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A b str a c t

Many wake flows exhibit self-excited flow oscillations which are sustained by the flow
',1:̂

itself and are not caused by amplification of external noise. The archetypal example 

of a self-excited wake flow is the low Reynolds num ber flow past a circular cylinder.

This flow exhibits self-sustained periodic vortex shedding above a critical Reynolds 

num ber. A linear stability  analysis of wake flows of this kind shows the presence of 

a significant region of local absolute instability which adm its a tem porally growing 

global mode of oscillation. In general, wake flows may possess m ultiple global modes, 

the most unstable of which is the observed oscillation of the wake. Active, closed-

loop control of such wake flows is of interest within the present study. In single sensor 

control schemes, flow oscillations may be suppressed at the sensor location but are 

in general exacerbated elsewhere by the destabilization of further global modes. For 

com plete suppression of the  flow oscillations resulting from global flow instability, all 

of the possible global modes m ust be attenuated. In general, complete suppression 

of all possible global modes requires the use of m ultiple sensors w ithin the  control 

scheme. As the  response of the flow to external control forcing is non-linear, then 

the m ost efficient control strategy is also non-linear.

The present work describes a general control strategy for non-linear self-excited 

wakes. Representation of the self-excited flow held by a hnite set of characteristic 

features, which correspond to the large scale wake components, allows for the efficient 

design of a closed-loop control algorithm . Experimentally, wake hows are seen to  be 

dom inated by a hnite num ber of large scale spatial structures and low-dimensional



m athem atical models of such flows are often adequate. Characterization of the large 

scale spatial structures of a wake flow can be performed with proper orthogonal 

decomposition, which selects an orthogonal set of spatial modes th a t are maximized 

in term s of retained energy. The low energy modes are neglected and the resulting 

finite orthogonal basis is used as a finite, low-dimensional representation of the 

wake flow field. A finite representation of the flow field, afforded by the modes, 

circumvents the need for a complex control algorithm involving a large num ber of 

spatially d istribu ted  flow field m easurem ents. An appropriate control strategy is 

then to  provide an external control input to the wake such tha t the future s ta te  

of the wake corresponds to a desired set of mode am plitudes. Em pirical prediction 

of the response of the wake to external control is furnished by a non-linear neural 

network. Em pirical modelling of the wake response avoids the need for explicit 

representation of the  coiitrol-wake interaction. Additionally, the neural network 

structu re of the  control-wake interaction model allows for the design of a robust 

non-linear control algorithm . Furtherm ore, rearrangem ent of the mode extraction 

process into a neural network form at provides continuity within the modelling and 

control scheme. Successful control of a simplified wake flow, which models some of 

the stability  features and spatial complexity of a cylinder wake flow, illustrates the 

u tility  of the control scheme.

. . .Ill
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In tro d u ctio n

1.1 S elf-exc ited  O scilla tions in  F lu id  W akes

:

i
A

C h a p ter  1
f:

■I
-,

i
1'

J,

Many wake flows exhibit flow oscillations which persist purely as a result of flow in

stability  and which are not due to the  influence of external forcing, noise, or internal 

pressure feedback. This class of fluid flows exhibits self-excited oscillations. W hether 

or not a particular wake flow can exhibit self-excited oscillations is dependent on 

the nature of the flow instability. Instability of a fluid flow is term ed absolute if any 

arb itrary  disturbance grows exponentially in tim e at a fixed streamwise location 

and therefore contam inates the flow both upstream  and downstream of the source; 

whereas the instability  is term ed convective if disturbances are selectively amplified 

bu t u ltim ately  swept away from their source, leaving the flow undisturbed after the 

source of excitation is removed [1].

The type of flow instability  is usually ascertained within linear theory where 

the stability, w ith respect to  infinitesimal perturbations, of a fictitious parallel wake 

flow is considered. The fictitious parallel wake has a velocity profile independent of 

stream wise location but equal to the local mean velocity profile of the actual non- 

parallel wake flow at a fixed, bu t arbitrary, streamwise location [2][1]. The stability  

characteristics of the linearized wake are representative of the stability features of

f



CHAPTER 1. INTRODUCTION  2

the actual wake as long as the mean velocity profile of the actual non-parallel wake 

varies only slowly in the stream wise direction [3] [4]. Linear global modes are time- 

harm onic solutions of the linearized flow equations around a non-parallel basic flow 

and are of the form,

v{x,y)exp{-iLüGt)  (1.1)

where log is the complex global frequency. The two types of instability are distin

guished by the tem poral growth rate , Im(wQ), of the global mode which dom inates 

the long term  response of the fiow at the disturbance location[5]. The flow is locally 

convectively unstable if Im((UG) < 0 and locally absolutely unstable if Im(wG) >  0. 

Flows of the absolutely unstable class therefore adm it a tem porally growing global 

mode, which grows exponentially after an initial disturbance, whereas the global 

modes of a convectively unstable flow are dam ped and are only amplified by contin

ual external perturbation  [4].

Convectively unstable flows, such as lam inar boundary layers, linearly amplify 

external disturbances of a certain am plitude and frequency content but do not, in 

general, adm it self-excited oscillations. This type of fluid flow is globally stable., 

w ith respect to infinitesimal perturbations, because the flow returns to its original 

undisturbed sta te  in the absence or cessation of external perturbation. Although 

convectively unstable flows are globally stable, global flow oscillations can exist in 

a convectively unstable flow if internal pressure feedback is present: for example, in 

the  flow over a cavity which is locally convectively unstable everywhere, self-excited 

oscillations can exist due to the intrinsic feedback of pressure waves reflected from 

the dow nstream  edge of the cavity.

Global instability is a necessary condition for self-excited oscillations in the ab

sence of feedback. Local absolute instability over a finite streamwise interval is a 

necessary condition for global instability [6], The flow oscillations resulting from 

absolute instability  continue irrespective of the presence of further infinitesimal ex

ternal pertu rbation  [1]. K arm an vortex shedding is the typical non-linear satu rated
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mode of oscillations in self-excited wake flows: the archetypal flow th a t exhibits

K arm an vortex shedding, resulting from absolute instability, is the low Reynolds

num ber flow past a circular cylinder [2].

Below some critical value of a flow param eter, such as the Reynolds num ber, a 
.wake flow typically displays linear behaviour resulting from convective instability.

As the relevant flow param eter is raised, the flow may become absolutely unstable
A.

over a small spatial region, but rem ain globally stable. External perturbation  of the

flow results in oscillations of the flow, favouring the, as yet, dam ped global modes.

However, the oscillations decay linearly and perturbations are swept downstream af- 
.

te r the cessation of external forcing. An example of linear behaviour of a wake flow

is shown by the low Reynolds num ber flow past a circular cylinder. Below a critical

Reynolds num ber (Re^ ~  47) the flow past a circular cylinder is dom inated by two

large vortices of opposite ro tation situated  im mediately behind the cylinder. These

vortices grow in strength and elongate in the flow direction as the Reynolds num ber

is raised; however, the flow is steady below the critical Reynolds num ber [2]. Any

perturbation  of the flow below the critical Reynolds num ber is swept downstream

from its source and does not affect the future, long-term, behaviour of the wake.

P ertu rbation  of the sub-critical wake can cause the wake to oscillate: the vortices

behind the cylinder are alternately shed into the wake and form a ‘vortex s tree t’.

However, no m a tte r w hat the am plitude or frequency content of the external per- 
.

tu rbation , the wake oscillations linearly decay and the flow resumes its steady sta te

when the external pertu rbation  is removed [7]. The linear decay of flow oscillations 
.

resulting from external excitation of a subcritical cylinder wake (at Re — 46.8) is 
.

shown in figure 1.1.

As the relevant flow param eter in the wake (Reynolds num ber in the cylinder 

case) is raised above the critical value the region of absolute instability  increases 

and there is a stable (supercritical) flopf bifurcation from a steady to a periodic 

s ta te  [3][1]. Typically, this bifurcation is observed by spontaneous, self-excited,
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Re=0.995Re

I {

tune

(figure adapted from [7])

Figure 1.1: Linear Decay of Oscillations in a Sub-critical Cylinder Wake

asym m etric vortex shedding forming a K arm an vortex street in the wake [2]. This 

bifurcation is exemplified by the periodic vortex shedding behind a circular cylinder 

at Reynolds num bers above Re^ cs 47. The qualitative features and dynam ics of 

the cylinder wake are typical of self-excited flows in general [5] [8] (for example, a 

similar bifurcation to flow oscillations is seen at a critical velocity ratio in a mixing 

layer [1]).

Wake flows exhibiting self-excited oscillations are often dom inated by large scale 

spatial structures: in the cylinder example, the mean flow during shedding consists 

of two large vortices behind the cylinder (which are slightly smaller than  those prior 

to shedding) and the fluctuating wake is formed by the downstream movement of 

the  large vortices th a t are alternately shed by the cylinder. The resulting lam inar, 

periodic vortex street persists up to a Reynolds number of around 250, beyond 

which aperiodicity, three-dim ensionality and turbulence (with its associated smaller 

scales) may be observed. For the cylinder, the period of oscillations is characterized 

by the Strouhal num ber, F t =  which is a continuous function of the Reynolds 

num ber [2]. The spatial structure of the K arm an vortex street is, very roughly, 

characterized by a ratio of the cross-stream distance, /t, between the vortex cores

If

A'

' Ï
"-"■b

I

Ï
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CHAPTER L INTRODUCTION  5

to the downstream  distance, /. The natural, stable arrangem ent of a vortex street 

has j  =  0.281 [9]. Figure 1.2 shows a sketch of a cylinder wake during vortex 

shedding [9]. The dependence of Strouhal number on Reynolds num ber is shown in 

figure 1.3 [2].

U absolute instability convective instability

Figure 1.2: Sketch of the Cylinder Wake

Exam ination of circular cylinder wakes after an impulsive change in the Reynolds 

num ber from  a subcritical to a supercritical value shows a typical growth of oscilla

tions seen in globally unstable wake flows. The wake oscillations grow exponentially 

in the initial, linear stages and eventually form a non-linear lim it cycle [1]. The 

characteristic am plitude, r , and frequency, 6", of natural oscillations are accurately 

modelled by a Landau equation [10]

r = a{r  — r^)

è =

(1.2a)

( 1.26)

In the Landau model, the param eter a{>  0) is a measure of the instability  of the 

fixed point (r — 0) of the m ean flow, and 6{> 0) is a measure of how the frequency 

changes with am plitude. A typical growth of self-excited oscillations is shown, for a 

low Reynolds num ber cylinder wake, in figure 1.4 [11].
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Figure 1.4: Temporal Growth of Global Mode: Landau Equation

In the cylinder example, and in absolutely unstable wakes in general, the Hopf 

bifurcation of the wake is the result of amplification of a particular globally unsta

ble mode: the critical global, vortex shedding, mode grows exponentially in time 

at a rate proportional to Im(w(-), followed by non-linear saturation (towards the 

Karman vortex street) and limit cycle oscillations [1]. A linear stability analysis 

of the time-average flow (calculated during the shedding process) shows the pres

ence of a significantly large region of absolute instability in the near wake of the 

cylinder [2]. The region of absolute instability extends about five cylinder diameters 

downstream of the body. If the mean flow velocity profile at a streamwise location 

behind the cylinder is taken as a constant inflow condition for a flow without the 

presence o f the cylinder then an identical vortex street is formed. This observation 

is confirmed via numerical simulation of the cylinder wake [2][1]— illustrating that 

the flow oscillations are sustained purely by the instability of the large scale mean 

flow itself. Therefore, the global flow oscillations are not strongly dependent on the
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small scale localised movements o f the cylinder separation points [1]. The instability  

of the m ean flow (during shedding) acts as a ‘wave m aker’ for the flow oscillations 

bu t the flow fluctuations in the absolutely unstable region are smaller than the os

cillations downstream [3][1]. The concept of absolute instability is, however, based 

on a locally parallel flow, which is a fictitious concept— the transition of the flow 

to absolute instability  is therefore not directly observable in experim ent, and the 

stability  analysis only explains the global oscillations with prior knowledge of the 

mean flow during shedding [1]. The mean flow, during shedding, evolves spatially; 

hence, each location in the wake may, after a local stability analysis, reveal a dif

ferent global mode [5]. An increase in the flow Reynolds num ber can increase the 

num ber of possible m arginally stable global modes, which often have closely spaced 

frequencies [4]. The natura l vortex shedding mode is the m ost unstable of the global 

modes [1] (the von K arm an mode always becomes unstable before other modes in 

wake flows [!)).

Global, self-excited, wake oscillations are therefore seen to be a result of a signif

icant region of local absolute instability  of the mean wake flow. The local absolute 

instability  is characterized by the exponential tem poral growth of the most unstable 

global mode. The typical satu rated  global mode is observed by a non-linear lim it 

cycle and von K arm an vortex shedding in the wake. However, the wake may, in 

general, possess m ultiple global modes [1].

1.2 R esponse of Self-excited W akes to  E x te rn a l 

C ontro l

The response of the two classes of flow instability to external control forcing is 

qualitatively different and hence stabilization of a flow is dependent on the nature 

of the flow instability  [4].
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For convectively unstable flows, a linear stability analysis reveals the  receptiv

ity of the flow to external forcing at various frequencies— out of phase, sinusoidal 

forcing at the same frequency as the dominant Fourier component of the instability  

wave can, in theory, stabilize a convectively unstable flow. Linear control laws have, 

for exam ple, found success in delaying boundary layer transition (in num erical in

vestigations [12], [13], [14] and in experiments [15],[16], [17]). In these schemes, a 

controlled input is superim posed on the growing disturbance (a Tollmein-Schlichting 

wave) so th a t they destructively interfere. Even when global flow oscillations are 

present in a convectively unstable flow (periodic cavity flow for example) the oscil

lations are the  result of linear amplification or feedback of internal pressure waves— 

therefore the global flow oscillations at each point in the wake are related by a phase 

shift and are thus controllable w ith single sensor, linear feedback.

Control of global flow oscillations th a t are the result of absolute instability  is 

more difficult. Strategies for control of global flow oscillations can be separated into 

flow modifiers (where the region of absolute instability is removed by favourable al

tera tion  of the mean flow) and control strategies which actively stabilize the unstable 

modes of the flow. Flow oscillations are preventable if the mean flow is modified so 

as to become convectively unstable— this passive control is achieved by addition of i

another body to the flow (for example, a splitter plate or secondary cylinder placed 

behind the m ain cylinder) [18][1]. Passive control is, however, severely lim ited in 

its applicability [19]. Active control of flow oscillations, where the oscillations are 

suppressed by tim e-dependent control forcing of the flow (rather than  modification 

of the m ean flow) requires the attenuation of all global modes of the flow [1]. The re

sponse of absolutely unstable wakes to  external forcing is therefore im portant when 

considering an active control scheme.

According to linear theory, an absolutely unstable flow is unresponsive to external 

forcing: in its initial stages the global (vortex shedding) mode grows exponentially

.;;4-
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periodic in tim e [2]. However, the observed result of the absolute instability is the 

non-linear lim it cycle and, while linear stability concepts are useful for explaining 

the presence of globally unstable modes and self-excited oscillations, linear theory is 

not appropriate when considering the effects of any finite am plitude external forc

ing of the non- linear flow [2]. Linear theory is applicable only to infinitesimal 

forcing. Experim ents and simulations affirm th a t the behaviour of an absolutely 

unstable fluid flow is responsive to external control inputs if the am plitude of the 

control input is above a certain threshold value [2] [20]. The response of the ab

solutely unstable cylinder flow to forcing is characteristic of the response of more 

general absolutely unstable wakes [1]. Several different forcing technicpies affect the 

behaviour of the cylinder flow. The wake response to forcing is similar whether 

acoustic excitation of the wake [9], longitudinal or lateral vibration of the cylin

der [9], rotation of the cylinder [21], alternate blowing and suction at the separation 

points [7] or (for low Reynolds numbers) vibrating wires in the wake [2] are used. 

All of these m ethods have been proposed for vortex shedding suppression schemes— 

active control schemes involving rotation of the cylinder [21] or alternate asym m etric 

suction/blow ing [22] have m et with some success. Open loop control of a cylinder 

wake by means of an oscillating aerofoil placed in the near wake has also been used 

to  alter the position and strength of large scale vortex structures in the wake [19].

The response of the cylinder how, and absolutely unstable wake flows in gen

eral, to periodic forcing above the threshold am plitude has the characteristics of a 

non-linear oscillator w ith forced oscillations [9] [23]. The response of a circular cylin

der wake, forced by acoustic excitation, can be characterized by two qualitatively 

different regimes which are dependent on the frequency content of the applied forc

ing [2][9]. The first regime is term ed a ‘non-lock-in’ state. The fiow structures and 

tem poral behaviour of the non-lock-in state are independent of the relationship be

tween the frequency of the applied forcing, / q, and the natura l shedding frequency,
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fo. In this state, the flow is characterized, both spatially and temporally, by a non

linear beat. The shedding frequency can be shifted by up to 25% from the natural 

value during the beating phenomenon [9],

The second classification of flow response is term ed a ‘lock-in’ state, and occurs 

when the shedding frequency shifts to an integer ratio of the applied frequency. The 

lock-in sta te  exhibits wake structures th a t are dependent on the ratio of the applied 

and natura l shedding frequencies, and which are also dependent on the am plitude 

of the  forcing. The lock-in states are delimited by regions of entrainm ent, similar 

to the  Arnokd tongues shown by forced non-linear oscillators [23] [11]. A sketch of a 

typical entrainm ent region is shown in figure 1.5 [23]. A specific class of lock-in sta te  

occurs when the shedding frequency changes to half of the applied forcing frequency. 

This type of lock-in sta te  is called synchronization. The wake types exhibited by 

the circular cylinder flow during synchronization show a full range oI h j l  values, 

from 0 <  h jl  < oo, and therefore display considerable variation. The resultant 

wake type, dependent on the frequency ratio fa /fo  and the forcing am plitude A /, 

exhibits hysteresis [9]. Three different spatial modes of interaction between a cylin

der vortex street and an oscillating aerofoil have been observed experim entally [19]. 

A lternatively, twelve different spatial shedding modes have been observed during 

large am plitude acoustic excitation [9].

The response of a self-excited wake flow to  external control forcing is therefore a 

non-linear interaction between the global mode oscillations and the external forcing. 

The global flow oscillations may also be the result of m ultiple global modes— this 

spatial com plexity of the flow has im portant consequences for flow control. At val

ues of the relevant flow param eter (Reynolds number in the cylinder wake example) 

ju st above the  critical value for self-excited oscillations, there is typically only one 

globally unstable mode, often resulting in Karm an vortex shedding [1]— therefore 

the flow behaviour a t each point in the wake is related to every other by a simple 

phase shift [20]. Linear feedback control of such flows is therefore, theoretically,

I
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Figure 1.5: Region of Lock-in

:-;:5

■ /i':

I

i



CHAPTER 1. INTRODUCTION  13

possible by mea,ns of cl single seiisor/cictuator feeclbcick loop. Indeed., single sensor 

contiol of such low Reynolds num ber cylinder wakes has been observed experim en

tally  [20] [24] [7]. At higher values of the relevant flow param eter, however, other 

global modes are present. Nevertheless, at only slightly supercritical param eter val

ues (eg. Reynolds num bers no more than ~  20% larger than  Re^ in the cylinder 

exam ple) the ie  often exists a gain window’ between the threshold am plitudes for the 

global modes, such th a t forcing with an am plitude large enough to  suppress the  most 

unstable mode is still not large enough to destabilize the next global mode [20][7], 

Com plete suppression or control of the wake is therefore still feasible using a sin

gle sensor at these slightly supercritical param eter values, even although there may 

exist m ultiple global modes [20]. Further beyond the critical value, however, the 

‘gain window’ shrinks so th a t the forcing am plitude necessary to control the most 

unstable mode merely destabilizes the next most unstable mode [7] [4]. Oscillations 

m ay be suppressed at the sensor location [24] but are, in general, exacerbated 

elsewhere [7]— the self-excited wake behaves like a set of spatially coupled local 

oscillators [25]. Points in the wake are therefore not merely connected via a phase 

shift and so multiple, spatially distributed sensors are needed fo r  control o f  the flow. 

A sketch of the gain window for an absolutely unstable cylinder wake is shown in 

figure 1.6 [7]. The diagram  represents the change in wake oscillations am plitude 

as the  control am plitude is raised [7]. As the control am plitude increases, the high 

frequency com ponent (in this case corresponding to the natural shedding mode) is 

suppressed. As the am plitude is further increased, there is a range where no flow 

oscillations are present, but the growth of low frequency oscillations (corresponding 

to the  next global mode) is seen at even higher am plitudes. The destabilization of 

further global modes is also illustrated in figure 1.7 [20], which shows a ttem pted  

single sensor control of the Re  =  80 flow around a cylinder. The natura l shedding 

mode, conesponding to  the m ost unstable global mode can be suppressed via single 

sensoi feedback. Once the  natural shedding oscillations are suppressed, however, the
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wake oscillations resume with a different growth rate, and a tta in  different am plitude 

and frequency from the natu ra l shedding mode; these new oscillations correspond 

to the excitation of the next global mode. The wake structure is also different as a 

resu lt.

1.3 Low-D im ensional C ontrol of Self-excited 

F lu id  W akes

W hen considering control of wake oscillations, it is im portant to distinguish between 

flows where the oscillations are due to intrinsic feedback or extrinsic noise and flows 

where the oscillations are due to global instability of the flow. Globally unstable 

flows contain a region of absolute instability  and, because of the nature of the flow, 

are not, in general, controllable w ith single sensor linear control m ethods. In general, 

an absolutely unstable flow is characterized by a Hopf bifurcation from a steady to 

a periodic sta te  at some critical value of a flow param eter. The am plitude and 

frequency of the natural oscillations are accurately modelled by a Landau equation 

and the K arm an vortex street is the typical natural, saturated  mode of oscillation. 

The oscillations in the wake exist purely as a result of the absolute instability  of the 

m ean flow.

The self-excited oscillations of an absolutely unstable wake flow are responsive 

to external forcing only above a certain threshold am plitude; the response of the 

flow to excitation is characteristic of a non-linear oscillator w ith forced oscillations. 

It is typical for a globally unstable flow to  contain m ultiple global modes; the most 

unstable mode results in the observed natural oscillations of the wake. In general, 

single sensor, linear feedback is able to suppress a single global mode, but it is likely 

to excite the next most unstable mode, thus defeating its purpose. A linear stability  

analysis of the  m ean flow may reveal many global modes at each streamwise location 

in the wake and, often, the global modes have closely spaced frequencies. The
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Figure 1.7: Attempted Single Sensor Control of Multiple Global Modes of Circular 
Cylinder



CHAPTER 1. INTRODUCTION  17

presence of m ultiple global modes thus necessitates the use of m ultiple control sensors 

at various stream wise locations for the suppression of all possible modes [19] [4], The 

spatio-tem poral response of the wake is non-linear— therefore the most efficient 

control strategy is also non-linear. A linear control strategy, based on a linear 

model of the flow dynamics is consequently less accurate [26]. A multiple-sensor, 

non-linear control is therefore, in general, the best strategy to adopt for the com plete 

suppression of self-excited wake oscillations caused by global instability.

