~X2) 

M E(x~) E(x~x~) E(x~) E(XIX~) E(x~) E(XIX~) 
E(xd E(xV E(XIX~) E(xn E(XIX2) E(X~X2) 
E(X2) E(X~X2) E(x~) E(XIX2) E(x~) E(XIX~) 
E(XIX2) E(X~X2) E(XIX~) E(X~X2) E(XIX~) E(xix~) 

where expectations are with respect to the above distribution. 

Because of its symmetry the following expectations are zero: 

Also since the only nonzero values for each Xi are ±1, we have 

E(xV = E(x~) = E(xi) = E(x~) = 4r + 2q. 

Finally 

With these values the information matrix becomes 
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1 4r+2q 4r+ 2q 0 0 0 

4r+2q 4r+2q 4r 0 0 0 

M 
4r+2q 4r 4r+2q 0 0 0 

0 0 0 4r+2q 0 0 
0 0 0 0 4r+ 2q 0 
0 0 0 0 0 4r 

The above matrix is of block-diagonal structure and its determinant is given by 

det{M} = -16qr(q + 2r)2(4q2 + 16r2 - q - 4r + 16qr). 

The above expression has two unknowns q and r, which satisfy 

(q+r) ~ ~, since s = 1-4q-4r > O. 

The maximum of the determinant of the information matrix M is found by dif­

ferentiation. The Maple package yields the following derivatives 

o[det{M}] 
oq 

o[det{M}] 
or 

-64[2qr(q + 2r) + r(q + 2r?] (4q2 + 16r2 - q - 4r + 16qr) 

-64qr(q + 2r)2(8q + 16r - 1) 

-64[4qr(q + 2r) + q(q + 2r)2](4q2 + 16r2 - q - 4r + 16qr) 

-256qr(q + 2r)2(4q + 8r - 1). 
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At the maximum both derivatives are zero. Solution of the resulting equations 

using Maple yields 

q - 0.08016 

r = 0.14579. 

So the value of s is given by 

s = 1- 4q - 4r 0.09620. 

Hence the optimal weights with the values of Xl and X2 are given by 

Xl X2 P 

-1 -1 0.14579 

-1 1 0.14579 

1 1 0.14579 

1 -1 0.14579 

0 0 0.09620 

-1 0 0.08016 

0 1 0.08016 

1 0 0.08016 

1 -1 0.08016 

Note that the above solution exactly matches with the solution in (7.17). 



CHAPTER 7. CLUSTERING APPROACH 146 

7.5 Clustering Approach 

Inevitably convergence of the above type of algorithm is slow when there are many 

non-support points with zero weights. This happens in regression models with 

continuous design spaces as can be seen in examples of sections 7.2, 7.3 and 7.4. 

We have noted that the optimal support points can be viewed as consisting of a 

number of 'clusters' when we consider a discretised design space. In an attempt 

to improve convergence we consider a modification of the algorithm based on 

a clustering approach. This is motivated by the 'clusters' noted in the above 

examples. We introduce the idea first considering a general regression problem 

and then through the above examples. 

7.5.1 General Problem 

Consider a regression model with one continuous design variable x. Suppose that 

the design space is approximated by a regular grid of J points in the space and 

that the following represents an arbitrary design on this discretisation. 

P {;:;:: :: ;;} 

With the design above consider running algorithm (3.1), i.e. 

After running the above algorithm for a small number of iterations (with a suit­

able choice of f (.)) and then plotting weights or the variance function versus the 
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design points we argue that these plots depict a curve with a number of maxi­

mal and minimal turning points. For example, in trigonometric regression, after 

running algorithm (3.1) 5 times (with f(x) = xo, x = d, 8 = 1.7) consider the 

plots of weights and variance function in figures 7.2 and 7.3 respectively. The 

plots clearly depict curves with three maximal, three minimal turning points and 

a final peak on the boundary at x = 1. 

The minimal turning points clearly 'correspond' to regions of zero weight. The 

weights on the points in these regions are converging to zero. Assuming such zero 

weights we would be left with a number of disjoint clusters of points which must 

contain the optimal support points. 

This clearly ties in with the clustering feature of optimal designs on discretised 

spaces noted in sections 7.2, 7.3. The design after 5 or 10 iterations has the same 

number of clusters as the final solution. 

It is also of interest to note that the Wynn (1970) algorithm has a related feature. 

This algorithm 'adds' weight to 1 point subject to normalisation. For the trigono­

metric regression problem Torsney (1983) ran this algorithm from over 100 differ­

ent initial supports each of 4 points selected from [x : x = 0,0.01,0.02, ... ,0.99,1]. 

He observed that after on average 8 (=2k) iterations the point selected to receive 

added weight came from the following set. 

{V(x) : x = 0.07,0.08,0.09,0.37,0.38,0.39, 0.72, 0.73, 0.74, 0.75,0.99, I} 

This consists of 4 clusters each cluster being a cluster of the support of the optimal 

design expanded to include nearest neighbours. 

At this point suppose there are m clusters and let the clusters of weights be 

C C C Let there be nJ' weights in the ph cluster (Le. in cluster C ,). So 1, 2,···, m' J 
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. th 'th I ., - 1 2 nj IS e J custer SIze, J - , , ... , m. 

Now consider transforming from the weights Pi to weights within clusters and 

total cluster weights. In fact, we first divide the Pi'S into m clusters and then 

within each cluster we assign within cluster weights. This is shown in figure 7.1. 

P 

Figure 7.1. Showing the division of Pi's to total and within cluster weights 

Let 

Thus 

2: Pi, j = 1, 2, ... ,m 
PiECj 

pdqj, Pi E Cj , j = 1,2, ... ,m, i = 1,2, ... ,nj. 

lh total cluster weight, j = 1,2, ... ,m 

(7.19) 

(7.20) 

ith within cluster weight for Gj , j = 1,2, ... ,m, i = 1,2, ... ,nj. 
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Hence 

m 

E qj = 1, qj ~ 0, j = 1,2, ... ,m 
j=l 

nj 
E rji = 1, rji ~ 0, . i = 1,2, ... ,nj, j = 1,2, ... ,m. 
i=l 

149 

(7.21) 

So we have transformed the original weights Pi to qj'S, the total cluster weights 

and to rji's, the within cluster weights. 

Let 

q 

r· -J 

(ql, q2, .. . ,qmf 

(rjl' rj2,.·. ,rjnj)T, j = 1,2, ... ,m. 

Clearly [j contains the within cluster weights for cluster Cj • 

(7.22) 

Thus the criterion ¢(p) becomes a function of the total cluster weights and the 

within cluster weights. We write ¢(p) as 

We need to choose fl., [1' [2' ... ,[m optimally. 

Thus our problem can be written as 

Maximise ¢m(fl., [1' [2'_ .. , ,[m) subject to 

m 
E qj = 1, qj ~ 0, j = 1,2, ... ,m 
j=1 
nj 
~r" -1 rJ·; >_ 0, i = 1,2, ... ,nJ', j = 1,2, ... ,m. L..J J~ -, • 
i=l 

(7.23) 

(7.24) 

Now we consider using appropriate algorithms for finding the optimal weights. 
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7.5.2 Algorithms 

A natural extension of algorithm (3.1) is 

where 

(n+1) 
T· -J . 

!1(n) - total cluster weights at nth iteration, 

rt) - within cluster weights for Cj at nth iteration, j = 1,2, ... ,m 

150 

(7.25) 

fq (.) and frj (.) are p~sitive and strictly increasing and may depend on some 

free positive parameters 8q and 8rj respectively. 

Properties of algorithm (7.25) 

Under the conditions imposed on the functions ftC), l = q, TI, T2, ••• , Tm , algo­

rithm (7.25) has similar properties to algorithm (3.1); in particular the fOllowing: 
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() (n) (n) (n) I .r ·bl a f!.. ,L1 ,..., Lm are a ways leaS1 e. 

Proof. 

FifJm {In) , tin), ... 'L~) ; In+l) , tin+1), ... 'L~+l)} 

= [(q(n+l) _ q(n))T : (r(n+1) _ r(n))T : ... : (r(n+l) _ r(n))T] [dq(n) . ..]T(n) . (n)] 
- - -1 -1 _m _m _ • g 1 •••• : dim 

- = [(In+l) _In))T 4",n,] + [(dnH) - dn)f Ifl"'] + ... + [(r!:.'+1) _ r!:;))T If!:'] 

= [p(q){q(n) q(n+l)}] + [p(rt){r.(n),dn+l)}] + ... + [p(rm){r(n) r(n+l)}] 
ifJm - '- ifJm 1 ifJm _m ,_m 

where 

and F(rj){r~n) r~n+l)} is similarly defined. 
ifJm -J '-J 

These component directional derivatives would be the directional deriva­

tives if we changed only one of the distributions f!.. or L1 or ... or Lm keeping 

the others fixed using algorithm (3.1) . 

. From property (3.3.1 b), such directional derivatives are nonnegative. 

Hence the result. 

Equality will hold when the partial derivatives corresponding to nonzero 

weights of each distribution have a common value. 
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/'" 

(c) An iterate {In) , dn), ... ,r}::)} is a fixed point of the iteration if partial 

derivatives corresponding to nonzero weights of each distribution are all 

equal; equivalently if the corresponding vertex directional derivatives are 

zero. 

7.5.3 Applications 

We apply this clustering approach to our earlier regression problems. 

7.5.3.1 Trigonometric Regression 

Consider the trigonometric regression problem. The model is given in (7.1). 

Consider starting algorithm (3.1) with equal weights of 1/101 on the grid of 101 

points equally spaced at intervals of 0.01 between 0 and 1. i.e. the discretised 

design space is given by 

v = {Y.x: Y.x = (x, x2
, sin27rx, cos27rxf, x = 0 : 1/0.01} (7.26) 

and the design is of the form 

P X101 }. 

PIOl 
(7.27) 

Figure 7.2 is a plot of the weights versus the design points after running algorithm 

(3.1) 5 times (with j(x) = Xd, X = d, 8 = 1.7). The plot depicts a curve with 

three maximal, three minimal turning points and a final peak on the boundary at 

x = 1. The minimal turning points clearly 'correspond' to regions of zero weight. 

The weights on the points in these regions are converging to zero. Given such zero 
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weights we would be left with four disjoint clusters of points which must contain 

the optimal support points. We have no zero weights in the above picture but we 

can still perceive or define four clusters by defining boundaries between clusters 

to be at or near the three minimal turning points. 

Figure 7.3 is a plot of the variance function d(x, p) versus the design points 

at the same number of iterations above. d(x, p) is given by the expression 

1l(x) M-l(p) Q(x). 

Here the variance function2 d(x, p) is given by 

d(x, p) = 179.696x4 - 268.028x3 + (31.524 sin27rx - 40.452 cos27rx + 103.198)x2 

-(21.276sin27rx - 28.766~os27rx)x - 2.004sin47rx + 4.034sin227rx 

(7.28) 

This plot has a similar shape with same number of maximal and minimal points. 

