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Abstract

INTRODUCTION: Chronic myeloid leukaemia (CIVIL) is a clonal myeloproliferative 

disorder of the haemopoietic stem cell (HSC). It results from acquisition of the 

Philadelphia (Ph) chromosome and expression of the oncogenic fusion protein 

BCR-ABL. Imatinib mesylate (IM) is a tyrosine kinase inhibitor (TKI) which 

competitively inhibits ATP binding to BCR-ABL, resulting in inhibition of 

downstream signal transduction pathways. Despite inducing a complete 

cytogenetic response in the majority of CIVIL patients in chronic phase (CP), nearly 

all patients treated with IM have detectable disease at the molecular level by 

quantitative RT-PCR and, therefore, are unlikely to be cured. It has been 

demonstrated that this molecular persistence results from a population of 

quiescent CIVIL stem cells which are not effectively targeted by IM. In addition, a 

minority of CML patients harbour BCR-ABL kinase domain mutations, rendering 

them IM-resistant. We set out to investigate different therapeutic strategies for 

targeting the quiescent CML stem cell population in vitro. These strategies were 

treating with continuous or interrupted IM in combination with recombinant human 

granulocyte-colony stimulating factor (rHu-G-CSF), comparing the efficacy of IM 

with the novel, dual SRC/BCR-ABL TKI, dasatinib, and combining either IM or 

dasatinib with the cytotoxic farnesyltransferase inhibitor (FTI), BMS-214662.

METHODS: CD34^ CML cells isolated from newly diagnosed CP CML patients, 

normal CD34^ cells, total mononuclear cells (MNC) from blast crisis (BC) CML 

patients and acute myeloid leukaemia (AML) patients, and wild-type and mutant 

BCR-ABL-expressing Ba/F3 cells were cultured in the described conditions. To 

assess efficacy against the primitive progenitor population, carboxy-fluorescein 

diacetate succinimidyl diester (CFSE) was used to track cell division and caspase- 

3 activity to assess apoptosis in primary cell samples. To determine the inhibitory
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effect of different agents on BCR-ABL kinase activity a flow-cytometry based CrKL 

phosphorylation assay was developed and used. The relevance of SRC kinases in 

the different phases of CML was assessed by measuring expression of 

phosphorylated SRC (p-SRC) and BCL-2 at baseline and again following 

treatment with different TKIs (IM, dasatinib and PP2). Previous studies have 

indicated that alterations in BCL-2 expression may be linked to SRC family kinase 

activity in CML cells in vitro. Long-term culture-initiating cell (LTC-IC) assays were 

used to determine the efficacy of BMS-214662 against CML and normal HSC. 

Tritiated thymidine proliferation assays were employed to assess concentration- 

response curves and determine the efficacy of BMS-214662 in Ba/F3 cell lines 

with BCR-ABL kinase mutations. Fluorescence in-situ hybridisation (FISH) 

confirmed the proportion of BCR-ABL^ CD34^ cells at baseline and again after 

culture in the different treatment conditions.

RESULTS; Interrupted IM therapy did not enhance the eradication of total viable 

cells or non-proliferating CFSE"^^  ̂ CD34^ CML cells compared to continuous IM. 

The combination of continuous IM with intermittent rHu-G-CSF more effectively 

reduced total viable cells than other IM/rHu-G-CSF combinations. Imatinib 

mesylate had no significant effect on non-proliferating CFSE*^®̂  CD34^ CML cells. 

Intermittent rHu-G-CSF significantly reduced non-proliferating CFSE*̂ ®̂  CD34"" 

CML cells compared to either no rHu-G-CSF or continuous rHu-G-CSF by 

increasing the number of cells which left the quiescent fraction by cell division. The 

addition of IM did not enhance this effect.

At therapeutically achievable concentrations (5pM and 150nM, respectively) IM 

and dasatinib had equivalent cytotoxicity on primary CD34^ CML cells. Compared 

to no drug control, neither IM nor dasatinib reduced the non-proliferating CFSE"̂ ®̂  

CD34^ CML cell population. Caspase-3 activity was not significantly increased in
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the treatment arms, indicating that the cells exiting the undivided gate did so by 

cell division and not apoptosis. Using the CrKL phosphorylation assay, dasatinib 

was shown to be a more effective BCR-ABL kinase inhibitor than IM. Activated 

SRC expression, measured by p-SRC and BCL-2 levels, was significantly 

increased in CD34^ CML cells compared to normal CD34^ cells. There was a trend 

for higher p-SRC, but not BCL-2 expression, in BC compared to CP CML. Further 

results suggested that p-SRC expression was mediated by BCR-ABL, as IM or 

dasatinib, but not the SRC-specific kinase inhibitor PP2, reduced p-SRC 

expression; albeit only temporarily with IM.

BMS-214662 was very potent against CD34^ CML cells at clinically achievable 

concentrations (250nM). When used in combination with IM or dasatinib, BMS- 

214662 significantly enhanced overall cytotoxicity compared to either IM or 

dasatinib alone. BMS-214662 targeted non-proliferating CFSE"^^  ̂ CD34^ cells in 

short-term culture experiments, and had minimal anti-proliferative effect. Apoptosis 

studies demonstrated that BMS-214662 increased caspase-3 activity in 

proliferating and non-proliferating CFSE^^^ CD34^ CML cells. BMS-214662 

overcame the anti-proliferative effects of IM or dasatinib to significantly reduce 

non-proliferating CFSE"^®  ̂CD34^ cells present after treatment. The LTC-IC assays 

confirmed that BMS-214662 was targeting primitive CML stem cells and provided 

evidence of selectivity for CML versus normal HSCs. In 2 of 3 patients, FISH 

confirmed that more than 90% of the cells surviving LTC-IC were Ph ; further 

evidence for the selectivity of BMS-214662 for Ph^ cells. Preliminary experiments 

presented here indicate that BMS-214662 is likely to be effective in BC CML, 

patients with BCR-ABL kinase mutations resistant to TKIs and also AML.

CONCLUSIONS: Intermittent exposure to rHu-G-CSF can enhance the effect of 

IM on CML cells by specifically targeting the non-proliferating CD34^ sub­
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population. A pilot study to treat CP CML patients with IM and intermittent rHu-G- 

CSF is currently underway to determine if this strategy will reduce molecular 

persistence in vivo, Dasatinib was more effective than IM within the CML stem cell 

compartment, however the most primitive quiescent CML cells appear to be 

inherently resistant to both drugs, indicating that BCR-ABL and SRC kinases may 

not be relevant targets in the most primitive quiescent CML stem cell population. 

BMS-214662 is the first agent assessed using the CFSE method to show a 

significant reduction in non-proliferating CFSE"^^  ̂CD34^ cells compared to the no 

drug control in CML. LTC-IC confirmed that BMS-214662 was targeting CML stem 

cells and highlighted specificity for Ph^ versus Ph' cells. Further studies are 

ongoing to elucidate the mode of action of BMS-214662 which may have utility not 

only in CML but also other malignancies in which cancer stem cells have been 

identified.
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Definitions and Abbreviations

7-AAD
17AAG
ABGG2
ABL
ALL
ailoSCT
AML
AP
APC
Ara-G
ATP
BC
BCA
BCR
BCR-ABL
BCR-ABL
BIT
BSA
CCR
CD

CENP
CFG
CFSE
CFU-GM
CHR
CIS
CLL
CML
CMoIR
CP
CrKL
CXCR-4
DU
DMEM
DMSO
DNA
DNAse
EDTA
EGF
EGF-R
ELISA
FACS
FAK
FCS
FGF-R
FISH
FITC
FL

Tritiated
7-Aminoactinomycin D
17-(Allylamino)-17-demethoxygetdanamycin
ATP binding cassette subfamily member 2
Abelson proto-oncogene
Acute lymphoblastic leukaemia
Allogeneic stem cell transplant
Acute myeloid leukaemia
Accelerated phase
Allophycocyanin
Cytosine arabinoside
Adenosine triphosphate
Blast crisis
Bicinchoninic acid
Breakpoint cluster region gene
BCR-ABL fusion gene
BCR-ABL protein tyrosine kinase
Bovine serum albumin/insulin/transferrin serum substitute 
Bovine serum albumin 
Complete cytogenetic response
Cluster of differentiation; cell surface molecules recognised by 
specific sets of antibodies 
Centromere protein 
Colony-forming cell assay
Carboxy-fluorescein diacetate succinimidyl diester 
Granulocyte macrophage-colony forming unit 
Complete haematologic response 
Cytokine-induced SH2~containing family of proteins 
Chronic lymphocytic leukaemia 
Chronic myeloid leukaemia 
Complete molecular response 
Chronic phase
v-Crk avian sarcoma virus CT10 oncogene homolog-like
Chemokine (C-X-C motif) receptor 4
Donor lymphocyte infusion
Dulbecco's modified eagle medium
Dimethyl sulphoxide
Deoxyribonucleic acid
Deoxyribonuclease
Ethylenediaminetetraacetic acid
Epidermal growth factor
Epidermal growth factor receptor
Enzyme-linked immunosorbent assay
Fluorescence activated cell sorting
Focal adhesion kinase
Foetal calf serum
Fibroblast growth factor receptor
Fluorescence in-situ hybridisation
Fluorescein isothiocyanate
Fluorescence channel
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FSC Forward scatter
FT Farnesyltransferase
FTI Farnesyltransferase inhibitor
Go Gap phase 0 (of cell cycle; quiescent)
Gi Gap phase 1 (of cell cycle)
G2 Gap phase 2 (of cell cycle)
G-CSF Granulocyte-colony stimulating factor
G-CSF-R Granulocyte-colony stimulating factor receptor gene
G-CSF-R Granulocyte-colony stimulating factor receptor protein
G-proteins Guanine nucleotide binding proteins
GIMI G-CSF with Imatinib Mesylate Intermittently
GM-CSF Granulocyte macrophage-colony stimulating factor
GGT Geranylgeranyltransferase
GvHD Graft versus host disease
GvL Graft versus leukaemia
GSK-3P Glycogen synthase kinase-3p
HBSS-CMF Hank’s buffered salt solution -  calcium and magnesium free
HLA Human leukocyte antigen
HSC Haemopoietic stem cell
lAP Inhibitor of apoptosis protein
IC50 Inhibitory concentrationso
IFN-a Interferon-a
ig Immunoglobulin
IkK IkB kinase
IL Interleukin
IM Imatinib mesylate
IMDM Iscove’s Modified Dulbecco’s Medium
iNOS Inducible nitric oxide synthase
IRIS International study of Interferon versus STI571
JAK Janus kinase
K562-R IM-resistant K562 cell line
kbp Kilobase pairs
kD KiloDalton
LAMA-R IM-resistant LAMA cell line
LDAC Low dose cytosine arabinoside
LSC Leukaemic stem cell
LTBMC Long term bone marrow culture
LTC-IC Long term culture-intitiating cell assay
M Mitosis phase (of cell cycle)
MARK Mitogen-activated protein kinase
MCR Major cytogenetic response
mCR Minor cytogenetic response
MDR Multidrug resistance protein
MFI Mean fluorescence intensity
mg Milligrams
mL Millilitres
MMoIR Major molecular response
MNC Mononuclear cell
MRC Medical Research Council
MRD Minimal residual disease
mRNA Messenger ribonucleic acid
mTOR Mammalian target of rapamycin
MW Molecular weight
M9 Micrograms
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mm Micromolar
NA Not applicable/not available
NCI National Cancer Institute
NCRN National Cancer Research Network
ND Not determined
NF-KB Nuclear factor- kB
ng Nanograms
nM Nanomolar
NK cells Natural killer cells
NO Nitric oxide
NOD Non-obese diabetic
P Phosphorylated
PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffered saline
PCR Partial cytogentic response
PDGF-R Platelet-derived growth factor receptor
PE Phycoerythrin
PFS Progression free survival
Ph Philadelphia chromosome
PI Propidium iodide
PI3K Phosphatîdylinositol-3-kinase
PMSF Phenoxymethylsulphonylfluoride
PTEN Phosphatase and tensin homolog
PTPases Protein tyrosine phosphatases
qRT-PCR Quantitative real-time RT-PCR
Ras-GAP Ras-GTPase activating protein
Ras-GDP Ras-guanidine diphosphate
Ras-GTP Ras-guanidine triphosphate
rHu-G-CSF Recombinant human G-CSF
RISCT Reduced intensity stem cell transplant
ROS Reactive oxygen species
RPM Revolutions per minute
RT-PCR Reverse transcriptase polymerase chain reaction
S Synthesis phase (DNA; of cell cycle)
SCF Stem cell factor
SCID Severe combined immunodeficiency
SCT Stem cell transplant
SDF-1 Stromal-derived factor-1
SDS Sodium dodecyl sulphate
SEM Standard error of the mean
SFM Serum free medium
SFM + 5GF Serum free medium supplemented with a 5 growth factor 

cocktail (IL-3, IL-6, Flt-3 ligand, G-CSF, SCF)
SH SRC homology domain
sIRNA Short interfering RNA
SKI SRC kinase inhibitor
SOCS Suppressors of cytokine signalling family of proteins
SOS Son of sevenless
SSC Side scatter
STAT Signal transducers and activators of transcription
STI Signal transduction inhibitor 571
t Translocation
TDZD-8 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine 3,5-dione
TG buffer Tris/glycine buffer
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TGS buffer 
TKI
VEGF-R
WCC
WHO
WT
Y

Tris/glycine/SDS buffer
Tyrosine kinase inhibitor
Vascular endothelial growth factor receptor
White cell count
World Health Organisation
Wild type
Tyrosine
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1 Introduction

1.1 Haemopoietic stem cells and normal haemopoiesis

Stem cells are defined as cells that can differentiate into multiple different cell 

types and have the ability to self-renew. There are two broad categories of stem 

cells: (1) the pluripotent stem cell which can differentiate into endoderm, 

mesoderm and ectoderm, e.g. embryonic stem cells; and (2) multi potent stem cells 

which are lineage-specific and include haemopoietic stem cells (HSC). The HSC is 

a relatively rare cell within the bone marrow, and it is estimated that there are 

between 3x10^ and 4x10® HSC in the human, based on studies using limiting 

dilution analysis in NOD-SCID mice (Wang et al., 1997) and long-term culture- 

initiating cell (LTC-IC) assays (Pettengell et al., 1994). Further studies indicate that 

each HSC divides approximately 70 times during its lifetime (Vickers et al., 2000) 

so its self-renewal capacity is finite. By this process of cellular amplification, it is 

estimated that if one stem cell divides 20 times then 1x10® mature cells are 

produced.

Haemopoiesis is the process of blood cell production. As the majority of mature 

blood cells only live for a short time in the circulation (a few hours in the case of 

granulocytes) before destruction by the spleen, it is necessary for the bone 

marrow to produce up to 10̂ ® cells per day to maintain the haemopoietic system. 

The process of haemopoiesis begins with the multipotent HSC which has self­

renewal capacity and the ability to differentiate into all types of mature blood cell 

(myeloid, erythroid, lymphoid etc) through a range of lineage-committed progenitor 

cells (Figure 1-1).
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Figure 1-1. Diagrammatic representation of the HSC and the cell lines produced from it. Only 

long-term and short-term stem cells undergo self-renewal. The multi potent progenitors do 

not undergo self-renewal, but give rise to common myeloid and common lymphoid 

progenitors, which through several proliferation and differentiation steps, give rise to the 

mature cells of the haemopoletic system.

The ability of HSCs to self-renew is heterogeneous and studies on mouse bone 

marrow cells indicate that 0.05% of bone marrow cells are multipotent progenitors. 

This HSC population can be divided into three distinct maturational sub­

populations: long-term self-renewing HSCs that produce mature haemopoietic 

cells for the lifetime of the mouse; short-term self-renewing HSCs; and multipotent 

progenitors which have lost the ability to self-renew, reconstitute lethally irradiated 

mice for less than eight weeks and have increased mitotic activity (Morrison et al., 

1997).
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It is believed that, in steady state, only a minority of HSCs reconstitute the

haemopoietic system, with the vast majority of HSCs existing in a quiescent state

(i.e.in Go; out of the cell cycle). This extended period in Go allows the resting HSCs

time to repair any DMA damage and maintain their genetic integrity (Lajtha, 1979).

Evidence for the existence of HSCs in a quiescent state came from culture studies

in which primitive human progenitor cells remained as single cells for as long as

two weeks and only began proliferation after stimulation with a cytokine cocktail

(Leary et al., 1989; Leary et al., 1992).

Potential human HSCs are characterised as CD34^lin"CD38' (Miller et al., 1999) 

and these cells have the ability to repopulate SCID mice. However, for clinical and 

the majority of research purposes, HSCs tend to be isolated on the basis of CD34 

expression only, resulting in a heterogeneous population of which only a small 

proportion are multipotent HSCs. The CD34 antigen is a transmembrane 

glycoprotein and member of the sialomucin family (Simmons et al., 2001). 

Although its precise function is unknown, CD34 is believed to be involved in cell 

adhesion.

The in vitro study of HSCs is difficult for a number of reasons. Firstly, these are 

rare cells with only relatively small numbers present in any individual. Secondly, in 

vitro culture results in varying degrees of expansion and differentiation of these 

cells depending on the culture conditions. This results in the loss of stem cell 

phenotype as the cells mature and acquire lineage-specific markers, and the stem 

cells become diluted by their more mature progeny. Thirdly, despite extensive 

studies into the functional and phenotypic properties of HSCs (Weissman, 2000), 

the mechanisms which control self-renewal versus proliferation and differentiation 

remain unexplained. The HSC achieves both these functions via asymmetric cell 

division in which one new HSC is produced along with one daughter which then
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undergoes symmetrical division and differentiates. However, HSCs can also

undergo symmetrical cell division to produce two daughter cells. It is believed that

stem cell fate is decided by, as yet unidentified, factors in the stem cell niche.

Following the identification and characterisation of the HSC, comparisons were 

drawn with the behaviour of cancer cells, in particular leukaemias, with the first 

evidence for the ‘cancer stem cell’ being described in acute myeloid leukaemia 

(AML), (Bonnet and Dick, 1997). The leukaemic stem cell (LSC) shares a number 

of properties with normal HSC including self-renewal capacity, similar phenotype 

(i.e. CD34^38 ) and the ability to reconstitute NOD-SCID mice, with the recipient 

mice developing leukaemias of the same phenotype as the transplanted cells. It is 

now believed that the LSC is derived from an HSC following one or more 

leukaemogenic events (Figure 1-2). Chronic myeloid leukaemia (CML) and acute 

lymphoblastic leukaemia (ALL) have also been described as HSC disorders 

(Eaves et al., 1998; Cobaleda et al., 2000).

Leukaemogenic
event(s)

Self-renewal

m
Self-renewal

r
HSC LSC

Clonogenic
leukaemic

progenitors

Non-clonogenic 
leukaemic blast cells

Figure 1-2. Schematic diagram of the transformation of an HSC to a LSC which also retains 

the capacity to self-renew. Following a number of intermediate progenitor stages, the 

leukaemic blast cells are produced and these blast cells form the vast majority of leukaemic 

cells present.
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1.2 Chronic myeloid leukaemia (CML)

Chronic myeloid leukaemia develops when a single, multipotent HSC acquires the 

Philadelphia (Ph) chromosome (Figure 1-3) which is an abnormal, shortened 

chromosome 22 that results from a reciprocal translocation between the long arms 

of chromosomes 9 and 22 and is designated t(9;22)(q34;q11) (Rowley, 1973). In 

the 1980s, it was shown that this translocation resulted in the ABL proto­

oncogene, normally on chromosome 9, becoming juxtaposed with the breakpoint 

cluster region (BCR) on chromosome 22 (Bartram et al., 1983; Groffen et al., 

1984), resulting in production of the unique fusion gene product BCR-ABL, a 

210kD oncoprotein, often referred to as which is a constitutively

active tyrosine kinase (Lugo et al., 1990). The Ph chromosome appears in the 

myeloid, erythroid, megakaryocytic and lymphoid cells of CML patients.

Normal chromosome 9 

Chromosome 9 with derivative from 22

Philadelphia chromosome 

Q j 5 3 0 *0  Normal chromosome 22

Figure 1-3. The Philadelphia (Ph) chromosome results from a reciprocal translocation 

between the long arms of chromosome 9 and 22, t(9;22)(qS4;q11). The Ph chromosome Is 

the shortened chromosome 22 and results In production of the fusion gene product BCR- 

ABL which has unregulated tyrosine kinase activity. A reciprocal fusion, ABL-BCR, Is 

formed on the long arm of chromosome 9; however, this is not thought to play a role In the 

pathogenesis of CML. In addition to the Ph chromosome, a minority of patients (~15%) have 

deletions on the long arm of chromosome 9 which occur at the time of the reciprocal 

translocation, Involve the derivative chromosome 22 and are associated with a poor 

prognosis (Huntly et al., 2001).
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Chronic myeloid leukaemia is a myeloproliferative disorder and accounts for 15-

20% of all leukaemias in adults (Faderl et al., 1999). The incidence of CML is

constant worldwide at 1.0 to 1.5 per 100,000 of the population. The median age of

onset is 40-60 years; however, it may occur in children and the very old. There is a

slight male predominance (1.4:1). The risk of CML is slightly increased by

exposure to high doses of irradiation as seen in atomic bomb survivors and

patients irradiated for ankylosing spondylitis. Most cases of CML are sporadic and

no predisposing factors or familial predispositions have been identified.

Chronic myeloid leukaemia has three stages: chronic phase (CP); accelerated 

phase (AP); and blast crisis (BC). It is usually diagnosed in CP, which is 

characterised by a leucocytosis due to increased granulopoiesis with 

hepatosplenomegaly as a result of leukaemic infiltration and can last from several 

months to several years. In 50% of patients, the disease evolves gradually, 

through an intermediate stage, AP, which may last for months or occasionally 

years before frank BC. In the remaining 50%, the CP transforms unpredictably and 

abruptly to BC. In AP there is an increase in the number of immature cells in the 

bone marrow or peripheral blood and it may be associated with additional 

cytogenetic abnormalities (i.e. clonal evolution). Blast crisis may be of myeloid or 

lymphoid lineage and behaves like an acute leukaemia; it carries a very poor 

prognosis. The WHO criteria for the diagnosis of AP and BC CML are shown in 

Table 1-1 (Vardiman et al., 2002).
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AP CML
Diagnosis if one or more of the following present:

Blasts 10-19% of peripheral white cell count (WCC) or bone marrow cells; 

Peripheral blood basophils ^ 20%;
Persistent thrombocytopenia (< 100x10^/L) unrelated to therapy, or persistent 
thrombocytosis > 1000x10^/L unresponsive to therapy;
Increasing spleen size or WCC unresponsive to therapy;
Cytogenetic evidence of clonal evolution.

BC CML
Diagnosis if one or more of the following present:

Blasts ^ 20% of peripheral WCC or bone marrow cells; 
Extramedullary blast proliferation;
Large clusters or foci of blasts in bone marrow trephine.

Table 1-1. Criteria for the diagnosis of AP and BC CML.

The peripheral blood and bone marrow in CP CML usually have a distinct 

morphological appearance. There is a leucocytosis, usually > 50x10®/L, but 

occasionally > 500x10®/L with a complete spectrum of myeloid cells present in the 

peripheral blood. The white cell differential count is characteristic with myelocytes 

and mature neutrophils predominating. Blast cells and promyelocytes are 

increased to a lesser extent. Nearly all patients have a basophilia and the majority 

also have an eosinophilia. There is often an associated normochromic normocytic 

anaemia. The platelet count may be normal, increased or decreased. The bone 

marrow is usually very hypercellular with marked granulocytic hyperplasia and the 

myeloid:erythoid ratio often exceeds 10:1. Occasionally there may be associated 

megakaryocyte hyperplasia or marrow fibrosis at presentation.

1.2.1 BCR-ABL and its mechanisms of action

The fusion gene product, BCR-ABL, has a central role in the pathogenesis of CML 

and this makes it an attractive target for drug therapy. A number of features of 

BCR-ABL are essential for cellular transformation. In BCR these include the
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coiled-coil motif present in amino acids 1-63, the tyrosine at position 177 (Y177),

and phosphoserine-threonine-rich sequences between amino acids 192-242 and

298-413; and in ABL, the SHI, SH2, and actin-binding domains (Pendergast et al.,

1991; McWhirter et al., 1993; Pendergast et al., 1993). The most important

functional domains of BCR and ABL proteins are shown in Figure 1-4.

Autophosphorylated BCR-ABL tyrosine kinase phosphorylates a range of

substrates and activates a range of intracellular signalling pathways which alter

the behaviour of CML stem cells in a number of ways. Substrates of BCR-ABL can

be grouped into three broad categories (1) adaptor molecules such as CrKL and

p6 2 °0 Cj (2) proteins associated with the cell membrane and cytoskeleton such as

talin and paxillin and (3) proteins with catalytic function such as Ras-GAP and

phospholipase Cy (Deininger et al., 2000). Figure 1-5 shows the main pathways

activated by BCR-ABL in CML cells.

NH, C-C '̂
moUf

Y177 Ser/Thr kinase GAP COOH

BCR protein

NH, SH2 SHI NLS DNA
binding m COOH

ABL protein

Figure 1-4. The important functional domains of BCR and ABL proteins. In BCR, the colled- 

coll (C-C) motif Is at the amino (NH2) terminus. This Is followed by the tyrosine at position 

177, and phosphoserlne-threonlne-rlch sequences between amino acids 192-242 and 298- 

413. The serlne-threonlne rich kinase domain of BCR contains an SH2 binding domain and 

can bind the SH2 domain of ABL In a non-phosphotyroslne-dependent manner. BCR also 

has a GTPase-actlvatIng protein (GAP)-homology domain and a pleckstrin (PH) domain at 

the carboxy (COOH) terminus. In ABL, there are SH3, SH2 and SHI domains towards the 

amino terminus followed by a nuclear localisation site (NLS). At the carboxy terminus there 

are DNA and actin binding domains. C-C, colled coll; Y177, tyrosine 177; Ser/Thr kinase, 

serlne-threonlne rich kinase domain; GAP, GTPase-actlvatIng protein; PH, pleckstrin
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homology; SH, Src homology domain; NLS, nuclear localisation site. Adapted from 

Holyoake (Holyoake, 2001).

BCR-ABL

Ras JAKPI3K

RafAKT

STAT
mTOR NFkB MEK

BADMDM2
ERK 1

Mitochondrionp53

Nucleus

Figure 1-5. Schematic diagram of the three main signal transduction pathways (PI3K-AKT, 

Ras-Raf-MEK-ERK and JAK-STAT) activated by BCR-ABL in CML cells. In normal HSC, 

these pathways are activated by the cytokine interleukin-3 (IL-3) and promote survival, 

growth and differentiation. However, BCR-ABL activates these pathways in the absence of 

IL-3, resulting in increased proliferation and prolonged survival by inhibiting apoptosis 

(Steelman et ai., 2004).

BCR-ABL has transforming activity both in vitro and in vivo which was originally 

demonstrated in a mouse model (Daley et a!., 1990). Briefly, in these studies, 

murine bone marrow was infected with a retrovirus encoding and

transplanted into irradiated syngeneic recipients. The transplant recipients 

developed haematological malignancies, including a CML-like myeloproliferative 

disorder in the majority.
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In vitro cell culture studies (Eaves et al., 1986; Eaves et al., 1987) have shown that

BCR-ABL results in marked clonal expansion (i.e. proliferation) in association with

increasing differentiation. However, this is heterogeneous, with proliferation rates

varying between patients. In addition, in CML, the mechanisms which normally

maintain the majority of HSCs in a quiescent state are deregulated, contributing to

the increased proliferation, although a deeply quiescent population of CML stem

cells has been identified (Holyoake et al., 1999). Further evidence for an increased

proliferation rate in CML versus normal progenitor cells comes from studies of

telomere dynamics which showed that there was accelerated replication-

dependent telomere shortening in Ph^ versus Ph' leucocytes (Brummendorf et al.,

2000). In addition, very short telomeres predicted early progression to BC,

suggesting a link between the CML stem cell, genetic instability and disease

progression. An alternative hypothesis for the cell expansion seen in CML called

the ‘discordant maturation hypothesis’ has also been proposed in which the most

mature proliferating cells in CP CML are responsible for expansion of the Ph^

population (Strife et al., 1988). However, further studies have demonstrated that

the myeloid expansion observed in CML is far more likely to be a result of

increased numbers of primitive CML progenitor cells (Marley et al., 1996).

The increased proliferation and abnormal circulation of primitive CML progenitors 

can, in part, be explained by abnormal adhesive interactions between the bone 

marrow microenvironment and the CML cells. Studies have shown that CML 

progenitors fail to adhere to normal stromal layers (Gordon et al., 1987; Verfaillie 

et al., 1992) and that this may be related to abnormal function of adhesion 

molecules. Further studies using LTC-IC and colony forming cell (CFC) assays 

have demonstrated that treatment with interferon-a (IFN-a) restores normal 

adhesive interactions between CML cells and the bone marrow stroma in a 

concentration-dependent manner (Dowding et al., 1991; Bhatia et al., 1994). In
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addition, in CML cells, restoration of normal adhesive properties in the presence of

IFN-a was inhibited by antibodies to 0 4 , as and (3i integrins. These integrins are

present at normal levels on CML progenitors and the levels are unchanged by

IFN-a treatment (Bhatia et al., 1994). This indicates that abnormal adhesion

between CML progenitors and bone marrow stroma may result from defective a4(3 i

and aspi integrin receptor function which results in a failure in the transmission of

signals that inhibit proliferation from the bone marrow microenvironment to the

primitive CML progenitors. Normalisation of progenitor-stromal interactions by IFN-

a in CML may result in normal progenitor proliferation and partly explain the

therapeutic efficacy of IFN-a in CML.

In addition to the deregulation of cell proliferation in CML, there is an imbalance 

between the rate of cell production and cell death. As shown in Figure 1-5, BCR- 

ABL triggers multiple signal transduction pathways including the PI3K-AKT, Ras- 

Raf-MEK-ERK and JAK-STAT pathways (Steelman et al., 2004) which inhibit 

apoptosis and prolong growth factor-independent survival of CML cells (Bed! et al.,

1994). Inhibition of BCR-ABL by antisense oligonucleotides reversed this anti- 

apoptotic effect resulting in increased cell death in response to serum deprivation 

or treatment with cytotoxic agents (Bedi et ai., 1994; McGahon et al., 1994). 

Further studies have shown that the anti-apoptotic effect of BCR-ABL is 

associated with prolongation of cell cycle arrest at the G2M checkpoint (Bedi et al.,

1995). In this study, BCR-ABL"" Ba/F3 cells were exposed to ionising radiation and 

cell cycle distribution was assessed. The irradiated Ba/F3 cells remained viable 

and had a prolonged G2 arrest compared to non-irradiated cells. It was 

hypothesised that this transient delay at the G2 checkpoint promoted cell survival 

by permitting repair of otherwise lethal DNA damage caused by cytotoxic agents, 

thus allowing successful completion of DNA replication and explaining, at least in
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part, the resistance to chemotherapeutic agents seen in CML. These repaired

CML cells were then capable of proliferating through subsequent cell divisions.

1.2.1.1 Phosphatidylinositol-3 kinase-AKT pathway

Phosphatidylinositol-3 kinase (PI3K) activity is associated with cell division, 

glucose transport/metabolism, cytoskeletal organisation and inhibition of 

apoptosis. In CML, BCR-ABL forms a complex with PI3K, Cbl and the adaptor 

molecules Crk and CrKL via which PI3K is activated (Battler and Salgia, 1998). 

AKT exerts it anti-apoptotic effects through phosphorylation of downstream target 

molecules. The first downstream target of AKT to be identified was the BCL-2 

family member protein BAD (Datta et al., 1997; Andreeff et al., 1999). The 

phosphorylation of BAD by AKT resulted in the association of BAD with 14-3-3 

proteins, which enhanced cell survival by inhibiting the binding of BAD to BCL-2 

and BCLxl, thus allowing BCLxl to bind pro-apoptotic BAX molecules and 

preventing the formation of pro-apoptotic BAX homodimers. Studies have shown 

that BAD-dependent and independent anti-apoptotic pathways are active in CML 

(Neshat et al., 2000).

AKT also phosphorylates IkB kinase (IkK), which induces degradation of the 

nuclear factor-xB (N F -kB ) inhibitor IkB. NF-kB is a transcription factor that inhibits 

apoptosis and may also regulate cellular transformation (Romashkova and 

Makarov, 1999). Expression of BCR-ABL, via up-regulation of AKT, leads to 

activation of NF-xB-dependent transcription by causing nuclear translocation of 

NF-KB and increasing the trans-activation function of the RelA/p65 subunit of NF- 

kB (Figure 1-6). This activation is dependent on the tyrosine kinase activity of 

BCR-ABL and partially requires Ras (Reuther et al., 1998). The mechanism by 

which Ras activates N F-kB  is not known, but may be through AKT which is
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downstream of Ras as well as BCR-ABL. However, inhibition of Ras blocks NF-kB

activation.

BCR-ABL

Ras

IkK ^  Activation of IkK via AKT

Phosphorylation of IkB

NF-kB '^Degradation of IkB by 26S proteasomeIkB

Proliferation 
Inhibition of apoptosis 
Invasion
Control of differentiation

Nucleus NF-kB

Figure 1-6. Schematic diagram of the upregulation of NF-kB by BCR-ABL. AKT 

phosphorylates IkK, resulting in the subsequent phosphorylation and degradation of IkB. 

Without the inhibitory effect of IkB, NF-kB is activated and translocated to the nucleus 

where it exerts effects on proliferation, inhibition of apoptosis, tumour invasion and control 

of differentiation. The mechanism of activation of NF-kB by Ras is unknown.

Further downstream targets of AKT include MDM2 and mammalian target of 

rapamycin (mTOR). MDM2 is a negative regulator of the function of the tumour 

suppressor gene p53 that targets p53 for degradation by the proteasome (Mayo 

and Donner, 2001). Studies have shown that BCR-ABL activates MDM2 resulting 

in increased MDM2 expression and enhanced resistance to apoptosis (Trotta et 

al., 2003). The serine threonine kinase mTOR is a central regulator of cell growth 

and recent studies have shown that BCR-ABL induces expression of vascular 

endothelial growth factor via the PI3K pathway and mTOR, contributing to the
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increased angiogenesis seen in CML (Mayerhofer et al., 2002; Mayerhofer et al.,

2005).

1.2.1.2 Ras-Raf-MEK-ERK pathway

The Ras proteins are a group of guanine nucleotide binding proteins (G-protelns) 

that, following isoprenylation in the cytosol, associate with the inner plasma 

membrane of the cell and transduce external signals to the interior of the cell. 

They belong to the protein group termed the ‘Ras superfamily of monomeric 

GTPases’ which also contains the Rho and Rab protein families which are 

involved in the signal transduction between cell-surface receptors and the actin 

cytoskeleton and regulation of intracellular transport vesicles, respectively. The 

Ras protein superfamily are substrates for post-translational modification and 

undergo prénylation via farnesyItransferase (FT) and geranylgeranyltransferase 

(GGT). Ras proteins exist in specific isoforms (H-Ras, K-Ras and N-ras) that differ 

in their affinity for specific isoprenyl groups and are either in an active form (Ras- 

GTP) or inactive form (Ras-GDP) which is tightly regulated (Figure 1-7). The Ras- 

Raf-MEK-ERK pathway, which is often referred to as the mitogen-activated protein 

kinase (MAPK) pathway, transmits signals from cell surface receptors to 

transcription factors in the nucleus and is able to interact with other signal 

transduction pathways including PI3K-AKT and JAK-STAT. Activation of Ras by 

cytokines such as IL-3 leads to recruitment of the serine-threonine kinase Raf to 

the cell membrane which results in a signalling cascade through MEK1/2 and ERK 

culminating in the activation of gene transcription (Marais et al., 1995; Cahill et ai.,

1996). It is believed that when mutated, Ras is no longer under the control of its 

regulators such as the positive regulator Son of sevenless (SOS; a guanine 

nucleotide exchange factor) (Figure 1-7), resulting in constitutive activation of 

Ras-GTP (Lowy and Willumsen, 1993).
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Figure 1-7. Schematic diagram of Ras-medlated signalling. Ras Is farnesylated In the 

cytoplasm by fa rn esy Itra nsfe rase (FT) and this process can be Inhlbted by 

farnesyltransferase Inhibitors (FTIs). Farnesylated Ras (Ras-F) then translocates to the cell 

membrane where It Interacts with the regulatory proteins GAP and SOS. Farnesylated Ras 

cycles between active GTP-bound and Inactive GDP-bound forms. Activated farnesylated 

Ras-GTP stimulates the Raf-MEK-ERK effector pathway resulting In alterations In the 

transcriptional control of cell growth, proliferation and differentiation. The association of 

BCR-ABL with the Grb-2/SOS complex stabilises Ras In Its activated GTP-bound form 

resulting In Increased cell growth and proliferation.

A number of associations between BCR-ABL and Ras have been identified. 

Autophosphorylation of BCR-ABL on Y177 allows direct interaction with the 

adaptor molecule Grb-2 (Pendergast et al., 1993). This enables Grb-2 to bind SOS 

and stabilise Ras in its activated GTP-bound form. The adaptor molecules She 

and CrKL can also activate Ras (Oda et al., 1994; Pelicci et al., 1995; Senechal et 

al., 1996). In CML, BCR-ABL activates Ras, and inhibition of Ras results in arrest 

of cell growth. This was demonstrated in cell line models in which the introduction 

of a dominant-negative Ras into BCR-ABL-transfected cells inhibited malignant 

transformation (Sawyers et al., 1995). Further studies have shown that disrupting 

the Grb-2/SOS complex inhibits Ras-mediated cell proliferation in BCR-ABL
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expressing cell lines and primary CML cells (Kardinal et al., 2001). Therefore, the

Ras-Raf-MEK-ERK axis appears to be important in the pathogenesis of BCR-ABL^

leukaemias and inhibition of this pathway may represent a valuable treatment

option for patients with CML (Section 1.3.3.1).