If the absolutely unstable region is to be adequately represented with m ultiple 

control sensors, then m any flow variables (for example velocity or pressure) at many 

points throughout the unstable region are needed within the feedback or control 

algorithm . The resulting control algorithm  involves many variables and will therefore 

be com plicated and com putationally slow. If, however, the complex spatio-tem poral 

inform ation, needed for non-linear feedback stabilization of m ultiple global modes, is 

characterized by a relatively small num ber of quantities— given by a low-dimensional 

description of the flow features and their response to external forcing — then it is 

reasonable to assert tha t the feedback control algorithm can be made simpler and 

com putationally feasible. Typically, flows exhibiting self-excited oscillations as a 

result of global instability  are dom inated by the dynamics of large scale spatial 

structu res— the dynamics of small scale spatial structures are relatively unim portant 

in the evolution of the flow. Often, the large scale structures of a dissipative fluid 

flow can be represented by a finite set of spatial features. A control strategy th a t is 

restricted  to m easurem ent and control of ju st a finite num ber of large scale spatial 

structures in the fluid wake flow is potentially simpler than  a control scheme which 

attem pts to  control bo th  the large and small scales of the flow. A control strategy 

restricted to large scale spatial structures is, however, able to control the most 

im portan t features of the wake oscillations. It has been shown experim entally tha t 

a self-excited fluid wake can be altered in a desired m anner by the direct control of 

ju st large scale structures in the wake [19].
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A non-linear dynam ical model for the large scale wake structures and their re

sponse to control forcing is helpful for the design of a control algorithm. However, 

analytical determ ination of such a model by classical means is difficult. Neural net

works can be used to provide em pirical relationships between sets of inpu t-o u tp u t 

da ta  and can therefore be used to predict the response of the large scale structures 

to  control forcing. Em ulation of the large scale flow dynamics with neural ne t

works also allows straightforward design of a non-linear neural network controller 

for stabilization of the large scale flow variations.

1.3.1 T h e  D y n a m ic s  o f  L arg e  S cale  S p a tia l  S tru c tu r e s  

in  D is s ip a tiv e  F lu id  F low s

Experim ental, self-excited wake flows are dom inated by large scale spatial struc

tures [19] [9]— solutions of m athem atical models of such wakes are also dom inated by 

large scale spatial com ponents [27]. The continuum model of the macroscopic char

acteristics of fluid flow is well established; the Navier-Stokes equations for viscous, 

incompressible flow are an exam ple of one such model. The phase space of a partia l 

differential equation, such as the Navier-Stokes equations, is infinite-dimensional. 

Even an approxim ate num erical solution of the discretized Navier-Stokes equations 

will have a phase space of very high dimension. However, experim ental evidence 

often shows th a t viscous fluid flows can have relatively simple asym ptotic dynamics 

(sometimes, for example, characterized by limit cycle behaviour which, even in an 

infinite phase space, is representable by dynamics in a two-dimensional space). In tu 

itively, simple dynam ical systems of finite-dimension should be able to describe the 

simple fluid phenom ena observed in many experiments. Dynamical systems theory 

provides a m athem atical framework for this approach.

Dissipation of energy through viscous effects is significant for many fluid systems.
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Typically, the solutions of dissipative systems converge to a finite-dimensional, a t

tracting set in phase space [27]. Hence, the asym ptotic dynamics of many infinite 

dimensional dissipative systems are often finite-dimensional and can be modelled by 

a finite num ber of ordinary differential equations [27]. Certain dissipative systems 

possess an inertial manifold, which is a finite-dimensional subset of the system ’s 

phase space, towards which global solutions of the system are a ttrac ted  exponen

tially fast [28]. The inertial manifold contains the global a ttracto r for the system 

and sometimes exists for a range of param eter values [29]. An im portant feature 

of the inertial manifold is its invariance; once the solution of the system is on the 

manifold ‘surface’ it rem ains there. Therefore, most of the salient dynamics of the 

system  take place on the finite-dimension manifold, and can be described by a f i 

nite, reither than infinite, system. Only a small transient part of the dynamics is 

not described by the manifold geometry.

Typically, partial differential equation systems which possess an inertial manifold 

have solutions composed of widely differing spatial scales. Specifically, an inertial 

manifold exists only if there is a large gap between the wavelengths of the large 

scale components and those of the small scale components [28]. The num ber of 

large scale components, which contribute most of the solution, is often very much 

smaller than  the num ber of small scale components, which have little gross effect on 

the solution. A large num ber of degrees of freedom are therefore taken up by the 

relatively unim portant small scales of the solution.

The infinite phase space of the partia l differential equation can be decomposed 

into two orthogonal sub-spaces: a finite sub-space spanning the large scale compo

nents and a complementary, infinite space spanning the small scale components [30]. 

A projection of the partial differential equation onto these sub-spaces yields two cou

pled ordinary differential equations in the two different scales. The equation of the 

inertial manifold provides either an approxim ate or an exact functional relationship
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between the small scale solution and the large scale solution, allowing the asym p

totic dynamics of the partia l differential equation to be described completely by an 

ordinary differential equation set th a t is a function only of the finite-dimensional 

large scale com ponents [30]. This finite equation set is the inertial form  of the par

tial differential equation [27]. For fluid systems, the large scale components can be 

identified with large scale spatial vortex structures, and the small scale components 

w ith small eddies.

It has been shown [28] th a t the two-dimensional, incompressible Navier-Stokes 

equations do possess an inertial manifold for certain boundary conditions. Also, the 

simple dynam ics observed in m any fluid experiments suggest, from a physical point 

of view, th a t a low-dimensional description of certain fluid flows is adequate. For 

exam ple, the  tem poral behaviour of large scale spatial structures in the K arm an vor

tex street can be modelled by a simple non-linear oscillator equation. The dynamics 

of the large scale spatial structures in the vortex street are relatively insensitive to 

pertu rbation  on a small spatial scale. The existence of an inertial manifold justifies 

the search for low-dimensional approxim ations of many viscous fluid flows.

The existence of inertial manifolds and global a ttractors for non-autonomous 

fluid systems with tim e-dependent forcing is of interest in a control context. A 

valid low-dimensional description of a wake flow in the presence of a control input is 

helpful for the design of a control algorithm. An inertial form of the Navier-Stokes 

equations exists for cases of tim e-dependent forcing, as long as some restrictions 

are placed on the type and character of the forcing [28]. Specifically, the  inertial 

manifold approach is valid for periodic forcing or for forcing th a t enters a compact 

set w ithin a finite tim e. Otherwise a global a ttracto r for the system m ight not 

exist. There is therefore some justification for the use of low-dimensional models to 

describe the forced or controlled behaviour of fluid systems. Further justification, 

for the use of low-dimensional models as descriptions of forced wake flows, comes 

from physical evidence.
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The case of periodic forcing is most applicable to an inertial manifold approach 

[28] and there is a wealth of experim ental evidence which supports the observation 

th a t periodically forced wakes are low-dimensional and dom inated by large scale 

structures. As discussed in section 1.2, relatively simple dynam ical behaviour is 

displayed by the periodically forced circular cylinder vortex street. It has been 

estim ated th a t there are only twelve qualitatively different types of wake structures 

in evidence in an acoustically forced circular cylinder wake [9] and only three basic 

modes of interaction are observed behind a cylinder with an oscillating aerofoil 

in its wake [19]. Several low-dimensional models have been employed, with some 

success, to predict the tem poral dynamics of forced cylinder wakes. The dynam ical 

features of the forced sine circle m ap [23] have been compared with the response 

of a periodically forced cylinder wake; and a simple cubic equation with empirically 

derived coefficients (from an unforced bu t transient wake), with an ad hoc additive 

sinusoidal forcing term  in the equation, is capable of producing tem poral shedding 

responses th a t agree qualitatively with experim ent [11]. Characterization of the 

spatial features of harm onically forced flows by orthogonal decomposition also shows 

th a t a low-dimensional description is often adequate [31]. It also seems th a t, for some 

flows, the resulting spatial characterization does not significantly differ from one 

derived for anharm onic forcing, which suggests th a t a low-dimensional description 

m ay be valid for more general types of forcing [31].

The determ ination of an exact inertial form of a complex fluid system is very 

difficult. However, a similar representation of the large scale (and hence most im por

tan t) dynam ics can be derived em pirically with the m ethod of Proper Orthogonal 

D ecomposition (POD ) [32], [33]. Proper orthogonal decomposition is an unbiaseda.p- 

proach for the selection of coherent spatial structures from a flow field. The m ethod 

was developed in the context of statistical pattern  recognition, and has been used 

as a m ethod for the selection of large scale coherent structures from turbulent fluid 

flows [32]. The m ethod proceeds with the calculation of the eigenvectors of the flow
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field correlation m atrix . Each eigenvector can be recognized as a ‘direction’ in phase

space in which the velocity field has a statistical maximum. The eigenvectors, or 
.modes, thus constitu te a linear, orthogonal subspace th a t encapsulates the region

of phase space in which the velocity field is statistically likely to be found—which 
.
is the global a ttrac to r (if one exists). Proper orthogonal decomposition is to be 

preferred over other characterization methods because it is linearly optimal; th a t is, 

it captures a larger am ount of kinetic energy than  any other linear expansion for a 

given num ber of modes. The linear, orthogonal sub-space spanned by the modes is 

similar to the finite sub-space of an inertial manifold, but the empirical decomposi

tion m ethod makes no a ttem p t at direct param eterization of the attracto r. Proper 

orthogonal decomposition has been successful in low-dimensional characterization of 

spatial patterns (for example, the characterization of hum an faces [34]), detection 

of coherent structures in turbulen t flows [35] [36] [37], and also in the spatial and 

tem poral characterization of boundary layer transition [38]. It has also been used 

in the  low-dimensional modelling of complex geometry flows such as the grooved 

channel and circular cylinder wake [39], and wakes of thick aerofoils [40], and also 

forced wake flows such as the periodically forced mixing layer [31]. A lthough the 

m ethod is significantly different from the inertial manifold approach, it is similar 

in character, and it provides a useful tool for the spatial and tem poral character

ization of fluid flows. Lam inar wakes can be characterized by much smaller sets 

of features than turbulen t wakes [39]— the POD modes of a turbulent flow have a 

more widespread energy distribution. The characterization of turbulent wake flows 

by low-dimensional sets of POD modes is still feasible [36], bu t the  dimensions of 

the resulting characterizations are likely to be much larger than  those for lam inar 

wakes.
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1.3.2 C o n tro l  o f  L a rg e  S cale  S p a tia l S tru c tu r e s  

w ith  N e u ra l  N e tw o rk s

The flow field of a self-excited wake flow can be approxim ated by the large scale 

spatial structures in the flow. The large scale structures of the flow can often be 

characterized by a finite and relatively small number of orthogonal spatial modes 

w ith corresponding tim e-dependent am plitudes, developed using proper orthogonal 

decomposition [33]. The fluctuating wake velocity field is approxim ated by a finite, 

linear com bination of the POD modes. A control strategy which m anipulates the 

flow such th a t the mode am plitudes reach a desired state  is able to control the large 

scale structures in the flow, which are responsible for most of the flow kinetic energy. 

The control algorithm  can be m ade com putationally feasible because it operates with 

a finite, low-dimensional representation of the velocity field.

In order to  devise a non-linear control algorithm, a model for the evolution of the 

mode am plitudes in response to an external control is helpful [14]. Classically, evolu

tion equations for the unforced, autonomous POD mode am plitudes are determ ined 

w ith a Galerkin approxim ation of th e  Navier-Stokes equations [33]. The POD modes 

satisfy the flow boundary conditions and so the effect of a control input (which may 

involve boundary or interior control) is to modify the form of the low-dimensional 

model describing the evolution of the mode amplitudes. However, while the ana

lytical form of the low-dimensional flow model is known for autonomous flows, the 

structu re of the low-dimensional model for controlled flows depends intim ately on 

the nature of the control process which, itself, may be difficult to model.

Nevertheless, the notional existence of a low-dimensional flow model in the pres

ence of a control is appealing. Neural networks have been applied to non-linear 

control problem s where analytical representation of the system has proved difficult 

or im practical [41][26] [14]. For the flow control problem, a neural network can be 

trained to  estim ate em pirically the response of the mode am plitudes to an applied

I
.
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control, and an adjoining network trained to control the flow. The advantages of 

this approach are th a t it avoids the need for explicit representation of the  low

dimensional flow model, and th a t, because the dynamics are estim ated empirically, 

any dynam ical effects of the neglected small scales of the flow are not ignored (the 

Galerkin process com pletely ignores the dynamical effects of the small spatial scales).

Also, the neural network approach allows design of a non-linear control algorithm  

w ithout recourse to com plicated analytical non-linear control theory [14].

One type of neural network is the multi-layer perceptron [42]. The basic pro

cessing unit of the m ulti-layer perceptron is the neuron, which was originally posed 

as a m athem atical model for biological brain cells. The multi-layer perceptron can 

be used to approxim ate any non-linear algebraic m apping between a set of inputs 

and a set of outputs. The network learns to approxim ate an unknown function be

tween two sets of input and output da ta  by application of a training algorithm  which 

alters the strengths of the connections between the neurons of the network. One 

such training algorithm  is error backpropagation, in which the inter-neuron connec

tion strengths are updated by a function of the local error gradient. Once a neural 

network is trained to em ulate the non-linear response of the flow (described by a 

finite num ber of mode am plitudes) then the difference between the desired sta te  of 

mode am plitudes and the actual mode am plitudes can be backpropagated through 

the em ulator to tra in  another neural network to  provide a control input to  the flow.

The controller network is trained in such a way tha t the control system error dim in

ishes a t each tim e step. This type of non-linear control strategy is robust to external v| 

pertu rbation  and any un-modelled disturbances in the flow [26].

1.4 O utline of th e  D isserta tion

The aim of the  present study is to develop a generic control strategy for self-excited 

wake flows th a t is com putationally fast, by virtue of a low-dimensional description of
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the flow dynamics, but also addresses the potentially non-linear, spatially d istributed 

nature of the flow.

The dissertation makes no explicAt use of the m athem atics of absolute instability  

theory, nor does it make explicit use of analytical m ethods for the derivation of an 

inertial manifold of the Navier-Stokes equations. However, the qualitative flow be

haviour resulting from absolute instability is used to suggest the character and type 

of feedback th a t is to be employed. Also, the concepts of inertial manifolds, and their 

existence for forced flows, are exploited to suggest th a t a low-dimensional descrip

tion of the flow dynam ics is possible. Both theoretical and experim ental evidence 

is employed to support this view. It is the combination of the qualitative results of 

stability  theory, together w ith the characterization of the flow by a low-dimensional

%
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model into a control scheme th a t is the main contribution of the dissertation.

C hapter Two begins w ith the premise th a t multiple sensors are needed for the 

stabilization of m ultiple global modes present in an oscillating wake flow. A control 

algorithm  can be m ade com putationally feasible if the complex spatial inform a

tion (recorded by the m ultiple, spatially distributed, sensors) is characterized by 

a low-dimensional set of spatial modes. The characterization of spatial systems, 

governed by partia l differential equations, by low-dimensional systems is addressed 

w ith reference to exact and approxim ate inertial manifolds. It is shown th a t the 

m ethod of proper orthogonal decomposition furnishes a readily identifiable coordi

nate  basis with which to  represent the flow. Truncation of this basis allows low

dimensional characterization of the spatial features of the wake flow. The validity 

of low-dimensional approxim ations for wake flows with tim e-dependent forcing (as 

would be present during flow control) is also addressed. Some rem arks are m ade 

as to  the possible changes in manifold geometry th a t occur as a result of time- 

dependent forcing. The extension of the classical proper orthogonal decomposition 

to  non-stationary flows with tim e-dependent control inputs is discussed.

An efficient, robust, non-linear control strategy for the stabilization of the POD . i
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modes can be designed if the dynam ical behaviour of the POD modes of the flow can 

be predicted. The development of such a control strategy is presented in C hapter 

Three. In contrast to classical, Galerkin methods of estim ating the mode dynamics, 

an em pirical m ethod is presented. It is shown tha t an em pirical prediction of the 

mode am plitude response, after application of a control input, can be achieved using 

a non-linear neural network. The advantages of empirical prediction of the mode dy

namics are discussed. It is also shown how the neural network em ulation of the  mode 

am plitude response forms the core of an adaptive non-linear neural network control 

strategy. Finally, the chapter presents a method for estim ation of the POD modes 

and am plitudes via another neural network, so th a t the characterization, dynam ic 

modelling, and control strategy are all constructed using the same framework.

Control of a prototype absolutely unstable flow is used as an example of success of 

the control strategy. The prototype flow is a simple model which retains the salient 

stability  features of a circular cylinder wake. The results of the prototype model are 

presented in C hapter Four. The prototype flow shows qualitative agreement w ith 

both the tem poral and some of the spatial features of actual forced and unforced 

cylinder wakes. The validity of the prototype model, with regard to testing the 

control strategy, is also discussed. The construction of the controller is presented 

and its perform ance is discussed in comparison to linear control strategies and single 

point feedback.



C h ap ter  2 

C h a ra cter iza tio n  o f  D iss ip a tiv e  

F lu id  F low s

2.1 In tro d u c tio n

Some of the  difficulties of attem pting  active control of an absolutely unstable fluid 

flow were outlined in the first chapter. Absolutely unstable flows are both  spatially 

and tem porally complex and active control of the flow by feedback of an isolated flow 

m easurem ent is often unsuccessful. The flow oscillations at the m easured point may 

be suppressed by the control, bu t oscillations are often exacerbated elsewhere by the 

excitation of other global modes of oscillation. Stabilization of an absolutely unstable 

flow requires attenuation  of all unstable or destabilized global modes. M ultiple, 

spatially d istributed m easurem ents— contained in, say, ‘p ictures’ or ‘snapshots’ of 

the flow field which comprise the values of im portant flow variables at a distribution 

of points in space— are needed to suppress completely all of the global modes of an 

absolutely unstable flow [1][4].

W hile the initial absolute instability is a linear concept, the initial exponential 

growth of the global mode saturates to a large am plitude non-linear limit-cycle[l].

-a
-
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The initial linear instability  is often unobservable in experim ent, and the only ob-
.servable result of the instability is the non-linear lim it cycle [1]. As the response of 

the observed lim it cycle to a control input is non-linear[2] then the most appropriate 

control algorithm  is also non-linear. Linear control algorithms based on linear m od

els of the flow dynam ics are consequently less accurate than  non-linear schemes. If 

the  control algorithm  makes explicit use of all of the inform ation contained in a high 

resolution ‘p ic tu re’ of the flow field then it will be very complicated and com puta

tionally slow[14]. The incorporation of so many quantities into a non-linear control 

algorithm  is a significant task. (For example, a digitized image of only one scalar 

flow variable recorded at 256 X 256 points m  x — y space contains 2̂ ® quantities.) It 

would therefore be helpful if the large dimension set of inform ation contained in ‘pic

tu res’ of the flow field could be characterized by a smaller set of quantities w ithout 

losing a significant am ount of inform ation. Some of the theoretical and experim ental 

evidence th a t dem onstrates the plausibility of such a low-dimensional description or 

characterization of the spatio-tem poral features of certain fluid flows was discussed, 

with reference to the  concept of inertial manifolds, in the first chapter.

" f''

o2.2 G eom etric  C haracteristics of th e  N avier- 

Stokes E quations

Dissipative partial differential equation models of fluid flow such as the Navier-Stokes 

equations often have solutions composed of widely differing spatial scales. Often, 

m ost of the flow kinetic energy is contained within a relatively small num ber of large 

scale components; whereas the small spatial scales, which take up many (perhaps 

infinite) degrees of freedom, contain very little energy. An inertial manifold is a fea

tu re  of certain dissipative partial differential equations tha t have solutions composed 

of large and small scales. An inertial manifold is a finite-dimensional attracting , in 

variant sub-set of phase space th a t a ttracts  all solutions of the partial differential

a
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equation exponentially [30], and hence contains the global attractor. The equation 

of an inertial manifold provides a functional relationship between the large and small 

scale components; it allows the  partial differential equation system to be w ritten  in 

term s of a finite num ber of large scale components described by an ordinary differ

ential equation system  . The concept of reducing the dimension of a system with an 

inertial manifold is shown below with reference to a symbolic representation of the 

Navier-Stokes equations for fluid flow. The unforced (statistically stationary) case 

is considered first (adapted from [30] and [28]). The existence of inertial forms or 

low-dimensional approxim ations for forced, non-stationary flows, relevant to wake 

control, is explained in a later section.

The two-dimensional Navier-Stokes equations for a viscous, incompressible fluid 

in a region ft are, for each t > 0,

= ~(u(x ,i) . V ) u ( x , t ) - v n (x ,i)  + i /v n (x ,i)  (2.1o)

with

V ■ u(x,f) =  0 (2.16)

and initial condition,

u(x,0) =  uo(x) (2.1c)

supplem ented w ith periodic or Dirichlet boundary conditions on the boundary d ft  [27]. 

The kinem atic viscosity n is greater than  zero and the dissipative term  is — i/V^u.

V n  is the pressure term  and (u  • V )u  is the convection term .

The partia l differential equation (2.1) can be represented, by classical m eth 

ods [27], as a symbolic evolutionary equation in an infinite H ilbert space H.

^  + nAu-f  H(u ,u)  =  0 (2.2)

where A  denotes the dissipation operator, restricted to divergence-free periodic vec

tor fields, such th a t

Au = - f  V̂ û (2.3)
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where P  denotes the orthogonal projection in E^(S7) x E^(0) onto the Hilbert space, 

H ,  with a well defined inner product (u ,u )  and norm |u |. B  denotes the operator

H(u,v) = F((u.V)v)  (2.4)

The orthogonal projection on to the first m  eigenvectors, . . . ,  V’m}

the linear dissipation operator A  is denoted by Pm- The subspace spanned by this 

projection is Hm = PmH  =  span { '^ |, "025 • • •, '0ml- The com plementary projection, 

is Qm — I  — Pm-, where I  is the identity operator. The large scale component of the  

solution is represented by p  =  Pm^  (taking up m  degrees of freedom) and the small 

scale component by q  =  Q m ^  (describing the evolution of u  on the com plementary, 

infinite subspace). The to ta l solution is

u =  p +  q  (2.5)

and the evolutionary equation can be re-written in term s of the two spatial scales.

