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ABSTRACT

The primary aims of this project were to cany out a comprehensive investigation of telomere and 

telomerase biology in the dog and cat, and more specifically to investigate the potential of telomeres 

and telomerase as targets for novel cancer chemotherapeutics.

Telomeres are nucleoprotein structures that cap the ends of all eukaryotic chromosomes analysed to 

date. The mammalian telomere is composed of duplex, non-coding hexanucleotide DNA repeats of the 

sequence (TTAGGG)n, terminating in a 3' single-stranded DNA overhang of varying length. The 

protein components of the telomere are involved in the maintenance of normal structure of the 

telomere, and the proper functioning of that structure within the cell.

Not all of the functions of the telomere are fully understood, however of primary interest is the 

regulation and restriction of cellular replication via a proposed telomere based ‘mitotic clock.’ This 

counting mechanism is based on the generally irretrievable telomere loss that accompanies cell 

division, referred to as the ‘end replication problem.’ The telomere attrition caused by end replication 

problem eventually triggers a replicative arrest and a characteristic cellular phenotype, referred to as 

senescence. Senescence has been linked to organ dysfunction and organismal ageing, and has therefore 

brought telomeres to the attention of a wide spectrum of research disciplines.

Whilst the majority of cell types suffer the effects of end replication problem, there are marked 

exceptions. Cells with high replicative burdens, germ line cells, and cancer cells do not show the 

replicative restrictions of other cell types. These cell types overcome end replication problem, in the 

majority of cases, by activation of a ribonucleoprotein complex called telomerase. This specialised 

reverse transcriptase enzyme replaces lost telomere sequence and is responsible, in approximately 80% 

of human tumours, for the unlimited replicative potential that is one of the hallmarks of cancer cells. 

Furthermore, inhibition of this complex has resulted in senescence and apoptosis of malignant cells, 

and overall telomerase has proven to be an excellent tumour marker, with potential diagnostic and 

prognostic applications, and is considered one of the most promising targets for anti-cancer therapy 

currently under investigation.

The majority of telomere and telomerase research carried out to date has been directly or indirectly for 

the benefit of human medicine. Research in the veterinary field lags far behind, and very little 

information was available on basic parameters such as telomere length and distribution of telomerase 

activity in dogs and cats at the beginning of the project. The first experiments carried out were 

therefore concerned with investigating mean telomere lengths in a wide age and tissue range of both 

the dog and cat. The protocol used for telomere length assessment was based on a DNA probe. 

Southern Blot and chemiluminescent technique referred to as Terminal Restriction Fragment analysis. 

Telomere lengths in peripheral blood samples taken from 112 dogs and 30 cats were found to range 

from 4.7 to 20.6 kb, and 9.6 to 23.5 kb respectively. These are similar to telomere lengths typically 

found in human samples (5-15 kb). The telomere lengths in a panel of normal canine and feline organ



samples, tumour samples, and primary fibroblast cultures also did not differ significantly from these 

values. Telomere lengths decreased significantly with increased age in both species, and whilst gender 

did not have a significant effect in either species, an intriguing finding was that breed of pedigree dog 

had a significant effect on telomere length. Primary canine and feline fibroblasts were found to cease 

replicating and assume a senescent phenotype in vitro after an average of 10 and 16 population 

doublings respectively. Over the course of these population doublings, telomere attrition was shown to 

occur in both canine and feline cells, and averaged 175 and 130 bp/cell division respectively. In 

summary, telomeres in the dog and cat are of a similar size to that found in humans, and telomeric 

attrition has been shown to occur in both species in vivo and in vitro. Furthermore, loss of telomeric 

sequence is associated with the triggering of a senescent phenotype in both canine and feline 

fibroblasts in vitro.
Telomerase activity studies used a commercially available assay, referred to as the Telomeric Repeat 

Amplification Protocol (TRAP). Telomerase activity was strongly down regulated in a wide range of 

somatic tissues of the dog and cat. Conversely, telomerase activity was detected in all canine and 

feline tumours assayed (19/19), and was also present in a panel of immortalised canine cell lines. 

These data linked telomerase with immortalisation and malignancy in the dog and cat, and have 

identified telomerase as a potential target for novel cancer chemotherapeutics in companion animals. 

A pilot study to assess the efficacy of a reverse transcriptase inhibitor (azidothymidine triphosphate) as 

a telomerase inhibitor in two canine telomerase dependant cell lines produced inconsistent inhibition 

of telomerase and no discernable effect on telomere lengths. However, future use of this drug in 

combination with agents that utilise different modalities for targeting telomerase may produce more 

favourable results. Such combinational therapies are currently producing the most promising results in 

the human field.

Expression of the catalytic component of human telomerase (liTBRT) is sufficient to reconstitute 

telomerase activity and prevent senescence in a number of human tissues. This is definitive proof of a 

link between telomere attrition and senescence in humans. The canine and feline homologues of 

hTERT were not available to carry out this investigation in the dog and cat; however, heterologous 

expression of hTERT using a mammalian expression vector was used in canine fibroblasts to 

investigate the control of telomerase activity and the links with senescence in that species. Expression 

of hTERT mRNA was confirmed in the primary canine fibroblasts by reverse transcriptase PCR and 

sequence analysis; however the cells remained telomerase negative, and entered senescence normally. 

This may be due to sequence differences in the catalytic components of canine and human telomerase 

rendering hTERT ineffective in canine cells. Interestingly, telomerase activity was briefly 

reconstituted in an equine primaiy fibroblast culture that was subject to the same procedure. 

Telomerase was also successfully reconstituted in a human telomerase independent control cell line. 

The studies described above went some way to addressing the biology of telomeres and telomerase in 

canine and feline cells, however, the wider implications of telomere attrition and telomerase



reactivation within cells remained unknown. The importance of an understanding of the possible 

knock-on effects of telomere length reduction on the transcriptome of the cell is important as potential 

telomerase inhibitors are likely to operate through telomeric attrition. Furthermore, telomerase 

reactivation has been suggested as a possible therapy for conditions when loss of replicative potential 

is part of the pathology, such as liver cirrhosis. These strategies will rely on the absolute safety of 

telomerase reactivation in vivo, and will also require knowledge of the wider effects of telomerase 

reactivation within the cell. These issues were addressed by examining the changes in the 

transcriptome of canine primaiy fibroblasts as they switched from actively replicating to senescent. 

The effect of telomerase reactivation in canine and feline primary cells also needs to be addressed, 

however, as described above, it was not possible to reconstitute telomerase activity in those cells. 

Instead, the effect of telomerase reactivation was investigated in a human telomerase independent cell 

line, as it is likely that many of the down-stream effects will be conserved between species. The 

experiments utilised DNA microarray technology (Affymetrix, Santa Clara, CA), as this allowed 

changes in mRNA expression levels of many thousands of genes to be monitored simultaneously. The 

experiments identified a number of genes of interest that warrant further investigation. Chief among 

these was the finding that mRNA levels of the gene product epiregulin were up regulated greater than 

8-fold in telomerase positive, compared with telomerase negative cells. This is important, as epiregulin 

activity has been associated with cancer progression, and is therefore associated with a malignant 

phenotype. This immediately casts doubt over the safety of telomerase reactivation for therapeutic 

purposes. Genes of interest in senescent fibroblasts were thrombospondin-1, phosphatidic acid 

phosphatase type 2A, and ATPase, Na+/K+ transporting, beta 1 polypeptide. These gene products may 

be associated with inhibiting tumour angiogenesis, tumour inhibition, and regulation of senescent cell 

volume respectively. The upregulation of thrombospondin-1 and phosphatidic acid phosphatase type 

2A in senescent canine fibroblasts may provide evidence of additional anti-tumour mechanisms in 

senescent cells, and the down regulation of Na+/K+ transporting, beta I polypeptide, which encodes a 

component of the Na+/K+, ATPase osmotic ‘pump’ may have a part to play in the increased volume 

of senescent cells.

Overall, the findings of this project indicate that telomeres and telomerase are directly involved with 

cancer development and progression in the dog and cat, and identify telomerase as a promising target 

for the development of future cancer chemotherapeutics in companion animals.
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Chapter I 

General introduction and review 

of the literature

1.1 Abstract

Telomeres are nucleoprotein structures that cap the ends of eukaryotic 

chi'omosomes. Under normal circumstances, cell division results in an 

irretrievable reduction in telomere length that eventually triggers loss o f cellular 

proliferative potential. However, telomeres are occasionally maintained or even 

lengthened; in the vast majority o f cases this is facilitated by a specialised 

ribonucleoprotein, telomerase. Telomeres and telomerase have been associated 

with ageing and malignant transformation respectively, and this Chapter reviews 

current evidence for and against these associations. The bulk of research in the 

field of telomere biology to date has been human based, and the review reflects 

this bias, however where possible, special reference is given to research o f direct 

relevance to the dog and cat.



1.2 Telomere structure

Telomeres are specialised niicleoprotein structures that cap the ends of all 

eukaryotic chromosomes analysed to date. Telomeric DNA sequences and 

structure are highly conserved across otherwise wide species boundaries, and are 

based on a simple tandemly repeating unit. (Blackburn 1991) The sequence 

TTAGGG is the unit found in humans, other vertebrates, slime moulds and 

tiypanosomes, whilst a wide range of organisms adhere to a telomeric repeat 

based on the simple formula d(T/A)|.4 dGi_8 , examples include the GGGGTT and 

GGGGTTTT sequences found in the ciliate protozoans Tetmhymena and 

Eiiplotes respectively (Blackburn & Szostak 1984) (Moyzis, Buckingham, et al

1988) (Blackburn 1990).

The G rich strand of eukaryotic telomeres analysed to date are all orientated in 

the 5 ' to 3 ' direction towards the terminus, and work carried out initially in 

Oxytricha showed that this strand produces an overhang beyond the 

complimentary C rich strand. The length of this overhang is species specific, 

from the exact 16 base pairs (bp) in Oxytricha to a variable 50-100 bp in humans 

and the mouse (Klobutcher, Swanton, et al 1981) (Greider 1999). The basic 

stmcture of the mammalian telomere is shown diagrammatically in Figure 1-1.

The overall length o f telomeric sequence found in vertebrates typically mns to 

tens of thousands of base pairs, though there is considerable variation between 

species. Canine telomeres have been found in the range of 11 to 23 kilobases 

(kb) (Yazawa, Okuda, et al 2001) (Nasir, Devlin, et al 2001), and feline 

telomeres in the region of 12-23 kb (McKevitt, Nasir, et al 2003). Human germ 

line telomeres are 15-20 kb, whilst the laboratory mouse {Mus musculus) has 

unusually long telomeres ranging from 30 to >50 kb (Allshire, Dempster, et al

1989) (Campisi, Kim, et al 2001). The closely related interfertile species Mus 

spretus has telomeres that are slightly shorter than in humans, usually reaching

5-15 kb (Smogorzewska, van Steensel, et al 2000), illustrating the wide variation 

found between even closely related species. Aside from interspecies variation, 

diversity in telomere lengths is found at an organismal, tissue, cellular and even



chl'omosomal level, albeit with less marked variety, and telomere length is 

affected by cellular replicative history. Takubo et al demonstrated that telomere 

lengths are not significantly linked to tissue renewal times in humans. For 

example there is no typical telomere length for human myocardial tissue at a 

given age, despite this tissue being relatively static with respect to cellular 

turnover (Takubo, Izumiyama-Shimomura, et al 2002) (Cameron 1970). 

Furthermore, an individual with longer than average telomeres in one tissue is 

likely to have longer than average telomeres in a number o f different tissues, 

illustrating telomere length variation at an individual organism basis around a 

species average (Takubo, Izumiyama-Shimomura, et al 2002).

Germ line cells have the ability to maintain or increase their telomere lengths, 

however the mean telomere lengths found in germ line cells remains constant for 

any given species (Kipling & Cook 1990) (Wright, Piatyszek, et al 1996 160 

/id).



Figure 1-1. Structure of the mammalian telomere. Telomeres are specialised 

nucleoprotein structures found at chromosome ends, as shown diagrammatically 

below. The duplex telomeric DNA sequence is based on a repeating hexamer, 

and a single stranded G-rich 3' overhang o f variable length is found at the 

terminus.

AGGGTTAGGGTTAGGGTTAGGGTTAGGG 3 ’ 
ATCCCAATCCCAATCCC 5 ’



1.2.1 G-quartets

The G-quartet is the defensive structure hypothesised to be formed from the 

single stranded !>' overhang at the end of the telomere, and it is believed to shield 

chromosome ends from the attentions of DNA repair complexes (Williamson, 

Raghuraman, et al 1989).

The suspicion that a specific telomeric sequence structure may be present at the 

telomeric terminus was initially aroused by the observation that oligonucleotides 

formed from the G-rich strand of telomeric sequence had greater electrophoretic 

mobility than would be expected for their size. Furthermore, the oligonucleotide 

Tet-4 formed from four Tetrahymena telomeric repeats, d(TTGGGG ) 4  has been 

shown to contain G-G base pairs. (Henderson, Hardin, et al 1987). Experimental 

work based on these data has implied that in vitro, such G-G base pairs lead to 

the formation o f the stmcture that has been termed the G-Quartet, under the 

influence of certain cations at physiological concentrations; the implication 

being that such stmctures may exist in vivo (Williamson, Raghuraman, et al

1989). The proposed structure is shown diagrammatically in Figure 1-2, and in 

this arrangement the common telomeric sequence elements, the G-strings (for 

example GGG in the human telomere) are the basis of the G-Quartet, whilst the 

variable elements, the T/A bases fonn loop regions around the Quartets. This 

stmcture has the potential to accommodate the telomeric sequences of a number 

of different species, as G-strings are a common feature in telomeric DNA 

(Blackburn & Szostak 1984).