1.2.1.3 JAK-STAT pathway

The JAK-STAT pathway is activated by cytokines such as IL-3, IFN-a and 

granulocyte macrophage-colony stimulating factor (GM-CSF). The Janus kinases 

(JAKs) are a class of tyrosine kinases which phosphorylate and activate a group of 

transcription factors called the signal transducers and activators of transcription 

(STATs). The STATs are then translocated to the nucleus where they up regulate 

the transcription of specific genes which are predominantly associated with the 

regulation of cell survival, proliferation and differentiation. The JAK-STAT pathway 

is regulated by the suppressors of cytokine signalling (SOCS) and cytokine- 

induced SH2-containing (CIS) family of proteins. To date, four different JAK (JAK 

1-3 and TYK1), seven different STAT (STAT 1, 2, 3, 4, 5a, 5b, and 6) and six 

different SOGS/CIS (SOCS 1-5 and CIS1) molecules have been described 

(Kisseleva et al., 2002). The STATs are constitutively phosphorylated in CML cells 

and appear to contribute to the malignant transformation seen in CML (Chai et al., 

1997; de G root et al., 1999). The constitutive activation of STAT5 is not always 

associated with the activation of JAK, indicating that BCR-ABL may be able to 

directly activate STAT5 (Chai et al., 1997). The effect of STAT activation on BCR- 

ABL-transformed cells is predominantly anti-apoptotic and involves the 

transcriptional activation of BC Lxl (Horita et al., 2000; Siliaber et al., 2000).
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1.2.2 Growth factor independence in CML

1.2.2.1 Interleukin-3 (IL-3)

Interleukin-3 is a highly glycosylated 26kD cytokine. It binds to the IL-3 receptor 

which is a member of the cytokine receptor gene family. Activation of the IL-3 

receptor induces the activity of the JAK-STAT, PI3K-AKT and Ras signalling 

pathways promoting survival, growth and differentiation of HSCs (Steelman et al., 

2004).

1.2.2.2 Granulocyte-colony stimulating factor (G-CSF)

Like IL-3, granulocyte-colony stimulating factor (G-CSF) is a 25kD glycoprotein 

that acts as a cytokine. It binds to the G-CSF receptor (G-CSF-R), another 

member of the cytokine receptor gene family, resulting in ligation of the 

extracellular domain of the G-CSF-R. The G-CSF-R is expressed by all cells in the 

granulocyte series, including HSCs (McKinstry et al., 1997). In addition, the G- 

CSF-R is also expressed on endothelial cells, placental cells, activated T 

lymphocytes and many non-haemopoietic tumour cell lines (Roberts, 2005). 

Granulocyte-colony stimulating factor affects survival, proliferation and 

differentiation of all cells of myeloid lineage, from HSCs to mature neutrophils 

through activation of downstream signal transduction pathways including JAK- 

STAT, PI3K-AKT and Ras as well as the SRC family of proteins. Stimulation with 

G-CSF alone is sufficient for committed myeloid progenitors to proliferate and 

differentiate. However, for normal HSC proliferation, additional stimulation with 

other cytokines is also required. Further functional roles for G-CSF include 

speeding up the maturation of metamyelocytes, enhancing the function of mature 

neutrophils by increasing superoxide production, bacteriocidal killing and 

phagocytosis, mobilisation of HSCs from the bone marrow into the peripheral
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blood and, possibly regulation of immune responses (Roberts, 2005). All tissues in

the body are capable of producing G-CSF after stimulation, in particular,

macrophages, endothelial cells, fibroblasts, other mesenchymal cells and bone

marrow stroma.

In humans, the serum concentration of G-CSF is very low (1.4±0.7 pg/mL) in 

healthy subjects (Jorgensen et al., 2003). However, levels significantly increase in 

response to infection or inflammation and fall again with recovery (Kawakami et 

al., 1990; Jorgensen et al., 2003). Inflammatory stimuli such as IL-1, 

lipopolysaccharide and tumour necrosis factor-a increase the production of G-CSF 

by macrophages, fibroblasts and endothelial cells (Roberts, 2005). Interleukin-17 

is thought to be a major upstream regulator of G-CSF production, particularly by 

bone marrow cells and, in vitro, results in a concentration-dependent increase in 

G-CSF expression (Fossiez et al., 1996). In vivo, in a murine model deficient in 

leucocyte adhesion molecules which resulted in abnormal haemopoiesis and 

neutrophilia, inhibition of IL-17 reduced serum G-CSF concentrations and 

neutrophil count, thereby providing evidence for a feedback loop between IL-17 

and G-CSF (Forlow et al., 2001).

Recently, SOCS-3 was shown to be rapidly up-regulated in response to G-CSF in 

mature neutrophils and the myeloid cell line U937 (Hortner et al., 2002). SOCS-3 

negatively regulates STAT activation. In addition, this study showed that 

recruitment of SOCS-3 to the G-CSF-R was phosphorylation dependent and 

pY729 was the major recruitment site on the G-CSF-R for SOCS-3. An in vivo 

mouse model in which the haemopoietic cells had a SOCS-3 deletion confirmed 

that SOCS-3 was an important negative regulator of G-CSF signalling in myeloid 

cells (Croker et al., 2004). When given exogenous G-CSF, these mice developed 

neutrophilia, splenomegaly and inflammatory disorders.
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1.2.2.3 The roles of autocrine IL-3 and G-CSF production in CIVIL

Research in the late 1980s first demonstrated that the production of autocrine 

growth factors in myeloid malignancies resulted in autonomous growth (Young et 

al., 1987; Oster et al., 1989). Studies in murine bone marrow transplantation 

models showed that in mice, in whom the bone marrow cells had either been 

retrovirally transduced or transgenically engineered to produce IL-3, there was 

development of a myeloproliferative disorder with leukaemic transformation of 

primitive progenitors (Chang et al., 1989; Wong et al., 1989; Just et al., 1993). 

Further in vitro studies have demonstrated that continuous expression of BCR- 

ABL in cytokine-dependent cell lines resulted in growth factor-independent 

proliferation in association with autocrine production of IL-3 and GM-CSF (Li et al., 

1999; Li et al., 2001; Peters et al., 2001b). In addition, in one of these studies, 

transplant of these cells into a mouse model induced a fatal leukaemia (Peters et 

al., 2001b). However, the other study showed that IL-3 and GM-CSF were not 

required for induction of a CML-like myeloproliferative disorder in mice by BCR- 

ABL (Li et al., 2001), but may be required for disease maintenance. Research has 

also shown that primitive CD34^ CML stem cells produce IL-3 and G-CSF via an 

autocrine mechanism which results in increased STAT5 phosphorylation that is 

highly dependent on IL-3 but not G-CSF (Jiang et al., 1999; Jiang et al., 2000b). It 

is believed that this contributes to their resistance to apoptosis by prolonging the 

growth factor independent survival of CML progenitors. This hypothesis was 

further corroborated by in vitro studies which showed that, after prolonged culture, 

IL-3""" mouse bone marrow cells transduced with BCR-ABL required rescue with 

an IL-3 transgene to maintain growth factor-independence and STATS activation, 

in addition, these BCR-ABL-transduced cells lacked in vivo leukaemogenic activity 

(Jiang et al., 2002). These data are also supported by results from an in vivo 

mouse model which used a murine retroviral stem cell vector to transduce the
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BCR-ABL oncogene into mouse bone marrow cells (Zhang and Ren, 1998). A

myeloproliferative disorder resembling human CP CML was induced in 100% of

transplanted mice in association with excess production of IL-3. Overall, these

studies suggest that the combined expression of BCR-ABL and IL-3 may be vital

to leukaemia stem cell survival in CML. However, the role of G-CSF is less clear.

It was first demonstrated in 1990 that G-CSF transcripts were increased in CML 

(Klein et al., 1990). This study also showed that the G-CSF produced from these 

cells was functional, as supernatants taken from cultures of these cells were 

capable of stimulating growth of granulocyte-forming colonies from normal bone 

marrow cells. Additionally, the growth of colonies obtained from these CML cells 

could be inhibited by neutralising G-CSF antibodies. Therefore, this study 

concluded that CML-derived progenitors secrete autocrine G-CSF which drives 

terminal cell divisions. Further studies have confirmed that purified populations of 

CD34^ CML cells can survive and proliferate in vitro in the absence of exogenous 

growth factors, however, normal CD34^ cells rapidly die under the same culture 

conditions (Bedi et al., 1994; Maguer-Satta et al., 1998). Jiang et al have also 

shown that when CD34^ cells differentiate and become CD34’, IL-3 and G-CSF 

production decrease, and the cells lose their growth factor independence in vitro, 

despite the continued expression of BCR-ABL (Jiang et al., 1999). In addition, 

these autonomously proliferating CD34^ CML cells are capable of producing 

clonogenic progenitors in vitro for all the lineages (erythroid, granulocyte- 

macrophage and megakaryocyte) that normal CD34^ cells generate in vivo in the 

presence of haemopoietic growth factors (Jiang et al., 2000b). These findings 

highlight the role of autocrine growth factor production in the multi-lineage 

expansion of CD34'*' CML cells that occurs in vivo.
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1.2.3 Quiescent LSCs in CML

Cells with a mechanism of autocrine IL-3 production would be expected to have 

Increased cell cycle activity which would make them susceptible to eradication by 

conventional chemotherapy agents. However, CML is incurable using repeated 

AML-type chemotherapy (Kantarjian et al., 1991) suggesting that there is a pool of 

quiescent CML stem cells which are resistant to treatment. Studies have now 

confirmed the existence of a highly quiescent population of LSC in CML (Holyoake 

et al., 1999). Viable BCR-ABL^ Go cells were isolated using Hoescht 33342 and 

Pyronin Y staining from total CD34^ CML cells by fluorescence activated cell 

sorting (FACS) and were demonstrated to have in vitro progenitor activity by LTC- 

IC assay and the capability of engrafting immunodeficient mice. The ability of 

these quiescent CML stem cells to produce leukaemic progeny also illustrates the 

reversibility of this quiescent state. Further research showed that the entry of BCR- 

ABL^ progenitors into a quiescent state in vivo was greatest in the most primitive 

leukaemia cell populations. This was associated with down-regulation of IL-3 and 

G-CSF gene expression, and spontaneously reversed in association with up­

regulation of IL-3 expression and entry of cells into a continuously cycling state 

(Holyoake et al., 2001). The phenomenon of quiescence in CML is important 

because it would be predicted that the growth factor-independent quiescent CML 

stem cells would have a proliferative advantage over normal quiescent HSCs 

when the concentration of cytokines is low.

1.2.4 The historicai treatment of CML

There have been great advances in the management of CML over the past half 

century. Prior to this, a range of therapies including arsenic, benzene, radiotherapy 

and splenectomy were used as palliative treatment in small numbers of patients 

with limited success (Geary, 2000). From the 1950s to the 1980s, patients with CP
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CML were treated with the oral alkylating agent busulphan as this was relatively

specific for haemopoietic tissue (Galton, 1953). However, this frequently resulted

in permanent sterility and bone marrow failure, and was later reserved for

progressive disease.

In the 1980s, IFN-a, and the ribonucleotide reductase inhibitor hydroxycarbamide 

(formerly hydroxyurea), were introduced for the management of CML. Interferon-a 

is given by subcutaneous injection and is effective at reducing the leukocyte count 

and reversing the clinical and laboratory features of CML. In addition, it has been 

observed that 5-15% of patients receiving IFN-a sustain a very significant 

reduction in Ph^ marrow metaphases (cytogenetic response) with restoration of 

Ph' 'normal' haemopoiesis (Talpaz et al., 1986). However, IFN-a is not without 

side effects; almost all patients experience rigors, fevers, muscle aches and 

general 'flu-like' symptoms on commencing therapy. These symptoms usually last 

1-2 weeks and can be relieved by paracetamol, but they recur whenever the dose 

is increased. A significant proportion of patients are unable to tolerate IFN-a as a 

result of lethargy, malaise, weight loss, depression and other psychological 

disorders.

Hydroxycarbamide targets relatively mature myeloid progenitors. It is given orally 

and the leukocyte count begins to fall within a few days of commencing therapy. 

Hydroxycarbamide therapy can be continued indefinitely, but does not induce a 

cytogenetic response and has no effect on the natural history of the disease, with 

patients eventually progressing to more advanced phases of CML (Kantarjian et 

al., 1993). Hydroxycarbamide has relatively few side effects.

The 1980s also saw the introduction of allogeneic stem cell transplantation 

(alloSCT) which, for the first time, offered the possibility of cure for younger CML
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patients (<50-55 years of age) with HLA-matched donors (Goldman et at., 1986).

This accounts for approximately 20% of CML patients’; however, the procedure is

associated with significant morbidity and a mortality of between 20 and 40%, most

commonly resulting from opportunistic infections and graft-versus-host disease

(GvHD) (Sawyers, 1999; Silver et al., 1999). For those patients’ who receive an

alloSCT, a leukaemia-free survival rate of up to 70% is achieved (Clift and

Anasetti, 1997). The success of alloSCT in CML is related to the power of the

“graft-versus-leukaemia” (GvL) effect in addition to myeloablation. The GvL effect

is greatest in those patients who have post-transplant GvHD, with GvL and GvHD

being driven by major and minor HLA mismatches between donor and recipient

(Spierings et al., 2004), although donor T lymphocytes may also recognise and

destroy as yet unidentified leukaemia-specific antigens (Barrett and van Rhee,

1997). Donor T cell responses to minor histocompatibility antigen differences may

contribute up to 35% of the total GvL response in leukaemic patients (Kloosterboer

et al., 2004).

For patients that relapse after alloSCT, donor lymphocyte infusions (DLI) are given 

in incremental doses with the aim of harnessing the GvL effect. A response to DLI 

can be expected between 3 and 12 months post-infusion. The success rate of DLI 

for relapse of CML post-transplant is at least 70% for patients with haematologic 

relapse and as high as 90% in patients with molecular relapse only (Kolb et al.,

1995).

With the success of alloSCT/DL! in curing CML by exploiting the GvL effect, 

interest in the late 1990s focused on reduced intensity “mini” stem cell transplant 

regimens (RISCT). These less intensive transplant conditioning regimens allow 

transplantation of older patients (up to age 70) and reduce regimen-related 

toxicities compared to standard alloSCT (Slavin et al., 1998; Champlin et al.,



Mhairi Copland, 2007 Chapter 1,45

2000). A recent study (Or et ai., 2003) showed that of 24 patients with CML who

received a RISCT in first CP, 21 remained alive and disease free after a median of

42 months follow up. The GvL effects of donor immunocompetent lymphocytes

eradicated all host haemopoietic cells, as evidenced by molecular testing.

Because only a minority of patients are suitable for alloSCT, interest in the 1990s 

focused on autologous SCT. It was hoped that autografting would result in durable 

Ph' haemopoiesis and, in 2000, the Medical Research Council (MRC) in the UK 

initiated one study comparing autografting with IFN-a therapy (The MRC CML 

2000 trial), and another trial (the CML IV trial) to define the relative roles of IFN-a, 

autologous and alloSCT in the younger patient. However, with the introduction of 

the BCR-ABL tyrosine kinase inhibitor (TKI) imatinib mesylate (IM; Glivec™; 

Gleevec™, formerly STI571, Novartis Pharmaceuticals, Basel, Switzerland), these 

trials were abandoned as patients opted to commence IM treatment rather than 

start or continue on IFN-a therapy or undergo autologous SCT. Even the role of a 

potentially curative alloSCT has been called into question in the IM era.

1,2.5 The development of IM

1.2.5.1 Early studies of protein TKls

The first step towards development of a useful TKI was synthesis of compounds 

called tyrphostins which were low molecular weight TKls that blocked epidermal 

growth factor (EGF)-dependent cell proliferation (Yaish et al., 1988). It was later 

reported that two tyrphostins, AG568 and AG1112, which inhibited the ABL protein 

tyrosine kinase, inhibited p210^^^'^^^ tyrosine kinase activity in the BC-derived 

CML cell line, K562, in association with erythroid differentiation (Anafi et al., 1993). 

Following this, it was suggested that these compounds would be useful for purging 

Ph'*' cells in preparation for autologous SCT. Another tyrphostin, AG957, was
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reported to restore (3i integrin-mediated adhesion and inhibitory signalling in

primary CML (CD34^) stem cell cultures (Bhatia et al., 1998), suppress Ph^ colony

growth in a concentration-dependent manner and induce apoptosis in combination

with an anti-Fas receptor antibody (Carlo-Stella et al., 1999).

Parallel studies showed that the benzoquinonoid ansamycin antibiotic herbimycin 

A also had inhibitory activity against v-ABL and the SRC family of protein tyrosine 

kinases and reversed the transformation of susceptible cell lines with a reduction 

in phosphotyrosine content (Uehara et al., 1988). Herbimycin A was also reported 

to inhibit the growth and tyrosine phosphorylation of K562 cells and induce 

erythroid differentiation (Honma et al., 1989). In addition, herbamycin A induced 

growth inhibition in a variety of p210̂ *̂ '̂ '̂ '̂ transformed cell lines but did not inhibit 

the growth of a broad spectrum of Ph" haemopoietic cell lines (Okabe et al., 1992) 

and prolonged survival in a SCID mouse model with a disease resembling human 

Ph"*” ALL (Honma et al., 1995). Taken together, these studies using tyrphostins and 

herbimycin A suggested that the development of an agent with the potential to 

specifically inhibit BCR-ABL would be of therapeutic benefit in Ph^ leukaemias.

1.2.5.2 The pre-clinical development of IM

The studies leading to the development of IM began in the early 1990s. A large 

number of adenosine triphosphate (ATP)-competitive 2-phenylaminopyrimidine 

compounds were synthesized and screened for protein tyrosine kinase inhibitory 

activity. One of these compounds, CGP57148 (CG = Ciba-Geigy), was found to be 

a potent inhibitor of ABL, c-KIT and platelet-derived growth factor receptor (PDGF- 

R) acting via competitive inhibition of the protein kinases with respect to ATP 

(Druker et al., 1996). The structure of this molecule is shown in Figure 1-8. 

CGP57148 was evaluated for its effects on cells containing the BCR-ABL fusion
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protein. Cellular proliferation and tumour formation by BCR-ABL-expressing cells

were specifically inhibited by this compound. In the CFC assays of peripheral

blood or bone marrow from patients with CML and non-CML controls, there was a

92-98% decrease in the number of BCR-ABL"*" colonies formed from CML cells,

but only 15-20% inhibition of normal colony formation, and it was concluded that

this compound might be useful in the treatment of BCR-ABL^ leukaemias. In

addition, a mouse model demonstrated a concentration-dependent inhibition of

tumour growth in BCR-ABL-inoculated animals treated with CGP57148, with no

effects on animals inoculated with a non-BCR-ABL-expressing cell line.

CGP57148 later became known as STI571 (Signal Transduction Inhibitor 571) or

imatinib mesylate and is now marketed as Glivec™ in Europe and Gleevec™ in

the USA by Novartis Pharmaceuticals, a company formed in 1996 by the merger

of the Swiss life sciences companies Ciba-Geigy and Sandoz.
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Figure 1-8. Structure of IM (Glivec™, Gleevec™; formerly CGP57148 and STI571).

The selective inhibition of BCR-ABL tyrosine kinase is mediated via interaction 

between IM and the amino acids that constitute the ATP binding cleft of BCR-ABL. 

IM is a competitive inhibitor of ATP at its specific binding site in the kinase domain 

of the BCR-ABL protein (Deininger et al., 2000). When ATP binds to its specific 

binding site in the kinase domain, tyrosine phosphorylation of downstream target 

proteins occurs. However, when the synthetic ATP mimic IM is bound, it blocks the
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tyrosine phosphorylation of target proteins downstream of BCR-ABL, inhibiting

effector pathways. IM has an inhibitory concentrationso ( I C 5 0 )  of 0.25 pM on BCR-

ABL kinase activity (Druker et a!., 1996). The IC50 can be measured as either

inhibition of biochemical kinase activity or cellular proliferation. The IC 5 0  i s  the

concentration of drug which results in 50% inhibition of either kinase activity

(biochemical IC50) or cellular proliferation (cellular IC50) compared to a no drug

control. These initial results were swiftly confirmed in a number of other studies

(Carroll et al., 1997; Deininger et al., 1997; le Coutre et al., 1999). Importantly, le

Coutre et al compared dosing nude mice previously injected with BCR-ABL""

human leukaemia cells once, twice and three times daily with IM over an 11-day

period (le Coutre et al., 1999). In the mice dosed three times daily, there was an

87-100% cure rate; however, mice dosed once or twice daily were not cured of

their Ph"" leukaemia. This study supported the hypothesis that continuous therapy

was likely to be necessary for IM to be effective in patients with Ph"" leukaemias.

Preliminary toxicity testing of the oral IM compound revealed occasional renal 

calcification and mild bladder mucosal hyperplasia in rats at a dose of 6  mg/kg, 

and liver toxicity, vomiting, diarrhoea, anaemia and pancytopenia in dogs at the 

highest dose of 100 mg/kg (Druker and Lydon, 2000).

1.2.6 The introduction of IM into ciinical trials

Phase 1 dose escalating trials of IM were undertaken in patients with CP CML who 

had failed IFN-a and patients with BC CML or Ph"" ALL (Druker et al., 2001a; 

Druker et al., 2001b). Serious adverse events were minimal; the most common 

side effects seen were nausea, myalgia, oedema and diarrhoea. Doses of up to 

lOOOmg/day were given; however, a maximum tolerated dose was not reached. In 

patients with CP CML who had failed IFN-a, complete haematologic responses 

(CHR) were seen in 53 of 54 patients treated with daily doses greater than SOOmg
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(Druker et al., 2001b). See Table 1-2 for definitions of response. In addition,

cytogenetic responses were seen in 29 of the 54 treated with more than SOOmg

per day and, of these, 7 patients achieved a complete cytogenetic response

(CCR). In patients with myeloid BC CML responses were seen in 21 of 38 patients

of which 4 had a CHR and, in patients with lymphoid BC or Ph"" ALL, 14 of 20

patients responded , including a further 4 patients who had a CHR (Druker et al.,

2001a). However, in more advanced disease, responses were not durable, with

the majority of patients relapsing within 6 months of commencing therapy. These

studies concluded that IM was well tolerated and had significant anti-leukaemic

activity in all phases of CML. In addition, these studies demonstrated the essential

role of BCR-ABL tyrosine kinase activity in CML and highlighted the potential for

the development of anti-cancer drugs based on a specific molecular abnormality.

Response Definition

Complete haematologic 
response (CHR)

Reduction of the WCC to less than 10 x 10®/L and 
platelet count to less than 450 x 10®/L, with no immature 
cells in the peripheral blood and disappearance of all 
symptoms and signs related to leukaemia including 
splenomegaly, maintained for at least 4 weeks

Complete cytogenetic 
response (CCR)

No Ph"" cells detectable by cytogenetics in the bone 
marrow

Partial cytogenetic 
response (PCR)

1-34% of bone marrow cells have a detectable Ph 
chromosome

Major cytogenetic 
response (MCR)

Includes those that have achieved a CCR or PCR (i.e < 
35% cells Ph"*

Minor cytogenetic 
response (mCR)

35-90% of bone marrow cells have a detectable Ph 
chromosome

Complete molecular 
response (CMoIR)

Either BCR-ABL undetectable by qRT-PCR or > 4.5 log 
reduction in BCR-ABL transcript levels compared to 
starting value

Major molecular 
response (MMoIR)

Either > 3 log reduction in BCR-ABL transcript levels or 
a BCR-ABL transcript level < 0.1% by qRT-PCR 
compared to starting value

Table 1-2. Definitions of response to IM therapy In CML
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Imatinib mesylate progressed rapidly through Phase 2 clinical trials in which the

efficacy and good toxicity profile of the drug were confirmed (Kantarjian et al.,

2002; Ottmann et al., 2002; Sawyers et al,, 2002; Talpaz et al., 2002). In these

studies, the standard dose of IM was established as 400mg/daily for CP CML, but

its favourable toxicity profile allowed IM to be used at higher doses (600-800mg

daily) with the standard dose in AP and BC CML increasing to 600mg/daily and

the possibility of combining IM with other chemotherapeutic interventions

emerged. However, the appearance of the clinical phenomenon of IM resistance,

particularly in lymphoid BC and Ph"" ALL was concerning (Ottmann et al., 2002).

Following the success of the Phase 1 and 2 trials of IM in all phases of CML, a 

prospective, multicentre, open-label, Phase 3, randomised study was designed 

called the IRIS trial (International Randomised Study of Interferon versus STI571). 

This study set out to compare the efficacy of IM with that of IFN-a combined with 

low dose cytosine arabinoside (LDAC) in newly diagnosed CP CML patients and 

determine the haematologic and cytogenetic response rates, toxicity and rates of 

progression. Crossover between the two arms was allowed for lack of response, 

loss of response or intolerance to treatment. Interferon-a in combination with 

LDAC was chosen for the control arm because this combination was shown to 

result in superior rates of cytogenetic response (Guilhot et al., 1997; Baccarani et 

al., 2002) and possibly survival compared to IFN-a alone (Guilhot et al., 1997). 

However, the combination of IFN-a plus LDAC required daily subcutaneous 

injection of both drugs with frequent and troublesome side effects.

The rate of MCR at 18 months was 87.1% in the IM group compared with 34.7% in 

the IFN-a plus LDAC group (P<0.001) (O'Brien et al., 2003). The rates of CCR 

were 76.2% and 14.7% respectively (P<0.001). In addition, at 18 months, 

progression free survival (PFS) in the IM arm was 96.7% compared to 91.5% in
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the control arm. IM was also better tolerated than IFN-a plus LDAC (Hahn et al.,

2003). At the most recent update of this study, the CCR and MCR rates in the IM

arm were 87% and 92%, respectively, with a PFS of 93% at 60 months (Druker et

al., 2006). Only 3% of patients commenced on IFN-a plus LDAC continued on this

arm compared to 69% of patients who initially commenced IM. Therefore, this trial

demonstrated the superiority of IM to IFN-a plus LDAC in terms of disease

response, PFS and tolerability. During the course of this study, molecular

responses were assessed at regular intervals by qRT-PCR of peripheral blood

leucocytes for BCR-ABL transcripts (Hughes et al., 2003). Patients responding to

IM had a 3-4 log reduction in transcript levels compared to their starting value.

Therefore, other than alloSCT, IM induced a much higher rate of CCR than any

other licensed therapy and, indeed, has brought the role of alloSCT in CML into

question. However, alloSCT remains the only proven curative option for CML as,

after successful alloSCT, the majority of patients are BCR-ABL" by qRT-PCR.

Conversely, even patients who have an optimal response to IM, i.e. achieve CCR,

continue to have low levels of BCR-ABL transcripts detectable by qRT-PCR. In

addition, there is increasing evidence for disease resistance at the stem cell level

(Graham et al., 2002); a phenomenon termed molecular persistence, and the

emergence of IM resistance, particularly in advanced disease.

7.2.7 Imatinib mesylate resistance

Although more common in AP and BC, resistance to IM may also be seen in CP 

CML. This phenomenon has resulted in IM being less successful in advanced 

disease (Druker et al., 2001a; Ottmann et al., 2002; Sawyers et al., 2002; Talpaz 

et al., 2002). Some patients in AP do respond well, and although many patients 

treated in BC achieve some haematological improvement, these benefits are not 

maintained, with the majority of patients in the advanced stages of CML
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developing resistance to IM. Resistance can be primary, i.e. no response to IM

after initial therapy, and is defined as failure to achieve CHR within 3 months and

failure to achieve MCR by 6 months or CCR by 12 months, or acquired, i.e. loss of

established haematological, cytogenetic or molecular response to IM or

progression to AP or BC.

There are 2 broad categories of IM resistance: BCR-ABL-independent and BCR- 

ABL-dependent. In BCR-ABL-independent resistance, the leukaemia cells are no 

longer reliant on BCR-ABL to drive proliferation; their growth being dependent on 

additional oncogenic mutations (Donato et al., 2004) and this represents clonal 

evolution. Thus, in these cells, BCR-ABL is no longer a relevant target for IM and 

any specific BCR-ABL inhibitor would be ineffective in this situation. This may 

occur in primary or acquired resistance.

Acquired resistance in Ph"' leukaemias is usually BCR-ABL-dependent and is the 

result of restoration of BCR-ABL kinase activity. This can occur via three different 

mechanisms. The first of these is BCR-ABL amplification which was first described 

in a landmark publication by Gorre et al in 2001 (Gorre et al., 2001). In this study, 

dual-colour fluorescence In-situ hybridisation (FISH) was performed to determine if 

BCR-ABL gene amplification could be implicated in IM resistance in primary CML 

samples. In a number of patients with advanced phase disease, multiple copies of 

the BCR-ABL gene were detected. It is presumed that, in the presence of BCR- 

ABL amplification, there is insufficient IM present in the leukaemic cell to inhibit the 

increased level of BCR-ABL protein.

In addition, this study by Gorre et al (Gorre et al., 2001) was one of the first to 

consider the possibility that mutations in BCR-ABL might result in IM resistance. 

Indeed, this was the first study to report the single nucleotide substitution (C to T)
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at position 315 of ABL, resulting in replacement of a threonine residue with

isoleucine (T315I). To date, more than 40 different BCR-ABL kinase domain

mutations which result in intrinsic changes in the kinase that can affect drug

binding or kinase activity have been reported (Branford et al., 2002; Shah et al.,

2002; von Bubnoff et al., 2002; Branford et al., 2003). These mutations may

involve the ATP-binding site (P-loop), the activation loop or the carboxy terminus

of the BCR-ABL molecule. However, the T315I mutation remains the most

clinically significant as it is resistant to high concentrations of IM and also the

second generation inhibitors described later (Section 1.3.2).

Recent studies suggest that BCR-ABL protein conformation is absolutely critical 

for IM binding and function (Shah et al., 2002). Active BCR-ABL exists in an open 

(non-accessible) conformation and inactive BCR-ABL in a closed (accessible) 

conformation; thus sensitivity to IM in CML is presumed to result from a dynamic 

switch between open and closed conformations possibly linked to cell cycle 

progression. Indeed, IM has been shown to bind to the closed conformation of 

BCR-ABL and results in a number of structural changes to the protein after binding 

(Schindler et al., 2000). Therefore, in the presence of BCR-ABL kinase domain 

mutations, it is thought that IM is unable to bind due to either interruption of critical 

contact points between IM and BCR-ABL or induction of an inaccessible BCR-ABL 

conformation (Shah et al., 2002). The clinical significance of BCR-ABL kinase 

domain mutations is variable. Apart from the T315I mutation, those affecting the P- 

loop are associated with the poorest outcomes (Branford et al., 2003). In addition, 

studies have shown that some mutations confer only a moderate degree of IM 

resistance which can be overcome by increasing the dose of IM (Corbin et al., 

2003).
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The ciinical significance of the T315I mutation is related to its position in the BCR-

ABL molecule and it is described as a ‘gatekeeper’ of the ATP binding site. This is

because it separates the ATP binding site from an internal cavity and the nature of

the gatekeeper molecule is a vital determinant of inhibitor specificity (Liu et al.,

1999; Schindler et al., 1999). Threonine^^^ forms critical hydrogen bonds with IM,

and the absence of the oxygen molecule provided by the side chain of threonine^^^

prevents the formation of a vital hydrogen bond with IM (Gorre et al., 2001). In

addition, compared to threonine, isoleucine contains an extra hydrocarbon group,

resulting in a steric clash with IM and preventing IM binding to BCR-ABL.

The third proposed mechanism of BCR-ABL-dependent IM resistance is that 

intracellular levels of IM are reduced. This may occur via multidrug resistance 

proteins, e.g. MDR1 overexpression which increases drug efflux (Mahon et al., 

2003; Thomas et al., 2004) and alpha-1-acid glycoprotein which reduces the 

availability of the drug in vivo (Gambacorti-Passerini et al., 2002). Further studies 

have shown that expression levels of the cellular transporter OCT-1 are low in 

some patients with CML on IM, resulting in low intracellular concentrations of IM 

(Thomas et al., 2004; White et al., 2005). The role of other transporter molecules 

is more contentious, in particular the role of ABCG2 with some groups showing IM 

to be a substrate of ABCG2 (Burger et al., 2004) and others an inhibitor (Houghton 

et al., 2004; Jordanides et al., 2006); although there is now increasing evidence 

that IM is an ABCG2 inhibitor.

In clinical practice, the most common mechanism of IM resistance is mutation of 

the BCR-ABL kinase domain that interferes with IM binding (P-loop mutations) 

and, in some patients, these mutations have been shown to be present prior to 

commencing treatment with IM (Roche-Lestienne et al., 2002; Kreuzer et al.,



Mhairi Copland, 2007 Chapter 1, 55

2003). A major focus of current research interest is overcoming IM resistance and

inducing CML stem cell apoptosis.

1.2.8 Molecular persistence

Despite an impressive rate of CCR in CP CML, the majority of patients have 

persistent detectable disease at the molecular level by qRT-PCR (Hughes et al., 

2003; Branford et al., 2004). It is hypothesised that this minimal residual disease 

(MRD) is due to a dual population of primitive leukaemic cells. The first is a subset 

of CML cells which undergo cell cycle arrest and accumulate in G0/G1 in vitro in 

the presence of IM or other anti-proliferative agents, including conventional 

chemotherapy agents (Jorgensen et al., 2005a). Theoretically, these cells can be 

eradicated by giving pulsed sequential therapies to encourage the cells back into 

cycle. The second, and more significant population, postulated to contribute to 

MRD is the quiescent stem cell population (Holyoake et al., 1999) as, in vitro, 

quiescent CML stem cells were shown to be completely insensitive to IM at 

concentrations up to 10 times higher than those achievable in vivo (Graham et al.,

2002), while proliferating cells remained exquisitely sensitive. In addition, an in 

vivo study to assess presence of BCR-ABL"" cells by FISH and levels of BCR-ABL 

mRNA by qRT-PCR demonstrated that samples from different CML patients 

collected at different time points displayed persistence of BCR-ABL"" progenitors 

despite continued IM therapy (Bhatia et al., 2003). This was further indication that 

IM did not eliminate malignant primitive progenitors in CML patients. Further 

clinical studies have shown that, over time, in patients who have achieved a CCR, 

BCR-ABL transcript levels slowly continue to decrease (Goldman et al., 2005). 

This finding supports the hypothesis that CML stem cells are less sensitive than 

more mature CML progenitors to IM in vivo. The quiescent CML stem cell 

population is gradually reduced as these cells enter the cell cycle and proliferate.
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becoming IM-sensitive and undergoing apoptosis. As the quiescent CML stem cell

population diminishes, the BCR-ABL transcript level falls. Therefore, despite its

impressive clinical efficacy in CML, particularly CP, due to the quiescent CML

stem cell population, IM does not cure CML.

One possible explanation for the relative insensitivity of quiescent CML stem cells 

to IM is the conformation of the BCR-ABL kinase domain in the quiescent versus 

proliferating stem cells (Shah et al., 2002). The switch between open (non- 

accessible) and closed (accessible) conformations may not be triggered in 

quiescent CML stem cells; hence IM may not be the optimal choice of agent to 

eradicate this population. Other proposed explanations for insensitivity of CML 

stem cells to IM include BCR-ABL amplification or increased BCR-ABL transcripts 

within the stem cell compartment and altered levels of drug influx and efflux pumps 

on the cell membrane of CML stem cells.

In some patients, no residual BCR-ABL transcripts were detected after prolonged 

treatment with IM (Kantarjian et al., 2004; Rosti et al., 2004; Cortes et al., 2005b). 

However, the reported frequency of this was very variable (4% to 34%), probably 

due to the different sensitivities of the test methods used and available technical 

skills (Baccarani et al., 2006). In a few patients who stopped IM after achieving a 

CMoIR, disease rapidly recurred further highlighting the clinical importance of 

quiescent CML stem cells (Cortes et al., 2004b; Mauro et al., 2004). Despite this, 

IM has altered the natural history of the condition by increasing PFS in those 

patients who respond to it and therefore the overall median survival (Druker et al., 

2006). However, the long term efficacy of IM remains unknown and the side 

effects of long term IM exposure remain to be assessed. A recent study brought 

attention to an Increased risk of cardiac morbidity and mortality in patients treated 

with IM (Kerkela et al., 2006). It was reported that ten patients presented with
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congestive cardiac failure while on IM therapy and, in addition, mice treated with

IM developed left ventricular contractile dysfunction. This was found to be related

to the endoplasmic reticulum stress response in cardiac myocytes which can be

mediated by ABL. Therefore, cardiotoxicity may be an unexpected side effect of IM

inhibition of ABL. However, this finding is controversial as there was no significant

increase in cardiac morbidity or mortality reported in the IRIS trial (Druker et al.,

2006).

Thus, in view of the potential for long term side effects and also the potential for 

molecular relapse, which may be due to the emergence of BCR-ABL kinase 

mutations, all CP CML patients, and particularly those with molecular persistence 

need to be clinically assessed regularly and monitored for signs of molecular 

relapse by qRT-PCR for BCR-ABL.

1.2.9 Assessment of BCR-ABL kinase activity

While measurement of BCR-ABL transcripts by qRT-PCR provides a valuable 

estimation of disease burden and how a patient is responding to treatment 

(Branford et al., 1999; Hughes et al., 2003; Hughes et al., 2006), it does not 

provide a direct assessment of the efficacy of a treatment against BCR-ABL 

kinase activity. In addition, there may be a discrepancy between BCR-ABL 

transcript and protein expression levels. Therefore it is important to be able to 

directly measure BCR-ABL kinase activity both in vitro and in vivo. The most direct 

measure of this would be determination of phosphorylated BCR-ABL protein 

expression which, although measurable in cell lines (Konopka et al., 1985; Clark et 

al., 1987), is difficult to measure in clinical specimens because BCR-ABL is 

subject to rapid degradation when conventional lysis buffer is used (Maxwell et al., 

1987). This is because lysis of mature CML MNCs releases an enzyme, which is 

now thought to be an acid-dependent hydrolase (Patel et al., 2006), that
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selectively destroys BCR-ABL and ABL, but not other proteins. Therefore, it is now

accepted that measurement of phosphorylated CrKL, an adaptor molecule which

is phosphorylated by BCR-ABL is an adequate surrogate (Nichols et al., 1994;

Oda et al., 1994; ten Hoeve et al., 1994; Hochhaus et al., 2001). CrKL directly

binds BCR-ABL and links BCR-ABL with downstream effector pathways (Senechal

et al., 1996), playing a functional role in transformation. Phosphorylated CrKL can

be measured reproducibly and quantitatively in clinical samples by Western

blotting. In addition, it has been shown that CrKL phosphorylation is inhibited in a

concentration-dependent fashion when CML cells were treated with IM, and this

strongly correlated with inhibition of BCR-ABL phosphorylation (Gorre et al., 2001).

Therefore assessment of CrKL phosphorylation status can be used to assess the

degree and concentration-dependence of inhibition of BCR-ABL kinase activity by

different TKIs in both cell lines and clinical samples.

1.3 Potential strategies to overcome IM resistance and 

molecuiar persistence

A number of potential strategies exist to overcome IM resistance and molecular 

persistence seen in CML both in vitro and in vivo. The three which I will 

concentrate on for the remainder of this thesis are (1) attempting to reverse the 

quiescent state and Gq/Gi cell cycle arrest seen in primitive CML cells after 

treatment with IM; (2) the use of potent dual SRC/BCR-ABL TKIs; and (3) 

combining IM with other chemotherapeutic agents.