^  +  i/Ap +  P „ ,H (p -f q ,p  +  q) =  0 (2 .6 )

+  nA q +  QmE{p  +  q, p  +  q) =  0 (2.7)

The inertial manifold equation provides an algebraic relationship between the small 

and large scales of the solution such th a t q  =  ^ (p ) and the to tal solution can be 

expressed as u  =  p  +  0(p). The inertial form  of the original evolutionary equation 

portrays the dynamics of the system on the manifold, and is

~  +  z/Ap -f- PmB{p  -b 0(p), p  T 0(p)) =  0 (2.8)

The asym ptotic dynamics of the fluid th a t are restricted to the manifold are com

pletely determ ined by the ?n-dimensional ordinary differential equation (2.8)[28]. In 

practice, the salient dynamics of the system are always restricted to the m anifold— 

only a small transient part is not [28].
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The issue of w hether an inertial manifold exists for a particular flow is complex— 

the existence of inertial manifolds has been dealt with explicitly only for a few sim 

ple cases[29]. However, a useful rule is th a t an inertial manifold can exist if the gap 

between (the largest eigenvalue of A \p^̂ h ) and (the smallest eigenvalue of
;

A \q^ h ) is large enough— corresponding to a large enough gap in the wavelengths of 

large and small spatial structures in the flow[28]. There are good physical reasons 

for expecting an inertial form of the flow equations to exist for absolutely unstable 

wakes. Flows of this type are dominated by the oscillations of large scale spatial 

structures (for exam ple the K arm an vortex street is a large spatial structure) which 

are relatively insensitive to perturbations on a small spatial scale. The oscillations 

of a vortex street are known to grow from an initial absolutely unstable state, corre

sponding to the m ean flow, th a t is also dom inated by significantly large scale spatial 

structure (the twin vortices of the m ean flow behind a cylinder during shedding is an 

example). It can therefore be expected th a t small spatial scales, while im portant foi- 

structures in the boundary layer on the cylinder, are relatively unim portant (that 

is, they have little  energy) in a representation of the dynamics of the flow [40]. A 

two-dimensional wake flow with a finite number of vortices or flow structures w ith 

non-vanishing strength can be represented by a finite dimension system [43]. If a 

wake flow is periodic or quasiperiodic w ith n  distinct fundam ental frequencies (ex

cluding harmonics) then its velocity held is spanned by n phase angles — the flow 

is thus effectively n-dim ensional [43].

The analytical determ ination of the manifold equation is also generally difficult 

and is only straightforward for a few systems where the dimension, m, of the manifold 

is very low. The use of exact inertial forms as simplifications of the flow equations 

is conceptually appealing bu t usually of little practical use; the dimension of the 

inertial manifold for even m oderately complex flows can be very large (O(IO^) for 

some flows) [29]. Given th a t the determ ination of an exact inertial manifold is 

difficult, approximate inertial manifolds (which have been shown to exist even when

I

I
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an exact inertial manifold is not formally known to exist) are often of use [28]. 

If an inertial manifold a ttrac ts  all solutions asym ptotically to a finite-dimensional 

liyperplane, then an approxim ate inertial manifold can be thought of as a ttrac ting  

all solutions to  a th in  strip , or neighbourhood, th a t contains the global a ttracto r. 

Manifolds of this type are functions whose graph, Mapp — graph((j$)app), in phase 

space approxim ates th e  global a ttracto r. They are simple and are more practical 

than  exact inertial manifolds as devices for the construction of an approxim ate 

inertial form to reflect the dynamics of the partial differential equation system. 

T he crudest approxim ation is a flat space (fapp = 0) so th a t the solution of the 

flow is approxim ated only by the large scale components (this approxim ation is 

equivalent to a standard  Galerkin scheme [28]). However, if the small spatial 

scales are approxim ated by an appropriate non-trivial function of the large spatial 

scales, then the dynam ics are be tte r approxim ated than by assuming fapp =  0. An 

approxim ate relation for parts of q  is determ ined from the approxim ate solution of 

(2.7) [27], hence,

q 0app(p) =  [-Q^B(p, p)) (2.9)

which assumes th a t |q | is small enough to neglect in equation (2.7) [28] [27].

The dynam ical behaviour of a fluid flow may change m arkedly with param eter 

variations such as Reynolds number. An absolutely unstable flow, like the cylin

der wake, can evolve through disparate stages of lam inar, turbulent, periodic and 

aperiodic oscillations. The transitions between types of qualitatively different dy

nam ical behaviour correspond to  regions of high curvature or tw ists in the  inertial 

manifold or global a ttracto r. An a ttem p t to param eterize these regions of the in

ertial manifold will result in a manifold or a ttracto r of very high dimension. It is 

therefore more practical to search for a suitable coordinate basis th a t encapsulates, 

or approxim ates, only a local region of the inertial manifold [29].



C H A P T E R  2. C H A R A C T E R IZ A T IO N  OF D ISSIPATIVE FLUID F L O W S  33

2.3 T h e  M e th o d  o f P ro p e r  O rth o g o n a l D eco m 

p o s itio n

Low-dimensional characterization of absolutely unstable, dissipative fluid wake flows 

is inspired by the existence of exact or approxim ate inertial manifolds, even when 

the direct param eterization of such manifolds is difficult or not available. W hen 

an exact or approxim ate inertial form of the flow equations is known, the solution 

to the flow equations can either be exactly or approxim ately stated  as an algebraic 

function of the history of the large scale spatial structures. In seeking to encapsulate 

a local region of the inertial manifold, it therefore appropriate to search for some 

readily identifiable coordinate basis th a t spans the large scale components of the 

solution (at, say, a particular Reynolds num ber). Such a basis is furnished by Proper 

Orthogonal Decomposition; a m ethod which, w ithout bias, selects an orthogonal set 

of spatial modes th a t are optim al in term s of retained kinetic energy. The high 

energy modes may be identified with the large scale spatial structures appearing 

in the  flow [36] [39]. The m ethod determines the smallest linear sub-space th a t is 

sufficient to describe the observed flow phenomena, but makes no assum ptions on 

the non-linearity of the problem  of interest.

P roper orthogonal decomposition was originally developed in the context of p a t

tern  recognition and has been used successfully as a m ethod for determ ining a low

dim ensional description of hum an faces [34]. The m ethod has also been used to 

identify large scale coherent structure in turbulent flows [33], such as je t flow and 

boundary layer transition , and has also been used successfully to characterize coher

ent structures occurring in lam inar wakes or flows around complex geometries [39]. 

The m ethod as presented here (adapted from [32] ), from first principles, highlights 

the absence of bias in the POD  representation.

An efficient m ethod for characterizing an unsteady flow field concentrates on 

departures from the m ean[34]. A velocity field, measured at discrete spatial points,
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m ay be represented as a concatenated vector of local Cartesian velocity com ponents 

formed from tlie sum  of a m ean (tim e average) flow and a fluctuating part. For a 

two dimensional flow, which is m easured at P  discrete spatial points, the velocity 

field vector is of the form,

V(^) =  V  +  V '(/) (2.10)

where V  is the tim e average flow and,

v (rri,!/i,i)

v(a:2,y2A)
V '(t)

,v { x p ,y p , t )_

(2.11a)

is the fluctuating velocity field, and

(2.116)

is the local fluctuating velocity vector at a point i. It is required to characterize the 

fluctuating flow by a fixed vector 'if th a t has a ‘direction’, in phase space, as close 

as possible to  the fluctuating velocity field vector in the sense th a t the projection

( 2 ,12 )

is maximized[32]. So th a t the m agnitude of i f  has no effect on the m axim ization, 

i f  is subject to the constraint th a t i f  ■ i f  = I. To characterize a flow from an 

ensemble of velocity field realizations it is necessary to find a vector which is best 

correlated w ith every m em ber of the ensemble[32][35]. Because E {V '(i)}  — 0, the 

best statistical m easure over which to maximize (2.12) is the mean square

F{(0 ' V'(f))"} = A > 0 (2.13)

M axim ization of (2.13) produces the best correlated vector to the ensemble of ve

locity field realizations in a m ean square sense[33].

(2.14)

1

hr.
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=  A (2.15)

.
where R  is the tim e average, spatial correlation m atrix  of the velocity held,

R = E { V % V '( ^ ) ^ }  (2.16)

3 .3.1 T h e  M e th o d  o f S n a p sh o ts

For a sufficient num ber of tim e-sam pled fluctuating velocity fields, or snapshots, 

Y \ t k ) ,  k = I, - , M ,  the tim e average correlation m atrix  is approxim ated by

1 M
(2.18)

k = l

It is readily shown th a t extrem al i f  correspond to eigensolutions of the algebraic 

eigenproblem[33] [34]

R 0  =  ^ 0  (2.17)

The m atrix  eigenproblem defined by (2.17) yields an orthonormal set of vectors th a t 

characterizes the spatial structu re of the flow. The eigenvectors, or modes, can be 

recognized as ‘directions’ in along which the variance of the discretized velocity 

held has local maxima.

Solution of the eigenproblem (2.17) is a difficult task if the num ber of spatial 

m easurem ent points, P,  is large— the problem is of order (2 x P f i  for flows compris- 

ing two space variables. The effective order of the problem can be reduced, however, 

using the m ethod of ‘snapshots’[33].

■

The approxim ate correlation is sym m etric and non-negative and the num ber of snap

shots, M , is typically less than  the dimension of R . Consequently, R  is singular [34]

and only has M  non-zero eigenvalues [34] [36] [33]. The eigenvectors are of the

form [3 3]
M

0  =  E ^ ^ V '( 4 )  (2.19)
k = i

where the am plitude

At =  (0  - V'(^t)) (2.20)

, ;;
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Substitu tion of relation (2.19) into the eigenproblem (2.17) results in the reduced 

eigenproblem,

CA = AA (2.21)

where

and

A  =: (Ai, di2, • • ’ 5-dM)"^ (2.23)

The eigenvectors of the  m atrix  C are M -dimensional, and are used to form the 

eigenvectors of the correlation m atrix  R  via relation (2,19). The m ethod of snapshots 

makes num erical calculation of the eigenvectors of R  easier if M  <C 2P.

For periodic flow, care m ust be taken to ensure tha t the snapshots are selected 

from an exact m ultiple of the flow period. Otherwise the correlation will change 

depending on the first and last points considered. Analysis of more than one period 

of oscillation represents a surplus of information. If a non-integer num ber of periods 

is analysed, then the structures or modes developed will be biased to one particular 

phase of the flow. The extension of the POD to true non-stationary flow is presented 

in a later section.

T he construction of the  eigenvectors, or modes, th a t characterize the  flow does 

not rely directly on the spatial resolution of the velocity field; the num ber of m ea

sured points only features in the calculation of the inner product of (2.22). As 

long as the spatial resolution is sufficient to capture the significant features of the 

flow, an increase in the spatial resolution does not change the num ber of modes to 

any significant degree. The spatial resolution affects only the ‘smoothness’ of the 

modes[36].
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2 .3 .2  R e c o n s tru c t io n  o f th e  V e lo c ity  F ie ld

At any tim e, the velocity field can be reconstructed approxim ately from a linear 

com bination of the  m ean flow and a finite number of modes.

__ M
+  (2.24)

4 =  1

where the m odal am plitude

/li( t)  =  (V>.-V'(<)) (2.25)

The k ’th  eigenvalue can be w ritten  (from the m axim ization problem (2.13)) as

A, =  E { ( i^ , .V ( ^ ) ) ' }  (2 .26)

and for the approxim ate correlation of (2.18),

1 M
(2.27) 

.

The eigenvalue has units of the square of velocity, and is proportional to the mean 

kinetic energy of each corresponding mode. The sum of the eigenvectors is therefore 

proportional to the m ean energy of the fluctuating velocity held[32]. The con

vergence of the decomposition is optim ally fast since the coefficients Ai(t)  of the 

expansion are maximized in a m ean square sense. If the eigenvalues are arranged so 

th a t Am <  Am-i <  - - - <  Ag <  Ai, and the velocity field is reconstructed using only 

the modes corresponding to the  N  largest eigenvalues, then the proper orthogonal 

decom position captures more of the flow kinetic energy for a given N  than  any other 

expansion[3l].

A trunca ted  approxim ation, where N  < M  modes are retained, acts as a noise 

filter; noise, and its associated small scale and energy, is neglected along with the 

sm aller POD modes [44]. In practice, for lam inar wakes, only a few modes (com pared 

to the num ber of snapshots) need to be retained for an adequate description of the 

velocity field; for tu rbulen t flows the energy of the modes is more distributed and a 

greater proportion of modes needs to be retained.
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2.4 Low -dim ensional D esc rip t io n  of 

N o n -sta tionary  Flow

The effects of tim e dependent interior forcing (or an active control input) on the 

structu re and form of either local attractors or approxim ate inertial manifolds are 

of in terest w ithin the  context of flow control. A pproxim ate or exact inertial forms 

exist for the Navier-Stokes equations with a time-independent forcing and suitable 

boundary conditions. W hether these manifolds continue to exist for time-forced 

(or controlled) flows is a m ore difficult question. Physical evidence supports the 

idea th a t a t least periodically forced, absolutely unstable flows can be regarded as 

low-dimensional. For example, a relatively small num ber of characteristic spatial 

structures are observed in experim ental periodically forced vortex streets [9] (for 

exam ple, twelve spatial modes have been observed during large am plitude acoustic 

excitation of a cylinder wake [9]; alternatively, three spatial interaction modes have 

been observed behind a cylinder w ith an oscillating aerofoil in the near wake [19]). 

However, the theory of approxim ate inertial manifolds is not necessarily applicable 

to cases where the forcing is tim e-dependent. Systems of this kind might not possess 

a global a ttracto r. For an approxim ate inertial manifold to exist, the tim e derivative 

of the  small spatial scales, |q |, has to be small enough compared to all other term s in 

the evolution equation for q. This can be true only if the forcing is not too oscillatory 

in tim e, and if f ( t )  is uniformly bounded in tim e ( t >  0, \ f (t)\  < oo, /(o o ) <  oo) or 

if f { t )  is periodic. Given these restrictions on the forcing function, it is sometimes 

possible to obtain a global a ttrac to r for the system such th a t the solution of the 

flow, u{t),  approaches a th in  neighbourhood of the manifold [28]

M{t )  =  graph<]6(p(^), Qm/(^)) (2.28)

Periodic or nearly periodic forcing is a reasonable condition for the control of periodic 

flow oscillations occurring in absolutely unstable flows. Also, only very small forces



t
C H A PTER  2. CHARACTERIZATION OF DISSIPATIVE FEHID FTOW S 39

are likely to be needed for control of an initially linear absolute instability (with

an exponential growth rate) and the physics of a control actuator assure th a t the

control is uniformly bounded [24]— the use of approxim ate inertial manifolds for
.absolutely unstable wake flows with tim e-dependent forcing is therefore encouraging.

Many absolutely unstable flows, such as wake flows, have characteristics similar 

to those of non-linear oscillators. For example, the growth of tem poral oscillations 

resulting from vortex shedding behind a circular cylinder have been modelled by 

the Landau equation and by equations of the Van der Pol type [10]. The oscilla

tions in the spatial structures of the wake are seen to be reflected in the tem poral 

response of the wake[9] and the variation in spatial structures has been modelled 

successfully by low-dimensional equations similar to those which model the tem po

ral response [43] [39]. The circular cylinder example provides a useful prototype for 

other absolutely unstable flows. The dynamics of the forced cylinder wake are also 

readily com pared to some of the features of non-linear dynam ical systems[23]. The 

behaviour of forced non-linear oscillators, determ ined from the theory of non-linear 

dynam ical systems, m ay therefore provide some insight into the possible effects of 

forcing on the structure of a ttracto rs or approxim ate inertial manifolds of certain 

forced, absolutely unstable fluid flows. For the cylinder case, the am plitude of flow 

oscillations is a m easure of the coupling between the imposed forcing frequency 

and the natural shedding frequency; forcing causes lock-in and non-lock-in states 

when applied above a certain threshold am plitude. A useful simplification of forced 

oscillators w ith two com peting frequencies is the forced sine-circle map

On+i ~  ^  sin 27r9n -f D (2.29)

The sinusoidal term  represents the  effect of periodic forcing with am plitude K  and 

the  ratio  of the two com peting frequencies is represented by H. Indeed, the response 

of the  forced cylinder wake has been shown, experimentally, to be very similar to the 

forced sine-circle m ap [23]. For values of R  >  1 the circle m ap h  folded onto itself smà
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chaotic behaviour may result. Very complex or chaotic behaviour is observed in the 

cylinder wake during forcing at some am plitudes [23]. Also, it has long been observed 

th a t the transien t response of absolutely unstable fluid flows, before the flow settles 

on one of the two com peting frequencies, can be very complex or seemingly chaotic. 

The associated changes in structure of the attracto r of a continuous tim e non-linear 

oscillator undergoing periodic forcing, which exhibits similar behaviour to the circle 

m ap and the periodically forced cylinder flow, is suggested by an exam ination of 

the Birkhoff-Shaw a ttrac to r (adapted from [45]). This a ttrac to r is an analogue to 

the Van der Pol equations and has similar topology to the forced sine circle m ap 

for K  > 1 [45]. The a ttrac to r of this system has an interesting topology th a t 

is significantly affected by the periodic forcing term . Although the Birkhoff-Shaw 

a ttrac to r is an exam ple of chaotic response (and, as such, is an extrem e exam ple 

of the effects of forcing), this observation may suggest how the attractors for some 

fluid systems may change w ith forcing, and what implications this may have for 

low-dimensional characterization. W hen the forcing function of the B-S system  is 

om itted  (m ade zero), the a ttrac to r can be represented as a two dimensional limit- 

cycle in the x — y plane. However, when the forcing is as presented in figure 2.1 

the solution of the system  is more complex and seemingly disordered or erratic. 

The regular structu re of the a ttrac to r is now not visible from an exam ination of 

the  X — y plane alone, suggesting th a t this is no longer a complete phase space. 

B oth views are shown in figure 2.1. The a ttracto r of the forced phase space can be 

viewed using a three dimensional phase space in which the th ird  axis is the angle, 

in the forcing cycle. A sketch of the structure of the resulting a ttrac to r in three 

dimensional phase space, [x^y,  <̂ ), is shown in figure 2.2 [45]. The figure shows th a t 

the periodic forcing introduces significant changes in the structure of the  a ttrac to r 

(if no forcing were present the a ttrac to r would be exactly cylindrical in {x^y^ f )  

space). Folding and tw isting of the a ttracto r surface is introduced. The equations 

in figure 2.1 are repeated exactly at =  ^o +  27t. Hence the three dimensional object
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The Birkhoff Shaw attractor has similar topology to the forced 
sine circle map, which has similarities to the periodically forced 

circular cylinder wake,

X = O.ly +  10o:(0.1 — y^)

ÿ = X + f  

The forcing term is

/  =  0.25sin(L570 =  0.25sin(<^)

Figure 2.1: Unforced and forced phase portraits of the B-S system
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of 2.2 can alternatively have its two ‘'ends’ at =  0 and (f) ~  2tt joined together 

and the a ttrac to r imagined as a torus whose surface is stretched and folded by the 

addition of forcing. If no forcing were present the a ttrac to r could be imagined as a

2ti

A

LO

LO LO

(figure adapted from [45])

Figure 2.2: Twisting and folding of B-S attracto r by periodic forcing

sm ooth torus w ith no tw ists or folds. If the surface of the smooth, unforced torus 

was ‘unw rapped’ to  form a plane w ith axes ^  and 6 (where 0 is the angular position 

m easured in a clockwise direction from the x axis), then trajectories starting  a t any 

particu lar initial condition could be traced out: each trajectory  would be separate 

from  every other and trajectories would remain a fixed ‘distance’ from each other. 

Because the surface of the torus is smooth there would be no crossing or bundling of 

trajectories. U nwrapped trajectories of the forced torus are shown in figure 2.3 [45]. 

Because of the stretching and folding of the object in figure 2,2, which is tru ly  three
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2n
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(figure adapted from [45])

Figure 2.3: Stretching and bundling of trajectories by periodic forcing
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dimensional, the trajectories (in any projection) cannot be guaranteed not to  cross. 

The stretching, bundling and apparent crossing of trajectories is shown in figure 2.3. 

The shaded areas are regions where the surface of the torus overlaps other regions. 

R epeated stretching and tw isting and folding of the surface of the forced a ttrac to r 

causes mixing of the trajectories.

The above analogies from the theory of non-linear oscillators suggest th a t the 

effect of forcing on the lim it cycle a ttrac to r for a globally unstable fluid wake is to 

stretch  and tw ist the  original a ttrac to r and th a t further dimensions in phase space 

are, in general, needed to view these twists. The regions of high curvature or tw isting 

caused by forcing can be identified with fluid flow structures th a t appear abruptly, 

move or collide, or disappear. These spatial structures will therefore be statistically  

non-stationary and difflcult to capture using orthogonal decomposition [29]. If the 

short lived structures are determ ined using the classical orthogonal decomposition, 

then, because each structu re  contributes little  to the to tal flow energy averaged over 

all flow m easurem ents, each short lived structure will have a small eigenvalue and 

be ignored in any truncated  approxim ation of the velocity field [29]. It is therefore 

im portan t to extend the orthogonal decomposition for non-stationary flows. Most 

fluid wakes are not determ inistically chaotic, so a large collection of transients, in 

which a significant region of phase space is visited, is needed for the characterization 

ensemble.

2.5 Sub"Optimal D ecom position of 

N on-sta tionary  Flow

A tim e series of M  ‘snapshots’ of the flow velocity field is used to form the correla

tion m atrix  in classical proper orthogonal decomposition. However, if the tim e series 

of interest is of a statistically  non-stationary process (for exam ple a flow subject to 

time-varying forcing) then statistical properties such as the correlation depend on
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the first and final tim e points in the series. The variation in spatial features result

ing from the non-stationary process is embodied in changes in the correlation th a t 

depend on the  exam ined tim e series of snapshots. One approach to characterizing 

a non-stationary flow is to  select structures (ie. examine the correlations) from ve

locity fields close to some pre-selected phase of the flow [36]. If various phases of 

the flow are exam ined as, say, structures are advected downstream, then a series 

of tim e-dependent modes can be constructed. In order, however, to keep the  char

acterization simple, and hopefully use it within a control scheme, it is preferable 

to search for a fixed set of modes th a t will characterize the varying set of features 

found in a non-stationary flow. The spatial features occurring in non-stationary 

flows are approxim ated from an exam ination of the correlations of a set of transient 

tim e series [31] [44].