1.2.2 Telomere associated proteins

In addition to a DNA repeat sequence, a number of proteins are also associated 

with the telomere. These telomeric proteins are believed to play important 

stmctural roles, and are integral to the proper functioning of the telomere 

(Greider 1999).



Figure 1-2. Proposed structure of the G-quartet. The diagram shows two G- 

quartets (linked by dashed lines) utilising the telomeric sequence of Oxytricha 

sp. d(TTTTGGGG). Variations in the telomeric sequence may be accommodated 

by variation in the number o f stacked quartets, and by changes in the length of 

the connecting DNA loops. Every fifth base is numbered, and the 

deoxyguanosine residues involved in the quartets are shaded to clarify the 

arrangement of bases in the structure.



1.2.2.1 TRFl

(TTAGGG repeat binding factor 1) is a double stranded telomeric DNA binding 

factor that binds along the length o f duplex telomeric DNA and was first 

identified and cloned in 1995. The discovery of TRTl was the first evidence that 

telomeres form nucleoprotein complexes in vertebrates (Chong, van Steensel, et 

al 1995). The protein is described as being related to the proto-oncogene Myb 

due to its Myb-like DNA binding domain at its carboxy terminus, and acidic 

amino terminal domain. It is a ubiquitous protein, and has been found associated 

with telomeres at all stages of the cell cycle (Broccoli, Smogorzewska, et al

1997). Telomeric DNA has been shown to recruit TRFl in the form of a 

tetramer, and at high protein concentrations in vitro will coat the entire length of 

available telomeric sequence with a 10 nm thick array o f bound proteins. In 

addition, the presence of TRFl attached to the telomere has the in vitro effect of 

promoting telomeric tracts to form pairs, with a strong bias for the parallel 

arrangement. (Griffith, Bianchi, et al 1998).

TRFl has been shown to act as a negative regulator of telomere length, and it is 

proposed to carry out this function by inhibiting the ribonucleoprotein 

telomerase (vanSteensel & de Lange 1997). When new telomeres are transfected 

into cultured cells, these stretches of DNA are elongated, presumably by 

telomerase until they reach the average length for that type o f cell. At this time, 

TRF1 is recruited to the new telomeres, and growth is halted. This provides an in 

vitro insight into the function and mode of action of TRFl (Smogorzewska, van 

Steensel, et al 2000).

1.2.2.2 TRF2

TRF2 was initially classified as a duplex DNA binding protein, and was first 

identified by Broccoli et al in 1997 (Broccoli, Smogorzewska, et al 1997). It is a 

distant homologue of TRFl and has a similar Myb like DNA binding motif at its 

carboxy terminus. Unlike TR Fl, however, it has a basic amino terminus. 

Inhibition of TRF2 has serious consequences for the cell, resulting in an



immediate threat of damage to the chromosomal ends by cellular activation of 

the ataxia telangectasia mutated (ATM)/p5 3-dependant DNA damage 

checkpoint pathway (Karlseder, Broccoli, et al 1999). Chromosomal end to end 

fusions follow, and the 3 ' G rich single stranded DNA overhang at the telomere 

end is lost (Griffith, Comeau, et al 1999). This indicates that TRF2 interacts with 

both single and double stranded DNA, and supports the idea that TRF2 is crucial 

for the proper functioning of the telomere. Griffith et al used electron 

microscopy to demonstrate that TRF2 is capable of remodelling linear telomeric 

DNA into large duplex loops in vitro (Griffith, Comeau, et al 1999). As the 

presence o f telomeric DNA per se is not enough to protect chromosomal ends 

from degradation, these telomeric DNA or ‘T ’ loops are proposed to be the 

additional structure necessary for protection of the chromosomal ends (van 

Steensel, Smogorzewska, et al 1998).

Currently, the proposed view of telomeric structure in vivo is that the 3% single 

stranded DNA overhang loops back to invade the duplex telomeric DNA and 

fonu a displacement loop in the order of a few hundred nucleotides. In many of 

the experimental cases the T-loops were very large and encompassed the entire 

length o f the telomere. Whether this is always the case is unknown (Griffith, 

Comeau, et al 1999). TRFl may also have a role to play in T-loop fonnation, as 

it has been shown to possess the ability to promote parallel pairing of telomeric 

tracts in vitro, which may help to stabilise the T-loop anangement (Griffith, 

Bianchi, et al 1998). The structure of the T-loop is shown in Figure 1-3.

The fact that inhibition of TRF2 has such an immediately deleterious effect on 

the cell; (cells expressing a dominant negative allele of TRF2 rapidly undergo 

apoptosis (Karlseder, Broccoli, et al 1999)) led to difficulty assessing any 

potential role o f this protein in regulation o f telomere length. Smogorzewska et 

al circumvented this problem by examining the effect o f over expression of 

TRF2, using a tetracycline inducible expression system in the human 

fibrosarcoma line HTC75. This study indicated that TRF2 is also a negative 

regulator of telomeric length, though in a transient way which is eventually 

corrected (Smogorzewska, van Steensel, et al 2000).



Figure 1-3. Structure of the T-loop. TRFl stabilises a loop structure formed by 

the telomere and allows TRF2 to mediate invasion of the duplex DNA at the 

base of the telomere by the 3' ssDNA overhang. This T-loop is thought to be 

important in allowing the cell to differentiate between a natural chromosomal 

end and a double stranded DNA break.

T-loop

TRFl and TRF2

D-loop



1.2.2.3 TANKl

TANKl, or tankyrase is a protein with homology to the catalytic domain of 

poly-adenosine phosphate ribose polymerase (PARP). This type of enzyme 

activity is usually associated with DNA repair (de Murcia & de Murcia 1994), 

and recombinant TANKl has demonstrated PARP activity in vitro. TANKl has 

been found to interact with TRFl in vitro, and binding o f TANKl to TRFl 

diminishes the ability o f TRFl to bind to telomeres. The long term over

expression of tankyrase in telomerase positive cell lines results in a gradual and 

progressive lengthening of telomeres, whilst PARP deficient forms of TANKl 

do not demonstrate this effect. This suggests TANKl regulates the negative 

effect of TRFl on telomere length via ribosylation of TRFl, though it is possible 

TANKl may act on other, as yet unidentified telomere associated factors as well 

(Smith, Giriat, et al 1998) (Smith and de Lange 2000). Tankyrase is likely to act 

by causing a structural change in the telomere end, which allows the enzyme 

telomerase access to the telomere sequence.

1.2.2.4 TANK2

This protein is a recently identified second tankyrase with telomere associations. 

This protein has a very similar amino acid identity to TANKl, but has a unique 

N-terminal domain. TANK2 also interacts with TRFl, however over expression 

of TANK2 leads to rapid cell death by necrosis, with loss of mitochondrial 

membrane potential. The PARP inhibitor 3-aminobenzamide blocks this effect in 

vitro, linking this activity with the cell death. If this is the case, it may be that the 

PARP activity of TANKl is more efficiently regulated than that of TANK2, or 

that TANK2 acts on substrates that are not a target for TANKl (Kaminker, Kim, 

et al 2001). This idea is supported by the fact that both TANK2 and TANKl are 

not restricted to the telomere alone; both these proteins are abundant in the 

nuclear periphery and in the Golgi. It is therefore possible that they carry out 

non-telomere related activities in the cell, and so act on other substrates 

(Campisi, Kim, et al 2001).

10



1.2.2.5 Ku70 and Ku86

These proteins are components of DNA-dependant protein kinase (DNA-PK). 

DNA-PK is a trimeric complex that is essential for the repair of double stranded 

DNA breaks in the cell. Ku binds and stabilises the broken ends of DNA, and 

then recruits the catalytic component o f the DNA-PK to carry out the necessary 

repair. Ku70 has been shown to specifically bind TRFl, and deficiency of Ku86 

in mice causes genetic instability due to frequent telomere-telomere fusions. 

This is similar to the effect of TRF2 deficiency, however Ku86 deficiency is not 

associated with loss of the 3'' overhang, or loss of telomere sequence overall. 

This indicates that as well as its documented role in DNA repair, Ku is also 

important for protection o f the terminal telomeric structure and that fusions 

associated with Ku deficiency are not mediated by loss of TRF2 function 

(Samper, Goytisolo, et al 2000).

1.2.2.6 TIN2 and HRAPl

TIN2 and HRAPl also appear to be exclusively sited at the telomere, but in 

association with other proteins rather than the telomere directly. TIN2 interacts 

with TRFl, and HRAPl with TRF2, and whilst their precise functions are 

unknown, they both play important roles in regulating telomere length (Campisi, 

Kim, et al 2001).

1.2.2.7 POTl

POTl is a recently identified single stranded DNA binding protein first isolated 

in yeast. The human homologue, hPOTl has been shown to bind specifically to 

the G-rich telomere strand, and acts as a positive regulator of telomere length in 

a telomerase dependant manner (Baumann, Podell, et al 2002), (Colgin, Baran, 

et al 2003).

11



1.3 Telomere function

A primary role of the telomere is to protect the integrity of chromosome ends. 

This idea was first proposed by McClintock (McClintock 1941) and later works 

have demonstrated the importance o f this function in a wide variety of species 

(Cervantes & Lundblad 2002). It is likely this faculty evolved in response to the 

development of natural chromosomal ends that may be mistaken within the cell 

as double stranded DNA breaks (Zakian 1989) (Souffler, Morgan, et al 1996).

Telomeres prevent loss o f genetic information during replication of 

chromosomes by providing a non-coding DNA buffer that is expendable in the 

face of ‘end replication problem,’ (Blackburn & Szostak 1984) and they promote 

correct mitotic separation o f sister chromatids during cell division (Kirk, 

Harmon, et al 1997).

1.3.1 End replication problem and telomere loss

End replication problem describes the difficulty encountered by a cell containing 

linear chromosomes in dealing with the established mechanics of cell division, 

specifically DNA replication. The semi-conservative mechanism of DNA 

replication describes how the strands of the DNA double helix separate and each 

acts as a template to direct the synthesis of a complementary daughter strand 

(Meselson & Stahl 1958). The point at which the DNA strands separate and 

synthesis of new DNA begins is termed the replication fork, two of which 

proceed bi-directionally from each other from an origin of replication. These 

single units of replicating DNA are referred to as replicons, and the typical 

mammalian cell may contain 50,000 to 100,000 of them with a size range of 40- 

200 kb. The DNA polymerases responsible for carrying out the replication are 

unidirectional in action in the 5 ' to 3 ' direction, and they require a short, labile 

tract of RNA to act as a primer. Whilst leading strand replication may proceed in 

the 5 ' to y  direction to the end o f the chromosome, lagging strand replication 

may only occur in the 5 ' to 3 ' direction in short fragments, termed Okazaki 

fragments. The Okazaki fragment includes the newly formed segment of

12



daughter strand DNA along with its RNA primer arranged 5'-RNA-DNA-3' 

(Sugino & Okazaki 1973). The removal o f these individual RNA primers leaves 

multiple internal gaps in the DNA sequence. These internal gaps are filled in by 

extension of the DNA and ligation, however a 5' gap is left in the newly 

synthesised DNA strand as there is no terminal primer allowing it to be filled in 

(Olovnikov 1973) (Blackburn 1991). Despite the difficulty caused by end 

replication problem linear chromosome development may have facilitated the 

advent of meiosis, and the genetic diversity this enabled may well explain the 

evolutionaiy advantage provided by this otherwise unstable system (Griffith, 

Comeau, et al 1999) (Naito, Matsuura, et al 1998).

The model of telomere attrition by incomplete lagging strand synthesis predicts 

that 50% of chromosomes will have a G-rich overhang, and that chromosomal 

shortening will proceed at a rate of approximately 8-12 bases per cell division, a 

figure which is based upon the size o f the RNA primer (Tseng, Erickson, et al

1979). However, experimental work using a variety of cell types has reported 

long overhangs of between 130-210 bases in >80% of the telomeres tested 

(Makarov, Hirose, et al 1997). In addition it is known that the telomeres of 

human fibroblasts shorten by 31-85 bp per cell doubling. (Harley, Futcher, et al 

1990). This suggests that incomplete lagging strand replication is not alone in 

producing G-rich overhangs. Leading strand replication requires only one RNA 

primer, allowing DNA replication to proceed directly to the end o f the sequence 

and resulting in no DNA sequence loss. To account for this, a revised model of 

telomere shortening has been proposed in which DNA is lost from both ends of 

the chromosome due to degradation of both 5' strands of the DNA at the time of, 

or shortly after replication. This is termed the strand degradation hypothesis. A 

5 '-3 ' exonuclease has been isolated from calf thymus tissue and advanced as the 

likely cause of the missing bases. This exonuclease may be active by itself or as 

a component of DNA polymerase, and it has been shown to act specifically on 

single strands o f duplex DNA (Siegal, Turchi, et al 1992). The G-rich overhang 

may have developed at both ends o f the chromosome to allow protection o f the 

chromosome ends by T-loop formation (Campisi, Kim, et al 2001) (Klapper, 

Parwaresch, et al 2001).