1.3.1 The rationale for reversing quiescence in CML stem cells

Studies have already shown that increasing the dose of IM does not eliminate 

CML cells in vitro (Graham et al., 2002) or in vivo. In fact, while IM effectively 

reduced dividing CML cells in vitro, it resulted in an increase in the number of non-
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dividing (quiescent) CML cells due to a marked anti-proliferative effect (Graham et

al., 2002) which was not anticipated and the mechanism behind it remains to be

elucidated. In addition, many drug combinations do not eliminate quiescent CML

cells in vitro (Holtz et al., 2005; Jorgensen et al., 2005a) resulting in the molecular

persistence seen in vivo. Thus, reversal of the quiescent state may restore IM

sensitivity in CML stem cells.

Cytokines, including G-CSF can trigger normal quiescent primitive progenitors to 

enter the cell cycle (Ogawa, 1993). In addition, exogenous G-CSF has been 

shown to promote rapid progression into S-phase of initially quiescent, primitive (c- 

kit"", Sca-1^, lin") progenitors in a murine model (van Pelt et al., 2003). Further 

studies have shown that G-CSF-R transcript levels are two-fold higher in cycling 

(G1/S/G2/M phases) normal human bone marrow cells in comparison to quiescent 

(Go) cells (Jorgensen et al., 2006) . Of specific relevance, haemopoietic growth 

factors have been shown to stimulate AML cells in vitro, and the simultaneous 

administration of chemotherapy with growth factors resulted in increased 

cytotoxicity in AML, in particular with the cell cycle-specific agent cytosine 

arabinoside (Ara-C) (Cannistra et al., 1989; Bhalla et al., 1991; te Boekhorst et al., 

1993). In addition, there are case reports of occasional patients with leukaemia 

achieving remission when treated with recombinant human G-CSF (rHu-G-CSF) 

alone (Nimubona et al., 2002).

A recent clinical trial examined the effect of priming with rHu-G-CSF in 

combination with conventional chemotherapy including Ara-C in the induction 

therapy phase on the outcome of AML (Lowenberg et al., 2003). The results 

demonstrated that although there was no significant difference in response rate 

after induction therapy, after a median follow-up of 55 months, the disease-free 

survival rate was higher in those patients receiving rHu-G-CSF with their
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chemotherapy compared to those who did not receive rHu-G-CSF (42% versus

33%: P=0.02). In addition, chemotherapy including rHu-G-CSF showed a trend

towards improved overall survival (P=0.016). However, in the subgroup of patients

with poor risk AML, the administration of rHu-G-CSF did not improve outcome.

Therefore, induction therapy including rHu-G-CSF with Ara-C improved overall and

disease-free survival in standard risk AML (Lowenberg et al., 2003). Importantly,

this study provided proof of the principle that combining haemopoietic growth

factors to sensitise leukaemia cells with conventional chemotherapy was a valid

potential therapeutic strategy for improving the response to therapy.

Recombinant human G-CSF has also been safely and successfully used for 

peripheral blood stem cell mobilisation in healthy donors (Goldman et al., 2006) 

and CML patients treated with IM with no significant rise in BCR-ABL transcript 

levels by qRT-PCR (Drummond et al., 2003; Hui et al., 2003). Furthermore, it is 

current practice to use rHu-G-CSF in combination with IM in CML patients with IM- 

induced neutropenia because myelosuppression during IM therapy is associated 

with a poorer cytogenetic response (Marin et al., 2003a; Sneed et al., 2004). It has 

been suggested that the improved cytogenetic responses observed in these 

patients result from an increased exposure to IM (Heim et al., 2003; Marin et al., 

2003b; Quintas-Cardama et al., 2004). However, another possible action of G- 

CSF in this situation may be to promote re-entry of quiescent CML stem cells into 

the cell cycle and hence increase their sensitivity to IM (Jorgensen et al., 2005b).

Previous studies had shown that, in vitro, Ph"" CML cells lost LTC-IC activity when 

cultured regardless of the presence of growth factors (Udomsakdi et al., 1992; 

Petzer et al., 1997). However, at the same time, CFC numbers were amplified and 

there was accumulation of increasingly differentiated cells of mixed lineages 

(Maguer-Satta et al., 1998; Jiang et al., 1999). These results indicate that the rapid
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loss of LTC-IC activity seen in CML cells in vitro may be due to an enhanced

propensity for primitive CML progenitors to differentiate into more mature cells

which no longer have multipotent stem cell potential. Therefore, it may be possible

to increase the differentiation of CML progenitor cells by the addition of rHu-G-

CSF in vitro or in vivo to force quiescent cells to enter the cell cycle. In effect, is it

possible to eradicate CML by forcing all the quiescent CML stem cells to

proliferate, differentiate and lose their stem cell properties?

If this hypothesis is correct, it may be possible to induce cell cycle activation in 

quiescent CML stem cells with rHu-G-CSF, thereby escaping the IM-insensitive 

quiescent state. Additionally, continuous IM resulted in accumulation of IM- 

insensitive quiescent CML stem cells in Go (Graham et al., 2002), so it may be 

possible to bring the cells back into cycle by interrupting IM therapy, a so called 

'IM holiday’. It is possible that combining these two approaches may be synergistic 

in eradicating quiescent CML stem cells. Thus, by inducing cell cycle activation 

with rHu-G-CSF and/or interruption of IM therapy, the aim is to reverse quiescence 

and sensitise cells to IM, thereby eliminating disease.

1.3.2 The rationale for using potent dual SRC/BCR-ABL TKIs

A significant minority of patients, particularly those with advanced disease become 

resistant to IM through the development of BCR-ABL kinase domain mutations 

which interfere with the binding of IM to the ATP binding pocket of BCR-ABL 

(Gorre et al., 2001; Branford et al., 2002; Shah et al., 2002; von Bubnoff et al., 

2002; Branford et al., 2003). In addition, the mechanisms which contribute to the 

molecular persistence present in CML patients after treatment with IM are unclear 

(Hughes et al., 2003; Branford et al., 2004). Therefore, there is a requirement for 

the development of new agents which are more powerful inhibitors of BCR-ABL 

and bind to BCR-ABL regardless of conformational status, reducing the likelihood
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of developing resistance. A new generation of combined SRC/BCR-ABL kinase

inhibitors that do not appear to be conformation sensitive and are at least 10-20-

fold more potent than IM are now available (Nagar et al., 2002). These novel

agents are active against many of the frequently observed kinase domain

mutations that cause resistance towards IM (von Bubnoff et al., 2003). Dasatinib

(Sprycel™; formerly BMS-354825, manufactured by Bristol-Myers Squibb,

Princeton, NJ, USA) is one such agent and was the first of these compounds to

enter clinical trials in Ph"" leukaemias. The structure of dasatinib is shown in

Figure 1-9.
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Figure 1-9. Structure of dasatinib (SpryceF"; formerly BMS-354825).

1.3.2.1 Dasatinib

Dasatinib was selected from a panel of substituted 2-(aminopyridyl) and 2- 

(aminopyrimidinyl) thiazole-5-carboxamides which were all shown to have 

substantial anti-proliferative activity against haematological and solid tumour cell 

lines, including the BC CML cell line K562 (Lombardo et al., 2004). Dasatinib was 

chosen on the basis of broad-spectrum anti-proliferative activity and suitable 

circulating plasma levels following oral dosing in a mouse screening assay with 

only moderate plasma protein interactions and maintained blood levels. Three- 

dimensional X-ray crystallography studies showed that ABL kinase complexed 

with dasatinib in an active conformation with the presence of three hydrogen 

bonds between dasatinib and ABL (Lombardo et al., 2004). These specific 

hydrogen bonds between dasatinib and ABL may account for the activity of
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dasatinib against mutant BCR-ABL kinases (except T315I). A similar pattern of

binding was observed between dasatinib and SRC kinases.

A kinase selectivity panel showed that dasatinib was a potent competitive inhibitor 

of ATP binding to SRC (IC50 ~0.5nM) and BCR-ABL (IC50 < lOnM) as well as 

PDGF-R-p (IC50 28nM) and c-KIT (IC50 6nM)(Lombardo et al., 2004). (n vivo 

activity against wild-type BCR-ABL was evaluated using a K562 xenograft assay in 

nude mice (Lombardo et al., 2004). After the establishment of detectable tumour 

burden, daily treatment with dasatinib resulted in complete disappearance of 

tumour cells with no observed toxicity in the animals, showing, for the first time the 

potency of dasatinib in vivo and the favourable toxicity profile, at least in animal 

models of CML.

Further in vitro and in vivo experiments were undertaken to determine the efficacy 

of dasatinib in overcoming IM resistance caused by BCR-ABL kinase domain 

mutations (Shah et al., 2004). Firstly, using a cell-based assay, this study 

confirmed that dasatinib was more effective than IM at inhibiting wild-type BCR- 

ABL. Further cell-based assays using the murine pro-B cell line Ba/F3 which had 

been engineered to express different clinically significant mutant BCR-ABL 

kinases showed BCR-ABL inhibition and suppression of growth when dasatinib 

was used in the low nM range. Interestingly, even within this very low 

concentration range, there were differences in the sensitivities of selected BCR- 

ABL mutants (Shah et al., 2004; O'Hare et al., 2005). However, the T315I 

expressing Ba/F3 cell line was resistant to dasatinib, even in the pM range.

To assess therapeutic potential of dasatinib in IM-resistant Ph"̂  leukaemias, SCID 

mice were inoculated with Ba/F3 cells expressing different BCR-ABL kinase 

mutations (Shah et al., 2004). Assessment of BCR-ABL activity by determination
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of CrKL phosphorylation status on splenocyte lysates from the affected mice

showed inhibition of CrKL phosphorylation for up to seven hours after

administration of dasatinib. Another cohort of mice were treated with dasatinib for

two weeks beginning three days after inoculation with Ba/F3 cells. The untreated

control mice developed progressive disease as did those treated with dasatinib but

inoculated with cells containing the T315I mutation. However, mice inoculated with

cells expressing wild-type BCR-ABL or the IM-resistant mutant M351T remained

healthy. Further in vitro studies using human bone marrow progenitor cells were

undertaken to further assess the efficacy and safety of dasatinib. Dasatinib at a

concentration of 5nM failed to inhibit the growth of CFCs from healthy donors.

However, CFCs were inhibited by 60-80% in bone marrow progenitor cells taken

from patients with either wild-type or mutant BCR-ABL (Shah et al., 2004). Based

on the results of these studies, it was hypothesised that a significant number of

patients with IM-resistant Ph"" leukaemias would benefit from dasatinib if it could

be given safely in the low nM range. Thereafter, dasatinib progressed rapidly to

clinical trial.

Other dual SRC/BCR-ABL kinase inhibitors including PD173955, PD166326 and 

SKI-606 have been shown to be potent at picomolar concentrations in both cell 

line (Nagar et al., 2002; Golas et al., 2003; Huron et al., 2003; von Bubnoff et al., 

2003; Konig et al., 2006) and animal models (Golas et al., 2003; Wolff et al.,

2003). In addition, newer agents such as INNO-406, a BCR-ABL/LYN TKI are 

currently under evaluation (Kimura et al., 2005; Yokota et al., 2006). However, as 

yet, only SKI-606 and INNO-406 have entered phase 1 clinical trials (Cortes et al., 

2006).

The results of a Phase 1 dose-escalation study using dasatinib in patients with Ph"" 

leukaemias who had either IM-resistance or IM-intolerance have recently been
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published (Talpaz et ai., 2006). Dasatinib was administered orally at doses of 15 to

240mg per day in monthly treatment cycles. Thirty seven of 40 patients (92.5%)

with CP CML achieved a CHR, and a major haematologic response (< 5% blasts)

was seen in 31 of 44 patients (70%) with advanced disease (AP, BC or Ph"’ ALL).

The MCR rate was 45% in CP and 25% in advanced disease. These responses

were sustained in 95% of CP patients and 82% of AP patients. However, nearly all

patients with lymphoid BC or Ph"̂  ALL relapsed within six months. The main side

effects seen were reversible myelosuppression, pericardial effusion, and oedema.

Dasatinib is currently completing Phase 2 clinical trials (Guilhot et al., 2005;

Hochhaus et al., 2005; Ottmann et al., 2005; Talpaz et al., 2005) and has recently

been licensed for use in the UK and the US.

Another agent also in clinical trials in IM-resistant Ph"" leukaemias is nilotinib 

(Tasigna™; formerly AMN107, manufactured by Novartis). Nilotinib is a rationally 

designed selective inhibitor of BCR-ABL, which was based on the crystal structure 

of the ABL kinase domain in complex with IM (Weisberg et al., 2005). In vitro, 

nilotinib is approximately 20-fold more potent than IM against wild-type BCR-ABL 

and is also effective against the majority of BCR-ABL kinase domain mutations 

(except T315I) (O'Hare et al., 2005). In a phase 1 dose-escalation study, nilotinib 

was active in IM-resistant CML with a reasonable safety profile (Kantarjian et al., 

2006). The commonest side effects were rash, gastrointestinal disturbances, 

hyperbilirubinaemia and reversible myelosuppression.

While dasatinib and nilotinib are effective against the majority of BCR-ABL kinase 

mutations, their major limitation is the inability to target the relatively common 

mutation T315I which is increasingly being seen (Shah et al., 2002), particularly in 

advanced disease. The small molecule aurora kinase inhibitor MK-0457 (VX-680; 

manufactured by Merck and Co., Inc, Blue Bell, PA, USA) has in vitro activity
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against cells expressing wild type and mutant BCR-ABL including T315I (Giles et

al., 2006) and has been shown to block cell cycle progression and inhibit

apoptosis in different human tumours (Harrington et al., 2004). Aurora kinases are

essential for the regulation of mitotic chromosome separation and cytokinesis. In

addition, MK-0457 has been used in three patients with Ph"" leukaemias

associated with the T315I mutation (Giles et al., 2006). All three patients had

clinical responses and no significant adverse events were reported, providing the

first observation of response in patients with T315I mutations. Clinical trials with

MK-0457 in patients with T315I mutations are currently underway.

1.3.2.2 The role of SRC kinases in normal haemopoiesis

The SRC kinases are a family of eight non-receptor protein tyrosine kinases (SRC, 

LYN, HCK, LCK, FYN, BLK, FGR and YES) which are expressed in haemopoietic 

and non-haemopoietic cells (Korade-Mirnics and Corey, 2000). SRC kinases are 

involved in a range of cellular processes including cell migration, adhesion, 

proliferation, survival, DNA synthesis, the cell cycle and phagocytosis. These 

responses are mediated via the Ras, PI3K and focal adhesion kinase (FAK) 

pathways. SRC kinase activity is modulated by post-translational changes in 

phosphorylation status and ubiquitination (Oda et al., 1999). The SHI domain of 

SRC molecules forms the catalytic domain, consisting of -250 amino acids at the 

carboxy terminus. Within the catalytic domain are a positive autophosphorylation 

site (Y416) which becomes phosphorylated during enzyme activation and a 

negative autophosphorylation site (Y527) which negatively regulates tyrosine 

kinase activity (Cooper and Howell, 1993). Dephosphorylation of Y527 results in a 

conformational change, increasing enzyme autophosphorylation and kinase 

activity.
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LYN, HCK and FGR are the SRC kinases which have been shown to be

expressed in myeloid cells (Korade-Mirnics and Corey, 2000). In myeloid cell

development, SRC kinases promote growth factor-dependent cell cycle

progression, and the presence of LYN has been described as being necessary for

induction of DNA synthesis and hence proliferation by G-CSF in haemopoietic

cells (Corey et al., 1998). In addition, SRC kinases may also contribute to the

differentiation of myeloid cells, improve neutrophil adhesion and migration,

increase phagocytosis and prolong survival by preventing apoptosis (Korade-

Mirnics and Corey, 2000).

1.3.2.3 Evidence for abnormal function of SRC kinases in CML

SRC kinases play a major role in the development, growth, progression and 

metastasis of a range of human cancers (Frame, 2002) and increased SRC kinase 

activity and protein expression have been demonstrated in a variety of cancer 

types including colon, breast, pancreas, lung and brain. SRC kinases affect signal 

transduction through a number of oncogenic mechanisms including EGF-R, 

Her2/neu, PDGF-R, FGF-R and VEGF-R. Therefore it would be anticipated that 

inhibiting SRC kinase activity would be effective at blocking the abnormal 

pathways that stimulate oncogenic transformation of cells.

The first evidence for the activation for SRC kinases in leukaemia came from a 

study which showed that LYN was specifically activated in myeloid leukaemia cell 

lines in response to IL-3 (Torigoe et al., 1992), indicating that LYN may be 

important in IL-3 signalling cascades, at least, in some myeloid leukaemias. A later 

study demonstrated that proliferation of the myeloid leukaemia cell line M07e in 

response to GM-CSF was decreased by a LYN antisense oligonucleotide or 

culture in the presence of the TKI PD166285 (Roginskaya et al., 1999). More
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pertinent was a study which showed that the SRC kinases LYN and HCK were

activated in a number of cell lines expressing (Danhauser-RiedI et a!.,

1996).

In normal haemopoiesis, CXCR-4, the G protein-coupled receptor of stromal- 

derived factor (SDF)-I, stimulates LYN and activates the PI3K pathway with 

effects on cell motility and migration. It has been demonstrated that binding of 

phosphorylated BCR-ABL to LYN results in constitutive activation of LYN and 

PI3K. In addition, these kinases become completely unresponsive to SDF-1 in the 

presence of phosphorylated BCR-ABL (Ptasznik et al., 2002). Moreover, inhibition 

of BCR-ABL with IM restored the regulation of LYN by SDF-1. This highlights a 

LYN-dependent mechanism via which BCR-ABL disrupts G protein-coupled 

receptor signalling and function and indicates that BCR-ABL disrupts normal LYN 

function, altering chemokine signalling and chemotaxis, resulting in altered cell 

motility and migration. Further studies have reported that in vitro, the IM-resistant 

cell line, K562-R, displays BCR-ABL independence in association with over­

expression of LYN kinase (Donato et al., 2003). In addition, samples taken from 

patients with advanced phase CML who became IM-resistant showed similar 

levels of LYN kinase expression to the K562-R cell line (Donato et al., 2003). Up- 

regulation of BCL-2 by LYN has also been implicated as a potential mechanism of 

BCR-ABL-independent resistance in CML (Dai et al., 2004), although this study 

was conducted in cell lines only and may have been flawed as the phosphorylated 

LYN antibody used was targeted against the negative regulatory site (Y507) and 

not the activation site (Y411). These studies suggest that, in some cases, acquired 

IM-resistance may be associated with BCR-ABL independence and increased 

expression of additional tyrosine kinases, resulting in up-regulation of downstream 

signal transduction pathways.
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HCK has also been implicated in the signalling pathways downstream of BCR-

ABL. HCK is activated by BCR-ABL and studies have shown that the growth factor

independence exhibited by BCR-ABL"’ cell lines is suppressed by a kinase-

defective HCK (Lionberger et al., 2000). More recently, HCK has been implicated

in a novel BCR-ABL-HCK-STAT5 signalling pathway, involved in transformation of

myeloid cells by BCR-ABL (Klejman et al., 2002).

Taken together, these results indicate that SRC kinases are likely to be important 

in modulating signal transduction pathways downstream of BCR-ABL. In addition, 

there is evidence that activation of SRC kinases may result in BCR-ABL- 

independent IM-resistance in some patients. Therefore, dasatinib, which is 325 

times more potent than IM at inhibiting BCR-ABL and also has the ability to inhibit 

SRC kinases may be useful for targeting quiescent CML stem cells.

1.3.3 The rationale for combining IM with other chemotherapeutic 

agents

To date, a wide range of conventional and novel agents (e.g. hydroxycarbamide, 

Ara-C, IFN-a, arsenic trioxide and FTIs) have been combined with IM in vitro to 

overcome IM resistance and eliminate CML cells (La Rosee et al., 2002; Topaly et 

al., 2002; Druker, 2003). The majority of in vitro data come from experiments with 

CML cell lines and not primary CML cells. Many of these studies showed 

significant in vitro responses in proliferating cells, however, they did not target the 

IM-insensitive quiescent stem cell population. Although many of these studies 

have been informative, none have addressed cytotoxicity at the stem cell level. A 

recent study (Jorgensen et al., 2005a) showed that many drug combinations 

inducing apoptosis in CML cell lines were ineffective in primary CML cells and, 

indeed, there was a trend towards further accumulation of quiescent stem cells in 

response to combination therapy. Indeed, in this study by Jorgenson et al
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(Jorgensen et al., 2005a), the only combination to show superiority to IM alone on

the quiescent stem cell population was the combination of IM with the FTl

lonafarnib (formerly SCH66336; Schering-Plough, Kenilworth, NJ, USA), however,

the results failed to reach statistical significance. Farnesyltransferase inhibitors

have been used extensively in clinical trials of myeloid leukaemias including CML.

Interestingly, a novel cytotoxic FTl, BMS-214662, has been described which has

activity against non-proliferating cells in vitro (Lee et al., 2001).

1.3.3.1 The mode of action of FTIs

A critical pathway activated by BCR-ABL is the Ras pathway, and although not 

fully specific for Ras, a range of FTIs have been developed which inhibit Ras. The 

FTIs are also potent inhibitors of MDR1 (Wang et al., 2001). The signalling 

functions of both normal and oncogenic Ras are dependent on the membrane 

association of Ras which is achieved by post-translational processing of cytosolic 

Ras and involves three enzymatic steps. Firstly, there is farnesylation of a cysteine 

four residues from the C-terminus; secondly, hydrolysis of the C-terminal 

tripeptide; and, thirdly, methyl estérification of the new C-terminal farnesylcysteine 

(Hunt et al., 2000). The key step in this process is the farnesylation of Ras by the 

enzyme FT and, based on this finding, a number of FTIs have been developed for 

clinical use because, although Ras undergoes a number of post-translational 

modification steps, only farnesylation is necessary for membrane localisation and 

cell-transforming activity (Heimbrook and Oliff, 1998). In addition to Ras, a number 

of other intracellular proteins are substrates for prénylation by FT including RhoB, 

Rac and lamin (Rowinsky et al., 1999). In CML, the importance of Ras is as an 

obligatory signalling molecule downstream of BCR-ABL, and inhibitors of Ras may 

have potent anti-proliferative effects.
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Ras proteins exist in the farnesylated form only in the absence of FTIs. The

isoforms K-Ras and N-Ras, but not H-Ras, undergo geranylgeranylation when

farnesylation is inhibited resulting in failure to completely inhibit Ras processing

and it is hypothesised that the K-Ras resistance to FTIs explains the failure to

inhibit growth or induce significant toxicity in normal cells as well as the relatively

poor responses achieved in solid tumours (Reuter et al., 2000; Daley, 2003).

Treatment of Ras transformed cells with FTIs selectively inhibits Ras-dependent

signalling, including Ras processing resulting in the accumulation of unprenylated

(inactive) Ras and inhibition of the Ras-Raf-MEK-ERK pathway.

However, the observed anti-tumour effects of FTIs are not solely due to Ras 

inhibition as these agents are also effective in Ras'^ "̂ and Ras mutant cells 

(Nagasu et al., 1995; Sepp-Lorenzino et al., 1995; End et al., 2001; Rose et al., 

2001); they may also act by inhibiting farnesylation of other proteins (Cox and Der, 

1997; Lebowitz and Prendergast, 1998; Ashar et al., 2000; Prendergast and Rane, 

2001); (Discussion 7.3). In addition, FTIs have also demonstrated preclinical 

activity in the treatment of eukaryotic pathogens such as plasmodium falciparum 

and trypanosomiasis brucei by inhibition of FT (Eastman et al., 2006). They may 

also have a role in the treatment of the Hutchinson-Gilford progeria syndrome 

which has recently been found to be associated with accumulation of an abnormal 

farnesylated form of prelamin A (Young et al., 2006). However, FTIs have yet to 

enter clinical trial for treatment of these conditions.

1.3.3.2 The use of FTis in CML

Research has shown that lonafarnib inhibits the proliferation of IM-sensitive and 

resistant BCR-ABL"" cell lines (Peters et al., 2001a; Hoover et al., 2002), is active 

against BCR-ABL-induced murine leukaemia (Peters et al., 2001a) and
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suppresses haemopoietic colony formation from peripheral blood samples of CML

patients resistant to IM (Hoover et al., 2002). In addition, lonafarnib enhances IM-

induced apoptosis in IM-sensitive cells (Hoover et al., 2002; Nakajima et al., 2003)

and, in patients with IM-resistance due to gene amplification cooperates with IM to

induce apoptosis (Hoover et ai., 2002). Tipifarnib (ZARNESTRA™; formerly

R115777; Johnson and Johnson, Titusville, NJ, USA), another FTl in clinical use,

has also been shown to act synergistically with IM to increase apoptosis and

induce cell cycle arrest in BCR-ABL"* cell lines (Miyoshi et al., 2005). However, in

this study the problem of persistence of Gi arrested leukaemia cells was

highlighted as a potential barrier to the complete eradication of disease. In some

cell lines (KCL22 and KCL22/SR) there was accumulation of cells in Gq/G i ;

however, other cell lines (K562, K562SR, KU812 and KU812SR) showed a

decrease in Gq/Gi cells after treatment with IM plus tipifarnib, and it was

hypothesised that apoptosis of these cells occurred before cell cycle arrest.

Phase 1 clinical trials of tipifarnib as a single agent have been conducted in CML 

(Cortes et al., 2003; Gotlib et al., 2003). In the first study of 22 patients with CML, 

7 (6 CP and 1 AP) achieved a complete or partial haematologic response with 4 of 

these achieving a mCR (Cortes et al., 2003). However, the responses were 

transient with a median duration of 9 weeks. In the second study, of the 12 

patients (11 AP and 1 BC) recruited, only 6 were evaluable at the time of interim 

analysis and of these, 3 had a haematological response (Gotlib et al., 2003). 

Therefore, tipifarnib was well tolerated and demonstrated moderate efficacy in IM- 

resistant patients. A pilot study has also demonstrated the safety and modest 

efficacy of lonafarnib as a single agent in IM-resistant CML (Cortes et al., 2002). 

More recently, studies combining both tipifarnib and lonafarnib with IM after failure 

of IM therapy demonstrated efficacy and a tolerable safety profile (Cortes et al., 

2004a; Cortes et al., 2004c). However, the only data available on these studies
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are interim analyses and final results remain unpublished. Nonetheless, taken as a

group, these studies provide a rationale for examining other, more potent FTIs to

treat IM-resistant CIVIL and attempt to eradicate the quiescent CIVIL stem cell

population.

1.3.3.3 BMS-214662

BMS-214662 (manufactured by Bristol-Myers Squibb) is an atypical non- 

peptidomimetic FTI with a benzodiazepine core (Hunt et a!., 2000) which inhibits 

H-Ras and K-Ras in the low nM range and is approximately 1000-fold selective for 

FT compared to GGT 1 (Rose et al., 2001). Figure 1-10 details the structure of 

BMS-214662.

Figure 1-10. The structure of BMS-214662.

In preliminary experiments (Rose et at., 2001), BMS-214662 demonstrated 

efficacy against a range of tumour cell lines in vitro including the BC CML cell line 

K562 (ICso 160nM using an in vitro cytotoxicity assay). In vivo studies using a nude 

mouse human tumour xenograft model demonstrated that BMS-214662 had 

curative potential in a range of human tumours including colon, pancreas, lung and 

bladder carcinoma (Hunt et al., 2000; Rose et al., 2001). More recently, BMS- 

214662 has also shown activity in the haemopoietic disorders myeloma, chronic 

lymphocytic leukaemia (CLL) and AML (Marzo et al., 2004; Cortes et al., 2005a;
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Gomez-Benito et al., 2005). Very interestingly and pertinent to this project, BMS-

214662 was also shown to preferentially target non-proliferating (quiescent) cells

in solid tumour models in vitro (Lee et al., 2001). This study demonstrated that

BMS-214662 was 20 times more potent in quiescent compared to proliferating

cells from five different solid tumour cell lines. Based on these results, two

potential therapeutic strategies incorporating BMS-214662 were investigated in

vivo in animal models. In the first of these, BMS-214662 was combined with the

chemotherapeutic agents, paclitaxel and epothilone, that preferentially kill

proliferating cells and in the second, BMS-214662 was combined with manoeuvres

to induce tumour cell quiescence such as tamoxifen in oestrogen-dependent

breast cancer and surgical castration in androgen-dependent prostate cancer (Lee

et al., 2001). Both strategies demonstrated synergy with BMS-214662 and

significantly improved response and based on these findings, BMS-214662 was

entered into clinical trials in solid tumours alone and in combination with other

chemotherapeutic agents.

A number of Phase 1 dose-escalation clinical trials have been conducted in solid 

tumours with BMS-214662 given as a single agent for either 1 hour or 24 hours by 

intravenous infusion (Ryan et al., 2004; Papadimitrakopoulou et al., 2005; 

Tabernero et al., 2005; Eder et al., 2006). The commonest side effects reported in 

these studies were gastrointestinal disturbances, elevated liver transaminases, 

renal toxicity, fatigue, electrolyte imbalances and myelosuppression. However, 

disappointingly, despite reaching the maximum tolerated dose in all four studies, 

only one study demonstrated clinical benefit (Tabernero et al., 2005), and this was 

only in a minority of patients (5 of 31). However, the patients recruited to these 

studies had already failed standard treatments and in many cases had received 

multiple chemotherapy regimens.
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Further Phase 1 studies were undertaken in which BMS-214662 was combined

with either cispiatin or carboplatin and paclitaxel (Mackay et al., 2004; Dy et al.,

2005). In combination with cispiatin, there were no objective responses, however

disease stabilisation was observed in 15 of 29 patients over several cycles of

treatment (Mackay et al., 2004). In combination with carboplatin and paclitaxel, 3

of 30 patients had a partial response and a further 8 had stable disease over

several months therapy (Dy et al., 2005). These combination studies using BMS-

214662 showed more promise than BMS-214662 as a single agent.

The only Phase 1 dose-escalation study undertaken in a bone marrow disorder 

used BMS-214662 as a single agent in patients with relapsed of refractory AML 

(n=19), ALL (n=3) or myelodysplastic syndrome (n=8)(Cortes et al., 2005a). Five 

of 30 patients had evidence of anti-leukaemic activity including 2 CHR (with 

incomplete platelet recovery) and, of these, one had a cytogenetic response. The 

remaining 3 patients that responded had an incomplete response with reduced 

bone marrow blast counts.

Therefore, BMS-214662 has demonstrated activity in HSC disorders (Cortes et at., 

2005a) and appears to be more effective when used in combination with other 

therapies which target proliferating cells in solid tumours (Mackay et al., 2004; Dy 

et al., 2005). With in vitro evidence of activity against quiescent tumour cells (Lee 

et al., 2001), and the efficacy of other FTIs in combination with IM in CML (Cortes 

et al., 2004a; Cortes et al., 2004c; Jorgensen et al., 2005a), BMS-214662 

appeared a logical choice to assess in combination with IM or dasatinib. It was 

hypothesised that IM or dasatinib would target the proliferating CML cells and 

BMS-214662 the deeply quiescent and Gq/Gi arrested CML stem and progenitor 

cells.
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1.4 Aims

Experiments were designed to address the following aims:

1. To determine if pulsed IM is more effective than continuous IM at 

eliminating CD34^ CML stem cells in vitro;

2. To determine if the addition of rHu-G-CSF to either continuous or pulsed 

IM enhances the elimination of CD34^ CML stem cells in vitro;

3. To assess the efficacy of dasatinib compared to IM against CD34  ̂CML 

cells and determine if dasatinib would eradicate quiescent CML stem 

cells in vitro;

4. To determine the relevance of SRC kinases and BCL-2 in CP CML;

5. To determine the efficacy of BMS-214662 alone and in combination with 

either IM or dasatinib on the quiescent CML stem cell population in vitro;

6. To assess the efficacy of BMS-214662 in BC CML, cell lines expressing 

BCR-ABL kinase mutations and AML in vitro.

These questions are dealt with sequentially within the relevant Results

Chapters. Each Results Chapter begins with a short introduction relevant to the

proceeding data and finishes with a summary of the findings. The discussion of

all the results and final conclusions is presented in a separate Discussion

Chapter (Chapter 7).
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Materials and Methods

2.1 Materials

2.1.1 Novel small molecule Inhibitors

Imatinib mesylate (MW 590) was provided as a white powder under a Materials 

Transfer Agreement from Novartis Pharma (Basel, Switzerland). It was dissolved 

in sterile H2O and stored as a lOOmM stock solution at 4°C. Dasatinib (MW 489), 

BMS-214662 (MW 488) and BMS-225975 (MW 570) were provided as white 

powders under a Materials Transfer Agreement by Bristol-Myers Squibb 

(Princeton, NJ, USA). Each compound was dissolved in dimethyl sulfoxide 

(DMSO) to give a stock concentration of lOmg/mL and stored in multiple aliquots 

at -20°C prior to use. PP2 in solution™’ (lOmM in DMSO) was purchased from 

Calbiochem, Merck Biosciences Ltd, Nottingham, UK and stored at -20°C. All 

small molecule inhibitors were made up fresh and diluted to the appropriate 

concentration with PBS prior to use.

2.1.2 Tissue culture supplies (including CD34^ selection)

Abbott Diagnostics 
Maidenhead, UK

LSI BCR-ABL Dual Colour FISH probe

Amersham Pharmacia Biotech Ltd 
Buckinghamshire, UK

Tritiated (^H) thymidine

Barloworld-Scientific 
Staffordshire, UK

Iwaki Type 1 Collagen coated 6-well 
plates

Baxter Healthcare 
Nottingham, UK

Sterile water

Becton Dickinson 
Plymouth, UK

Hypodermic needles 
Luer lock syringes

Bio-Rad
Hercules, CA, USA

Triton-X-100

Chugai Pharma 
London, UK

Recombinant human G-CSF (rHu-G- 
CSF)

Fisher Scientific 
Loughborough, UK

Acetic acid 
Methanol
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Greiner bio one 
Gloucestershire, UK

75cm^ tissue culture flasks 
96-well plates 
FACS tubes 
Pipette tips

Hendley 
Essex, UK

Multispot microscope slides

Invitrogen 
Paisley, UK

2-Mercaptoethanol
Colcemid
Foetal calf serum (FCS) 
L-glutamine 200mM (100X) 
PBS
Penicillin-streptomycin solution
5000u/mL
RPMI 1640 medium

Miltenyi Biotech 
Bisley, UK

CliniMACS CD34 reagent 
CliniMACS PBS/EDTA buffer 
CliniMACS tubing set

Nalge Nunc International 
Roskilde, Denmark

35mm non-adherent tissue culture 
dishes
75cm^ non-adherent tissue culture
flasks
Cryotubes
Cryofreezer container 
Vacu bottles

Perkin Elmer 
Turku, Finland

Filter mats 
Wax scintillant

Sartorius
Flannover, Germany

Minisart 0.2pM sterile filters

Scottish National Blood Transfusion
Service
Glasgow, UK

2 0 % human albumin solution 
4.5% human albumin solution (ALBA)

Sigma-Aldrich 
Dorset, UK

Ammonium chloride (NH4CI)
Bovine serum albumin (BSA)
Dimethyl suiphoxide (DMSO) 
Dulbecco's Modified Eagle Medium 
(DMEM)
G418 disulphate salt solution 
Hank's buffered salt solution -  calcium 
and magnesium free (HBSS-CMF) 
Hygromycin B
Iscove’s Modified Dulbecco’s Medium 
(IMDM)
Magnesium chloride (MgCL)
Poly-L-lysine
Potassium chloride (KCI)
Sodium azide 
Trisodium citrate 
Trypan blue 
Trypsin-EDTA
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Stem Cell Technologies 
British Columbia, Canada

Bovine pancreatic deoxyribonuclease 
(DNAse 1) 1mg/mL
Bovine serum albumin/insulin/transferrin 
(BIT) serum substitute 
Flt-3 ligand
Hydrocortisone 21-hemisuccinate 
Interleukin-3 (IL-3)
Interleukin-6 (IL-6)
Methocult™
Myelocult™
Stem cell factor (SCF)

Sterilin Ltd 
Hounslow, UK

Pastettes
5mL, 10mL and 25mL disposable 
pipettes
15 and 50mL sterile plastic falcon tubes 
90mm Petri dishes

2.1.3 Flow Cytometry reagents

Becton Dickinson 
Oxford, UK

7-aminoactinomycin D (7-AAD) 
FACS flow 
FACS clean
Human anti-active caspase-3-PE 
Human anti-BCL-2-FITC kit 
Human anti-CD34-PE 
Human anti-CD34-APC 
Human anti-CD38-PE 
Human anti-Ki-67-FITC kit 
IgG FITC isotype control 
IgG PE isotype control 
IgG PE-Cy5 isotype control 
IgG APC isotype control

Caltag Laboratories 
Silverstone, UK

Fix and Perm A and B

Molecular Probes 
Eugene, OR, USA

Carboxy-fluorescein diacetate 
succinimidyl diester (CFSE)

Sigma-Aldrich 
Dorset, UK

Anti-rabbit IgG-FITC conjugate 
Propidium iodide (PI) 
Formaldehyde

Upstate 
Dundee, UK

Human anti-p-Src family Alexa Fluor® 
488 (Y416)

2.1.4 Molecular biology supplies

Amersham Pharmacia Biotech Ltd 
Buckinghamshire, UK

ECL"^ Plus Western Blotting Detection 
Reagents
Hyperfilm™ ECL™ (Xray film)
Rainbow marker (RPN756)
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Bio-Rad
Hercules, CA, USA

4-15% Tris-HCl gradient gels 
Laemmli sample buffer 
Nitrocellulose membrane 
Tris/Glycine/SDS running buffer 
Tris/glycine transfer buffer 
Triton-X-100 
Tween

Calbiochem, Merck Biosciences Ltd 
Nottingham, UK

Phenoxymethylsulphonylfluoride
(PMSF)
Sodium orthovanadate

Cell Signalling, New England Biolabs 
Hitchin, UK

Anti-rabbit IgG horseradish peroxidase- 
linked secondary antibody 
Human anti-p-CrKL antibody (rabbit) 
Human anti-pan-actin antibody (rabbit) 
Human anti-Mcl-1 antibody (rabbit)

Chemicon International 
Temecula, CA, USA

Re-Blot"^ Plus Strong Antibody 
Stripping Solution

Fisher Scientific 
Loughborough, UK

Methanol

Perbio
Northumerland, UK

BCA kit

Sainsburys Supermarkets Ltd 
London, UK

Non-fat dry milk powder

Sigma-Aldrich 
Dorset, UK

0.1% Ponceau S solution 
Ethylenediaminetetraacetic acid (EDTA) 
NP-40
Protease inhibitor cocktail 
Sodium chloride 
Sodium deoxycholate 
Sodium fluoride
Tris (hydroxymethyl)aminomethane 
hydrochloride (Tris-HCl)

2.2 Preparation of media and solutions

2.2.1 Tissue culture media

2.2.1.1 RPWir

RPMI 1640 500mL

FCS 50mL

L-glutamine 5mL

Penicillin/streptomycin solution 5mL
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2.2.1.2 Serum free medium (SFM)
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BIT 25mL

L-glutamine 1.25mL

Penicillin/streptomycin solution 1.25mL

2-Mercaptoethanol 250pL

IMDM 97.25mL

Make up in a Vacu bottle and filter sterilise

2.2.1.3 Serum free medium supplemented with growth factor cocktail

(SFM + 5GF)

Serum free medium 50mL

IL-3 (50pg/mL) 20pL

IL-6 (50pg/mL) 20pL

G-CSF (50|jg/mL) 20pL

Flt-3 ligand (50pg/mL) 100pL

SCF (50pg/mL) 100pL

Filter sterilise through 0.22pM filter

2.2.1.4 RPMI for maintenance of stromal cell line M2-10B4 for LTC-IC

RPMI 1640 500mL

FCS 50mL

L-glutamine 10mL

Penicillin/streptomycin solution 10mL

2.2.1.5 DMEM for maintenance of genetically modified S I/S I fibroblast 

cell line for LTC-IC

DMEM 500mL

FCS 75mL

L-glutamine lOmL

Penicillin/streptomycin solution lOmL



Mhairi Copland, 2007

2.2.1.6 Myelocult
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Myelocult™ lOOmL

Hydrocortisone hemisuccinate (1x10"^M) 1mL

2.2.1.7 RPMIA/VEHI medium for Ba/F3 cell lines

RPMI 500mL

WEHI-3B conditioned cell medium 50mL

PCS 10mL

L-glutamine 5mL

Penicillin/streptomycin solution 5mL

2.2.2 Tissue culture solutions

2.2.2.1 PBS/2% FCS

PBS 490mL

FCS iOmL

2.22.2 PBS/20% FCS

PBS 80mL

FCS 20mL

2.2 2.3 Ammonium chloride solution (lOx)

Ammonium chloride ( N H 4 C I ) 8.33g

Sterile water (dH2 0 ) lOOmL

Filter sterilise through 0.22pM filter
Dilute stock solution 1:10 with dHaO for lysis to give 1x strength
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22.2.4 ‘DAMP’ solution for thawing cryopreserved CD34^ or

unmanipulated cell aliquots from liquid nitrogen

DNAse 11 solution (1mg/mL) 1 vial

Magnesium chloride (400X; 1M) 625|jL

Trisodium citrate (0.155M) 26.5mL

Human serum albumin (20%) 12.5mL

PBS (magnesium/calcium free) 208mL

2.2.2.S 4.5% human albumin solution/20% DMSO

4.5% human albumin solution (ALBA) 80mL

DMSO 20mL

2.2.2.6 PBS/BSA/Azide

PBS 500mL

BSA 5g
Sodium azide 0.5g

2.2.2.7 IMDM/2% FCS

IMDM 98mL

PCS 2mL

2-2.3 Flow cytometry solutions

2.2.3.1 PBS/0.4% formaldehyde

PBS 48mL

1 0 % formaldehyde solution 2mL
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2.2.3.2 PBS/0.2% Triton-X-100
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PBS 50mL

Triton-X-100 lOOpL

2.2.4 Molecular biology solutions

2.2.4.1 Lysis buffer for protein lysates

CIH2O 7.75mL

1.6M NaCI ImL

1M Tris-HCl 0.5mL

150mM EDTA 333pL

NP-40 50pL

10%(w/v) Sodium deoxycholate 250|jL

Immediately prior to use, protease and phosphatase inhibitors 
below added
Protease inhibitor cocktail 100pL

PMSF 100pL

Sodium fluoride 20pL

Sodium orthovanadate 20pL

2.2.4.2 Running buffer

10X TGS buffer 1 0 0 m l

PBS 900pL

2.2.4.3 Transfer buffer

10X TG buffer 80mL

PBS 720ml

Methanol 2 0 0 m l
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2.2.4.4 Wash buffer

Chapter 2, 85

PBS lOOOmL

Tween lOOjjL

2.2.4.S Blocking buffer

PBS lOOmL

Non-fat dry milk

Tween lOOpL

2.2.4.G Primary antibody buffer

PBS lOOmL

BSA 5g
Tween 1 0 0 |j L

2.3 Methods

2.3.1 Cell culture

2.3.1.1 Collection of primary CML samples

All samples (peripheral blood and leucapheresis material) were collected using 

written informed patient consent with approval from the Local Research and Ethics 

Committee. See Appendix 1 for the biological characteristics of the patients from 

whom the samples were collected.