Now consider transforming from the weights Pi to weights within clusters and 

total cluster weights as considered in (7.19) and (7.20). 

In this case the total and within cluster weights are given by 

Hence 

q 

r· -J 

- (ql, q2, Q3, Q4l 

(Tjl, Tj2,·" , Tjnjl, j = 1,2,3,4. 

4 
EQj = 1, qj ~ 0, j = 1,2,3,4 
j=l 
nj 
""r·· -1 TJ·.; >_ 0, i = 1,2, ... ,nJ·, j = 1,2,3,4. L.J JZ -, • 
i=l 

2The variance functions were obtained by using the package 'Maple' 

(7.29) 

(7.30) 
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So the criterion becomes 

We need to choose fl., [1' [2' 1:3, 1:.4 optimally. To find these optimal values we 

maximise ¢m(fl., [ll [2' 1:3, 1:.4) subject to (7.30). 

We use algorithm (7.25). Results are reported in table A.6. In the left half of this 

table we record for n=l, 2, 3 and 4 the number of iterations needed to achieve 
max {FWtl , ... ,rm} < lO-n 

I<'<m+J J -, _1-

h {Fq,fl, ... ,fm} d t th . were the term max T - - eno es e maXImum among all directional 
I0Sm+J' , 

derivatives for total and within cluster weights. As we have m clusters and the 

number of within cluster weigths is same as the number of Pi (Le. J), we will 

have m + J such directional derivatives in total. 

In the right half of the table we record for n=l, 2, 3 and 4 the number of iterations 

needed to achieve 

max {FJ} ~ lO-n, 
ISjSJ , 

where max {F?} ~ lO-n denotes the maximum among all directional derivatives 
ISjSJ J 

for Pj. 

As we started after 5 iterations of algorithm (3~1), the actual numbers of iterations 
,-

should be 5 plus the numbers given in table A.6. 

In table 7.6 iteration counts are recorded for the best choice of 8. This proved to 

be {) = BO. We investigated the values of {) higher than those presented in table 

A.B. Trial and error revealed that this gave fastest convergence. 
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Iterations converge to the design 

{ 
0.08 0.09 0.37 0.38 0.39 0.73 0.74 1.00} 

p = 0.21857 0.03143 0.00618 0.24131 0.00251 0.16810 0.08190 0.25 7.32} 

Taking the convex combination of the relevant cluster members (convex weights 

being proportional to design weights) in (7.32) yields the solution 

p* = {0.081 0.380 0.733 1.00} 
0.25 0.25 0.25 0.25 ' 

which is exactly the same design we obtained in section 7.2. 

(7.33) 

Figure 7.4 is a plot showing the variance function d(x, p*) for the above D-optimal 

design, where d(x,p*) is given by 

d(x,p) = 116.427x4 -184.664x3 + (13.150sin21rx - 28.032cos21rx + 76.181)x2 

- (8.894 sin21rx - 20.374 cos21rx)x - 1.066 sin41rx + 2.931 sin221rx 

(7.34) 

Clearly the plot has maximum value of 40ccuring at the 4 support points. 

Tables 7.6 and A.6 clearly demonstrate that the convergence of algorithm (7.25) 

is much faster than that of algorithm (3.1). For example, in table 7.1, for 6 = 1.9 

and n = 4, number of iterations needed is 2314, whereas using the clustering 

approach, for 8 = 60.0 and n = 4 this number reduces to 76 (=71+5). Thus the 

convergence of the algorithm using the clustering approach is much faster than 

that by using algorithm (3.1). 

Thus the clustering approach has improved convergence considerably. 
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60.0 

Trigonometric Regression 

Number of iterations needed to 

h· {FQ,rl , ... ,rm} < lO-n for ac 1eve max i -
l~j~m+J 

n=l n=2 n=3 n=4 

2 6 7 22 

N umber of iterations needed to 

achieve max {F~} < lO-n for 
195,1 3 -

n=l n=2 n=3 n=4 

2 7 9 71 

Table 7.6. Clustering Approach: Iteration Results for the best choice of 8 : 

f(d) = dO d = ~ - , 8p 

~ 
o 

s o 

.. 
o 
o 

...... ..... 

0.0 

'" .... 't ••••••••• 

.................... "........ •••• •••• If ............. ,... . ..... 

02 0.4 0.6 0.8 1.0 

Des~n Points 

Figure 7.2. Trigonometric Regression: Weights versus Design Points after 5 

iterations of (3.1), f(x) = xO, x = d and 8 = 1.7. 
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Figure 7.3. Trigonometric Regression: Variance function d(x, p) after 5 itera­
tions of (3.1), f(x) = x5, X = d, 8 = 1.7. d(x, p) is given in (7.28). 
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Figure 7.4. Trigonometric Regression: Variance function d(x, p*) at the opti­
mum design (7.33). d(x, p*) is given in (7.34). The maximum value of 4 Occurs 

at the support points. 
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7.5.3.2 Polynomial Regression in One Variable 

In polynomial regression in one variable of order k - 1 the model is given in 7.6. 

In this section we apply the clustering approach to our polynomial regression 

problems, namely, quadratic, cubic and quartic regressions. In each case we 

approximate the design interval by a grid of 201 points equally spaced at intervals 

of 0.01 between -1 and 1. i.e., we consider a design of the form 

P = {Xl X2 ••• X201}. 
PI P2 ••• P201 

(7.35) 

With the design above we start with t,he algorithm (3.1), i.e., 

with f(x) = x6, X = d for various values of fl. 

After running this for 5 to 10 iterations the design points start forming clust'ers. 

We take each of the three regressions in turn. 

Quardratic Regression 

Figure 7.5 is a plot of the weights versus the design points after running algorithm 

(3.1) 5 times (with f(x) = x6, X = d, fl = 1.9). The plot shows a curve with 

one maximal, two minimal turning points and two peaks on the boundaries at 

X = -1 and x = 1. Assuming that the minimal turning points 'correspond' to 

zero weights, we would be left with three disjoint clusters of points which must 

contain the optimal support points. 
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Figure 7.3 is a plot of the variance function d(x, p) at the same number of itera­

tions. Here d(x, p) is given by 

d(x,p) = 6.20179x4 
- 6.63447x2 + 3.68109. (7.36) 

This plot has a similar shape with one maximal, two minimal turning points and 

two peaks on the boundaries. 

At this point we consider transforming from the weights Pi to weights within 

clusters and total cluster weights, with the boundaries between clusters at or 

near ~the minimal turning points. 

Based on 3 clusters we now use algorithm (7.25). 

Numerical information about the performance of algorithm (7.25) similar to that 

of tables A.6 and 7.6 is contained in tables A.7 and 7.7. As we started after 5 

iterations of the algorithm (3.1), the actual numbers of iterations should be 5 plus 

the numbers given in tables A.7 and 7.7. If we compare these numbers to those in 

tables A.2 and 7.2 we see that the convergence is quite improved by considering 

the clustering approach. As the iteration results in table A.7 demonstrate, the 

value of fJ = 78 gave the fastest convergence. 

Iterations converge to the design 

{ 
-1.0 -0.01 0.00 0.01 1.00} 

p = 0.33333 0.05922 0.21490 0.05922 0.33333 (7.37) 

Taking convex combinations of the relevant cluster members as mentioned earlier, 
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the approximate design is given by 

(7.38) 

Figure 7.7 is a plot showing the variance function d(x,p*) for the above D-optimal 

design. d(x,p*) is given by 

d(x,p*) 4.5x4 
- 4.5x2 + 3.0. (7.39) 

The -maximum value of 3 occurs at the 3 support points -1, 0 and 1, confirming 

the D-optimality of the above quadra~ic regression. 
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78.0 

Quadratic Regression 

N umber of iterations needed to 

h. {FQ,rl, ... ,rm} < 10-n .c ac leve max T _ lor 
l~j~m+J 

n=l n=2 n=3 n=4 

1 3 4 23 

N umber of iterations needed to 

achieve max {FJ} < lO-n for 
l~j~J -

n=l n=2 n=3 n=4 

2 3 7 65 

Table 7.7. Clustering Approach : Iteration Results for the best choice of 8 : 

f(d)_ dli,d==~ 

o • 
~ . 
ci • 

~ 

on 
o 
ci 

01 
lio 
~o 

ci 

8 
ci 

-1.0 

. . · . · . · . · . 
\~ ~ jf 
\~ ~' 

.0.5 0.0 
Design Points 

0.5 1.0 

Figure 7.5. Quadratic Regression: Weights versus Design Points after 5 itera­

tions of (3.1), f(x) == xli, X == d and 8 == 1.9. 
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Figure 7.6. Quadratic Regression: Variance function d(x, p) after 5 iterations 
of (3.1), f(x) = xo, x = d, ~ = 1.9. d(x, p) is given in (7.36). 
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Figure 7.7. Quadratic Regression: Variance function d(x, p*) at the optimum 
design (7.38). d(x, p*) is given in (7.39). The maximum value of 3 Occurs at the 

support points. 
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Cubic Regression 

Figure 7.8 is a plot of the weights versus the design points after running algorithm 

(3.1) 10 times (with f(x) = x5, X = d, 8 = 0.05). The plot shows a curve with 

two maximal, three minimal turning points and two peaks on the boundaries at 

x = -1 and x = 1. Assuming that the minimal turning points 'correspond' to 

zero weights, we would be left with four disjoint clusters of points which must 

contain the optimal support points. 

Figure 7.9 is a plot of the variance function d(x, p) at the same iteration, where 

d(x, p) is given by 

d(x,p) - 40.801x6 
- 39.903x4 + 11.105x2 + 2.289. (7.40) 

This plot has a similar shape with with same number of maximal and minimal 

points. 

Now consider transforming from the weights Pi to weights within clusters and 

total cluster weights. 

Based on 4 clusters we now use algorithm (7.25). Iteration counts under algorithm 

(7.25) is contained in tables 7.8 and A.8. Here again the iteration numbers are 

much smaller that those in tables 7.3 and A.3. Values of 8 higher those given in 

table A.8 were also investigated. The value of 8 = 61 gave the fastest convergence. 

Iterations converge to the design 

{ 

-1.00 -0.46 -0.45 -0.44 0.44 0.45 0.46 1.00 } 

p = 0.25 0.007279 0.172137 0.070584 0.070584 0.172137 0.007279 0.25 . 
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~. 

Taking convex combinations of the relevant cluster members, the approximate 

design is given by 

* _ {-1.00 -0.447 0.447 1.00} 
p - 0.25 0.25 0.25 0.25 ' (7.41) 

which is the same design we obtained in (7.13) of section 7.3. 

