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Abstract

The burning of fossil fuels will play a crucial role for both power generation and transportation
sectors over the next fifty years according to the forecasts of regulatory bodies in these sectors.
The combustion of these fuels contributes to climate change, air pollution, and environmental
noise and consequently affects the health and quality of human life. Public awareness and gov-
ernmental legislations over these issues have improved substantially in recent years. As a result,
heat engine manufacturers have to meet international standards for noise and pollutant emissions
which are continually lowering the acceptable levels.

The manufacturers of gas turbine engines which are used widely for propulsion and power
generation are investing continually into extensive research that will enable them to meet the
ever more stringent targets of NOx emissions and perceived noise. It is widely acknowledged
among gas turbine manufacturers that lean premixed combustors fuelled by hydrogen blends is
the most effective solution. The burning of fuels containing hydrogen results in reductions of
all emissions compared to the levels produced from the burning of conventional fuels with the
exception of NOx. Significant reductions of NOx emissions is the primary role of lean premixed
combustion systems. These systems also provide reduced fuel consumption that results in less
CO2 and H2O production because they operate close to the fuel-lean blowout limit. That is,
these systems burn a fuel-air ratio that is lower than stoichiometry.

Lean premixed combustors are effective in achieving low NOx emissions but their operating
range is severely limited due to their susceptibility to a range of dynamical problems including
combustion instabilities and flame flashback. Furthermore, these combustors are more noisy
compared to other combustion systems for two reasons. Firstly, the flame dynamics are more
unsteady and hence, more energy is supplied to the acoustic field. Secondly, the cooling air
that flows around the combustor liner and acts as an acoustic insulation layer is relatively much
less. The requirement for fuel flexibility makes these problems more challenging to solve as the
chemical composition of the fuel significantly influences the combustion dynamics.

Combustion instabilities are characterised by strong pressure oscillations that can destroy
the combustor. These are a result of coupling of the flame heat release with flow perturbations
through a feedback mechanism that is usually the combustor acoustics. In the multiphysics
environment of a combustor there are various processes that cause flow perturbations and hence,
the problem of combustion instability is extremely complex. The flow perturbations could be
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the result of other dynamic phenomena such as flame flashback and advecting entropy waves
and these are the subject of the current work. The former is a highly transient phenomenon
characterised by the sudden upstream propagation of the flame. The entropy waves are hot
parcels of fluid that are generated by an oscillatory heat release at the flame and advect with
the flow to generate acoustic waves known as entropy noise during their passage through the
combustor exit nozzle. The flashback frequency of a flame periodically moving upstream or
the frequency of entropy noise could coincide with an acoustic mode of the combustor, thus
resulting in combustion instability. Even if the phenomena do not cause combustion instability
they are problems in their own right. Flame flashback can damage upstream components of the
combustor that are not designed to operate at high temperatures. On the other hand, entropy
noise contributes to engine noise.

Investigation of flashback requires multiple, simultaneous diagnostics without prior knowl-
edge of the relevant time and length scales of the physical processes involved. Detection, ac-
cordingly, deals with post-event characterization. The current work, attempts to detect subtle
dynamics prior to flashback using for the first time nonlinear time series analysis tools to process
existing pressure time series from flashback experiments. Time and frequency domain methods
are unable to detect precursors of flashback as will be demonstrated. However, these conven-
tional methods of time series analysis operate on the assumption that the source of the time
series is linear. The highly transient nature of flashback clearly indicates that the phenomenon
is a consequence of nonlinear dynamics. Following standard nonlinear time series analysis, the
trajectory of the system in phase space is constructed from the time series data. Subsequently,
the orbit of the trajectory is analysed using a running window to plot its translation error and re-
currence quantification measures of its recurrence pattern as a function of time. The translation
error analysis is applied to time series from a flashback experiment in stable combustion. The
recurrence analysis is applied to time series from a flashback experiment in a different burner
with unstable combustion. In both cases, it is found that the determinism of the system dynamics
gradually increases as flashback is approached.

The influence of entropy noise on combustion instabilities is still a subject of contention.
Experimental investigations are again difficult because entropy noise cannot be distinguished
from noise generated at the flame in acoustic measurements. Hence, experimental investigations
rely on measuring the temperature perturbations before their passage through the combustor
exit nozzle. However, this brings about another difficulty, that of measuring high frequency
temperature oscillations. Nonetheless, once the temperature measurements are made there is a
need for a comprehensive theory to convert them to entropy noise. For this reason, research
in this area has focused mainly on the acoustic response of nozzles to entropic forcing. The
equally important stage of the phenomenon, that of the attenuation of advecting entropy waves
through the combustor flow field has received little attention. Existing low order models of an
advecting entropy wave are one-dimensional, linear, and purely phenomenological. The current
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work, carries out a direct numerical simulation of an entropy wave advecting in a compressible
turbulent channel flow with adiabatic and convectively cooled walls. Time series from the direct
numerical simulation are subsequently processed using a novel methodology to develop a model
that retains the two-dimensional shape and amplitude of the entropy wave. The model is capable
of simulating the adiabatic and heat transferring cases using only a small fraction of the data
from the direct numerical simulation. It is shown that a nonlinear model is more appropriate
even for entropy waves with an amplitude that until now has been considered small. Also, it is
found that heat loss at the walls significantly influences the advecting entropy wave.
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Chapter 1

Introduction

1.1 Motivation

The projections of the World Energy Council published in "The World Energy Scenarios: Com-
posing energy futures to 2050" show that until the year 2050 fossil fuels will play a crucial role
for both power generation and transportation sectors [54]. However, the activities of the above
sectors contribute to climate change, air pollution, and environmental noise and consequently
affect the health and quality of human life. Public awareness and governmental legislations over
these issues have improved substantially in recent years. As a result, heat engine manufacturers
have to meet international standards for noise and pollutant emissions which are continually
lowering the acceptable levels.

Currently, gas turbine engines are used widely, either in stand-alone applications or com-
bined with other power generation equipment and have substantially low emissions compared to
other fossil-powered generation technologies [32]. Emission control technology for gas turbine
engines has advanced dramatically over the past 30 years [108]. Nonetheless, manufacturers of
gas turbine engines are continually striving to meet more stringent standards regarding pollutant
emissions and noise by the year 2050. The Advisory Council for Aeronautics Research in Eu-
rope has set a target of reducing aviation NOx emissions by 90% and perceived noise by 65%
relative to levels in the year 2000 by the year 2050 [31].

The exhaust from gas turbines contains carbon dioxide (CO2), water vapour (H2O), carbon
monoxide (CO), unburned hydrocarbons (UHC), particulate matter (smoke, ash, ambient non-
combustibles, corrosion products, etc.), oxides of sulfur (SOx), and oxides of nitrogen (NOx)
[141, 108]. Emissions from a typical two-engine jet aircraft during a 1-hour flight with 150
passengers are shown in figure 1.1a. These emissions pose a problem for both the environment
and public health. In particular, the CO2, H2O, and NOx contribute to global warming through
the greenhouse effect. The CO and UHC are toxic and the latter combine with the NOx to form
photochemical smog. The NOx and SOx react with water molecules (H2O) in the atmosphere to
form acids that cause acid rain. The NOx and soot have been shown to cause respiratory diseases

1
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Figure 1.1: Combustion of fossil fuels: (a) Emissions from a typical two-engine jet aircraft
during a 1-hour flight with 150 passengers [101], (b) Melting ice in Antarctica in 2016 due to
the greenhouse effect, (c) Forestation in the Jizera mountains in 2006 destroyed due to acid rain,
and (d) Delhi airport in 2017 engulfed in smog.

and problems. Examples of the impact of global warming, acid rain, and particulate matter on
the environment and human activities around the world are shown in figure 1.1b-d.

The combustor is where emissions and significant noise are produced and therefore signifi-
cant research and development effort is going into combustion technology. Emission controls for
gas turbine engines were initially introduced in the early 1970s mainly for the reduction of NOx.
The simplest way of controlling NOx emissions is by reducing the flame temperature in the com-
bustor [108]. Thus, the early approach involved the injection of diluents such as water or steam
directly into the primary combustion zone. The injection of water or steam into the combustor
had minimal detrimental impact to the gas turbine cycle performance and the operational life of
parts as long as the amount of water or steam injected was kept below a threshold [141]. The
limitation of wet low NOx technology was overcome with the advent of Dry Low NOx (DLN)
or Dry Low Emissions (DLE) combustion technologies, particularly that of lean premixed com-
bustion in the late 1980s. Since then manufacturers have achieved significant reductions of the
regulated emissions. Further reduction of emissions could be achieved by switching to fuels that
contain more hydrogen than conventional fuels. Syngas [161, 23] and blends of hydrogen with
gaseous hydrocarbons [16, 150, 170] are the main alternatives being considered.

Lean premixed combustion provides an important reduction of NOx emissions with the
added benefit of reduced fuel consumption, which results in less CO2 and H2O production.
However, systems that utilize this type of combustion technology tend to be prone to a range
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of dynamical problems including combustion instabilities and flame flashback that involve dy-
namics that are not yet fully understood [143]. Furthermore, the requirement for lean premixed
systems to be fuel flexible makes these problems all the more challenging because the chemical
composition of the fuel influences the combustion dynamics [85, 116]. The safe operation of
lean premixed combustion systems is therefore limited to a narrow operational range. Conse-
quently, the technology has only found application in industrial and not in aircraft gas turbines
that are required to operate over a wide range of conditions. Moreover, lean premixed com-
bustors are more noisy compared to other combustor technologies [39]. The reason for this is
twofold. Firstly, the combustion process is more unsteady and hence, more energy is supplied to
the acoustic field. Secondly, the cooling air that flows around the combustor liner and behaves
as an acoustic insulation layer is much less as most of the air is supplied to the burner.

The operational and design constraints posed on lean premixed combustion systems by com-
bustion instabilities and flame flashback on one hand and the comparable noise of combustion
with jet and fan noise on the other hand have made the underlying dynamics of these and other
combustion phenomena the focal point of extensive research [90, 20, 115, 143, 39, 131].

1.2 Formation mechanisms of oxides of nitrogen

The term NOx is used to denote nitric oxide (NO) and nitrous oxide (NO2) but in most flames
NO is formed and then oxidises to NO2 after the combustion products are released into the atmo-
sphere [25, 166]. The formation of NOx in the combustion of fuels that do not contain nitrogen
occurs through three main mechanisms. These are the thermal or Zeldovich mechanism, the
intermediate nitrous oxide mechanism and the prompt or Fenimore mechanism. In the combus-
tion of fuels that contain nitrogen a reaction rapidly converts it to hydrogen cyanide (HCN) or
ammonia (NH3) and formation of NO takes place by the prompt mechanism [166].

The time available for chemical reactions in gas turbine conditions is small and reactions
with slow dissociation rates do not come to completion and thus, concentrations of products
are limited to being small relative to their equilibrium values [25]. In such cases the reaction
is not reversible. Nonetheless, arrows pointing in both ways are used in the chemical reaction
equations presented below even though a particular reaction may not be reversible in gas turbine
conditions.

1.2.1 Thermal nitric oxide

At high temperatures nitrogen molecules in the atmospheric air constituent of the reactants oxi-
dise according to the chemical equation 1.1a. The reaction is only relevant at high temperatures
because of its high activation energy. The consensus is that at flame temperatures less than
1800K the formation of thermal NO is not significant [25, 166]. The reaction forms NO directly
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and initiates the reactions in equations 1.1b-c that form more NO.

N2 +O� NO+N (1.1a)

O2 +N� NO+O (1.1b)

OH +N� NO+H (1.1c)

The NO formation rate depends exponentially on flame temperature for gaseous and liquid
fuels [154]. The NO formation rate with respect to the reactants equivalence ratio (actual to
stoichiometric air-fuel ratio) as determined analytically by Correa [25] for typical conditions
in laboratory, industrial, and aircraft gas turbines is shown in figure 1.2. The NO formation
rate is plotted with respect to the mixture’s equivalent ratio (φ ) which is intrinsically related
to the flame temperature. The flame temperature is maximum when the mixture is stoichio-
metric (φ = 1) and falls exponentially into the fuel-lean (φ < 1) and fuel-rich (φ > 1) sides of
stoichiometric. Figure 1.2 clearly shows the analogy between the NO formation rate and the
flame temperature. In figure 1.2, it is also important to note that in real gas turbines the NO
formation rate can be orders of magnitude higher than in a laboratory setting. Although a low
flame temperature can be attained in fuel-lean and fuel-rich combustion the former is preferable
because for small combustor residence times there is more than enough oxygen to burn all the
fuel and thus, leaving little or no CO and UHC. The low NOx emissions capability of lean pre-
mixed prevaporised (LPM/LPP) and rich-burn quick-quench lean-burn (RQL) combustors stems
from operation close to the lean and rich flammability limits at which the flame temperature and
consequently the formation rate of thermal NO are low.

Figure 1.2: Thermal NO formation rate with inlet conditions typical of laboratory gas turbine
(1atm, 300K), industrial gas turbine (10atm, 600K) and aero-propulsion gas turbine (30atm,
900K) combustion [25].



1.2. FORMATION MECHANISMS OF OXIDES OF NITROGEN 5

1.2.2 Intermediate nitrous oxide

At low flame temperatures nitrogen molecules in the atmospheric air constituent of the reactants
oxidise according to the chemical equation 1.2a. The reactants in this reaction are the same as
in equation 1.1a but at low temperature conditions the product of the reaction is nitrous oxide
(N2O). The N2O is an intermediate [166] that then forms NO through the chemical equations
1.2b-d.

N2 +O� N2O (1.2a)

O+N2O� NO+NO (1.2b)

H +N2O� NO+NH (1.2c)

CO+N2O� NO+NCO (1.2d)

1.2.3 Prompt nitric oxide

Hydrocarbon radicals react with nitrogen molecules in the atmospheric air constituent of the
reactants according to the chemical equation 1.3a. The reaction forms hydrogen cyanide (HCN)
and monatomic nitrogen (N). At equivalence ratios φ . 1.2 the HCN reacts with monatomic
oxygen and initiates a chain reaction according to equations 1.3b-e that eventually forms NO.
At equivalence ratios φ & 1.2 the chemistry becomes complex and is beyond the scope of this
thesis which is concerned with the combustion dynamics of fuel-lean mixtures. The interested
reader that wishes to know more about the chemical processes can refer to the textbook by Turns
[166] and the references therein.

CH +N2� HCN +N (1.3a)

O+HCN� NCO+H (1.3b)

H +NCO� NH +CO (1.3c)

H +NH� N +H2 (1.3d)

N +OH� NO+H (1.3e)

The amount of NOx formed by the thermal nitric oxide mechanism only becomes compa-
rable to the amounts formed by the other formation mechanisms at low temperatures and in
that case the total amount of NOx is already very small. Hence, flame temperature is a crucial
parameter in controlling NOx emissions.
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Figure 1.3: Lean premixed combustor used in Siemens industrial gas turbines [106].

1.3 Lean premixed combustion

Lean premixed combustion technology effectively reduces NOx emissions due to low flame tem-
perature with the additional benefit of enhanced fuel efficiency [35]. The control principle is to
supply the flame with a mixture of equivalence ratio that is fuel-lean and spatially homogeneous.

Supplying the flame with a globally fuel-lean mixture is not sufficient for achieving low
NOx emissions. Local regions with equivalence ratio greater than the average value should be
eliminated otherwise NOx emissions will remain high in these regions due to locally high flame
temperatures, thus, negating the purpose of lean premixed combustion. Hence, the air and fuel
in lean premixed (LPM) combustors are mixed upstream of the flame to ensure a homogeneous
mixture of reactants at the flame.

The typical layout of an LPM combustor used in industrial gas turbine engines is shown
in figure 1.3 [106]. The component that connects the air-fuel supply system to the combus-
tion chamber in the schematic of figure 1.3 is the premixing section where the fuel and air are
premixed. Air is fed to the premixer through a swirler that induces a tangential velocity com-
ponent to the air stream. The swirl not only enhances the mixing process but also generates a
recirculation zone at the dump plane that provides a reduced velocity region where the flame
speed and flow velocity can be matched to stabilize the flame [67]. The fuel injection system
injects gaseous or atomised/vaporised liquid fuel into the swirling air stream. Atomizers/vapor-
isers convert the bulk liquid fuel into small droplets or vapor prior to mixing and are vital to
ensuring a homogeneous mixture. Lean premixed combustors firing liquid fuels are termed lean
premixed prevaporised (LPP) combustors because the atomisation/vaporisation process is an es-
sential component of the technology. The significance of the quality of mixing is exemplified in
figure 1.4 that shows NOx emissions from a General Electric LM6000 gas turbine combustor as
a function of average flame temperature for various degrees of premixing [110].

Although, lean premixed combustion is effective in controlling NOx emissions, combustors
utilizing this type of technology are susceptible to a number of dynamical problems including
combustion instabilities, flame flashback, and flame blowoff [108].
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Figure 1.4: Influence of mixing quality on NOx emissions [110].

1.4 Combustion instabilities

Combustion instabilities are a resonance condition of combustion systems that are characterized
by large amplitude oscillations of the fluid and thermodynamic properties of the flow [115]. The
large amplitude oscillations can have detrimental effects on system operability and the longevity
of its components. Thrust oscillations, severe vibrations that interfere with control systems, en-
hanced heat transfer and thermal stresses to the combustor walls, fatigue of system components
and flame flashback or blowoff are some of the problems caused by combustion instabilities
[115]. Damages caused to combustor components due to combustion instabilities and flame
flashback are shown in figure 1.5.

In general, a driving mechanism involving many elementary processes generates flow pertur-
bations (p′,q′, . . . ) that become coupled to the driving processes through a feedback mechanism.
The perturbations then grow exponentially if damping processes are weak until a limit cycle is
reached [115].

Rayleigh [147] recognised that energy is fed into the perturbations when the phase between

Figure 1.5: Combustor damage due to combustion dynamics related problems [50]: (a) burner
nozzles before and after sustaining damage due to combustion instabilities, (b) cracked transition
piece, and (c) burner nozzle damage due to flame flashback.
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Figure 1.6: Physical interpretation of the Rayleigh criterion.

the fluctuating flow variables and the fluctuating heat release of the flame is less than a quarter
cycle (π/2rad). In physical terms, the condition states that the heat release performs work on
or adds energy to the gas when the resulting gas expansion is in phase with its pressure. This is
illustrated in figure 1.6. Mathematically the condition is

∫
t p′q′dt > 0, where p′ is the pressure

fluctuation, q′ is the heat release fluctuation of the flame and t is time.

The Rayleigh criterion [147] determines whether the flow perturbations have the potential to
grow. Combustion instability will only occur if the energy being added to the perturbations is not
being lost due to energy loss or damping processes Di, where, i = 1, . . . ,N are all the damping
processes in the system [115]. Damping processes include viscous dissipation, heat transfer, and
acoustic attenuation at the combustor walls. The condition for combustion instabilities to occur
is summarized in the flowchart in figure 1.7. There are numerous elementary processes that can
be involved in driving the instability while the feedback mechanism is usually acoustic in nature
[18]. Hence, combustion instabilities are also known as thermoacoustic instabilities. It should
be noted that this definition of combustion instability excludes the intrinsic flame instabilities
[114].

Intrinsic characteristics of combustion systems make them prone to combustion instabilities
[18, 20]. Firstly, the power density of these systems is large and even a very small fraction
of this energy suffices to drive strong oscillations. This is why combustion instabilities first
presented a major problem in high power-density rocket engines. A notable example is the de-
velopment of the F-1 liquid-propellant rocket engine in the late 1950s that required thousands
of costly full-scale tests to eliminate severe combustion instabilities by trial and error [137].
Secondly, damping processes are weak and as long as there is a driving mechanism to feed
energy into the flow perturbations they will grow. Lastly, there are time lags associated with
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Figure 1.7: Stability of a combustion system.

the numerous elementary processes involved and it is difficult to ensure that none of them will
satisfy the Rayleigh criterion. Methods of controlling combustion instabilities may be passive
or active. Active control methods are still in their infancy and only combustors that are stable
by design (passive control) are suitable for practical applications [143]. The typical disadvan-
tages of passive control are that it is only implementable to a designed combustor over certain
narrow frequency ranges and that it does not respond to changes in operating conditions [1].
Active control is more adaptive. However, before active control can become routine in practical
applications progress needs to be made in sensors, control algorithms, and actuators. Control
algorithms require better understanding of the processes driving the instabilities and their in-
teractions. Sensors and actuators need to be able to operate in the harsh environment of the
combustion chamber [18, 20, 26, 143].

The basic interactions that lead to combustion instabilities are illustrated in a block diagram
in figure 1.8. Studies of the individual processes concentrate on different stages of the physics.
Flame stabilization includes studies of flame flashback and flame blowoff. The block on entropy
waves includes studies of entropy wave (1) generation at the flame, (2) propagation through
the combustor, (3) acceleration through either nozzles or blade rows to produce acoustic waves
known as entropy noise, (4) transmission through downstream components and (5) reflection
back into the combustor [131].

Flame flashback and the propagation of entropy waves through the combustor are the focus
of the work in this thesis. Results obtained in studies of the elementary processes may be used
to build a comprehensive model of the system. However, interactions between the elementary
processes still need to be established [18, 21]. Studies of system dynamics circumvent the need
of establishing interactions between the elementary processes but at the expense of less insight
into the physics. Such studies can be made using tools from dynamical systems theory [83, 158].
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Figure 1.8: Basic interactions leading to combustion instabilities [18].

1.5 Flame flashback

Flame flashback is a transient phenomenon characterized by the sudden propagation of the flame
upstream from its designed stabilization point [12]. As such it can only occur in premixed
combustion systems where there is a flammable mixture available upstream in the premixing
section of the combustor.

Igniting a quiescent mixture of unburned reactants generates a reactive region (the flame)
that propagates towards the unburned mixture at a speed known as the laminar flame speed

−→
Sl

and it is a thermochemical property of the reactive mixture [166]. Supplying the flame with a
flowing mixture of unburned reactants at a rate −→u equal to the flame speed results in a stable
(stationary) flame. At a flow speed less than the flame speed the flame propagates upstream
at a relative velocity of −→v f =

−→
Sl −−→u . Contrariwise, the flame propagates downstream. The

former case is known as flame flashback and the latter case as flame blowoff. Flames of fuels
containing hydrogen are particularly problematic to stabilize due to the higher flame speed of
hydrogen compared to those of conventional fuels [165, 29, 11, 159, 160]. A turbulent flow of
reactants enhances the flame speed due to the turbulent transport of chemical species and heat.
Therefore, the flame speed (

−→
S f ) is classified as either laminar (

−→
Sl ) or turbulent (

−→
St ) depending

on the type of flow.

Periodic flame flashback can be triggered by unexpected velocity fluctuations associated
with combustion instabilities [91, 163]. The flame will propagate upstream during the part of the
oscillation when the flow velocity is less than the flame velocity provided that the oscillations are
large enough. In particular, low frequency velocity fluctuations trigger the event because high
frequency fluctuations simply do not give the flame enough time to propagate upstream [164,
165]. Subsequently, the flame motion causes a periodic heat release at the flashback frequency
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Figure 1.9: Mechanisms of flame flashback: (a) flashback due to combustion instabilities, (b)
boundary layer flashback, (c) core flow flashback where S > 0 is the swirl number, and (d) CIVB
flashback.

that can become coupled with an acoustic mode of the combustor and thus, become a driving
mechanism of combustion instability [164, 165].

Even if flame flashback does not become a driving mechanism of combustion instability,
the event itself can have destructive effects as combustor components upstream of the designed
flame stabilization point are not designed to withstand flame temperatures [108]. The compo-
nents upstream are therefore, in the event of flashback, at risk of sustaining serious damage or
reduced lifespan and any debris carried with the flow through the turbine can cause more damage
downstream. The phenomenon can also be triggered in the absence of combustion instabilities.
Advanced numerical and experimental studies [55, 102, 155, 56, 100, 95] have identified an ad-
ditional three flashback mechanisms. These are referred to as flashback in the boundary layer,
flashback in the core of a swirling flow, and flashback due to combustion induced vortex break-
down (CIVB). These mechanisms are illustrated in figure 1.9.

In the boundary layers, the flow velocity and the flame speed vary substantially. The freestream
velocity is gradually reduced to zero at the wall due to the wall friction. On the other hand, the
flame speed is influenced by flame quenching due to the diffusion of heat and chemical species
towards the wall and flame stretching due to the velocity gradient [144, 65, 12]. There is there-
fore potential for the flow velocity and flame speed to become imbalanced in the boundary layer
and hence, result in flame flashback. The early work of Lewis and von Elbe [111] introduced the
concept of a critical velocity gradient gc in equation 1.4, where u is the flow velocity, τw is the
flow shear stress on the wall, µ is the kinematic viscosity, S f |y=δb

is the near wall flame speed,
and δb is the penetration distance. The penetration distance is the distance from the wall at which
the wall effects cease to influence the flame speed [111, 175]. The near wall flame speed and
the penetration distance are both difficult to predict and hence, the critical velocity gradient has
been determined empirically for various fuel mixtures [29, 49, 152]. The theoretical and exper-
imental studies of laminar reactive boundary layers conducted by Kurdyumov et al. [104, 105]
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advanced the findings of Lewis and von Elbe [111]. In these works, the critical condition for the
flashback of a flame in a laminar boundary layer is determined for asymptotic limits and single
step chemistry.

gc =
∂u
∂y

∣∣∣∣
y=0

=
τw

µ
=

S f |y=δb

δb
(1.4)

The case of a turbulent reactive boundary layer in an adverse pressure gradient is studied by
Eichler and Sattelmayer [47] using both experimental and numerical approaches. The critical
velocity gradients determined in their work are not in good agreement with the predictions made
by the theory of Lewis and von Elbe [111]. This is believed to be due to the influence of the
adverse pressure gradient on the boundary layer [47]. Later, Eichler and Sattelmayer [48] inves-
tigated the flashback of methane and hydrogen flames in both laminar and turbulent boundary
layers using micro-PIV. This study reported upstream propagating fronts with large curvature
and complex dynamics. Further, regions of back-flow and static pressure gain are observed in
front of the flame during the flashback [48]. In a study that followed thereafter, Eichler et al.
[49] investigated the flashback of an open flame for different initial conditions. In one case, the
flame is initially stable at a location completely out of the upstream duct and in the other case
it is slightly inside the duct. The critical velocity gradients from these cases are substantially
different [49]. A number of reasons are reported to explain the distinction including differences
in the pressure fields near the reactive region and details of the duct configuration [49]. These
works [47, 49, 48] clearly demonstrate the significant influence of the pressure field on flame
flashback.

A recent direct numerical simulation by Gruber et al. [66] of flame flashback in a turbulent
boundary layer included detailed chemistry and showed that the leading edge of the propagating
reactive front is always very close to the wall and it is clearly corrugated. Furthermore, the
result shows that there are back-flow pockets and small variations in the pressure of the cold
flow in the vicinity of the corrugated front [66]. These flow features are argued to be the result
of a hydrodynamic instability of the Darrieus-Landau type [66]. On the basis of these findings,
Gruber et al. [66] consider the criterion of Lewis and von Elbe [111] to be inadequate for the
evaluation of flashback in turbulent boundary layers.

Flashback in the boundary layer is usually not regarded to be significant in swirling flows
[56]. In the core of swirling flows, flame flashback can occur due to the interaction of combus-
tion with the swirl aerodynamics, even when the flow velocity is substantially greater than the
flame velocity [56, 103, 136]. For this reason, flame propagation in vortices has been studied
to provide insight into the interactions between combustion and simple vortical flows [76]. The
mechanisms that have been proposed to explain the enhanced flame propagation speed in vor-
tices include, flame kernel deformation [126, 68], vortex bursting [24], baroclinic push [5], and
azimuthal vorticity evolution [167]. Flame kernel deformation is the result of the rearrangement
of the density field due to centrifugal forces [68]. The higher density unburned mixture moves
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away from the axis of rotation and the lower density burned mixture towards it. This rearrange-
ment of the flow results in the flame being ’pushed’ on to the axis of rotation and spreading along
it [126] in a motion that has been likened to that of a flame spreading beneath a plane ceiling
[118]. The vortex bursting theory explains that the enhanced flame propagation speed is due to a
pressure rise across the flame that acts to push the flame upstream [24]. The pressure rise is the
result of the swirl velocity decreasing across the flame. The treatment of the original theory as-
sumed that the process is similar to a hydraulic jump and equated the pressure forces induced by
the rotation of the fluid with the momentum flux due to the flame being ’pulled’ inside the vortex
[24]. Later, the more detailed approach of Daneshyar and Hill [30] applied the principle of con-
servation of angular momentum to the vortex tube that is expanding radially across the flame.
The conservation of angular momentum across the flame gives the pressure rise in equation 1.5,
where, ∆P is the pressure difference across the flame, ρ is density with the subscripts u and b

referring to the unburned and burned mixtures respectively, and Vθmax is the maximum tangential
velocity. The latest model of the vortex bursting mechanism is the back-pressure drive flame
propagation mechanism developed by Ishizuka [76]. The particular model has been found to be
in good agreement with experiment [76, 77]. The model applies the principles of conservation
of mass, linear momentum, and angular momentum to the vortex tube that is expanding radially
across the flame. The baroclinic push and azimuthal vorticity evolution mechanisms both ex-
plain that the flame propagation is enhanced by azimuthal vorticity that induces a propagation
velocity towards the unburned mixture. The baroclinic push mechanism explains that baroclinic
torque generates azimuthal vorticity due to the density and pressure fields being misaligned [5].
On the other hand, the azimuthal vorticity evolution mechanism explains that twisted vortex fil-
aments give rise to azimuthal vorticity as they are twisted by the expanding vortex tube across
the flame [167].

∆P = ρuV 2
θmax

[
1−
(

ρb

ρu

)2
]

(1.5)

The swirl induced to the flow in many gas turbine combustors is deliberately strong enough to
invoke a hydrodynamic instability at the dump plane (premixer exit) known as vortex break-
down [119]. The vortex breakdown generates an internal recirculation zone (IRZ), also known
as a recirculation bubble, along the central axis of the swirling flow that is utilized to stabi-
lize the flame [119]. Although this aerodynamic stabilization of the flame is widespread, the
phenomenon has been the subject of extensive investigations as it is not yet fully understood
[119, 51, 109]. The studies that have been conducted show that positive pressure gradients and
sudden flow expansions trigger the vortex breakdown. Most swirling flames poses these fea-
tures that promote its occurrence. Therefore, the mechanism has also been studied extensively
in the case of reactive flows [56, 102, 100, 95, 103, 98]. Fritz et al. [56] studied theoretically
and experimentally the flashback of a flame that is stabilized by vortex breakdown. Flashback
occurred after the breakdown of the swirling flow field and the flame propagated upstream of
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the recirculation bubble. However, Fritz et al. [56] showed that the occurrence of flashback
strongly depends upon the combustor configuration and small design changes can prevent it.
Nonetheless, the vortex breakdown occurred further upstream in the reactive flow compared to
the isothermal flow. Hence, Fritz et al. [56] reported that combustion can enhance the occur-
rence of vortex breakdown and postulated that the enhancement is due to the pressure changes
in the upstream flow caused by the flame heat release. The study therefore concluded that the
flashback occurred due to the mechanism of Combustion Induced Vortex Breakdown (CIVB).
Kiesewetter et al. [95] conducted a two-dimensional URANS simulation of a swirling flame.
The simulation predicted the stability limits determined in the experiment of Fritz et al. [56].
The validity of the simulation is also confirmed later by the results of the experiment of Konle
et al. [100] that used high-speed PIV and LIF techniques. The simulation of Kiesewetter et al.
[95] solved the vorticity transport equation to subsequently evaluate the influence of each source
term in the equation on the upstream motion of the flame. The analysis showed that the baro-
clinic torque is the most significant contributor to the generation of negative axial velocity. The
study argued that the stability of the flame depends upon a flame quenching process that occurs
upstream of the flame [95]. Kröner et al. [103] investigated the quenching process that occurs
ahead of the flame by modelling the turbulence and chemistry interactions in the case of CIVB.
The model of Kröner et al. [103] treated the recirculation bubble ahead of the flame as a per-
fectly stirred reactor. A burner specific time constant is evaluated experimentally and only needs
to be determined once for a specific burner configuration. In the study, the model predicts the
stability limits of the burner in various operating conditions but with systematic errors. Konle
and Sattelmayer [98] improved the model of Kröner et al. [103] by releasing the assumption
of a perfectly stirred reactor for the low turbulent Reynolds numbers. This resulted in a better
agreement of the model with the experiment [98]. Experimental studies carried out by Blesinger
et al. [14] on swirling flames showed that for high swirl flows the vortex breakdown occurs far
upstream of the mixing tube exit and the recirculation zone extends into the mixing tube. In
this case, the flashback is then caused by turbulent burning in the axial recirculation zone that
extends upstream along the vortex axis into the mixing tube [14]. Flashback in this situation
depends on turbulent quenching of the flame and hence, the mechanism is discriminated from
CIVB flashback and termed flashback due to Turbulent Burning on the Vortex Axis (TBVA).