13



1.3.1.1 Other causes of terminal sequence loss

Factors not considered in the strand degradation hypothesis are also likely to 

contribute to terminal sequence loss. Recent work has shown that oxidative 

damage is repaired less efficiently in telomeric DNA than elsewhere in the cell, 

and that oxidative stress accelerates telomeric attrition (von Zglinicki 2002). The 

converse has also been shown to be true, namely antioxidant (such as ascorbic 

acid 2“0 “phosphate) treatment of cell lines attenuates telomere sequence loss 

(Furumoto, Inoue, et al 1998). These data have led some obseiwers to the 

opinion that oxidative stress is an important modulator of telomeric attrition, and 

that telomere driven replicative senescence itself is primarily a stress response 

(von Zglinicki 2002). Evidence in support of this is found in data showing that 

some fibroblast cell lines lose as few as 10-20 bp per cell division, indicating 

that strand degradation and end replication problem may not always be the major 

determinant of telomeric sequence loss. It is possible that in those cell lines that 

are affected by greater sequence loss (and have higher peroxide levels) the major 

factor at work is oxidative stress (Lorenz, Saretzki, et al 2001). This additional 

factor does help explain the huge heterogeneity in replicative potential of 

clonally derived cell lines identified by Smith and Whitney (Smith & Whitney

1980). Evidence o f such a stress response has been identified in vivo in the 

shortened replicative capacity of fibroblasts from subjects with Fanconi anaemia, 

a condition that is known to result in chronic oxidative stress, (von Zglinicki, 

Serra, et al 2000). It is likely that the effect o f oxidative damage on the rate of 

telomeric attrition allows the individual cell to ‘fine tune’ entry into senescence 

to account for the greater risk of mutation, and therefore malignancy associated 

with higher levels o f oxidative stress. This view appeals from an evolutionaiy 

standpoint, as it is a tumour suppressor mechanism by which those cells most at 

risk from malignant transformation may be removed from the replicating 

population more swiftly than would result from end replication problem alone.

14



1.3.2 Role of telomeres in chromosome separation

Kirk et al have demonstrated that telomeres are essential for chromosomal 

stability during mitosis in an experiment focused on the ciliated protozoan 

Tetrahymena. Telomeric DNA mutants were produced by expression of a 

telomerase RNA with an altered template sequence, and this prevented division 

of the germline nucleus in anaphase, consistent with a physical block to 

separation of the telomeres (Kirk, Harmon, et al 1997).

1.3.3 Role of telomeres in gene silencing

A transcriptional silencing mechanism has been proposed that is caused by 

proximity to the telomere. This has been termed the telomere position effect 

(TPE), and was first identified in Saccharomyces cerevisae where TPE can cause 

reversible gene silencing by a mechanism that is dependant both on telomere 

length and the proximity of the gene to the telomere (Tham & Zakian 2002). 

This has prompted investigations to identify if this effect can be demonstrated in 

mammalian cells. Promising results have been obtained using HeLa clones in 

which a luciferase reporter adjacent to a newly formed telomere expressed 10 

times less luciferase than controls that have been randomly incorporated. 

Furthermore, lengthening of the telomere produced further reduction in reporter 

activity in the telomere adjacent reporters but not in the controls (Baur, Zou, et 

al 2001). Attempts to reproduce this effect in natural telomeric genes have not 

met with the same success; telomere length alone is not sufficient to deteimine 

the expression status of the genes investigated (Ning, Xu, et al 2003). However, 

this study has also identified a discontinuous pattern of gene expression during 

telomere shortening that may be related to senescence. Further work is necessary 

to clarify to what extent telomeres affect the expression level of genes located 

near to them, though the present evidence suggests that such proximity is a 

factor governing expression, and suggests another important role for the 

telomere in the mammalian cell.
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1.4 Replicative senescence

Senescence is the final phenotypic state adopted by a cell in response to several 

distinct physiological processes including proliferation, oncogene activation and 

oxygen free radical toxicity. In the context of this study, the qualified term 

replicative senescence is used to avoid confusion in cases where cells might for 

example be described as ‘senescent’ because they were derived from an aged 

individual, or because they are derived from post-mitotic tissue demonstrating 

age related decline in function.

The behaviour of individual cells in culture was initially thought to display 

immortality. The first flawed experiments in this field were carried out by 

Carrell in 1912, using cells dissociated from chicks and sub cultured in a 

medium derived from chick embryo extract. Carrell claimed these cells could be 

sub cultured indefinitely, and that organismal ageing and therefore mortality was 

a function of multicellularity. The cells cultured were in fact mortal, being 

sensitive to a wide variety o f poor growth conditions and noxious substances. 

They were also being replenished regularly with a medium that was 

contaminated with fresh cells, and the cultures correspondingly underwent 

phases of growth when new, presenescent cells were added with the growth 

medium (Cristofalo & Pignolo 1993) (Hayflick 1965). Since then and despite 

advances in the field. Carrel’s results have never been duplicated despite several 

attempts (Hayflick 1965) (Witkowski 1980). However, the view that the 

individual cell is inherently immortal persisted until the landmark experiments of 

Hayflick and Moorehead in 1961 and 1965, which proved conclusively that 

normal human fibroblasts have only a limited capacity for division. The process 

that eventually limits cell division has been termed replicative senescence, and 

with the exception of cells in the germ line and some stem cell types it affects all 

mammalian cells (Hayflick 1965) (Hayflick & Moorhead 1961) (Hayflick 1997). 

Olovnikov first proposed that loss o f chromosomal end genes, or ‘telogenes’ was 

the trigger for Playflick’s limit, and linked telomeres to replicative senescence 

(Olovnikov 1973).
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Replicative senescence occurs in two distinct phases in human fibroblasts, 

mortality stages 1 and 2 (M l and M2, shown in Figure 1-4), and this model is 

the accepted sequence of events that occur in normal somatic cells approaching 

replicative exhaustion (Wright & Shay 1992). M l probably occurs when 

telomeres are sufficiently short that they can no longer be effectively ‘masked’ 

from cellular DNA repair machinery and are treated as double stranded DNA 

breaks (Harley 1991). The replicative block that occurs at M l is mediated by cell 

cycle checkpoint proteins that are associated with response to DNA damage, 

such as the p53 and pl6/pRb pathways (Kohn 1999). As such, mutations or 

transfonning oncogenes that inactivate these checks allow frirther cell division 

with concomitant telomeric attrition until M2 is reached (Lundberg, Hahn, et al 

2000).

17



Figure 1-4. Two step hypothesis of cellular immortality. Germ line cells and 

pluripotent stem cells are telomerase positive, although pluripotent stem cells do 

not maintain their telomere lengths. Normal somatic cells are telomerase 

negative and undergo telomeric attrition. At a critical length this erosion triggers 

a replicative block termed Hayflick’s limit, or mortality stage 1 (M l). 

Abrogation o f cell cycle checkpoints such as p53 or pl6/pRb allows further cell 

division and concomitant telomeric loss until a genetic crisis, or mortality stage 

2 (M2) is triggered characterised by massive cell death. Almost all the rare cells 

that survive beyond this stage contain mutations that have led to telomerase 

reactivation.
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M2 (crisis) represents the end result o f critically short telomeres, and is 

characterised by end-to-end fusions, and chromosome breakage fusion cycles 

resulting in apoptosis (Wright & Shay 2000). The stringency with which 

replicative senescence is adhered to varies between species, for example whilst 

there are no confirmed reports of either human or chick fibroblasts from normal 

donors spontaneously immortalising, this occurs relatively frequently in cells 

derived from mice (Ponten 1971).

The onset of replicative senescence is determined by the number o f times the 

cells divide, and not by calendar time. It is characterised by irreversible growth 

arrest in the G1 phase of the cell cycle and the ability to survive and remain 

metabolically active in this condition for a period of time that may extend to 

several years, despite an inability to synthesise DNA (Matsumura, Zerrudo, et al 

1979). Senescent cells also appear enlarged and flattened, and express a (3- 

galactosidase activity at pH6 (Dimri, Lee, et al 1995). These criteria are few, 

partly as other changes that occur in senescence are also seen in the reversible 

state of quiescence into which some cultured cells fall in the absence of growth 

factors (Berube, Smith, et al 1998). Even very young cultures are found to 

contain a small proportion of cells that are senescent, and this proportion slowly 

increases thi'oughout the life span of the cell line until all the cells are affected.

It has been found that human fibroblasts, when treated with high concentrations 

of hydrogen peroxide stop dividing and become enlarged. This has been 

interpreted as a means by which replicative senescence may be triggered for 

experimental purposes. However as other cell states (such as terminal 

differentiation) may mimic the senescent phenotype, this means of inducing 

senescence should be treated with caution; at least until the underlying control 

mechanisms are more fully understood (Chen & Ames 1994) (Smith & Pereira- 

Smith 1996). In contrast, a recognised means for delaying the onset of 

replicative senescence is via cellular expression of DNA tumour viral genes, 

such as simian virus 40 (SV40) T antigen. SV40 acts as a dual inactivator o f the 

genes p53 and RBI. The same effect is seen by treatment with antisense 

oligonucleotides to the tumour suppression genes p53 and RBI, or by expression
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of a dominant negative p53 mutant (Smith & Pereira-Smith 1996). These 

treatments allow cells an extra 10-20 doublings compared to controls, though 

they are only effective if  carried out on pre-senescent cells, as senescent cells 

cannot be stimulated to divide (Sager, Tanaka, et al 1983). After the extra 

population doublings treated cells will enter senescence normally, with the 

exception of SV40 treated cells, which will instead undergo a period of genetic 

crisis, usually leading to cell death.

1.4.1 How is senescence triggered?

When considering this subject, it should first be noted that whilst the finite 

replicative potential of nonnal somatic cells is now as much a central dogma as 

CaiTel’s view of cellular immortality was before 1961, there are still dissenting 

voices. Notably Harry Rubin states that the concept of a genetically 

predetermined number of human fibroblast replications, and its implied 

extension to other cells, is based on an artefact resulting from the damage 

accumulated by the explanted cells during their replication in the radically 

foreign environment of cell culture (Rubin 1998). Rubin is not alone in this 

view, and it must be accepted that the cell culture environment, improved though 

it is from the days of Carrel’s work does represent a radically alien and crude 

environment for the cells grown within it; as such the true nature of cellular 

replicative potential may not lend itself entirely to one view or the other but lie 

somewhere between the two camps. That aside, replicative senescence as a 

phenomenon is widely accepted (Kipling & Wyndford-Thomas 1999), and 

explanations of how it is triggered usually fall into two broad camps. First, the 

cell is considered to play a passive role, having senescence tluust upon it as the 

result o f accumulation of errors associated with, for example, imperfect repair of 

DNA damage and inadequate scavenging o f haraiflil free radicals. Second, 

senescence is considered an active, progiammed cellular process, and implies 

cellular ageing is part o f an intrinsic genetic programme.

20



1.4.1.1 Mechanisms under consideration

Several hypotheses have been advanced to explain the link between telomeric 

attrition and replicative senescence. First, telomeres might bind transcription 

factors necessary for triggering senescence that are released upon loss of enough 

repeats. Whilst there is as yet no fmn evidence for this in mammalian cells, this 

idea is based on experimental work earned out in yeast, where the telomere 

associated Rapl protein sequesters silencing factors that normally act at non- 

telomeric sites (Marcand, Buck, et al 1996).

Second, the heterchromatic structure of DNA near the telomere may act to 

silence genes necessary for triggering the senescent phenotype. These genes 

would then become derepressed as telomeric sequence is lost, and 

heterochromatin diminishes. Again, the evidence put forward in support of this 

hypothesis is yeast-based research where there is strong evidence of desilencing 

of loci near telomeres (Shore 1995).

Finally, short telomeres may cause a DNA damage response that leads to cell 

cycle arrest, and replicative senescence. The key to this mechanism is believed 

to be the T-loop structure identified by Griffith et al and described previously 

(Griffith, Comeau, et al 1999). T-loops allow the telomere end to be sequestered 

from DNA repair complexes, and it is possible that loss of this loop forming 

ability due to telomeric attrition is the mechanism through which the senescence 

response is initiated. This is likely to occur through a p53 mediated DNA 

damage response.

1.4.1.2 Evidence in favour of a genetic basis to replicative 

senescence

Smith et al exploited in vitro hybrids between young and old cells to investigate 

how replicative senescence is controlled. Such hybrids were found to have no 

greater replicative potential than the old set of parental cells from which they 

were partly derived. This suggests that the senescent phenotype is dominant.
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Further evidence of this is the observation that hybrids of two old cell lines never 

show greater replicative potential than their parental cells. In addition, fusion of 

immortal and mortal human fibroblasts produce hybrids that are invariably 

mortal, indicating that cellular immortality arises due to recessive mutations that 

allow escape from senescence (Pereira-Smith, Robetorye, et al 1990).