Figure 7.10 is a plot of the variance function d(x,p*) for the above design. The 

maximum value of 4 occurs at the 4 support points ±1, ±0.447. This confirms 

the D-optimality of the above design. d(x, p*) is given by 

d(x, p*) = 4.5x4 
- 4.5x2 + 3.0. (7.42) 
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Cubic Regression 

Number of iterations needed to 

h· {FQ,1:1, ... ,tm} < 10-n c ac leve max i_lor 
l~j~m+J 

n=1 n=2 n=3 n=4 

61.0 2 3 4 21 

N umber of iterations needed to 

achieve max {F¥} < lO-n for 
l~j~J 3 -

n=1 n=2 n=3 n=4 

2 3 9 67 

Table 7.8. Clustering Approach: Iteration Results for the best choice of 8 : 
f(d) _= d5

, d = t; 

§ . 
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Figure 7.8. Cubic Regression: Weights versus Design Points after 10 iterations 
of (3.1), f(x) = x5, X = d and 8 = 0.05. 
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Figure 7.9. Cubic Regression: Variance function d(x, p) after 10 iterations of 
(3.1), f(x) = xo, x = d, c5 = 0.05. d(x, p) is given in (7.40). 
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Figure 7.10. Cubic Regression: Variance function d(x, p*) at the optimum 
design (7.41). d(x, p*) is given in (7.42). The maximum value of 4 Occurs at the 

support points. . 
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Quartic Regression 

Figure 7.11 is a plot of the weights versus the design points after running al­

gorithm (3.1) 5 times (with j(x) = x5
, X = d, 6 = 0.05). The plot shows a 

curve with three maximal, four minimal turning points and two peaks on the 

boundaries at x = -1 and x = 1. Assuming that the minimal turning points 

'correspond' to zero weights, we would be left with five disjoint clusters of points 

which must contain the optimal support points. 

Figu_re 7.12 is a plot of variance function d(x, p) at the same point above, where 

d(x, p) is given by 

d(x,p) = 153.623x8 
- 234.354x6 + 111.263x4 

- 14.554x2 + 3.675 (7.43) 

This plot has a similar shape with same number of maximal and minimal turning 

points. As the design points start forming clusters, we consider transforming 

from the weights Pi to weights within clusters and total cluster weights. 

Based on 5 clusters we now use algorithm (7.25). Numerical information about 

the performance of algorithm (7.25) is contained in tables 7.9 and A.9. Values 

of 6 higher those presented in table A.9 were investigated. The value of 6 = 53 

provided the fastest convergence. Here again convergence is improved a lot if 

we compare the numbers in these tables to those in tables 7.4 and A.4. In this 

example, for fJ = 1.9 and n = 4, number of iterations needed is 2571, whereas 

using clustering approach, for fJ = 53 this number reduces to 97 (=92+5). This 

clearly indicates improvement in convergence. 

Iterations converge to the design 

{ 
-1.00 -0.66 -0.65 -0.01 0.00 0.01 0.65 0.66 1.00} 

p = 0.20 0.09695 0.10305 0.01605 0.16790 0.01605 0.10305 0.09695 0.20 . 
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Taking convex combinations of the relevant cluster members, the approximate 

design is given by 

* _ {-1.00 -0.655 0.00 0.655 1.00} 
p - 0.20 0.20 0.20 0.20 0.20 ' (7.44) 

which is in turn the same design we obtained in (7.14). 

Figure 7.13 is a plot of the variance function d(x,p*) for the above design. d(x,p*) 

is given by 

d(x,p*) = 76.495x8 
- 141.999x6 + 79.527x4 

- 14.023x2 + 5.0. (7.45) 

The maximum value of 5 occurs at the 5 support points ±1, ±0.655 and 0 con­

firming the D-optimality of the above design. 
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53.0 

Quartic Regression 

Number of iterations needed to 

h· {FQ,rl , ... ,rm} < 10-n £ ac leve max i_or 
l$j$m+J 

n=1 n=2 n=3 n=4 

1 3 4 20 

Number of iterations needed to 

achieve max {F-!1} < lO-n for 
l$j$J J -

n=1 n=2 n=3 n=4 

2 3 10 92 

Table 7.9. Clustering Approach: Iteration Results for the best choice of 8 : 
f(dL dO, d = 1Ii 

$ 
~ . o 

$ • 
8 • 
ci 

!~ .. 
'1 
~ N 

8 
ci 

· · · 

i 
ci~----~----~----~----~ 

·1.0 .(l.S 0.0 
Design Points 

0.5 1.0 

Figure 7.11. Quartic Regression: Weights versus Design Points after 5 itera­
tions of (3.1), f(x) == xO, x == d and 8 == 0.05. 
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~,---------------------~ 

" 

·1.0 .(l.S 0.0 0.5 1.0 

Figure 7.12. Quartic Regression: Variance function d(x, p) after 5 iterations 
of (3.1), f(x) = xo, x = d, 0 = 0.05. d(x, p) is given in (7.43). 
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Figure 7.13. Quartic Regression: Variance function d(x, p*) at the optimum 
design (7.44). d(x, p*) is given in (7.45). The maximum value of 5 Occurs at the 

support points. 
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7.5.3.3 Second-Order Model in Two Variables 

As a last example we consider the second-order model in two variables. The 

model is given in (7.16). 

We consider the discretised design space consisting of all pairs (XI, X2) arising 

when the values for each Xi, i = 1,2 are those between -1 and +1 taken at 

intervals of 0.1. That is, the space consists of (21)2 = 441 pairs (Xl, X2). i.e. the 

discretised design space is given by 

Consider starting algorithm (3.1) with equal weights of 1/441 on each pair (XI, X2). 

We write the design with arbitrary weights as: 

p = { 
(Xll,X2d (X12,X22) 

Pi P2 

Figure 7.14 is a plot of the weights Pi versus the design points (XI, X2) after 

running algorithm (3.1) 10 times (with f(x) = xo, X = d, 8 = 2.3). Clearly the 

plot shows 9 clusters - 4 in the corners, 4 in the middle of the sides and 1 in the 

centre. 

Figure 7.16 shows th~ variance function d(;r.,p) versus (Xl,X2) at the above 

iteartion. This plot also shows the 9 clusters as above. d(;r., p) is given by 

d(;r.,p) !{(;r.) M-l(p) 1L(;r.) 

_ 6.88179(xi + xi) - 6.92214(x~ + x~) 

-0.20284x~x~ + 6.93500. (7.46) 
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As the design points start forming clusters we consider transforming from weights 

Pi to weights within clusters and total cluster weights. Based on 9 clusters the 

total and within cluster weights are given by 

q 

T· -) 

(q1, q2,·" , qg)T 

(TjI,Tj2,'" , Tjnj)T, j = 1,2, ... ,9. 

The above weights satisfy the following: 

9 

(7.47) 

E qj = 1, qj ~ 0, j = 1, 2, ... , 9 
j=1 
nj (7.48) 
E Tji = 1, Tji ~ 0, i = 1,2, ... , nj, j = 1,2, ... ,9. 
i=1 

After transforming the weights the cri~erion is given by 

(7.49) 

We need to choose q, [1, [2' ... , [g optimally. So the problem is to maximise 

¢m(9.., [1' [2' ... , [g) subject to (7.48). 

The optimal solution is obtained by using algorithm (7.25). Iteration counts 

are recorded in table A.lO and summarised in table 7.10 (for the best choice of 

8). Note values of 8 higher those presented in table A.I0 were also investigated. 

This proved to be 8 = 33. Iteration results, as in the other regression models 

of previous sections, confirm that using the clustering approach improves the 

convergence considerably. 

Iterations converge to the design 

{ -1.0 
-1.0 -1.0 0 

p*= -1.0 0 1.0 -1.0 

0.14579 0.08016 0.14579 0.08016 

0 0 
0 1.0 

0.09620 0.08016 

1.0 

-1.0 

0.14579 

1.0 1.0} 
o 1.0 

0.08016 0.14579 

(7.50) 
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which is the optimal solution obtained analytically in section 7.4.1. 

Figure 7.15 shows a plot of weights versus design points (Xl, X2) at the above 

optimum design. Figure 7.17 is a plot showing the variance function d(;r,p*) for 

the above D-optimal design. The maximum value of 6 occurs at the 9 design 

points (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0) and (1, 1). 

d(;r, p*) is given by the expression 

33.0 

d(;r,p*) = 5.38007(xt + x~) - 5.38007(x~ + x~) + 6.0. (7.51) 

Second-Order Model 

Number of iterations needed to 

achieve max { F~'!:l , ... ,!:m} ~ lO-n for 
175,i75,m+J J 

n=1 n=2 n=3 n=4 

1 2 5 13 

Number of iterations needed to 

achieve max {FP} < lO-n for 
1 $'; 75,J J -

n=1 n=2 n=3 n=4 

1 2 12 21 

Table 7.10. Clustering Approach: Iteration Results for the best choice of 8 : 

f (d) = d5
, d = ~ 
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'1.\ 

Figure 7.14. Second-Order Model: Weights versus Design Points after 10 
iterations of (3.1), f(x) = xo, x = d, 8 = 2.3 

'1.\ 

Figure 7.15. Second-Order Model: Weights versus Design Points at the opti­

mum 
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'T.\ 

Figure 7.16. Second-Order Model: Variance function d(x, p) after 10 iterations 
of (3.1), f(x) = x6, X = d, 8 = 2.3. d(x, p) is given in (7.46) 

'T.\ 

Figure 7.17. Second-Order Model: Variance function d(x, p*) at the optimum 
design (7.50). d(x, p*) is given in (7.51). The maximum value of 6 OCcurs at the 

support points. 



Chapter 8 

Construction of Constrained 

Optimal Designs 

8.1 Introduction 

We now consider the problem of computing designs which optimise standard re­

gression design criteria subject to an equality constraint. Examples of such prob­

lems include determining designs subject to a given efficiency. See Pukelsheim 

and Rosenberger (1993). Cook and Fedorov (1995) is an invited discussion paper 

on constrained optimal design. 

Torsney and Alahmadi ·(1995) consider the case of finding designs subject to zero 

~orrelations between the estimates of two linear combinations of the underlying 

parameters. In particular, they consider the case of minimal support designs 

and transform the constrained optimal design problem to one of maximising a 

criterion with respect to two or three sets of weights or distributions. They 

employed extensions of the multiplicative algorithms (3.1). 

176 
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~ 

This approach does not extend to other equality constraints or to constrained 

optimal designs subject to zero correlation when the support exceeds minimum 

size. It is our purpose to consider the general case and, in fact, to extend the 

work of Alahmadi (1993). 

We consider problems of maximising the D A- and A-optimal criteria under a 

linear model subject to a constraint. The criteria are the -(log)determinant (D A­

optimality) and trace (A-optimality) of the covariance matrix of two linear func­

tions of the parameters of interest. These two linear functions define the matrix 

A. The constraint is the equality of the variances of the estimates of two of these 
-

linear functions. 

Initially the Lagrangian is formulated but the Lagrange parameter is removed 

through a substitution, using linear equation theory, in an approach which trans­

forms the constrained optimisation problem to a problem of maximising two func­

tions of the design weights simultaneously. They have a common maximum of 

zero which is simultaneously attained at the constrained optimal design weights. 