Another method of flame stabilization involves using a bluff-body to generate the recircu-
lation region that anchors the flame. Therefore, flame flashback has been also investigated in
swirling flows inside a duct with a central bluff-body [114, 135, 69, 153]. Nauert et al. [135]
showed that there is a critical swirl number that when exceeded can result in flame flashback
[135]. The experiment of Heeger et al. [69] investigated the flashback of a turbulent premixed
flame in a swirl burner with a central bluff-body. In the study, the velocity field of the unburned
gas is obtained using PIV, the flame front is detected using OH-PLIF and FL (Flame Luminosity)
imaging [69]. In a very few of the flashback realisations the study found that there is a negative
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velocity region ahead of the flame which drives the flame upstream [69]. Measurements of the
flow axial velocity ahead of the flame tip revealed that the flame is propagating in a separated or
thickened boundary layer [69]. Heeger et al. [69] postulated that the separation is due to the de-
velopment of an adverse pressure gradient along the bluff-body. The adverse pressure gradient
follows from a decrease in the density due to combustion and a decrease in the circumferential
velocity due to the intense mixing with the surrounding air. De and Acharya [33, 34] conducted
large eddy simulations (LES) on the flashback of hydrogen enriched premixed flames. The ge-
ometry of the computational model is similar to that of the burner used in the experiment of
Heeger et al. [69]. The results of the LES simulations of De and Acharya [33, 34] confirmed
the negative velocity region ahead of the upstream propagating front observed by Heeger et al.
[69]. De and Acharya [33, 34] argued that a positive pressure difference is responsible for the
formation of a recirculation bubble ahead of the flame that is propagating upstream. The positive
pressure difference is found to be the combined effect of centrifugal forces and density jumps
across the flame [33]. Hence, the simulation of De and Acharya [33] confirmed the earlier pos-
tulate of Heeger et al. [69]. The existence of a positive pressure difference is the driving force
for an upstream propagating front according to the back-pressure mechanism of Ishizuka [76].
In the recent study of Karimi et al. [88], the back-pressure drive mechanism of Ishizuka [76]
is extended to a configuration similar to that used in the experiment of Heeger et al. [69]. The
pressure difference across the flame that is calculated using the extended back-pressure model is
similar to experimentally measured values [88]. The study of Karimi et al. [88] therefore argues
that this adverse pressure gradient could contribute to the observed flame flashback [69] by caus-
ing the separation of the boundary layer on the surface of the bluff-body. It is important to note
that the recent experimental and theoretical investigations of flame flashback in boundary layers
also highlight the significance of an adverse pressure gradient on the flashback [47, 49, 48, 114].
Pressure changes can influence the baroclinic torque, which is important in the case of the CIVB
mechanism [95, 33, 34]. Thus, the detection of all mechanisms that generate adverse pressure
gradients is central to the understanding of flame flashback in configurations involving swirling
flows and a central bluff-body.

Regardless of the responsible mechanism, flame flashback is always a highly transient phe-
nomenon, which takes a small fraction of a second for completion. This transient nature of
flashback makes it exceedingly difficult to control and suppress. As a result, an early detection
of the possibility of flashback is of high significance.

1.6 Entropy waves

An unsteady heat release, at the flame in the case of combustion, generates non-isentropic tem-
perature perturbations known as entropy waves [157]. Entropy waves are generated in addition
to isentropic pressure perturbations known as acoustic waves. Unlike acoustic waves that travel
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Figure 1.10: Noise from an aircraft gas turbine [39].

at the local speed of sound, entropy waves travel at the local speed of the flow or with the flow.
These temperature perturbations (hot and cold spots) are attenuated as they advect through the
combustion chamber [151, 132, 58]. The entropy waves that make it through the combustor flow
field enter regions with non-zero mean velocity gradient and cause a modulation of the associ-
ated pressure gradient generating acoustic waves known as entropy noise [73, 174, 131]. Since
entropy noise is not generated at the flame but is a consequence of the unsteady heat release of
the flame, it is termed indirect combustion noise whereas noise generated at the flame is termed
direct combustion noise.

Entropy perturbations are not the only source of indirect combustion noise. Other non-
acoustic perturbations from the flame generate indirect noise on entering regions of non-zero
velocity gradient. Indirect noise from vorticity perturbations is known as vorticity noise [27, 97,
39] and that from perturbations in the composition of the burned gas is known as compositional
noise [75, 121, 149].

The theoretical study of Leyko et al. [112] has shown that the ratio of indirect to direct
combustion noise depends upon the Mach numbers in the flame region and nozzle. On the basis
of this Mach number dependence, Leyko et al. [112] argue that indirect noise should become
appreciable in real gas turbines. A recent review of combustion noise published the graph in
figure 1.10 that shows the typical noise contribution of the turbomachinery in an aircraft turbojet
at approach [39]. The graph in figure 1.10 confirms the argument of Leyko et al. [112] that
combustion noise in real gas turbines is appreciable and in fact over a broad range of frequencies.

Direct acoustic noise generated at the flame is resolved into reflected and transmitted com-
ponents at the combustor exit nozzle. Similarly, entropy waves upon reaching the combustor
exit nozzle generate reflected and transmitted entropy noise components. These combustion
noise components are summarized schematically in figure 1.11. The transmitted component of
entropy noise propagates through the turbine row stages and eventually contributes to engine
exhaust noise in the case of aircraft gas turbines [131]. The reflected component of the en-
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Figure 1.11: The direct acoustic and indirect entropy noise components of combustion noise in
gas turbines [131].

tropy noise is more troublesome as it returns to the flame and becomes part of the combustion
instability feedback loop [90].

Determining the influence of entropy noise on combustion instability requires knowing the
entropy noise levels. However, experimentally obtained measurements of entropy noise are diffi-
cult because indirect combustion noise cannot be distinguished from the direct combustion noise
in acoustic measurements [36]. Thus, entropy noise levels have to be inferred from measure-
ments of temperature fluctuations at the inlet of the combustor exit nozzle before their passage
through the nozzle to generate noise. The earliest experimental attempts on indirect combus-
tion noise are those of Bohn [15] and Zukoski and Auerbach [178]. More recent experimental
investigations are those of Hield and Brear [70], Carolan [22], Brear et al. [17], and Rausch
et al. [146]. The measurement of high frequency temperature fluctuations is especially challeng-
ing due to the slow response of thermocouples and the strongly contaminated signals of laser
vibrometers [131]. These and other difficulties associated with conduction of temperature mea-
surements in combustors led to the development of the Entropy Wave Generator (EWG) [7, 8, 9].
This is an experimental set-up for artificially generating temperature disturbances with a heater
module that then advect with the bulk flow in a controlled manner. Most recently, Domenico
et al. [36] demonstrated for the first time that Laser-Induced Thermal Grating Spectroscopy
(LITGS) can be used to measure unsteady temperature and density variations. However, the
LITGS technique requires seeding the flow with a species that absorbs the specific wavelength
of the laser and this alters the mean flow properties.

Experimentally or numerically obtained temperature fluctuations need to be converted to
acoustic fluctuations in order to evaluate the effect of entropy waves on combustion instabilities.
Thus, many studies have concentrated on the acoustic response of nozzles to entropic forcing
[130, 59, 42, 74]. These studies are mostly based on the seminal work of Marble and Candel
[122]. The analysis of Marble and Candel [122] applied the linearised one-dimensional Euler
equations to a compact nozzle and derived expressions for the reflected and transmitted acous-
tic waves that are generated by the passage of entropic and acoustic waves through the nozzle.
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Cumpsty and Marble [28] extended the analysis of Marble and Candel [122] to a turbine stage
that they modelled as a quasi-two-dimensional domain. Their study found that the entropy noise
is strongly affected by the pressure ratio in each stage [28]. In a later study, Cumpsty [27]
compares pressure, entropy, and vorticity noise in a theoretical analysis of unsteady combustion
and shows that entropy noise is dominant. These models have recently been extended to less
restrictive conditions and examined more thoroughly. Stow et al. [156] remove the assumption
of a compact nozzle and using a frequency asymptotic expansion for the flow perturbations cal-
culate the reflection characteristics of an annular nozzle. The approach of Stow et al. [156] is
similar to that taken later by Goh and Morgans [59] in their quasi one-dimensional analysis of
a non-compact nozzle. Goh and Morgans [59] derive theoretical expressions for the phase of
the transmission coefficients due to an incident acoustic or entropic wave and compare them
with numerical simulations. Moase et al. [130] uses hyper-geometric functions in a quasi-one-
dimensional, analytical investigation of the dynamic response of a nozzle with an arbitrary shape
subject to acoustic and entropic excitation. The study of Moase et al. [130] also investigates the
effects of non-linearities and develops a method to quantify the degree of nonlinearity. The ex-
periments of Bake et al. [7, 8] and Bake et al. [9] are the first experiments to use the entropy
wave generator. These experiments have made available comprehensive point measurements of
temperature and acoustic pressure (corrected for external noise) that were recorded as entropy
waves passed through super-critical and sub-critical exit nozzles to produce entropy noise. Bake
et al. [8] show that the measurements are in qualitative agreement with the analytical work of
Marble and Candel [122]. Further, the studies found that the Mach number of the flow signifi-
cantly influences the conversion of the entropy waves to acoustic waves [7, 8, 9]. Leyko et al.
[113] simulate the experiment of Bake et al. [9] using large eddy simulation and also show that
the compact analysis of Marble and Candel [122] is able to satisfactorily predict the experi-
mental results. The analytical and numerical investigation of Duran et al. [42, 43] considers the
subsonic case of the experiment of Bake et al. [9]. This study reveals through a series of case
studies that the compact analysis of Marble and Candel [122] is only able to predict the noise
generation at low Mach numbers [42, 43]. Hence, in a later study, Duran and Moreau [41] use
the Magnus expansion to release the assumption of a compact nozzle. The study derives analyt-
ical expressions for the dynamic response of the transmitted noise and shows that this is highly
frequency dependent [41]. Huet and Giauque [74] keeping the assumption of a compact nozzle
extends the analysis of Marble and Candel [122] to include high amplitude acoustic and entropic
waves. Thus, Huet and Giauque [74] develop a nonlinear compact model for the prediction of
the nozzle response to large amplitude forcing. Recently, Ihme [75] identified compositional
noise as an additional indirect noise contribution by extending the theory of Marble and Candel
[122] for a subcritical nozzle to a multi-component gas mixture. Magri et al. [121] used the
extended theory of Ihme [75] to derive transfer functions for the same compact-nozzle condi-
tions considered by Marble and Candel [122] and compared the relative contributions of direct,
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entropy, and compositional noise. Their results showed that compositional noise can become
comparable to and even exceed entropy noise for fuel-lean conditions. In light of their analyt-
ical findings, they highlighted the need for experimental measurements to evaluate the level of
compositional noise at the combustor exit of gas turbine engines [121]. Rolland et al. [149]
have made experimental measurements of the direct, entropy, and compositional noise resulting
from the injection and convection of helium disturbances through a chocked nozzle. Their study
compares the experimental results to those from analytical models and their measurements of
entropy and compositional noise are in good agreement with the extended Marble and Candel
[122] theory of Magri et al. [121].

The influence of the entropy waves on combustion instability is a subject of ongoing research
[145, 46, 61, 131]. The experimental work of Macquisten and Dowling [120] and the theoretical
work of Dowling [38] showed that the boundary condition at the downstream end of a combus-
tor is of significance to thermo-acoustic stability analysis. A simple model developed by Keller
[90] for an unstable combustor shows that the main driver of instabilities are the acoustic waves
generated by the advection of entropy disturbances through the chocked exhaust nozzle. The
study of Zhu et al. [176] also considers the entropy wave mechanism to be an important driver
of the low-frequency combustion instability in their numerical simulation of an unstable spray
combustor. A linear model developed by Polifke et al. [145] for an unstable combustor with a
chocked exit shows that the interactions between the generated entropy waves and the chocked
exit nozzle could alter the thermoacoustic stability of the system. This is confirmed by the exper-
iments of Hield et al. [71] on a thermoacoustically unstable, premixed combustor with open and
choked exit nozzles. Furthermore, the work of Hield et al. [71] shows that a model that includes
dispersive entropy waves and the boundary conditions of Marble and Candel [122] captures the
thermoacoustic instability from the experiment. Hence, Hield et al. [71] conclude that entropy
waves are of significance in thermoacoustic stability of combustors [71]. The experimental and
theoretical work of Eckstein et al. [46], Eckstein and Sattelmayer [45] on a liquid fuel RQL com-
bustor make the opposite argument. That is, the influence of the entropy wave mechanism on the
thermoacoustic instability of the combustor is negligible. The model developed in the theoretical
work of Eckstein and Sattelmayer [45] includes the dispersion model developed by Sattelmayer
[151]. The early dispersion model of Sattelmayer [151] is the first to somewhat account for
the influence of combustion chamber aerodynamics on an advecting entropy perturbation. The
modelling approach of Sattelmayer [151] treats an experimental dual fuel burner as a single-
input single-output (SISO) dynamical system. The impulse response of the system is taken as
the probability density function (PDF) of the residence time and is modelled by a rectangular
pulse to yield an analytic expression for the system transfer function. The gain of the system as
a function of the forcing frequency leads Sattelmayer [151] to argue that entropy waves are of
little significance in the analysis of thermoacoustic instabilities. Experimental measurements of
entropy waves inside thermoacoustically unstable combustors confirm that entropy waves could
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be highly dispersive [70, 17]. However, the direct numerical simulation of Morgans et al. [132]
in an incompressible, non-reactive, channel flow shows that entropy waves could survive the
flow dissipation and dispersion effects. Morgans et al. [132] demonstrates that the system re-
sponse, which Sattelmayer [151] models with a rectangular distribution, is better modelled by a
Gaussian pulse. Goh and Morgans [60] used the Gaussian dispersion model and added a dissipa-
tion factor and from their model results concluded that entropy waves could significantly modify
the thermoacoustic instability of the system. In particular, the model of Goh and Morgans [60]
shows that the thermoacoustic instability could be either encouraged or discouraged depending
upon the strength of the dissipation and dispersion of the entropy waves. The large eddy sim-
ulation of an aero-engine combustor by Motheau et al. [134] shows that entropy waves shift
the eigenmodes of the system to higher frequencies and could cause mixed acoustic-entropic
instabilities. Jean-Michel Lourier and Aigner [78] emphasize the effect of the shape of entropy
waves on the peak pressure fluctuations and argue that the more uniform entropy waves generate
weaker pressure waves. From this finding it is clear that dispersion mechanisms can significantly
influence the entropy noise generated at the nozzle. Recently, Giusti et al. [58] carried out a large
eddy simulation of a turbulent flow with sinusoidal entropy oscillations and developed a theo-
retical model to predict the decay of entropy waves. The study of Giusti et al. [58] finds that the
entropy transfer function scales well with a Helmholtz number based on the entropy wavelength
and the streamwise coordinate. At low Helmholtz numbers the decay of the entropy wave is
attributed mainly to shear dispersion arising from the spatially variable mean velocity profile
and at high Helmholtz numbers turbulent mixing and diffusion also become important [58].

The advection of entropy waves through the combustor flow field has not been investigated
in detail compared to their conversion to acoustic waves. The former stage of the physics is
equally important and merits more investigation because if entropy waves do not make it to
the combustor exit nozzle to start with, then entropy noise is not an issue. Low order mod-
els developed in the many nozzle response studies and limited entropy wave advection studies
are one-dimensional in keeping with what Sattelmayer [151] referred to as the thermoacoustic
paradigm. That is, thermoacoustic instability is ultimately influenced by acoustic waves whether
direct or indirect, which exhibit a one-dimensional character in slender confinements, such as
in a gas turbine combustor. Hence, so far, entropy waves have also conveniently been given a
one-dimensional representation.

1.7 Research needs

The literature on flame flashback concentrates on understanding the physics of individual flash-
back mechanisms. Ultimately, the results from these studies will be used to design suppression
devices for flame flashback that will prevent its occurrence in practical combustion systems.
However, active suppression systems that are designed to suppress individual flashback mech-
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anisms will require the placement of sensors at multiple and precise locations throughout the
combustor. Placement of multiple sensors in the combustor could have a significant influence
on system performance. Furthermore, it may not be practically feasible to place sensors at all the
desired locations in the combustor. There is therefore the need to be able to detect in advance an
approaching flame flashback regardless of the mechanism using a minimum number of sensors
in the combustor. System dynamics can be studied from a single point measurement assuming
that the dynamics of the measured quantity are representative of the dynamics of the full sys-
tem. Since flame flashback by any mechanism is a system response to certain conditions the
early detection of the phenomenon through processing of system dynamics merits investigation.

The literature on entropy waves consists primarily of studies on the acoustic response of noz-
zles to entropic forcing. The attenuation of advecting entropy waves which has received little
attention in the literature merits more investigation since entropy noise is only generated in the
nozzle if the entropy waves survive their advection through the combustion chamber. Further-
more, the frequency content of the entropy noise depends on the state of the entropy waves at
the nozzle inlet which is determined by the advection process. The studies on advecting entropy
waves have proposed low order models that could be used to replace timely and costly numerical
simulations of the reactive flow field in the combustion chamber. However, the models are for
one-dimensional entropy waves despite evidence that entropy waves could become spatially un-
correlated by the time they reach the exit nozzle. Furthermore, they have ignored the influence
of heat transfer at the walls despite that entropy waves are temperature inhomogeneities. There
is therefore the need for a new model for an advecting two-dimensional entropy wave in heat
transferring flow. Existing models are also based on the assumption that the amplitude of the
entropy waves is small and so the dynamics of amplitude decay are linear. However, it is not
known at which amplitude the linearity assumption begins to break down. The limits of linearity
need to be identified.

1.8 Objectives

The first objective of the current work is to identify precursors of flame flashback through anal-
ysis of existing pressure time series that have been recorded from flame flashback experiments
in laboratory scale swirl burners. The pressure time series will be analysed using nonlinear time
series analysis (NTSA) since the governing equations of the combustion system contain non-
linearities such as the convective term in the Navier-Stokes equations of fluid dynamics. The
analysis will use more than one method for the detection of precursors in order to reinforce the
findings. Furthermore, detected precursors can be checked for universality since the pressure
time series that are used in the current work are from different swirl burners with dynamically
different flows (thermoacoustically stable and unstable).

The second objective of the current work is to develop a model for an advecting two-
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dimensional entropy wave in heat transferring flow that can predict the evolution of both the
shape and amplitude of the entropy wave. A direct numerical simulation (DNS) similar to those
of existing studies will be performed to obtain the evolution of the shape and the amplitude of
an advecting entropy wave. The DNS data will then be reduced using a novel methodology to
build the low order model.

1.9 Overview

The NTSA methods used in the work on flame flashback and the numerical details of the DNS
flow solver used in the work on advecting entropy waves are presented in chapter 2. The studies
on flame flashback and advecting entropy waves are in chapters 3 and 4, respectively. A sum-
mary of the conclusions of the current work and suggestions for future research are in chapter
5. Appendix A contains the main MATLAB codes written to perform the post-processing of
the experimental and numerical datasets. Appendix B contains the code added to the DNS flow
solver that is used in the entropy wave advection study.



Chapter 2

Theoretical and numerical methods

2.1 Nonlinear time series analysis (NTSA) methods

2.1.1 Phase space

The temporal behaviour of a dynamical system is described by differential equations that are
obtained through mathematical modelling of the system. The time evolution of the state xi of
a dynamical system with i = 1, . . . ,k degrees of freedom is governed by the general system of
equations 2.1, where overdots denote derivatives with respect to time (ẋi = dxi/dt).

ẋ1 = f1(x1, . . . ,xk)

...

ẋk = fk(x1, . . . ,xk)

(2.1)

The time evolution of the state xi(t) of the system can be represented geometrically in a
space with coordinates xi. The space is called phase space and a point in this space, called a
phase point, represents the state of the system at a specific point in time. The phase point of an
initial state xi(0) traces a curve in phase space as the state of the system changes in time. The
curve is called a trajectory and represents the solution of the governing equation 2.1 for initial
condition [xi(0), ẋi(0)]. Phase space is filled with trajectories since any point in phase space can
be an initial condition. The phase portrait of a system is a plot in phase space of trajectories
showing typical dynamical behaviour of the system.

A mass m hanging from a linear spring of stiffness k that is fixed at the other end is a classical
dynamical system. Disturbing the position of the mass from equilibrium sets the system in
motion. Mathematical modelling of the system gives that the position of the mass is governed
by the linear differential equation 2.2, where ω2 = k/m.

ẍ+ω
2x = 0 (2.2)

23
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Figure 2.1: Simple harmonic oscillator: (a) dynamical system, (b) time traces of the states, and
(c) phase portrait.

The general solution of equation 2.2 is equation 2.3, where C1 and C2 are integration con-
stants and are determined from the initial condition. The velocity of the mass is the derivative
of position with respect to time and is thus given by equation 2.4.

x(t) =C1sin(ωt)+C2cos(ωt) (2.3)

ẋ(t) = ωC1cos(ωt)−ωC2sin(ωt) (2.4)

Consider the case of a mass that is displaced from its equilibrium position at x = 0 to a new
position x(0) = X0 and then released with an initial velocity ẋ(0) = 0. Evaluating equations
2.3 and 2.4 simultaneously for the aforementioned initial condition gives C1 = 0 and C2 = X0.
Hence, the position and velocity of the mass changes in time according to equations 2.5 and 2.6.
A complete cycle of the motion is shown in figure 2.1a with the corresponding time traces of
position and velocity shown in figure 2.1b.

x(t) = X0cos(ωt) (2.5)

ẋ(t) =−ωX0sin(ωt) (2.6)

The governing equation 2.2 of the mass-spring system can be rewritten as equation 2.7,
which is in the form of equation 2.1, by introducing the new variables x1 = x and x2 = ẋ. Hence,
generating coordinate pairs from equations 2.5 and 2.6 and plotting points at these coordinates
in a two-dimensional phase space traces a typical trajectory of the system as the one shown in
figure 2.1c. The trajectory circulates around the origin and returns to its starting point defined by
the initial condition, thus forming a closed orbit. Hence, closed orbits in phase space correspond
to periodic motion. The origin of the coordinate system in phase space corresponds to the state
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of x = 0 and ẋ = 0, which is the steady state solution of the governing equation 2.2. A mass
with this initial condition would remain at rest forever. A point in phase space that represents
a steady state of the system is called a fixed point and correspond to a static equilibrium of the
system.

ẋ1 = x2

ẋ2 =−ω
2x1

(2.7)

The example above of the simple harmonic oscillator exemplifies that characteristics of a
dynamical system such as steady states and periodicity have signature geometric structures in
phase space. Hence, phase portraits of dynamical systems can reveal significant information
regarding the underlying dynamics of a system. In the case of the simple harmonic oscillator the
governing differential equation is linear and can be solved analytically. The analytic functions
obtained as such for the states can be used to predict the state of the system at any point in
time and for any initial condition. However, systems that are governed by nonlinear differential
equations in most cases cannot be solved analytically and for certain values of the parameters
in the equations the solution can become extremely sensitive to the initial condition, that is, the
solution can be chaotic. In these cases the geometric approach can prove to be very powerful
tool for investigating the dynamics of a complex system.

The Lorenz equations 2.8 are a system of nonlinear differential equations that Ed Lorenz
derived from a simplified model of convection rolls in the atmosphere [117]. For a range of
the parameter r the time-asymptotic state is chaotic with a broadband frequency spectrum. The
equations 2.8 with σ = 16, b= 4, and r = 45.92 for which r is above the chaotic range are solved
here using a forth-order Runge-Kutta integrator for time step dt = 0.001. Time series of the
states for two initial conditions are shown in figure 2.2a. The two initial conditions result in time
series that are qualitatively different although the governing equations are the same. However,
the geometry of the trajectories in phase space that are shown in figure 2.2b is qualitatively the
same. In fact, the trajectories of the chaotic system always settle onto a complicated set with
the same geometric structure. The geometric object is called a strange attractor or the Lorenz
attractor in this case.

ẋ1 = σ(x2− x1)

ẋ2 = rx1− x2− x1x3

ẋ3 = x1x2−bx3

(2.8)

The dynamics of multi-physics systems that consist of various physical processes are difficult
to study through solution of the governing equations because there is not a comprehensive set of
equations that include the complex interactions between the various processes [94]. However,
there are methods for capturing the structure of a dynamical system in phase space from time
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Figure 2.2: Numerical solution of the Lorenz equations (σ = 16,r = 45.92,b = 4) for two initial
conditions using a forth-order Runge-Kutta integrator for time step dt = 0.001: (a) time series
of the states for the first 25,000 time steps and, (b) phase portrait constructed using 100,000
time steps.

series measurements of at least one of the physical variables [139, 162, 107, 128]. Hence, using
this approach, qualitative information about the underlying dynamics can be obtained without
having to solve or even derive a comprehensive set of governing equations. The most popular
method of phase space reconstruction from time series is that of time-delay embedding [162].

2.1.2 Time-delay embedding

Time-delay embedding generates coordinates of the trajectory for each dimension d = 1, . . . ,D
of a D-dimensional phase space by applying to the measured time series a time lag (d− 1)T τs

that is commensurate with the dimension d and some multiple T of the sampling time τs. Hence,
the position vector −→s (n) of point n = 1, . . . ,N, where N is the total number of phase points, has
the time delayed co-ordinates in equation 2.9.

−→s (n) = [s(n),s(n+T ), . . . ,s(n+(D−1)T )] (2.9)

The choice of appropriate values for T and D is made on a case-by-case basis using selection
criteria [2]. In the current work, the T is chosen to minimize the average mutual information
(AMI) between the lagged coordinates [53] and the D is chosen to eliminate the number of false
nearest neighbouring phase points in the phase space [92].

Choosing a time delay T that is too small results in lagged coordinates that are nearly identi-
cal, whereas choosing a T that is too large results in lagged coordinates that are totally indepen-
dent. The appropriate choice of the T should result in lagged coordinates that are independent
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but not in a statistical sense. Average mutual information is a quantity that is defined in infor-
mation theory and measures the mutual dependence between two variables [57]. AMI is a more
robust measure of mutual dependence than the usual correlation coefficients that are more sen-
sitive to linear dependence. Fraser and Swinney [53] suggest choosing the T that corresponds
to the first minimum of the AMI between lagged coordinates. The AMI between lagged co-
ordinates is given by equation 2.10, where N is the total number of phase points (coordinate
sets), T is the time delay, d = 1, . . . ,D is a dimension of the D-dimensional phase space, and
P{} is, depending on the argument, the probability of finding the data point n in the time series
s(n+T (d−1)) and/or s(n+T d). The plot of the AMI as a function of T for the time series of
x1 from the Lorenz system is shown in figure 2.3a. For the case of the Lorenz system in figure
2.3 the first minimum of the AMI is at T = 96.

AMI(T ) =
N

∑
n=1

P{s(n+T (d−1)),s(n+T d)} log2

[
P{s(n+T (d−1)),s(n+T d)}

P{s(n+T (d−1))}P{s(n+T d)}

]
(2.10)

Embedding a trajectory in a phase space with insufficient dimensions results in false neigh-
bouring phase points. For example, the trajectory of the simple harmonic oscillator in figure
2.1c is a closed orbit in a two-dimensional phase space. In a one-dimensional phase space, the
trajectory is "folded" and appears to be a line. Phase points that are not neighbouring in the
two-dimensional space are neighbouring in the one-dimensional space. In a three-dimensional
phase space or higher the trajectory remains a closed orbit. Thus, for a system of unknown di-
mensionality, the appropriate D is the smallest dimension for which the number of false nearest
neighbours (FNN) is zero. For an infinite time series, choosing a D that is larger than the mini-
mum value found through the FNN method will not influence the reconstructed phase portrait.
However, when reconstructing the trajectory from a finite time series, choosing a larger D than
the minimum is not recommended because this results in less coordinate pairs for the embed-
ding, thus shortening the length of the reconstructed trajectory. The plot of the percentage of
FNN as a function of D for the time series of x1 from the Lorenz system is shown in figure 2.3b.
In figure 2.3b, the D that brings the number of FNN to zero is D = 3, which agrees with the
dimensionality of the Lorenz system.

The phase portrait of the Lorenz system is reconstructed from the x1 time series, which is
obtained from numerically solving the Lorenz equations 2.8, using the time-delay embedding
method with time delay T = 96 and embedding dimension D = 3. The phase portrait of the
Lorenz system constructed using the numerical solution of the equations 2.8 is shown in figure
2.4a and the reconstructed phase portrait from time-delay embedding of the x1 time series is
shown in figure 2.4b. The reconstructed Lorenz attractor is similar to the original although
slightly distorted. The distortion is not surprising since the time-delayed coordinates are not the
states of the system. Hence, the geometric structure of a system in phase space can be obtained
simply by measuring a signal from the system. In the case of complex combustion phenomena,
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Figure 2.3: Selection criteria for the time delay T and the embedding dimension D for the x1 time
series from the Lorenz system: (a) average mutual information as a function of the time delay
T , and (b) percentage of false nearest neighbours as a function of the embedding dimension D.

Figure 2.4: Reconstruction of the Lorenz attractor (σ = 16, b = 4, and r = 45.92) by embedding
time series x1(t) in a three-dimensional phase space (T = 96 and D = 3).

the signal could be a pressure time series measured from a pressure transducer on the walls of
the combustion chamber.

2.1.3 Translation error of trajectories

The trajectories of a deterministic dynamical system, which is a system that evolves in time
according to a governing set of equations, should have an organized structure in phase space.
For example, the trajectory of a mass-spring system is a closed orbit in the shape of an ellipse.
The trajectory of a mass-spring-damper system spirals toward the fixed point representing the
equilibrium position of the mass. The trajectory of the chaotic Lorenz system forms a pattern
resembling a a pair of butterfly wings even though the states of the system as a function of time
appear to be random. Therefore, a measure of the degree of parallelism of neighbouring sections
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of a trajectory gives an indication of the degree of determinism of the system dynamics.

The algorithm of Wayland et al. [172], which is a simpler variant of that of Kaplan and
Glass [84], calculates a quantity called the translation error etrans as a measure of the degree
of parallelism of neighbouring sections of a trajectory in phase space. The translation error
is calculated at various locations along the trajectory. From the N phase points −→s (n), where
n = 1, . . . ,N, that make up the trajectory, M are selected at random and are termed random
centre points (RCPs). The regions around the RCPs are the localities where the translation
error of the trajectories is to be measured. At the RCP a search is done to locate the K nearest
neighbouring phase points −→s k(n), where k = 1, . . . ,K. The tangent of the trajectory at these
points is approximated by the translation vector −→v k = −→s k(n+ 1)−−→s k(n). The translation
error in the locality of the RCP is given by equation 2.11, where 〈−→v k〉 is the average translation
vector and ||−→v || denotes the Euclidean norm. The average translation vector is given by equation
2.12. The physical interpretation of the average translation vector is shown in figure 2.5 for the
case using the K = 3 nearest neighbouring points of the RCP. In the current work a 3 ≤ K ≤
5 produced the same results. For neighbouring sections of a trajectory that are parallel, the
translation vectors will have similar direction and magnitude, as long as the sampling frequency
of the measured time series is large enough for reasons that will be explained below. In this
case, the average translation vector will be equal to the individual translation vectors and from
equation 2.11 the translation error will be zero. Thus, a zero translation error indicates that the
neighbouring sections of the trajectory are perfectly aligned and a non-zero translation error
indicates that they are misaligned with the actual value indicating the degree of misalignment.

etrans =
1
K

k

∑
j=1

||−→vk −〈−→vk 〉||2

||〈−→vk 〉||2
(2.11)

〈−→vk 〉=
1
K

k

∑
j=1

−→vk (2.12)

It should be noted that the translation error calculation can be influenced by the sampling
frequency fs of the data points in the time series that produced the lagged coordinates for the
phase portrait reconstruction. For a low fs, the phase points are sparsely packed along the
trajectory and the translation vectors around the RCPs are not a good approximation of the
tangent of the trajectory. Thus, for time series measured at a low sampling rate the translation
error may not be a good measure of the degree of parallelism of the neighbouring sections
of the trajectory. Contrariwise, for a high fs, the phase points are densely packed along the
trajectory and the translation vectors are a good approximation of the tangent of the trajectory
and choosing a sufficient K should give a translation error that is a good measure of the degree
of parallelism of the neighbouring sections of the trajectory. Hence, it would be best practice
during the measurement campaign to make time series measurements using a few sampling
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Figure 2.5: Physical interpretation of the average translation vector calculation in equation 2.12.
A phase point on the trajectory of the reconstructed Lorenz attractor is taken as a random centre
point (RCP). The translation vectors of the K = 3 nearest neighbouring phase points are used to
determine the average translation vector for the region around the RCP.

frequencies so as to check that the calculated translation error is independent of the sampling
frequency.

The collection of translation errors for the localities around the RCPs gives a picture of the
parallelism of neighbouring sections of the trajectory in these local regions of the phase space.
However, choosing a different set of RCPs results in a different set of translation errors. Thus,
to minimize the stochastic error associated with choosing different sets of RCPs, the median
translation error is taken for Q sets of RCPs and the mean of the Q medians is taken as the
overall translation error of the trajectory [172]. Nonetheless, the values of M and Q are not
found to have any significant effect.

Although the overall translation error of a trajectory indicates the degree of determinism of
the dynamics of the system for the total time during which the system is observed, it would
be more useful to know how the determinism of the system dynamics changes in time. This
can be done using a running window on the time series and calculating the translation error
as described above in the window. The N data points that make up the time series s(n) are
divided into a number of windows of equal size. The window size can either be specified by
the number of data points Nw contained within it or by its temporal width dt = Nw(1/ fs). The
translation error and the midpoint of the window form coordinate pairs that are plotted to give
the time evolution of the translation error. Applying a window overlap gives a smooth trace and
is especially useful for short time series.

