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SUMMARY

This thesis is concerned with the effect of pre-stress on the

propagation of surface and interfacial waves in elastic materials.

Following a review of the classical theory of Rayleigh and Stoneley

waves for linear elastic materials we consider first the propagation

of infinitesimal surface waves on a half-space of incompressible

material subject to a general pure homogeneous pre-stress; the

secular equation for propagation along a principal axis of the

pre-stress is obtained for a general strain-energy function, and

conditions which ensure stability of the underlying pre-stress are

derived; the influence of the pre-stress on the existence of surface

waves is examined, and the secular equation is analysed in detail for

particular deformations and, for a number of specific forms of

strain-energy function, numerical results are used to illustrated the

dependence of the wave speed on the pre-stress. Necessary and

sufficient conditions for the existence of a unique surface wave are

obtained. Corresponding results for a compressible material are also

derived.

The propagation of (Stoneley) interfacial waves along the

boundary between two half-spaces of pre-stressed incompressible

isotropic elastic material is then examined. The underlying

deformation in each half-space corresponds to a pure homogeneous

strain with one principal axis of strain normal to the interface and

the others having a common orientation. The secular equation

governing the wave speed for propagation along a principal axis is

obtained in respect of general strain-energy functions. Detailed

analysis of the secular equation reveals general sufficient



conditions for the existence of a wave and, in particular cases,

necessary and sufficient conditions for the existence of a unique

interfacial wave. It is also shown that when an interfacial wave

exists its speed is greater than that of the least of the Rayleigh

wave speeds for the separate half-spaces, paralleling a result from

the linear theory. For the special case of quasi-static interfacial

deformations (corresponding to vanishing wave speed) an existence

criterion is found; niorcover, it is shown that inequalities that

exclude surface deformations in each half-space also exclude

interfacial deformations. Dependence of the above results on the

underlying homogeneous deformations and on material parameters is

illustrated by numerical results for the neo-Hookean material.
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Chapter 1

Introduction

In this chapter, we shall describe briefly the main results

contained in this thesis.

In Chapter 2, we summerize the basic equations of non-linear

elasticity which will be required in subsequent chapters. We

introduce in Section 2.1 the notations required for the description

of the deformation of an elastic body. In Section 2.2 we note the

mass conservation equations and in Section 2.3 we discuss stress and

the equations of motion. Constitutive laws for both compressible and

incompressible elastic materials are discussed in Section 2.4, and in

Section 2.5 the general forms of strain-energy functions for both

compessible and incompressible elastic materials are noted. In

Section 2.6 of this chapter we establish the equations of motion for

both compressible and incompressible materials, which are used

frequently in our discussion of surface, Love and interfacial waves.

We also consider plane waves in an infinite medium in Section 2.7. In

Section 2.8 we record the two-dimenstional form of the strong

ellipticity condition. Finally in this chapter we specialize the

equations of motion to of those the linear theory since these are

used in Chapter 3. The work in this chapter is based on standard

texts such as Truesdell and Noll (1965) and Ogden (1984).

In Chapter 3 we review some well-known results of the classical

linear theory. In particular this chapter is concerned with Rayleigh,

Stoneley and Love waves and provides the background against which to

set our subsequent work on waves in pre-stressed materials. We start
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this chapter by an analysis for incompressible materials. In Section

3.2 we are concerned with Rayleigh waves and we derive the

well-known secular equation for Rayleigh waves for an incompressible

material. In Section 3.3, we discuss Stoneley waves and again we

obtain the secular equation. In Section 3.4 we discuss Love waves and

derive the classical dispersion relation. The corresponding analysis

for compressible material can be found in Sections 3.5 - 3.8. The

work in this chapter is based on, for example, Achenbach (1984),

Eringen and Suhubi (1975) and Ewing, Jardetzky and Press (1957).

Chapter 4 is concerned with Rayleigh surface waves propagating in

both compressible and incompressible isotropic elastic half-spaces.

We start, in Section 4.1, with the analysis for an incompressible

material. We suppose that the deformed half-space occupies the region

0 and we consider waves propagating along the x 1 -axis. For

simplicity we also take the x 1 -axis to correspond to a principal axis

of the underlying deformation. We assume that the incremental

displacement associated with the wave has no component normal to the

(x 1 , x 2 )-plane and that the x 1 and x 2 components are independent of

x 3 and we derive the secular equation for the surface wave speed in

respect of a general strain-energy function. This secular equation is

used in Section 4.2 to determine inequalities, involving the normal

surface stress and the strain-energy function, which ensure

stability of the underlying deformation, namely

'V > 0,	 (1.1)

x	 + x1	 + 2a-2(1 -
	

X) - o- /y > 0,	 (1.2)
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where X, X 2 and X 3 are the principal stretches of the underlying

deformation (subject to the incompressibility constrain X 1 X 2 X 3 	1),

-1 -1
(x 1 , X 3 ) = W(X 1 , X 1 	X 3 	X 3 ),	 (1.3)

W(X1, 
'2' 

X 3 ) being the strain-energy per unit volume, W 1 = aW/ax1,

= W/ax and

..y = x l x	 (1.4)

We note that each of (1.1) and (1.2) reduces to	 > 0 in the

unstressed reference configuration (> .i =	 =	 ° 2 = 0), where

is the shear modulus of the material in that configration.

When 0 2 = if is a hydrostatic stress, which is discussed in

Section 4.2.1, (1.2) requires that -2 < o < 2jz. Within this range of

values of o the (positive) wave speed is unique and such that c c c5,

where c 5 is the shear wave speed (pc	 , p being the density of the

material) in an unbounded unstrained body, with equality holding if

and only if if . At the extreme values c = ± 2, c = 0 and the

incremental deformation is then a quasi-static surface deformation

superposed on an underlying state of hydrostatic stress. When if 2 = 0

the inequality (1.2) provides restrictions on the domain of stability

(in the (X 1 , X 2 )-plane, for example), within which surface waves

exist on a free surface. Since the deformation is unaffected by a

superimposed hydrostatic stress, (1.2) also provides limitions on the

normal surface stress if 2 that can be supported in any state of

deformation for which surface wave exist.
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For a general strain-energy function, we express the secular equation

in a simple cubic form, that can be found in Section 4.2.2. The

coefficients of the two highest powers of the cubic are each equal to

unity, while the other two coefficients depend, in general, on

X 2 , 02 and the material properties. When 02 = 0 the equation

simplifies.

In Section 4.3 we consider some particular deformations, namely

plane strain and uniaxial stress, which are studied for a general

strain-energy function. In Section 4.4 we specify the strain-energy

function more explicitly and further results are obtained. The range

of existence of surface waves is illustrated by numerical results and

we observe that in each case considered a unique surface waves exists

for each state of deformation in the stable regime. In Section 4.5 we

note briefly how the results described above are affected by changing

the incremental dead-load boundary condition to an incremental

hydrostatic stress boundary condition (there is no distinction when

= 0).

In Section 4.6 we summarize the (two-dimensional) criteria

appropriate to stability under all-round dead load and all-round

hydrostatic stress for comparison with the stability results derived

in this chapter.

In Section 4.7 we extend our discussion on surface waves to

consider propagation in a general direction (cosO, sinO) in the

(x 1 , x 3 )-plane. Because, in general, the equation involve cumbersome

algebra, we specialize to the neo-Hookean strain-energy function in

Section 4.7.1 and we obtain results equivalent to those given by

Flavin (1963).
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Also in this chapter we consider the corresponding results for a

compressible material in Sections 4.8-4.11, we consider the surface

waves propagating along a principal axis of the underlying

homogeneous pure strain again in respect of the general form of

strain-energy function. We derive the secular equation in Section

4.8, and, as for an incompressible material, we express the secular

equation in a simple cubic form. In Section 4.9 we analyze the

resulting secular equation for arbitrary configurations, including a

number of special and degenerate ones. In each case necessary and

sufficient conditions for the existence of a unique surface wave are

found. The results obtained subsume those given by Hayes and Rivlin

(1961b) and some special cases examined briefly by Willson (1972a,b;

1973). In Section 4.10 we consider some special deformations.

A general method for establishing exsistence and uniquess of

surface waves in a pre-stressed compressible isotropic elastic

half-space was developed by Chadwick and Jarvis (1979), and provides

a different approach to that considered in this chapter. The method

used by Chadwick and Jarvis applies to arbitrary strain-energy

functions and arbitrary directions of propagation; in practice, it

yields explicit results only for simple forms of strain-energy

function. For the restricted Hadamard material they obtained an

expression for the surface wave speed. For propagation along a

principal axis, we examine surface wave propagation in such a

material when the normal stress is non-zero. Our general results are

also illustrated for another form of strain-energy function in

Section 4.11.
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Chapter 5 is concerned with Love waves and Rayleigh waves on a

layered half-space. In Section 5.1.1 we begin the discussion by

considering a pre-stressed half-space defined by x 2 0 with a layer

of different pre-stressed material of thickness h on the top with

boundaries x 2 0 and x 2 = h. We consider wave propagation along a

principal axis and we derive the dispersion equation for Love waves

propagating along a principal axis of the underlying deformation in

respect of a general strain-energy function for an incompressible

material. We also consider in section 5.1.4 the case of equibiaxial

deformations and we present some numerical results. In Section 5.1.5

we recover the result for the linear theory. Also the corresponding

results for a compressible material are examined briefly.

Also, in this chapter we extend the discussion of Rayleigh

surface waves in which there is a layer of uniform thickness h with

the boundaries x 2 = 0 and x 2 = h, but because of complicated algebra

involved the secular equation is left in determinant form.

Finally in this thesis we explore a number of aspects of

interfacial waves and deformations for pre-stressed incompressible

isotropic elastic half-spaces. For simplicity, we consider only

propagation along a conmion principal axis of strain of the two

half-spaces, but no restriction is placed ab initio on the material

properties; thus, we allow the materials constituting the half-spaces

to have arbitrary, but different, strain-energy functions. We follow

the notation used in Chapter 4 for surface waves in a single

half-space.
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In Section 6.1 we derive the secular equation governing the

speed of interfacial waves. The secular equation is analyzed in

detail in Section 6.2; firstly, the results on surfaces waves from

Chapter 4 that are needed are summarized briefly; the neutral and

limiting cases are discussed and the question of existence of

interfacial waves is addressed. Contact is also made with the linear

theory. Also, when the material of each half-space is neo-Hookean,

more results are obtained; these are used as basis for numerical

calculations which, for biaxial deformations, illustrate the

dependence of the neutral and limiting curves on certain material

parameters. Finally, the special

deformation in while X1 = = = 1 and = = 1 is

considered to establish the corresponding result for the classical

linear theory.

In Section 6.3 we extend the discussion to consider the propagation

in any direction (cosO, sinO) in the (x 1 , x 3 )-plan and we derive the

secular equation which corresponds to that obtained by Chadwick and

Jarvis (1979) for the case and p = p'. We also specialize to

equibiaxial deformations and obtain the equations of neutral and

limiting curves, and we present some numerical results for these

cases. Finally in this chapter we consider the corresponding problem

for a compressible material.

The work in Sections 4.1-4.6 forms the basis of the paper 'On

surface waves and deformations in a pre-stressed incompressible

elastic solid' whiI.Q that in Sections 4.8-4.11 has been accepted for

publication. A third paper, based on sections 6.1-6.2 is being

submitted for a publition.
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Chapter 2

Basic equations of non-linear elasticity

In this Chapter we summarize the basic equations of non-linear

elasticity that will be used frequently in the subsequent Chapters.

Detailed derivations are not given because these can be found in

standard texts. We refer to Ogden (1984), for example, for full

details.

2.1 Kinematics

We begin by introducing the notation required for the description

of the deformation of an elastic body. We consider a continuous body

which occupies the region Br in some natural (i.e. unstressed)

configuration, N 0 say. Let a typical point of Br, P say, have

position vector X relative to some (arbitrarily chosen) origin 0.

The motion of the body, in which the body occupies the region Bt

at time t, is described by the one-parameter mapping

Br _ Bt

and we write
	

(2.1.1)

X(X,t),

for the position	 occupied by P in the current configuraton. In

cartesian components equation (2.1.1) may be expressed

x l = X1(X1,X2,X3,t),

= X 2 (X 1 ,X 2 ,X 3 ,t) ,	 (2.1.2)

x 3 = X 3 (X 1 ,X2,X3,t)

For a given t, t is called the deformation of the body relative to

Br . We require t to have a unique inverse	 such that



9

X = X(x)	 x c Bt .	(2.1.3)

We also assume that is twice-continuously differentiable when this

degree of regularity is required.

The velocity and acceleration of the material particle P are

given by

=	 X(X,t)	 2X(X,t)	
(2.1.4)

t2

respectively, where /t denotes differentiation with respect to t at

fixed X.

The deformation gradient tensor, the gradient of (2.1.1), is

given by

A = Grad X(X,t)
	

(2.1.5)

where Grad denotes the gradient operator with respect to .

It follows from (2.1.4) and (2.1.5) that

A=LA
	

(2.1.6)

where the superposed dot denotes a/at at fixed and

L = grad
	

(2.1.7)

is the velocity gradient tensor. Note that, in (2.1.7), grad denotes

the gradient operator with respect to .

In cartesian components, we have

A• = aX(x,t)	 ',	 (2.1.8)1]



B 1J	 ;.'-'xl
(2.1.13)
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L•• -

We use the notation

J = det ,

and impose the usual constraint

J > 0,

(2.1.9)

(2.1.10)

(2.1.11)

which ensures that the deformation is locally invertible, i.e. that

A 1 exists. For convenience we write

=	 (2.1.12)

where ( )T denotes the transpose a second-order tensor.

In components

We shall make use of the following polar decompositions for A

A=RU=VR
	

(2.1.14)

where R is proper orthogonal and U and V are positive definite and

symmetric, and are called the right and left stretch tensors

respectively.

Each of U and V may be expressed in spectral form

=	

(i) ®

(2.1.15)

=	 (i) ® (i)
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where Xj ( > 0 ), j C (1,2,3], are the principal stretches of the

deformation, and j) and (') respectively are the unit eigenvectors

of U and V. We shall refer to 	 (1) and	 (-), i	 (i,,a}, as the
Lagrangian and Eulerian principal axes respectively.

We note that

R	 (i)	 i c (1,2,3],	 (2.1.16)

follows from (2.1.14) and (2.1.15).

The right Cauchy-Green deformation tensor is given by

32
C = ATA = U2 =	 X U j ®	 (2.1.17)

For future reference we note that principal invariants of C, denoted

I, 2' 1 3, are given by

I = tr(C),

'2 =	 ' -	 tr(C2)
	

(2.1.18)

1 3 = det

Let denote the unit outward normal to the boundary aBr of r

and ! the corresponding unit normal to the boundary aB of Bt. Then,

according to Nanson's formula, area elements dar and da of	 and

are related by

nda=JB N dar	 (2.1.19)
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2.2 Mass conservation

Let Pr denote the mass density of the material in Br and p the

corresponding density in Bt. Conservation of mass is expressed by

means of the equation

Pr/P = J	 det
	

(2.2.1)

For an isochoric (volume preserving) deformation J 1 and P = Pr

An incompressible material is one for which every deformation is

necessarily isochoric, i.e.

Pr/P = J = 1	 X E Br .	(2.2.2)

In view of (2.1.14) and (2.1.15) equation (2.2.1) may also be

written

Pr/P = det U = X1X2X3,	 (2.2.3)

with

(2.2.4)
>l23 = 1,

for an isochoric deformation.

We shall also require the rate form of (2.2.1), namely

- + p div = 0.
at

(2.2.5)

When the motion is isochoric this simplifies to

tr(L)	 div V	 0.	 (2.2.6)
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2.3 Stress and the equations of motion

The traction (load) on the area element da of the deformed

surface aB is expressible in the form

crT n da = 5T N dar,	 (2.3.1)

where T is the Cauchy stress tensor (independent of n ) and S the

nominal stress tensor. In view of (2.1.9) equation (2.3.1) yields

= J B' -' ,-
	

(2.3.2)

and we shall use this connection later.

In terms of nominal stress the equation of motion has the form

Div	 = Pr '
	 (2.3.3)

where a is the acceleration given by (2.1.4), Div denotes the

divergence operator with respect to X and body forces are assumed to

be absent. Alternatively, in terms of the Cauchy stress, the equation

of motion has the form

div	 =
	 (2.3.4)

where div is the divergence operator in Bt.

The rate form of (2.3.3) is obtained by differentiating with

respect to t at fixed X to give, using (2.1.4),

Div	 = r
	 (2.3.5)

where the dot indicates the differentiation referred to above.
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Futhermore, if the reference configuration is upated from Br to the

current configuration Bt then (2.3.5) is replaced by

div	 = p ,	 (2.3.6)

where, again div denotes the divergence operator with respect to

and S represents S evaluated in Bt after differentiation with

respect to t.

The equations of rotational balance are satisfied when the

Cauchy stress tensor	 is symmetric, or, equivalently, on use of

(2.3.2)

= gT AT	(2.3.7)

The rate form of (2.3.7) can be obtained by differentiating with

respect to t and updating the reference configuration to Bt. This

yilds

T
+ J Q =	 + 0- L,	 (2.3.8)

where L is defined by (2.1.7).

2.4 Constitutive laws for elastic materials

2.4.1 Compressible elastic materials

We consider an elastic material for which there is a strain energy

W(A) per unit reference volume, so that the nominal stress is given

by

aW	 (2.4.1)

or, in components,



••31	
Aij

(2.4.2)
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It is assumed that the material is homogeneous so that W has no

explicit dependence on (i.e. it depends on X only through A). For

the function W to be objective (i.e unaffected by a superposed

rigid-body rotation after deformation), it must depend on A only

through the right stretch tensor occurring in (2.1.14); thus

W(A)	 W(U).	 (2.4.3)

Associated with U we define the so-called Biot stress tensor T as

I=
	 (2.4.4)

analogously to (2.4.1).

If the material is isotropic relative to Br then W must also be

unaffected by an arbitrary rigid-body rotation before deformation.

Coupled with the objectivity requirement (2.4.3) this leads to the

standard restriction on W, namely

u QT) = W(U),	 (2.4.5)

which must be satisfied for all orthogonal second-order tensors Q.

Because of (2.1.15) this ensures that W depends only on the

principal stretches	 and is indifferent to any pairwise

interchange of X.1 , X 2 , X 3 . Thus, we write

W(X 1 ,X 2 ,X 3 ) =W(X 1 ,X 3 ,X 2 ) =W(x 3 ,X 1 ,X 2 ).	 (2.4.6)
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It then follows that T is coaxial with U and hence, from (2.4.4),

we obtain

I	 1(i) ®	 (2.4.7)

analogously to (2.1.15).

The principal values of I are denoted by tj, i c [i ,2,3). It

follows from (2.4.7) that

ti
	 aw	 (2.4.8)

and hence, for an isotropic elastic material,

®
	

(2.4.9)

The corresponding expression for the Cauchy stress tensor , which

is coaxial with V, is

=i 
(i) ®	 (2.4.10)

where oj and tj are connected through

0 • =	 x. t =	 i
	 i	 [1,2,3)

	
(2.4.11)

Finally, it follows from (2.3.2) that

=1t1 (j) ®
	

(2.4.12)

which should be compared to the decomposition



_aw	 BT
—A -

(2.4.15)
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(i) ®	 (2.4.13)

for the deformation gradient, which can be obtained by using

(2.1.14), (2.1.15) and (2.1.16).

2.4.2 Incompressible elastic materials

For an incompressible material it follows from (2.2.l)-(2.2.4)

that the constraint

J	 det A	 det U	 X 1 X 2 X 3 = 1
	

(2.4.14)

must be satisfied at each point X € Br. Equations (2.4.1) and (2.4.4)

are then replaced by

and

I =	 -
	 -1	 (2.4.16)

respectively, where p, which is an arbitrary function of , is the

Lagrange multiplier associated with the constraint (2.4.14).

If the material is isotropic I, o and S are given by (2.4.9),

(2.4.10) and (2.4.12) respectively, while (2.4.8) and (2.4.11) are

replaced by

aw
ti 

=	
p	 i C	 1,2,3}	 (2.4.17)

(corresponding to the principal values of (2.4.16)) and
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aw
=	 - - p	 1	 1,2,3}	 (2.4.18)

ax

respectively.

2.5 Strain-ener gy functions for isotropic materials

In (2.4.6) it was noted that for an isotropic elastic material

the strain energy may be regarded as a symmetric function of

x 1 , x, x 3 . Equivalently, it may be considered as a function of the

principal invariants 	 12, 1 3 defined in (2.1.18); in terms of

x 1 , x, x 3 these are

2	 2	 2
I i = x 1 + x 2 + x3,

1 2 =	 + xx +	 (2.5.1)

1 3 = X x x

and when the material is incomressible 1 3 1, and the remaining

independent invariants are

2	 2	 2
I i = x. + x 2 + x3

(2.5.2)

-2	 -2	 -2
1 2 =X 1 +x	 +X3

We now consider some specific forms of W for both incompressible

and compressible isotropic elastic materials, which will be used in

later chapters.
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2.5.1 Incompressible materials

With W now regarded as a function of I. and I2 as given in

(2.5.2), equations (2.4.17) and (2.4.18) give

2aW	 -2aW
x t =	 2X - - 2X - - p, i C (1,2,3)	 (2.5.3)

and, on elimination of p, we obtain

- X j t j =	 -	 = 2(X	 - X )(+ Xi2 >2

(2.5.4)

The Mooney (or Mooney-Rivlin) strain-energy function is defined

as

W = C 1 (1 1 - 3) + C 2 (1 2 - 3),	 (2.5.5)

where C 1 and C 2 are physical constants. The special case of this

corresponding to C 2 = 0 yields the neo-Hookean form of strain energy,

namely

W	 C(I 1 - 3).	 (2.5.6)

The strain-energy function (2.5.5) is a particular member of the

class of strain-energy functions proposed by Ogden (1972a). For these

N	 cn	 n	 &nW =	 n (>'	 +	 +	 - 3)/an ,	 (2.5.7)
n=1

where	 and an, n c (1,2 .....,NJ, are material constants, and

(2.4.17) and (2.4.18) yield

N
Xj t	 =	 'in X	 - p i	 (1,2,3).	 (2.5.8)

n= 1
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Comparison of (2.5.5) and (2.5.7) shows that for the Mooney

strain-energy function

= 2,	 2 = -2,

(2.5.9)

2C 1, /L 2 = -2C 2,	 = 0	 fl C

A useful generalization of (2.5.7) is the Valanis-Landel strain

energy, for which

W = w(X 1 ) + w(X 2 ) + w(X 3 )	 (2.5.10)

and hence

= o• i = X j w '(Xi) - p,	 (2.5.11)

where w is any suitably well-behaved function.

2.5.2 Compressible materials

For a compressible material use of the invariants (2.5.1) in (2.4.11)

yields

2aW	 2	 2 8W	 8w
Joj = Xjtj = 2X	 2	 Xj)	 213	 (2.5.12)

and hence

2	 2	 8w	 28W
J(oj - 0j) = > ii - X j t = 2(X - Xj )(	 >'k 812

(2.5.13)

where (i,j,k) is a permutation of (1,2,3).
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For the strain-energy function

W	 c 1 (1 1 - 3) + c 2 (1 2 - 3) + F(13)

a modification of (2.5.5), where F(1 3 ) is a suitably well-behaved

function, equation (2.5.13) simplifies to

2	 2	 2
J(oj - ffj) - Xiti -	 = 2(x -	 + C 2 Xk ). (2.5.14)

Finally, we consider a similar modification of (2.5.7) namely

N
W =	 iLn	 + X n +	 - 3) + g(X1X2X3),	 (2.5.15)

11=1

where g is a function of J = X 1 X 2 X 3 . From (2.4.11) we obtain

N
JTi = Xiti	 : ILn xn + Jg'(J).	 (2.5.16)

fl= 1

2.5.3 Linear isotropic materials

For infinitesimal strains we use the variables

e= X- 1	 i1,2,3}

and linearize the stress-strain equations to obtain

tj =	 = X(e 1 + e 2 + e 3 ) + 2L e i,	 i E	 1,2,3}

(2.5.17)

(2.5.18)

where X,	 are the Lamb elastic nioduli, correct to first order in

e 1 , e 2 , e 3 . The bulk modulus ,c is defined by

Ic = ) + ( 2/3)j.	 (2.5.19)



22

For incompressible materials (2.5.18) is replaced by

ti - oj	 2ej - p
	

i €	 1,2,3)	 (2.5.20)

subject to

e1 + e 2 + e 3 = 0,
	 (2.5.21)

with p having the same interpretaion as in (2.4.16).

Comparison of (2.5.20) with linearized form of (2.5.8) shows that

N
In an = 2.
	 (2.5.22)

n= 1

In particular, for the Mooney strain-energy function (2.5.5) we have

-	 = 2(C 1 + C2) =
	 (2.5.23)

The corresponding linearization of (2.5.16) again yields (2.5.22),

and, in addition

N
g'(l) +	 n = 0,
	 g''(l) = X.	 (2.5.24)

fl= 1

2.6 Elastic moduli

For use in the rate forms of the equations of motion (2.3.5) or

(2.3.6) we shall require rate forms of the equations of the

constitutive laws. First, for compressible materials, differentiation

of (2.4.1) with respect to t at fixed yields

=	 (2.6.1)

where A is the fourth-tensor given by



23

- aAaA
	 (2.6.2)

or, in components,

ji =	 Akl
	

(2.6.3)

with

Ailk aAaAkl
	 (2.6.4)

We refer to A as the tensor of first-order elastic moduli

associated with the variables (S, A) relative to Br.

If the reference configuration is now updated to coincide with

the current configuration Bt, (2.6.1) becomes

=	 o	 o
	

(2.6.5)

where the subscript zero indicates evaluation in Bt. From (2.1.6) we

deduce that A 0= L. The tensor	 is called the tensor of first-order

instantaneous elastic moduli associated with (S, A).

For compressible isotropic materials the components of A0

referred to Eulerian principal axes of the underlying deformation are

derived in Ogden (1984), for example, and we refer to this book for

full details. Here it suffices to state that the only non-zero

components of	 are
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A••=
01111	 i'

UA1

A 0 j	 = X	 +	 i^j,

(2.6.6)

A0ji	

:

Ti - if.
A 0 ii = A jiij =	 Xi - o i i^j,

- Xi

where i,j C 1,2,3}, and

aw
J 0-i = Xi -

ax

(2.6.7)

In components equation (2.6.5) has the form

oji	 A 0i	 Lkl	 Aojjlk	 (2.6.8)
ax1

on noting (2.1.9).

For incompressible materials, differentiation of (2.4.15) with

respect to t at fixed X and use of (2.1.6) and (2.1.12), followed by

an update of reference configuration to Bt, yields the counterpart

of (2.6.5), namely

L + pL -
	

(2.6.9)

where I is the identity tensor. This is coupled with the rate form of

the incompressibility condition:



A	
=crj_ffj ?

Ol .]1J	 1

	2 	 2

	

x l	 xJ

i^j (2.6.13)

where

aw
Ti = Xi	 - P

oX1
(2.6.14)
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tr(L)	 div = 0,

as in (2.2.6).

In components

au.	 .
s oji =	 +	

L -

with

io.
ax

(2.6.10)

(2.6.11)

(2.6.12)

For incompressible isotropic materials the components of

differ slightly from (2.6.6), and are given by

a2w
= X j Xj

ax1ax

A01 =	 =	 -	 i^j,

and i,j €	 1,2,3}.

For the special case in which Xj 
= 

X,j for i^i the formula (2.6.6)

and (2.6.13) still hold except that in the limit X - Xj 	 is

replaced by



a
- (A 0 j ilk - ) = pvi

ax1 (2.6.17)

a 
(A	 'k	 P''j,- ojilk ) +

aX	 ax1	 a
(2.6.18)

and

Aojjlk a2vk_____ = Pj' (2.6.19)
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(A 0 jjjj -	 + oj)
	

(2.6.15)

for compressible materials, and

=	 (Ajjjj -	 + X
	

(2.6.16)

for incompressible materials.

The equations of motion (2.3.6) have component form

-	 = pTj	 1 C 1,2,3)

so, for compressible and incompressible materials respectively,

equations (2.6.8), (2.6.11) and (2.6.12) yield

the latter being coupled with (2.6.12).

When the underlying deformation from Br —4 Bt is homogeneous

and p are independent of x and (2.6.17) and (2.6.18) simplify to

a2vk	 a -
Aojilk	 - - - Pj

aa1
(2.6.20)

respectively.
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Finally in this section we note that the traction rate 	 n on a

surface with unit normal p in the current configration Bt has

components

S0jj flj	 (A0j ilk	 k )n .	(2.6.21)
ax1

and

oji flj	 (AUjilk + P äjk oil) -	 - '	 (2.6.22)
ax1

for compressible and incompressible materials respectively.

2.7 Plane waves in an infinite medium

As a prelude to our discussion of surface waves we now consider

the propagation of plane waves in an unbounded medium. For a plane

wave propagating in the direction of the unit vector p with speed c

we may write

n.x
= I!! f (t - =-= )

c

and, additionally, for an incompressible material,

q	 n.x
p= - f' (t - =- ),

c	 c

(2.7.1)

(2.7.2)

where q is a constant and rn a constant unit vector. We refer to as

the unit amplitude vector.

For an incompressible material substitution of (2.7.1) into

(2.6.10) yields the constraint

p = 0.	 (2.7.3)
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Substitution of (2.7.1) and (2.7.2) into (2.6.19) and (2.6.20)

yields

n.x
A 0jjlk nj nl f''(t -	 ) k	 pc 2 mj f''(t -	 )

C	 C

and

n.x
Aojilk t j n1 f' '(t -	 ) m + q n f' '(t - A

C	 C

= pc2 m f' ' (t - -- )

respectively. On the assumption that f is a twice continuously

differentiable function we deduce that

Aojilk nj n1 m = pc 2 mj	(2.7.4)

for a compressible material, and

Aojilk flj	 m + q n = pc2 m	 m n = 0	 (2.7.5)

for an incompressible material.

We now introduce the notation Q(n) for the second-order tensor

(dependent on ) with components defined by

Qik (n ) = Aoj ilk flj n1 .	 (2.7.6)

Then (2.7.4) may be written compactly in the form

=	 in
	

(2.7.7)

where, in view of definitions (2.6.4) and (2.7.6), Q() is symmetric

for each .
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This guarantees that the secular equation

det[ Qth) - pc2I ] = 0
	

(2.7.8)

yields real eigenvalues pc 2 for (2.7.7). However, for the existence

of plane waves pc 2 must be positive. This follows if the strong

ellipticity condition

tr [ [ A 0 ( ® n)]	 ®	 E [ Q(n)rn ] . in > 0 all rn ® n ^ 0

(2.7.9)

holds.

From (2.7.7) the wave speed c associated with direction of

propagation n and the amplitude rn is given by

pc2 
= [ Q(n)ui ].	 Aoj ilk flj	m ink.	 (2.7.10)

Equation (2.7.10) applies for compressible materials. For

incompressible materials, using the notation (2.7.6), equation

(2.7.5), yields

+ qn	 pc 2 III,	 = 0.	 (2.7.11)

Taking the dot product of this with we deduce that

q = -[ Q(n)ui ].ri,

so that (2.7.11) can be rewritten, analogously to (2.7.7), in the

form

Q*(fl)rn = pc2rn,
	 0,	 (2.7.12)

where Q*() is defined by
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= Q(fl) -	 ® [ 
QT(	

].
	 (2.7.13)

In this case the wave speed is given by

[ Q*()	
].	 = [ Q(n)i ].,
	 (2.7.14)

which is the same expression as (2.7.10) except that the constraint

rn.n = 0 must be satisfied.

An important distinction between Q(n) and Q*th) is that, whereas

Q(n) is symmetric, Q*() is not in general symmetric.

Plane waves for which rn.n = 0 are said to be transverse waves, and

the unit amplitude vector is then referred to as the polarization

vector.