This means that established algorithms for finding optimising distributions can 

be considered. The approach can easily be extended to the case of several con-

straints. 
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8.2 
/"'/ ~/ 

Constrained Optimising Distributions 

8.2.1 General Problem (GP) 

The general problem which we will consider is the following: 

Maximise a criterion ¢(p) subject to the constraint g(p) = 0 as well as 

Pi 2:: 0, LPi = l. 
i 

¢;(p) could be one of the criteria A-, C-, D- or D A-optimality. 

The function 9 (p) could be one of the following: 

or 

or 

178 

g(p) ¢(p)/¢(pi;) - e if we want an efficiency of e (0 < e < 1), where pi; 
is the unconstrained optimiser of ¢(p). 

In the latter case the criterion to be optimised is ¢(p). 

In the first case an appropriate criterion might be 

or 

¢;(p) -tr{AM-l(p)AT}, 

where A = [Q, ~]T. 

The second case is in fact, equivalent to the first case with r = H2 Q and s = !!-Q 
, - 2· 
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One possible motivation for the case 

arises when 

We illustrate this phenomenon in figure 8.1. 

Suppose we wish to miminise the maximum of two functions, and let these two 

functions be JI(x) and h(x). Let h(x) be the maximum of these two functions. 

i.e., h(x) = max{JI(x), h(x)}. 

N ow two cases may arise. In the first case (Case-l in figure 8.1) the minimum of 

h(x) occurs at the point where one of the functions is minimised, e.g. f2(X). 

In the second case (Case-2 in figure 8.1) the minimum of h(x) Occurs at a point 

where both functions are equal. If this point is to be the optimal solution, it 

must minimise both functions subject to them being equal. The above choice of 

g(p) is equivalent to such a problem in the case ¢ = -tr{AM-l(p)AT}. 

If both variances have a common value then tr{AM-l(p)AT} is twice this com­

mon value and is therefore minimised when this common value is minimised. 

Note we have to be sure that the constraint g(p) = 0 can be satisfied. One check 

on this would be to solve problem (PI) with ¢(p) = -[g(p)]2. In fact consideration 

of g(p) = rT M-l(p)§. evolved from a problem considered by Torsney (1988), in 

which a numerical covariance had to be minimised. 
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Case - 1 

Case - 2 

Figure 8.1. An example of a minimax problem 
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~> 

8.2.2 1st order Lagrangian conditions transformed 

First we establish first order conditions for a constrained local maximum using 

Lagrangian theory applied to the equality constraints g(p) = 0 and l:Pj = 1. 
. j 

Let 

L(cp, p, )..) (8.1) 

Then for i = 1, 2, ... ,J 

8L 
d~ -

$ 

(8.2) 

Suppose Pj > 0, j = 1,2, ... ,J. Then we must have 

d~ 0 
$ 

J 

i.e. L: pidf 0 
i=l 

J 

i.e. JL - - L:Pi(dt + )"df). 
i=l 

.. Thus 

J 

L:pj(dj + )..dJ). (8.3) 
j=l 
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Hence the vertex directional derivatives of L are 

J 

FiL = df - LPjdf 
j=l 

J 

(dt + Adf) - LPj(df + Adj) 
j=l 

o [from (8.3)] (8.4) 

Note we would arrive at this point by applying this Lagrangian approach only 

to the constraint g(p) = 0 and then invoking the equivalence theorem to ensure 

Epj- = 1. 
j 

Also 

Equivalently 

J 

Lpjdf 
j=l 
J 

dt - Lpjdf 
j=l 

Fit/> + A Fig. 

J 

+ A (df - LPjdJ) 
j=l 

(8.5) 

(8.6) 
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Now from (8.4) 

F~ 
J 

I.e., FL 

I.e., F 9A 

o given Pj > 0, j = 1,2, ... ,J 

o 
-FtP 

Suppose A = F9, 12. = -FtP and A = A. 

Then A must satisfy 

We now deal with A using the approach of Alahmadi (1993). 

183 

(8.7) 

(8.8) 

The set of solutions to the system of equations (8.8), if solutions exists, is given 

by 

A-Q + (J - A-A)£ for any £, 

where A- is any generalised inverse of A. 

Assuming AT A is non-singular one choice of A-is 

(AT AtlAT 

[(F9fF9]-1 (F9f. 

(8.9) 

(8.10) 
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Then 

Thus p* should be such that 

(8.11) 

and then substituting by ~ in (8.11), we get 

(8.14) 

where 

(8.15) 

So since bt!J. ~ 0, p* should minimise !J.T!J. or maximise Q = Ql = [_!J.T!J.] with a 

maximum value of zero. . 
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Alternatively 

where 

_ [(F9fF9]2 [(Fc/I)Tpl>] + [(F9)TFc/I] 2 [(F9)TF9] _ 

[(F9fFc/I] 2 [(F9fF9] - [(F9fF9] [(F9)TFc/I]2 

[(E9)TEc/I]
2 ~l 

Rl - [(Fc/I)T Fc/I] [(F9Y F9] - 66' 

So bth. is given by (in terms of 6, 6 and 6) 

185 

(8.16) 

(8.17) 

(8.19) 

Clearly 0 ~ Rl ::; 1. So p* should maximise Q = Q2 = [Rl - 1] yielding a 

maximum value of zero. 

Now consider the possibility of zero p* which was not considered by Alahmadi 

(1993). Then by the equivalence theorem 
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F-L {= 0 
3 ::; 0 

if pj > 0 

if pj = o. 

186 

(8.20) 

There are two ways in which we can adapt the above approach to this case. One 

is to argue that 

Ii - Pi hi - 0 for i = 1,2, ... ,J 

i.e. f - P II - Q (8.21) 

where P = diag(PbP2,'" ,PJ)' SO we replace II in the argument above by f = Pll 

to conclude that p* should maximise 

We try to simplify llT p 211 as 

_ [(Fg)TFg] 2 [(Fqi)TpTppl>] + [(F9)TFqi]2 [(F9)TpTpFg] _ 

(Fgf [(FqifFg] pTp [(FgfFg] (Fqi)-

(Fqif [(Fg)TFg] pTp [(F9)TFqi] (Fg) 

_ [(Fg)TFg] 2 [(FqifpTPFqi] + [(F9)TFqi]2 [(FgfpTpFg] -

2 [(Fg)TFg] [(Fg)TFqi] [(FgfpTPFqi] 

(8.22) 

_ {[(F9)TFg]2 [(Fqi)TpTPFqi] + [(F9)TFqi]2 [(FgfPTPFg]} [1- R2] 

(8.23) 
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where 

266~4 
- ~~ ~5 + ~~ ~6 ' (8.24) 

(8.25) 

6, 6, 6 are same as in (8.18). In terms of ~i's bt p 211 is given by 

(8.26) 

Result: R2 ~ 1. 

Proof: 

For notational convenience let 

c = P Fr/> d = P F9. - - ,- -

Then R2 can be written as 

2 (ytQ) 
- 'JJ.T'JJ. + QTQ 

- J J 

Eu~ + Ev; 
i=l i=l 

(8.27) 
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Now, as Ui, Vi are real numbers, from Cauchy-Schwarz inequality 

U? + v? 
U.V. < ~ t 

t I - 2 

J 

i.e., L UiVi 

i=1 

Hen~e, from (8.27) R2 ~ 1. 

J J 

~U~ + ~v; 
< i=1 i=1 

2 

188 

Note that the above can be directly ·proved from (8.23) as in that expression 

[1- R
2

] is one of the two factors of a factorisation of [hr p 2 a] which is nonnegative. 

Since the other factor is nonnegative so is [1 - R2]' 

So p* should maximise Q = Q4 = [R2 - 1] yielding a maximum value of zero. 

Another option is to argue that 

or, 

Ef - pjFP 

EL _ PFL 

o for j = 1,2, ... , J 

Q. (8.28) 

So we replace FL in the above argument by EL concluding that we should have 

at p* 

a=a(E) =Q. (8.29) 
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As [ME)f [ME)] ~ 0, p* should maximise 

(8.30) 

yielding a maximum of zero. 

Here also we can write [ME)]T [ME)] -as 

where 

(8.32) 

E4, E5 and E6 are given in (8.25). 

Clearly from (8.32) 0 :::; R3 :::; 1. Thus from (8.30) it is clear that { - [h.(E)f [h.(E)]} 

is maximised or {[ME)f [ME)]} is minimised when R3 is maximised. i.e., 

(8.33) 

So p* should maximise Q = Q6 = [R3 - 1] yielding a maximum value of zero. 

So we have dealt with the Lagrange multiplier by 'substitution' in terms of p 

and transformed attainment of the first order conditions in the Lagrangian to an 

example of problem (PI), where (/JL(p) = Q with several possible choices of Q 

(Qb Q2, ... ,Q6) and the optimal value is zero. Alternatively p* must maximise 

any increasing function of Q. We consider some such transformations choosing 
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them such that the maximum of the revised criterion is still zero e.g. (eQ - 1) or 

[-log(1 - Q)]. 

The reason for this is that we still must ensure the constraint g(p*) = O. We deal 

with this by transformation to an optimisation problem too; namely p* should 

maximise G(p) = -[g(p)]2 subject to Pi ~ 0, :EPi = 1. So G(p*) = O. We have 

already noted in section 8.2.1 that we might solve problem (PI) with ¢(p) = G(p) 

to check that the constraint can be satisfied. 

Thus p* should simultaneously maximise G(p) and Q(p) with a common maxi­

mum of zero if Q(P*) = 0 subject to Pi ~ 0, :EPi = 1. The sharing of a common 

optimal value of zero means that we have transformed the original constrained 

optimisation problem to an example of (PI) with various choices of ¢(p) namely 

¢L(P) - ¢1 (p) 

¢dp) - ¢2(P) 

¢L(P) - ¢3(P) 

G(p) + Q(p) 

aG(p) + (1 - a) Q(p), 0 < a < 1 

min{G(p), Q(p)} 

Hence we can consider applying methods for solving problem (PI). 
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8.3 Example 

First we illustrate the above theory by simple examples in the context of quadratic 

regression on three points: -1, 0, 2. Thus the design corresponds to the distri­

bution 

x -1 

p(x) PI 

and the information matrix is 

0 2 

P2 P3 

-PI + 2P3 

PI + 4P3 

-PI + 8P3 

PI + 4P3 ] 
-PI + 8P3 

PI + 16p3 

We focus on constraints concerning the element (M-I(p)h3 of M-I(p). This is 

given by 

C - [(8p3 - PI) - (2p3 - PI) (4P3 + PI)lIdet(M(p)) 

[(P2 - 1/2)2 - 9(P3 - 1/2? + 211det(M(p)). (8.34) 

Of course the numerator is quadratic in the weights. We consider first the con­

straint C = 0 i.e. taking g(p) = C so that we want COV(02, (3 ) = o. To produce 

plots we deal with this constraint and the '~pj = l' constraint by substitution to 
J 
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transform the constrained optimisation problem to an unconstrained optimisation 

with respect to one weight, thereby ensuring G(p) = O. 

