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Abstract

Many walke flows exhibit self-excited flow oscillations which are sustained by the flow
itself and are not cansed by amplification of external noisc. The archetypal example
of a sell-excited wake flow 1s the low Reynolds number flow past a circutar cylinder.
This flow exhibits self-sustained periodic vortex shedding above a critical Reynolds
number. A linear stability analysis of wake flows of this kind shows Lhe presence of
a significant region of local absolute instability which admits a temporally growing
global mode of oscillation. In general, wake flows may possess multiple global modes,
the most unstable of which is the observed oscillation of the wake. Active, closed-
loop control of such wake flows is of interest within the present study. In single sensor
control schemes, flow oscillations may be suppressed at the sensor lacation but are
in general exacerbated elsewhere by the destabilization of further global modes. For
complete suppression of the flow oscillations resulting from global fow instability, all
of the possible global modes must be attenuated. In general, complete suppression
of all possible global modes requires the use of multiple sensors within the control
scheme. As the response of the flow to cxiernal control forcing is non-linear, then
the most clficient control strategy is also non-linear.

The present work describes a general control strategy for non-linear self-excited
wakes. Representation of the self-excited flow field by a finite set of characteristic
features, which correspond to the large scale wake components, allows for the efficient
design ol a closed-loop control algorithm. Experimentally, wake flows are seen to be

dominated by a [inite number of large scale spatial structures and low-dimensional

i




mathematical models of such flows are often adequate. Characterization of the large
scale spatial structures of a wake ow can be performed with proper orthogonal
decompuosition, which selects an orthogonal set of spatial inodes that are maximized
in terms ol retained energy. The low energy modes are neglected and the resulting
finite orthogonal basis is used as a fnite, low-dimensional representation of the
wake flow field. A finite representation of the flow field, allorded by the modes,
circumvents the need for a complex control algorithm involving a large mamber of
spatially distributed flow field measurements. An appropriate control strategy is
then to provide an external control input to the wake such that the future state
ol the wake corresponds to a desired sel of mode amplitudes. Fmpirical prediction
ot the response of the wake to external control is furnished by a non-linear neural
network. Iimapirical modelling of the wake response avoids the need for explicit
representation of the control-wake interaction, Additionally, the neural network
structure of the control-wake interaction model allows for the design of a robusi
non-linear coutrol algorithm. 1Purthermore, rearrangement of the mode extraction
process into a neural network format provides continuity within the modelling and
control scheme. Successful control of a simplified wake flow, which models some of
the stability features and spatial complexity of a cylinder wake flow, illustrates the

utility ol the control scheme.
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Chapter 1

Introduction

1.1  Self-excited Oscillations in Fluid Wakes

Many wake flows exhibit flow oscillalions which persist purely as a resulf of flow in-
stability and which are not due to the influence of external forcing, noise, or internal
pressure feedback. This class of fluid flows exhibits self-czcited oscillalions. Whether
or not a particular wake flow can exhibit self-excited oscillations is dependent on
the nature of the flow instability. Instability of a fluid flow is termed absolute if any
arbitrary disturbance grows expouentially in time at a fixed streamwise location
an¢ therefore contaminates the flow both upstream and downstream of the source:
whereas the instability is termed convective if disturbances are selectively amplified
but ultimately swepl away from their source, leaving the flow undisturbed after the
source of excitation is removed [1].

The type of flow instability is usually ascertained wilhin linear theory where
the stability, with respect to infinitesimal perturbations, of a fictitious parallel wake
flow 18 comsidered. The fictitious paralle] wake has a velocity profile independent of
streamwise localion but equal to the local mean velocity profile of the actual non-
parallel wake flow at a fixed, bul arbitrary, streamwise location [2][1;. The stability

characteristics of the linearized wake are representative of the stability features of
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the actual wake as long as the mcan velocity prolile of the actual non-parallel wake
varies ouly slowly in the streamwisc direction {3}{4]. Linear global modes are lime-
harmonic solutions of the linearized flow equations around a non-parallel basic flow
and are ol the form,

¥z, y) exp(—iwst) (L1

where we s the complex global frequency. The two types of instability are distin-
guished by the temporal growth rate, Im(wg), of the global mode which dominates
the long term response of the flow at the disturbance location{5]. T'he flow is locally
conveclively unstable if Im(wg) < 0 and locally absolutely unstable if Im{wg)} > 0.
I"lows of the absolutely unstable class therefore adwit a temporally growing global
meode, which prows exponentially after an initial disturbauce, whereas the global
modes of a convectively unstable flow are damped and arc only amplified by contin-
nal external perturbation [4;.

Convectively unstable flows, such as Jaminar boundary layers, linearly amplify
external distwrbances of a certain amplitude and frequency conteut but do not, in
general, admit sell-excited oscillations. This type of finid flow is glebelly slable,
with respect to infiuitesirnal perturbations, because the flow returns to its original
undisturbed state in the absence or cessation of external perturbation. Although
convectively unstable flows are globally stable, global flow oscillations can exist in
a convectively unstable flow if internal pressure fecdback is present: for example, in
the flow over a cavity which is locally convectively unstable everywhere, self-excited
oscillations can exist due to the intrinsic feedback of pressure waves reflected from
the downstreain edge of the cavity.

(ilobal instability is a necessary condition for self-excited oscillations in the ab-
sence of feedback. Local absolute instabilily over a finite streamwise interval is a
necessary condition for global instability {6;. The tlow oscillations resulting from
absolute insiability continue irrespective of the presence of further infinitesimal ex-

ternal perturbation {1]. Kdrman vortex shedding is the typical non-linear saturated
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mode of oscillations in self excited wake flows: the archetypal flow that exhibits
Karmén vortex shedding, resulting from absolutc instability, is the low Reynolds
number flow past a circular cylinder {2].

Below some critical value of a flow parameter, such as the Reynolds number, a
wake flow typically displays linear behaviour resulting from convective instability.
As the relevant flow parameter is raised, the flow may become absolutely unstable
over a small spatial region, but remain globally stable, External perturbation of the
[low results in oscillations of the fow, favouring the, as yet, damnped global medes.
ITowever, the oscillations decay lincarly and perturbations are swept downstream af-
ter the cessation of external forcing. Au example of linear behaviour of a wake flow
is shown by the low Reynolds nuwber flow past a circular cylinder. Below a critical
Reynolds number (e, o2 17) the flow past a circular cylinder is dominated by two
large vortices of opposite rotation situated immediately behind the cylinder. These
vortices grow in strength and clongate in the flow direction as the Reynolds number
is raised; however, the flow is steady below the critical Reynolds number [2]. Any
perturbation of the flow below the critical Reynolds number is swept downstream
[rom its source and does not aftect the future, long-term, behaviour of the walke.
Perturbation of the sub-critical wake can cause the wake Lo oscillate: the vortices
behind the cylinder ave alternately shed into the wake and form a ‘vortex street’.
However, no matter what the amplitude or frequency content ol the external per-
turbation, the wake ascillations linearly decay and the flow resumes its steady state
when the external perturbation is removed [7]. The linear decay of flow oscillations
resulting from external excitation of a subcritical cylinder woke {at Re = 46.8) is
shown in figure 1.1.

As the relevant flow paramneter in the wake (Reynolds number in the cylinder
case) is raised ahove the critical value the regiou of absolute instability increases
and there is a stable (supercritical] Hopf bifurcation [rom a steady to a periodic

state [3!{1]. Typically, this hifurcation is observed by sponiancous, self-excited,
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(figure adapted from [7])
Figure 1.I: Linear Decay of Oscillations in a Sub-critical Cylinder Wake

asymmetric vortex shedding forming a Kdarman vortex street in the wake [2]. This
bifurcation is exemplilied by the periodic vortex shedding behind a circular cylinder
at Reynolds numbers above Re, = 47. The qualitative features and dynamics of
the cylinder wake are typical of self-excited flows in general [5] [8] (for example, a
stmilar bifurcation to flow oscillatious is seen at a critical velocity ratio in a mixing
layer [1]).

Wake flows exbibiting self-excited oscillations are often dominated by large scale
spatial structures: in the cylinder example, the mean flow during shedding consists
of two large vortices behind the cylinder (which are slightly smaller than those prior
to shedding) and the fluctuating wake is formed by the downstream movement of
the large vortices that are alternatcly shed by the cylinder. The resulting laminar,
periodic vortex street persists up to a Reynolds number of around 250, beyond
which aperiodicity, three-dimensionality and furbulence (with its associated smaller
scales) may be observed. For the cylinder, the period of oscillations is characterized
by the Strouhal number, St = %/Q, which is a continuous function of the Reynolds
number [2]. The spatial structure of the Kdrmdn vortex streel is, very roughly,

characterized by a ratio of the cross-stream distance, h, between the vortex cores
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1o the downsiream distance, {. The natural, stable arvangement of a vortex street
has 'Tl = 0.281 [9). Figure 1.2 shows a sketch of a cylinder wake during vortex
shedding [9]. The dependence of Strouhal number on Reynolds number is shown in

figure 1.3 [2].

|

U absolute instabiliry convective instability

Figure 1.2: Sketch of the Cylinder Wake

Examination of cirenlar cylinder wakes after an impulsive change in the Reynolds
number from a subcritical to a supcreritical value shows a Lypical growth of oscilla-
tions seen in globally unstable wake flows. The wake oscillations grow exponentially
in the initial, linear stages and eventually [orm a non-linear limit cycle [1]. The
characteristic amplitude, r, and frequency, #, of natural oscillations are accurately

modelled by a Landau equation [10]
7= afr — 1) (1.2a)

§=~1- 6 (1.20)

In the Landan model, the parameter (> 0) is a measure of the instability of the
fixed point (r = 0} of the mean flow, and &(> 0) is a measure of how the frequency
changes with amplitude. A typical growth of self-excited oscillations is shown, for a

low Reynolds nmumber cylinder wake, in figure 1.4 [11].
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Figure 1.4: Temporal Growth of Global Mode: Landau Equation

In the cylinder example, and in absolutely unstable wakes in general, the Hopf
bifurcation of the wake is the result of amplification of a particular globally unsta-
ble mode: the critical global, vortex shedding, mode grows exponentially in time
at a rate proportional to Im(wg), followed by non-linear saturation (towards the
Kéarman vortex street) and limit cycle oscillations [1]. A linear stability analysis
of the time-average flow (calculated during the shedding process) shows the pres-
ence of a significantly large region of absolute instability in the near wake of the
cylinder [2]. The region of absolute instability extends about five cylinder diameters
downstream of the body. If the mean flow velocity profile at a streamwise location
behind the cylinder is taken as a constant inflow condition for a flow without the
presence of the cylinder then an identical vortex street is formed. This observation
is confirmed via numerical simulation of the cylinder wake [2][1]— illustrating that
the flow oscillations are sustained purely by the instability of the large scale mean

flow itself. Therefore, the global flow oscillations are not strongly dependent on the
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small scale localised movements of the cylinder separation points [1.. The instability
of the mcan fow (during shedding) acts as a ‘wave maker’ for the flow oscillations
but the flow fluctuations in the absolutely unstable region are smaller than the os-
citlations downstream [3][L}. The concept of absolute instability is, however, based
on a locally parallel low, which is a fictitious concept— the transition of the flow
to absolute instability is thercfore not directly observable in experiment, and the
stability analysis only explains the global oscillations with prior knowledge of the
mcan flow during shedding [1]. 'Llie mean flow, during shedding, cvolves spatially;
henice, each location in the wake may, after a local stability analysis, reveal a dif-
ferent. global mode [5]. An increase in the flow Reynolds number can increase the
number of possible marginally stable global modes, which often have closely spaced
frequencies [4]. The natural vortex shedding mode s the most unstable of the giobal
modes [1} (the vou Kanuvan mode always becomes unstable before other modes in
wale fows [1]).

Global, self-excited, wake oscillations are therefore seen te be a vesult of a signif-
icant region of Jocal absolute instability of the mean wake flow. The local absolute
instabilily is characterized by the exponential temporal growth of the most unstable
global maode. The typical saturated global mode is ohserved by a non-linear limit
cycle and von Kérman vortex shedding in the wake. However, the wake may, in

general, possess multiple global modes [1].

1.2 Response of Self-excited Wakes to External

Control

The response of the two classes ol fow instability to external control forcing is
qualitatively different and hence stabilization of a flow is dependent on the nature

of the flow instability [4].
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For convectively unstable flows, a linear stabilily analysis reveals the recepiiv-
ity of the flow to external forcing at various frequencies— oul of phase, sinusoidal
forcing at the same frequency as the dominant Fourier component of the instability
wave can, tn theory, stabilize a convectively unstable llow. Linear control laws have,
for example, found success in delaying boundary layer transition (in numerical in-
vestigations [12], [13], [14] and in experiments [15],[16], [17]). In these schemcs, a
controlled input is superimposed on the growing disturbance (a Tollmein-Schlichting
wave) so that they destructively interfere. Even when global flow oscillations are
present in a convectively unstable flow (periodic cavity flow for example) the oscil-
lations are the resull of linear amplification or feedback of internal pressure waves—
therefore the global flow oscillations al each point in the wake are related by a phase
shift and are thus controliable with siugle sensor, linear feedback.

Control of global fow oscillations that arc the result of absolute instability is
more difficult. Htrategies for control of global flow oscillations can be separated into
flow modifiers {where the region of absoluie instability is removed by favourable al-
teration of the mean flow) and control strategies which actively stabilize the unstable
modes of the flow. Flow oscillations are preventable if the mean fow is modified so
as to become convectively unstable- this passive control is achieved by addition of
another body to the flow (for example, a splitter plate or secondary cylinder placed
behind the main cylinder) [18]{1]. Passive control is, however, severely limited in
its applicability [19]. Aciive control of flow oscillations, where the oscillations are
suppressed by time-dependent control forcing of the flow (rather than modification
of the mean Aow) requires the attenuation of all global modes of the flow {1]. The re-
sponsc of ahsolutely unstable wakes to external forcing is therefore important when
considering an active control scheme.

According to linear theory, an absolutely unstable flow is unresponsive to external
forcing: in its initial stages the global (vortex shedding) mode grows exponentially

in time and therefore overwhelms any infinitesimal external forcing, which is only
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periodic in time [2]. However, the observed result of the absolute instabilily is the
non-linear limit cycle and, while linear stability concepts arve usefu] for explaining
the presence of globally unstable modes and self-excited oscillations, linear theory is
nol appropriate when considering the eflects of any finite amplitude exiernal fore-
ing of the non- lincar Hlow [2]. Linear theory is applicable only o infinitesimal
forcing. Experiments and simulations affirm that the behaviour of an absolutely
unstable flid flow 7s responsive to external control inputs if the amplitude ol Lthe
control inpub is above a certain threshold value [2][20]. The response of the ab-
solutely unstable cylinder flow to forcing is characteristic of the response of more
general absolutely unstable wakes [1]. Several different forcing techniques affect the
behaviour of the cylinder ilow. The wake vespouse Lo forcing is similar whether
acoustic excilation of the wake [9], longitudinal or lateral vibration of the cylin-
der [9], rotation of the cylinder |21], alternate blowing and suction at the separation
points {7] or (for Jow Reynolds numbers) vibrating wires in the wake [2] are used.
All of these methods have been proposed {ur vortex shedding suppression schemes-—
active control schemes involving rotation of the cylinder [21] or alternate asymmetric
suction/blowing [22] have mect with some success. Open loop control of a eylinder
wake by means of an oscillating aervofoil placed in the near wake has also been used
to alter the position and strength of large scale vortex structures in the wake [19].
The response of the cylinder Jow, and absolutely unstable wake flows in gen-
eral, to periodic forcing above the threshold amplitude has the characteristics of a
non-linear oscillalor with forced oscillations [9][23]. The response of a circular cylin-
der wake, forced by acoustic excitation, can be characterized by two qualitatively
different regimes which are dependent on the {requency conteut of the applied fore-
ing {2][9]. The first regime is termed a ‘non-lock-in’ state. The {low structures and
temporal behaviour of the non-lock-in state are independent of the relalionship he-

tween the frequency of the applied {orcing, f., and the natural shedding frequency,
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fo. In this state, the flow is characterized, both spatially and temporally, by a non-
linear beat. The shedding frequency can be shilted by up lo 25% from the natural
value during the beating phenomenon [9].

The sccond classification of llow response is termed a ‘Jock-in’ stale, and occurs
when the shedding frequency shifts to an integer ratio of the applicd frequency. The
lock-in state exhibits wake structnres that are dependent on the ralio of the applied
and natural shedding frequencies, and which arc also dependent on the amplitude
of the forcing. The lock-in states are delimited by regions of cntrainment, similar
to the Arnol’d tongues shown by [orced non-linear oscillators [23][L1]. A sketch of a
typical entrainment region is shown in figurc 1.5 [23]. A specific class of lock-in state
occurs when the shedding frequency changes to hall of the applied forcing frequency.
This type of lock-in state is called synchronization. The wake types cxhibited by
the circular cylinder low during synchronization show a full range of /1 values,
from 0 < A/l < o0, and therefore display considerable variation. ‘The resultant
wake type, dependent on the lrequency ratio f,/f, and the forcing amplitude Ay,
exhibits hysteresis [9]. Three different spaiial modes of interaction between a cylin-
der vortex street and an oscillating aerofoil have been observed experimentally [19].
Alternatively, twelve different spatial shedding modes have been observed during
large amplitude acoustic excitation [9].

The response of a self-excited wake flow to external control forciug is therefore a
nop-linear interaction belween the global mode oscillations and the external forcing.
The global flow oscillations may also be the result of multiple global modes— this
spatial complexity of the flow has important conscquences for fow control. At val-
ues of the relevant flow parameter {Reynolds number in the cylinder wake example)
just above the critical value for self-excited oscillations, there is typically only one
globally unstable mode, often resulting in Kérman vortex shedding {11— therefore
the flow behaviour at each point in the wake is related to every other by a simple

phase shift [20]. Linear feedback control of such flows is therefore, theoretically,
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possible by means of a single sensor/actuator fecdback loop. Indecd, single sensor
control of such low Reynolds number cylinder wakes has been observed experirien-
tally [20][24][7]. At higher values of the relevant fow parameter, however, other
global modes are prescnt. Nevertheless, at only slightly supercritical parameter val-
ues {eg. Reyuolds numbers no more than ~ 20% larger than Re. in the cylinder
example) (here often exists a ‘gain window’ between the threshold amplitudes for the
global modes, such that forcing with an amplitude large enough fo suppress the most
unstable mode is still not large enough to destabilize the next global mode [20]]7].
(Complete suppression or control of the wake is therefore still feasible using a sin-
gle sensor at these slightly supercritical parameter values, even although there may
exish multiple global modes |20]. Further beyond the critical value, however, Lhe
‘gain window’ shrinks so that the forcing amplitude necessary to coulrol the most
unstable mode merely destabilizes the next most unstable mode [7][4]. Oscillations
may be suppressed at the sensor location [24] but are, in general, exacerbated
elsewhere [7} — the self-excited wake behaves like a set of spalially coupled local
oscillators [23]. Points in the wake are therefore not merely connecled wia a phase
shift and so multiple, spatially distributed sensors are needed for control of the flow.
A sketch of the gain window for an absolutely unstable cylinder wake is shown in
{igare 1.6 [7]. The diagram represents the change in wake oscillations amplitude
as the control amplitude is raised [7]. As the control amplitude increases, the high
frequency component (in this case corresponding to the natural shedding mode) is
suppressed, As the am plitude is further increased, there is a. range where no flow
oscillations are present, but the growth of low trequency oscillations (corresponding
to the nexl global mode) is seen at cven higher amplitudes. The destabilization of
further global modes is also illustrated in figure 1.7 [20], which shows attempted
single sensor control of the Re = 80 flow around a cylinder. The natural shedding
mode, corresponding to the most unstable global mode can be suppressed via single

sensor feedback. Once the natural shedding oscillations are suppressed, however, the
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wake oscillations resume with a different growth rate, and attain different amplitude
and [requency from the natural shedding mode; these new oscillations correspond
to the excitation of the next global mode. The wake structure is also diflerent as a.

result.

1.3 Low-Dimensional Control of Self-excited

Fluid Wakes

When considering control of wake oscillations, it is important to distinguish between
flows where the oscillations are due to intrinsic feedback or extrinsic noise and Hows
where the oscillations are due to global instability of the flow. Globally unstable
flows conlain a region of absolute instability and, because of the nature of the llow,
are not, in general, controllable with single sensor linear control methods. 1n general,
an absolutely unstable flow is characterized by a Hopf bifurcation from a steady o
a periodic state at some crilical value of a flow parameter. The amplitude and
frequency of the natural oscillations are accurately modelled by a Landau equation
and the Karman vortex street is the typical natural, saturated mode of ascillation.
The oscillations in the walke exist purely as a result of the absolute instability of the
mean fow.

‘The sell-excited oscillations of an abselntely unstable wake flow are responsive
to external forcing only above a certain threshold amplitude; the response of the
flow to excitation is characteristic of a non-linear oscillator with forced oscillations,
[t is typical for a globally unstable flow to contain multiple global modes; the most
unstable mode results in the observed natural oscillations of the wake. In general,
single sensor, linear feedback is able to suppress a single global mode, but it is likely
to excite the next most unstable mode, thus defeating its purpose. A lnear stability
analysis ol the mecan flow may reveal many global modes at each streamwise location

in the wake and, often, the global modes have closely spaced frequencies. The
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presence of multiple global modes thus necessitates the use of muliiple control sensors
at vatious streamwisc locations for the suppression of all possible modes [19][4]. The
spalio-temporal response of the wake is non-linear— therefore the most eflicient
control strategy is also non-linear. A linear control strategy, based on a lincar
model of the flow dynamics is consequently less accurate [26]. A wultiple-sensor,
n.on—_linea.r' contral is therefore, in general, the best strategy to adopt for the complete
sﬁpliression of self-excited wake oscillations caused by global instability.