The above procedure is applied to a synthetic signal that is composed of deterministic and
stochastic components. The deterministic component is the time series of x1 from the Lorenz
system. The stochastic component is a time series ξ of white Gaussian noise with a variance σ2

that is a sinusoidal function of time. The time dependence of σ2 is given in equation 2.13, where
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Figure 2.6: Synthetic signal: (a) time series, and (b) power spectra.

|sin()| denotes the absolute value of the sinusoid, Aσ = 0.5 is the peak value, and fσ = 2 is the
frequency. The time series of x1 and ξ are shown in figure 2.6a. The frequency spectra of the
time series are shown in figure 2.6b. The x1 and ξ time series are aperiodic and have broadband
frequency spectra, which are characteristics of random time series. However, only the ξ time
series is truly random. The x1 time series is chaotic, that is the apparent randomness is due to the
nonlinearity in the governing equations. In phase space the underlying dynamics of the x1 time
series are structured and that of the ξ time series are not. It should be noted that the regularity
of the ξ time series in figure 2.6a is due to its periodic variance. The periodic variance is added
intentionally to vary the determinism of the composite signal. Hence, when the variance is
crossing zero the composite signal is mostly deterministic and when the variance goes round its
peak value the composite signal is less deterministic. In phase space, the stochastic component
disturbs the smooth trajectory of the deterministic component. These periodic disturbances in
the phase space should be detected by plotting the translation error for the composite signal
using a running window.

σ
2 = |Aσ sin(2π fσ t)| (2.13)

The composite signal x1 + ξ is shown in figure 2.7a. For the calculation of the translation
error, a running window of width dt = 1s is used with 90% overlap. The trajectory in phase
space during the interval captured in the window is reconstructed using time-delay embedding
with a time delay T = 96 and an embedding dimension D = 3. The trajectory for the interval
t = 47.5s− 52.5s is shown in figure 2.7b. During this interval, the variance of the stochastic
component is close to zero as can be seen in the plot of ξ in figure 2.6a and hence, the determin-
ism of the signal is at its maximum. Thus, the trajectory is smooth and neighbouring sections
of the trajectory exhibit a good degree of parallelism. On the contrary, the trajectory for the
interval t = 60s−65s that is also shown in figure 2.7b, when the determinism of the signal is at
a minimum, is not smooth and neighbouring sections of the trajectory are not parallel. Hence,
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Figure 2.7: Synthetic data: (a) composite signal, (b) phase portraits reconstructed for two win-
dows of the signal when the translation error is at its minimum and maximum, and (c) the
translation error that is calculated using a running window of width dt = 1s (not drawn to scale)
with 90% overlap and parameters T = 96, D = 3, Q = 3, M = 25, K = 3.

the degree of parallelism of neighbouring sections of the trajectory is being influenced by the
strength of the stochastic signal. As the translation error is a measure of the degree of paral-
lelism of neighbouring sections of the trajectory its value should change in synchronisation with
the variance of the stochastic component. The translation error is calculated using Q = 3 sets
of M = 25 RCPs and K = 3 for every instance of the running window. The translation error
is shown in figure 2.7c. It clearly changes periodically at the same frequency as does the vari-
ance of the stochastic signal shown in figure 2.6a. Therefore, it is clearly exemplified that the
translation error can be used to detect changes in the dynamics of a system.

The MATLAB code written and used in the current work to calculate the translation error of
a trajectory using a running window with overlap, given a time series, is included in appendix
A.1.1.

2.1.4 Recurrence plots (RPs)

A fundamental characteristic of conservative systems is that the state of the system often recurs
[142]. A state recurs when the trajectory of the system returns to a previously visited region
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Figure 2.8: Neighbourhoods of the same search radius ε using various vector norms: (a) L1-
norm, (b) L2-norm, and (c) L∞-norm.

in phase space. Eckmann et al. [44] introduced the method of recurrence plots to visualize the
recurrences of a system. The patterns that appear in the recurrence plots are related to specific
dynamical behaviour. Hence, analysis of the patterns in these plots can provide qualitative
information about the underlying dynamics of the system.

The state −→s (n) of a system does not always recur exactly, that is, the trajectory does not
always return to the exact same point in phase space but comes very close to it. Hence, to iden-
tify recurrences it is necessary to search a neighbourhood of radius ε around each phase point
−→s (i) on the trajectory. The distance between a phase point −→s (i) whose neighbourhood is being
searched and another phase point −→s ( j) is the magnitude of the vector −→s (i)-−→s ( j) that connects
the two phase points. The magnitude of the vector can be determined using various norms and
the norm that is used determines the shape of the neighbourhood. The vector norms that are
commonly used are the L1-norm, the Euclidean norm L2, and the infinity norm L∞. The shape
of the neighbourhood of radius ε for these commonly used norms are shown in two-dimensional
phase space in figure 2.8. The current work uses the L2-norm and thus, the neighbourhood is
circular in two-dimensional phase space and spherical in three-dimensional phase space. The
radius ε of the neighbourhood is termed the recurrence threshold. The selection of an appro-
priate recurrence threshold can be made using several approaches [127]. In the current work
the threshold is chosen between 3% and 5% of the maximum attractor diameter which is the
maximum distance between any two phase points on the trajectory.

Recurrences are recorded in the recurrence matrix Ri, j using equation 2.14, where Θ is the
Heaviside step function, −→s (i) is the phase point whose neighbourhood is being searched, −→s ( j)

are the phase points on the trajectory whose distance from −→s (i) is to be measured, and i, j =

1, . . . ,N with N being the total number of phase points on the trajectory. The distance ‖−→s (i)−
−→s ( j)‖ between the phase point−→s (i) whose neighbourhood is being searched and another phase
point on the trajectory −→s ( j) is subtracted from the recurrence threshold ε and the sign of the
difference determines whether the phase point −→s ( j) is in the neighbourhood of −→s (i) or not. In
figure 2.9a, the difference ε−‖−→s (i)−−→s ( j)‖ ≥ 0 is equivalent to ε ≥ ‖−→s (i)−−→s ( j)‖. Hence,
the phase point −→s ( j) is in the neighbourhood of the phase point −→s (i) and the Heaviside step
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Figure 2.9: Identifying recurrences in phase space: (a) state −→s ( j) is a recurrence of −→s (i), (b)
state −→s ( j) is not a recurrence of −→s (i), and (c) recurrences in the phase portrait of the Rossler
system with parameters a = 0.15,b = 0.2, and c = 10 constructed using a time step dt = 0.01
and 10,000 points (for clarity only a fraction of the total points are shown).

function of the positive argument gives Ri, j = 1. In figure 2.9b, the difference ε −‖−→s (i)−
−→s ( j)‖ < 0 is equivalent to ε < ‖−→s (i)−−→s ( j)‖. Hence, the phase point −→s ( j) is not in the
neighbourhood of the phase point−→s (i) and the Heaviside step function of the negative argument
gives Ri, j = 0. In figure 2.9c, example recurrences are shown for a trajectory of the chaotic
Rossler system [127].

Ri, j(ε) = Θ
(
ε−‖−→s (i)−−→s ( j)‖

)
(2.14)

The recurrences of the trajectory can be visualised in a plane with coordinates i, j by plotting
a dot at every i, j at which Ri, j = 1. The resulting plot is the recurrence plot (RP) of the trajec-
tory. The RP of the deterministic simple harmonic oscillator, the chaotic Rossler system, and
stochastic white Gaussian noise are shown in figure 2.10. The recurrences of these dynamically
very different systems form different patterns in the RPs. However, certain features of RPs are
universal and independent of the system dynamics. Firstly, every phase point is a recurrence of
itself. That is, Ri, j = 1 for every i = j and hence, an RP always contains a main diagonal line
that is termed the line of identity (LOI). The LOI is found in all the RPs shown in figure 2.10.
Secondly, when the same ε is used for every phase point −→s (i) the resulting RP is symmetric
about the LOI because Ri, j = R j,i. In other words, if −→s ( j) falls in the neighbourhood of −→s (i)

then −→s (i) will fall in the neighbourhood of −→s ( j) as long as the neighbourhoods are the same
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Figure 2.10: Signature structures in recurrence plots: (a) the simple harmonic oscillator, (b) the
chaotic Rossler system, and (c) white Gaussian noise.

size. This universal feature is also found in all the RPs shown in figure 2.10.

Small scale and large scale structures in RPs are related to specific dynamic behaviours
[127]. Diagonal lines are of particular interest because they are a sign of deterministic dynam-
ics and more specifically of periodic behaviour. This is exemplified by the RP of the simple
harmonic oscillator shown in figure 2.10a. The initial state of the simple harmonic oscillator
corresponds to the dot at the origin of the axis in figure 2.10a, which simply indicates the trivial
recurrence of the initial state with itself. After the simple harmonic oscillator has been set in
motion it will return to its initial state after time equal to one period of the motion. Hence, there
are equidistant dots along the vertical axis of the RP and since the RP is symmetric about the
LOI, similarly there are equidistant dots along the horizontal axis. The distance between the
dots is the period of the periodic motion. Therefore, the dots on the axis of the RP in figure
2.10a are the recurrences of the initial state of the simple harmonic oscillator. The state of the
system immediately after the initial state also recurs with itself and is the next dot along the LOI.
This state also recurs periodically and the recurrences of this state are equidistant dots along the
vertical and horizontal that are shifted in the direction in which time flows. The recurrences of
later states appear in the RP in the same way and the dots corresponding to their recurrences
shift to the right and the diagonal lines form in the RP and progressively increase in length as
long as the states keep recurring. In the event that the states stop recurring in time and hence,
the periodicity of the system is disrupted, the elongation of the diagonal lines in the RP is also
disrupted. The RP of white Gaussian noise that is shown in figure 2.10c has very short if any
diagonal lines, thus confirming that there is no periodicity and the states of the system in this
case are completely uncorrelated. The RP of the chaotic Rossler system shown in figure 2.10b
contains diagonal lines of various lengths and single isolated points.

Other structures such as horizontal and vertical lines that appear in RPs can be associated
with specific dynamical behaviour of the system. Typical patterns and their meanings are sum-
marised in table 2.1.
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Table 2.1: Typical structures found in recurrence plots and the associated dynamical behaviour
that they represent [127].
Pattern Interpretation

Homogeneity The process is stationary

Fading to the upper left and
lower right corners

Non-stationary data; the process contains a trend or a
drift

Disruptions (white bands) Non-stationary data; some states are rare or far from
normal; transitions may have occured

Periodic/quasi-periodic
patterns

Cyclicities in the process; the time distance between
periodic patterns (e.g. lines) corresponds to the pe-
riod; different distances between long diagonal lines
reveal quasi-periodic processes

Single isolated points Strong fluctuation in the process; if only single iso-
lated points occur, the process may be uncorrelated
random or even anti-correlated process

Diagonal lines (parallel to the
LOI)

The evolution of states is similar at different epochs;
the process could be deterministic; if these diagonal
lines occur beside single isolated points, the process
could be chaotic (if these diagonal lines are periodic,
unstable periodic orbits can be observed)

Diagonal lines (orthogonal to
the LOI)

The evolution of states is similar at different times but
with reverse time; sometimes this is an indication of
an insufficient embedding

Vertical and horizontal lines/-
clusters

Some states do not change or change slowly for some
time; indication for laminar states

Long bowed line structures The evolution of states is similar at different epochs
but with different velocity; the dynamics pf the sys-
tem could be changing
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The MATLAB code written and used in the current work to generate the recurrence matrix,
given a time series, is included in appendix A.1.1.

2.1.5 Recurrence quantification analysis (RQA)

Recurrence quantification analysis (RQA) introduces statistical measures that exploit some of
the observations summarized in table 2.1 to quantify underlying dynamics. The line of identity
(LOI) is not included in the calculation of the RQA measures.

The determinism DET [2] is defined in equation 2.15, where l is the length or number of dots
that form the diagonal lines, lmin is a threshold diagonal line length, and P(l) is the histogram of
diagonal lines of length l. The DET measure is simply the ratio of the number of dots in the RP
that form diagonal lines to the total number of dots. The threshold diagonal line length lmin is
defined to avoid counting false recurrences, such as those associated with diagonal lines that are
a consequence of tangential motion. Tangential motion refers to the situation where a recurrence
is recorded falsely as a consequence of the neighbourhood ε encapsulating one or more phase
points that are before or after the current phase point whose neighbourhood is being searched
and are on the same trajectory segment. Tangential motion can be the result of using a large ε

i.e. searching a large area and/or using a time series that has been sampled at high frequency
in which case the phase points in the reconstructed phase space are densely packed along the
trajectory. The present work uses a minimal length for diagonal lines that is lmin = 2, which is
that recommended in the study of Babaei et al. [6]. In addition to DET [2] the RQA measures
RR [2] and DIV [2] are also calculated in the present work and their definitions are given below.

DET =
∑

Nps
l=lmin

lP(l)

∑
Nps
l=1 lP(l)

(2.15)

The recurrence rate RR [2] is defined in equation 2.16, where Ri, j is the recurrence matrix.
The RR is the density of recurrence points in the RP. A more physical interpretation is that it is
the probability of the dynamical system returning to a previous state.

RR =
1

N2
ps

Nps

∑
i, j=1

Ri, j (2.16)

The divergence DIV [2] is defined in equation 2.17, where Lmax is the length of the longest
diagonal line in the RP excluding diagonal lines of length l < lmin. Thus, DIV is the reciprocal
of the length of the longest diagonal line in the RP. It indicates how fast the trajectories diverge
in phase space. A small Lmax is an indication that the trajectories in phase space diverge very
fast and this results in DIV being large. On the other hand if Lmax is large then the trajectories
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diverge slowly from each other and DIV is small.

DIV =
1

Lmax
(2.17)

The MATLAB code written and used in the current work to calculate the above RQA mea-
sures using a running window with overlap, given a time series, is included in appendix A.1.1.

2.1.6 Dynamical properties of actual and reconstructed trajectories

The translation error and recurrence quantification analysis measures RR, DET , and DIV are
calculated for the actual and the reconstructed trajectories of the Lorenz system in equation 2.8
to demonstrate that these have the same properties. For the purpose of using these metrics to
identify changes in the dynamical behaviour of a system, it is important that their evolution for
the reconstructed system is the same with that of the actual system. The actual values of the
metrics are not important in this respect. Nonetheless, it is shown that the values of the metrics
for the reconstructed system can be in good agreement with those of the actual system.

The actual trajectory of the Lorenz system is shown in figure 2.11a and consists of 100,000
phase points. The coordinates of the points are the states of the Lorenz system that are obtained
by solving the Lorenz equations (σ = 16, b = 4, and r = 45.92) using the Runge-Kutta method
and a time step dt = 0.001. The reconstructed trajectory is shown in figure 2.11b and consists
of 99,424 phase points. In this case, the coordinates of the phase points are time-delayed (with
T = 96 and D= 3) values of the x1 state of the Lorenz system. The translation error and the RQA
measures RR, DET, and DIV of the actual and reconstructed trajectories are shown in figure
2.11c-f. The translation error of the trajectories is calculated according to the methodology in
section 2.1.3 using a running window that is one second wide with no overlap and the parameters
M = 250,Q = 5,k = 3. The RQA measures are calculated according to the methodology in
section 2.1.5 using a running window with the same width and no overlap and the parameter
ε = 0.03.The values of the parameters is not of great importance since the same values are used
to calculate the metrics for both the actual and reconstructed trajectories.

In figure 2.11c, there is a large offset between the translation error of the reconstructed
trajectory and that of the actual trajectory, the former being ≈ 200% larger. However, both
values are extremely close to zero and thus, the translation error of the reconstructed trajectory
indicates, just as the translation error of the actual trajectory does, that the dynamics of the
system are completely deterministic. It is not surprising that the values are not exactly the same
since the reconstructed trajectory is an approximation of the actual trajectory. Nonetheless, both
values indicate strongly deterministic dynamics. More importantly for the needs of the current
work, there is no disagreement regarding the evolution of the translation error.

The values and evolution of the recurrence rate (RR) in figure 2.11d and the determinism
(DET ) in figure 2.11e of the reconstructed and actual systems are in perfect agreement. The
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Figure 2.11: Comparison of the translation error and the RQA measures of the actual and recon-
structed Lorenz system with σ = 16, b = 4, and r = 45.92: (a) the actual trajectory with 100,000
points, (b) the reconstructed trajectory by time-delay embedding the time series of x1(t) using
T = 96 and D = 3, (c) the evolution of the translation error, (d) the evolution of RR, (e) the
evolution of DET , and (f) the evolution of DIV .

DET is unity, which is the maximum value, indicating that the systems are completely deter-
ministic. This is in agreement with the indication of the value of the translation error in figure
2.11c, which also indicates that the dynamics are completely deterministic.

In figure 2.11f, the divergence (DIV ) of the reconstructed system is ≈ 25% larger than that
of the actual system. That is, the reconstructed trajectory diverges from neighbouring sections
of the trajectory faster than the actual trajectory. However, more importantly for the needs of the
current work, the evolution of DIV is the same.
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2.2 Direct numerical simulation (DNS) method

The simulation is performed using a variant of the Imperial College in-house flow solver with the
acronym BOFFIN (BOundary Fitted Flow INtegrator) [79, 124, 140, 4]. The code is written in
Fortran 77/95 with MPI subroutines for multiprocessor architectures. The governing equations
and numerical procedures of the flow solver BOFFIN are discussed briefly below.

2.2.1 Governing equations

Fluid flow is governed by equations 2.18a-c, where the dependent variables ρ,ui, p, and T are
density, velocity, pressure, and temperature respectively. Derivatives of the dependent variables
are with respect to time t and the spatial coordinates xi. The constants cp,k, and gi are the
specific heat at constant pressure, thermal conductivity, and the gravitational acceleration vector
respectively. A repeated subscript implies summation over the index range i = 1,2,3.

∂ρ

∂ t
+

∂ρu j

∂x j
= 0, (2.18a)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=− ∂ p

∂xi
+

∂τi j

∂x j
+ρgi, (2.18b)

ρcp

(
∂T
∂ t

+ui
∂T
∂xi

)
=

∂ p
∂ t

+ui
∂ p
∂xi

+ k
∂ 2T

∂xi∂xi
+ τi j

∂ui

∂x j
, (2.18c)

The shear stress tensor τi j for a Newtonian fluid is related to the strain rate tensor Si j through
equation 2.19a, where µ is the dynamic viscosity of the fluid. The strain rate tensor Si j is related
to the velocity gradients through equation 2.19b. The thermodynamic properties of an ideal gas
are related through equation 2.19c, where R is the specific gas constant.

τi j−
1
3

τkk = 2µ

(
Si j−

1
3

Skk

)
, (2.19a)

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (2.19b)

p = ρRT. (2.19c)

The flow solver BOFFIN is a low Mach number formulation and therefore, neglects the
terms ∂ p/∂ t +ui(∂ p/∂xi) and τi j(∂ui/∂x j) in equation 2.18c. The neglected terms are namely
the total derivative of pressure and frictional heating respectively and are negligible at low Mach
number [123]. Nonetheless, the flow solver is appropriate for the present study because flows
through gas turbine combustors are at low Mach number (the bulk flow Mach number is in the
range 0.1-0.2 [132]).



2.2. DIRECT NUMERICAL SIMULATION (DNS) METHOD 41

2.2.2 Discretization schemes

Space derivatives are discretised by a standard second order central difference scheme with a
constant spatial step ∆x according to equation 2.20 except for the convective term ∂ρuiu j/∂x j

in the momentum equation 2.18b for which the energy conserving discretization scheme of
Morinishi [133] is used.

∂u
∂x

=
1
2

(
un

r+1−un
r−1

∆x

)
+O((∆x)2) (2.20)

Time derivatives are discretised by a second order accurate three point backward difference
scheme with a constant time step ∆t according to equation 2.21.
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r −un−1
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∆t

)
+O((∆t)2) (2.21)

2.2.3 Pressure projection method

The pressure and velocity fields are obtained by employing a SIMPLE-type [177] pressure cor-
rection method. This method is briefly explained below.

The finite difference equation of the u-momentum equation to within the second order accu-
racy can be written as in equation 2.22, where u is the vector of the unknown u nodal values,
Tn+1 is the finite difference coefficient of the convection and diffusion terms at n+1, D corre-
sponds to the discretization of the pressure term, and the source term S contains all the remaining
terms including the cross-stresses not contained within Tn+1 which have been treated explicitly
to reduce the computational cost.

un+1−un +
2
3

∆tTn+1un+1 =−2
3

∆tDpn+1 +S (2.22)

The equation 2.22 is solved in a two stage process to maintain its second order accuracy.
Firstly, the solution is sought at an intermediate time level m that is between the current time
level n and the next time level n+1. Secondly, the solution at the intermediate time level is used
to obtain the solution at the time level n+1.

The intermediate time level is introduced through a pressure increment ∆pm = pm−pn so
that equation 2.22 becomes equation 2.23, where m represents an intermediate time level be-
tween n and n+1. (
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2
3

∆tTn
)(
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2
3

∆tD∆pm
)

︸ ︷︷ ︸
u∗

=−2
3

∆tDpn +S (2.23)
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The solution of equation 2.23 is obtained in the two steps given in equations 2.24 and 2.25.

u∗ =
(

I+
2
3

∆tTn
)−1(

−2
3

∆tDpn +S
)

(2.24)

um = u∗− 2
3

∆tD∆pm (2.25)

However, none of these velocity fields at time level m can be obtained since ∆pm is not
known. In order to obtain the pressure increment ∆pm, the velocity fields um , vm and wm are
substituted into the continuity equation, giving a Poisson like equation for the pressure incre-
ment. Since um is a second order accurate approximation to un+1, in the second stage, a second
order accurate solution at the time level n+1 is obtained by rewriting equation 2.23 for the time
level n+ 1, with the coefficient matrix is evaluated using the most recent update for the flow
field obtained at time level m.(
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3
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Again, equation 2.26 is solved in the two steps given in equations 2.27 and 2.28.

u∗∗ =
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3
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(2.27)

un+1 = u∗∗− 2
3

∆tD∆pn+1 (2.28)

Using the above mentioned pressure correction algorithm, the computed pressure and the
velocity components are stored at the centre of a control volume according to the collocated grid
arrangement. The Poisson like pressure correction equation is discretised by using the Rhie and
Chow [148] pressure smoothing approach, which prevents the even–odd nodes uncoupling in
the pressure and velocity fields. The BI-CGSTAB [169] solver is used for solving the matrix of
velocity vectors, while for the Poisson like pressure correction equation an ICCG [93] solver is
applied due to its symmetric and positive definite nature.

2.2.4 Convective thermal boundary condition

The original code is limited to a constant temperature thermal boundary condition which is not
representative of the thermal condition at the walls of a gas turbine combustor. In real combus-
tors cooling air flows externally around the walls. Hence, the current work adds a convective
thermal boundary condition to the DNS code BOFFIN according to which the temperature at the
walls satisfies the heat flux equality in equation 2.29, where k f luid is the thermal conductivity of
the fluid which is assumed to be a constant, (∂T/∂y)|wall is the temperature gradient at the wall,
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Figure 2.12: Entropy wave generation: (a) the temperature is perturbed in a cross-section im-
mediately downstream of the channel inlet, and (b) the temporal profile of the perturbation is
Gaussian as per equation 2.31 with A = 0.1, σ = 0.1, and µ = 0.5.

Twall is the wall temperature, and h is the convective heat transfer coefficient between the wall
and a imaginary external flow (not simulated) at temperature T∞. The l.h.s of equation 2.29 is
the heat flux from the stationary (no-slip) fluid layer to the wall in accordance to Fick’s law and
the r.h.s is the heat flux from the wall to the hypothetical external flow according to Newton’s
law. The wall is assumed to be very thin and thus, conduction of heat through the wall itself
is not considered. This thermal boundary condition enables the specification of adiabatic walls
through setting h = 0Wm−2K−1 and streamwise varying heat transfer through setting a finite h.

k f luid
∂T
∂y

∣∣∣∣
wall

= h [Twall(x)−T∞] (2.29)

2.2.5 Temperature forcing

The entropy of an ideal gas is related to temperature and pressure through the thermodynamic
equation 2.30, where s is entropy. The pressure term d p/p in equation 2.30 is usually small
and entropy fluctuations therefore scale with temperature fluctuations [52, 131, 132]. Hence,
an entropy wave is added to the flow by perturbing the temperature of the base flow in a cross-
section immediately downstream of the channel inlet. The method resembles that of the Entropy
Wave Generator (EWG) used in the experimental studies [8, 9] of entropy noise, which, adds
entropy waves to an accelerating tube flow by means of a heating module.

ds
cp

=
dT
T
− R

cp

d p
p

(2.30)

The temporal profile chosen for the temperature perturbation is Gaussian as per equation
2.31, where T is instantaneous temperature and therefore ∆T/T = (T −T )/T is the instanta-
neous amplitude of the perturbation relative to the mean flow temperature T , A is the peak am-
plitude of the perturbation, τ is non-dimensional time, µ is the non-dimensional time at which
the perturbation reaches its peak amplitude, and σ is the standard deviation of the perturba-
tion that controls the duration of the temperature forcing. The non-dimensional time is defined
as τ = (Ubulk/L)t, where Ubulk is the bulk flow velocity, L is the channel length and therefore
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non-dimensional time is in multiples of the mean residence time. At every time step the instanta-
neous amplitude of the perturbation is uniform over the plane cross-section at which it is added.
The present study uses A = 0.1, σ = 0.1, and µ = 0.5. The process of generating the entropy
wave is illustrated in figure 2.12. The graph in the left column of figure 2.12 shows the Gaussian
perturbation used in the present study, where the instantaneous amplitude of the perturbation is
plotted with respect to non-dimensional time τ . In the graph it can be seen that the time taken to
add the entropy wave to the flow is approximately one half of the mean residence time.

∆T
T

= A exp
[
−(τ−µ)2

2σ2

]
(2.31)



Chapter 3

Precursors of flame flashback in unstable
and stable combustion

3.1 Introduction

Flame flashback is a concerning issue for the emerging lean premixed combustion technology
that promises enhanced system efficiency and significant reduction in pollutant emission. Not
only has the phenomenon been impossible to detect in advance, the complexity and the highly
transient nature of the phenomenon make investigations intractable. Thus, understanding and
suppression of this intricate issue has been a long standing issue and continues to challenge the
research community as well as the industry.

Flame flashback is a complex phenomenon resulting from interactions involving multiple
physical processes, each governed by its own inherent temporal and spatial scale. In addition,
flashback is also a transient event, with the actual event lasting only fractions of a second. In-
vestigation of flashback requires multiple, simultaneous diagnostics without prior knowledge of
the relevant time and length scales of the physical processes involved. Detection, accordingly,
deals with post-event characterization. In this chapter, an attempt to detect subtle dynamics prior
to flame flashback—which linear, time and frequency-domain methods cannot reveal—is made
through recurrence analysis of the multidimensional phase space reconstruction from pressure
time traces. Recurrence analysis is known to be superior to other techniques for short, noisy
datasets. Following conventional recurrence analysis methods, different sections of pressure
time traces from reacting flow conditions are analysed. Recurrence plots and recurrence quan-
tification measures immediately before flashback are compared to those long before flashback
during the normal operation of the combustor. A comparison between recurrence character-
istics at isothermal flow conditions and at reacting flow conditions is included to a) highlight
the dynamics of the thermoacoustically unstable condition at which flashback occurs and b) to
establish the limits of fluctuations in recurrence quantification analysis measures.

Flashback refers to the unforeseen and instantaneous propagation of the reactive front to the
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upstream stages of the combustor [108, 12, 114]. Because upstream stages are not designed
for the extreme conditions created by the flame, a flashback event can cause critical damages
that must be avoided by system shut-down. Thus, the phenomenon is clearly undesirable and
detecting the onset of flame flashback under various operating conditions, is an essential step in
the design of premixed combustion systems.

Flashback can happen in the boundary layer, in the core of a swirling flow, due to combustion
induced vortex breakdown and due to combustion instabilities [155, 56]. In swirling flows the
flame can propagate upstream on the vortex axis [76]. A popular theory that explains the rapid
upstream flame propagation along the vortex axis is the theory of vortex bursting [24]. Accord-
ing to the vortex bursting theory the pressure downstream of the flame increases and the resultant
force from the pressure imbalance across the flame pushes the flame upstream. Regardless of
the responsible mechanism, flame flashback is always a highly transient phenomenon, which
takes a small fraction of a second for completion. This transient nature of flashback makes it
exceedingly difficult to control and suppress. As a result, an early detection of the possibility of
flashback is of high significance. In a recent study, Gotoda et al. [63] proposed the use of the
translation error as an online method for detecting a precursor of lean blowout.

The primary cause of flashback is the imbalance between the local flame and flow velocities.
In a practical setting that involves highly turbulent flows, flame interaction with hydrodynamics
(boundary layer [13, 47, 49] and coherent structures [155, 88, 98, 99]), acoustics (thermoacous-
tic coupling) [168, 91, 165], chemical kinetics [125, 12] and unsteady heat transfer among other
physical processes, each with an inherent time and length scale, the said imbalance—hence,
sudden flashback—can be caused due to several factors. The referred works deal with the study
of how the respective factors affect the flashback propensity of the system and/or the evolution
of the individual processes as flashback takes place. It has been made clear that the physi-
cal mechanisms responsible for flame flashback are quite complex and are not yet sufficiently
understood so as to efficiently eliminate the possibility of flashback. The transition from one
dynamical state, prior to flashback, to a totally different one corresponding to the state in which
the flame is inside the premixing section can happen over an extremely short time (often a frac-
tion of a second). Understanding the dynamics of such a transitional period is essential to the
implementation of suppression mechanisms.

Due to the short temporal span of the transitional period, conventional time and frequency
domain methods such as spectral analysis, become inaccurate in analysing the system. Such
techniques are inherently incapable of detecting the subtle complex features of the dynamics of
flashback. Another problem associated with the highly complex and transient process is that
without the prior knowledge of the temporal and spatial scales involved in flashback, in a given
configuration, experimental diagnostics of the event [69, 100] are difficult to perform. Changes
prior to flashback are not apparent on direct visual or quantitative examination of time series
and its spectral decomposition. Identification of the presence of system dynamics—and changes
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therein—that could be considered precursors to the event of flashback are, therefore, of immense
practical and academic interest.

The work that follows identifies precursors of flashback in stable and unstable combustion
in laboratory burners by analysing the trajectory of the systems in phase space, which is recon-
structed from pressure time series measurements using time delay embedding [162].

3.2 Pressure time series from flashback experiments

The pressure time series that are used in the current work are from flashback experiments carried
out at the Technical University of Darmstadt [88, 89] and at the University of Cambridge [10,
81, 82]. It should be made clear that the experiments are not part of the current work and will
only be described briefly to put the current work into context.

The experiments were conducted in laboratory swirl burners with central bluff-body. Schemat-
ics of the burners are shown in figure 3.1. The swirl burner in figure 3.1a has a nozzle open to
the atmosphere and a bluff-body with a cylindrical end that protrudes slightly from the nozzle
exit plane. The experiment in this burner observed flame flashback in stable combustion. Flame
flashback in this case was triggered by increasing the swirl number above a critical value. The
swirl burner in figure 3.1b has a nozzle connected to a flame enclosure and a bluff-body with
a conical end that is flush with the nozzle exit plane. The experiment in this burner observed
flame flashback in thermoacoustically unstable combustion. Flame flashback in this case oc-
curred while the mean flow properties were constant. Although in this burner flame flashback
occurred in unstable combustion without any action from the experimentalist, it could not be
confirmed that thermoacoustic instability is what caused it. Nonetheless, flame flashback was
observed in two extremely different dynamical systems.

Figure 3.1: Schematics of the laboratory swirl burners: (a) the swirl burner at the Technische
Universität Darmstadt [88, 89] and (b) the swirl burner at the University of Cambridge [81, 82].
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Table 3.1: Pressure time series from the experiment of flashback in unstable combustion.
Pressure time series U φ *

No flame With flame* (ms−1) (−)
p10 P10 10 0.79
p12 P12 12 0.73
p14 P14 14 0.74

3.2.1 Thermoacoustically stable swirl burner experiment

At the start of the experiment in stable combustion, the flame is on the edge of the bluff-body.
Recirculation zones in the wake of the bluff-body anchor the flame at this position. The swirl
number is increased until it is above a critical value and the flame flashback occurs. Once the
flame is visually confirmed to have moved upstream, the fuel supply is cut-off. The experiment
is repeated four times with the same flow velocity and swirl number to produce four sets of
pressure time series.

The pressure fluctuations were sampled at a sampling frequency of fs = 10kHz from three
pressure transducers on the surface of the bluff-body (only one pressure transducer is shown in
figure 3.1a). Since the pressure time series from the three locations are similar, as would be
expected from locations that are close to each other, the analysis of the current work is only
applied to the pressure time series from one of the transducers.

3.2.2 Thermoacoustically unstable swirl burner experiment

In the flashback experiments in unstable combustion, the average flow properties are kept con-
stant during the experiment. The thermoacoustically unstable combustion is followed by flame
flashback and subsequent stabilization of the flame in the swirler. As in the case of the experi-
ment of flashback in stable combustion, the fuel supply is cut-off shortly after flashback.

The pressure fluctuations were sampled from isothermal and reactive flows at sampling fre-
quencies of fscold = 8192Hz and fshot = 16384Hz from the surface of the nozzle at a location
upstream of the swirl vanes. Measurements were made for the flow velocities U = 10ms−1,
U = 12ms−1, and U = 14ms−1 (measured at the top edge of the bluff-body). The equivalence
ratio was φ = 0.79, φ = 0.73, and φ = 0.74 for the three flow velocity cases, respectively. Un-
like the experiment of flashback in stable combustion, this experiment was carried out for three
different cases of equivalence ratio and flow velocity. Hence, the following notation convention
is adopted for making reference to the pressure time series from this experiment and the dy-
namical system that generated them. A pressure time series from the isothermal flow with flow
velocity U is denoted as pU and a pressure time series from the reactive flow is denoted as PU .
Thus, lower case p corresponds to the isothermal flow, upper case P corresponds to the reactive
flow and the subscript indicates the flow velocity. Using this notation, the pressure time series
are summarized in Table 3.1.
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Figure 3.2: Pressure time series from the experiment of flashback in stable combustion: (a) —
pressure time series, — onset of flashback, (b) time series sections before and after flashback
with the corresponding embeddings in 3D phase space and schematics of the flame, and (c) —
translation error, -·- mean, · · · standard deviation from mean, — onset of flashback.