One possible pair of substitutions is 

Note that there can be two possible formulae given the quadratic nature of C. 

However, the non negativity constraints on PI, P2 and P3 can eliminate one of 

these and can also limit the range of ~2. In fact only the following formulae are 

valid and there is no restriction on P2 (Le. 0 < P2 < 1). 

We now show plots of ¢(P2), Q(P2) for ¢(p) = logdet(M(p)), -tr(M-I(p)), and 

for various choices of Q. First see figures 8.2, 8.3 and 8.4. Clearly these functions 

are unimodal and all are maximised at P2 = 0.4925325 with Q(P2) = o. Also in 

figures 8.7, 8.9, 8.14, 8.15, 8.16 and 8.17, all functions are unimodal and all are 

maximised at the sam~ point above. There is clearly difficulty in attaining the 

first order conditions at least in respect of Q as figures 8.2, 8.4 and 8.9 show. The 

functions seem virtually non-differentiable on either side. 

In figures 8.3, 8.8, 8.12, 8.13 and 8.15 it is clear that the functions are pretty 

flat near the optimum indicating that the convergence of iteration is very slow in 

that region. 
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In figures 8.5, 8.10 and 8.11 the functions have more than one local maximum 

including at the points P2 = 0 and 1. 

In figures 8.6 and 8.8 the functions are very flat over the whole region because 

of the numerically high values of Q at P2 = 0 and 1. It seems that if we draw 

those plots over the region 0.2 < P2 < 0.8, we might have a better picture of the 

curvature of the functions. 

Functions like Q(P2) = [R2 - 1] and Q(P2) = [R3 - 1] in figures 8.16 and 8.17 

respectively change reasonably quickly near the optimum and hence are better 

choices than the others. 

We also consider the constraint det(M(p)) C = 2 since this leads to linear con­

straints on the weights. It is simpler to substitute for Pl, P2 in terms of P3' 

Relevant formulae are 

Pl = -2 (2P3 - 1), P2 = 3P3 - 1 for ~ < P3 ~ ~ 
Pl = 2P3 - 1, P2 = 2 - 3P3 for ~ ~ P3 ~ ~. 

Plots of ¢(P3) and Q(P3) [figures 8.18,8.19, 8.20 and 8.21] reveal that they have 

two maximal turning points, one in each of the regions P3 < 0.5 and P3 > 0.5. 

Further Q(P3) has a maximum of zero at both turning points, while ¢(P3) is 

maximised at the lower value of P3· 
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8.4 Algorithms 

We have transformed the original constrained optimisation problem (GP) to a 

problem of maximising two functions (G and Q) of the design weights simultane­

ously. They have a common maximum of zero which is simultaneously attained at 

the constrained optimal design weights. This means that established algorithms 

for finding optimising distributions can be considered. We consider the following 

algorithm. 

(8.35) 

where f(x) is a positive and strictly increasing function in x, and may depend 

on a free parameter O. 

x = F¢L, where 

(/>L(p) - G(p) + Q(p) 

or a G (p) + (1 - a) Q (p), 0 < a < 1 

or min{ G(p) , Q(p)}. 

(8.36) 

(8.37) 

(8.38) 

F¢L are directional derivatives for (/>L(p). In the latter case F¢L will be either FG 

or FQ depending on which function (between G and Q) is minimum. 

FG and FQ are given by 

J 

FC? 
J 

dC! 
J LPidf 

i=l 
J 

.F? l~ - LPid~ J 
i=l 
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/' 

where df and d7 are first partial derivatives for the two functions G and Q 

respectively. 

df are given by 

Bpj 

_ _ 2 g(p) Bg(p) 
Bpj 

_ 2 [gr M-l(p) g -Ii M-l(p) Q] 

_ 2 [gTM-1(p)g-fM- 1(p)Q] 

[(gT M-l(p) 1!.j)2 _ (QT M-l(p) 1!.j)2] 

[(g + Qf M-l(p) 1!.j] [(g - Q)T M-l(p) 1!.j] 

d7 depends on the choice of Q. We have explored various choices of Q. For 

Q = -btp2fl, 

For Q = _flTfl, 

where 6,6, ... ,~6 are given in (8.18) and (8.25), and 
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Qli's are given by 
api 

86 
8Pi 

86 
8Pi 

86 
8Pi 

8~4 

8Pi 

8~5 

8Pi 

8~6 

8Pi 

and 

a 
a2a9 are given by 
Pi Pj 

-

-

-

8Fr 
_J 

8Pi 

8F~ 
_J 

8Pi-

t [F1~ + Ff8F1] 
i=l p~ ap~ 

2t[F1~!] 
i=l p~ 

2 t [F! ':f] 
i=l p~ 

2p·F~F~ + LP~ F~ -' + FfJ_i J [8F? 8FO] 
J J J "8p· '8 . i=l ~ p, 

J [ 8FO] 
2Pi(F!)2 + 2 t; p;Ft 8P: 

(9)' t [ , 98F;9] 2 Pi Fi + 2 Pi Fi r ' 
i=l p, 

82¢ _ [8</> + tPt 8'</> ] -
8Pi8Pi 8Pi t=l 8PtPi 

82g 
[ J ] 

8g 82g 
- -+ Pt---

8Pi8Pi 8Pi t; 8PtPi . 

196 

_/' 
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2 // 

Derivatives l 88I/J and 888P depend on the choice of the criterion "'. 
Pi Pi Pi ¥' 

For A-optimality, 

and for D A-optimality, 

[Q3 M-l (p )AT(AM-l (p )AT)-l AM-l (p )Qi] 2 -

2 [Q3 M-l(p)AT(AM-l~)AT)-l AM-l(P)Qi] [Q3 M-l(p)Qi] . 

~ E!E.. ~ and 88
2p 

are the first and second order partial derivatives for the 
8Pi' 8Pi' 8PiPi PiP; 

function g(p) and the design criterion (¢(p)). 

In the next section we report some empirical results, but before that we summarise 

the choices of the various terms involved. 

¢(p): 

The choices of ¢(P) (the criterion to be maximised) are 

¢(p) - logdet{M(p)} [D-optimality] 

¢(p) _ -logdet{AM-l(p)AT} [DA-optimality] 

¢(p) _ _ tr{AM-l(p)AT} [A-optimality] 

lThese derivatives are derived in appendix B 
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g(p): 

G(p): 

Q(p): 

We consider only: 

The preferred choice of (/JL(p) is min {G(p), Q(p)}. A danger with the oth­

ers, such as ¢JL(P) = G(p) + Q(p), is that it might be possible to have 

Fi? + F9 = 0 Vj without achieving the necessary conditions of zero values J J 

for all FP and for all FjQ when all weights are positive. 

We consider G(p) = _g2(p). 

Note that we could consider G(p) = [_g(p)]2k, k being a positive interger. 

We have considered a variety of choices of Q(p). Here is a list of the choices 

considered in the next section where we report empirical results. 

Q - Ql - [hta] 
Q Q2 [Rl - 1] 

Q Q3 - [ht p2a] 

Q Q4 [R2 - 1] 

Q Q5 - [[a(E)]T [a(E)]] 

Q Q6 [R3 - 1] 

Q - Q7 - [1 - Rl]2 

Q Q8 - [1 - R2]2 

Q Q9 - [1- R3]2 

Q - Q10 - [In(l - Q5)]2 

Q Q11 - [In(l - Q3)]2 

Q - Q12 - [1 - exp(Q5)]2 
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f(·): 

/' 

where 

Rl 
€r 

66 

R2 
266€4 

-
€~6 + €r€6 

R3 
€~ 

6€6 

and 

6 - [(Fg)T F4>] 

6 [(F4»T F4>] 

6 - [(Fg)TFg] 
" 

€4 - [(Fg)Tp2F4>] 

€5 - [(F4>f p2 F4>] 

€6 - [(Fg)Tp2Fg] . 

Note the maximum of all choices of Q is zero. The reason for using various 

choices of Q is that the convergence of algorithm (8.35) is likely to depend 

on curvature of the function Q which we saw to vary from one choice to 

another in plots of Q. 

In algorithm (8.35) we consider X=F4>L, where (h(p) = min{ G(p) , Q(p)}. 

As FG and FQ can have negative values, we have to consider choices of 

f(x) which are defined for both positive and negative values. To serve this 

purpose we first consider two choices of f(x), namely, f(x) = exp(8x) and 

f(x) = (1 + 8X)SO, 8 = sign(x). 
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We also consider 

{ 
h(x) for x < 0 

f(x) - 2 - h(-x) for x> o. 

This type of function was considered in section 6.2 of chapter 6. We take 

h(x) = (1 - x)6. 

8.5 Empirical Results 

-
8.5.1 Quadratic Model 

First for the above quadratic model we consider deriving the D-optimal design 

subject to the constraint g(p) = gt M-l(p) fJ. -!l M-l(p)~, where fJ. = (0,1, l)T 

and ~ = (0,1, _l)T. Note that this constraint is equivalent to COV(02, 0
3

) = o. 

(i) At equal initial weights with Q = Q7 = - [1 - Rl]2, 

(G,Q) (-28.4444, -1.0) 

-67.5556 < pG < 39.1111 
~ -

-83508 < FjQ < 144240. 

After 200 iterations starting from this design with f(x) = exp(<5x), x = F 

and <5 = 0.001, we converge to the design above Le. p; = 0.4925325 and the 

new values are 

(G,Q) 
-0.0012280 < 
-0.0640491 < 

( - 2.30 10-8, -9.48 10-7) 

pG < 0.0415182 , -

FiQ ~ 0.0027849. 

These derivatives could be closer to zero. This illustrates that while G and 
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various choices of Q can be approximately zero, directional derivatives can 

be distinctly nonzero. 

(ii) At initial weights p(O) = (0.4,0.5,0.1) with Q = Q6 = [Ra - 1], 

(G, Q) (-9.67901, -0.193743) 

-88.4938 < Fp ~ 15.2099 

-3.62321 < FiQ ~ 4.92886. 

After 700 iterations starting from this design with f(x) = exp(8x), x = F 

and 8 = 0.001, 

(G,Q) (0,0) 

-0.0093914 < FP < 0.0002848 

-0.0002144 < F9 < 0.0002176. l 

(iii) At initial weights p(O) = (0.3,0.3,0.4) with Q = Q6 = [Ra - 1], 

(G, Q) (-36.2226, -0.0063) 

-80.8042 < fiG ~ 61.2997 

-0.823343 < FiQ ~ 0.803477. 

After 900 iterations starting from this design with f(x) = exp(8x), x = F 

and 8 = 0.001, 

(G, Q) (0,0) 

-0.0000047 < FP < 0.0000014 

"-0.0000051 < FiQ ~ 0.0000052. 