A snapshot of the fluctuating flow field, represented as a row vector, is

(2.30a)

with the fluctuating local velocity vector,

(2.306)

Here, i is the index pertaining to a particular snapshot tim e series, and j  repre

sents the tim e point w ithin each series. Each snapshot has 2P  elements (for two- 

dimensional flow, m easured at F  discrete points). The snapshots arranged into a 

tim e series of M  tim e points form

i2

.(!>i M

(2.31)

Each tim e series has zero mean, because the tim e average flow, for tha t particular 

tim e series, is subtracted  prior to analysis. Only flows where the m ean flow is

4
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not significantly affected by forcing (and is therefore not modified) are considered: 

the same tim e average approxim ates the time average for each tim e series. If N  

disjoint snapshot tim e series are examined, then the matrices i = 1, • • ■, fV form 

a concatenated m atrix ,

$ N

(2.32)

The concatenated m atrix  of data  contains all of the spatio-tem poral inform ation 

from the N  different, M  tim e point series of snapshots. (It should be noted th a t each 

series contains the same num ber of snapshots— an intelligent choice of first and last 

points in the series might be, for example, the start and finish points of one period 

of a forcing cycle because no further inform ation is gained from analysis of further 

forcing cycles. This is illustrated  by the repeating structure of the tw isted three- 

dimensional a ttrac to r depicted in figure 2.2.) To preserve as much inform ation as 

possible (particularly phase dependent inform ation), the data  is not averaged over 

the N  tim e series.

As in the classical POD approach, the correlation m atrix  for a single tim e series 

is formed from,

R
1

M (2.33)

If all of the N  tim e series are to be analysed, then (without averaging the data) the 

correlation is formed in a similar way from the concatenated d a ta  m atrix  [31] [44],

1 1
R

M N
A " A (2.34)

Each element of the correlation formed from the concatenated data  is of the form,

N  M

Rki M N E E (2.35)
Î = 1 J = 1

The correlation formed from the concatenated data m atrix  is thus the average of 

the correlations from each distinct time series of snapshots [31].
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As before, an orthonorm al set of modes tha t characterizes the flow is obtained 

by solution of the correlation m atrix  eigenproblem. However, the correlation R  is of 

dimension (2P)^ (for two-dimensional flows measured at P  points in space). If P  is 

large, the solution of the eigenproblem is (numerically) difficult, but is m ade easier 

by adapting the m ethod of ‘snapshots’.

The correlation developed from a concatenation of tim e series data  is an average 

of the correlation m atrices for each tim e series,

R  =  l [ R i  +  r 2  +  . . .  +  r N ]  (2.36)

Thus,

R  =  ^  +  • • ■ +  +  • ■ ■ +  +  ■ ■ • +

(2,37)

For the purpose of exposition, the snapshots 0*  ̂ are re-labelled,

=  Pfc (2.38a)

^ — 1, • ' *, A k ~  i  — l)A f (2.386)

with K  =  M N . This allows the correlation to be re-expressed as

R  =  [p I v>i + p W 2  + - ‘ - + ¥ ^ W k ] (2.39)

The m atrix  R is non-negative, sym m etric and formed from K  distinct snapshots, and

is similar in form to the approxim ate correlation (2.18) and as such, its eigenvectors 

are of the form

=  È  (2.40)
i = l

Substitu tion of (2.40) into the correlation m atrix  eigenproblem results in the system,

CA = AA (2.41)

^mn  — ^  (Pm ' ‘fin) (2.42)
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A =  ( Ai, A2 , • • •, Aa') (2.43)

The solution of this eigenproblem (which is of order K  = M N )  is used to form the 

eigenvectors using relation (2.40). The method is useful if K  <C 2P. The analysis 

A a

1 1

2

3

_____ 4

5

6

j 1 1~  T  ' 1

(figure adapted from [31])

Figure 2.4: Superiority of concatenation approach

of non-stationary flows therefore proceeds in the same way as the original method 

of snapshots. The only difference is that the non-stationary modes are sub-optimal; 

more of them are needed to characterize any given time series than would be needed 

by the classical POD [31]. Care must be exerted with the selection of time series and 

their sampling; however, the method of snapshots and the concatenation approach 

are essentially identical [31].

It is useful to compare the eigenvectors formed from the concatenation method 

with eigenvectors created from data averaged over all N  time series (so that the
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d a ta  consists of a single tim e series of snapshots). It can be expected th a t phase in

form ation will be lost in the averaging process and th a t the concatenation approach

is to be preferred. In this respect, the results of [31] are illuminating. The modal :

coefficients (tim e varying am plitudes) of modes generated with da ta  from a period

ically forced, plane mixing layer are shown in figure 2.4 [31]. Two different sets of 

coefficient histories are shown. On the left, the first six coefficients calculated with 

concatenated d a ta  are presented (Â -’s in the figure). As expected, the m odal am 

plitude coefficients decrease monotonically. This makes them  useful in a truncated  

velocity field expansion like (2.24). Modes calculated using averaged data  are shown 

on the right of figure 2.4 (a^’s). Although these modal coefficients have a decreasing 

trend, coefficient as is greater in am plitude, on average, than  mode coefficient a^.

This is undesirable if the modes are to be used in a truncated approxim ation of the 

velocity field as in (2.24). In general, it can be assumed th a t averaging of the data, 

over a selection of tim e series, causes a loss of information and th a t modes calculated 

from averaged data  will be difficult to use in approxim ations of the velocity field.

It is also useful to consider how m any different forcing regimes (and therefore how 

m any separate, forced tim e series) are necessary for an adequate characterization of 

the flow. The num ber of required tim e series depends (obviously) on the behaviour of 

the flow of interest. The circular cylinder wake is an archetypal absolutely unstable 

flow, so the response of the cylinder wake to forcing gives a general indication of 

the num ber of different forcing regimes necessary for characterization of non-linear 

oscillating wakes. Experim entally, the periodically forced vortex street displays at 

least twelve qualitatively different arrangem ents of wake vortices [9]. Presumably, a 

tim e series representing at least one example of each of these qualitatively different 

wake arrangem ents would be necessary for a complete characterization. Modes 

considered from data  deficient in one of the wake types would probably be unable 

to reconstruct the velocity fields for th a t particular forcing regime. In general, the  

num ber of exam ined tim e series will be proportional to the num ber of qualitatively
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different wake types found under forcing. The num ber of tim e points considered 

within each series depends on the spatio-tem poral complexity of each tim e series. 

Spatial characterization of a periodically forced mixing layer [31] shows th a t the 

degree of mode similarity, for varying numbers of tim e series and forcing regimes, 

does not differ too much for the flow— as long as snapshots from a full forcing period 

are examined. Figure 2.5 shows a measure of the mode-set sim ilarity for a forced 

mixing layer [31]. The surface in the figure represents changes in the variable

1  ̂ 1

(l +  |l-p.>|)(l +  |l-^,.

(2.446)
Ai^N

which represents the degree of sim ilarity between the mode shapes and coefficients 

of the I  most energetic modes when n < N  different tim e series of snapshots are 

considered. The figure shows th a t, at least for the forced mixing layer, only a small 

num ber of tim e series are needed to provide a considerable degree of eigenset sim

ilarity. The modes generated from a deficient data ensemble are not as good at 

characterizing the entire ensemble as a full data  set, but they still provide a reason

able approxim ation. This observation is encouraging if the results are analogous to 

other flows (data  from only a few transients are necessary for adequate character

ization of the low Reynolds num ber cylinder wake [39]). It is also known th a t a 

reasonably small num ber (~  64) of orthogonal Fourier modes tha t are scaled with 

Reynolds num ber can characterize the spatial features of a cylinder vortex street 

for a range of Reynolds num bers, capturing the initial onset of vortex shedding and 

changes in the vortex street structure with increasing Re  [43]. It is therefore reason

able to  assert th a t a finite representation of the wake by sub-optim al POD modes 

generated from a large enough non-stationary data  ensemble is possible. The num 

ber of different forcing regimes and the tem poral sampling necessary for adequate 

characterization is, however, dependent on the particular flow and can be resolved 

only by experim entation.
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W hen considering the num ber of time-series required for com plete characteri

zation of the flow (rather than  ju st one set of observed phenom ena), the type of 

forcing is also of interest. As m entioned previously, an approxim ate inertial form of 

the periodically forced flow equations is valid [28]. A comparison between the effects 

of harm onic and an-harm onic forcing for a plane mixing layer [31] shows th a t the 

wake structures do not significantly differ between the two forcing regimes. There

fore, modes developed from one forcing regime are useful for other types of forcing, 

such as feedback [31] (the behaviour of forced cylinder wakes is also relatively insen

sitive to the exact character of forcing [7] [9]). For this statem ent to apply generally, 

more experim ental evidence is required, but the sim ilarity of the modes generated 

during two diflerent forcing regimes of the mixing layer is encouraging.

2.6 U tility  of th e  PO D  M odes

The POD basis represents a powerful tool for the characterization of a flow— each 

POD mode necessarily satisfies the flow boundary conditions and the incompress

ibility condition. The POD modes represent the smallest linear sub-space capable of 

representing, with an arb itrary  degree of approxim ation, the observed phenomena. 

Care m ust therefore be taken to ensure th a t the observations of the flow th a t make 

up the characterization ensemble are representative of a region of the global a ttrac 

tor and the surrounding phase space. As most of the absolutely unstable flows of 

interest are not determ inistically chaotic, then the characterization ensemble m ust

be selected from a transient tim e series in order th a t a large enough region of the
■

attrac to r and its surround is visited. If the characterization ensemble is formed from 

a large enough num ber of transients, then the POD modes will span the region of 

phase space where the solution of the flow is statistically m ost likely to be found. 

This region can be identified with a finite-dimensional ellipsoid th a t encapsulates

the flow attracto r.

I
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High energy modes can be associated with large scale spatial structures— as the 

mode index increases the size of the spatial components of each structure diminishes 

[36] [39]. The space spanned by the largest POD modes is therefore analogous to 

the finite sub-space, spanned by the eigenvectors of the linear dissipation operator, 

th a t is used in the inertial manifold reduction — both sets of eigenvectors span 

the subspace representative of the large scale spatial structures in the flow. The 

modes of the POD approach can be truncated to any desired accuracy (or level 

of retained kinetic energy). In this case, ‘directions’ in phase space tha t are small 

enough are ignored and so the POD approxim ation is analogous to the flat manifold 

approxim ation where fapp = 0. This model is simple, bu t often results in good 

practical models for the representation of certain flows [28]. If the flat approxim ation 

does not adequately represent the dynamics, then the POD approach, because of 

its sim ilarity to the inertial manifold approach, can be modified so th a t the small 

spatial scales, represented by the low energy modes, are re-expressed as approxim ate 

algebraic functions of the large scales (the high energy POD modes) [37] [46]. If the

orthogonal projection onto the span of the first m  POD modes is denoted by

P  and the com plem entary projection is Q = I  — P,  then the original flow equation 

is of the form,

Ù =  F{u)  (2.45)

u(f) =  p(f) -f q(f) (2.46)

where

p =  P F { p  4- q) (2.47a)

q  =  QF{ p  T  q) (2.476)

An approxim ate ‘inertial form ’ of the equations is thus

p  = P F ( p V  <l>{p}) (2.48)

The unknown function q  ~  <^(p) is approxim ated by a solution of

0 =  Q F ( p  -f q) (2.49) s
1
«
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Equation (2.49) assumes th a t q  can be ignored. This assumption is valid for un

forced statistically  stationary flows— the low energy modes correspond to small 

scale structures which typically have a faster tim e scale than  the large scale struc

tures [37]. The result of this faster tim e scale is tha t the large scale com ponents are 

not influenced by variations in the small scales and hence q  can be ignored [37].

For tim e dependent forcing, however, q  cannot always be ignored. The value of jq| 

can be assumed to  be small if the forcing is not too oscillatory, and is periodic [28].

The POD basis can therefore be used in a similar fashion to the inertial manifold 

basis. The POD basis can, however, represent only the observed phenomena, bu t it 

is often more practical than  the direct inertial manifold approach.

I

2.7 S u m m a ry

It can be said, in general, th a t any two-dimensional, dissipative wake flow, which 

has a finite num ber of flow structures or vortices, can be represented by a low

dimensional system. An inertial manifold is a property of m any dissipative fluid 

wake flows— the inertial manifold allows representation of the flow dynamics by a 

finite ordinary differential equation set which is a function of only the large spatial 

scale com ponents of the flow. This equation set is the inertial form of the  governing 

partial differential flow equations. A pproxim ate inertial forms have been shown to 

exist for flows where an exact inertial manifold is not known to exist or is difficult to 

represent explicitly. Inertial forms have also been shown to exist for non-stationary, 

forced flows (as long as the forcing is periodic and bounded and not too oscilla

tory). The effect of forcing is, typically, to cause curvature or twisting of the inertial 

manifold— often, ex tra  dimensions are needed to view these twists and thus en

capsulate the a ttrac to r for tim e forced flows. It can therefore be asserted th a t a 

low-dimensional description of the dynamics of a controlled fluid wake flow is valid. 

Experim ental evidence of low-dimensional behaviour in periodically forced flows is
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also encouraging.

Explicit representation of an inertial form of the flow equations is often difficult 

or not available. The crudest approxim ation of an inertial form is to neglect com

pletely the small scale spatial structure. It therefore seems reasonable to a ttem p t a 

low-dimensional description of the wake flow by characterization of the large scale 

spatial structures in the wake. Such a characterization is furnished by proper or

thogonal decomposition. A non-stationary velocity field can be represented by a 

finite num ber of sub-optim al, orthogonal POD modes. A low-dimensional charac

terization of the large scale spatial structures is achieved by neglecting the POD 

modes which have small energy. The POD basis captures more flow energy, for 

a given num ber of retained POD modes, than any other linear expansion. The 

resulting sub-optim al modes satisfy the flow boundary conditions, incorporate the 

effect of a control (which may include boundary or interior control), and satisfy the 

incompressibility condition.

f
I
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(figure adapted from [31])

Figure 2.5. Eigenset similarity with variation in the number of considered time- series
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the expansion increases. The truncated  approxim ation of the velocity field is,

  M
V m  ~  V  T  (3T)

i = l

56

'I

3.1 In tro d u c tio n

The success of an active, closed loop control strategy for control of an oscillating 

wake flow depends on w hether the flow oscillations are observable. In general, flow 

oscillations are unobservable w ith a single sensor [7] and if a large num ber of global 

modes are present then multiple, spatially distributed, sensors (perhaps contained 

in a ‘p ic tu re’ of the  flow field) are needed for control of the flow[4] [19]. It is helpful 

if the large dimension set of inform ation contained in a picture of the flow field is 

represented by a smaller set w ithout significant loss of inform ation— the control 

algorithm  is thus m ade com putationally feasible.

W hen large scale structures dom inate the flow, the flow may be approxim ated by 

the sum of the m ean (time-average) flow field and a finite num ber of spatial modes. 

The accuracy of the  approxim ation increases as the num ber of retained modes in

I:



3.2 P red ic tio n  of th e  Flow D ynam ics

3.2 .1  G a le rk in  M e th o d s

A finite-dimensional dynam ical model of the flow may be obtained from classical 

G alerkin approxim ation of the Navier-Stokes equations. The truncated expansion 

for the velocity field (3.1) is substitu ted  into the Navier- Stokes equations, which

'V'STil
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Low energy modes are neglected in the truncated combination of modes.

The control problem is to provide the correct external, tim e-dependent control 

input to the flow so th a t the future state of the flow corresponds to a desired state. A 

prediction of the response of the fluid flow to an arb itrary  control input is therefore 

helpful for the design of a control algorithm  [41]. The controller is designed so th a t 

the prediction of the flow in response to  an applied control input corresponds with

some desired state. Controls th a t stabilize the unstable global modes of the flow are 

of in terest— controls th a t modify the mean flow, and hence remove the region of

absolute instability, are not considered because flow stabilization via modification 

of the  m ean flow can be achieved by adding extra bodies to  the wake. The response 

of a velocity field, characterized by a finite number of modes, can be expressed 

as an evolution equation for the controlled mode am plitudes or as a discrete-tim e 

prediction of the fu ture mode am plitudes given the present am plitudes and control 

input. This chapter presents a m ethod for determ ining the response of the fluid to a 

control input and outlines a robust m ethod for non-linear control of the wake flow.

are the governing partial differential equations of the flow. The Galerkin projection 

onto the truncated  space is,

-  F (V m )A  =  0 k = l , . . . , M  (3.2)

The modes are orthonorm al and, by construction, incompressible and fixed in tim e

(only the  am plitudes are tim e dependent); and so the inner product results in a
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system of M  autonomous ordinary differential equations which approxim ate the 

evolution of the mode am plitudes. The evolution equations resulting from a linear 

Galerkin approxim ation are at most quadratic [33]; the coefficients in the equations 

derive from the various internal inner products in (3.3) [33][39] (a detailed form u

lation of these equations is presented in the appendix). The system of equations is 

represented, symbolically, as,

—~  — Gk ( A i ^ A2 ^ . . . i AM)  & =  1 , . . . ,  M  (3.3)

Together w ith an appropriate set of initial conditions, the equations (3.3) represent 

a succinct approxim ation of the dynamics of large scale structures in the unforced 

wake. The Galerkin procedure is presented pictorially in figure 3.1. The figure 

shows the projection of a solution, restricted to a curved manifold, onto the flat 

space spanned by two of the largest POD modes and The neglected mode 

represented by contains the curvature of the manifold.

The standard  Galerkin approxim ation assumes tha t the small scales of the flow, 

represented by the neglected POD modes ('0^+1: '^m +2 5 - -  ), ho not contribute to  

the dynam ics of the large scale components, represented by the first M  POD modes; 

the small scales are neglected in the finite truncation of the velocity field expansion 

(3.1) [27]. The Galerkin m ethod is, therefore, analogous to a flat inertial manifold 

approxim ation where fapp =  0. The flat manifold approxim ation is inaccurate in 

regions of high curvature or tw isting which are caused by time- dependent forcing of 

the flow. Therefore, the flow is approxim ated more accurately, and with fewer POD 

modes, if the small spatial scales are represented by appropriate non-triviai functions 

of the  large scales. An approxim ate m ethod for determining algebraic relationships 

between the largest POD modes and the smallest POD modes was outlined at the 

end of the th ird  chapter (equations 2.45 -  2,49), from which a non-linear Galerkin 

m ethod can be formed [37] [46].
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Figure 3.1: Sketch of the Galerkin Projection
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However, explicit representation of a Galerkin approxim ation tha t incorporates 

a tim e-dependent, possibly m ulti-variable control is, in general, not possible. The 

general form of the evolution equation for the mode am plitudes in the presence of a 

control input is,

=  G K A i, A2 , . . . ,  Am, ■wi(t),. . . ,  rq(f)) h — 1 , . . . ,  M  (3.4)

The functional form of Gl  depends implicitly on the nature of the external control 

input and is, in general, unknown. In particular, an analytic or approxim ate function 

which describes the spatial distribution of the effect of the control on the entire flow 

field is necessary so th a t the inner products of the Galerkin approxim ation can be 

calculated. Therefore, the Galerkin m ethod is best suited to problems where only 

the qualitative response of the flow to  excitation is of interest. In problems of this 

type, ad hoc control term s can be added to the autonomous equations [10] [11]. The 

response of the model to excitation by these controls may be qualitatively correct 

but this m ethod is of questionable use in the design of a control algorithm  where 

quantitatively  correct responses are needed.

3.2 .2  E m p ir ic a l  M o d e llin g  o f  th e  F low  D y n am ics

If the observed response of the fluid (and hence the observed mode am plitudes) 

to  a real control input is recorded from a flow experiment, then the control-m ode 

interaction may be estim ated empirically. Empirical modelling of the response of 

the  fluid to excitation is advantageous, because there is then no need to determ ine 

an exact or approxim ate spatio-tem poral relationship th a t describes the interaction 

of the control input w ith every point in the flow field— all th a t is of interest in an 

em pirical model is the  tem poral behaviour of the mode am plitudes in response to 

some easily defined m easure of the control input (for example, values of the intensity 

and frequency of a vibrating source in the flow).

Also, it is a reasonable assum ption th a t the small spatial scales play some part
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in the dynam ics of the large scales of the excited flow [28]; so any em pirically de

rived function th a t approxim ates the observed dynamics of the flow, w ith reasonable 

accuracy, is more able to describe the salient dynamics than  a linear Galerkin pro

cess (which completely neglects the dynam ical effects of the small spatial scales). A 

non-linear, em pirical model of the flow dynamics, estim ated from observatiori of the 

behaviour of the large scale dynamics (the largest POD modes), is analogous to  an 

inertial form of the flow governing equations restricted to a curved (non-linear) iner

tial manifold rather than  the flat (linear) inertial manifold of the Galerkin scheme.

3.3 N eura l N etw ork  E m ulation of th e  Flow

D y n a m ics

A neural network is a collection of simple processing units, or neurons, which can 

be constructed from weighted linear summations of inputs passed through differen

tiable, m onotonically increasing, non-linear functions [42]. It has been shown, in a 

theorem  due to  Kolmogorov [47], th a t any continuous function (of any num ber of 

variables) can be com puted using only linear summations and non-linear, monotoni

cally increasing functions of one variable; a corollary is th a t a certain architecture of 

neural network can arbitrarily  approxim ate any non-linear m apping th a t m ay exist 

between a set of input d a ta  and a set of output data  [47] [48]. Moreover, there exist 

training algorithm s which recursively alter the connection weights of the network so 

th a t the network approxim ates the  unknown functional in pu t-ou tpu t relationship by 

observation of an experim ent. The construction of a single neuron, originally posed 

as a m athem atical model for biological neurons or brain cells, is depicted in figure 

3.2. The single neuron is, however, lim ited to computing simple logic functions and 

linear decision boundaries [47].

The neuron receives a num ber of inputs th a t are m ultiplied by synaptic weights 

which determ ine the connection strength of the particular input element. The
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weighted inputs are added together w ith a weighted bias value and passed as an 

argum ent to an activation function. The activation function is often a sigmoidal 

or hyperbolic tangent function (or other step-like non-linear functions), bu t it is 

sometimes pulse-like (a Gaussian bell), linear, or even a differential equation, de

pending on the application of interest [42]. An im portant property of the  activation 

function is th a t it is differentiable. This property is necessary so th a t the neuron, as 

part of a network of neurons, can learn an inpu t-ou tpu t relationship via a training 

algorithm  [42].

One type of network architecture is the multi-layer perceptron (M LP), which 

consists of up to three layers of neurons, or nodes, w ith feedforward connections be

tween layers, but no feedback connections or lateral connections between neurons. 

The structu re of a m ulti-layer perceptron is shown in figure 3.3. The network con

sists of a set of inputs, up to two hidden layers, and an output layer of neurons. The 

com putational abilities of multi-layer networks are significant— a two layer MLP 

with an arb itrary  num ber of nodes is capable of making arbitrarily  close approxim a

tions to any non-linear function [47][48]. The number of required nodes, however, 

can become very large for some problems. It is economical to use three layer M LP’s 

for approxim ation of some problem s, as they perform much better than  two layer 

networks— it is possible to com pute any non-linear algebraic function of N  vari

ables w ith a three layer MLP with non-linear activation functions and N { 2 N  -f 1) 

nodes [47]. There is no advantage gained by adding further layers to  a three layer 

MLP, A common choice of activation function for the MLP is the hyperbolic ta n 

gent, which gives an asym m etric ou tput ranging between plus and minus one [41]. 