2.3.1.2 Cell counting and assessment of cell viability

Cell counts and assessment of cell viability were performed using a 

haemocytometer with trypan blue exclusion. Trypan blue was diluted 1:10 with
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PBS and either 40 or 90pL of trypan blue was added to 10pL of cell suspension to

give a 1:5 or 1:10 dilution of cells. Eight microlitres of this mixture was transferred

to a haemocytometer and a minimum of 1 0 0  viable cells were counted with dark

blue-staining cells counted as non-viable. Further assessment of cell viability in

CD34^ CML cells after culture was performed using PI staining and FACS analysis

(Section 2.3.2).

2.3.1.3 Red cell lysis

Peripheral blood samples or, in some instances, leucapheresis collections 

required lysis of red blood cells. Red cell lysis was performed using 0.083% NH4CI 

solution at a ratio of 5mL sample to 45mL NH4CI at 37°C for 10 minutes. This step 

was repeated to ensure complete red cell lysis. After completion of red cell lysis, 

leucocytes were recovered by centrifugation (1000RPM for 10 minutes) and 

resuspended in either PBS/2%FCS or 4.5% ALBA, for cryopreservation or CD34^ 

selection.

2.3.1.4 Cryopreservation of cells

CD34^ selected cells, total MNCs from BC CML and AML samples and leukaemia 

cell lines were cryopreserved in liquid nitrogen until use. Briefly, 4x10® to 10® cells, 

as appropriate, were aliquoted into nunc cryotubes. To this cell suspension, an 

equal volume of 20% DMSO in 4.5% ALBA was added to give a final 

concentration of 10% DMSO. The cryotubes were transferred to a cryofreezer 

container and steadily cooled in isopropyl alcohol at -80°C before transfer to liquid 

nitrogen for long-term storage.
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2.3.1.5 Recovery of frozen samples

Cell vials were removed from liquid nitrogen and thawed immediately at 37°C in a 

water bath until all ice crystals had disappeared. Using a pastette, the cells were 

then placed in a 15mL sterile tube (1 tube per vial of cells) and DAMP solution was 

added dropwise over 20 minutes. This step was performed at room temperature to 

enhance the activity of the DNAse II, with frequent agitation of the tubes to prevent 

clumping of cells. The cells were then centrifuged at 1000RPM for 10 mins, the 

supernatant discarded, and the pellet loosened by flicking the tube. The cells were 

then washed a further twice in DAMP to ensure that all DMSO and cell debris had 

been removed from the sample. Following this, the cells were resuspended in 

PBS/2% FCS, and the cell count and viability were assessed.

2.3.1.6 CLINIMACS CD34^ cell selection

Samples were obtained from CML patients at diagnosis (n=22) who, as part of 

their initial clinical management, underwent leucapheresis to reduce the peripheral 

WCC and obtain CD34^ cells for potential use for an autologous SCT at the time of 

disease progression. Further samples were obtained from patients with normal 

bone marrow (n=5 ) undergoing autologous stem cell collection for either non- 

Hodgkin’s lymphoma or multiple myeloma who had been mobilised with rHu-G- 

CSF following chemotherapy and had excess CD34^ cells remaining after those 

required for clinical use had been processed. All leucapheresis procedures were 

performed using the Cobe Spectra continuous blood flow separator (Cobe 

Laboratories, Quedgeley, UK). Samples were processed using the CliniMACS 

clinical system for CD34^ cell selection within 24 hours of sample collection by 

either Dr Graham Templeton or Miss Ashley Hamilton according to the 

manufacturers’ instructions. Briefly, total MNC were incubated with specific anti-
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CD34 antibodies to which super-paramagnetic particles (~50nM in diameter) had

been conjugated. This cell suspension was then exposed to a high-gradient

magnet separation column and the CD34'" cell-antibody-particle complex was

captured and retained by the column. The CD34" cells which had not bound to the

antibody-particle complex were not retained and were eluted with the waste. The

retained CD34^ cells were then eluted and collected by removing the magnetic

field from around the column. The collected CD34^ cells were then made up to a

concentration of 1x10^/mL to 1x10®/mL with 4.5% ALBA and placed on ice prior to

cryopreservation. After CD34^ selection was completed an aliquot (-5x10'^ cells)

was removed for flow cytometry assessment of CD34 purity and confirmed that,

post-selection, all samples were >95% CD34^. Figure 2-1 shows an example of

CD34 purity of a patient sample before and after CliniMACS CD34^ cell selection.

An additional sample of 1x10® cells was removed for BCR-ABL assessment by

FISH.

O
CO
CO

1.5%CD34

10^  10

98% CD34+

10^ 1q3 10^

CD34PE

Figure 2-1. An example of flow cytometry dot plots of CD34 purity before (in the left panel, 

with CD34^ population highlighted) and after (right panel) CliniMACS CD34* cell selection. 

SSC-H, side scatter.
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2.3.1.7 CFSE staining

After recovery from liquid nitrogen and assessment of cell count and viability, 

CD34^ CML cells were stained with 1pM CFSE according to previously described 

methods (Nordon et al., 1997; Holyoake et ai., 1999; Graham et al., 2002). Before 

CFSE staining, an aliquot (~10%) of the CD34^ cells was removed and set up in 

culture in SFM + 5GF as an unstained control. Carboxy-fluorescein diacetate 

succinimidyl diester is an intracellular stain fluorescent in FL1 by flow cytometry, 

the fluorescence intensity of which halves with each cell division. This allows high 

resolution tracking of cell division. Carboxy-fluorescein diacetate succinimidyl 

diester was dissolved in DMSO to a concentration of 5mM and stored in aliquots at 

-20°C. Prior to use, the CFSE was diluted to 500pM with PBS/2% FCS. Ten 

microlitres of this was then added to 5mL of cell solution to give a final 

concentration of IpM. The cells were then incubated in a water bath at 37°C for 10 

minutes exactly, after which the cells were removed and the CFSE was quenched 

by adding 10X volume of PBS/20% FCS. The cells were centrifuged at 1000RPM 

for 10 minutes and then washed once in PBS/2% FCS. The cells were then 

cultured overnight in lOmL SFM + 5GF in large non-adherent (75cm®) tissue 

culture flasks (1-2x10^ CD34^ cells/flask) at 37°C, 5% CO2. The following morning 

the CFSE-stained CD34^ cells were removed from the tissue culture flask and 

placed into a sterile tube. The flask was then washed out with PBS/2% FCS and 

this was also added to the tube. The cells were then centrifuged at 1000RPM for 

10 minutes and washed again in PBS/2% FCS. Following this, the CFSE-stained 

cells were resuspended in PBS/2% FCS and the cell count and viability were 

determined. An aliquot of cells (-2x10"^) was removed for flow cytometry to assess 

the position of the undivided (CFSE"^®  ̂ CD34^) cell population prior to culture in 

the different treatment conditions and an example of this is shown in Figure 2-2 

For each experiment, a colcemid control was set up using CFSE-stained cells to
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determine the position of the undivided peak after culture. The colcemid

stock (2mg/mL) was diluted 1:100 with PBS and then filter sterilised. Ten 

microlitres of this was added per mL of tissue culture medium in the colcemid 

control to give a final concentration of 200ng/mL.

o

o

CO T-

o -

o

CFSE

Figure 2-2. Representative FACS dot plot showing the position of the baseline undivided 

QPggmax QP3 4 + Q0 || population following overnight culture after staining with CFSE.

2.3.1.8 Culture of cell lines

The BC CML cell line K562 (BCR-ABL^) and the AML cell line HL60 (BCR-ABL ), 

which were both available 'in-house', were cultured in RPMI^^ in tissue culture 

flasks. The cells were counted and medium changed every 48 to 72 hours to 

maintain the cell concentration between 0.4 and 1.2x10^ cells/mL. Ba/F3 cells 

containing wild-type or BCR-ABL with kinase domain mutations (T315I, M351T 

and H396P) were kindly provided under a Materials Transfer Agreement by 

Professor Brian Druker, Oregon Health Sciences University, Portland, Oregon, 

USA and Professor Junia Melo, Imperial College, London, UK. The cells were 

maintained in RPMIAA/EHI medium which contained IL-3 from the WEH1-3B cells. 

The cells were counted and medium changed every 96 hours to maintain the cell 

concentration at -IxlO^/mL.
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2.3.1.9 Culture of CD34^ cells

After either recovery from liquid nitrogen or CFSE staining, cells were cultured in 

SFM + 5GF in 35mm suspension dishes at an initial cell concentration of 

-5x10^/mL for 3 to 12 days at 37°C, 5% CO2. The exception to this were the 

experiments using CD34^ CML cells in Chapter 3, in which the cells were cultured 

in SFM only, to which an appropriate concentration of rHu-G-CSF was added. 

Drugs were added to each experiment as appropriate to the described conditions. 

The cells were harvested every 72 to 96 hours depending on the cycle length in 

each experiment, washed in PBS/2% FCS, and aliquots were removed for 

performing a cell count and FACS analysis. The remaining cells were re-set up in 

culture according to the conditions described in each experiment and drug was 

added as appropriate. At the end of the final cycle of each experiment, as well as 

performing a cell count and FACS analysis, an aliquot of cells was prepared for 

FISH to determine if the cells remaining after culture were BCR-ABL^.

2.3.1.10 Long-term culture-initiating ceii assay (LTC-iC)

Primitive haemopoietic cells with proliferative potential can be maintained in 

culture for extended periods of time, typically several months. These culture 

conditions have been called long-term bone marrow culture (LTBMC; (Coulombel 

et al., 1983a). Briefly, LTBMC requires the formation of a supportive stromal layer 

which supplies the necessary microenvironment to allow the primitive 

haemopoietic cells to proliferate over time. An application of LTBMC is an assay 

that measures the number of LTC-IC (Sutherland et al., 1991; Hogge et al., 1996). 

In this assay, the cells of interest are overlayed on pre-established, irradiated 

stromal layers. After 5 weeks culture the contents of each plate are set up in a 

committed progenitor assay for a further two weeks. At the end of this time, the
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number of colonies formed is counted and this allows the frequency of LTC-IC to

be determined. Figure 2-3 shows a simplified schematic diagram for the method

used in the LTC-IC assay.

 ̂ Cells cultured 
with drug for 72h 

SFM + 5GF /
Feeder cells 
established (M2- 
10B4) and then 
Irradiated

Cells remaining 
after 72h Rx 
added to feeder 
layers

Cultures maintained 
with weekly % 
medium changes for 
5 weeks

^  Remaining cells 
 ̂ harvested and plated 

Into methylcellulose

Total number of 
colonies counted 
after 14-16 days

Figure 2-3. Simplified schematic diagram for the method used to assess LTC-IC after culture 

of CD34* cells In different conditions.

Two genetically-modified murine fibroblast cell lines, M2-10B4 and 81/81 

fibroblasts (both kindly provided by the Terry Fox Laboratories, Vancouver, BC, 

Canada) were used to provide the stromal support necessary for the LTC-IC. The 

M2-10B4 cells have been genetically modified to express G-C8 F and IL-3, and 

81/81 fibroblasts 8 CF and IL-3. After thawing, these cell lines were maintained in 

culture at 37°C, 5% CO2. The cells were trypsinised and passaged when the 

monolayer was semi-confluent to allow propagation of sufficient cells for LTC-IC. 

To minimise the proliferation of untransduced wild-type cells, the cultures were fed 

on alternate weeks with hygromycin B (final concentration 62.5pg/mL for M2-10B4
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and 125ijg/mL for S1/S1 fibroblasts) and G418 (final concentration 400pg/mL for

M2-10B4 and 800|jg/mL for S1/S1 fibroblasts).

Before the stromal layers were seeded with the test cells, it was necessary to 

irradiate the stromal cells to render then incapable of proliferation. After irradiation, 

equal numbers of the stromal cells (M2-10B4 and S1/S1 fibroblasts) were 

resuspended in Myelocult™ myeloid long-term culture medium and then 

inoculated onto Collagen Type 1 coated 6 -well microtitre plates to facilitate stromal 

adherence. Over the next few days, these cells formed a monolayer onto which 

the test cells could be inoculated.

Prior to irradiation, the stromal layers were trypsinised and counted. A total of 

1.5x10® M2-10B4 and 1.5x10® SI/81 fibroblasts were required for each test well. 

The stromal cell layers were then irradiated at 80Gy. Following this, the M2-10B4 

cells and 81/81 fibroblasts were mixed and resuspended in Myelocult™ 

supplemented with hydrocortisone, to give a final cell concentration of 3x10®/mL. 

Two millilitres of this stromal cell suspension was then aliquoted into the wells of 

the Type 1 Collagen coated 6 -well plate. The plates were then incubated at 37°C, 

5% CO2. After the stromal layers had been incubated for 24 to 48 hours, the test 

cells, which were CD34^ CML cells treated under different drug conditions, were 

inoculated onto the stromal layers. Briefly, equal numbers of CD34^ CML cells 

were treated under the treatment condition described in Section 5.1.4. After 72 

hours culture, the remaining cells were washed in PBS/2% FCS and then 

resuspended in 310pL of PBS/2% FCS. Duplicate LTC-ICs were then set up with 

5, 25 and 125pL of treated CD34^ cell suspension. The cells were then incubated 

for 5 weeks at 37°C, 5% CO2. Every week, ImL of Myelocult™ medium was 

removed from each well and ImL of fresh Myelocult™ medium was added and this 

constituted a half medium change.
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At the end of 5 weeks culture, the LTC-IC were harvested and set up in committed

progenitor assays. For each LTC-IC culture well, the culture supernatant

(containing non-adherent cells) was pipetted into a sterile 15mL centrifuge tube

(harvest tube). Two millilitres of HBSS-CMF was added to remove any serum-

containing Myelocult™ medium and the plate swirled gently before the HBSS-CMF

was transferred to the harvest tube. One millilitre of trypsin-EDTA was then added

to each well and swirled gently at intervals until all the adherent cells had detached

(up to 5 minutes). Detachment was facilitated by repeatedly pipetting the trypsin-

EDTA over the surface of the well and this also helped generate a single cell

suspension. The supernatant was transferred to the harvest tube. Immediately,

2mL of IMDM/2% FCS was added to the LTC-IC well and swirled gently and then

transferred to the harvest tube. A further 2mL of HBSS-CML was added to the well

and swirled gently before being transferred to the harvest tube. The harvest tubes

were then centrifuged at 1000RPM for 10 minutes. Following this, the supernatant

was gently poured off and the cells resuspended in the remaining supernatant.

The volume of remaining cell suspension was recorded and a cell count

performed.

Duplicate committed progenitor assays were set up for each cell volume of each 

treatment condition at two different cell concentrations (1x10"  ̂ and 2.5x1 

cells/mL). The appropriate volume of cell suspension for duplicate wells was 

added to 2mL of Methocult™ medium for committed progenitor assays. The cell 

suspension and Methocult™ medium were thoroughly mixed and ImL of this was 

aliquoted into a 35mm culture dish and then gently tapped so that the bottom of 

the dish was completely coated. The culture dishes were then incubated for 14 

days at 37°C, 5% CO2 and, at the end of this time, the number of viable colonies 

was counted in each dish and this allowed a comparison of the LTC-IC present in 

the different treatment conditions.
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2.3.1.11 Tritiated f  H) thymidine proliferation assays

Tritiated (®H) thymidine proliferation assays were performed to determine the IC50 

for the different small molecule inhibitors in cell lines and CD34^ CML cells. These 

experiments were performed in 96 well plates and each well contained 90pL of cell 

suspension and 10pL of drug (final volume 100pL). There were five replicates of 

each drug concentration per experiment. Cell lines were seeded at a cell 

concentration of 2x10® cells/mL in RPMT^ for K562 and HL60 cells and 

RPMIAA/EHI medium for the Ba/F3 cell lines. CD34^ cells were seeded at a cell 

concentration of 5x10® cel Is/m L in SFM only. Cell lines were cultured for 24 or 48 

hours and CD34^ cells for 72 hours prior to assessment of proliferation. Tritiated 

thymidine (37MBq per mL) was diluted 1:100 in medium and 20pL was added to 

each experimental condition 5 hours prior to reading the plate in the cell line 

experiments and 16 hours prior to reading the plate in the CD34^ cell experiments. 

Beta counting was performed according to the manufacturers' instructions. Briefly, 

the cells were harvested using a FilterMate Harvester (Perkin Elmer, Turku, 

Finland) onto a filter mat, wax scintillant was melted onto the filter mat ready for 

beta counting using the Micro beta TriLux (Perkin Elmer).

2.3.1.12 Dual-colour fluorescence in situ hybridisation (FISH)

Chronic myeloid leukaemia cells, pre- and post-culture, and colonies from LTC-IC 

experiments were assessed for the presence of BCR-ABL by FISH. Aliquots of at 

least 5000 cells were required. The CML cells or pooled colonies were firstly put 

into a 5mL FACS tube and washed in PBS/2%FCS. The cells were then 

resuspended in 500pL of hypotonic solution (0.075M potassium chloride), 

transferred to a 1.5mL eppendorf and incubated at room temperature for 20 

minutes. One hundred microlitres of freshly made fixative was added
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(methanol:acetlc acid [3:1]) and the cells incubated for a further 5 minutes at room

temperature. The cells were then centrifuged at 5000RPM for 5 minutes, the

supernatant removed and a further 500pL fixative added, the cells incubated for a

further 5 minutes and then centrifuged for 5 minutes. This step was repeated a

further twice. The cell pellet was finally resuspended in 50pL of fixative and then

stored at -20°C prior to further preparation for FISH.

Aliquots of 20pL of cell solution were placed in wells of a poly-L-lysine coated 

multispot microscope slide and air-dried overnight. If the cells had been stained 

with CFSE, this was bleached under a bright light prior to performing FISH. The 

prepared slides were stored at -20°C wrapped in parafilm until FISH was 

performed according to the manufacturers’ instructions using the LSI BCR-ABL 

Dual Fusion probe. Interphase nuclei were evaluated using a Leica fluorescent 

microscope with a triple-band pass filter for DAP I, Spectrum Orange and Spectrum 

Green. All FISH slides were prepared and scored by Mrs Elaine Allan.

2.3.2 Flow cytometry

Flow cytometry also called FACS is used to sort cells according to their 

fluorescence. A flow cytometer consists of one or more lasers for supplying 

excitation energy and a series of filters and detectors for measuring the resultant 

fluorescent emissions. A flow cytometer can also measure the size of a cell using 

forward-angle light scatter (FSC) and the granularity of a cell using side-angle light 

scatter (SSC). Thus, flow cytometry allows the characterisation of individual cells 

using fluorochrome-labelled antibodies.

2.3.2.1 Surface antibody staining

All antibodies were titrated so that the minimum concentration which gave reliable 

staining and clear separation of different cell populations was used. This was
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always less than the amount recommended by the manufacturer, thus reducing

cost and facilitating compensation when using multiple channel flow cytometry in

experiments. Prior to surface antibody staining, the cells were washed in PBS/2%

FCS. The cells were then resuspended in 200pL PBS/2% FCS and the

appropriate volume of antibody was used. The cells were then incubated in the

dark for 15 minutes and washed twice in PBS/2% FCS (1200RPM for 5 minutes).

If PI (Ipg/mL) was being used to exclude dead cells, IpL of this was added with

the final wash. The cells were then analysed by FACS immediately. Appropriate

isotype controls were included for all experiments. All FACS analysis was

performed using the FACSCalibur flow cytometer (Becton Dickinson) with

compensation set as required using log-linear scale.

2.3 2.2 Intracellular antibody staining

For cells requiring both surface and intracellular antibody staining, the surface 

staining was performed first. Propidium iodide could not be used in association 

with intracellular antibody staining. After surface staining, if appropriate, at least 

1x10® cells were resuspended in lOOpL of Fix and Perm® Medium A (fixation 

medium) and incubated for 15 minutes (in the dark if also surface antibody 

stained). The cells were then washed with PBS, the supernatant completely 

removed using a graduated pipette and the cell pellet resuspended in 50pL Fix 

and Perm® Medium B (permeabilisation medium). To this the appropriate volume 

of intracellular antibody was added (Bcl-2-FITC, p-Src Alexa Fluor® 488 or anti- 

active-caspase-PE) and the cells incubated for 45 minutes at room temperature in 

the dark. Finally the cells were washed twice in PBS (1200RPM for 5 minutes) 

prior to FACS analysis.
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Intracellular staining for CrKL phosphorylation was performed as above with the

following modifications (Hamilton et al., 2006). All washes were performed using

PBS/BSA/azide. After fixing with 100pL of Fix and Perm® Medium A, the cells

were permeabilised with 25pL of Fix and Perm® Medium B, to which 2.5pL of p-

CrKL antibody was added and the cell/antibody solution mixed by vortexing. The

cells were then incubated at room temperature for 40 minutes. The cells were then

washed twice and resuspended in 100pL PBS/BSA/azide to which 2pL of

secondary antibody (anti-rabbit IgG-FITC conjugate) was added. The cells were

then vortexed and incubated for a further 30 minutes at room temperature in the

dark, washed twice and then analysed immediately by flow cytometry using the

FACSCalibur.

The amount of p-CrKL in an untreated CML sample was assessed as the 

geometric mean fluorescence intensity (MFI) of the untreated CML sample minus 

the geometric MFI for P-CrKL of normal CD34^ cells (negative control). The p- 

CrKL status of drug treated samples was expressed as a percentage of the 

untreated control (100%). To compare the amount of p-SRC or BCL-2 in a CML 

versus normal cells at baseline, the following calculation was used:

p-SRC or BCL-2 = ([CML MFI - isotype MFI] / [normal MFI -  isotype MFI])*100%

As with p-CrKL, the amount of p-SRC or BCL-2 in drug treated samples was 

expressed as a percentage of the untreated control (1 0 0 %).

2.3.2.3 High resolution cell cycle analysis

Different culture and treatment conditions may alter progression of cells through 

the cell cycle. Therefore, it was important to determine the effects of the different 

treatment conditions on progression of CML cells though the cell cycle. High
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resolution cell cycle analysis was performed using the method described by

Jordan et al (Jordan et al., 1996) which combines staining using the nuclear

activation antigen Ki-67 (FITC) with 7-AAD staining of DMA. This method allows

discrimination between Go, G i and S/G2/M.

Approximately 1x10® cells were washed in PBS (1200RPM for 5 minutes), the 

supernatant discarded and then resuspended in SOOpL of PBS/0.4% formaldehyde 

for fixing and incubated for 30 minutes on ice. Following this, 500pL of PBS/0.2% 

Triton-X-100 was added to permeabilise the cells and the cells were then 

incubated overnight at 4°C. The following morning, the cells were washed once in 

PBS and then resuspended in ImL PBS. The cell suspension was then divided 

equally between two FACS tubes (SOOpL each) and either 20pL of Ki-67 FITC- 

labelled antibody or 20pL of FITC isotype control was added to the tubes. The 

cells were then vortexed and incubated for 40 minutes at room temperature in the 

dark. After one further wash, the cells were resuspended in ImL of PBS and 5pL 

of 7-AAD (Ipg/mL) was added and then incubated for at least 6  hours, but 

preferably overnight, at 4°C prior to FACS analysis. Before FACS analysis, the 

cells were washed once in PBS. Log-linear analysis was used in FL1 (Ki-67-FITC) 

and linear analysis on FL3 (7-AAD). To separate cells from debris, the cell 

population was gated on using FSC versus FL3. This gated cell population was 

then analysed in FL1 versus FL3 and this allowed calculation of the relative 

percentages of cells at each stage of the cell cycle. A minimum of 1 0 ,0 0 0  cell 

events were collected.

2.3.2.4 FACS for CFSE experiments

Carboxy-fluorescein diacetate succinimidyl diester stained cells were surface 

stained as described in Section 2.3.2.1. Flow cytometry analysis of CFSE-stained
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cells was performed at baseline to determine the position of the undivided peak

and confirm uniform staining of the cell population (which allowed resolution of the

peaks at subsequent analyses), and again at the time points stated for each set of

experiments. Isotype controls were used to correctly set the detectors so that the

negative isotype population was placed in the first log decade for each flow

cytometry channel. Propidium iodide staining in FL3 was used to identify the viable

cell population. CFSE and CD34 positive controls were then run and the

compensation adjusted. Because CFSE is a very bright fluorescent stain which

has substantial spectral overlap into other FACS channels, considerable levels of

compensation were required. To collect an adequate undivided CFSE^^ CD34^

cell population in each experimental condition, a minimum of 50,000 (and

preferably 1 0 0 ,0 0 0 ) cell events were collected.

Carboxy-fluorescein diacetate succinimidyl diester was also successfully 

combined with anti-active caspase-3-PE and CD34-APC to allow assessment of 

apoptosis in the undivided CD34^ cell population. Surface and intracellular 

antibody staining were carried out as described (Sections 2.3.2.1 and 2.3.2 2, 

respectively). As the cells were fixed and permeabilised, PI could not be used, and 

the viable cell population was gated on FSC versus SSC to exclude debris and cell 

aggregates.

2.3.2.5 Calculation of the undivided (CFSE"̂ ^̂ ) cell population

To determine the anti-proliferative effect of different treatment conditions and 

assess the size of the non-proliferating primitive progenitor population, the 

percentage recovery of viable CD34^ cells in the undivided population remaining 

after culture was assessed. At each analysis time point, the number of viable cells 

harvested from each culture condition was recorded, as was the percentage of
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CD34"' cells found in the undivided fraction (CFSE^^^ CD34" )̂. Percentage

recovery of input cells in the undivided peak could then be calculated by dividing

the absolute number of CFSE^^^ CD34^ cells by the total number of input CD34^

cells and multiplying by 100%. This allowed direct comparison of different

treatment conditions on the non-proliferating primitive progenitor population.

2.3.3 Western blotting

This protein detection technique, which is also known as immunoblotting, is used 

to identify specific proteins. A specific protein can be identified after fractionation 

on either one or two-dimensional gels, by exposing all the proteins present to a 

specific antibody coupled to an easily detectable enzyme such as horseradish 

peroxidase, a radioactive isotope or a fluorescent dye. This is done after the 

proteins separated on the gel have been transferred or ‘blotted’ onto a sheet of 

nitrocellulose paper as this is more robust than the gel.

2.3.3.1 Preparation of protein lysate

The lysis buffer (Section 2.2.4.1) was prepared immediately prior to use. Equal 

cell numbers from different treatment condition were washed twice with ice cold 

PBS (1200RPM for 5 minutes). The cells were then transferred to a 1.5mL 

eppendorf and washed again in ice cold PBS (5000RPM for 5 minutes in a bench- 

top micro-centrifuge). The lysis buffer was added to the cells (1-2x10® cells/50pL 

lysis buffer), mixed by pipetting up and down and incubated for 15 minutes on ice. 

Following this, the cells were gently vortexed and then spun at 14000RPM for 10 

minutes at 4°C to clarify the supernatant which was then saved as a detergent 

lysate and stored at -80°C until use.
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2 3.3.2 Protein quantitation

Protein quantification was performed using the bicinchoninic acid (BCA) method 

for colorimetric detection and quantification of total protein according to the 

manufacturers’ instructions. This method utilises the reduction of Cu^  ̂ to Cû "̂  by 

protein in an alkaline medium (the biuret reaction) with the colorimetric detection of 

the cuprous cation (Cu^^) using a reagent containing BCA (Smith et al., 1985). The 

purple reaction product of this assay is formed by chelation of one cuprous ion 

with two molecules of BCA. The water-soluble complex exhibits a strong 

absorbance at 562nm that is nearly linear over a broad range of protein 

concentrations (20-2,000pg/mL).

Firstly the BSA standards were prepared. BSA was dissolved in 0.9% saline to 

give a concentration of 2mg/mL. Serial dilutions of this stock were then made to 

produce a concentration gradient for the controls. Controls of the following 

concentrations were prepared: 1500; 1000; 750; 500; 250; 125; 50; 25; 5pg/mL; 

and a blank. These controls could be stored at -20°C for use on multiple 

occasions. To prepare the assay, 25pL of each control was pipetted into the well 

of a 96-well plate in duplicate. Protein lysate (2.5pL) was added to 22.5pL of PBS 

in duplicate test wells. BCA solutions A and B were combined (50A:1B) and 200pL 

of BCA solution A plus B was added to each well. The 96-well plate was then 

incubated at 37°C for 25 minutes and then the plate was read using an ELISA 

plate reader according to the manufacturers’ instructions. This allowed accurate 

protein quantification so that equal amounts of protein could be used for Western 

blotting.
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2.33.3 Sodium dodecyl sulphate-polyacrylamide-gel electrophoresis

(SDS-PAGE)

This technique has revolutionised protein analysis. It uses a highly cross-linked gel 

as the inert matrix through which the proteins migrate. The proteins are in a 

solution which includes sodium dodecyl sulphate (SDS), a negatively charged 

detergent which binds to hydrophobic regions of the protein molecules, causing 

them to unfold into long polypeptide chains and become freely soluble in the 

solution. A reducing agent such as p-mercaptoethanol is also added to break any 

disulphide bonds present in the proteins, so that all the constituent polypeptides 

can be analysed separately. Each protein molecule binds many of the negatively 

charged detergent molecules. This masks the protein’s inherent positive charge, 

resulting in migration of the protein towards the positive electrode when a voltage 

is applied. The speed of migration through the gel is dependent on the size of the 

polypeptide, with smaller polypeptides travelling more rapidly through the gel. This 

technique can be used to determine the approximate molecular weight of a 

polypeptide as well as the subunit composition of a protein.

To perform SDS-PAGE, equal volumes of protein lysate and Laemmli 2 X sample 

buffer were mixed together in a 1.5mL eppendorf and then heated to 95°C for 5 

minutes. The samples were then loaded onto a 4 to 15% gradient gel. Ten 

microlitres of rainbow ladder marker was loaded onto a lane of the gel to allow 

determination of protein size. The gel was electrophoresed in IX  TGS running 

buffer for 90 minutes at 130V using the Bio-rad Mini-PROTEAN™ electrophoresis 

system.
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2.3 3.4 Transfer to nitrocellulose membrane

The protein bands were then transferred from the gel to nitrocellulose membrane. 

Sponges, blotting paper and nitrocellulose membrane were soaked in transfer 

buffer. The gel was then removed from its holder, soaked in transfer buffer and the 

transfer sandwich was prepared as shown in Figure 2-4 for wet transfer.

- cathode (black) 
sponge 
blotting paper 
gel
nitrocellulose 
blotting paper 
sponge 
+ anode (red)

Figure 2-4. Preparation of sandwich for wet transfer of protein from gel to nitrocellulose 

membrane.

The sandwich then underwent electrophoresis for 1 hour at room temperature at 

80V.

2.3.3.5 Immunolabelling

After transfer, the nitrocellulose membrane was stained with 0.1% Ponceau S for 

30 to 60 seconds to assess protein transfer. The membrane was then de-stained 

with distilled water and washed in PBS-T for 5 minutes. Following this, the 

membrane was blocked in 5% non-fat dry milk in PBS-T at room temperature for 2 

to 4 hours and then the blocking solution was discarded and the membrane 

incubated with the primary antibody solution (H-Ras, Mcl-1 or Actin in PBS-T/5% 

BSA) overnight at 4°C with gentle agitation. The H-Ras antibody was diluted 

1:200, and the Mcl-1 and actin antibodies 1:1000 in PBS-T for immunolabelling. 

The following morning, the nitrocellulose membrane was washed 4 times (15 

minutes per wash) in PBS-T and then incubated with horseradish peroxidase-
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conjugated secondary antibody (anti-rabbit HRP 1:3000) in blocking solution for 1

hour at room temperature with gentle agitation. The membrane was again washed

4 times (15 minutes per wash) and then developed with the ECL plus™ kit

according to the manufacturers' instructions. Briefly, a solution of ECL plus™ A

and B (40A:1B) was prepared, and the membrane was soaked in this for 5

minutes. Excess ECL plus™ solution was then removed and the nitrocellulose

membrane placed in an X-ray box for exposure onto Hyperfilm™ ECL™. Films

were exposed for increasing lengths of time until satisfactory bands were seen.

The films were developed using the Kodak X-omat™.

2.3.3.G Stripping and re-blotting

The Re-Blot™ Plus Strong stripping solution was diluted 1:10 with distilled water. 

The nitrocellulose membrane was incubated in the stripping solution for 10 to 15 

minutes and then washed twice in PBS-T for 10 minutes. The membrane was then 

re-blocked for 1 hour, prior to being incubated with a different primary antibody. 

This method allowed stripping and re-blotting of membranes 3 to 4 times.

2.3.4 Statistics

All statistical analyses were performed using the Student’s T-test on the Minitab 

statistics software package. A level of P ^ 0.05 was taken to be statistically 

significant.
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3 Results 1

3.1 Priming CD34* CML progenitor ceils with rHu-G-CSF 

improves their eradication by IM in vitro

3.1.1 Introduction

In vitro studies have demonstrated that IM acts by inhibiting the growth of primitive 

CML progenitors through reversal of abnormally increased proliferation (Holtz et 

al., 2002). However, these growth arrested (quiescent) CML cells are not 

eradicated by IM In vitro (Graham et al., 2002; Bhatia et al., 2003) or in vivo as 

demonstrated by persistent detection of low level BCR-ABL transcripts by qRT- 

PCR (Hughes et al., 2003; Branford et al., 2004). In addition, recent case reports 

(Cortes et al., 2004b; Mauro et al., 2004) show that some patients who achieved a 

molecular remission on IM, relapsed rapidly after IM was stopped, but responded 

to re-institution of IM therapy. This disease behaviour is suggestive of an IM- 

insensitive LSC compartment.

In view of these observations, we decided to look for a treatment strategy which 

would promote re-entry of these quiescent CML progenitor cells back into the cell 

cycle, rendering them susceptible to eradication by IM. Two potentially successful 

approaches for eliminating the quiescent CML stem cell population could involve 

(1) interruption of IM therapy - an IM ‘drug holiday’; or (2) priming with rHu-G-CSF. 