Plane waves for which rn n (in a compressible material) are

called longitudinal waves. In general, there is no guarantee that

either longitudinal or transverse waves will exist for particular

choices of the direction of propagation. However, if n is along a

principal axis of the underlying deformation then some simple results

follow if rn is also along a principal direction. For future reference

we now record these results.

First, for a compressible material, if n = (j) and rn 
=

where V( 1 ), V( 2 ) , y(3) denote the Eulerian principal axes, and Cjj

denotes the associated wave speed, then from (2.6.6), (2.6.7), and

(2.7.10) we obtain

PCj =	 = x i	i f (1,2,3)	 (2.7.15)

or, equivalently,



i c
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2	 ..22W
Pr = -

(2.7.16)

Tj -O2	 3 
x 2PCij =	

= 2	 2x i -
i^j (2.7.17)

i E
2	 2

pc ij = pc = X +
(2.7.20)

and also

Equation (2.7.17) is also valid for incompressible materials. We

shall make use of the notation defined in (2.7.15)— (2.7.17) in later

sections of this thesis.

Finally, for waves propagating in an unstrained material we note

that longitudinal and transverse waves exist for every direction of

propagation. This follows from the fact that the components of

reduce to

Aojjkl = > ij 5k1 + L (ôik jl ^ il öjk)	 (2.7.18)

jfl Br, where X and IL are the Lame moduli introduced in (2.5.18), and,

for an incompressible material, to

A 0 jjkl = IL( ô ik äjl + oil 0jk).	 (2.7.19)

If cL and cT denote the speeds of the propagation of longitudinal

and transverse waves respectively in this special case then

2	 2
P cij = pcT =	 i^j	 1,2,3}.	 (2.7.21)
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Basic references to work on plane waves in deformed elastic

materials are the paper by Hayes and Rivlin (1961), which is

concerned with isotropic	 materials possessing a strain-energy

function, and the monograph by Truesdell and Nail (1965), which

generalizes this to the case where the existence of a strain-energy

function is not required.

2.8 Stronp ellipticity condition

At this point we consider the strong ellipticity condition, given

by (2.7.9), in more detail. We write it, first of all,in the form

tr { [ A 0 (rn®n)] (rn®n)	 [ Q(n)rn ] .m > 0 for all rn®n ^ 0

(2.8.1)

or, in cartesian components,

A 0jilk nj n1 m m	 Qik(n) m m > 0,	 (2.8.2)

recalling from (2.7.6) that

Qik(i) = A ojilk flj n1 .	 (2.8.3)

For a compressible material the components of A 0 are given by

(2.6.6); for an incompressible material the strong ellipticity

condition also takes the form (2.8.1), but with the components of

given by (2.6.13) and the constraint

m.n = 0
	

(2.8.4)

imposed.
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For a compressible material the components of Q(i) are given by

JQ	 = -- N	 (Xltl	 Xj tj )N? + ( Xi t i	X1ck)2
1+

xi	
J	

x_xj

(2.8.5)

where (i,j,k) is a cyclic permulation of (1,2,3), and

at	 xt -

=	 . +	 ? - ? ) 
N1 N
	

i^j
	

(2.8.6)

J	 1	 J

where N = X j n1 and n 1 n2 and n 3 are components of i referred to the

Eulerian principal axes.

From (2.8.2), it is easy to see that

J {Q(n)n]. ffl
	

N N in1 mj

It ] + tj1	
2+	 j(N rn - N m)

i^j I-

Iti - t.'	
21- > j(N mj + N m1 )	 > 0 (2.8.7)
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Similarly, for an incompressible material the corresponding

expression is

a2w

[ Q(n)rn ].rn 
E	 N N tmj rnj

=1

aw aw
-+-

'i	 'j 	 2
+	 (Njm - Njm)

i^j	 xi+xj

aw	 aw

___	 2
+	 -	 (Njmj + Njmj) } > 0	 (2.8.8)

1	 J

In general, necessary and sufficient condition for the strong

ellipticity condition to hold are difficult to express independently

of rn and .

We therefore specialize the above to the two-dimensional

situation to one in which m 3 = n 3 = 0, so that, for compressible

materials equation (2.8.7) reduces to

at	 2 2	
N1N2m1m2 +	 2 N m2_' N m + 2

ax,	 ax2

+	 I 1 + 
2 (N 1 m 2 - N2m1)2-i- 

1 - 
2 (N 1 m 2 + N 2m 1 ) 2 } > 0

+	 - >'2

(2.8.9)
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A 01212 > 0,	 A02121 > 0,

(2.8 .15)

A 01111 + A 02222 - 2A 01122 - 2A 0122 , > - 2 JA 01212 A02121.

2.9 Equations of linear elasticity

In terms of the infinitesimal strain tensor e jj and the

corresponding stress ojj, the constitutive law for a linear isotropic

elastic material can be written

oj = 2z eij + X ekk ij'

for a compressible material and

= 2.t ejj - p jj,

for an incompressible material.

With the small-strain tensor components

e ij =	 (Uj,j + uj,j).

The equation of motion is

Ojj , j = PUi,

(2.9.1)

(2.9.2)

(2.9.3)

(2.9.4)

and the traction per unit area on a surface with normal n is given

by

ti	 cTj j flj .	 ( 2.9.5)
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On substituting for rjj from (2.9.1) and (2.9.2), the equations of

motion in terms of displacement u are

Ii. 
Uj , jj + ( X + i) Uj , jj - pU	 (2.9.6)

for a compressible material, and

I(Uj , jj + Uj,jj) + P,j = IUj

with
	

(2.9.7)

Uj,j = 0

for an incompressible material.
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Chapter 3

Rayleigh. Stoneley and Love waves in the classical

linear theory

In this Chapter we shall use the equations given in Section 2.9 to

establish the well-known results on Rayleigh surface waves, Stoneley

waves and Love waves for compressible materials in the classical

linear theory. Also we obtain corresponding results for

incompressible materials. This provides some background against which

to set our subsequent work on waves in pre-stressed materials.

3.1 Analysis for an incompressible material

Consider the current position x of the particle X, with a small

displacement , such that

(3.1.1)u = x - X.

Then

= X + u,

or, in cartesian components,

x l = X l + Ul,

x 2 = X 2 + U2,

x 3 = X 3 + u3,

(3.1.2)

(3.1.3)

where in general u,, u 2 and u 3 depend on x 1 , x 2 , x 3 and t.

Recall from Section 2.9 the stress tensor ojj, for an incompressible

material

°ij = 2t e ij -
	 (3.1.4)

with the small-strain tensor

ejj =	 (uj,j + uj , j).	 (3.1.5)



(3.1.9)U 1 = -	 '' 2'
ax2

U=-=-2	 ,1ox1
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On use of equations (3.1.4) and (3.1.5), we have, in full

Cr 11 — 2jz u1	 - p,

Cr 22 = 2 u2,2 - p,

O 33 = 2L U33 -

(3.1.6)

°12 = Cr 21 = t(u1 2 + u2,1),

= °31	 jt(u13 + u31),

°23 - °32	 t(u2, + U3, 2)

With

U1,1 + u 2,2 + u3,3	 0.	 (3.1.7)

Next, we take u 3 0 and assume u 1 , u 2 are independent of x 3 Then

equation (3.1.7) becomes

U1,1 + U2,2 = 0,	 (3.1.8)

and hence there exists a function (x 1 ,x 2 ,t) such that

Also, equations (3.1.6) become

- 2 u1,1 -

(122 = 2/L U22 -

(3.1.10)

cT 33 = -

2	 1 = t(u 1	+ u , ),2	 2,

where p is independent of x3.
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From (2.9.3), the equations of motion then simplify to

011,1 +	 = pU1

(3.1.11)

012,1 +	 22,2 = P2.

From equations (3.1.10), we have

cT 11,1 = 2u U1,11 -

Cr 21,2 =	 (u1, 22 +

(3.1.12)

Cr 22,2 = 2/L u2,22 - p,2,

or, in terms of

= 2j	 112 - P

Cr21 ,2	 IL ( \t', 222 -

(3.1.13)

0 12,1 =	 ( 122 -

Cr22, 2 = - ( 2t II', 122 + P, 2)

On use of (3.1.12) in (3.1.11), we have

2 u1,11 + /z(u 1,22 + u2,12) - p ,1 = pi.11,

(3.1.14)

2.t u 2,22 + t(u1,12 + u2,11) - p , 2 = P2,

or, in terms of ,

L b , , 12 + L 1l1',222 - P, i = P•',2,

(3.1.15)

,122 -	 ,111 - P, 2 = - P•,i.
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To eliminate p we must differentiate equations (3.1.15) with respect

to x 2 and x 1 respectively and the subtraction of the two equations

yields

+	 ,2222) +	 ,1122 - P, 11 	 22) = 0.	 (3.1.16)

We now choose axes so that corresponds to a wave propagating along

the x 1 -axis, and we take 1'(x 1 ,x 2 ,t) to have the form

f(x ) iO)(t - X i/c)	 (3.1.17)2e

This represents a wave propagating with (a constant) wave speed c in

the x 1 -direction.	 is the angular frequency.

We also assume that the x 2 variation of	 is of the form

e 1° 2 , where k =	 is the wave number. Then (3.1.16) gives

j s4 - (2t - pc 2 )s 2 +	 - pc2 = 0.	 (3.1.18)

Equation (3.1.18) is a quadratic equation for s 2 . Suppose it has

roots s and s. Then

pc2	pc2
s-i-s=2--,	 ss=1--.

IL

(3.1.19)

pc2
In fact, the roots s , s are 1 and 1 - -

IL

We also assume that p has the same time and spatial dependence as

. It follows from (3.1.15) that

ikp = k2(IL - pc2) ,2 - IL , 222	 (3.1.20)
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3.2 Rayleigh waves

Here we consider the half-space x 2 > 0 occupied by the material

with traction-free boundary x 2 = 0. We therefore wish to solve the

equations of motion for the given boundary conditions

0 2 1 0 ,	 onx2=O,

that is

+ u 2,1 ) = 0,

°	 = 0	 (3.2.1)

2 u2,2 - p = 0,

or, in terms of ,

-	 = 0,

on x 2 = 0	 (3.2.2)

2	 ,12 + P = 0.

On use of equation (3.1.20), equations (3.2.2) become

-	 = 0,

on x 2 = 0	 (3.2.3)

(31L - pc2)k2 ,2 -	 ,222

For surface waves we must have a solution for	 in equation

(3.1.16) which decays when x 2 - and which satisfies the boundary

conditions (3.2.3) at the surface x 2 = 0. Hence, in (3.1.17) and

(3.1.18), if a solution of this type is to exist, we should be able

to find numbers s 1 and 2' with positive real parts, and the solution

for may be written as

= (A 1 e22 + A2 e22) io(t - x 1 /c)	 (3.3.4)e
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On substitution of this expression into (3.2.3) we have

(s 1 2 + l)A 1 + (s 2 2 + l)A 2 = 0,

(3.2.5)

s 1 (s 1 2 - 3z + pc2 )A 1 + s 2 (/Ls 2 2 - 3p + pc 2 )A	 0.

For these equations to have non—trivial solutions we must have

	

+ 1
	

s22 + 1

= 0,

	

S 1 (/LS 1 2 -	 + pc2)
	

S 2 (/LS 2 2 -	 + pc2)

i.e.

s 2 (s 1 2 + l)(is 2 2 - 3 + pc2 ) - s 1 (s 2 2 + l)(JLs 1 2 - 3 + pc2 ) = 0.

On rearrangement this becomes

(s 1 — s 2 )[s 1 s 2 (pc2 - 4/L) - (ss	 + s + s ) +	 - pc2] = 0.

(3.2.6)

Assuming s 1 ^ s 2 this reduces to

s 1 s 2 (pc 2 - 4t) - z(s s	 + s + 4 ) + 3 - pc2 = 0.	 (3.2.7)

Substituting (3.1.19) into (3.2.7), the secular equation becomes
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PC2
(1 - - )'( c 2 - 41L) - t(3 - 2 - ) + 31L - pC2 =

IL	 IL

i.e.

pc2
- ) (- - 4 )- ILC -2 - )+ IL( - - ) = 0,
I'-	 IL	 IL	 IL

on setting x = -, this becomes
IL

(1 - x)(4 - x) - x = 0,

which, on squaring, gives the well-known result for Rayleigh waves,

namely

x2 = (1 - x)(4 - x)2.

i.e.

x3 - 8x 2 + 24x - 16 = 0.	 (3.2.8)

The only positive real solution of (3.2.8) is x = x 0	0.912622. Thus

there exists a Rayleigh wave with speed c given by

= xoIL.

In equation (3.2.7), we have assumed that s 1 ^ s 2 . We now consider

the special case in which s 1 =s 2=s, so the general solution (3.2.3)

becomes

(A + Bx 2 ) e51 2 io(t - x 1 /c)	 (3.2.9)

Using this in the boundary condition (3.2.4), we have

(s 2 + 1)A - 2sB = 0,

(3.2.10)

s(ILs2 - 3IL + pc 2 )A + I3IL(' - s 2 ) - pc 2}B 0.
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For these equations to have non—trivial solutions we have

+ 1	 - 2s

=0

s($Ls 2 - 3 + pc2)
	 - s2 ) - pc2

i.e.

(s 2 + 1) [ 34 1 - s2 ] - pc2	+ 2s2 [ s2 -	 + pc2 ] = 0,

which gives

ILs4 + (6 - pc 2 )s 2 - 3 + pc 2 = 0.	 (3.2.11)

Equation (3.2.11) is a quadratic for s 2 . Therefore, the sum of roots

for this case is

(6j.t - pc2 )

	

	 pc2
2s2=- _______ =- (6—-),

IL

since we assumed s 1 = s 2 = s, equation (3.1.19) becomes

2s 2 = 2 - -
IL

(3 .2 .12)

(3.2.13)

From (3.2.12) and (3.2.13), we see s is pure imaginary, that means

there is no decay when x - 	 and therefore this case cannot arise

and we conclude that A = B = 0.
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3.3 Stoneley waves

Here we consider waves propagating along the interface x 2 0

between two half-spaces of different materials with moduli of

rigidity , f in the x 2 0 and x 2 > 0 half-spaces respectively. Let

and o*lj be the stress components in the two half-spaces and p,

u, u' are the corresponding hydrostatic pressures and

displacements. Then

a-u	 = 2 ia1,1 -

a- 22 = 2i u2,2 -

2 = a- 2 = t(u1 2 + U2, 1

(3.3.1)

= 2* u* 1,1 - p*

if 22 = 2iL" U2,2 -

if	 = if	 = *(U*	 + u*2,1).

From (3.1.18), we have

t s4 - (2 - pc2 ) s 2 +	 - pc 2 = 0,

for the half-space x 2	0.

Similarly

*	 *2 *2* s*4 - (2	 - p c ) s	 +	 - p*c2 = 0,	 (3.3.2)

for the half-space x 2 > 0.

Also, from (3.1.19), we have



U2 - u' 2 = 0,

021 - if	 = 0,

(3.3.5)
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s + s = 2--,

Similarly

*2	 *2	
PC2

s 1 +s 2 =2--,

s s	 1 - -

(3.3.3)

*2 *2	
P2

S1 S 2 =1--

Also, from (3.1.20), we get

ikp = k2 (IL - pc2) ,2 - L

and similarly
	 (3.3.4)

ikp* = k2 ( IL* - p*c2)	 2 - 
IL* t222,

the superscript * in all cases indicating quantities in the region

x 2 ) 0. The half-spaces are bonded together and the boundary

conditions are

= u*

that is

*
- ° 21

u1 - u 1 = 0,

on x 2 = 0,

*	 022 -

On use of equations (3.3.1), we have

U1 - u 1 = 0,

u 2 - u' 2 = 0,

on x 2 = 0	 (3.3.6)

+ U21 ) - IL* ( U* l,2 + u* 2,1 ) = 0,

2ji U2,2 - p - 2 IL* U 2,2 + p = 0.



for x 2 ' 0,

(3.3.9)

for x 2 > 0,
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From equations (3.1.9) and the corresponding equations for the

starred quantities, the above condition can be written in terms of '

as

- &* ,2 =

- 1,,1 = 0,

on x 2 = 0	 (3.3.7)

-	 - *(t* 22 -	 0,

2*	 12 + p - (2j	 ,12 + p ) = 0.

Substituting (3.3.4) in (3.3.7), the boundary conditions become

*-	 ,2 = 0,

- ;1',i = 0,
on x 2 = 0	 (3.3.8)

-	 - ,*(p*	 - *) = 0,

2ikJL*	
12 + k2 ( ii* - p*c2) 11' 2 - ! t 	222 - 2ik

- k2 (tk2 - pc2)	 ,2 +	 ,222 = 0.

Next, suppose that the general solutions are given by

5
= (A e 2 + B e 

2kx2) 
e 

io(t - Xl/c)

= (A* e 12 + B* e2) io(t - 
Xl/c)

e

where s 1 , s 2 are the solutions of (3.1.18) with positive real part

and s, s	 the solutions of (3.3.2) with positive real part, this

ensuring that the solutions (3.3.9) decay as 	 - ±



1

11

2
+ 1)

2
+ 1)
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Substituting (3.3.9) into (3.3.8), we have

s A+s2B+sA*+sB*==0,

A + B - A* - B* = 0,

(3.3.10)

+ 1)A +	 + 1)B - t(s 2 + l)A* - ,L*( 5* + 1)B* = 0,

- 3t + pc 2 )A + s 2 (s -	 + pc2 )B + s(*s 2_ 3 * + P*C2)A*

+ s(*s 2 - 3,* + p*c2)B* = 0.

For these equations to have non-trivial solutions, we must have

*
1

-1

2*(* + 1)

2	 2	 *
- 3ji	 s2(s2 - 3L	 s1(j s1 - 

3*

2	 *2+pc)	 +p c)

*

-1

_.*(g*+ 1) = 0

* **
s 2 ( s2- 

3*

2+ p*c )2
+ pc )

On rearrangement this becomes
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2	 *2	 21	 **
(s 1 — s2)(s - s)f*2[s2s	 + s1 + 2	 + s1s2 *(

4 * -

- 3*2 + IL*P*C2

_ 2[ss + s +	 - sis 2 (4iz - pc2) + 32 -	 pc2

+ qf!r ss	 (s 1 -i- s 2)(s + s') + j *s 1 s 2 (s 1 + s 2 )(s+ s)

+ jf (ss - 1) {3/L - z	 + s + s1s2 ) - c2}

+	 (1 - s 1 s 2 )	
*(*2^ 

s 2+ s s) - 3* +	 = 0

(3.3.11)

As for Rayleigh wave the case of s 1 = s 2 does not lead to the

existence of waves. We therefore assume s.^ 2' 5 ^ s, and the

above equation reduces to

+	
+	 2 

+ ss (4 - :c - (3 -
	 1

[ 
*2 * 2	 *2

J

+ 2 J5 2 s + s + s + ss	
2 -
	

2}

+	 /L*	 (s 1 + s 2 ) (s + s) (s 1 s 2 + s's)

+ (ss - 1){(3 -
	

2 - (s + s + s1s2)}

*2	 *2	 *2 1
+ (1 - s i s 2 )f (s 1 + s 2 + s 1 s 2 ) - (3 -	

_ )

j ] = 0. (3.3.12)
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On use of equations ( 3 .3.3), the secular equation becomes

(1 -
	

(4 -	 )	 pc2l

+ IL 
IL*[{(1 -
	

- 111(1 -
	

- l}

+ {i - (1 - P*c2)ff(l -	
- l} - 2 -
	 2(1 - PC2)

IL

{2 - Pc2 2(1 - Pc2} {(l -	 + (1 -
	 21

IL*	
j

+ IL*	 - P*C2) (4 - pc	 - pc2 ] = 0.	 (3.3.13)IL*

This equation (3.3.13) can be written as

- 2	 -	 -

IL	 IL

* r

- - [2 {(i -
	

+ (1	
P*c2)	

(1	
2	 - PC2	

i}
IL	 IL*	 L	 IL*

-	 2 -
	

2 2 (1 -
	 }{ 2 - p*c2 2 (1 - P*c2)}

{ (1 -
	 (1 - p*c2}}

2
+ (— ) [ (4 - pc
	 - p*c2	 p*ç21

- 
._- j = 

0.	 (3.3.14)
IL

This is the secular equation for the propagation of Stoneley

waves at the plane interface between two incompressible linearly

isotropic elastic materials.
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The Rayleigh secular equation which was given in the last section can

be obtained from this equation by taking IL* -i 0, namely

(4	
pc22- -	

-	 = p(2

IL	 IL

i.e.

) +24(
IL	 IL	 IL

Finally in this section we present some numerical results based

on the solution of (3.3.14). First of all set	 =	 = p*/p

= pc2/L. Then (3.3.14) can be written as

(4 - ij)(l - 'i) -

-	

[ 2
	 (1 -	 (1 -	 - (1 - )(l -	 - l}

_I2_fl+2(l_{2_+2(l_)}

(l_!L)JJ{ (l-i) +

+ a2 [ (4 - !L)(l -	 L) -	

} = 

0.	 (3.3.15)
a	 a
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We solve equation (3.3.15) for j for given values of the material

constants	 and 3. The results are plotted for as a function of 1/cr

in Figure 3.1 for a number of different values of 3. Note, in

particular, that	 - 0 (i.e. c - 0) as c .- 1 (i.e. j 	 ) in

which case the two materials are indistinguishable when 3 = 1. On

the other hand when */ - 0 the result (3.2.8) for Rayleigh waves

is recovered, as we mentioned above.

Note that the inequalities

3q
—<1,

must be satisfied for the equation to have real solutions. For the

range of values of 3 and a considered we have /a	 1 so the latter

inequality above follows from the former.
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3.4 Love waves

We consider a half-space defined by x 2 0 on which there is a

layer of different material of thickness h with boundaries x 2 = 0 and

x 2 = h. Let and	 be the modulus of rigidity in the half-space and

layer respectively.

Now suppose the boundary conditions are given by

ff210	 onx2=h,

(3.4.1)

if21	 1	 onx2=0.

We assume that

-skx + io(t - x
= (0, 0, u 3 = (0, 0, A e	 2	 i/C)),

(3.4.2)

ic(t - x
= (0, 0, u) = (0, 0, f(x 2 ) e	 i/C))

where

f(x 2 ) = (A'cos 5*kx + A''sin s*kx2). 	 (3.4.3)

From the equation of motion (2.9.3), we have

+ if1,2 + °13,3 = p1.11

+ff2i	 + O• 22,2	 23,3 = Pu 2,	(3.4.4)

a 31,1 +	 + if 33, = pü32,2

On use of equations (3.1.6) and (3.4.2) equations (3.4.4) lead to
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p , 1 = 0,

p , 2 = 0,

11 + U3, 22) = pU3,

for the half-space, and

*
p , 1 = 0,

*
P, 2 = 0,

,L*( U ,ll + U,22 ) = pü,

for the layer.

Substituting (3.4.2) into (3.4.5) 3 , we have

L(s 2 - 1) = -pc2,

and hence

= (1 -

Similarly

= (1 -

From equations (3.1.6), we have

32 = t(u 2,3 + u 3,2 ) = p. U3,2.

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

The boundary conditions (3.4.1), give u 2 = 0 on x 2 = h and then

( 3.4.1 ) 2 leads to

A' sin s h k - A' 'cos s' h k = 0.	 (3.4.11)
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Also, (3.4.1)2 leads to

A = At,	 (3.4.12)

and hence

S jz A = s	 A''.	 (3.4.13)

Next, on use of equations (3.4.11), (3.4.12) and (3.4.13), we get the

secular equation

**
= cot (s* h k),

i.e.

tan (s*hk)SJL .	 (3.4.14)

Recall equation (2.7.21),

2
IL = pc'j

The secular equation (3.4.14) becomes

2
tan s*hk = SPT	 (3.4.15)

* * *2'
5 f3 CT

where

2
pC T	 <pc2<pcT	 (3.4.16)

Also, equations (3.4.8) and (3.4.9) become

= (1 - C2

CT

(3.4.17)

*2	 c2
S =(- —1).*2

CT
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Substituting (3.4.17) into (3.4.15), we have

tan [
	 j -
	 ( 1 - c2/c) = 0.	 (3.4.18)kh	

2 1)	 2
CT	 L (c /c' 2- 1)

This equation is the well-known dispersion relation for Love waves in

classical linear theory . See, for example, Achenbach (1984).

3.5 Analysis for a compressible materials

For a compressible material, the stress tensor cr jj is given by

(2.9.1), namely

Tjj	 X ekk öjj + 2ILeij,

(3.5.1)

e ij =	 ( ui ,.j + Uj,i).

If I = j, ( 3 . 5.l ) gives

(3X + 2IL)eij
	

(3.5.2)

with summation over i.

On use of equations(3.5.1), we get

X(u	 + u	 + u ) +1,1	 2,2	 3,3

0 22 = X(u	 + u	 + u	 ) +1,1	 2,2	 3,3

O• 33	 X(u 1,1 + u 2	+ u 3) + 2jzu 3,3 ,	 ( 3.5.3)3,

2	 if21	 IL(u1 , 2 + u 	 )2,

1	 1	 IL(u1	 + U3 , )

°23	 032 = IL(U2, + U3, 2)
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Next, if we take u 3 	0 and assume U 1 and u 2 are independent of x3,

the above equations reduce to

0_li	 X(u1,1 + u2,2 ) + 2/Lu1,1,

22 = )¼(u11 + u2,2 ) + 2/Lu22

(3.5.4)
0 33 = X(u1 ,	 + 2 2)'

= 0 21 = iz(u1,2 +

The equation of motion is given by

O•ij,j = PUi,

from this equation, when i 	 i and j	 2, we have

+ 12,2 =

(3.5.5)

+ 22,2 = p112

Equations (3.5.4) give

X(u111 + U 2,12 ) + 2/Lu111,

X(u1,12 + u2,22 ) + 2 U22,2,

(3.5.6)

12,2	 j(u1 22 +	 2l2)

21,1	 /L(u112 + u	 )•2,11

On use of equations (3.5.6) in (3.5.5) we get

+ u 2,1 ) + 2u 1,1	 + /t(u1 22 + u2,12 ) = pu1

(3.5.7)

X(u1,12 + u2,22 ) + 2t U 2,22 + /L(u	 + u 22) = PU2.1,12	 2,
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Assume u 1 and u 2 are given by

u 1	 A1 e X 2 + jx 1 k - io)t,

(3.5.8)

u 2 = A 2 e12 + ix 1 k - it.

Substituting (3.5.8) into (3.5.7), we have

+ pc2 - (X + 2IL)}A 1 - is(X +	 = 0,

(3.5.9)

is(X + IL)A 1 -	 + 2IL)s 2 - IL 
+ pc2} A 2 = 0.

For these equations to have non—trivial solution for A 1 and A 2 , we

must have

+ pc2 - (X +
	 - is (X +

= 0,

- is (X +
	

(X + 2IL) s2 + PC 2 - IL

which gives

+ 2IL)s4 -	 2(X + 2IL) - (X + 3IL)p c2 } s2 + jz(X +

- pc 2 (X + 3IL - pc 2 ) = 0
	

(3.5.10)

Recalling (2.7.20) and (2.7.21) that

2	 2
P CL = X + 2/L,	 PeT = IL'

and hence
	 (3.5.11)

2	 2
X = PCL - 2pcT.
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Equation (3.5.10) becomes

2	 222 4	22c CT S -	 2c CT -	 + c )} s 2 + c c - c2 ( cL + CT - c2)

= 0.

This is a quadratic equation for s 2 , with roots given by

C2	
s—1	 2s1 - - ,	 -	 - - .	 (3.5.12)

CL	 CT

From (3.5.8) we can now write the general solution for u 1 and u 2 as

s kx	 s2kx2) ikx - itu 1 = (A 1 e 1	 2 + B 1 e	 e	 1

(A 2 e1 1 2 + B 2 e22) ikx - iote	 1

where, from (3.5.9), we have

iA 2	s	 - (X + 2t) + pc2

A 1	 s1(X+i)

and similarly,

.2.	 - ( X + 2jz) + pc2

B 1	s2(X +

On use of equations (3.5.11), these become

2	 2+2	 2= scT - CL	 = ( CL - c 2 )(c 2/ c - 1)
____________	 ___________________ - 1'

2	 2A1	 2 2s 2 ( cL - c 2 )	 s(cL - CT )

(3.5.13)

22	 2	 2	 2	 2lB 2 = sCT - CL + c = ( CL - CT ) = - 1

2 2	 2	 2 2	 2	 S2
S 2 ( CL - CT)	 s2(cL - CT)
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3.6 Rayleigh waves

As in Section 3.2 we consider the propagation of surface waves on

a half-space x 2 > 0. The boundary conditions are given by

T 2 i =0 ,	 onx2=0,

that is

+ u 2,1 ) = 0,

on x 2 = 0	 (3,6.1)

(X + 2)u 2,2+ X u 1,1 = 0.

We seek solutions for u 1 and u 2 of the form

u 1 = (A 1 e1 1 2 + B

(3.6.2)

u 2 = (A 2 e21 2 + B 2 e5212)ei1iot.

On use of equations (3.6.2) in (3.6.1), we have

/L s 1 A 1 + ij A 2 + S 2	 B + ilL B 2 = 0,

(3.6.3)

iX A 1 + ( X + 2 lL) 5 1 A 2 + iX B 1 + ( X + 2jz) B 2 = 0.

Substituting (3.5.11) into (3.6.3), we have

2	 2	 2	 .2
cT Si A 1 + icT A 2 + CT 2 B 1 + leT B 2 = 0,

(3.6.4)

.2	 2	 2	 .2	 2	 2
l ( cL - 2cT ) A 1 + cL 1 A 2 + l ( cL - CT) B 1 + CL B 2= 0.

On use of (3.5.13) in (3.6.4), we have
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2	 2
2CT S 1 A 1 + CT (s2 +	 ) - 0,

(3.6.5)

2	 2	 2	 2
{CL s 1 - ( CL - 2CT )} A 1 + 2CT B 1	0,

For these equations to have non-trivial solutions we must have

2s 1 s 2	1 + S2

= 0,

	

2 2	 2	 2	 2

	

CL S 1	 CL+2CT	 2CT

which gives

2	 2	 2	 2	 22
4CT S 1 S 2 + (1 + 2 ) ( cL - 2CT - CL s, ) = 0,	 (3.6.6)

Substituting the expression s, which given in (3.5.12) into (3.6.6),

the secular equation becomes

4 2	 2
CT 12 - CT (1 + s)(2 - c2/ c ) = 0,

i.e.

(1 +	
)2 -
	 0.	 (3.6.7)

This is an equivalent result to that given by Eringen and Suhubi

(1975), which also can be written, by using (3.5.12) in (3.6.7), as

2	 2	 2

(2 -	 ) - 4(1 - 2-)	 (1 -	 = 0.	 (3.6.8)
CT	 CL	 CT
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By squaring and rearrangment, this becomes

	

2 [r	 6	 4	 2

J + [	

2J[c j

	

16[	
2fl

C	 H c 1	 81C	
24_162	 c -	 I = 0

	

{ 
Cj {
	 J - [	 CL	 T	 -	 eLi]

This equation can be written as an equivalent for 2 with parameters

X and :

I pc2l I I pc2l	 8 1	 2] 2
	

24 - 16	
I pc2l

1 j [1	 I	 J	 I	 X+2]

- 16 [
	

-	 2] 

J = 
0 (3.6.9)

This is the secular equation of Rayleigh waves in the classical

theory. Numerical solutions of this equation can be found in Ewing,

Jardetzky and Press (1957), for example.

3.7 Stoneley waves

As for an incompressible material, we consider propagation along

the interface x 2 = 0 between two half-spaces of different materials

with Lam moduli j, X and 	 )* in x 2	0 and x 2 > 0 respectively.

Again we let o-jj,	be the stress components in the two

half-spaces and u and 	 be the corresponding displacements. Then,

restricting attention to two-dimensional motion, as before, we obtain
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1 = X(u1 ,	 + U2 , 2) + 2/Lu1 , 1

o 22 =X(u	 +u	 )-1-2/Lu212,1,1	 2,2

2 = 2	 2 + u2 1) (3.7.1)

= X r (u 1 + u' ,2 ) + 2/L*u,1,

= X*(u 1 + u ,2 ) + 2/L*u2,

=	 *(f2 + u,1).