3.3 Flame flashback in stable combustion

3.3.1 Precursors in translation error

The pressure time series from the first run of the flashback experiment in stable combustion is
shown in figure 3.2a. The amplitude of the pressure fluctuations is small during the time that
the flame is stable on the edge of the central bluff-body, where it is unconfined. When the swirl
number is increased above a critical value the flame destabilizes and moves upstream into the
nozzle. After the flame flashback the amplitude of the pressure fluctuations becomes large due
to the coupling between the flame and the nozzle acoustics. Hence, the onset of flashback is
approximately at the time that the amplitude of the pressure fluctuations starts to increase. In
figure 3.2a, the approximate time of the flame flashback is shown with a (red) vertical rule at
t ≈ 0.84s.

Sections of the pressure time series in figure 3.2a from before and after flashback are shown
in figure 3.2b with their corresponding embeddings in phase space and schematics of the flame’s
position. Prior to flashback the pressure fluctuations appear random and neighbouring sections
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Figure 3.3: Window width independent solution: (a) the running windows of width 50ms,
75ms, 100ms (chosen width), and 125ms used to test for convergence of the translation error in
the case of flame flashback in stable combustion and (b) the convergence of the translation error
with increasing window width.

of the trajectory in phase space show a poor degree of parallelism. On, the other hand, after
flashback, the pressure fluctuations appear somewhat periodic and neighbouring sections of the
trajectory are showing a significantly better degree of parallelism. Application of the 0-1 test
[64] to this part of the time series indicates that the dynamics during this interval are regular.

The translation error of the system’s trajectory in phase space as a function of time is shown
in figure 3.2c. The translation error clearly falls below the standard deviation from the mean
just before flame flashback. This could be a precursor of the flame flashback observed in the
experiment.

The translation error in figure 3.2c is calculated from the time series using a 100ms wide
running window with 90% overlap and the parameters M = 250,Q = 5,k = 3. The time delay T

and the embedding dimension D are chosen for each instance of the running window using the
methods of average mutual information (AMI) and false nearest neighbours (FNN), respectively
(see chapter 2). The chosen window width is based on a window width independence study that
calculated the translation error using running windows of width 50ms, 75ms, 100ms, and 125ms

and checked for convergence of the result. The windows used in the window width independence
study are shown in figure 3.3a and the corresponding translation error calculations are shown in
figure 3.3b. In figure 3.3b, the translation error is seen to converge for the chosen window width
(100ms).

The translation error of the system in the four repetitions of the experiment and the ensemble
average are shown in figure 3.4. The translation error of the system is calculated in all cases from
the time series using the same parameters as those used for the first run of the experiment. That
is, a 100ms wide running window with 90% overlap, the parameters M = 250,Q = 5,k = 3 and
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Figure 3.4: The translation error from the experiment runs and their ensemble average: -·- mean,
· · · standard deviation from mean, — onset of flashback.

the time delay T and the embedding dimension D are chosen for each instance of the running
window with the methods of AMI and FNN. The ensemble average translation error falls below
the standard deviation from the mean just before flame flashback, confirming the observation in
figure 3.2c from the first run of the experiment.

According to Miyano [129], a translation error less than 0.1 indicates regular dynamics, be-
tween 0.1 and 0.5 indicates either temporally correlated stochastic dynamics or regular dynamics
contaminated with observational random noise, and values exceeding 0.5 indicate stochastic dy-
namics. The ensemble average of the translation error in figure 3.4 is in the range 0.45− 0.5
during the early stages of the experiment, then decreases to a minimum of 0.32 before the flame
flashback and returns to its initial levels after the flame flashback. Therefore, according to the
definition given by Miyano [129], the dynamics of this system are either regular and contam-
inated with observational random noise or stochastic with temporal correlations. Nonetheless,
the ensemble average translation error decreases on approaching the flame flashback and thus,
the determinism of the system dynamics increases temporarily just before the occurrence of the
flame flashback. This is an important precursor of the flame flashback. A recurrence analysis
of the data from the stable combustion case could not be performed because the pressure time
series from this experiment are short and the recurrences are not enough to plot an accurate
recurrence pattern for the system.
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Figure 3.5: Pressure time series p10 from the isothermal flow and its spectrogram.

3.4 Flame flashback in unstable combustion

The flame in this experiment is in an enclosure and as such the flame interacts with the chamber
acoustics. Hence, the frequency spectra of the pressure fluctuations are checked for precursors
of the flame flashback of this experiment before NTSA of the pressure measurements.

3.4.1 Acoustic modes of the combustor

Pressure oscillations in the isothermal flow correspond to acoustics induced in the combustor
by the turbulent flow. The pressure time series p10 from the isothermal flow is shown with its
spectrogram in figure 3.5. The spectrogram shows that the pressure oscillations in the isothermal
flow are broadband noise. The same observation is made for the higher flow velocity cases, p12

and p14, which are not shown here.

For the reacting conditions, the pressure time series P10, P12, and P14 and their spectrograms
are shown in figure 3.6. The amplitude of the pressure oscillations is about 1− 2kPa before
flashback. The jump in the amplitude of the pressure oscillations is a result of flame flashback.
After flashback, the flame anchors in the upstream tube and the change results in high amplitude
instability. The approximate time at which the amplitude of the pressure oscillations becomes
large will be referred to hereafter as the approximate flashback point t f lash. The arrows in figure
3.6 indicate the approximate flashback point in the time series. It should be noted that the
flashback event is an extremely fast process and it is, therefore, difficult to precisely determine
the instant when it occurred in the pressure time trace. In the scale of the pressure traces in
figure 3.6 the jump appears almost instantaneous and it is therefore convenient for the purpose
of discussion to define the time instant of the jump as the nominal approximate flashback point.
The approximate flashback points for the time series P10, P12 and P14 are t f lash = 6s, t f lash = 16s,
and t f lash = 5s respectively.

The spectrogram of P10 in figure 3.6a shows that prior to flame flashback there are two
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Figure 3.6: The pressure time series from the hot flows and their spectrograms: (a) P10, (b)
P12, and (c) P14. The (red) vertical rules indicate approximately the time instant at which flame
flashback occurs.

dominant frequencies, at 270Hz and 390Hz. The pressure oscillations at these frequencies have
approximately the same power level. After flame flashback, again the pressure oscillates at two
dominant frequencies, now at 270Hz and 540Hz. The lower frequency after flame flashback
(270Hz) is the same as the lower frequency before flame flashback, and the higher frequency
(540Hz) is the first harmonic. The second harmonic can also be faintly seen. The spectrogram of
P12 in figure 3.6b shows that there are two dominant frequencies before flame flashback, around
270Hz and 340Hz. After flame flashback, there are three dominant frequencies for this case, at
270Hz, 540Hz, and 810Hz. The latter two are the first and second harmonics. The spectrogram
of P14 in figure 3.6c shows two dominant frequencies before flame flashback, at 270Hz and
360Hz. After flame flashback, the dominant frequencies are at 270Hz and the first and second
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Figure 3.7: The pressure time series from the hot flows and the corresponding translation error
of the reconstructed trajectory in phase space: (a) P10, (b) P12, and (c) P14. The (red) vertical
rules indicate approximately the time instant at which flame flashback occurs.

harmonic frequencies. In all cases, there is a sudden change in the dominant frequencies at the
time of flame flashback. That is, there is no indication that the flame flashback is approaching.

3.4.2 Precursors in translation error

For the three cases of flame flashback in unstable combustion, the pressure time series and the
translation errors of each system’s trajectory in phase space as a function of time are shown in
figure 3.7. In all cases, the translation error is calculated from the time series using a 100ms

wide running window with 90% overlap and the parameters M = 250,Q = 5,k = 3. The time
delay T and the embedding dimension D are chosen for each instance of the running window
with the methods of AMI and FNN, respectively.

In figure 3.7a, the translation error is ≈ 0.012 long before flame flashback and begins to



3.4. FLAME FLASHBACK IN UNSTABLE COMBUSTION 55

decrease monotonically ≈ 0.62s before the flame flashback point and reaches the value of 0.006
at the moment of flame flashback. Similarly, in figure 3.7b, the translation error is ≈ 0.07 long
before the flame flashback and begins to decrease monotonically≈ 0.62s before the flame flash-
back point and reaches the value of 0.026 at the moment of flame flashback. In figure 3.7c, the
translation error is≈ 0.15 long before the flame flashback and begins to decrease monotonically
≈ 1.5s before the flame flashback point and reaches the value of 0.034 at the moment of flame
flashback. The translation error decreases by 50%, 63%, and 77% just before flame flashback
in these unstable combustion cases. The observation is in line with the observation made re-
garding the translation error of the system in the stable combustion case. Thus, the translation
error decreases just before the flame flashback in both stable and unstable combustion cases. A
reduction in translation error signifies that the determinism of the system increases before flame
flashback. The time series from these experiments of flame flashback in unstable combustion
capture a longer time span of the system behaviour compared to the time series from the stable
combustion case. Therefore, the determinism of the system in the unstable combustion case can
also be investigated through recurrence analysis.

3.4.3 Precursors in recurrence plots

The typical recurrence plot of the isothermal flows is shown in figure 3.8. It contains a homo-
geneous distribution of single isolated dots that resembles salt-and-pepper noise. A few short
segments that can be observed are again a result of the acoustic resonance that is induced in-
termittently by the turbulent flow. This is in keeping with the spectrogram in figure 3.5. The
features of the isothermal flow are in contrast with those of the reacting conditions that follow
and are shown to elucidate how thermoacoustic coupling in the presence of the flame induces
deterministic behaviour in the system.

The recurrence plot for the one second window of the P10 pressure time series from the re-
acting flow, two seconds prior to the approximate flashback point is shown in figure 3.9. The
increased proportion of short line segments—deterministic structures—interrupted by isolated
points or white horizontal and vertical spaces is clearly visible. Short line segments indicate a
positive maximal Lyapunov exponent [44, 127] and hence, chaotic dynamics of the thermoa-
coustic coupling, that have also been identified in other studies [62, 80, 81]. A range of line
lengths is required to describe the distribution of line segments in the RP, which suggests that a
high level of complexity exists in the system dynamics. The vertical (or horizontal) white spaces
indicate the presence of transients that occur roughly at intervals of 1-2 seconds. While the RP
shown in figure 3.9 spans only one second of the time series, the RP for earlier sections of the
pressure time trace are qualitatively similar. The observation also holds for the time series P12

and P14.

The pattern formed by the collection of points and diagonally aligned line segments is a
signature of the system dynamics long before flashback and is different for the other cases from
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Figure 3.8: The recurrence plot constructed for a one second window of the pressure time series
p10 from the cold flow using the parameters T = 4,D = 5 and ε = 0.05dA.

Figure 3.9: The recurrence plot constructed for a one second window prior to flashback for the
case of P10 from the reactive flow using the parameters T = 15,D = 4 and ε = 0.05dA.
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Table 3.2: The parameters used to construct the recurrence plots shown in figure 3.10.
Pressure T D ε

time series (data points) (-) (%dA)
P10 15 4 5
P12 14 6 4
P14 13 6 4

which P12 and P14 are measured, primarily due to different flame dynamics and turbulence in-
tensity of the base flow.

The RPs obtained for the one second windows of the time series P10, P12 and P14 immediately
prior to flashback (the right hand edge of the one second window coincides with the approximate
flashback point of the time series) are shown in figure 3.10. The parameters that have been used
to obtain these RPs are summarized in table 3.2.

It is immediately apparent that the RP in figure 3.10a, obtained from P10, contains more dots
that form diagonal lines than the RPs obtained from P12 and P14. This implies, that immediately
prior to flashback, there is more determinism in the dynamics of this system. The reason for this
is believed to be the less turbulence in the base flow. At the larger Reynolds numbers associated
with the higher flow velocity cases P12 and P14, the fluid system is more turbulent (chaotic) and
the flow properties are more sensitive to small disturbances. Hence, the state of the system is
less deterministic and recurrences are short lived and less dots form diagonal lines in RPs.

The pattern seen in the RP in figure 3.10a is for a one second long window of the P10 time
series just before the approximate flashback point. The pattern is notably different from that in
RPs developed for earlier windows of P10 (see figure 3.9, for instance). Thus, the dynamics of
the system are quite different just before flashback. The same is observed for P12 and P14.

Further inspection of each individual recurrence plot in figure 3.10 reveals that there are
changes of the pattern within the one second windows as one moves diagonally upwards and
approaches the approximate flashback point (the right hand edge of each RP). To illustrate this,
the RPs in figure 3.10 are divided into four sections by (red) horizontal and vertical rules. The
pattern in the lower left sections of the RPs is different to the pattern in the upper right sections.
Towards the end of the one second windows, a small region of a transience is identified (the
horizontal and vertical white patches). This region is the largest for the case of P14. This tran-
sience is due to the change in amplitude of the pressure as a result of flashback. Thus, flashback
can be clearly identified in the RP. More interestingly, the RP also contains smaller changes
even earlier. In the case of P10, the solid (red) vertical and horizontal rules at ≈ 5.42s in figure
3.10a separate two regions along the main diagonal that are visually distinguishable. The same
is inferred for the RPs of cases P12 and P14.

These changes observed in the structure of the recurrence plots immediately prior to flame
flashback could be an indication that flashback is about to occur. That is, flashback could have
precursors associated with subtle dynamical changes in the system.
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Figure 3.10: Recurrence plots constructed for the one second window immediately prior to
flashback: (a) P10, (b) P12, and (c) P14. The solid (red) rules separate the RP along the main
diagonal into two parts with visually differing texture.
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Figure 3.11: The recurrence rate (RR), determinism (DET ), and divergence (DIV ) for the
isothermal flows for a one second running window with 90% overlap: (a) p10, (b) p12, and
(c) p14.

3.4.4 Precursors in RQA measures

Further support to this observation is obtained from recurrence quantification analysis (RQA)
[173, 127, 44]. The recurrence rate (RR), determinism (DET ), and divergence (DIV ) as a func-
tion of time are obtained using a one second wide running window with 50% overlap and are
shown in figure 3.11 for the isothermal flow and in figure 3.12 for the reactive flow. Despite
using overlap, the time traces of the RQA measures required a smoothing operation. A moving
average gives the smooth time traces shown in figures 3.11 and 3.12.

The RR in figure 3.11a-c for the case of the isothermal flows is low and does not change con-
siderably over time. The magnitude of RR is associated with the choice of recurrence threshold
ε . For a large ε multiple recurrences of the trajectory in phase space fall into the neighbourhood
being searched and are counted as a single recurrence. Conversely, for a smaller ε , less recur-
rences fall into the neighbourhood and hence, more recurrences are counted. In table 3.2, the
recurrence threshold used in the case of P12 and P14 is smaller than that used in the case of P10.
Thus, the RR in the case of P10 in figure 3.12a is smaller than in the case of P12 and P14 in figures
3.12b and 3.12c. As the isothermal flows are dynamically similar, the RR curves for the three
cases are statistically stationary.

The DET , which can take values between 0-1 inclusive, is very low for the isothermal flows
in figure 3.11, thus, indicating a highly stochastic process. This is expected in accordance with
previous discussions of the isothermal flow. Similarly to the RR curves, the DET changes are
statistically stationary, thus indicating that there are no significant trends present in the system
dynamics.
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Figure 3.12: The recurrence rate (RR), determinism (DET ), and divergence (DIV ) of the pres-
sure time series from the reactive flows calculated using a one second wide running window
with 50% overlap: (a) P10, (b) P12, (c) P14. The (red) vertical rules indicate t f lash.

The DIV stays close to 0.5 for the isothermal flows, which corresponds to the prescribed
threshold for the minimum line length lmin = 2. The DIV shows that the isothermal cases are
dynamically similar and that the RPs are comprised primarily of isolated points.

The DET in figure 3.12 for the reacting flows is close to unity. This is in accordance with
the visual interpretation of the RPs in figure 3.9 and figure 3.10, which consist of distinctly
visible diagonal lines. The reacting flow cases are clearly more deterministic when compared to
the isothermal flow due to the existence of the thermoacoustic coupling. More importantly, the
DET curves for all three cases, P10, P12, and P14 show a distinct trend prior to flashback, that
is the DET is not statistically stationary. The determinism begins to increase towards the onset
of flashback and reaches a maximum after flashback. The (red) rules in figure 3.12 indicate the
approximate flashback point. In the case of P10, the increase of the DET towards the onset of
flashback occurs on a much smaller scale than in the other cases and the increase is shown in the
inset plot in figure 3.12a.

The RR for the reactive flows is around an order of magnitude larger than that of the isother-
mal flows, indicating that there are significantly more recurrences occurring in the reactive flow.
The trend of the RR is similar to that of the DET . That is, it increases prior to the onset of
flashback. The increase starts two to four seconds prior to flashback.

The DIV curves are more difficult to generalize for the three cases from the reactive flow.
In the case of P10, there is an obvious jump prior to the onset of flashback. On the other hand,
in the cases of P12 and P14 there appears to be a gradual increase of the DIV as flashback is
approached, however the increase is extremely slow. 1.8914 9.7589 13.8834 1.6000
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For a thermoacoustically unstable system undergoing flashback, the results show that subtle
temporal changes occur in the dynamics of the coupling prior to flashback. These changes
are made apparent through the characterization of the recurrences of phase space trajectories
reconstructed from pressure time traces, in a multi-dimensional phase space.

The indication of precursor behaviour is first found in the RPs, where the patterns in the
RPs change as flashback is approached. A change in the distribution of deterministic structures
(lines) and non-deterministic structures (isolated points) leads to changes in the patterns found
in the RPs. Furthermore, through RQA, it is found that before flashback the determinism in
the system shows an increasing trend as an increasing number of isolated black dots (isolated
recurrences) come together to form diagonal lines (consecutive recurrences). The recurrence
rate also increases simultaneously; this could be related to the fact that before flashback, there
is a relative increase in the sections of trajectories recurring and hence, in the overall number of
recurrences at the same ε . In the transition from an asymptotic state before flashback to another
attractor after flashback, while the actual flashback event might be an instantaneous process,
changes that occur in system dynamics are not.

These trends that have been identified show that as flashback is approached, the dynamics of
the flame and hence, the flame-acoustic coupling changes. The duration of relevant changes that
occur prior to flashback span two to four seconds in the cases considered in the current work.
These observations lead to two important implications. Firstly, that precursors of flashback exist,
and with appropriate methods, it is possible to design flashback detection and control systems.
Secondly, the phenomenon of flashback is a result of interactions that span a duration of seconds.
In previous studies on the mechanisms of flashback [98, 155, 69], discussions focus on the stages
involved in the evolution of the flame and hydrodynamic structures during a flashback event. It
is very likely that observable qualitative changes that have been associated with the occurrence
of flashback are also related to changes in the recurrence measures obtained from the pressure
time traces in the current work.

Although flashback in a thermoacoustically unstable combustion is analysed, it is expected
that a similar analysis of other flashback mechanisms should yield similar results on flashback
precursors. Recurrence analysis, which enables quantification of system complexity and de-
terminism, appears to be an appropriate method to identify transitional changes/precursor be-
haviour present in the extremely complex dynamics that are involved in the process of flame
flashback.

3.5 Conclusions

The current work has found that subtle changes occur in the system dynamics prior to flame
flashback in stable and unstable combustion. Linear analyses in the time and frequency domains
fail to detect these changes. However, analysis of the trajectory of the system in phase space,
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which has been reconstructed from pressure time series measurements obtained from the system,
has successfully detected flashback precursors.

The phase space trajectory of the studied systems has been analysed through its translation
error and recurrence characteristics. The translation error trajectories begins to decrease as flash-
back is approached, which indicates that neighbouring sections of the trajectory start to show a
larger degree of parallelism. That is, the trajectory in phase space starts to becomes more organ-
ised. Hence, the determinism of the system increases as the flashback point is approached. In
the recurrence plots, as the flashback point is approached, the number of recurrences increases
and more of them start to form diagonal lines and the visual patterns in the recurrence plots start
to change. This observation is put on a firm footing by the recurrence quantification measures
of RR and DET, which measure the recurrence density and recurrences forming diagonal lines
respectively. The RR and DET both increase prior to the onset of flashback. In conclusion, it can
be said that flame flashback is induced as a result of a specific interaction among flame, acous-
tics, and hydrodynamics, which causes an increase in the determinism of the system dynamics.

The findings have important academic as well as industrial implications. Future investiga-
tions on flashback mechanisms could benefit from the insight that relevant dynamical changes
occur in the flame before the flashback. Furthermore, the results demonstrate the feasibility
of advanced detection approaches that could be used in combustion control systems to actively
suppress flame flashback. Since, the determinism of the system begins to increase at least one
second before flashback and the calculation of the translation error for a window of the time se-
ries takes only one tenth of a second, the method could potentially be used to detect the flashback
in real time. The use of the RQA measures for real time detection is not as readily realisable
because their calculation for a window of the time series takes a few minutes. Nonetheless, sig-
nificant time savings from implementing the algorithms in Python or C, which are usually used
in control applications, and from combining these detection methods with short-term prediction
of the future path of the trajectories could make the use of recurrence analysis for active control
more feasible. An alternative approach for the active control of flame flashback could be its
forecast using machine learning algorithms instead of its early detection using the approaches
of the current work. However, in comparison, the machine learning approach has many disad-
vantages including the need for a large amount of data covering many test cases and the absence
of physics. Although there is a proliferation of machine learning algorithms that are extremely
efficient, these require a large number of training data in order to operate successfully and for
a highly stochastic phenomenon such as flame flashback the data that will be required to train
these algorithms to predict flashback is anticipated to be very large indeed. Furthermore, large
amounts of data are not easily obtainable for flame flashback because data collection relies heav-
ily on experiments, which are difficult to conduct and require expensive diagnostic equipment.
This is because simulations of flame flashback are near to impossible given that the phenomenon
is extremely transient and involves a multitude of physics. Regardless of the approach taken to
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forecast flame flashback, it is important to note that the actions taken to suppress it could in
effect trigger the reverse instability, flame blow-off.





Chapter 4

Modelling of an entropy wave advecting in
a turbulent channel flow

4.1 Introduction

The unsteady heat release in a fluid flow is a source of non-isentropic temperature oscillations
widely referred to as entropy waves [37, 40, 86, 87]. In gas turbine combustors, these tempera-
ture perturbations incurred at the flame advect through the combustor and reach the convergent
exit nozzle where their acceleration results in the generation of acoustic waves [174, 73]. The
sound generated by the acceleration of entropy waves is accordingly termed entropy noise or
indirect combustion noise, which in comparison with direct combustion noise is far less un-
derstood [19, 131]. Generation of entropy noise is subject to the survival of entropy waves
throughout the advection process in the combustor. Yet, the extent of such survival continues to
be a matter of contention [45, 46, 132].

Thermoacoustic stability is a crucial consideration in the design and development of pre-
mixed combustors [115, 143]. Hence, the acoustic response of subsonic and supersonic nozzles
to entropic forcing, which, could influence thermoacoustic stability, has received significant at-
tention [122, 130, 59, 113, 42, 74]. A commonplace assumption in all these investigations is
that the amplitude of the entropy wave that impinges the nozzle inlet is spatially uniform and
that the entropy wave can be approximated as a one-dimensional convective wave. However,
there is now an emerging body of evidence indicating that advection of entropy waves can in-
clude sophisticated spatio-temporal dynamics, which can readily violate the one-dimensional
assumption [17, 52]. Low order modelling of such dynamics remains as an ongoing challenge.

The early dispersion model of Sattelmayer [151] is the first to somewhat account for the in-
fluence of combustion chamber aerodynamics on an advecting entropy perturbation. The mod-
elling approach treats an experimental dual fuel burner as a single-input single-output (SISO)
dynamical system. The impulse response of the system is taken as the probability density func-
tion (PDF) of the residence time and is modelled by a rectangular pulse to yield an analytic
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expression for the system transfer function. The transfer function is subsequently used in a
thermoacoustic model to show that entropy waves do not have a destabilizing effect. The same
conclusion is reached when the dispersion model is used in the low-order modelling of Eckstein
and Sattelmayer [45].

Goh and Morgans [61] added a dissipation factor to the dispersion model of Sattelmayer
[151] to account for the effect of entropy sinks and incorporated it into a thermoacoustic model
other than that used by Sattelmayer [151]. Subsequently, the authors showed through a series of
case studies that entropy noise could act constructively or destructively on combustor stability
depending on the levels of dissipation and dispersion. Morgans et al. [132] then investigated
the dissipation and shear dispersion of a passive entropy perturbation by performing an incom-
pressible, direct numerical simulation (DNS) of an entropy perturbation in a fully-developed,
turbulent channel flow. Dissipation of the entropy wave was defined in terms of the total thermal
energy and as would be expected for an adiabatic system, was found negligible. Shear disper-
sion was modelled using the Sattelmayer [151] model but in this case it was shown that the
response is better captured by a Gaussian pulse. Finally, a simple case study using the modified
dispersion model and conditions representative of a typical gas turbine combustor revealed that
the magnitude of the transfer function is significant up to frequencies relevant to combustion in-
stabilities (several hundred Hertz). Further, numerical and experimental evidence also suggests
that entropy noise can greatly influence combustion stability [8, 9, 70, 71, 134]. However, there
also exist counter-arguments asserting that entropy waves are diffusive and thus, do not affect
the thermoacoustic stability of combustors [151, 45, 46].

Recently, Giusti et al. [58] modelled the magnitude of the transfer function directly (instead
of the system response) with an exponential function and showed that it scales well with a local
Helmholtz number based on the entropy wavelength and streamwise distance. Although not
realistic for a real combustor, the entropic forcing used was a single frequency sinusoid, and
thus, any effects due to modal coupling were not included. Somewhat similarly, Wassmer et al.
[171] fitted the analytic solution of the energy equation for a convection-diffusion process to
the experimental measurements. An effective diffusivity included the transport effects of the
turbulence.

In keeping with the linear one-dimensional framework of nozzle response studies, the mod-
els developed for the decay of entropy waves in the combustor [151, 132, 58] can readily be
integrated into the existing thermoacoustic models. However, the linearity of the dynamics in
these models is not based on simplifying assumptions with respect to the underlying physical
processes responsible for the decay of the entropy perturbations, but is simply phenomenolog-
ical. This is because the mechanisms responsible for the attenuation of the waves are largely
unexplored [52]. Furthermore, the opposing findings with respect to the influence of entropy
noise on combustion stability implies that turbulent mixing downstream of the flame plays an
important role in the attenuation process that is not clearly understood yet. Thus, a more generic
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modelling approach that allows for a small degree of non-linearity is warranted. Furthermore,
the one-dimensional treatment of the entropy perturbation restricts the applicability of the exist-
ing models to SISO (single input, single output) thermoacoustic models [114, 138]. However,
experimental [17] and numerical [52] studies have shown that entropy perturbations could be-
come spatially uncorrelated. Hence, application of a cross-sectional average effectively filters
out any spatially uncorrelated frequency components of entropy perturbations. The threshold
frequency at which correlation starts to breakdown, and therefore, the amount of thermal energy
that is filtered out by application of an average depends on the thermal boundary conditions
and the hydrodynamics of the flow [52]. Consequently, it is imperative to model entropy waves
as a multi-input-multi-output (MIMO) system. This, in turn, calls for prediction of the spatio-
temporal dynamics of these waves. Yet, currently there is no low order modelling tool for this
purpose. To address this issue, a low order model (LOM) that can simulate the amplitude decay
and spatial distortion of a two-dimensional entropy wave is developed using a novel dynamical
approach. The proposed LOM is capable of predicting both spatial and temporal features of an
entropy wave. This is on the basis of reduction of the data generated by a DNS of compressible,
fully-developed, turbulent channel flow with adiabatic and heat transferring external walls and
an added Gaussian entropy perturbation. The DNS uses the same Reynolds number and shape
of entropy perturbation as that of Morgans et al. [132]. However, unlike Morgans et al. [132],
the current DNS is of a compressible flow, where the energy equation is not treated as a pas-
sive scalar equation but is solved simultaneously with the continuity and momentum equations.
Furthermore, the important case of heat transferring walls is also simulated in addition to the
adiabatic walls case considered in Morgans et al. [132].

4.2 High order modelling

A compressible, fully developed, turbulent airflow in a channel with an added entropy perturba-
tion is simulated for adiabatic and non-adiabatic boundary conditions at the walls.

4.2.1 Computational model

A schematic of the channel configuration is shown in figure 4.1. The friction Reynolds number
of the fully developed flow is Reτ = 180, which corresponds to Reynolds number Rec = 3367 and
Mach number Mc = 0.15 based on mean centreline velocity. The size of the simulation domain is
4πδ ×2δ ×πδ in the streamwise (x), wall-normal (y), and spanwise (z) directions respectively,
where δ is the channel half-height. The size of the grid is accordingly 368×128×128 nodes.
Periodic boundary conditions are imposed in the streamwise and spanwise directions and the
non-slip boundary condition at the walls. In the periodic directions the grid is uniform with
∆x+ = 6.1 and ∆z+ = 4.4. In the wall-normal direction the grid is stretched from ∆y+w = 0.15 at
the wall to ∆y+c = 5 at the centreline according to ∆y j+1/∆y j = SF , where j = 1,2, . . . ,63 is the
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Figure 4.1: Channel configuration

cell number ( j = 1 is the cell at the wall and j = 63 is the cell at the centreline) and SF = 1.05
is the stretch factor. The convective heat loss at the walls is controlled by setting the value of
the heat transfer coefficient h[Wm−2K−1]. The temperature of the imaginary external flow is
T∞ = 300K. In the adiabatic case, the heat transfer coefficient at the walls is h = 0Wm−2K−1.
The mean temperature of the flow in this case is T = 1500K. The properties of air at this
temperature are taken as ρ = 0.2322kgm−3 and µ = 5× 10−5kgm−1s−1. In the non-adiabatic
case, the heat transfer coefficient at the walls is h = 200Wm−2K−1. The mean temperature of
the flow in this case is a function of the spatial coordinates and time.

4.2.2 Validation of turbulent flow

The cross-sectional profiles of the mean velocity and mean square of the turbulent fluctuations
are shown in figure 4.2. Mean and fluctuating velocity components are indicated by an overbar
(¯) and prime ( ′ ) respectively. Velocity is non-dimensionalized by the wall-shear velocity uτ =√

τw/ρ , where τw is the flow shear stress on the wall. The wall-normal coordinate y+=(uτy)/ν ,
where ν is kinematic viscosity is the distance from the wall in wall-units. The profiles collapse
with the canonical data of Kim et al. [96], thus, confirming that the grid is sufficiently fine and
that the fully developed flow condition has been reached. The spatial variability of the velocity
is elucidated by a snapshot of the instantaneous velocity field (velocity is non-dimensionalized
by the local speed of sound) shown in figure 4.3 for a streamwise cross-section at midspan.

4.2.3 Simulated entropy wave

Snapshots of the convecting entropy wave after it has been added to the flow are shown in figure
4.4 for the case of adiabatic walls and in figure 4.5 for the case of convective heat loss at the
walls. The amplitude of the wave is ∆T/T = (T −T )/T , which is scaled using the mean flow
temperature T . In the adiabatic case, T is constant. However, it is important to note that in the
non-adiabatic case T is a depends on the spatial coordinates and on the time. In both cases,
the snapshot in the first row shows the state of the entropy wave as soon as it has been added
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Figure 4.2: The flow (a) mean velocity and (b) mean square of turbulent fluctuations collapse
with the canonical data of Kim et al. [96]: —— present study, � Kim et al. [96]

Figure 4.3: Instantaneous velocity component in the (a) streamwise, (b) wall-normal and (c)
spanwise directions non-dimensionalized by the speed of sound

to the flow i.e. when the forcing of temperature at the insert plane has ceased (in figure 2.12
this corresponds to τ ≈ 0.07). The snapshots in the second and third rows show the state of
the entropy wave when it reaches the channel half-length and outlet respectively. The time
difference between the snapshots is the same and thus, the wave speed appears to be constant.

The maximum amplitude as soon as the entropy wave is added (in row one of figures 4.4 and
4.5) is ∆T/T = 0.06, which, is down from the peak value A = 0.1 of the added Gaussian pertur-
bation (see equation 2.31). The 40% reduction in amplitude occurs in the time taken to generate
the entropy wave, that is, in a non-dimensional time interval ∆τ = 0.07 (see figure 2.12a). By the
time the wave reaches the channel half-length (in row two of figures 4.4 and 4.5) and outlet (in
row three of figures 4.4 and 4.5), the maximum amplitude is ∆T/T ≈ 0.025 and ∆T/T ≈ 0.015
respectively. Thus, a 40% reduction in amplitude within ∆τ = 0.25 during the generation of the
wave is followed by further 60% and 40% reductions within successive ∆τ = 0.5 intervals. It
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Figure 4.4: Convection of temperature perturbation through a fully developed, turbulent, channel
flow with adiabatic walls obtained by direct numerical simulation of the high order system.

is clear that profound decay occurs while the entropy wave is being generated. The reason for
this sharp drop in wave strength at the generation stage is twofold. First, the adverse temper-
ature gradient that exists near the insert plane presents a strong driving force for heat transfer
by molecular diffusion. In addition, turbulent mixing is also more effective than at later stages
because the thermal energy that is effectively being added by perturbing the temperature field
is distributed over a broadband frequency range (the width of the frequency spectrum depends
on the value used for σ in equation 2.31 — the smaller σ is the wider the frequency spectrum).
The thermal energy contained in the high frequency components of the perturbation that have
small wavelengths of order comparable or smaller than that of the turbulence undergo strong
turbulent diffusion. The extend of amplitude decay during the generation of the entropy wave
is dependent on the temporal ’sharpness’ of the added perturbation, which, in the case of the
artificially generated wave in the present study is controlled by the value of σ in equation 2.31.