These therapeutic approaches could also be combined in vitro and in vivo. It is 

proposed that interruption of IM therapy would reverse the observed anti­

proliferative effect of IM at the G0/G1 boundary, allowing these cells to re-enter the 

cell cycle and priming with rHu-G-CSF would promote re-entry of quiescent CML 

stem cells into the cell cycle, rendering them sensitive to IM.
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Therefore, the aims of this part of the study were two fold. Firstly, to determine if

interrupted (pulsed) IM therapy was more effective than continuous IM at

eradicating CML stem cells in vitro] i.e. would an ‘IM holiday' bring cells back into

cycle? Secondly to assess if priming with rHu-G-CSF alone or in addition to

interrupted or continuous IM therapy could improve eradication of CML stem cells

in vitro] i.e. could exogenous G-CSF induce cell cycle activation?

3.1.2 Assessment of G-CSF-R protein expression in CD34* CML 

progenitor ceiis

Our collaborator, Dr Xiaoyan Jiang, had shown that G-CSF-R gene expression 

was up-regulated in the cycling (G1/S/G2/M) compared to the quiescent (Go) 

fraction of both CML and normal CD34'" progenitor cells by qRT-PCR. 

Furthermore, G-CSF-R gene expression was also significantly higher in both the 

quiescent (-2 fold) and cycling (~4 fold) fractions of CD34'" CML progenitors 

compared to normal CD34^ cells (P<0.02) (Jorgensen et al., 2006). Therefore, the 

aims of this experiment were to determine if G-CSF-R protein expression was 

increased in CML versus normal CD34^ progenitor cells and if this expression was 

further enhanced by the addition of rHu-G-CSF.

Flow cytometry was used to assess G-CSF-R protein expression in CML (n=2) 

and normal (n=2) CD34^ progenitor cells at 0, 24, 48, and 72 hours culture in SFM 

in the presence or absence of rHu-G-CSF at a concentration of 20 ng/mL (Figure 

3-1). At baseline (0 hours), both CML and normal CD34^ cells had low levels of G- 

CSF-R expression (-1% of cells G-CSF-R positive). After 24 hours culture, G- 

CSF-R protein expression had started to increase in the CD34^ CML cells, 

reaching a peak (-12%) at 48 hours and still maintained at a high level at 72 hours 

culture (Figure 3-2). The addition of rHu-G-CSF did not affect G-CSF-R protein 

expression in these cells. In normal CD34^ cells, G-CSF-R protein expression
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remained at a low level (< 2%) at all time points in the presence or absence of

rHu-G-CSF.

24 48
Time (hours)

72

□ Normal; no G-CSF 
M Normal + G-CSF 
0  CML; no G-CSF 
m CML + G-CSF

Figure 3-1. G-CSF-R protein expression (percentage of total cells G-CSF-R positive) in CML 

and normal CD34^ cells after 0, 24, 48 and 72 hours culture in the presence or absence of 

rHu-G-CSF.

24 hoursBaseline 48 hours 72 hours
10.83%1.96% 11.79%0.87%

U_
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Figure 3-2. Representative FACS dot plots of G-CSF-R expression in CD34^ CML cells at 

baseline (0 hours), 24,48 and 72 hours culture in SFM only.
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Therefore, G-CSF-R protein expression was low in both CML and normal CD34 '̂

cells immediately after thawing (time = 0  hours; baseline) and increased rapidly in

the CML CD34^ cells in culture. This indicates that the high G-CSF-R transcript

levels seen in the cycling CML CD34^ cells does translate into increased G-CSF-R

protein expression. To confirm that the cell cycle profiles were similar in the CML

and normal CD34^ cells, Ki-67/7-AAD high resolution cell cycle analysis was

performed on CML and normal CD34^ cells after 72 hours culture in rHu-G-CSF

(20 ng/mL). This verified that the ratio of cycling to quiescent cells was comparable

in CML and normal CD34^ cells (Figure 3-3). Thus, higher G-CSF-R expression in

the CML cells was not due to a different cell cycle profile, with more cycling cells.

CML Normal

Sd

71%

■ M

28%

-, . ■

1%
200 400 600 600 1000

7-AAD

Figure 3-3. Representative FACS dot plots of Ki-67/7-AAD high resolution cell cycle 

analysis. These confirm that there was no difference in cell cycle status between CML and 

normal CD34^ cells after 72 hours culture in the presence of rHu-G-CSF {20 ng/mL). The 

difference in appearance of the CML and normal FACS dot plots is for two reasons: firstiy, 

the two samples were analysed on separate days and the FACSCalibur settings would have 

been different as the voitages and compensation were set with fresh control samples each 

time the FACSCalibur was used; and secondly, the CML sample was stained overnight with 

7-AAD compared to the normal sample which was only stained for 6  hours.
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Next, we needed to determine if the G-CSF-Rs present on the CD34^ CML cells

were functional. This was done by determining the concentration-dependent ability

of rHu-G-CSF to enhance the growth of CD34^ CML progenitor cells in vitro.

3.1.3 Assessment of the proliferative response of CD34* CML

progenitor ceiis to rHu-G-CSF in vitro

This experiment set out to assess the proliferative response of CD34^ CML cells to 

rHu-G-CSF and establish the optimum rHu-G-CSF concentration for further 

experiments. CD34^ CML cells (n=2) were cultured for 6  days in medium 

containing a range of rHu-G-CSF concentrations (0-200ng/mL) or with 5GF 

(Figure 3-4). In the absence of any exogenous growth factors, the total number of 

cells increased in the first 2 days (~3-fold) and then remained constant for the next 

4 days indicating a constant rate of cell production which balanced but did not 

exceed cell death, as expected from the known autocrine IL-3/G-CSF phenotype 

of these cells (Jiang et al., 1999; Jiang et al., 2000b). The addition of rHu-G-CSF 

did not significantly further enhance cell expansion during the first 2  days, although 

the addition of either rHu-G-CSF 200 ng/mL or 5GF showed a trend towards 

increased total viable cells on day 2. However, over the remaining 4 days, the 

addition of rHu-G-CSF stimulated an increase in total viable cells. At 

concentrations of 2 and 10 ng/mL, rHu-G-CSF produced a sub-optimal 

proliferative response. However, rHu-G-CSF concentrations of 20 to 200 ng/mL 

produced equivalent proliferative responses in CD34’*' CML cells, with no benefit 

gained from rHu-G-CSF concentrations above 20 ng/mL. A further increase in cell 

output could be obtained by using 5GF, a growth factor combination optimised to 

stimulate primitive normal haemopoietic cells (Petzer et al., 1996b; Nordon et al., 

1997). Based on these results, a rHu-G-CSF concentration of 20 ng/mL was 

chosen for all subsequent experiments in this section.
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Figure 3-4. Proliferation of CD34'  ̂CML cells in vitro in response to different concentrations 

of rHu-G-CSF. Each well was seeded with 5 x 1 0 *  CD34* CML cells in SFM supplemented 

with 0, 2, 20 or 200 ng/mL rHu-G-CSF or 5GF. Total viable cell numbers were determined 

after 1 , 2 , 3  and 6  days. The rHu-G-CSF concentration of 20 ng/mL, chosen for subsequent 

experiments, has been highlighted (black line with circles).

3,1.4 Determination of totai viabie ceii counts after rHu-G-CSF 

priming in combination with continuous or interrupted iM 

therapy

In this series of experiments (n=6 ), the effect of giving continuous, intermittent or 

no rHu-G-CSF (20 ng/mL) in combination with continuous, interrupted or no IM on 

total viable cell numbers was assessed in CD34^ CML cells. The IM concentration 

used was 5 pM which is clinically achievable with standard doses of IM (Peng et 

al., 2004). Each experiment consisted of 3 cycles of 96 hours. Intermittent rHu-G- 

CSF was given for the first 24 hours of each 96 hour cycle and interrupted IM 

therapy was given for the last 72 hours of each 96 hour cycle. To account for all 

possible combinations of rHu-G-CSF with IM, there were 9 experimental arms 

(Figure 3-5): (1) no rHu-G-CSF, no IM; (2) no rHu-G-CSF, IM 72 hours; (3) no
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rHu-G-CSF, IM 96 hours; (4) rHu-G-CSF 24 hours, no IM; (5) rHu-G-CSF 24

hours, IM 72 hours; (6 ) rHu-G-CSF 24 hours, IM 96 hours; (7) rHu-G-CSF 96 

hours, no IM; (6 ) rHu-G-CSF 96 hours, IM 72 hours; and (9) rHu-G-CSF 96 hours, 

IM 96 hours. So that all conditions were treated equally, after the first 24 hours of 

each cycle, all experimental arms where washed three times in PBS and then re­

set up ± IM and ± rHu-G-CSF for the remaining 72 hours.

No IM IM 72h IM 96h 

&  &  &
No G-CSF

G-CSF 24h

G-CSF 96h

Figure 3-5. Schematic diagram of the nine possible combinations of rHu-G-CSF and IM used 

in the experimental protocol. G-CSF, rHu-G-CSF; h, hours.

Total viable cell counts were performed at the end of each 96 hour cycle (i.e. after 

4, 8  and 12 days culture) and the results are shown in Figure 3.6. Taken as a 

group, the three experimental arms to which no IM was added showed the 

expected higher total viable cell counts relative to the IM containing arms (P<0.001 

compared to both the IM 72 hours and IM 96 hours arms at the end of three 

treatment cycles). There were significantly fewer cells remaining after treatment 

with continuous IM (96 hours) compared to interrupted IM (72 hours; P=0.038) 

when no rHu-G-CSF was added. However, in the presence of either intermittent or 

continuous rHu-G-CSF, there was no significant difference between continuous or 

interrupted IM therapy.
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No G-CSF, no IM 

No GCSF, IM 72h 

No GCSF, IM 96h 

G-CSF 24h, no IM 
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G-CSF 96h, IM 72h 
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Day 0 Cycle 1 Cycle 2 Cycle 3

Figure 3-6. Total viable cell counts after each treatment cycle (4, 8  and 12 days) for all 

experimental conditions. Cells were cultured in SFM. Results are expressed as a percentage 

of the starting cell number (± SEM) which was the same for all experimental arms in an 

individual experiment. G-CSF, rHu-G-CSF.

As a group, the three arms to which continuous rHu-G-CSF (96 hours) was added 

had significantly more cells present at the end of three treatment cycles compared 

to the three arms containing either no rHu-G-CSF (P=0.036) or intermittent rHu-G- 

CSF (24 hours; P=0.007). Unexpectedly, the arms with no rHu-G-CSF had 

significantly more cells present than those to which intermittent rHu-G-CSF was 

added (P=0.019). The effect of IM on total cell numbers was consistently greater 

than that of rHu-G-CSF. This is because, even in the absence of rHu-G-CSF, 

CD34"  ̂ CML cells produce G-CSF through an autocrine mechanism (Jiang et al., 

1999), thus G-CSF is always present at a low level. Comparison of total viable 

cells in the individual arms is shown in Figures 3-7A and 3-7B and demonstrates 

significant differences in total viable cells between the different treatment arms. 

Interestingly, the pattern of effect of IM (none, interrupted or continuous IM) on 

total cell numbers was similar regardless of the presence of rHu-G-CSF (none, 

intermittent or continuous) and vice versa. However, the effects were most marked
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in the intermittent rHu-G-CSF arms with a reduction in total viable cells (relative to

input) after 12 days (3 cycles) of ~5 fold and 50 fold in the interrupted and

continuous IM arms, respectively.

Figure 3-7. Comparison of total viable cells (n=6 ) In the Individual experimental arms 

together with P values. (A) Three plots comparing the three arms with (I) no IM, (II) 

Interrupted IM (ill) continuous IM. (B) Three plots comparing the three arms with (I) no rHu- 

G-CSF, (II) Intermittent rHu-G-CSF and (III) continuous rHu-G-CSF. Results are expressed as 

a percentage of the starting cell number and represent the mean (± SEM). G-CSF, rHu-G- 

CSF; h, hours.
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3.1.5 Assessment of non-proliferating CD34^ CML cells after

priming with rHu~G-CSF in combination with continuous or 

interrupted IM therapy

After determination of total viable cell counts, we went on to assess the effects of 

continuous and intermittent rHu-G-CSF and continuous and interrupted IM therapy 

on the non-proliferating (quiescent) CD34^ cell sub-population after 3 cycles (12 

days) culture. These experiments were performed using CFSE to track cell 

division (Figure 3-8). A colcemid control was included to determine the location of 

the non-proliferating CFSE"’®’' CD34^ cells during FACS analysis. CFSE"’®* CD34'" 

cells were assessed at the end of each 4-day cycle. The absolute number of these 

non-proliferating cells was calculated and then expressed as a percentage of non­

proliferating cells present at the end of cycle 1 in the no rHu-G-CSF, no IM arm of 

the experiment. This calculation was performed for all three cycles and the results 

are shown in Figure 3-9. Representative FACS profiles for each of the 

experimental arms are shown in Figure 3-10.

All experimental arms washed after 24 hours 
culture, then re set up ± IM ± rHu-G-CSF as 

appropriate

Day 0

I
Cycle 1 Cycle 2 Cycle 3

CFSE i 1 1
Day 4 data Day 8 data Day 12 data

Figure 3-8. Schematic diagram of the protocoi to detect the non-proiiferating CFSE™* CD34* 

sub-popuiation of CML cells (highlighted in rectangle) at the end of each treatment cycle ± 

rHu-G-CSF ± IM.
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Figure 3-9. Relative size of non-proliferating CFSE™* CD34* CML ceil sub-population after 

cycles 1-3 (4, 8  and 12 days) in the described treatment conditions. Results are expressed 

as a percentage of the number of non-proliferating cells present at the end of cycle 1 in the 

no rHu-G-CSF, no IM arm (± SEM). Taken as a group the intermittent rHu-G-CSF arms (*) had 

significantly fewer undivided cells present at the end of 3 cycles compared to the no rHu-G- 

CSF {#; P=0.01) and continuous rHu-G-CSF (t; P=0.003) arms with no significant differences 

between the 3 individual intermittent rHu-G-CSF arms. IM alone had no significant effect on 

the non-proliferating population.
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Figure 3-10. Representative FACS plots of CML cells cultured for 12 days under the 

different conditions of rHu-G-CSF and IM. Each panel shows a plot for the treatment arm 

indicated. The non-proliferating CFSE™* CD34* CML cell population is highlighted In the 

box in each panel and the significant reduction in this population with intermittent rHu-G- 

CSF treatment is demonstrated. G-CSF, rHu-G-CSF; h, hours.

Taken as sets, there were no significant differences between the groups of three 

experimental arms in which either no IM, interrupted or continuous IM were 

present. These findings confirm those of previous experiments (Graham et ai..
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2002) which showed that IM did not target the non-proliferating sub-population of

CD34^ CML cells. In addition, interrupted IM therapy did not improve eradication of

the non-proliferating sub-population compared to continuous IM.

However, the results for rHu-G-CSF treatment were dramatically different. 

Intermittent rHu-G-CSF (24 hours) significantly reduced the non-proliferating sub­

population of CD34^ CML cells compared to the three arms containing no rHu-G- 

CSF (P=0.01) and, perhaps surprisingly, the three continuous rHu-G-CSF (96 

hours) arms (P=0.003). Interestingly, there was no difference between the no rHu- 

G-CSF and continuous rHu-G-CSF arms. The addition of either interrupted or 

continuous IM to rHu-G-CSF did not significantly enhance eradication of the non­

proliferating sub-population. This suggests that intermittent treatment with rHu-G- 

CSF may result in an enhanced initial mitogenic response in primitive CD34^ CML 

cells which is not present in more mature myeloid cells.

In selected experiments, the cells remaining after 12 days culture were FACS 

sorted to isolate the non-proliferating sub-population of CD34^ CML cells by Dr 

Martin Barow. The cells were sorted directly onto a microscope slide, the cells 

fixed, and FISH for the BCR-ABL fusion was kindly performed by Mrs Elaine Allan. 

This confirmed that the vast majority (>95%) of non-proliferating cells present were 

indeed BCR-ABL"^ after 12 days culture (Figure 3-11). Therefore, the insensitivity 

of the non-proliferating cells to rHu-G-CSF and IM was not due to enrichment of 

normal CD34^ cells.
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Figure 3-11. Representative FISH Images of BCR-ABL* cells. As treatment with continuous 

rHu-G-CSF and IM was least effective In reducing non-prollferating CD34* cells relative to 

the no rHu-G-CSF no IM control, this treatment arm was selected for FACS sorting of the 

CFSE™* sub-population to provide sufficient cells for FISH analysis to determine Ph status 

of the non-prollferating cell population. (A) The K562 BC CML cell line which has multiple 

copies of BCR-ABL (positive control for FISH). (B) CML patient total CD34* cells prior to 

treatment. (C) CFSE™* Ph* Interphase nuclei recovered after in vitro treatment with 

continuous rHu-G-CSF and IM. FACS sorting was performed by Dr Martin Barow and FISH 

by Mrs Elaine Allan.

To determine if cells leaving the non-proliferating CFSE"’®* CD34^ sub-population 

did so by apoptosis or cell division, active caspase-3 was assessed in combination 

with CFSE and CD34 by flow cytometry in the different experimental arms at the 

end of cycle 1. The non-proliferating CFSE"’®* CD34'^ cells remaining at the end of 

cycle 1 were almost exclusively active caspase-3 negative, indicating that the cells 

leaving the non-proliferating CFSE"’®* CD34"’ sub-population had done so by cell 

division and not apoptosis (Figure 3-12). The addition of either rHu-G-CSF or IM 

to the cultures did not significantly increase apoptosis.



Mhairi Copland, 2007 Chapter 3, 122

BA

%

I
î
g

<

no'

CFSE

Figure 3-12. Representative FACS plots of active caspase-3 to measure apoptosis versus 

CFSE to track cell division in (A) rHu-G-CSF 24 hours , no IM; (B) rHu-G-CSF 24 hours, IM 72 

hours; and (C) rHu-G-CSF 24 hours, IM 96 hours arms which demonstrate that non­

proliferating CFSE"’®’' CD34^ CML cells are not undergoing apoptosis. Active caspase-3 was 

measured after the first cycle (4 days). Apoptosis only occurs once the cells are dividing 

indicating that the cells leave the non-proliferating gate by cell division and neither rHu-G- 

CSF nor IM increases the rate of apoptosis.

3,1,6 Summary and conclusions

Continuous IM was more effective than interrupted IM in reducing total viable CML 

cells in the absence of rHu-G-CSF. In the presence of rHu-G-CSF, there was no 

significant difference between the effects of continuous and interrupted IM on total 

viable cells. IM most effectively reduced total viable cells when combined with 

intermittent rHu-G-CSF. As expected, IM had no significant effect on the non­

proliferating sub-population of CD34^ CML cells. However, intermittent rHu-G-CSF 

significantly reduced the non-proliferating sub-population compared to either no 

rHu-G-CSF or continuous rHu-G-CSF by increasing the number of cells which 

leave this quiescent pool by cell division. The addition of IM did not significantly 

enhance this effect.

These results suggest that the combination of intermittent rHu-G-CSF to stimulate 

cells to divide and reduce the non-proliferating pool, combined with continuous IM
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to eradicate more mature myeloid cells may be particularly effective in treating

CIVIL and reducing the phenomenon of molecular persistence.
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4 Results 2

4.1 A comparison of the efficacy of dasatinib and iM 

against quiescent primitive CIVIL progenitor cells in 

vitro

4.1.1 Introduction

There is increasing evidence that, even after prolonged treatment, IM does not 

eradicate CML stem cells in vivo. Previous research has shown that patients in 

CCR after IM therapy continue to have detectable BCR-ABL^ CD34^ cells, CFCs 

and LTC-ICs (Bhatia et at., 2003). Therefore, it is unlikely that IM will cure CML 

and patients will require long-term monitoring of BCR-ABL levels by qRT-PCR. 

This is also supported by the observed rapid relapses in a number of patients who 

have stopped IM after a period of negative qRT-PCR results (Cortes et al., 2004b; 

Mauro et al., 2004) and the persistence of IM-insensitive, non-proliferating 

(quiescent) cells in vitro (Graham et al., 2002; Holtz et al., 2002). With continued 

IM therapy, there is also the risk of developing IM resistance through BCR-ABL 

kinase domain mutations (Shah et al., 2002), BCR-ABL amplification (Gorre et al., 

2001), BCR-ABL independence with the acquisition of additional mutations 

(Donato et al., 2004) or reduced intracellular levels of IM (Mahon et al., 2003) as 

previously discussed (Section 1.2.7).

Recent work by our group has aimed to examine the mechanisms of IM resistance 

in non-proliferating (or quiescent) CD34^ CML cells (Copland et al., 2006). These 

studies have shown that, before and after short term culture (72 hours) in the 

presence of IM, the majority of CD34^ and the more primitive CD34^38" cells are 

BCR-ABL^ and have only a single copy of BCR-ABL; i.e. do not show gene
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amplification. This research has also shown that CD34^ CML cells have higher

BCR-ABL transcript levels than the more mature total MNC population when

measured by qRT-PCR. In addition, phosphorylated BCR-ABL, tyrosine and CrKL

protein expression were highest in the most primitive CD34"'38‘ cell fraction, at an

intermediate level in the CD34^ population and expressed at a low level in total

MNCs from CML patients. Furthermore, mutation analysis confirmed that kinase

domain mutations were not detectable in the CD34^ cells taken from early CP

CML patients at diagnosis or in those cells surviving 5pM IM or 150nM dasatinib

(Copland et al,, 2006). Therefore, at present, the only confirmed explanation for

the insensitivity of CML stem cells to IM is increased BCR-ABL gene and protein

expression. Taken together, all these findings highlight the importance of finding a

therapy which targets the primitive CML stem cell population.

Dasatinib is a novel multi-targeted kinase inhibitor of the SRC family and BCR- 

ABL kinases (Shah et al., 2004) which is currently in Phase 3 clinical trials in IM- 

resistant and IM-intolerant CML and Ph"" ALL patients (Talpaz et al., 2006). In 

vitro, dasatinib is more potent (325 fold greater) than IM in cell lines and inhibits 

the majority of BCR-ABL kinase mutations that result in IM resistance (except 

T315I) (O'Flare et al., 2005). It is believed that the improved efficacy of dasatinib 

against CML cells is due to increased potency against BCR-ABL and not directly 

through the additional inhibition of SRC kinases (Donato et al., 2003; Donato et al., 

2004; Flu et al., 2004). Flowever, these studies have been conducted in cell lines 

and mouse models and the importance of SRC kinases in primary CML cells has 

not been directly assessed, in models of advanced phase CML, BCR-ABL has 

been shown to activate LYN and FICK, the SRC kinases most prevalent in myeloid 

cells (Corey and Anderson, 1999), and this contributes to the survival and 

proliferation of BCR-ABL^ cells. Further in vitro studies have also shown that 

increased levels of activated LYN may up-regulate the anti-apoptotic protein BCL-
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2 in IM-resistant BCR-ABL^ cells, contributing to the IM resistance seen (Donato et

a!., 2003; Dai et al., 2004).

Therefore, the aims of this study were, firstly, to determine if dasatinib was more 

effective than IM in CD34'^ CML cells and if it would eradicate quiescent CML stem 

cells in vitro. Secondly, to determine the relevance of SRC kinases and BCL-2 in 

early CP CML.

4.1.2 Assessment of IC50 for dasatinib in the K562 cell line and

primary CD34* CML cells

Concentration finding studies to determine the IC50 for dasatinib in K562 and 

primary CD34^ CML cells were performed using thymidine cell proliferation 

assays and counting of total viable cells. K562 cells were assessed at 24 and 48 

hours and compared to the BCR-ABL negative AML cell line HL60 to show the 

specificity of dasatinib for BCR-ABL. Primary CD34^ CML cells were assessed 

after 72 hours culture in SFM only. Using proliferation assays (n=4), the IC50 for 

dasatinib in K562 cells was approximately 0.8nM at 48 hours culture (Figure 4- 

1A). These results were supported by total viable cell count results which showed 

a reduction in total viable cells to 80% of no drug control at InM and 35% at 5nM 

after 48 hours culture (Figure 4-1B). Dasatinib had no effect on proliferation or 

total viable cell counts in the BCR-ABL negative cell line HL60 at any of the 

concentrations assessed (Figure 4-1A and B). These results demonstrate that 

K562 cells are highly sensitive to dasatinib and that the drug selectively targets 

BCR-ABL expressing cells. Dasatinib had an IC50 of approximately 5nM as 

demonstrated by proliferation assay and confirmed by total viable cell count in 

primary CML cells (n=3; Figure 4-2A and B), indicating the potency of dasatinib in 

primary CML cells.
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Figure 4-1. Determination of ICso for dasatinib by thymidine proliferation assays and total 

viable cell counts in K562 cells (n=4 experiments) and HL60 cells (n=2 experiments). (A) 

thymidine proliferation assays after 24 and 48 hours in K562 and HL60 cell lines 

demonstrate that dasatinib has an ICso of approximately 0.8nM at 48 hours in K562 cells and 

has no effect on HL60 cells. Five replicates of each condition were performed in each 

experiment. (B) Total viable cell counts in K562 and HL60 cells at 48 hours expressed as a 

percentage of the no drug control confirm the results of the proliferation assays. Results 

represent the mean ± SEM. h, hours.
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Figure 4-2. Determination of ICgo for dasatinib by thymidine proliferation assays and total 

viable cell counts in primary CD34^ CML cells (n=3 experiments). (A) thymidine 

proliferation assays were performed after 72 hours and demonstrate that dasatinib has an 

ICso of approximately 5nM in primary CD34* CML cells cultured in SFM only. Five replicates 

of each condition were performed in each experiment. (B) Total viable cell counts after 72 

hours expressed as a percentage of the no drug control confirm the results of the 

proliferation assays. Results represent the mean ± SEM.

In primary CD34^ CML cells, even at doses up to lOOnM, there was no further 

reduction in proliferation or total viable cells compared to the 10nM dose. There 

are two possible explanations for this. Firstly, that there is enrichment of a normal
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Ph" cell population which is not affected by dasatinib. However, FISH on these and

other patients samples after 6 days culture in the presence of dasatinib confirmed

that >95% of cells remaining after culture were BCR-ABL'*', thus excluding this

explanation. The second potential reason is that there is a population of cells

present which is resistant to dasatinib and, as in the case of IM, this may be the

primitive CML stem cell population.

These results for dasatinib are similar to those of other groups which have 

reported an IC50 of 0.6 to 0.8nM for cell lines expressing wild type BCR-ABL (Shah 

et ai., 2004; O'Hare et al., 2005) and 60 to 80% inhibition of growth of bone 

marrow progenitors isolated from patients with IM-sensitive CML in CFU assays 

(Shah et al., 2004) . However, in Phase 1 clinical trials with CML patients (Talpaz 

et al., 2006), plasma concentrations of up to 180nM dasatinib have been achieved. 

Therefore, a concentration of 150nM dasatinib was chosen for further experiments 

as it more closely represented the clinical situation.

4.1.3 A comparison of IM and dasatinib in CD34* CML progenitor 

cells in short term culture

4.1.3.1 Assessment of total viable cell counts

In this series of experiments (n=8), the effects of IM or dasatinib, dosed either as 

single agents, sequentially or simultaneously on total viable cell counts was 

assessed in CD34'*' CML cells in vitro. As previously, an IM concentration of 5pM 

was chosen for these experiments, and dasatinib was used at 150nM as 

discussed. The cells were cultured in SFM + 5GF for a total of 6 days. After 72 

hours, an aliquot of cells was removed for counting; the remaining cells in all 

treatment arms were washed and then re-set up in culture for a further 72 hours 

under the following conditions: (1) No drug control; (2) IM 5pM; (3) dasatinib
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150nM; (4) IM for 72 hours then dasatinib for 72 hours; (5) dasatinib for 72 hours

then IM for 72 hours; and (6) simultaneous IM and dasatinib. Therefore, at 72

hours, there were only 4 experimental arms (no drug control, IM 5pM, dasatinib

150nM and simultaneous IM and dasatinib). The total viable cell counts for 72

hours and 6 days are shown in Figure 4-3 A and B, respectively.

P < 0.001 for all treatment arms 
compared to no drug control

P=0.006

B

No drug 
control

IM 5pM Dasatinib IM + Dasatinib
150nM

P = 0.001 for all treatment arms 
(except Dasatinib 150nM; P=0.002) 
compared to no drug controi

rP=0.007-i

No drug IM SpM IM then Dasatinib Dasatinib IM + 
control Dasatinib then IM 150nM Dasatinib

Figure 4-3. Total viable cell counts after 72 hours (A) and 6  days (B) for all experimental 

conditions. Cells were cultured in SFM + 5GF. Results are expressed as a percentage of the 

no drug control (± SEM).
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At both time points, there was a significant reduction in total viable cells in all

treatment arms compared to the no drug control (P<0.001 for all treatment arms at

72 hours, and P=0.001 for all treatment arms at 6 days except dasatinib 150nM

which had a significance value of P=0.002). However, as the cells were cultured in

the presence of 5GF, there was marked proliferation and expansion of total viable

cells compared to the starting cell number in all treatment arms (Figure 4-4). The

CD34*  ̂ CML cells were cultured in 5GF for these experiments to aid identification

of the quiescent progenitor population which has the greatest resistance to

activation in the CFSE experiments described next (4.1.3.2).

3500 
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No drug IM 5|jM IM then Dasatinib Dasatinib IM + 
controi Dasatinib then IM ISOnM Dasatinib

Figure 4-4. Total viable ceils after 72 hours and 6  days culture of CD34^ CML cells in SFM + 

5GF with the stated treatment conditions. There is expansion of cell numbers due to 

proliferation in all treatment arms relative to the starting cell number at 3 days with further 

expansion evident at 6  days. IM then dasatinib and dasatinib then IM have a 6  day time-point 

only. Results are expressed as percentage starting cell number (± SEM).

There was no significant difference in total cells between the IM and dasatinib 

arms at either time point (P=0.419 and P=0.118 for 72 hours and 6 days, 

respectively), although there was a trend for total viable cells to be lower in the IM
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arm. The experimental arm which consistently had the lowest total viable cell

number was the simultaneous IM and dasatinib arm. At both time points this was

significantly lower than the dasatinib only arm (P=0.006 at 72 hours and P=0.007

at 6 days) and significantly lower than either of the sequential treatment arms (IM

then dasatinib or dasatinib then IM) at 6 days (P=0.002 for both). There was no

significant difference between the IM only and simultaneous IM and dasatinib

arms. These results confirm that IM and dasatinib, at high therapeutically

achievable concentrations, have equivalent efficacy on primary CD34^ CML cells

in vitro.

4.1,3.2 The effect of IM versus dasatinib on non-proliferating CD34* CML 

progenitor cells

Having assessed total viable cell counts, the effects of IM and dasatinib, either as 

single agents, as sequential therapy or given simultaneously on the non­

proliferating (quiescent) CD34^ cell sub-population after 72 hours and 6 days was 

studied. As in Chapter 3 (3.1.5), these experiments were performed using CFSE to 

track cell division and, again, a colcemid control was included to identify the 

position of the non-proliferating CFSE*̂ ®̂  CD34^ cells during FACS analysis. The 

absolute number of these non-proliferating cells was calculated and then 

expressed as a percentage of the starting cell number for each treatment condition 

at 72 hours and 6 days. The results are shown in Figure 4-5A and B. 

Representative FACS profiles for the no drug control, IM and dasatinib arms are 

shown in Figure 4-6.
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Figure 4-5. Absolute number of non-proliferating CFSE"'®* CD34* cells remaining after 72 

hours (A) and 6  days (B) for all experimental conditions. Cells were cultured In SFM + 5GF. 

Results are expressed as a percentage of the starting cell number (± SEM).

Compared to the no drug control, there was a significant increase in non­

proliferating CFSE"^®̂  CD34^ CML cells in the IM and IM plus dasatinib arms at 72 

hours (P=0.04 and P=0.05, respectively). However, this increase was not present 

in the dasatinib arm (P=0.27). After 6 days culture, all treatment arms had 

increased CFSE*̂ ®̂  CD34"' cells compared to the no drug control. There were no
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significant differences between the different treatment arms, although there was a

trend for the arms containing continuous IM (IM 5pM and simultaneous IM plus

dasatinib arms) to have the largest non-proliferating cell populations (P=0.22).

Ill
Q.

Û
O

No drug control imatinib 5pM Dasatinib 150nM

CFSE

Figure 4-6. Representative FACS dot plots of CML cells after 72 hours culture In the 

presence of no drug control, IM 5pM or dasatinib ISOnM as indicated. The non-proliferating 

CFSE"’®* CD34^ CML cell population is highlighted in the box in each panei. The piots 

demonstrate the very iow number of undivided ceils remaining in the no drug controi 

compared to the relatively large population remaining in the iM arm. The intermediate sized 

CFSE"”®* CD34^ population remaining after treatment with dasatinib is also shown.

The relatively large population of non-proliferating CFSE*^^  ̂ CD34'*' CML cells 

remaining after exposure to IM is due to the accumulation of cells arrested in 

Gq/Gi phase of the cell cycle. The intermediate sized non-proliferating CFSE"^^  ̂

CD34^ CML cell population remaining after dasatinib treatment likely reflects the 

less profound anti-proliferative effect of dasatinib, resulting in fewer cells 

accumulating in the CFSE**̂ ®’̂  gate due to reversible Gq/Gi arrest. This anti­

proliferative effect is further demonstrated in Figure 4-7.

FISH was performed by Mrs Elaine Allan at baseline and again after 6 days culture 

in the presence of IM or dasatinib and confirmed that, at both baseline and again
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at the end of treatment, >95% of the cells were BCR-ABL* with only single copy

BCR-ABL being detected.

No drug control v. IM 5pM
10̂

No drug control v. Dasatinib 150nM

IM 5pM V. Dasatinib 150nM IM 5pM V. IM + Dasatinib

—  No drug control —  IM 5pM —  Dasatinib 150nM —  IM + Dasatinib

Figure 4-7. Representative FACS histogram plots which demonstrate the anti-proliferative 

effects of IM and dasatinib. In the upper panels, IM and dasatinib treated cells have 

progressed through fewer divisions (right shift) compared to the no drug control. In the 

lower panels, the less anti-proliferative effect of dasatinib compared to IM is seen (left) and 

the identical profiles for IM and simultaneous IM plus dasatinib administration are 

demonstrated (right).

As clearly demonstrated here, none of the treatment conditions, including the 

combined administration of IM and dasatinib, reduced the non-proliferating 

CFSE'"®’' CD34^ CML cell population compared to the no drug control. This 

suggests that neither IM nor dasatinib targets the most primitive quiescent CML 

stem cells.
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4.1.3.3 Assessment of apoptosîs in CD34^ CML cells after exposure to IM or

dasatinib

Previous work has shown that the most primitive CML cells do not readily undergo 

apoptosis after treatment with IM (Graham et al., 2002; Holtz et al., 2002; Bhatia at 

al., 2003; Jorgensen et al., 2005a), it is the more mature cells which apoptose. 

Therefore, apoptosis was assessed in CD34^ CML cells (n=4) after treatment with 

IM 5pM, dasatinib 150nM or a no drug control using an anti-active caspase-3-PE 

FACS antibody. To enable assessment of apoptosis in the non-proliferating 

fraction, the cells were stained with CFSE prior to culture as previously. In 

preliminary experiments, caspase-3 activity was assessed at 48, 72 and 96 hours 

culture in the presence of different treatment arms. Apoptosis was found to be 

greatest at 72 hours, therefore in all subsequent experiments, caspase-3 activity 

was assessed after 72 hours and the results are shown in Figure 4-8.

■I
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I

No drug control IM Sum
■- Dasatinib ISOnM

6.5%
%

7.9%
2

7.9% —

% 2 2

% .4 ° 10“̂ nou 1Qi 10-̂ 10-̂ 10̂
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Figure 4-8. Representative FACS dot plots which demonstrate increased caspase-3 activity 

in the presence of either IM 5pM or dasatinib ISOnM compared to no drug control after 72 

hours culture. Apoptosis was assessed using anti-active caspase-3 antibody (PE) in CD34^ 

CML cells. The cells were stained with CFSE prior to culture to allow assessment of 

apoptosis in the non-proliferating (quiescent; boxed area) fraction. The dot plots Illustrate 

that the majority of apoptosis occurs in the more mature progenitors which have already
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undergone several divisions, with the non-proliferating compartment being relatively 

resistant to apoptosis.

Compared to the no drug control, there was a trend towards increased apoptosis 

in both the IM and dasatinib arms (5.5% versus 7.9% for both IM and dasatinib) for 

total cells remaining after 72 hours culture, but these results did not reach 

statistical significance (P=0.067 and P=0.069 for IM and dasatinib, respectively), 

due, in part, to inter-patient variability. In the non-proliferating population, there 

were no significant differences in apoptosis between the 3 arms with very few 

caspase-3 positive cell events (Figure 4-8). Therefore, dasatinib was no more 

effective than IM at inducing apoptosis in primary CD34^ CML cells, and most 

particularly, compared to IM, did not increase apoptosis in the non-proliferating 

CFSE"^®̂  CD34^ CML cell population. This result also confirms that the trend to 

fewer cells remaining in the non-proliferating CFSE"^®̂  CD34^ CML cell gate after 

treatment with dasatinib, compared to IM, is due to the cells leaving this gate 

through cell division and not apoptosis.

4.1.3.4 Assessment of CrKL phosphorytation as a marker of BCR-ABL 

activity in primary CD34^ and more primitive CD34^38‘ CML cells after 

treatment with IM or dasatinib

To further define the effects of IM and dasatinib on primary CML cells, a flow 

cytometry method for measuring CrKL phosphorylation has been developed and 

validated in our lab (Hamilton et ai., 2006). This FACS method allows 

determination of CrKL phosphorylation status on relatively small cell numbers (< 

1x10®) from which there would have been insufficient protein to perform Western 

blotting. Our first finding was that CrKL phosphorylation was significantly increased 

in the more primitive CD34^38" population compared to the total CD34^ population 

(P=0.002; Figure 4-9A). Further experiments assessed the effect of IM at a dose
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of 5|jM on CrKL phosphorylation in total CD34^ and more primitive CD34'*'38‘ cell

populations (Figure 4-9B). Results showed that IM inhibited CrKL phosphorylation

at 16 hours but not 72 hours in total CD34^ cells, consistent with enrichment of an

IM-insensitive population (P=0.01 for 16 hours versus 72 hours). However, at both

time-points, in the more primitive CD34^38" cell population, IM failed to inhibit CrKL

phosphorylation, confirming the inherent insensitivity of these primitive cells to IM.