If the absolutely unstable region is to be adequately represented with multiple
control seusors, then many flow variables (for example velocily or pressure) at many
points throughout the uustable region are needed within the feedback or contrel
algorithm. The resulting conirol algorithm involves maity variables and will thevefore
be complicated and computationally slow. If, however, the complex spaiio-teaiporal
information, needed for non-linear feedback stabilization of multiple global modes, is
characterized by a relatively small number of quantitics— given by a low-dimensional
description of the [ow lcatures and their response to external forcing —then it is
reasonable to assert that the feedback control algorithm can be made sipler and
computationally feasible. Typically, flows exhibiting self-excited oscillations as a

result of global instability are dorginated by the dynamics of large scale spatial
structures-— the dynamics of sinall scale spatlal structures are relatively unimportant
in the evolution of the flow. O_ft'en, the large scale structures of a dissipative Huid
flow can be represented by a finile set of spatial features. A control strabegy that is
restricted to measurement and conirol of just a finite number of large scale spatial
structures in the fluid wake flow is poitentially simipler than a control scheme which
atiempts to control both the large and small scales of the flow. A control strategy
restricted to large scale spatial structures is, however, able (o control the most
important features of the wake oscillations. Tt has been shown experimentally that
a sell-excited fluid wake can be altered in a desired manner by the direct cantrol of

just large scale structures in the wake [19].
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A non-linear dynamical model for the large scale wake structures and their re-
sponse to control forcing is helpful for the design of a control algorithm. Uowever,
analytical determination of such a model by classical meaus is difficult. Nenral net-
works can be used to provide emnpirical relationships between scts of input -output
dala and can therefore be used to predict the response of the large scale structures
to control forcing. Emulation of the large scale flow dynamics with neural net-
works also allows straightforward design of a non-linear neural network controller

for stabilization of the large scale flow variations.

1.3.1 The Dynamics of Large Scale Spatial Structures

in Dissipative Fluid Flows

Expcrimental, self-excited wake flows are dominated by large scale spatial struc-
tures [19][9]— solutions of mathematical models of such wakes are also dominated by
large scale spatial components {27]. The continuum model of the macroscopic char-
acteristics of fluid flow is well established; the Navier-Stokes equations for viscous,
incompressible flow are an example of one such model. The phase space of a partial
differential equation, such as the Navier-Stokes equations, is infinite-dimensional.
Even an approximate numerical sotution of the discretized Navier-Stokes equations
will have a phase space of very high dimension. However, experimental evidence
often shows thai viscous fluid flows can have relatively simple asymptotic dynamics
(sometimes, for example, characterized by limit cycle behaviour which, even in an
infinite phase space, is representable by dypamics in a two-dimensional space). Intu-
itively, simple dynamical systems of finite-dimension should be able to describe the
simple fluid phenomena observed in many experiments. Dynamical systems theory
provides a mathematical framework for this approach.

Dissipation of energy through viscous effects is significant for many fluid systems.

Sl
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Typically, the solutions of dissipative systems converge to a finite-dimensional, at-
tracting set in phase space [27]. Hence, the asymptotic dynamics of many infinite
dimensional dissipative systeins are often [inite-dimensional and can be modelled by
a finite number of ordinary differential equaiions [27]. Certain dissipative systems
possess an nertial manifold, which is a finite-dimensional subset of the system’s
phase space, towards which global solutions of the system are attracted exponen-
tially fast [28]. The inertial manifold contains the global attractor for the system
and sometimes exiss or a range of parameter values [29]. An important feature
of the inertial manifold is ils 1nvariance; once the solution of the system is on Lhe
manifold ‘surface’ it remains there. Therefore, most of the salicut dynamics of the
system take place on the finite-dimension manifold, and can be described by a fi-
nile, rather than infinite, system. Only a small transient pact of the dynamics is
not described by the manifold geometry.

Typically, partial differential equation systems which possess an inertial manifold
have gohitions coinposed of widely differing spatial scales. Specifically, an inertial
manilold exists only if theve is a large gap belween the wavelenglhs of the large
scale components and those of the small scale components [28]. The number of
large scale components, which contribute most of the solution, is offen very much
smaller than the number of small scale components, which have little gross effect on
the solution. A large number of degrees of freedom are therefore taken up by the
relatively unimportant small scales of the solution.

The infinite phase space of the partial differential equation can be decomposed
mto fwo orthogonal sub-spaces: a finite sub-space spanuing the large scale compo-
nents and a complementary, infinite space spanning the small scale components [30].
A projection of the partial differential equation onto these sub-spaces yields two cou-
pled ordinary differential equations in the two different scales. The equation of the

inertial manifold provides either an approximate or an exact functional relationship
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between the small scale solution and the large scale solution, allowing the asymp-
totic dynamics of the partial differential equation to he described completely by an
ordinary differential equation set that is a function only of the finite-dimensional
large scale components |30]. This finite equation set is the mertial form of the par-
tial differential equation [27]. For fluid systems, the large scalc components can be
identified with large scale spatial vortex structures, and the small scale cornponents
with small eddies.

It has been shown [28] Lhal the two-dimensional, incompressible Navier-Stokes
equations do possess an inertial manifold for certaiu boundary conditions. Alsa, the
simple dynamics observed in many [luid experiments suggest, from a physical paint
of view, that a low-dimensional description of certain (luid flows is adequate. For
exarmple, the temporal behaviour of large scale spatial sbtructures in the Kdrmén vor-
tex strect can be modelled by a simple non-linear oscillator equation. The dynamics
of the large scale spatial structures in the vortex street are relatively insensitive to
perfurbation on a small spatial scale. The existence of an inertial manifold justifies
the search for low-dimensional approximations of many viscous fluid flows,

The existence of inertial manifolds and global attractors for nen-auionvmous
fluid systems with time-dependent forcing is of interest in a control context. A
valid low-dimensional description of a wake flow in the presence of a control input is
helpful for the design of a control algorithm. An inertial form of the Navier-Stokes
equations exists for cases of lime-dependent forcing, as long as some restrictions
are placed on the type and character of the forcing [28]. Specifically, the inertiai
manilold approach is valid for periodic forcing or for forcing that enters a compact
set within a fimite time. Otherwise a global aliractor for the system might not
exist. There is therefore some justification for the use of low-dimensional models to
describe the lorced or controlled behaviour of fluid systems. Further justification,
for the use of low-dimensional models as descriptions of forced wake flows, comes

from physical evidence.
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The case of periodic forcing is most applicable to an inertial manifold approach
[28] and there is a wealth of experiniental evidence which suppoerts the observalioun
that periodically forced wakes are low-dimensional and dominated by large scale
siructuves. As discussed in section 1.2, relatively simple dynamical behaviour is
displayed by the periodically forced circular cylinder vortex street. It has been
estimated that there are only twelve qualitatively different types of wake structures
in evidence in an acoustically Torced circular cylinder walke [9] and only three basic
modes of interaction are observed behind a cylinder with an oscillating aerofoil
in its wake [19]. Several low-dimensional models have been employed, with some
success, to predict the temporal dynamics of forced cylinder wakes, The dynamical
features of the forced sine circle map [23] have been compared with the response
of a periodically forced cylinder wake; and a simple cubic equation with empirically
derived coeflicients {from an unforced but transient wake), with an ad hoc additive
sinusoidal forcing term in the equation, is capable of producing temporal shedding
responses thai agree qualitatively with experiment [11]. Characterization of the
spatial features of harmonically forced flows by orthogonal decomposition also shows
that a low-dimensional description is often adequate [31]. Tt also secms that, [or some
{lows, the resulting spatial characterization does not significanily differ from one
derived for auharmonic forcing, which suggests that a low-dimensional description
may be valid {or more general types of forcing [31].

The determination of an exact inertial form of a complex fluid systemn is very
difficult. However, a similar representation of the large scale (and hence most impor-
tant) dynamics can be derived empirically with the nethod of Proper Orthogonal
Decomposition (PODY}) [32], [33]. Proper orthogonal decomposition is an unbiased ap-
proach for the sclection of coherent spatial structures from a flow field. The mcthod
was developed in the context of statistical pattern recognition, and has been used
as a method for the selection of large scale coherent structures from turbulent fluid

flows [32]. The melhod proceeds with the calculation of the cigenvectors of the flow
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field correlation matrix. Each eigenvector can be recognized as a ‘direction’ in phase
space in which the velocity fleld has a statistical maximum. The eigenvectors, or
modes, thus constilute a Hnear, orthogonal subspace that encapsulates the vegion
of phase space i1 which the velocily field is statistically likely to he found—which
is the global altractor (il one exists). Proper orthogeonal decomnposition is to be
preferred over other characterization methods because it is linearly optimal; that is,
it captures a larger amnounnt of kinclic energy than any other linear expansion for a,
given number of modes. The linear, orthogonal sub-space spanned by the modes is
sirilav to the finite sub-space of an inertial manifold, but the empirical decomposi-
tion method makes no attempt at direct parameterization of the atiractor. Proper
orthogonal decomposition has been successtul in low-dimensional characterization of
spatial patterns (for example, the characterization of human faces [34]), detection
of cohcrent structures in turbulent flows [35] [36] [37}, and also in the spatial and
temporal characterization of boundary layer transition [38]. It has also been used
in the low-dimensional modelling of complex geometry flows such as the grooved
channel and circular cylinder wake [39], and wakes of thick aerofoils [40], and also
forced wake fows such as the periodically forced mixing layer [31]. Although the
method is significantly different from the inertial manifold approach, it is similar
in character, and it provides a useful tool for the spatial and temporal character-
1ization ol Auid flows. Laminar wakes can be characterized by much smaller sets
of features than turbulent wakes [39]— the POD modes of a turbulent flow have a
more widespread energy distribution. The characterization of turbulent wake flows
by low-dimensional sete of POD modes is still feasible [36], but the dimensions of

the resulting charactcrizations are likely to be much larger than those for laminar

wakes.
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1.3.2 Control of Large Scale Spatial Structures

with Neural Networks

The flow field of a self-excited wake flow can be approximated by the large scale
spalial strnctures in the flow. The large scale structures of the flow can often be
characterized by a finite and relatively small number of orthogenal spatial mnodes
with corresponding time-dependent amplitudes, developed using proper orthogonal
decomposition [33]. The fluctuating wake velocity field is approximaled by a finite,
linear combination of the POD modes. A control strategy which manipulates the
fow such that the mode amplitudes reach a desired state is able to control the large
scale structures in the flow, which are responsible for most of the flow kinetic cnergy.
The control algorithm can be made computationally leasible because it operates with
a finite, low-dimensional representation of the velocity ficld.

In order to devise a non-linear control algorithm, a model for the evolution of the
mode amplitudes iu response to an external control is helpful [14]. Classically, evolu-
tion equations for the unforced, autonomous POD mode amplitudes are delermined
with a Galerkin approximation of the Navier-Stokes equations [33]. ‘T'he POD modes
satisly the flow boundary conditions and so the effect of a control input (which may
involve boundary or interior control) is to modify the form of the low-dimensional
mode] describing the evolution of the mode amplitudes. However, while the ana-
lytical form of the low dimensioval How model is known for autonomouns flows, the
structure of the low-dimensional model for controlled flows depends intimately on
the nature of the control process which, itself, may bhe difficult to model,

Nevertheless, the notional cxistence of a low-dimensional [low model in the pres-
ence of a control is appealing, Neural networks have been applied to non-linear
coutrol problems where analytical representation of the system has proved difficult:
or impractical [41]]26][14]. For the flow control problem, a neural network can be

trained to estimate empirically the response of the mode amplitudes to an applied
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control, and an adjoining network trained to conirel the flow. The advantages of
this approach are that it avoids the need for explicit representation of the low-
dimensional flow model, and that, because the dyuamics are estimated empirically,
any dynamical effects ol the neglected small scales of the flow are not ignored {the
Galerkin process completely ignores the dynamical effects of the small spatial scales).
Also, the neural network approach allows design of a non-lincar control algorithm
without recourse to complicated analytical nou-lincar control theory [14].

One type of neural network is the multi-layer perceptron [42]. The basic pro-
cessing unit of the multi-layer perceptron is the neuren, which was originally posed
as a mathematical model [or biological brain cells. The multi-layer perceptron can
be used to approximate any non-linear algebraic mapping between a set of inputs
and a set of outputs. The network learns to approximate an unknown function be-
ween two sets of input and output data by application of a training algorithm which
alters the strengths of the connections between the neurons of the network. One
such training algoritbm is error backpropagation, in which the inler-nenron connec-
tion strengths are updated by a function of the local error gradient. Once a neural
network is trained to ewulate the non-linear response of the flow (described by a
finite number of mode amplitudes) then the difference between the desired state of
mode amplitudes and the actual mode amplitudes can be backpropagated through
the ernulator to train another nenral network fo provide a control input to the fow.
The controller network is trained in such a way that the control system error dimin-
tshes at each time step. This type of non-lincar control strategy is robust to external

perturbation and any un-modclled disturbances in the low [26).

1.4 Outhine of the Dissertation

The aim of the present study is to develop a generic control strategy for self-cxeited

wake flows that is computationally fast, by virtue of a low-dimensional deseription of
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the flow dynamics, bul also addresses the potentially non-linear, spatially distributed
nature of the flow.

The dissertation makes no explicit use of the mathematics of absolute instability
theory, nor does il make explicit use of analytical methods for the derivation of an
inertial manifold of the Navier-Stokes equations. However, the qualitative flow be-
haviour resulting [rom absolute instability is nsed to suggest the character and type
of {eedback Lhat 1s to be employed. Also, the concepts of inertial manifolds, and their
existence for forced flows, are exploited to suggest that a low-dimensional descrip-
tion of the flow dynamnics is possible, Both theoretical and experimental evidence
is employed to support this view. It is the combmation of the qualitative results of
stability theory, together with the characlerization of the flow by a low-dimensional
model into a control scheme that is the main contribution of the dissertation.

Chapter I'wo begins with the premise that multiple sensors are needed for the
stabilization of multiple global modes present in an oscillating wake flow. A control
algorithm can be made computationally feasible if the complex spatial inforna-
tion (recorded by the multiple, spatially distributed, sensors) is characterized by
a low-dimensional set of spatial modes. The characterizalion of spatial systems,
governed by partial differential equations, by low-dimensional systems is addressed
with reference to exact and approximate inertial manifolds. It is shown that the
method of proper orthogonal decomposition furnishes a rcadily identifiable coordi-
nate basis with which to represent the flow. Truncation of this basis allows low-
dimensional characterizalion ol the spatial features of the wake Aow. The validity
of low-dimenstonal approximations for wake flows with time-dependent forcing (as
would be present during flow control) is also addressed. Some remarks are made
as to the possible changes in manifold geometry that occur as a result of time-
dependent forcing. The exlension of the classical proper orthogonal decomposition
to non-stationary flows with time-dependent control inputs is discussed.

Aun ellicient, robust, non-linear conirol strategy for the stabilization of the POD

.....
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modes can be designed if the dynamical behaviour of the POD modes of the low can
be predicted, The development of such a control strategy is presented in Chapter
Three. In contrast to classical, Galerkin methods of estimating the mode dynamics,
an cmpirical method is presented. It is shown that an empirical prediction of the
mode amplitude responsc, after application of a control input, can be achicved using
a non-linear neural network. The advantages of empirical prediction of the mode dy-
namics are digenssed. It 1s also shown how the neural network emmnlation of the mode
amplitude response forms the core of an adaptive non-linear neural network control
strategy. Finally, the chapter presents a method for estimation of the POD modes
and amplitudes via another neural network, so that the characterization, dynamic
modelling, and control siralegy are all constructed using the same framnework.
Control of a prototype absolutely unstable flow is used as an example of success of
the control strategy. The prototype flow is a simple model which retains the salient
stability features of a circular cylinder wake. I'he results of the prototype model are
presented in Chapter Four. The prototype llow shows qualitalive agreement with
both the tewporal and some of the spatial leatures of actual forced and unforced
cylinder wakes. The validity of the prototype model, with regard lo testing the
control strategy, is also discussed. The construction of the controller is presented

and its performance is discussed in comparison o lineas coutrol strategies and single

point {eedback.




Chapter 2

Characterization of Dissipative

Fluid Flows

2.1 Introduction

Some of the difficullies of altempting active control of an absolulely unstable fluid
{low were outlined in the first chapter. Absolutely unstable (lows are both spatially
and lemporally complex and active control of the flow by feedback of an isolated flow
measurement is often unsuccessfil. The flow oscillations at the measured point may
be suppressed by the control, but escillations are oflen exacerbated elsewhere by the
excitation of other global modes of oscillation, Stabilization of an absolutely unstable
flow requires attenuation of all unstable or destabilized global modes. Multiple,
spatially distributed measurements— contained in, say, ‘pictures’ or ‘snapshots’ of
the flow field which comprise the values of inportant flow variables at a distribution
of points in space~- are needed to suppress completely all of Lhe global modes of an
absolutely unstable flow [1]{4].

While the initial absolute instability is a linear concept, the initial exponential

growth of the global mode saturates to a large amplitude non-linear limit-cycle[1].
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I'he initial linear instability is often unobservable in experiment, and the ouly ob-
servable result of the instability is the non-Jinear limit cycle [1]. As the response of
the observed limit cycle to a control input is non-linear[2] then the most appropriate
control algorithm is also non-linear. Linear control algorithms based on lincar mod-
els of the flow dynamics are consequently less accurate than non-linear schemes. If
the control algorithm makes explicit use of all of the information contained in a high
resolution ‘picture’ of the flow feld then it will be vary complicated and computa-
tionally slow[11]. The incorporation of so many quantities into a nen-linear contral
algorithm is a significant task. {For example, a digitized image of only one scalar
flow variable recorded at 256 x 256 points in @ — y space contains 2'® quantities.) It
would therefore be helpful if the large dimmension set ol information conlained in ‘pic-
tures’ of the flow field could be characterized by a smaller set ol quantities without
losing a significant amount of information. Some of the theoretical and experimental
evidence that demounstrates the plausibility of such a low-dinensional description or
characterization of the spatio-temporal features of certain luid flows was discussed,

with reference to the concept of inertial manifolds, in the first chapter.

2.2 Geometric Characteristics of the Navier-
Stokes Equations

Dissipative partial differential equation models of fluid ow such as the Navier-Stokes
equations often have solutions composed of widely differing spatial scales. Often,
most of the flow kinetic cnergy is contained within a relatively small number of large
scale components; whereas the small spatial scales, which take up many (perhaps
in[inite} degrees of freedom, contain very little energy. An inertial manifold is a fea-
ture of certain dissipative partial differential cquations that have solutions composed
of large and small scales. An inertial manifold is a finite dimensional attracting, in-

variant sub-set of phase space that atfracts all solutions of the partial differential
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equation exponentially [30}, and hence contains the global attractor. The equation
of an inertial manifold provides a functional relationship betwceen the large and small
scale components; it allows the partial differential equation system to be written in |
terms of a finite number of large scale components described by an ordinary differ-
enlial equation system . The concept of reducing the dimension of a system with an
inertial manilold is shown below with reference to a symbolic representation of the
Navier-Stokes equations for fluid flow. The unforced (statistically stationary} case
is considered first (adapted from [30] and [28]). The existence of inertial forus or
low-dimensional approximations for forced, non-stationary flows, relevant to wake
control, 1s explained in a later scction.

The two-dimensional Navier-Stokes equations for a wiscous, incompregsible fuid
in a region £ are, for each ¢ > 0,

du(x,t)

5 =~ 1) V)ux, 1) = VIEG ) + vV u(x, 1) (2.1a)
with
Vu(x,t) =10 {2.1D)
and initial condition,
1,0} = uo(x) (2.1¢)

supplemenied with periodic or Dirichlet boundary conditions on the boundary #€) |27].
The kinematic viscosity » is grealer than zero and the dissipative term is —V2u.
VII 15 the pressure term and (- V)u is the convection term.

The partial differential equation (2.1) can be represented, by classical meth-

ads [27], as a symbolic evolutionary equalion in an infinite Hilbert space H.

du
Tl vAu+ B(u,u) =0 (2.2)

where A denotes the dissipation operator, restricted 1o divergence-free periodic vec-
tor fields, such that

Au = --PV?a (2.3)
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wlere P denotes the orthogonal projoction in 2(€2) x L2(£2) onto the Hilbert space,

I, with a well defined inner product (u,u) and norm |ul. B denotes the operator
B(u,v) = P{(u- V)v) (2.4)

The orthogonal projection on to the first m eigenvectors, {2,¢,,..., .} of
the linear dissipalion operator A is denoted by P,. The subspace spanned by this
projection is A, = P, H == span{t{,%,,..., ¥, }. The complementary projection,
is = I — 1%, where I is the identity operator. The large scale comnponent of the
solution is represented by p = P u (taking up rn degrees of freedom) and the small
scale component by q = pu {describing the evolution of 1 on the complernentary,

infinite subspace). The total solution is

u=p+gq (2.5)

aud the evolutionary equation can be re-written in terms of the two spatial scales.

dp :

—dl{—_ +vAp + PunB(p+a,p+q)=0 (2.6)
dq : )
-t vAq+ GnB{p+aq.p+q)=0 (2.7)

The inertial manifold equation provides an algebraic relationship between the srall
and large scales of the solution such that g = ¢(p) and the total solulion can be
expressed as U = p - ¢(p). The inertial form of the original cvolutionary equation
portrays the dynamics of the system on the manifold, and is

dp

& TrAp+ PuB(p+¢(p)p -+ A(p)) =0 (2.8)

The asymptotic dynamics of the [luid that are restricted Lo the manifold are com-
pletely determined by the m-dimensional ordinary differential equation (2.8)[28]. n
practice, the salient dynamics of the system are always restricted to the manifold—

only a small transient part is not [28].