In both cases (figures 4.4 and 4.5), as the entropy wave convects from the insert plane to the
channel outlet it undergoes changes in shape, thickness and amplitude. It will become clear from
the discussion that follows regarding the shape and thickness of the wave that amplitude decay
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Figure 4.5: Convection of temperature perturbation through a fully developed, turbulent, channel
flow with convective cooling at the walls obtained by direct numerical simulation of the high
order system.

is in part a consequence of the former. Heat loss at the walls causes amplitude decay directly
by removing heat from the hot fluid to the external cooling flow but also indirectly through its
influence upon the shape and thickness of the wave.

The uniform shape of the wave that is imposed at the insert plane is lost due to the spatially
variable velocity field. The slower mean velocity near the walls causes a notable spreading of
the wave in the near wall regions and hot and cold regions of the flow co-penetrate each other
giving rise to temperature gradients in the wall-normal direction that enhance the molecular
diffusion of heat and thus, amplitude decay. The destructive effect of the variable velocity field
just described, which is especially notable near the walls where large velocity gradients exist is
widely known as the shear dispersion mechanism in the context of entropy wave attenuation. In
figure 4.5, the loss of heat at the walls causes steeper temperature gradients in the wall-normal
direction. Hence, amplitude decay especially in the near wall regions is much more profound
when the walls are being cooled. In fact, in this scenario the amplitude of the wave quickly
drops to zero near the walls and the entropy wave begins to vanish from the walls in towards the
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centreline.

The spreading or thickening of the wave as it convects downstream is due to molecular
and turbulent diffusion of heat from the hot fluid to the surrounding base flow. As heat gets
distributed over an increasingly larger volume the amplitude of the wave decays. Further, as the
wave spreads out the heat gets distributed over ever larger wavelengths. Thus, the contribution of
turbulent mixing to the overall diffusion process is progressively hindered as the wave thickens
and molecular diffusion becomes the dominant diffusion mechanism. Molecular diffusion of
heat is much slower than turbulent diffusion, hence as molecular diffusion becomes the dominant
diffusion mechanism the rate of decay of the wave amplitude slows down. In the case of periodic
perturbations, temperature gradients are reduced because of the presence of hot fluid upstream
and downstream and thus, in such a scenario turbulent diffusion may be more effective.

In the present study, similarly to Fattahi et al. [52], the term dissipation will be used to refer
to the decay of the wave amplitude. It is necessary to make this clarification because the defini-
tion of dissipation in the context of entropy wave attenuation is not consistent in the literature.
Morgans et al. [132] defined dissipation in terms of total thermal energy, which, in an adiabatic
system is conserved. Dissipation defined as such does not include the decay of amplitude due
to the diffusion of heat from the hot fluid to the surrounding base flow. Thus, dissipation in
terms of amplitude decay is a more generic definition because it includes amplitude decay due
to thermal energy loss by sinks in the flow which keeps with the definition given by [132] but
also includes amplitude decay resulting from spreading of the wave, that is, the distribution of
total thermal energy over a larger volume by diffusion mechanisms.

Simulation results of an entropy wave advecting in laminar flow are included in appendix
C.1 and are discussed and compared with the results of the turbulent flow case.

4.3 Low order modelling

The result of the direct numerical simulation show that as the entropy wave advects through
the turbulent channel flow it does not retain the uniform shape and amplitude imposed at the
insert plane. The established modelling approach has kept with the one-dimensional outlook of
studies of acoustic waves [151, 132, 58]. That is, the entropy wave has been integrated over a
cross-section at every time step to produce a one-dimensional entropy wave. In their approach,
it is assumed that the position of the entropy wave changes at a rate equal to the bulk velocity of
the isothermal flow and the modelling process concentrates exclusively on the temporal decay
of the volumetric amplitude.

The current work improves on the aforementioned modelling approach in two respects.
Firstly, it avoids making any assumption regarding the wave speed and includes the wave posi-
tion in the modelling process. Secondly, the entropy wave is not reduced to a one-dimensional
wave through integration but is instead sectioned into streamwise cross-sections to allow the po-
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Figure 4.6: The snapshot of the entropy wave when it is at the channel half-length and the curve
C connecting the positions of maximum amplitude. The amplitude is integrated along the curve
as it is moved streamwise from x/δ = 1π to x/δ = 3π (measured at the centreline). The graph
shows the integrated amplitude with respect to the position of the curve. A large proportion of
the total thermal energy is concentrated around the positions of maximum amplitude.

sition and amplitude in each cross-section to be modelled. Hence, in the present study the terms
position and amplitude refer to the positions and amplitudes from all the streamwise cross-
sections, collectively.

In any streamwise cross-section of the entropy wave, the thermal energy at any moment in
time is mainly concentrated around the position of the maximum amplitude in that section as
shown in figure 4.6. The snapshot of figure 4.6a is from the direct numerical simulation of the
adiabatic walls case and shows the state of the entropy wave once it has reached the channel
half-length. The curve Cx0 seen in the snapshot traces the positions of maximum amplitude in
the streamwise cross-sections. The integrated amplitude along Cx0 is plotted as a point on the
graph in the right column of figure 4.6. Moving the curve Cx0 upstream and downstream from
its original position x/δ = x0 (measured at the centreline) and integrating along it at every new
position, then, plotting the integral amplitudes gives the bell-like curve seen in the graph in the
right column of figure 4.6. The integral amplitude along the curve Cx1 , when the curve is moved
to position x/δ = x1, is also plotted as a point in the graph to facilitate in making clear how the
bell-curve in the graph is constructed. The bell-like distribution shows how the thermal energy
is distributed around the positions of maximum amplitude (i.e. around Cx0). Approximately
70% of the thermal energy is concentrated around the positions of maximum amplitude over a
distance that is only 20% of the wave thickness (the thickness of the wave being defined in this
case as the distance between the curves that have an integrated amplitude that is 10% of the peak
amplitude A = 0.1). Hence, without much loss of generality the entropy wave at any moment
in time can be represented simply and conveniently by the curve connecting the positions of
maximum amplitude with the amplitude of the wave being the magnitude of the maximum
amplitudes. Hereafter, any reference made to the position and amplitude of the entropy wave
refers to the position and magnitude of the maximum amplitudes in the streamwise sections.
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Time series of the position and magnitude of the maximum amplitude in each streamwise
cross-section of the flow are generated from the direct numerical simulation. At every time step
of the DNS the amplitudes at all nodes in the streamwise direction with the same wall-normal
coordinate y are compared and the maximum amplitude in the streamwise section is found. The
position at which the maximum temperature occurs is xmax and its magnitude is (∆T/T )max.
Both these quantities are a function of the wall-normal coordinate y and the instant of time at
which they are evaluated. The present study used 128 nodes in the y- or wall-normal direction
and therefore, generated 128 time series of xmax and 128 time series of (∆T/T )max.

In the methodology that follows, the subscript { }max is dropped from xmax and (∆T/T )max.
Furthermore, the quantity (∆T/T )max is simply denoted as T . Results are presented using the
non-dimensional quantities in equation 4.1, where the caret { ˆ } indicates a non-dimensional
quantity, τ is non-dimensional time (see equation 2.31), and δ is the channel half-height.

t̂ = τ, x̂ =
xmax

δ
, ŷ =

y
δ
, T̂ =

∆T
T

∣∣∣∣
max

(4.1)

It is important to note that the methodology, although applied in the current study to time
series from DNS, could equally be applied to time series obtained experimentally. However, in
those cases where additional flow features related to combustor flows are present such as more
involved fluid dynamics and chemical reactions, it is expected that the formulated system of
equations will have a different form than that found in the current work.

4.3.1 Formulation for channel with adiabatic walls

The model is based on the assumption that the spatio-temporal evolution of the position and
amplitude of the wave in a streamwise cross-section can be described by the generic non-linear
system in equation 4.2, where the dot {˙} indicates the derivative with respect to time and T is
the amplitude at streamwise position x.

Ṫ = f (T,x) (4.2a)

ẋ = g(T,x) (4.2b)

Using the multivariate Taylor series expansion the equation 4.2 is expressed as the infinite
summation in equation 4.3, where Φ j is the state vector and Ji j is the Jacobian matrix. A repeated
subscript implies summation over the range i, j = 1,2.

Φ̇ j = Ji j ·Φ j + high order terms (4.3a)
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Φ j =

[
T

x

]
(4.3b)

Ji j =

[
∂ Ṫ
∂T

∂ Ṫ
∂x

∂ ẋ
∂T

∂ ẋ
∂x

]
(4.3c)

The high order terms in equation 4.3 are neglected and the Jacobian derivatives Ji j are esti-
mated from the discrete DNS data using the forward differencing scheme in equations 4.4a-c.
Here, ∆t is the simulation time step, Φt

i are the states at time t, and T t and xt are the amplitude
and position of the wave respectively in a streamwise cross-section at time t.

∂Φ j

∂ t
≈

∆Φ j

∆t
=

Φ
t+∆t
j −Φt

j

∆t
(4.4a)

∂ Φ̇ j

∂T
≈

∆Φ̇ j

∆T
=

Φ̇
t+∆t
j − Φ̇t

j

T t+∆t−T t (4.4b)

∂ Φ̇ j

∂x
≈

∆Φ̇ j

∆x
=

Φ̇
t+∆t
j − Φ̇t

j

xt+∆t− xt (4.4c)

The Pearson correlation corr(Ji j,Φi) between the estimated Jacobian derivatives Ji j and the
states Φ j is tabulated in table 4.1. It is noted that the Jacobian derivative J12 (gradient of the
decay rate) is strongly correlated with both amplitude and position. Correlation with both states
opposed to correlation with a single state is expected because amplitude and position are not
independent. That is, in the absence of heat sources the amplitude decays as the wave convects
downstream and therefore the two states must be inversely proportional. Hence, J12 correlates
positively with T but negatively with x. The fact that the Jacobian derivative J12 is not constant is
an indication that the the dynamics of amplitude decay are non-linear. The Jacobian derivatives
J11,J21 and J22 are poorly correlated with the states. This suggests that they can be assumed
constant, which includes the possibility of them being zero. It is important to highlight that
if J21 and J22 are non-zero, then the wave speed is a function of amplitude T and position x,
as these terms couple the wave speed ẋ to the states. If J21 and J22 are zero the wave speed
is constant. From the result of the DNS shown in figure 4.4, it appears that the wave speed is
approximately constant and therefore there is the expectation that J21 and J22 are zero.

The wave speed is confirmed constant by the linear relation of the position with respect
to time in figure 4.7a. The non-zero position at t̂ = 0 is the streamwise location of the insert
plane at which the entropy wave is added to the flow. The time series of position used for the
plot in figure 4.7a is from the streamwise cross-section at ŷ = 0.17. The slope of the line in
figure 4.7a is the non-dimensional wave speed in the streamwise cross-section at ŷ = 0.17 and
is ˙̂x ≈ 15.5. This corresponds to a velocity non-dimensionalized with respect to the friction
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i j corr{Ji j,T} corr{Ji j,x}
11 -0.1 0.12
12 0.62 -0.47
21 -0.13 0.12
22 -0.08 0.03

Table 4.1: Pearson correlation coefficient of Jacobian derivatives (Ji j) and states (x,T ). The
arrow points to the Jacobian derivative that correlates well with the states.

Figure 4.7: Plots of (a) the position of the maximum temperature perturbation with respect to
time and (b) the decay rate with respect to amplitude in a streamwise cross-section near the
centreline for the case of adiabatic walls: � DNS, -·- linear fit, — quadratic fit

velocity ẋ+ ≈ 19.5. In figure 4.2, the mean velocity of the isothermal flow (without the entropy
wave) at ŷ = 0.17 ≡ y+ ≈ 150 is u+1 = 18.3. Hence, the wave speed ˙̂x in the streamwise cross-
section at ŷ = 0.17 is within 7% of the mean velocity of the isothermal flow. This confirms
the assumption made in previous studies [151, 132] that the entropy wave may be treated as a
passive scalar. Nonetheless, for perturbations with peak amplitudes much larger than A = 0.1,
the validity of the passive scalar assumption is dubious as evidence [72] exists that the entropy
wave does impact on flow hydrodynamics. The data points in figure 4.7a show a linear trend.
The function obtained by fitting the data with a least mean squares approach is given by equation
4.5, which is a specific form of the general equation 4.2a.

˙̂x = θ1(ŷ) (4.5)

The hypothesis made previously that the dynamics of amplitude decay are non-linear due to
observation of a non-zero correlation between the Jacobian derivative J12 and the states is con-
firmed by the plot of the time derivative of amplitude (decay rate) with respect to the amplitude
shown in figure 4.7b. It should be noted that the decay rate only needs to be plotted with respect
to one of the states because the states are not independent of each other and since the decay rate
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is the time derivative of amplitude, it is therefore convenient to plot it with respect to amplitude.
At zero amplitude the wave has completely dissipated and hence, the decay rate must also be
zero. The data point at the origin is added manually to the time series taken from the DNS
because the simulation is terminated once the amplitude becomes of the same order as the tur-
bulent fluctuations at which point the wave is no longer distinguishable. The phenomenological
modelling approach taken by previous studies effectively assumes that the relation between the
decay rate and amplitude in figure 4.7(b) is linear. The linear fit would be the specific form of
equation 4.2b, which, when integrated gives an amplitude decay that is exponential precisely as
it is being viewed by previous studies. However, the plot in figure 4.7b suggests that for ampli-
tudes T̂ > 0.02 the linear approximation underestimates the decay rate during the initial stages
of the wave convection and overestimates it during the final stages. Thus, the linear approxima-
tion is capable of capturing the dynamics of the decay for amplitudes less than 2% of the base
flow temperature. In contrast to previous studies, the current study captures the trend of the data
points in figure 4.7b by a least squares quadratic fit – instead of a linear one as per equation
4.6, which provide a form for the general equation 4.2b. The slope of the quadratic fit in figure
4.7b, which is the rate of amplitude decay, decreases with the amplitude. This is keeping with
the discussion of the DNS results in section 4.2. That is, turbulent and molecular transport are
strong during the initial stages of the wave convection, thus causing a fast decay in the early
stages of the wave advection. In the later stages, the slower molecular diffusion mechanism is
dominant and results in a slower decay.

˙̂T = θ2(ŷ)T̂ 2 (4.6)

The above methodology produces the specific form of the general system of equations 4.2a-b
given by equations 4.5 and 4.6. However, the time series came from the DNS of the channel with
adiabatic walls. Applying the same methodology to the time series obtained from the DNS of
the channel with heat loss at the walls reveals that the specific equations found for the adiabatic
case can also be used in the case of heat loss at the walls but with a minor adjustment.

4.3.2 Adjustment for channel with cooled walls

The position of the wave in the case of heat loss at the walls is approximated well by equation
4.5 in every streamwise cross-section. However, unlike the case of adiabatic walls the amplitude
decay cannot be approximated well by equation 4.6 in every streamwise cross-section. When
convective heat loss is taking place at the channel walls the exponent of the term on the r.h.s. of
equation 4.6 depends on the distance of the streamwise cross-section from the wall. The value
of the exponent comes from the fit type that is used to approximate the relation between the
(T̂ , ˙̂T ) data points. The relation transitions in this case from approximately concave-up (degree
of polynomial fit is β = 0.5) in the near wall region to linear (β = 1) and then to concave-
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Figure 4.8: The decay rate and amplitude relation in the (a) near wall, (b) in between near wall
and core flow and (c) core flow regions in the case of convective heat loss at the walls: � DNS,
—— fit

down (β = 2) in the core flow as shown in figure 4.8 for three randomly chosen streamwise
cross-sections between the wall and the centreline.

The Akaike information criterion [3] or AIC provides a systematic procedure of determining
the fit type (concave-up, linear, or, concave-down) that best approximates the (T̂ , ˙̂T ) data points
in a particular streamwise cross-section. The AIC criterion requires that all three fit types are
made to the data points and the relative likelihood that the fit is the best approximation is calcu-
lated for each fit type. The fit type with the largest relative likelihood is the best approximation
in a least squares sense.

The likelihood or AICi value that fit type i is the best approximation is given by equation 4.7,
where N is the number of data points, RSS is the residual sum of squares, and K = 1 in all three
cases is the number of parameters in the fit type.

AICi = N ln(RSS/N)+2K +
2K(K +1)

N− (K +1)
(4.7)

The relative likelihood is the likelihood with respect to the minimum as per equation 4.8,
where ∆i is the relative likelihood of fit type i.

∆i = AICi−min(AICi) (4.8)

It is formally customary to normalize the relative likelihood as per equation 4.9, where wi is
the normalized relative likelihood of fit type i also known as the Akaike weight.

wi =
exp
(
−1

2∆i
)

N f its

∑
i=1

exp
(
−1

2∆i
) (4.9)

The Akaike weight of each of the fits shown in figure 4.8 is shown in figure 4.9 for all the
streamwise cross-sections. For example, very close to the walls (ŷ≈±1) the (T̂ , ˙̂T ) data points
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Figure 4.9: The regions of the flow in which the amplitude decays according to (a) ˙̂T = θ2T 0.5,
(b) ˙̂T = θ2T , and (c) ˙̂T = θ2T 2

are best approximated by the fit ˙̂T = θ2T 0.5 because the Akaike weight of this fit type shown in
figure 4.9a is very near to unity close to the walls and zero in all other streamwise cross-sections.
The distribution of the Akaike weights over the channel cross-section in figure 4.9 also makes
clear the thickness of the fit type ’regions’.

4.3.3 Generic formulation

The low order model (LOM) formulated for the case of the channel with adiabatic walls (equa-
tions 4.5 and 4.6) can be generalised to equation 4.10, where β depends on the thermal boundary
condition at the walls.

˙̂x = θ1(ŷ) (4.10a)

˙̂T +θ2(ŷ)T̂ β = 0 (4.10b)

For adiabatic walls β = 2 in all streamwise cross-sections. In the case of convective heat
loss at the walls, β ∈ {0.5,1,2} depending on the distance of the streamwise cross-section from
the wall. For each streamwise cross-section, a least squares fit needs to be made to the (T̂ , ˙̂T )
data points for each value of β and the best suited fit then determined using a method such as
the Akaike information criterion [3].

The LOM is amenable to analytic solution. In each streamwise cross-section, the model
parameters θ1 and θ2 are constants and the equations are decoupled and can be solved indepen-
dently. The analytical solutions of equations 4.10a and 4.10b for different values of β (ŷ) are
tabulated in table 4.2.

The model parameters θ1(ŷ) and θ2(ŷ) are not the same in all streamwise cross-sections and
are therefore functions of the wall-normal coordinate ŷ. Due to the way they appear in equation
4.10, they are nominally the non-dimensional wave speed and dissipation factor, respectively.
By consideration of equation 4.1 and dimensional homogeneity, the scaling factors of θ1(ŷ) and
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β solution of equation 4.10a solution of equation 4.10b

6= 1 x̂(t̂) = x̂(0)+θ1(ŷ)t̂ T̂ (t̂) = T̂ (0)+{ [β (ŷ)−1]θ2(ŷ)t̂ }1/[1−β (ŷ)]

= 1 x̂(t̂) = x̂(0)+θ1(ŷ)t̂ T̂ (t̂) = T̂ (0)exp [−θ2(ŷ)t̂ ]

Table 4.2: Analytical solutions of the low order model given by equation 4.10.

θ2(ŷ) in equation 4.10 are 1/Ubulk and L/Ubulk, respectively. Further, since θ1(ŷ) and θ2(ŷ)

are calculated through regression (of DNS data in this case), they are empirical and therefore
case specific. Unlike previous models, the parameters of the current model are a function of
the wall-normal coordinate and thus, the solution of the model is a position and an amplitude
that are functions of the wall-normal coordinate. That is, the position and amplitude of the
wave at any time are a function of the wall-normal coordinate. Hence, the model describes a
two-dimensional wave. The profiles of θ1(ŷ) and θ2(ŷ) over the cross-section of the channel
with adiabatic walls are shown in figure 4.10 for the turbulent Reynolds number Rebulk = 5600
that is used in the current work and also for the laminar Reynolds numbers Rebulk = 500 and
Rebulk = 1000.

The wave speed in a streamwise section has been found to be approximately the same (within
7%) as the mean velocity of the isothermal flow. Hence, it is expected that the cross-sectional
profile of θ1(ŷ) will be identical to the velocity profile of the isothermal flow. This is confirmed
by the plot in figure 4.10a that shows the profile of θ1(ŷ) over the cross-section for the turbu-
lent flow considered in the current work and also for two laminar flows to further support the
argument. For the turbulent Reynolds number, it is θ1(ŷ) ≈ 1 over most of the cross-section
except near the walls and for the laminar Reynolds numbers, the maximum is θ1(0) = 1.5 at the
centreline and the profiles are parabolic. The aforementioned are indicators of the typical mean
velocity profiles in turbulent and laminar channel flow.

The non-dimensional dissipation factor θ2(ŷ) in figure 4.10b is a minimum at the channel
centreline and increases on approach to the walls for all Reynolds numbers. This keeps with
observation of the DNS result shown in the left column (adiabatic walls case) of figure 4.4
where the wave clearly dissipates faster in the near wall regions relative to near the centreline
because shear dispersion is stronger near the walls. Similarly, overall dissipation is stronger at
the laminar Reynolds numbers relative to that at the turbulent Reynolds number because shear
dispersion is stronger in laminar flows due to the less uniform velocity profile.

4.3.4 Calibration

The accuracy of the formulated LOM in equation 4.10 is evaluated by comparison of the solution
with the DNS result. The DNS result are the time series x̂DNS and T̂DNS used to formulate the
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Figure 4.10: The cross-sectional profiles of the model parameters (a) θ1 and (b) θ2 for laminar
and turbulent Reynolds numbers: ◦ Rebulk = 500,4 Rebulk = 1000, � Rebulk = 5600

LOM. Because the DNS result is discrete in time the time-continuous solution of the LOM (table
4.2) will be discretised to facilitate comparison of the solutions.

First, the model parameters θ1(ŷ) and θ2(ŷ) are calculated using the entire length of the x̂DNS

and T̂DNS time series from the DNS. That is, in every streamwise cross-section, all the DNS data
points are used to make the least squares fittings that give the LOM parameters θ1(ŷ) and θ2(ŷ)

(as done for example in figure 4.7 for a streamwise cross-section near the centreline). Using
shorter DNS time series to determine θ1(ŷ) and θ2(ŷ) will diminish the accuracy of the LOM
because the fittings will in such a case be made to DNS data that does not cover the complete
dynamical behaviour of the system. Thus, for the purpose of LOM calibration, the entire length
of the DNS time series has to be used because in this case poor performance of the LOM will
signal failure of the formulated equations and will not be due to poor estimation of the model
parameters. The minimum length of the DNS time series needed for a reasonably accurate LOM
will be determined in section 4.3.5. Here, the aim is to evaluate calibrate the formulated LOM
and so the entire length of the DNS data is being used. Once θ1(ŷ) and θ2(ŷ) are determined
they are substituted together with the initial condition x̂DNS(t̂ = 0) and T̂DNS(t̂ = 0) into the ana-
lytical solution of equation 4.10 (table 4.2) to give the time-continuous solution. The continuous
solution is then sampled using a sampling period equal to the DNS time step to give time series
x̂LOM and T̂LOM from the LOM that have a one-to-one correspondence with the time series x̂DNS

and T̂DNS from the DNS. It should be made clear that time series x̂LOM and T̂LOM are obtained for
each streamwise cross-section because θ1(ŷ) and θ2(ŷ) are different in each streamwise cross-
section, which, is emphasized by consistently denoting their dependence on the wall-normal
coordinate ŷ.

A visual comparison of the LOM and DNS solutions for the case of adiabatic walls is shown
in figure 4.11. The state of the entropy wave at t̂0 is the initial condition (x̂DNS, T̂DNS)t̂=0 and
is the state immediately after the entropy wave has been added to the flow. The position of the
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Figure 4.11: Accuracy of the low order model solution in the case of adiabatic walls: • DNS, —
linear low order model, — non-linear low order model

wave in the right column of figure 4.11 is clearly in good agreement with the DNS result over the
entire cross-section. In the left column of figure 4.11, the amplitude decay from both the linear
(β = 1) and non-linear (β = 2) LOM is shown. The result from the linear LOM is shown due
to its relevance to previous studies that assume the dynamics of amplitude decay to be linear. It
is clear that the proposed non-linear LOM (β = 2) is in better agreement with the DNS result.
The linear model overestimates the amplitude during the early stages of the wave convection
and underestimates it during the final stages. Thus, keeping with the discussion of figure 4.7 in
which the linear approximation underestimates the decay rate when the wave amplitude is large
(at the early stages of the wave convection) and overestimates it when the wave amplitude is low
(at the late stages of the wave convection).

A visual comparison of the LOM and DNS solutions for the case of heat loss at the walls
is shown in figure 4.12. Similarly to the case of adiabatic walls, the position of the wave from
the LOM is in good agreement with the position from the DNS in the right column of figure
4.12. The solution shown in figure 4.12 has a one-to-one time correspondence with the solution
shown in figure 4.11 for the case of adiabatic walls. Therefore, by comparison of the wave
position from the two cases it is clear that the wave fronts are convecting at the same speed in
the two cases. Thus, the wave speed has not been affected by the heat loss to the walls. Hence,
it is not surprising that agreement between the position of the wave from the LOM and the DNS
is just as good as in the case of adiabatic walls. The heat loss to the walls has, relative to the
adiabatic wall case, simply accelerated the dissipation of the wave just above the walls causing
the amplitude to quickly fall to zero and the edges of the wave to vanish. In the left column
of figure 4.12, the solution of the LOM equation 4.10b with a piecewise β (for which β is
determined by the Akaike weight criterion) gives a good approximation of the amplitude decay
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Figure 4.12: Accuracy of the low order model solution in the case of convective heat loss at the
walls: • DNS, — non-linear low order model with piecewise amplitude decay

from the DNS.

The need for a piecewise β in equation 4.10b in the case of heat loss at the walls is em-
phasized in figure 4.13, which, shows the amplitude decay from the LOM when the same β is
used in equation 4.10b for all the streamwise cross-sections. The amplitude from the equation
with β = 0.5 shows better agreement with the amplitude from the DNS over the equations with
β = 1 and β = 2 at the edges of the wave. On the other hand, the nonlinear equation with β = 2
shows the best agreement with the amplitude from the DNS near the centreline. Between the
near-centreline and near-edge parts of the wave, the amplitude from the equation with β = 1
makes for a gentle transition. Hence, unlike the adiabatic walls case for which β = 2 could be
used everywhere, in the case of heat loss at the walls it is clearly needed to use a piece-wise β

over the channel cross-section.

Visual comparison of the LOM and DNS solutions through the discussion of figures 4.11 and
4.12 shows that the accuracy of the formulated LOM is good. However, a visual comparison
is not made at all times because such an undertaking is tedious and impractical and as a result
the deviation occurring in between the chosen times is overlooked. In order to carry out a
more detailed comparison of the LOM and DNS solutions there is a need to define quantitative
measures or metrics of accuracy. Such metrics are also needed in section 4.3.5 to consistently
evaluate the accuracy of the LOM in relation to the length of the DNS time series. There are two
criteria that have to be met for the LOM and DNS solutions to be considered in good agreement.
First, the residual between the states has to be small and secondly the way in which the states
vary over the cross-section has to be similar. Thus, two metrics are needed, one to measure the
residual and another the correlation between the corresponding states from the LOM and the
DNS.
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Figure 4.13: Amplitude decay from the low order model when the same β is used for all the
streamwise cross-sections: • DNS, — LOM with β = 0.5, — LOM with β = 1, — LOM with
β = 2

The residual between the states Φ̂LOM
j from the LOM and the states Φ̂DNS

j from the DNS is
averaged over the cross-section to give an overall residual. The average residual of the states is
equivalent to the residual of the average states as per equation 4.11, where ε〈Φ̂ j〉A is the residual

of the average state
〈
Φ̂ j
〉

A over the channel cross-section as per equation 4.12. The residual
given by equation 4.11 is normalized with respect to the average state from the DNS. Due to
the equivalence of the average residual with the residual of the average states, henceforth, the
average residual over the channel cross-section is referred to simply as the residual meaning
the residual of the average states. The sign of the residual indicates if the average state from
the LOM is larger (positive) or smaller (negative) than the corresponding average state from the
DNS.

ε〈Φ̂ j〉A =

〈
Φ̂LOM

j

〉
A
−
〈

Φ̂DNS
j

〉
A〈

Φ̂DNS
j

〉
A

(4.11)

〈
Φ̂ j
〉

A =
1

NY −1

NY−1

∑
n=1

(
Φ̂ jŷ

)
n (4.12)

The correlation between the states Φ̂LOM
j from the LOM and the states Φ̂DNS

j from the DNS
over the channel cross-section is measured with the Pearson correlation coefficient r

Φ̂ j
as per

equation 4.13. A Pearson correlation coefficient r
Φ̂ j

=+1 indicates that the state from the LOM
and the corresponding state from the DNS are perfectly correlated and thus, their respective
profiles over the cross-section have the same trend. On the other hand a Pearson correlation
coefficient r

Φ̂ j
= 0 indicates that the states are uncorrelated over the channel cross-section and
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Figure 4.14: Time series plots of the residual (row one) and correlation (row two) of correspond-
ing states from the LOM and DNS with respect to time for the case of adiabatic walls (column
one) and heat loss at the walls (column two): � x̂, � T̂

thus, that their respective profiles over the channel cross-section have radically different trends.
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Time series plots of the metrics ε〈Φ̂ j〉A and r
Φ̂ j

defined above are shown in columns one and
two of figure 4.14 for the case of adiabatic walls and heat loss at the walls respectively.

In row one of figure 4.14, the residual is less than ±5% and ±1% at all times for amplitude
and position respectively in both cases of the thermal boundary condition. The small residuals
for both amplitude and position keeps with the visual comparison in figures 4.11 and 4.12. The
reason for the larger amplitude residual is explained by returning to figure 4.7 in section 4.3.1,
which, shows the fittings made to the DNS data in a streamwise cross-section near the channel
centreline. In figure 4.7, the amplitude data from the DNS is more spread-out than the position
data and this is why in row one of figure 4.14 the residual of amplitude is larger than that of
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position. Furthermore, the skew-symmetry of the positive and negative residuals of amplitude
in row one of figure 4.14 reflects the goodness of the fitting made to the amplitude data from the
DNS during formulation of the LOM.

In row two of figure 4.14, the correlation is near unity at all times for amplitude and position
in the case of adiabatic walls. In the case of heat loss at the walls, the correlation of amplitude is
near unity at all times and the correlation of position, although not near unity at all times, never
falls below 0.7. The correlation of the position gradually falls from close to unity at the early
stages of the wave convection to near 0.7 when the wave is just past the channel half-length and
then rises back to unity during the final stages of the wave convection. The snapshot at t̂2 = 0.4
in the right column of figure 4.12 shows the wave position from the LOM and DNS when
the correlation of position is at its minimum. The position from the LOM goes from leading
the position from the DNS near the upper wall to lagging it, which, creates an anti-correlation
(negative correlation) over the upper part of the channel cross-section.

4.3.5 Prediction

A minimum length of the DNS time series must exist below which the LOM does not predict
with acceptable accuracy the position and amplitude of the entropy wave beyond the range
covered by the DNS time series used to estimate its parameters. In order to determine the
minimum length of the DNS time series that is needed, the LOM parameters are estimated using
progressively longer DNS time series and the accuracy of the LOM is evaluated relative to the
length of the time series. The expectation is that the accuracy should approach an asymptotic
limit as the length of the time series is increased from the minimum length needed for a first
estimate of the model parameters to the full length of the DNS time series, which, covers the
entire dynamical behaviour.

For each length of the DNS time series the accuracy of the LOM is evaluated with use of
the metrics defined in section 4.3.4. However, for DNS time series of any length the metrics are
time-dependent because at every new time step the states from the LOM and DNS change and
thus, so does the accuracy of the LOM (see figure 4.14). Hence, the time-average of the absolute
metrics (〈|ε〈Φ̂ j〉A|〉t , 〈|rΦ̂ j

|〉t) is taken as a measure of the overall accuracy of the LOM for a given
length of the DNS time series. The absolute value of the metrics is taken because a positive and
negative residual or correlation coefficient would cancel out when averaged and thus, the average
of non-absolute metrics would give wrong indications about the LOM accuracy.

Plots of the time-averaged metrics with respect to the length of the DNS time series used
to estimate the parameters of the LOM are shown in columns one and two of figure 4.15 for
the case of adiabatic walls and heat loss at the walls respectively. In figure 4.15, the 0% DNS

data corresponds to fully developed turbulent flow before the entropy wave is added to the flow.
Further, the initial 12.5% of the DNS data (shaded region in the plots of figure 4.15) is the data
obtained during the time taken to add the entropy wave. This initial DNS data is not used when
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Figure 4.15: Plots of the time-averaged residual (row one) and time-averaged correlation (row
two) of corresponding states from the LOM and DNS with respect to the length of the DNS time
series used to formulate the LOM for the case of adiabatic walls (column one) and heat loss at
the walls (column two): � x̂, � T̂

formulating the LOM for two reasons. First, the present study is the convecting entropy wave
and not its generation. Secondly, the sharp temperature gradients that exist in the flow while the
entropy wave is being added to the flow would require higher order terms to be included in the
LOM equations. Nevertheless, the initial 12.5% of the DNS time series is shown in the plots of
figure 4.15 for completeness.