A network w ith two layers of non-linear activation functions and a linear ou tput 

layer is more versatile than  the fully non-linear network, as its ou tput range is not 

restricted  [42].

I

I
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It is possible to arrange a dynamic network which has neurons with differential 

or difference equations as activation functions. Dynamic networks involve feedback 

and lateral connections between nodes, and can be trained to em ulate a differential 

equation and follow a trajectory. The training of such dynamic networks is, however, 

com putationally intensive because of their inherent feedback [48]. The training of 

multi-layer perceptrons is much less intensive, but the multi-layer perceptron is a 

static network and can be trained to approxim ate only algebraic mappings. To 

em ulate the mode am plitude evolution with a static network, the reduced-order 

flow model (3.4) is represented by an equivalent discrete-tim e process described by 

a non-linear regressive model of order p  [48],

A (n  +  1) =  r  (A (n), A { n  — 1 ) , . . . ,  A (n  — p), u ( n ) , . . . ,  u (n  — p)) (3.5)

where A (n) =  (A i(n), A2( n ) , . . . ,  Am (^)) and the control param eters are u (n ) =

(u i(n ), ^ 2(7̂ ), ■ • • ,ac(^))- The output of the static network, trained to approxim ate 

the m apping (3.5), is delayed and fed back to the network input, and the network 

ou tpu t follows a discrete-tim e trajectory  and behaves in a similar way to a dynam 

ical system. However, small errors in the network approxim ation of the m apping 

(3.5) accum ulate after each tim e-step, so tha t the discrete-tim e trajectory  of the 

network ou tpu t soon differs from th a t of the actual system (which is governed by a 

continuous-tim e differential equation). The relationship between present and past 

system  states, and the future (one-step) state, is, however, predicted accurately if 

the network is continually supplied with the actual present and past system  states.

The neural em ulator then has the form of a one-step predictor,

Â ( n -f 1) ~  r  (A (n), A (n  — 1 ) , . . . ,  A (n  — p ) ,u ( n ) , . . . ,  u (n  — p)) (3.6)

which is trained  to minimize the m agnitude of the error vector

e =  (A (n  T  1) — A (n  T 1)) (3.7)

Error values do not accum ulate, because there is no feedback in the static  network,

and so the network can be trained to provide a very accurate prediction of the future

I

s
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fluid state. A multi-layer perceptron, used as a one-step predictor, to em ulate the 

non-linear response of the fluid to a control input is shown schematically in figure 3.4. 

The network is trained by recursive adjustm ent of the synaptic weights or connec

tion strengths by the backpropagation algorithm., which is an error gradient descent 

technique designed to minimize the m ean squared error of the output [42] [48]. The 

local error gradient at each node of the network is com puted by backpropagation of 

the network error from the output (where the error is the difference between the ac

tual and the desired network response) back to the input. The weights are updated 

via the learning rule

Awiji(n)  = g X 6ij{n) x (3.8)

where wiji{n) is the synaptic weight of the flth input to  neuron j  in layer I at the n 'th  

iteration, is the input to the  neuron, and g is the learning rate  param eter.

The learning rate  is necessarily small for stability. W ithin each neuron j  in layer /,

the internal activity is

wiji(n)tji-i,i(n) (3.9)
i=0

where layer / — 0 is the input layer, and yi-i,o is a constant bias level (=  1). G - i  is 

the num ber of inputs to layer /. The output of each neuron depends on the  activation 

function used,

yij = tanh(sq (n )) (3.10a)

for non-linear neurons in the hidden layers, or

yij =  sq-(n) (3.105)

for linear neurons, which are sometimes used in the output layer. The entire network 

ou tpu t is trained to  predict the actual flow response to a control input. The network
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input,
Ai{n)

A2{n)

A u i n )

u i(n )

(3.11)

.  Uc{n)
for a control input described by c param eters, together with as many past input val

ues as desired, is fed forward through the network to the output, which approxim ates 

the  future flow state,

yL,j{'u) =  Âj{n  T 1) (3.12)

where L  is the outpu t layer of the network. The desired network outputs are the 

actual mode am plitudes a t the next tim e step,

dj{n) =  Aj(n  +  1) (3.13)

Hence the network error is

e ^ n )  =  (d j(n ) -  2/nj(72)) =  (A j(n  4 -1 )  -  A j(n  +  1))

The local gradient of the error at each output node of the network is [42]

^L,j(n) =  ej(n)/'(sL ,j(7r))

(3.14)

(3.15)

where f i {s)  is the derivative with respect to s of the output node activation func

tion [41]. For a linear ou tpu t node, the local error gradient is

= (dj(n)  -  yL,j{n)) (3.16a)

and for a non-linear tanh  ou tpu t neuron, the local error gradient is [42]

dL,j{n) =  (dj{n) -  yL j{n))( l  -  y l j ( n ) )  (3.165)
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The local error gradient at each hidden neuron is calculated from the sum of the 

error gradients of all of the neurons connected to its output [42],

(3.16c)

The network weights are updated iteratively, until some minimum error level is 

attained. The weights are updated with the relation.

T 1) =  wiji(n) +  gSij(n)yi- if in) (3.17a;

A(n+I)

flow measurement
-Q

I 1 A(n),u(n)
0   ----------

A (n -l),u (n -l)

\(n + l)

Neural network 
emulator

A(n-p),u(n-p)

Figure 3.4: Neural Emulator: One-Step Predictor

prediction
error

Generalization is the ability of a neural network to extrapolate, or to provide 

reasonably accurate predictions, when faced with inputs which lie outwith the range 

of the training data. A network that achieves good generalization is able to estimate 

the unknown functional relationship hidden within the training data [42]. Usually, 

network generalization is tested by presenting the network with new data, different 

from the training data set, and examining the error (which should be small). The 

main issues involved in achieving good network generalization, and thus good estima

tion of the mode dynamics, involve the choice of network size and also the collection 

of suitable training data. The second issue is common to all methods of empirical



CHAPTER 3. CONTROL OF LARGE SCALE WAKE STRUCTURES  69

estim ation. Transient data  contains much more information than asym ptotic data  

and is necessary for the com plete resolution of the unknown function [10]. The 

da ta  is, however, composed of measurements of a forced flow, and already contains 

many transients. As long as the forcing is adequate to excite all of the dynamics of 

interest, then the da ta  ensemble will give a good representation of the underlying 

dynam ics of the flow.

The choice of network size for approxim ation of a specific function is an inherently 

difficult task [48] which is not com putable algorithmically. The size of network is 

im portant; if the network is too small, then it is unlikely to be able to form a 

good model of the flow response— alternatively, if the network is too large, it may 

be able to im plem ent a com plicated function th a t produces results consistent with 

the training data, bu t results in a poor approxim ation of the actual flow [42]. The 

smallest network th a t produces results consistent with the training data  is usually 

the network which best approxim ates the underlying function hidden w ithin the 

training data. If the network em ulates this function accurately then the network 

can generalize, A num ber of synaptic weights of the order of the num ber of training 

samples has been suggested as an upper bound for the network size. However, the 

num ber of weights is usually much lower than this upper bound, so th a t the network 

weights do not ju st store or memorize the training samples [48].

The backpropagation m ethod is a slow process, and many iterations through the 

training da ta  may be necessary before the network achieves good generalization. 

The num ber of necessary training cycles to achieve an error goal is an NP-com plete 

problem. If too m any cycles are used, or if the required error criterion is too small, 

the network over-fits the training data  and learns any noise or uncertainty in the 

experim ental data. Over-fitting of the  training data leads to poor generalization [48]. 

The backpropagation m ethod is an error gradient search technique and is thus prone 

to entrapm ent in local m inima, and slow progress on flat regions of the error surface. 

The difficulty of determ ining how long it takes to achieve a desired error criterion
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with the backpropagation algorithm can be exposed by characterization of the error 

surface for a non-linear neuron [48]. Figure 3.5 shows a typical error surface for a 

single non-linear neuron using a tanh non-linearity and just one bias and one synaptic 

weight. The error surface was constructed by training the neuron to partition a set 

of integers into a positive subset and a negative subset. The error surface contains 

regions of very large gradient and regions that are very flat. The error surface for a 

MLP has similar characteristics, but is considerably more complex [48]. Increasing 

the learning rate to speed up training on flat regions of the error surface often leads 

to instability and violent oscillation of the synaptic weights. The learning rate is 

therefore kept small. Instead, progress along flat regions of the error surface is 

encouraged by addition of a ‘momentum’ term,

wiji{n -h 1) =  wiji{n) -f g6ij{n)yi_ifln)  +  a{wiji{n) -  -  1)) (3.175)

The momentum term sets the weight change as a weighted average of the previous 

weight changes, and as a result, helps progress on flat regions of the error surface [47].

bias weight 0 0
weight

Figure 3.5; Error Surface for Single Non-linear Neuron
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3.4 N eura l N etw ork N on-linear C ontrol

The principal objective of the flow control strategy is to  provide an external, time- 

dependent, non-linear control input to the flow, such th a t the future fluid state, 

described by a finite num ber of mode am plitudes, corresponds to  some desired state. 

The neural em ulator of the flow dynamics provides a prediction of the fluid state, 

given initial mode am plitude conditions and values for external control param eters. 

The predicted response of the fluid is used to design a controller, such th a t the 

predicted response to an applied control minimizes the control system error and the 

flow is driven towards a desired state.

If the neural em ulator is fed an arb itrary  control input, it will provide predicted 

values for the mode am plitudes at the next time-step [41].

u(îr), A (n) —̂ A (n-b  1) (3.18)

The difference between the  predicted am plitudes, Â , and the desired set of am pli

tudes, A j, for the control system  is the control system error vector,

ec s  =  (A j(n  -f 1) — A { n  -f- 1)) (3.19)

This error does not, however, directly reveal the error in the applied control,

Qu =  (u^(n) -  u(n)) (3.20)

where is the  unknown control th a t would either provide a control system  error of 

zero m agnitude (the applied to A (n) such tha t |(A d(n-f 1) — Â (n  +  1))| =  0), or 

the  unknown control th a t would make the m agnitude of the control system  error less 

than  the previous value (the applied to A (n) such th a t |(A(^(n-l-l) —A (n -h l) ) | <

|(Arf(n) — A (n ))|) . The error in the applied control, rather than  the control system

error, is necessary to adjust the control to provide the desired fluid response at the 

next tim e step [26] [14].

The error in the applied control is, however, available by backpropagation of the 

control system  error vector, through the em ulator, to  the control inputs because the
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emulator is a neural network [26][14] [41]. The control system error, backpropagated 

through the em ulator with its weights held fixed, is used to  tra in  a controller neural 

network to  apply a suitable control input to the flow [41]. The error gradient at a 

controller network ou tpu t node is trea ted  like an error gradient of an internal h id

den node— as if the controller and em ulator are one network [14]. The controller 

weights are updated by further backpropagation through the controller so th a t a 

b e tte r control input is provided at the next tim e step. The neural control process 

is shown, schematically, in figure 3.6. This type of control is very robust to ex

ternal perturbations [26]— because the control algorithm (defined by the controller 

weights) is updated  at each tim e step (so the control is adaptive). The control is a 

com bination of either non-linear or linear feedback of the present mode am plitudes 

and a non-linear function of the control system error, depending on whether the 

controller network is non-linear or linear,

u (n ) =  f(A (n )) -b g(A (n) -  A (n )) (3.21)

where f  is a function of the controller network, and g is a function of the em ulator 

network. The neural control scheme, therefore provides a non-linear control th a t 

drives the fluid sta te  towards a desired combination of mode am plitudes, w ithout 

explicit modelling of the effect of the control on the flow field or recourse to compli

cated analytical non-linear control theory [14]. The controller does not require an 

inverse of the em ulator m apping to exist and will drive the system state  closer to the 

control goal irrespective of the existence of an inverse model of the flow dynamics.
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Figure 3.6: Neural Control Scheme



CHAPTER 3. CONTROT OP PARCE SCAPE WAKE STRECTERES 74

3.5 N eural E stim ation  of th e  PO D  m odes

The em ulation and subsequent control of the fluid flow is encapsulated within the 

em pirical neural network framework. The extraction of the POD modes is also an 

em pirical process, and can therefore be rearranged into a neural network form at to 

provide continuity w ithin the modelling and control scheme. Recursive estim ation 

of the POD modes avoids the need for storage and calculation of a potentially 

large correlation m atrix  and also avoids the need for direct numerical calculation of 

the correlation eigenproblem. The POD m ethod is a linear decomposition and can 

therefore be perform ed by a neural network consisting of only a single layer of linear 

neurons [47] [42],

The neural network mode am plitude filter is used to extract significant patterns 

or features from a set of input data  in a similar m anner to th a t of proper orthogonal 

decomposition. The filter has no examples of mode structure available to adapt 

its synaptic weights; it m ust therefore be self-organizing and learn from its input 

environm ent [42]. Self-organizing networks are trained with a set of learning rules 

tha t operate locally— a change in a synaptic weight of a particular neuron only 

affects the im m ediate neighbourhood of tha t neuron. Repeated modification of the 

synaptic weights of the network by local rules can lead to global organization if the 

learning algorithm s are constructed from a set of principles [42]

P r in c ip le  1. Changes in the synaptic weights self-amplify.

P r in c ip le  2. The total sum of  values of  the synaptic weights is l imited to some  

Unite value. The weights therefore compete for a finite resource; growing synapses 

do so at the expense of others.

P r in c ip le  3. The growth of synapses encourages the growth of  neighbouring synapses. 

The first principle, operating at a local level, ensures th a t the synaptic weight
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is amplified by the coincidence of a strong input signal and strong post synap

tic weight signal. Synaptic weights th a t are stim ulated repeatedly by large input 

values therefore increase in value. This principle represents positive feedback of 

the external input [42]. The second principle is required to stabilize the network 

and represents negative feedback of the neuron output. For stability, the synaptic 

weights of the network m ust be lim ited to some finite value. There is therefore com

petition  am ongst the weights; increases in the strength of rapidly self-amplifying 

synapses are com pensated by the reduction in strength of the smaller weights [42]. 

A single weight, by itself, is not efficient for activation of a neuron. Instead, a set 

of neighbouring synapses th a t are connected to a particular neuron are needed to 

successfully trigger a useful response. The growth of a particular synapse, via self

amplification, m ust also encourage the growth of the other synapses of the neuron 

despite the com petition am ongst synapses in the network. This local cooperation is 

sta ted  in the th ird  principle [42]. Requirements must also be m ade of the input data  

presented to the self-organizing network: there m ust be a redundancy of input sig

nals or patterns [42]. Em pirical estim ation of spatial patterns with a self-organizing 

network will therefore necessitate a larger data  ensemble than  is necessary for the 

standard  m ethod of feature extraction— proper orthogonal decomposition. A part 

from this requirem ent for a large input ensemble, a linear self-organizing network 

can be developed to ex tract the same features as proper orthogonal decomposition.

A single neuron th a t has its synaptic weights modified by an algorithm  th a t 

follows the  above three principles of self organization can learn the structure of the  

largest POD mode (this inform ation is contained within the structure of the synaptic 

weights) and ou tpu t the am plitude of the largest POD mode [42] [47]. The linear 

neuron ou tpu t is,
P

a = Y^WiVi (3.22)

The neuron input is the fluctuating flow field vector V  at a discrete tim e n. There is 

the  same num ber of synapses w ith weights ruj, z =  1 , . . . ,  P  as the num ber of elements
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in the  flow field m easurem ent. Using the first principle of self-organization, the 

synaptic weights self- amplify according to their input snapshot; Wi{n) grows with 

the coincidence of a strong stim ulus and strong output of the neuron, or alternatively, 

repeated Vi{n).

infinity,

0 =  R-0 — (3.29)

mi(?r 4- 1) =  Wi{n) +  rja{n)vi{n) i = 1 , . . . ,  P  (3.23)

The amplification, or learning rate  param eter, is rj. Equation (3.23) represents 

continual amplification of the synaptic weights and is therefore unstable. Negative 

feedback of the ou tpu t of the neuron is necessary, according to  the second principle, 

for stability. Hence, the synaptic weight is normalized so th a t it can a tta in  only a 

finite value [42](this is equivalent to the restriction -0 ■ -î/j ~  1 of the classical POD 

approach),

+ 1 )  =    ( 3 . 2 4 )

VE£i(î^i(ïî) + ga{n)vi{n)y 
The expression for the normalized weight (3.24) can be re-expressed, for very small

7/ as a power series expansion,

Wi{n -f 1) ~  Wi{n) +  ria{n){vi(n) — a{n)iUi(n)) (3.25)

The algorithm  accounts for both  self amplification of the weights, from repeated 

stim ulation of the input, and negative feedback of the output [42]. In vector form 

(3.22) becomes

a ~  w ^ (n )V '(n ) =  (w (n) • V '(n )) (3.26)

Equation (3.25) becomes 

w (n  d -1) — w(n)  -f 7/(V '(7r)V '^(n)w (n) — w ^(n )V '(n )V ^^(n )w (n )w (n )) (3.27)

Assuming th a t (3.27) converges to a steady solution w (n) ■0 as n -4 oo, and also

th a t the learning ra te  y is very small and th a t the correlation R  =  E { Y ' Y ' ' ^ }  has 
. . .distinct eigenvalues, the expectation of expression (3.28) becomes, as n  approaches

I
Ï
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or th a t the equilibrium  condition w  ifj satisfies the eigenproblem

RV) = (3.30)

which is the same eigenproblem as in the POD mode calculation [42], The only 

stable solution, -0, is the eigenvector with largest eigenvalue, so the single neuron 

converges to the mode with largest energy.

A single layer of N  neurons can be used, in the same way, to ex tract the N  

largest POD modes [42][47j. Each neuron, labelled z, in the layer is presented with 

an input vector from which the contribution to the flow field along the (z — 1) largest 

POD modes has been subtracted. Each neuron, z, thus converges to the z’th  largest 

POD mode. The first neuron converges to  the largest POD mode, as in the single 

neuron case; the second neuron is presented with the same input vector minus the 

contribution of the first POD mode, and so converges to  the second mode; and so 

on. The layer of linear neurons is shown in figure 3.7. The num ber of inputs, P , 

corresponds to the num ber of m easured points times the num ber of values recorded 

at each point (for exam ple two Cartesian velocities). The num ber of outputs, iV, 

corresponds to the num ber of modes th a t are calculated and is less than P.  The 

ou tpu t of any particular neuron in the network is
p

o,j(̂ TL̂  = ] Wjt(fz)uj(n) (3.31)

The synaptic weights are labelled so th a t Wji corresponds to the j ’th  neuron con

nected to the P th  input. The network is trained with the algorithm  [42]

iUji{n +  1) =  Wji{n) d- 7] ^Gj(n)u^(n) -  aj{n) ^  ru^^(n)u;,(n)j (3.32)

The training algorithm  can be expressed in a similar form to (3.27)

Wji{n 4- 1) =  Wji{n) 4- z/Uj(n)(u-(?r) -  Wji{n)aj(n)) (3.33)

where the modified input to each neuron is dependent on the  position of the neuron 

in the layer;

u((n) =  Vi{n) -  Wki{n)ak(n) (3.34)
k—l
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The input to a neuron j  is thus the flow field vector minus the contribution to the 

flow field along the directions of the {j — I) largest POD modes. Hence, as n —> oo,

W j  =  { W j u W j 2 , .  . . , W j p Y (3.35)

input vector

weights 
converge to 
POD modes

outputs 
converge to 
POD amplitudes

► a(n)

layer o f  
linear neurons

Figure 3.7: Mode Extraction Network

The convergence analysis of the self organizing algorithm for feature extraction 

is quite involved (a detailed exposition is presented in [42]). For convergence, the 

algorithm requires that the learning rate is very small and that the input elements are 

drawn from a stationary stochastic process with zero mean. The latter requirement 

seems in conflict with inputs measured from a flow subject to time-dependent forcing. 

However, if the process for selection of snapshots outlined in chapter two is followed 

then the network is presented with an ensemble that has a distinct, stationary, 

correlation having eigenvectors, which constitute sub-optimal modes, that can be 

used to reconstruct ensemble members [31]. Care must be taken to ensure that no
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particular forcing regime, or phase of the flow, is favoured [36]. The input vectors to 

the network are drawn from N  different tim e series of velocity fields, each of which 

exhibits a set of characteristic features caused by a control input. The mean, flow for 

each of the N  tim e series is similar to every other because of the restriction placed 

on the type of control (ie. the control does not modify the mean flow significantly). 

Each tim e series consists of M  distinct snapshots of the velocity field taken at regular 

tim es w ithin one period of a forcing cycle. The input vectors to the network are,

VI =  V , -  V  (3.36)

w ith k = j  — 1 )M , where the tim e series index, z =  1 , . . . ,  #  and the tim e point 

(w ithin each tim e series) index, j  — 1 , . . . ,  Af. The input vectors thus have zero 

m ean. Assuming th a t the network learning rate is very small, the network weights 

(upon application of algorithm  (3.33)) converge [42] to,

R  =  E { V '{ t )Y ' ^ { t ) ]  (3.37)

There are only K  — M N  distinct input vectors (which are presented cyclically) to 

the network, so,

R  =  j [ V ' i  V '[ +  V ',V 'I  + ■ ■ ■ + V 'fW 4] (3.38)

which is identical to the concatenated approach [31] [44] detailed in C hapter Two. 

The network weights thus converge to the same set of sub-optim al modes as pre

sented in C hapter Two. The network weights, or POD modes, satisfy the flow 

boundary conditions; incorporate the effect of a control (which may include bound

ary or interior control); and satisfy the incompressibility condition.

Once the self-organizing network has converged with the training ensemble, the 

learning rate  can be set to zero. The network then acts as a linear filter th a t 

extracts the mode am plitudes from an exam ination of the flow field; performing the 

calculation,

ak{t) =: Ak{t) =  ( ^  • Y ’(t)) (3.39)
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The mode amplitude filter, which has the structures of the POD modes contained 

in its weights, is implemented in the control scheme as shown in figure 3.8. The 

controller is fed a measurement of the flow field, from which it calculates the mode 

amplitudes, a control output and a predicted response. The control output is applied 

to the actual flow.

A(n)

Desired
stateNeural emulator

Neural controller k(n+l)

control 
system error

controller weights 
adapted

Mode filter

emulator weights 
held fixed

backpropagated 
control system 
error

\i(n)
control input

y{n)

flow measurement 

Figure 3.8: Non-linear Control of Fluid Flow

3.6 Sum m ary

The empirical estimation of the wake flow POD mode dynamics has several ad

vantages over other methods for the construction of a wake controller. Empirical 

estimation of the dynamics of the largest POD modes, and hence of the large scale 

spatial structures of the wake, automatically accounts for the influence of an external 

control and the small spatial scales; that is, a curved, non-linear inertial manifold, 

with a time dependent control is approximated. The empirical process is potentially

J
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more accurate than  a classical Galerkin approximation, where the rational addition 

of control inputs is difficult and where the small spatial scales are neglected— the 

Galerkin process represents approxim ation of an autonomous, flat, linear inertial 

manifold. The m easurem ents of the flow field, which are input to the mode am 

plitude filter, do not necessarily have to be of velocity— other flow features, which 

are related to the velocity field, may be chosen if they are easier to measure. The 

em pirical prediction of the flow dynamics allows the modes to take any form th a t 

signal the presence of wake oscillations— if however, the flow dynamics were pre

dicted by a Galerkin projection then the modes would have to be constructed from 

the velocity field.