CHAPTER 2. CHARACTERIZATION OF DISSIPATIVE FLUID FLOWS 3]

The issue of whether an nertial manifold exists for a particular flow 1s complex-—
the existence of inertial manifolds has been dealt with explicitly only for a few sim-
ple cases[29]. However, a useful rule is that an imertial manifold can exist if the gap
between A, {the largest eigenvalue of Alp, ) and A4y (the smallest eigenvalue of
Alg,.ir) 18 large enough-— corresponding to a large encugh gap in the wavelengths of
large and small spatial structures in the flow|[28]. There are good physical reasons
for expecting an inertial form of the low equations to exist for absolutely unstable
wakes. Flows of this type are dominated by the oscillations of large scale spatial
structures (for example the Kdrman vortex street is a large spatial structure) which
are re]ativ.cly insensitive to perturbations on a small spatial scale. The oscillations
of a vortex street are known to grow from an initial absolutely unstable state, corre-
sponding to the mean flow, that is also dominated by significantly large scale spatial
structure (the twin vortices of the mean flow behind a cylinder during shedding is an
example). It can therefore be expecled that small spatial scales, while inportani, for
structures in the boundary layer on the cylinder, are relatively unimportant (that
is, they have little energy) in a representation of the dynamics of the flow [40]. A
two-dimensional wake flow with a finite number of vortices or low structures with
nou-vanishing strength can be represented by a finite dimension system [43]. I a
wake flow is periodic or quasiperiodic with » distinet [undamental frequencies (ex-
cluding harmonics) then its velocity field is spanned by n phase angles — the fow
is thus effectively n-dimensional [43].

The analytical determination of the manifold equation is also generally difficult
and is only straightforward for a [ew systems where the dimension, m, of the manifold
is very low. The use of exact inertial forms as simplifications of the flow equations
is conceptially appealing but usually of little practical use; the dimension of the
inertial manifold for even moderately complex flows can be very large (O(10%) for
some flows) {29]. Given that the determination ol an exact inertial manifold is

difficult, approzimate inertial manifolds (which have been shown to exist even when
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an exact inertial manifold is not formally known to exist) are often of use [28].
If an inertial manifold attracts all soluiions asymptotically to a finite-dimensional
hyperplane, then an approximate inertial manifold can be thought of as atiracting
all solutions to a thin strip, or neighbouthood, that contains the global attractor.
Manifolds of this type are functions whose praph, M,,, = graph{@.y,), in phase
space approximates the global attractor. Tley are simple and are more practical
than exact inertial manifolds as devices lor the construction of an approximate
inertial form to reflect the dypamwics of the partial differential equation system.
The crudest approximation is a flat space {¢.y, = 0) so that the solution of the
flow is approximated ouly by the large scale components (this approximation is
equivalent to a standard Galerkin scheme [28]). However, if the small spatial
scales arc approximated by an appropriate non-trivial function of the large spatial
scales, then the dynamics are better approximated than by assuming ¢up, == 0. An
approximate relation for parts of g is determined {from the approximate solution of
(2.7} [27], hence,

92 dapp(p) = (vA) 7 [~ B(p, p)] (2.9)

which assuwmes that |g| is small enough to neglect in equation (2.7} [28] [27].

The dynamical behaviour of a fluid Aow may change markedly with parameter
variations such as Reynolds number. An absolutcly unstable flow, like Lhe cylin-
der wake, can evolve through disparate stages of laminar, turbulent, periodic and
aperiodic oscillations. The transitions between types of qualitatively different dy-
namical behaviour correspoud to regions of high eurvature or twists in the inertial
manifold or global attractor. An atterupl to parameterize these regions of the in-
ertial manifold will result in a manilold or attractor of very high dimension. Tt is
therefore more practical 1o search for a suitable coordinate basis that encapsulates,

or approximates, only a local region of the inertial manifold [29].
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2.3 'The Method of Proper Orthogonal Decom-

position

Low-dimensional characterization of absolutely unstable, dissipative fluid wake flows
1s inspired by the existence of exact or approximate jnertial manifolds, even when
the direct parameterization of such manifolds is difficult or not available. When
an exacl or approximate inertial form of the flow equations 1s known, the solution
to the flow equations can cither be exactly or approximately stated as an algebraic
function of the history of the large scale spatial structures. In seeking to encapsulate
a local region of the inertial manifold, it therelore appropriate to search for some
readidy identifiable coordinate basis that spans the tavge scale components of the
solution (at, say, a particular Reynolds number). Such a basis is furnished by Proper
Orthogonal Decomposition; a method which, without bias, selects an orthogonal set
of spatial modes that are oplimal in terms of retained kinetic emergy. The high
energy modes may be identified with the large scale spatial structures appearing
in the flow {36] [39]. The method determines the smallest lincar sub-space that is
sullicient to describe the observed flow phenomena, but makes no assumptions on
the non-linearity of the problems of interest.

Proper orthogonal decomposition was originally developed in the context of pat-
tern recognition and has been used success{ully as a method for determining a low-
dimensional description of human faces [34]. The method has also been used to
identify large scale coherent structure in turbulent flows [33], such as jet flow and
boundary layer transition, and has also been used successfully to characterize coher-
ent structures occurring in laminar wakes or flows around complex geometries {39].
The method as presented here (adapted from [32] ), from first principles, highlights
the absence of bias in the POT) representation.

An eflicient method for characterizing an unsteady flow ficld concenirates on

departures from the neanf[34]. A velocity field, measured at discrete spatial points,
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may be represeuted as a concatenated vector of Tocal Cartesian velocity cornponents
formed from the sum of a mean (time average) flow and a fluctuating part, Ior a
two dimensional low, whiclh 1s measured at P discrete spatial points, the velocity
field vector is of the form,

V(i) =V + V'(1) (2.10)

2
where V is the time average flow and,
| V($1 1 Y1, t) |

, vi{zg, ye,t)
Vi(t) = ) (2.11a)

Lv(zp,yp,t).

1s the fluctunating velocity field, and

(2.115)

ve{ T, yin t)
V(l‘,‘,yi,t) = [ :|

(21, Ys, 1)
ig the local fuctuating velocily vector at a point ¢. It is required to characterize the
[luctuating flow by a fixed vector 2 that has a ‘direction’, in phase space, as close

as possible to the fluctuating velocity field vector in the scnse that the projection
(- V(1)) = TV'(2) (2.12)

is maximized[32]. So that the magunitude of ¥ has no effect on the maximization,
% 1s subject fo the constraint that # -4 = 1. 'I'o characterize a flow from an
ensemble of velocity ficld realizations it is necessary to find a vector which is best
correlated with cvery member of Lthe cnsemble[32][35]. Because E{V'(1)} = 0, the

best stabistical measure over which to maximize (2.12) is the mean square
El(g V()'} =220 (2.13)

Maximization of (2.13) produces the best correlated vector to Lhe ensemble of ve-

locity field realizations in a rmean square sense[33].

E{(TV'm)(V'(6)T4)} = A (2.14)
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P Rap = A (2.15)

where R is the time average, spatial correlation matrix of the velocity field,
R = E{V()V/()T) (2.16)

[t is readily shown that extremal ¢ correspond to eigensolutions of the algebraic
eigenproblem[33]{34]
R =2 (2.17)

The matrix eigenproblem defined by (2.17) yields an orthonormal set of veclors that
characterizes the spatial stricture of the flow. The eigenvectors, or modes, can be
recognized as ‘directions’ in 27 along which the variance of the discretized velocity
field has local maxima.

Solution of the eigenproblem (2.17) is a difficult task if the number of spatial
measurcinent points, P, is large-— the problem is of order (2 x P)? for fows compris-
ing two space variables. The effective order of the problem can be reduced, however,

using the method of ‘snapshots’[33].

2.3.1 The Method of Snapshots

For a suflicient nuwber of time-sampled fluctuating velocity fields, or snapshots,

V'), k— 1,---, M, the time average correlation matrix is approximated by
'I M
R — S V(L )Vi(t) T (2.18)
M k=1

The approximate correlation js symmetric and non-negative and the number of snap-
shots, M, is lypically less than the dimension of R. Conseguently, R is singular [34]
and only has M non-zero eigenvalues {34]]36] [33]. The eigenvectors are of the

formi33]

AM
@ =3 AV'(1) (2.19)

=1
where the amplitude

A.k = (’lf) V’(tk)) (220)
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Substitution of relation (2.19) into the eigenproblem {2.17) resulis in the reduced

eigenprobletu,
CA = A\A (2.21)
where
1
Ui = @T(V’(tk)-V'(t,)) kil=1,..., M (2.22)
and
A= (AL Ay A)T (2.23)

The cigenvectors of the matrix € arec M-dimensional, and are used to form the
eigenvectors of the correlation matrix R via relation (2.19). The method of snapshots
makes numerical caleulation of the eigenvectors of B easter if M < 2P,

For periodic Hlow, care must be taken to ensure that the snapshots arc selected
from an exact multiple of the flow period. Otherwise the correlation will change
depending on the first and last points considered. Analysis of more than one period
of oscillation represents a surplus of information. If a non-integer munber of periods
is analysed, then the structures or inodes developed will be hiased to one particular
phase of the flow. The extension of the POD to true non-stationary llow is presented
in a later section.

The construction of the eigenvectors, or modes, that characterize the flow does
not rely directly on the spatial resolution of the velocity field; the uumber of mea-
sured points only features in the calculation of the inner product of (2.22). As
long as the spatial resolution is sufficient to capture the significant features of the
flow, an increase in the spatial resolution does not change the number of modes to
any significant degree. The spatial resolution affects only the ‘smoothness’ of the

modes[36].
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2.3.2 Reconstruction of the Velocity Field

At any time, the velocity licld can be reconstructed approximaiely [rom a finear

combinalion of the mean flow and a finite number of modes.

it}
Vit) = V3 ()Y, (2.24)
where the modal amplitude
Ai(t) = (3 V(1)) (2.25)

The k’th eigenvalue can be writien (from the maximization problem (2.13)) as

M = B{(h V(1)) (2.26)

and for the approximate correlation of (2.18),

A = W > ('t,Jk V) (2.27)

The eigenvaluc has units of the square of velocity, and is proportional to the mean
kinetic energy of each corresponding mode. The sumn of the eigenvectors is therefore
proportional to the mecan energy of vhe fuctuating velocity field[32). The con-
vergence of the decomposition is optiinally fast since the coefficients A;(t) of the
expansion are maximized in a mean square sense. If the eigenvalues are arranged so
that Ags < Aasoy <o < Ay < Aq, and the velocity field is reconstructed using only
the modes corresponding to the N largest eigenvalues, then the proper orthogonal
decomposition captures more of the flow kinefic energy for a given N than any other
expansion{31].

A truncated approximation, where N < M modes are retained, acts as a noise
filter: noise, and its associated small scale and energy, is neglected along with the
smaller POI) modes [44). In practice, for laminar wakes, only a few modes (compared
to the uumber of snapshots) need to be retained for an adequate description of the
velocity field; for turbulent flows the energy of the modes is more distributed and a

grealer proportion of modes needs to be retained.
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2.4 Low-dimensional Description of
Non-stationary Flow

The effecis of time dependent interior forcing (or an active control input) on the
structure and form of either local attractors or approximate inertial manifolds arc
of interest within the context of flow control. Approximate or exact inertial forms
exist for the Navier-Stokes equations with a time-independent forcing and suitable
boundary conditions, Whether these manifolds continue to exist for time-forced
(or controlled) fows is a more difficull question. Physical evidence supports the
idea that av least periodically forced, absolutely unstable flows can be regarded as
low-dimensional. TFor example, a relatively small number of characteristic spatial
structures are observed in experimental periodically forced vortex streets [9] (for
exainple, twelve spatial modes have been observed during large amplitude acoustic
excitation of a cylinder wake [9]; alternatively, three spatial interaction modes have
been observed behind a cylinder with an oscillating aerofoil in the near wake [19]).
However, the theory of approximate inertial manifolds is not necessarily applicable
to cases where the forcing is time-dependent. Systems of this kind might not possess
a global attractor. For an approximate inertial manifold to exist, the time derivative
of the small spatial scales, |g|, has to be small enough compared to all other terms in
the evolution equation for q. This can be true only if the forcing is not too oscillatory
in time, and if f(1) is uniformly bounded in time ( ¢ > 0,]/({)} < oo, f{oo) < o) or
if f(t) is periodic. Given these restrictions on the forcing function, it is sometimes
possible to obtain a global attractor for the system such that the solution of the

flow, u(t), approaches a thin neighbourhood of the manifold [28]

M(1) = graph(p(t), Quf(2)) (2.28)

Periodic or nearly periodic forcing is a reasonable condition for the control of periodic

flow oscillations occurring in absolutely unstable flows. Also, only very small forces

”
A
%
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are likely to be needed for control of an initially linear absolute insiability (with
an expovential growth rate) and the physics of a conlrol actuator assure that the
control is uniformly bounded [24]— the use of approximate inertial manifolds for
absolutely unstable wake flows with time-dependent forcing is thercfore encouraging.

Many absolutely unstable flows, such as wake flows, have characteristics similar
to those of non-linear oscillators. For example, the growth of temporal vscillations
resulting from vortex shedding behind a circular eylinder have been modelled by
the Landau cquation and by equations of the Van der Pol type [L0]. The oscilla-
tions in the spatial structures of the wake are seen to be reflecied in the temporal
response of the wake[9] and the variation in spatial structures has been modelled
successfully by low-dimensional equations similar to those which model the tempo-
ral response (43]{39]. The circular cylinder example provides a useful prototype for
other absolutely unstable flows. The dynamics of the forced cylinder wake are also
readily compared to some of the features of non-linear dynamical systems[23]. The
behaviour of {forced nou-linear oscillators, determined from the theory of non linear
dynamnical systems, may therefore provide some insight into the poussible effects of
forcing on the structure of attractors or approximaie inertial manifolds of certain
forced, absolntely unstable fluid flows. For the cylinder case, the amplitude of flow
oscillations is a measure of the coupling between the impased forcing frequency
and the natural shedding frequency; forcing causes lock-in and non-lock-in states
when applied above a certain threshold amplitude. A useful simplification of forced

ogcillators with two competing frequencies is the forced sine-circle map
K.
01 = Dy + 5o sl 270, 4+ Q (2.29)
¥

The sinusoidal term represenss the effect of periodic forcing with amplitude X and
the ratio of the iwo competing frequencies is represented by €. Indeed, the response
of the forced cylinder walke has been shown, experimentally, to be very similar to the

forced sine-circle map [23]. For valucs of X > 1 the circle map is folded onto itself and
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chaotic behaviour may result. Very complex or chaotic behaviour i1s observed in the
cylinder wake during forcing at some amplitudes [23]. Also, it has long been obser\'éd
that the transient response ol absolutely unstable fluid flows, belore the flow settles
on one of the two competing frequencies, can be very complex or seemningly chaotic.
The associated changes in structure of the attractor of a continuous time non-linear
oscillator undergoing periodic forcing, which exhibits similar behaviour to the circle
map and the periodically forced cylinder flow, is suggested by an examination of
the Birkhoff-Shaw altractor (adapted from [45]). This attractor is an analogue io
the Van der Pol cquations and has similar topology to the forced sine circle map
for K > 1 [45]. The atiractor of this system has an interesting topology that
is significantly affected by the periodic forcing term. Although the Birkhoff-Shaw
attractor is an example of chaotic response (and, as such, is an extreme example
of the effects of forcing), this observation may suggest how the attractors for some
finid systems may change with forcing, and what implications this may have for
low-dimensional characterization. When the forcing {unction of the B-S system is
omitted (made zero}, the attractor can he represented as a two dimensional limit-
cycle in the « — y plane. However, when the forcing is as presented in figare 2.1
the solution of the system is more complex and seemingly disordered or erratic.
The regular structure of the attractor is now not visible from an examination of
the = — y plane alpne, suggesting that this is no longer a complete phase space.
Both views are shown in figure 2.1. The attractor of the forced phase space can be
viewed using a three dimensional phase space in which the third axis is the angle,
¢, 10 Lhe forcing cycle. A sketch of the structure of the resulting attractor in three
dimensional phase space, (z,y, @), is shown in figure 2.2 [45]. The figure shows that
the periodic forcing introduces significant changes in the structure of the attractor
(if no [oreing were present the attractor would be exactly cylindrical in (z,y, 4)
spacc). Folding and twisting ol the attractor surface is introduced. The equations

in figure 2.1 are repeated exactly at ¢ = ¢y+2x. Hence the three dimensional object
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un-forced
08 T

08

The Birkhoff Shaw attractor has similar topology to the forced
sine circle map, which has similarities to the periodically forced
circular cylinder wake,

& = 0.Ty + 10z(0.1 — y?)

j=z+f

The forcing term is

f = 0.25sin(1.57t) = 0.25sin(¢)

Figure 2.1: Unforced and forced phase portraits of the B-S system




CHAPTER 2. CHARACTERIZATION OF DISSIPATIVE FLUID FLOWS 42
of 2.2 cap alternatively have its two ‘ends’ at ¢ = 0 and ¢ = 27 joined together
and the attractor imagined as a torus whose surface is stretched and folded by the

addition of forcing. If no lorcing were present the attractor could be imagined as a

21 b

(figure adapted from [15))

Figure 2.2: Twisting and folding of B-S attractor by periodic forcing

smooth torus with no twists or folds. If the surlace of the smoolh, unforced torus
was ‘unwrapped’ (o form a plane with axes ¢ and 8 (where ¢ is the angular position
measured in a clockwise direction from the 2 axis), then trajectories starting at any
particular initial condition could be traced out: each trajectory would be separate
from every other and trajecctories would remain a fixed ‘distance’ from each other.
Because the surface of the torus is siooth there would be no crossing or bundling of
trajectories. Unwrapped trajectories of the forced torus are shown in figure 2.3 [45)].

Because of the stretching and folding of the object in figure 2.2, which is truly three
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(figure adapted from [45])

Figure 2.3: Stretching and bundling of trajectories by periodic forcing
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dimensional, the trajectories (in any projeclion) cannot be guarantced not to cross.
The stretching, bundling and apparent crossing of trajectories is shown in {igure 2.3.
The shaded areas are regions where the surface of the torus overlaps other regions.
Repeated stretching and twisting and f{olding of the surface of the lorced attractor
causes mixing of the trajectories.

The above analogies from the theory of non-linear oscillators suggest that the
effect of forcing on the Jimit cycle atiractor for a globally unstable fluid wake is to
stretch and twist the original attractor and that further dimensions in phasc space
arc, in general, needed to view bhese twists. The reglons of high curvature or twisting
caused by forcing can be identified with fuid How structures that appear abruptly,
move or collide, or disappear. These spatial structures will therefore be statistically
non-stationary and difficult to capture using orthogonal decompasition [29]. If the
short lived structures are determined using the classical orthogonal decomposition,
then, because each structure contributes little to the total flow energy averaged over
all low mecasurements, each short lived structure will have a small elgenvaluc and
be ignored in any truncaled approximation of the velocity field [28]. 1t is therefore
important to extend the orthogonal decomposition for non-stationary flows. Most
fluid wakes are not deterministically chaolic, so & large collection of transients, in
which a significant region of phase space is visited, is needed for the characterization

ensemble.

2.5 Sub-optimal Decomposition of
Non-stationary Flow

A time sertes of M ‘snapshots’ of the flow velocity field is used to form the correla-
tion matrix in classical proper orthogonal decomposition. However, if the time serics
of interest is of a statistically non-stationary process (for example a flow subject to

time-varying forcing) then statistical properties such as the correlation depend on
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the first and final time points in the series. The variation in spatial fealnres resuit-
ing from the non-stationary process is embodied in changes in the correlation that
depend on the examined time series of snapshots. One approach to characterizing
a non-stationary flow is to select structures (ie. examine the correlations) from ve-
locity fields close to some pre-selected phase of the flow [36]. If various phases of
the flow are examined as, say, structures are advected downstrearn, then a series
ol time-dependent modes can be constructed, In order, however, Lo keep the char-
acterization simple, and hopefully use it within a control scheme, it is preferable
to search for a fived sel of modes that will characterize the varying set of features
found in a non stationary flow. The spatial features occurring in non-stationary
flows are approximated from an examination ol the correlations of a set of transient
time series {311 [44].