Clearly the latter results are better than the previous two. We almost attain 

fiG and FiQ to be zero with also zero values of the functions G and Q. 
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8.5.2 Further Examples 

We further consider three examples considered by Silvey et al (1978), Wu (1978) 

and Alahmadi (1993). These are examples 1, 2 and 3 considered in chapters 5 

and 6. The examples are defined by their design spaces. 

Example - 1: V = VI = {(I, -1, _1)T, (1, -1, I)T, (1,1, _1)T, (1,2, 2)T} 

Example - 2: V = V2 = {(I, -1, _1)T, (1, -1, If, (1,1, -If, (1,2, 3)T} 

Example - 3: V = V3 = {(I, -1, -2f, (1, -1, I)T, (1,1, -1)T, (1,2, 2)T} 

A-optimality 

First we consider the design criterion ¢(p) = -tr(AM-l(p)AT) where A = [g, Q]T, 

while the constraint is g(p) = gTM-l(p)g - QTM-I(p)Q, g = (1,0, I)T and Q = 

(1,0, -If. Here also note that this constraint is equivalent to Cov(OI, (
3

) = 

o. Alahmadi (1993) took ¢L(P)=¢I(P). He found convergence to be slow too 

with Q = Q7 = - [1 - RI]2, f(x)=(1 + sx)s5, x = d, s=sign(x) , 8 = 0.3, 0.08, 

0.2 for examples 1, 2 and 3 respectively. Approximate solutions seemed to be 

(0.237,0.270,0.330,0.163), (0.259,0.230,0.359,0.152) and (0.255,0.355,0.215,0.175) 

for examples 1, 2 and 2 respectively. 

We have endeavoured to improve on this with a view to accommodating zero 

optimal weights. We took ¢L(P)=¢3(P) since there is a danger of converging to 

zero values for FL = FG + FQ but not for FG, FQ. 

In example-l starting from equal initial weights with Q = Ql2 = - [1 - exp( Q5)f, 

f(x) = (l+sx)S5, s=sign(x) and x = F, the pair (G, Q) change from (-0.1773,-0.1527) 
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to (-0.0402, -0.0512) after 700 iterations. Yet at this point 

-1.39321 < FP < 2.04547 

-1.88422 < FiQ < 2.01673. 

To explore this issue further, in the remaining illustrations, we take p(O) to be the 

approximate optimal solution of Alahmadi (1993). We denote this by p(A). 

(i) In example-I, at initial weights p(A) = (0.237, 0.270, 0.330, 0.163) with 

Q = Qu = - [In(l - Q3)]2, 

(G, Q) (-5.210-8 , -8.910-4) 

-0.00170 < fiG ~ 0.00139 

-38.7634 < FiQ ~ 81.6632. 

After 450 iterations starting from this design with h (x) = (1 - x) -6, X = F, 

and 5 = 0.001, 

(G,Q) 
-0.00254 < 
-0.04262 < 

(-0.000016, -0.000007) 

pG < 0.00198 , -

FiQ .~ 0.00019. 

(ii) In example-1 again, at a variation of p(A), whe~ Q = Q12 = - [1 - exp( Q5)]2, 

(G, Q) (-0.000087, 0) 

-0.05678 < fiG < 0.06889 
pQ O. 

I 

After 500 iterations with f(x) = exp(5x), x = F, and 5 = 0.001, 

(G, Q) (0, 0) 
-0.000026 < fiG < 0.000031 

F9 O. , 
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(iii) In example-2, at p(O) = p(A) with Q = Q7 = - [1 - Rl]2, 

(G, Q) (-0.0000102, -0.0000001) 

-0.01621 < FP ~ 0.02209 

-0.08275 < FiQ ~ 0.17188. 

After 700 iterations starting from this design with f(x) = exp(8x), x = F, 

and 8 = 0.001, 

(G, Q) (0, 0) 

-0.00013 < FiG < 0.00054 

-0.00409 < FiQ < 0.00084. 

(iv) In example-3, at p(O) = p(A) with Q = QlO = - [In(l - QS)]2, 

(G,Q) (-0.000005,0) 

-0.0134 < pG < 0.0121 s -

-0.000003 < FiQ < 0.000001. 

After 400 iterations starting from this design with f(x) = exp(8x), x = F, 

and 8 = 0.001, 

(G, Q) (0,0) 

-0.00016 < pG < 0.00014 s 

O. 

From the above results it is clear that the FiQ attain zero values quicker than 

the FiG, especially in examples 1 and 3. So convergence is slow. However, 

in all cases the functions G and Q almost attain the maximum value of 

zero. 
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D A-optimality 

Now we report some results on D A-optimality, i.e., the design criterion is 

¢(p) = -logdet{AM-l(p)AT}, where A = [~,QJT, and the constraint is same as 

above, i.e., g(p) = ~T M-l(p) ~ - QT M-l(p) Q, ~ = (1,0, IV and Q = (1,0, -l)T. 

(i) In example-1 starting from equal initial weights with Q = Q6 = [R3 - 1], 

(G,Q) 
-3.52704 < 
-1.70462 < 

(-0.177285, -0.975964) 

pG < 3.56437 , -
FiQ ::; 1.47282. 

After 1200 iterations starting from this design with f(x) = exp(8x), x = F, 

and 8 = 0.001, 

(G, Q) (0, 0) 
-0.0000165 < FP < 0.0000139 

-0.0000134 < FiQ < 0.0000366. 

(ii) In example-3, at equal initial weights, with Q = Q6 = [R3 - 1], 

(G,Q) 
-1.97729 < 
-1.89622 < 

(-0.096522, -0.901059) 

pG < 2.80194 , -

FiQ ::; 2.09638. 

After 1300 iterations starting from this design with f(x) = exp(8x), x = F, . 

and 8 = 0.01, 

(G, Q) (0, 0) 
-0.00072 < FiG < 0.00005 

-0.00052 < FiQ < 0.00028. 

In the above cases as we started with equal initial weights the iteration is 
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naturally slow. Some of the values of FP and FiQ are zero to only 3 decimal 

places. However, the functions G and Q attain the maximum value zero. 

8.5.3 Optimal Solution and Discussion 

We now report, for the quadratic regression model on the design space {-I, 0, 2} 

and for examples 1, 2 and 3, the values of the weights to which convergence was 

obtarned for the choices of f (.) and 8 considered. 

Quadratic Regression: D-optimality: {0.478878, 0.492533~ 0.028589} 

A-optimality: 

Example - 1: {0.237469, 0.270394, 0.329606, 0.I6253I} 

Example - 2: {0.258470, 0.230047, 0.358880, 0.152603} 

Example - 3: {0.254785, 0.355270, 0.214827, 0.175118} 

D A-optimality: 

Example - 1: {O.O, 0.192822, 0.578465, 0.228713} 

Example - 3: {0.514191, 0.257095, 0.0, 0.228714} 

Note that we have a zero optimal weight in these two D A-optimal designs, a 

scenario for which the methods of this chapter were designed to cater. 
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Discussion: 

There is clearly difficulty in attaining the first order conditions at least in respect 

of Q. This is not surprising in view of the plots of Q in figures 8.2, 8.4 and 

8.9. The functions seem virtually non-differentiable at the optimum while being 

convex with steep derivatives on either side. 

Convergence was slow in all examples although G and Q can often be both close 

to zero despite in some cases unsatisfactory attainment of first order conditions. 

The directional derivatives could be closer to zero. This indicates that these 

derivatives could be nonzero while G and Q could be approximately zero. 

However, in the case of the quadratic model with Q = [R3 - 1], f(x) = exp(c5x) 

and c5 = 0.001 for D-optimality; in the case of example-l with Q = - [1 - exp( Q5)]2, 

f(x) = exp(c5x) and c5 = 0.001 for A-optimality; and in the case of example-l with 

Q = [R3 - 1], f(x) = exp(c5x) and c5 = 0.001 we almost attain zero values for 

FG and F9 as well as for the functions G and Q, although in the latter case it ' , 
takes 1200 iterations compared to 900 and 500 iterations in the first two cases 

respectively to achieve optimality conditions. Among the different choices of Q, 

it seems that Q = Q6 = [R3 - 1] is better than the others. This is consistent 

with the curvature of this function as figures 8.7, 8.17 illustrate. The function 

changes reasonably quickly near its optimum. 
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Figure 8.2. D-optimality: Q(P2) versus P2, where Q(P2) = - [In(l + hTP2h)]. 
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Figure 8.3. D-optimality: ¢>(P2) [= ¢>(p)] versus P2. 
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Figure 8.4. A-optimality: Q(P2) versus P2, where Q(P2) = -[In(l + hT P2h)]. 
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Figure 8.5. A-optimality: Q(P2) versus P2, where Q(P2) = - [h(E)f [h(E)]. 
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Figure 8.6. A-optimality: ¢(P2) [= ¢(p)] versus P2. 
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Figure 8.7. A-optimality: Q(P2) versus P2, where Q(P2) = [R3 - 1]. 
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Figure 8.8. D-optimality: Q(P2) versus P2, where Q(P2) = -[hTh]. 
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Figure 8.9. D-optimality: Q(P2) versus P2, where Q(P2) = -[log(l + hTh)]2. 
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Figure 8.10. D-optimality: Q(P2) versus P2, where Q(P2) = -[log{l + 
h(Efh(E)}f 
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Figure 8.11. D-optimality: Q(P2) versus P2, where Q(P2) = - [h(E)]T [h(E)]. 
/ 
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Figure 8.12. D-optimality: Q(P2) versus P2, where Q(P2) = -[1 - Rl]2. 
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Figure 8.13. D-optimality: Q(P2) versus P2, where Q(P2) = -[1 - R2]2. 
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Figure 8.14. D-optimality: Q(P2) versus P2, where Q(P2) = -[1 - R3]2. 
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Figure 8.15. D-optimality: Q(P2) versus P2, where Q(P2) = Q2 = [Rl - 1] 
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Figure 8.16. D-optimality: Q(P2) versus P2, where Q(P2) = [R2 - 1]. 
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Figure 8.17. D-optimality: Q(P2) versus P2, where Q(P2) = [R3 - 1]. 
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Figure 8.18. D-optimality: Q(P3) versus P3, where Q(P3) = -[In(l + hT P2h)]. 
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Figure 8.19. D-optimality: c!>(P3) versus P3. 
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Figure 8.20. A-optimality: Q(P3) versus P3, where Q(P3) = -[In(l + hT P2h)]. 
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Figure 8.21. A-optimality: ¢(P3) versus P3 .. 



Chapter 9 

Discussions and Future Work 

9.1 Discussions - A Brief Review 

This thesis has considered constructing optimising distributions with applications 

in estimation and optimal design by exploring a class of multiplicative algorithms 

(3.1), indexed by a function f(·) which satisfies some conditions (positive and 

strictly increasing) and depends on one or more free parameters. Although each 

chapter has contained within it discussions of the issues raised and the conclusions 

drawn it is useful to summarise the whole work together. , 

First we provided some basic introduction to the area of linear optimum design 

theory including properties of the information matrix and some design criteria. 