Neural network estim ation of the POD modes and their am plitude response has 

an advantage over other em pirical estim ations because the neural network em ulator 

is readily integrated into a robust non-linear control strategy.
1:
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C h a p ter  4 

A  P r o to ty p e  W ake C ontrol 

P ro b lem

4.1 In tro d u c tio n

To illustrate the u tility  of the  low-dimensional characterization m ethod, the un

steady velocity field of a low Reynolds number, two-dimensional cylinder wake is 

sim ulated. The cylinder flow is a useful prototype flow because of its relative geo

m etric simplicity and the spatial and tem poral complexity of the downstream vortex 

street th a t forms as a result of a near wake absolute instability [2] [39]. The cylinder 

wake has m any of the stability  characteristics and corresponding flow features of 

m uch more complex flows. The cylinder flow is sim ulated numerically, so th a t the 

entire velocity field is available for analysis. The velocity fields at various points in 

tim e in a wake transient (during the unforced growth of oscillations) are used to  form 

the characterization ensemble. To characterize non-stationary flow features th a t are

the result of a control input and also to  train  a non-linear em ulator of the  mode 
.

dynam ics it is necessary th a t the cylinder flow is forced by a time-varying control

input. To obviate the large com putational costs involved in forcing the high reso- 
.

lution num erical solution of the wake and avoid specification of a particular control

8 2 Î
sil
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m echanism, the response of the flow is sim ulated by a prototype model. (A priori^ 

it is not known w hat specific type of active control device will affect the flow enough 

to stabilize the modes). Sim ulation of the control strategy with a full numerical 

solution of the forced Navier-Stokes equations is preferable for accuracy but is com

putationally  intensive. It is appropriate th a t initial testing of the control strategy is 

employed on a simpler prototype flow so tha t identification of im portant param eters 

in the controller proceeds quickly (most of the com putational effort required for a 

full num erical solution concentrates on modelling the flow itself and identification of 

im portan t param eters in the controller is not straightforward). The prototype flow 

is a low-dimensional form of the flow equations with an artificial control input. The 

low-dimensional prototype flow is based on a set of POD modes developed from the 

unforced numerical (CFD) simulation. The validity of the prototype model is dis

cussed in subsection 4.3.2 (both with respect to unforced flows, where a quantitative 

comparison w ith the full numerical solution can be made, and with respect to forced 

flows, where only a qualitative comparison between the model and experim ent can 

be m ade). The prototype captures the im portant stability features of the unforced 

flow and accurately represents the spatial and tem poral characteristics of the un

forced flow. The prototype also mimics some of the features of the forced cylinder 

wake, and it can be asserted tha t the prototype flow is a reasonable qualitative 

model of the forced and unforced cylinder wake. The prototype flow model can be 

in tegrated easily and is used to provide artificial, non-stationary velocity fields for 

characterization and subsequent control.
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4.2 N um erical Solution of th e  L am inar C ylinder 

W ake

The governing equations for the two dimensional, lam inar, viscous, incompressible 

cylinder wake are the Navier-Stokes equations

c>u
( u - V ) u - V n  + z/V'u 

V  u =  0

(4.1a)

(4.16)

in n ,  subject to prescribed boundary conditions on dQ and appropriate initial con

ditions.

side wall

inlet ^1^ cylinder outlet

X

side wall

Figure 4.1: Problem domain
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The governing equations are solved for a fluid occupying a region fl, which is 

shown in figure 4.1, w ith boundary conditions as in table 4.1.

(i) Uniform inlet velocity, Re  =  100
(a) No-slip condition at cylinder wall
(Hi) Potential flow at large y from cylinder
(iv) N eum ann outlet conditions

Table 4.1: dom ain boundary conditions



Re > 250 is more difficult to  sim ulate. Walls are used at the  sides of the com-
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.Uniform inlet velocity at a Reynolds number of 100 ensures th a t the wake is 

w ithin the lam inar vortex shedding region (47 < Re < 250). The turbulent wake

puta tional domain ra ther than  zero-velocity inlets to facilitate the introduction of 

external forcing of the wake (for example, acoustic sources placed astride the wake 

in a wind tunnel). To minimize the effects of the side walls on the flow, the  side 

walls are placed far from the cylinder (5 cylinder diam eters from the centre line). In 

addition, the side wall boundary conditions are set at zero vertical velocity with a 

horizontal velocity com ponent equal to the inlet velocity. The resulting side bound-
. ■

ary condition is not too dissimilar from a potential flow approxim ation in the far 

wake as the potential flow stream lines 5 cylinder diameters from the wake are almost 

straight. The last boundary condition in table 4.1 is added for numerical stability. 

N eum ann outlet conditions impose zero norm al gradients for all flow variables at the 

flow outlets. This type of boundary condition is responsible for significant artificial 

dissipation of the wake— vortex structures cease to exist prem aturely, because of 

the outlet condition. The flow outlet is therefore placed at a large downstream 

of the cylinder.

The cylinder flow-is sim ulated numerically, using the commercially available, 

control-volume, CFD package, FLUENT v4.10, running on an IBM RISC System 

6000 320H workstation. .The equations are reduced to their finite difference ana

logues by integration over each of the  com putational cells into which the  domain is 

divided. A quadratic upwind scheme is used for interpolation between the grid points 

and to  calculate the derivatives of the flow variables. This scheme minimizes the 

effects of numerical dissipation. The u and v m om entum  equations are each solved 

in tu rn  using current values for pressure. The velocities obtained may not satisfy 

the local mass continuity equation, so a ‘Poisson’ type equation is derived from the 

continuity and linearized m om entum  equations. The pressure correction equation 

is then  solved to obtain the necessary corrections to the pressure and velocity fields

%
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such th a t continuity is achieved[49].

The finite difference grid is 35 cylinder diameters long by 10 cylinder diam eters 

wide. These values are chosen so th a t the flow is not significantly affected by the 

N eum ann boundary condition of (iv) in table 4.1, which causes artificial dissipation 

of the wake (even although a quadratic upwind scheme is used), and also so th a t 

the flow is not significantly affected by the wall restriction of (iii) in table 4.1. A 

body fitted grid is used, and grid points are clustered around the surface of the 

cylinder so tha t the boundary layer, which has a thickness proportional to l lY^Re,  

is modelled accurately[49]. The absolutely unstable region (the near wake of the 

cylinder) also has a cluster of grid points. Three different meshes, w ith the same 

structure but different num bers of grid points, are used to determ ine the  depen

dency of the flow solution on the grid. A coarse mesh comprising 3000 cells, an 

in term ediate mesh comprising 5000 cells and a fine mesh comprising 6600 cells are 

studied. Two views of the fine mesh are shown in figures 4.2 and 4.3. An ini

tial domain-wide boundary condition of potential flow is supplied at the beginning 

of calculations (the mean flow is the ideal initial condition for the exam ination of 

the  growth of instability— however, the mean flow during shedding is not known 

prior to sim ulation). Viscosity is then added to the com putational algorithm . An 

extrem ely small tim e-step is used, initially, for numerical stability in the initial tran 

sient phase of the solution. The initial tim e-step, after the introduction of viscosity
-

and the no-slip condition on the cylinder surface, is 1 x 10“® of the expected period 

of oscillation. A fter the separation bubble begins to form the tim e-step is increased
'

in stages but care is taken to m aintain convergence. Once vortex shedding begins, 

the tim e-step is further increased to a final value of 600 tim e-steps per oscillation of 

the flow. This final tim e-step value compares well with values used by other authors 

[2] [39]. The Strouhal num ber obtained using the coarse mesh is 0.132 which is 

m uch lower than  th a t expected from experiment. The interm ediate mesh yields a

Strouhal num ber of 0.150 and the fine mesh yields a Strouhal num ber of 0.153. The

s
I

4m
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Figure 4.2: Computational grid

I

Figure 4.3: Close-up of computational grid around cylinder
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Strouhal number of the fine mesh is within the range expected from experiment and 

further mesh refinement is considered unnecessary (there is only a small difference 

between the intermediate mesh solution and the fine mesh solution and any further 

refinement increases computing cost). Subsequently, the fine mesh, comprising 6600 

cells is chosen for all further calculations. The transient velocity, observed during 

the growth of oscillations, at a point in the wake is shown in figure 4.4. After steady 

periodic oscillations begin, the flow is simulated for approximately fifteen flow cy

cles, in order to obtain estimates of the power spectral densities. Time histories 

of the non-dimensional velocity (ujUiniet versus non-dimensional time tlTghed) at a 

point in the wake during shedding are shown in figures 4.5 and 4.6.
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Figure 4.4: Transient velocity during growth of oscillations
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Figure 4.5: Horizontal velocity vectors during shedding
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Figure 4.6: Vertical velocity vectors during shedding
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Figure 4.7: Velocity lim it cycle during shedding
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The power spectral density, calculated from a 512 point Hanning window of these 

velocity signals is shown in figure 4.8. The signal is seen to contain one dom inant 

frequency (the vortex shedding mode) and perhaps two or three higher significant 

harmonics. The frequency content of the wake allows calculation of the flow Strouhal 

num ber, which is used as a m easure of the accuracy of the numerical sim ulation[2].

frequency (t/F)

Figure 4.8: Power spectral density of velocity signal

Reference Strouhal number
ref [50] 0.147
FLUENT 0.153
ref [51] 0.155
ref [52] 0.161
ref [53] [2] 0.163-0.167
ref [2] 0.179

Table 4.2: Comparison of Strouhal numbers for FLUENT, other routines and ex
perim ent
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Experim entally, the Strouhal num ber is a function of the Reynolds num ber 

[2][54], and, for a Reynolds num ber of 100, a Strouhal num ber of 0.167 is expected 

from em pirical evidence[54]. Numerical solution of the cylinder wake using spectral 

elem ent m ethods results in a slightly higher value of 0.179 [2](spectral element cal

culations involve very little  numerical dissipation and are thus judged quite accurate 

[2]). The discrepancy between experim entally observed Strouhal numbers and those - 

calculated numerically m ay be due to the fact th a t Strouhal numbers generally de

crease as the cylinder aspect ratio (length/ diam eter) decreases [55]. Experim ental 

m easurem ents of three-dimensional flows are therefore likely to  differ from Strouhal 

num bers calculated numerically, in two-dimensions. The Strouhal num ber calculated 

by the FLU EN T m ethod compares well with those calculated by other authors, as 

is apparent in table 4.2. The lower than  average calculated value of S t  is possibly 

because of artificial dissipation in the FLUENT solution algorithm . The stream lines 

and velocity vectors obtained in the solution are also qualitatively similar to those 

obtained by other authors [52] [51]. Typical realizations of the velocity vectors and 

stream lines are shown in figures 4.9 and 4.10. The artificial dissipation of the vortex 

street caused by the outlet Neum ann boundary condition is highlighted in figure 

4.11. The Neum ann outlet condition is, however, the only outlet condition available 

in FLUEN T v4.10.
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I

Figure 4.9: Typical flow velocity vectors

Figure 4.10: Typical flow streamlines
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Figure 4.11: Artificial dissipation of wake: streamlines
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The num erical (CFD) solution of the cylinder wake forms an ensemble of discrete 

velocity fields, th a t can be characterized by a finite set of POD modes. Ideally, 

the cylinder wake should be forced by an external control input, at various frequen

cies and am plitudes, so th a t the da ta  ensemble is representative of any destabilized 

global modes and flow features th a t are likely to occur during a control run. Exper

im entation is also required to ascertain what type of control (for example: cylinder 

rotation, vibration, a lternate suction and blowing at the separation points, acoustic 

excitation or vibrating wire excitation etc.), and what position of control device, 

would m eet w ith success. To circumvent the high com putational cost of large am 

plitude, periodic or aperiodic forcing of the discretized solution, a simpler prototype 

flow model, which has the purpose of testing the feasibility of the control scheme, is 

introduced. The essential properties of the prototype model are tha t it retains the 

im portan t absolute instability  features of the cylinder flow, produces qualitatively 

correct flow responses to  forcing, and produces qualitatively correct spatial velocity 

fields, while rem aining simple and easy to integrate.

4.3 .1  G e n e ra t io n  o f a  P ro to ty p e  C y lin d e r  F low

A non-linear flow model th a t approxim ates the spatial wake features and retains 

some of the wake stability characteristics is presented in the appendix, bu t is outlined 

here. A first approximation to modelling the forced flow is obtained by using a model 

o f the unforced flow.

A small transient of the wake is available from the unforced CFD solution. Ve

locity field da ta  collected during the growth of wake oscillations, from the steady 

state , encapsulates a neighbourhood of the unforced lim it cycle. An exam ple of a 

section of the transient is shown, for one point in the velocity field in figure 4.4.
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Twenty velocity fields from two flow cycles approaching the a ttrac to r are col

lected. This num ber of snapshots is appropriate for such a tem porally simple, lam i

nar, unforced wake— for example; 20 snapshots are used in reference [39] for the Re 

=  100,150 and 200 cylinder wake and are shown to provide adequate representation 

of the unsteady velocity held.

The ensemble average of all of the velocity fields, which approxim ates the tim e 

average velocity held is calculated and subtracted from each velocity field to form 

twenty flow ‘snapshots’. The collection of snapshots is used to generate a reduced 

correlation m atrix , w ith relation (2.22). The eigenvectors of the symmetric, non

negative reduced (20 x 20) correlation m atrix  are readily calculated via Householder 

reduction and the QL algorithm. The first eight eigenvalues are shown in table 4.3. 

A bar chart representing the eigenvalues is shown in figure 4.12: almost all of the flow

1 5.1525888e-01
ê 4.6617187e-01
3 8.1370641e-03
4 7.7949658e-03
5 1.2503575e-03
6 1.2433327e-03
7 6.5438928e-05
8 6.5262895e-05

Table 4.3: F irst eight eigenvalues of the unforced velocity field correlation

energy is contained in the high energy modes. Pictures of the first four eigenvectors 

of the reduced correlation m atrix , which are the only eigenvectors with significant 

eigenvalues, are shown in figure 4.13. The figure shows th a t the first four eigenvec

tors are not contam inated by noise. These eigenvectors are used in conjunction with 

the unforced flow snapshots to generate the POD modes. Only, the first four POD 

modes capture significant flow energy and so the higher modes are neglected. A 

higher Reynolds num ber flow, a turbulent flow, or a time-forced flow would exhibit 

much richer mode composition. The spatial structure of the first four POD modes,
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developed from the CFD data  are shown in figure 4.14. The modes are normalized, 

so as to be orthonorm al. Modes developed from double the num ber of snapshots 

(40) are sim ilar in appearance. The first eight eigenvalues for the 20 snapshot case 

and the 40 snapshot case are almost identical. The smaller eigenvalues show slight 

differences between the 20 and 40 snapshot cases.

A Galerkin approxim ation of the Navier-Stokes equations provides a succinct 

description of the unforced flow dynamics, but is difficult to establish because the 

Galerkin m ethod involves spatial differentiation of the modes and mean flow and 

calculation of their vorticities. Numerical differentiation of the modes is difficult, and 

introduces error, because the modes are formed from a spatially discrete, irregular 

grid. The structure of the Galerkin model is, however, known— the Galerkin model 

is a quadratic  ordinary differential equation for each mode am plitude. A transient set 

of velocity fields (obtained from the CFD solution during the growth of oscillations), 

from which the POD mode am plitudes and tim e derivatives at each tim e point are 

m easured, can be used to  fit the unknown coefficients of the quadratic equations 

by least squares (as outlined in Appendix A). F itting  of the coefficients by least 

squares requires th a t a large enough section of transient data  is available (transient 

m easurem ents of the unforced flow are obtained during the growth of vortex shedding 

oscillations from a steady sta te  initial condition). The complete resolution of the 

coefficients becomes progressively more difficult as the mode index increases (while 

the  mode energy decreases).

The cylinder flow, represented by the CFD data  is adequately approxim ated 

by ju st four modes. The higher modes and their tim e derivatives are corrupted 

by noise. Least squares solution of the Galerkin approxim ation is performed using 

four retained modes, resulting in four quadratic differential equations for the mode 

am plitudes w ith tw enty eight coefficients each. Models constructed from a larger 

num ber of modes are not resolved accurately by the least squares identification 

m ethod and available transient data.
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It is known th a t a single cubic equation is able to capture the instability of 

the m ean flow and the stable lim it cycle oscillations and so cubic term s are added 

to  the prototype m ode equations of the empirical Galerkin quadratic model and 

the coefficients again fitted to the transient by a least squares, empirical approach. 

Cubic term s may appear in a non-linear Galerkin model and are introduced here to 

avoid adding ex tra  modes to the four mode prototype model.
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Figure 4.12; Eigenvalues of the POD modes
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CHAPTER 4. A P R O T O T Y P E  WAKE CONTROL PROBLEM 101
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Figure 4.14: Spatial structure of the first four POD modes of the cylinder wake: 
shown are contours of velocity magnitude
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The form of the prototype model with added cubic term s is, for each mode 

fc =  1 , . . . ,  4,

dAk 4 4  4

=J + E4,A; + E E + E E E 4 ,  A.A,A, (4,2)jj. “o ' ^  z-v z_v z_v
1 î'=ij=ij>,- î=i j=ij>i ?=ii>j

W hen cubic term s are calculated for the two largest mode am plitudes (Ai and dg), 

the prototype model captures the growth of instability accurately, and captures the 

behaviour of unforced vortex shedding behind the cylinder as described by the CFD 

data. Cubic coefficients for the smaller two modes are not calculated. The validity 

of the unforced prototype flow model (with respect to the original CFD data) is 

discussed in section 4.3.2.

The rational addition of control term s into the Galerkin approxim ation is dif

ficult; however, the addition of ad hoc term s to dynamical models of the cylinder 

dynam ics is known to produce qualitative agreement with experim ent [11]. For 

exam ple, the addition of an interior sinusoidal forcing term  to a low order, cubic 

model of the Re  =  114 flow past a circular cylinder produces qualitatively correct 

tim e histories and qualitatively correct regions of entrainm ent [11]. Simple addition 

of forcing term s to  the least squares developed model should also produce qualita

tively correct results, and mimic the response of the flow to excitation. Obviously, a 

control input will affect each of the prototype mode equations by a different am ount 

as the interaction of the control with each prototype mode depends on the spatial 

s tructu re of each mode. In the Galerkin approxim ation outlined in Appendix A, 

addition of a source term  to the Navier-Stokes equations results in an ex tra  forcing 

term  for each mode equation, • fa^x), where A is the control am plitude and 

is the  spatial distribution of the control in the flow field. An am plitude and spatial 

d istribution of a localised interior control input at a coordinate (a, 6) in the wake is 

obtained from [2]

y-> t) =  fa{t) exp -  a y  +  (y -  6)^)] (4.3)

where D  is the rate  at which the contribution of the force decays with distance from
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the source. This position of the localised control input and the value for the decay 

rate is chosen such th a t the forcing is small at the domain boundaries and significant 

only in the near wake (which is necessary for control of the global modes) [2][7]. The 

spatial distribution of the control is shown, relative to the cylinder, in figure 4.15 

This form of control simulates an interior forcing provided by an active control device 

such as a vibrating wire [2]. The fluid adjacent to the control device aquires an 

acceleration equal to the vibrating source— further from the source the acceleration 

decays. This distribution of control provides forcing of the near wake consistent with 

the boundary conditions as the am plitude of the control at the domain boundaries 

is very small. V ibrations of the cylinder (which are known to be suitable for control 

of global flow oscillations [6]) give rise to a similar forcing [2]. The com plete form 

of the prototype how model is, for A: =  1 , . . .  ,4,

J A  4 4 4 4 4 4

'177^ == Co h (4df%)

v(<) =  v  +  y a ( i ) ^ , -  (4.46)
i= l

where the Ak(t)  are tim e varying am plitudes of the first four POD modes, ipf., of 

the  entire cylinder wake, established from the CFD velocity held ensemble.

The control input, although introduced somewhat artificially to the unforced 

prototype model, is useful because it produces tem poral flow responses th a t are in 

qualitative agreement w ith experim ental observations of forced cylinder wakes. This 

qualitative agreement is discussed in the next subsection. Similar models for forced 

wake flows are cited in the literature [11]. Explicit representation of the model, and 

its development, is presented in the appendix.

4.3 .3  V a lid ity  o f  th e  P ro to ty p e  Flow  M od el

The validity of the prototype flow model is im portant; the model m ust approxim ate 

the unforced cylinder wake (this can be verified quantitatively, with comparison to
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m o } ) ) ]

The control input is on the wake centre-line, two cylinder 
diam eters downstream of the cylinder position. The force decay 

rate  is 20 and so the m agnitude of control at the domain side walls 
is less than  0.007 tim es the value in the near wake.

Figure 4.15: Contours of force contribution

the  CFD solution) and also retain  some of the qualitative features of the forced 

wake. In this subsection, the prototype model is compared to the unforced how, 

and then  com pared to experim ental, forced wakes.

The prototype how model (4.4) consists of a spatial part (4.4b), which describes 

the spatial structu re of the velocity field given a set of mode am plitudes, and a 

tem poral part, which determ ines the dynamical behaviour of the am plitudes. The 

ability of (4.4b) to reconstruct the velocity field of the unforced cylinder wake is 

therefore im portan t, and is established by comparison of the fraction of kinetic en

ergy present in the actual and reconstructed velocity fields [32]. For any fiuctuating 

velocity field, V '( t) , a m easure of instantaneous kinetic energy is given by,

(4.5)

The normalized instantaneous energy difference between the actual velocity fields 

and those reconstructed by (4.4b) is,

ITT .lyr/ _ _

(TF'. T7')
(4.6)
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The average normalized kinetic energy error over one period of the four mode re

construction is low (ë =  0.03). The spatial structure of the unforced cylinder wake 

is therefore described adequately by the prototype flow model (4.4b), as long as the 

correct modal am plitudes are specified by (4.4a). Only four POD modes are nec

essary for the reconstruction because the wake is low Reynolds num ber, and thus 

lam inar, and because the unforced CFD wake is statistically stationary.