A snapshot of the fluctuating How field, represented as a row veclor, is
P = [V“(xl, ). Vé(Xg,fj), o Vixp, Ij)] (2.30a)
with the fluctuating local velocity veclor,
V%, 1) = [T, Yo, 1) v (B0, Yo 1)) (2.306)

Herc, 2 is the index pertaining to a particular snapshot time series, and j repre-

sents the time point within each series. Each snapshot has 2P elements (for two-

dimensional low, measured at P discrete points). The snapshots arranged into a

time scries of M time points form

_ (;bil -
b

B
I

{2.31)

(ID”WJ
Each time series @* has zero mean, because the time average flow, for that parlicular

tine series, is subtracted prior to analysis. Ouly flows where the mean flow is
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not significantly affected by forcing (and is therefore not modified) are considered:
the same time average approximates the time average for each time series. II N
disjoint snapshot time series are examined, then the matrices ®*,i = 1,---, N form

a concatenated matrix,

(2]

(1,2
A = . (232)

"

L. .

The concatenated matrix of data containg all of the spatio-temporal information
from the N different, M time point series of snapshots. {It should be noted that cach
series contains the same number of snapshots--- an intelligent choice of first, and last
points in the series might be, [or example, the start and finish points of one period
ol a forcing cycle because no [urther information is gained from analysis of further
forcing cycles. This is illustrated by the repeating structure of the twisted three-
dimensional attractor depicted in figure 2.2.) 'lo preserve as much information as
possible (particularly phase dependent information), the daia is not averaged over
the N time series.

As in the classical POD approach, the correlation matrix for a single time series
is forined from,

1
R = E?qﬂ‘q& (2.33)

If all of the NV time series are to be analysed, then (without averaging the data) the

correlation is formed in a similar way from the concatenated data matrix [31] {44],

11 ,
R = HE—,ATA (2.34)

Lach element of the correlation formed from the concalenated data is of the forw,
N M

1 G is .
o L (2.35)

=3 j=1

-Rkl

The correlation formed from the concalenated data matrix is thus the average of

the correlalions from cach distinct lime series of snapshots |31].
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As bhefore, an orthonormal set of modes that characterizes the flow is obtained
by solution of the correlation matrix eigenproblem. However, the correlation R is of
dimension {(2P)? (for two~-dimcensional lows measured at P poinis in space). I 17 s
large, the solulion of the eigenproblemn is (numerically) difficult, but is made easier
by adapting the method of ‘snapshots’.

The correlation developed from a concatenalion of time series data is an average

of the correlation malrices for each time series,

Lo,
R = N{R‘ +R* 4.+ RV (2.386)
Thus,
R = ! T(’ LAENS S S IMT M 07 a1 N1T N1 NAMT N
YT R A s A o R o A R R Al
(2.37)
For the purpose of exposition, the snapshots ¢ are re-labelled,
b9 =, (2.384)
k=1, K h=j+(-1)M (2.355)
with & = MN. This allows the correlation {0 be re-expressed as
Loz i) T o s
R=—leientenpa+--- 4+ SOI\.’{:OK-‘ (2.39)

The matrix R is non negative, symmetric and formed from K distinct syapshots, and
is similar in form (o the approximate correlation (2.18) and as such, its cigenveciors
are of the form
Ko
= L Ai e, (2.40)
=1

Substitution of (2.40) into the correlation matrix eigenproblem results in the systemn,
CA = )A (2.41)

1
Om'n. =— - W
7 (P @) (2.42)
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A <t Ol Do) (2.43)
The solution of this eigenproblem (which is of order K = M N) is used to form the
eigenvectors using relation (2.40). The method is useful if K’ < 2P. The analysis

A a
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D NASSN NI A AN\ A
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(figure adapted from [31])
Figure 2.4: Superiority of concatenation approach

of non-stationary flows therefore proceeds in the same way as the original method
of snapshots. The only difference is that the non-stationary modes are sub-optimal;
more of them are needed to characterize any given time series than would be needed
by the classical POD [31]. Care must be exerted with the selection of time series and
their sampling; however, the method of snapshots and the concatenation approach
are essentially identical [31].

It is useful to compare the eigenvectors formed from the concatenation method

with eigenvectors created from data averaged over all N time series (so that the




CHAPTER 2. CHARACTERIZATION OF DISSIPATIVE FLUID FLOWS 49
data consists of a single time series of snapshots). Tt can be expected that phase in-
formation will be lost in the averaging process and that the concatenation approach
is to be preferved. In this respect, the results of [31] are illuminating. The modal
coefficients (Lime varying amplitudes) of modes generated with data from a period-
ically forced, plane mixing layer are shown in figure 2.4 {31]. Two different sets of
cocflicient histories are shown. On the left, the first six coefficients calculated with
concatenated data are preseunted (A;’s iu the figure). As expected, the modal am-
plitude cocfficients decrease monotonically. This makes them useful in a truncated
velocity field expansion like {2.24). Modes calculated using averaged data are shown
on the right of figure 2.4 (a;’s}. Althonugh these modal coefficients have a decreasing
trend, coefficient ug is greater in amplitude, on average, than inode coefficient ay.
This is undesirable if the modes are to be used in a truncated approximation of the
velocity field as in (2.24). In general, it can be assumed that averaging of the data,
over a sclection of time series, causes a loss of information and that modes calculated
from averaged data will be difficudt to use in approximations of the velocity field.
It 15 also useful to consider how many different forcing regimes (and therefore how
many separate, forced time series) arc necessary [or an adequate characterization of
the flow. ‘['he number of required time series depends {obviously) on the behaviour of
the flow of interest. The circular cylinder wake is an archetypal absolutely unstable
flow, so the response of the cylinder wake to lorcing gives a general indication of
the number of different forcing regimes necessary for characterization of non-linear
oscitlating wakes. Tixperimentally, the periodically forced vortex street displays at
least twelve qualitatively different arrangements of wake vortices [9]. Presumably, a
time series representing at least one example of each of thesc qualitatively different
wake arrangements would be unecessary for a complete characlerization. Modes
considered from data deficient in one of the wake types would probably be unable
to reconstruct the velocity flelds for thal parlicular forcing regime. In general, the

number of examined time series will be proportional to the number of qualitatively
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different wake types found under forcing. The number of time points considered
within cach series depends on the spatio-temporal complexity of each time series.
Spatial characterization of a periodically forced mixing layer [31] shows that the
degree of mode similarity, for varying numbers of time serics and forcing regimes,
does not differ too much for the low— as loug as snapshols from a full forcing period
arve examined. Iligure 2.5 shows a measure of the mode-set similarity lor a forced

mixing layer [31]. The surface in the {igure represents changes in the variable
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which represents the degree of similarity between the mode shapes and coefficients
ol the / most energetic inodes when n < N different time series of snapshots arc
considered. The figure shows thal, at least for the forced mixing layer, only a small
nurnber of time serics are needed to provide a considerable degree of eigenset sim-
ilarity. The modes generated from a delicient data ensemble are not as good at
characterizing the entire ensemble as a full data set, but they still provide a reason-
able approximation. This observation is encouraging if the results are analogous to
other flows (data from only a few transienis are necessary for adequate character-
ization of the low Reynolds number cylinder wake [39]). It is also known that a
reasonably small number (~ 64) of orthogonal Fourier modes that arc scaled with
Reynolds number can characterize the spalial features of a cylinder vortex streck
[or a range of Reynolds numbers, capturing the initial onset of vortex shedding and
changes in the vortex street structure with increasing Re [13]. It is therefore reason-
able to assert that a finite representation of the wake by sub-optimal PO modes
generated [roin a large enough non-stalionary data ensemble is possible. The num-
ber of dillerent forcing regimes and the temporal sampling necessary for adequate
characterization is, however, dependent on the particular flow and can be resolved

only by experimentation,
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When considering the number of time-series required for complete characteri-
zation of the flow (rather than just one sct of observed phenomena), the type of
lorcing is also of 1nterest. As mentioned previously, an approximate inertial form of
the periodically forced flow equations is valid [28]. A comparison between the effects
of harmonic and an-harmouic forcing for a plane mixing layer {31} shows that Lhe
wake structures do not significantly differ between the two forcing regimes. There-
fore, modes developed from one forcing fcgime are uselul for other types of forcing.
such as feedback [31](the behaviour of forced cylinder wakes is also rclatively insen-
sitive to the exact character of forcing [7) [9]). For this statement to apply generally,
more experimental evidence is required, but the similarity of the modes generated

during twa different forcing regimes of the mixing layer is encouraging.

2.6 Utility of the POD Modes

The POD basis represents a powerful tool for the characterization of a flow— each
POD mode necessarily satisfies the flow boundary conditions and the incompress-
ibility condition. The POD mades represent the smallest linear sub-space capable of
: 1'e;>r;esent111g, with an arbitrary degree of approximation, the sbserved phenomena.
Care must vherefore be taken to ensure that the observations of the flow that make
up the characterization ensemble are representative of a region of the global attrac-
tor and the surrounding phase space. As most of the absolutely unstable flows of
interest are not delerministically chaotic, then the characterization ensemble must
be gelected from a transient time series in order thal a large enough region of the
attractor and its surround is visited. If the characterization ensemble is formed from
a large enough number of transients, then the POD modes will span the region of
phase space where the solulion of the flow is stalistically maost likely ta be found.
This region can be identified with a finite-dimensional ellipsoid that encapsulates

the flow attractor.
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as the

High encrgy modes can be associated with large scale spatial structures
mode index increases the size of the spatial components of each structure duninishes
[36] [39]. The space spanned by the largest POD maodes is therelore analogous to
the finite sub-space, spanned by the eigenvectors of the linear dissipation operator,
that is used iu the inertial manifold reduction — both sets of cigenvectors span
the subspace rcpresentative of the large scale spatial structnres in the flow. The
modes of the POD approach can be truncated to any desired accuracy (or level
of retained kinetic energy). In this case, ‘directions’ in phase space that are small
enough are ignored and so the POD approximation is analogous Lo the flat manifold
approximation wherc @,,, = 0. This model iz simple, but often results in good
practical models for the representation of certain flows [28]. If the flat approximation
does not adequately represent the dynamics, then the POD approach, because of
its similarity to the inertial manifold approach, can be modified so that the small
spatial scales, represented by the low energy modes, are re-expressed as approximate
algebraic functions of the large scales (the high energy POD modes) [37] [46]. Lf the
orthogonal projection onto the span of the first m POD wodes {25,}7, is denoted by
P and the complementary projection is @ = I — I’, then the original flow equation

is of tbe form,

= F(u) (2.45)
u(t) = p(1) + q(t) (2.46)
where
p=PFF{p+4q) (2.47a)
4= QF(p+q) (2.470)

An approximate ‘inertial form’ of the equations is thus
p=FPF(p+ép) (2.48)
The unknown function q == ¢{p) is approximated by a solution of

0=QF(p+q) (2.49)
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Fquation (2.49) assumes that ¢ can be ignored. This assumption is valid for un-
forced stalislically stalionary tlows-— the low energy modes correspond to small
scale structures which typically have a faster time scale than the large scale stritc-
tures 37]. The result of this faster time scale is that the large scale components are
not influenced by variations in the small scales and hence § can be ignored [37].
For time dependent forcing, however, ¢ cannot always be ignored. The value of |g)
can be assumed to be small if the forcing is not too oscillatory, and is periodic [28].
The POD basis can thercfore be used in a similar fashion to the inertial manifold
basis. The POD basis can, however, represent only the observed phenomena, bui it

1s often more practical than the direct inertial manifold approach.

2.7 Summary

It can be said, in gencral, that any two-dimensional, dissipative wake [low, which
has a finite nwmber of flow structurcs or vortices, can be represented by a low-
dimensional system. An inertial manifold is a property of many dissipative fluid
wake flows-— the nertial manifold allows representation of the flow dynamics by a
finite ordinary differential equation set which is a function of only the large spatial
scale components of the low. This equation set is the inertial form of the governing
partial differential flow equations. Approximate inertial forms have been shown to
exist {for flows where an exact inertial manifold is not known to exist or is diflicult to
represent explicitly. Inertial forms have also been shown to exist for non-stationary,
forced flows (as long as the forcing is periodic and bounded and not too oscilla-
tory). The effect of forcing is, typically, to cause curvature or twisting of the inertial
manifold— often, extra dimensions are needed Lo view these twists and thus en-
capsulate the attractor for time forced flows. It can therefore be asserted that a
low-dimensional description of the dynamics of a controlled fluid walke How is valid.

Experimental evidence of low-dimuensional behaviour in periodically forced fows is
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also encouraging.

Explicit representation of an inertial form of the flow equatious is often difficult
or not available. The crudest approximation of an inertial form is to neglect com-
pletely the small scale spatial structure. It thercfore seems reasonable to attempt a
low-dimensional description of the wake flow by characterization of the large scale
spatial structures in the wake. Such a characterization is furnished by proper or-
thogonal decomposition. A non-stationary velocily field can be represented by a
finite number of sub-optimal, erthogonal POD modes. A Jow-dimensional charac-
terization of the large scale spalial structuves is achieved by neglecting the POD
modes which have small energy. The POD basis captures more flow encrgy, for
a given nuinber of retained POD modes, thay any other linear expansion. The
resulting sub-optimal modes satisly the flow boundary condilions, incorporate the
ellect of a control {which may include boundary or interior control), and satisfy the

incompressibility condition.
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Chapter 3

Neural Control of Large Scale

Wake Structures

3.1 Introduction

The success of an active, closed loop conlrol strategy for control of an oscillating
walke flow depends on whether 1he llow oscillations are observable. In general, flow
oscillations are unobservable with a single sensor {7] and if a large number of global
modes are prescnt then multiple, spatially distributed, sensors (perhaps contained
in a ‘picture’ of the flow field) are needed for control of the fow[4][19]. 1t is helpful
if the large dimension set of information contained in a picture of the flow field is
represented by a smaller set without significant loss of information— the control
algorithmn is thus wade computationally {easibie.

When large scale structures dominate the flow, the flow may be approximated by
the sum of the mean (time-average) flow field and a finite number of spatial modes.
The accuracy of the approximation increases as the number of retained modes in

the expansion increases. The truncated approximation of the velocity field is,

M
Var = V43 A, (3.1)
i1

56
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Low encrgy modes are neglected in the truncated combination of modes.

The control problem is to provide the correci external, time-dependent control
input to the flow so that the future state ol the flow corresponds to a desired state. A
prediction of the response of the fluid flow to an arbitrary control input is therefore
belpful for the design of a control algorithm [41]. The controiler is designed so that
the prediction of the flow in response to an applied control input corresponds with
some desired state. Controls thal stabilize the unstable global modes of the flow are
of interest-- controls that modify the mean flow, and hence remove the region of
absolute instability, arc not considered becanse flow stabilization via modification
of the mean flow can be achieved by adding extra bodies to the wake. The response
ot a velocity fleld, characterized by a finite number of modes, can be expressed
as an evolution equation for the controlled mode amplitudes or as a discrete-time
prediction of the future mode amplitudes given the present amplitudes and control
inputf. Lhis chapter presents a method for determining the response of the fluid to a

control inpul and outlines a robust method for non-lincar control of the wake flow.

3.2 Prediction of the I'low Dynamics

3.2.1 Galerkin Methods

A finite-dimensional dynamical model of the flow may be obtained from classical
GGalerkin approximation of the Navier-Stokes equations. The truncated cxpansion
for the velocity field (3.1) js substituted into the Navier- Stokes equations, which
are the governing partial differential equations of the flow. The Galerkin projection

onto the truncated spacec is,

SV
(1/4- (f L E‘(VM))) =0 k=1,....M (3.2)

The modes are orthonormal and, by construction, incompressible and fixed in time

{only the amplitudes are time dependent); and so the inner product results in a
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systein of M autonomous ordinary differential equations which approximate Lhe
evolution of the mode amplitudes. The evolution equations resulting from a lineas
Galerkin approximation are at most guadratic {33]; the coeflicients in the equations
derive from Lhe various internal inner products in (3.3) [33][39] (a detailed formu-
lation of these equations is presented in the appendix). The system of equations is

represented, symbolically, as,

%ﬁ = G (A, Az, Awr) k=l M (3.3)

Together with au appropriate set of initial conditions, the equations (3.3) represent,
a succinct approximation of the dyuamics of large scale structures in the unforeed
wake. The Galerkin procedure is presented pictorially in figure 3.1. The figure
shows the projection of a solution, restricted to a curved manifold, onto the flat
space spanned by two of the lacgest POD modes (1, and ;). The neglected mode
represented by . contains the cnrvature of the manifold.

The standard Galerkin approximation assumes that the small scales of the flow,
represented by the neglected POD modes (49,7.4, %1, 2,- .- ), do not contribute to
Lhe dynamics of the large scale components, represented by the first M POD modes;
the small scales are neglected in the finite truncation of the velocity field expansion
(3.1} [27]. The Galerkin method is, therefore, analogous to a flat inertial manifold
approximation where ¢,p, = 0. The flat manifold approximation is inaccurate in
regions of high curvature or twisting which are caused by time- dependent forcing of
the flow. Thercfore, the fiow is approxiinated more accurately, and with fewer POD
nmodes, if the small spatial scales are represented by appropriate non-trivial functions
ol the large scales. An approximate method for determining alpcbraic relationships
between the largest POD modes and the smallest POD modes was outlined at the
cnd of the third chapler (equations 2,43 - 2.49), from which a non-linear Galerkin

method can be formed [37] [46].
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Figure 3.1: Sketch of the Galerkin Projection
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However, explicit representation of a Galerkin approximation that incorporates
a tune-dependent, possibly multi-variable control is, in general, not possible. The
general form of the evolution equation for the mode amplitudes i the presence of a

control iwput is,

dA,

= GL(AL A App (), ut)) B=Lo, M (34)

The funciional [orm of G depends implicitly on the nature of the external control
input and is, in general, unknow:t. In particular, an analytic or approximate [unction
which describes the spatial distribution of the effect of the confrol on the entire flow
field is necessary so that the inner products of the Galerkin approximation can be
calculated. Therefore, the Galerkin method is best suited to problems where only
the qualitative response of the flow to excitation is of inferest. In problemns of this
type, ad hoc control terms can be added to the autonomous equations (10][11]. The
response of Lhe model to excitation by these controls may be qualitatively correct
but this method is of questionable use in the design of a control algorithm where

quantitatively correcl responses are needed.

3.2.2 Eiynpirical Modelling of the Flow Dynamics

If the observed response of the fluid (and hence the observed mode amnplitudes)
to a real control input is recorded from a flow experiment, then the control-meode
interaclion may be estimated empirically. Empirical modelling ol the response of
the fluid to excitation is advantageous, because there is then no need to determine
an exact or approximate spatio-temporal relationship that describes the interaction
of the control input with every point in the flow field— all that is of interest in an
empirical model is the temporal behaviour of the mode amplitudes in response to
some easily defined measure of the coutrol input (for example, values of the intensity
and frequency of a vibrating source in the flow).

Also, it is a reasonable assumption that the small spatial scales play some part
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in the dynamics of the large scales of the excited flow [28]; so any empirically de-
rived funclion that approximates the observed dynamics of the flow, with reasonable
accuracy, is more able to describe the salient dynamies than a linear Galerkin pro-
cess (which completely neglects the dynamical effects of the small spatial scales). A
non-linear, empirical model of the flow dynamics, estimated from observation of the
behaviour of the large scale dynamics (the largest POT modes), is analogous to an
inertial form of the flow governing equations restricted to a curved (non-linear) iner-

tial manifold rather than the flat (linear) inertial manifold of ihe Galerkin scheme.

3.3 Neural Network Emulation of the Flow
Dypamics

A neural networl 1s a collection of simple processing units, or neurons, which can
he constructed from weighted linear summations of inputs passed through differen-
tiable, monotonically increasing, non-linear functions {42}. It has been shown, in a
theorem due to Kolmogorov [47], that any continmous function (of any number of
variables) can be computed using only lincar summations and non-linear, monotoni-
cally increasing funclions of one variable; o corollary is that a certain architecture of
neural network can arbitrarily approximate any non-linear mapping that may exist
between a set of input data and a set of output data {47][48]. Moreover, there exist
training algorithms which recursively alter the connection weights of the netwaork so
that the network approximales the unknown functional input--output relationship by
ohservation of an experiment. The construction of a single neuron, originally posed
as a mathematical model for biological neurons or brain cells, is depicted in figure
3.2. The single neuron is, however, limited to computing siraple logic functions and
lincar decision houndaries [47].

The neuron receives a number of inputs that are multiplied by synaptic weights

which determine the connection strength of the particular input element. The
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weighted inputs are added together with a weighted bias value and passed as an
argument to an activation function. The activation function is olten a sigmoidal
or hyperbolic tangent function (or other step-like non linear functions), but it is
sometimes pulse-tike (a Gaussian bell), lincar, or even a differcntial eyuation, de-
pending on the application of interest [42]. An important property of the activation
function is that it is differentiable. This property 1s necessary so that the neuron, as
part ol a network of neurons, caun learn an input-output relationship via a training
algorithm {42].