We then went on to compare the effects of either IM 5pM or dasatinib ISOnM on

the primitive CD34^38' cell population at 16 hour and 72 hour time-points (Figure

4-9C). At both time points, there was significant inhibition of CrKL phosphorylation

compared to IM (P=0.004 for 16 hours and P<Q.001 for 72 hours).

These results provide evidence that dasatinib is a more potent inhibitor of BCR- 

ABL than IM. However, they also suggest that BCR-ABL may be irrelevant in the 

stem cell compartment as both IM and dasatinib have equivalent potency at 

clinically achievable concentrations against CD34^ CML cells in vitro, despite the 

superior inhibition of CrKL phosphorylation in the primitive CD34^38’ compartment 

demonstrated here. This further suggests that either inhibition of BCR-ABL does 

not lead to cell death or the enhanced inhibition CrKL phosphorylation 

demonstrated here with dasatinib is mediated via SRC and not BCR-ABL. An 

alternative explanation, although unlikely, is that CML cells require more than 72 

hours after inhibition of CrKL phosphorylation before undergoing apoptosis.
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Figure 4-9. Assessment of CrKL phosphorylation (p-CrKL) In total 0034^ and the more 

primitive 0034*38' cell populations before and after treatment with IM or dasatinib. (A) 

Comparison of p-CrKL In total CD34* and CD34 38 cells at baseline. CD34*38 cells exhibit
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significantly greater p-CrKL than total CD34* cells (P=0.002). (B) p-CrKL In total CD34* and 

CD34*38‘ cells after treatment with IM 5pM for 16 and 72 hours. IM Inhibited p-CrKL at 16 

hours (P=0.01) but not 72 hours in the total CD34* cell population, suggesting enrichment of 

an IM-lnsensitlve population. (C) Comparison of p-CrKL after treatment with IM 5pM or 

dasatinib 150nM In CD34*38 cells after 16 and 72 hours. There was significant Inhibition of 

p-CrKL at both time-points with dasatinib (P=0.004 at 16 hours and P<0.001 at 72 hours) 

compared to IM. h, hours

4.1.4 Determination of the reievance of SRC kinases in CML

Recent research has shown that the SRC kinase LYN is over-expressed and 

activated in the K562-R cell line (Donato et al., 2003) which is resistant to IM. This 

cell line was developed by culturing K562 cells with increasing concentrations of 

IM and then cloning the cells which were resistant to IM by limiting dilution. The 

surviving cells were then cultured in the absence of IM and then re-assessed for 

IM sensitivity. The cells which remained IM-resistant were termed K562-R cells. 

Further experiments showed that inhibition of LYN with the SRC family-specific 

inhibitor CGP76030 (Novartis) resulted in reduced proliferation and survival of 

K562-R cells. Samples taken from patients with BC CML who had progressed on 

IM also showed increased expression of activated LYN similar to the K562-R cell 

line (Donato et al., 2003). In addition, specimens taken from BC CML patients 

before and after IM failure suggested that expression of activated LYN and/or HCK 

occurred during disease progression. The authors concluded from this research 

that SRC kinases were highly expressed in BC CML and that this increased 

expression correlated with disease progression or IM resistance. Further studies 

using a mouse model have also shown that BCR-ABL activated the SRC kinases 

LYN, HCK and FGR in B-lymphoid cells (Hu et al., 2004) and induced CML, but 

not ALL, in LYN' HCK'-FGR-'- mice. The SRC inhibitor CGP76030 impaired 

proliferation of B-lymphoid cells expressing BCR-ABL in vitro and prolonged 

survival of mice with B-ALL, but not CML. In addition, in B-ALL, the combination of
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CGP76030 with IM was superior to IM alone (Hu et al., 2004). These studies

suggest that SRC kinases are not required for CML induction but are necessary

for Ph^ ALL and that SRC activation does not contribute to the proliferation or

survival of CML cells. Further research in the cell lines K562-R and LAMA-R which

exhibit BCR-ABL independent IM resistance has shown that activation of LYN

plays a functional role in the up-regulation of the anti-apoptotic protein BCL-2 (Dai

et al., 2004). Figure 4-10 shows the signalling pathways between BCR-ABL, the

SRC kinases and BCL-2.

SRC kinases

Ras

Raf

MEK

CM ERK

Figure 4-10. Simplified schematic diagram of the signalling pathways showing the Indirect 

relationship between the SRC kinases and the anti-apoptotic protein BCL-2.

In view of the results of these studies which have concentrated on SRC kinase 

expression in CML cell lines and BC CML, I undertook further research to assess 

levels of BCL-2, LYN and HCK in primary CML cells before and after treatment
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with IM or dasatinib in vitro to determine if SRC family kinases are a relevant

target in CP CML. I was assisted in some of these experiments by Miss Emma

Hamill. The aims of this research section were to answer the following questions:

1. Is p-SRC (used to measure active LYN and HCK) and BCL-2 protein 

expression increased in CD34^ CML cells at the different disease stages 

(CP, AP, BC) compared to normal CD34^ cells?

2. Does treatment with TKIs (IM, dasatinib or the SRC kinase inhibitor PP2) 

alter expression of p-SRC or BCL-2?

3. Is there a difference in p-SRC and BCL-2 expression in the different phases 

of CML?

4.1.4.1 Expression of p-SRC and BCL-2 in CD34^ cells from the different 

phases of CML compared to normal CD34* cells

Protein expression of p-SRC and BCL-2 was assessed in primary CD34^ CML 

cells from patients in different phases of the disease using intracellular flow 

cytometry techniques. A p-SRC antibody was used as this was capable of 

measuring phosphorylation status of all members of the SRC kinase family (SRC, 

LYN, HCK, FGR etc.) which are all phosphorylated on the same tyrosine residue 

(Y416). Phosphorylated SRC and BCL-2 were measured in normal CD34^ cells 

(n=3), CP (n=5) AP (n=2) and BC CML (n=5) CD34^ cells (Figure 4-11A and B).
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Figure 4-11. Assessment of p-SRC and BCL-2 protein expression in CD34^ ceiis from normal 

donors and patients with CP, AP and BC CML. (A) p-SRC expression is increased in CD34^ 

CML ceiis compared to normai CD34^ ceiis (P=0.002 for CML versus normal). (B) BCL-2 

expression is increased in the different phases of CML compared to normal CD34^ ceils 

(P=0.029 for CML versus normai). Results are expressed as a percentage of p-SRC or BCL-2 

expression in the normai CD34* ceils (average of 3 normai samples).

Compared to normal CD34^ cells, CP and BC CD34^ CML cells showed 

significantly increased levels of p-SRC (P=0.02 and P=0.022, respectively: Figure

4-11 A). There was also a trend towards higher p-SRC levels in the BC compared
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to CP samples. Due to low sample numbers (n=2), AP 0034^ CML cells failed to

show statistical significance, but demonstrated a trend towards increased p-SRC

compared to normal CD34^ cells. There was a trend towards increased BCL-2

expression in each of the three phases of CML compared to normal CD34^ cells,

however results failed to reach statistical significance. As a group CD34'^ CML

cells showed increased BCL-2 expression compared to normal CD34'" cells

(P=0.029). There was marked inter-patient variability in expression of both p-SRC

and BCL-2. Figure 4-12A and B show FACS histograms for the different phases

of CML for p-SRC and BCL-2, respectively.

p-SRC

Isotype control 

Normal 002 

CP CML 166 

APCML 185 

BC CML 002

BCL-2

Figure 4-12. Representative FACS histogram plots of (A) p-SRC and (B) BCL-2 in CD34^ cells 

from normal donors and patients with different phases of CML.

Using three-colour flow cytometry, I went on to assess the expression of p-SRC 

and BCL-2 in the more primitive CD34^38 sub-population from CP, AP and BC
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CML cells compared to normal CD34‘̂ 38‘ cells. The results are shown in Figure 4-

13A and B.
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Figure 4-13. Assessment of p-SRC and BCL-2 protein expression in CD34^38‘ cells from 

normal donors and patients with CP, AP and BC CML. (A) p-SRC expression is increased in 

CD34*38 CML cells compared to normal CD34^38 cells (P=0.001 for CML versus normal).

(B) BCL-2 expression is increased in CD34^38 CML cells compared to normal CD34^38‘ cells 

(P=0.004 for CML versus normal). Results are expressed as a percentage of p-SRC or BCL-2 

expression in the normal CD34*38 cells (average of 3 normal samples).
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As with total CD34^ celle, CP and BC CD34^38“ celle CML celle showed

significantly increased levels of p-SRC (P=0.032 and P=0.013, respectively;

Figure 4-13A) in comparison to normal CD34‘*'38‘ cells. Again, there was also a

trend towards higher p-SRC levels in the BC compared to CP samples. Due to low

sample numbers (n=2), AP CD34'"38“ CML cells failed to show statistical

significance, but demonstrated a trend towards increased p-SRC compared to

normal CD34^38‘ cells. In the primitive CD34^38‘ sub-population BCL-2 expression

was also significantly increased in CP and BC compared to normal CD34^38' cells

(P=0.012 for both; Figure 4-138). Once more, there was marked inter-patient

variability in expression of both p-SRC and BCL-2 in the CD34'^38' sub-population.

These results show, for the first time, that p-SRC expression is increased in CP 

CML and may be a relevant target for therapy. However, it is unclear whether this 

increase in activated SRC is BCR-ABL-dependent or independent because, as 

well as acting as downstream modulators of BCR-ABL signalling, SRC family 

kinases can also be directly activated by haemopoietic growth factors via cell 

surface receptors (Corey and Anderson, 1999). In addition, these results indicate 

that BCL-2 is up-regulated in CML cells and may be contributing to the anti- 

apoptotic phenotype of CML.

Interestingly, compared to the total CD34^ cell population, absolute expression 

levels were lower in the more primitive CD34'^38" sub-population in all sample 

groupings (Figure 4-14A-C). However, both p-SRC and BCL-2 expression were 

proportionately much higher in CD34'"38' CML cells compared to normal CD34^38' 

cells (Figure 4-13 A and B). Overall, p-SRC was 3-fold and 6.4-fold increased and 

BCL-2 was 1.7-fold and 2.8-fold increased in CD34^ and CD34^38" populations, 

respectively, compared to normal CD34^ and CD34^38‘ CML populations. A 

possible explanation for this is that p-SRC and BCL-2 are increased as a direct
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result of higher BCR-ABL levels in the primitive CD34*38' sub-population (Figure

4.9). This relative over-expression of p-SRC and BCL-2 in CD34‘̂ 38* CML cells

compared to normal CD34^38" cells may contribute to their relative IM resistance.

B

0034*38- cells

CD34-APC

Normal
N=3

CP CML 
N=5

APCML
N=2

BC CML 
N=5 CD34* cells 

CD34*38-cells

Ü „m 8

Normal CP CML AP CML BC CML
N=3 N=5 N=2 N=5

Figure 4-14. Comparison of p-SRC and BCL-2 expression in total CD34^ cells and more 

primitive CD34*38 cells. (A) Representative FACS dot plot highlighting the primitive 

CD34*38 sub-population. (B) and (C) Histograms showing the higher p-SRC (B) and BCL-2

(C) expression in total CD34^ compared to the more primitive CD34*38 sub-population. MFI, 

mean fluorescence intensity.
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4.1.4.2 Assessment of the effects of IM, dasatinib or PP2 on p-SRC and BCL-

2 expression in CD34^ CML cells in CP and BO CIVIL

Having established that the expression of p-SRC kinases was increased in CML, I 

went on to determine the effects of IM, dasatinib and the SRC specific kinase 

inhibitor PP2 on the expression of p-SRC and BCL-2 in CP (n=4) and BC (n=2) 

CML

4.1.4.2.1 Assessment of tCso for the SRC kinase inhibitor PP2 in CD34* CML 

ceiis

PP2 has been described as a potent pyrrolo-pyrimidine inhibitor of the SRC family 

of tyrosine kinases (Hanke et al., 1996). Concentration finding studies to 

determine the IC50 for PP2 in primary CD34^ CML cells (n=3) were performed 

using thymidine cell proliferation assays and total viable cell counts with 

assessment after 72 hours in culture in SFM only. PP2 had an I C 5 0  of 

approximately 7pM as demonstrated by thymidine proliferation assay and 

confirmed by total viable cell counts in primary CD34^ CML cells (Figure 4-15). 

These results are similar to those obtained by another group (Wilson et al., 2002) 

who reported an I C 5 0  of lOpM in the K562 cell line, but did not undertake 

experiments in primary CML cells.
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Figure 4-15. Determination of IC50 for PP2 using H thymidine proliferation assays and total 

viable cell counts in primary CD34^ CP CML cells cultured in SFM only (n=3 experiments).

(A) 72 hour proliferation assays demonstrate that PP2 has an IC50 of approximately 7pM 

in primary CD34* CML cells. Five replicates of each condition were performed in each 

experiment. (B) 72 hour total viable cell counts confirm the proliferation assay results. 

Results represent the mean ± SEM.

Based on these results, PP2 was used at a concentration of 10|jM in subsequent 

experiments.
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4.1.4.2.2 Effect of IM, dasatinib and PP2 on p-SRC and BCL-2

expression in CD34* and CD34^38' CML cells

The effects of IM, dasatinib and PP2 on p-SRC and BCL-2 protein expression 

were assessed by intracellular flow cytometry after 16 hours and 72 hours culture. 

Compared to the no drug control (n=6), at 16 hours, both IM and dasatinib 

significantly reduced p-SRC expression in CD34^ and the more primitive CD34''38' 

CML cells (P=0.001 for no drug control versus IM in both CD34^ and CD34‘'38“ 

populations; and P<0.001 and P=0.003 for no drug control versus dasatinib in 

CD34^ and CD34^38" cells, respectively; Figure 4-16A). At 72 hours, there was a 

trend towards reduced p-SRC in the total CD34^ cells with both IM and dasatinib, 

however this did not reach statistical significance. In the CD34^38' cells at 72 

hours, only dasatinib significantly reduced p-SRC compared to no drug control 

(P=0.001; Figure 4-16B). In CD34^ and CD34^38" CML cells at both 16 and 72 

hours, PP2 had no significant effect on SRC phosphorylation status. This suggests 

that the majority of activated SRC kinase expression in CML is being mediated via 

BCR-ABL and is not BCR-ABL-independent. A possible explanation for the 

inability of the SRC inhibitor PP2 to significantly reduce p-SRC Is that, if BCR-ABL 

is stimulating p-SRC, then in the presence of high levels of BCR-ABL there may 

simply be too much p-SRC being produced to be inhibited by PP2. In the future it 

would be important to combine IM and PP2 to determine if the effect of this 

combination is equivalent to that of the dual SRC/BCR-ABL inhibitor dasatinib on 

p-SRC and BCL-2 expression in primary CML cells.
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Figure 4-16. The effect of IM, dasatinib and PP2 on p-SRC expression in (A) total CD34* and

(B) more primitive CD34*38 CML cells at 16 hours and 72 hours (n=6; 4 CP, 2 BC). Results 

are expressed as a percentage of the no drug control (± SEM). There was no difference 

between CP and BC CML in the samples assessed.

At both 16 and 72 hours, compared to no drug control, IM, dasatinib or PP2 did not 

significantly inhibit expression of BCL-2 in CD34'^ CML cells (Figure 4-17A). 

However, in the primitive CD34'"38' cells, there was a modest reduction in BCL-2 

with all treatment arms compared to no drug control (Figure 4-17B). This was only 

significant with dasatinib at 16 hours (P=0.021) but not 72 hours (P=0.061) and
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suggests that BCL-2 may be more relevant in the more primitive CD34^38‘ CML

cell population in keeping with the higher BCL-2 expression in these cells relative

to normal CD34^38' cells.
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Figure 4-17. The effect of IM, dasatinib and PP2 on BCL-2 expression in (A) total CD34* and 

(B) more primitive CD34*38 CML cells at 16 hours and 72 hours (n=6; 4 chronic phase, 2 

blast crisis). Results are expressed as a percentage of the no drug control (± SEM). In total 

CD34* cells, there were no significant differences between the experimental arms at either 

16 or 72 hours. However in the CD34*38 cells, at 16 hours, any treatment (IM, dasatinib, 

PP2) versus no treatment significantly reduced BCL-2 expression (P=0.002). No significant 

differences in BCL-2 expression were present at 72 hours in the CD34*38 popuiation. There 

was no difference between CP and BC CML in the samples assessed.
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The discrepancy between p-SRC and BCL-2 expression after treatment with IM or

dasatinib may suggest that, in CML, BCL-2 expression is not mediated by LYN as

previously proposed (Dai et ai., 2004). Alternatively, BCL-2 is known to have a

long half-life (Merino et al., 1994) and may be more stable and not degraded over

the culture period compared to p-SRC, which, because of its phosphorylated state

has a short half-life. Furthermore, In this study, total BCL-2 and not

phosphorylated BCL-2 was assessed. Recent evidence suggests that the anti-

apoptotic functions of BCL-2 may be controlled by its phosphorylation

(Blagosklonny, 2001), with phosphorylation of BCL-2 appearing to inhibit its anti-

apoptotic function (Haidar et al., 1995) The phosphorylation status of BCL-2 can

be altered by chemotherapeutic agents and cytokines, but was not assessed here.

4.1.5 Summary and conclusions

The multi-targeted kinase inhibitor, dasatinib has an IC50 of ~5nM in CD34^ CML 

cells in vitro. Cell line studies confirm that dasatinib selectively targets BCR-ABL^ 

haemopoietic cells.

In vitro, IM and dasatinib have equivalent cytotoxicity on primary CD34^ CML cells 

at high therapeutically achievable concentrations (5pM versus ISOnM, 

respectively). The simultaneous administration of IM and dasatinib further 

enhances the cytotoxic effect. However, there is no advantage to sequential 

treatment with these agents.

Neither IM nor dasatinib, alone or in combination, reduced the non-proliferating 

CFSE^^: CD34^ CML cell population compared to the no drug control. However, 

there was a trend for IM to be more anti-proliferative than dasatinib. Apoptosis 

studies using caspase-3 activity demonstrated that those cells leaving the 

undivided CFSE*̂ ®̂  CD34^ gate did so by cell division and not apoptosis. Further
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studies using p-CrKL expression to measure BCR-ABL activity demonstrated that

dasatinib was a more potent inhibitor of BCR-ABL than IM.

Activated SRC kinases as measured by p-SRC and BCL-2 expression were 

significantly increased in CD34^ and CD34^38" CML cells compared to normal 

CD34^ and CD34^38' cells. There was a tendency for p-SRC, but not BCL-2 to be 

higher in BC than CP CML. Imatinib mesylate or dasatinib, but not PP2, reduced 

p-SRC in CML; however as with p-CrKL expression, the effect was only transient 

with IM, suggesting that p-SRC expression is mediated by BCR-ABL. Imatinib 

mesylate, dasatinib and PP2 had only modest effects on BCL-2 expression, 

suggesting that either BCL-2 expression may be independent of both BCR-ABL 

and SRC kinases or BCL-2 is a more stable molecule and changes in BCL-2 

expression take longer to become evident. In addition, in future studies, it would 

be useful to assess BCL-2 phosphorylation as well as total BCL-2 levels to 

determine the amount of active BCL-2 present and the importance of BCL-2 

phosphorylation in CML.

However, as shown in Section 4.1.3.2, the most important finding of this study was 

that, although dasatinib treatment resulted in a smaller non-proliferating CFSE'^^’̂ 

CD34^ CML cell population than IM, it did not eradicate this population. Therefore, 

in overall conclusion, these results suggest that neither BCR-ABL nor SRC 

kinases are relevant targets in the most primitive stem cell populations in CP CML.
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5 Results 3

5.1 The novel FT! BMS-214662 targets quiescent CML 

stem and progenitor cells and synergises with 

imatinib or dasatinib in vitro

5.1.1 Introduction

Two main strategies to overcome IM resistance have emerged. The first is the 

development of second generation TKIs such as dasatinib and nilotinib (Shah et 

al., 2004; O'Hare et al., 2005; Weisberg et al., 2005; Kantarjian et al., 2006; Talpaz 

et al., 2006) and the second, the use of IM in novel drug combinations (Holtz et al., 

2005; Jorgensen et al., 2005a).

The results of Chapter 4 demonstrated that, although dasatinib induced durable 

inhibition of BCR-ABL tyrosine kinase activity in primitive CML cells as compared 

to either IM or nilotinib which were significantly less effective (Copland et al., 2006; 

Jorgensen et al., 2007), neither of these agents targeted the most primitive, 

quiescent CML stem cell population. A wide range of drug combinations with IM, 

including arsenic, Ara-C, the heat-shock protein-90 antagonist 17AAG, and the 

PI3K inhibitor LY294002, have been investigated (Holtz et al., 2005; Jorgensen et 

al., 2005a) in CD34^ CML progenitor cells. However, the only agent to enhance 

the activity of IM against the quiescent CML stem cell fraction was the cytostatic 

FTI lonafarnib (Jorgensen et al., 2005a), but the results failed to reach statistical 

significance.

As discussed in the introduction (1.3.3.1), FTIs are a novel class of small 

molecules developed to inhibit oncogenic Ras and have entered clinical trials in
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both solid tumours and acute leukaemias (Adjei et al., 2000; Cortes et al., 2003;

Cortes et al., 2005a; Tabernero et al., 2005). BMS-214662 is a cytotoxic FTI (Hunt

et al., 2000; Rose et al., 2001; Manne et al., 2004) that has produced potent

tumour regression and curative responses in selected human tumour xenografts

and transgenic tumour models, and differs from other cytostatic FTIs such as

lonafarnib and R115777 which had non-curative activity (Liu et al., 1998; End et

al., 2001). In addition, BMS-214662 has been shown to preferentially kill non-

proliferating cells (Lee et al., 2001) and has anti-leukaemic activity in AML (Cortes

et al., 2005a).

In view of the cytotoxic effect of BMS-214662 on non-proliferating cells in tumour 

models (Lee et al., 2001), and the promising results obtained previously with 

lonafarnib (Peters et al., 2001a; Hoover et al., 2002; Nakajima et al., 2003; 

Jorgensen et al., 2005a) and tipifarnib (Miyoshi et al., 2005), it was hypothesised 

that this small molecule inhibitor might target the quiescent CML stem cell 

population which has been shown to be resistant to IM, dasatinib and nilotinib 

(Copland et al., 2006; Jorgensen et al., 2007) and, indeed, may synergise with 

these drugs which induce potent anti-proliferative effects within the stem cell 

compartment in CML. Therefore, the aims of this study were to determine the 

effects of BMS-214662 alone and in combination with IM or dasatinib on the 

primitive quiescent CML stem cell population in vitro. In addition, the cytotoxic 

effects of BMS-214662 in BC CML and cell lines expressing BCR-ABL kinase 

domain mutations were assessed.

5.1.2 Assessment of IC5 0 for BMS-214662 in primary CD34* CML 

cells

Concentration finding studies to determine the IC50 for BMS-214662 in primary 

CD34^ CML cells were performed using ^H thymidine cell proliferation assays and

^  ,f..„ L  ̂ ■ - A " / y ' - . r.:-.
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counting of total viable cells. Results were assessed after 72 hours culture in SFM

alone. BMS-214662 had an IC50 of approximately 375nM after 72 hours culture in

CD34^ CML cells as determined by thymidine proliferation assays (n=3; Figure

5-1 A). Interestingly, cell counting showed a 50% reduction in total viable cells at

the lower BMS-214662 concentration of 250nM (Figure 6.1 B). These results show

that BMS-214662, when used as a single agent, is extremely potent against

CD34^ CML cells. Based on these results, a dose of 250nM BMS-214662 was

chosen for all further experiments in this study. Previous in vivo studies have

shown that a BMS-214662 plasma concentration of 250nM is readily achievable in

patients (Tabernero et al., 2005; Eder et al., 2006).
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Figure 5-1. Determination of iCso for BIVIS-214662 by (A) thymidine proliferation assay 

(n=3) and (B) total viable cell counts performed after 72 hours culture in SFM. thymidine 

proliferation assays show an IC50 of approximately 375nM and total viable cell counts 

250nM. Five replicates of each condition were performed in each experiment. Results 

represent the mean (± SEM).
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5.1.3 Determination of the efficacy of BMS-214662 alone or in 

combination with IM or dasatinib in CD34^ CML cells after 

short-term culture

5.1.3.1 Assessment of total viable cell counts

To assess the cytotoxic effect of BMS-214662 atone and in combination with IM or 

dasatinib, primary CD34^ CML cells (n=4) were cultured for 6 days in SFM + 5GF. 

Once again, the GD34^ CML cells for these experiments were cultured in 5GF to 

aid identification of the quiescent progenitor population in the CFSE experiments 

described next (5.1.3.2). After 72 hours, an aliquot of cells was removed for 

counting; the remaining cells were then washed and set up again in culture for a 

further 72 hours. The conditions studied were: (1) No drug control; (2) BMS- 

214662 250nM; (3) IM 5pM; (4) BMS-214662 250nM + IM 5pM; (5) dasatinib 

ISOnM and (6) BMS-214662 250nM + dasatinib 150nM. The drug concentrations 

for BMS-214662, IM and dasatinib were chosen on the basis that these were 

concentrations which were clinically achievable.

After 3 days culture, there was a significant reduction in total viable cells in the 

treatment arms compared to the no drug control (P=0.04; Figure 5-2A). Also, the 

combination of BMS-214662 + dasatinib showed a significantly greater cytotoxic 

effect than dasatinib alone (P=0.026) and the combination of BMS-214662 + IM 

showed a trend towards increased cytotoxic effect (P=0.055) compared to IM 

alone. After a total of 6 days in culture, there was a further significant reduction in 

total viable cells in the treatment arms relative to the no drug control (P=0.001; 

Figure 5-2B). Importantly, in addition, the combinations of BMS-214662 + IM and 

BMS-214662 + dasatinib showed increased cytotoxic effect over either IM or 

dasatinib alone (P=0.024 and P=0.034, respectively). Therefore, the addition of
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BMS-214662 to either IM or dasatinib significantly enhanced the effect of these

drugs in vitro by increasing overall cytotoxicity.

120  - P=0.04

P=0.026p=0.055 —3 60

i
No drug BMS-
controi 214662

250nM

IM 5pM BMS- Dasatinib BMS-
214662 + IM ISOnM 214662 +

Dasatinib

P=0.001120 -

3 60

Z  40 P ”0.024 — P=0.034 —

No drug BMS- IM SpM BMS- Dasatinib BMS- 
control 214662 214662 + IM ISOnM 214662 +

250nM Dasatinib

Figure 5-2. Total viable cell counts after (A) 72 hours and (B) 6 days for all experimental

conditions (n=4). CD34^ CML cells were cultured in SFM + 5GF. Resuits are expressed as a

percentage of the no drug control (mean ± SEM).
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5.1.3.2 The effect of BMS-214662 alone and in combination with IM or

dasatinib on non-proliferating CD34* CML progenitor cells after

short-term culture

Previous studies (including those in Chapter 4) have shown that both IM and 

dasatinib result in increased numbers of non-proliferating CD34^ CML cells 

remaining after culture (Graham et al., 2002; Copland et al., 2006), in part due to 

failure to induce apoptosis of CML stem cells and also as a result of their potent 

anti-proliferative effects leading to reversible Gi arrest. Therefore, we assessed 

the efficacy of BMS-214662 alone and in combination with IM or dasatinib in 

primary CD34‘" CML cells in vitro, again using CFSE-based flow cytometry to track 

cell division. After 3 days, there were no significant differences between the arms 

(Figure 5-3A). However, by 6 days, while the IM and dasatinib arms showed 

significant accumulation of non-proliferating CFSE"^^  ̂CD34^ CML cells over the no 

drug control (P=0.04 and P=0.023, respectively), the arms containing BMS- 

214662 with either IM or dasatinib showed a significant reduction in these primitive 

cells to 40% and 27% of the no drug control (Figure 5-3B; P=0.023 and P=Q.005) 

respectively. Despite reducing the non-proliferating CFSE^^'^ CD34^ cell population 

to 48% of the no drug control, results with BMS-214662 alone just failed to reach 

statistical significance (P=0.06). In addition, the reduction in non-proliferating 

CFSE*^^  ̂ CD3 4 + Q|\/|L cells was highly statistically significant when either IM or 

dasatinib alone was compared to the combination with BMS-214662 (P=0.01 and 

P=0.043, respectively). Representative FACS plots for each of the experimental 

arms are shown in Figure 5-4.
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Figure 5-3. Non-prollferating CFSE"’ *̂ CD34* cells remaining after (A) 72 hours and (B) 6 

days culture for all experimental conditions. Cells were cultured in SFM + 5GF. (A) There 

were no significant differences in non-proliferating cell numbers after 72 hours. However, by 

6 days (B), compared to either IM or dasatinib alone, the combinations with BMS-214662 

showed a significant reduction in non-proliferating cells (P=0.01 and P=0.043, respectively). 

In addition, compared to no drug control, BMS-214662 + IM and BMS-214662 + dasatinib 

showed a significant reduction in non-proliferating cells (P=0.023 and P=0.005, 

respectively). In these experiments, due to inter-patient variability in the size of the non- 

proiiferating CFSE"’̂ ’' GD34^ cell population, the cells remaining after the culture period 

were expressed as a percentage of the starting cell number normalised to the no drug 

control. The absolute number of non-proliferating cell decreased over time; non-
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proliferating cells in no drug control = 1.1% at 72 hours and 0.17% at 6 days. Results are 

expressed as a percentage of the no drug control (mean ± SEM).

S
Ü

No drug control

BMS-214662
250nM

IM 5uM

BMS-214662 + 
IM

Dasatinib 150nM

BMS-214662 + 
Dasatinib

CFSE

Figure 5-4. Representative FACS dot plots after 6 days culture for each of the experimental 

conditions. The non-proliferating CFSE"’®* CD34* CML cell population is highlighted in the 

box in each panel. The plots demonstrate the very low number of undivided cells remaining 

in the no drug control and BMS-214662-containing arms compared to the relatively large 

populations remaining in the IM and dasatinib only arms.

The marked anti-proliferative effect of IM or dasatinib due to reversible Gi arrest is 

demonstrated in Figures 5-5A and B, respectively. BMS-214662 had minimal anti­

proliferative effect compared to no drug control (Figure 5-5A and B) and did not 

overcome the anti-proliferative effect of either IM or dasatinib, indicating that BMS- 

214662 is able to exert its cytotoxic effect on non-proliferating cells. There were no 

significant differences in non-proliferating CFSE'^®  ̂CD34^ CML cells between the 

BMS-214662-containing arms. Very significantly, these are the first drug 

combinations tested using this CFSE-based method, which show a significant 

reduction in non-proliferating cells remaining after culture to a level below that of 

the no drug control (Jorgensen et al., 2005a).
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Figure 5-5. Representative overlay flow cytometry histograms demonstrating anti­

proliferative effects of IM and dasatinib. (A) No drug control, BMS-214662, IM and BMS- 

214662 + IM, and (B) no drug control, BMS-214662, dasatinib and BMS-214662 + dasatinib. 

Compared to the no drug control, the cells treated with IM, BMS-214662 + IM, dasatinib and 

BMS-214662 + dasatinib have progressed though fewer divisions (right shift) highlighting 

the anti proliferative effects of both IM and dasatinib. This anti proliferative effect was not 

overcome when either IM or dasatinib was combined with BMS-214662, demonstrating that 

BMS-214662 exerts Its cytotoxic effect on non-prollferating cells. BMS-214662 alone had 

minimal anti-proliferative effect compared to the no drug control.
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5.1.4 Determination of the efficacy of BMS-214662 aione or in

combination with iM or dasatinib in CD34* CML ceiis after 

iong-term cuiture using LTC-iC assays

To further investigate the efficacy of BMS-214662 on functional CML stem cells, 

LTC-IG assays were performed with both CP CML (n=3) and normal (n=3) CD34^ 

cells to determine drug selectivity. The CD34^ cells were treated for 72 hours 

under the following conditions: (1) No drug control; (2) BMS-214662 250nM; (3) IM 

5jjM; (4) BMS-214662 + IM; (5) dasatinib 150nM; (6) BMS-214662 + dasatinib, 

before LTC-IC assay. Compared to the no drug control, CD34^ CML cells showed 

increased Ph^ colony formation in the IM and dasatinib arms (191 and 175%, 

respectively; Figure 5-6A; P-0.033 for IM and dasatinib arms versus no drug 

control), indicating that these drugs exert a protective effect on CML stem cells in 

culture via their anti-proliferative effect described previously (Graham et al., 2002; 

Copland et al., 2006). The addition of BMS-214662 to either IM or dasatinib 

significantly reduced the number of Ph^ colonies compared to either agent alone 

(P=0.032 and P=0.027, respectively). Furthermore, the BMS-214662 only arm 

showed a significant reduction in Ph"" colonies compared to either IM or dasatinib 

atone (P=0.032 and P=0.028, respectively). All three BMS-214662-containing 

arms showed a virtual elimination of colonies to <1% of the number in the no drug 

control (P=0.033), with no significant difference between the arms. Figure 5-7 

shows examples of the CFU-GM colonies produced in the committed progenitor 

cell assays following LTC-IC.
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Figure 5-6. Results of LTC-IC assay for (A) CD34^ CML cells and (B) normal donor CD34^ 

cells treated under the experimental conditions described. (A) The addition of BMS-214662 

to either IM or dasatinib significantly reduced the number of Ph  ̂ colonies produced from 

CD34^ CML cells compared to either drug alone (P=0.032 and P=0.027, respectively), BMS- 

214662 alone also significantly reduced the Ph  ̂ colonies compared to the no drug control 

(P=0.033) and to either IM or dasatinib alone (P=0.032 and P=0.028, respectively). There were 

no significant differences between the BMS-214662-containing arms. (B) Compared to the 

no drug control, there was a non significant reduction in colonies produced from the normal 

donor CD34"̂  cells in the BMS-214662-containing arms.
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In normal CD34^ cells from healthy donors (n=3), there was a non-significant

reduction in LTC-IC in the BIVIS-214662-containing arms compared to the no drug

control (P=0.079-0.29; Figure 5-6B), with LTC-IC survival significantly higher for

normal compared to Ph"" CD34^ cells (P=0.001). Neither IM nor dasatinib alone

had a significant effect on colony formation from normal CD34^ cells compared to

the no drug control. These results confirm that BMS-214662 is targeting primitive

CML stem cells and provide evidence of selectivity for CML stem cells over normal

HSCs.
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Figure 5-7. Examples of CFU-GM colonies produced in the colony forming assays after LTC- 

IC.



Mhairi Copland, 2007 Chapter 5, 168

5.1.5 Fluorescence in situ hybridization results for short-term

cuiture and LTC-iC experiments for ceiis treated with

BMS-214662 alone or in combination with IM or dasatinib

FISH was performed at baseline and again after 6  days culture on the cells 

remaining in selected arms at the end of the CFSE experiments and on the 

colonies produced following the LTC-IC experiments. In the CFSE experiments, 

FISH was carried out on selected treatment arms at the end of 6  days culture 

(Table 5-1). All samples tested at either baseline or following culture were >90% 

Ph^ by FISH confirming that the cells present were from the leukaemic clone, and 

there was no evident enrichment for normal (Ph ) cells immediately after short term 

drug treatment.

UPN

BCR-ABL^ / total cells (%)

Baseline Dasatinib
BMS-

214662

BMS- 
214662 + 
Dasatinib

170 211/218
(97)

70/70
(100)

ND 58/58
(100)

189 932/1003
(93)

217/217
(100)

187/196
(95)

102/104
(98)

215 104/109
(95)

81/83
(98)

115/118
(97)

92/93 
(99) _

218 233/236
(99)

92/92
(100)

111/111
(100)

131/131
(100)

Table 5-1. FISH results for CFSE experiments with CD34* CML samples. FISH was performed 

on the cells remaining after after 6 days culture in selected treatment arms. UPN; unique 

patient number, ND; not determined.

In the LTC-IC experiments (Table 5-2), all samples were >90% Ph"" at baseline. 

However, after LTC-IC, only 1 of 3 samples (CML 166) remained Ph  ̂ in the BMS- 

214662-containing arms. This case illustrates the 10-15% of CP CML patients in 

whom, even at diagnosis, LTC-IC are already exclusively Ph^ (Coulombel et al.. 

1983b; Petzeretal., 1996a).

-.1- — —  : —
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UPN

BCR-A BL* / total cells (%)

Baseline
No drug 
control IM Dasatinib

BMS-
214662

BMS- 
214662 

+ IM

BMS- 
214662 + 
Dasatinib

166 439/463
(95)

111/111
(100)

ND 74/74
(100)

97/99
(98)

ND 62/62
(100)

189 932/1003
(93)

51/78
(65)

85/120
(71)

181/291
(62)

12/145
(8)

8/88
(9)

0/335
(0)

215 104/109
(95)

67/71
(94)

40/40
(100)

63/66
(95)

6/134
(4)

ND ND

Table 5-2. FISH results for LTC-IC experiments with CD34^ CML samples. Colonies were 

harvested after LTC-IC experiments, pooled for each treatment condition and then FISH was 

performed on the cells from these colonies. UPN, unique patient number; ND, not 

determined.

In the remaining samples (CML 189 and 215), following treatment with BMS- 

214662, more than 90% of cells surviving LTC-IC were Ph', indicating that these 

patients had residual normal Ph' haemopoiesis at the time of leucapheresis (Goto 

et al., 1982; Coulombel et al., 1983b; Petzer et al., 1996a) and that these Ph' cells 

had selectively survived exposure to BMS-214662 in vitro as compared to their 

Ph^ counterparts which were eradicated. This further illustrates the degree of Ph^ 

versus Ph" selectivity for BMS-214662, suggesting quiescent cancer stem cells are 

more susceptible than normal cells to BMS-214662.

5.1.6 Assessment of apoptosis in both proliferating and non- 

proliferating populations of CD34* CML progenitor cells in 

the presence of BMS-214662 alone or in combination with IM 

or dasatinib

In order to determine the apoptotic effect of BMS-214662, active caspase-3 

activity was assessed at 48, 72 and 96 hours culture in CD34^ CML cells (n=4). 

Compared to the no drug control, apoptosis was increased in all treatment arms at 

48, 72 and 96 hours, with maximal apoptosis seen at 72 hours (Figure 5-8). The
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greatest apoptosis was seen in the BMS-214662-containing arms with the BMS-

214662, BMS-214662 + IM and BMS-214662 + dasatinib arms having 14.6, 18.4

and 12.4% caspase-3 positive cells, respectively, compared to 5.5% in the no drug

control arm and 7.9% in both the IM and dasatinib only arms. Due to large

variations in levels of apoptosis between different primary CD34^ CML samples,

the results did not achieve statistical significance.