Given th a t (4.4b) adequately reconstructs the unforced velocity fields which con

s titu te  the unforced d a ta  ensemble, the validity of the tem poral part of the unforced 

prototype flow, (4.4a), is of interest. S tarting integration of the model w ith the 

m ean flow, or zero mode am plitudes, as an initial condition for the velocity field 

should (w ith reference to  experim ental cylinder wakes) result in tem poral growth 

of the von K arm an vortex shedding mode. The growth of oscillations is observed, 

in experim ent, to be exponential in its linear stages; leading to lim it cycle oscilla- 

tions. The growth of oscillations is accurately modelled by a Landau equation and 

the oscillations predicted by the prototype flow are, indeed, comparable to those

determ ined by a Landau equation and those observed in experim ent [11], The os- 

cillations resulting from integration of (4.4a) are depicted in figure 4.16, which can 

be com pared to figure 1.4. Velocity oscillations at two points in the wake, calcu- 

la ted  using (4.4) and shown in figure 4.17, is also characteristic of the growth of

experim ental cylinder wake oscillations [11] and of the small transient observed in 

the CFD data, in figure 4.4. Only the qualitative nature of the instability is im por

tan t for testing the feasibility of the control scheme, and the growth of instability, 

from the m ean flow, is adequately represented by the flow prototype. The spatial 

structu re  of the velocity fields, observed during the growth of flow oscillations, is 

presented in figure 4.18. The velocity fields compare well to those of other numerical 

solutions [2] [51].

A quantitative comparison between the tem poral behaviour of the unforced pro-

to type flow and the unforced numerical solution of the Navier-Stokes equations for

. »
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Figure 4.16; Temporal growth of unforced prototype modes

the cylinder wake is determined by examination of the limit cycle amplitudes pre

dicted by the unforced prototype and those evident from the CFD data ensemble. 

The time histories of the measured mode amplitudes and those calculated by in

tegration of the prototype are shown in figure 4.19. The solid lines are the mode 

amplitudes predicted by the unforced prototype, and the dotted lines are those 

measured directly from the CFD data ensemble. The frequency of oscillations is 

predicted reasonably well— the model predicts a Strouhal number just 2% greater 

than that observed from the CFD integration of the wake. The maximum mode 

amplitudes are also predicted accurately, for unforced limit cycle oscillations; pro

jections of the limit cycle are shown in figures 4.20 and 4.21— the solid lines are the 

stable limit cycle predicted by the flow prototype and the dotted lines are observed 

from the CFD data. The figures show that the shape of the limit cycle is predicted 

adequately by the unforced prototype, and that the prototype oscillations are stable, 

as in the actual unforced cylinder wake— the error in maximum mode amplitudes 

of the prototype model is 4-0.68% for mode one, -1.68%  for mode two, -6.20%  for 

mode three and 4-4.24% for mode four. The higher error values for mode amplitudes 

three and four are not important, because of the relatively small magnitude of these
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Figure 4.17: Temporal growth of unforced prototype velocities at point a and point 
b
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Figure 4.18: Simulated flow fields during growth of oscillations



CHAPTER 4. A  P R O T O T Y P E  WAKE CONTROL PROBLEM  109

modes. A reconstructed tim e series for a velocity signal at two different points in 

the unforced cylinder wake is shown in figures 4.22 and 4.23; the behaviour of the  

velocity at these two points, which were chosen arbitrarily, is predicted adequately. 

An idea of how the flow prototype predicts the velocity field of the cylinder wake 

is given by the velocity error averaged over one cycle of prototype oscillations. Fig

ure 4.24 shows this average error for a section of the cylinder wake; the errors are 

relatively small (com pared to the velocity vectors of figure 4.18) and so it is asserted 

th a t the unforced prototype flow model is a reasonable quantitative model of the 

cylinder wake during unforced lim it cycle oscillations. The power spectral density 

of a 512 point Hanning windowed tim e series of the velocity signals, calculated from 

the flow prototype, is shown in figure 4.25. The figure shows the predicted natura l 

shedding frequency and three higher harmonics of the prototype flow. The frequen

cies are normalized by the natural shedding frequency of the CFD cylinder wake 

and thus the figure can be com pared with the spectrum  obtained from the CFD 

da ta  ensemble, in figure 4.8. The frequency content of the unforced prototype and 

the  actual unforced wake is similar. Both the growth of instability from the abso

lutely unstable m ean flow, and the resulting lim it cycle oscillations of von K arm an 

vortex shedding for the unforced cylinder flow are therefore modelled adequately 

by the prototype model. Integration of the prototype model is performed using 

a variable step size, 4-5 th  order R unge-K utta routine coded in the commercially 

available package MATLAB v4.1 and implemented on a SUN SPARC Station 10. 

The MATLAB environm ent also provides access to  spectrum  analysis routines. A 

4 -5 th  order R unge-K utta integration routine is also coded in C and compiled on a 

Silicon Graphics Indigo^ Extrem e. The integration tim e of the compiled C prototype 

m odel is of the order of 30,000 times faster than the original CFD integration. The 

Silicon Graphics workstation environm ent is used to generate anim ated pictures of 

the prototype model velocity fields.
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Figure 4.19: Comparison between CFD flow and prototype model: mode am plitudes 
on lim it cycle
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Figure 4.23: Comparison between CFD flow and prototype model; velocity a t point 
b
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Figure 4.25: Frequency content of limit cycle prototype model oscillations
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For the prototype model to be of use in testing the feasibility of the control 

scheme, however, the response of the prototype to external control forcing has to 

be correct, at least qualitatively. After integration of the prototype, w ith harmonic 

control inputs, qualitative agreement with some of the aspects of experim ental cylin

der wakes is found. During periodic forcing, the behaviour of the prototype flow is 

characterized by two states— lock-in states where the frequency of oscillations shifts 

to the applied forcing frequency, and non-lock-in states where the frequency of os

cillations is a m ixture of the applied and natural frequencies, resulting in beating 

oscillations. These two states are the same kind of states tha t are observed in actual 

cylinder wakes [2] [9]. Figure 4.26 shows points on the boundary between lock-in and 

non-lock-in states for the prototype flow model. The points on the figure are the 

points in control frequency and am plitude phase space where the wake oscillations 

cease to have a single set of peaks in the power spectrum  of velocity signals. The 

frequency axis is normalized by the natural shedding frequency. The figure therefore 

represents a lock-in region, or region of entrainm ent, for periodic forcing of the pro

to type flow and is in qualitative agreement with the entrainm ent regions observed in 

experim ental, forced cylinder wakes [23], high order numerical simulations of forced 

cylinder wakes [2] and entrainm ent regions predicted by other low-dimensional wake 

models [11]. The entrainm ent region obtained via integration of the forced prototype 

can be com pared to figure 4.27 which shows a qualitatively similar entrainm ent re

gion observed during acoustic excitation of an experim ental cylinder wake and also 

the  response of a semi-empirical cubic low-dimensional model of the flow with a 

simple additive sinusoidal forcing term  [11]. The entrainm ent regions, which are 

some of the most significant features of the forced cylinder wake [23], are modelled 

adequately by the prototype (only a qualitative agreement is necessary for initial 

testing of the control strategy). Figures 4.28 and 4.29 show spectral densities and 

tim e histories and phase portraits  of velocity signals obtained from integration of 

the harm onically forced prototype during lock-in and figures 4.30 and 4.31 show the
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same portraits  of velocity signals obtained during a non-lock-in example. The fig

ures com pare very well to similar m easurements of an actual cylinder wake [2]. The 

velocities obtained during lock-in (at an am plitude of 1.0 and normalized frequency 

of 1.16 in figure 4.26) are similar in character to oscillations during natural shedding 

(figure 4.28 can be com pared with figure 4.22) but have a different am plitude and 

frequency. The power spectral density during lock-in has well defined peaks and is 

similar to  a shifted spectrum  of natural shedding [2]. The dashed line on the power 

spectrum  is the natura l shedding frequency; the shedding oscillation frequency is 

shifted during lock- in. The phase portraits of velocity signals (the same projec

tions th a t are depicted in figure 4.17) show well defined lim it cycles, characteristic 

of lock-in [2]. A lternatively, the power spectrum  obtained during non-lock-in (at an 

am plitude of 1.0 and frequency of 1.45) is less well defined and shows a m ultitude of 

peaks [2]. The tim e history of a velocity signal shows beating oscillations character

istic of experim ental observations of non-lock-in [2]. The phase portraits of velocity 

signals of the prototype wake do not show simple lim it cycles and are dissimilar 

from the natu ra l shedding phase portraits. The tem poral behaviour of the forced 

prototype flow is therefore also in agreement with experiment.

The spatial structu re  of the forced prototype is less representative of an actual 

cylinder wake because the prototype consists of only four spatial modes— many 

m ore modes are necessary for the spatial characterization of all of the flow features 

resulting from external pertu rbation  of the wake. The ability of the prototype model 

to encapsulate the forced spatial structures of the flow, rather than  just the tem poral 

features, is of interest. The stationary  POD basis encapsulates a small region of the 

forced phase space (ie. the region corresponding to the growth of von K arm an 

shedding). The POD modes satisfy the flow boundary conditions (the control input 

is significant in the near wake bu t is almost zero on the domain boundaries. The 

control input is therefore consistent with the boundary conditions) and the POD 

modes are orthonorm al and satisfy incompressibility. The stationary POD basis can
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therefore be expected to  provide a useful basis for the approxim ation of other flow 

features outw ith the characterization ensemble [33] (for example, features of forced 

flow). However, in the literature, a POD basis consisting of only six modes was 

deficient at representing a cylinder wake flow at off reference Reynolds numbers [39] 

(m ainly because of the differences in mean flow between different Reynolds num ber 

wakes). The four mode, stationary POD basis can thus be expected to provide 

a rough, qualitative approxim ation to the velocity fields of forced, non-stationary 

flows. The four m ode description does contain one very im portant characteristic 

of actual forced cylinder wakes— the oscillations in the flow are the result of more 

than  one pair of POD modes. The prototype flow therefore retains the feature, 

of real cylinder wakes, th a t single sensor measurements do not, in general, contain 

enough inform ation about all of the modes, unlike m ultiple sensor m easurem ents. 

The inferiority of single sensor m easurements, compared to spatially distributed 

sensing is presented in the next section.

In the ideal situation, where non-stationary POD modes are available, the POD 

modes would incorporate the effects of a control. The control am plitude in a real 

flow m ust be lim ited so th a t the control does not excite a higher dynam ical sta te  

(turbulence for example). The control am plitude is also such th a t the m ean flow is 

not modified significantly by the  action of the control. Consequently, the velocity 

field fluctuations resulting from the control are assumed to be much smaller than  

the velocity fluctuations resulting from variation of the prototype POD modes. The 

contribution of the control input to the velocity field is therefore neglected in the 

velocity field expansion (4.4b).
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model wake during lock-in. Dashed line is natural shedding frequency.
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Figure 4.31. Prototype phase portraits of velocity signals during non-lock-in
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1

Figure 4.32: Examples of different spatial structure that occur periodically in beating 
oscillations of the prototype



CHAPTER  4. A P R O T O T Y P E  WAKE CONTROL PROBLEM  125

In summary, the prototype flow model produces, with little  com putational ef

fort, velocity fields th a t predict, quantitatively, the spatio-tem poral growth of von 

K arm an vortex shedding behind the cylinder; predict, quantitatively, the spatio- 

tem poral behaviour of the cylinder wake during natural lim it cycle oscillations; and 

predict, qualitatively, the tem poral response of the cylinder wake to excitation. The 

predictions are in agreement with experim ental observations of cylinder wakes and 

with higher order simulations [2] [11] [10] [23] [43] [39].

4.4 C o n tro l  o f th e  P ro to ty p e  C y lin d e r  W ake
'

4.4 .1  C o n tro l le r  M o d e  E x tr a c t io n

The first step in the control strategy is determ ination of the principal POD modes 

of the non-stationary prototype velocity fields (obtained from the forced prototype) 

w ith a linear neural network. The velocity fields of the prototype flow are sampled
.

at a lower spatial resolution than  th a t of the prototype and random, uniformly 

d istributed, noise is added to the measured velocity fields, to sim ulate experim ental 

uncertainty. The network da ta  ensemble therefore consists of a series of noisy, low 

resolution, velocity fields of the forced prototype flow, from which the first two non- 

stationary  modes are extracted for use by the control scheme. These non-stationary 

modes are term ed controller modes. The mode extraction is performed on a section 

of the near wake of the cylinder using a 40 x 15 regular, Cartesian grid, ra ther than  

the  110 X 60 irregular grid of the entire CFD wake— the mode extraction network 

is therefore presented w ith only lim ited information of the CFD wake, as would be 

the case in an experim ent. As mentioned in Chapter Two, the POD modes are 

not dependent on the spatial resolution of the flow field, but become progressively 

coarser as the resolution decreases [36].

The spatial noise field added to the prototype flow field is normally distributed,
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and mode extraction is performed on several sets of noisy flow field ensembles, with 

different noise variances, to determine the effect of random uncertainty on the mode 

extraction network. Figure 4.33 shows a section of noisy velocity field with a 

medium level of variance. This corruption of the velocity field is used to introduce 

some uncertainty, which is likely to exist (in some form) in an experiment, into the 

flow field measurements. The random corruption is not meant to be representative of 

any particular fluid mechanical noise (turbulence for example is not random) but is 

introduced to check the robustness of the characterization and control strategy. (The 

actual sources of noise in an experimental flow derive from environmental, acoustic 

noise, electrical noise in measurement apparatus, transition to turbulence and if, for 

example, smoke flow is used to visualize the flow, then uncertainty is introduced 

because the smoke particles do not follow the flow exactly.) The mean (training 

ensemble average) flow field is subtracted from each member of the ensemble, which 

is then presented to the network. The learning rate is necessarily small, (7/ =  0.001), 

for stability.

velocity field with medium noise level 
(normalized variance =  0.0685)

Figure 4.33: Typical noise corrupted velocity field

The structure of the velocity field is affected adversely by addition of the noise, 

but the first two modes developed for velocity fields that are noise-free, or have
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a m edium  or high noise variance show no significant differences: the lower energy 

modes are neglected and so the mode extraction network acts as a noise filter and 

extracts only large scale coherent structure, neglecting the noise which has low en

ergy and is uncorrelated. Contours of velocity m agnitudes in the first two controller 

modes are shown in figures 4.34 and 4.36. Surface plots of velocity m agnitude 

of these two modes are shown, relative to the cylinder position, in figures 4.35 and 

4.37. The modes consist only of large scale structure.

The tim e varying mode am plitudes are output by the mode extraction network 

on input of a tim e dependent velocity held. T ime histories of the two controller 

m ode am plitudes are shown in figure 4.38 for tim e varying velocity fields m easured 

w ith varying degrees of uncertainty. The addition of noise is seen to have only a 

small effect on the  calculation of the  mode amplitudes.

An im portan t advantage of a control algorithm th a t is based on a distributed 

m easurem ent over a control algorithm  th a t is based on a single point m easurem ent 

of the prototype flow is seen in figure 4.40, parts (i) and (u ). The position of this 

m easurem ent point is shown relative to the cylinder in figure 4.39. The first tim e 

history, in part (i) of the figure, shows the natural oscillations of the prototype 

modes. The next two tim e histories of part (z) of the figure show, respectively, the 

measured controller modes and a particular point velocity m easurement (point c 

in figure 4.39) of the  prototype flow during these natural oscillations. It could be 

conceived (from figure 4.40(z)) th a t feedback of the single velocity m easurem ent 

would be able to  suppress the prototype oscillations. However, the prototype modes 

contain several points at which one of their velocity components is zero (or very 

close to zero). A single velocity measurem ent at one of these points will not be able 

to detect any oscillations of th a t prototype mode. The point velocity m easurem ent, 

in figure 4.40 part (zz), is chosen to illustrate this lack of com plete inform ation— at 

this point the u-velocity contributions of both the third and fourth prototype modes 

are very small (<  10~®x the mean flow value). Oscillations , consisting purely of
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prototype modes three and four, are shown in the first tim e history of figure 4.40 

p art (ii). These oscillations are detected by the oscillations of the controller modes 

(shown in the second tim e series of figure 4.40 part [ii)) but are not detected using 

the single point m easurem ent (shown in the th ird  tim e series of figure 4.40 part (u )). 

A control algorithm  based on a single point measurement of the prototype flow is 

unable, in general, to completely control the prototype wake oscillations (as is the 

case in a real absolutely unstable flow).
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Figure 4.34. First controller inode: contour of velocity magnitudes

Figure 4.35: First controller mode: surface of velocity magnitudes
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Figure 4.36: Second controller mode: contour of velocity magnitudes

Figure 4.37: Second controller mode: surface of velocity magnitudes
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4 .4 .2  N o n - l in e a r  P re d ic t io n  o f th e  P ro to ty p e  F low  

R e sp o n se

The observed response of the controller modes to excitation of the prototype flow 

is used to  tra in  a non-linear neural network em ulator th a t forms the core of the 

control strategy. The prototype flow is subjected to uniformly distributed, random 

bursts of control input at various am plitudes. The control input is discrete, and 

each control input lasts for a ten th  of a flow period. After the addition of the 

control the prototype flow is integrated for one ten th  of a flow period and the flow 

field is m easured and input, along with random uncertainty, to the mode extraction 

network. The mode ex traction network supplies the controller mode values after the 

addition of the control input. The training ensemble for the neural em ulator consists 

of a tim e series of present controller mode am plitudes (measured from a velocity field 

ensemble w ith a m edium  noise level), the value of the present control, and the  future 

controller mode am plitude after one ten th  of a flow period. The em ulator tim e-step, 

of one ten th  of a flow period, is chosen to  be reasonably small to provide accuracy 

but large enough so th a t a linear model of the flow would not suffice. It is preferable 

th a t the tim e-step is reasonably large (a real controller requires a finite tim e w ithin 

the tim e-step value to perform  com putations and actuate the  control mechanism). 

The random  control bursts used to excite the prototype flow are shown in figure 4.41. 

The bursts are of differing m axim um  am plitude, as it is not known, prior to a control 

sim ulation, w hat am plitude range is necessary for control of the flow. The am plitude 

range of the control input is, however, lim ited to a small finite value as would be 

the  case in a real flow. In a real flow the control am plitude is lim ited so th a t the 

unstable global modes are stabilized without modification of the m ean flow and so 

th a t a higher dimension dynam ical s ta te  (turbulence for exam ple) is not excited. 

Several different sizes of m ulti-layer perceptron are tested for em ulation of the 

controller mode response. The least restrictive network architecture is a three layer
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m ulti-layer perceptron with a linear ou tput layer, as the network output range is not 

lim ited and two non-linear layers are adequate for modelling the non-linear m apping 

between the present and future states of the controller modes. The smallest, and 

therefore best, network th a t produces results consistent w ith the training da ta  is 

a 4 /12 /2  network. For comparison, an 8 /24/2  network and a 16/48/2 network 

are also trained to em ulate the training data. The larger networks, however, take 

significantly longer to train . W hile the generalization of the 4 /12 /2  network is quite 

good, the generalization of the 8 /24 /2  network and the 16/48/2 network is poor (ie. 

only the 4 /12 /2  network performs well on data outw ith the training set). Because 

the chosen 4 /12 /2  network contains relatively few weights, and only predicts the 

system sta te  at the next tim e-step, network training is quite fast. The network 

achieves a specified error goal, such th a t the sum of the squared ou tpu t error is 

less than  0.001, after 267 cycles, starting  from small, random  weights, through 

the 1000 m em ber training ensemble. The network is trained using an adaptive 

learning rate, which changes to provide fast, but stable, learning, and a m om entum  

term  of 0.95 which speeds up convergence. The training record for the em ulator 

network is shown in figure 4.42. The network error is still decreasing when learning 

is stopped— the network could therefore fit the training data  better, but learning 

is stopped prem aturely so th a t the network does not learn any noise in the training 

data. The prediction of the controller mode am plitude response, compared to  the 

actual response is shown, for velocity fields tha t are not training ensemble members, 

in figures 4.43 and 4.44. The prediction of the response of the random ly forced 

prototype flow is seen to  be quite good, and has little  error.
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Figure 4.41: Control input for emulator training
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4 .4 .3  N on -lin ear A d a p tiv e  C ontrol o f th e  P ro to ty p e  F low

Adaptive control of the flow is performed by construction of the non-linear control 

scheme in figure 3.8. A small, two layer (and hence easy to train) non-linear network 

is used to provide the control input to the prototype flow and to the em ulator, given 

the present am plitudes and a measure of the error in the applied control. The 

controller, being a non-linear network, has a maximum output am plitude of ±1. 

The initial controller weights are selected randomly but are set small so th a t the 

initial control guess does not adversely affect the flow. The learning rate  of the 

controller is set relatively large so tha t the control adapts quickly. The difference 

between the predicted mode am plitudes and the desired zero sta te  is backpropagated 

through the em ulator, with its weights held fixed, and then backpropagated through 

the controller, whose weights are updated in order to provide a better control. The 

control is input to the prototype flow and the control simulation proceeds to the 

next tim e step. The controller therefore learns adaptively to provide a control tha t is 

a function of the present controller mode am plitudes and the backpropagated error 

between the modes and a desired state.

A typical control simulation, incorporating measurement uncertainty, is shown in 

figure 4.45. The control simulation is implemented within the MATLAB framework 

which has a built in 4 -5 th  order R unge-K utta integration routine. Em ulator and 

controller training is performed using a combination of compiled C routines and the 

MATLAB Neural Network Toolbox. After time-histories of the mode am plitudes 

are obtained from MATLAB, anim ated velocity fields of the control run are gener

ated using a Silicon Graphics workstation. Figure 4.45 shows the four modes of the 

prototype flow (which represent the cylinder wake). Control is switched on after six 

lim it cycle oscillations (delim ited by the first large tick m ark on the tim e axis). After 

a further th irty  periods of oscillation the flow oscillations in the flow field are very 

small and vortex shedding is suppressed. After stabilization of the vortex shedding
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the control input necessary to m aintain stability is only enough to stabilize d istur

bances due to the background noise in the flow. The qualitative nature of the control 

input can be com pared to the experim ental flow control results of [7]. The control 

is switched off after the second tick m ark on the tim e axis (after approxim ately 

six hundred controller steps, or a further sixty four flow periods). The oscillations 

grow exponentially after switching off the control. Phase portraits of the prototype 

modes during a control run are shown in figure 4.49. The prototype flow field th a t 

results from the control scheme is seen to be almost indistinguishable from the mean 

flow (figure 4.50). The control tim e history is shown in figure 4.46, and the control 

system  error is shown in figure 4.47. The control input is markedly non-linear at the 

s ta rt of the control run, when the mode am plitudes are large (shown in figure 4.48), 

bu t is almost harm onic towards the end of the run, when the mode am plitudes are 

small (also shown in figure 4,48). The initial non-linear control suggests th a t a linear 

control m ethod would take much longer to control the flow. Indeed a similar control 

strategy based on a linear em ulator and linear controller takes significantly longer to 

suppress the flow than  the non-linear scheme. The performance of an adaptive linear 

control scheme is shown in figure 4.51. The linear control strategy is similar to  the 

non-linear scheme except th a t the em ulator is a single linear layer of neurons, and 

the controller is a single linear neuron. The linear em ulator provides only a linear 

approxim ation of the non-linear response of the flow to control forcing. For large 

tim e-step values, a linear prediction of the mode am plitude response is inaccurate. 