In the case of adiabatic walls in column one of figure 4.15, the residual in amplitude is large
for short DNS time series because there is insufficient DNS data for a good estimate of the LOM
parameters and reaches the asymptotic limit of ≈ 2% at ≈ 25% DNS data. As explained above,
the first 12.5% of the DNS data (shaded region in the plots of figure 4.15) is not used for the
estimation of the LOM parameters and thus, the effective length of the DNS time series at 25%
is 12.5%. The residual in position never exceeds 2% because the wave speed is equal to the
velocity of the isothermal flow (see section 4.3.1), which, is known before the entropy wave is
even added to the flow. The correlation in amplitude and position is very close to unity even
for short DNS time series. The correlation of position is expected to be close to unity even for
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short DNS time series for the same reason as the residual is expected to be small. On the other
hand, the close to unity correlation of amplitude for short DNS time series is not anticipated. It
is an indication that the large residual in amplitude for short DNS time series is uniform over the
channel cross-section at all times and hence, the amplitude remains correlated.

In the case of convective heat loss at the walls, in column two of figure 4.15b, the residual
in amplitude and position are similar to the case of adiabatic walls. That is, the residual in
amplitude is large for short DNS time series and reaches the asymptotic limit of ≈ 2% for
the model parameters estimated using only ≈ 12.5% of the full length of the DNS time series.
Further, the residual in position is approximately steady below 2%. The correlation in amplitude
and position is very close to unity irrespective of the length of the DNS time series just as in the
case of adiabatic walls.

The accuracy of the formulated LOM is acceptable only when the residual of the states
is low and correlation of the states over the channel cross-section is close to unity. From the
preceding discussion of figure 4.15 that an LOM of acceptable accuracy can be estimated using
only 12.5% of full length of the DNS time series. Equivalently, because the full length of the
DNS time series covers the complete dynamical behaviour of the convected entropy wave from
insert plane to channel outlet, it can be said that an LOM of acceptable accuracy can be estimated
by knowing in advance only 12.5% of the complete dynamical behaviour of the entropy wave.

4.4 Conclusions

Unlike modelling approaches of previous studies on convecting entropy perturbations, in the
present study the perturbations have been given a more intuitive wave-like representation whereby
the entropy wave has a non-uniform shape and amplitude. Doing so has enabled the low order
modelling of the convecting entropy wave by considering it as a stand-alone dynamical system
that has two states, namely position and amplitude. The rest of the flow around the wave simply
being labelled as the surroundings.

For the modelling of the wave, time series of the position and amplitude of a convecting
entropy wave in fully developed turbulent channel flow were generated from DNS. These time
series were used to formulate and subsequently calibrate the proposed LOM through a rigorous
and novel methodology that involved making statistical fittings to the DNS data. In the pro-
cess, findings emerged through the methodology in support of and in opposition to the main
assumptions made by the established modelling approaches of convecting small amplitude en-
tropy waves. The first of these assumptions is that the wave may be treated as a passive scalar
and the second is that the dynamics governing the decay of the wave amplitude are linear. Both
assumptions are made routinely and are for the case of a wave with a small amplitude without
any proof of what constitutes a small amplitude.

In support of the first assumption, the representation of the wave in the current work has
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made it possible to quantitatively confirm, from the DNS data, that an entropy wave with an ini-
tial amplitude that is 10% of the base flow temperature convects at the velocity of the isothermal
flow. Hence, the entropy wave may be treated as a passive scalar. However, it is emphasized that
this is not to suggest that this is also the case for waves with amplitude larger than the one used
in the current work.

Regarding the second assumption, the current work has found opposing evidence. The dif-
ferential equation formulated for amplitude in the proposed LOM is non-linear. The current
work also used a linear equation for the amplitude and found that the linear approximation is
only appropriate for waves with an amplitude that is less than 2% of the base flow temperature.

The latter of the above two findings, that is, that the envelope of the linearity assumption
may be smaller than previously assumed, could be the reason for the dissensus in the research
community regarding the importance of the role of entropy waves with respect to the thermoa-
coustic stability of combustors. The proposed LOM demonstrates that a non-linear differential
equation predicts the amplitude of the wave with small error. Moreover, that a linear differential
equation for amplitude underestimates the amplitude of the wave during the final stages of the
convection when the wave is near the combustor exit nozzle.

Conclusively, the proposed model similarly to the existing low order models of convect-
ing entropy waves gives a wave that convects at the velocity of the isothermal flow. However,
it improves on the morphology of the given wave, which is non-uniform in both position and
amplitude. Furthermore, it improves on the characterisation of the amplitude decay by using
a non-linear equation. The case-specific parameters of the proposed model can be estimated
from limited numerical or experimental data. In the current work, the model parameters are
determined using numerical data that covers only 12.5% of the complete high order dynami-
cal behaviour. That is, only data from the near flame region is needed to calibrate the model.
This, together with the fact that the model equations are amenable to analytic solution makes
the proposed model suitable for integration into active control systems as a constituent part of
thermoacoustic network models.

The addition of more fluid dynamics and chemical reactions could result in a different form
of the model equations. For a given flow configuration (geometry, fluid dynamics, chemical
reactions), the model methodology should be applied using data from a computational fluid
dynamics simulation or experimental measurements to formulate the model equations. The
simulation does not have to be one of high-fidelity (direct numerical simulation or large eddy
simulation). However, the low order model will only be as accurate as the computational result
from which it is derived. Once, the equations are established then these are expected to hold
at different operating points and only a limited amount of numerical or experimental data from
the high order system is needed at every operating point in order to determine the case-specific
parameters of the model equations. The model is then capable of predicting the subsequent
evolution of a two-dimensional entropy wave. The practicality of the model depends on whether
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it can be calibrated using only data from the near flame region, which is usually modelled by
large eddy simulations because flame models are too simplistic in most cases. The shape of the
generated entropy perturbation in the current work is of Gaussian form. A generated entropy
perturbation with a different shape would only change the initial condition that is used for the
solution of the model equations.



Chapter 5

Conclusions

5.1 Contributions of the current work

The current work has studied the dynamics of processes that can influence the stability of lean
premixed combustion systems and thus, limit the operational range of these systems that are an
important technology for reducing NOx emissions. The processes are flame flashback and the
advection of entropy perturbations through the combustion chamber.

The dynamics prior to flashback in stable and unstable combustion have been investigated for
the first time using nonlinear time series analysis. The trajectory of the system dynamics in phase
space is reconstructed from existing pressure time series recorded in flashback experiments by
the method of time delay embedding.

The recurrence patterns of the trajectory in the case of flashback in unstable combustion and
the translation error of the trajectory in the case of flashback in stable combustion show that
in both cases the determinism of the system dynamics increases on approaching the onset of
flashback. From an academic point of view, the findings show that relevant dynamical changes
occur in the flame on approaching the onset of flashback. Future investigations of flashback
mechanisms could benefit from this information. Furthermore, from a practical point of view,
the findings could be used for the design of early warning and active control systems that would
ensure flashback does not occur in real combustors.

A direct numerical simulation has been carried out for an advecting entropy perturbation
in a compressible turbulent channel flow. Unlike the direct numerical simulations in previous
studies, the case of heat transferring walls is simulated in addition to the usual case of adiabatic
walls. The simulation shows that heat transfer at the walls can significantly influence the decay
of an entropy perturbation.

Time series of the position and amplitude of the advecting entropy perturbation generated
from the direct numerical simulation have been used to develop a novel low order model. Un-
like previous models, the perturbation has not been reduced to a plane wave with a position and
an amplitude that are functions of time. Instead, the perturbation is reduced to a wave with a
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position and an amplitude that are functions of time and the wall-normal coordinate, thus pre-
serving the shape and amplitude distribution of the perturbation over the channel cross-section.
The model has been developed on the assumption that the evolution of the position and ampli-
tude of the wave can be represented by a general system of ordinary differential equations. In
the framework of differential equations the position and amplitude of the wave are the states of
the dynamical system. In the general system of equations, the time derivatives of the states are
unknown functions of the states and the coefficients are unknown functions of the wall-normal
coordinate. The former is represented by a first order Taylor series and the Jacobian matrix is
approximated by applying fits to the data from the direct numerical simulation. The fit types
determine the function between the states and their time derivatives. The fitting coefficients
are the coefficients in the resulting equations and depend on the wall-normal coordinate. In a
streamwise section, the equations for position and amplitude are uncoupled and hence, the time
evolution of the position and the amplitude in a streamwise section can be discussed separately.

The equation for the position of the wave shows that the wave changes position at a rate equal
to the velocity of the isothermal flow. This finding is for perturbations with a peak amplitude
that is less than 10% of the base flow temperature, which is the peak amplitude considered in
the current work.

The equation for the amplitude of the wave is nonlinear because the Jacobian depends on the
states. The Jacobian is constant for a peak amplitude less than 2% of the base flow temperature.
Hence, the assumption of previous studies that the governing equation for the amplitude decay
is linear is only strictly valid for peak amplitudes less than 2% of the base flow temperature. For
perturbations greater than this threshold, the linear equation overestimates and underestimates
the amplitude during the initial and final stages of the advection process respectively.

The low order model that is developed initially for the adiabatic walls case has been extended
to include the effects of heat transfer at the walls that have not been included in previous models.
In this case, the fit type also depends on the wall-normal coordinate and a library of fit types is
necessary so that the best fit type can be selected for a particular streamwise section based on a
best fit type selection criterion.

5.2 Suggestions for further work

A future study on flame flashback could investigate the feasibility of an active control system that
would detect and suppress the phenomenon. The control system would monitor the dynamics
of a combustion system by reconstructing its trajectory in phase space from the time series of
a measured variable such as pressure. On detecting the flashback precursors that have been
identified in the current work, the control system would take measures to prevent the occurrence
of flame flashback (e.g. decrease the swirl number by adjusting the swirl vanes angle). The
response time of the control system could benefit from short term prediction of the system
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dynamics that can be achieved by extrapolating the known trajectory prior to searching for the
flashback precursors. Furthermore, the response time could benefit from optimisation of the
coded algorithms that carry out the time series analysis. In the current work, code optimisation
has not been a prime concern. However, efficient coding of the algorithms that carry out the
time series analyses is necessary when these are intended for use in control systems.

Further work related to the modelling of advecting entropy waves could first, attempt to
model the advection of larger amplitude entropy waves. The amplitude considered in the current
work is 10% of the base flow temperature. The mean flame temperature in lean premixed com-
bustors can be as low as 1600K. The adiabatic flame temperature of most hydrocarbon flames is
in excess of 2000K. It is therefore conceivable that entropy waves with an amplitude that is as
high as 25% of the base flow temperature could be generated at the flame. Recent studies have
shown that entropy waves do influence the flow hydrodynamics. Although the exerted influence
is subtle in the case of low amplitude entropy waves, for stronger entropy waves this may not
be the case. A high amplitude entropy wave could result in the time scales of buoyancy driven
processes being comparable to the mean residence time of the flow. Further, later work could
also include additional physics in the flow and evaluate the model performance. The inclusion
of additional physics is expected to require that the library of fit types used during the modelling
methodology be expanded. Additional physics could be introduced by adding a swirl veloc-
ity component to the flow and chemical reactions. Furthermore, the turbulent intensity of the
flow could be increased. The ability of the model to capture additional physics could further be
extended by including the Hessian matrix and higher order terms into the formulation.
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Appendix A

Codes developed for nonlinear time series
analysis and modelling

A.1 Main programs

The codes that follow are written in the MATLAB programming language. The codes in section
A.1.1, process a time series that is supplied by the user using the nonlinear time series analysis
methods in chapter 2. These codes have been used to process the pressure time series from the
flashback experiments (not part of this work) and to generate the results in the flashback study,
in chapter 3. The code in section A.1.2, reads temperature field data that are supplied by the
user in data files and processes them to generate the case specific model of an advecting entropy
wave in turbulent channel flow. This code has been developed based on the novel methodology
presented in chapter 4 and used to generate the results in the entropy wave study, in section 4.3.

A.1.1 Nonlinear time series analysis

Generating a plot of the translation error of a system’s trajectory in phase space as a
function of time from the time series of a measured system variable

The following program calculates the translation error of a dynamical system’s trajectory in
phase space by analysing a time series of a measured variable from the system. The program
prompts the user for a time series s and its sampling frequency f s. Further, it requests the
parameters needed for the translation error calculation. These are, the number of random centre
points M, the number of sets of M which is Q, the number of nearest neighbours k, the width
of the running window measured in data points, and the displacement of the running window
also measured in data points. For example, to use a running window with 50% overlap, the
width of the window would be w data points and the window displacement would be w/2 data
points. The program takes sections of the time series s one window at a time and calculates
the coordinates of the phase points that reconstruct the section of the trajectory of the system in

109



110 APPENDIX A. CODES FOR NTSA AND MODELLING

phase space for the interval captured by the window. This calculation is done using the method
of time delay embedding. The program calls the functions AMI and FNN in sections A.2.1 and
A.2.2. These functions return the time delay T and the embedding dimension d needed for the
embedding. The time delay T and embedding dimension d only need to be calculated once.
Having calculated the coordinates of the phase points, the translation error is calculated and
stored in array Etrans. The window is displaced and the calculations are repeated for the next
window. Finally, the program generates a plots of the supplied time series and the translation
error as a function of time.

1 % i n p u t s
2 s = i n p u t ( ’ T i m e S e r i e s : ’ ) ;
3 f s = i n p u t ( ’ Sampl ingFrequency : ’ ) ;
4 M = i n p u t ( ’ NumberOfRandomCentres : ’ ) ;
5 Q = i n p u t ( ’ SetsOfRCs : ’ ) ;
6 k = i n p u t ( ’ NoNea re s tNe ighbo r s : ’ ) ;
7 L_win = i n p u t ( ’ WindowLength : ’ ) ;
8 WindowDisplacement = i n p u t ( ’ WindowDisplacement : ’ ) ;
9 % i f t ime s e r i e s i s a column v e c t o r

10 % t h e n c o n v e r t i t t o a row v e c t o r
11 [ rows , ~ ] = s i z e ( s ) ;
12 i f rows ~=1; s = s ’ ; end
13 % l e n g t h o f i n p u t t ime s e r i e s
14 L_tms = l e n g t h ( T i m e S e r i e s ) ;
15 i f L_tms <2 e3
16 s s = s ;
17 e l s e
18 s s = s ( 1 : 2 e3 ) ;
19 end
20 % f i n d d e l a y T f o r embedding
21 T = AMI( ss , 8 1 ) ;
22 % f i n d d imens ion d f o r embedding
23 d = FNN( ss , T ) ;
24 % i n i t i a l i z e window t r a i l i n g edge ( TE ) and l e a d i n g edge ( LE )
25 window_TE = 1 ;
26 window_LE = L_win ;
27 % i n i t i a l i z e a window c o u n t e r
28 window = 1 ;
29 % f o r each window c a l c u l a t e t r a n s l a t i o n e r r o r E _ t r a n s
30 w h i l e ( window_LE < L_tms ) | | ( window_LE == L_tms )
31 % g e n e r a t e m a t r i x y . Each column of y c o n t a i n s t h e
32 % c o o r d i n a t e s o f a phase p o i n t i n phase s p a c e
33 f o r T _ c o e f f = 0 : ( d−1)
34 s_1 = window_TE + T _ c o e f f ∗T ;
35 s_n = window_LE−(d−1)∗T + T _ c o e f f ∗T ;
36 y ( ( T _ c o e f f +1) , : ) = s ( s_1 : s_n ) ;
37 end
38 % t o t a l number o f phase p o i n t s i n phase s p a c e
39 l = l e n g t h ( y ) ;
40 % f o r e v e r y window :
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41 % 1 . s e l e c t M random c e n t r e p o i n t s .
42 % 2 . c a l c t r a n s l a t i o n e r r o r a t each random c e n t r e p o i n t .
43 % 3 . c a l c median o f t h e M t r a n s l a t i o n e r r o r s from s t e p 2 .
44 % 4 . r e p e a t s t e p s 1−3 Q t i m e s .
45 % 5 . c a l c mean of t h e Q t r a n s l a t i o n e r r o r s . Th i s i s t h e
46 % t r a n s l a t i o n e r r o r f o r t h e window .
47 % 6 . r e p e a t s t e p s 1−5 f o r a l l o t h e r windows .
48 f o r s e t = 1 :Q
49 % t h e M random c e n t r e p o i n t s .
50 RC_poin ts = r a n d i ( l , [ 1 ,M] ) ;
51 % c a l c t r a n s l a t i o n e r r o r e _ t r a n s a t each RC p o i n t
52 % i n i t i a l i z e a p o s i t i o n c o u n t e r f o r t h e a r r a y s .
53 c o u n t = 1 ;
54 f o r RC_point = RC_poin t s
55 % f i n d k n e a r e s t n e i g h b o r s t o RC_point
56 % e u c l e d i a n d i s t a n c e between RC_point and
57 % e v e r y o t h e r p o i n t on t r a j e c t o r y
58 E= s q r t ( sum ( ( y ( : , RC_point ) ∗ ones ( 1 , l )−y ( : , : ) ) . ^ 2 ) ) ;
59 % i g n o r e t h e z e r o E u c l i d e a n d i s t a n c e which i s
60 % t h e d i t a n c e between RC_point and i t s e l f
61 E ( RC_point ) = NaN ;
62 % n e a r e s t n e i g h b o r t o RC_point i s y ( : , i n d e x )
63 [ ~ , i n d e x ] = min ( E ) ;
64 % f i n d t h e o t h e r k−1 n e a r e s t n e i g h b o r s
65 f o r n = 1 : k
66 y_NN ( 1 , n ) = i n d e x ;
67 E ( i n d e x ) = NaN ;
68 [ ~ , i n d e x ] = min ( E ) ;
69 end
70 % column one of Y i s RC_point and t h e o t h e r k
71 % columns a r e t h e k n e a r e s t n e i g h b o r s
72 Y = c a t ( 2 , RC_point , y_NN) ;
73 % t r a n s l a t i o n v e c t o r s
74 f o r i = 1 : ( k +1)
75 % i f phase p o i n t i ( column i i n Y) i s t h e
76 % l a s t p o i n t on t h e t r a j e c t o r y i g n o r e i t
77 % ( i t does n o t have an image ! )
78 i f Y( i ) ~= l
79 V ( : , i ) = y ( : , Y( i ) +1) − y ( : , Y( i ) ) ;
80 end
81 end
82 % a v e r a g e t r a n s l a t i o n v e c t o r
83 V_average = ( sum (V, 2 ) . / ( k +1) ) ;
84 % t r a n s l a t i o n e r r o r a t RC_point
85 e _ t r a n s =sum ( sum ( ( V−V_average ∗ ones ( 1 , k +1) ) . ^ 2 ) . . .
86 . / sum ( V_average . ^ 2 ) ) / ( k +1) ;
87 % s t o r e t h e t r a n s l a t i o n e r r o r
88 e _ t r a n s _ a r r a y ( 1 , c o u n t ) = e _ t r a n s ;
89 c o u n t = c o u n t + 1 ;
90 end % n e x t RC p o i n t
91 % t r a n s l a t i o n e r r o r f o r t h e s e t
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92 e _ t r a n s _ m e d i a n ( 1 , s e t ) = median ( e _ t r a n s _ a r r a y ) ;
93 end % n e x t s e t
94 % t r a n s l a t i o n e r r o r f o r t h e c u r r e n t window
95 E _ t r a n s ( 1 , window ) = mean ( e _ t r a n s _ m e d i a n ) ;
96 % t r a n s . e r r o r f o r t h e c u r r e n t window i s p l o t t e d a t
97 %( ( t ime window ends )−( t ime window s t a r t s ) ) / 2
98 t _ f o r _ E _ t r a n s ( 1 , window ) = ( 1 / f s ) ∗ ( window_TE + L_win / 2 ) ;
99 % n e x t window

100 window = window + 1 ;
101 % n e x t window t r a i l i n g edge ( TE ) and l e a d i n g edge ( LE )
102 window_TE = window_TE + WindowDisplacement ;
103 % window_TE = window_LE − f l o o r ( o v e r l a p ∗L_win ) ;
104 window_LE = window_TE + L_win ;
105 %
106 c l e a r y ;
107 end
108 % smooth ing − mooving a v e r a g e
109 E _ t r a n s = smooth ( E _ t r a n s ) ;
110 % g e n e r a t e p l o t s
111 f i g u r e ;
112 % time s e r i e s p l o t
113 t _ f o r _ t i m e _ s e r i e s = ( 1 / f s ) ∗ ( 1 : L_tms ) ;
114 p = s ;
115 s u b p l o t ( 2 , 1 , 1 )
116 p l o t ( t _ f o r _ t i m e _ s e r i e s , p )
117 x l a b e l ( ’ t ( s ) ’ , ’ f o n t s i z e ’ , 1 2 )
118 y l a b e l ( ’ p \ pr ime ’ , ’ f o n t s i z e ’ , 1 2 )
119 % t r a n s l a t i o n e r r o r p l o t
120 s u b p l o t ( 2 , 1 , 2 )
121 p l o t ( t _ f o r _ E _ t r a n s , E _ t r a n s )
122 x l a b e l ( ’ t ( s ) ’ , ’ f o n t s i z e ’ , 1 2 )
123 y l a b e l ( ’ e_ { t r a n s } ’ , ’ f o n t s i z e ’ , 1 2 )
124 % mean p l u s / minus 1 s t d
125 l e g = l e n g t h ( E _ t r a n s ) ;
126 ho ld on ;
127 p l o t ( t _ f o r _ E _ t r a n s , mean ( E _ t r a n s ) ∗ ones ( 1 , l e g ) ) ;
128 p l o t ( t _ f o r _ E _ t r a n s , ( mean ( E _ t r a n s ) + s t d ( E _ t r a n s ) ) ∗ ones ( 1 , l e g ) ) ;
129 p l o t ( t _ f o r _ E _ t r a n s , ( mean ( E _ t r a n s )−s t d ( E _ t r a n s ) ) ∗ ones ( 1 , l e g ) ) ;
130 ho ld o f f ;

Generating recurrence plots and recurrence quantification measures as a function of time
for a system’s trajectory in phase space from a time series of a measured system variable

The following program generates the recurrence matrix and the recurrence plot for the trajectory
of a system that is reconstructed in phase space from a time series supplied by the user using
the time delay embedding method. The program prompts the user for a time series s and its
sampling frequency f s. Further, it requests the size of the neighbourhood that will be used to
check for recurrences of the trajectory in phase space. The size of the neighbourhood is an L2
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norm or Euclidean norm. The user supplies the size of the neighbourhood as a percentage of the
maximum attractor diameter (range is 0-1). The maximum attractor diameter is the maximum
distance between any two phase points along the trajectory. Finally, the user supplies the width
of the running window measured in data points, and the displacement of the running window
also measured in data points. For example, to use a running window with 50% overlap, the width
of the window would be w data points and the window displacement would be w/2 data points.
The program takes sections of the time series s one window at a time and calculates the coor-
dinates of the phase points that reconstruct the section of the trajectory of the system in phase
space for the interval captured by the window. This calculation is done using the method of time
delay embedding. The program calls the functions AMI and FNN in sections A.2.1 and A.2.2.
These functions return the time delay T and the embedding dimension d needed for the embed-
ding. The time delay T and embedding dimension d only need to be calculated once. Having
calculated the coordinates of the phase points, the neighbourhood of every phase point on the
trajectory is searched and the recurrences are recorded in the recurrence matrix. The recurrence
matrix is binary, where a one represents a recurrence and a zero represents no recurrence. The
window is displaced and the process is repeated for the next window. The program generates the
recurrence plot of every window and the plots of the recurrence quantification measures (RR,
DET, and DIV) as a function of time.

1 % c l e a r command window
2 c l c
3 % Record t h e t ime t h e s i m u l a t i o n s t a r t s
4 t _ 1 = c l o c k ;
5 % I n p u t s
6 t s = i n p u t ( ’ Time s e r i e s : ’ ) ;
7 c l e a r v a r s −e x c e p t t s t _ 1
8 f s = i n p u t ( ’ Sampl ing f r e q u e n c y : ’ ) ;
9 pe rcen t_dA = i n p u t ( ’ Neighborhood (% of a t t r a c t o r d i a m e t e r ) : ’ ) ;

10 L_win = i n p u t ( ’ WindowLength : ’ ) ;
11 WindowDisplacement = i n p u t ( ’ WindowDisplacement : ’ ) ;
12 L_win = L_win − 1 ;
13 % I f t ime s e r i e s i s a column v e c t o r c o n v e r t t o row v e c t o r
14 [ rows , ~ ] = s i z e ( t s ) ;
15 i f rows ~=1; t s = t s ’ ; end
16 % Number o f d a t a p o i n t s i n t ime s e r i e s ’ N_tms ’
17 L_tms = s i z e ( t s , 2 ) ;
18 % f i n d T and d f o r embedding
19 i f L_tms <2 e3
20 s s = t s ;
21 e l s e
22 s s = t s ( 1 : 2 e3 ) ;
23 end
24 % f i n d d e l a y T f o r embedding
25 T = AMI( ss , 8 1 ) ;
26 % f i n d d imens ion d f o r embedding
27 D = FNN( ss , T ) + 1 ;
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28 % s a m p l i n g t ime
29 t _ s = 1 / f s ;
30 % I n i t i a l i z e window t r a i l i n g edge ( TE ) and l e a d i n g edge ( LE )
31 window_TE = 1 ;
32 window_LE = window_TE + L_win ;
33 % I n i t i a l i z e a window c o u n t e r
34 window = 1 ;
35 % f o r each window c a l c u l a t e t h e RQA measures
36 w h i l e ( window_LE < L_tms ) | | ( window_LE == L_tms )
37 p o i n t 0 = window_TE ;
38 do tCoun t = 1 ;
39 % G e n e r a t e m a t r i x y .
40 % Each column of ’y ’ c o n t a i n s t h e c o o r d i n a t e s
41 % of a phase p o i n t i n phase s p a c e
42 f o r T _ c o e f f = 0 : ( D−1)
43 y ( ( T _ c o e f f +1) , : ) = t s ( ( window_TE+ T _ c o e f f ∗T ) : . . .
44 ( window_LE−(D−1)∗T+ T _ c o e f f ∗T ) ) ;
45 end
46 % Number o f phase p o i n t s i n phase s p a c e ’ N_ps ’
47 N_ps = s i z e ( y , 2 ) ;
48 % Diamete r o f a t t r a c t o r
49 f o r j = 1 : N_ps
50 % E u c l e d i a n d i s t a n c e
51 E = s q r t ( sum ( ( y ( : , j ) ∗ ones ( 1 , N_ps )−y ( : , 1 : N_ps ) ) . ^ 2 ) ) ;
52 E_max ( 1 , j ) = max ( E ) ;
53 end
54 d_A = max ( E_max ) ;
55 % D ef in e r e c u r r e n c e t h r e s h o l d ’ e p s i l o n ’
56 e p s i l o n = percen t_dA ∗d_A ;
57 % G e n e r a t e h i s t o g r a m of d i a g o n a l l i n e l e n g t h s P_ l
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 % Minimum d i a g o n a l l i n e l e n g t h i s t a k e n t o be o f t h e
60 % o r d e r o f t h e a u t o c o r r e l a t i o n t ime
61 l_min = 2 ;
62 % I n i t i a l i z e
63 l = 0 ;
64 P_l = z e r o s ( 1 , N_ps ) ;
65 f o r t a u = 0 : ( N_ps − 1 )
66 f o r i = 1 : ( N_ps−t a u ) % f o r each phase p o i n t
67 j = i + t a u ; % co−o r d i n a t e p a i r
68 % C a l c u l a t e t h e E u c l i d e a n norm between i and j
69 E = s q r t ( sum ( ( y ( : , i ) − y ( : , j ) ) . ^ 2 ) ) ;
70 i f ( E < e p s i l o n ) | | ( E == e p s i l o n )
71 i f ( t a u == 0 ) % i f b l a c k d o t i s ON THE LOI
72 % save
73 dotXYs ( dotCount , : ) = . . .
74 [ ( i−1+ p o i n t 0 ) ∗ t _ s , ( j−1+ p o i n t 0 ) ∗ t _ s ] ;
75 e l s e % i f t h e d o t i s NOT ON THE LOI
76 % save
77 dotXYs ( dotCount , : ) = . . .
78 [ ( i−1+ p o i n t 0 ) ∗ t _ s , ( j−1+ p o i n t 0 ) ∗ t _ s ] ;
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79 % and
80 do tCoun t = do tCoun t + 1 ;
81 % m i r r o r image
82 dotXYs ( dotCount , : ) = . . .
83 [ ( j−1+ p o i n t 0 ) ∗ t _ s , ( i−1+ p o i n t 0 ) ∗ t _ s ] ;
84 end
85 do tCoun t = do tCoun t + 1 ;
86 l = l + 1 ;
87 e l s e i f ( l ~= 0 )
88 P_l ( l ) = P_l ( l ) + 1 ;
89 l = 0 ;
90 end
91 i f ( i == N_ps − t a u ) && ( l ~= 0 )
92 P_l ( l ) = P_l ( l ) + 1 ;
93 l = 0 ;
94 end
95 end
96 end
97 P_l = [2 .∗ P_l ( 1 : N_ps−1 ) , P_ l ( N_ps ) ] ;
98

99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
100 % CALCULATE RQA MEASURES
101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102 % C a l c u l a t e t h e R e c u r r e n c e Rate RR
103 RR = sum ( ( 1 : N_ps ) .∗ P_l ) / N_ps ^ 2 ;
104 % C a l c u l a t e RQA measures based on d i a g o n a l l i n e s
105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
106 % C a l c u l a t e t h e d e t e r m i n i s m ( e x c l u d i n g LOI )
107 sumNumerator = sum ( ( l_min : N_ps−1) . ∗ P_l ( l_min : N_ps−1) ) ;
108 sumDenominator = sum ( ( 1 : N_ps−1) . ∗ P_l ( 1 : N_ps−1) ) ;
109 DET = sumNumerator / sumDenominator ;
110 % C a l c u l a t e t h e a v e r a g e d i a g o n a l l i n e l e n g t h ( ex . LOI )
111 sumNumerator = sum ( ( l_min : N_ps−1) . ∗ P_l ( l_min : N_ps−1) ) ;
112 sumDenominator = sum ( P_l ( l_min : N_ps−1 ) ) ;
113 L = sumNumerator / sumDenominator ;
114 % Length o f l o n g e s t d i a g o n a l and i t s r e c i p r o c a l ( ex . LOI )
115 l = N_ps−1;
116 w h i l e ( P_ l ( l ) ==0) && ( ( l > l_min ) | | ( l == l_min ) )
117 l = l − 1 ;
118 end
119 L_max = l ;
120 DIV = 1 / L_max ;
121 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
122 % SAVE RQA MEASURES FOR WINDOW
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 % S t o r e r e c u r r e n c e r a t e ’RR’
125 RR_array ( 1 , window ) = RR;
126 % S t o r e d e t e r m i n i s m ’DET’
127 DET_array ( 1 , window ) = DET;
128 % S t o r e l e n g t h o f l o n g e s t d i a g o n a l and i t s r e c i p r o c a l
129 DIV_array ( 1 , window ) = DIV ;
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130 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131 % PLOT RP FOR WINDOW
132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
133 f i g u r e ( ’ name ’ , [ ’RP f o r window= ’ , num2s t r ( window ) ] )
134 s c a t t e r ( dotXYs ( : , 1 ) , dotXYs ( : , 2 ) , ’ . ’ , ’ s i z e d a t a ’ , 1 0 ) ;
135 x l a b e l ( ’ t ime ( s ) ’ ) ; y l a b e l ( ’ t ime ( s ) ’ ) ;
136 a x i s s q u a r e ; box on ;
137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
138 % P r i n t p r o g r e s s t o command window
139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 c l c ;
141 P r o g r e s s = window_LE / L_tms ∗100 ;
142 f p r i n t f ( ’ \ n \ n P r o g r e s s : %.2 f%%’ , P r o g r e s s ) ;
143 t ( 1 , window ) = ( 1 / f s ) ∗ ( window_TE + L_win / 2 ) ;
144 % Next window
145 window = window + 1 ;
146 % Next window t r a i l i n g edge ( TE ) and l e a d i n g edge ( LE )
147 window_TE = window_TE + WindowDisplacement ;
148 % window_TE = window_LE − f l o o r ( o v e r l a p ∗L_win ) ;
149 window_LE = window_TE + L_win ;
150 c l e a r y do tCoun t dotXYs ;
151 end
152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153 % PLOT RQA MEASURES AS A FUNCTION OF TIME
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 f i g u r e ( ’ name ’ , ’ R e c u r r e n c e r a t e (RR) ’ ) ;
156 p l o t ( t , RR_array ) ; x l a b e l ( ’ t ( s ) ’ ) ; y l a b e l ( ’RR ’ ) ;
157 f i g u r e ( ’ name ’ , ’ Dete rmin i sm (DET) ’ ) ;
158 p l o t ( t , DET_array ) ; x l a b e l ( ’ t ( s ) ’ ) ; y l a b e l ( ’DET ’ ) ;
159 f i g u r e ( ’ name ’ , ’ D i v e r g e n c e ( DIV ) ’ ) ;
160 p l o t ( t , DIV_array ) ; x l a b e l ( ’ t ( s ) ’ ) ; y l a b e l ( ’DIV ’ ) ;
161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162 % C l e a r command window
163 c l c ;
164 % Record t h e t ime t h e s i m u l a t i o n ends
165 t _ 2 = c l o c k ;
166 % E x e c u t i o n t ime
167 t _ e x e = e t i m e ( t_2 , t _ 1 ) ;
168 mins = f l o o r ( t _ e x e / 6 0 ) ;
169 s e c s = round ( t _ e x e − mins ∗60) ;
170 f p r i n t f ( ’ The c a l c u l a t i o n comple t ed i n : ’ ) ;
171 f p r i n t f ( ’%imin and %i s e c . \ n \ n ’ , mins , s e c s ) ;

A.1.2 Low order modelling

The following program processes the temperature field data (in this case DNS data), which
are read from data files and generates plots that show the actual and model generated shape
and amplitude of the two-dimensional entropy wave during the advection. Furthermore, the
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program generates plots of the equation coefficients and Akaike weights as a function of the
wall-normal coordinate, and plots of the model performance relative to the actual behaviour
of the wave (deviation and correlation plots). The program first reads the temperature field
data from data files. It then searches for the maximum temperature in each streamwise cross-
section of the flow and saves its magnitude and streamwise position. These give the (DNS)
amplitude and shape of the entropy wave over the channel cross-section and are stored in the
arrays T _dns and x_dns, respectively. The rows of these arrays contain the (DNS) position and
(DNS) amplitude with respect to the wall-normal coordinate and the columns contain the (DNS)
position and (DNS) amplitude with respect to time. The program calls the function ODEpar in
section A.2.3 to calculate the coefficients of the model equations that are case specific. Once the
coefficients are returned, the main program moves on to solve the model equations numerically
with the MATLAB function ode113. This ODE solver requires that the equations be defined in
a function. Therefore, the function ODEeqn in section A.2.4 defines the model equations and
is called by the MATLAB function ode113. The amplitude and position of the entropy wave
from the solution of the model equations are stored in the arrays T _lom and x_lom, respectively.
The deviation of the position and amplitude of the wave from the model relative to the actual
values (in this case from DNS) is calculated. Furthermore, the correlation between the actual and
model derived wave shape and amplitude variation over the cross-section is calculated. Finally,
the various plots are generated.