1.4.2 Replicative senescence and ageing

The link between replicative senescence and ageing was first postulated by 

Hayflick (Hayflick 1965), who linked the aged appearance o f senescent cells to 

organismal ageing, and suggested replicative senescence may therefore play a 

part in the many phenotypic changes that occur during this process. This proved 

a popular idea, as it provided a mechanism by which cell culture studies could 

contribute to the investigation o f the ageing process. The study o f ageing, and 

more specifically age related disease is extremely important in the human field 

as we live in a world with an ageing population (HMSO 1995). Many of the 

improvements in human healthcare that have produced this effect have filtered 

into the veterinary field resulting in an increased demand for treatments for age 

related disease such as cancer (Bronson 1982). Hayflick’s original hypothesis of 

ageing through the mechanism of replicative senescence indicates a cellular, 

genetic programme for how we age, but does not address why this might have 

evolved. The question of why we age is engaged more recently in the concept of 

antagonistic pleiotropy, which has the central tenet that evolutionary pressure 

does not have any effect on the post-reproductive age organism. This fits 

conveniently with Hayflick’s idea, as replicative senescence would be strongly 

selected for as a potent anti-cancer mechanism and if any deleterious effects 

were co-selected they would be unchecked by the forces of evolution if they 

occurred in the older post-reproductive organism. The supposition is therefore 

that ageing may be the price paid for a cancer free reproductive lifespan 

(Krtolica, Parrinello, et al 2001).

A second idea is the disposable soma theory of ageing, in which evolution is 

viewed as the force behind the most efficient use of resources between
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reproduction and somatic tissue repair (Kirkwood 1996). The theory is well 

illustrated by the mouse, a creature with a short lifespan, high fecundity and high 

predation rate. According to the theory, evolution has allocated the lion’s share 

of resources to reproduction rather than a long-lived body, as a mouse with a 

body designed to live to for fifty years will in its natural environment most likely 

be eaten after two. Therefore the life spans of species may be a reflection of a 

logical use of resources in the face o f predation and disease.

Aside from the hypotheses about why we age, Hayflick’s idea about how this 

might happen has yet to be tested critically. Even if proved to play a part in the 

ageing process, replicative senescence cannot be the sole mechanism involved, 

as it does not provide an explanation for the age related changes that are clearly 

documented in post-mitotic tissues such as neurones (Smith & Whitney 1980). 

Yet cell culture has provided indirect evidence of a link between the two 

processes. First, a number o f in vitro studies have shown an inverse relationship 

between donor age and the number o f population doublings (PDs) until 

replicative senescence (Allsopp, Vaziri, et al 1992). Second, interspecies studies 

have shown a correlation between species life span and the replicative potential 

of fibroblast cell cultures derived from them. For example, whilst murine 

fibroblasts senescence after only 10-15 PDs, fibroblasts cultured from the long- 

lived Galapagos tortoise routinely undergo more than 100 PDs before exhausting 

their replicative potential (Soldstein 1974). This points to an overlap in the genes 

governing replicative senescence and organismal ageing (Rohme 1981). Allied 

to this data is the observation that cell lines derived from sufferers o f the human 

progeric syndromes Werner’s syndrome and Hutchinson-Gilford exhibit 

decreased proliferative potential compared to age matched controls. Such 

decreased proliferative potential is also found in Down’s syndrome patients 

(Oshima, Campisi, et al 1995) (Goldstein & Harley 1979). Furthermore, recent 

research has demonstrated an association between loss of replicative potential 

and premature cardiac ageing in humans (Chimenti, Kajstura, et al 2003).

At a molecular level correlations have been uncovered between replicative 

senescence and ageing. The ability to respond to stressors by induction of heat 

shock protein 70 is attenuated in both senescent human fibroblasts and aged
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rodent tissue (Choi, Lin, et al 1990) (Fawcett, Sylvester, et al 1994). Such 

observations are circumstantial only, but add to the overall weight o f evidence.

Finally, a senescence associated marker enzyme ((3-galactosidase activity at pH6, 

Dimri, Lee et al 1995) has been found to be more prevalent in cells from 

physiologically aged tissue of the Rliesus monkey {Macaca mulatto) than young 

equivalents, providing the first in situ evidence that replicative senescent cells 

accumulate in aging tissue. Crucially, this enzyme activity is not displayed in 

reversibly arrested cells, such as young, growing cells that have been affected by 

removal o f growth factors. This allows clear differentiation between quiescence 

and true replicative senescence (Pendergrass, Lane, et al 1999).

The above evidence is not without contradiction; for example Cristofalo et al 

could not demonstrate an age effect on fibroblast replicative potential using a 

health screened donor population, and pointed out that weaknesses in candidate 

selection may give rise to false correlations (Cristofalo, Allen, et al 1998). One 

example o f this is a study that could demonstrate an inverse relationship between 

the two parameters only when diabetics and pre-diabetics were included in the 

study gi’oup, even though diabetes is a disease that is known to increase cell 

turnover (Goldstein, Moennan, et al 1978).

Furthermore, whilst the decreased growth potential of cultures from patients 

with progeric syndromes would appear to provide strong circumstantial evidence 

of a link between replicative senescence and ageing, closer examination of early 

senescent cells from donors with perhaps the most documented condition, the 

Werner syndrome are found not to repress c-fos, which is a hallmark of normal 

senescence (Oshima, Campisi, et al 1995).

Perhaps most crucially of all, whilst the above evidence supports the idea of 

replicative senescence and ageing being co-dependent variables this does not 

imply causality; thus whilst telomeric attrition is associated with ageing it has 

not been shown conclusively that it is the major cause of ageing.
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1.4,3 Senescence as a tumour suppressor mechanism

The ability of cells to replicate is essential for repairing and renewing the tissues 

of multi cellular organisms throughout life. However, this capacity to divide is 1

also an opportunity for mutations to develop, and such mutations can lead to j

malignant transfonnation. The risk o f malignant transformation increases with I
oxidative stress, environmental insults and errors in DNA replication. This is ■

because all these factors cause damage to the genome, which increases the risk 

of mutation. It is mutation that may cause a genome to become unstable 

(hypermutable), and confer a growth or other survival advantage over normal 

cells that allows the development of cancer (Campisi 2001a). i

The dividing cell has two strategies for dealing with the risk of malignant ‘

transformation. First, apoptosis or programmed cell death eliminates at risk cells |

from the population. Second cellular senescence eliminates risk by irreversibly j

arresting growth. The term ‘cellular senescence’ is used specifically in this case I

to denote a senescent phenotype that may be induced by a range of factors other |

than telomeric attrition, such as DNA damage, chromatin remodelling and strong !

mitogenic signals (Campisi 2000). Evidence linking cellular senescence and |

tumour suppression has been uncovered both in vitro and in vivo. DNA damage |

in the form of double strand breaks or oxidative damage will induce a senescent ;

phenotype, and oxidative stress is known to shorten telomeres (von Zglinicki I
2002). Agents that open or unravel chromatin stmcture will induce a senescent 

phenotype (Young & Smith 2001), and such agents have the capacity to cause 

loss of the gene silencing capacity of chromatin. Over expression of both the 

growth stimulatoiy transcription factor E2F1 and activated forms of the growth 

factor signal transducing protein Ras will induce a senescent phenotype (Dimri,

Itahana, et al 2000) (Serrano, Lin, et al 1997). Malfunctions of these factors may 

contribute to the development of cancer; and this points to senescence being a 

general tumour suppressor mechanism with the capacity to respond to a wide 

range of signals from different sources within the cell.
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The genes controlling cellular senescence give further insight into the 

importance of this process as a tumour suppressor mechanism. Genes governing 

cellular senescence encode two proteins that are at the heart o f the two most 

important tumour suppressor pathways in the cell. Together, flmctional loss of 

the tumour suppressors p53 and pRb are the most disabled in mammalian 

cancers (Hickman, Moroni, et al 2002), and such ffinctional loss has been shown 

to occur in canine cancers, for example canine melanoma (Koenig, Bianco, et al 

2002). p53 controls the expression of genes that respond to genomic damage 

through cell cycle arrest or apoptosis, and p53 levels are increased in senescent 

cells (Bringold & Serrano 2000) (Lundberg, Hahn, et al 2000). pRb does a 

similar job of policing the genes controlling cell cycle progression and cellular 

differentiation, though by the indirect route of interacting with transcription 

factors such as E2F (Berube, Smith, et al 1998). Other oncogenes, such as c- 

myc, and the viral oncogenes E6 and E7, also act by overcoming senescence, 

underlining the importance of this process for tumour suppression in the cell 

(reviewed in Campisi, Dimri, et al 1996).

In vivo evidence o f the link between senescence and tumour suppression has 

been demonstrated in the highly cancer prone state of mice that have been 

engineered to produce inactive p53 or pl6*̂ ^̂ "̂ ‘‘ proteins (Ghebranious & 

Donehower 1998). Conversely, premature senescence of mammary epithelial 

tissue suppresses the development of mammary cancer in young mice exposed to 

the mouse mammary tumour virus (Boulanger & Smith 2001).

Finally, a clear piece o f evidence for the importance o f replicative senescence as 

a tumour suppressor mechanism is the fact that cells with a finite replicative life 

span are orders o f magnitude less likely to form tumours than immortal cells 

(Campisi 1997).

1.4.4 Cellular senescence as a facilitator of tumorigenesis

In light of the above evidence, it may appear strange to describe senescent cells 

as a cancer risk factor, however recent evidence shows this to be the case; not by
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any direct action of the senescent cells themselves, but via adjacent cells that still 

have replicative potential (Ki'tolica, Parrinello, et al 2001).

Cellular senescence has been described as an example of antagonistic pleiotropy 

(Campisi 2001a). Therefore whilst replicative senescence may have evolved to 

provide the advantage of tumour suppression to organisms of breeding age, it 

may also have selected for undesirable characteristics, one o f which may be a 

tendency to develop cancer in the older, post-reproductive organism. Krtolica et 

al using in vitro human fibroblast cultures provided the main experimental 

evidence of this effect. This work showed that both premalignant and malignant 

epithelial cells are stimulated to proliferate by senescent fibroblasts via factors 

that are at least in part secreted by the senescent cells (Krtolica, Parrinello, et al 

2001). This effect was observed when the senescent cells comprised only 10% of 

the cell population as a whole, and was unaffected by the method by which 

senescence was induced (replicative exhaustion, oncogenic RAS, pl4^^^^, and 

hydrogen peroxide).

1.5 Telomerase structure

Not all mammalian cells undergo telomeric attrition; for example germ-line cells 

and cancer cells do not. However these cells possess linear chromosomes, and 

are therefore prey to the end replication problem. The solution is the 

ribonucleoprotein telomerase, a complex composed of an RNA sequence that is 

complimentary to the telomere sequence, a catalytic component, and several 

other associated structural proteins with an estimated total molecular mass of 

1000 kilodaltons (kDa) (Dhaene, Van Marck, et al 2000). Telomerase was 

identified in 1985, and the earliest purification o f the active components 

occurred in Enplotes aedictilattis (Greider & Blackburn 1985) (Lingner & Cech 

1996). Telomerase activity allows maintenance of telomere length despite cell 

division, and accordingly activity is strongly associated with immortalised and 

cancerous tissues (Kim, Piatyszek, et al 1994) (Shay & Bacchetti 1997).
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Telomerase is frequently described as a ‘specialised’ reverse transcriptase, and 

there are three main reasons for granting it specialised status. First, and 

unusually for a reverse transcriptase, telomerase utilises only a part of its RNA 

subunit functionally. Second, during the processive synthesis of telomeric 

repeats, the substrate translocates from one end of the template to the other by an 

unknown mechanism, and finally, the RNA subunit of telomerase is stably 

associated with the protein complex as a whole.

Telomerase acts by using the RNA sequence as an internal template, guiding the 

addition o f nucleotides to the 3 ' end o f the telomere by the catalytic component, 

telomerase reverse transcriptase. The complex is then repositioned at the new 

telomere terminus and the process is repeated until the effects of end replication 

problem have been negated (Buys 2000). Accordingly, telomerase activity 

should be absent from those cell types that undergo telomeric attrition, and this 

is indeed the case (Reviewed in Dhaene, Van Marck, et al 2000).

1.5.1 Telomerase RNA

This component was first cloned in Tetrahyinena thermophila, and the human 

analogue is referred to as liTR (human telomerase RNA component). In humans, 

the hTR transcript is 451 nucleotides in length and lacks polyadenylation. It 

contains a ‘template’ sequence that is complimentary to the telomere repeat, and 

in humans this sequence is II  nucleotides in length (5’-CUAACCCUAAC-3’) 

(Feng, Funk, et al 1995). Mammalian telomerase RNAs resemble small 

nucleolar RNAs (snoRNAs) due to the presence of a H/ACA box in their 3' 

domain (Mitchell, Cheng, et al 1999). The vital nature of the RNA component to 

telomerase function was revealed first in Tetmhymena, where disruption of 

telomerase RNA was shown to lead to progressive telomere shortening (Ahmed, 

Sheng, et al 1998).
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1.5.2 Telomerase reverse transcriptase

The telomerase reverse transcriptase gene (the human analogue is referred to as 

hTERT) consists of 16 exons and 15 introns and extends over 40 kb (Wick & 

Hagen 1999). O f the three major subunits that comprise the telomerase 

ribonucleoprotein, the hTERT gene product is considered to be the most 

common rate-limiting determinant of activity. This is due primarily to studies 

connecting telomerase activity directly with transcriptional activity of hTERT at 

all stages during the process of malignant transformation, in contrast with the 

hTR subunit that is expressed in many tissues irrespective of telomerase activity 

(Avilion, Piatyszek, et al 1996) (Wisman, De Jong, et al 2000). The reverse 

transcriptase domain has been shown to be essential for telomerase activity 

(Weinrich, Bodnar, et al 1997), however in humans both the amino and carboxyl 

terminus also have important functional roles to play, and even minor deletions 

in these regions may lead to loss of telomerase activity (Beattie, Zhou, et al

2000) (Banik, Guo, et al 2002).