The equation of motion in x 2	0 is (3.5.7). Similarly, in	 0, we

have

+ u ,12 ) + 2 /L* u ,11 + /L*(u 22 + u,12)	 p

(3.7.2)

+ u' ,22 ) + 2 /L* u ,22 + /L*(u 12 + U11)	 P*

Assume that u and u are given by

u = A e_S * kx 2 - it + ix1k

(3.7.3)

u' = A' e_S * kx 2 - it + ix1k

and n 1 and n 2 by (3.5.8).

On use of (3.7.3) in (3.7.2), we have

[	 - (X* + 2 /L*) + p*c2} A + is*(X* + /L*) A = 0,

(3.7.4)

is*(X* + /L*) A + 1(X* + 2 /L*)s* -	 + p*c2} A	 0.

From (3.7.4), we have
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iA*	 ** - (X' + 2p*) + p*C2}
_z=--
A	 & (X +

and similarly
	 (3.7.5)

iB*	 { ** - (X+ 2*) + p*c2)

B	 s (X +

for the half—space x 2 ) 0.

From (3.5.11), we have

2	 2

	

p cL = X+ 2 L ,	 PCTIL

and similarly

	

+ 2	 * *2 *p cT	 (L

2	 2
X = pcL - 2PCT

*	 *2	 *2
= f cL - 2p cT.

(3.7.6)

On use of (3.7.6), (3.7.5) become

•A*	 *2 *2	 *2	 2	 *2	 2 *2	 *2
= - i CT - cL + c = {T (1 - c / cL ) - cL + c2 } = -

A	 * *2	 *2	 * *2	 *2	
1,

- CT )	 51(cL - CT)

(3.7.7)

	

*2	 *2*2 *2	 *2	 *2	 2
- (2 CT - CL + c2 )	 - CT (1 - c / cT ) - CL + C2}l

*2	 *2	 *	 *
B	 s ( CL - CT)	 s(CL - CT)	 S2

Also, from equation (3.5.12), we have

s = 1 -	 s = I - c 2/c,	 for x 2 	0.

Similarly, (3.7.8)

	

2 *2	 *2	 *2

	

—C /CL ,	 s2 = l — C 2 /CT ,	 forx2)O.



iA 2 = -S 1 A 1 , iB= -2 for x 2 < 0,

*	 * *
iA 2 = s 1 A1,

*
iB 2	 *S2

for	 ) 0.
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From (3.5.13) and (3.7.5), we get

(3.7.9)

Let now consider the boundary conditions, which are given by

*	 *	
on x 2 = 0.

i.e

u1 - u' = 0,

u 2 - u = 0,

-	 = 0,
	 on	 = 0 (3.7.10)

- 22 = 0.

Substituting (3.7.1) in (3.7.4), we have

U 1 - U = 0,

U 2 - U = 0,

on x 2 = 0 (3.7.11)

+ u2,1) - *(u 2 + u' ,1 ) = 0,

(X + 2)u 2,2 + Xu1,1- (X*+ 2,L*)u ,2 - X*u 1 	0.



69

We seek solutions for u j and i4, i € {1,2J, of the form

u 1 = (A 1 eS 1 kX 2 + B 1 es212)et - kx1)

u 2 (s 1 A 2 e5 i kX 2 + 2 B 2 es 2 2)e0)t - kx1)

(3.7.12)

*	 *
u 1 = (A 1 e'1X 2 + B e$12)	 - kx1)

*	 * *
u 2= ( s 1 A 2 e i kx 2 + S B' e5kx 2 ) e)t - kx1)

On use of these equations (3.7.9) and (3.7.12) in (3.7.11), we obtain

*	 *
A 1 + B 1 - A 1 - B 1 = 0,

***
s 1 A 1 + L_ s 1 A 1 --i-=O,

S 2	 s*2

on x 2 = 0	 (3.7.13)

1	 ** *	 * * 12ts 1 A 1 + (s2 + •-;•) B 1 + 2 s A 1 + p. (s 2 +	 * ) B = 0,

*	 * *2	 * *	 **( X - (X + 2p.)s}A 1 - 2p.B 1 + (( X + 2p. )s 1 - X } A 1 + 2p. B 1 = 0.

On use of equations (3.7.6) and (3.7.8) in (3.7.13) 3,4 , we get

*	 *

	

A 1 + B 1 - A 1 - B 1	 0,

*
* *__1_=Os 1 A 1 +L-s 1 A1	 *

	

s 2	on	 0	 (3.7.14)

22 B	 ***	 *2p.s 1 A 1 + p.(2 - C /CT ) _-i- + 2p. s A 1 + jz (2 - 2 
*2 B*

c /cT ) _J. = 0*S2

2	 2 2	 **2	 2 *2 *	 **
P eT (2 - c /CT )A, + 2p.B 1 - f CT (2 - C /CT )A1 - 2p. B 1 = 0,
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i.e.

	

*	 *
A 1 + B 1 - A 1 - B 1 = 0,

*
* *	 -	 0s 1 A 1 +	 - s1A1	 *

S2

(3.7.15)

*	 *	
2 *2B*22 **

2s 1 A 1 + ( 2 - c /cT )	 + 2 - s 1 A 1 + fl-. (2 - c leT )- = 0,
L	 /L

*	 2 *2 *	 * *
(2 - c2/c )A 1 + 2B 1 -	 ( 2 - C /CT )A 1 - 2 a- B 1 = 0.

For these equations to have non-trivial solutions for A, B, A,

B , i c fi , 2) we must have

1

1

2s

22
2 - c /cT

1

1

S2

(2-)L

2s
CT	 2

2

-1

*
- Si

2

*	 2

*2	 *2
CT

-1

1
*

=0

IL	 -

IL 	*2*
CT S2

*

-2

This is the secular equation for Stoneley waves, in the matrix

form, which is the same form given by Achenbach (1984). The analysis

of this secular equation can be found in Cagniard (1962).
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3.8 Love waves

Let us assume, as in the incompressible material, that the

half-space is defined by x 2 0 on which there is a layer of

different material of thickness h with boundaries x 2 = 0 and x 2 = h.

Also we assume m, X and X" the modulus of rigidity in the

half-space and the layer respectively.

Next, let the boundary conditions be given by

onx2=h,

(3.8.1)

u=u*, O 2i ff 2i	 onx2=O,

where	 and u are given by (3.4.2).

For a compressible elastic material, the equations of motion

(3.4.4) are

/L(u2 11+ U2, 22)	 pU2,

(3.8.2)

* *	 *	 **
(u 2,1 + u 2,22 ) = p u2

for the half-space and the layer respectively.

Substituting (3.4.2) into (3.8.2), we get

- 1)	 -pc 2 ,	 (3.8.3)

and hence

c2
1 -	 .	 (3.8.4)
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Similarly

*2	 *2
S
	

(3.8.5)

On use of (2.7.21), equations (3.8.4) and (3.8.5) become

1 -	
.	 *2 =	

. - 1.	 (3.8.6)
2 '	 *2

CT 	 CT

From equations (3.5.3), we have

= /L(u 2,2 + u 312 ) =	 ( 3.8.7)

The boundary conditions (3.8.1) also give u 2 = 0 on	 = h and

from (3.8.3) and (3.8.7), we get the same results given in an

incompressible case.

That is, the secular equation (3.4.18) is also the secular

equation for a compressible material, namely

tan kh[

	 - 1 1	 -	 ( 1 - c2/c	 =	 (3.8.8)
*2	

j	
* (c2/c_ 1)

CT
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Chapter 4

Rayleigh waves in a pre-stressed elastic material

In this Chapter we extend the discussion of Rayleigh waves in the

linear theory covered in Section 3.2 to the situation in which there

is an underlying pre-stress. In particular, we recover certain

results obtained by Hayes and Rivlin (1961a), who used a different

notation, and we generalize other results given by Flavin (1963) and

Willson (1973a, 1974a,b) for an incompressible material and Willson

(1972, 1973b) for a compressible material.

Analysis for an incompressible material

Consider the large homogeneous pure strain defined by

x l = X 1 X 1 ,	 x2 = X 2 X 2 ,	 = X 3 X 3 .	 ( 4.1.1)

Upon this deformation we superpose a small displacment , such that

= X 1 X 1 + u1,

x 2 = X 2 X 2 + U2,
	

(4.1.2)

x 3 = X 3 X 3 + U3,

where u 1 , u 2 , u 3 are the components of . The velocity components are

given by

vi=_J-
	

(4.1.3)

From (2.4.18), we have the principal components of the Cauchy stress

tensor associated with the homogeneous deformation

Oi = xi_--p	 C (1,2,3).
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On use of the incremental equations (2.6.11), we deduce that

011 = A	 V	 + A 01122 V2,2 + A 01133 v	 + PV1,1 - p01111	 1,1 3,

s 022 - A 02211 v1,1 + A 02222 V2,2 + A 02233 v33 + pv2,2 -

s 033 - A	 v 1 + A 02233 V2,2 ^ A 03333 V33 + PV3,3 - P03311	 1,

s 012 = A 01212 V2,1 + A 01221 V112 + pV12,

01 3	 A 0 1 31 3 V3 , 1 + A0 1 331	 i , 3 + PV1 , , 	 (4.1.4)

s 021	 A 21 21 V1 , 2 + A0 211 2 V2 , 1 + P2 , 1

= '02323	 3,2 + A 02332 V213 +

S 031 = A 1313 V1,3 + A 03113 v311 +

S 032	 A 323 V2,3 + A 03223 V3,2 +

subject to the incompressibility condition (2.6.12).

4.1.1 Plane Incremental motion

In order to keep the algebra as simple as possible we take v3

0 and assume V 1 , V 2 are independent of x3.

Then (2.6.12) becomes

V1,1 + V22	 0.	 (4.1.5)

Hence there exists a function ,(x 11 x 2 ,t) such that

V 1	v2 = -	 (4.1.6)

Also, (4.1.4) reduce to
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= A01111 V 1 	 + A	 v,1	 01122	 2,2 + P V	 -1,1

s 022 = A02211 v1,1 + A02222 v2,2 + p V 2,2 -

s 033 = A03311 V 1,1 + A02233 v2,2 -	 ,	 (4.1.7)

s 012 = A01212 V 2,1 + A01221 v1,2 + p v1,2,

s 021 = A01212 V 1,2 + A02112 v2,1 + p V2,1.

From (2.3.5), the incremental motion is governed by

SUji,j = Pi•	 (4.1.8)

Thus, from the incremental equations (2.6.11), we get

oji,j	 A ojilk Vk , lj - P,j	 P"'j•

from this equation, if we take i = 1,2 we have

01 1 , 1 +	 O21 , 2

(4.1.9)

s 012,2 + s022,2 =

From (4.1.6) and (4.1.7) we get

01 1 , 1 = (A 01	 - A01 122 + P)', 112 -	 1

so1 2,1 = (A01 221 + P) , 221 - A01 212	 111

s21, 2 = A02, 21, 222 - (A02, 12 +	 112	
(4.1.10)

s22, 2	 (A0221 1 - A02222)/ 122 - P,

substituting (4.1.10) into (4.1.9), we get
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pii ,2 	 (A01111 -A 01122 -A 02112 ) ,112 +A02121v,222

on x 2 = 0 (4.1.11)

1	 - P, 2 + (A01 221 + A0221 1 - A021 1 2 ) %, 122 - A01 21 2, 111

To eliminate we must differentiate equation (4.1.11) with respect

to	 and x 1 then we obtain

11 + 4', 22) + A01 21 21', 1111 + (A01 111 + A 02222	 2A01 221

On setting

a	 A01212 ,	 'y = A02121

(4.1.12)

23	 A01 111 + A 02222 - 2A01 221 - 2A0221 1

the above equation becomes

a 1',1111+ 23 1',1122 + Y	 = p ( • , i1 + 1''22)	 (4.1.13)

Also, necessary and sufficient conditions for the strong-ellipticity

condition (2.8.15)1,3 simplify to

a > 0,	 > -.	 (4.1.14)

Suppose the elastic medium occupies the half-space defined by x 2 ( 0.

In this basic homogeneous configuration the normal stress on the

surface x 2 = 0 is 2. We assume this is unaffected by the perturbed

deformation, so the incremental boundary conditions vanish. From

(2.6.22) we therefore obtain

s 022 = 0	 on x 2 = 0.
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i.e.

A02121(,,22 - (A 01221 +p)i.f'11 	 0,

on x 2 = 0	 (4.1.15)

(A01122 - A02222 - p )' , 12 -	 0.

From (4.1.11), we have

= (A 01111 -A01122 -A02112 ) ,112 +A02121,222 -p.(4.1.16)

To eliminate j we must differentiate equations (4.1.15) with respect

to x 1 and using equation (4.1.16) and the notation (4.1.12), the

boundary conditions can be written as

-1	 - I',) + ° 2 ',11 = 0,

on x 2	0	 (4.1.17)

(23 +	 - O 2) h/',112 + Y	 ,222 - p• ', 2 = 0,

aw
where from equation (2.6.13), we have	 A01221	 A 02121 - X2	

2 

and

hence A 01221 + p = A02121 -

The equibilruxn counterpart of equation (4.1.13) was derived by

Nowinski (1969a) in the context of quasi-static surface

instabilities, and also by Hill and Hutchinson (1975) for a class of

incrementally-linear materials. For the dynamic case (4.1.13) appear

to be new although, in different notation, Wilison (l973a) obtained

an equivalent equation for the time-harmonic case. Willson also

obtained boundary conditions equivalent to (4.1.17) for the

time-harmonic case with the restriction = 0 from the outset and

also considered an equibiaxial underlying deformation > =
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4.1.2 Propagation along a principal axis

Let us assume x 1 ,x 2 ,t) has the form

= f(x 2 )e i Ct - ji	 (4.1.18)

which represents a wave propagating with (constant) wave speed c in

the x 1 —direction. Also, the frequency of the wave c is constant.

Also, we assume the spatial variation of	 of the form

e(12 - ikx 1 + jo)t), where k 	 /c is the wave number. Then equation

(4.1.13) leads to

y s4 - (23 - pc2 ) s 2 + c - pc2 = 0,	 (4.1.19)

which is a quadratic equation for s 2 . Suppose it has root s and s.

Then

+	 =	
—_2,	 -	 .	 (4.1.20)

-y.

For surface waves we must have a solution for in (4.1.13) which

decays when x 2 -f - so we shall require s to have positive real

part. In either case 1 2 s 2 2 > 0. Since y is required to be positive

by the strong—ellipticity condition and -y =	 > 0 in the unstressed

configuration, we get from (4.1.20) that the wave speed c is

restricted according to the inequality

pc 2	a.	 (4.1.21)

On the other hand, 23 - pc 2 may be positive or negative.
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We note here that if c denotes the speed of a plane (shear) wave

propagating in the x 1 -direction with displacement in the x2-direction

in an unbounded body subject to the same homogeneous pure strain then

pc - a.	 (4.1.22)

In the unstressed configuration a	 and (4.1.22) is expressible as

C < Cs.
	 (4.1.23)

We now write the general solution for in the form

= (A e12 + B e2 1°2) e1)t - ikx1

where A and B are constants.

On use of equation (4.1.24) into (4.1.17), we obtain

(7s+7-if2)A+(ys+'y-r2)B=O

(4.1.24)

(4.1.25)

s 1 (2 +	 -	 - pc2 - 'ys 1 A + s 2 (23 +	 - if 2 - pc 2 - 'y s 2 ) 2 B = 0.

(4.1.26)

For these equations to have a non-trivial solution, we must have

7	 + 7 -
	

7 S + -y -

+ 7 - if 2 - pc2
	

52(2 + 7 -	 -
	 0,

- -y s)	 - y s)

which gives
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(s 1 - s 2 )[-y(s + s)('y - °2 ) + 
.2	

+ 7 s 1 s(23 +	 - PC 2 -2o-)

- (7 - cr 2 ) 2 + (pc 2 - 2)(7 - cr 2 )] = 0.	 (4.1.27)

Assuming s^ s 2 , this equation reduces to

+ s	 - if2) + 72 SS + 7 5 1 s 2 ( 2 ( +	 - 2o 2 - pc2)

- ( - 2 ) + (7 - cr 2 )(pc 2 - 2) = 0.	 (4.1.28)

Substituting (4.1.18) into (4.1.28), we get

y (a - pc 2 ) + (2 + 27 - 2 2 - pc 2)/7(a - pc2) = ( - ff2).

(4.1.29)

Equation (4.1.29) is the secular equation for Rayleigh surface waves

in a pre-stressed incompressible elastic material.

On squaring and rearrangement of (4.1.29), we obtain

(pc2 ) 3 - p(pc2 ) 2 + q(pc2 ) - r	 0,	 (4.1.30)

where

p = 4(3 +	 + a - 4cr 2 ,	 (4.1.31)

q = (2(3 + 2y - 2cr 2 ) 2 + 2a(2(3 + 2y - cr 2 ) + 2(7 - if 2 ) 2 - 2ya,

(4.1.32)

I—	 2r=J7a (2(3+2'y-2cr 2 ) + (y-cr 2 ) -1a}

(2(3 + 2y - 2cr 2 ) - ( - cr 2 ) 2+ ya}/ y

(4.1.33)
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In different notation equation (4.1.30) generalizes the results

given by Wilison (1973a), who took 02 = 0 and considered only

equibiaxial underlying deformations X 2 >' (X = X 1 in our notation)

throughout his calculation. The squaring process may give solutions

of (4.1.30), which are not solutions of (4.1.29). For instance, when

c = 0, r 0 and either of the factor in braces in (4.1.33) may

vanish, but only the second of these corresponds to a solution of

(4.1.29).

To avoid this problem we work directly with (4.1.29) and introduce

the notation

- pc2)/
	

(4.1.34)

so that

pc2 = -

From (2.6.13), we have

2	 2
'.1	 i,

and from (4.1.21), we must have

0

Now, equation (4.1.29) becomes

+ 2 + (2 + 2 -	 - 2if2)/ - ( -	 )/	 0.

(4.1.35)

(4.1.36)

(4.1.37)

(4.1.38)

For the special case in which if 2 = 0 this simplifies to give

+ ,2 + (23 + 27 - a)j/a - 1 = 0. 	 (4.1.39)
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In equation (4.1.28) we assumed s 1 ^ s 2 . We now consider the

special case in which s	 S2 = s, say. Equation (4.1.24) becomes

(A + Bx 2 )e	 2 + iO)t - ikx1

On use of this equation in (4.1.16) and (4.1.16), for	 2 = 0 we

deduce

(s2 + l)k2 A + 2sk B = 0,

(4.1.40)

(y s 2 - 2 - - pc2 )sk3 A + ( 3y s2 - 23 -	 - pc2 )k2 B = 0,

For equations (4.1.40) to have non-trivial solution for A and B we

must have

(2 l)k2	2sk

= 0,

(.y 2 - 23 -	 - pc2 )sk3 (3ys2 - 23 - -y - pc2)k2

which gives

-y s4 + (23 + 4-y + pc 2 )s 2 - 23 - -y - pc 2 = 0,	 (4.1.41)

which is a quadratic equation for	 Therefore the sum of roots of

this equation is

2s 2 =	
(23 + 4'y + pc2)	

(4.1.42)
-y

this equation can be written as

2s 2 = - 
A 01111 + A 02222 - 2A01122 + 2A02121 +	

(4.1.43)

A021 21
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Since it is assumed s 1 	 s2	 s, equation (4.1.20) 2 , becomes

2s2	 A01111 + A 02222 - 2A 01221 - 2A 01122 - C2	 (4144)

A021 21

From equations (4.1.43) and (4.1.44), we get

-1.	 (4.1.45)

That is, s is pure imaginary, there is no decay when x 2 - -. So

this case cannot arise and we conclude that A = B = 0. This result

appears to be new, although a corresponding result for the

compressible case has been found by Hayes and Rivlin (l961b).

4.2 Analysis of the secular equation

Before considering the general form (4.1.34) of the secular

equation it is instructive to examine the special case in which the

material is undeformed but subject to a uniform hydrostatic stress.

4.2.1 The case of X - X2 - Xi - 1 in the presence of hydrostatic

pre-stress

If the undeformed configuration is subject to a hydrostatic

pre-stress	 =	 = 0 3 then we have from (2.7.19)

A 01111 = A02222

A 01212 = A 02121 = A 02112 = A 01221 = j,	 (4.2.1)

A01 122 = A0221 1 = 0.

From (4.2.1) and (4.1.12), it follows that in a state of hydrostatic

stress	 =	 = -y =	 and (4.1.20) become
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+ s	 2 -	 ss	 1 -	 (4.2.2)
JL
	

IL

Also, the secular equation in the form (4.1.38) for this case becomes

f() =	 +	 + (3 - 2) - (1 -	 =

subject to

0	 ii ' 1,

where r =

From (4.2.3), it follows that

f(0) = —(1 - )2, f(l)	 4 -

(4.2.3)

(4.2.4)

(4.2.5)

Also, from (4.2.3), we deduce it has a solution in interval (4.2.4)

provided

—2 <	 ( 2.	 (4.2.6)

The extreme values	 ±2 in (4.2.6) yield the solution 	 = 1, by

(4.1.35), yields c = 0, while	 1 corresponds to the solution = 0

or c = c 5 where pc 5 2	z. It is easy to show that f(j) is monotonic

increasing for	 < 4/3 and monotonic increasing for 	 0 if

<	 For /2 < ff	 2 the product of the roots of f'() = 0 is

negative so the maximum of f() occurs in q < 0 and the minimum

in > 0. Since f(0) < 0 it follows that (4.2.3) has a unique

positive solution in the interval (4.2.4) if and only if (4.2.6)

holds. Thus, a unique wave speed exists for hydrostatic stress

satisfying (4.2.6). When iY = 0, equation (4.2.3) reduces to

+ 2 +	 - 1 = 0,	 (4.2.7)
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which has a unique (positive) real solution, say . The approximate

value of m is 0.2956, which by (4.1.35), leads to an approximate

value of 0.9126 for pc 2/. This agrees with the classical results for

an incompressible linear theory, which is given in (3.2.8); see, for

example Ewing, Jardetzky and Press (1957).

Next, on setting = ._. ,equation (4.1.30) for hydrostatic stress can

be written

g()	 3 + 4( - 2) 2 + 6( - 2)2 + ( + 2)( - 2) = 0.

(4.2.8)

Then, at the end-points of the interval 0	 1, we have

g(0) =	 ^2)( -2),	 g(1)	 ( -1)'

Clearly	 g(0) < 0	 for -2 <	 < 2,

while	 g(l) > 0	 for -2 < ' < 2	 except at = 1.

Also, we have

= 32 + 8( - 2) + 6( - 2)2,

and this is strictly positive except for 	 2,	 0. Thus, g() is

monotonically increasing for 0	 1 and it has a unique solution

€ [0,1] if and only if Y satisfies (4.2.6). Furthermore, the

solutions of (4.2.3) and (4.2.8) are such that	 = 1 - 2 In

particular,	 for	 = 0,	 = 1 -	 is	 the	 (unique

positive) solution of

- 82 + 24 - 16 = 0,	 (4.2.9)

and has the approximate value 0.9126, which has been mentioned above.



86

Equation (4.2.9) is equivalent to an equation given by Willson

(1973a), and is the same as that obtained in Ewing, Jardetzky and

Press (1957).

A Rayleigh wave will therefore propagate in a hydrostatically

pre-stressed	 half-space	 provided	 the	 pre-stress	 satisfies

-2 < (5 o/) < 2, except 5 = 1. The limiting case S = ± 2

corresponding to situations in which the underlying homogeneous

deformation becomes neutrally stable. (The stability of such

configurations has been discussed in detail in the book by Ogden

(1984), for example).

The form of g() is illustrated in Figure 4.1 for different

values of 5. Also the results of (4.2.8) are illustrated in Figure

4.2, where we plot	 as function of S c [-2,2]. The value 	 is

marked in the figure. We note here that 	 = 0 when S = ± 2. Also

1, with equality holding only for S = 1; for 5 1 the solutions

2 of (4.1.18) are 0 and 3, and B 	 0 in the solution (4.1.27). In

this case the wave is a plane shear wave with speed given by 	 1;

it is not a surface wave.

When	 0 (c = 0) g(l) is positive provided -2 < S < 2. This

indicates that, on a quasi-static hydrostatic path of loading from

the stress-free configuration no incremental quasi-static surface

deformations can appear. In other words, the configuration of the

body in question is incrementally stable. Stability fails in either

tension or compression when S reaches 2 or -2 respectively and the

body is then in a neutrally stable configuration.
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4.2.2 The general case

We now write the secular equation (4.1.38) in the form

f()	 3 +	 + d, - e = 0,	 (4.2.10)

where

d = (2(3 + 2y -	 - 2o2)/y,	 (4.2.11)

e	 ( -	 2 > 0.	 (4.2.12)

We consider e > 0 and e = 0 separately.

e > 0

Here when ?J = 0 f(ij) < 0. If d > 0 then f'() > 0, for ij > 0. If

d < 0 then f(q) has a minimum for < 0 and a maximum for > 0, and

f'(0)< 0. In each case, equation (4.2.10) has at most one root in the

interval (4.1.37). To ensure that a root corresponding to a non-zero

wave speed (	 pc2/JL ^ 0) exists we require f(J'c	 ) > 0, which,

after rearrangement, yields

-	 +	 (2(3 + 2y) + 2 2 ( -) -	 > 0.	 (4.2.13)

We note that f(/	 ) = 0 ensures (4.2.10) is satisfied by = 0.

For the case r 2 = 0 (4.2.13) becomes

-	 +	 (2(3 + 2y)} > 0.	 (4.2.14)

In the undeformed configuration -y = t, and the second factor in

(4.2.14) reduces to 4JL. Since	 > 0 then, by continuity, (4.2.10)

requires that
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> 0,	 (4.2.15)

—	 (2 +	 > 0.	 (4.2.16)

We note that (4.2.15) is one of the inequalities required by the

(two-dimensional) strong-ellipticity condition (see (4.1.14)). Next,

since

2fl+2-2+27+	 (—)}—	 (— Ao
it follows that (4.2.16) entails (4.1.14) 2 . Thus, (4.2.15) and

(4.2.16) together imply that the strong-ellipticity condition holds.

The inequalities (4.2.15), (4.2.16) ensure the existence of a

unique surface waves when the surface x 2 = 0 is free of traction

(o 2 = 0). They may also be interpreted as ensuring that the

underlying deformation is stable under the given boundary conditions.

Put otherwise, (4.2.15) and (4.2.16) exclude the possibility of

'positions of adjacent equilibrium.'

For an incompressible material the state of deformation

(X 1 ,X 2 ,X 3 ) is unaffeceted by a change in the hydrostatic stress. If

we superimpose a hydrostatic stress of magnitude 02 then a, 3 and y

are unaffected and (4.2.13) serves to place restrictions on the range

of values of the surface stress 02 that can be supported in the given

state of deformation. It follows from (4.2.13) that

-	 — [2	 (	 +	 )] < 2 <	 -	 + [ 2	 (

(4.2.17)
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We note here that, for the same underlying state of deformation the

corresponding (two-dimensional) inequalities for stability under

all-round dead load are (see section 4.6)

((3 + 7 - °2) > 0,

(4.2.18)

Q 7 > (7 -
	 2

along with y > 0. Clearly, (4.2.18) imply (4.1.36), but the converse

does not hold in general since the sign of a - (-y - cT 2) may be

either positive or negative. In particular, in a state of hydrostatic

stress if, the latter simplifies to i(2j - a), which is positive for

0 < a < 2JL but negative for -2 < o < 0.

When 2 = 0, equation (4.2.18) reduces to

13+7>0,	 a>7,	 (4.2.19)

which imply (4.1.14)2

e-0

For this case we get from (4.2.12) that if2 =	 and from (4.2.10)

we get

or

where, for this case,

d - (2(3 -	 (4.2.20)

The solution i 0 corresponds to a plane shear wave with speed c5

given by pc = a and does not correspond to a surface wave. A

different solution exists provided
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-	 2	 a,	 (4.2.21)

the left-hand equality corresponding to zero wave speed.

If = 0 then pc 2 a and from (4.1.18) we can take s 2 = 0 and

s 1 2 = (23 -

At this point it is instructive to express certain of the

inequalities in this section in terms of the strain-energy function

W (X 1 , X 2 )	 W (XX)
	

(4.2.22)

which is defined in (1.3). It follows from (2.4.18), (2.6.13) and

(4.1.12) that

-	 = a - -y

where	 = 8/ax 1 , •y is given by (1.4),

a = X 3	x2 )

and

23 + 2y = X	 1 1

The inequality (4.2.13) becomes

X 2 1 X 'J 11 + X 1 W 1 + 2o 2 ( l - X 2 1 X 1 ) -	 I_I > 0,

(4.2.23)

(4.2.24)

(4.2.25)

(4.2.26)

as (1.2), and this reduces to

X	 + X 2W 1 > 0
	

(4.2.27)

when	 = 0. From (4.2.17) the upper and lower bounds on a- 2 are
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- X 1 X 2 W 1 + -	 X2W1	 2

2	 1	 2	 + x2	
(4.2.28)

x 1 +x	 lx -x

which reduce to ±2 in the case of hydrostatic stress.

4.2.3 Surface deformations

On a path of deformation and (hydrostatic) stress from the origin

(1,1,0) in (X 1 ,X 2 ,o 2 )-space, the inequality (4.2.26) just fails at

points satisfying

X 1 X	 +	 + 2o 2 ( 1 - )ç1 >) - 2 /Y = 0,	 (4.2.29)

with -y given by (1.4). Equation (4.2.29) defines the boundary of the

domain of stability in (X 1 ,X 2 ,o 2 )-space. At points of this

boundary the secular equation (4.2.10) has solution i = j 	or,
equivalently,	 = 0 (i.e. c = 0).

The general solution (4.1.24) with u = kc 	 0 then represents a

quasi-static incremental surface deformation, or standing wave with

wave number k. In other words, bifurcation from a state of pure

homogeneous strain into an inhomogeneous mode of deformation can

occur at points (X 1 ,X 2 ,o 2 ) satisfying (4.2.29).

For the case 2	 0, equation (4.2.29) reduces to

x l	 ll +	 2 ' l =0,	 (4.2.30)

which describes a curve in the (X1,X2)-space.
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Incremental surface deformations, or, 'instabilities', in an

incompressible elastic material have been considered previously by

Nowinski (1969a,b), Usmani and Beatty (1974), Reddy (1982,1983),

Ogden (1984) and Biot (1965) for 	 = 0 either in respect of a

specific strain-energy function or for a particular class of

pre-strains (or both). For the neo-Hookean strain-energy function,

surface deformations in which the displacement depends on x 3 as

well as on x 1 and x 2 , and with u 2 ^ 0, were examined by Nowinski

(1969b). Nowinski's results were recovered in the incompressible

limit by Usmani and Beatty (1974), who used a compressible

counterpart of the neo-Hookean strain-energy function. With the

exception of the results relating to the latter type of incremental

deformation the results given in the papers mentioned above are

embraced by equation (4.2.30).

For a neo-Hookean strain-energy function, we have

=	 ,u (X + X2 >2 +	 - 3),	 (4.2.31)

and equation (4.2.3) becomes

X 1 + X 1 >2 + 3X I X -	 = 0.	 (4.2.32)

This is the same equation as (4.2.7) and therefore has a unique

positive solution > = m 21 which may also be written as 	 X3 =,

by using the incompressibility conditions (2.2.4). 	 In different

notation the latter result is contained in Usmani and Beatty (1974).

In plane strain	 (X3	 1) equation (4.2.32) reduces to

+	 + 3X - 1 = 0,	 (4.2.33)

which was obtained by Nowinski (1969 a,b). The solution of this

equation (4.2.33) is
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4.3 Results for particular deformations

4.3.1 Plane strain

When the underlying deformation of the half-space corresponds to

plane strain with X3 = 1 we write X1 = X, X2 	 X'- and

(4.3.1)W(X) = W(X,l).