25.0

20.0

15.0

w 10.0 
Ü

No drug BMS- IM 5pM BMS- Dasatinib BMS- 
control 214662 214662+ ISOnM 214662 +

250nM IM Dasatinib

Figure 5-8. Assessment of apoptosis In total CD34* CML cells (n=4) after 72 hours culture 

under the experimental conditions shown. Although there was a trend for Increased 

apoptosis In the BMS-214662-containing arms, due to wide variations In the percentage of 

caspase-3 positive cells between different primary CML samples, the results failed to reach 

statistical significance (P=0.17). Results are expressed as the percentage of total cells 

which were caspase-3 positive (mean + SEM).

Using CFSE stained cells allowed assessment of apoptosis in the quiescent 

CFSE’̂ ax fraction (<5% of total CD34^ cells). At 48 and 72 hours there was an 

increase in caspase-3 positive cells in the quiescent CFSE^^^x population. With IM 

or dasatinib alone, a modest increase in apoptosis was seen (12.2 and 10.9% 

CFSE"^ax CD3 4 + cells caspase-3 positive, respectively) compared to 8.3% in the 

no drug control; however, the apoptotic effect was increased by the addition of 

BMS-214662 (Figure 5-9A and B) with 22.0, 30.8 and 24.0% caspase-3 positive
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cells in the BMS-214662, BMS-214662 + IM and BMS-214662 + dasatinib arms,

respectively (P=0.045 for BMS-214662 containing versus non-containing arms).

BMS-214662 + 
Dasatinib

%
%
CL

Dasatinib

10.9% 24.0%

CFSE

B

u  25.0

iu 20.0 
0)
U 15.0

«> 10.0

« 5.0

No drug BMS- IM 5pM BMS- Dasatinib BMS- 
control 214662 214662+ ISOnM 214662 +

250nM IM Dasatinib

Figure 5-9. Assessment of apoptosis in non-proliferating CFSE"’“* CD34* CML cells (n=4) 

after 72 hours culture under the experimental conditions shown. (A) Representative FACS 

dot plots demonstrating the increased caspase-3 activity In the non-prollferating fraction of 

cells treated with BMS-214662 + dasatinib compared to dasatinib only. (B) Apoptosis was 

significantly Increased in the BMS-214662-contalning arms compared to the IM and 

dasatinib only arms (P=0.045). Results are expressed as the percentage of total cells which 

were caspase-3 positive (mean ± SEM).

These results demonstrate that BMS-214662 is causing apoptosis in CD34^ CML 

cells, in particular in the non-proliferating sub-population, and show that in the



Mhairi Copland, 2007 Chapter 5, 172

presence of BMS-214662, although cells continue to leave the undivided gate

through cell division, increased numbers of non-proliferating cells leave the

undivided gate by apoptosis. The data presented here provide further evidence for

the selectivity of BMS-214662 for quiescent versus proliferating cancer cells.

5.1.7 Cell cycle analysis of CD34* CML cells treated with BMS-

214662 alone or in combination with IM or dasatinib

To assess the effect of BMS-214662 on the cell cycle in CD34^ CML cells, high 

resolution cell cycle analysis was performed using Ki-67 and 7-AAD (n=5). After 72 

hours culture in the presence of the different treatment conditions, there was a 

trend towards reduced Go cells in the BMS-214662-containing arms (BMS-214662 

alone, BMS-214662 + IM and BMS-214662 + dasatinib) compared to the IM and 

dasatinib only arms (P=0.08). Go cells represented 0.65% of total cells in the BMS- 

214662-containing arms compared to 1.38% in the IM and dasatinib only arms 

(Figure 5-10). Go cells represented 1.13% of total cells in the no drug control. 

These results provide further evidence for the efficacy of BMS-214662 against 

non-proliferating cells in CML.

No drug control

1.13%

BMS-214662 Dasatinib

7-AAD

Figure 5-10. Representative FACS plots for high resolution cell cycle analysis In CD34* CML 

cells after 72 hours treatment In the stated conditions. There was a trend towards reduced 

Go cells In the BMS-214662-contalnlng arms.
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5.1.8 Assessment of CrKL phosphorylation status to determine

the effect of BMS-214662 alone or in combination with IM or 

dasatinib on BCR-ABL activity

To determine the effect of BMS-214662 on BCR-ABL kinase activity in CD34^ 

CIVIL cells, the CrKL phosphorylation FACS assay described in Section 2.3.2.2 

and used in Section 4.1.3.4 (Hamilton et al., 2006) was performed after 16 and 72 

hours culture under the following experimental conditions (n=6): (1) No drug 

control; (2) BMS-214662 250nM; (3) dasatinib 150nM; (4) BMS-214662 + 

dasatinib. As previously, dasatinib inhibited CrKL phosphorylation at both 16 and 

72 hours compared to the no drug control (Figure 5-11). BMS-214662 alone had 

no effect on CrKL phosphorylation status and, when used in combination with 

dasatinib, did not significantly enhance the inhibitory effect of dasatinib on CrKL 

phosphorylation. Therefore, these results demonstrate that BMS-214662 is not 

acting through inhibition of BCR-ABL.

No drug 
control

BMS-214662
250nM

Dasatinib
ISOnM

BMS-214662 + 
Dasatinib

16 hours 

72 hours

Figure 5 11. Assessment of CrKL phosphorylation status in total CD34* CIVIL cells after 16 

and 72 hours treatment under the described conditions. BMS-214662 alone had no effect on 

CrKL phosphorylation and did not enhance the effect of dasatinib when the two were used 

in combination. Results are expressed as a percentage of CrKL phosphorylation in the no 

drug control (mean ± SEM).
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5.1.9 Assessment of efficacy of pulsed BMS-214662 regimens in

combination with continuous dasatinib

BIVIS-214662 has already entered Phase 1 clinical trials in solid tumours and AML 

(Mackay et al., 2004; Ryan et al., 2004; Cortes et al., 2005a; Dy et al., 2005; 

Papadimitrakopoulou et al., 2005; Tabernero et al., 2005). In clinical trials, BMS- 

214662 was given as an intravenous infusion over either 1 hour or 24 hours, which 

resulted in a plasma concentration of >250nM for at least 8 or 24 hours 

respectively (Tabernero et al., 2005). In order to mimic the clinical scenario, we set 

up a multi-armed experiment to look at the effect of treating primary CD34^ CML 

cells with pulsed BMS-214662 for either 8 or 24 hours (equivalent to a 1 or 24 hour 

infusion in patients respectively) combined with continuous dasatinib. The test 

arms assessed in these experiments (n=4) were: (1) No drug control; (2) BMS- 

214662 250nM for 8 hours; (3) BMS-214662 250nM for 24 hours; (4) dasatinib 

150nM; (5) BMS-214662 for 8 hours + dasatinib 150nM; and (6) BMS-214662 for 

24 hours + dasatinib 150nM. These experiments consisted of two 96 hour cycles. 

In the arms containing BMS-214662 for 8 hours, the BMS-214662 was added after 

24 hours in culture and in the arms containing BMS-214662 for 24 hours, the 

BMS-214662 was added after 8 hours. All experimental arms were washed three 

times in PBS after 32 hours in culture and re-set up in fresh culture medium. 

Dasatinib was re-added to the dasatinib-containing experimental arms. After 8 

days, total viable cells were significantly reduced in all the dasatinib-containing 

arms compared to the no drug control (P=0.019, P=0.003 and P=0.002 for the 

dasatinib, BMS-214662 for 8 hours + dasatinib and BMS-214662 for 24 hours + 

dasatinib arms, respectively; Figure 5-12A). There was no significant difference in 

total viable cells between no drug control and the pulsed BMS-214662 only arms. 

Undivided CFSE'^®  ̂CD34^ CML cells were significantly increased in the dasatinib 

arm compared to no drug control (P=0.037; Figure 5-12B). There was a trend
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towards reduced undivided CD34^ CML cells in the pulsed BMS-214662

only arms, but this did not reach statistical significance (P=0.1). The addition of

pulsed BMS-214662 to dasatinib reduced the undivided CFSE^^ CD34^ CML cell

population compared to dasatinib alone, but again, this did not reach statistical

significance (P=0.1). These results provide useful information for design of a

clinical trial for the combination of BMS-214662 with dasatinib in CML.
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Figure 5-12. Effect of pulsed BMS-214662 with dasatinib on (A) total and (B) non- 

proliferating CD34^ CML cells (n=4). (A) Total viable cells present after 8 days (two 96 hour 

cycles) in the presence of different pulsed treatment regimens. There is a significant 

reduction in total cells in the dasatinib-containing arms. Pulsed BMS-214662 alone had no 

effect on total viable cells. (B) Non-proliferating CD34^ CML cells present after 8 days 

culture. As previously, dasatinib alone significantly increased the non-proliferating fraction 

remaining after culture compared to no drug control. The addition of pulsed BMS-214662 

demonstrated a trend towards reducing this non-proliferating fraction, but was less 

effective than continuous BMS-214662 in vitro. Only pulsed BMS-214662 alone reduced the 

non-proliferating cell fraction to below the level seen in the no drug control, but again was 

less effective than continuous BMS-214662. Results are expressed as a percentage of the 

no drug control (mean ± SEM). h, hours.
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5.1.10 Comparison of the effects of BMS-214662 and BMS-

225975 on CD34" CML cells

Previous studies have shown that the cytostatic FTI lonafarnib does not 

significantly reduce the number of quiescent CML stem cells relative to no drug 

control (Jorgensen et al., 2005a). BMS-225975 is another cytostatic FTI, which is 

structurally very similar to BMS-214662, the only difference being substitution of a 

hydrogen ion for a methyl group at position 1. Both these compounds have similar 

inhibitory effects on FT with BMS-214662 having an IC50 of 0.7nM and BMS- 

225975 0.8nM in HGT-116 tumour xenografts (Frank Lee, personal

communication). Therefore, for the following experiments, like BMS-214662, a 

concentration of 250nM BMS-225975 was chosen.

To determine if the effects of BMS-214662 in CML were due to inhibition of Ras, 

we directly compared its activity with that of BMS-225975 in primary CD34^ CML 

cells. CFSE-based flow cytometry was used to track cell division, and caspase-3 

activity to measure apoptosis. The treatment conditions studied were: (1) No drug 

control; (2) BMS-214662 250nM; (3) BMS-225975 250nM; (4) dasatinib 150nM; 

(5) BMS-214662 + dasatinib; (6) BMS-225975 + dasatinib. After 6 days, total 

viable cells were significantly reduced in all the treatment arms compared to the no 

drug control (P<0.001; Figure 5-13A). BMS-214662 significantly reduced total 

viable cells compared to BMS-225975 (P=0.028). There was no significant 

difference between the combinations of BMS-214662 + dasatinib and BMS- 

225975 + dasatinib on total viable cells. As previously, after 6 days culture, not 

only had BMS-214662 significantly reduced undivided CFSE*^®̂  CD34‘" CML cells 

compared to the no drug control (P=0.018), but also compared to BMS-225975 

containing arms (P=0.024). Undivided CFSE"̂ ®̂  CD34'*' CML cell numbers were not 

significantly different in the no drug control and BMS-225975 arms (Figure 5-13B).
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Figure 5-13, Comparison of the effects of BMS-214662 with the cytostatic FTI BMS-225975 

on (A) total viable cells and (B) non-proliferating CD34^ CML cells after 6 days culture (n=4). 

(A) Although BMS-225975 significantly reduced total viable cells compared to no drug 

control (P=0.001), BMS-214662 had a superior effect (P=0.028 compared to BMS-225975 and 

P<0.001 compared to no drug control). (B) Once again, BMS-214662 significantly reduced 

non-proliferating cells compared to no drug control (P=0.018). BMS-225975 did not 

significantly alter the number of non-proliferating cells remaining after culture compared to 

the no drug control. However, BMS-214662 significantly reduced non-proliferating cells 

compared to BMS-225975 (P=0.024). Results are expressed as a percentage of the no drug 

control (mean ± SEM).
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BMS-225975 did not increase caspase-3 activity compared to no drug control in

either the BMS-225975 or BMS-225975 + dasatinib arms in total CML cells or the

non-proliferating CD34^ fraction (Figure 5-14A and B). The dissimilar effects of

BMS-214662 and BMS-225975 suggest that the efficacy of BMS-214662 in CML

may not be via inhibition of the Ras pathway.
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Figure 5-14. Assessment of apoptosis by measuring caspase-3 activity in (A) total cells and 

(B) non-proliferating CFSE"’ ’̂* CD34* CML cells after 72 hours culture with BMS-214662 or 

BMS-225975 alone or in combination with dasatinib. BMS-225975 alone or in combination 

with dasatinib failed to increase apoptosis above the level seen in the no drug control. 

Results expressed as percentage of cells which were caspase-3 positive (mean ± SEM).
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To further confirm that the effects of BMS-214662 are not through inhibition of

Ras, H-Ras activity was assessed using Western blotting (n=3) after 72 hours

culture in the presence of no drug control, BMS-214662, BMS-225975, IM or

dasatinib. The blots showed that there was equivalent inhibition of H-Ras with both

BMS-214662 and BMS-225975 with the appearance of an unprenylated band.

Imatinib mesylate or dasatinib had no effect on H-Ras activity. A representative

blot is shown in Figure 5-15. This result further implies that the activity of BMS-

214662 in CML is not mediated via Ras.
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Figure 5-15. Representative Western blot showing that BMS-214662 and BMS-225975 have 

equivalent activity against H-Ras with similar sized unprenylated Ras bands (arrowhead) 

appearing after treatment with these compounds in CD&F CML cells. IM and dasatinib have 

no direct effect on Ras activity as illustrated here. A pan-actin control confirms equal 

protein loading.

5.1.11 Assessment of Mcl-1 activity in CD34* CML cells

Recent in vitro studies in B-CLL (Marzo et al., 2004) and myeloma (Aichberger et 

al., 2005) have identified inhibition of Mcl-1 in association with Bax or Bak 

activation as potential modes of action for BMS-214662 in these haematological 

malignancies. However, these conditions have not yet been shown to be stem cell 

disorders and the mechanism of action may be different in CML. Western blotting
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was undertaken after 72 hours culture in the presence of: (1) No drug control; (2)

BMS-214662 250nM; (3) BMS-225975 250nM; (4) IM 5pM; (5) Dasatinib 150nM

(n=3). The resulting blots showed no evidence for inhibition of Mcl-1 in any of the

treatment arms indicating that, in CML, BMS-214662 is not acting via inhibition of

Mcl-1 (Figure 5-16).
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Figure 5-16. Representative Western blot demonstrating that BMS-214662 has no effect on 

Mcl-1 activity in CD34^ CML cells. A pan-actin control confirms equal protein loading.

5.1.12 Assessment of BMS-214662 activity in BC CML and 

ceils expressing BCR-ABL kinase mutations

Much of this study has focussed on CD34^ CML cells taken from patients with CP 

CML and the role of the CML stem cell in molecular persistence after treatment 

with IM or dasatinib. However, it is also very important to assess the effects of 

novel agents such as BMS-214662 in advanced CML and in cells expressing 

BCR-ABL kinase domain mutations as it will be those patients with advanced 

disease or BCR-ABL kinase mutations, who are most likely, in the short-term to 

benefit from novel therapies. In addition, these are the patients most likely to be 

recruited to a Phase 1 clinical trial of BMS-214662 in CML.
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5.1.12.1 BMS-214662 activity in BC CML

Using CFSE to track cell division, BMS-214662 was assessed alone and in 

combination with IM or dasatinib in BC CML (n=2; 1 lymphoid and 1 myeloid BC). 

BMS-214662 had little effect on total viable cells (Figure 5-17A) in BC CML when 

used alone, but when used in combination with either IM or dasatinib, overall 

cytotoxicity was enhanced. BMS-214662 acted to reduce the number of non­

proliferating CFSE"^^  ̂ CD34^ CML cells (Figure 5-17B) compared to the no drug 

control and acted synergistically with IM or dasatinib to reduce undivided CFSE^^^ 

CD34^ CML cells. These results show than BMS-214662 when used in 

combination with IM or dasatinib may prolong remission and may prove useful as 

a single agent if inhibition of tyrosine kinase activity with IM or dasatinib has failed.
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Figure 5-17. Assessment of BMS-214662 activity alone or in combination with IM or 

dasatinib on BC CML (n=2). (A) Total viable cell counts were performed after 6 days culture. 

(B) Determination of non-proliferating CFSE"’®’̂ CD34* cells remaining after 6 days culture. 

Blast crisis CML cells were cultured in SFM + 5QF, The absolute number of non-proliferating 

cells decreased over time and were 1.62% at 72 hours and 0.7% at 6 days in no drug control. 

Results are expressed as a percentage of the no drug control (mean ± SEM).

5.1.12.2 BMS-214662 activity In cells expressing BCR-ABL kinase

mutations

The efficacy of BMS-214662 in Ba/F3 cells expressing different BCR-ABL kinase 

mutations (WT BCR-ABL, T315I, M351T and H396P) was assessed using total
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viable cell counts and thymidine proliferation assays. It was not possible to use 

primary CD34'*' CML cells with kinase domain mutations as a bank of these cells 

was not available. After 48 hours culture, BMS-214662 was equipotent in both WT 

BCR-ABL and mutant BCR-ABL kinase expressing cells (Figure 5-18A and B), 

indicating that BMS-214662 may be a useful therapeutic option in patients with 

BCR-ABL kinase domain mutations.
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Figure 5-18. Assessment of efficacy of BMS-214662 in Ba/F3 ceils expressing different 

kinase domain mutations (n=3 experiments) by (A) thymidine proliferation assay and (B) 

total viable cell count after 48 hours culture. Results show that BMS-214662 is equally 

effective in Ba/F3 ceils expressing either wild type or mutant BCR-ABL. Five replicates of 

each condition were performed in each experiment. Results represent the mean ± SEM.
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5.1.13 Summary and conclusions

The novel cytotoxic FTI, BMS-214662 has an IC50 of approximately 375nM when 

assessed by thymidine proliferation assay in CD34^ CML cells. However it had 

a greater inhibitory effect on total viable cell counts with a 50% reduction in total 

viable cells at a concentration of 250nM. BMS-214662 is very potent against 

CD34^ CML cells at clinically achievable concentrations. When used in 

combination with IM or dasatinib, BMS-214662 enhances overall cytotoxicity 

compared to either IM or dasatinib alone, with no significant difference between 

the combinations of BMS-214662 + IM or BMS-214662 + dasatinib.

BMS-214662 targets non-proliferating cells in short-term culture experiments. In 

addition, it has minimal anti-proliferative effect and apoptosis studies demonstrate 

that BMS-214662 increases caspase-3 activity in proliferating and, more 

importantly, non-proliferating (quiescent) CD34^ CML cells. This is the first drug 

tested using the CFSE method, either alone or in combination, to show a 

significant reduction in non-proliferating cells compared to the no drug control. In 

addition, when used in combination with either IM or dasatinib, BMS-214662 

overcomes the anti-proliferative effects of these agents to significantly reduce non­

proliferating cells remaining after culture. These results are further supported by 

cell cycle analyses which also shown that non-proliferating cells (Go) are reduced 

after treatment with BMS-214662.

Studies using LTC-IC assay of CD34^ CML cells confirm that BMS-214662 is 

targeting primitive CML stem cells and provide evidence of selectivity for CML 

stem cells versus normal HSCs. These data are further supported by FISH results 

from the colonies remaining at the end of LTC-IC assay which showed that in 2 of 

3 patients, more than 90% of the cells surviving LTC-IC were Ph". This is further 

evidence for the selectivity of BMS-214662 for Ph^ versus Ph" cells.
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The mode of action of BMS-214662 remains elusive. BMS-214662 is not acting via

inhibition of BCR-ABL as evidenced by failure to inhibit CrKL phosphorylation. It is

unlikely that BMS-214662 is acting solely via inhibition of Ras in CML cells as

another FTI, BMS-225975 which is cytostatic and not cytotoxic, inhibits Ras to the

same extent, but lacks the efficacy of BMS-214662 against primitive quiescent

CML cells. Future studies will be directed at attempting to elucidate a mode of

action for BMS-214662 in CML.

Finally, preliminary studies presented here indicate that BMS-214662 is likely to be 

effective in BC CML and also in patients with BCR-ABL kinase domain mutations, 

who are resistant to BCR-ABL-directed TKIs. The activity of BMS-214662 against 

the T315I mutation may prove to be particularly important.

Overall, the results presented here show very promising evidence for the utility of 

BMS-214662 in CML. Further studies are ongoing to determine its mode of action 

and design of a Phase 1 clinical trial in CML is underway (see discussion 7.3).



187

6 Results 4

6.1 Assessment of BMS-214662 activity in AML cells in 

vitro

6.1.1 Introduction

The results presented in Chapter 5 demonstrate that BMS-214662 is highly 

effective against CML stem and progenitor cells in vitro. The mode of action for 

BMS-214662 is not via inhibition of BCR-ABL kinase activity, therefore, BMS- 

214662 may be effective in other forms of leukaemia, particularly those which 

have been shown to be stem cell disorders. Thus, the next logical step is to 

assess BMS-214662 activity in AML. There are a number of reasons for this. 

Firstly, like CML, AML is a myeloid neoplasm. Secondly, the only Phase 1 clinical 

trial to date using BMS-214662 in leukaemia was undertaken in patients with AML 

and myelodysplastic syndrome (Cortes et al., 2005a) and, despite being a Phase 1 

study, this trial demonstrated efficacy for BMS-214662 in AML, although the mode 

of action was uncertain. Thirdly, as with solid malignancies in vivo (Mackay et al., 

2004; Dy et al., 2005) and as shown here in CML in vitro, there is the possibility of 

combining BMS-214662 with chemotherapeutic agents such as Ara-C in novel 

therapeutic regimens for AML.

6.1.2 BMS“214662 activity in AML ceii line HL60

Concentration finding studies were undertaken to determine the IC50 for BMS- 

214662 in the AML cell line HL60 using thymidine cell proliferation assays and 

total viable cell counts which were performed after 48 hours culture in the 

presence of increasing concentrations of BMS-214662 (n=3; Figure 6-1 and B).
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Figure 6-1. Determination of IC50 for BMS-214662 In the AML cell line HL60. (A) thymidine 

proliferation assays (n=3) performed after 48 hours culture showed an ICgo of approximately 

450nM and (B) total viable cell counts approximately 375nM. Five replicates of each 

condition were performed in each experiment. Results represent the mean ± SEM.

The I C 5 0  for BMS-214662 in HL60 cells was approximately 450nM by proliferation 

assay. Like CML, BMS-214662 showed a greater reduction in total viable cells 

than inhibition of proliferation with a 50% reduction in total viable cells at a 

concentration of 375nM. These results demonstrate that BMS-214662 is effective 

in the AML cell line HL60 with a similar I C 5 0  to that seen in CML cells. Based on 

these similar results, BMS-214662 was used at a concentration of 250nM in 

further experiments with primary AML cells.

-  __
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6.1.3 Assessment of activity of BMS-214662 in primary AML ceiis

in vitro

6.1.3.1 Assessment of total viable cell counts in AML

In these experiments (n=2), the effect of BMS-214662 either given as a single 

agent or in combination with Ara-C on total viable cells counts was assessed in 

primary AML cells. Ara-C was used at a concentration of 0.5pM as this is a 

concentration which is achievable in patients (Fleming et al., 1995) and has also 

been used in similar in vitro experiments in CML in our laboratory (Jorgensen et 

al., 2005a). The cells were cultured in SFM + 5GF (as for CD34^ CML cells) for 72 

hours under the following conditions: (1) No drug control; (2) BMS-214662 250nM; 

(3) Ara-C 0.5pM and (4) BMS-214662 250nM + Ara-C O.SpM. The total viable cell 

counts are shown in Figure 6-2.
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Figure 6-2. Total viable cell counts after 3 days culture for all experimental conditions. Cells 

were cultured in SFM + 5GF. Results are expressed as a percentage of the no drug control 

(mean ± SEM).

There was a reduction in total viable cells in all treatment arms compared to the no 

drug control, with the combination of BMS-214662 + Ara-C having the greatest
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effect. However, due to the low number of experiments (n=2) and variation

between the two patient samples used, the results did not reach statistical

significance. These results suggest that BMS-214662 has a cytotoxic effect in

AML and enhances the cytotoxic effect of Ara-C.

6.1.3.2 Effect of BMS-214662 on non-proliferating CFSE"’®’̂ AML progenitor 

cells

After assessment of total viable cell counts, the effect of BMS-214662 either alone 

or in combination with Ara-C was assessed on the non-proliferating (quiescent) 

AML cell sub-population after 72 hours in culture (n=2). Once again, these 

experiments were performed using CFSE to track cell division, with a colcemid 

control included to identify the non-proliferating CFSE"^®  ̂ AML cell population 

using flow cytometry. As for the CML experiments, the absolute number of non­

proliferating cells was calculated and expressed as a percentage of those present 

in the no drug control. The results are shown in Figure 6-3A with representative 

FACS profiles for each experimental condition in Figure 6-3B. The potency of Ara- 

C on proliferating AML cells is clearly demonstrated with the majority of cells 

remaining after culture in the presence of Ara-C being in the non-proliferating 

population. This population is substantially reduced with the addition of BMS- 

214662.
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Figure 6-3. Non-proliferating CFSE"’ ’̂‘ primary AML ceils (n=2) remaining after 72 hours 

culture for all experimental conditions in SFM + 5GF. (A) The absolute number of non­

proliferating cells is expressed as a percentage of the no drug control (mean ± SEM). There 

is a substantial reduction in the absolute number of non-proliferating CFSE"’®’̂  cells in the 

BMS-214662-containing arms compared to the no drug control and Ara-C only arms. (B) 

Representative FACS histogram plots after 72 hours culture for each of the experimental 

conditions. The plots demonstrate the very low number of undivided cells remaining (boxed 

area) in the no drug control and BMS-214662 arms relative to the total cell numbers. The 

non-proliferating CFSE""®* AML cell population is the only cell population remaining in the 

Ara-C arms, with a very much reduced number in the BMS-214662 + Ara-C arm. Any dividing 

AML cells have been eradicated by Ara-C, however, the majority of CFSE""®* AML cells
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remain undivided in the presence of Ara-C, clearly demonstrating its marked anti­

proliferative effect. The addition of BMS-214662 to Ara-C eliminates the majority of these 

undivided cells.

Non-proliferating CFSE"^^  ̂AML cells were reduced in the arms containing BMS- 

214662 compared to the arms without BMS-214662 (P=0.039). However, due to 

the low number of experiments, differences between individual experimental arms 

did not reach statistical significance. Nonetheless, there was a trend towards 

reduced non-proliferating cells in the BMS-214662 + Ara-C arm compared to the 

Ara-C only arm (P=0.062). Despite the limited number of experiments due to 

sample availability, these results suggest that BMS-214662 targets quiescent AML 

cells and may be a useful addition to chemotherapy protocols in AML. Further 

experiments are required to fully explore the potential of BMS-214662 in AML.

6.1 A  Summary and conclusions

BMS-214662 has an IC50 of approximately 450nM in the HL60 AML cell line by 

assessment of ^H thymidine proliferation assays, although, as with CML, this 

agent had a greater effect on total viable cells. The results presented here indicate 

that BMS-214662 is cytotoxic to primary AML cells in vitro, and enhances the 

effect of Ara-C. Importantly, BMS-214662 appears to target quiescent AML stem 

and progenitor cells, resulting in an enhanced effect when BMS-214662 and Ara-C 

are combined. Overall, these results suggest that BMS-214662 may be a very 

effective therapy for AML and further investigation of its therapeutic potential in 

AML is required.
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7 Discussion

7.1 Priming primitive CML progenitor cells with rHu-G- 

CSF improves their eradication by IM in vitro

The aims of this chapter were to determine if using an ‘IM holiday’ (interrupted IM 

therapy), or priming primitive CML progenitors with rHu-G-CSF would overcome 

the inherent insensitivity of the most quiescent CML progenitors to IM (Graham et 

al., 2002). The first experiments in this chapter set out to characterise G-CSF-R 

protein expression and functionality in CD34^ CML progenitor cells in response to 

rHu-G-CSF in vitro. Previous studies have shown that CD34^ cells from CP CML 

patients can be maintained in culture in the absence of exogenous growth factors 

via autocrine production of IL-3 and G-CSF (Jiang et al., 1999). This suggests that 

proliferating CD34^ cells possess functional G-CSF-Rs. Here, we have shown that 

G-CSF-R protein expression is increased in proliferating CD34^ CML cells 

compared to normal CD34’*’ cells and that this increase is not further augmented 

by the addition of rHu-G-CSF to culture (3.1.2). We then went on to confirm the 

presence of functional G-CSF-Rs on CD34^ CML cells by demonstrating a 

concentration-dependent response to rHu-G-CSF in these cells (Figure 3.4) which 

was saturated at a rHu-G-CSF concentration of ~20ng/mL. This G-CSF 

concentration is readily achievable in vivo and equates to a rHu-G-CSF dose of 

approximately 5pg/kg in the patient (Stute et al., 1992). This is the standard dose 

of rHu-G-CSF given for peripheral blood stem cell mobilisation (Drummond et al., 

2003; Hui et al., 2003), IM-induced neutropenia (Marin et al., 2003b; Sneed et al., 

2004) and growth factor priming in combination with cytotoxic chemotherapy in 

AML (Cannistra et al., 1989; Bhalla et al., 1991; te Boekhorst et al., 1993). We 

further demonstrated, indirectly, that the quiescent sub-population of CD34^ CML
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cells express functional G-CSF-Rs by showing that, in the presence of intermittent

rHu-G-CSF (first 24 hours of each 96 hour cycle), this population is significantly

reduced due to increased numbers of these cells leaving the undivided (quiescent)

gate through cell division.

In the absence of rHu-G-CSF, an ‘IM holiday' was less effective than continuous 

IM therapy at reducing the total viable cell number. However, in the presence of 

rHu-G-CSF, there was no significant difference between the two strategies, with 

the combination of intermittent rHu-G-CSF with either interrupted or continuous IM 

being most effective at reducing total viable cells. Furthermore, in the quiescent 

sub-population, there was no significant difference in the size of the remaining 

sub-population between continuous and interrupted IM therapy after 12 days in 

culture. This suggests that in vivo, an ‘IM holiday’ alone is unlikely to reduce the 

molecular persistence which occurs with continuous IM therapy. Conversely, the 

addition of intermittent rHu-G-CSF (G-CSF priming) to either continuous or 

interrupted IM therapy may be more effective.

The diverging results seen here with intermittent and continuous rHu-G-CSF 

exposure in the quiescent sub-population suggests that treatment of these 

primitive cells with intermittent rHu-G-CSF may activate a unique mechanism 

which is not maintained in later progeny. One possible explanation is that, in the 

quiescent fraction, initial exposure to rHu-G-CSF up-regulates G-CSF-R protein 

expression. However, continuous exposure to supra-physiological doses of rHu-G- 

CSF in this population serves to down-regulate functional G-CSF-R expression 

removing the drive for these cells to proliferate. Each intermittent exposure to rHu- 

G-CSF up-regulates the functional G-CSF-Rs and stimulates a proportion of the 

quiescent cells to proliferate, but because high G-CSF levels are not present
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continuously, the cells do not become unresponsive or ‘resistant’ to the effects of

rHu-G-CSF.

The effect of combining different chemotherapeutic agents such as 

hydroxycarbamide or Ara-C with rHu-G-CSF was not assessed in this study, and 

these combinations could be equally effective at reducing total viable CML cells as 

well as the quiescent CD34^ sub-population. However, to date, IM is the only 

agent which has been shown to prevent progression to more advanced phases of 

CML (Druker et al., 2006). BCR-ABL increases the production of ROS, inhibits 

protein tyrosine phosphatases (PTPases) (Battler et al., 2000), and causes 

inappropriate regulation of DNA repair pathways which results in unfaithful repair 

of ROS-dependent DNA double strand breaks (Nowicki et al., 2004). These effects 

may add to the mutator phenotype shown by BCR-ABL^ cells and are inhibited by 

IM in vitro (Battler et al., 2000; Nowicki et al., 2004). It has recently been reported 

that the production of ROB stimulated by BCR-ABL results in oxidative DNA 

damage and increases the acquisition of BCR-ABL kinase domain mutations 

associated with IM resistance in vitro (Koptyra 2006). Genotoxic stress such as 

that induced by agents like Ara-C may further increase ROB and result in 

additional kinase domain mutations which have previously been shown to exist 

prior to IM therapy (Roche-Lestienne et al., 2002; Kreuzer et al., 2003). Therefore, 

these agents may be less suitable than BCR-ABL TKIs for combination therapy in 

CML. In addition, genomic instability may be related to BCR-ABL expression 

levels. Therefore, in the primitive CD34^38‘ CML progenitor cells with high levels 

of BCR-ABL expression (Copland et al., 2006), it is possible that mutations 

resulting in IM-resistance will occur at the highest frequency. Caution should also 

be taken if combining haemopoietic growth factors with IM as growth factors 

including GM-CBF and IL-3 have been shown to increase ROB in vitro in 

haemopoietic cell lines by increasing tyrosine phosphorylation (Battler et al..
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1999). Thus it would be important to monitor patients for BCR-ABL kinase domain

mutations if the BCR-ABL level is rising in a trial combining rHu-G-CSF with IM.

The treatment of BCR-ABL^ cells with antioxidants such as N-acetylcysteine or

vitamin E reduced accumulation of ROS, reactivated PTPases and resulted in

fewer BCR-ABL kinase domain mutations developing in both in vitro and in vivo

models (Battler et al., 2000; Koptyra et al., 2006). Very interestingly, the addition of

IM to an antioxidant had a superior anti-mutagenic effect compared to antioxidant

alone (Koptyra et al., 2006) and it will be important to determine if the addition of

an antioxidant to IM therapy reduces the incidence of IM-resistant BCR-ABL

kinase domain mutations in vivo.

As discussed, a further aim of this study was to determine if rHu-G-CBF priming of 

CD34^ CML cells combined with IM therapy would reverse the anti-proliferative 

effect of IM alone at the Gq/Gi interface, allowing these quiescent cells to re-enter 

the cell cycle. These results confirm that intermittent exposure to rHu-G-CSF does 

enhance the eradication of quiescent CD34^ CML cells, however, a sub-population 

of deeply quiescent CML cells does persist, even after combined therapy with 

intermittent rHu-G-CBF and either continuous or interrupted IM. In agreement with 

the results of this study, Holtz et al have also recently shown that IM in 

combination with a high concentration growth factor cocktail enhances elimination 

of quiescent CD34^ CML cells (Holtz et al., 2004).

A number of observational case series have reported that patients with IM-induced 

neutropenia obtain improved cytogenetic responses when also treated with rHu-G- 

CSF (Heim et ai., 2003; Marin et al., 2003b; Quintas-Cardama et al., 2004). It has 

been presumed that this is due increased and maintained continuous IM dosing 

being achieved in the face of a rHu-G-CBF-supported neutrophil count. However, 

while this may still be true, the results here would also support the alternative
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mechanism of action proposed in 3.1.1 -  that intermittent exposure to rHu-G-CSF

promotes re-entry of quiescent CML cells into the cell cycle, which results in cell

division and renders the cells susceptible to the effects of IM in later divisions

(Jorgensen et al., 2005b).

We also demonstrated that when non-proliferating CD34^ CML cells treated with 

IM ± G-CSF leave the undivided gate, they do so by cell division and not 

apoptosis. This suggests that, in this quiescent CML sub-population, the anti- 

apoptotic pathways which are activated and maintained by BCR-ABL and, in part, 

responsible for the dys-regulated cell turnover seen in CML (Bedi et al., 1994), are 

not inhibited by IM. Conversely, in dividing CML cells, our results and others (Holtz 

et al., 2005), demonstrate that IM does induce apoptosis, resulting in reduced 

numbers of total viable cells.

The results of this study have provided a powerful rationale for the design and 

implementation of a National Cancer Research Network (NCRN; 

www.ukcrn.orq.uk) randomised clinical trial called G-CSF with Imatinib Mesylate 

Intermittently (GIMI) which compares continuous IM, interrupted IM (21 of every 28 

days) and pulsed rHu-G-CSF with interrupted IM (G-CSF on Monday, Wednesday 

and Friday of the no IM week; Figure 7.1). The primary end points of this study 

are to determine the safety of interrupting IM therapy and giving intermittent rHu- 

G-CSF in combination with interrupted IM (Mitchell et al., 2006). Secondary 

endpoints are to compare molecular response using qRT-PCR for BCR-ABL and 

proportion of patients progressing in each of the 3 arms. The interventions 

(intermittent IM or pulsed rHu-G-CSF plus intermittent IM) will be deemed 

successful if these arms show no rise in BCR-ABL levels at the end of the study 

compared to the continuous IM control arm. Patients are required to have 

achieved a CCR for a minimum of 6 months on IM therapy as demonstrated by

http://www.ukcrn.orq.uk
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<2% BCR-ABL by qRT-PCR prior to study entry. Recruitment has recently been

completed in this multi-centre trial based in the UK and France. A total of 45

patients have been recruited, with 15 in each arm. Patients are receiving the

randomised intervention for one year with monthly monitoring of qRT-PCR levels

for BCR-ABL.

Three way randomisation 
15 patients per arm

Interrupted IIW + 
rHu-G-CSF

CIVIL 

Start IM

1
OCR

I Minimum of 6 months in OCR on IM 
(<2% BCR-ABL by qRT-PCR)

Randomisation

1
Interrupted IM alone Continuous IM 

monotherapy

Figure 7-1. Schematic diagram of the protocol for the GIMi trial.

In conclusion, intermittent exposure to rHu-G-CSF enhances the effect of IM on 

quiescent CD34'*' CML cells. However, an ‘IM holiday’ alone does not reduce the 

quiescent CD34^ CML cell sub-population, but in combination with intermittent 

rHu-G-CSF is as effective as continuous IM. This strategy, which is currently in 

clinical trial, may offer a unique opportunity for improving molecular responses in 

patients with CP CML by improving eradication of IM-insensitive quiescent CML 

cells.
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7.2 A comparison of the efficacy of dasatinib and IM 

against quiescent primitive CML progenitor cells in 

vitro

As highlighted in the introduction (1.2.8), CML stem cells are relatively resistant to 

IM (Graham et al., 2002; Holtz et al., 2002; Bhatia et al., 2003; Holtz et al., 2005; 

Jorgensen et al., 2005a), and it is postulated that this CML stem cell insensitivity to 

IM results in the molecular persistence seen even in patients responding well to 

IM (Holtz et al., 2002). The mechanisms underlying the IM resistance seen in CML 

stem cells, including whether this resistance is BCR-ABL-dependent or 

independent remain to be determined. Our group has recently demonstrated that 

primitive IM-resistant CML cells have only single-copy, non-mutated BCR-ABL, but 

express significantly higher levels of BCR-ABL transcripts and protein than mature 

CML cells (Copland et al., 2006), however, like other studies, we were unable to 

determine whether BCR-ABL was a relevant target in these IM-resistant cells. 