In chapter 2 we considered optimality conditions based on directional derivatives 

(F {p, q}) which playa basic role in our work. The properties of these derivatives 

were studied including those when the differentiability of the criterion ¢(.) or 'IjJ(.) 

is defined. 

218 
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In chapter 3 we considered a class of multiplicative algorithms: 

P
(r+1) ex: p\r)f(x\r)) where x\r) = d\r) or F~r) and d(r) - 8""/8p· while F(r) 
j J J' J J J j-'jJ J j 

= dJr) - Ep~r)d~r) at p = per) and f(.) satisfies some suitable properties and 

may depend on one or more free parameters. These iterations neatly submit to 

the constraints of problems (PI) and (P2). Properties of this algorithm were 

discussed. 

Chapter 4 was devoted to the problem of determining maximum likelihood es­

timates under a hypothesis of marginal homogeneity for data in a square con­

tingency table. This estimation problem could be transformed to an example of 

problem (P2). A particular example of data considered for this is a grading of 

the unaided distance vision of each eye of 3242 men (Placket (1974), p.77-79). 

We considered both a 3 x 3 and a 4 x 4 table derived from this data. 

In chapter 5 we considered constructing optimal designs with some preliminary 

choices of f(.) [in algorithm (3.1)]. These investigations also explored changing 

the argument of f(.) from dj to [dj - c] and Fj , where c is a suitably chosen 

constant. Convergence of the above algorithm seemed to be faster when choosing 

the argument to be Fj • Also convergence is improved by considering a class of 

functions [H.e(F)] based on a distribution function G(8F). The reason for good 

convergence rates using this function is that it changes at a reasonable rate at 

zero noting that EpjFj = 0, since Fj = d j - ~Pidi' 
j , 

In chapter 6 we tried to improve convergence of algorithm (3.1) by introducing two 

approaches _ approach I and approach II. Convergence is improved by considering 

both of these. The choices of h(.) [in approach I] and g(.) [in approach II] give 

almost the same number of iterations within each eaxmple. Convergence rates 
! 



CHAPTER 9. DISCUSSIONS AND FUTURE WORK 220 

~ 

also depend on the choice of 8. Overall for all choices of h(.) and g(.) [except for 

g(x) = In(e+c5(x-1))] the best values of c5 (written in bold font inside the tables) 

seem to be somewhere between 1.5 and 2.0. Values higher than those presented 

in the tables were also investigated. 

But our most surprising result occurred with the 'clustering approach' of chapter 7. 

This idea emerges if we run algorithm (3.1) in a design space which is a discreti­

sation of a continuous space. If we produce plots of the weights and the variance 

function versus design points, we see that 'clusters' start forming in early it­

erations of the above algorithm. The idea was that, at an appropriate iterate 

p(r), the weights Pi are transformed to weights within clusters and total cluster 

weights. These are then found optimally by using algorithm (7.25). For each of 

the regression models considered, iteration results clearly demonstrate that, by 

using this approach convergence is much improved over using the raw form of 

algorithm (3.1). 

In chapter 8 we considered the problem of finding a constrained 'approximate' 

design: one maximising a criterion (D-, DA- or A-optimality) subject to the 

equality of variances of the estimates of two parametric functions. We approached 

the problem by initially formulating the Lagrangian, but removing the Lagrange 

parameter through a substitution and transforming the first order Lagrangian 

conditions to an optimisation problem. Ensuring the constraint was also trans­

formed to an optimisation problem. Denoting the criteria of these two problems 

by Q and G respectively these are such that they have a common maximum of 

zero which is simultaneously attained at the constrained optimal design weights. 

Convergence was slow in the examples considered although G and Q can often 
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be both close to zero despite in some cases the directional derivatives (F? and 

FiQ) being somewhat nonzero. However, we almost attain these derivatives to be 

zero with also zero values of the functions G and Q in the case of a quadratic 

model with Q = [R3 - 1] and f(x) = exp(c5x) for D-optimality; in the case of 

example-1 with Q = - [1 - exp(Q5)]2 and f(x) = exp(c5x) for A-optimality; and 

in the case of example-1 with Q = [R3 -1], f(x) = exp(c5x) for DA-optimality. 

9.2 Future Work 

This section comprises of the following ~hree main topics: 

9.2.1 Estimation Problems 

Firstly, consider the estimation problem of chapter 4. Though in the beginning 

of this chap~er we provided some possible examples of this type of problem, we 

considered only the problem of maximum likelihood estimation subject to the 

hypothesis of marginal homogeneity in a square contingency table. 

We considered only two cases: 3 x 3 and 4 x 4 contingency tables. Further work 

on this would be to consider a multi-way square contingency tables. 

Other possible work would be to compute the cell probabilities under an indepen­

dence model in a two-way classification table of two attributes when the data can 

be viewed as incomplete, i.e., some of the cell frequencies are missing. When there 

is no missing data maximum likelihood estimates of the cell probabilities can be 
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obtained explicitly. But, certainly numerical techniques are needed to compute 

ML estimates when there are missing cell frequencies. In that case some of the 

terms in the likelihood may be linear functions of several probabilities. It is then 

not possible to have an analytic solution. 

9.2.2 Optimisation with respect to Several Distributions 

Secondly, consider the clustering approach of chapter 7. This approach trans­

formeq. a problem of optimisation with respect to one distribution to one of 

optimisation with respect to several distributions. There are several naturally 

arising examples of this problem to which an appropriate version of algorithm 

(7.25) could be applied. One example of this arises in image processing or im­

age labelling. This proves to be an optimisation problem with respect to several 

probability distributions, one for each of the pixels or nodes. We first describe 

the following problem outlined by Torsney (1988), and then discuss some suitable 

applications of algorithm (3.1) to this problem. 

Let a picture or a graph comprise of I pixels or I nodes indexed by i = 1,2, ... ,I 

where each pixel or node must belong to one of J states labelled j = 1,2, ... ,J. 

A common problem in this is to have incomplete information about the true state 

of each pixel. An estimate or an initial approximation can be obtained from a 

measurement subject to error when the states form a continuum. However, these 

individual labels do not together produce a consistent picture or complexion. 

Thus it is necessary to improve on this first assessment. 



CHAPTER 9. DISCUSSIONS AND FUTURE WORK 223 

/' 

An approach would be to consider this problem by permitting a solution which 

expresses pixel-state preferences via a probability distribution across the labels 

for each pixel. This introduces a variable Pij which is the probability that pixel 

i belongs to state j, satisfying the following constraints 

Pij ~ 0, i = 1,2, ... ,I, j = 1,2, ... ,J 
J 
E Pij = 1, i = 1, 2, ... ,I. 
j=l 

Boyce et al (1987) propose that such a probability distribution be chosen to 

maximise 

where 

N(i) 

Pijlut 

I J 

¢>(p) L LPij In(qij) 
i=l j=l 

qij ( L Cu [t Pijlut put] (3) b 
UEN(i) t=l 

_ a set of neighbours of pixel i, 

the conditional probability that pixel i has label j given 

that pixel u has label t, which is assumed to be known, 

or for which an approximation is available, 

C
u 

are weights on neighbours satisfying Cu ~ 0, E Cu = 1, 
u 

f3 is a free positive variable. 
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Faugeras and Berthod (1981) propose that qij is an approximation to Pij that 

could be obtained from a current estimate of the joint distribution of the labels 

of pixel i and of its neighbours in N(i). 

Here a compromise measure between consistency and ambiguity is the function 

¢(p). Consistency and ambiguity are concerned with the deviations of Pij from 

qij and of the distribution for a pixel from the classification of the pixel to a single 

label respectively. Potential measures of these are respectively 

-t t Pij in (~) and - t t Pij in(Pij) , 
i=1 j=1 p" i=1 j=1 

and [-¢(p)] is the sum of these. 

If we are choosing the Pij optimally we wish to find several optimising distribu­

tions. One natural extension of algorithm (7.25) would be the following: 

P~n+1) = p(n)!: . (dPi (n)) / ~p~~)!: (d~i(n)) ,j = 1 2 I 
_~ -i p, ~ ~J Pi J ,. " • •• , 

j=1 

(9.1) 

where 

d~i .!!L, J. = 1,2, ... ,J 
J 8Pij 

and p~n), dPi (n) stand for the values at nth iteration. -, 

The above algorithm will have similar properties like those listed in section 7.5.2 in 

relation to maximising ¢m(fl, [1' [2' ... ,[m)· In particular, an optimal solution 

/ 
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is a fixed point of it. 

The solution must be such that Pij = 1 for j = j:, say and Pij = 0, j f- j: for 

each i. 

9.2.3 Constrained Optimisation Problems 

Lastly consider the constrained optimisation problem of chapter 8. There is 

clearly difficulty in attaining the first order conditions at least in respect of Q. 

This is not surprising in view of the plots of some choices of Q, especially in 

figures 8.2, 8.4 and 8.9. These functions seem virtually non-differentiable at the 

optimum while being convex with steep derivatives on either side. These are 

hostile conditions for iterations (8.35). 

Further development is needed. Possibly further transformations of Q to a more 

concave shape would help e.g. 

for some t. 

-Q = -0 = {{-QP {_QP/t 
for -Q < 1 

for -Q> 1 

Modifications using the.clustering approach of MandaI and Torsney (2000b) (see 

chapter 7) to deal with zero optimal weights is another option. 

There is also the issue of multiple local maxima to be considered. This and the 

extension to the case of several equality constraints, which in principle is straight 

forward, will be the focus of future work. 