It follows from (4.2.23)-(4.2.25) that

-	 = -	 XW

4 ____aX-y=
- 1

(4.3.2)

(4.3.3)

and

23 + 2y	 x2 ''	 (4.3.4)

with W'' (1) = 4t, where the prime indicates differentiation with

respect to X.

The stability inquality (4.2.26) becomes

x4 f'+x	 +2ff2 (1—)?)—cr22/y>O	 (4.3.5)

and, when 02 = 0, this simplifies to

x 3 ''+	 >o.	 (4.3.6)

We note later, in Section 4.6, that the corresponding dead-load

stability inequalities are W' >0 9	' > 0.

The bifurcation criterion

x3 ''+I = 0	 (4.3.7)
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for the case 02	 0 was obtained by Reddy (1983); see also Ogden

(1984, p.448). In different notation an equivalent result was given

by Nowinski (1969a).

For values of the stretch X satisfying (4.3.6) the bounds on

given by (4.2.28) are specialized similarly, and the secular equation

(4.2.10) becomes

x5 '+	 + (X2 y''- _____ - 2ff2) n/'r - (' - 2 )/y2	0,
- 1

(4.3.8)

with y given by (4.3.3). When	 = 0 this simplifies to

x5 :j'
+ 2 + (X2 ''_	 )"i/ - 1 = 0.	 (4.3.9)

x4 - 1

In respect of the special case e = 0 discussed in Section 4.2 the

right-hand inequality in (4.2.21) now requires

>% 1i'
x2 '' <	 (X4 + 2).	 (4.3.10)

x4 - 1

As we shall see in the next section this can be satisfied for

particular strain-energy functions.

4.3.2 Eguibiaxial deformation X2 - Xi

For this deformation we take X 3 X and X 1	= X	 so that

=	 1/4 )C 1-	 (X	 , X) and the secular equation (4.1.38)

for this case becomes

+ ,2 + (3 - 2 2/'y) - (l - 2/y) 2 = 0.	 (4.3.11)
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This equation is the seine as (4.2.3), so we deduce from (4.2.6) that

the bounds on if2 are ±2y. When 2	 0 equation (4.2.7) yields once

more the surface wave speed is therefore given by pc 2 = (1 -

4.3.3 Eguibiaxial deformation Xi -

In this case we write X1 =	 = >	 2	 x 2 , and the secular

equation (4.1.38) is specialized accordingly. For the case °2 = 0 the

secular equation in different notation was given by Willson (1973a)

for this deformation in the form (4.1.30). Numerical results are

similar to those given for plane strain so we omit further details

here.

For the case	 0, the boundary of the stability regime is

given by

x4	 11 (X,X) +IJ 1 (x,x) = 0.	 (4.3.12)

This is equivalent to a formula of Reddy (1982), who considered its

implications in respect of a number of strain-energy functions. We

shall discuss it in the next section.

4.3.4 Eguibiaxial deformation X2 -

For this case we write > = X, X 2 = X 3 = >C.+ and the counterpart

of (4.3.12) is

x5/2 w 11 (X,x) + W 1 (X,r ) = 0	 (4.3.13)

Again numerical calculations give broadly similar results for the

wave speed to those obtained for plane strain.
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4.4 Results for some special strain-ener gy functions

4.4.1 The neo-Hookean material

For the neo-Hookean material, the strain-energy function is given

by (4.2.31), namely

W -	 +	 +	 - 3).	 (4.4.1)

In plane strain (4.3.1) and (4.4.1) yield

W(X) =	 + x-2 - 2)

and the secular equation of the form (4.3.9) reduces to

+	 + 3ij - 1	 0.

Again this equation is the same as (4.2.7). Note that 77 is

independent of X. It follows from (4.1.35) that the wave speed c is

given by

=	 - x-2	 .	 (4.4.2)

The more general secular equation is obtained by using (4.4.1) in the

secular equation (4.1.39), giving

211 2	 2	 21	 2	
2	

2

[	

pc 

j {	

- pc	 =	 -	 + pc (4.4.3)
jILX

On squaring and rearranging this equation can be written as

- (3	 + 5	 + (3X ' + 10	 + 11X) -	 +	 - 11

- 5	 = 0.	 (4.4.4)



99

2	 22	 .	 2In Fig. 4.3 we plot /X c /c as a function of X, where PC5

(recalling (4.1.22)). The underlying deformation is stable for

x > / , and we see that c rapidly approaches c as X increases

from unity.

Turning next to the bounds on 02, given by (4.2.28) appropriately

specialized, we find

- x - i -	 -	 <	 < x	 1 +	 + x-2 (445)

where 2 = if 2/ The range of Y 2 and X for which the underlying state

of deformation and stress is stable (and hence admits surface waves)

is shown in Fig. 4.4. In view of the factorization

6 +x4 +3x2 -l= (X3+X2+X-l)(X3+X2+A+l)

we see that the lower bound in (4.4.5) vanishes where X	 , and

this is reflected in Figure 4.4

In Figures 4.5 - 4.7 we solve equation (4.4.3) to plot 	 as a

function of X 1 for a series of different values of X3.
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4.4.2 The Varga material

For the Varga material, the strain-energy function is given by

W = 2j(X. +	 +	 - 3),

so that

W(X) = 2z(X +	 - 2).

When	 = 0 the secular equation (4.3.9) reduces to

+	 + (2X 2 + 2 -	 - 1 = 0,

(4.4.6)

(4.4.7)

(4.4.8)

which has a unique positive solution for in the stable regime. From

(4.3.6) it follows that the latter is defined by x 2 > 1/3, and is

bounded according to

-2)c1 (l - 3X 2 )/(x2 + 1) < ° 2 < 2X1.

From the solution of (4.4.7) we get

2 2(X2 - X2,12)	
(4.4.9)

IL	 X+Xl

while the shear wave speed c is given by

2X	
(4.4.10)

x+x-1

For the case of e = 0 (o 2 y) we have

2
if 2 = ________

x + x-1
(4.4.11)

and from section 4.2.2(b) the secular equation yields

or	 ,12++X2(2x2)O	 (4.4.12)
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A non-zero positive solution of the latter equation exists if x2 > 2,

and, using (4.4.9) and (4.4.10), this can be shown to give

= 2v 2 +	 [1 + 4X 2 (X 2_2)] - l}.	 (4.4.13)

Thus, when X2 > 2, two waves can propagate, with speeds given by

(4.4.10) and (4.4.13), provided the surface stress has the value

(4.4.11) but only one of these is a surface wave.

Figure 4.8 shows the stable region in the (X, 2 )-plane; it

includes a plot of = 	 as a function of X, and we note that this

lies entirely within the stable region. Figure 4.9 shows 	 and	 as

functions of X for the case if 2 = y.

Also, the more general secular equation is obtained by using

(4.4.6) in (4.1.39), giveing

2X - pc2(X1 + ' 2)	 2X - pc 2 (X 1 + X 2 ) + 4X 1 X 2 + 4X - 2X

21zX	 2jX

22	 2	 2	 2
= pc (X1 + X 2 ) + 2jx 2 -

2

On squaring and rearranging this becomes

(--	 - 2(X + 4X1X2 + 3X 2 ) 2 + 8X (2x 1 + 2X 1 X 2 - 3X

- 8X(3X + 2X 1 X 2 - X) = 0. (4.4.14)

In Figure 4.10 we solve equation (4.4.14) to plot 	 as a function

of	 for a series of different values of X2.
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The strain-energy functions considered in 4.4.1 and 4.4.2 above are

members of the class of functions which, for plane strain, are

defined by

-	 In	 -m
W (X) = 2( X + X	 - 2)/n.	 (4.4.15)

Next we consider one further member of this class.

4.4.3 The m - strain-energy function

For m =	 in (4.4.15) the results are similar to those for m = 1

except that there is an upper bound to the set of X for which the

underlying deformation is stable. The stability inequality yields

-	 + 3X2 + 2X2 - 2 > 0	 (4.4.16)

and the bounds on	 are

4X	 x - 1 + 2	
->+ 3X2 -F 3X -1	 2

[	 3	 2	 2	 1	
(4.4.17)

X 2+l	 (X+X+X+l)(X+l)

while

4/LX	
x4._y=

X + X+ X + 1

In Figure 4.11 we plot = pc2/ as a function of X for values of

X for which (4.4.16) holds, corresponding to free surface waves

= 0). In Figure 4.12 are shown the bounds on 2' given by

(4.4.17), as functions of X along with the corresponding plot of

= y/t from (4.4.18). We note that 2	 -y is possible in the stable

region for a wide range of values of X.
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In Figure 4.13 we illustrate the result for the case 2

noting that	 = 0 ( =	 ) is the unique solution of the secular

equation up to a critical value of X, after which the positive

solution of

,i 2 +	 -	 - 2X3 - 2X 2 - 2X + 1) = 0

becomes effective. The latter solution corresponds to a value of

which vanishes at a value of X between 3 and 4. This reflects the

fact that the stable region is bounded.



112

0

059	 A	 3

3.4

Figure 14.11



113

Figure L4.12

02



114

0 1	 2	 3	 4

Figure L1.13



115

4.4.4 A three-term strain-energy function

The final case of the special strain-energy functions we consider

corresponds to the model of rubber elasticity due to Ogden (1972). In

plane strain the strain-energy function is a linear combination of

terms of the form (4.4.15) for different values of m. We write this

in the form

(X) =(Xan + xan - 2)/an,	 (4.4.19)

where

3
iLn a = 2i.
	 (4.4.20)

n= 1

Specifically, the numerical values of the constants in (4.4.19) are

=	 a2 = 5.0,	 a3 = -2.0

(4.4.21)

= 1.49lt,	 2 = O.003L,	 = -O.0237iz.

For these values and for 0 the wave speed is shown in Figure

4.14 in the form as a function of X. We note that the surface wave

speed is very close to the shear wave speed, which is also shown in

Figure 4.14, for the range of values of X between 1.9 and 3.4

approximately. The underlying plane strain is stable for X greater

than about 0.55. Bounds on 2 similar to those for the neo-Hookean

strain energy are obtained for this strain-energy function, but they

grow more rapidly as X -i in this case.

When 2 = 'Y there is a range of values of X for which d in

(4.2.20) is negative and so the trend of the departure of the surface

wave speed from the shear wave speed is similar to that shown in

Figure 4.14.
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4.5 Hydrostatic stress boundary conditions

If the incremental dead-load traction boundary condition on

x 2 = 0, which leads to (4.1.9) is replaced by a corresponding

hydrostatic stress boundary condition then we have

s 021 =	 2

on	 0	 (4.5.1)

s 022	 02 V2,2•

Equations (4.1.15) are then replaced by

,22 -	 =

on x 2 = 0	 (4.5.2)

(2f3 + 'Y ) ,112 + Y \L' ,222 - p;I,2 = 0,

and the secular equation (4.1.29) by

(2 + 27 - pc2)/ - pc2	 A	 - + pc 2 ),	 (4.5.3)

or, equivalently,

+	 + (213 + 27 - c)i/y -1 = 0.	 (4.5.4)

This is the same as (4.1.39) for q 2 = 0, but 02 is not in general

zero here.

The stability regime is again determined by (4.2.15) and (4.2.16),

but no restriction is placed on the hydrostatic stress. When the

stress is purely hydrostatic equation (4.5.4) reduces to (4.2.7). The

surface wave speed is therefore given by pc 2 = (1 -

independently of the hydrostatic stress.
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4.6 Note on infinitesimal stability

In this section, it worth noting that, since > 0, the

undeformed configuration is stable under arbitrary all-round

hydrostatic loading.

Under all-round dead load the infinitesimal stability condition

(or exculsion condition) is

tr 4 (& L)L + p L2} > 0,	 (4.6.1)

for all L ^ Q such that tr(L)=O; see, for example, Ogden(1984) for

detailed discussion. When specialized to two-dimensional incremental

deformations (4.6.1) becomes

(A 01111 + A 02222 - 2A 01122 + 2p) L 1 + A 01212 L 1 + A 02121 L2

+ 2(A02121 - °2) L12 L21 > 0.	 (4.6.2)

In terms of the notation in (4.1.12) necessary and sufficient

conditions for (4.6.2) to hold are

2 +	 - 2o 2 > 0,

	

& > 0,	 (4.6.3)

7 & > (-y - 2)

On the other hand, if the loading is an all-round hydrostatic

stress o then (4.6.1)is replaced by

tr( 0 L) + (cr + p)L2} > 0	 (4.6.4)

and (4.6.2) by

4 L 1 + (L12 + L 21 ) 2> 0.	 (4.6.5)
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Since t > 0 the undeformed configuration is stable for all

hydrostatic stress provided L 12 + L21 ^ 0. The incremental mode of

deformation corresponding to L 12 + L21 ^ 0 represents a shear in the

(1,2) principal plane.

4.7 Propagation in a general direction

In this section we shall obtain equations for Rayleigh surface

waves propagating in general direction in the (x 1 ,x 3 )-plane, in which

the direction of the propagation has the direction (cosO, sinO).

For an incompressible material the incremental equations of

motion are given by

A oj ilk vk , jl - ,i	 Pi,

(4.7.1)

= 0.

Assume v and are given by

V = '(x2) 
i(ct - kcosOx 1 - ksinOx3)

e

(4.7.2)

i(t - kcosOx 1 - ksinOx3)
= (x 2 ) e

that is the components of v are

i @ t - kcosOx 1 - ksinOx 3 )	 .	
,2,3}. (4.7.3)vj = C'(x 2 ) e	 , 1

From equation (4.].1), we have
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+ s 2 A02121

+ cos 2 O(A 0	 + A1122	 02112

_A01111)_S1fl20Ao3l31

[pc2 + 2(A02222

- A01221 - A02211)

- cos 2 O A01212

cosO sjnO(A01122 + A01133	 jC/ cosO

- A03113)

[pc2 + S2(A22	 _jC/ s2

- A01221 - A02211)

- cos 2 O A01212
	 =0

- sin2 O A03232] kCosO
	 - sin2 O A03232 ] ksinO

sinO coso(A02332
	 + 2 A02323	 _jC/ sinO

+ A03322 + A01331
	 - cos 2 O A01313

- A03311)
	

+ sin2O(A02332

+ A03322 - A03333)

i.e
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To obtain the speed of surface wave propagation in any direction

for the general case we must deduce that from (4.7.8) the

ratio A: B: C : Di, I (1,2,3) for A 1 : A 2 : A 3 to be non-zero

solution, the boundary conditions yield the secular equation. Because

of the cumbersome algebra involved we omit details of the general

case here, but concentrate on the application to the neo-Hookean

strain-energy function.

4.7.1 Propagation in general direction for a neo-Hookean material

For a neo-Hookean material the strain-energy function is given by

W =	 z(X +	 +	 - 3),

and hence, from (2.6.13), we obtain

A01111 = A01212 = A01313 =

A 02222 = A02121 = A02323 =

(4.7.12)

2
A03333 = A 03131 = A03232 = ,i X3,

A01122 = A01221 = A 01331 = A 02233	 A02332 = Ao3223

Substituting (4.7.12) in (4.7.10) we obtain

(pc2+	
2 2	 2	 2	 2

'2	 -	 >1 COS 0 - IL X 3 sin2 g) 2 (s 2 - 1)	 0.	 (4.7.13)

This equation is a cubic equation for s 2 , which yields two

distinct values of s 2 with positive real part, s and s say, where
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2	 2	 2	 2	 2 • 2	 2	 2
= 1	 and	 s2 = ( X, cos 0 +	 sin 0 -Pc )/JL X2•

(4.7.14)

We require

o	 pc21/ 	 X cos 2 0 + X sin2 0. 	 (4.7.15)

From (4.7.13), we see that s 2 is repeated root, that is s 2 = s3,

so equations (4.7.11) become

-s kx
= A 1 e 1 2 + (A 2 x 2 + A3) e_52kX2,

-skx	 -skx
2 = B 1 e 1	 2 + ( B 2 X 2 + B 3 ) e 2 2,

(4.7.16)

-skx	 -skx
= C 1 e 1	 2 + ( C 2 x 2 + C 3 ) e 2 2,

-s kx= D 1 e 1 2 + ( D 2 x 2 + D 3 ) e212

Next, the incremental boundary conditions for propagation in any

direction are

s021 = 0	 on x 2 - 0.

On use of equations (4.1.4), (4.7.2) and (4.7.3) with the above

boundary conditions we get

(A 02112 + p)	 2	 1= o,+ A 22 -'
2

+ (A 02222 + )	 2 +A02211	 1	
av

1	
p	

2	
A02233	 P°	 onx2=O,

3

(4.7.17)

A02323	 3 + (A 02332 + p)	 2 0.
aX 2	 ax3



on x 2 = 0

(4.7.18)
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aw
Since, from (2.6.13), A 02112	 A 02121 - - , A 02112 + P	 A02121 -

a>.3

and similarly A 02332 + p	 A02323 -	 Also for the case 2 =

equations (4.7.17) reduce to

+	 1 =
ax, ax2

+ (A 02222 + p)	 2 + A02233	 3 -	 = 0,A02211	 av
ax,	 ax2	 ax3

+	 2
aX 2 ax3

For a neo—Hookean material these reduce to

+	 1 =
Bx 1	 aX2

2	 2 - =2tt	
ax2

on x 2 = 0 (4.7.19)

+	 2 = 0
ax2 ax3

since	 - 0 implies p = x.

From (4.7.2) and (4.7.3), the boundary conditions (4.7.19) can be

written as

- ik cosO \1'2 - 0,

2	 \2 -	 = 0,	 on x 2 = 0	 (4.7.20)

- ik sinO 2 = 0.

On use of equations (4.7.16) in (4.7.20), we obtain
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s 1 k A 1 - A 2 + s 2k A 3 + ik cosO B 1 + ik cosO B 3 = 0,

2 > s 1 k B 1 - B 2 + 2	 s2k B 3 +	 + D 2 = 0,on x 2 = 0 (4.7.21)

s 1 k C 1 - C 2 + s 2k C 3 + ik sinO B 1 + ik sinO B 3 = 0.

Now, we wish to determine the ratio A: B: C: D from (4.7.8).

For a neo-Hookean material the second and fourth equations of (4.7.8)

reduce to

2	 2
(pc 2 +	 x	 2 -	 X 1 cosO - p. X 3 sin2 O) A + ic/o cosO D 	 0,

(4.7.22)

(pc 2 + p. X s2 - L X cos 2 O - p. X sin2 O) C + ic/u sinO D = 0.

For s = s 1 , (4.7.22) give

P1 = -(pc2 + p. x s -	 x cos 2 O - p. X sin2O)k

A 1	i cosO

= -(pc 2 + p. x s - p. x cos 2 O - p. X sinO)k

C1	 i sinO

so that
C

= tanO.
A1

For s s 2 we have to consider

1 = (A 2 x 2 + A 3 ) e2'°2,

\1'2 = (B 2 x 2 + B 3 ) e22,

= (C 2 x 2 + C 3) e22	 (4.7.23)

-s kx
= (D 2 x 2 + D 3 ) e 2 2
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Subsitution (4.7.23) into (4.7.6) shows that A 2 = B 2 = C 2 =	 = 0

and hence (4.7.22) applies with s = 2' giving

2 2 -	 > cos 2 O -	 X sin2 O)kD 3 _(pc 2 + 1L X 2 s2	
2

A3	 i cosO

D 3 = — ( pc2 +	 x s -	 x cos2	
2

0 - jz X 3 sinL0)k

C3	 i sinO

and

tanO.
A3

From (4.7.8), also we have

-	 B1 = cos0 A 1 + sinO C 1	for s = Si,

i s 2 B 3 = cosO A 3 + sinO C 3	for s =

Thus, the boundary conditions (4.7.21) become

s 1 A 1 + s 2 A 3 + icosO B 1 + icosO B 3 = 0,

s 1 k B 1 + 2	 s2 k B 3 + D 1 + D 2 = 0,	 (4.7.24)

ik sinO B 1 + ik sinO B 3 + s C1 + 2 c 3 = 0.

Substitution for B 1 , B 3 , C 1 , C 3 , D 1 , D 3 in terms of A 1 and A 3 gives

is 1 B 1 =— J-,	 is2B2=_--.
cosO	 cosO

Equation (4.7.24) can then be written as



2s 2 (s 1 + 1)
2

s 1 (s 2 + 1)

= 0,+	 X s - 2

2	 2- L >i COS 0

2	 .
- L X 3 sin

+ JL > s - 2/L X2

2	 '
- /L X 1 cos 0

2
- .L X 3 sin 0
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(s 1 + us 1 ) A 1 + ( s 2 + us 2 ) A 3 = 0,

(4.7.25)

(pc2 + u X s - 2	 -	 X cosO - t )	 sinO) A1

+ (pc2 +	 X s - 2j	 -	 X cosO - t X sin2 O) A 3 = 0.

For A 1 and A 3 in (4.7.25) to be non-trivial solution we must have

which gives

(s 1 - s 2 )[Ipc2 -	 X 1 cos 2 0 -	 X sin20 - 2t >%2} (s 1 s 2 - 1)

- t X 2 s 1 s 2 - /L X 2 (s 1 + 2 + s 1 s 2 )	 0.

Assuming s 1	s , the above equation becomes

2	 2	 2	 2 •2	 2	 2
(pc -	 > cos 0 - i	 sin 0 - 2/L X 2 )(s 1 s 2 - l) -	 2 1

-	 X(s + s + s 1 s 2 )	 0.(4.7.26)

This is the secular equation for the propagation of Rayleigh

waves in any direction for a neo-Hookean material. (As in the case of

propagation along a principal axis, s1 = 2 gives only the trivial

result A 1 = A 2 = 0 etc.)
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Next from (4.7.14), we have

s	 1,	 - j(L x cos 2 O +	 X sin2 O - pc2)/x)

so,

+	
1 + xos2o + L X sin2 O - Pc2

L X2

Hence,

22
cos 2 o + u X sin2 O - 1	 - pc2 =

x cos 2 O + t x sin2 o - pc2]

!L >2

(pc 2 -	 X cos2 O -	 X sin2 O - 3 Xi). (4.7.27)

2	 2

On setting	 pc2/L	 ,	 =	
cosO +	 X 3 sin2O	

the secular

L X2

equation (4.7.27) is written as

( -	 —1)	 ( - E)	 -	 — 3),

On squaring this becomes

+	 + 11 c - 1 = 0,	 (4.7.28)

where o. = -

This secular equation gives only one positive, solution for c,

say, so

2
IL(X cos 2 O + X sin2 O) - pc2 =

Hence,
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2.	 2
.2 cos 2 O + X 3 sin2O	 P X2

IL

where o = 0.08738. This result is equivalent to an equation given

by Flavin (1963).

Equation (4.7.27), for 0	 0, becomes

(IL( X - X) - pc2) =	
- c2] (Pc2 - 

IL	
- 3ILI	 ILX

This is the secular equation for Rayleigh surface waves for a

neo-Hookean material propagating along a principal axis which is

given by (4.4.3).

4.8 Analysis for a compressible materials

For compressible material the components of	 are given by

(2.6.8) In general the components of 	 are

= A01	 v1,1 + A 01122 v 2,2 + Ao1133 V3,3,

s 022 = A 2211	 l , 1 + A0 2222	 2 + A0 2233	 , 3

5 Q33 = A03311 V1,1 + A03322 v2,2 + A 03333 V3,3,

012 = A01212 v 2,1 + A01221 v1 ,2'

021 =A02121 v 1,2 +A02112 v2,1 ,	 (4.8.1)

013 = A01313 v 3,1 + A01331 V1 ,3'

031 = A0 31 31	 l , 3 + A0 311 3	
3, 1

023	 A02323 V 3,2 + A02332 v2,3,

032 = A03232 V 2,3 + A03223 v3,2
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4.8.1 Plane incremental motion

We take	 0 and assume that v 1 and v 2 are independent of x3.

Equations (4.8.1) become

= A 1111 V	 + A01122 v2,2,1,1

s 022 = A0221 1	 1 + A02222 V2, 2'

s 033	 A0331 V	 + A 03322 v2,2 ,	 (4.8.2)1	 1,1

s 01 2 = A0 1 21 2 V2 1 + A0 1 221	 , 2

021	 A01212 V 1,2 + A 02112 v2,1.

By using the incremental equation of motion for compressible material

(2.6.19) with equation (4.1.8) we get

oji,j = Ajjii Vk , lj = P'j•	 (4.8.3)

From this equation, we obtain

011 , 1 +	 021 , 2 =

(4.8.4)

012,1 +	 022,2 =

From (4.8.2), we get

A01111 V 1,11 + A01122 V2,21,

A01212 V2,11 + A01221 v1,21,

(4.8.5)
021 , 2 = A0 21 21 •.l , 22 + A0 211 2 V2 , 1 2

022, 2	 A0221 1	 l, 12 + A 02222 V2, 22
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Substituting (4.8.5) into (4.8.4), we have the required equations of

plane incremental motion, namely

p ' - 1 = A 01111	 1 , 11 + A 011 22	 2, 21 + A 021 21	 1 , 22 + A 0211 2	 2 , 1 2'

(4.8.6)

p")- 2 = A 01 21 2	 2 , 11	 01 221	 1 , 21 + A 02211	 1 , 1 2 + A 02222	 2 , 2 2

4.8.2 Propagation a1on a principal axis

We now assume that v 1 and v 2 are given by

skx 2 + ikx 1 - io)tV 1 =A1e

(4.8.7)

skx 2 + ikx, - iotV 2 = A2e

Equations (4.8.6) yield

-	 A1 = (A021	 221	 - A 01111 ) A 1 + is (A 01122 + A 02112 ) A2,

(4.8.8)

-	 A2	 is (A 01221 + A 02211 ) A 1 + (A 02222 s 2 - A 01212 ) A2

For these equations to have non-trivial solution for A 1 and A 2 we

must have

A	 s2 - A01111 + pc202121

is(A01221 +A 02211 )

is(A01122 + A02112)

A	 S2 - A 01212 +02222

= 0,

which gives
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A 02222 A 02121 s4 -[A01111 A 02222 +A 02121 A01212

2- (A 01122 + A 02112 ) - pc2 (A 02121 + A 02222 )] s2

+ A 01111 A 01212 - Pc 2 (A 01111 + A 01212 - pc 2 ) = 0,

(4.8.9)

which is a quadratic equation for s 2 . Suppose it has roots s and 4.

Then

4 + 4 =

A01 111 A 02222 + A021 21 A01 21 2 -(A 01 122+ A 021 12 ) 2 - (A 021 21+ A02222)pc2

02222	 02121

(4.8.10)

= A1 111 A01 212 - pc 2 (A01 111 + A01 212 - pc2)

A02222 A02121

Now suppose that the underlying state of deformation corresponds to a

pure homogeneous strain of a half-space which, in the deformed

configuration, occupies the region x 2 < 0 with the boundary x 2 = 0.

We take the incremental surface traction to vanish on the boundary,

so that

0,	 0	 on x 2	0.

From (4.8.2), we get

A 02121 v1,2 + A 02112 V 21	 0,

on x 2 = 0	 (4.8.11)

A0 2211	 l , 1 + A0 2222 v , 2 = 0.
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For Rayleigh surface waves we seek a solution for v 1 and v 2 in

equation (4.8.7) which vanishes when x 2 - - and which also

satisfies the above boundary conditions.

The general solutions for v 1 and v 2 are given by

s kx	 s2kx2 ikx - it= (A1e 1	 2 + B 1 e	 )e	 1

(4.8.12)

skx	 skx ikx - ict= (A2e 1 2 + B2e 2 2 )e

where s 1 and 2 should have positive real part.

Next, substitute equations (4.8.12) into the boundary conditions

(4.8.11) to give

A021 21	 1 A 1 + iA021 12 A 2 + A021 21	 2 B 1 + iA021 12 B 2 = 0,

(4.8.13)

iA02211 A 1 + A02222 s A 2 + iA 02211 B 1 + A02222 s 2 B 2 = 0.

From (4.8.8), we have

22 = A01111 - A	 2 - pc202121	 1
A1	 s	 (A01 122 + A021 12)

and similarly

A01111 - A	 s2 - pc202121	 2
B1	 2 (A 01122 + A02112)

Next, on use of (4.8.14) in (4.8.13) we obtain

(4.8.14)
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!A02121	 , ^ 
A 02112 (A 01111 - A 02121 s - PC2)) A1

s 1 (A01122 + A02112)

2
+ [A 02121 s 2 + A 02112 (A1111 - Ao2121	 2 - PcL)} B1.

	 ,
s 2 (A 01122 + A02112)

(4.8.15)

02222	 01111iA02211 + A	 'A	 - A 02121 s - pc2)) 
A1

i (A 01122 + A02112)

^ iA 02211 + A 02222 (A 01111 - A 0121 S - PC2)) B 1 =

i (A 01122 + A02112)

This can be written as

s 2 (A 02121 (A 01122 +A 02112 )s^A02112 (A 01111 -A02121s-pc2))A1

+s 1 (A 02121 (A 01122 +A 02112 ) s

+ A02112 (A 01111 - A 02121 s - pc2 )} B 1 = 0,

(4.8.16)

Ao2211 (A 01122 + A 02112 ) - A 02222 (A 01111 - A 02121 s - pc 2 )} A1

+A02211 (A 01122 + A02112)

- A 02222 (A 01111 - A 02121 s - pc 2 )} B 1 = 0.

For these to have a non-trivial solution for A 1 and B 1 , we must have
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ss 2 A 221 (A01122 + A 0211 )

+ s 2 A 02112 (A01111

- A 02121 S - Pc2)

A 02211 (A 01122 + A0211)

- A02222 (A01111

—A	 S2- c2 )02121	 1	 P

ss1 A 0221 (A 01122 + A02112)

+ s 1 A 02112 (A01111

—A	 s2_pc2)02121	 2

A0221 1 (A01 122 + A02, 12)

- A 02222 (A01 111

—A	 s2 - pc2)02121	 2

=0

and hence

2s 2 [s	 (A 01122 + A 02112 )	 A 0212 , A02211

+ (A01122 + A 02112 )(A 01111 + A 02121 s - pc2 ) A 02211 A02112

- s	 + A02112) ( A 01111 - A 02121 s - pc 2 ) A 02222 A02121

- (A01 111 - A021 21	 - pc 2 ) (A01 111 - A021 21 s - pc2)

A 02222 A021 21)]

2- s 1 [s	 (A 01122 +A 02112 ) A 02121 A02211

+ (A01 122 + A021 12) (A01 111 - A021 21 S 2 - pc 2 ) A0221 1 A021 12

- s	 (A 01122 + A 02112 ) (A 01111 + A 021	 S2	 2'
21	 1 -	 A02222 A02121

- (A01 111 - A021 21	 - pc 2 ) (A01 111 + A021 21 S2 -	 2'
2	 pc)

A 02222 A 02121 )] = 0.
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Gathering together like terms, we obtain

2
(A 01122 +A 02112 ) A 02121 A 02211 S 1 S 2	—s2)

(A 01122 + A 02112 ) A 02211 A02112 [ s 2 (A 01111 - A 02121 s - pc2)

- s 1 (A01 111 - A021 21	 - pc2) ]

+ (A 01122 + A 02112 ) A 02222 A 02121	 (A01111 - A 02121 s - pc2)

- ss 2 (A 1	- A021 21	 - pc2) ]

+ (A	 + A	 - pc 2 )(A 01111 + A 02121 s - pc)01111	 02121

A02112 A 02222 (s1 - 2) = 0.

i.e

2(s 1 - s 2 )[ (A 01 122 + A021 
12)	 A021 21 A0221 1

- (A 01122 + A 02112 ) A 02112 A 02211 (A 01111 + A 02121 s 1 s 2 - pc)

+A 02222 A 02121 (A 01122 +A02112)

(pc 2 s 1 s 2 - A 02121 ss - A 01111 s1s2)

+ (A 01	 - A021 21	 - pc 2 ) (A01 111 - A021 21 S - pc2)

(4.8.17)

As for an incompressible material the case s 1 = s 2 does not lead

to the existence of Rayleigh waves. We therefore assume s 1 ^ s 2 , and

hence
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A 02121 A 02211 (A 01122 + A 02112 ) 2 s1s2

- A 02112 A 02211 (A 01122 + A 02112 ) (A01111 - pc2)

- A 02121 A 02112 A 02211 (A 01122 +A 02112 ) s1s2

+ A 02222 A 02121 (A 01122 +A 02112 ) ( pc2 —A 01111 )	 1s2

2	 2
- A 02222 A02121 (A 01122 + A 02112 ) ss

22+ A02112 A02222 (A01111 - pc )

- A021 21 A 02222 A021 12 (A01 111 - pc 2 ) (s + s	 )

+ A 2121 A 02222 A 02112 ss	 0.	 (4.8.18)

i.e

ss A21 21 (A 02222 A021 12 - A 02222 (A01 122 + A021 1 2}

- (s + s) A 02121 A 02222 A 02112 (A 01111 - pc2)

+ s 1 s 2 A 02121 (A 01122 +A 02112 ) (A 01122 A02211

+ A 02222 (pc 2 - A 01 111 )}

+ A 02112 (A 01111 - pc 2 ) (A 02222 (A 01111 - pc2)

- A 02211 (A 01122 + A 02112 )) = 0.	 (4.8.19)

This equation can be written as
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ss A202121 A02222 A01122

+ (s + s) A02121 A02222 A02112 (A01111 - pc2)

- A021 12 (A 01	 - pc2 )[A02222 (A01 111 - pc2)

- A02211 (A01122 + A 02112 )) =

s 1 s 2 A02121 (A01122 +A02112 )(A01122 A02211

+A02222 (pc2-A01111)}.