The importance of the TERT component is further supported by studies 

demonstrating that forced expression of hTERT in telomerase negative cells is 

enough to reconstitute telomerase activity and extend replicative life span 

(Bodnar, Ouellette, et al 1998). This work was subsequently extended by 

Takakura et al, who showed conclusively that hTERT is significantly activated 

in cancer cells, but repressed in normal primary cells (Takakura, Kyo, et al

1999).

1.5.3 Human telomerase associated protein 1

TEPl, or hTEPl in humans (human telomerase associated protein 1), is a 240 

kDa protein which is associated with telomerase activity, but in common with 

hTERT, expression of this protein alone in a cell does not imply telomerase is 

active (Harrington, McPhail, et al 1997). hTEPl is the human homologue of p80 

in Tetrahymena, p80 being one of the first telomerase associated proteins 

identified. This protein was initially thought to be the catalytic component of

29



telomerase before TERT was identified (Dhaene, Van Marck, et al 2000). Some 

light has been shed on the possible function o f this protein by recent work that 

has shown TEPl to be identical to the 240 kDa vault protein. Vault proteins are 

large cytoplasmic ribonucleoprotein complexes, and whilst their function is as 

yet unknown the sharing o f TEPl between vault proteins and telomerase 

suggests TEPl may play a stmctural role in ribonuceloproteins, or aid generally 

with their function or assembly (Kickhoefer, Stephen, et al 1999). In the same 

study, Kickhoefer et al demonstrated that vault proteins themselves display no 

detectable telomerase activity,

1.6 Telomerase activity

Many human tissues display telomerase activity during early embryonic 

development, however this period is short lived, and telomerase activity is 

repressed in most normal human somatic tissues after birth (Kim, Piatyszek, et al 

1994) (Shay & Bacchetti 1997). Telomerase activity may still be found in 

specific tissues throughout adult life, and this pattern correlates with tissues that 

require a large replicative potential due to functional demand. For example, 

Tahara et al detected telomerase activity in normal colonic glandular epithelial 

crypt cells (Tahara, Yasui, et al 1999). Telomerase activity is induced by antigen 

activation of mature resting lymphocytes, (Weng, Palmer, et al 1997) and germ 

cells are telomerase positive, along with normal endometrial tissue (Dhaene, Van 

Marck, et al 2000).

1.7 Regulation of telomerase activity
1.7.1 Transcriptional regulation of the hTERT gene

As TERT is the primary determinant for telomerase activity the regulation of 

TERT expression has been the focus of many studies. The isolation and 

characterisation o f the hTERT promoter (Wick & Hagen 1999) (Cong, Wen, et 

al 1999) led to transient transfection experiments that used hTERT promoter- 

luciferase constmcts to show promoter inactivity in mortal and transformed
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preimmortal cells, but activity in immortal cells, highlighting the importance of 

transcriptional control (Takakura, Kyo, et al 1999).

Regulation of hTERT promoter activity is likely to be a key point that is 

controlled at a number o f different levels. The large numbers of transcription 

factor binding sites within the hTERT promoter provide evidence for this. O f 

these, several have been implicated in the control of hTERT expression and may 

be defined as transcriptional activators or repressors (Cong, Wen, et al 1999).

1.7.1.1 TERT transcriptional activators
1.7.1.1.1 C-Myc

C-myc is a well-characterised oncogene that promotes growth, proliferation and 

apoptosis (Grandori, Cowley, et al 2000). Alterations in the structure or 

expression of this gene have been linked to a wide variety of human cancers. 

The link between c-myc and hTERT transcription are the two E-box recognition 

sequences in the hTERT promoter sequence. This sequence (5'-CACGTG-3') is 

recognised and bound by heterodimers formed by c-myc and the Max protein 

(Grandori, Cowley, et al 2000). C-myc has been shown to induce hTERT 

expression and telomerase activity in primary fibroblasts (Wang, Xie, et al 

1998). These data provide clear evidence of a direct effect o f c-myc on hTERT 

activation.

1.7.1.1.2 Spl

Spl is a general transcription factor that binds to specific sequence areas of 

promoters termed GC boxes. It helps to initiate transcription of a large number 

of genes, particularly by aiding transcription of promoter sequences that are 

without the TATA-box binding protein, which is part of the general transcription 

machinery of the mammalian cell. The hTERT promoter is TATA-less, and Spl 

has been shown to cooperate with c-myc to activate transcription of hTERT in a 

cell-type dependant manner (Kyo, Takakura, et al 2000).
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1.7.1.1.3 Human papillomavirus 16 E6 protein

Telomerase activity can be induced in a number o f human cell types by the 

human papillomavii-us 16 E6 protein, via up regulation o f hTERT transcription. 

The mechanism by which E6 causes hTERT up regulation is as yet unknown, 

however it occurs independent of any interactions with either p53 or c-Myc 

(Klingelhutz, Foster, et al 1996).

1.7.1.1.4 Steroid hormones

Initial studies focusing on telomerase activity in normal human ovarian and 

endometrial tissues identified telomerase activity at those stages o f the menstmal 

cycle that are under the influence of oestrogen. It has been recognised for some 

time that certain types of cancers are oestrogen dependant (Henderson, Ross, et 

al 1993), and so research has been directed at identifying whether a causal link 

between oestrogen influence and telomerase activity can be identified. Kyo et al 

were the first to demonstrate that oestrogen activates telomerase, and that this 

phenomenon is due to direct transcriptional regulation of hTERT expression in 

hormone sensitive tissues (Kyo, Takakura, et al 1999).

1.7.1.2 TERT transcriptional repressors

The cmcial importance of TERT expression for reconstituting telomerase 

activity has been outlined above, and in accordance with the finding that 

telomerase activity is absent from most normal post-embryonic human somatic 

tissues it is considered likely that repression of hTERT transcription in these cell 

types is a key control point. Consistent with this hypothesis, fusion between 

normal somatic cells and some immortal telomerase positive cells results in 

repression of telomerase activity (Ishii, Tsuyama, et al 1999). Furthermore, 

down regulation of telomerase activity in cancer cells has been achieved via 

repression of hTERT expression by the transfer of specific chromosomes from 

normal cells, implying that normal cells express negative regulators of hTERT 

expression (Oshimura & Barrett 1997). To date several hTERT repressors have
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been identified including M adl, p53, pRb, E2F1, W Tl, and anti-proliferation 

agents, as detailed below.

1.7.1.2.1 M adl

The proteins c-Myc, Max and M adl are crucial to the proper cellular control of 

growth and differentiation. As has been described in Section 1.7.1.1.1 the 

heterodiiners formed by c-myc and max have a positive effect on hTERT 

transcription. Mad/Max dimers act as the counterbalance to this relationship and 

produce downregulation of hTERT transciption through competitive inhibition 

of the c-myc/Max dimers (Xu, Popov, et al 2001).

1.7.1.2.2 p53

p53 is a tumour suppressor protein that acts by inducing cell cycle arrest or 

apoptosis and can respond to a variety of types of cellular damage. The 

importance of this protein is reflected in the fact that it is functionally disabled in 

50% of human tumours (Asker, Wiraan, et al 1999). Recent evidence has shown 

that p53 down regulates hTERT expression directly, and therefore its anti 

telomerase effects are not dependant on its cell cycle arrest or apoptosis 

flinctions (Xu, Wang, et al 2000) (Kusumoto, Ogawa, et al 1999).

1.7.1.2.3 pRb and E2F1

Over expression of both pRb and E2F1 resulted in repression o f telomerase 

activity in a number of human cancer cell lines. The exact mode o f action of this 

effect has yet to be elucidated, and whether pRb and E2F1 act independently or 

cooperate (Ying C.Henderson,, et al 2000) (Nguyen & Crowe 1999).

1.7.1.2.4 Wilms’ tumour 1 tumour suppressor (W Tl)

W Tl is a tissue specific (kidney, gonad and spleen) repressor of the hTERT 

promoter, inactivation of which may contribute to activation of telomerase 

during tumorigenesis in its target tissues (Oh, Song, et al 1999).
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1.7.1.2.5 Antiproliferation and differentiation agents

Telomerase activity is reduced by cellular differentiation and cell cycle exit, 

therefore focus has been given to identifying possible inhibitory effects by 

factors governing these cellular changes on hTERT activity. Both Interferon-a 

and autocrine transforming growth factor p have been shown to exert a direct 

inhibitory effect on TERT expression in cell lines derived from human 

malignant cancers. Both these factors are involved in control o f cellular 

proliferation, and it is possible many more such factors exert similar influence 

(Yang, Kyo, et al 2001).

1.7.2 Epigenetic regulation of TERT gene

DNA méthylation is a common, programmed alteration of genomic sequences 

that has been shown to be essential for normal development (Reik & Dean

2001). The possibility that abnonnal méthylation may lead directly to up 

regulation of hTERT activity exists though whether this occurs remains to be 

resolved. It is clear that abnormal méthylation down regulates tumour 

suppressors such as p l6  and pRb and is associated with human cancers and so 

such a relationship may be implied (Laird & Jaenisch 1994). In addition, a 

reverse correlation has been shown between the degree of méthylation of the 

hTERT promoter and telomerase activity in B-cell lymphocytic leukaemia 

(Bechter, Eisterer, et al 2002); it is possible such relationships are not rarities, 

but are as yet undiscovered.

1.7.3 Other TERT controls

Transcriptional regulation of hTERT is undeniably important for the regulation 

of telomerase activity in cells. However, the large volume of work that has been 

dedicated to categorising the telomerase activity status of normal human tissues 

has revealed other points of control. For example full-length hTR and hTERT 

mRNA are readily detectable in human lymphocytes, tonsils, peripheral B and T
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cells and ovarian tissue without the presence of detectable telomerase activity 

(Ulaner, Hu, et al 2000) (Liu, Schoonmaker, et al 1999). This posttranscriptional 

control is likely to relate to phosphorylation o f hTERT by serine/protein kinases, 

which is a modification necessary for activity that has been demonstrated by a 

number of different workers (Akiyama, Hideshima, et al 2002) (Minamino & 

Kourembanas 2001) (Haendeler, Hoffmann et al 2003). Interestingly, 

phosphoiylation regulation of hTERT may exert control over telomerase activity 

in part by influencing the location of hTERT within the cell. hTERT tyrosine 

phosphorylation at position 707 has been linked with nuclear export of hTERT, 

and increased antiap opto tic activity (Haendeler, Hoffmann et al 2003). This also 

indicates novel effects of TERT within the eytosol that are unrelated to 

telomerase actvity, and demonstrate clearly that regulation of telomerase and its 

components is more complex than initially thought. Furthennore, the finding of 

hTERT transcripts in foetal tissues and tumour cell lines that would result in a 

truncated or inactive protein indicate that alternative splicing also has a role to 

play in regulating telomerase activity. These include an a transcript which lacks 

36 nucleotides from the 5' end of exon 6, the p transcript, which lacks exons 7 

and 8 entirely, both a  and p spliced transcripts and a number of insertional 

alternative transcripts (Ulaner, Hu, et al 1998) (Ulaner, Hu, et al 2001) (Ulaner, 

Hu, et al 2000) (Yokoyama, Wan, et al 2001).

The exact repressor gene or genes responsible for suppressing hTERT 

transcription have yet to be identified, however a gene/number o f genes on the 

short ai-m of chromosome 3 suppress telomerase activity, (Tanaka, Shimizu, et al

1998) and produce permanent growth arrest in breast cancer cells (Cuthbert, 

Bond, et al 1999). Antagonism of growth hormone releasing hormone also 

produces down regulation of the hTERT gene in human glioblastomas, but the 

mechanism o f suppression is not known (Kiaris & Schally 1999).

Initial investigations into the location of the telomerase gene placed it at a sub- 

telomeric region of the short aim of chromosome 5p (Bryce, Morrison, et al

2000). This data led workers to speculate that telomere position effect (TPE) 

might be the key to explaining transcriptional regulation. TPE has been 

characterised in both yeast and human cells, and refers to the reversible silencing
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of a gene near the telomere (Tham & Zakian 2002) (Baur, Zou, et al 2001). 

More recent data indicates that the hTERT gene is positioned more than 2 Mega 

bases from the telomere, and so it is likely other control mechanisms are at work 

(Leem, Londono-Vallejo, et al 2002).