/ 



Appendix A 

Interation Results Summarised in 

Chapter 7 

Thigonometric Regression 

N umber of iterations needed to 

achieve max { Fj } < lO-n for 
l~j~J -

8 n=l n=2 n=3 n=4 

0.5 14 114 988 8793 

1.0 7 58 494 4397 

1.4 6 42 353 3141 

1.5 6 39 330 2931 

1.6 6 37 309 2748 

1.7 6 35 291 2586 

1.8 6 33 275 2443 

1.9 8 31 261 2314 

Table A.1. Iteration Results: f(d) = dO, d = ~ 

/ 
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Quadratic Regression 

Number of iterations needed to 

achieve max { Fj } < lO-n for 
1$j$.J -

0 n=1 n=2 n=3 n=4 

0.5 18 96 993 9990 

1.0 9 49 497 4996 

1.4 7 35 355 3569 

1.5 7 33 332 3331 

1.6 7 31 311 3123 

1.7 6 29 293 2939 

1.8 6 27 277 2776 

1.9 7 27 262 2630 

Table A.2. Iteration Results: f{d) = dO, d = ~ 

Cubic Regression 

Number of iterations needed to 

achieve max { Fj } < lO-n for 
1< "<J --'-

0 n=1 n=2 n=3 n=4 

0.5 16 96 970 8079 

1.0 9 49 486 4040 

1.4 7 35 347 2886 

1.5 6 33 324 2694 

1.6 6 31 304 2525 

1.7 6 29 286 2377 

1.8 7 27 270 2245 

1.9 9 27 256 2127 

Table A.3. Iteration Results: f{d) = dO, d = ~ 

/ 
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Quartic Regression 

Number of iterations needed to 
achieve max { Fj } < lO-n for 

lS.jS.J -

8 n=l n=2 n=3 n=4 

0.5 14 97 988 9768 

1.0 8 49 495 4885 

1.4 6 35 354 3489 

1.5 6 33 330 3257 

1.6 6 31 310 3053 

1.7 6 30 291 2874 

1.8 8 27 275 2714 

1.9 11 29 261 2571 

Table A.4. Iteration Results : f (d) = d8, d = ~: 

Second-Order Model 

N umber of iterations needed to 

achieve max { Fj } < lO-n for 
1< "<J -_3_ 

8 n=l n=2 n=3 n=4 

0.5 22 197 782 1310 

1.0 12 99 392 656 

1.5 8 66 261 437 

1.8 7 56 218 365 

1.9 7 53 206 345 

2.0 7 50 196 328 

2.1 6 48 187 313 

2.2 6 46 178 298 

2.3 6 44 171 286 

Table A.5. Iteration Results: f(d) = d8
, d = ~ 

/ 
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Trigonometric Regression 

Number of iterations needed to Number of iterations needed to 

{Fq,r1"'.,Lm}<10 n £ achieve max i - _ - or 
lSj::;m+J 

achieve max {F]} < lO-n for. 
l::;;::;J -

8 n=l n=2 n=3 n=4 n=l n=2 n=3 n=4 

40.0 2 7 8 32 2 7 13 108 

45.0 2 7 8 28 2 7 12 95 

50.0 2 7 8 25 2 7 11 85 

55.0 2 7 8 23 2 7 10 77 

56.0 2 7 8 23 2 7 10 76 

57.0 2 7 8 22 2 7 10 74 

58.0 2 7 8 22 2 7 9 73 

59.0 2 7 8 21 2 7 9 71 

60.0 2 6 7 22 2 7 9 71 

Table A.6. Clustering Approach: Iteration Results: f(d) = d8
, d = ~. 
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Quadratic Regression 

Number of iterations needed to N umber of iterations needed to 
{Fq,r1, . ...rm}<10 n £, achieve max T - - _ - or 

1~j~m+J 
achieve max {FJ} < lO-n for 

1< '<J -_L 

8 n=1 n=2 n=3 n=4 n=1 n=2 n=3 n=4 

40.0 1 3 5 43 2 3 13 126 

45.0 1 3 5 38 2 3 12 112 

50.0 1 3 4 34 2 3 11 101 

55.0 1 3 4 31 1 3 10 92 

60.0 1 3 4 29 2 3 9 84 

65.0 1 3 4 27 2 3 8 78 

70.0 1 3 4 25 2 3 8 72 

75.0 1 3 4 23 2 3 7 68 

76.0 1 3 4 23 2 3 7 67 

77.0 1 3 4 23 2 3 7 66 

78.0 1 3 4 23 2 3 7 65 

Table A.7. Clustering Approach: Iteration Results: f(d) = dO, d = ~. 

/ 
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Cubic Regression 

Number of iterations needed to Number of iterations needed to 

h· {Fq'!:l, ... ,!:m} < lO-n £ ac leve max T _ or 
l~j~m+J 

achieve max {F~} < lO-n for 
l~j~J 3 -

{) n=1 n=2 n=3 n=4 n=1 n=2 n=3 n=4 

40.0 2 3 4 31 2 3 13 102 

45.0 2 3 4 27 2 3 12 91 

50.0 2 3 4 25 2 3 11 82 

55.0 2 3 4 23 2 3 10 74 

56.0 2 3 4 22 2 3 10 73 

57.0 2 3 4 22 2 3 9 72 

58.0 2 3 4 22 2 3 9 71 

59.0 2 3 4 21 2 3 9 69 

60.0 2 3 4 21 2 3 9 68 

61.0 2 3 4 21 2 3 9 67 

Table A.B. Clustering Approach: Iteration Results: f(d) = d5
, d = ~:. 

/ 
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Quartic Regression 

Number of iterations needed to Number of iterations needed to 
{Fq,r1, . ..,rm}<10 n £ achieve max T - - _ - or 

_ l~j~m+J 
achieve max {F~} < lO-n for 

l<O<J J --'-

8 n=l n=2 n=3 n=4 n=l n=2 n=3 n=4 

30.0 1 3 4 34 2 3 17 163 

35.0 1 3 4 29 2 3 15 139 

40.0 1 3 4 26 2 3 13 122 

45.0 1 3 4 23 2 3 12 108 

50.0 1 3 4 21 2 3 11 98 

51.0 1 3 4 21 2 3 10 96 

52.0 1 3 4 20 2 3 10 94 

53.0 1 3 4 20 2 3 10 92 

Table A.9. Clustering Approach: Iteration Results: f(d) = dO, d = ~. 

/ 
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Second-Order Model 

N umber of iterations needed to Number of iterations needed to. 
. {Fq,r1, ... ,rm}<10 n £ achIeve max j- - - _ - or 

l~j~m+J 
achieve max {FJ} < lO-n for 

l~j~J -

8 n=l n=2 n=3 n=4 n=l n=2 n=3 n=4 

10.0 1 2 9 38 1 8 38 65 

20.0 1 2 5 20 1 3 20 33 

25.0 1 2 5 16 1 2 16 27 

30.0 1 2 5 14 1 2 14 22 

31.0 1 2 5 13 1 2 13 22 

32.0 1 2 5 13 1 2 13 21 

33.0 1 2 5 13 1 2 12 21 

Table A.I0. Clustering Approach: Iteration Results: f(d) = dO, d = ~. 



Appendix B 

B.l A-optimality 

Let 

(B.l) 

where M is a symmetric matrix of order k x k and A is a matrix of order s x k , 
s < k, k = number of parameters and rank(A) = s. 

Then the criterion function is 

with 

¢(p) = '¢A(M(p)), M(p) - L Pj Qj Q; 

j 

'¢A(M) - -tr{h(M)}. 
/ 
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The first order partial derivatives of'l/JA can be derived by using the'Gateaux 

derivative of section 2.3.2 of chapter 2. 

(B.2) 

From the definition of Gateaux derivative 

1
. h(M + eN) - h(M) 
1m ----'---~-~-!-
c.}O e (B.3) 

. A(M + eNtiAT - AM-1AT 
hm . 
c.}O e (BA) 

Now 

(I + eM-1N)-1 M-l 

M- l / 2(I + eM-l / 2 N M-l / 2t l M- l / 2 

M- l/2(I + eBtl M-l/2 (B.5) 

where B = M-l N or M- 1/
2 N M-l/2. 

I - eB for e small. 

Thus by using (B.5) and (B.6) above, h(M + eN) in (B.3) would be 

h(M +eN) A(M +eNtlAT 

AM-l/2(I - eB)M-l/2AT 

AM- l AT - eAM-l/2 BM-l/2 AT 

AM-lAT - eAM-lNM-lAT .. · 

/ 

(B.6) 
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Hence from (B.3) and (B.2) 

Gh{M,N} 

and G,pA{M,N} 

(B.7) 

(B.8) 

Then from (B.8) with M = Al(p), 

Let 

Now 

Hence 

G,pjA {M,N} 

G,pA {M, 12.j12.J} 

-tr{-AM-1v 0 vr: M-1AT} 
-J -J 

12.J(M +cNtIAT A(M +cNtl12.j 

12.J M-I/2(J - cB)M-1/2 AT AM-1/2(J _ cB)M-1/212.j 

12.J[M-1AT - cM-1 NM-1AT] [AM-1cAM-1NM-1]12.j 

vr: M-1 AT AM-IV 0 

-J -J 

-c[vr: M-1 N M-1 AT AM-IV 0 + vr: M-1 AT AM-1 N M-1v 0] 
~ ~ ~ ~ 

+c2[~r: M-1 N M-1 AT AM-1 N M-1v 0], 
-J -J 
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Hence with M = M(p), 

G¢jA {M, :!Li:!Lf} 

-[v~ M-Iv.v! M-I AT AM-IV. + v~ M-I AT AM-Iv.v! M-Iv.] 
-J -~-~ -J -J -~-~-J 

B.2 D A-optimality 

The criterion function is 

¢(p) 'l/JDA (M(p)) 

with 

-log det{ h( M)}. 

As in the case of A-optimality, the first order partial derivatives can be derived 

from 

G¢VA {M,N} 

Hence from (B.7) and (B.9) with N = :!Lj:!L] and M = M(p), 

-tr{(AM-I ATtl (-AM-IQj Q; M-I AT)} 

Q; M-I AT(AM-I ATtl AM-IQj' 

/ 

(B.9) 

(B.10) 
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Let 

Now from (B.ll) 

where 

Thus 

(B.ll) 

_ 1!J [M-l/2(I - eB)M-l/2 AT][AM-l/2(I - eB)M-l/2 ATtl 

[AM-l/2(I - eB)M-l/2] Q; 
_ Q; [M- l AT - eM- l N M-l AT][E - eFt l 

(B.12) 

[E - eFtl - [El/2[I - eE-l / 2 F E-l/2]El/2tl 

- [E-l/2[I _ eE-l/2F E-l/2t l E-l/2] 

- [E-l/2[I + eE-l / 2 FE- l/2]E-l/2] 

[by expanding similarly in (B.6)] 

- [E-l +eE-lFE-l]. (B.13) 

/ 
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1/;' (M + eN) 
DA 

12'; [M- I AT - eM-I N M-I AT][E-I + eE-I FE-I] 

[AM- I - eAM-INM-I ]12.; 

v~ M-I AT(AM-I AT)-I AM-IV. 
-J -J 
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+ f [!iT M-1 AT (AM-1 ATt' AM-1 N M-1 AT (AM-1 ATt' AM-'!i; 

-v~ M-I AT(AM-I AT)-I AM-I N M-Iv. 
-J -J 

-v~ M-I N M-1 AT(AM-1 AT)-l AM-Iv.J 
-J -J 

+ higher order terms of e 

!if H!i; + f [!if HNH!i; -!if HNM-' '2; - '2; M-1 NH!i; 1 
+ higher order terms of e 

Hence with M = M(p), 

_ [v~ HV.]2 - 2[v~ Hv.][v~ M-Iv.] 
-J -~ -J -~ -J -~ 

[12.; M-I AT(AM-I ATtl AM-IQi]2 

-2[v~ M-I AT(AM-I AT)-I AM-IV'][V~ M-Iv.]. 
-J -~ -J -~ 

/ 

(B.14) 
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