(4.8.20)

From (4.8.10), we have

+ s =

'2 -A 01111 A 02222+ A 02121 A 01212	 (A 1122+A 02112j	 pc2(A02121+ A02222)

A021 21 A02222

(4.8.21)

= (A011 - pc2 )(A 01212 - pc2)

A02121 A02222

From (2.7.18), for the classical linear theory, we have

A01111 = A02222 = X + 2, A 0212	 A 02121	 j and we get that

= (X +	 - pc 2 )(t - pc2)

+ 2L)

since ss > 0, we obtain

i,	 pc2	 X + 2.

We also require for the non-linear theory that ss > 0, as in

incompressible theory in Section 4.2.1, so

pc 2	A01212 ,	 Pc2	 A01111.

i.e.
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pc2 < mm {A01212 A01111 )	 ( 4.8.22)

The alternative to (4.8.22), that pc 2 ) max (A 01111 , A01212 ) is ruled

out for reasons that will become apparent in the next section.

First of all, to simplify the notation we set

a 11	 JA01111,	 a22 = JA02222,

a 12 =	 7i = JA01212,

(4.8.23)

Y2	 JA021 21'	 a = JA01 122 + JA021 12'

and

23 = a 11 a22 + y 1	 -

Recall from (2.6.6) that

a12 = 12
	 (4.8.24)

where

= Jo-2.

Equations (4.8.20) and (4.8.21) now can be written as

s s y2 a 12 a 22 + (s + s) (72 - 2) (a 11 - pc 2 )y 2 a22

- (Y2 - r 2 ) (a 11 - pc 2 ) [a 22 (a 11 - pc 2 ) - a 12 a }

and

1	 2 Y 2 	[ a 2 + a 22 (pc2 - a11)),

+	
= 23 - (' 2 + a 22 ) pc2

72 a22

= (a 11 - pc 2 )( 1 - pc2)

Y2 a22

(4.8.25)

(4.8.26)

respectively



(4.8.31)

& = X +
	

(3	 /Z (X +
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Also, the necessary and sufficient conditions (2.8.12) become

a 11 > 0	 a22 > 0,	 7i > 0,	 '12 > 0
	

(4.8.27)

and

(3 + (a11 a 22 71 72) > 0.
	 (4.8.28)

We note that in (2.8.12) we assumed 	 = 72' but in general we note

from (2.6.6) that

'Yi >	 = '12	 (4.8.29)

On use of the notations (4.8.23) it is easy to see that (4.8.28) can

be written as

{/a ii a22	 '12 +
	 a	

+	
-	 > 0, (4.8.30)

In the linear theory it follows from (2.7.18) and (4.8.23) that

a 11 = a 22 = X + 2z,	 a12 = >,	 = 72

Then, the two factors on the left-hand side of (4.8.30) are 2(X + 2)

and 2t respectively, both of which are taken to be positive. Hence,

by continuity, each factor must remain positive on a path of

deformation from the natural configuration (where X j = 1 and ai = 0

for i c 1,2,3} ) if (4.8.30) is to be maintained. Thus (4.8.28) can

be replaced by

a22	 '12	 ±	
> 0.	 (4.8.32)
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In terms of the strain-energy function W, the necessary and

sufficient condtions (4.8.27) and (4.8.32) can be written as

>1 W1 - '2	 2

Wi1 >0,	 W 22 >0,	 >0,	 (4.8.33)
-

and

1w11 w22 - w12 + 
i + W2 > 

0,
X1 +

(4.8.34)

/Wii W 22 + W12 - 
l - 

2 > 0,

-

respectively, where W j = aw / ax, Wjj = 2W / Xj Xj we note here

(4.8.33) are given in (2.8.11)1-3.

For the special case in which X. 1	the inequalities (4.8.33) and

(4.8.34) reduce to the pair of inequalities

Wi1 >0,	 W11 -w12 +x l W 1 >0,	 (4.8.35)

or, equivalently,

c>0,	 'y>O,	 (4.8.36)

where

a = a 11	 a 22 ,	 = Yi	 Y2
	 (4.8.37)

On substituting (4.8.26) in (4.8.25), we have
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(a	 -	 - pc 2 ) a12 72

+	 - (72 + a22)pc2} (72 - r 2 )(a ll - pc2)

- (a 22 (a 11 - pc 2 ) - a 12 o} (72 - r 2 )(a 11 - pc2)

= {(a ii - pc2 )(7 1 - PC2)} {a
2 + a 22 (pc2 - au)] 72

72 a22

The above equation, after substituting the expression for 23, can be

written as

(a11 - pc 2 )(-y 1 - pc2 ) a12 72

+ I.a 11 a22 + 7i 72 -	 - (72 + a 22 )pc2}(-1 2 - r 2 ) (a 11 - pc2)

- [a 22 (a 11 - pc2 )	 a12 o} (72 - r 2 )(a 11 - pc2)

= [(a 11 - pc2 )(7 1 - Pc2)} {a 2 + a 22 (pc 2 - au)] 72 J

72 a22

(a 11 - Pc2 )[(7 1 - pc2) 72 a12 + (72 - r2)172 (Yi - pc2)

+ b (a 1 -

= [(a u - pc2 )(-y 1 - Pc2)} {a
2 + a 22 (pc 2 - au)] 72

72 a22

(a11 - pc2)[72 (7i - pc2) - (72 - r2)2]

= [(a 11 - pc 2 )(7 1 - Pc2)} {a 2 + a 22 (pc2 - au)] 72'
72 a22
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i.e.

a22 ( a 11 - pc2)[72 (-y1 - pc2) - ( -y 2 - 2)]

= [a 2 + a 22 (pc2 - a11)][a22 72 (a	 - pc 2 )(-1 1 - pc2)],

(4.8.38)

this secular eqution will be investigated in the next section.

Hence, either

ô = 0,	 (4.8.39)

or

pc 2	a 1'
	 (4.8.40)

or

a 22 (a11 - pc2)}	 72 (7i - pc2) - (72 - r2)2}

- 72 (7i - pc2)} + a 22 (a 11 - pc 2 ) - a 2 } = 0.	 (4.8.41)

On squaring and rearranging (4.8.41)

72 a22 (a 22 - y2)(pc2)3

+ 72 a 22 [(a 11 y 2 - a 22 y) +	 +	 - r2) }

+ 2(a 2 - a11a22)](pc2)2

+ [72 a 22 (a 1 a22 - 7	 + 2 y 72 a 22 (a 11 a 22 - a 12 a22

2	 2+ 2 72 a22 [Y1 (72 - T 2 ) - a 11 a 1 } - 2 7 a22 a 11 (7 2 -

4
+ 7172} + (72 - r 2 ) (a22 + 12) ]pc2

+ 7i 7 2 (a 11 a22 7172 - a 2 ) + 2 a 11 a22 Yi 72 (a2 - (72 - r2)2}

- a 11 a 22 (7 2 - r 2 ) 4 + a 1 a 2 } = 0.

(4.8.42)
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By dividing this equation by (pc 2 ) 3 , we have

[ v1 Y(a 11 a22 7172 - a 12 ) + 2 a 11 a22 7i 72 (a12 - (72 - if2))

- a 11 a22.((72 - if 2 ) + a 1 a 22)] r3

+ [Y2 a 22 (a 11 a 22 - 7i 72) + 2 y .1 72 a22(a1	 22 - a1 2

+ 2 72 a22 {'1 (72 - o 2) - a11 a 12 ) - 2 7i a 22 a1j(72 - o2)

+ 7172) + (72 - °2) (a22 + 72)] 2

+ 72 a22 [(a11 72 - a22 71) + 2(7172 + (72 - if2) }

+ 2(a 2 - a 11 a 22 )] !r

+ 72 a22 (a22 - '72) - 0,	 (4.8.43)

where = 1/pc2.

Equation (4.8.43) is the secular equation for Rayleigh surface

waves propagating along a principal axis in a pre-stressed

compressible elastic medium. An equivalent result, but in terms of

the strain-energy function W and the invariants i i c (1,2,3),

was given by Hayes and Rivlin (1961b). Note, however, that the

squaring process can introduce spurious solutions, as in the

incompressible case and we do not therefore use (4.8.43).
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4.9 Analysis of the secular equation

In this section we shall concentrate on the secular equation of

the form (4.8.38)

4.9.1 The general case

Here, we shall study the general case of the secular equation

(4.8.38) for the cases ô ^ 0 and ô = 0 separately.

First of all we assume that ô ^ 0, and the secular equation (4.8.38)

can be written as

2
72 (a 11 - pc2 )(7 1 - pc2 ) - (a	 - pc2 )(-y 2 -

+ I_ial [ a	 - pc2] [7., - pc 2J {a22 (a	 - pc2 ) - a 12 ] =

22 J

(4.9.1)

Now, for the above secular equation we shall consider the following

special cases

a) 0 < pc2 < 7i < a1 1'	 b) 0 < pc 2 < a 1 =

c) 0 < pc2 <a11 <

for both cases when '12	 2 and 72 = 2 separately.

a) The case 0 <pc2 <	 <a11

For this case and '12	 r 2 , the secular equation (4.9.1) becomes

22	 ___________

72(71 - pc2) - (72 - r2) 
+ 11 [7i - pc 1

a 22J a11- pc2j

[a 22 (a 11 - pc2 ) - a 2 }	 0.	 (4.9.2)
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'1 1 2

22j 
[cv ii 	 22	 i2j + '11'12 - ('12 - r 2 )	 > 0. (4.9.9)

If equality (4.9.9) holds then this corresponds to zero wave speed (c

- 0).

The following argument shows that the solution guaranteed by

(4.9.9) is unique. First we note that

=	 /22	 i2 2 + 2 {'12 ( 11 - '1) + ('12 - T2)2}

+	 a22(11 - '1) -	 (4.9.10)
/22 I

and

f'(0) =	 &(a1 - Yi ) -/22 1
(4.9.11)

If f'(0)	 0 then f ' (ij) > 0 for , > 0, if f'(0) < 0 then minimum of

occurs for rj < 0 (and the maximum for ,j < 0). In either cases

the solution is unique.

Thus, the secular equation (4.9.6) has a unique solution in the

interval (4.9.4) if and only if (4.9.9) holds.

In the natural configuration the left-hand limit of (4.9.9) is

4t2 (X + )/(X + 2k). This is positive if the shear modulus 	 and

bulk modulus X + ( 2/3) are positive, which we assume to be the case.

By continuity, the strict inequality

'71Y2	 11 a22 - a 12 ) + '1 '12 - ('12 - r 2 ) > 0,	 (4.9.12)
/a11 a22
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therefore holds on a path of quasi-static deformation from the

natural configuration. The connected region, which includes the

natural configuration, in (X. 1 , X 2 , X 3 )-space defined by this

inequality is bounded by the surface defined by

/

__________	
2

(a	 a 22 - a 12 ) + 7i 72 - (72 - T 2 ) = 0.	 (4.9.13)
a

When equation (4.9.13) holds the unique solution of f() = 0 is

=	
which corresponds to c = 0. The solution (4.9.12), with

= 0, is then interpreted as a quasi-static surface deformation. The

inequality (4.9.12) is an exiusion condition, which excludes the

existence of non-trivial quasi-static surface deformations of the

considered type. In the other words, bifurcation from the underlying

homogeneous deformation into a mode of deformation of the form

(4.8.7), with cz = 0, is prevented by the inequality (4.9.12), but

becomes possible when (4.9.13) is met. In a limited sense (4.9.12)

also guarantees infinitesimal stability of the underlying

configuration, with (4.9.13) corresponding to configurations

exhibiting neutral stability.

In terms of the strain-energy function W, (4.9.9) can be written as

Wi 1 22 -	 + / W 1 W2	
-	 1 > 0 (4.9.14)

1x1w1_-x2w2f

It is interesting to note that, given the inequalities (4.8.27), the

inequality (4.8.28) is a consequence of (4.9.12) as we shall see

shortly. This echoes a results in the incompressible theory as given

in Section 4.4, but is less immediate in the incompressible case.
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Here, we shall prove that (4.9.12) implies (4.8.28).

We set

a W 11 ,	 c	 W22 ,	 b =	 d = W 1 + W 2	 = W 1 -
e

+	
1	 2

the inequality (4.9.12) can written

ac_b2_2/	 de >0,
d+ e

where, from (4.8.27) a > 0, c > 0 and d + e > 0. This can be

rearranged as

2
de 1	 _____ b2.[/+dJ >b2+ d2e2

(d + e)2

and hence

[ / + b	
de'1 "	 de'+	 UJac-b+	 >0.
d+efl	 d+eJ

since each factor is positive in the natural configrution we deduce

that

I+b	
de

-	 d	 >0.+e

hence

B2+e>	 >0,d+ e

and

- b + d > d +e > 0,

i.e. the inequalities (4.8.34) hold, and these are equivalent to

(4.8.28).
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b) The case 0 < pc2 cr11 -

For the case

0	 pc	 a11 =
	

(4.9.15)

the secular equation (4.9.1) reduces to

2	 - pc2) - ( 2 - 2) + 
fi
L22J 

[a22 (' - pc2 ) - a 12 ] =

which yields either

pc2 =
	 (4.9.16)

or

2
- pc2 )(	 + /a22 2 =	 - 2	 +	 (4.9.17)

/ a22

If (4.9.16) holds then, by (4.8.26), we may take s 1 = 0 and

s 2 = - 2 / a22 < 0, which does not give a surface wave. The

limiting speed c = cL satisfying (4.9.16) is associated with a plane

body wave.

Hence, when a	 = 'y1, pc 2 is given uniquely by (4.9.17). When c = 0,

(4.9.17) yields

+	
2	

a2,	 (4.9.18)
2	 = ('2 - r 2 ) +

Ja2 2

which is also given by (4.9.13) in this case.



Here, we set

I	 2= 1a 11 -

I_ 7	 PC
(4.9.21)

so that

0 ( (4.9.22)
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c) The case 0 (pc 2 (	 <

Finally in this section we consider the inequalities

0	 pc2 (a11 < 7i,	 (4.9.19)

the secular equation (4.9.1) may written as

2- pc2) (-y - pc 2 ) - (a11 - pc2) (72	 r2)

+	
- pc2] ta22(aii - pc 2 ) - a 12 } = 0.

Since a1 1 < FYi' the above secular equation may written as

2_______	 a11 pci
72 (7i - pc2) 

a 11 - pc	
- (72 - T2) I	 -	 2

{ 7	 171 _PCi

+	 [a22 (a 11 - pc 2 ) - a 2} = 0.	 (4.9.20)La 22

the left-hand limit in the above corresponds to pc 2	 a11 and the

right-hand limit to c = 0, also we have

a -	 2
-	 11	 ,	 ( 4.9.23)

l-i

so, equation (4.9.20) can be written as

h()	 (72 - 2)	
+ { D-i] [a 22 (7 - a11) + 12 ,2

	

21	 a2	 0.	 (4.9.24)

	

+ [72 (71 - a11) - (72 - 2 ) j	 - a 22 J 	 12
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Hence,

h(0) - ____

J 22

and

h)	 (	 -	 -	
-

[/71

+	 22 -/ 22

Since we have 1i -	 > 0, we obtain that h(,) = 0 has a solution in

the interval (4.9.22) if h) 	 0, i.e. If

7i 72 - (72 - 
T2)2}	

11	 22 -	 2]	 °• (4.9.25)/71k 22

If pc 2 ^	 then (4.9.25) shows that (4.9.9) is again necessary and

sufficient for the existence of a unique surface wave. Under the

inequalities (4.8.27) no non-trivial surface waves with pc 2 = c	 is

possible.

4.9.2 The case 72 - 2

When 72 =	 and 0	 pc 2 <	 < c	 holds, the secular equation

(4.9.6) can be written as

g() = 0,	 (4.9.26)

where

i2	 + -y2(a11 - 7i)	 +	 1{a(c	 - 'Yi ) - 12} = 0.Ia1

(4.9.27)
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If g(0)	 f'(0) > 0 then g'(0) > 0 for 	 > 0 so that g() = 0 has no

solution for j in the interval (4.9.4). Thus, if

a 22 (a	 - '11) - a 12 > 0,	 (4.9.28)

then ,j = 0 is the only solution of (4.9.27). When (4.9.28) holds we

may therefore take s	 0 and s	
a22 (a 11 - r 1 ) - a12 > 0, and the

Y2 a22

wave speed is given by pc2 = -y 1 . However, application of the boundary

i(ct-kx)
conditions shows that v 1 	0 and v 2 = B1e	 1, which describes

a plane shear waves, not a surface wave.

Next, we note that

a-	 ________
) = 11	 ''	 L 1 a 22 - a2 

+/	
a 22 Yi 72J4.9.29)

/ a 1	a11 Ja22 [ 1

Since g() is increasing for 	 > 0 we deduce that g(0) > 0 implies

that g ( 2-i-) > 0. Thus, necessary and sufficient conditions for

= 0 to have a unique solution for j in the interval (4.9.4) are

a 22 (a 11 - Y1) - a 2 < 0,	 (4.9.30)

a 11 a 22 - a 2 +/a	 a22 •Y1 
72 > 0.	 (4.9.31)

jointly. The solution corresponding to i	 0 is then excluded. This

result corresponds to results given for incompressible materials.

If a11 = 11 the solution pc2 =	 of (4.8.38) does not correspond

to a surface wave, as in Section 4.9.1; the surface wave speed is

then given uniquely by (4.9.17) with 72 = r2.
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If 0 < pc 2 < a < '	 then pc2 = a	 is a solution of (4.8.38) with

s 1	0 and	 s = 72 ( l'i - a 11 ) - at2	 However, as for the case
72 a22

discussed in the paragraph following (4.9.28), application of the

boundary conditions demonstrates that the resulting wave is not a

surface wave, it corresponds to a plane longitudinal wave with

i(ot-kx)	 .	
•	 2v 1 = A 1 e	 , v 2 0. A unique surface wave with pc <

exists if and only if the exclusion condition

a 11 a22 - a 12	 > 0.	 (4.9.32)
22 7i 72

holds. Quasi-static surface deformations become possible when

(4.9.32) first fails on a path of deformation from the natural

configuration, i.e. when

a 22 - a12	 a22 y	 > 0.
	 (4.9.33)

4.9.3 The case o - 0

In the above discussion we considered 5 ^ 0. In this section we

shall consider the special case in which ô = 0, so equations (4.8.6)

reduce to

p\1 = a	 v 1 , 11 + 7 2 v 1 , 22'

(4.9.34)

P' 2	 7 1 v , 11 + a 22 v 2 , 11'

and on use of (4.8.7), we get

PC 2 = a11 - 72 S 2 ,	 pC2	 71 - a 22 s 2 ,	 (4.9.35)

equation	 for s	 s 1 , gives

a 11 - pc2
	

(4.9.36)
72
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equation (••)2, for s = s 2 , gives

s=	 -
	

(4.9.37)
a2 2

Equations (4.8.14) can be written, on use of the notations (4.8.23)

as

i S ö A 2	 (a	 - 72 s - pc2)Ai,

(4.9.38)

i S	 B 2	 (a	 —72 s - pc2)B1

so, equations (4.8.12) are replaced by

s kx - i(kx 1 - cot)v 1	A1 e 1	 2

(4.9.39)

s kx - i(kx 1 - cot)v 2 =A 2 e 2 2

On use of the notations (4.8.23), the boundary conditions (4.8.11)

become

72 l,2 + (72 - 2) v 2,l = 0,

on	 = 0	 (4.9.40)

a 12 V	 + &22 V 2,2 = O•1,1

Substituting (4.9.39) in (4.9.40), we have

72 s 1 A 1 +	 (-y2 - r 2 )A 2 = 0,

(4.9.41)

ia12 A1 +&22 s2A2=O.

For these equations to have non-trivial solutions for A 1 , A 2 we must

have
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72	 i	 (' - r2)

0,

i a 12	 a22 s2

which gives

12 a 22 s 1 s 2 + a12('y2 - 2) = 0,	 (4.9.42)

On use of (4.9.36) and (4.9.37) in (4.9.42), the secular equation

becomes

(72 a 22 (a	 - pc2) (7i - pc2)) + a 12 (y 2 - r 2 )	 0,	 (4.9.43)

since we consider ô = 0, we then have

72 -	 - a12,	 (4.9.44)

equation (4.9.43) becomes

(72 a 22 (a 11 - pc2 ) (y - pc2)}	 12 = 0.	 (4.9.45)

This equation is the secular equation for compressible Rayleigh

surface waves for the special case 5 = 0.

Next, equation (4.8.41), for .5 = 0, becomes

(a 22 (a 11 - pc2)J (72 (7i - pc2 ) - a2 }

- (72 (7i - p2} {a 22 (a 11 - pc2 ) - a 2) = 0.	 (4.9.46)

i.e.
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(a22 (a11 -	 2) (	 - pc 2)} f(c 22 (a 11 - pc2)} + (72 ('1	 pc2)}J

- a2 ((22 (a11 - pc2)) + (72 (l'i - pc2)}] - 0,

from this equation we can deduce equation (4.9.45).

Equation (4.9.42) embraces the situations in which s 1 	0,

a12	 72 -	 = 0, A 2 = 0 (corresponding to a plane longitudinal

wave) and s 2 = 0, a	 -	 = 0, A 1 = 0 (corresponding to a plane

shear wave).

A solution with c = 0 exists in configurations for which

2
a11 a22 Yi 72 - (72 - 2) = 0.	 (4.9.47)

while the exclusion condition takes the form

2
/a 11 a22 Yi 72 - (72 - T 2 ) > 0.	 (4.9.48)

Rearrangement of the (4.9.45) yields the unique solution

2
+	 a12	

J,	
(4.9.49)=	 [a u + 71 - f (a ui - Yu	

a11 a22J

satisfying (4.8.22)
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4.10 Results for some special deformations

Here we shall summarize the results for some special

deformations, for which the secular equation simplifies.

4.10.1 Eguibiaxial deformation

We now specialize the underlying deformation so that X 1 = >2 and

introduce the notation

a = a 11	 a22,	 7 =	 = 72'	 r = Jo- 1	Jo-2 . (4.10.1)

Then from (2.6.6) and (4.8.23), we obtain

=cry,	 (4.10.2)

and equation (4.8.9) becomes

a y 4 - 2a - pc 2 (7 + a)) 2 + a - pc2 (a + - pc2 )	 0.

(4.10.3)

which gives

sl---.	 (4.10.4)
7	 a

For ^ r and a ^ y the inequality (4.9.12) yields

< r < 27.	 (4.10.5)

For a = 'y (and hence & 	 0), and y ^ r, the secular equation (4.8.38)

reduces to

2
(a - pc 2 )[a(a - pc 2 ) - (a - r) ] = 0,	 (4.10.6)
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so that either pc2 a or pc2 
r(2a - r) The latter is also

obtained directly from (4.9.17), and requires 0 < T < 2a for the

existence of surface wave. If pc 2 a the boundary conditions ensure

that v 1 = v 2 = 0, so that no wave corresponds to this case.

When a > = r then pc 2 = y and pc 2 a are the only (positive,

real) solutions of the secular equation. The first of these gives a

plane shear wave, not a surface wave, the second again gives the

trivial solution v1 = v2 = 0. The same is true if r 	 'y > a. However,

in this case a unique surface wave also, exists provided 3a > 'y, and

its speed is given by

2 =	
[3	 -	 - 3a]

pc	 (4.10.7)

2/

Quasi-static surface deformations are possible if = 3a.

If -y = a = T then no surface wave exists. The only solution of the

secular equation is pc2 = a and the boundary conditions admit plane

i(t - kx )	 i(ot -kx )waves with either v 1 = 0, v 2 = B e	 1 or v 1 = A e	 1

v 2 = 0.

The results described in this section also apply when stress is

purely hydrostatic and	 =	 =

Finally, for the special case	 =	 and for the case	 = 0,

equation (4.8.42) reduces to

a (pc 2 ) 3 - 8 2 a (pc2) 2 + 8 3 (3a - 2y) (pc2 ) + 16 4 ( - a) = 0.

(4.10.8)

This equation is an equivalent to that arising in the linear

theory as we shall see in the next case.



163

4.10.2 The case X 1 - X 2 -	 1

Equation (4.10.8) can be written as

3	 2	 2	 4

- 8 [] [] + 8 [1] [3	
2 ] 

[ E3] + 16 [)] [1	 = 0.

(4.10.9)

For this case	 =	 =	 = 1, we have c	 = X + 2	 PCL,

=	 pc	 (as given in (2.7.18)), where	 and X are the Lame

constants of the linear theory, so that equation (4.10.9) becomes

	

1 121	 1 1_I2IlIc
r2 r23	 r22	 2	 [23	 21121
1 2 1i_2 1_ 8 LiII_2 1 +8 	 211	 2	 21

CL JCLJ 	 LCLJ	 CLJ	 CU	 CUJLCUJ

	r2 	 2
± 16 [
	

- 1	 = 0.

	

cL	 cL

On rearranging this equation becomes

6	 4	 2
1	 Ic 1

	

[CT] 
-8 

HTJ	
[24 16211] +16 [i_4]=o

C U 1.	 CL

(4.10.10)

which is the corresponding result of linear theory (see section 3.6).

Also (4.8.46) can be written in terms of the Lamb constants as

3	 2

x +	
- 16[l -	 1 =I2l - 8 

[pc2i 
+ [24 - 16	

1 Ipc2l	 ______

x + 
lU

(4.10.11)
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4.11 Application to specific strain-ener.y functions

For the case	 = 0 surface waves in a restricted Hadamard

material have been examined in detail by Chadwick and Jarvis (1979);

and also by Wilison (1973b), who confined attention to equibiaxial

deformations corresponding, in our notation to = X 1 . Their results

for propagation along a principal axis can be recovered by appropiate

specialization of formulae given in Section 4.9. When c = 0 the

criterion (4.9.13)	 for the existence of surface deformations

reduces (when r 2 0) to a result of Usmani and Beatty (1974) for the

same strain-energy function. The restricted Hadamard material is

characterized by the strain-energy function

w =	 (X ^	 +	 - 3) + K f(J),	 (4.11.1)

where	 ( > 0) and K ( > 0) are respectively the shear and bulk

modulus of the material in the natural configuration, and the

function f is such that

f(l) = 0,	 f'(l)	 - s/K'	 f''(l) = 1 + 1/3 
/K

(4.11.2)

Possible inequalities on f' (J) and f' '(J) have been considered by

Wilison and Chadwick and Jarvis; we do not impose such inequalities

here.

We assume that r 2 ^ 0 and examine two special cases from Section 4.9.

a) If	 = 'y1 then o = 0 and f''(J) = 0. From (4.9.17) or (4.9.47)

it follows that

- a 12 / Y2'	 (4.11.3)
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and the exclusion condition is

Y1 Y2 - a 12	 (IL X >s 2 + K J f') (L	 X2 - K J f') > 0.

(4.11.4)

Surface deformations are possible where either IL X.1 2 = K J f' (J) or

t X 1 X 2 = - K J f'(J), J being given by f''(J)	 0. only one of these

equations can hold for a given J since IL Xi 	 must be positive.

b) If y2 = 2 then f' (J)	 0 and we obtain

a 22 (a	 -	 - a12	 y2

where ô = K J 2 f''(J). From Section 4.9.2 we find that when 5 > 0 a

necessary condition for the existence of a surface wave is ó < 0

(recall (4.9.30)). Thus, no surface wave exists if ô > 0. On the

other hand, when 5 < 0 the existence of a unique surface wave is

guaranteed if (4.9.45) holds. In particular, if X 1 = >2 the equality

(4.9.32) yields 5 > - 2/3 y, which is stronger than the requirement

a E	 + 5 > 0.

As second example we consider the strain-energy function

W = 2jt (X1 + X 2 +	 + J 1 - 4),	 (4.11.5)

with X 3 = 1. The left-hand side of (4.9.12) now has the form

2IL2	 2 )-2 [7 X X - 2(X1 + X2)]

+

so the exclusion condition is

7 X X > 2(X1 + X 2 ).	 (4.11.6)
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If a,, =	 then 2(X, + X 2 )=	 x 2 and (4.11.6) reduces to 	 > 2X.

When 5	 0 we obatin 2(X, + '2)	 X	 and (4.11.6) is automatically

satisfied.

When 72 = T 2 then X, + = X X and the exclusion condition

(4.9.32) holds. Also &,, - -y, has the sign of 2X 2 - X 1 ; consideration

of (4.9.30) shows that a surface wave exists if X2 < 2/3 X

To illustrate the results for the strain-energy function (4.11.5),

the curves a, = -r 72 = r 2 and & = 0 are shown in (X 1 , X2)-plane

for the region where (4.11.6) holds in Fig. 4.15.

Finally, we note if that 	 = >2 then	 =	 X, a = 4j X 2 and

r = 27 - a; if a = -y then t5 = 0 and x 3 = 4, and the wave speed is

given by pc 2 = 3 (4) 
1/ 3 	= -

y. If -y = r then > 3 = 2, a >	 and

no surface wave is possible.

Figure 4.15 illustrates the results for the strain-energy

function (4.11.5). In particular, the curves (a) 	 7i' (b) 72=

(c) 5 = 0, (d) a 22 (a,1 - y,) = a 2 , (e) equation (4.9.13) in the

(X,, X 2 )-plane in respect of the strain-energy function (4.11.5). The

exclusion condition (4.9.12) holds above the curve (e). The broken

part of (b) is where (4.9.30) fails.
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Chapter 5

Love waves and Rayleigh waves on a layered half-space

In this Chapter we shall consider Love waves in a

pre-stressed layered half-space, where the layer and half-space

consist of different materials. Also, we shall consider Rayleigh

surface waves on a layered half-space.

5.1 Love waves

5.1.1 Results for an incompressible material

We consider a pre-stressed half-space defined by x 2 0 on which

there is a layer of different pre-stressed material of uniform

thickness h with boundaries x 2 = 0 and x 2 = h.

* * *
We assume that (X 1 , X, X 3 ) and (X.1 , X 2 , X 3 ) are the stretches

of the deformation in the half-space and the layer respectively and

let W and W" be the corresponding strain-energy functions. Now

consider propagation along a principal axis by solving equation

(2.6.20) with the boundary conditions given by

O21	 0	 onx2=h,

(5.1.1)

=	
O21 = O21	 °	 2 = 0,

where v and v are given by

	

V = (v 1 , v 2 , v 3 )	 (
0, 0, A e'2 - ikx1 + i()t

(5.1.2)

	

= (vt, v', v')	 (0, 0, (A' cos 5*kx + A''sin s*kx2)).