1 % c l e a r command window and workspace
2 c l c ; c l e a r ;
3 t _ s t a r t = c l o c k ;
4 f p r i n t f ( ’ \ n∗ p l o t _ a d v e c t i o n _ v 2 .m i s r u n n i n g . . . \ n \ n ’ ) ;
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 % SIMULATION PARAMETERS
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 Lx = 0 . 0 7 5 4 ; % c h a n n e l l e n g t h
9 d e l t a = 0 . 0 0 6 ; % c h a n n e l h a l f−wid th

10 Ubulk = 102 ; % bu lk v e l o c i t y
11 Tmean = 1500 ; % mean t e m p e r a t u r e
12 % p r i n t s i m u l a t i o n p a r a m e t e r s t o command window
13 f p r i n t f ( ’ ! ! MAKE SURE THESE PARAMETERS ARE CORRECT ! ! \ n ’ ) ;
14 f p r i n t f ( ’ s i m u l a t i o n p a r a m e t e r s a r e s e t t o : ’ ) ;
15 f p r i n t f ( ’Lx / d e l t a / Tmean / Ubulk = ’ ) ;
16 f p r i n t f ( ’ %1.4fm /%5.3 fm/%iK /%6.2 fmps \ n ’ , Lx , d e l t a , Tmean , Ubulk ) ;
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 % INPUTS
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 os = i n p u t ( ’ l i n o r win : ’ , ’ s ’ ) ; % o p e r a t i n g sys tem
21 f i l e p a t h = i n p u t ( ’ f i l e p a t h : ’ , ’ s ’ ) ; % f i l e p a t h
22 % nodes
23 NX = i n p u t ( ’ nodes i n s t r e a m w i s e d i r e c t i o n : ’ ) ;
24 NY = i n p u t ( ’ nodes i n wal l−normal d i r e c t i o n : ’ ) ;
25 % t o t a l DNS t ime s t e p s
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26 t o t a l _ d n s _ i t e r = i n p u t ( ’ t o t a l DNS t ime s t e p s : ’ ) ;
27 % time i n s t a n t s t o p l o t d a t a ( i n i t e r s o f DNS t ime s t e p )
28 d n s _ i t e r _ a r r a y = . . .
29 i n p u t ( ’ t ime s t e p s t o p l o t [ f i r s t : s t e p : l a s t , min = 6 ! ! ] : ’ ) ;
30 w h i l e ( l e n g t h ( d n s _ i t e r _ a r r a y ) < 6) && . . .
31 ( i s e m p t y ( d n s _ i t e r _ a r r a y ) ~=1)
32 d = d i a l o g ( ’Name ’ , ’ Warning ’ ) ;
33 t x t = u i c o n t r o l ( ’ P a r e n t ’ , d , ’ S t y l e ’ , ’ t e x t ’ , . . .
34 ’ S t r i n g ’ , ’ There s h o u l d be a minimum of 6 t ime s t e p s ! ! ’ ) ;
35 b t n = u i c o n t r o l ( ’ P a r e n t ’ , d , ’ S t r i n g ’ , ’ C lose ’ , . . .
36 ’ C a l l b a c k ’ , ’ d e l e t e ( g c f ) ’ ) ;
37 d n s _ i t e r _ a r r a y = . . .
38 i n p u t ( ’ Time s t e p s t o p l o t [ f i r s t : s t e p : l a s t , min = 6 ! ! ] : ’ ) ;
39 end
40 % b u i l d model u s i n g p a r t i a l d a t a ( p a r t i a l d a t a p e r c e n t a g e )
41 pdp = i n p u t ( ’ P a r t i a l d a t a p e r c e n t a g e ( max . 3 ) : ’ ) ;
42 % long e x p o s u r e on or o f f
43 e x p o s u r e = i n p u t ( ’ Long e x p o s u r e ( t r u e / f a l s e ) : ’ ) ;
44 f p r i n t f ( ’ \ n ’ ) ; % move c u r s o r t o n e x t l i n e
45 % p a r t i a l d a t a s e t s
46 a l l = l e n g t h ( d n s _ i t e r _ a r r a y ) ;
47 p o i n t s _ f o r _ f i t s = round ( a l l ∗pdp ) ;
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 % GET PARAMETERS ppa and h _ c o e f f FROM DATA FILENAME
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 % p u l s e p e r c e n t a g e a m p l i t u d e (% of Tmean )
52 ppa = s t r 2 d o u b l e ( d a t a s e t ( 4 : 5 ) ) / 1 0 0 ;
53 % h e a t t r a n f e r c o n v e c t i o n c o e f f i c i e n t
54 h _ c o e f f = s t r 2 d o u b l e ( d a t a s e t ( 9 : 1 1 ) ) ;
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 % MAIN PROGRAM
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % ITERATIONS − TIME STEPS
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 f i r s t _ i t e r = 1 ;
61 l a s t _ i t e r = l e n g t h ( d n s _ i t e r _ a r r a y ) ;
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 % DATA ACQUISITION − DNS TIME ARRAY
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 % add p a t h t o d a t a f i l e n a m e
66 i f s t r c mp ( os , ’ l i n ’ ) ==1
67 f i l e n a m e = [ f i l e p a t h , ’ / t ’ ] ;
68 e l s e
69 f i l e n a m e = [ f i l e p a t h , ’ \ t ’ ] ;
70 end
71 %
72 f i l e I D = fopen ( f i l e n a m e ) ; % open f i l e
73 t _ d n s = f s c a n f ( f i l e I D , ’%f ’ , [ 1 , t o t a l _ d n s _ i t e r ] ) ; % r e a d f i l e
74 f c l o s e ( f i l e I D ) ; % c l o s e f i l e
75 t _ d n s = t_dns ’ ; % t r a n s p o s e d a t a
76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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77 % MATLAB TIME ARRAY − s e e d n s _ i t e r _ a r r a y above i n INPUTS
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 % time i n s t a n t s
80 f o r i t e r = f i r s t _ i t e r : l a s t _ i t e r
81 t ( i t e r ) = t _ d n s ( d n s _ i t e r _ a r r a y ( i t e r ) ) ;
82 end
83 t = t . ∗ Ubulk . / Lx ; % NON−DIMENSIONAL TIME ! ! !
84 Dt = d i f f ( t ) ; % ma t l ab t ime s t e p ( downsampled )
85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86 % DATA ACQUISITION − DNS TEMP FIELD
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88 % i n i t i a l c o n d i t i o n ( x_max and T_max a t t =0)
89 f o r i t e r = f i r s t _ i t e r : l a s t _ i t e r
90 % c l e a r dns d a t a v a r i a b l e s b e f o r e n e x t i t e r a t i o n
91 c l e a r x _ f i e l d y _ f i e l d z _ f i e l d
92 % dns i t e r a t i o n
93 d n s _ i t e r = d n s _ i t e r _ a r r a y ( i t e r ) ;
94 % d a t a f i l e name
95 f i l e n a m e = [ ’T_ ’ , num2s t r ( d n s _ i t e r , ’%04u ’ ) ] ;
96 % add p a t h t o d a t a f i l e name
97 i f s t r c mp ( os , ’ l i n ’ ) ==1
98 f i l e n a m e = [ f i l e p a t h , f i l e n a m e ] ;
99 e l s e

100 f i l e n a m e = [ f i l e p a t h , f i l e n a m e ] ;
101 end
102 %
103 f i l e I D = fopen ( f i l e n a m e ) ; % open f i l e
104 f i e l d = f s c a n f ( f i l e I D , ’%f ’ , [ 3 ,NX∗NY] ) ; % r e a d f i l e
105 f c l o s e ( f i l e I D ) ; % c l o s e f i l e
106 f i e l d = f i e l d ’ ; % t r a n s p o s e d a t a
107 % non−d i m e n s i o n a l y
108 i f i t e r ==1
109 f o r j = 1 :NY
110 y_dns ( j ) = f i e l d ( j , 2 ) / d e l t a ;
111 end
112 end
113 % non−d i m e n s i o n a l x and T
114 f o r i = 1 :NX
115 % non−d i m e n s i o n a l x
116 x _ f i e l d ( i ) = f i e l d ( ( i −1)∗NY+1 ,1 ) / d e l t a ;
117 % non−d i m e n s i o n a l T
118 f o r j = 1 :NY
119 i f ( f i e l d ( j +( i −1)∗NY, 3 ) >Tmean )
120 T _ f i e l d ( j , i ) = . . .
121 ( f i e l d ( j +( i −1)∗NY, 3 )−Tmean ) . / ( Tmean ) ;
122 e l s e
123 T _ f i e l d ( j , i ) = 0 ; % cap v a l u e s a t z e r o
124 end
125 end
126 end
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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128 % T AND X OF MAX TEMP. IN EACH STREAMWISE SECTION
129 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130 f o r j = 1 :NY
131 max_found = f a l s e ;
132 M = 0 ;
133 % f i n d
134 f o r i = 1 :NX
135 i f ( T _ f i e l d ( j , i ) > M )
136 max_found = t r u e ;
137 M = T _ f i e l d ( j , i ) ;
138 i_of_M = i ;
139 j_of_M = j ;
140 end
141 end
142 % s t o r e
143 i f max_found
144 i_max ( i t e r , j ) = i_of_M ;
145 x_dns ( i t e r , j ) = x _ f i e l d ( i_of_M ) ;
146 T_dns ( i t e r , j ) = T _ f i e l d ( j_of_M , i_of_M ) ;
147 e l s e
148 i_max ( i t e r , j ) = 0 ;
149 x_dns ( i t e r , j ) = 0 ;
150 T_dns ( i t e r , j ) = 0 ;
151 end
152 end
153 dy = y_dns ( 2 : end )−y_dns ( 1 : end−1) ;
154 end
155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
156 % STREAMWISE SECTIONS WITH L . T . 6 TIME STEPS (MIN . FOR FIT )
157 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
158 j _ i g n o r e = z e r o s ( 1 ,NY) ;
159 i =1 ; % i n i t i a l i z e
160 f o r j = 1 : NY
161 i f ( l e n g t h ( f i n d ( T_dns ( : , j ) ) ) < 6 )
162 j _ i g n o r e ( j ) = 1 ;
163 e l s e
164 y _ e f f ( i ) = y_dns ( j ) ;
165 i = i + 1 ;
166 end
167 end
168 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
169 % THETAS − EQN COEFFICIENTS /PARAMETERS
170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
172 [ t h e t a 1 ( model , : ) , t h e t a 2 ( model , : ) , b e s t f i t ( model , : ) , . . .
173 a k a i k e _ w e i g h t s ( : , ( model−1) ∗3 + 1 : ( model−1)∗3+3) ] = . . .
174 ODEpar ( t , Dt ,NY, j _ i g n o r e , y _ e f f , x_dns , . . .
175 T_dns , p o i n t s _ f o r _ f i t s ( model ) , h _ c o e f f ) ;
176 end
177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178 % SOLVE SYSTEM OF EQNS wi th ode113
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179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
180 % model b u i l d−up
181 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
182 j n o n z e r o = 1 ;
183 f o r j = 1 :NY
184 i f j _ i g n o r e ( j ) ~= 1
185 y = y_dns ( j ) ;
186 % s o l v e sys tem of eqns
187 [ t t , o u t ] = ode113 ( . . .
188 @( c , y ) ODEeqn ( c , y , . . .
189 t h e t a 1 ( model , j n o n z e r o ) , . . .
190 t h e t a 2 ( model , j n o n z e r o ) , . . .
191 b e s t f i t ( model , j n o n z e r o ) ) , . . .
192 t , [ x_dns ( 1 , j ) , T_dns ( 1 , j ) ] ) ;
193 % s t o r e model d a t a i n xmodel and Tmodel
194 A_i = ( model−1)∗ l e n g t h ( t t ) +1 ;
195 Z_i = ( model−1)∗ l e n g t h ( t t ) + l e n g t h ( t t ) ;
196 %
197 x_ lom_ef f ( A_i : Z_i , j n o n z e r o ) = o u t ( 1 : l e n g t h ( t t ) , 1 ) ;
198 y_ lom_ef f ( A_i : Z_i , j n o n z e r o ) =y∗ ones ( l e n g t h ( t t ) , 1 ) ;
199 T_lom_eff ( A_i : Z_i , j n o n z e r o ) = o u t ( 1 : l e n g t h ( t t ) , 2 ) ;
200 j n o n z e r o = j n o n z e r o + 1 ;
201 end
202 end
203 end
204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205 % GENERATE FRAMES
206 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
207 f o r i t e r = f i r s t _ i t e r : l a s t _ i t e r % t ime s t e p s
208 % c l e a r f i e l d v a r i a b l e s
209 c l e a r x_max y_max z_max
210 %
211 d n s _ i t e r = d n s _ i t e r _ a r r a y ( i t e r ) ;
212 % NEED EFFECTIVE DNS ARRAYS.
213 % ALREADY HAVE LOM EFFECTIVE ARRAYS.
214 % EFFECTIVE ARRAYS DO NOT INCLUDE j _ i g n o r e ( j ) ==1 ELEMENTS
215 % j _ i g n o r e ( j ) ==1 ARE THE STREAMWISE SECTIONS THAT CONTAIN
216 % L . T . 6 NONZERO STATES WHICH IS THE MIN REQUIERED TO
217 % MAKE FITS AND CREATE THE LOM FOR THAT Y−LAYER.
218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
219 j n o n z e r o = 1 ;
220 f o r j = 1 :NY
221 i f j _ i g n o r e ( j ) ~= 1
222 x _ d n s _ e f f ( 1 , j n o n z e r o ) = x_dns ( i t e r , j ) ;
223 y _ d n s _ e f f ( 1 , j n o n z e r o ) = y_dns ( j ) ;
224 T _ d n s _ e f f ( 1 , j n o n z e r o ) = T_dns ( i t e r , j ) ;
225 j n o n z e r o = j n o n z e r o + 1 ;
226 end
227 end
228 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
229 % LOM PERFORMANCE STATISTICS
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230 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
231 % PREPARE ARRAYS FOR PLOTTING − IGNORE ZERO VALUES
232 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
233 % DNS
234 c o u n t = 1 ;
235 c l e a r x _ d n s _ p l o t y _ d n s _ p l o t T _ d n s _ p l o t
236 f o r j = 1 :NY
237 i f j _ i g n o r e ( j ) ~= 1
238 % check i f a m p l i t u d e has r e a c h e d z e r o
239 % i f t r u e t h e n i g n o r e y−s l i c e
240 i f T_dns ( i t e r , j ) > 10e−3
241 x _ d n s _ p l o t ( 1 , c o u n t ) = x_dns ( i t e r , j ) ;
242 y _ d n s _ p l o t ( 1 , c o u n t ) = y_dns ( j ) ;
243 T _ d n s _ p l o t ( 1 , c o u n t ) = T_dns ( i t e r , j ) ;
244 c o u n t = c o u n t + 1 ;
245 end
246 end
247 end
248 % LOM
249 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
250 c o u n t = 1 ; j n o n z e r o =1;
251 c l e a r x _ l o m _ p l o t y _ l o m _ p l o t T_ lom_plo t
252 f o r j = 1 :NY
253 i f j _ i g n o r e ( j ) ~= 1
254 % check i f a m p l i t u d e has r e a c h e d z e r o
255 % i f t r u e t h e n i g n o r e t h i s y−s l i c e
256 i f T_dns ( i t e r , j ) > 10e−3
257 %
258 A = ( model−1)∗ l e n g t h ( t t ) + i t e r ;
259 %
260 x _ l o m _ p l o t ( c o u n t ) = x_ lom_ef f (A, j n o n z e r o ) ;
261 y _ l o m _ p l o t ( c o u n t ) = y_ lom_ef f (A, j n o n z e r o ) ;
262 T_lom_plo t ( c o u n t ) = T_lom_ef f (A, j n o n z e r o ) ;
263 c o u n t = c o u n t + 1 ;
264 end
265 j n o n z e r o = j n o n z e r o + 1 ;
266 end
267 end
268 end
269 % SMOOTH LOM DATA
270 [ i_end , j _ e n d ] = s i z e ( x _ l o m _ p l o t ) ;
271 f o r i = 1 : i _ e n d
272 x _ l o m _ p l o t ( i , : ) = . . .
273 s m o o t h d a t a ( x _ l o m _ p l o t ( i , : ) , ’ S m o o t h i n g F a c t o r ’ , 0 . 5 ) ;
274 end
275 f o r j = 1 : l e n g t h ( x _ d n s _ p l o t )
276 x _ d n s _ p l o t _ f u l l ( i t e r , j ) = x _ d n s _ p l o t ( j ) ;
277 end
278 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
279 % CROSS SECTIONAL AVG
280 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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281 dy = y_dns ( 2 : end )−y_dns ( 1 : end−1) ;
282 f r a c t i o n = ( 1 / ( y _ d n s _ p l o t ( end )−y _ d n s _ p l o t ( 1 ) ) ) ;
283 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
284 A = ( model−1)∗ l e n g t h ( t t ) + i t e r ;
285 % e r r o r i n mean p o s i t i o n
286 c o u n t =1 ; xavg_dns =0; xavg_lom =0;
287 f o r j = 1 : NY−1
288 i f ( j _ i g n o r e ( j ) ~=1)&&(count < l e n g t h ( y _ l o m _ p l o t ) )
289 xavg_dns = xavg_dns + f r a c t i o n ∗ . . .
290 ( x _ d n s _ p l o t ( c o u n t ) + x _ d n s _ p l o t ( c o u n t +1) ) / . . .
291 2∗dy ( j ) ;
292 xavg_lom = xavg_lom + f r a c t i o n ∗ . . .
293 ( x _ l o m _ p l o t ( c o u n t ) + x _ l o m _ p l o t ( c o u n t +1) ) / . . .
294 2∗dy ( j ) ;
295 c o u n t = c o u n t + 1 ;
296 end
297 end
298 x o u t _ dn s ( i t e r ) = xavg_dns ;
299 xout_lom ( i t e r ) = xavg_lom ;
300 e p s i l o n _ x (A) = ( xavg_lom−xavg_dns ) / xavg_dns ∗100 ;
301 % e r r o r i n mean a m p l i t u d e
302 c o u n t =1 ;
303 Tavg_dns =0; Tavg_lom =0;
304 f o r j = 1 : NY−1
305 i f ( j _ i g n o r e ( j ) ~=1)&&(count < l e n g t h ( y _ l o m _ p l o t ) )
306 Tavg_dns = Tavg_dns + f r a c t i o n ∗ . . .
307 ( T _ d n s _ p l o t ( c o u n t ) + T _ d n s _ p l o t ( c o u n t +1) ) / . . .
308 2∗dy ( j ) ;
309 Tavg_lom = Tavg_lom + f r a c t i o n ∗ . . .
310 ( T_ lom_plo t ( c o u n t ) + . . .
311 T_lom_plo t ( c o u n t +1) ) / 2∗ dy ( j ) ;
312 c o u n t = c o u n t + 1 ;
313 end
314 end
315 Tout_dns ( i t e r ) = Tavg_dns ;
316 Tout_lom ( i t e r ) = Tavg_lom ;
317 e p s i l o n _ T (A) = ( Tavg_lom−Tavg_dns ) / Tavg_dns ∗100 ;
318 % c o r r e l a t i o n o f p o s i t i o n
319 c o u n t =1 ;
320 a v g _ r e s _ x d n s =0; avg_res_x lom =0; a v g _ r e s _ p r o d =0;
321 f o r j = 1 : NY−1
322 i f ( j _ i g n o r e ( j ) ~=1)&&(count < l e n g t h ( x _ l o m _ p l o t ) )
323 a v g _ r e s _ x d n s = a v g _ r e s _ x d n s + f r a c t i o n ∗ . . .
324 ( ( x _ d n s _ p l o t ( c o u n t ) − . . .
325 xavg_dns ) ^2 ) ∗dy ( j ) ;
326 avg_res_x lom = avg_res_x lom + f r a c t i o n ∗ . . .
327 ( ( x _ l o m _ p l o t ( c o u n t ) − . . .
328 xavg_lom ) ^2 ) ∗dy ( j ) ;
329 a v g _ r e s _ p r o d = a v g _ r e s _ p r o d + f r a c t i o n ∗ . . .
330 ( ( x _ d n s _ p l o t ( c o u n t ) − . . .
331 xavg_dns ) ) ∗ . . .
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332 ( ( x _ l o m _ p l o t ( c o u n t ) − . . .
333 xavg_lom ) ) ∗dy ( j ) ;
334 c o u n t = c o u n t + 1 ;
335 end
336 end
337 s t d e v _ x d n s = s q r t ( a v g _ r e s _ x d n s ) ;
338 s tdev_x lom = s q r t ( avg_res_x lom ) ;
339 rho_xx (A) = a v g _ r e s _ p r o d / ( s t d e v _ x d n s ∗ s tdev_x lom ) ;
340 % c o r r e l a t i o n o f a m p l i t u d e
341 c o u n t =1 ;
342 avg_res_Tdns =0; avg_res_Tlom =0; a v g _ r e s _ p r o d =0;
343 f o r j = 1 : NY−1
344 i f ( j _ i g n o r e ( j ) ~=1)&&(count < l e n g t h ( T_lom_plo t ) )
345 avg_res_Tdns = avg_res_Tdns + f r a c t i o n ∗ . . .
346 ( ( T _ d n s _ p l o t ( c o u n t ) − . . .
347 Tavg_dns ) ^2 ) ∗dy ( j ) ;
348 avg_res_Tlom = avg_res_Tlom + f r a c t i o n ∗ . . .
349 ( ( T_ lom_plo t ( c o u n t ) − . . .
350 Tavg_lom ) ^2 ) ∗dy ( j ) ;
351 a v g _ r e s _ p r o d = a v g _ r e s _ p r o d + f r a c t i o n ∗ . . .
352 ( ( T _ d n s _ p l o t ( c o u n t ) − . . .
353 Tavg_dns ) ) ∗ . . .
354 ( ( T_ lom_plo t ( c o u n t ) − . . .
355 Tavg_lom ) ) ∗dy ( j ) ;
356 c o u n t = c o u n t + 1 ;
357 end
358 end
359 s t d e v _ T d n s = s q r t ( avg_res_Tdns ) ;
360 s tdev_Tlom = s q r t ( avg_res_Tlom ) ;
361 rho_TT (A) = a v g _ r e s _ p r o d / ( s t d e v _ T d n s ∗ s tdev_Tlom ) ;
362 end
363 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
364 % PLOTTING
365 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
366 % p l o t t i n g p r o p e r t i e s
367 c o l o r _ d n s = ’ k ’ ; c o l o r _ f a c e = ’ none ’ ;
368 i f l e n g t h ( pdp ) == ones ( 1 , 3 )
369 c o l o r _ l o m = [1 0 0 ; 1 0 0 ; 1 0 0 ] ;
370 c o l o r _ l o m _ d a t a = [0 0 0 ; 0 0 0 ; 0 0 0 ] ;
371 e l s e
372 c o l o r _ l o m = [0 0 1 ; 0 0 . 6 0 ; 1 0 0 ] ;
373 c o l o r _ l o m _ d a t a = [0 0 1 ; 0 0 . 6 0 ; 1 0 0 ] ;
374 end
375 l i n e w i d t h = 1 ; f o n t s i z e = 1 2 ; m a r k e r _ s i z e = 3 ;
376 % a m p l i t u d e i n wal l−normal d i r e c t i o n
377 i f i t e r ==1
378 f1 = f i g u r e ; s e t ( f1 , ’ u n i t s ’ , ’ normal ’ )
379 f 1 _p os = g e t ( f1 , ’ p o s i t i o n ’ ) ;
380 a1 = axes ( ’ f o n t s i z e ’ , f o n t s i z e −2) ;
381 g r i d on ; box on ; a x i s s q u a r e ;
382 % a x i s l a b e l s
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383 x l a b e l ( ’ $ \ b f y / \ d e l t a $ ’ , . . .
384 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
385 y l a b e l ( ’ $$ \ b f \ D e l t a T / \ o v e r l i n e {T} $$ ’ , . . .
386 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
387 % a x i s l i m i t s
388 a x i s ([−1 1 0 ppa ] ) ;
389 end
390 f i g u r e ( f1 )
391 i f e x p o s u r e ; ho ld on ; end
392 p l o t ( a1 , y _ d n s _ p l o t , T_dns_p lo t , ’ l i n e s t y l e ’ , ’ none ’ , . . .
393 ’ marker ’ , ’ s ’ , ’ m a r k e r s i z e ’ , 4 , ’ m a r k e r f a c e c o l o r ’ , . . .
394 c o l o r _ f a c e , ’ m a r k e r e d g e c o l o r ’ , c o l o r _ d n s ) ;
395 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
396 p l o t ( a1 , y_ lom_plo t , T_lom_plot , ’ l i n e s t y l e ’ , ’− ’ , . . .
397 ’ c o l o r ’ , c o l o r _ l o m ( model , : ) , . . .
398 ’ l i n e w i d t h ’ , l i n e w i d t h ) ;
399 end
400 ho ld o f f ;
401 % shape i n xy s e c t i o n
402 i f i t e r ==1
403 f2 = f i g u r e ;
404 s e t ( f2 , ’ u n i t s ’ , ’ normal ’ , . . .
405 ’ p o s i t i o n ’ , f 1_ po s + [ 0 . 0 5 −0.1 0 0 ] )
406 f 2 _p os = g e t ( f2 , ’ p o s i t i o n ’ ) ;
407 a2 = axes ( ’ f o n t s i z e ’ , f o n t s i z e −2) ;
408 g r i d on ; box on ; a x i s s q u a r e ;
409 % a x i s l a b e l s
410 x l a b e l ( ’ $ \ b f x / \ d e l t a $ ’ , . . .
411 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
412 y l a b e l ( ’ $ \ b f y \ d e l t a $ ’ , . . .
413 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
414 % a x i s l i m i t s
415 a x i s ( [ 0 Lx / d e l t a −1 1 ] ) ;
416 % t i c k s
417 x l b l s =[ ’ 0 \ p i ’ ; ’ 2 \ p i ’ ; ’ 4 \ p i ’ ] ;
418 x t c k s =[0 ,2∗ pi , 4∗ p i ] ;
419 s e t ( gca , ’ x t i c k ’ , x t c k s , ’ x t i c k l a b e l ’ , x l b l s ) ;
420 end
421 f i g u r e ( f2 )
422 i f e x p o s u r e ; ho ld on ; end
423 p l o t ( a2 , x _ d n s _ p l o t , y _ d n s _ p l o t , . . .
424 ’ l i n e s t y l e ’ , ’ none ’ , ’ marker ’ , ’ s ’ , ’ m a r k e r s i z e ’ , 4 , . . .
425 ’ m a r k e r f a c e c o l o r ’ , c o l o r _ f a c e , . . .
426 ’ m a r k e r e d g e c o l o r ’ , c o l o r _ d n s ) ;
427 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
428 p l o t ( a2 , x_ lom_plo t , y_ lom_plo t , . . .
429 ’ l i n e s t y l e ’ , ’− ’ , ’ c o l o r ’ , c o l o r _ l o m ( model , : ) , . . .
430 ’ l i n e w i d t h ’ , l i n e w i d t h ) ;
431 end
432 ho ld o f f ;
433 end
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434 % a k a i k e w e i g h t s
435 f3 = f i g u r e ;
436 s e t ( f3 , ’ u n i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , f 2_ po s + [ 0 . 0 5 −0.1 0 0 ] )
437 f 3 _p os = g e t ( f3 , ’ p o s i t i o n ’ ) ;
438 f o r f i t t i n g _ n o = 1 : 3
439 a3 ( f i t t i n g _ n o ) = s u b p l o t ( 1 , 3 , f i t t i n g _ n o ) ;
440 s e t ( a3 ( f i t t i n g _ n o ) , ’ f o n t s i z e ’ , f o n t s i z e −2) ;
441 g r i d on ; box on ; a x i s s q u a r e ;
442 % a x i s l i m i t s
443 a x i s ([−1 1 0 1 ] ) ;
444 % a x i s l a b e l s
445 t i t l e ( [ ’ f i t t i n g ’ , num2s t r ( f i t t i n g _ n o , ’%i ’ ) ] , . . .
446 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
447 x l a b e l ( ’ $ \ b f y / \ d e l t a $ ’ , . . .
448 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
449 y l a b e l ( ’ $$ \ b f AIC \ hs pa ce { 1 . 5mm} w e i g h t s $ $ ’ , . . .
450 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
451 ho ld on ;
452 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
453 rows = 1 : l e n g t h ( y _ e f f ) ;
454 columns = ( model−1)∗3+ f i t t i n g _ n o ;
455 b a r ( a3 ( f i t t i n g _ n o ) , y _ e f f , . . .
456 a k a i k e _ w e i g h t s ( rows , columns ) ’ , . . .
457 ’ b a r w i d t h ’ , 1 , ’ e d g e c o l o r ’ , ’ none ’ , . . .
458 ’ f a c e c o l o r ’ , c o l o r _ l o m _ d a t a ( model , : ) ) ;
459 end
460 ho ld o f f ;
461 end
462 % t h e t a 1 ( y )
463 f4 = f i g u r e ;
464 s e t ( f4 , ’ u n i t s ’ , ’ normal ’ , . . .
465 ’ p o s i t i o n ’ , f 3_ po s + [ 0 . 0 5 −0.1 0 0 ] )
466 f 4 _p os = g e t ( f4 , ’ p o s i t i o n ’ ) ;
467 a4 = axes ( ’ f o n t s i z e ’ , f o n t s i z e −2) ;
468 g r i d on ; box on ; a x i s s q u a r e ;
469 % a x i s l a b e l s
470 x l a b e l ( ’ $ \ b f y / \ d e l t a $ ’ , . . .
471 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
472 y l a b e l ( ’ $ \ b f \ t h e t a _ 1 $ ’ , . . .
473 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
474 ho ld on ;
475 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
476 p l o t ( a4 , y _ e f f , t h e t a 1 ( model , : ) , . . .
477 ’ l i n e s t y l e ’ , ’ none ’ , ’ marker ’ , ’ s ’ , . . .
478 ’ m a r k e r s i z e ’ , 4 , ’ m a r k e r f a c e c o l o r ’ , ’ none ’ , . . .
479 ’ m a r k e r e d g e c o l o r ’ , c o l o r _ l o m _ d a t a ( model , : ) ) ;
480 end
481 ho ld o f f ;
482 % t h e t a 2 ( y )
483 f5 = f i g u r e ;
484 s e t ( f5 , ’ u n i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , f 4_ po s + [ 0 . 0 5 −0.1 0 0 ] )
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485 f 5 _p os = g e t ( f5 , ’ p o s i t i o n ’ ) ;
486 a5 = axes ;
487 s e t ( a5 , ’ f o n t s i z e ’ , f o n t s i z e −2) ;
488 g r i d on ; box on ; a x i s s q u a r e ;
489 % a x i s l a b e l s
490 x l a b e l ( ’ $ \ b f y / \ d e l t a $ ’ , . . .
491 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
492 y l a b e l ( ’ $ \ b f \ t h e t a _ 2 $ ’ , . . .
493 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
494 ho ld on ;
495 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
496 p l o t ( a5 , y _ e f f ,− t h e t a 2 ( model , : ) , . . .
497 ’ l i n e s t y l e ’ , ’ none ’ , ’ marker ’ , ’ s ’ , . . .
498 ’ m a r k e r s i z e ’ , 4 , ’ m a r k e r f a c e c o l o r ’ , ’ none ’ , . . .
499 ’ m a r k e r e d g e c o l o r ’ , c o l o r _ l o m _ d a t a ( model , : ) ) ;
500 end
501 ho ld o f f ;
502 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
503 % END OF GENERATE FRAME FOR EACH TIME INSTANT
504 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
505 % PERFORMANCE STATISTICS
506 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
507 f o r model = 1 : l e n g t h ( p o i n t s _ f o r _ f i t s )
508 %
509 A = ( model−1)∗ l e n g t h ( t t ) +1 ;
510 Z = ( model−1)∗ l e n g t h ( t t ) + l e n g t h ( t t ) ;
511 % new f i g u r e
512 hf3 ( model ) = f i g u r e ( ’ name ’ , . . .
513 [ ’ model ’ , num2s t r ( model , ’%i ’ ) ] , . . .
514 ’ WindowStyle ’ , ’ normal ’ ) ;
515 s e t ( h f3 ( model ) , ’ u n i t s ’ , ’ normal ’ , . . .
516 ’ p o s i t i o n ’ , f 5_ po s + [ 0 . 0 5∗model −0.1∗model 0 0 ] )
517 % a v e r a g e d e v i a t i o n
518 s u b p l o t ( 1 , 2 , 1 )
519 a x i s s q u a r e ; g r i d on ; box on ;
520 s e t ( gca , ’ f o n t s i z e ’ , f o n t s i z e ) ;
521 x l a b e l ( ’ $ \ b f \ h a t { t }$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , . . .
522 ’ f o n t s i z e ’ , f o n t s i z e ) ;
523 y l a b e l ( ’ $ \ b f \ e p s i l o n _ { \ h a t { \ Ph i }} ( \%) $ ’ , . . .
524 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
525 ho ld on ;
526 p l o t ( ( t−t ( 1 ) ) . ∗ ( 1 e−3∗Ubulk / Lx ) , e p s i l o n _ x (A: Z ) , . . .
527 ’ sk ’ , ’ m a r k e r f a c e c o l o r ’ , ’ none ’ ) ;
528 p l o t ( ( t−t ( 1 ) ) . ∗ ( 1 e−3∗Ubulk / Lx ) , e p s i l o n _ T (A: Z ) , . . .
529 ’ sk ’ , ’ m a r k e r f a c e c o l o r ’ , ’ k ’ ) ;
530 ho ld o f f ;
531 % c o r r e l a t i o n ove r c r o s s−s e c t i o n
532 s u b p l o t ( 1 , 2 , 2 )
533 a x i s s q u a r e ; g r i d on ; box on ;
534 s e t ( gca , ’ f o n t s i z e ’ , f o n t s i z e ) ;
535 x l a b e l ( ’ $ \ b f \ h a t { t }$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , . . .
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536 ’ f o n t s i z e ’ , f o n t s i z e ) ;
537 y l a b e l ( ’ $ \ b f \ rho_ { \ h a t { \ Ph i }} $ ’ , . . .
538 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f o n t s i z e ) ;
539 ho ld on ;
540 p l o t ( ( t−t ( 1 ) ) . ∗ ( 1 e−3∗Ubulk / Lx ) , rho_xx (A: Z ) , . . .
541 ’ sk ’ , ’ m a r k e r f a c e c o l o r ’ , ’ none ’ ) ;
542 p l o t ( ( t−t ( 1 ) ) . ∗ ( 1 e−3∗Ubulk / Lx ) , rho_TT (A: Z ) , . . .
543 ’ sk ’ , ’ m a r k e r f a c e c o l o r ’ , ’ k ’ ) ;
544 a x i s ([− i n f i n f 0 1 ] )
545 ho ld o f f ;
546 end
547 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
548 t _ e n d = c l o c k ; % run end t ime
549 % code run t ime
550 d t _ r u n = e t i m e ( t_end , t _ s t a r t ) ;
551 h o u r s = d t _ r u n / 6 0 / 6 0 ;
552 mins = ( hours−f l o o r ( h o u r s ) ) ∗60 ;
553 s e c s = ( mins−f l o o r ( mins ) ) ∗60 ;
554 f p r i n t f ( ’∗ run f i n i s h e d . . . i n %02 i :%02 i :%02 i \ n \ n ’ , . . .
555 f l o o r ( h o u r s ) , f l o o r ( mins ) , f l o o r ( s e c s ) ) ;

A.2 Functions

A.2.1 Function AMI

The following function determines the time delay T for the time delay embedding of a time
series using the method of average mutual information. The function calculates the average
mutual information (AMI) of the input time series and a copy of it that is time delayed by an
amount T data points. The AMI is calculated for a range of time delays. The time delay that is
returned to the main program to be used for the time delay embedding is that corresponding to
the first minimum of the AMI.