The linear controller ou tput is therefore deficient in controlling the flow when the 

mode am plitude response is significantly non-linear (ie. when the mode am plitudes 

are large).
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4.5 Sum m ary

A non-linear, low-dimensional model with an artificial forcing term  is used as a 

prototype absolutely unstable flow. The prototype flow achieves good agreement 

w ith unforced cylinder flow solutions obtained by high order numerical simulation. 

The prototype also captures some of the qualitative features of experim ental, forced 

cylinder wakes. The prototype is used to produce artificial, or sim ulated, non

station ary velocity fields for characterization by the controller. The controller is 

assumed to have only lim ited inform ation about the flow (ie. it is given lower res

olution, noisy da ta  and only two controller modes, rather than  four modes, are 

extracted). Nevertheless, the non-linear em ulator predicts the flow dynam ics suc

cessfully and the non-linear controller suppresses the oscillations representative of 

vortex shedding. The controller is seen to be superior to linear control and superior 

to  single sensor control.

a
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Figure 4.45: Prototype flow response during a control run: control switched on after 
six limit cycle oscillations
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Figure 4.46: Control input during a control run: control switched on after six limit 
cycle oscillations
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Figure 4.47; Control system  error during a control run; control switched on after 
six lim it cycle oscillations
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Figure 4.49: Phase portraits of prototype flow during a control run
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F igure 4.50: Velocity vectors of prototype flow after successful suppression of oscil
lations
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F igure 4.51: Linear adaptive control strategy
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C on clu sion s and  F uture W ork

5.1 Conclusions

Active control of self-excited wake oscillations tha t are the result of global instability  

is not, in general, possible via single sensor linear feedback. The inability of single 

sensor feedback to control such absolutely unstable wakes is exemplified by num er

ical and experim ental results of single sensor control schemes: oscillations m ay be 

stabilized at the sensor location bu t exacerbated elsewhere by the destabilization of 

further global modes. Typically, a linear stability analysis of the mean wake flow 

predicts the existence of m ultiple global modes, with closely spaced frequencies— 

for unforced wake flows the most unstable mode saturates to  the von K arm an vor

tex street. The single sensor feedback control input necessary to stabilize the most 

unstable global mode is, in general, enough to destabilize the next most unstable 

m ode— the oscillations at various points in the wake may not be the result of a 

single global mode and are therefore not connected by a simple phase shift, so single 

sensor control cannot stabilize all of the global modes. M ultiple sensor control of 

such absolutely unstable flows is appropriate. The tem poral behaviour of the n a t

ural and forced oscillations of absolutely unstable wakes is non-linear. Therefore, 

non-linear control of such flows is more suitable than  linear control. However, a

149
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non-linear control strategy based on the feedback of m ultiple (spatially distributed) 

m easurem ents of the oscillating wake would be complex and com putationally slow. 

It is reasonable to assert th a t a non-linear control strategy which is based on a 

low-dimensional description of the flow features would be simpler and therefore 

com putationally feasible.

Inertial forms of the Navier-Stokes equations are appropriate for wake flows with 

suitable boundary conditions. Even when the analytic form of an inertial manifold 

is not known, approxim ate low-dimensional descriptions of wake flows often furnish 

reasonable predictions of the flow dynamics. Approximate, low-dimensional iner

tial forms of the  flow equations for forced, non-stationary flow are valid as long as 

some mild restrictions are placed on the type and character of the forcing. The 

validity of low-dimensional descriptions of forced non-stationary wake flows is also 

suggested by experim ental evidence. Given th a t a low-dimensional description of 

the spatio-tem poral dynam ics of a forced wake flow is appropriate, a simple charac

terization m ethod, such as proper orthogonal decomposition, can be used to select 

a low-dimensional subspace which encapsulates a local region of the inertial m an

ifold of the flow. Proper orthogonal decomposition provides an efficient means of 

characterizing the large scale spatial structures of the flow by a finite set of orthog

onal modes. Modifications to the flow boundary conditions and non-stationary flow

j

features, caused by the addition of a control, are accounted for by decomposition of d

a correlation m atrix  which is the average of a set of distinct correlations developed 

from flow transients during different forcing regimes. The set of sub-optim al POD 

modes developed from the non-stationary data  is able to provide a succinct descrip

tion of the spatial features occurring in wake flow oscillations in the presence of a 

control input. The finite description of the flow features w ith POD modes is of use 

in a non-linear wake control strategy.

Classically, a dynam ical model of the POD mode am plitudes is determ ined via a 
.Galerkin approxim ation— this type of dynamical model is inappropriate for control

J
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purposes because there is no easy m ethod for the rational integration of control 

inputs to the Galerkin model. An empirical m ethod of predicting the mode am 

plitudes, from an initial control input and mode condition, is able to m imic the 

response of the wake to external perturbation. The dynamics of modes calculated 

by Galerkin approxim ation assumes a flat, linear inertial manifold; whereas the 

em pirical prediction makes no assum ptions about the geom etry of the manifold.

Neural networks are readily applicable to systems where the analytical determ i

nation of the system model is difficult or im practical. A non-linear neural network, 

exposed to appropriate experim ental data  sets of control input and mode am plitude 

histories can be trained to em ulate the required inpu t-ou tpu t relationship between 

a control and the wake (represented by the POD mode am plitudes). The non-linear 

prediction of the POD mode states can be used in a robust neural network control 

scheme, which takes advantage of the neural prediction of the POD dynamics. Train

ing of an adaptive neural network controller is only possible because the one-step 

flow dynamics are predicted by another neural network.

The control strategy used for self-excited, oscillating wakes provides a non-linear 

control which is a function of the overall wake oscillations as detected by the os

cillation of a finite num ber of POD modes. The u tility  of the control scheme is 

shown by control of a non-linear, spatially complex prototype wake flow. The non

linear control is robust to external perturbation. The tim e history of the control, 

which suppresses the wake oscillations, is significantly non-linear in its early stages, 

when the am plitudes of wake oscillation are high. The non-linear controller thus 

performs be tte r than  a similar linear controller. The control scheme, which is based 

on POD modes (and therefore contains information about oscillations throughout 

the wake), is also seen to be, in general, superior to controllers based on single point 

m easurem ents of the prototype flow.

Active control of a prototype wake flow is dem onstrated. The dem onstration 

of successful control of the  prototype wake is useful because the control algorithm
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is tested quickly and controller param eters such as network size and learning rate , 

activation function and tim e delay etc. are studied easily. Although a full simulation 

is preferable for accuracy, the large com putational cost of time-forcing the numerical 

wake flow precludes initial testing of the controller param eters. The prototype wake 

contains some of the stability  features of the actual cylinder wake flow and exhibits 

some spatial complexity. Hence, only minor changes in the control strategy are 

anticipated before application of the controller to a full numerical simulation.

5.2 R ecom m endations for F u tu re  W ork

The feasibility of the non-linear POD mode control strategy for self-excited wake 

flows has been tested  on a prototype wake flow th a t models the  non-linear growth of 

instability  and the behaviour of spatial structures seen during natural shedding os

cillations and qualitatively models the response of the flow to external forcing. The 

model used for testing the construction and operation of the controller is, however, 

only an approxim ation of the full Navier-Stokes equations w ith forcing: further te st

ing, which is based on a more accurate flow, is necessary. The controller developed 

for the prototype is expected to need only minor modification for application to a 

higher order CFD simulation. The advantage of further testing of the controller 

on a num erical CFD model (rather than an experim ental wake) is th a t the whole 

velocity field (and hence all of the quantities required for feedback) are available. It 

is therefore expected th a t im m ediate further research will concentrate on applica

tion of the control strategy to higher order numerical simulations. Also, because the 

CFD model and controller operate on virtual, com puter tim e there are no difficulties 

involved in the speed of controller signal processing, or com putation, or controller 

activation— all of which may pose problems in an experim ent (the use of neural n e t

works to perform controller com putations, however, guarantees th a t the controller 

will operate quite quickly). Finally, future research may undertake to control a real A
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'1,

flow in an experim ent.

Experim ental im plem entation of the control strategy is not straightforward. 

A part from determ ination of a suitable control device an experim ental flow presents 

other difficulties— the flow would be affected adversely by a large num ber of spatially 

d istribu ted  probes so the flow held m easurem ent should be non-intrusive. Future 

research m ay therefore involve particle image velocimetry or simple grey scale char

acterization of smoke flow patterns in a wake seeded with smoke (because of the 

em pirical em ulation of the POD mode dynamics the POD modes do not have to be 

of velocity).

It is also im portan t to determ ine what constitutes a valid characterization en

semble for a time-forced experim ental flow (ie. how many sub-optim al POD modes 

are required). Performing experim ental characterizations of higher Reynolds num 

ber, tu rbu len t wakes is im portan t as m ost experimental wake flows are turbulent. 

The POD modes of turbulent wakes have a more widespread energy distribution 

th an  those of lam inar wakes and hence more modes are necessary for adequate 

characterization of turbulen t flows.

For successful im plem entation of the controller in either a higher order sim ulation 

or in an experim ental flow a suitable control actuation device has to  be constructed. 

The control input m ust be such th a t the mean flow is not significantly modified 

by application of the control input and th a t the control produces useful transients 

and flow structures (for example, the control must be able to excite sub-critical 

vortex shedding). Exam ples of control devices which satisfy all of the criteria for 

stabilization of the global instability modes are (amongst others) acoustic excitation 

of the near wake and small am plitude lateral vibration of the body.
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Id en tifica tio n  o f  th e  P r o to ty p e  

W ake M o d el

A .l G alerk in  A pproxim ation  of th e  N avier-Stokes 

E quations

The incompressible wake flow can be represented by a finite set of orthogonal spatial 

PO D  modes. Evolution equations for the mode am plitudes can be developed via a 

Galerkin approxim ation of the Navier-Stokes equations: the inner product of each 

mode is taken in tu rn  with the residual of the Navier- Stokes equations (in which the 

velocity field is approxim ated by the mode expansion). The Galerkin approxim a

tion produces an autonom ous differential equation for each mode am plitude. The 

approxim ation of the  Navier-Stokes equations (with an added source term ) by the 

truncated  velocity field expansion afforded by the M  POD modes is

“  = - ( V m • V)Vm -  v n  + + F (Al)

The truncated  velocity field is Vm  =  V fi- where V  =  and where

F  is a source term . Substitution of the finite velocity field approxim ation into the

154
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Navier-Stokes equations results in

The first te rm  of the RHS of A .5 is zero due to  the incompressibility of the POD 

modes. The second term  has a contribution from the pressure and from the velocity 

gradient: the pressure is zero at the outlet; while at the outflow and side walls, the 

POD modes are zero (because of the CFD boundary conditions). Therefore, there is 

no contribution to the Galerkin model from the pressure or velocity gradient term s 

(this is only true because the whole velocity field is considered [39]). Coefficient 75 

is thus zero.

"dr

+  [(V • V )V +  ■ V )V  +  A,(V . V)Vj.- +  A i A j i ^ i  ■ V )^,]

+ v n  -  I/V"(V +  Ail/.;) =  F

i , j  = 1 , . . . ,  M  (A .2)

with im plied sum m ation over i and j .  The inner product of each mode with equation 

(A .2) results in,

U k ,  +  F t ,  (V • V)V) +  F , ,  [(^; ■ V)V  + (V . V)V.;]A;)

+  F t , ( l / ’r  V )^ ,A ;A ;)  +  ( V . t ,V n ) -  p ^ t , ( V W + V V ; a ) )  =  W - F )

h i ,  =  1 , . . .  ,M  (A.3)

which becomes

^  =  7o-l-7tA,4-7*^A,Aj +  r/(7̂  +  7*A,-)+7^ +  ( ^ 'F )  z,i,A; =  (A.4)

for each mode k, where there is implied sum m ation over i and j .  The coefficients

in A.3 represent the various internal inner products of A .3. The souce te rm  can be 

ignored for unforced flows (-0 • F ) =  0.

The pressure term , ('0 ;̂., V II) which contributes to can be simplified using 

G reen’s first identity [39],

i  -1 n ( n  • V - t )  ( a . 5 )

' S

J



A P P E N D IX  A. ID E N T IF IC A T IO N  OF THE P R O T O T Y P E  W A K E  MODEL 156 

Calculation of the vorticities of the mean flow and of the vort ici ties of each of the 

POD modes is im plicit in the  determ ination of the other coefficients in the Galerkin 

model. Coefficients 70 depend on the vorticity of the mean flow (V  x V); coefficients 

72 depend on the vorticities of each of the POD modes (V x and coefficients 

7 i depend on a com bination of the vorticities of the modes and of the m ean flow. 

Coefficients 73 and 74 depend on the Laplacian of the m ean flow and each of the 

modes respectively. D eterm ination of the first order spatial derivatives, inherent in 

the vorticity calculations, and determ ination of the second order spatial derivatives, 

inherent in the Laplacian term s, is prone to error: the modes are generated from an 

irregular, discrete grid and are therefore not directly am enable for numerical differ

entiation. The Laplacian term s are especially prone to numerical error— however, 

the viscosity of the flow is very small and so the Laplacian term s are much smaller 

than  the other model coefficients and can be neglected. Neglecting the Laplacian 

term s introduces some small errors to the Galerkin approxim ation, bu t avoids the 

large errors inherent in the double spatial differentiation of the spatially discrete 

modes and m ean flow vectors. The vorticities of the modes and mean flow can be 

estim ated by fitting bi-cubic spline surfaces to the modes and mean flow and then 

differentiating the bi-cubic spline. The fitting process, however, still introduces sig

nificant num erical errors in the model identification; especially when the modes are 

spiky. A Galerkin model, which was developed using bi-cubic spline differentiation 

of the modes and the  m ean flow, failed to predict the long term  behaviour of the 

mode am plitudes accurately. The direct use of Galerkin approxim ation for discretely 

m easured flows is therefore lim ited.
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A.2 Least Squares Identification of the Reduced

O rd e r  M o d e l

The functional form of the Galerkin model is known: the model is, at most, a 

quadratic polynom ial of the retained mode amplitudes. The model can be re

expressed in a simpler form;

=  cj +  c^.Ai +  c^^AiAj (A. 6)

for each of the M  retained modes, w ith implied sum m ation over i and j .  The 

model is arranged so th a t there are no repeated coefficients. The coefficients remain 

to  be calculated either by the inner products of the Galerkin approxim ation, w ith 

their associated numerical differentiation, or by some other means. There are Q = 

I -T 2M  -f- IM {  AI — 1) unknown coefficients in the model. The unknown coefficients 

can be estim ated empirically, w ithout recourse to numerical differentiation. The flow 

is m easured at a sequence of tim e-points, and the mode am plitudes are calculated 

using the  simple inner product (3.25). The measured data  forms M  times series for 

each of the mode am plitudes. Because low, energy modes and their associated noise 

are neglected in the POD expansion, the mode am plitude tim e series are generally 

sm ooth and noise free. The modal decomposition acts as a noise filter. A cubic 

spline is easily fitted to the smooth mode am plitude series and the time-derivatives 

of the mode am plitudes are easily estim ated with little error. A knowledge of the 

mode am plitudes (m easured from the flow) and the mode am plitude tim e derivatives 

at each tim e point allows transform ation of equation (A.6) into an algebraic equation 

for the unknown coefficients of each mode am plitude equation.

dfc =  Sc& (A .7)
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where the vectors,
dt

dAh(t2)
dt

dAkj t r
dt

Ck

Ai

A2

Am

-2ii

"212

"2mm -

C l

C2

Co

and where the m atrix ,

1 A i(E ) A2(ti)

1 Ai(t2) A2(t2)
S =

. 1 Ai(L7i) A2{tm)

Am (E) A i (E )A i (E) 

AM(t2) Ai(t2)Ai(t2)

AM(^m) Ai ) Ai

(A.8)

(A.9)

Am (C)A m (C)

AM(t2)AM(C)

AjV'/(̂ 771 ) A/Vf ( )  -

(A.IO)

Equation (A .7) thus represents a system of m  equations in Q =  1 +  2M  +  |M ( M  — 1) 

unknowns. The num ber of equations is selected to  be more than  the num ber of 

coefficients so th a t a large enough region of the attrac to r is visited and hence all of 

the model coefficients can be determ ined. The equality of (A .7) will not hold because 

of m easurem ent noise and because the system is over-determined. The system  is 

therefore best solved by least squares minimization of the error with respect to the 

coefficients, C«,
1 M /  Q \  ^

=  ( A l l )
m ~ l
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where Sij is the % j ’th  element of S. Transients of a dynam ic system contain much 

more inform ation about the underlying dynamical model than post transients or 

steady states. In general, a large collection of transient data  is necessary for the 

resolution of all of the coefficients of the unknown model [10]. It is difficult to obtain 

all of the model coefficients by least squares minimization of (A .11) if the transient 

part of the considered tim e series is small, because the Gram m atrix  S^S becomes 

nearly singular. Models derived purely from post- transient tim e series often result in 

unstable lim it cycles [10]. Therefore, a weighting function is introduced to the mode 

tim e series and derivative data  such tha t transient points are given high im portance, 

whereas post-transients are given less im portance in the least squares minim ization. 

A tim e point is considered transient if a measure of the distance between the mode 

am plitudes, at th a t tim e point, and the lim it cycle mode am plitudes is greater than  

some finite value. The distance (in M  dimensional space) between the  m easured 

mode am plitudes at each tim e point and the limit cycle is calculated. Every tim e 

point where this distance is greater than  a small error value is considered transient. 

Positive weights are then introduced to the least squares minim ization [10],

1 M /  Q \  ^

— IjT £  I I (A.12)
V *'=1 /

with

I Ü M  =  1 +  { w i a  -  1) exp ^1 -  (A. 13)

where i'm  is the distance to the lim it cycle of the state  at tim e Im , e ls  the m inim um  

distance to be labelled transient, and wic is the weight given to transient points, 

wic — Nt/Nic. Nt and Ni^ are the num ber of transient points and num ber of points on

the lim it cycle respectively. This weighting function results in a similar im portance

of the transient part of the tim e series and the non-transient part. M inim ization of 

the error in (A. 13) requires least squares solution of

S ^ S „C  =  S ^d „  (A.14)
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for each mode, where S{j^ = y/wîsij and — ^/wjclj.

The least squares solution of (A.14) is badly scaled because the m axim a of 

Ai and A 2  A3 and A4 . . .  Am- M atrix S therefore has elements of widely dif

fering m agnitude. Accordingly, the columns of S are further weighted so as to have 

approxim ately equal m agnitudes. As a result the smaller modes, together with their 

associated m easurem ent noise, are multiplied by large num bers— this magnification 

means th a t the columns in S representing the small modes are disproportionately

noisy. The least squares m ethod is therefore best suited to problems when only a

few modes are considered. Also, the more modes retained in the approxim ation, the 

more coefficients, and therefore more transients, are needed for the solution [10].

To avoid adding further modes to  the model it is reasonable to include some 

higher order term s (for exam ple cubic term s) in the quadratic model— the modes 

corresponding to small spatial scales are approxim ate algebraic functions of the 

large scales. Terms higher than  quadratics may therefore appear in a non-linear

Galerkin model. It is known th a t a cubic Landau equation is capable of capturing

the tem poral growth of the instability, the addition of cubic term s therefore improves 

the model when only a few modes are available. The form of the model with added 

cubic term s is, for each mode A;,

=  Co +  c^.Aj 4- AiA j  +  03 .̂  ̂AiAjA; i, j ,  /c, ? =  1 , . . . ,  M  (A. 15)

with im plied sum m ation over i j  and /.

The num erical values of the coefficients of the complete, four mode prototype 

model used in C hapter Four are,

^  =  -9 .8 7 9 7 7 7 1 e -  08 +  6.4667931e~03A i

-bl.44G7036e -  OlAg -b 2.9163G21e -  O6 A1 A1

-M.3516793e -  OSA^Ag -  9.1836959e -  O7 A2A2 

— 1.8453033e — GlAiA jAi — 8.1531231e — O3 A1A1A2
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-2.0695105e -  OIA 1 A 2 A 2 -  7.3155167e -  O3 A2A2A2 

+5.18359463e -  O2 A3 -  2.58162018e -  O2 A4 

-2.67112058e -  O2 A1A3 -  8.70818833e -  02Ai A4 

-8.42083464e -  O2 A2A3 +  1.57876233e -  02AzAi 

+1.26628945e -  O2 A3 A3 +  2.42933636e -  O2 A3 A4 

+1.58460628e -  O2 A4 A4 +  9.998e -  03/^

^  =  3 .1562296e- 0 7 -  1.2929619e-01A i

+6.4664067e -  03/12 -  1.1359684e -  05AiAi 

+ 1 .1564135e -  05 Ai A, -  8.0340231e -  O6 A2 A2 

+5.7244511e -  OSAiAiAi -  1.8504683e -  OIA1 A1A2 

+7.8211773e -  OSAiAgA; -  2.0645473e -  OIA2 A2A2 

+6.02492351e -  O3 A3 +  3.63752811e -  02Ai 

+5.86899819e -  O2 A1 A3 +  3.70566031e -  O2 A1A4 

+2.42364347e -  O2 A2A3 -  9.81767262e -  O2 A2A4 

-7.09051882e -  03 A3 A3 -  1.29932356e -  O2 A3 A4 

+ 5 .18047642e -  O3 A4 A4 +  9.866e -  0 3 /.

~  =  7.85160994e - 0 4  -  8.40895701e -  04Ai 
at

-5.52677989e -  O6 A2 -  3.47421084e -  02A; 

-3.15618142e -  OIA4 +  2.29766347e -  02AiAi 

+6.7Ü135725e -  04 Ai A; +  2.52875366e -  OSAjAs 

-3.00029222e -  O2 A1 A4 -  2.42665864e -  O2 A2 A2

(A.I6)

(A.17)
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-8.54086958e -  0 3 A2A3 -  3.55181276e -  O2 A2 A4 

-9.76471889e -  O3 A3A3 -  3.76874519e -  0 2 A3 A4 

+3.246913268 -  O3 A4 A4 +  6.0577e -  03 /.

CIA4

dt

(A.18)

=  5.53803810e -  05 +  2.65916998e -  04Ai 

+7.166161678 -  O4 A2 +  2.43268601e -  OIA3 

-2.92261771e -  O2 A4 -  5.46440118e -  OSAjAi 

-3.81723387e -  02A: A; +  9.67050500e -  03A] A3 

+ 2 .17240367e -  O2 A1A4 -  3.27980557e -  O3 A2 A2 

+5.05461587e -  O2 A2 A3 +  3.35363453e -  O3 A2 A4 

+2.94750410e -  0 2 A3 A3 -  l.S1851997e -  02 A3 A4 

-8.30075377e -  O3 A4 A4 +  6.632e -  0 3 /.

(A.19)
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