= C 3 - C2

2
23

=	 -

*2C23

(5.1.5)
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On use of ( 5 .1.2) in the equations of motion (2.6.20), we deduce

that

= 0,

P, 2 = 0,
	 (5.1.3)

A 01313 v 3,11 + A0232 v	 =3	 3,22	 p")-3.

Substituting y in (5.1.3) 3 , we get

A02323 2 - A 01313 = -pc2, (5.1.4)

which gives

A01313 - pc2

A0 2323

Similarly

'.	 *p*Ch - A01313

A*
02323

Then on use of the notation given by (2.7.17), the above equations

become

Substituting (5.1.5) into the boundary conditions (5.1.1), we have

s 023	 A 02323 v3,2 + (A 02332 + p) v 2,3 = A 02323 v 3,2 .	 (5.1.6)

The boundary conditions (5.1.1) give v 2 = 0 on x 3 = h, and

from (5.1.2)2 we obtain

A' sin s kh - A' ' cos s kh = 0.	 (5.1.7)
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2C3

Figure 5.1

*
6.
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5.1.3 Love waves for a neo-Hookean material

Next, to illustrate the general results above we consider a

neo-Hookean material, so that

pc j -LX2	
**2_ * *2

-	 i,	 p c jj - IL X,

and hence equations (5.1.11) and (5.1.10) become

tan	
pc2/

(p*c2/*) - 

*2 (5.1.12)

>%2

Subject to

*2	 2	
(5.1.13)

ILP* 	 IL

On setting

(5.1.13) become

*	 c213 =LL and
p

equations (5.1.12) and

tan 

f 

kh/ TTJ =	 /Ji
/	 *2'

/ 2/ c 3 E -

subject to
	 (5.1.14)

*2

< E < x.

Finally in this section we present some numerical results based

on the secular equation (5.1.14). First of all we specify values of

*	 *

>'2 
and	 ' > 2

 subject to
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*2
___L
	

(5.1.15)

When we take X	 1, X 2 = 0.75 then (5.l.14) can be written as

tan{kh/a_l} 4	 - 1'	
(5.1.16)

subject to (5.1.14)2.

5.1.4 Ectuibiaxial deformation Xi - X3 and X -

By choosing X.1	X, X	 X	 and using the incompressibility

*2	 2constraint (2.2.4) we deduce X 1 = 1 and	 X 2 = 4/3	 1333, so the

secular equation (5.1.16) and (5.1.14)2 can be written as

tan {kh/a	 _i}=3	 E

/ a-1

subject to	 (5.1.17)

< 1.333.
a,3

Next, we solved this equation (5.1.17) to plot 	 as a function of

kh for the following values of a and 3. For the case a = 3 = 1

the results are given in Fig. 5.2; for a = 1 and 3 = 2 the results

are shown in Fig. 5.3; for a = 1 and 3 = 3 see Fig. 5.4; for a = 2

and f3 1 results are in Fig. 5.5; for a = = 2 the results are in

Fig. 5.6; for a = 2 and 3 = 3 the results are in Fig. 5.7; for a = 3

and f3 = 1 the results are in Fig. 5.8; for a = 3 and 	 = 2 the

results in fig. 5.9; and for a = 3 = 3 the results are in Fig. 5.10.

Also equation (5.1.17) was solved for a = 1 with 	 = 5, 10, 50 and

the results are given in Figs. 5.11 - 5.13.
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5.1.5 Results for the linear theory

Here we note that for the special deformation in which

=	 = 1 and X	 =	 = 1, the secular equation (5.2.12)

reduces to

[2 1	 __
I = 0,	 (5.1.18)tan [kh	 -	 I -	 [ i - (pc2/t) 1

[	 j J
	

[ 
1 - (p*c2/*)j

which is the result for the classical linear theory of Love waves

which has been discussed in sections 3.4

5.1.6 Results for a compressible material

In this section we shall consider the corresponding results for

compressible material by solving the equations of motion (2.6.19)

with the boundary coditions

S o 2 i O	onx2=h,

(5.1.19)

=	 =	 on x 2 = 0,

where v and v given by (5.1.2)

From (2.6.19), the secular equations of motion in the half-space

and the layer are

A01313 v311 + A02323 v	 =3,22

(5.1.20)

*	 *
A 01313 v ,11 + A02323 v*	 =3,22

respectively.



= C 3 - C2

2
23

2	 *2*2	 -C13
5 = ______

*2C23

(5.1.21)
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On use of (5.l.2) into (5.1.20)1, we have

A	 s2 - A01313 + pc2 - 0,02323

i.e.

01313 -

Ao 2323

Similarly

= A'131	 pc2

A*02323

Also, by using the notations (2.7.17), these become the same as the

incompressible case (5.1.5) namely

The boundary conditions (5.1.l), leads

A02323 V32 + A02323 v2,3 = A02323 v3,2.

Also, the boundary conditions (5.1.l) gives v 32 = 0 on	 = h,

from (5.1.2)2, we get the same results as in an incompressible case,

namely

tan { kh	
c	 * 2 /c2 - c

}PC3 /c3c2
P C23

This results but not the corresponding results for an

incompressible materaial, was given by Hayes and Rivlin (1961b), but

in different notation.



(5.2.2)

on	 = h,
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5.2 Rayleigh surface waves on a layered half-space for an

incompressible material

In this section, we shall consider Rayleigh waves on a layered

half-space, i.e. we are seeking waves with y = (v 1 , v 2 , 0) for both

incompressible and compressible materials.

* * *
Let us assume that (X.1 , X 2 , X 3 ) and (X,, X 2 , X 3 ) are the stretches of

the deformation in the half-space and the layer respectively, and W,

W are the corresponding strain-energy functions. Also, we assume

that the elastic modulus tensor in the layer is A* and in the

half-space A.

We also assume that

M = (v 1 , v 2 , 0),	 M* = (vt, v', 0).	 (5.2.1)

We wish to solve the incremental equations of motion for an

incompressible material, namely

a2Vk -
Pj'A oj

 ilk aX1aX

with the boundary conditions

s 021 = 0,	 s022 = 0

(5.2.3)

=	
, S O21	 on x 2 = 0,

where oij are similar to equations given in Section 4.1, in all the

following cases the superscript * indicating quantities for the

region X2	 0.
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5.2.1 Plane incremental motion

We take v 3 = 0 and v	 0 and assul1le v 1 , v 2 and v, v are

independent of x 3 . Thus, in the layer there is a function

x 2 , t) such that

(5.2.4)

As in Section 4.1.1, the equations of motion (5.2.2) leads to

a	 + 23 %,1122 + -1	 ,2222	 (;,11 +22),

and similarly,	 (5.2.5)

a* *	 + 23* 
,1122 + 

••Y 	
,2222 = p*(*
	

+22).

Recall the notations (4.1.12)

a = A01212,	 -y = A211,

23 = A 01111 + A 02222 - 2A 01221 - 2A01122,

(5.2.6)and similarly,

*_A	 *Aa -	 01212'	 7	 02121'

2* = A*	 + A*	 - 2A*	 - 2A1122.01111	 02222	 01221

The boundary conditions (5.2.3) become

- A*	 + p*)	 0,02121	 22	 02112

on x 2 = h

A*	 _p*) *
¼ 02211	 02222	 h/,12 -

	 = 0.

(5.2.7)

Similarly, as in Section 4.1.1, to eliminate we must differentiate

equations (5.2.7) with respect to x 1 and on use of the notations

(5.2.6) and equations (2.6.13), the boundary conditions (5.2.7) and

(5.2.3)2 become
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,22 
+ (7* -	

%&, 22 = O

on x 2 = h

* 1*
7	 + (2(3* + ,* - * - *2) k2 	= 0,

'1 \',22 + ( -y - ° 2) k2 ,L' -	 , 22 - 
(7* - r) k2	= 0,

* *7 %1',2 	- ( 2(3 + 7 -	 - pc2) k2 1' -	 1',222	 (5.2.8)

+ (2(3* + 7* - * - p*C2)k2 %1',2 = 0,

on x 2 = 0

- l/
*
,2 = 0,

-	 - 0.I i -

5.2.2 Propagation along a principal axis

We now assume that x 1 , x 2 , t) in the half—space has the form

skx - ikx 1 + iot=Ae	 2

and *(x x 2 , t) in the layer has the form

_s*kx - ikx 2 + i(,)t2

(5.2.9)

(5.2.10)

these lead to

+	
= 2(3 -	 =	 - pc	 (5.2.11)

7

as given in (4.1.18).

Similarly,

*2	 *2 - 2(3* - *2	 *2 *2 -	 -
S i + S2 -	 ,	 S1 S 2 - ______

7*

(5.2.12)
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For Rayleigh surface waves on a layered half-space we must have a

solution for	 in (5.2.5), which decays when x 2 —p -	 and which

satisfies the boundary conditions (5.2.8).

Suppose now that, the general solution for the half- space is

s kx
(A 1 e 11° 2 + A 2 e 2 2) e:Lci)t - ikx1	 (5.2.13)

and for the layer

= (A e 2 + B es(2 + A e12 + B e2) iot —ikxe

(5.2.14)

Next, on use of equations (5.2.13) and (5.2.14) into the boundary

conditions (5.2.8) we get
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* *2s1 +	 - o)} e'' A + [7* 42 + (* - 2) e4111 A

* *2	 _s*kh *
+	 S1 

+ (* - 4)) e 1	 B 1 + [ y* s + (7* - 4)) e4111 B'	 0,

	

s*kh *	 on x 2 = h
42 - (23* +	 - 4) + p*C2) 4 e 1 A1

* s*kh
* *2+ [-1 s2 - (213* +	 - 4) + p*C 2) s 2 e 2	 A

* _s*kh
- [7* 42 - (213* + 7* - 4) + p*c2} s. e 1

- [7* 42 - (213* +	 - 4) + p*c2} 4 eS21 B = 0,

[-ys+y_if2)A1 +ys+7_if2}A2_[Y*4+7_(T2)

- 7* 42 + 7* - 
4) A - [7* 42 + 7* - 

4) B'

- fy* $2 + 7* - 
4) B' = 0,

fy s - (2(3 + 7 - o2) + pc 2} A1 + [y	 - (2(3 + -y - ff 2 ) + pc 2) S 2 A

+ [2(3* + 7* -	 - p*c2 - 7* 42) 4 A

* *2+ [y s1 - ( 213* + 7* -	 - p*c2) 4 A

+ [2(3* + 7* - 4 - p*c2 - 7* 42) 4 B'

* *2+ [ 7 2 - (2(3* + 7* - 4) + p*c2) 4 B = 0,	 on	 = 0

s 1 A 1 + 2 A2 - 4 A + 4 B - $ A + 4 B' = 0,

A1+A2_A_B*_A*_B*0.1	 2	 2
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On use of equations (5.2.11) and (5.2.12), the above equations become

* (s 2 + 1) - y }	 A' + {* (s' 2 + 1) - r} e41th A

*2	 _s*kh+	 * (*2 + 1) - ff} eSl B + (y* (s 2 + 1) - o} e 2	 B = 0,

* * s*kh1Iy* s (s 2 + 1) - °2 s 1 } e 1	 A
on x 2 = h

* s*kh
+.y*s*(s*2+1)_ff*s}e2	 A'

* _s*kh- Cy* s (s 2 + 1) -	 e

-	 s' (s 2 + 1) - o s) e' B = 0,

C y ( s + 1) - 02) A 1 + ( ( s + 1) - 2} A2 - * (2 + 1) - ofl A

- * (*2 + 1) - o} 4 - 
y* ( s*2 + 1 - o} B

- cI.y* (*2 + 1) - o} B = 0,

-y s 1 (s + 1) - o 2 s 1 } A 1 + :y s 2 (s + 1)	 02 2} A2

_** (s*2+1)_ff*s*}A*+(y*s(s'2+1) —s}A

* s (s' + 1) -	 s	 B +	 s (s2 + 1) - o s	 B = 0,

s 1 A 1 + s 2 A 2 - s 4 + s 4 - s B + s B = 0,

A1+A2—A—A—BB0.
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For the special case	 = 0 and or = 0 these reduce to

,* (*2 + 1) e1hI A + 7* (*	 s*kh *-i-1)e 2	A

* *2	 _5*kh *
+ -y (s., + 1) e 1	 B1 + -y (s 2 + 1) e_Skh B = 0,

s(s + 
1) s*kh	 * *2	 s*kh

e 1	 A +	 s2(s1 + 1) e 2

e 1	 B -	 *(*2 ^ 1) _s*kh- ,,* *(*2 ^ 1) 
_s*kh

e 2	 B'=0,

*2
-y (s + 1) A1 + -y (s + 1) A2 - y*	 *2 + 1) A -	 (	 + 1) A'

- 7* (*2 + l)B - 7* (s 2 + l)B = 0,

-y s.1 (s + 1) A1 +	 2(1 + 1) A2 -
	 s'(s2 + 1) A'

* * *2+ -y s 1 (s 2 + 1) A' - 7* s(s' 2 + 1) B - 7*	 + 1) B* = 02

s 1 A 1 + s 2 A 2 - s A + s A - s B + s' B' = 0,

A 1 ^A2-A-A-B-B=0.

For these equations to have non-trivial solutions for Ai, 4, Bt,
i	 , 2), we must have
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0	 0	 ..,*(s*2+1)	 *(s*2+l)	 ,*(s*2+l)	 y*(s*2+1)

	

s*kh	 s*kh	 _s*kh	 _s*kh
e	 e2	 e 1	 e 2

0	 0	 *s*(s*2+l)	 *5*( s*24l)	 *s*(5*2+1)	 *s*(s*2

s*kh	 s*kh	 _s*kh	 _5*kh
e'	 e2	 e	 1	 -4-1)e	 2

y(s +1) 'y(s +1) 	 *(s*2+l)	 *(s2+1)	 *(s*2+l)	 *(S2+l)

2	 ** *2ys 1 (s	 'ys2(s	 —'y s2(s

+1)	 +1)	 +1)	 -i-i)	 +1)	 +1)

Si	 S2	 -S	 S	 -S	 S

1	 1	 —1	 —1	 —1	 —1

(5.2.15)

This equation (5.2.15) is the secular equation of Rayleigh

surface waves on a layered half—space propagating along a principal

axis Because of complicated algebra involved we omit details here.
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5.2.3 SpecialIzation to the linear theory

In this section, we shall specialize the theory using equation

(2.7.19), so equations (5.2.11) and (5.2.12) reduce to

ss=i-2

*2 *2 *2	 - p*c2
s1 +s2=2_	 s1 s 2 l -,

i.e.

*21, s = 1 - (pc 2/),	 = 1 and s 2 = 1	 - (p*c2/,z*), which

was given in section 3.2. Also, the secular equation (5.2.16) becomes

0	 0	 IL*(s*2+l)	 *(s*2+l)	 ,L*( 5*+l)	 *(S2+l)

	

s*kh	 s*kh	 _s*kh	 _s*kh
e 2 	e 1	 e 2

*2	 ** *2	 ** *20	 0	 j*s(s2+l)	 t*s(s 1 +1) - s 1 (s 2 +1) - s2(s1

s*kh	 s'kh	 _s*kh	 _s*kh
e 1 	e e 1	 +l)e 2

(s +1)	 (s +1) _,L*(s*2+1) _*( 5 2+1) _*( s 2+l) _*(S2+1)

(s	 ts2(s	 _,L*s*(s*2	 **(*2	 _**(*2	 **(*2

+1)	 +1)	 +1)	 +1)	 +1)

Si	
2	 -s	 -s'	 s

1	 1	 -1	 -1	 -1	 -1
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This is the secular eqution of Rayleigh waves on a layered

haf-space for linear theory. Also because of complicated algebra

involved we omit details here.

5.3 Rayleigh surface waves on a layered half-space for a compressjble

material

As in Section 4.8, the equations of incremental motion lead to

= A 01111 V 1 , 11 + A 011 22 V 2 , 21 + A 021 21 v 1 , 22 + A 0211 2 v 2 , 1 2'

(5.3.1)

PV 2 	 A 01212 V 2,11 + A 01221	 1 ,12 + A 02211 v1 ,12 + A 02222 v2,22

as given (4.8.6), for the half-space.

Similarly,

p*V) = A*	 *	 *	 *	 + A*	 *	 + A*	 v1

	

01111 v1	 ,	 + A 01122 v2,21	 02121 v1 ,22	 02112

(5.3.2)

v*	 +A*	 *

	

**	 A*	 *	 *	
1,21	 02211	 ,12	 02222 v	 22'p	 2	 01212 V 2,11 + A01221

for the layer.

Assume now v 1 , v 2 and v', v' are given by

skx + i()t - ikx1
V 1	 A 1 e	 2

= A2 eSlQC2 + ict - ikx1

—skx + ic,t - ikx 1	(5.3.3)
v'=Ae	 2

—skx + i,)t - ikx1
v=Ae	 2
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Also, as in Section 4.8 these lead to

s + s =

A01 111 A 02222 + A021 21 A01 21 2 -(A 01 122+ A021 1 2 ) 2-(A 021 21+ A02222)pc2

A02222 A02121

(5.3.4)

22	 (A01111 - pc 2 )(A 01212 - pc2)

A02222 A02121

and similarly

*2	 *2
1

A*	 A*	 + A*	 A*	 - (A1 1 2 2 
A*	 2 (A*	 + A*

01111	 02222	 02121	 01212	 02112	 02121	 )pc

A*	 A*
02222	 02121

(5.3.5)

	

*2 * 2	 (A*	 - p*c2)/A*	 - p*c2)01212

	

S 1 S2	 =	 01111

A*	 A*
02222	 02121

Next, we wish to solve the incremental equations of motion

(2.6.19) with the boundary conditions given by

S 022 = 0	 on x 2	h,

(5.3.6)

5 02i = O21,	
= : L*	 on x 2 = 0,

also, 5o2 are similar to equations given in Section 4.8.
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i.e.

A*	 v', 1 + 
A*	

2	 0,02112	 02121

on	 = h

A*	 v', 1 + 
A*	

2 = 0,02211	 02222

* + A*	 vA021 12 v2, 1 + A021 21	 l, 2 - ¼ 02112	 2, 1	 02121	 1,2) = 0,

(5.3.6)

v	 + A*	 V, 2) = 0,A0 221 1 V1 ,	 + A0 2222	 , 2 - ¼ 02211	 1 , 1	 02222

onx2=0

v' - v' = 0.

For Rayleigh surface waves on a layered half-space we must have a

solution for v 1 , v 2 in equations (5.3.3) which vanishes when x 2 - -

and which satisfies the boundary conditions (5.3.6).

Suppose now that

v1 = (A 1 e 12 + B52kX2	 ikx -) e	 1

(5.3.7)

skx	 skx	 jkx -it
v 2 = (Ae 1 2 + B2e 2 2 )e	 1

for the half-space, and

=	 e 1 2 + B e 1 2 + A e 22 + B e212) el)t - ikx1(A skx
	 skx

(5.3.8)

=	 e 1 2 + B' e_5ikX2 + A e22 	 * —s kx	 iO)t - ikx1
v	 (A skx +B2e 2 2)e

for the layer.
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To get the Rayleigh waves on a layered half-space for a compressible

material, we must diffrentiate equations (5.3.7) and (5.3.8) and

substitute them into the boundary conditions (5.3.6) using equations

given by (4.8.14) namely

= A01111 - A02121 s - pc2

A1	 s	 (A01122 + A02112)

= A 01111 - A	 - pc202121	 2

B 1	 s2 (A 01122 + A02112)

and similarly

iA* _A*	 - A*	 *2	 *
_2	 01111	 02121 s 1	- p c2)

A	 s(A*	 +A*	 )01122	 02112

*2iB = -(A 1111 - A 2121 s 2 - p*c2)

B	 s(A*	 +A*	 )01122	 02112

But also, because of the algebra getting more complicated than for

the incompressible case we not give details here.
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Chapter 6

Interfacial waves at the boundar y between two pre-stressed

incompressible elastic half-spaces

6.1 Stoneley waves propagating: along a principal axis

Here, we shall discuss Stoneley waves on an interface between two

pre-stressed elastic half-spaces of incompressible elastic material

bonded together.

6.1.1 Analysis for interfacial waves

We consider two half-spaces of incompressible isotropic elastic

material. The half-spaces are subjected to pure homogeneous strains

and then bonded along their common (plane) boundary in such a way

that the principal directions of strain are aligned, one direction

being normal to the interface. In rectangular Cartesian coordinates

we take the interface to be x2 = 0. Let B denote the deformed

half-space in the region x 2 < 0 and B* that in x 2 > 0. The x 1 and

coordinate axes are taken to coincide with the principal directions

of the pure strain that are parallel to the interface.

Let X 1 , X, X 3 and X', X', )	 denote the principal stretches of

the	 deformations	 in B	 and B*	 respectively.	 Then,	 by

incompressibility, we have

l >'2	 = 1,	 >4 >4	 1.	 (6.1.1)

We suppose that W(X 1 ,X 2 ,X 3 ) and W*(?4,)4,>4) are the strain energies

of the material per unit volume in B and B* respectively. Let

cr 3 and r, o, o4 be the corresponding principal Cauchy stresses;

then



v1,1 + v 2 + v 3,3 = 0.2, (6.1.6)
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8w
= xi :;- - P

OXj

(6.1.2)

- xi s- -	 i
' *

where p and p are arbitrary hydrostatic pressures in B and B*

respectively.

Continuity of traction across the interface requires that

=
	

(6.1.3)

Let	 be the velocity in B associated with an incremental

(infinitesimal) motion superimposed on the underlying deformation.

The incremental motion is governed by

(6.1.4)oji,j = P'j.

Using the incremental constitutive equation (2.6.11) we get

82v
A0 ilk	

-	
= pvi. (6.1.5)

Since the motion is isochoric the displacement is governed by

6.1.2 Plane incremental motion

We now take v 3 = 0 and assume v 1 , v 2 are functions of x 1 , x 2 and

time t only. Equation (6.1.6) reduces to

v1,1 + v2,2 = 0,	 (6.1.7)

and hence there exists a function '(x 1 , x 2 , t) such that
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=

and similarly

* =v1	 W,2'

= -it', 1

(6.1.8)

_r,

for B*, where	 is the velocity in B*.

As in Section 4.1, the incremental equation of motion (6.1.4) leads

to

(A01111 - A01122 - A02112)	 ,112 + A02721	 ,222 - P, 1 = P,2'

(6.1.9)

(A01 221 + A0221 1 - A02222)	 , 122 - A01 212	 111 - P 2 = PV, 1

Recall the notations given by (4.1.2)

= A 01212 ,	 = A02121,

2/3 = A01111 + A02222 - 2A01221 - 2A01122

Similarly, we introduce corresponding notation for B*

A	 *_A
-	 01212'	 Y -	 02121'

2/3* A*	 + A*	 - 2A*	 - 2A1 1 2201111	 02222	 01221

As in Section 4.1, the incremental equations (6.1.5) lead to

c t',1111 + 2 13 \",1122 + 7 \t', 2222 = i(', 11 +
	

(6.1.11)

(6.1.10)

where p is the mass density of the material in B and a superposed dot

denotes differentiation with respect to t. The coefficients a,/3,-y on

the left-hand side of (6.1.11) are (constant) material parameters

defined, in terms of the strain-energy function W and the principal

stretches, by
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a	 -y X	 1	 l - >'2 W 2 ) x 2 2
1	 2	 (6.1.12)

-

2(3 + 27 = X	 +	 W	 - 2 )' >'2 W12 + 2 >%2 W2,	 (6.1.13)2	 22

82w
where W j = -, Wjj =	 . When X 1 = 2 these reduce to

ex axj

a =	 =	 (X W11 - X W12 +	 Wi),	 (6.1.14)

where the right-hand side is evaluated for X. = 2• Moreover, in the

undeformed configuration, where > = 2 = 	 = 1, equation (6.1.14)

reduces to

a = (3 =	 =
	 (6.1.15)

where IL ( > 0) is the ground-state shear modulus of the material.

Similarly for the material in B* , a* (3* and 7* are defined

analogously to (6.1.12) and (6.1.13), and the velocity components v

and v' are given by (6.1.8) 3,4 where	 satisfies the equation

* *	 ^2(3* *	 * *	 *a	 ,1122 + -y	 2222 = p (	 +*22) for x 2 > 0.

(6.1.16)

6.1.3 Propagation along a principal axis

An interfacial wave is characterized by the fact that its

amplitude decays rapidly away from the interface; we therefore seek

solutions for which - 0 as x 2 - - and -f 0 as x 2 - . For

simplicity we consider time-harmonic waves propagating in the

x 1 -direction and, in B, we take to have the form

skx - ikx 1 + it
=Ae	 2
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Then equation (6.1.11) yields

'y	 - (2(3 - pc2) 2 + c - pc2 = 0,	 (6.1.17)

and if s and s are the roots of the above quadratic equation then

+	 2(3 - PC2	 ss =	
- pc2	 (6.1.18)

7	 7

Either s and s are complex conjugates or, for consistency with the

requirements on 1', s and s are positive. Allowing, exceptionally,

for the possibility of one of s or s 2 vanishing, we deduce from

(6.1.17) that

0 ' pc2	c,	 (6.1.19)

it being assumed that the inequalities of the strong ellipticity

conditions (2.5.18) hold.

The solution for in B may now be written

- ikx1
= ço(x) e	 x2 < 0,	 (6.1.20)

where

s kx	 s2kx2	
(6.1.21)= A 1 e 1 2 + A 2 e

A 1 and A 2 are constants, and s and s 2 are the solutions of (6.1.17)

with positive real part.

Similarly, in B*,

ict - ikxe	 1	 x 2 > 0,	 (6.1.22)

with

*(x) = A' e_	
kx2 + A e	

kx2	
(6.1.23)



207

where A and A' are constants, and s and s are the solutions with

positive real part of the analogue of (6.1.17) for B*. Thus,

+ *2 = 2 (3* - p*c2	
s2s2 =
	 -_P2.	

(6.1.24)

and

0	 p*c2
	

(6.1.25)

in parallel with (6.1.18) and (6.1.19)

Next, for the two-dimensional motion considered here the active

components of the nominal traction rate on x 2 = 0, as measured in B,

are	 O21 and 022 For B* the corresponding components are 	 and

o22• We assume that on x 2 = 0 the velocity and traction rate are

continuous, so that the boundary coditions are

that is

O21 = 502i	 Ofl	 = 0,	 i. = 1,2

V1 - v' = 0,

v2 -	 = 0,

- A*
A0 21 21 v1 , 2 + (A0 1 221 + p)	 2 ,	 021 21 V1 2

(6.1.26)

- (Al221 + 
p )	 = 0,

A01 122 v1, 1 + (A 02222 - p) V2, 2 -	 - A*
01122	 1,1

- (A2222 - p*) v',2 -	 = 0.

On use of the notations in (6.1.10), (2.6.18) and (6.1.8) the

above equations may be rewritten as
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1*
-	 = 0,

-	 = 0,,1

(6.1.27)

*
Y ,22 - ( 7 - O) /,11 -

	
,22 + 

(* -
	 )	 = 0,

(A01122 - A02222 - P % ' , 12 -	 + (A*	 - A*	 + p*) P1,12 + P= 0.02222	 01122

From (6.1.9) we have

[A 111	 A01122 - A 02112 ] 1/',112 + A 02121 %1',222 -

and similarly
	

(6.1.28)

•*	 rA*	 _A*	 _A*	 * p* *
P, i = 1 01111	 01122	 02112J	 ,112 + A2121	 ,222 -

To eliminate j and j we must differentiate equations (6.1.27) 4 with

respect to x 1 and using equations (6.1.28) and the notations in

t1n 1oith	 ation o (6.1.27 becomes

* *
Y	 ,222 - ( 23 +	 - cr 2 ) il', 112 - P•;i , 2	'Y	 It',222

-	 +	 - 2)ll2 
+ 

P	 0.	 (6.1.29)

On use of equations (6.1.20) and (6.1.22) in the boundary

conditions (6.l.27)1_3 and (6.1.29) and also use (6.1.18) and

(6.1.24) in (6.1.29) , we have
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s. A+S2B+&A*+S*B*0

A + B - A* - B* = 0,

(6.1.30)

[y (s + 1) - if 2 ]A + [y (s + 1)— if2]B - [7* (s 2 + 1) -

-	 (s2 + 1) - if*] B' = 0,

s1 [y (s ± 1) - if 2 ] A + s2 [ (s + 1) - °2] B

-	 *	 *2	 -	 -	 (s'2 + 1) - a'3 B* = 0.

For these equations (6.1.30), to have non—trivial solutions we must

have

*	 *Si	 Si
	 S2

1
	

1	 —1	 —1

7(S 1 + 1)	 7(S + 1)	 *(5*+ 1)	 *(*^ 1)	 =0,

if 2	—if'	 —if

s 1 I,-y(s 1 + 1)	 s27(S2 + 1)	 s1y*(s1 + 1) S7*(S	 + 1)

- o 2}	 - r 2 }	 - o2}	 - if2)

which gives
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(s 1 - s 2 )(s - s)[l - 2 s 1 s 2 - s 1 s 2 [s + s + sisi]1

+ y	 (s1 - s2)(s - s)t[sl + s 2 ] [s + s] [s1s2 + s's']

- 2[ s 1 s 2 + S 1 S 2 - SS2SS -

+ 27 ( s - s 2)( s i - s' )[ s 1 s 2 [T 2 - T 2J	 [2 -

+ y*2 (s - s 2 )(s - s)fl - 2 ss - s's'	 + s2 + ss]I

+ 27* ( s i - s 2)( s i - s')[[cr 2 - o]_ ss[ff 2 -

+ (s - s 2 )(s - s')[o - 2o2cr + o 2 1 = 0,

As in Section 4.1, we assume that s. ^ s 2 and s' ^ s. On removal

of the factors (s 1 - s 2 ) and (s - s') the above equation reduces to

72 [1 - 2 s 1 s 2 - s 1 s 2 [s + s + sis2J}

+ s2] [s + s] [s 1 s 2 + ss] - 2[ s 1 s 2 + ss - s 1 s 2 s's _i]J

+ 27 [sis2[o2 - o}— [if2 - a}]

** r *2	 *2+ 7*2 [1 - 2 ss' - 12 IS1 + S 2 -4- SS}]

+ 2y* [[if 2 - oJ— s1s'[2 - (T]] + [cr - 2if2O 
+ (J2} 

= 0.
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Also, this equation for the case	 2 reduces to

.2 1ss - 1 + s 1 s 2 [s + s - 2]]

- 77* [2[ 
12 +	 - 1212 1]

- [s + s] [s +	 ] 
[s 1 s 2 + ss}]

+ 7*2 [*2*2 - 1 + ss' [2 + s' 2 + 2]] (6.1.31)

On use of (6.1.18) and (6.1.24), the secular equation (6.1.31)

becomes

a - - pc2 + 2( + a) -
72 1 	 1'	 7	 7	 J

- 
7* 2[[a pc2] + [a* _ P*c2] - [a PC2] - [a* - p*c2

I	 7*	 ] _i}

i.e.

-	 -pc + 2 {a _Pc2] }{23*. P*c2 + 2[a - P*C2}

7 7*

H
a - PC2] [a* - P*c2

7*

a - 7* - *2 + 2(3* + a*) - * 2 a* -
______________	 __________________	

0. (6.1.32)
7*	 * -[	 7*

7
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f(c)	 (2(3 + 27 - pc 2 )('y (a - pc2)) + 'y (a - pc2) - 72

+ (2 (3* + 27* - p*C2)(7* (a* - p*c2)) + 7* (a* - p*c2) - 7*2

+ 2['y - (y (a - pc2)}] [7* - (7* (a*	 p*c2)}]

+ [(7* (a - p2)} + (-1 (a - p*C2))

[2(3 - pc 2 + 2(7 (a - pc2)} ]

[2(3* - p*c2 + 2(7* (a* - p*c2)} ]	 0,	 (6.1.33)

where the left-hand identity defines the function f.