1.8 Telomeres, telomerase and cancer

The unchecked cellular division that is a feature of cancer cells indicates these 

cells have evolved a way to overcome the end replication problem. Telomerase 

reactivation is the most common way in which cancer cells overcome end 

replication problem, and telomerase activity in a growing mass is a strong 

indicator of malignancy (Shay and Bacchetti 1997). Bodnar et al described the 

first direct evidence of the ability of telomerase to extend the replicative life 

span of a cell line. This showed conclusively that forced expression o f the 

catalytic component o f human telomerase, hTERT was sufficient to reconstitute 

telomerase activity in the test cells, and that the newly telomerase positive cells 

were capable o f dividing well beyond their accepted replicative limits. In 

addition to this the telomerase positive clones had elongated telomeres, and 

reduced p-galactosidase activity compared with their telomerase negative 

counter parts (Bodnar et al 1998).

A number of telomerase positive cell lines have shown continued telomeric 

attrition after immortalisation, which has lead to the opinion that another 

property of telomerase beyond telomere maintenance may contribute to the 

process of immortalisation (Zhu, Wang, et al 1999). Stewart et al examined the 

capacity of oncogenic H-Ras to transform previously immortalised cells and 

provided experimental evidence for this. Expression of H-Ras in a cell line 

immortalised by an alternative pathway did not cause transformation, however 

when these cells where forced to express hTERT and the experiment repeated 

successful transformation occuiTed and the cells developed a tumorigenic
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phenotype. Crucially, this was also possible using a mutant form of hTERT that 

retains catalytic activity, but cannot maintain telomeres; providing clear 

evidence for a non-telomere based contribution of telomerase to tumorigenesis 

(Stewart, Hahn, et al 2002).

Whilst these data indicate telomerase activity acts as a facilitator of malignancy, 

telomerase activity per se is not sufficient to cause cancer, i.e. telomerase is not 

an oncogene. This is borne out by the obseiwation that certain germ line cells and 

stem cells are telomerase positive, but are not cancerous (Kim, Piatyszek, et al 

1994) (Broccoli, Smogorzewska, et al 1997). Telomerase activity does however 

confer unlimited replicative potential on a cell, which allows for the 

accumulation of mutations that may eventually lead to malignancy.

1.8.1 The Alternative Lengthening of Telomeres (ALT) 

pathway

Not all tumours, or tumour derived cell lines are telomerase positive. As many as 

10% of human tumour derived cell lines are telomerase negative and rely on an 

alternative mechanism of telomere maintenance termed ‘Alternative 

Lengthening of Telomeres,’ (ALT) (Bryan & Reddel 1997). The mode of action 

of the ALT pathway is poorly understood, however cell fusion experiments have 

shown that ALT is triggered by recessive mutation(s) (Perrem, Bryan, et al

1999). The initial insight into the mechanism of ALT was gained by Murane et 

al, whose experimental work demonstrated fluctuations in telomere lengths of 

ALT positive cells consistent with a recombination mechanism (Murnane, 

Sabatier, et al 1994).

Human cells with an active ALT pathway characteristically have widely vaiying 

telomere lengths within the same cell, including telomeres so short as to be 

undetectable, and those so long as to be considered abnormal for that particular 

cell type (Grobelny, Godwin, et al 2000). This is in contrast to the situation in 

telomerase positive human cell lines, where mean telomere length is relatively 

homogenous around 5 kb (Chu, Piatyszek, et al 2000). The two modes of
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telomere length maintenance are not mutually exclusive, and both telomerase 

activity and the ALT mechanism have been demonstrated in the same human 

cell line (Cerone, Londono-Vallejo, et al 2001).

Many ALT cell lines have also been found to contain nuclear structures referred 

to as ALT associated PML bodies (APBs) (Yeager, Neumann, et al 1999). PML 

(promyelocytic leukaemia) nuclear bodies (PNBs) have been implieated in 

oncogenesis and viral infection. They are usually 0.3-1 (im in diameter, and a 

typical mammalian nucleus may contain 20-30 such structures. (Ruggero, Wang, 

et al 2000) (Boisvert, Hendzel, et al 2000). APBs are disc or ring shaped PMLs 

with ALT specific contents, such as telomeric DNA and TRFl and TRF2. APBs 

are the first PBLs found to contain DNA (Yeager, Neumann, et al 1999). In 

addition they have been found to contain a range of proteins involved in DNA 

replication and recombination (reviewed in Henson et al 2002). It is possible 

APBs may gather or modify the proteins required for functioning of the ALT 

mechanism. Recent work has shown that APBs may localise at nuclear foci in 

response to DNA damage, in association with factors that are associated with 

DNA repair such as RAD51 (Bischof, Kim, et al 2001).

Presently there are four proposed mechanisms by which homologous 

recombination may result in telomere replication. The first proposes inter- 

telomeric recombination events as the mechanism by which ALT maintains 

telomeres (Dunham, Neumann, et al 2000). As this mechanism involves the 

fondation of a displacement loop, it raises the second possibility that the 

displacement loops created by the formation of the T-loops identified by Griffith 

et al (Griffith, Comeau, et al 1999), and described previously may be the basis 

o f another mechanism of recombination dependant replication; in essence a self- 

replicating telomere (Henson, Neumann, et al 2002). The third and fourth 

hypotheses are based on an extra-chromosomal step involved in the copying of 

telomeric sequence. This mechanism involves extrachromosomal telomeric 

repeats (ECTR) in either a linear or circular format. ECTR have been identified 

in various types of cells, however they are generally restricted to ALT positive 

cells (Ogino, Nakabayashi, et al 1998). Circular ECTR has been utilised by K.
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lactis to extend its telomeres, and linear ECTR has been identified in all ALT 

cell lines that have been tested (McEachern 2001) (Yeager, Neumann, et al 

1999).

An important recent development in ALT research is the finding that ALT 

positive cell lines failed to produce macroscopic lung tumours even seven weeks 

after tail vein injection in mice using five different cell lines. By contrast once 

telomerase activity had been reactivated, the same five cell lines produced 

tumours large enough to kill the injected mice after 5 weeks. The conclusion 

reached is that ALT positive tumours, whilst capable of producing locally 

aggressive lesions appear to lack the ability to metastasise. This could be of great 

importance for the targeting of fiiture cancer therapies based on anti telomerase 

therapy (Chang, Khoo, et al 2003).

1.8,2 Telomerase as a therapeutic target

The clear evidence linking telomerase activity to cellular immortalisation and 

cancer development makes telomerase an attractive target for anti-cancer 

therapeutic research (Yan, Coindre, et al 1999). The aim of this therapy would 

be to restore mortality to telomerase positive cancers via telomerase inhibition, 

allowing telomeric attrition to lead to cell senescence, or preferably a genetic 

crisis resulting in cell death. The therapeutic strategy is outlined in Figure 1-5. 

One of the main attractions of this type of therapy and a potential advantage over 

traditional methods is the very low levels of telomerase activity in normal 

tissues, allowing selective targeting o f cancer cells with a minimum of toxic side 

effects (Bearss, Laurence, et al 2000). As previously mentioned, a range of 

normal tissues do retain telomerase activity, however selective tumour cell 

killing is still feasible as the majority of tumours investigated have shorter 

telomeres and higher proliferation rates than normal proliferating cell 

populations (Hastie, Dempster, et al 1990), (Bacchetti 1996). Thus, targeted 

anti-telomerase therapy aimed at a tumour cell population known to possess 

short telomeres would only require a short number of cell divisions before a 

therapeutic effect is seen, and this period of therapy should not effect the

39



telomere functions of the subject’s population of germ and stem cells. The 

corollary of this is that anti-telomerase therapy may be ineffective in tumours 

with long telomeres, as the tumour may have progressed to a fatal outcome 

before senescence is triggered. It is possible that such tumours, whilst having 

substantial mean telomere lengths may have telomeres on specific chromosomes 

that are short enough to trigger a swift growth check. Despite this, the reality is 

that it is very unlikely all tumours will lend themselves to this type o f therapy. 

These drawbacks, particularly the lag before therapeutic effect mean that 

antitelomerase therapy is unlikely to be a first line treatment for cancer, rather at 

present it is envisioned that these drugs will be deployed after primary therapy 

(such as surgery, radiotherapy, traditional chemotherapy) in a ‘mopping up’ role 

against surviving cancerous cells. Such therapy would be aimed at increasing 

remission times in clinical cases, or perhaps to affect a cure if the cancer was 

particularly sensitive to the agent (i.e. had short telomeres). In this regard, 

tandem research using existing therapies will focus on identifying which o f these 

agents increase cancer cell vulnerability to telomerase inhibitors (Corey 2002).
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Figure 1-5. Strategy for anti-telomerase cancer therapy. The aim of anti- 

telomerase therapy is to cause telomeric attrition in treated cancer cells, leading 

to senescence, or more favourably cell death. Such therapy is likely to be used as 

an adjunct to traditional treatment strategies, and the specificity of such agents 

will likely mean this therapy is particularly useful against metastatic disease and 

after primary debulking of a tumour.
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1.8.3 Telomerase inhibitors
1.8.3.1 Reverse transcriptase inhibitors

The catalytic component of telomerase functions as a reverse transcriptase, and 

some of the earliest telomerase inhibition studies investigated the effects of 

drugs that are known to inhibit retroviral reverse transcriptase. The dmgs used 

included Azidothymidine triphosphate, dideoxyguanosine, arabinofiiranyl- 

guanosine, dideoxyinosine, dideoxy adenosine, didehydrothymidine and 

phosphonoformic acid. Whilst all these drugs are known inhibitors o f retroviral 

reverse transcriptase, the emerging results with hTERT are not encouraging. 

Prolonged exposure of telomerase positive immortalised B- and T-cell lines to 

the panel o f drugs resulted in telomerase inhibition in only two cases; with 

azidothymidine and dideoxy guano sine. O f these two, only dideoxyguanosine 

translated this effect into telomere shortening in every test culture, but cmcially 

it had no effect on population doubling or cell survivability, even when drug 

exposure was extended to almost a year. The results indicated that the drug 

effect is caused by dideoxyguanosine binding to and competing for the 

nueleoside triphosphate binding site, and the results were not made more 

favourable by using combinations of the test drugs (Strahl and Blackburn 1996).

1.8.3.2 Telomerase RNA targeting

The majority o f antitelomerase therapy tested to date has been directed against 

hTR. These agents are stably transfected antisense complementary DNA 

(cDNA), synthetic modified oligonucleotides with antisense polarity, targeted 

ribozymes and RNA interference (Feng, Funk, et al 1995), (Mata, Joshi, et. al 

1997), (Yokoyama, Takahashi, et al 1998).

1.8.3.2.1 Oligonucleotides

The RNA template region is considered a good target for antisense 

oligonucleotides for several reasons. First, the necessity of telomerase RNA to 

base pair with the telomere sequence for telomerase function indicates that this
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region of the ribonucleoprotein must be accessible externally, and therefore it is 

a relatively available target within the cell. This is particularly the case when 

using oligonucleotides, as previous experience has given rise to compounds with 

favourable pharmacokinetics for cellular uptake, and furthermore chemically 

similar oligonucleotides have similar pharmacokinetics regardless of their target 

sequence (Corey 2002). Second, as the 11 base pair sequence of the RNA 

template region o f hTR is known, design of the oligonucleotide itself is simple. 

Third, there are commercially available sources of oligonucleotides with widely 

varying chemical properties that may assist in achieving therapeutic effect, and 

as this is not a nascent technology, previous experience in this field will assist in 

development of clinical trials. Finally, use o f oligonucleotides containing 

mismatched bases provides a convenient control of target specificity. An 

example of oligonucleotide technology already in development as an anti-cancer 

therapy is ‘Gentasense,’ being developed by Genta Corp. to target Bcl-2. This 

drug has shown promising results in trials against a number o f different cancers 

(Dias & Stein 2003).

A hexameric phosphorothioate oligonucleotide has inhibited telomerase activity, 

lengthened cell-doubling time and induced apoptosis in a Burkitf s Lymphoma 

derived cell line in vitro. Using a xenograft human-nude mouse model to assess 

in vivo efficacy, this oligonucleotide caused a significant reduction in tumour 

size and splenic metastasis compared with mismatched sequence and saline only 

negative controls (Mata, Joshi, et al 1997). These results show that despite the 

drawbacks associated with telomerase inhibition therapy it is an area with 

potential for considerable success in the future.

1.8.3.2.2 Ribozymes

Preliminary results using hammerhead ribozyme technology have also gained 

promising results. Flammerhead ribozymes are small RNA motifs that have the 

ability to catalyse cleavage of the RNA phosphodiester chain at defined sites 

(Blount & Uhlenbeck 2002). Ludwig et al have reported the use of a 

hammerhead ribozyme that cleaved telomerase (hTERT) mRNA in vitro 

(Ludwig, Saretzki, et al 2001). This compound was stably expressed in a breast
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cancer tumour cell line (MCF-7) using a mammalian expression vector delivery 

system, and in addition to resulting in reduced telomerase activity caused 

telomere reduction, growth inhibition and apoptosis.

1.8.3.2.3 RNA interference

RNA interference (RNAi) is a recent innovation that utilises cellular machinery 

that has evolved to target parasitic RNAs, including RNA viruses (Hutvagner & 

Zamore 2002). The mechanism is triggered by dsRNA, which becomes 

processed by double strand specific RNase to shorter RNA fragments. The 

shorter RNA fragments become incorporated into, and confer sequence 

specificity upon an RNase protein complex termed RISC that then targets the 

homologous RNA sequence for degradation (Hammond, Boettcher, et al 2001). 