One type of network architecture is the multi-layer perceptron (MIP), which
consists ol up to three layers of ncurons, ar nodes, with feedforward connections be-
tween lavers, but no {eedback connections or lateral connections befween netivons.
The structure of a mulii-layer perceptron is shown in figure 3.3. The network con-
sists of a set of inputs, up to two hidden layers, and an outpul layer of neurons. The
computational abilities of mudti-layer networks are significant—— a two layer MLD
with an arbitrary number of nodes is capable of making arbitrarily close approxima-
tions to any non-linear function [47}{48]. The mumber of required nodes, however,
can become very large for some problems. It is economical to use three layer MLP’s
for approximation of some problems, as they perform much better than two layer
networks— it is possible to compute any non-linear algebraic function of N vari-
ables with a three layer MLP with non-linear activation functions and N(ZN -+ 1)
nodes [47]. There is no advantage gained by adding further layers to a three layer
MLP. A common choice of activation function for the MLP is the hyperbolic tan-
gent, which gives an asymmetric output ranging between plus and minus one {41},
A network with two layers of non-linear activation functions and a linear outlput
layer is more versatile than the fully non-linear network, as its output range is not

restricted [12].
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Tt is possible to arrange a dynamic network which has neurons with diflerential
or difference equations as activation functions. Dynamic networks involve feedback
and latcral connections between nodes, and cau be irained Lo emulate a differential
equalion and follow a trajectory. Lhe training of such dynamic networks is, however,
computationally intensive because of their inherent feedback [48;. The training of
mulii-layer perceptrons is much less intensive, but the multi-layer perceptron is a
static network and can be trained to approximate only algebraic mappings. To
emulate the mode amplitude evolution with a static network, the reduced-order
flow model (3.4} is represented by an equivalent discrete-time process described by

a non-linear regressive model of order p 18],
An+41)=T(Aln),Aln--1),...,A(n—p),u(n),...,u(n —p)) (3.9)

where A(n) = (Ai(n), A2(n),.... Aps(n)) and the control parameters are u(n) =
(u;tn), ua(n), ..., ue(n)). The vutput of the static network, trained to approximate
the mapping (3.5), is delayed and fed back to the network input, and the network
output follows a discrete-time trajectory and behaves in a similar way Lo a dynam-
ical system. However, small errors in the network approximation of the mapping
(3.5) acenmulate after each time-step, so that the discrete-time trajectory of the
retwork output soon differs from that of the actual system (which is governed by a
continuous-time differential equation). The relationship between present and past
system states, and the futurc (one-step) state, is, however, predicted accurately if
the network s continually supplied with the actual present and past system states.

The neural emulator then has the form of » one-step predictor,
A(n 1) =T (An), A(n —1),...,Aln = p),u(n),...,u(n — p)) (3.6)

which is trained to minimize the magnitude of the error vector
e={A(n+1)=An+1) (3.7)

Error values do not accumulate, because there is no feedback in the static neiwork,

and so the network can be trained to provide a very accurate prediction of the future
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luid state. A multi-layer perceptron, used as a one-step predictor, to emulate the
nomn-lincar response of the fluid to a control input is shown schematically in figure 3.4.
"'he network is trained by recursive adjustinent of the synaptic weights or connec-
tion strengths by the backpropagelion wlgorithm, which is an ervor gradienl descent
technique designed to minimize the mean squared ervor of the output [42] [48]. The
local error gradient al each node of the network is computed by backpropagation of
the network crror from the oulput {where the error is the difference belween the ac-
tual and the desired network response) back to the input. The weights are updated
via the learning rule

Awng(n) = 7 X §5(n) X yemri(n) (3.8)

where ty;;(n) is the synaptic weight of the ¢'th input to neuron j in layer { at the n'th
iteration, yi1:(n) is the input to the neuron, and » is the learning rate parameter.
The learning rate is necessarily small for stability. Within each neuron j in layer {,

the internal activity is
Py

slny =3 wyi(n)yroyi(n) (3.9)
i=0
where layer / == 0 is the input layer, and y;_1 0 is a constant bias level (= 1). £, is
the number of inputs to layer . The output of each neuron depends on the activation
function used,

y; = tanh(s;{n)) (3.10a)

for non-linear neurons in the hidden layers, or
Y = sii(n) (3.108)

for lincar neurons, which are sornetimes used in the cutput layer. The entire network

oulput is trained to predict the actual flow response to a control input. The network
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input,

IRON
/'igi:ﬂ.)

Ane(n) (3.11)

w3(n)

[ uc(n)

for a control input described by ¢ parameters, together with as many past input val-
ues as desired, is fed forward through the network to the output, whicl approximates
the future flow state,

yri(n) = Aj(n +1) (3.12)

where L is the output layer of the nctwork. The desired network oulputs are the

actual mode amplitudes at the next time step,
di{n) = Aj(n 4+ 1) (3.13)
Hence the network crror is
i(n) = (d3(n) — yr,i(n)) = (Ay(n -+ 1) — Ay(n +1)) (3.14)
1The local gradient of the error at each outpus node of the network is [42]
oz,5(n) = e;{n) f'(s1.,;(n)) (3.18)

where f'(s) is the derivative with respect Lo s of the output node activation fune-

tion [41]. For a linear output node, the Jocal error gradient is
br,i(n) = (d;(n) — yr,;(n)) (3.16a)
and for a ron-linear tanh output neuron, the local error gradient is 42]

bri(n) = (di(n) — yr,;(n))(1 - y7 ;(n)) (3.168)
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The local error gradient at each hidden neuron is calculated from the sum of the

error gradients of all of the neurons connected to its output [42],

6i(n) = Siprp(n)wig g j(n)(1 — yii(n)) (3.16¢)
k

The network weights are updated iteratively, until some minimum error level is

attained. The weights are updated with the relation,

wiji(n + 1) = wii(n) + néi(n)yi-1.:(n) (3.17a)

A(n+1)

A(n),u(n)

flow measurement

: Neural network
| : emulator prediction

unit delays

error

A(n-p)u(n-p)

Figure 3.4: Neural Emulator: One-Step Predictor

Generalization is the ability of a neural network to extrapolate, or to provide
reasonably accurate predictions, when faced with inputs which lie outwith the range
of the training data. A network that achieves good generalization is able to estimate
the unknown functional relationship hidden within the training data [42]. Usually,
network generalization is tested by presenting the network with new data, different
from the training data set, and examining the error (which should be small). The
main issues involved in achieving good network generalization, and thus good estima-
tion of the mode dynamics, involve the choice of network size and also the collection

of suitable training data. The second issue is common to all methods of empirical
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estimation. Transient data contains much more information than asymptotic data
and is necessary for the complete resolution of the unknown function [10]. The
data 15, however, composed of measurements of a forced flow, and already contains
many transients. As long as the forcing 1s adequate to excite all of the dynamics of
interest, then the data enseruble will give a good representation of the underlying
dynamics of the flow.

The choice of network size for approximation of a specific function is an inherently
diffienlt task [48] which is not computable algorithmically. The size of network is
apportant: if the network is too small, then it is unlikely to be able to form a
goad model of the flow response— alternatively, if the network is too large, it may
be able to implement a complicated function that produces results consistent with
the training data, but results in a poor approximation of the actual flow [42]. The
smallest network that produces results consistent with the training data is usually
the network which best approximates the underlying function hidden within the
training data. If the network emulaies this function accurately then the network
can generalize. A number of synaptic weights of the order of the number of training
samnples has been suggested as an upper bound for the network size. However, the
nutnber of weights 1s usually much lower than this upper bound, so that the network
weights do not just store or memorize the training samnples [48].

The backpropagation method is a slow process, and many iterations through the
training data may be necessary before the network achicves good generalization.
The number of necessary training cycles to achieve an error goal is an NP-complete
problem. If too many cycles arc used, or if the required error criterion is too small,
the network over-fits the training data and learns any noise or uncertainty in the
experimental data. Over-fitting of the {raining data leads to poor generalization [48).
The backpropagation method is an error gradient scarch technique and is thus prone
to entrapment in local minima, and slow progress on flat regions of the error surface.

The difficulty of determining how long it takes to achieve a desired error criterion




CHAPTER 3. CONTROL OF LARGE SCALE ~ WAKE STRUCTURES 70
with the backpropagation algorithm can be exposed by characterization of the error
surface for a non-linear neuron [48]. Figure 3.5 shows a typical error surface for a
single non-linear neuron using a tanh non-linearity and just one bias and one synaptic
weight. The error surface was constructed by training the neuron to partition a set
of integers into a positive subset and a negative subset. The error surface contains
regions of very large gradient and regions that are very flat. The error surface for a
MLP has similar characteristics, but is considerably more complex [48]. Increasing
the learning rate to speed up training on flat regions of the error surface often leads
to instability and violent oscillation of the synaptic weights. The learning rate is
therefore kept small. Instead, progress along flat regions of the error surface is

encouraged by addition of a ‘momentum’ term,
wii(n + 1) = wyzi(n) + 9o(n)yi—1i(n) + a(wyi(n) — wyi(n — 1)) (3.1756)

The momentum term sets the weight change as a weighted average of the previous

weight changes, and as a result, helps progress on flat regions of the error surface [47].
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Figure 3.5: Error Surface for Single Non-linear Neuron
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3.4 Neural Network Non-linear Control

The principal objective of the How control strategy is to provide an external, fime-
dependent, non-linear control input to the flow, such that the [uture fivid staie,
described by a finife number of mode amplitudes, corresponds to somne desired state.
The neural emualator of the flow dynamics provides a prediction of the fluid state,
given initial mode amplitude conditions and values for external control parameters.
T'he predicted response of the {luid is used to design a controller, such that the
predicted response to an applied control minimizes the control systein ervor and the
flow is deiven towards a desired state.

I the penral emulator is fed an arhitrary control input, it will provide predicted

values for the mode amplitudes at the next time-step [41].
u(n), Aln) = A(n -t 1) (3.18)

The difference between the predicted anplitudes, A, and the desired set of ampli-

tudes, Ay, for the control system is the control systemn error veclor,
eos = (Agn+1)— A(n+1)) (3.19)
This error does nol, however, directly reveal the error in the applied control,
e, = (W (n) —uln)} {3.20)

where u? is the unknown control that would either provide a control system error of
zero magnitude (the u? applied to A(n) such that [(Ag(n+1) — A{n+ 1)) =0}, or
the unknawn control that would make the magnitude of the control system ercor less
than the previous value (the u¢ applied to A(n) such that |(Ag(n+1)~An+1)}] <
{(A(n) — A(n))]). The error in the applied control, rallier than the control system
error, is necessary 1o adjust the control to provide the desired fluid response at the
next time step [26][14].

The error in the applied control is, however, available by backpropagalion of the

control system ervor vector, through the emulalor, to the control inputs because the
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emulator is @ newral nelwork [26}114][41]. 'The control system error, backpropagated
through the emulator with its weights held fixed, is used 1o train a controller neural
network to apply a suitable control input to the flow [41]. 'The error gradient at a
controiler network output node is treated like an error gradient of an internal hid-
den node— as if the controller and emulator are one network [14]. The controller
weights are updated by further backpropagation through the controller so that a
better control input is provided at the next time step. The neural control process
is shown, schematically, in figure 3.6, This type of contrel is very robust (o ex-
ternal perturbations [26]— because the control algerithm (defined by the controller
weights) is npdated at each time step {so the control is adaptive). The control is a
combination of cither non-linear or linear feedback of the present mode amplitudes
and a non-linear function of the control system ervor, depending on whether the

controller nelwork is non-linear or lincar,
u(n) = £(A(n)) + g(A(n) - A(n) (3.21)

where £ 1s a function of the controller network, and g is a function of the emulator
network. The neural control scheme, therefore provides a non-linear control that
drives the [luid state towards a desired combination of mode amplitudes, without
explicit modelling of the effect of the control on the flow field or recourse Lo compli-
cated analytical non-linear control theory [14]. The controller does not require an
inverse of the emulator mapping to exist and will drive the system state closer to the

control goal irrespective of the existence of an inverse modec! of the flow dypamics.
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3.5 Neural Estimation of the POD modes :

The emulation and subsequent control of the [uid flow 1s encapsulated within the
empirical neural network framework. The extraction of the PO modes is alse an
empirical process, and can lherefore be rearranged into a neural network format to g
provide continuity within the modelling and control scheme. Recursive estimation
of the POD modes avoids the need for storage and calculation of a potentially

large correlation matrix and also avoids the need for direct numerical calculation of

the correlation cigenproblem. The POD method is a luear decomnposition and can
therefore be performed by a neural network consisting of only a single layer of linear
neurons [47]{42].

The neural neiwork mode amplitude filter is used to extract significaut patterns
or features from a set of input data in a similar manner to that of proper orthogonal
decomposition. The filter has no examples of mode struclure available to adapt
its synaptic weights; it must therefore be self-organizing and learn from iis iuput
environment [42]. Self-organizing uetworks are (rained with a sei of learning rules
that operate locally— a change in a synaptic weight of a particular neuron only
affects the immediale ncighbourhood of thal neuron. Repeated modification of the
syné,ptic weights of the network by local rules can lead to global organization if the

learning algorithms are constructed from a set of principles {42

Principle 1. Changes in the synaptic weights self-amplify.

Principle 2. The total sum of values of the synaptic weights is limited (o some
finite value. The weights therefore compete for a finite rcsource; growing synapses
do so al the expense of others.

Principle 8. The growth of synapses encourages the growth of neighbvuring synapses.

The first principle, operating ai a local level, ensures that the synaptic weight
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1s amplified by the coincidence of a strong input signal and strong post synap-
tic weight signal. Synaptic weights thal are stimulated repeatedly by large input
valucs thervefore increase in value. This principle reprcsents positive fredback of
the external input (12]. The second principle is required to stabilize the nctwork
and represents negative feedback of the neuron outpat, Tor stability, the synaptic
weights of the network must be limited to some finite value. There is therefore com-
petition atnongst the weights; increases in the sirength of rapidly self-amplifying
synapses are compensated by the reduction in strength of the smaller weights [42].
A single weight, by itself, is not efficient for activation of a ncuron. Tnstead, a set
of neighbouring synapses that are connected to a particular neuron are needed to
successfully trigger a nseful response. The growth of a particular synapse, via self-
amplification, must also encourage ihe growth of the other synapses ol the nearon
despite the compelilion amongst synapses in the network. This local cooperation is
stated in the third principle [42]. Requirements must also be made of the iuput data
presented to Lhe self-organizing network: there must be a redundancy of input sig-
nals or patterns [42]. Kmpirical estimation of spatial patterns with a self-organizing
network will therefore necessitate a larger data ensemble than is necessary for the
standard method of feature extractioun— proper orthogonal decomposition. Apart
[rom this requirement for a large input ensemble, a linear self-organizing network
can be developed to extract the same features as proper orthogonal decomposition.

A single neuron that has ils synaptic weights medified by an algorithm that
follows the above three principles of self organization can learn the structure of the
largest POD mode (this information is contained within the structure of the synaptic
weights) and output the amplitude of the largest POD mode [42] [47]. The linear

neuron output 1s,
Fl
a =y wiv; (3.22)
—
The neuron input is the fluctuating flow field vector V* at a discrete time n. There is

the same number of synapses with weightsw,. 2z = 1,.... I? as the numbecr of clements
- : 1 A S
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in the flow field measuremeni. Using the first principle of self-organizalion, the
synaptic weights sel- amplify according to their input snapshot; w,(r) grows with
the coincidence of a strong stimulus and strong cutput of the neuron, or alternatively,

repeated v;(n).
wiln - 1) = wi(n) + npa{n)rn) 1=1,...,F° (3.23)

The amplification, or learning ratc parameter, is 7. Equation (3.23) represents
continual amplification of the synaptic weights and is therefore unstable. Negative
feedback of the ontput of the neuron is necessary, according to the second principle,
for stability. Hence, the synaptic weight is normalized so that it can attain only a
finite value [42)(this is equivalent 1o vhe restriction 2h + 2 = 1 of the classical POD

approach),
wi(r) + pa(n)vi(n)

O (wi(n) + nal{n)oi(n)?

The expression for the normalized weight (3.24) can be re-expressed, for very small

wi{n + 1) = (3.24)

7 as a power series expansion,
wi(n + 1) ~ wiln) + ga(n)(vi(n) - a(n)wi(n)) (3.25)

The algorithm accounts for both self awplification of the weights, from repeated
stimulation of the input, and negative feedhack of the output {12]. In vector form
(3.22) becomes

¢ = wl (R)V'(n) = (w(n) - V'(n)) (3.26)

Equation (3.23) becomes
win+ 1) = w(n) + (V) V7 (n)w(n) — w () V' (0)V7 (n)win)w(n)) (3.27)

Assuming that (3.27) converges to a steady solution w(n) — 9 asn — 00, and also
that the learning rate 5 is very small and that the correlation B = £{V'V'"} has
distinct eigenvalues, the expectation of expression (3.28) becomes, as 12 approachces
infinity,

0 = Rep — (4" Rep)wp (3.29)
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or that the equilibrinm condition w — ) satisfies the eigenproblem

R = M (3.30)

which is the same eigenproblem as in the POD mode calculation {42). ‘The only
stable solution, 4, is the eigenvector with largest cigenvalue, so the single neuron
converges to the mode with largest energy.

A single layer of N neurons can be used, in the same way, to extract the N
largest POD modes [42]{47]. Lach neuron, labelled 7, in the layer is presented with
an input vector from which the contribution to the flow fleld along the (i —1) largest
POD modes has been subiracted. Kach neuron, 7, thus converges to the i’th largest
POD mode. The first neuron converges to the largest POD mode, as in the single
neuron case; the second neuron is presented with the same input vector minus the
contribution of the first POD mode, and so converges to the second mode; and so
on. The layer of linear neurons is shown in figure 3.7. The number of inputs, P,
correspands to the number of measured points times the number of values recorded
at each point {for example two Cartesian velocities). The mumber of outputs, N,
corresponds to the number of modes that are calculated and is less than P. The

output of any particular neuron in the network is
P
az(n) =y wi(n)e(r) (3.31)
.':1
The synaptic weights are Jabelled so that w;; corresponds to the j'th neuron con-

nected Lo the ’th input. The network is trained with the algorithm [42]

wi(n+1) = wiu(n) by (a‘,-(n)v,,;(n} — a;(n) Z wk,-(n)a.k(n]) (3.32)

k=1
The training algorithm can be expressed in a similar form to (3.27)
wji(n A1) = wii(n) + na;(n)(vi(n) — wi(n)a;(n)) (3.33)
where the modified mput to cach neuron is dependent on the position of the neuron
in the layer;

vi{n) = vi(n) — i wii{n)ay(n) (3.34)
el
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The input to a neuron j is thus the flow field vector minus the contribution to the

flow field along the directions of the (j — 1) largest POD modes. Hence, as n — oo,

7
W; = (wj1, wja,...,wjp)” — P, (3:358)

weights outputs

converge to

converge to
POD modes POD amplitudes

input vector

Vi(n)

ap;n)

layer of
linear neurons

Figure 3.7: Mode Extraction Network

The convergence analysis of the self organizing algorithm for feature extraction
is quite involved (a detailed exposition is presented in [42]). For convergence, the
algorithm requires that the learning rate is very small and that the input elements are
drawn from a stationary stochastic process with zero mean. The latter requirement
seems in conflict with inputs measured from a flow subject to time-dependent forcing.
However, if the process for selection of snapshots outlined in chapter two is followed
then the network is presented with an ensemble that has a distinct, stationary,
correlation having eigenvectors, which constitute sub-optimal modes, that can be

used to reconstruct ensemble members [31]. Care must be taken to ensure that no




CIHHAPTER 3. CONTROL OF LARGE SCALE ~ WAKE STRUCTURES 79
pariicular forcing regime, or phase of the flow, is favoured [36]. The input vectors to
the network are drawn from NV dillerent time series of velocity Relds, ecach of which
cxhibits a set of characleristic features caused by a contrel input. The mean flow for
cach of the NV time series is similar Lo every other because of the restriction placed
on the type of control (ie. the control does not modify the mean flow significantly).
Fach time sertes consists of M distinct snapshots of the velocity field talken at regular

times within one period of a [orcing cyele. The inpul vectors to the network are,

L=V, -V (3.36)

with & = j 4 (¢ — 1), where the time series index, ¢ = 1,..., NV and the time point
(within each time series) index, j = 1,...,M. The input vectors thus have zero
mean. Assuming that the network lcarning rate is very small, the neiwork weights

(upon application of algovithm (3.33)) converge [42] to,
R = £{V'{)V" (1)} (3.37)

There are only K = MN distinct input vectors (which are presented cyclically) to

the network, so,
1 - ) - .
R = E[VHV’{ F VOV 4 VeV (3.38)

which is identical to the concatenated approach [31] [44] detailed in Chapter Two.
The network weiglils thus converge to the same set of sub-optimal modes as pre-
sentecdl in Chapter Two, The network weights, or POD modes, satisfy the flow
houndary conditions; incarporate the eflect of a control {which may include bound-
ary or interior control); and satisfy the incompressibility condition.

Once the self-organizing network has converged with the training ensemble, the
learning rate can be set to zero. The network then acts as a linear filter that
extracts the mode amplitudes from an examination of the flow field; performing the

calculation,

ar(t) = Ax(t) = (¥ - V'(1)) (3.39)
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The mode amplitude filter, which has the structures of the POD modes contained
in its weights, is implemented in the control scheme as shown in figure 3.8. The
controller is fed a measurement of the flow field, from which it calculates the mode
amplitudes, a control output and a predicted response. The control output is applied
to the actual flow.