Equation (6.1.33) is the secular equation governing the speed of

interfacial waves. Whether or not such waves exist depends crucially

on the values of a, (3, y, a*, (3* 7* and Equation (6.1.33) is

new although special cases of it have been considered previously by

Chadwick and Jarvis (l979a,b). In the linear theory the

specialization of (6.1.33) coincides with Stoneley's (1924) original

result for incompressible materials but is expressed in different

notation.

From (6.1.19) and (6.1.25) we have

a0 ( c 2	mm (-, -}.	 (6.1.34)
P p

By introducing the notation

	

2 a	 *2 a*

	

CL,	 c=—

	

P	 P*
(6.1.35)

and, without loss of generality, taking c, CL and c to be

non-negative, we obtain
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0 ( C < finn (CL, c}.	 (6.1.36)

The limiting speeds CL and c for the separate half-spaces are the

speeds of plane shear waves in B and B* respectively.

We note that the inequality

y (s 1 + s 2 ) 2	2- pc2 + 2y(a- pc2 )} >0

is a consequence of the strong ellipticity condition (2.8.15)2 and

our assumptions concerning s 1 and s 2 , and when c = 0 it reduces to

(2.8.15) 3 . We also note that (6.1.33) does not depend explicitly on

th interfacial traction a 2 , a fact also pointed out by Chadwick and

Jarvis (1979a) in the case they considered.

6.2 Analysis of the secular equation

Here we shall examine the secular equation (6.1.33) in detail,

but we shall consider first some specializations of (6.1.33).

6.2.1 Surface waves on a half-space

We specialize to the case in which & 	 =	 = 0 corresponding

to the situation in which there is no material in x 2 < 0. The secular

equation (6.1.33) then reduces to

g(c)	 (23 + 27- pc2 )f7(o - pc2)} + y (c - pc2) _72 = 0,

(6.2.1)

where the function g defined as g(c 2 ) in Chapter 4.

This is the equation derived in Chapter 4 for the speed of

propagation of Rayleigh surface waves on a half-space with °2 = 0. We

now note some features of (6.2.1) which were discussed in detail in

Section 4.2.
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First, necessary and sufficient conditions for (6.2.1) to have a

unique solution c c [0, CL) are

> 0,	 2(fi +	 +	 - 7 > 0,
	 (6.2.2)

7

with equality corresponding to c = 0. Together, the inequalities

(6.2.2) imply that the strong ellipticity inequalities (2.8.15) hold.

In the notation

= ((a - pc2)/7},

equation (6.2.1) can be expressed

—a
g(c)	 3 +	

+ 2 + 2	 - 1 =
7

and , must lie in the interval

o	 < ()
7

From (6.2.3) we also have

pc2 = -

Given ( 6.2 . l ), the inequality ( 6.2 . 2 ) 2 can be expressed as

g(0) > 0.

(6.2.3)

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)

In the special case	 =	 use of (6.1.14) shows that

+ 2 + 3ij - 1,	 (6.2.8)

and the unique positive solution, m say, of g(c) = 0 in this case is

approximately
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'10	 0.2956,	 (6.2.9)

and

= 1 -	 0.9126.	 (6.2.10)

6.2.2 Interfacial deformations

The possibility of interfacial deformations arises if (6.1.33)is

satisfied for c = 0. With c = 0, in the notation g and its analogue

g* for B*, defined by

g*(c)	 '1*3 + '1* 2
 + 2* + 27* -	

- 1,	 (6.2.11)
1*

where

= C(	
- p*c2)/7*}	 (6.2.12)

equation (6.1.33) can be written as

f(0)	 72 g(0) + *2 g*(0) + 2(7 *) (7 - a)(7* - a*)

+ [	
+ (	 g(0) +	 -

17* g*(0) + (* - a*)2} = 0. (6.2.13)

Interfacial deformations described by (6.1.20)-(6.1.23) with c = 0

and k arbitrary are possible in configurations for which f(0) = 0.

When X1 =	 and	 = X	 the left-hand identity in (6.2.13)

becomes

f(0)	 4(7 + 7 ) ,	 (6.2.14)
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which reduces to 4(,z + ,t*)2 in the reference configuration X 1= X= 1,

i (1,2,3), where is the ground-state shear modulus for B*. Since

f(0) > 0 in this reference configuration it follows by continuity

that interfacial deformations are excluded on any path of deformation

in (X 1 , X 2 , X, X)-space, from the reference configuration along

which f(0) > 0, with interfacial deformations emerging if f(0)

vanishes. We refer to the inequality f(0) > 0, with f(0) given by

(6.2.13), as the exclusion condition. For surface deformations in the

separate 1na'iI-spaces, and P, the exclusion conditions are g(0) > 0

and g* ( o ) > 0 respectively. In the context of surface deformations

the exclusion condition has been examined in detail in Chapter 4.

From (6.2.14) we conclude that interfacial deformations cannot

exist in configurations for which >' =	 and X	 X' (and hence

= , 
* = 

-y') . We are now in a position to establish the following

result.

THEOREM 1. If g(0) > 0 and g*(0) > 0 then f(0) > 0.

Proof	 If c = 'y then g(0) = 4 and

f(0)	 4 72 ^ 7*2 g*(0) + 2	 (7* +

(* g*(0) + (7* -

It follows that f(0) > 0 if g*(0) > 0 (this includes the case in

which a* 7*)

If c ^ -y, & ^ y*, g(0) > 0 and g*(o) > 0 then two possibilities

arise: either (a) (-yb - - c*) > 0, in which case f(0) > 0

follows immediately from (6.2.13), or (b) (y - a)(y* - a*) < 0,

and it follows that
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2
f(0) > 1LD:i J (y - a) (* - a*) J { [* 

a] - {- a*] }a J

(6.2.15)

and hence the required result.

If g(0) = g* (0) then f(0) can vanish when	 a = y a', but this

is inconsistent with the inequality (-yb - a)( y* - a*) < 0 in (b).

Hence

= i] (y - a) (* - a*) { [* a] + [ a] },Icx a

which is positive.

It follows from this theorem that a necessary condition for the

existence of interfacial deformations is that either g(0) < 0 or

g*(0) < 0.

6.2.3 Limiting cases

With reference to (6.1.33) we assume, without loss of generality,

that

0	 c < cL	 c.
	 (6.2.16)

We consider two limiting cases:

(a) C - CL < c

From (6.1.18) we have s 4 = 0, so we take s 2 = 0 and

4 = ( 2 - a)/y. It follows from (6.1.20)-(6.l.23) that

s kx	 s2kx2) i(czt - kx1) 	
(6.2.17)= (A 1 e	 2 + A 2 e	 e

= (A	 kx2 + A e	
kx2) e(1)t - kx1)	

(6.2.18)

and the boundary conditions are adjusted accordingly.



218

For the first term in (6.2.17) to represent an interfacial wave we

require 23 > c. The second term in (6.2.17) corresponds to a plane

shear wave in B. In general these two waves cannot exist

independently: if A 1 = 0, it is easily shown that A = A = A' = 0

follows from the boundary conditions; similary, if either A 2 = 0 or

s 1 = 0 (2(3 = y) then the trivial solution again follows unless either

s = 0 or s = 0, as exemplified in case (b) below.

Thus, in configurations in which f ( cL) = 0, a wave of the form

(6.2.17) in B and (6.2.18) in B* can propagate with limiting speed

CL, but (6.2.17) does not represent a true interfacial wave.

(b) C - CL c

In this case (6.1.33) gives

f ( cL) = -ey -
	 (6.2.19)

We take	 2 = s = 0, s	
2(3 - c	 *2 = 2(3* -	 , and the boundary

•1*
conditions yield the trivial solution unless -y = y. If , = 	 it

follows that A 1 = A = 0 and A	 A2. The result is a plane shear

wave given by

i(t - kx1)	
(6.2.20)=	 = A 2 e

Such a wave is only possible under the rather restrictive conditions

= 7* and / =

In the linear specialization the result in (a) above can be

compared with that in Case 3 of Barnett at al. (1985, p161). On the

other hand, the restriction in (b) reduces to IL* =	 = p in the
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linear theory, i.e. the two materials are indistinguishable (see

Barnett et al., 1985, Case 4). Note, however that the work of Barnett

et al. was set in the context of compressible linear elasticity.

6.2.4 The general case

The secular equation (6.1.33) can be expressed more compactly in

terms of the notation (6.2.3) and its counterpart for B*. Thus, with

= I( - pc2)/.y},	
= (* - p*c2)/ y*}	 (6.2.21)

equation (6.1.33) becomes

*2 *f(c)	 72 g(c) + •y	 g (c) + 2	
7* (1 - )(l -

+ 7 7* ( + *)	 [g(c) + (fl - l) 2 ] [g*( C ) + (* - 1) 2 ] = 0.

(6.2.22)

We assume that the exclusion condition f(0) > 0, discussed in

Section 6.2.2, holds. In a limited sense this means that the

underlying homogeneous configuration is stable. If we also assume

that the limiting speeds are ordered as in (6.2.16) it follows that a

sufficient condition for the existence of an interfacial wave with

0 < C < CL is therefore

f(cL) < 0,	 (6.2.23)

where

f(cL)	 - 72 + 
7*2 g*(c) + 2 7*(l_	 )

+ 7 7* 11t [(2fl - c)/7] [g*(c) + ('1 -

(6.2.24)

and

-	

* - p*

-	 p 7*
	

f•	
(6.2.25)
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The limiting case c	 CL was discussed in Section 6.2.3 and is not

considered further here.

Clearly, circumstances in which (6.2.23) can be satisfied depend

very much on the values of c, 3, -y, &, j3* , ,* and */ In

particular, (6.2.23) can be satisfied if 7*/y is sufficiently small.

Whether or not (6.2.23) is also necessary for the existence of an

interfacial wave depends on the properties of f(c) for 0 < c < CL.

For a single half-space, it has been established in Chapter 4 that if

a surface wave exists it is a unique. The question of uniqueness in

the present situation is not clear because f(c) is more complicated

than g(c); at this point it has not proved possible to settle the

question in general, although, as we see below, uniqueness can be

established in some special cases. However, some general conclusions

can nevertheless be drawn.

Firstly, if CL = c then

f ( cL) = - (y -

If y ^	 then the existence of an interfacial wave is guaranteed.

The case	 =	 was discussed in Section 6.2.3

Let CR and c be the (unique) positive surface (Rayleigh) wave

speeds for B and B* respectively, so that

and

g(c) = g*($) = 0

g(0)>0	 for OccR,

g*(0)>0	 for

(6.2.26)

(6.2.27)
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THEOREM 2. (a) If CR ^ 4 then

f(c) > 0 for 0	 c < nun ( CR, 4).	 (6.2.28)

(b) If CR = 4 then

f(c))Ofor OC<CR = 4	 (6.2.29)

with equality holding if and only if C = CR and either

pc = 2(3 + 27 =	 - 7, 
g*() = 0	 (6.2.30)

or

p*C	 2(3* + 27* = * -	
(R) = 0.	 (6.2.31)

Exceptionally, (6.2.30) and (6.2.31) can hold simultanceously.

Proof (a) This result follows immediately by using an argument

parallel to that required for the proof of Theorem 1.

(b) If CR = 4 then, by the same argument as in (a), we have f(c) > 0

for 0 C < CR; we also obtain

f( cR) = y 7*(i 
*)_ 

I('i - l)(,J* - 1)1 (, + y

where c = sign (( - l)(* - l)}, and , and 	 are evaluted for

C = Cp. The solution	 (for if = - 1) of f ( CR) = 0 is

inconsistent with cr = - 1. Hence f ( CR) > 0 with equality if and only

if either = 1 or	 = 1 (or both).

We deduce from (6.2.3), (6.2.4) and (6.2.26) that (6.2.30) holds.

Similarly, for	 = 1, equations (6.2.31) hold. Exceptionally, 	 = 1

and	 = 1 can hold simultaneously if

c	 (2(3 + 27)/p = (a - 7)/p = (2 (3* + 27*)/p* = (a* -

(6.2.32)

This completes the proof.
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For CR ^ 4 it follows that if an interfacial (Stoneley) wave exists,
with speed c 5 say, then

Cs > mm ( CR, 4),	 (6.2.33)

i.e. the Stoneley wave speed is greater than the speed of the slowest

of the Rayleigh waves for the separate half-spaces (for the same

underlying state of deformation). This extends to the nonlinear

theory a result which is well known in the linear theory (see Barnett

et al., 1985).

The inequality CL < c, adopted in (6.2.16), does not in general

imply that CR < 4. If CR ^ 4, then the following wavespeed
orderings are possible, depending on the material properties and the

underlying deformations of the two half-spaces:

(i) CR < C5 < 4 < CL c,

(ii) CR < 4 < C s < CL < c,

(iii) CR<Cs<CL<C<C,	 (6.2.34)

(iv)4 < C < CR < CL C,

*(v)$ < CR < C < CL ' CL.

Case (iii) is excluded if CL = C.

If CR = $ then any possible Stoneley wave has speed c such that

CRC<Cs<CLC	 (6.2.35)

In the case in which c 5 = cR it is worth noting, with reference to

(6.2.3), that the strict form of the inequality (6.2.2)2 is

equivalent to - > 0.
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The solution C s 	 CR = 4 corresponding to (6.2.30) yields s 1 =

s 2 = - i, and hence, from (6.1.20) and (6.1.21),

= 
(A1 el02 

+ A 2 e 1 2) e)t - kx1)	 (6.2.36)

while, for ,j' ^ 1,	 is given by (6.1.22) and (6.1.23), with s' and

s' evaluated for c = CR, provided 
g*(c) 

= 0 holds. The boundary

conditions (6.1.30) show that A, A and A 2 can be expressed in terms

of A 1 . Although (6.2.36) does not describe an interfacial wave, it

can be interpreted in the following way: the terms in A 1 and A2

correspond to plane shear waves propagating in B in directions

bisecting the coordinate axes, are a wave incident on the plane

boundary x 2 = 0 and the other reflected from it with changed

amplitude. The incident wave also generates a transmitted wave which,

in B*, corresponds to an interfacial wave propagating in the

x 1 -direction.

If =	
= 1 then the above solution degenerates to

jkx	 -ikx	 i(cLt - kx1)	 (6.2.37)=	
= (A 1 e	 2	 A 2 e	 2) e

with A 1 and A 2 independent. This represents two independent plane

shear waves which cross the boundary x 2 = 0 without change in

direction or amplitude.

At this point it is worth noting that the condition 23 +2y = -

arising in (6.2.30) can be expressed compactly in terms of the

strain-energy function. If we write

(X 1 , X 3 ) = W(X	 X	 >%1 X 3 )	 (6.2.38)
1'	 1	 3

then, from (6.1.12) and (6.1.13), it follows that
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2 13+2y=X 11, 	 &-y=X11.	 (6.2.39)

Hence, (6.2.30) requires that

l	 11 ='l
	 (6.2.40)

6.2.5 Results for biaxial deformations

If the underlying deformations in the two half-spaces are biaxial

with	 2 and X	 X, then, from (6.1.14), we have c = f3 =

and, similarly, y* = fi* 	 .y* Equation (6.2.22) then reduces to

f(c)	 2 (3 + 2 + 3 - 1) + 7* ( *3 + *2 + 3* - 1)

+ 2	 (1 - )(1 - *) +	 ( i + *)( + l)(* + 1) = 0,

(6.2.41)

where

-	 - PC	
=	 - c

[l	

2	

[-	 -j,	 c*J
(6.2.42)

Also, recalling (6.1.14) and (6.1.15) and their counterparts for B*,

we obtain

CR CL( l -	 4 = c(l —

It follows that CR < 4 if and only if CL < c and that

*	 *CR CL = CR CL.

(6.2.43)

(6.2.44)

Of the five possibilities in (6.2.34), numbers (iv) and (v) are now

excluded. Moreover, if CL = c then CR = $ and, if a Stoneley wave

exists, its speed c must satisfy CR = $ < c < CL = c since

(6.2.30) cannot hold in this case.
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From (6.2.14) we have f(0) > 0, while for c CL < ct ('i = 0) we have

f(cL)	 - 72 + 7 
7* ('i*2 - 'it + 2) + 7*2 ('it3 +	 + 3'lt -1),

where, specializing (6.2.25), we have 'it = ( 1 - p*c/ pç*)

If cj, = ct this reduces to 	 - 7*)2 as in the more general case

discussed in Section 6.4. But then, for the biaxial deformations

considered here, 
'i	

'i* and (6.2.41) reduces to

f(c)	 (2 + 7*2)(fl3 + 'i2 + 3'i - 1) + 2 	 7*( 'i 3 + 3'i2 - 
'i 

+1),

which is easily shown to be monotonic for 0 < c CL.

Thus, if cL = ct and the underlying deformation is biaxial, a unique

Stoneley wave exists.

The following theorem generalizes this result.

THEOREM 3.	 If CL ' ct then, for biaxial deformations

(>	 = >' 2 X	 = >4), the inequality	 f ( cL) < 0 is necessary and

sufficient for the existence of a unique interfacial wave.

Proof	 Since f ( cL) < 0 is sufficient for existence we require to

establish uniqueness. First, we note that (6.2.22) can be factorized

in the form

f(c) = [p(c) q(c)} - r(c)][fp(c) q(c)} + r(c)], 	 (6.2.45)

where

	

p(c) =	 'i2 + 2'i + (2 - )/y} + * *2 + 2 'i* + (2* -

(6.2.46)

q(c)=	 'i	 + 2'i + (2 - )/7}+ 7* 'i* *2 + 2 'i* + (2* -

(6.2.47)

r(c) = •y (1 - 'i) - 
7* (1 - 'i*)•	 (6.2.48)
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For biaxial deformations (6.2.46) and (6.2.47) reduce to

p(c) - y ( ii + 1) + * (* + 1), 	 (6.2.49)

q(c) =	 (ij + 1) + 'y	 (* + 1),	 (6.2.50)

while r(c) is unchanged.

Clearly, p(c) > 0 and q(c) > 0 for 0 	 C < CL, but r(c) may be

positive or negative, with r(0)	 0. Also, p and q are decreasing

functions of c, and hence (pq) is a decreasing function of c. In

order to consider the signs of the two factors in (6.2.45) we

investigate the properties of r(c). From (6.2.42) and (6.2.48) we

obtain

dr(c)	
c	 -	 1.

dc	 hi	 71*i
(6.2.51)

Since (for cL < c) > ,, it follows that r is an increasing

function of c if p ) p. In this case the second factor in (6.2.45)

is positive and hence f ( cL) < 0 if and only if

(p( cL) q(cL)} - r ( cL) < 0.	 (6.2.52)

Thus, when p ) p, p, q and r are increasing functions so that

(6.2.52) is necessary and sufficient for the existence of a unique

interfacial wave.

It remains to consider p < p'. In this case (6.2.51) vanishes

where

p	
= p	

7.
	 (6.2.53)

This corresponds to a value of c (= c , say) given by
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2	
cc (*2_2)

Cm
p	

(p* * -
(6.2.54)

with Cm < CL for CL < c. Thus, r has a minimum at C = Cm, r(c) 0

for 0c< Cm and dr(c)/dc >0 for Cm <C CL.

If r ( cL)	 0 the first factor in (6.2.45) is positive for

0	 c < CL . From (6.2.48) it follows that 7* > -y/(l - h1) and, after

some manipulation, that

p( cL) q(c) - [ r ( cm)]2 > 0.	 (6.2.55)

Similarly, if r( cL) > 0, we have	 > 7 > 7* (1 - 'L)' and again it

can be shown that (6.2.55) holds. In this case we also have

(p ( cL) q(c)} - r ( cL) > 0.	 (6.2.56)

Thus, if p < p, f(c) > 0 for 0	 C	 CL, and the theorem is

established.

We remark that it has not as yet been possible to draw similar

conclusions for more general deformations with p and q as defined in

(6.2.46) and (6.2.47).

In the reference configuration, c 	 L and	 =	 and the results

of this section therefore carry over to the linear theory. We note

that, for the compressible linear theory, Barnett et al. (1985) have

established that if a (subsonic) Stoneley wave exists then it is

unique.

It is worth noting here that the boundary conditions (6.1.30) can

be expressed in terms of the Stroh formulation (Stroh, 1962; Barnett

at al., 1985). The secular equation is then equivalent to the

vanishing of a 2x2 determinant whose eigenvalues are the two factors

on the right-hand side of (6.2.45). For biaxial deformation it is

easily shown that each eigenvalue is a decreasing function of c.
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6.2.6 Apiñication to the neo-Hookean material

For the neo-Hookean strain-energy function, we get

= z X,	 u X	 and	 2(3 = t(X + X i ), (6.2.57)

and similarly for &,	 y*, the secular equation (6.1.32) become

( X)	
(X - X) -	 2 +	 + 3X - PC2)[ x2 -	 2l

ii

z*2{[

-	 L X1 
21 + 

IJL* 
*2 

p*c2l - IJL x 1 - pc2l Iit*x i - p*c21

X 2	J	 L	 * *2	X	 J {	 j

- fL(X + X) - pc2 +	
- pc2l

{	 *2 *2	 1* *2

* 2	 * X*2

(X 1 + >'2 ) - p*c2 

2	

Xi - p*c2l

- fr X - pc21 + [* x 2 -

*2	 *2
*2 4* *2	 *2( X 1 - X 2 ) - p*c2	 *(x + 3X 2 - p*c 2 ) {* *2

	
*c2l 1

+ * x2	
* X2	 * X2	 * X 2	i j=

(6.2.58)

or, the secular equation of the form (6.2.22) reduces to

3	 *2f(c)	 'y2 ('is +	 + 3, - 1) + 
7* (* +	 + 3* - 1)

+ 2 , 7* (1 - ,)(l - *) + , 7* ( + 	 + 1)( j* + 1) = 0,

(6.2.59)
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This has the same form as for the biaxial case discussed in Section

6.2.5, but here ij and	 are given by

=	 x	 and	
=	

*2 p*c2l

L X 2 	 L	
2 j '
	 (6.2.60)

Equations (6.2.43) are replaced by

*_ *cR = cL (1 - •y 'i/	 cR - cL (1 - •y	 *2/*)	 (6.2.61)

and (6.2.44) holds if and only if y	
=	 c, i.e. X 2 	 =	 >'•

Since 'y > 0 it follows from (6.2.58) that (6.2.30) cannot hold

for the neo-Hookean material.

From (6.2.47) and (6.2.48) we obtain

f(0)	 2	 X2 +X x+3

+ *2 ( x*3	 +	 2	 2 +	 - X)

+ 2 ILL* X 2 X 2	 - X 1 )(X- X)

+	 1' (	 + x 2 )(X + >4)(X.1 x + x X 2 ).	 (6.2.62)

The exclusion condition requires that f(0) > 0. For a fixed value of

the ratio the neutral surface, N say, given by f(0) = 0, is a

surface in (X 1 , X 2 , X', X)-space. Note that N is independent of

For fixed values of 	 /t and p'/p the limiting surface, L say,

corresponding to cL c, can also regarded as a surface in

(X 1 X 2 , X, X)-space, and its equation is obtained by setting 	 = 0

and	 = '1, where
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= (X	 - K 2 X2)	 (6.2.63)
*

and
K2= ____
	 (6.2.64)

p 11*

(K > 0) in (6.2.59). Thus

*3	*2	 *
f(cL) E -	 +	 (	 + L + 3L - 1) + 7* (* -

	
+ 2)= 0.

Writing

we can express this in the form

F (X	 X	 X'	 X', C, K) = 0,	 K X.	 (6.2.65)1'	 2'	 1'

The equation for the limiting surface, L* say, corresponding to

c cL is obtained in a similar way and can also be expressed in

terms of the function F by means of a suitable transformation of

variables. Thus, L* is described by

F (X*	 X	 >2' f	 K) = 0,	 < K X.	 (6.2.66)2'	 1'

For = and p p', Chadwick and Jarvis have examined the

structures of N and L (and L*) in detail (for the neo-Hookean

material) as curves in (X 1 , X')-space for biaxial deformations with

	

- X	 '2 
= X72 ,	 = >,	 = > 2 (l979a) and for fixed values

	

of >%2,	 (l979b).

In Section 6.2.7 we provide numerical results illustrating the

dependence of N, L and L* On	 and p*/p to complement those

provided by Chadwick and Jarvis for 	 */ = 1. In particular,
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we confine attention to biaxial deformations of the form	 =	 =

x-2 ' x' =	 )* * =	 We use the notation1	 3	 '	 2

I(X, X	 C, K)	 F(X, x 2 , x', x 2	 , x),	 (6.2.67)

so that L, as a curve in (X, X*)_space for fixed € and K, is

described by the equation

'(X, X*, C, K) = 0,	 ,c X.	 (6.2.68)

Explicitly, (6.2.68) gives

x4	 (x*2 - K 2 X 2 )(cX4 + X*4) - (c x4 +

+	 x4 x 2 (x*2 - K 2 X 2 ) (3 €	 + € x4 X*4 (X*2 + K 2 X2) - x*4} = 0,

(6.2.69)

The curve L* is defined by

F(X* X, r1 , C1 ) = 0,	 K x.	 (6.2.70)

6.2.7 Numerical results

In this section we solve the equation for N, namely

*8
x	 (1-3 X3-X6-X9)

- € x4 *4 (2 -	 -	 +	 + 4 3	 3 + *6 + >	 + 3 x*6

+ 2 8 (1 - 3	 - X*6 - X*9 ) = 0.	 (6.2.71)

for different values of € (€	 1,0.8, 0.5, 0.4, 0.2) for X as a

function of X' and X as a function of X.
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Also, we solve the equation of L, namely

x4 x 2 ( x*2 - K 2 x2 ) [c- X 4 - 3 XL4 + K2 >, 6 x 4 - 4 x6]

+ (C1	- x)2 - (X 2 - K2 x2)[C1 x4 x 4 + x8 x*4 ] 0,

(6.2.72)

for different values of E and K to get the first curve of L and

finally in this section we solve

x4 x*2 ( x*2 - K 2 X2 ) (X*4 + C K4 x6 x 4 -	 x4	 6 - 3 C

+ ( x4 - X 4 ) 2 -	 x4 ( x*2 - 2 X2 )(C x4 + X*4) = 0,

(6.2.73)

for the same values of c and K to get the second curve of L and the

results are illustrate in Figures 6.1-6.15. We note that results do

not show any significant dependence on K.
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6.2.8ThecaseX1—X2—X3-1andX—X—X-1

Before we consider the corresponding result of the classical

linear theory, we note from Section 6.2.5 that for the deformation in

which X 1 =	 and	 =

we get

A01111 = A02222,	 =

7 = 1/2 (A01111 - A01122 + X2

and hence

= = 7.

Similarly, for	 =

=	 = 7*

On use of the above notations in equation (6.1.32), the secular

equation becomes

2f2_ [4_%.][l__]]

i--i +Ii, ,*	 pc2	 p*c2	
1 -	 - ____ - 

11

	

7J	 - 7*] -	 7J	 7*

- 2 -	 +	 2[l - £ JJ {i - ___ + 2f1 - 
p*c2

7* 1

Iii -	
- p*2

U	 'yJ	 [	 .y*j

	+ *2 P*c2 - [4	
P*c 2]{l	 P*c2 

1 = 0.	 (6.2.71)7*	 - __	 - 7*]]

pc2	- 7	
p*c2 =	

equationOn setting	 = -, a - -,	 =	 and hence

	

7	 7*	 p*	 a

(6.2.71) is written as
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(4— )(l -	 -

-	 -	 +	 -	 (1-	 [i -	 - '1

- 2 12 -	 + 2(1 - )}{2 -	 + 21 - -	 + [i -

+ 2 [[4 -	
-	 -	

= 0.	 (6.2.72)

This equation is the secular equation for Stoneley waves for the

*	 *
special deformation	 =	 and	 =	 It is worth noting that this

is the same equation as given in Section 3.3 but for different values

of y, 3 and so the solution in Fig. 3.1 is the same as for this

equation.

In this case, we get c = -y = 	 so equation (6.1.32) becomes

2	 pc2pc2
(4 -	 )(1 -

-	
2 {(1 -
	

+ (1- 
P*C2)	

(1-	
2 
)(1 - 

P*c2)	

i}
Ii.

-12	
c2 

2(1	
PC)	 1 2

I

-	 (1 - P*c2}]

*2
+ ( ) [(4 - 

P*c2 )(1 - p*c2	 - p*c2l	
0

	

-;.- J	
.	 ( 6.2.73)

p.

This equation corresponds to the that in linear theory, as discussed

in Section 3.3.
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6.3 Propagation in a general direction

In this section we wish to obtain the secular equation for

Stoneley waves propagating in a general direction in the

(x 1 ,x 3 )-plane, in which the direction of the propagation has the

direction (cosO, sinO).

As in Section 4.7, for an incompressible material the incremental

equations of motion are given by

Aojilk Vk , jl - ,i = Pj

vi , i = 0,

and similarly
	

(6.3.1)

ilk V , jl	 Pi = p ''4,

vt,j = 0.

Also, assuming v, , v and 	 are given by

V =	
i(t - kcosOx 1 - ksinOx3)

e

i(o.t - kcosOx 1 - ksinOx3)
e

i	 [1,2,3}	 (6.3.2)

= 14*(x)	
- kcosOx 1 - ksiriOx3)

- kcosOx 1 - ksinOx3)= *(x) e

Equations (6.3.1) lead to
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A 0111 Vi, jl + A 0112 V2,jl ^ A0113 V3, jl - P, 1 = P1

A0211 V i ,jl + A0212 V2, jl + A0213 V 3 , jl - P, 2 = pv	 (6.3.3)

A 03i1 V i, jl + A 0j312 V2, j1 + A 0313 V3,j1	 P,3	 P'\T3,

Also, suppose that

1	 A

-skx 2,

(6.3.4)-skx
'3=Ce	 2,

and	 skx
=De	 2

By differentiating ( 6.3.2 ) 1,2 and subsituting in (6.3.3) and using

equations (6.3.4), we shall get the same cubic equation for s 2 given

by (4.7.10) namely
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+ s 2 A02121 - cos2O(A01122 + 
A02112 - A01111) - sin2 O A03131]

[s 2 pc 2 + s2A02323 - cos2 O A01313 + Sin2O(A03322 - A03333))

_sin2 opc2 + s 2 (A 02222 - A01221 - A02211) - coS
2 O A01212

- in2 o A03232)]

- sinO cosO (A01122 + A01133 - A03113)[SiflO 
cosO pc2

+ s 2 (A 02222 - A01221 - A 02211 ) - cos 2 O A	 - sin2 O A03232)
01212

- s 2 sinO cosO (A02332 + A03322 - A01331 - A03311)]

+ cosO [cosOpC 2 + s 2 (A 02222 - A01221 - A02211) - coS
2 O A01212

- sin2 O AO3232)1PC2 + s 2A02323 - cos 2 O A01313 
+ sj2O(A02332

+ A03322 - A 03333 )) - sinOkpc2 + s2(A02222 - A01 221 - A0221 1

- cos 2 O A01212 - sin2 O A 03232}sinO cosO (A 02332 + A03322

- Ao1331 - A03311 ))] = 0.
	 (6.3.5)

Let s, s 2 , s 3 be the values of s with positive real part and write

the solution as given in Section 4.7, namelY

5 3kx
1	 A 1 e1 1 + A 2 e22 + A 3 e

= B1 e S11 + B 2 e2 2 + B3

(6.3.6)

-'	 V'3 = C 1 	+ C 2 e2° 2 + C3

D 1 e 11	 + D2 e2 2 + D3



2	 2
= ( x 1 cos 2 O +	 X sin2 O -pc2 )/ X.and

2
s 1 = 1
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= 4	 + 4 e' 2 +	
skx

e

= B' e11 + B e s2kx2 + B

(6.3.7)

_s*kx
e	 1 1+ C 2*e _s'kx2+ C3*e

_s*kx	
+ D'*D*e 1 1+D

To obtain the speed of Stoneley wave propagation in any direction

for the general case we must deduce from 	 (4.7.8) the ratio

A : B: C: Di and 4: B: C: Dt, i [1,2,3) and from the boundary

conditions obtain the ratio A 1 : A 2 : A 3 : 4: 4: 4 and the secular

equation. Also, because of the cumbersome algebra involved we omit

details of the general case here, as in Rayleigh waves we shall

concentrate on the application to the neo-Hookean material.