1 % f u n c t i o n d e f i n i t i o n
2 f u n c t i o n [ Tmin ] = AMI( TimeSer i e s , b i n s )
3 % i n p u t s
4 Tms = T i m e S e r i e s ;
5 % check t h a t Tms i s a column v e c t o r . I f n o t t h e n t r a n s p o s e
6 dims = s i z e ( Tms ) ;
7 i f dims ( 2 ) ~=1; Tms = Tms ’ ; end
8 % l e n g t h o f sample
9 l = l e n g t h ( Tms ) ;

10 % AMI f o r i n c r e a s i n g T
11 f o r T = 1 :500
12 % time s e r i e s
13 s = Tms ( 1 : ( l−T ) ) ;
14 q = Tms ( (1+T ) : l ) ;
15 % number o f b i n s f o r t h e
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16 % j o i n t p r o b a b i l i t y d i s t r i b u t i o n
17 b i n s _ j = s q r t ( b i n s ) ;
18 % p r o b a b i l i t y d i s t r i b u t i o n f o r t h e t ime s e r i e s s
19 p r ob _s = h i s t ( s , b i n s ) ;
20 p r ob _s = p rob _s / sum ( p rob _s ) ;
21 % p r o b a b i l i t y d i s t r i b u t i o n f o r t h e t ime s e r i e s q
22 prob_q = h i s t ( q , b i n s ) ;
23 prob_q = prob_q / sum ( prob_q ) ;
24 % j o i n t p r o b a b i l i t y d i s t r i b u t i o n
25 prob_sq = h i s t 3 ( [ s q ] , [ b i n s _ j b i n s _ j ] ) ;
26 prob_sq = prob_sq / sum ( sum ( prob_sq ) ) ;
27 prob_sq = prob_sq ’ ;
28 % AMI
29 summation = 0 ;
30 f o r i = 1 : b i n s
31 i f ( p rob_sq ( i ) == 0) | | ( p ro b_s ( i ) ∗ prob_q ( i ) == 0)
32 summation = summation + 0 ;
33 e l s e
34 summation = summation + . . .
35 prob_sq ( i ) ∗ . . .
36 l og2 ( p rob_sq ( i ) / ( p rob _s ( i ) ∗ prob_q ( i ) ) ) ;
37 end
38 end
39 I _ a r r a y ( 1 , T ) = abs ( summation ) ; % s t o r e AMI
40 T _ a r r a y ( 1 , T ) = T ; % s t o r e c o r r e s p o n d i n g T
41 end
42 % T c o r r e s p o n d i n g t o f i r s t minimum of AMI
43 I d i f f = d i f f ( I _ a r r a y ) ;
44 c o u n t = 1 ;
45 w h i l e I d i f f ( c o u n t +1) / I d i f f ( c o u n t ) >0
46 Tmin = T _ a r r a y ( c o u n t ) ;
47 c o u n t = c o u n t + 1 ;
48 end

A.2.2 Function FNN

The following function determines the embedding dimension d for the time delay embedding
of a time series using the method of false nearest neighbours. The function calculates the co-
ordinates of the phase points that reconstruct the trajectory of the system in phase space for a
range of embedding dimensions d and the time delay T that is determined beforehand by the
function AMI in section A.2.1. The function then determines at which d all of the coordinates
of the points in phase space stop changing and returns this d to the main program to be used for
the time delay embedding. The coordinates of the points in phase space change as the dimen-
sion of the space is gradually increased until the dimensionality of the system becomes equal
or smaller than the dimensions of the space in which it is being embedded. For example, the
trajectory of the simple harmonic oscillator is an ellipse in two-dimensional space. An embed-
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ding in one dimension would give phase points arranged along a line. Increasing the embedding
to two dimensions would result in the coordinates of the phase points changing as they will be
rearranged to form an ellipse in two dimensions. Increasing the embedding dimension further,
to three dimensions for example, will not result in the coordinates of the phase points changing
again since an ellipse in two dimensions remains an ellipse in three dimensions.

1 % f u n c t i o n d e f i n i t i o n
2 f u n c t i o n [D] = FNN( TimeSer i e s , TimeDelay )
3 % change of v a r i a b l e s f o r c o n v e n i e n c e o f c od i ng
4 s = T i m e S e r i e s ;
5 T = TimeDelay ;
6 % l e n g t h o f i n p u t t ime s e r i e s
7 L = l e n g t h ( T i m e S e r i e s ) ;
8 % mean of o b s e r v a t i o n s
9 s_mean = sum ( s ) / L ;

10 % a p p r o x i m a t e s i z e o f a t t r a c t o r
11 R_A = s q r t ( sum ( ( s−s_mean ) . ^ 2 ) / L ) ;
12 % maximum embedding d imens ion
13 d_max = 2 0 ;
14 % p e r c e n t a g e o f f a l s e n e a r e s t n e i g h b o r s ’PFNN’ f o r
15 % i n c r e a s i n g embedding d imens ion
16 f o r d = 2 : d_max
17 % g e n e r a t e m a t r i x y
18 % each column of y i s a p o s i t i o n v e c t o r
19 % of a p o i n t i n phase s p a c e
20 f o r T _ c o e f f = 0 : ( d−1)
21 y ( ( T _ c o e f f +1) , : ) = . . .
22 s ( ( 1 + T _ c o e f f ∗T ) : ( L−(d−1)∗T ) +( T _ c o e f f ∗T ) ) ;
23 end
24 % l e n g t h o f d e l a y e d t ime s e r i e s ’y ’
25 l = l e n g t h ( y ) ;
26 % f i n d n e a r e s t n e i g h b o r s y_NN and c a l c u l a t e R_d
27 % c r e a t e a v e c t o r a r r a y o f ones ,
28 % f o r use i n t h e ’ f o r ’ l oop t h a t f o l l o w s ,
29 % t h a t has t h e same l e n g t h ’ l ’
30 % as t h e d e l a y e d t ime s e r i e s ’y ’
31 c l o n e = ones ( 1 , l ) ;
32 f o r j = 1 : l
33 E = s q r t ( sum ( ( y ( 1 : ( d−1) , j ) ∗ c lone−y ( 1 : ( d−1) , : ) ) . ^ 2 ) ) ;
34 E ( j ) = NaN ;
35 [ E_min , i n d e x ] = min ( E ) ;
36 R_d ( 1 , j ) = E_min ;
37 y_NN ( 1 , j ) = i n d e x ;
38 end
39 % C a l c u l a t e Change = R_{d +1}^2 − R_d^2
40 f o r j = 1 : l
41 Change ( 1 , j ) = y ( d , j ) − y ( d , y_NN ( 1 , j ) ) ;
42 end
43 % C a l c u l a t e R_d_PlusOne
44 R_d_PlusOne = s q r t ( R_d . ^ 2 + Change . ^ 2 ) ;
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45 % D ef in e t h r e s h o l d R_T
46 R_T = 1 0 ;
47 % I n i t i a l i z e c o u n t e r f o r F a l s e n e i g h b o r s
48 F a l s e = 0 ;
49 f o r j = 1 : l
50 i f ( abs ( Change ( 1 , j ) ) / R_d ( 1 , j ) >R_T ) | | . . .
51 ( R_d_PlusOne ( 1 , j ) / R_A>2) | | . . .
52 ( R_d_PlusOne ( 1 , j ) / R_A==2)
53 %
54 F a l s e = F a l s e + 1 ;
55 end
56 end
57 PFNN_array ( 1 , d−1) = ( F a l s e / l ) ∗100 ;
58 d _ a r r a y ( 1 , d−1) = d−1;
59 % C l e a r a r r a y s f o r n e x t l oop
60 c l e a r y c l o n e E R_d y_NN Change ;
61 end
62 % Embedding d imens ion
63 [ PFNNmin ,D] = min ( PFNN_array ) ;

A.2.3 Function ODEpar

The following function calculates the model parameters theta1 and theta2, which are the case-
specific coefficients in the model equations. The function receives the position x_dns and am-
plitude T _dns of the wave from the main program. These are the position and amplitude of the
wave obtained from the direct numerical simulation in the case of the current work. The rows
of these arrays contain the position and amplitude with respect to the wall-normal coordinate
and the columns contain the position and amplitude with respect to time. For a wall-normal
coordinate (row of x_dns and T _dns) at a time, the function calculates the Jacobian derivatives
that relate the position and amplitude to their time derivatives. Finally, the function makes a
least squares fit to the data points. The regression constants are the required values of theta1
and theta2. The process is repeated for every wall-normal coordinate (every row of x_dns and
T _dns) to generate theta1 and theta2 vector arrays that contain the coefficients of the model
equations as a function of the wall-normal coordinate.

1 % f u n c t i o n d e f i n i t i o n
2 f u n c t i o n [ t h e t a 1 , t h e t a 2 , b e s t f i t , a k a i k e _ w e i g h t s ] = . . .
3 ODEpar ( t , Dt ,NY, j _ i g n o r e , y _ e f f e c t , x_dns , T_dns , s t e p s , h )
4 %
5 t = t ’ ;
6 j n o n z e r o = 1 ;
7 f o r j s l i c e = 1 : NY
8 i f j _ i g n o r e ( j s l i c e ) ~= 1
9 % DIFFERENCING

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 c l e a r Tmid DTDt
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12 % Tmid
13 T1 = T_dns ( 2 : end , j s l i c e ) ;
14 T0 = T_dns ( 1 : end−1, j s l i c e ) ;
15 Tmid = ( T1 + T0 ) / 2 ;
16 % xmid
17 x1 = x_dns ( 2 : end , j s l i c e ) ;
18 x0 = x_dns ( 1 : end−1, j s l i c e ) ;
19 xmid = ( x1 + x0 ) / 2 ;
20 % DT
21 DT = T1−T0 ;
22 DT = DT ’ ;
23 % Dx
24 Dx = x1−x0 ;
25 Dx = Dx ’ ;
26 % T_dot
27 DTDt = DT . / Dt ;
28 % x_do t
29 DxDt = Dx . / Dt ;
30 % Tmid2
31 T1 = Tmid ( 2 : end ) ;
32 T0 = Tmid ( 1 : end−1) ;
33 Tmid2 = ( T1 + T0 ) / 2 ;
34 % xmid2
35 x1 = xmid ( 2 : end ) ;
36 x0 = xmid ( 1 : end−1) ;
37 xmid2 = ( x1 + x0 ) / 2 ;
38 % DTdot
39 Tdot1 = DTDt ( 2 : end ) ;
40 Tdot0 = DTDt ( 1 : end−1) ;
41 DTdot = Tdot1−Tdot0 ;
42 % Dxdot
43 xdo t1 = DxDt ( 2 : end ) ;
44 xdo t0 = DxDt ( 1 : end−1) ;
45 Dxdot = xdot1−xdo t0 ;
46 % remove l a s t e l e m e n t o f DT and Dx so t h a t t h e i r
47 % l e n g t h i s t h e same as l e n g t h o f DTdot
48 DT = DT ( 1 : end−1) ;
49 Dx = Dx ( 1 : end−1) ;
50 % DTdotDT
51 DTdotDT = DTdot . / DT;
52 % DTdotDx
53 DTdotDx = DTdot . / Dx ;
54 % DxdotDT
55 DxdotDT = Dxdot . / DT;
56 % DxdotDx
57 DxdotDx = Dxdot . / Dx ;
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 % t h e t a 1
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 i f h==0
62 % use a l l t ime s t e p s
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63 f = f i t ( t ( : ) , x_dns ( : , j s l i c e ) , ’ po ly1 ’ ) ;
64 e l s e
65 % use on ly f i r s t 3 t ime s t e p s
66 f = f i t ( t ( 1 : 3 ) , x_dns ( 1 : 3 , j s l i c e ) , ’ po ly1 ’ ) ;
67 end
68 c = c o e f f v a l u e s ( f ) ;
69 t h e t a 1 ( j n o n z e r o ) = c ( 1 ) ;
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 % t h e t a 2
72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
73 % d e t e r m i n e b e s t f i t [ ax ^ 0 . 5 o r a∗x ^1 or a∗x ^2 ]
74 % Akaike I n f o r m a t i o n C r i t e r i o n ( AIC )
75 e x p o n e n t = [ 0 . 5 1 2 ] ;
76 y = DTDt ( 1 : s t e p s −1) . ∗ ones ( l e n g t h ( e x p o n e n t ) , 1 ) ;
77 f o r i = 1 : l e n g t h ( e x p o n e n t )
78 myfun = . . .
79 f i t t y p e ( [ ’ a∗x^ ’ , num2s t r ( e x p o n e n t ( i ) , ’ %.1 f ’ ) ] ) ;
80 f = f i t ( Tmid ( 1 : s t e p s −1) , DTDt ( 1 : s t e p s −1) ’ , . . .
81 myfun , ’ s t a r t p o i n t ’ , 1 ) ;
82 a l p h a ( i ) = c o e f f v a l u e s ( f ) ;
83 y _ h a t ( i , : ) = . . .
84 a l p h a ( i ) . ∗ Tmid ( 1 : s t e p s −1) . ^ e x p o n e n t ( i ) ;
85 end
86 i f h~=0
87 r eg ions_known = f a l s e ;
88 y_LS = 0 . 5 5 ; % h=200
89 y_LR = 0 . 8 5 ; % h=200
90 i f r eg ions_known
91 i f abs ( y _ e f f e c t ( j n o n z e r o ) ) >y_LR
92 a k a i k e _ w e i g h t s ( j n o n z e r o , : ) = [1 0 0 ] ;
93 e l s e i f ( ( abs ( y _ e f f e c t ( j n o n z e r o ) ) <y_LR ) | | . . .
94 ( abs ( y _ e f f e c t ( j n o n z e r o ) ) ==y_LR ) ) &&. . .
95 ( abs ( y _ e f f e c t ( j n o n z e r o ) ) >y_LS )
96 a k a i k e _ w e i g h t s ( j n o n z e r o , : ) = [0 1 0 ] ;
97 e l s e
98 a k a i k e _ w e i g h t s ( j n o n z e r o , : ) = [0 0 1 ] ;
99 end

100 e l s e
101 % sum of s q u a r e d r e s i d u a l s
102 s s r = sum ( ( y’−y_hat ’ ) . ^ 2 ) ’ ;
103 % number o f d a t a p o i n t s
104 n = s t e p s ;
105 % number o f f i t t i n g p a r a m e t e r s
106 k = 1 ;
107 % a i c
108 f o r i = 1 : l e n g t h ( e x p o n e n t )
109 a i c ( i ) = . . .
110 n∗ l o g ( s s r ( i ) / n ) +2∗k +(2∗ k ∗ ( k +1) ) / ( n−k−1) ;
111 % f i n d minimum a i c
112 i f i ==1
113 % i n i t i a l a i c_min
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114 a i c_min = a i c ( i ) ;
115 e l s e
116 % check i f n e x t a i c i s
117 % s m a l l e r t h a n i n i t i a l a i c
118 i f a i c ( i ) < a i c_min
119 a i c_min = a i c ( i ) ;
120 end
121 end
122 end
123 d e l t a _ a i c = a i c − a i c_min ;
124 % a k a i k e w e i g h t s
125 a k a i k e _ w e i g h t s ( j n o n z e r o , : ) = . . .
126 exp ( −0 .5 .∗ d e l t a _ a i c ) . / . . .
127 sum ( exp ( −0 .5 .∗ d e l t a _ a i c ) ) ;
128 end
129 e l s e
130 a k a i k e _ w e i g h t s ( j n o n z e r o , : ) = [0 0 1 ] ;
131 end
132 % b e s t f i t
133 [ max_w , b e s t f i t ( j n o n z e r o , 1 ) ] = . . .
134 max ( a k a i k e _ w e i g h t s ( j n o n z e r o , : ) ) ;
135

136 % t h e t a 2
137 t h e t a 2 ( j n o n z e r o ) = a l p h a ( b e s t f i t ( j n o n z e r o , 1 ) ) ;
138 %
139 j n o n z e r o = j n o n z e r o + 1 ;
140 end
141 end % end of f o r l oop − j s l i c e s

A.2.4 Function ODEeqn

The following function defines the model equations in accordance with the argument description
of the MATLAB function ode113, which is used in the main program to solve the equations
numerically. Note that the analytic solution of the equations could be used instead.

1 % ODE sys tem
2 % f u n c t i o n d e f i n i t i o n
3 f u n c t i o n dyd t = ODEeqn ( c , y , t h e t a 1 , t h e t a 2 , b e s t f i t )
4 dyd t = z e r o s ( 2 , 1 ) ;
5 dyd t ( 1 ) = t h e t a 1 ;
6 i f b e s t f i t ==1
7 dyd t ( 2 ) = t h e t a 2 ∗y ( 2 ) ^ 0 . 5 ;
8 e l s e i f b e s t f i t ==2
9 dyd t ( 2 ) = t h e t a 2 ∗y ( 2 ) ^ 1 ;

10 e l s e i f b e s t f i t ==3
11 dyd t ( 2 ) = t h e t a 2 ∗y ( 2 ) ^ 2 ;
12 end



Appendix B

Code blocks added to source files of the
DNS flow solver BOFFIN

The following blocks of FORTRAN code are added to the source files of the DNS flow solver
with the acronym BOFFIN (Boundary Fitted Flow INtegrator). This flow solver, developed at
Imperial College London, is designed for LES/DNS simulation of reactive and non-reactive flow.
This flow solver is used in the current work for the simulation of an advecting entropy wave in
compressible, turbulent channel flow for the cases of adiabatic and convectively cooled walls.
The original version of the flow solver does not have the built-in capability to add an entropy
wave, that is an externally forced temperature fluctuation, to the flow. Furthermore, a convective
thermal boundary condition that would enable adiabatic and convectively cooled conditions at
the walls could not be defined in the original code. Hence, the code blocks in sections B.1 and
B.2 are necessary for the simulations of the current work to be carried out. It should also be
noted that in the original code the density field is coupled with the chemistry. As the simulation
of the current work is of a non-reacting flow, that is the chemical reactions are not simulated, the
density is decoupled from the chemistry and obeys the ideal gas law.

B.1 Entropy wave generation

The following code block is added to the main program script src/main_les.f90. The code gen-
erates a temperature perturbation in a plane cross-section of the flow. The temporal profile of
the perturbation amplitude is a Gaussian function.

1 ! add t h i s code b l o c k t o b o f f i n / s r c / m a i n _ l e s . f90 a f t e r t h e

2 ! s o l v e u , v , w, P loop

3 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

4 ! Tp u l s e f o r t ime s t e p u s i n g t h e G a u s s i a n f u n c t i o n

5 Tp u l se = Tamb + amp_wave∗Tamb∗ &

6 exp (−0.5∗ ( &

135
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7 ( ( Umean_bulk / ( Ly ) ) ∗ ( t ime−t ime0 )−mu_wave ) / &

8 sigma_wave &

9 ) ∗∗2)

10 ! s h o u l d t h e wave be added ?

11 i f ( ( r e s t a r t ) . and . &

12 ( waveInFlow ) . and . &

13 ( Tp u l s e . g t . Tamb + 0 . 0 0 0 5 ) ) t h e n

14 ! s m a l l e s t p a r t i t i o n ID i n which t h e wave l i e s

15 IDmin_wave= w a v e I g l o b a l / ( L−1)

16 IDmin_wave= f l o o r ( IDmin_wave )

17 do c o u n t e r =0 , NPJ∗NPK−1

18 IDmin_wave_array ( c o u n t e r ) =IDmin_wave

19 end do

20 ! p a r t i t i o n IDs a t i n l e t

21 do c o u n t e r =0 , NPJ∗NPK−1

22 I D s _ i n l e t ( c o u n t e r ) = c o u n t e r ∗NPI

23 end do

24 ! p a r t i t i o n IDs a t wave i n s e r t p o i n t

25 do c o u n t e r =0 , NPJ∗NPK−1

26 IDs_wave ( c o u n t e r ) = I D s _ i n l e t ( c o u n t e r ) + &

27 IDmin_wave_array ( c o u n t e r )

28 end do

29 ! b u i l d wave

30 waveI= w a v e I g l o b a l −( IDmin_wave ∗ (L−1) )

31 do c o u n t e r =0 , NPJ∗NPK−1

32 i f ( ID . eq . IDs_wave ( c o u n t e r ) ) t h e n

33 bu i ld_wave = . t r u e .

34 e l s e

35 bu i ld_wave = . f a l s e .

36 end i f

37 i f ( bu i ld_wave ) t h e n

38 do J =1 ,M+1

39 do K=1 ,N+1

40 F ( WaveI+JO ( J ) +KO(K) + nfo ( nvf ) ) = Tp u l s e

41 end do

42 end do

43 e n d i f

44 end do

45 end i f
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B.2 Convective thermal boundary condition

The following code block is added to the subroutine src/src_les/bndry_scalar.F to enable a con-
vective thermal boundary condition to be defined at the channel walls. The wall temperature is
no longer constant at the walls as in the original code. Instead, the wall temperature is variable
and the heat flux is constant. The heat conducted through the no-slip fluid layer at the wall is
equal to the heat convected to/from an imaginary (not simulated) external flow. The thermal
conductivity of the fluid is assumed to be a constant. The convective heat transfer coefficient is
set to zero for adiabatic walls and non-zero for convective heat transfer conditions.

1 ! The new v a r i a b l e s const_Temp , T _ i n f i n i t y , h , k _ f l u i d and

2 ! D e l t a y _ w a l l a r e d e c l a r e d i n s r c / s r c _ l e s / m o d u l e _ l e s . f90 .

3 ! The u s e r needs t o s u p p l y T _ i n f i n i t y , h , k _ f l u i d i n i n p u t / l e s

4 ! and D e l t a y _ w a l l i s c a l c . i n s r c / s r c _ l e s / i n p u t _ l e s . f90 as ,

5 D e l t a y _ w a l l =( Ly∗ r a t i o d r j ∗∗ (NODES_T/2−1)∗(1− r a t i o d r j ) ) / &

6 (1− r a t i o d r j ∗∗ (NODES_Y / 2 ) )

7 ! where Ly , r a t i o d r j and NODES_Y a r e t a k e n from l e s / i n p u t and

8 ! a r e t h e channe l−h a l f width , s t r e t c h f a c t o r i n y−d i r e c t i o n

9 ! and t h e number o f nodes i n y−d i r e c t i o n r e s p e c t i v e l y .

10 ! i n s r c / s r c _ l e s / b n d r y _ s c a l a r . F and / i m p l i c i t _ b n d r . F

11 ! f o r c o n s t a n t w a l l t e m p e r a t u r e a t t h e w a l l = f a l s e

12 ! s u b s t i t u t e t h e f o l l o w i n g f o r Twal l :

13 Twal l = ( k _ f l u i d / ( k _ f l u i d +h∗D e l t a y _ w a l l ) ) ∗T_IJK + &

14 ( h∗D e l t a y _ w a l l / ( k _ f l u i d +h∗D e l t a y _ w a l l ) ) ∗ T _ i n f i n i t y





Appendix C

Results from supplementary simulations

C.1 Entropy wave advecting in laminar flow

An entropy wave has a larger residence time in a laminar than in a turbulent flow. However,
this does not necessarily imply that the same perturbation will undergo stronger attenuation in
a laminar flow. This is because in a laminar flow the entropy wave decays exclusively due to
molecular diffusion of its thermal energy towards the surrounding flow, which is a much slower
process than turbulent diffusion.

Snapshots of an entropy wave advecting in adiabatic fully-developed channel flow are shown
in figure C.1a for the case of a turbulent flow with Rebulk = 5684 (Reτ = 180) and in figures
C.1b and C.1c for the case of a laminar flow with Rebulk = 1120. As explained in section
2.2.5, the entropy perturbation is added to the flow by perturbing the temperature in a cross-
section. The perturbations added to each case are shown above the snapshots in figure C.1a-c
in plots of the perturbation amplitude with respect to the number of iterations. The same time
step is used for the turbulent and laminar simulations. Hence, the perturbations added to the
laminar and turbulent flows are directly comparable when plotted with respect to the number of
iterations. The perturbation added to the laminar flow in figure C.1b is the same as that added
to the turbulent flow in figure C.1a. The perturbation added to the laminar flow in figure C.1c
has the same peak amplitude as the others but is added to the flow at a slower rate. The time
instant to which a snapshot corresponds is shown in the top right corner of the snapshot and is
expressed as a function of the mean residence time of the turbulent flow τt = (Ubulk/2δ ), where
Ubulk is the bulk mean velocity and δ is the channel half-height. The snapshots of the laminar
flow cases correspond to the same time instants as those of the turbulent flow case. Since the
residence time of the laminar flow cases is much larger than that of the turbulent flow case, there
is an additional snapshot in the laminar flow cases in figures C.1b and C.1c showing the state of
the perturbation once it has reached the channel exit.

The first snapshot of the entropy wave at time τ = 0 shows the wave once it is added to the
flow. In the turbulent flow case in figure C.1a, the maximum perturbation amplitude at time

139
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Figure C.1: Gaussian temperature perturbation advecting in fully developed channel flow with
adiabatic walls: (a) turbulent flow, (b) laminar flow with the same perturbation as in the turbulent
flow, and (c) laminar flow with a more slowly added perturbation.
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τ = 0 is ∆T/T = 0.06 and in the laminar flow case in figure C.1b it is ∆T/T = 0.02. The same
perturbation undergoes stronger dissipation while it is being added to the laminar flow. This is
because a stronger temperature gradient is driving the diffusion of the heat being added to the
laminar flow. Since the flow velocity is much smaller in laminar flow than in turbulent flow, the
volume of fluid effectively being heated as it passes through the perturbation insert plane is also
much smaller. Consequently, the same amount of thermal energy is added to a smaller volume
in the laminar flow resulting in a larger temperature gradient. By adding the perturbation to the
laminar flow at a slower rate, which is what is done in the laminar flow case in figure C.1c, the
temperature gradient at the perturbation insert plane is comparable to that in the turbulent flow.
It is clear in figure C.1c that by doing so the maximum perturbation amplitude at time τ = 0 is
∆T/T = 0.06, which is the same as in the turbulent flow case in figure C.1a.

The shape of the wave in the laminar flow cases in figures C.1b and C.1c is parabolic due
to the laminar velocity profile. In the turbulent flow case in figure C.1a, the shape of the wave
is mostly flat except near the walls where there is a large velocity gradient. The dispersion
of the wave in regions of non-zero velocity gradient gives rise to temperature gradients in the
wall-normal direction that enhance the transport of heat by molecular diffusion and thus, the
dissipation of the wave amplitude by what is known as the shear dispersion mechanism. Since in
turbulent flow the velocity gradient is extremely large close to the walls, dissipation of the wave
amplitude by shear dispersion occurs mainly near the walls. Furthermore, turbulent fluctuations
are also strongest close to the walls and hence, so is turbulent transport of heat. Since the shear
dispersion and turbulent transport processes are both strong near the walls in turbulent flow, the
amplitude of the wave in figure C.1a is dissipating faster near the walls. In laminar flow the
velocity gradient changes gradually from the centreline to the walls and hence, the effects of
shear dispersion are not more profound in a specific region of the flow.

The transport of heat by turbulent eddies in the case of the turbulent flow generates the
rough amplitude distribution seen in the snapshots in figure C.1a. In contrast, the amplitude
distribution in the laminar flow cases in figures C.1b and C.1c is smooth.

The maximum amplitude of the entropy wave in the turbulent case in figure C.1a decreases
from ∆T/T = 0.06 at τ = 0 to ∆T/T = 0.02 at time τ = 0.64τt , which is a 67% reduction in
amplitude. In the same time interval, the maximum amplitude of the entropy wave in the laminar
flow case in figure C.1b decreases from 0.02 to 0.005, which is a 75% reduction in amplitude. In
the laminar flow case in figure C.1c, in the same time interval the maximum amplitude decreases
from 0.06 to 0.04, which is a 33% reduction in amplitude. Therefore, the entropy wave in the
laminar flow case in figure C.1b is dissipating faster than in the turbulent flow case and the
entropy wave in the laminar flow case in figure C.1c is dissipating slower.

In conclusion, increasing the Reynolds number enhances the dissipation of the wave in the
near wall regions. It is also observed that a high frequency perturbation in laminar flow un-
dergoes strong dissipation by molecular diffusion due to the large temperature gradients that it
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generates in the flow.

C.2 Entropy wave advecting in turbulent heat transferring
flow — the effect of the wall heat transfer coefficient

In section 4.2.3, only the heat transferring case with h = 200 [Wm−2K−1] is shown. The effect
of further increasing the heat transfer coefficient at the walls of the channel is shown in figure
C.2, which shows the decay of the maximum temperatures in the streamwise cross-sections of
the flow with respect to time t for various heat transfer coefficients. Increasing the heat transfer
coefficient at the walls enhances the amplitude decay close to the walls and the edges of the
wave are annihilated faster. As a result, the width of the wave in the wall-normal direction is
smaller at larger heat transfer coefficients. In the adiabatic walls case, where h = 0 [Wm−2K−1],
the wave extends all the way to the channel walls except during the late stages of its advection
at time t3 in figure C.2. In a channel that is long enough, the width of the wave could eventually
become the same for all values of the heat transfer coefficient as seen at time t3 in figure C.2.
This happens because in a turbulent channel flow the shear dispersion and turbulent fluctuations
that dissipate the wave in the adiabatic case are strongest near the walls, which is where the heat
transfer mainly enhances the dissipation in the non-adiabatic cases.

−1 −0.5 0 0.5 1
0

0.025

0.05

0.075

y/δ

∆T

T

t1

t2

t3

t0

Figure C.2: Entropy wave amplitude decay in a fully developed channel flow with heat transfer-
ring walls: �h = 000Wm−2K−1, �h = 200Wm−2K−1, �h = 800Wm−2K−1
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