These results highlight the importance of investigating more potent BCR-ABL 

kinase inhibitors and determining their effect on the quiescent CML stem cell 

population. The multi-targeted kinase inhibitor, dasatinib, is one such inhibitor 

which has been shown to be 325 times more potent than IM at inhibiting wild-type 

BCR-ABL in cell line studies and also targets mutant BCR-ABL with the exception 

of the T315I mutation (Shah et al., 2004; O'Hare et al., 2005). Therefore, the aims 

of this chapter were to determine if dasatinib was more effective than IM in 

primitive CML progenitor cells and whether dasatinib would eradicate quiescent 

CML cells in vitro. A further aim was to investigate the relevance of SRC kinases 

and BCL-2 in early CP CML as dasatinib is also a potent inhibitor of SRC kinases 

(Lombardo et al., 2004) one of which, LYN, is believed to mediate the activity of 

BCL-2 in CML (Dai et al., 2004).
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The data presented in this study demonstrate that, at high therapeutically

achievable concentrations (IM 5pM and dasatinib 150nM), IM and dasatinib had

equal cytotoxicity in primitive CML progenitor cells. Further studies to assess BCR-

ABL kinase activity, using a novel intracellular flow cytometry assay which

determined CrKL phosphorylation status after treatment with either IM or dasatinib

showed that, after 72 hours treatment with IM, the surviving CD34^ CML cells had

fully phosphorylated CrKL, indicating that we had failed to inhibit BCR-ABL.

However, after 72 hours culture in the presence of dasatinib, both CD34^ and

more primitive CD34^38" CML cells had significant inhibition of CrKL

phosphorylation, indicating that dasatinib was a more effective inhibitor of BCR-

ABL than IM. However, these results do not provide evidence for the relevance of

BCR-ABL in the IM-resistant cells.

There are a number of possible explanations for the IM-resistance demonstrated 

here and also, the superior effect of dasatinib in CML. Firstly, there may be 

insufficient IM levels within the stem cell population to inhibit BCR-ABL kinase 

activity. This may be related to gene amplification (Gorre et al., 2001), high 

transcript levels (Jiang et al., 2003; Jiang et al., 2004), increased kinase activity 

(Chu et al., 2004) or the balance between drug influx and efflux (Burger et al., 

2004; Thomas et al., 2004; Clark et al., 2005) within this primitive quiescent 

population. The increased potency of dasatinib may overcome the increased 

transcript levels and kinase activity demonstrated in the stem cell population here. 

In addition, unlike IM, dasatinib is not a substrate for p-Glycoprotein, and this may 

be another reason why it reaches further into the stem cell compartment (Lee et 

al., 2005). A second possible explanation is that cells expressing kinase domain 

mutations are enriched within the stem cell population (Shah et al., 2002). If this is 

the case, then the majority of these would be inhibited by dasatinib. However, in 

this study, mutation analysis demonstrated wild-type BCR-ABL only, although
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other studies have detected BCR-ABL kinase mutations at a low level in CD34^

cells from patients both pre- (Jiang et al., 2005) and post treatment with IM (Chu et

al., 2005). In this study, if the resistance to IM was due to BCR-ABL kinase domain

mutations, then the mutation would need to be present in the majority of the cells

to explain the resistance to IM in the CD34^38" population. We did not exclude a

low level of mutated BCR-ABL in these populations in this study as the sensitivity

of direct sequencing is insufficient to detect this. Other groups have shown that

BCR-ABL kinase domain mutations can be detected at low level using sensitive

techniques in stem cells such as bi-directional sequencing of individually cloned

complementary DNA from patient samples (Chu et al., 2005; Jiang et al., 2005). A

third explanation is that, in the stem cell compartment, BCR-ABL may tend to

remain in its active conformation to which IM cannot bind, thereby reducing the

affinity of IM for the ATP binding site of BCR-ABL (Nagar et al., 2002; Burgess et

al., 2005). This would also explain the superior inhibition of CrKL phosphorylation

seen with dasatinib as this drug is able to bind BCR-ABL in both active and

inactive conformations.

Assessment of CrKL phosphorylation status has been accepted as a robust 

method to determine BCR-ABL activity as it is thought to be a specific marker for 

BCR-ABL signalling and the CrKL phosphoprotein complex is relatively stable 

(Hochhaus et al., 2001; White et al., 2005). However, a very recent study indicates 

that the adaptor molecule CrKL may be a substrate of the SRC kinases (Qiao et 

al., 2006). If this is the case, then CrKL phosphorylation status is likely to be 

affected by a SRC kinase inhibitor (i.e. dasatinib). Therefore, the superior inhibition 

of CrKL phosphorylation seen with dasatinib in CD34^ and CD34^38" CML cells 

may be due to enhanced inhibition of SRC kinases and not BCR-ABL and, thus, 

IM-resistance in the CML stem cell population may not be BCR-ABL-dependent. In
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addition, other BCR-ABL-independent mechanisms of IM resistance may be

present in CML stem cells.

It has been postulated that the increased efficacy of dasatinib compared to IM in 

CML is mediated via BCR-ABL and not SRC kinases. Indeed, previous studies in 

cell lines and animal models, but not primary CML cells, have failed to 

demonstrate a role for the SRC kinases, LYN, HCK and FGR, which are most 

commonly expressed on myeloid cells, in CP CML (Donato et al., 2003; Hu et al., 

2004). In this study, I have shown that the expression of activated SRC kinases (p- 

SRC), is increased in all phases of CML compared to normal CD34  ̂and CD34^38" 

cells. Of particular interest is the finding that, in the more primitive CD34’̂ 38" CML 

sub-population, compared to normal CD34^38" cells, expression of p-SRC was 

relatively higher. However, the action of IM or dasatinib on p-SRC was very similar 

to that seen with p-CrKL, suggesting that the effect is most likely mediated via 

BCR-ABL and not direct SRC kinase activation. This was also supported by the 

fact that the SRC-specific kinase inhibitor PP2 had no significant effect on p-SRC 

compared to no drug control in CD34^ CML cells. In addition, BCL-2 expression 

was also significantly increased in all phases of CML. However, I was unable to 

demonstrate a direct link between p-SRC and BCL-2 expression as IM, dasatinib 

and PP2 had only modest effects on BCL-2 levels in CD34^ CML cells. This would 

tend to suggest that expression of BCL-2 may be independent of both BCR-ABL 

and SRC kinases in CML. Alternatively, because BCL-2 has a longer half-life than 

activated BCR-ABL or SRC, it may take longer for changes in BCL-2 expression 

following drug treatment to become apparent.

The use of molecularly targeted therapies such as IM and dasatinib is rapidly 

increasing in the treatment of malignant disease. As more cancers are being 

identified as stem cell diseases, researchers are focussing their attention on the
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elimination of cancer stem cells as a potentially curative strategy. The importance

of LSCs and their resistance to IM has long been recognised in CML (Holyoake et

al., 1999; Graham et al., 2002). Therefore, in this study, I used a CFSE-based

assay which allows high resolution tracking of cell division and identification of the

quiescent (non-proliferating) primitive progenitor population in CML (Nordon et al.,

1997; Graham et al., 2002). These experiments demonstrated that, within the stem

cell compartment, there was a trend for dasatinib to be less anti-proliferative than

IM. Therefore, dasatinib is less likely to induce the reversible Gi arrest seen in

vitro and in vivo with IM. This is particularly important when combining cytotoxic

and/or cytostatic agents, the majority of which tend to cause cell cycle arrest.

However, despite its increased potency, dasatinib failed to eradicate the quiescent

stem cell population in vitro. Although compared to IM, dasatinib showed a trend

towards reducing the CFSE'^^’̂  population, it still remained substantially higher

than the no drug control and failed to show a statistically significant reduction

compared to IM (Figures 4-5 and 4-6). This implies that, although dasatinib was

able to inhibit CrKL phosphorylation in the primitive CD34^38" population, like IM, it

failed to target the truly quiescent CML stem cells in culture.

Overall, these results indicate that dasatinib is a much more potent inhibitor of 

BCR-ABL than IM and is able to target BCR-ABL^ cells deeper into the stem cell 

compartment (Figure 7-2). Therefore, dasatinib would be expected to produce 

lower levels of MRD in vivo in CML patients. However, it has been demonstrated 

that quiescent CML stem cells appear intrinsically resistant to IM and dasatinib 

and thus, dasatinib is unlikely to be curative in CML. The possibility that, in 

quiescent CML stem cells, neither BCR-ABL nor SRC kinases are relevant targets 

should be considered. This highlights the need to identify and develop new cancer 

stem-cell directed therapies to effectively eradicate these primitive cancer initiating 

cells in patients while sparing the normal stem cell compartment.
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Figure 7-2. Schematic diagram to show the effects of IM and dasatinib on the different 

progenitor cell populations in CML. Although mature haemopoietic cells and the majority of 

progenitor cells are sensitive to both IM and dasatinib, primitive CML progenitors (CD34^38 ) 

are resistant to IM, and the leukaemia stem cell compartment is resistant to both IM and 

dasatinib through mechanisms which have still to be fully elucidated.

7.3 Assessment of the efficacy of the novel FT! BMS- 

214662 against stem and progenitor ceils in myeloid 

leukaemias in vitro

There is mounting evidence that strategies to target both quiescent stem cells and 

proliferating cells are required to eradicate CML (Graham et al., 2002; Holtz et al., 

2002; Bhatia et al., 2003; Holtz and Bhatia, 2004; Holtz et al., 2005; Copland et al., 

2006). The combination of BMS-214662 with either IM or dasatinib may be one 

such strategy. The data presented in Chapter 5 show that BMS-214662 is 

cytotoxic to both quiescent and proliferating primary cells in CP as well as BC
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CML, and induces apoptosis, as evidenced by increased caspase-3 activity. Used

as a single agent, it has minimal anti-proliferative effect on CML progenitors. In 

combination with either IM or dasatinib, BMS-214662 does not overcome the anti­

proliferative effects of these agents, but kills the quiescent CML stem cells while 

they remain either in Go or arrested in early Gi phase of the cell cycle. This is 

demonstrated by greater caspase-3 activity in the undivided CFSE^^ CD34"' 

progenitor fraction. LTC-IC assays showed that culture in the presence of BMS- 

214662 virtually eliminated the ability of CML stem cells to form colonies. This 

provides further evidence for efficacy of BMS-214662 against quiescent CML stem 

cells by inhibiting their repopulating activity. BMS-214662 also demonstrated 

preferential cytotoxicity for leukaemic versus normal stem cells as evidenced by 

superior inhibition of colony formation in the CML LTC-IC assays compared to 

normal donor cell LTC-IC assays. In addition, in 2 of 3 CML LTC-IC assays, in 

which the CD34^ cells used to seed the assay were pre-treated with BMS-214662 

for 72 hours, FISH performed on the colonies present at the end of 7 weeks 

culture showed that the majority of these colonies were BCR-ABL'. These colonies 

have come from residual normal haemopoiesis which was present in these 

patients with early CP CML at the time of leukapheresis (Goto et al., 1982; 

Coulombel et al., 1983b). In the third patient sample, in which FISH remained 

BCR-ABL^ at the end of LTC-IC, it is likely that there was little normal 

haemopoiesis remaining at the time of leukapheresis. Indeed, after commencing 

IM, this patient required growth factor support and a reduced dose of IM to 

manage the cytopenias resulting from IM therapy.

These results demonstrate that, in vitro, BMS-214662 is superior to cytostatic FTIs 

such as lonafarnib (Jorgensen et al., 2005a) and BMS-225975 in eliminating 

quiescent CML stem cells. The concentration of BMS-214662 used in these 

experiments (250nM) is a clinically achievable plasma concentration (Tabernero et
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al., 2005). Although BMS-214662 has yet to enter clinical trial in CML, phase 1

trials in AML using BMS-214662 as a single agent have shown promising activity

(Cortes et al., 2005a). In a future clinical trial, which is currently under

development with Bristol-Myers Squibb and the National Cancer Institute (NCI), it

is likely that BMS-214662 would be given as a single weekly infusion in

combination with continuous therapy with dasatinib. Monitoring of these patients is

likely to include qRT-PCR to assess BCR-ABL levels and LTC-IC on bone marrow

samples taken pre-treatment and at regular intervals throughout therapy, with

FISH on the colonies produced to assess the effect of this combination therapy on

the stem cell compartment. In clinical trials in advanced solid tumours, intermittent

infusions of BMS-214662 have been successfully combined with cisplatin,

carboplatin and paclitaxel (Mackay et al., 2004; Dy et al., 2005). Preliminary

experiments done in this study show that, in vitro, intermittent exposure to BMS-

214662, in combination with either continuous IM or dasatinib, tended to enhance

the efficacy of these TKIs in CML with increased caspase-3 activity and a

reduction in primitive progenitor cells.

The activity of BMS-214662 in BC CML and cell lines expressing BCR-ABL kinase 

mutations is also important. Patients with BC CML initially respond to IM but then 

relapse (Druker et al., 2001a). A proportion of these IM-resistant patients will 

respond to dasatinib or nilotinib but nearly all relapse within 6 months (Kantarjian 

et al., 2006; Talpaz et al., 2006). Therefore, BMS-214662 in combination with a 

TKI may increase the number of patients with BC CML who respond and also the 

length of remission, possibly allowing time for other therapeutic strategies such as 

alloSCT to be instituted. For those patients with BCR-ABL kinase mutations, the 

majority will respond to either dasatinib or nilotinib (Kantarjian et al., 2006; Talpaz 

et al., 2006), however, patients with the T315I mutation are resistant to these 

drugs. These patients may benefit from single agent therapy with BMS-214662
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which we have shown to be equipotent in both wild type and mutant BCR-ABL

expressing cell lines including T315I.

The effect of BMS-214662 on non-proliferating cells was first identified in in vitro 

models of solid tumours (Lee et al., 2001). However, despite extensive 

investigation, to date, the mode of action of BMS-214662 remains elusive (Rose et 

al., 2001; Manne et al., 2004). Multiple in vitro studies, including this one, have 

demonstrated its pro-apoptotic action (Rose et al., 2001; Manne et al., 2004; 

Marzo et al., 2004; Aichberger et al., 2005), but the pathway(s) leading to this has 

yet to be elucidated. It is unlikely that BMS-214662 is acting via the Ras pathway 

as it has been shown to be effective in Ras""" and Ras mutant cell lines (Rose et 

al., 2001). In addition, this study demonstrates that the structurally similar 

cytostatic FTI, BMS-225975, did not induce apoptosis and failed to eliminate CML 

stem cells. Recent in vitro studies in B-cell CLL (Marzo et al., 2004) and myeloma 

(Aichberger et al., 2005) have identified inhibition of Mcl-1 and activation of Bax 

and Bak as potential modes of action in these haematological malignancies. 

However, these conditions have not yet been shown to be stem cell disorders and 

the mechanism of action may be different. Western blotting showed no evidence of 

alterations in Mcl-1 levels in CD34^ CML cells after treatment with BMS-214662 

either alone or in combination with IM or dasatinib.

Further work has investigated the role of the centromere-associated proteins 

CENP-E and CENP-F in the activity of FTIs (Ashar et al., 2000). These proteins, 

which are involved in the mitotic process, stabilise microtubule capture by 

kinetochores required for complete chromosomal capture during metaphase and 

are believed to be mediators of the G2/M checkpoint. FarnesyItransferase 

inhibitors alter the association between CENP-E and the microtubules resulting in 

cell cycle arrest with accumulation of cells prior to metaphase. However, this is an
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unlikely mode of action in CML as cell cycle analyses performed for this project

after treatment with BMS-214662 did not show cell cycle arrest.

Another study (Du and Prendergast, 1999) has focussed on the 21 kD G-protein 

RhoB which regulates receptor trafficking and is believed to be a prénylation target 

of FTIs. This study demonstrated that RhoB GTPase activity was increased in 

some human cancer cell lines (predominantly epithelial) and that the accumulation 

of RhoB GGT increased apoptosis, inhibited tumour cell proliferation, and resulted 

in cell cycle arrest via multiple mechanisms, including alterations in cell adhesion. 

In addition, in cancer cells which over-express AKT, FTIs induce apoptosis and 

inhibit P13K/AKT-mediated adhesion and growth factor-dependent survival 

pathways (Jiang et al., 2000a). It is possible that one of these proposed 

mechanisms of action that alters cell adhesion could explain the dramatic results 

seen in the LTC-IC assay experiments. The hypothesis would be that after 

treatment with BMS-214662, the CML stem cells are unable to adhere to the 

stromal layer, resulting in failure to form colonies. Again, these potential modes of 

action need further investigation in CML.

An alternative recent study has shown that FTIs directly induce production of ROS 

resulting in DNA damage in neoplastic cells (Pan et al., 2005; She et al., 2005). 

However, the pathway by which FTIs induce ROS is not yet fully elucidated, 

although it has been postulated that ROS are increased primarily by greater 

generation (Pan and Yeung, 2005). Interestingly, additional recent research has 

shown that FTIs increase inducible nitric oxide synthase (iNOS), resulting in higher 

nitric oxide (NO) production and apoptosis in CD34^ CML cells (Selleri et al.,

2003). Furthermore, in this study, the Rho inhibitor C3 exoenzyme, significantly 

increased iNOS expression in CML cells, indicating that FTIs may increase NO 

production at least partly through FTI-mediated inhibition of Rho. These exciting
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studies provide further insights into the potential mechanisms of action through off-

target activities of BMS-214662 and highlight the importance of determining a

mode of action for BMS-214662 in CML. In future studies, it would be important to

measure RhoB and iNOS activity before and after treatment with BMS-214662 in

CD34+ CML cells.

A further recent study using a chemical genetics approach in the nemotode 

Caenorhabditis elegans showed that several pro-apoptotic FTIs induced p-53- 

independent apoptosis (Lackner et al., 2005). In addition, these FTIs also inhibited 

the eukaryotic protein prenylase RabGGT in mammalian cancer cell lines. 

Geranylgeranylation by RabGGT is responsible for the membrane localisation of 

the Rab family of small GTPases which are involved in endosomal to lysosomal 

trafficking. This study also showed that RabGGT was over-expressed in a sub-set 

of human solid tumours (ovarian tumours, adenocarcimoma of colon, large cell 

lung carcinoma and melanoma) and that short interfering RNA (siRNA) against 

RabGGT induced apoptosis in 3 human cancer cell lines (the lung 

adenocarcinoma cell line A549, the ovarian cancer cell line A2780, and the p-53 

null prostate cancer cell line PC3). This is the first study to suggest a potential role 

for RabGGT in apoptosis and cancer initiation or progression and identifies a novel 

pathway for p-53-independent apoptosis and a potential post-translational mode of 

action for FTIs, including BMS-214662. However, this study did not assess 

RabGGT in any haematological malignancies, and in further work I would propose 

determining if RabGGT is over-expressed in myeloid leukaemias. If it is, then I 

would go on to assess whether RabGGT was inhibited by BMS-214662 in CD34^ 

CML or AML cells and, if so, whether inhibition of RabGGT with siRNA resulted in 

increased apoptosis in order to determine if RabGGT is a relevant target in 

myeloid leukaemias.
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Further studies, including gene expression profiling, a kinase screen and detailed

investigation of the Ras pathway have been undertaken by us in an attempt to

determine the mode of action of BMS-214662 in CML. At present, it is

hypothesised that BMS-214662 acts post-translationaiiy on CML cells. In support

of this post-translational role for BMS-214662, a comprehensive transcriptional

profiling experiment utilising the Affymetrix microarray platform and analysed by Dr

Francesca Pellicano showed no evidence for significant up- or down-regulation (by

greater than 1.3-fold) of genes in CML CD34^ cells following treatment with BMS-

214662 as compared with either BMS-225975 or no drug control. In addition,

Bristol Myers Squibb have performed a detailed kinase screen on the CML cell line

K562 which was entirely negative and excluded kinase inhibitory activity against

BCR-ABL and other kinases. However, one positive finding which is currently

under further investigation is that, in association with induction of apoptosis, BMS-

214662 resulted in near complete inhibition of phosphorylation of ERK and down-

regulation of the inhibitor of apoptosis protein (lAP), whereas BMS-225975 neither

induced apoptosis nor inhibited ERK phosphorylation or down-regulated lAP,

strongly suggesting that BMS-214662 acts post-translationally.

In addition to its potent effect on CML stem and progenitor cells, very preliminary 

data, presented here in Chapter 6 indicate that BMS-214662 shows some efficacy 

when used either alone or in combination with Ara-C in primary AML cells. This is 

an important finding which requires further investigation. To this end, we are in the 

process of developing a bank of primary samples taken from AML patients at 

diagnosis which will allow us to undertake experiments similar to those performed 

in CD34^ CML cells in this study. A Phase 1 trial of BMS-214662 has already been 

performed in AML (Cortes et al., 2005a) and demonstrated some efficacy. Further 

laboratory studies, in particular examining the effect of BMS-214662 alone and in 

combination with other chemotherapeutic agents on AML stem cells, may provide
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a rationale for the development of a Phase 2 trial in AML as have already taken

place with tipifarnib (Harousseau et al., 2003; Lancet et al., 2003).

Finally, it will be important to investigate the activity of BMS-214662 on stem cell 

malignancies such as breast, prostate and brain (Al-Flajj et al., 2003; Singh et al., 

2003; Collins et al., 2005). Previous studies in solid tumours have failed to show a 

significant effect for BMS-214662, but these trials were undertaken in patients with 

a range of malignancies, not all of which have been demonstrated to be of stem 

cell origin, who had already received multiple chemotherapy regimens. In addition, 

in these heavily pre-treated patients, side effects at higher doses of BMS-214662 

proved to be a problem with haematological, renal, gastrointestinal and hepatic 

toxicities being dose-limiting (Mackay et al., 2004; Dy et al., 2005; 

Papadimitrakopoulou et al., 2005; Eder et al., 2006). These Phase 1 studies were 

powered to assess safety and tolerability and not efficacy with only one study 

showing significant clinical benefit from treatment, and in this study (Tabernero et 

al., 2005), only 5 out of 31 patients had a response. This apparent lack of efficacy 

led to further trials with BMS-214662 in solid tumours being abandoned. It is only 

in recent months, based on the results presented here, that further clinical grade 

BMS-214662 has been manufactured and there has been a resurgence in interest 

in the potential use of BMS-214662 in stem cell malignancies. It is likely that 

further research into the use of BMS-214662 in solid tumours will be much more 

selectively focussed on tumours shown to be derived from stem cells such as 

breast, prostate and brain.

It is only by understanding the mechanism of action of BMS-214662 that advances 

can be made in using BMS-214662 in the clinic, resulting in increased efficacy and 

reduced toxicity. In addition, by using BMS-214662 as a laboratory tool, it may be 

possible to Identify new molecular targets in the treatment of myeloid leukaemias
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and other stem cell neoplasms leading to the development of novel therapeutic

agents.

7.4 Final discussion and conclusions

The importance of developing targeted cancer therapies is related to the toxicity of 

conventional chemotherapy regimens to normal cells and the failure of these non­

specific agents to target cancer stem cells, resulting in an inability to cure many 

cancers. The development of molecularly targeted therapies allows specific 

targeting of cancer cells without affecting normal cells, reducing toxicity and, in 

most cases, improving patient quality of life. Although the introduction of IM for the 

treatment of BCR-ABL^ malignancies is widely heralded as the first successful 

molecularly targeted cancer therapy (Druker et al., 2001b), it was preceded by 

others. Perhaps the first real targeted approach to cancer therapy was the use of 

hormonal manipulation in the form of tamoxifen in breast cancer (Early Breast 

Cancer Tria lists' Collaborative Group, 1998). Another was the use of monoclonal 

antibodies such as the anti-CD20 agent rituximab (Mabthera™) in B cell disorders 

(Coiffier et al., 2002). Currently, targeting signal transduction pathways is a major 

strategy in the development of novel anti-neoplastic agents.

CML represents an excellent model for the study of cancer stem cells because it 

results from a single genetic mutation {BCR-ABL) and is measurable by standard 

laboratory techniques such as FISH and PCR (Kaeda et al., 2002). This also 

makes CML an ideal disease in which to identify novel agents which target cancer 

stem cells.

There have been major advances in the treatment of CML in recent years with the 

development of IM (Druker et al., 1996; O'Brien et al., 2003) and, more recently.
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the oral, multi-targeted kinase inhibitor dasatinib (Talpaz et al., 2006) and the

second generation BCR-ABL kinase inhibitor, nilotinib (Kantarjian et al., 2006).

These newer compounds target IM-resistant mutations and, in the case of

dasatinib, reach further into the stem cell compartment (Copland et al., 2006).

However, despite inhibition of BCR-ABL, quiescent CML stem cells remain

insensitive to these compounds. Further, as shown here for the first time, in LTC-

IC experiments, IM and dasatinib would appear to exert a protective effect on the

CML stem cell compartment through their anti-proliferative action, although this

may be an in vitro culture artefact and has yet to be confirmed in vivo. Therefore,

strategies are required to target both quiescent and proliferating BCR-ABL^ cells.

The importance of cancer stem cells is a rapidly emerging area of research and 

the ability of BMS-214662 to selectively target quiescent LSCs is shared by a very 

few novel anti-cancer agents (Guzman et al., 2002; Guzman et al., 2005). Studies 

are planned to determine if this property is applicable to other malignancies with 

quiescent stem cells (breast, brain and prostate cancer etc). However, the study of 

quiescent primary cancer stem cells is complex as it is difficult to separate this 

small sub-population of cells from the proliferating majority, making 

characterisation of these cells difficult. Studies in fibroblasts (Coller et al., 2006), 

which artificially induced quiescence by different mechanisms (mitogen 

withdrawal, contact inhibition and loss of adhesion), showed that although there 

was a cohort of genes universally expressed in quiescent states, the expression of 

many other genes varied depending on the mechanism inducing quiescence. In 

addition, it is unclear which of these mechanisms are active in primary cells.

If differences in gene and protein expression between quiescent normal and 

cancer stem cells can be found, then it is possible that these differences could be 

exploited to develop cancer-specific therapies which avoid damage to normal
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tissues. Although BMS-214662 exhibits some toxicity to normal primitive

progenitor cells, it is far more toxic to leukaemia progenitor cells. Thus BMS-

214662 may prove to be such a cancer-specific therapy or perhaps a tool for

developing other approaches to targeting the cancer stem cell.

Recently, two different dynamic models of CML have been proposed (Michor et 

al., 2005; Roeder et al., 2006) which arrive at different conclusions. The first model 

suggests that although IM is a potent inhibitor of differentiated CML cells, it does 

not reduce the CML stem cell population (Michor et al., 2005). In CML, BCR-ABL 

transcripts exhibit a biphasic decline in patients responding to IM, but even after 

years of therapy, the majority of patients have persistent disease at the molecular 

level (Hughes et al., 2003; Branford et al., 2004). The biphasic decline in BCR- 

ABL transcripts consists of an initial rapid decline which represents the death of 

differentiated CML cells followed by a much slower decrease representing the 

death of more primitive CML progenitors in response to IM. In support of this first 

hypothesis, in a proportion of patients that discontinued IM after prolonged 

treatment and had achieved a CMoIR, the number of BCR-ABL transcripts rapidly 

increased over the following three months to at least pre-treatment levels (Cortes 

et al., 2004b; Mauro et al., 2004). This indicates that IM does not deplete the CML 

stem cell population which is driving the disease, and supports the hypothesis that 

CML stem cells are resistant to IM and other agents (Graham et al., 2002; Holtz et 

al., 2005; Jorgensen et al,, 2005a; Copland et al,, 2006). This model further 

proposes that, as CML progresses, the number of LSCs rises and the probability 

of a patient having a resistance mutation also increases as a result of this larger 

population of CML stem cells (Michor et al., 2005). In addition, it is suggested that 

the time to treatment failure as a result of acquired resistance is dependent on the 

growth rate of the CML stem cells. Therefore, based on the theories put forward in 

this study, IM is extremely unlikely to cure CML patients, and over time, the
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majority of patients will develop acquired resistance as the stem cell population

gradually expands. Thus, the development of strategies, such as BIVIS-214662, to

target the LSC population will be vital for the eventual eradication of CML.

The hypothesis proposed in the second study is rather more positive for CML 

patients (Roeder et al., 2006). It suggests that the clinically observed biphasic 

pattern of BCR-ABL transcript dynamics may be explained by a selective effect of 

IM on proliferating CML stem cells. This model makes two main assumptions. 

Firstly, it assumes that IM inhibits proliferative activity and induces death of 

proliferating CML stem cells and secondly, it assumes that there is a large 

population of quiescent CML stem cells which are resistant to IM due to their 

quiescent state as previously demonstrated (Graham et al., 2002). However, these 

quiescent CML stem cells retain the potential for proliferation and are responsible 

for the rapid relapses seen after stopping IM (Cortes et al., 2004b; Mauro et al.,

2004). This model predicts that, over time, as quiescent CML stem cells gradually 

enter the cell cycle, they will proliferate and become sensitive to IM. Therefore, 

levels of MRD will continue to fall over prolonged periods of IM treatment as 

suggested by clinical data (Branford et al., 2004), and complete disease 

eradication may be possible if patients do not develop resistance mutations. The 

model also proposes that promoting quiescent CML stem cells to enter the cell 

cycle by using additional agents in combination with IM may enhance the 

eradication of MRD in CML. This hypothesis was tested in Chapter 3 of this thesis 

which used priming with intermittent exposure to rHu-G-CSF in an attempt to force 

the quiescent CML stem cells to proliferate with promising results. As discussed, a 

clinical trial (GIMI trial) to test this potential therapeutic strategy in vivo is currently 

underway (Mitchell et al., 2006).
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Although these two different hypothetical models of CML dynamics arrive at

different conclusions, they both highlight the importance of developing drug

combination strategies with IM or the newer agents (dasatinib, nilotinib and others)

to eliminate the quiescent CML stem cell population.

Another hypothesis leading to much debate at present is the concept that CML 

stem cells may not be dependent on BCR-ABL; therefore BCR-ABL kinase 

inhibitors may not be appropriate therapy for CML stem cell eradication. There is 

evidence that CML is a stem cell disorder (Eaves et al., 1998). In addition, there is 

support for a normal HSC hierarchy in LSCs (Bonnet and Dick, 1997), suggesting 

that LSCs may retain many of the properties of HSCs. Furthermore, there is 

increasing evidence that BCR-ABL-targeted therapies such as IM, dasatinib or 

nilotinib fail to eradicate CML stem cells in vitro (Graham et al., 2002; Holtz et al., 

2005; Copland et al., 2006; Jorgensen et al., 2007).

Further support for this hypothesis comes from studies which have shown that 

transduction with either M0Z-TIF2 or MLL-ENL resulted in the development of the 

capacity for self-renewal in committed non self-renewing myeloid progenitors in 

vitro and rapid induction of leukaemia in murine transplantation models (Cozzio et 

al., 2003; Huntly et al., 2004), whereas transduction of these same non self- 

renewing myeloid progenitors by BCR-ABL did not (Huntly et al., 2004). The 

mechanisms underlying this difference in the ability of oncogenes to bestow self­

renewal properties on a leukaemia cell remain to be elucidated. Another recent 

study has shown that, despite inactivation of plOO®^ '̂^^*" in a murine model of 

ALL, there was failure to rescue the malignant phenotype, implying that pi 90 '̂̂ '̂ " 

is not required for disease maintenance in mice (Perez-Caro et al., 2006). It 

was further hypothesised that p i90^^" '̂^^  ̂ induced epigenetic changes or 

additional mutations, rendering the LSCs insensitive to inactivation of plOO®̂ *̂ "̂ ®̂ .
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However, this is controversial as a number of other studies have demonstrated the

necessity of BCR-ABL for disease maintenance (Szczylik et al., 1991; Skorski et

al., 1994; Zhao et al., 1997; Huettner et al., 2000). In addition, in this murine model

(Perez-Caro et al., 2006), the disease did not behave as an acute leukaemia as

survival was longer than other acute leukaemia models and also the mice were

unresponsive to IM which is not typical of BCR-ABL^ ALL, in which the majority of

patients do achieve a remission, albeit short-lived (Druker et al., 2001a).

Furthermore, another recent study demonstrated that dasatinib resulted in

complete remission of B-ALL with prolonged survival in a murine model (Hu et al.,

2006), providing additional evidence of dependence on BCR-ABL for disease

maintenance.

In some cells, the ability to self-renew may be due to the acquisition of secondary 

mutations in committed progenitor cells which allow these cells to take on the 

properties of a LSC. This has recently been demonstrated in BC CML by 

Jamieson et a! (Jamieson et al., 2004) who showed that there was an increased 

granulocyte-macrophage progenitor population in BC CML compared to earlier 

stages of disease, and this population had the ability to self-renew in vitro in 

association with activation of p-catenin, a protein of the WNT signalling pathway 

which is associated with cell differentiation, proliferation and death. Very 

interestingly, two inhibitors of the WNT signalling pathway have recently been 

described which show efficacy in myeloid leukaemias (Guzman et al., 2006; 

Kavalerchik et al., 2006). The first of these, MCC-001, a marine sponge-derived P- 

catenin antagonist was demonstrated to inhibit the re-plating capacity of CML stem 

cells, derived from patients with advanced phase CML, at doses which were non­

toxic to normal HSCs (Kavalerchik et al., 2006). The second compound, 4-benzyl, 

2-methyl 1,2,4-thiadiazolidine 3,5-dione (TDZD-8), a GSK-3p inhibitor, induced 

rapid cell death in both primary AML and BC CML cells (Guzman et al., 2006).
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Further studies in a NOD/SCID mouse xenotransplantation model showed a 93%

reduction in engraftment with TDZD-8 for AML samples compared with an 11%

reduction for normal cell engraftment. Further studies are currently underway to

fully elucidate the mechanisms of action of these two novel compounds and further

assess their effect on the LSC compartment.

It should also be considered that BCR-ABL may be an oncogenic mutation which 

is tolerated by HSCs because it has little or no effect on the stem cell in which it 

arises; rather its effects are expressed in the progeny of the mutated stem cell. It is 

possible that mutations which increase self-renewal or impair differentiation may 

be toxic to the HSC and/or trigger apoptotic pathways. BCR-ABL may not induce 

these changes in the stem cell and, therefore may be tolerated. However, there is 

evidence against this hypothesis from Huntly et al, who demonstrated that HSC 

transduction with M0Z-TIF2 resulted in a form of AML indistinguishable from other 

M0Z-TIF2 associated leukaemias (Huntly et al., 2004). Therefore, in HSCs, this 

oncogenic mutation was not only tolerated, but was capable of inducing leukaemia 

without HSC toxicity or apoptosis.

The models of CML disease response dynamics and the hypothesis that BCR-ABL 

may not be a target in CML stem cells highlight the importance of developing 

therapies which target the LSC specifically and identifying differences between 

normal HSCs and LSCs which can be targeted for therapy. A recent study has 

shown that dependence on the tumour suppressor gene PTEN separates HSCs 

from LSCs (Yilmaz et al., 2006). In an in vivo mouse model, conditional deletion of 

PTEN resulted in a myeloproliferative disorder which progressed to acute 

leukaemia over a number of weeks and also induced acute leukaemia in recipient 

mice in a mouse transplantation model. In addition, HSCs were not maintained in 

the absence of PTEN, as PTEN deletion increased HSC proliferation which
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resulted in HSC depletion and the cells were unable to reconstitute irradiated

mice, i.e. there was loss of self-renewal capacity. It is likely that these effects were

modulated by mTOR as rapamycin not only depleted LSCs but also restored

normal HSC function. Further studies in AML have demonstrated that proteasome

inhibitors induce apoptosis in AML stem cells in association with inhibition of NF-

kB and activation of p-53-related genes (Guzman et al., 2002). Furthermore, the

naturally-occurring small molecule inhibitor parthenolide also causes apoptosis in

LSC in AML and BC CML, again through inhibition of NF-kB and activation of p-53

and also increased production of ROS (Guzman et al., 2005).

The data presented in this thesis for BMS-214662 in CP CML represents an 

important step forward in targeting quiescent CML stem cells as this is the first 

study to demonstrate an agent which selectively kills quiescent CML stem cells, 

although the mode of action has yet to be elucidated. All these examples highlight 

the importance of finding agents which specifically target cancer stem cells. It is 

only by understanding the biology of cancer stem cells and developing novel stem 

cell-directed therapies that progress will be made in eradicating these diseases.
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Appendix 1

Patient characteristics for CML samples obtained
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UPN Sex
Disease
Stage

WCCat 
leucapheresis 

(x10®/ L)

Pre­
selection 
% CD34

Post 
selection 
% CD34

Type of 
CD34 

selection
%Ph  ̂in CD34^ 

(D-FISH)
23 M CP 276 16.9 51.2 Stemsep 69.1
31 M CP 350 14.4 85.3 Isolex 100
81 F CP 157 17.6 89 Isolex 100
85 M CP N/A 42 N/A Unmanip 88
101 F CP 67 4.4 49.2 Stemsep 90.9
144 F CP 234 33.6 98 Isolex 99.7
151 F CP 270 13.2 98.3 CilnlMACS 100
155 F CP 78 3.6 98.3 CilnlMACS 99
160 M CP 300 1.6 97 CilnlMACS 87.4
162 M CP 173 1.7 98 CilnlMACS 97
164 F CP 147 5.8 99 CilnlMACS 100
166 M CP 206 6.0 99 CilnlMACS 94.8
170 M CP N/A N/A 97 CilnlMACS 96.8
174 F CP 221 5.0 98 CilnlMACS 99.6
189 F CP 133 6.0 97 CilnlMACS 92.9
198 M CP 240 4.2 87.3 CilnlMACS 98.5
215 M CP 165 7.7 96 CilnlMACS 95.4
217 F CP 106 0.6 91.1 CilnlMACS 92
218 M CP 68 6.5 97.8 CilnlMACS 98.7
219 M CP 307 4.2 98.7 CilnlMACS 98.2
222 M CP 124 12.7 99.2 CilnlMACS 85.8

168 M AP 330 11.5 98 CilnlMACS 100
185 M AP 139 12.0 95 CilnlMACS 100

001 F LBC N/A 17.2 N/A Unmanip N/A
002 F MBC 19.1 48.2 N/A RBC Lysis N/A
003 F MBC N/A 4.1 N/A RBC Lysis N/A
004 M MBC 12.5 3 N/A Unmanip N/A
005 M LBC N/A 16.8 N/A RBC Lysis N/A

URN, unique patient number; LBC, lymphoid blast crisis; MBC, myeloid blast 

crisis; Unmanip, unmanipulated sample; RBC Lysis, red blood cell lysis; N/A, not 

applicable or not available.

n