6.3.1 Propagation in a general direction for a neo-Hookean material

For a neo-Hookean material, equation (6.3.5) becomes

(pc2 +	 x s 2 -	 x cos 2 O -	 x sin2O)2(s2 - 1) = 0,	 (6.3.8)

which is a cubic equation for s 2 and let s and s 2 are the values of

2 with positive real part, as in (4.7.14) s 1 and 2 are given by

and similarly
	 (6.3.9)

*2
=	 and	 s2 = (,* *2 cos2O +	 sin2O - p*c2)/,* X 21	 *2
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these require

0	 pc2/jt ( X cos 2 O + X sin2O,

and similarly
	

(6.3.10)

*2	 *2
0 ( p*C2/IL*	 x 1 cos2 O +	 sin 0.

Also, as in Section 4.7, 	 2 and 4 are repeated roots, that is
S 2 = s and 4 = 4, so equations (6.3.6) and (6.3.7)become

1	 A1 
eS12 ^ (A 2 x 2 + A 3 ) e212

skx	 skx
2 = B 1 e 1 2 + (B 2 x 2 + B 3 ) e 2 2

skx	 skx
C 1 e 1	 2 + (C 2 x 2 + C 3 ) e 2 2

s kx
=	 e 1 2 + (D 2 x 2 + D3) eS22

and
	

(6.3.11)

A e 4'	 + (A x 2 + A) e_512,

B e 2 + (B' x 2 + B	
_s*kx

) e	 2	 2,

= c e 1°2 + (C' x 2 + C	
_5*kx

) e	 2	 2,

* 
= 
D e s1kx2 

+ (D' x 2 + D') e212.

Next, let the incremental boundary conditions for propagation in any

direction be

=	 S02j	 on x 2 = 0.
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That is,

V1 - V	 0,

V 2 - V - 0,

V 3 -	 0,

on x 2 = 0

av* 
A*	

av*
[A 02112 ^ pjJ	 ;Z + A02121	 -	 + p*J	

- 02121	 = 0,02112

av av	 av
A02211	

+ { 
A0222 + p] __2 + A02233 

-•••a3• -

- A*	 - { A'222 + p*J	 z - 42233	 .a +	 =02211

av*
A02323	

+ { 
Al2323 + ]	 Z - A' 233	 a -{ 

A' 2332 +	 z =0,

since	 A 02112 + p = A02121 - 2' A02332 + p = A02323 - O2	 and

similarly A*	 + p = A'2121 - * A*	 + p' = 42323 - a, and02112 2'	 02332

for the special case	
= 2 = 0, the above boundary conditions

become
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v i - vi	 0,

V2 - V = 0,

V3 - V = 0,

A02121 {
	

L +	 2J - A*	
{	 +	 J =

	

x2 = 0 (6.3.12)
02121

av3.
A 02211 .__L 

+ [ 
A 02222 + p]	 + A02233 

_•••••_

- A*	 - [ A2222 + p*]	 - A'2233	 +	 = 0,02211

av	 av
A02323 [
	

+	 - A*	 r aQ-	 av*

J	 02323	 =0.

For a neo-Hookean material the boundary conditions (6.3.12)

reduce to

V1 - V = 0,

V 2 - V = 0,

V 3 - V = 0,

on	 = 0	 (6.3.13)2 ray	av
2	

*x*2[+]o

2X22

2 ray av
2

2	 *	 *	 * *since °2 = 0	 p	 12 and a 2	0	 p = L X2
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By differentiating (6.3.2) and substituting in (6.3.13), we have

-	 =

-	 = 0,

-	 = 0,

on x 2 = 0	 (6.3.14)

- ik cosO	 - ,	 + ik cosO	 = 0,

*1	 *

*	 *ik sinO L	 4'2 +	 - ik sinO	 +	 *2	 =

Next, on use of (6.3.11) in (6.4.14), the above boundary conditions

become
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A 1 + A 3 - A - A	 o,

B 1 + B - B* - B*
3	 1	 3	 '-,

C 1 + C 3 - C - C	 ,

s 1 k A 1 +	 A2 +	 k A - 1k cosO	 B1

- ik cosO t	 B3 + * *2 *	 *	 A + ,	 *2 *
11 > 2 S1kA'I1	 2	 2 kA'

*2	 *2
+ ik cosO	 > B + ik cosO 11* X B* = 02	 3

(6 .3 . 15)

*2 *
211	 s1 k B 1 + 211	 B2 + 211 X S2 k 33 - D 1 - 1)3 + 2 11* X2 s 1 k B

- 2 11*	 *	 2f1 Xs' k B' + D + D = 0,

ik sinO 11	 B1 + ik sinO t > B 3 -	 s1 k C1 - p	 C2

- t	 s2 k C 3 - ik sinO 1L* *2 B' - 1k sinO /1* 
*2 B

-	 Ci + L X 2 C - 11* *2 * k C' =lL*x:2sk *	 * *2

As for Rayleigh waves, the ratios A 1 : B: C: Di for A 1 : A 2 : A 3 are

given in Section 4.7 namely,

for s =

—(pc2 + IL X s— 11 X cos 2 O - IL Xsin2O)k

A 1	 i cosO

= —(pc2 + IL	 s - IL	 cos2O - IL X sin2O)k

C.,	 1 sinO

C
= tanO.

A1
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Similarly, for s = s,

*2*
D	 = _(p*c2 + IL* 

*2 
s 2 - IL* X 1 cos2O - IL* Xsin2O)k

A	 I cosO

*D = _(p*c2 + L* 
*2	 2 -	 *2 cos2O -	 x2sin20)k

c	 I sinO

c*
tanO.

A'

Also, as in Section 4.7 for the case s = 2' we have

A 2 = B 2 = C 2 = D 2 = 0 and similarly for s = s we have

A = B = C' = D	 0, and the ratios for this case are as given in

Section 4.7:

D 3 = -(pc 2 +	 X	 - z X cos 2 O - j X sin2O)k

A3	 i coso

D 3 = -(pc 2 +	 x s -	 x cos 2O - t X sin2o)k

C3	 i sino

and
C = tanO.
A3

Similarly, for 	 = s

*2 *2	 * *2
= _ (p*2 + IL* X2	 2 - L X 1 cos2 O - !L* X2sin20)k

A'	 i cosO

*2
_(p*c2 +	 *2 s2 -	 *2 cos2O - IL* X 3 sin2O)k

I sinO

and

c*
= tanO.

3
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Also, from Section 4.7, e have

is 1 B = cosO A 1 + sinO C.,

is 2 B 3 = cosO A 3 + sinO C3

Similarly,

i s B=cosO A + sinO C

for S	 Si,

for S = S 2	 53•

*	 *
for s

*	 *	 *for S

Now, the boundary conditions (6.3.15) can be written as

A 1 + A 3 - A - A = 0,

B 1 + B 3 - B	 B	 0,

C l + C 3 - C	 = 0,

2	 2
JL X2 s A 1 + IL >'2 2 

A 3 - icosO IL	 B1 - jCOSO IL	 B3

*2

+t	 s A' + 11* *2 g* A + icosO IL* *2 B + icosO IL* X 2 B = 0,

(6.3.16)

2t	 s k B 1 + 2ti	 B3 -	 -	 + 2IL* 
*2 

s' k

*2
+ 2 IL* )¼2 s k B + D + D
	 0,

isinO IL	 B1 + isinO k	 B3 + IL	
i C + L X S 2 C3

*2

- isinO k* 2 
B' - isinO	

2 
B -	 c

- *x*2 *c*
2	 2	 3
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Also, as in Section 4.7, substitution for B 1 , B 3 , C 1 , C 3 , D, D 3 in

terms of A 1 and A 3 we get

	

is1B1—----,	 is2B2=_.a,
	cosO	 cosO

and similarly,

cosO	 cosO

Thus, equations (6.3.16) become

A 1 + A 3 — A — A' = 0,

A* A*
—	 -	 = 0,

i	 2	 5r	 *

2	 1	 2	 1	 * *2
'2 (s 1 — — )A 1 +	 '2 (2 - —) A 2 + IL '2 (s + —) AS i	 S2	 *

+ IL* X*2 (s + :;) A 3 = 0,

S2

2	 2	 22	 2	 2	 2	 2(pc + 2 IL	 + L 2 i — JL	 COS 0 - IL X 3 sin 0 )A1

2	 2	 22	 2	 2	 2.+ (pc + 2 IL	 + L X 2 S 2 — IL X 1 COS 0 - L X 3 sin2 0 )A3

*2	 * *2 2 IL* *2	 *2- (p*C 2 - 2 IL* X 2 + It X 2 s	 -	 X1 cos 2 0 - * ) 3 sin2 0 )A

*2	 *2*2	 * *2 *2 — * X 1 cos 2o - * >3 sin2 0 )A	 0,— (p*C2 — 2It* >2 + IL >2	 2	 I

these equations can be written as
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A 1 + A3 - A 1 - A 3 = 0,

s 2 s's A 1 + s 1 ss A 3 - s 1 s 2 s A - s 1 s 2 s A' = 0,

t	 - l)s 2 s's' A 1 + t	 - 1)s 1 ss A 3 + z' X(s2±l)s1s2s'A

+IL* *2
	 *2

>%2 (s 2 + l)s 1 s 2 s A' = 0,

(pc 2 + 2	 +	 X s - t X cos 2 O -	 X sin2 O )A1	
(6.3.17)

2	 22	 2	 2	 2	 2+ (pc' + 2 X 2 + IL X 2 S 2 - fL X 1 COS 0 - IL X 3 sin 0 )A3

*2	 *2
- (p*C 2 - 2IL* *2 + IL* x' 2 s 2 - IL* x l cos20 - IL* >% 3 sin 0)A1

*2
- (p*c2 - 2,L* x2 +	 x2 s2 -	 cos20 - IL* x 2 sin20)A' = 0.

For A 1 , A 3 , A 1 , A 3 in equations (6.3.17) to be non-trivial solution

we must have
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1
	

1
	 —1
	 —1

S	 Si	 22
	 — S i s 2s

2	 2	 *2	 2	 *2	 2

IL 
X 2 (s - 1)	 IL	 - 1)	 IL* X 2 (s + 1)	 ILX (s +1)

s 2 S's'	 siss	 sls2s	 sis2s

2
PC'- + 2t >2

22
+ 

IL '2 s1

2	 2
IL	

C° 0

2	 •2
IL X 3 sin 0

^ 2IL	
_(p*c2 - 2IL* *2
	

_(p*C2

2	 *2	 *2
+ILX2S	 +IL*X2S	 _2IL*X2

2	 *2	 * 
*2

IL 'i 
cosh O	 IL* X i cos0	 +IL >'2 S2

2	 *2	 .,	 *2

IL 
X 3 sin0	 _IL* X sjnL 0)	 IL* X cosL0

*2
_IL*X 3 sinLO)

On rearranging this becomes
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s1 2 s s (s 1 - s 2 )(s - s)[iL* *2 s s' (2*	 + * x2cos2o

* *2+	 X3 sin2 O +	 *2 s' s -	 + ,* )* (p*c2 +	
*2 *2	 *2

>'2 (s 1 + S2

*2	 * *2
+ s' s) - 2* *2 - iz x	 cos 2 O -	 X2 sinO}

2	 2	 2	 2	 2	 2	 2 •2+ /L X 2 s 1 s 2	-	 X 2 s. s 2 - 2t X 2 - IL X 1 COS 0 - L X 3 sin 0)

2	 2	 22	 2	 2	 2	 2	 2 .- /L X 2 {pc - IL X2(s1 +	
+ s 1 s2) - 2IL X2 - IL i COS 0 JL '2 

sinL0}

2	 2	 *2	 *2	 *2
+ L X 2 (s1	 2 + 

l)p*c2 - 2,L* X2 + Ii' X2 (s1 +	 + s' s)

- IL* *2 cos 20 - IL* *2 sin2o}

- /L* x 2 (s s + 1)[pc 2 - 2 IL	 +	 X (s + s + s. s.) - /LX cos20

- JL X	 sin20}

2 * *2
+ s. s 2 (s 1 + s 2 )(s + s) IL X2 IL	 2

+ s s(s 1 + s 2 )(s + s') IL	
*2] 

=

Also, assuming that s1	 2 and s ^ s, the above secular equation

reduces to
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p. X (pc2 - 2p.	 - p. X cos 2 O - p. X sinO)(s 1 S 2 - 1)

2- p. X 2 (s + s + s s + s 1 s2)

* *2 *2_2p.*x*2_p.* *2 cos2O	 *2 sin2O)(ss'-1)+ IL X 2 (p c

IL*2 *2
	 *2	 *2	 *2	 2 + s s')-	 X2 (s 1 +s 2 +s 1 S

*2 *2
+ IL	 (s1 s 2 + l)(p*c2 ^ IL* X 2 (s 1 + s 2 + s 4 - 2)

- JL* *2 cos2O -	 *2 sin2O}

* *2
- IL X 2 (4 4 - l){pc2 + IL X (s + s + s 1 s 2 + 2) - IL X cos2O

- p. X sin2O}

2 * *2
+ (s 1 + s 2 )(s' + 4) (s 1 s 1 - 4 4)IL 2 IL X 2 = 0,	 (6.3.18)

From (6.3.9), we have

+	 = 1 + IL X 1 cos2O + IL x sin2 O - Pc2
2

IL "2

S 1 S2 = [ X cos2 + IL X sin2 O -	 2]

IL >'

S i + S 2 =[ + IL X i cos2O + IL X sin2 O - pc2

IL X2

+ 2 [IL X cos2O + IL x sin2O	 2

ILX	

PC] 

j

*2	 *2	
(6.3.19)

COS 2 O+/L* X3 sin2O_p*c2

IL*X

*2* *2

1	 = 1IL X i cos 2 O + IL* X	 sin2O -
IL*

*2

4 + 4 =1 
+ IL* X cos 2 O + IL* x' 22o - p*c2

IL* 2

*2

[_* 

x" 2cos 2 o + IL* x 3 sin2O -
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On setting

=	 x cos 2 O + t X sin2O

1LX2

* *2	 ,=	 > cos'-O + IL*

equation (6.3.18) reduces to

___	 fLX2

=	
m =
	 >%*2'

(6.3.20)

E*= 
PC2 ,	 m*=,

m
2

m [( -	 - 2)(1 - s. s 2 ) + s s + s +	 + s 1 s2}

- (s 1 s 2 + l)(s s - 1) - (s s - l)(s 1 s 2 - 3)

+	 + s 1 )(s' + s')(s 1 s 1 + s s) = 0,

which can be written as

- - 2 + s s + s + 4 - ( - - 3) S1 2

+m*2 	 * -	 —2 +	 2 *2 + *2 + s 2 - (E* -	 — 3) s s)

- m* (2(s 1 s 2 + s s' - s 1 s 2 s s - 1) - (s 1 + 2)(' + s')

s2 + s s)} = 0.	 (6.3.21)

Also, equations (6.3.19) reduce to

4 + 4 = 1 + - ,	 1 s 2 = ( -

+ s 2 = l + - + 2 ( -
(6.3.22)

*2	 *2s 1 +s 2 =l+,j*_ ,	 ss=(,l*_E*)

s + s = {l + 11* - * + 2(fl* -
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Next, substitute (6.3.22) in (6.3.21), the secular equation becomes

{
* *2 2

1L

I. L X2

* *2

x2

_{l+_E+2[fl_E]}l+fl*_*+2[fl*_*]}

{ { -	
+ [71* - *]	

= 0.	 (6.3.23)

On putting	 ( -	 and a*	
(71* - *)	 equation (6.3.23)

reduces to

2	 (1-3 a-a2 a3)

- k !L* x 

*2 
(2 - a - a* + a2 + 4 a a* + a*2 + a2 a* + a a*2)

*2 *4
+ /L X2 (1 - 3 a - a*2 - a*3) = 0.	 (6.3.24)

This equation is an equivalent to an equation given by Chadwick

and Jarvis (1979), although they considered the same shear modulus

for both regions x 2 ) 0 and	 2	 0 and they took the interface

to be x 3 0. Also this equation is the same equation (6.2.59), which

is given in Section 6.2, so all the numerical results given in

Section 6.2.7 are also solution for this equation.

From equation (6.3.23), by taking the limit m* 0, we get the

corresponding equation for Rayleigh waves propagting in a general

direction namely

+	 2 + 11 c - 1 = 0,

where	 =	 - , (see Section 4.7).
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6.4 Interfacial waves at the boundary between two pre-stressed

compressible elastic half-spaces

Finally in this chapter we shall obtain the corresponding

equations to these given in Section 6.1 for a compressible material.

As in Section 4.8, the incremental equations of motion for a

compressible material lead to

p" - 1 = A 01111	 ,	 + A	 22	 2, 21 + A 021 21	 1 , 22 + A 0211 2	 2 , 1 2'

(6.4.1)

P2 = A 01 21 2	 2, 11 
+ A 01 221	 1 , 21 + A 02211	 1 , 1 2 + A 02222	 2 , 22'

for x 2 < 0.

Similarly

	

= A*	 v'	 + A*	
21 + A' 21 21	 + A'21 12	 12'011221	 01111	 1,11 1,22

(6.4.2)

	* * A*	 v'	 +A*	 v,21 + A 2211 v	 + A*	 v,22,P ' 2 =	 01212	 2,11 01221 1,12	 02222

for x 2 > 0.

6.4.1 Propagation along a principal axis

Also, as in Section 4.8 we assume that v, V' and v 1 , v 2 are given by

skx 2 + jkx 1 - ict
V 1 =Ae

skx 2 + ikx 1 - ict
V 2 = A2e

(6.4.3)

*	 * 5*kx + ikx 1 - jtv 1 =A1e

*	 * s*kx 2 + ikx 1 - it
V 2 = A2e
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As in Section, 4.8 (6.4.1) and (6.4.5)1,2 lead to

s + s

'2_ PC2 (A+A )A 01111 A 02222 + A 02121 A 01212 —(A 01122 + A02112)

A02121 A02222

(6.4.4)

= (A01111 - pc2 )(A 01212 - pc2)

A02121 A02222

for x 2	0.

Similarly

*2	 *2
S 1 +52 =

+ A*	 A*	 _A*	 + A*	 '2_ p*c2(A*	 +A*
01111	 02222	 02121	 01212	 01122	 02112	 02121	 02222)

*	 *
A 02121 A02222

(6.4.5)

*	 *
22 = (A01111 - p*c2)(A	 -

*	 *
A 02121 A02222

for x 2 > 0.

Next, let us consider the incremental boundary conditions

Vj = V,	 So21 = o21	 on x 2 = 0,

that is
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V 1 - v = 0,

V 2 - v	 0,

on	 = 0 (6.4.6)

A 02	 v	 + A02112 v	 - (A*	 v,2 + A 2112 v ,1 )	 0,2,1	 ' 02121121	 1,2

v	 + A*	 V, 2)	 0.A02211 v	 + A02222 V 2,2 - " 02211	 1,1	 022221,1

For Stoneley waves we seek a solutions for v 1 , v 2 and v, v, which

decay when x 2 _ ± and satisfying the boundary conditions (6.4.8).

Suppose that the general solution for v 1 , v 2 and v', v are given by

v1 = (A 1 e 12 + B 
s 2kx 2) ict - ikx1

V2 = (A 2 e 12 + B2e522)et - ikx1

s*kx	 e_5X2)et - ikx1 ,
	 (6.4.7)

v=(A'e 1

v' = (A) e 1 ' 2+ Be —s'kx
2 iWt - ikx1
)e

On use of (6.4.7) in (6.1.6), the boundary condtions become

A1 + B 1 - A - B = 0,

A2 + B 2 - A - B' = 0,

A02121 S 1 A1 + A02121 s 2 B 1 - i A02112 A2 - i A02112 B2

on x 2 = 0 (6.4.8)

02121	 02121 2 B* + i 
A*	 A + i A*	 B* = 0,sA+A*	 *

1	 02112	 02112	 2

i A02211 A1 + i A02211 B 1 - A02222 1 A 1 - A02222 s 2 B2

_iA*	 A_jA*	 B*_A*	 sA_A*	 sB=O.0222202211	 02211	 1	 02222
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Recalling from Section 4.8 that

A 01111 - A	 S2 - pc202121	 1
A 1	 s1 (A 01122 + A02112)

and similarly

.22	 A 01111 - A	 - pc202121	 2
B 1	 s2 (A 01122 + A02112)

(6.4.9)

for x

Similarly

iA* _ _ A*	 - A*	 *2
2 _	 01111	 02121	 1	

- p*c2)

A	 s (A 1122 + A2112)

(6.4.10)

iB* _A*	 - A*	 *2	 *
2 =	 01111	 02121	 2	 - p c2)

s' A*	
+ 42112 )01122

for x

Subsitituting (6.4.9) and (6.4.10) into the boundary conditions

(6.4.8), we get
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A 1 + B 1 - A - B	 0,

[A0 1111 - A0 21 21	
pc2]	 1A0 1111 - A0 2121	

-	 2l

[	 s 1 (A01122 + A02112	 s2(A01122 + A02112) 	 J B1

*2 _A*	 *2	 *2
	+ [4ii1i - 

A 21	 S1 -
	 + 

E_
01111	 02121	 2 - P C B =0,

s /A*	 + A*	 )	 J	 s (o1122 ^*A)	 ]1	 ' 01122	 02112

[A021 21	
A02111(A01	 - A021 21 S - PC2)] A1

s 1 ( A 01122 —A02112)

-

2	 s2(A01122 - A02112)	
pc2)] B

1
+ IA02121	

- A O212 (A O1111 - A02121	 2
on x 2= 0 (6.4.11)

* A*
02121	 l	 - P	02121 s1 - 0211 

2 (A 1	 - A*	 *2	 *c2)j 
A

	

s*(A*	 - A*
1	 01122	 02112

	

A* 12 (A*	 - A*	 *2
+ [A* 21 s - QZ1	 01111	 02121 S2 - p

2	 01122	 02112)	

*C2)] B 
= 0,

[ 
021	

S*(A*	 - A*

O1J11	 02121	 1A0221 1 +	 A01 122 + A021 12	

- PC2)] 
A1I	 A02222(A	 - A	 s2

full	 02121	 2

	

A01122 + A02112	
- PC2)] B

1+ 

IA022	
+ 

A 02222 (A	 - A	 s2

- 'A*	
A*	 (A*	 - A*	 - p*c2)j 

A
[ 
02211 +	

02222	 01111	 02121
*	 +A*A01122	 02112

- L4*	
A*	 (A*	 - A*	 - P*c2)] B

	 0.

[ 
02211 +	

02222	 01111	 02121

A*	 +A*
01122	 02112
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We may rewrite these equations as

A 1 + B 1 - A - B'	 0,

S 2 s' 5' A*	 + A*	 )(A01111 - A 2121 s - pc 2 ) A12 " 01122	 02112

* IA*	 A*+ S 1 S1	 2 ' 01122 +	 02112 )(A 01111 - A 2121 s - pc 2 ) B1

+ S 1 S 2 s' (A01122 + A02112)(A1111 - A*	 s2 - p*c2) A'2121

+ 1	 2	 (A01122 + A02112)(41	 - A*	 s2 - p*c2) B' = 0,111	 2121

2	 A02121 (A 01122 + A 02112 )(A 1122 + A2112)

- S 2 s s A	 (A*	 + A*	 ' (A01111 - A 02121 s - pc 2 )} A12	 02112	 01122	 02112'

+ Is 1	 A02121 (A 01122 + A02112)(A	 *	 *
01122 + A021 12)

- 1 S1 
S* A	 (A*	 A*	 ) (A 01111 - A 02121 s - pc 2 )} B12	 02112 ' 01122 +	 02112

*2 *
+ cI1	 2	 1	 2 A 02121 (A 01122 + A 02112 ) (A 1122 + A02112)

* A*
- 1	 2 2 02112 (A 01122 + A02112) (A*	 - A*	 *2 - p*c2)} A

01111	 02121

+	 ,	 2	
2 

A021 21 (A01 122 + A 021 12) 
(A*	 + A21 12 )01122

- Si S 2 S1	 02112 (A 01122 + A02112) (A*	 - A	 ** A* " 01111 02121

- p*c2fl B 1 = 0,
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A02211 (A 01122 + A02112) (A*	 + A*	 ) + A02222 (A01122 + A02112)
01122	 02112

(A01 111 - 
A021 21	 - pc 2 )} A1

+(A02211 (A01122 ^A02112)(A1122 ^A 2112 ) +A 02222 (A01122 +A02112)

(A01 111 - 
A021 21	 - pc2 )} B1

-A' 2211 (A01122 +A02112)(A'1122 +A2112) +A*
	 (A01122 +A02112)02222

*2- A*	 S - p*c2)} A" 01111	 02121	 1

A*
1 02211 (A01122 +A02112)(A1122 +A

2112 ) +	 02222 (A01122 +A02112)- IA*

*2
(A*	 _A*

01111	 02121 S2 - 
p*c2)} B = 0.

Also, recall from Section 4.8 that

11 = A 01111 ,	 a22 = A02222,

a1 2 = A01 122'	
a21 = A 0221 1'

= A 01212 ,	 72 = A02121,

2
6 = a 1 2+ a 21 ,	 2f3 = a 1 1 a22 + •Yi 72 - 6

for x 2	0.
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Similarly

a* =A*	 * =A'11	 01111'	 22	 02222'

a* =A*	 a* =A*12	 01122'	 21	 02211'

*A*-	 01212'	 Y2	 02121'

*	 * *	 * *	 *2b =	 + c 2 	 213	 ii	 + l'i 1'2 - ô

for x 2 > 0.

Equations (6.4.4), (6.4.5) and (6.4.12) now can be written as

+	 = 213 - (y 2 + a 22 ) pc2

Y2 a22

ss = (a 11 - pc 2 )(-11 - pc2)

'12 a22

*2	 *2 = 213* - ('1 + a'2) p*c2	 (6.4.13)
S i +S2	

* *

'12 a22

= (a - p*c 2 )('1* - p*c2)

'12 a22
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A 1 + B 1 - A' - B = 0,

s 2ss â' (a	 - y 2 s - pc2 ) A1 + s 1 s's 6* (a11 - 2	 - pc 2 ) B1

*	 * *2	 *+ s1s2s	 - v2 s 1 - p c2 ) A'

+ s 1 s 2 s	 (a' - 'y s 2 - p*2) B = 0,

S 2 S 1 S 2 6	 S1 72	 - & 21 (c	 - 72 s - pc2)} A1

+ S 1 S 1 S 2 5	 - a 21 (a	 - 72 s - pc 2 )} B1

+	 7* 5* - a' ( * - * *
2	 * 2)] A	 (6.4.14)7 2 S 1 -Pc

+	 * 6 - a' 1 (a 1 -	 - p*c2)} B = 0.

6*	
l2 6 + a 22 (a	 - 72 s - pc 2 )} A1

+	 12	 + a22 (a - 72 4 - pc2 )} B1

*	 * *2	 *2-	 i2 
6* + a 22 (a11 - 72 S1 - p c )} A

*2	 *- 6 a2 S + a' 2 (a' 1 -	 2 - p c 2 )} B = 0.

For these equations to have non-trivial solutions for A 1 , B 1 , A and

we must have
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1
	

1	 —1
	 —1

s 2 S's	 (	 s1ss' o	 (
	

s1s2s 6 (a
	 S1 S 2s6

- 72	 - pc 2 )	 - 72	 - pc 2 )	 - 'y S2- 
p*c2) ( * - * *2a11 72 S2

- pc2)

72

- a 21 (	 1

- 72

- pc2)}

S1SS 6'

(s 72

- a 21 (a1 1

- 72

- pc2)}

s 1 s 2 s' 6

(s27 6*

-

-

— p*c2)}

s 1 s 2s 6

(s' 2	 6'

_*a (a1

- * *2
72 S2

_p*c2)}

6* (a	 6

+ a22 (a11

- 72

- pc2)}

6* (a12 6

+ a22(a11

- 72

- pc2)}

—6 {a2 6*

+

-

— p*c2)}

—6 (a2 6*

+ a'2(a1

- * *2
72 S2

- p*c2)}
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6.4.2ThecaseX1—X2—X3-1andX—X—X-1

In this section we wish to get the corresponding equation for

compressible Stoneley waves in the linear theory by considering the

special deformation in which 	 =	 =	 = 1 and	 =	 =	 = 1.

So from equation (2.7.18), we have

A02121 = A01212 =	 A02222 = X + 2	 and	 A02211 =

and similarly	 (6.4.13)

A*	 = A*	 *	 A*	 =	 + 2	 and	 A*	 =02121	 01212	 '	 02222 02211

On use of this equation in the boundary conditions (6.4.8), we get

A 1 + B 1 - A - B = 0,

A 2 + 82 - A - B = 0,

on x 2 = 0 (6.4.14)

S 1 A 1 + u 2 B 1 - i t A2 - i j B2 +	 g* A +	 s' B

- i	 A - j	 B'	 0,

i X A 1 +	 X B 1 - (X + 2) s A 1 - (X ^ 2) s 2 B 2 - i X A' - j )* B

- (X* + 2 L*) s A - (X* + 2*) 4 B' = 0.

Also, recalling (2.7.20) and (2.7.21) that

2	 2
pcL = X+ 2 1L ,	 pcTiL,

and hence
	 (6.4.15)

2	 2
X = pcL - 2pc'.

Similarly
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p*c 2	x* + 2,

and hence

*
f l CT = L

(6.4.16)

*2	 *2
=	 - 2p*cT.

Next, substituting (6.4.15) and (6.4.16) in (6.4.9) and (6.4.10), we

have

2	 22	 2CL - CT S 1 - C

	

A	 2	 2

	

1	 Si(CL - 2CT)

(6.4.17)

2	 2

	

CL - CT	 -

B	 2	 2
s 2 ( cL - 2CT)

for x 2 < 0.

Similarly	 *2	 *2 *2	 2- CT S 1 -

	

*	 * *2_2C2)

	

A 1 	 s1(cL

(6.4.18)

*2	 *2*2
CTS2

2	 *2B	 s(ct - 2C T )

for x 2 > 0.

From the discussion in Sections 3.5 and 3.7, equations (6.4.17)

and (6.4.18) can be written as

A 1
 = - 1	 B1	 S2

	 for x 2 < 0,

(6.4.19)

*	 *

for x20,
1'	 B



280

Equtions (6.4.14) now can be written as

*	 *
A 1 + B 1 - A 1 - B 1 = 0,

*
* * -	 = 0,s 1 A 1 +	 - s1A

S2	 s*2

on x 2 = 0	 (6.4.20)

1	 ** *	 * * 1
2ts 1 A 1 + t(s 2 + - ) B +	 s1 A 1 + t (s 2 + —i ) B = 0,

S2	 S2

*	 * *2	 * *	 **
X - (X + 2)s}A 1 - 2tB 1 + {( X + 2 )s 1 - X } A 1 + 2 B 1 = 0.

On use of equations (6.4.15) and (6.4.16) in (6.4.20), we have

*	 *
A 1 + B 1 - A 1 - B 1 = 0,

*
**

s 1 A 1 +	 - s1A1 - *
S2

(6.4.21)

2s 1 A 1 + ( 2 - c2/c )	 + 2 L. sA + -. (2 - C2/42)	 = 0,

*	 2 *2 *	 * *
(2 - c/c )A 1 + 2B 1 - i! (2 - c /eT )A 1 - 2 - B 1 = 0.

IL

For these equations to have non-trivial solutions for A , B , 4,
B, i C {i , 2) we must have
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1	 1	 -1	 -1

1	 *	 1
Si	

-	 -Si	
*S2	 S2

=0

c21	 *	 *	 c21

	

(2 - - )-	 2 i s1	 L (2 - - )-
2 s	 *2*

CT	 2	 CT S2

	* 	 2	 *
2_c2/c	 2	 -2

*2	 *2	 IL

	

IL	 CT

This secular equation in this form has been given in Section 3.7,

which is the secular equation of compressible Stoneley waves in the

classical linear theory.
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