The system may be triggered by artificially generated short dsRNAs, and these 

short interfering RNAs (siRNAs) have been tried against hTERT and the 

telomerase template RNA. Both agents reduced telomerase activity in a variety 

of human cancer cell lines, and although the effect was minor and short-lived, 

the result is interesting as it represents a success against a target thought to be 

restricted to the nucleus by a modality thought only to be effective in the 

cytoplasm (Kosciolek, ICalantidis, et al 2003).

1.8.3.3 Telomerase specific gene therapy

Recent studies have focussed on the potential to exploit the significant 

correlation between TERT promoter activity and telomerase activity to target 

telomerase specific suicide gene therapy (Gu, Kagawa, et al 2000). Considerable 

success has been achieved using a bacterial nitroreductase system under the 

control of the telomerase gene promoter for hTERT. This strategy has been 

shown to result in cell death in vitro in cell lines with high promoter activity, and 

result in significant tumour reduction in vivo using a xenograft model (Plumb, 

Bilsland, et al 2001).
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1.8.3.4 Other compounds

Non-nucleoside low molecular weight molecules that interact with the proposed 

G-quadmplex structures have also been tested. One such molecule, a pentacyclic 

acridine (RHPS4) is a potent telomerase inhibitor. Such therapies target the four- 

stranded G-quadruplex structure formed by single stranded telomeric DNA. 

These drugs have been shown to be efficacious, and are hypothesised to act by 

stabilising a quadruplex structure formed by the first few hexanucleotide repeats 

synthesised by telomerase. This is inhibitory because telomerase requires a 

single stranded telomeric primer for positioning, and thus folding o f the target 

sequence in a four-stranded structure prevents this (Gowan, Heald, et al 2001).

1.9 Mice as models for human telomerase studies

As described previously, the frequency of spontaneous immortalisation of 

human fibroblasts is vanishingly small (Wright & Shay 2000), and this is linked 

to the tight cellular controls on telomerase activity. However, telomerase activity 

is widespread in murine tissue, and yet murine cell lines that are telomerase 

negative actually immortalise with approximately ten million fold greater 

frequency than normal human cells. Furthermore, although the telomeres of the 

laboratory mouse, Mus musculus are several times the size of human telomeres 

(40-60 kb versus 5-15 kb), cell lines derived from these mice develop, after 10- 

15 population doublings, the characteristic phenotype and biochemical markers 

of senescent cells. This occurs in both wild type (telomerase positive) and 

murine telomerase RNA knockout (mTR'^') mice, and would seem to provide 

direct evidence to refute the idea of a telomere driven replicative senescence that 

may be overcome by telomerase activity (Artandi and DePinho 2000) (Blasco, 

Lee, et al 1997 36 /id).

Closer examination of this data reveals that mice may not represent a paradox 

after all. The postulated role o f telomerase in cancer development is that 

telomerase activity allows the additional divisions necessary for genetic 

mutation to lead to full-blown malignant transformation. Such a mechanism is
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only necessary if  telomeric attrition represents an effective block to these extra 

replications. As pointed out by Wright and Shay (Wright and Shay 2000), this is 

clearly not the case in an animal with the large telomeric reserve of the mouse, 

and so telomerase down regulation has not evolved in normal murine tissue, as it 

would be ineffectual as an anti-cancer mechanism in this species.

In addition, it would appear murine tissue does not follow the established M l, 

M2 growth blocks that occur in human tissue, as M2 in the mouse appears to 

contribute to, rather than help to prevent tumour formation. Fifth and sixth 

generation mTR'^' mice with noimal p53 activity provide the evidence for this. 

By the fifth generation, these mice have sufficiently short telomeres to produce a 

growth check, however the frequency of escape from crisis in sixth generation 

mice approaches 100%. This contrasts sharply with the figure of 10"̂  for human 

cells that are telomerase negative at the equivalent crisis/M2 stage (Chin, 

Artandi, et al 1999) (Shay & Wright 1989).

The evolutionary advantage long telomeres confer on an organism is thought to 

be the facility to efficiently align chromosomes during meiosis, and is therefore 

completely independent of any cellular division counting mechanism (Wright & 

Shay 2000). It is postulated that telomerase repression evolved in tandem to 

maintain telomeres at the appropriate size for this function. Further to this line of 

argument, it is postulated that shorter telomeres, and the co-existent telomere 

driven growth arrest would be of little use to the mouse, first because the 

restriction on tissue repair would outweigh any potential anti-eancer benefit in 

an animal with a short life-span, and second, in an organism the size of a mouse 

a telomere based growth arrest with a lag period encompassing many rounds of 

cell division is unlikely to be of benefit when even a small mass in any part of 

the body is life-threatening (Wright & Shay 2000) (Takahashi, Kuro, et al 2000).

This intriguing explanation for the unusual telomere length and telomerase 

activity found in the mouse is based on work carried out in highly inbred 

laboratory strains, and has recently been countered by new evidence that 

inbreeding causes a net increase in telomere length with strain specific 

significant variation, and therefore the traditional mean telomere length o f the
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mouse (40-60 kb) may be an artefact (Hemann & Greider 2000) (Manning, 

Crossland, et al 2002). If this is proven to be the case, then the view of Wright et 

al (Wright & Shay 2000) that long telomeres are the evolutionary result of small 

size and short life span will need to be reviewed.
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1.10 Aims of the project

There is much evidence to suggest that telomeres and telomerase are key 

components in the process of immortalisation and cancer progression, and 

possibly the ageing process. However, the majority of research carried out to 

date has been in the human field, and relatively little is known of the biology o f 

telomeres and telomerase in the dog and cat. The aims of this project were to 

carry out a comprehensive investigation of telomere and telomerase biology as it 

relates to companion animals along three broad themes.

1. Telomere studies

The aims were to assess telomere lengths in a wide range o f normal canine and 

feline tissues, peripheral blood samples, tumours and immortalised cell lines, 

and examine the effect o f age, breed, and gender on telomere length in the dog 

and cat in vivo, whilst telomere attrition was also investigated in vitro using 

primary fibroblast cultures.

2. Telomerase studies

The aims were to assess the distribution of telomerase activity in a wide range of 

normal canine and feline somatic tissues, tumour samples, immortalised cell 

lines and primary cultures. The effects of a potential telomerase inhibitor were 

assessed in telomerase dependant canine cell lines, and the link between 

telomere attrition and senescence in the dog and cat was investigated using 

heterologous expression o f the catalytic component o f human telomerase in 

canine and feline primary cultures.

3. Gene expression studies

The aims were to cany out an investigation of changes in the transcriptome of 

ageing canine fibroblasts using a DNA microarray platform. The same 

technology was used to assess changes in gene expression levels concurrent with 

reactivation o f telomerase in a human ALT cell line.
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Materials and Methods

2.1 Materials

Materials in regular use such as equipment and general solutions are detailed in 

this section.

2.1.1 Cell culture materials
2.1.1.1 Sources of cell lines

CMT3, CMT7 and CMT8 cells were donated by G. Ruttemann, Department of 

Clinical Sciences of Companion Animals, Faculty o f Veterinary Medicine, 

University of Utrecht, PO Box 80.154, 3508 TD Utrecht, The Netherlands. 

GM847 cells were donated by W. N. Keith, Department o f Medical Oncology, 

Beatson Laboratories, University of Glasgow.

S22, SFA and EQl cultures were all generated from post mortem skin biopsy 

samples taken with informed owner consent at Glasgow University Veterinary 

School. The 3132T and GHK cell lines were generated from post-mortem biopsy 

samples taken with informed owner consent at GUVS.

CCL-176, CMLIO, MDCK, 293T, MCF7, D-17 and A-72 cells were all supplied 

by the American Type Culture Collection (ATCC), Manassas, VA.

AG08075, AG07906, AG07648 and AG08157 primary cultures were all 

supplied by Coriell Cell Repositories (CCR), 403 Fladdon Ave., Camden, NJ 

08103.

2.1.1.2 Plasticware

Tissue culture flasks, 6, 12, 24 well plates, Falcon conical centrifuge tubes (15 

and 50 ml), and pipettes (5, 10, 25, and 50 ml) were supplied by Greiner 

(Gloucestershire, UK). Ninety-six well plates were supplied by Packard 

(Berkshire, UK).
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2.1.1.3 Solutions, media and supplements

Gibco BRL Life Technologies and Sigma Genosys supplied all solutions and 

media, unless otherwise stated.

2.1.1.3.1 Media

All the following media were delivered as sterile solutions and stored at 4‘’C- 

Dulbecco’s Minimum Essential Medium (MEM) with Glutamax-L and 4500 

mg/L glucose and pyridoxine

MEM-Alpha, with ribonucleosides and deoxyribonucleosides 

MEM with Earle’s salts

MEM with Earle’s salts and NaHCOs without L-Glutamine 

RPMI 1640 medium without L-glutamine.

2.1.1.3.2 Supplements

Foetal Calf Serum (FCS): virus and mycoplasma screened, FCS was stored in 50 

ml aliquots at ~20°C, and was used both with and without heat inactivation. 

When heat inactivation was required this was carried out at 56°C for 30 minutes 

before storage in aliquots.

L-glutamine: supplied as a 200 mM (lOOx) stock, and stored at -20°C in 5 ml 

aliquots.

Penicillin/streptomycin (P/S): supplied as a lOOx stock of 10,000 units penicillin 

and 10,000 units streptomycin per ml and stored in 5 ml aliquots at -20°C.

G418 antibiotic: supplied as a 50 mg/ml solution and stored in 800 pi aliquots at 

-20°C. G-418 is an aminoglycoside antibiotic produced by Streptomyces that 

induces cytotoxicity by blocking translation.

Fungizone (Amphotericin B): supplied as a lOOx stock solution and stored in 5 

ml aliquots at -20°C, at a working concentration of 1.25 pg/ml.
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Non-essential amino acids: supplied as a lOOx stock solution and stored at 4°C. 

Concentrations and constituents of the Ix working solution are available from 

the supplier (GibcoBRL, Catalogue number 11140)

Trypsin-EDTA: supplied as a lOOx stock solution and stored in 5 ml aliquots at - 

20°C.

Essential amino acids: supplied as a 50x stock solution and stored at 4°C. 

Concentrations and constituents of the Ix working solution are available from 

the supplier (GibcoBRL, Catalogue number 11130)

Sodium pymvate: supplied as a 100 mM stock solution and stored at 4°C. 

Vitamins for MEM media: supplied as a lOOx stock solution and stored at 4®C.

2.1.2 General chemicals

Chemicals used were of analytic, ultrapure or molecular grade quality and were 

supplied by a range of companies.

2.1.3 Complete kits

QIAquick® Gel Extraction kit (QIAGEN, UK)

QIAamp® DNA blood midi and maxi kits (QIAGEN, UK)

EndoFree® Plasmid Maxi Kit (QIAGEN, UK)

TOPO TA Cloning® (Invitrogen, UK)

DNA Sequencing Kit Big Dye™ Terminator Version 3.0 Cycle Sequencing 

Ready Reaction (ABI, UK)

TeloTTAGGG  PCR ELISA*'^^^ Kit (Roche, UK)

RNeasy Total RNA Isolation Kit (QIAGEN, UK)

ENZO® Bioarray HighYield RNA transcript labelling kit (Affymetrix, CA)

51



2.1.4 Bacterial strains
2.1.4.1 E.COÜ  One Shot* TOPIO

Chemically competent E.coli cells (>1 x 10  ̂ colony forming units/pg) 

(Invitrogeii). Genotype: F mcrA à{mrr-hsdKMS-mcrBC)<^SO /acZAMlS 

AlacX74 deoR recA l ardD\?>9 à{ara-leu)7691 gallJ galK rpsh (Str^) endAl 

nupG

2.1.5 DNA

Plasmid, molecular weight markers and oligonucleotide DNAs were stored at - 

20°C.

2.1.5.1 Plasmid vectors-PCI-neo Mammalian Expression Vector

PCI-neo Mammalian Expression Vector is supplied by Promega UK, and is 

derived from the pGEM®-3Zf(+) vector and contains a cytomegalovirus (CMV) 

immediate-early enhancer/promoter region with a downstream chimeric intron, 

T7 and T3 RNA polymerase promoters, an SV40 late polyadenylation signal and 

a neomycin phosphotransferase selectable marker which confers resistance to the 

antibiotic G-418, causing antibiotic inactivation through phosphorylation.

2.1.5.2 Molecular size standards

Molecular size standards used include a 1 kb DNA ladder (size range: 75-12,216 

bp), 1 kb Plus DNA ladder^M (size range: 100-12,000 bp), 100 bp DNA Ladder 

(size range: 100-2072 bp), and a Low DNA Mass™ Ladder (size range: 100- 

2000 bp and 5-400 ng) all supplied by GIBCOBRL Life Technologies, and a 

CHEF DNA Ladder supplied by BIO-RAD Ltd (size range: 8-48.5 bp).
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2.1,5.3 Oligonucleotide primers

Oligonucleotides for polymerase chain reaction (PCR) and cycle sequencing 

were supplied by both MWG Biotech and Sigma-Genosysis, and were delivered 

as lyophilised DNA. Primers were reconstituted in distilled water (dH20) and 

stored at -20°C in 20 pi aliquots at 10 pM.

2.1.6 Enzymes

All enzymes were stored at -20°C and were removed from storage immediately 

before use.