Desired
Neural emulator state

‘l\/eural controller

A(n)

controller weights backpropagated
adapted emulator weights ~ €ontrol system

' held fixed error

Mode filter
u(n)

control input

flow measurement

Figure 3.8: Non-linear Control of Fluid Flow

3.6 Summary

The empirical estimation of the wake flow POD mode dynamics has several ad-
vantages over other methods for the construction of a wake controller. Empirical
estimation of the dynamics of the largest POD modes, and hence of the large scale
spatial structures of the wake, automatically accounts for the influence of an external
control and the small spatial scales; that is, a curved, non-linear inertial manifold,

with a time dependent control is approximated. The empirical process is potentially
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more accurate than a classical Galerkin approximation, where the rational addition
of control inputs is difficult and where the small spatial scales are neglected— the
Galerkin process represents approximalion of an aulonomous, flat, linear inertial
manifold. The measurements of the flow field, which are input te the mode am-
plitude filter, do not necessarily have to be of velocitv— other flow featurcs, which
ave related o the velocity field, may be chosen if they are easier to measure. The
empirical prediction of the flow dynamics allows the modes to take any form that
signal the presence of wake oscillations— if however, the flow dynamics were pre-
dicted by a Galerkin projection then the modes would have to be constructed from
the velocity field.

Neural network estimation ol the POD modes and their amplitude response has
an advantage over other empirical estimations becaunse the neural network emulator

is readily integrated into a robust non-lincar control strategy.




Chapter 4

A Prototype Wake Control
Problem

4.1 Introduction

To illustrate the niility of the low-dinensional characterization method, the un-
steady velocity field ol a low Reynolds vumber, two-dimensional cylinder wake is
simulated. The cylinder flow is a uscful prototype flow because of its relative geo-
metric simplicity and the spatial and ternporal complexity of the downstream vortex
sireet that forms as a result of a near wake absolute instability [2][39]. The cylinder
wake has many of the stability characteristics and carresponding flow fealures of
much more complex flows. The cylinder flow is simulated numerically, so that the
entire velocity field is available for analysis. The velocity fields at various points in
e i a wake lransicnt (during the unforced growth of oscillations) are used to form
the characterization ensemuble. To characlerize non-stationary flow features that are
the result of a contro! input and also to train a non-linear cmulator of the mode
dynamics it is necessary that the cylinder flow is forced by a time-varying control
input. To obviate the Jarge computational costs involved in forcing the high reso-

lution numerical solution of the walke and avoid specification of a particular control
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mechanism, the response of the flow is simulated by a prototype model. (4 priov,
it 15 not known what specific type of active control device wiil affect the flow enough
to stabilize the modes). Simulation ol the coatrol strategy willh a full numericzl
solution of the lorced Navier-Stokes equations is preferable for accuracy bui is com-
putationally intensive. It is appropriate that indiial testing of the contral strategy is
employed on a simpler prototype How so that identification of importaul parameters
in the controller proceeds quickly (1wost of the computational effort required for a
fult numerical solution concenirates on modelling the flow itself and identification of
important parameters in the controller is not straightforward). The prototype fow
is a low-dimensional form of the flow equations with an artificial control input. The
low-dimensional prototype flow is hased on a set of POD modes developed from the
unforced numerical (CFD) simulation. T'he validity of the prototype maodel is dis-
cussed in subsection 4.3.2 (both with respect to unforced flows, where a, quantitative
comparison with the full numericai solution can be made, and with respect to forced
flows, where only a qualitative comparison between the model and cxperiment can
be made). The prototype captures the important stability features of the unforced
Aow and accurately represents the spatial and temporal characteristics of the un-
forced How. The prototype also mimics some ol the [eatures of the forced cylinder
wake, and it can be asserted thal the prototype flow is a reasonable qualitative
model of the forced and unforced cylinder wake. The nrototype flow model can be
infegrated easily and is used to provide arlificial, non-stationary velocity fields for

characterization and sanbsequent control.
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4.2 Numerical Solution of the Laminar Cylinder

Wake

‘I'he governing equations for the two dimensional, laminar, viscous, incompressible
cylinder wake are the Navier-Siokes equations
Ju .
yri —(u-Viu~— VI 4 vV . {4.1a)

Veou=0 (4.15)

in §2, subject to prescribed boundary conditions on 9 and appropriate ivitial con-
dittons.

side wall

inlet . cylinder outlet

RRERR

side wall

Figure 4.1: Problem domain

The goveruing equations are solved for a fluid occupying a region §2, which is

shown in figure 4.1, with boundary conditions as in table 4.1.

(i) niform inlet velocity, e = 100
(it) INo-slip condition at cylinder wall
(i11) Potential flow at large y from cylinder
(iv] Neumann  outlet  couditions

Table 4.1: domain boundary conditions
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Uniform inlet velocity ab a Revnolds number of 100 ensures that the wake is
within the laminar vortex shedding region (47 < Re < 250). 'Lhe twbulent. wake
He > 250 is more diflicalt to simulate. Walls are used as the sides of the com-
ﬁllta.tiona]_ (léﬂl&iﬂ rather than zero-velocily iulets to lacilitate the introduction of
external forcing of the wake (for example, acoustic sources placed astride the wake
in a wind Lunnel). To miuimize the cffects of the side walls on the flow, the side
walls are placed far from the cylinder (5 cylinder diameters from the centre line). In
addition, the side wall boundary conditions are set at zero vertical velocity with a
herigontal velocity component equal to the inlet velocity. The resulting side bound.
ary condition is not too dissimilar from a potential flow approximation in the far
w.a,ke as the potential flow streamlines 5 cylinder diameters from the wake are almost
stra,ight;; The last boundary condition in table 4.1 is added {or numerical stability.
Neummann outlet conditions 1mpose zeyo normal gradients for all flow variables at the
flow outlets. This type of boundary condition is rekponsible for significant artificial
dissipation of the wake— vortex structures cease {0 exist prematurely, because of
the outlet condition. The flow outlet is therefore placed at a large z, downstream
of the cylinder.

The cylinder ﬁéw-is simulated nomerically, using the commercially available,
control-volume, CFD package, FLUENT v4.70, running on an IBM RISC System
6000 320H workstation. .The equations are reduced to their finite difference ana-
logues by integration over each of the computational cells into which the domain is
divided. A quadratic upwind scheme is used for interpolation between the grid points
and to calculate the derivatives of the flow variables. This scheme minimizes the
effects of numerical dissipation. The % and » momentum equations are each solved
in turn using current values [or pressure. The velocities obtained may not satisfy
the local mass continuity equation. so a ‘Poisson’ type equation is derived from the
continﬁity and lincarized moﬁmentum equations. The pressure correction equation

is then solved to obtain the necessary corrections to the pressure and velocity fields
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such that continuity is achieved|4Y].

The finite difference prid is 35 cylinder diametcrs long by 10 cylinder diameters
wide. These values arc choseu so that the flow is not significantly affccted by the
Neumann boundary condition of (iv) in table 4.1, which causes artificial dissipation
of the wake (cven although a quadratic upwind scheme is used}, and also so that
the flow is not significantly affected by the wall restriction of (iii) in table 4.1. A
body fitted grid is used, and grid points are clustered around the surface of the
cylinder so that the boundary layer, which has a thickness proportional to 1/+/Fe,
1s modelled accurately[49]. 'The absolutcly unstable vegion (the near wake of the
cylinder) also has a cluster of grid points. Three different meshes, with the same
structure but different numbers of grid points, are used to determine the depen-
dency of the flow solution on the grid. A coarsc mesh comprising 3000 cells, an
intermediate raesh comprising 5000 cells and a fine mesh comprising 6600 cells arc
studied. Two views of the fine mesh are shown in figures 4.2 and 4.3. An ini-
tial domain-wide boundary condition of potential flow is supplied al the beginning
of calcuiations (the mean flow is the ideal initial condition for the examination of
the growth of instability— however, the mean flow during shedding is not known
prior to simulation). Viscosity is then added to the computational algorithm. An
extremely small time-step is used, initially, for numerical stabilily in the initial tran-
sient phase of the solution. The initial time-step, after the introduction of viscosity
and the no-slip condition on the cylinder surface, is 1 x 107% of the expected period
ol oscillation. After the separation bubble begins to form the time-step is increased
in slages but care is taken to maintain convergence. Once vortex shedding begins,
the time-step is further increased to a final value of 600 time-steps per oscillation of
the flow. This final time-step value compares well with values used by other authors
[2) 39]. The Strouhal number obtained using the coarse mesh is 0.132 which is
much lower than that expected from experiment. The intermediate mesh yields a

Strouhal number of 0.150 and the fine mesh yields a Strouhal number of 0.153. The
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Figure 4.3: Close-up of computational grid around cylinder
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Strouhal number of the fine mesh is within the range expected from experiment and
further mesh refinement is considered unnecessary (there is only a small difference
between the intermediate mesh solution and the fine mesh solution and any further
refinement increases computing cost). Subsequently, the fine mesh, comprising 6600
cells is chosen for all further calculations. The transient velocity, observed during
the growth of oscillations, at a point in the wake is shown in figure 4.4. After steady
periodic oscillations begin, the flow is simulated for approximately fifteen flow cy-
cles, in order to obtain estimates of the power spectral densities. Time histories
of the non-dimensional velocity (u/Uiniee versus non-dimensional time ¢/T};.4) at a

point in the wake during shedding are shown in figures 4.5 and 4.6.
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Figure 4.4: Transient velocity during growth of oscillations
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Figure 4.7: Velocity limit cycle during shedding
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The power speciral density, caleulated from a 512 point Hanning window of these
velocity signals is shown in figure 4.8. The signal is scen to contain one dominant
{requency (the vortex shedding mode) and perhaps two or three higher significant
harmonics. The [requency content of Lthe wake allows caleulation of the flow Stroubal

number, which is used as a measure of the accuracy of the numerical simulation|2).
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Figure 4.8: Power spectral density of velocity signal

Reference [Strouhal number
of [50]  [0.147

FLUENT 0.153

vef [51]  1.155

el [52] .i61

vef [53][2] 10.163-0.167

ref |2 0.179

Table 4.2: Comparizon of Strouhal numbers for FLUENT, other routines and ex-
periment
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Experimentally, the Stroulial number is a [unction of the Reynolds number
[2]{54], and, for a Reynolds nuiber of 100. a Strovhal number of 0.167 is expected
[rom empirical evidence]54]. Numerical sohition of the cylinder wake using spectral
element methods results in a slightly higher value of 0.179 [2](spectral element cal-
culations involve very little numerical dissipalion and are thus judged quite accurate
[2]). The discrepancy between experimentally ohserved Strouhal numbers and those
calculated numerically may be due to the fact that Strouhal numibers generally de-
crease as ihe cyliuder aspect ratio (length/diameter) decreases [55]. Experimental
measurements of three-dimensional flows are therefore likely to differ from Strouhal
numbers calculated numerically, in {wo-dimenstons. The Stroukial number calculated
by the FLUENT method compazres well with those calculated by other authors, as
1s apparent in table 4.2. The lower than average calculated value of 51 is possibly
because of artificial dissipation in the FLULNT solution algorithm. The streamlines
and velocity vectors obtained in the solution are also qualitalively similar to those
obtained by other authors [52][51]. Typical realizations of the velocity vectors and
streainlines are shown in figures 4.9 and 4.10. The artificial dissipation of the vortex
street caused by the outlet Newmann boundary condition is highlighted in figure
4.11. The Neumann oullet condition is, however, the only outlet condition available

in FLUENT v4.10.
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Figure 4.9: Typical flow velocity vectors

ke

Figure 4.10: Typical flow streamlines

93



CHAPTER 4. A PROTOTYPE WAKE CONTROL PROBLEM

Figure 4.11: Artificial dissipation of wake: streamlines
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4.3 Simulation of a Forced Cylinder Flow

The numerical (CI'D) solution of the cylinder wake forms an ensemble of discrete
velocity lields, that can be characterized by a finite set of POD modes. Ideally,
the cylinder wake should he forced by an external control input, at various frequen-
cies and ainplitudes, so that the data ensemble is representative of any destahilized
global modes and flow features that are likely to occur during a control run. Fxper-
imenlalion is also required Lo ascertain what type of control {for example: cylinder
rolation, vibration, alternate suction and blowing at the separation points, acoustic
excitation or vibrating wire excitation ctc.), and what position of control device,
would meet with success. To circumvent the high computational cost of large am-
plitude, periodic or aperiodic forcing of the diseretized solution, a simpler prototype
Row model, which has the purpose of festing the feasibility of the control scheme, is
introdnced. The essential properties of the prototype model arve thal it retains the
imporfant absolute instability features of the cylinder flow, produces qualitatively
correct, flow responses to forcing, and produces qualitatively correct spatial velocity

fields, while remaining simple and easy to integrate.

4.3.1 Generation of a Prototype Cylinder Flow

A non-linear flow model that approximates the spatial wake features and retains
some of the wake stability characteristics is presented in the appendix, but is outlined
here. A first approzimation to modelling the forced flow is obtained by using a modcl
of the unforced flow.

A small transient of the wake is available from the unforced CFD solution. Ve-
locity field data collccted during the growth of wake oscillalions, from the steady
state, cncapsulates a neighbourhood of the unforced limit cycle. An example of a

section of the iransicnt is shown, for oue point in the velocity field in figure 4.4.
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Twenty velocity fields from two flow cycles approaching the attractor are col-
lected. This number of snapshots is appropriate for such a temporally simple, lami-
nar, unforced wake-— for example: 20 snapshots are used in reference {39] for the Re
= 100,150 and 200 cylinder wake and are shown to provide adequate representation
of the unsteady velocity field.

The ensemble average ol all of the velocity fields, which approximates the time
average velocity field is calculated and subtracted from each velocity field to form
twenty flow ‘snapshots’. The collection of snapshots is used 1o generate a reduced
correlation matrix, with relation (2.22). The cigenvectors of the symmelric, non-
ncgative reduced (20 x 20) correlation malrix are readily calculated via [Touseholder
reduction and the QI algorithm. The first eight eigenvaluce are shown in table 4.3.

A bar chart representing the eigenvalues is shown in figure 4.12: almost all of the flow

5.1525888¢-01
4.6617187¢-01
R.1370641e-03
7.79496%58e-03
1.2503575e-03
1.24333270-03 |
6.5138928e-05
6.5262895e-05
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T
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]

o

Table 4.3: Tirst eight cigenvalues of the unforced velocity field correlation

energy is contained in the high energy modes. Pictares of the first four eigenvectors
of the reduced correlation matrix, which are the only eigenvectors with significant
eigenvalues, are shown in figure 4.13. The figure shows that the fiest four eigenvec-
tors arc not contaminated by noise. These eigenvectors are used in conjunction with
the unforced How snapshots to generate the ’OD modes. Only, the first four POD
modes capture significant How encrgy and so the higher modes are neglected. A
higher Reynolds number flow, a furbulent flow, or a time-forced flow would exhibit.

much richer mode composition. The spatial structure of the first; four POD meodes,
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developed [rom the CT'D data are shown in figure 4.14. The modes are normalized,
50 as to be orthonormal. Modes developed from double the number of snapshots
(40) are similar in appearance. 'Lhe fivst eight eigenvalnes for the 20 snapshot casc
and ihe 40 snapshot casc are almost identical. The smaller eigenvalucs show slight
differences between the 20 and 40 snapshot cases.

A Galerkin approximation of the Navier-Stokes equations provides a succinet.
descripfion of the wnforced llow dynamics, but is difficult to establish because the
Galerkin method involves spatial differentiation of the modes and mean How and
calculation of their vorticities. Numerical differentiation of the modes is difficult, and
introduces error, because the modes are formed {rom a spatially discrete, irregular
grid. The structure of the Galerkin model is, however, known-— the Galerkin model
is a quadralic ordinary differential equation for each mode amplitude. A transient set
of velocity ficlds {obtaincd from the CFD solution during the growth of oscillations),
from which the POD mode amplitudes and time derivatives al each time peoint are
measured, can be used to fit the unknown coefficients of the quadratic equations
by lcast squares (as outlined in Appendix A). Fitting of the coeflicients by lcast
squares requires that a large enough section of transient data is available (transient
measurements of the unforced flow are obtained during the growth of vortex shedding
oscillations from a steady state initial condition). The complete resolution of the
coefficients becomes progressively more difficult as the mode index increases (while
the mode energy decreases).

The cylinder flow, represented by the CFD data is adequalely approximated
by just four modes. The higher modes and their time derivatives are corrupted
by noise. Least squares solution of the Galerkin approximation is performed using
four retained modes, resulting in four quadratic differential equations for the mode
amplitudes with twenty eight coefficients each. Models constructed from a larger
numnber of modes are not resolved accurately by the least squares identification

method and available transient data.
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It is known that a single cubic cquation is able to capture e instability of
the mean flow and the stable limit cycle oscillations and so cubic terms are added
to the prototype mode equations of the empirical Galerkin quadratic model and
the coefficients again fifted to the trapsient by a least squares, empirical approach.
Cubic terms may appear in a non-fznear Galerkin model and are introduced here to

avoid adding extra modes to the four mode prototype model,
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Figure 4.13: Bigenvectors of the reduced correlation matrix, used to construct first
four POD modes
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Figure 4.14: Spatial structure of the first four POD modes of the cylinder wake:
shown are contours of velocity magnitude
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dA L
dt

¢+ > er A FZ }d o5, Aid, "t'LZ Lu;,iA A (4.2)

e =1 j= 1> i=] g =150 U= liz,

i

When cubic terms are calenlated for the two Jargest mode amplitudes (A and Ay),
the prototype model captures the growth of instability accurately, and capiures the
behaviour of unforced vortex shedding behind the cylinder as described by the CFD
data. Cubic coefficients for the smaller iwo modes arve not calculated. The validity
of the unforced prototype flow model (with respect o the original CT'D data) is
discussed in scchion 4.3.2.

The rational addition of contro] terms into the Galerkin approximation is dif-
ficult; however, the addition of ad fioc texms to dynamical models of the cylinder
dynamics is known to produce qualitative agrecment with experiment [11]. For
example, the addition of an interior sinusoidal forcing term to a low order, cubic
model of the Re = 114 flow past a circular cylinder produces qualitatively correct
time histories and gualitatively correct regions of entrainment [11]. Simple addition
of forcing terms to the least squarcs developed model should also produce qualita-
tively correct results, and mimie the response of the How to excitation. Obviously, a
control input will affect each of the prototype mode equations by a different amount
as the interaction of the control with each prototype mode depends on the spalial
structure of each mode. In the Galerkin approximation outlined in Appendix A,
addition of a source term to the Navier-Stokes equations results in an extra forcing
term for each mode equation, (#;, - f.f.), where [, is the control amplitude and £,
is the spatial distribution of the control in the flow field. An amplitude and spatial
distribution of a localised interior control input at a coordinate {a, b) in the wake is

obtained from [2]
F(e,y,t) = fu(t)exp (~D((z — o) + (y - 6)%)) (4.3)

where D) is the rate at which the contribution of the {orce decays with distance from
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the source. This position of the localised control input and the value for the decay
rate is chosen such that the forcing is small at the domain boundaries and significant
ouly in the near wake (which is necessary for conirol of the global modes) [2j{7]. The
spatial distribution of the control is shown, relative to the cylinder, in figure 4.15
This form of contro! simulates an interior forcing provided by an active control device
such as a vibrating wire [2]. The fluid adjacent o the conlrol device aquires an
acceleration equal to the vibrating source— further from the source the acceleration
decays. This distribution of control provides forcing of the near wake consisteni with
the houndary conditions as the amplitude of the control at the dowain boundaries
is very small. Vibrations of the cylinder (which are known to be suitable for control
of global flow oscillations [6]) give rise to a sinvilar forcing [2]. The complete form

of the prototype fow model is, for £ =1,...,4,

d/h;- ' 4 4 4 4 A 4 ‘ )
L YA AY Y A ALY Y 2 AkA L (Lo
¢ =1 i=1 j:IJE“ =1 _’('21,2, 1':1[2‘.
L 4
V() =V + Y Ailt), (4.4b)
i=1

where the Ax(t) are time varying amplitudes of the fivst four POD modes, %, of
the entire cylinder wake, established from the CFD velocity field ensemble.

The control mpul, although introduced somewhat artificially to the unforced
prototype model, is useful because it produces temporal flow responses that are in
qualitative agreement with experimental observations of forced cylinder wakes. This
qualitative agreement is discussed in the next subsection. Similar madels for forced
walke flows arc cited in the literature [11]. Explicit representation of the model, and

ils development, is presented in the appendix.

4.3.2 Validity of the Prototype Flow Model

The validity of the prototype flow model is mportant: the model must approximate

the unforced cylinder wake (this can be verified quantitatively, with comparison to
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Figure 4.15: Contonrs of force contribution

the CI'D solulion) and aiso retain some of the qualitative features of the forced
wake. In this subsection, the prototype model is compared to the unforced fow,
and then corapared to experimental, forced wakes.

The prototype flow model (4.4) consists of a spatial part (4.4b), which describes
the spatial structure of the velocity field given a set of mode amplitudes, and a
lemporal part, which detcrmines the dynamical behaviour of the amplitudes. The
ability of {1.4hb)} to vecoustruct the velocity field of the unforced cylinder wake is
thercfore important, and is established by comparison of the fraction ol kinetic en-
ergy present in the actual and reconstricted velocity fields [32]. For any fucluating

velocity field, V/(t), a measure of instantaneous kineiic energy is given by,
E=V .V (4.5)

The normalized instantaneous energy difference between the actual velocity fields

and those reconstructed by (4.4b} is,

VRV - TR (V9 46
¢= T (4.6)
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The average normalized kinetic energy error over one period of the four mode re-
conslruction is low (€ == 0.03}. The spatial structure of the unforced cylinder wake
18 therefore described adequately by the prototype flow model (4.4h), as long as the
correct modal amplitudes are specified by (4.4a). Oaly four POD modes are nec-
essary for the reconstruction because the wake is low Reynolds number, and thus
laminar, and because the unforced CFD wake is statistically stationary.

Given that (4.4h) adequately reconstructs thie unforced velocity fields which con-
stitute the unforced data ensemble, the validity of the temporal part of the unforced
prototype flow, {4.4a), Is of interest. Starting inlegration of the model with the
mean flow, or zcro mode amplitudes, as an initial condition for the velocity ficld
should {with reference to experimental cylinder wakes) result in temporal growth
ol the von Karman vortex shedding mode. The growth of oscillations is observed,
in experiment, to be exponential in its linear stages; leading to limit cyele oscilla-
tions. The growth of oscillations is accurately modelled by a Landau equation and
the oscillations predicted by the prototyvpe flow arc, indeed, comparable to those
determined by a Landau equation and those observed in experiment [11]. The os-
cillations resulting from integration of (4.4a) are depicted in figure 4.16, which can
be compared to fignre 1.4, Velocity oscillations at two points in the wake, calen-
lated using {4.4) and shown in figure 4.17, is also characteristic of the growth of
experimental cylinder wake oscillations [11] and of the small transicnt observed in
the CFD data, in figure 4.4. Only the qualitative nature of the instability is impor-
tant for testing the feasibility of the control scheme, and the growth of instability,
from the mean flow, is adequately represented by the flow prototype. The spatial
structure of the velocity fields, observed during the growth of flow oscillations, is
presented iu ligure 4.18. The vclocity fields compare well Lo those of other numerical
solutions {2][51].

A quantitative comparison between the temporal behaviour of the unforced pro-

totype flow and the unforced numerical solutiou of the Navier-Stokes equations for
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Figure 4.16: Temporal growth of unforced prototype modes

the cylinder wake is determined by examination of the limit cycle amplitudes pre-
dicted by the unforced prototype and those evident from the CFD data ensemble.
The time histories of the measured mode amplitudes and those calculated by in-
tegration of the prototype are shown in figure 4.19. The solid lines are the mode
amplitudes predicted by the unforced prototype, and the dotted lines are those
measured directly from the CFD data ensemble. The frequency of oscillations is
predicted reasonably well— the model predicts a Strouhal number just 2% greater
than that observed from the CFD integration of the wake. The maximum mode
amplitudes are also predicted accurately, for unforced limit cycle oscillations; pro-
jections of the limit cycle are shown in figures 4.20 and 4.21— the solid lines are the
stable limit cycle predicted by the flow prototype and the dotted lines are observed
from the CFD data. The figures show that the shape of the limit cycle is predicted
adequately by the unforced prototype, and that the prototype oscillations are stable,
as in the actual unforced cylinder wake— the error in maximum mode amplitudes
of the prototype model is +0.68% for mode one, —1.68% for mode two, —6.20% for
mode three and +4.24% for mode four. The higher error values for mode amplitudes

three and four are not important, because of the relatively small magnitude of these
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Figure 4.17: Temporal growth of unforced prototype velocities at point a and point
b
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Figure 4.18: Simulated flow fields during growth of oscillations




CHAPTER 4. A PROTOTYPI WAKE CONTROL PROBLEM 109
modes. A reconstructed time series for a velocity signal al two different poinis in
the unforced cylinder wake is shown in figures 4.22 and 4.23; the behaviour of the
velocity at these two points, which were chosen arbifrarily, is predicted adequately.
An idea of how the flow prototype predicts the velocity field of the cylinder wake
is given by the velocity error averaged over one cycle of prototype oscillations. Fig-
ure 4.24 shows this average error for a section of the cylinder wake; the errors are
relatively small (compared to the velocity vectors of figure 4.18} and so it is asserted
that the unforced prototype flow model is a reasonable quantitative model of the
cylinder wake during unforced limit cycle oscillations. The power spectral density
of a 512 point Hanning windowed iime series of the velocity signals, calculaled from
the flow prototype, is shown in figure 4.25. The figure shows the predicted natural
shc—;dding frequency and three higher harmonics of the prototype flow. The frequen-
cies are normalized by the natural shedding frequency of the CFD cylinder wake
and thus the figure can be compared with the spectrum obtained from the CEFD
data ensemble, iu {igure 4.8, 'The frequency content of the nnforced prototype and
the actual unforced wake is similar. Both the growth of instability from the abso-
lutely unstable mean flow, and the resulting limit cycle oscillations of von Kérman
vortex shedding for the unforced cylinder flow are therefore modelled adequately
by the prototype model. Integration of the prototype model is performed using
a varlable step size, 4-5th order Runge-Kutta routine coded in the commercially
avallable package MATLAR v4.1 and implemcnted on a SUN SPARC Station 10.
The MATLAB cnvirorment also provides aceess to spectrum analysis routines. A
4-3th order Runge-Kulla integration routine is also coded in C and compiled on a
Silicon Grapbics Indigo® Extreme. The integration time of the compiled C prototype
model is of the order of 30,000 times faster than the original CFD) integration. The
Silicon Graphics workstation environment is used to generate animated pictures of

the prototype model velocity fields.
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For the prototype model lo be of use in testing the feasibility of the control
scheme, however, the response of the protolype to external control forcing has to
be correct, at least qualitatively. After integration of the prototype, with harmonic
control inputs, qualitative agreement with some of the aspects of experimental cylin-
der wakes is found. During j)eriodic forcing, the behaviour of the prototype low is
characterized by two states—- lock-in states where the frequency of oscillations shifts
to the applied forcing frequency, and won-lock-in stales where the frequency of os-
_cillations is a mixture of the applied and natural frequencies, resulting in bealing
oscillations. These two states are the same kind of states that are observed in actual
cylinder wakes [2][9]. Figure 4.26 shows points on the boundary between lock-in and
non-lock-in states for the prototype flow model. The points on the figure are the
points in coutrol frequency and amplitude phase space where the wake oscillations
ccase to have a single set ol peaks in the power spectrum of velocity signals. The
frequency axis is normalized by the natural shedding frequency. The figure therefore
represents a lock-in region, ot region of entrainment, for periodic forcing of the pro-
totype flow and is in qualitative agreement with the entrainment regions observed in
experimental, forced cylinder wakes [23], high order numerical simulations of forced
cylinder wakes {2] and entrainment regions predicted by other low-dimensional wake
rnodels [11]. The entrainment region obtained via integration of the forced prototype
can be compared to figure 4.27 which shows a qualitatively similar éntrainment re-
gion observed during acoustic excitation of an cxperimental cylinder wake and also
the response of a semi-erapirical enubic low-dimensional model of the flow with a
simple additive sinusoidal forcing fterm [11]. The entrainment regions, which are
some of the most significant features of the forced cylinder wake [23], are modelled
adequately by the prototype (only a qualitative agreement is necessary for initial
testing ot the control strategy). Figures 4.28 and 4.29 show spectral depsities and
time histories and phase portraits of velocity signals obtained from integration of

the harmonically forced prototype during lock-in and figures 4.30 and 4.31 show the
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same portraits of velocity siguals obtained during a non-lock-in example. the fig-
ures compare very well to similar measurements of an actual cylinder wake [2]. The
velocities obtained during lock-in (at an amplitude of 1.0 and normalized frequency
ol 1.16 in figure 4.26) are similar in characier to oscitlations during natuval shedding
{fgure 4.28 can be cotnpared with figure 4.22} but have a different amplitude and
[requency. The power spectral density during lock-in has well defined peaks and is
stmilar to a shilled speetrum of natural shedding [2]. The dashed line on the power
spectrum 1s the natural shedding frequency; the shedding oscillation [requency is
shifted diwing lock- in. The phase portraits of velocity signals (the same projec-
tions that are depicted in figure 4.17) show well defined limit cycles, characteristic
of lock-in [2]. Alternatively, the power spectrum obtained during non-lock-in (at an
amplitude of 1.0 and [requency of 1.45) 1s less well defined and shows a multitude of
peaks [2]. The time Listory of a velocity signal shows beating oscillations character-
istic of experimental observations of non-lock-in [2]. The phase portraits of velocity
signals of the prototype wake do not show simple limit cycles and are dissimilar
from the natural shedding phase portraits. The temporal behaviour of the forced
prototype How is therefore also in agreement wilh experiment.

The spatial structure of the forced prototype is less representative of an actual
cylinder wake because the prototype cousists of only four spatial modes- many
more modes are necessary for Lhe spatial characterization of all of the flow features
resulting from external perturbation of the wake. The ability of the prototype model
to encapsulate the forced spatial structures of the flow, rather than just the temporal
features, is of interest. The stationary POD basis encapsulates a small region of the
forced phase space (le. the region corresponding to the growth of von Kdrmdan
shedding). The POD modes satisfy the flow boundary conditions (the control input
is significant in the near wake butl is almost zero on the domain boundaries. The
control input is therefore consistent with the boundary conditions) and the POD

modes are orthonormal and satisfy incompressibility. The stationary POD bhasis can

s
b
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therefore he expected to provide a useful basis for the approximation of other flow
features outwith the characterization ensemble {33] (for example, features of forced
How). However, in the literature, a POD basis copsisting of ouly six modes was
deficient al representing a cylinder wake {low at ofl reference Reynolds numbers [39]
(mainly because of the differences in mean flow between different Reynolds number
wakes). The four mode, stationary POD basis can thus be expected to provide
a rough, qualitative approximation to the velocity fields of forced, non-stationary
flows. The four mode description does contain one very imporiant characteristic
of actual forced cylinder wakes— the oscillations in the flow are the resull of more
than one pair of POD modes. The prototype flow therefore retains the feature,
of real cylinder wakes, that single sensor mweasurcments do not, in general, contain
enough information about all of the modes, unlike multiple sensor measurements.
The inferiority of single sensor measurements, compared o spatially distributed
sensing is presented in the next section.

In the ideal sitnation, where non-stationary POD mades are available, the POD
modes would incorporate the effects of a control. The control amplitude in a real
flow must be limited so that the control does not excite a higher dynamical state
{turbulence for example). The control amplitude is also such that the mean flow is
not modified signilicantly by the action of the control. Consequently, the velocity
field fluctuations resulting from the control are assumed to be much smaller than
the velocity fluctuations resulting from variation of the prototype POD modes. The
contribution of the control input to the velocity Geld is therefore neglected in the

velocity field expansion (4.4b).
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Figure 4.27: Experimental lorcing entrainment region
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Figure 4.32: Examples of different spatial structure that occur periodically in beating
oscillations of the prototype
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In summary, the prototype flow model produces, with little comnputational ef-
fort, velocity fields that predict, quantitatively, the spatio-temporal growth of vou
Karméan vortex shedding behind the cylinder; predict, quantitatively, the spatio-
temporal behaviour of the cylinder wake during natural limit cycle oscillations; and
predict, qualitatively, the temporal responsc of the cylinder wake {0 excitation. The
predictions arc in agreement with experimental observations of cylinder wakes and

with higher order simmulations [2][11][10][231{43] [39].

4.4 Control of the Prototype Cylinder Wake

4.4.1 Controller Mode Extraction

The first step in the control strategy is determination of the principal POT) modes
of the non-stationary prototype velocity fields (obtained fram vhe forced prototype)
with a linear neural network. The veloeity fields of the prototype flow are sampled
at a lower spatial resolution than that of the prototype and random, uniformly
distributed, noise is added to the weasured velocity fields, to simulale experimental
uncertainty. The network data ensemble therefore consists of a series of noisy, low
resolution, velocity fields of the lorced prototype flow, from whick the first two non-
stationary modes arc extracted for use by the control scheme. These non-stationary
modes are termed conlroller modes. The mode extraction is performed on a section
of the near wake of the cylinder using a 40 x 15 regular, Cartesian grid, rather than
the 110 x 60 irregular grid of the entire CFD wake— the mode extraction network
is therefore presented with only limited information of the CFD wake, as would be
the case in an experiwent. As mentioned in Chapter Two, the POD modes are
not dependent on the spatial resolution of the flow field, but become progressively
coarser as the resclution decreases [36].

The spatial noise field added to the prototype flow field is normally distribuled,
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and mode extraction is performed on several sets of noisy flow field ensembles, with
different noise variances, to determine the effect of random uncertainty on the mode
extraction network. Figure 4.33 shows a section of noisy velocity field with a
medium level of variance. This corruption of the velocity field is used to introduce
some uncertainty, which is likely to exist (in some form) in an experiment, into the
flow field measurements. The random corruption is not meant to be representative of
any particular fluid mechanical noise (turbulence for example is not random) but is
introduced to check the robustness of the characterization and control strategy. (The
actual sources of noise in an experimental flow derive from environmental, acoustic
noise, electrical noise in measurement apparatus, transition to turbulence and if, for
example, smoke flow is used to visualize the flow, then uncertainty is introduced
because the smoke particles do not follow the flow exactly.) The mean (training
ensemble average) flow field is subtracted from each member of the ensemble. which
is then presented to the network. The learning rate is necessarily small, (7 = 0.001),

for stability.

velocity field with medium noise level
(normalized variance = 0.0685)

Figure 4.33: Typical noise corrupted velocity field

The structure of the velocity field is affected adversely by addition of the noise,

but the first two modes developed for velocity fields that are noise-free, or have
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a medium or high noise variance show no significant differences: the lower energy
modes are neglected and so the mode extraction network acts as a noise filter and
extracts only large scale coherent siructurc, neglecling the noise which has low en-
ergy and 1s uncorrclated. Contours of velocity magnitudes in the first two coniroller
modes are shown in figures 4.34 and 4.36. Surface plots of velocity magnitude
of these two 1odes are shown, relative to the cylinder position, in figures 4.35 and
4.37. The modes consist only of large scale structure.

The time varying mode amplitudes are output by the maode extraclion network
on input ol a time dependent velocity field. Time histories of the iwo controller
mode amplitudes are shown in figuive 4.38 for time varying velocity fields measured
with varving degrees of uncertainty. The addition of noise is seen to have only a
simall effect on the caleulation of the mode amplitudes.

An important advantage of a control algorithm that is based on a distributed
measurement over a control algorithim that is hased on a single point measurement
of the prototype flow is seen in figure 4.40, parts (¢) and (i7). The position of this
measurement point is shown relative to the cylinder in figure 4.39. The firsi. time
history, in part (z) of the figure, shows the natural oscillations of the prototype
modes. The next two time histories of part (i) of the figure show, respectively, the
measured controller modes and a particular point velocity measurement (point ¢
in figure 4.39) of the prototype flow during these natural oscillations, 1t could be
conceived (from figure 4.40(z)) that feedback of the single velocity measurement
would be able fo suppress the prototype oscillations. However, the prototype modes
contain several points at which one of their velocity components is zero (or very
close to zero). A single velocity measurement at one of these points will not be able
to detect any oscillations of that prototype mode. The point velocity measuremeant,
in figure 4.40 part (4¢), is chosen to illustrate this lack of complete information— at
this point the u-velocity contributious of both the third and fourth prototype modes

are very small (< 107°x the mean flow value). Oscillations , consisting purely of
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prototype modes three and four, are shown in the first time history of figure 4.40
part (¢2). These oscillations are detected by the oscillations of the controller modes
(shown in the second time series of figure 4.40 part (i2)) but are not detected using
the single point measurement (shown in the third time series of figure 4.40 part (ii)).
A control algorithm based on a single point weasurement of the prototype flow is
unable, in general, to completely control the prototype wale oscillations (as is the

case in a real absolutely unstable flow).
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Figure 4.34: First controller mode: contour of velocity magnitudes

Figure 4.35: First controller mode: surface of velocity magnitudes
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1.

Figure 4.36: Second controller mode: contour of velocity magnitudes

Figure 4.37: Second controller mode: surface of velocity magnitudes
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4.4.2 Non-linear Prediction of the Prototype Flow

Response

The observed response of the controller modes to excitation of the prototype flow
is used to train a non-linear neural network emulator that forms the corc of the
control strategy. The prototype flow is subjected to uniformiy distributed, random
bursts of control input at various amplitudes. The control input is discrete, and
each control input lasts for a tenth of a flow period. After the addition of the
control the prolotype How is integrated for one tenih of a flow period and the flow
field is measured and input, along with random uncertainty, to the mode extraction
network. The mode extraction network supplics the controller mode valies after the
addition of the control input. The training cnsemble for the neural enlator consists
of a time series ol present controller mode amplitudes (measured from a velocity field
ensemble with a medium noise level), the value of the present control, and the future
controller mode amnplitude after one tenth of 2 flow period. The emulator time-step,
of one tenth of a flow period, is chosen to be reasonably small to provide accuracy
but large enough so that a linear model of the flow would not suffice. It is preferable
that vhe time-step is rcasonably large {a real controller requires a finite time within
the time-step value to perform computations and actuate the control mechanism).
The random control bursts used Lo excite the prototype flow arve shown in figure 4.41.
The bursts are of differing maxinnun amplitude, as it is not known, prior tou a control
simulation, what amplitude range is necessary for control of the ow. The amplitude
range of the control input is, however, limited to a small finite value as wonld be
the case in a real flow. In a real flow the control amplitude is limited so that the
unstable global modes are stabilized without modification of the mean flow and so
that a higher dimension dynamical state {turbulence for example) is not excited.
Several different sizes of multi-layer perceptron are tested for emulation of Lhe

controller mode response. The least restrictive network architecture is a three Jayer
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multi-layer perceptron with a linear output layer, as the network output range is not
limited and two non-linear layers are adequate for modelling the non linear mapping
between the present and future states of the controller modes. The smallest, aud
therefore best, vetwork that produces results consistent with the iraining data is
a 4/12/2 network. Tor comparison, an 8/24/2 network and a 16/48/2 network
are also trained to emulate the training data. The larger networks, however, tale
significantly longer to train. While the generalization of the 4/12/2 network is quite
good, the generalization of the 8/24/2 network and the 16/48/2 nelwork is poor (ie.
only the 4/12/2 network performs well on data outwith the training set). Because
the chosen 4/12/2 network contains relatively few weights, and only predicts the
system state at the next Lime-step, network training is quite fast. ‘The network
achieves a specified error goal, such thal the sum of the squared output error is
less than 0.001, after 267 cycles, starting from small, random weights, through
the 1000 member training ensemble. The network is frained using an adaptlive
learning rate, which changes to provide [ast, but stable, learning, and a meomentum
term of 0.95 which speeds up convergence. The training record for the emulator
network 1s shown in figure 4.42. The network error is still decrcasing when learning
is stopped— the network could therefore fit the training dala better, but learning
is stopped prematyrely so that the nelwork does not learn any noisc in the training
data. The prediction of the controller mode amplilude response, compared to the
actual response is shown, for velocity fields that are not training ensemble members,
in figures 4.43 and 1.44. The prediction of the response of the randomly forced

prototype flow is seen o be quite good, and has little error.
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4.4.3 Non-linear Adaptive Control of the Prototype Flow
Adaptive control of the flow ts performed by construciion of the non-linear control
scheme in figure 3.8. A small, two layer {and hence easy Lo train) non-linear network
is used to provide the control input to the prototype How and to the emulator, given
the present amplitudes and a measure of the crror in the applied control. The
controller, being a non-linear network, has a maximum output amplitude of +1.
T'he initial controller weights are selected randomly but are set small so that the
initial control guess does not adversely affect the flow. The learning rate of the
controller 1s sel refatively large so that the control adapts quickly. The difference
between the predicted mode amplitudes and the desired zevo state is backpropagated
through the emulator, with its weights held fixed, and then backpropagated through
the controtler, whose weights are updated in order to provide a betier control. The
control s mput to the prototype llow and the control simulation proceeds to the
next time step. The controller therclore learns adaptively to provide a control that is
a function ol the present countreller mode amplitndes and the backpropagated error
between the modes and a desired state.

A typical control simulation, incorporaling measurement uncertainty, is shown in
figire 4,45, The control siinulation is implemented within the MATLAB framework
which kas a built in 4-3th order Runge Kutta integration routine. Emulator and
controtler training is performed using a combination of compiled C rontines and the
MATLAD Neuwral Network Toolbox. After time-histories of the mode amplitudes
are obtained {rom MATLAR, apimated velocity fields of the control run are gencr-
ated using a Silicon Graphics workstation. Figure 4.435 shows the four modes of the
prototype flow (which represent the cylinder wake). Control is switched on after six
limit cycle oscillations (delimited by the first large tick mark on the time axis). After
a further thirty periods of oscillation the flow oscillations in the flow field are very

small and vortex shedding is suppressed. After stabilization ol the vortex shedding




CHAPTER 4. A PROTOTYPE WAKE CONTROL PROBLEM 140

the control input necessary to maintain stability is only enough to stabilize distur-
bances due to the background noise in the flow. The qualitative nature of the control
input can be compared to the experimental flow control results of {7). The control
15 switched off after the second tick mark on the time axis (after approximnately
stx hundred controller steps, or a Further sixty four fow periods). The oscillations
grow expoenentially after switcling off the control. Phase portraits of the prototype
modes during a control run are shown in figure 4.49. The prototype flow field that
results from the control scheme is seen to be almost indistinguishable frotn the mean
flow (figure 4.50}. ‘L'he control time history is shown in figure 4.46, and the control
syslem crror is shiown in figure 4.47. The control input is mnarkedly non-linear at the
start of the control run, when the mode amplitudes arc large (shown in fignre 4.48},
but is almaost harmonic towards the end of the run, when the mode amplitudes are
small {also shown in figure 4.48). The witial non-linear control suggests that a linear
cortrol method would take much longer to coutrol the flow. Indeed a similar control
strategy based on a linear emulator and linear controller takes significantly longer to
suppress the flow than the non-linear scheme. "['he performance of an adaptive linear
control scheme is shown in figure 4.51. The linear control sirategy is similar to the
non-linear scheme except that the emulator is a single linear layer of neurons, and
the controller is a single linear ncuron. The linear emulator provides only a lincar
approximation of the non-linear response of the flow to control forcing. For large
time-step values, a linear prediction of the mode amplitude response is inaccurate.
The lincar controller output is therefore deficient in controlling the fow when the
mode amplitude responsc is significantly non-linear (ie. when the mode amplitudes

are large).
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4.5 Summary

A non-linear, low-dimensional model with an artificial forcing term is used as a
prototype absolutely unstable flow. The prototype flow achieves good agreement
with unforced eylinder flow solutions obtained by high order nuwinerical simulation,
‘I'he prolotype also captures some of the qualitalive features of experimental, forced
cylinder wakes. The prototype is used to produce artificial, or simulated, non-
stationary velocity fields for characterization by the controller. The controlier is
assumed to have ouly limited information about the fow (ie. it is given lower res-
olution, noisy data and only two controller modes, rather than four modes, are
extracted). Nevertheless, the non-linear emulator predicts the flow dynamics suc-
cessfully and the pon-linear controller suppresses the oscillations representative of
vortex shedding. The controller is seen o be superior to linear control and superior

to single sensor conirol.

Lo
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Active control of self-cxcited wake oscillations that are the result of global instability
is nol, in general, possible via single sensor linear feedback. The inahility of single
sensor feedback to control such absolutely unstable wakes is exemplified by numer-
ical and cxperimental results of single sensor control schemes: oscillations may be
stabilized at the sensor location but exacerbated elsewhere by the destabilization of
lurther global modes. Typically, a linear stability analysis of the mean wake fow
predicts the existence of multiple global medes, with closely spaced frequencies—
for unforced wake flows the most unstable mode saturates to the von Karman vor-
tex street. The single sensor feedback control input necessary to stabilize the most
unstable global mode is, in general, enough to destabilize the next mosi unstable
mocde— the oscillations at various points in the wake may nol be the result of a
single global mode and are therelore not connected by a simiple phase shift, so single
sensor conirol cannot stabilize all of the global modes. Multiple sensor control of
such absolutely unstable flows is appropriate. The temporal behaviour of the nat-
ural and forced oscillations of absolutely unstable wakes is non-linear. Thercfore,

non-linear control of suck {lows 18 more suitable than linear control. Ilowever, a

149
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non-linear control strategy based on the feedback of multiple (spatially distributed}
measurements of the oscillating wake would be complex and computationally slow,
It 1s rcasomnable to assert that a non-linear control strategy which is based on a
low-dimensional description of the flow features would be simpler and therefore
computationally feasible.

Inertial forius of the Navier-Stokes equations are appropriate for wake flows with
suitable boundary conditions. Even when the analytic form of an inertial manifold
is not known, approximate low-dimensional descriptions of wake flows olteu furnish
rcasonable predictions of the flow dynamics. Approximate, low-dimoensional iner-
tial forms of the flow equations for forced, non-stationary flow are valid as long as
some mild restrictions are placed on the type and character ol the foreing. The
validity of low-dimensional descriptions of [orced non-stationary wake flows is also
suggested by experimental evidence. Given that a low-dimensional description of
the spalio-temporal dynamics of a lorced wake flow is appropriate, a simple charac-
terization method, such as proper orthogonal decomposition, can be used to select
a Jow-dimensional subspace which encapsulates a local region of the inertial man-
ifold of the flow. Proper orthogonal decomposition provides an efficient means of
characterizing the large scale spatial structures of the flow by a finite set of orthog-
onal modes. Modifications to the flow boundary conditions and non-stationary How
features, caused by the addition of a control, are accounted for by decomposition of
a correlation mairix which is the average of a set of distinct correlations developed
from flow transients during different forcing regimes. ‘I'he set of sub-optimal POD
modes developed from the non-stationary data is able to provide a succinct descrip-
tion of the spatial features occurring in wake flow oscillations in the presence of a
control input. The finite description of the flow features with POD modes is of use
in a non-linear wake control strategy.

Classically, a dynamical model of the POD mode amplitudes is determined via a

Galerkin approximation— this type of dynamical model is inappropriate for control
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purposes becanse there is no easy method for the rational integration of control
inptits to the Galerkin model. An empirical method of predicsing the mode am-
plitudes, from an initial conlrol 1mput and mode conditwon, 1s able to mimic the
response of the wake to exlernal perturbation. The dynamics of modes calculated
by Galerkin approximation assumes a flat, linear inertial manifold; whereas the
empirical prediction makes no assumptions aboul the gcometry of the manifold.

Neural networks are readily applicable to systeins where the analytical determi-
nation of the system model 1s difficult or impractical. A non-linear neural network,
exposed to appropriate experimental data sets of control input and mode amplitude
histories can be trained to emulate the required input-oulput relationship between
a control and the wake (represented by the POD mode amplitudes). The non-linear
prediction of the POD mode states can be used iu a robust neural network control
scheme, which takes advantage of the neural prediction of the POD dynamics. Train-
ing of an adaptive neural network controller is only possible because the onc-step
flow dynamics are predicted by another neural network.

The control strategy used for self-excited, oscillating wakes provides a non-lineax
control which is a function of the overall wake oscillations as detected by the os-
cillation of a finite number of POD modes. The utility of the control scheme is
shown by control of a non linear, spatially complex prototype wake flow. The non-
linear control is robust to external perturbation. The lime history of the control,
which suppresses the wake oscillations, is significantly non-linear in iis carly stages,
when the amplitudes of wake oscillation are high. The non-lincar controller thus
performs better than a similar linear controller. The control scheme, which is based
on POD modes (and therefore contains information about oscillations throughout
the walke), is also seen to be, in general, superior to controllers based on single point,
measurernents ol the prototype flow.

Active control of a prototype wake flow is demonstrated. The demonstration

of successful control of the prototype wake is useful because the control algorithm




CHAPTER 5. CONCLUSIONS AND FUTURE WORK 152

18 tested quickly and controller parameters such as network size and learning rate,
activation function and time delay etc. are studied easily. Although a [ull simulation
is preferable for accuracy, the large computational cost of time-forcing the numerical
wake flow precludes initial testing of the controller parameters. The prototype wake
contains some of the stability features of the actual cylinder wake flow and exhibits
some spatial complexity. Hence, only minor changes in the cortrol strategy are

anticipated before application of the controller to a full numerical simulation.

h.2 Recommendations for Future Work

The feasibility of the non-linear POD mode control strategy for self-excited wake
Hows has beew tested on a prototype wake flow that models the non-linear growth of
instabilily and the behaviour of spatial structiures seen during natural shedding os-
cillations and qualitatively models the response of the flow to external forcing. The
model used for testing the construction and operation of the controlier is, however,
only an approximation of the full Navier-Stokes equations with forcing: further test-
ing, which is based on a more accurate How, is necessary. The controller developed
for the prototype 1s cxpected to need only minor modification for application to a
higher order CFD simulation. The advantage of further testing of the coniroller
on a numerical CI'TY model (rather than an cxperimental wake) is that the whole
velocity field (and hence all ol the quantities required for feedback) arc available. Tt
is therefore expected that immediate further research will concenlrate on applica-
tion of the control stralepy to higher order numerical simulations. Alse, because the
CFD model and controller operate on virtual, compuler time there are no difficulties
involved in the speed of controller signal processing, or computation, or controller
activation—- all of which may pose problems in an experiment {the use of neural net-
works to perform controller computations, however, guarantees that the controller

will operate quite quickly). Finally, future research may underiake to cantrol a real




CITAPYER 5. CONCLUSIONS AND FUTURE WORK 153
fow in an experiment.

Experimental implementation of the confrol strategy is not straightforward.
Apart, from determination of a suitable control device an experimental flow presents
other difficulties—the flow would be alfected adversely by a large nwuber of spatially
distributed probes so the flow fiekd measurement should be non-intrusive. Futuze
research may therefore involve particle image velocimeiry or simnple grey scale char-
acterization of smoke flow patterns in a wake seeded with smoke {hecause of the
empirical emulation of the POD mode dynamics the PO modes do not have Lo be
of velocity).

Tt is also important to determine what constitutes a valid characterization en-
sernble for a time-forced cxperimental flow (ie. how mnany sub-optimal POD modes
are requited). Performing experimental characterizations of higher Reynolds num-
ber, turbulent wakes is important as most experimental wake flows are turbulent.
The POD modes of turbulent wakes have a more widespread energy distribution
than those of laminar wakes and hence more modes are necessary for adequate
characterization of turbulent flows.

For successful implementation of the controller iu either a higher order simulation
or in an experimental low a suilable control actuation device has to be constructed.
The control input must be such that the mean flow is not significantly modified
by application ol the control input and that the control produces useful transients
and flow structures (for example, the control must be able to excite sub-critical
vortex shedding). Examples of control devices which satisfy all of the criteria for
stabilization of the global instability modes are (amongst athers) acoustic excitation

of the near wake and small amplitude lateral vibration of the body.




Appendix A

Identification of the Prototype
Wake Model

A.1 Galerkin Approximation of the Navier-Stokes
Equations

The incompressible wake flow can be represented by a finite set of orthogonal spatial
POD modes. Evolution equations for the mode amplitudes can be developed via a
Galerkin approximation of the Navier-Stokes equations: the inner product of each
mode s taken i turn with the residual of the Navier- Stokes equations (in which the
velocity field is approximated by the mode expansion). The (Galerkiu approxima-
tion produces an autonomous differential equation for each mode amplitude. The
approximation of the Navier-Stokes equations (with an added source term) by the

truncated velocity field expansion afforded by the 34 POD modes is

ot

= (V- V)V ~ VI +vV?Vy + F (A.1)

The truncated velocity field is Vs = V + V/, where V/ = 32¥ Ajp, and where

F' is a source term. Snbstitution of the finite velocity field approximation into the
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Navier-Slokes equalions results in

dA; s

g+ (V- VIV o+ A VIV + AT V), + A (- V)ab

AV - V3V + Ap,)=F

ii=1,....M (4.2)

N
with iinplied summation over 7 and 7. 'The inner product of each mode with equation

(A.2) results in,

(wzb%) + (%0 (V- VIV 4 (80 (0, VIV + (V- VA

- (Wi (- VI AAG) + (90, VI - (wip, (VPV + VEpeAy)) = (4 - F)
i k=1,... M (A.3)
which becomes

di

fi

Yo E A, AA (B S A) T (T ik =1 M (A4)

for each mode k&, where there is implicd summation over ¢ and j. The coeflicients
in A.3 represent the various internal inner products of A.3. The souce term can be
ignorved for unforced fows (3 - F) = 0.

The pressure term, (e, VII} which conmtributes to £, can be simplified using

Green’s first identity [39],

Jooevi= [(vopn— [ nm-p,) (A.5)

The first term of the RHS of A.5 is zero due to the incompressibility of the POD
modes. The sccond term has a contribution from the pressure and from the velocity
gradient: the pressure is zero at the outlet; while at the outflow and side walls, the
POI modes arc zero (because of the CFI) boundary conditions). Therefore, there is
no contribution to the Calerkin model from the pressure or velocity gradieny terms
(this is only true because the whole velocity field is consideved [39]). Coefficient 4}

15 thus zero.
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Calculalion of the vorticities of the mean flow and of the vorticities of each of the
POD modes is implicit in the determination of the other coeflicients in the Galerkin
model. Coefficients v depend on the vorticity of the mean flow (V x V); coefficients
~; depend on the vorticities of each of the POD modes {(V x 4,); and coeflicients
71 depend on a combination of the vorticities of the modes and of the mean fow.
Coefticients v and 74 depend on the Laplacian of the mean flow and each of the
modes respectively. Determination of the first order spatial derivalives. inherent, in
the vorticity calculations, and determination of the second arder spatial derivatives,
inherent in the Laplacian termis, is prone to errov: the modes are generated from an
irregular, discrete grid and are therefore not directly amenable for numerical differ-
entiation. The Laplacian terms are especially prone to numerical error— however,
the viscosity of the flow is very small and so the Laplacian terms are much smaller
than the other model coefficients and can be neglected. Neglecting the Laplacian
terms introduces some small errors to the Galerkin approximation, bul avoids the
large errors inherent in the double spatial differentiation of the spatially discrete
modes and mean flow vectors. The vorticities of the modes and mean flow can be
estimated by fitting bi-cubic spline surfaces to the modes and mean fow and then
differentiating the bi-cubic spline. The fithing process, however, still introduces sig-
nificant numerical errors in the model identification; especially when the modes are
spiky. A Galerkin model, which was developed using bi-cubic spline differentiation
of the modes and the mean flow, failed to predict the long term behaviour of the
mode amplitudes accurately. The direct use of Galerkin approxirnation for discretely

meastred Gows is therefore limited.

i
K
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A.2 Least Squares Identification of the Reduced

Order Model

The [unctional form of the Galerkin model is known: the madel is, al most, a
quadratic polynomial ol the retained mode amplitudes. The model can be re-
expressed in a simpler form;

%" oy + e} At o, AdAy (A.6)
for cach of the M retained modes, with Iimplied swinmation over 4 and 7. The
model is arranged so that there are no repeated coefficients. The coefficients renzain
to be caleulated either by the inner products of the Galerkin approximation, with
their associated numerical differentiation, or by some other means. There are ) =
14 2M + %ﬂff (M — 1) unknown coefficients in the model. ‘T'he unknown coefficients
can be estimated empirically, withont recourse to numerical differentiation. The flow
1s measured at a sequence of time-points, and the mode amplitudes are calculated
nsing the simple inner product (3.25). The measured data forms M times series for
each of the mode amplitudes. Because low, energy modes and their associated noise
are neglected in the POD expansion, the mode amplitude time series are generally
smooth and noise [ree. The modal decomposition acte as a neise filter. A cubic
splitie is easily {itted to the smooth mode amplitude series and the time-derivatives
of the mode amplitudes are easily estimated with litile error. A knowledge of the
mode amplitudes (measured froin the flow) and the mode amplitude time derivatives
al each time point allows translormation of equation {A.6) into an algebraic equation

for the unknown coeflicients of each mode amplitude equation.

di = Scy, (A7)
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where the vectors,

- U:.‘h;!h! ~
ok
dd{ta
dt
dy=| °
dAk(tm) J
- ot
f T
o
& o
. /1
Coy
Ck = CicM' =
e,
3 LCo |
6212
k
L “2ara0
and where the matviy,
(1 A(t) Al o Am(ly A() A (t)
1 A1(t2) A'z(tg) T AM(J‘;) Al(tg)/-l] Ui’}

L 1 A1 (tm) flz({'m) AM(tm) A'J. ':tm)A1 (Itm)

(A.8)

(A.9)

Amr(ﬁ )A,w(ll) 7
Apg(t2) Ang(te)

Aﬂ{(tm)fl_{w (tm) i
(A.10)

Fquation (A.7) thus represents a system of m equations in () = 1-2M + M (M —1)

unknowns. The number of eguations is selected to be more than the number of

coeflicients so that a large enough region of the attractor is visited and hence all of

the modcl coefficients can be determined. The equality of (A.7) will not hold because

of measurcment noise and because the system is over-determined. The system is

therefore best solved by lcast squarcs minimization of the crror with respect to the

cocthicients, (f,
1

C) = 37 3

HME

fet)

(A.11)
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where s;; s the 4,7°th element of 8. Transients of a dynamic system contain much
more information about the underlying dynamical modecl than post transients or
steady states. In general, a large collection of transient data is necessary for the
resolution of all of the coefficients of the unknown model [10]. 1t 1s difficult to obtain
all of the model coellicients by least squares minimization of (A.11) if the transient
part of the considered lime series is small, because the Gram malrix 878 becores
nearly singular. Models derived purely from post- fransicnt time serics often result in
unpstable limit cycles [10]. Therefore, a weighting function is introduced to the mode
time series and derivalive data such that transient points are given high importance,
whereas post-transients are given less importance in the least sctarves minimization.
A time point is considered transient if a measure of the distance between the made
amplitudes, at that time point, and the limit cycle mode amplitudes is greater than
some fintte value. The distance (in M dimensional space) between Llie mcasured
mode amplitudes at each time point and the limit cycle is calculated. Every time
point where this distance is greater than a small error value is considered transient.
Positive weights are then introduced to the least squares minimization [10],

2

' 1M &
(:’Z,(Of) = ;l?[ L W di‘ - Z-Bmicik (A].?,)
Ty | -
with
, T
war = 1+ (w, — 1) exp |1 — ’y {A13)

where rar 1s the distance to the limnit eycle of the state at time 134, e is the minimum
distance to be labelled transient, and w,. is the weight given to transient points,
wye = Ne/Nie. N;and Ny are the number of transient points and number of points on
the Iimit cycle respectively. ‘This weighting function resulis in a similar importance
of the iransient part of the time sertes and the non-transient part. Minimization of

the error in (A.13) requires least squares solution of

§.5..C = sid, (A.14)

s
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for each mode, where s;;, = (/Wss; and dj, = R

The least squares solution of (A.14) is badly scaled because the maxima of
Ay aud Ay 3 As and Ay 3. A Matrix S therefore has elements of widely dif-
fering magnitude. Accordingly, the columns of S are further weighted so as to have
approximately equal magnitudes. As a result the smaller iodes, together with their
associaled mcasurement noisc, are multiplied by large numbers — this magnification
means that the columns in 8 representing the small inodes are disproportionately
nolsy. The least squares tmethod is therefore best suited to problems when only a
few 1nodes are considered. Also, the more mwodes retained in the approximation, the
more coefficients, and therefore more transients, are nceded for the solution [10].

To avold adding further modes to the model it is reasonable to include some
higher order terms (for example cubic ferms) in lhe quadratic model- - the modes
correspending to small spaiial scales are approximate algebraic functions of the
large scales. Terms higher than quadratics may therefore appear in a non-linear
Galerkin model. It is known that a cubic Landau equation is capabie of captwring
the temporal growth of the instability, the addition of cubic terms therefore improves
the model when only a few modes are available. The form of the model with adde

cubic terms is, for each mode £,

(lAﬁ:
di

= Cg -f: Cif!.Ai -4 C;EUA,‘AJ' + c/gm AiAjA) Lk i=1,..., M {A15)

with implied sumamation over 2,5 and 1.
I'Iﬂ

he numerical values of the coeflicients ol the complete, four mode prototype

model used in Chapter Four arc,

% = —8.8797771e — 08 + 6.4667931e — 03A;

+1.1467036e — 01 A, + 2.9163621e — 06 A5 A,
+1.3516793e — 0541 A, — 9.1836959¢ — 07 A, A,

—1.8453033e¢ — 01 A, A1 Ay — 8.1531231e —03A4; A1 A2

R
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dAy

5

dt

dAs3
dt

—2.0695105¢ — 0141 A A3 — 7.3155167¢ — 034,424,
+5.18339463¢ — 0245 — 2.58162018: — 024,
—2.67112088¢ — 0241 A5 — R.TO818833e — (024, Ay
—8.42083454¢ ~ 024, A5 + 1.5T876233¢ — 02424,
+1.26628945¢ — 024545 + 2.42933636e — 024544

+1.58450628e — 024,44 + 9.998¢ — 03 f,

(A.16)
3.1562296c — 07 — 1.2929619¢ -- 014,
~6.4664067¢ - 034, — 1.1359684¢ ~ 054, A,
+1.1564138¢ — 054y Az — 8.0340231e — 06 A5 A,
15724431 e — 034, Ay A; — 1.8504683¢ — 014y 4, A,
+7.8211773¢ — 0343 A4, — 2.0645473¢ — 0L Ay Ay Aq
16.02192351e - 034, + 3.63752811e - 024,
+5.86809819¢ — 024, As + 3.70566031e — 024, A,
+2.42364347¢ — 024, A5 — 9.81767262¢ — U2A, A,
~7.09051882¢ — 034545 — 120932356 — 024 A,
1-5.18047642¢ — 03A4A4 + 9.866¢ — 03f,

(A.1T)

7.85160984e — 04 - 8.40893701e — 044,
—5.5267798%¢ — 06A4; - 3.47421084¢ -- 0245
~3.15618142¢ — 0144 + 2.29766347e — 024; A,
+6.70135725¢ — 04 A1 Ay -+ 2.52875366e — 034 A,

—3.00029222¢ — 024, A4 — 2.42665864e — 0245 A,
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dfl_i
i

—8.54086958¢ ~ 034343 — 3.55181276e — 0245 A4
—9.7647188Y%¢ — 03 Az A, ~ 3.7687451%e — 024544

+3.24691328¢ — 03 A4 44 + 6.0577e — 03/,

(A.18)

5.53803810e — 05 L 2.65916998¢ ~ (1A,
+7.16616167e — 044, -+ 2.43268601e — 01A;
—2.9226177Te — 02A4 — 5.46440118¢ — 034, A,
—3.81723387c — 0241 A, - 9.67050500e — 03 A, Aa
+2.17240367e — 024; Ay — 3.27980557e — 034, A,
+5.05461587¢ - - 0243 A5 + 3.35363453¢ — 03 A5 A,
1:2.94750410¢ — 02A3 A, — 1.51851997¢ — 0245 A4

—8.30075377c — 03A, A4 + 6.632e — 03 f,

(A.19)
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