2.1.6.1 Restriction enzymes

All enzymes and their associated buffers were supplied by GIBCO BRL (UK) 

and Invitrogen (UK). Details of restriction enzymes, their restriction sites and 

reaction conditions are shown in Table 2-1.

2.1.6.2 T4 DNA Ligase

T4 DNA ligase was provided by Promega UK, with a ligation buffer (used at a 

final concentration of 30 mM Tris-HCl (pH 7.8), 10 mM MgCh, 10 mM DTT 

and 1 mM ATP) to catalyse the joining o f two strands o f DNA between the 5 '- 

phosphate and the 3 '-hydroxyl groups of adjacent nucleotides in either a 

cohesive-ended or blunt-ended configuration.

2.1.6.3 Ready-To-Go^^ PCR beads

Ready-To-Go™ PCR beads (Amersham, Pharmacia) are premixed and pre

dispensed reactions for PCR applications. When brought to a final volume of 25 

pi, each reaction contains Taq DNA Polymerase (1.5 units), 10 mM Tris-HCl 

(pH 9.0), 50 mM KCl, 1.5 mM MgCh, 200 pM of each dNTP and Bovine 

Serum Albumin (BSA).
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Table 2-1. Restriction enzymes.

Restriction

enzyme

Restriction site Buffer Incubation Temp 

CC)

H M l [5 '-G iA N T C-3'] REACT® 2 37

Rsa I [5'-GTiAC-3'] r e a c t ® 1 37

EcoR  1 [5 '-G iAA TT-3'l Buffer 6 37

Xho 1 [5'-CiTCGAG-31 Buffer 6 37

S a li [5'-GiTCGA-3'] r e a c t ® 10 37
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2.1.6.4 Murine Moloney Virus Reverse Transcriptase

Murine Moloney Virus Reverse Transcriptase (MMLV-RT) enzyme 

(GIBCOBRL) uses single stranded RNA in the presence of a primer to 

synthesise a complementary DNA strand. This enzyme is isolated from E.coli 

expressing a portion o f the po l gene of the MMLV on a plasmid.

2.1.6.5 DNase I: DNA-/re^TM

DNase I (Ambion) is a deoxyribonuclease I enzyme that cleaves both double 

stranded and single stranded DNA. Cleavage occurs preferentially adjacent to 

pyrimidine (C or T) residues, and the enzyme is therefore an endonuclease. 

Major products are 5 '-phosphorylated di, tri and tetranucleotides. In the presence 

of Magnesium ions, DNase I hydrolyses each strand of duplex DNA 

independently, generating random cleavages. In the presence of Manganese ions, 

the enzyme cleaves both DNA strands at approximately the same site, producing 

blunt ends or fragments with 1-2 base overhangs. DNase I does not cleave RNA.

2.1.7 Equipment

2.1.7.1 Major Equipment

PCR Machines: GeneAmp PCR System 2400, 2700, and DNA Thermal Cycler 

480 (Perkin Elmer, Boston MA, USA)

Stirrer: Magnetic StitTcr Hotplate (Stuart Scientific, Surrey, UK)

Balance: Précisa 100A-300M (Précisa Balances Ltd, Buckinghamshire, UK) 

Power packs: PAB 35-0.2 (Kikusui electronics corporation, Yokohama, Japan) 

Gel systems: Hoefer HE 33 Mini Horizontal Submarine Unit, CHEF system 

(Biorad, Hertfordshire, UK)

Incubator: B5042 (Heraeus, Surrey, UK)

Horizontal orbital shaker: 4628-ICE Labline Instruments Inc. (IL, USA)

Gel documentation system: Uvi tec (Thistle Scientific, Glasgow, UK)

Ultraviolet trans-illuminator: T2201 (Sigma Chemical Company, Surrey, UK)
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Pipettes: Finnpipette Techpette (0.5-10, 5-40, 40-200, 200-1000 pi, UK) 

Automatic Sequencing Apparatus: ABI 3100 (Amersham, UK) 

Spectrophotometer: GeneQuant pro  RNA/DNA calculator, Agilent 2100 

Bioanalyzer, Nanodrop ND-1000 (Cheshire, UK)

Water baths: Sub36, and W6 (Grant, Cambridge, UK)

Microcentrifuges: Centrifuge 5402, 5415R and Minispin (Eppendorf, Cambridge 

UK)

Benchtop centrifuge: CPR Centrifuge (Beckman, Buckinghamshire, UK) 

Biological safety cabinet (Microflow, Andover, UK)

Affymetrix: GeneChip® station and HGU133-A GeneChip® (Affymetrix UK)

2.1.7.2 Consumables

Eppendorf tubes: Flip-top and screw-top in both 1.5 ml and 0.5 ml sizes 

(Thermo Life Sciences, Basingstoke, UK)

Pipette tips: (Greiner, Gloucestershire, UK)

Filter tip pipette tips: A range of capacities (10, 100, 200, 1000 pi) supplied by

Finntip (Thermo Lab Systems, Basingstoke, UK)

Petri dishes: (Sterilin, Staffordshire, UK)

Bijoux: (Greiner, Gloucestershire, UK)

Universals: (Greiner Gloucestershire, UK)

Scalpel blades: Schwann-Morton (Sheffield, UK)

Parafilm: (Sigma, Surrey, UK)

Phase lock gel: Eppendorf, Basingstoke, UK

2.1.8 Buffers, solutions and growth media

2.1.8.1 Water

Water for the preparation of general solutions and media was provided by a 

Vivendi Water systems (USE ELGA) filter system. Sterile water for more

sensitive procedures such as PCR was supplied by Baxter Ltd.
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2.1.8.2 Buffers and solutions

50x TAE buffer solution: 2M Tris base, 50mM Na%EDTA, IM glacial acetic 

acid. pH adjusted to 8.15 using glacial acetic acid and made up to a 2 litre 

volume.

TBE buffer solution: 0.09 M Tris Borate, 0.002 M EDTA 

1 M Tris HCl: 121 g Tris base, 800 ml dH20. Adjusted to the desired pH with 

concentrated HCl and made up to 1 litre.

TE buffer: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA

Ix Phosphate buffered saline (PBS): 140 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HP04, 1.8 mM KH2 PO4  (pH 7.3)

20x SSC: 3 M NaCl, 0.3 M Sodium citrate, pH 7.0

lOx DNA Gel loading buffer: 20% w/v Ficoll 400, 0.1 M Na2 EDTA (pH 8.0), 

1% w/v sodium dodecyl sulphate, 0.25% bromophenol blue. Stored at room 

temperature and used at a 1:10 dilution.

Ethidium bromide: made to a working dilution of 10 mg/ml with dH20 in a fume 

cupboard. Stored away from light.

Transfast™ transfection reagent: Supplied as a dried lipid fdm to be 

reconstituted with 400 pi of water per vial to form multi-lamellar vesicles. 

Storage of dried and reconstituted reagent is at -20°C. (Promega) 

LipofectamineT'^ transfection reagent: Supplied in liquid form at a concentration 

of 2 mg/ml and stored at 4°C. (Invitrogen, UK)

DEPC water: 0.5 ml of Diethylpyrocarbonate was added to 500 ml water, left 

overnight in a fume cupboard and then autoclaved before storage at 4°C.

Lysis mix: 0.32 M sucrose, 10 mM Tris, 5 mM MgCl, 1% Triton X, pH of 

solution adjusted to 7.5 and stored at 4°C.

Nuclei lysis mix: 10 mM Tris, 0.4 M NaCl, 2 mM EDTA (pH 8.0), stored at 

room temperature.

2.1.8.3 Bacteriological media

Media were sterilised by autoclaving at 12UC for 15 minutes.
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LB medium: 20 g tryptone, 20 g NaCl, 10 g yeast extract made up to 2 L with 

dHaO, pH then adjusted to 7.0 with NaOH

SOC medium: 2% tiyptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCh, 10 mM MgS0 4 , and 20 mM glucose. (Invitrogen, UK)
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2.2 Methods

Methods used commonly tluoughout the thesis are detailed in this section whilst 

more specific methods are dealt with in the relevant chapter. Many of the 

methods described here are based on standard protocols that are detailed in 

Current Protocols in Molecular Biology Volumes 1 & 2 (Ausubel, Brent, et al 

1994).

2.2.1 Growth of mammalian cells
2.2.1.1 Basic technique

All procedures involving mammalian cells were carried out in a laminar flow 

hood using standard aseptic procedures.

2.2.1.1.1 Cell counting

Cells were counted in a haemocytometer as follows. Cell pellets were suspended 

in an appropriate volume of media (usually 5 ml) to allow ease of counting in the 

haemocytometer chamber. A 25 pi volume o f the cell suspension was then 

diluted 1:1 in 0.4% trypan blue (Sigma) and incubated at room temperature for 1 

minute. The suspension was then introduced to the haemocytometer chamber 

and cell counts made using an inverted microscope with a 4 x 10 objective. Cells 

lying on the top and right side of the marked squares were not included in the 

count, those lying on the bottom and left perimeters were. Cell concentrations 

(cells/ml) were calculated by multiplying the mean numbers of cells per large 

marked square by 10'̂  to account for the volume of the haemocytometer chamber 

and 2 to correct for the dilution factor. Dead cells were differentiated by uptake 

of the trypan blue stain and appear blue.
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2.2.1.1.2 Passage and cryopreservation of cells

Stocks of cells for long-temi storage were preseiwed over liquid nitrogen. Cells 

to be preserved were haiwested using 0.05% Trypsin- 0.53 mM EDTA at mid

log phase growth and removed to a sterile 15 ml centrifuge tube. Cells were 

centrifuged at 1200 g for 2 minutes and the supernatant discarded. The cells 

were then re-suspended in freeze medium at a concentration of approximately 2 

X 10  ̂ cells/ml. Freeze medium consisted of 45% culture medium, 45% foetal 

bovine serum, and 10% DMSO as a cryoprotectant. Cells were transferred in 1 

ml aliquots to labelled ciyovials (NALGENE'^'^) and brought to -70®C at a 

controlled rate of -1“C per minute using a NALGENE™ Cryo DC Freezing 

container (NALGENE, USA). The vials were then transferred to a liquid 

nitrogen freezer. Cell stocks were revived by rapid thawing in a 37"C water bath 

and used following standard techniques as described. All cell lines were 

reseeded at a concentration of 1 xlO^ cells/ml after passaging.

2.2.1.2 Cell lines

All cell lines form an adherent monolayer in culture, and were cultured in 75 

c n f  tissue culture flasks kept at 37“C and in 5% CO2 unless otherwise stated.

2.2.1.2.1 MDCK

S.H. Madin and N.B. Darby established the MDCK cell line from the kidney of 

an apparently normal female Cocker Spaniel in September 1958 (Gaush, Hard et 

al 1966). The cells were maintained in 20 ml Dulbecco’s MEM with glutamax-1 

medium supplemented with 10% FCS, 100 international units (IU)/ml penicillin 

and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. Cultures were split, 

typically 1:9 every 3-4 days when sub-confluent. Cells were trypsinised and 

seeded into new flasks as described above.
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2.2.1.2.2 AG07648

The primary canine fibroblast culture AG07648 was established from a post

mortem skin biopsy taken from the thorax area of a 6 year old female Beagle in 

May 1984. The species of origin was confirmed by chromosomal analysis; the 

karyotype was normal diploid female, 78XX. The cells were maintained in 

MEM Eagle medium with Earle’s salts, 2 times normal concentration of 

essential and non-essential amino-acids (Section 2.1.1.3.2), MEM Vitamins, 2 

mM L-glutamine, 100 lU/ml penicillin and 100 lU/ml streptomycin and 1.25 

pg/ml fungizone and 20% FBS. Cultures were split, typically 1:5 every 5-7 days 

when sub-confluent. Cells were trypsinised and seeded into new flasks as 

described.

2.2.1.2.3 AG07906

The primary equine fibroblast culture AG07906 was established from a post

mortem sample taken from a skin biopsy sited at the right inner thigh of a 3 year 

old female thoroughbred horse. The sample was taken in June 1984. The species 

o f origin has been confirmed by chromosome analysis, and the karyotype is 

confirmed as normal diploid female, 64XX. The cells were maintained in MEM 

Eagle medium with Earle’s salts, 2 times nonnal concentration of essential and 

non-essential amino-acids (Section 2.1.1.3.2), MEM Vitamins, 2 mM L- 

glutamine, 100 lU/ml penicillin and 100 lU/ml streptomycin and 1.25 pg/ml 

fungizone and 20% FBS. Cells were trypsinised as standard, and reseeded at a 

ratio of approximately 1:5.

2.2.1.2.4 AG08075

The AG08075 primary canine fibroblast culture was established from a post

mortem skin biopsy from the abdomen o f a 14-year-old female Beagle taken in 

March 1985. The species o f origin and karyotype were established by 

chromosome analysis; the karyotype was normal diploid female (78XX). The 

cells were maintained in MEM Eagle medium with Earle’s salts, 2 times normal 

concentration of essential and non-essential amino-acids (Section 2.1.1.3.2),
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MEM Vitamins, 2 mM L-gliitamine, 100 lU/ml penicillin and 100 lU/ml 

streptomycin, 1.25 pg/ml fungizone and 20% FBS. Cultures were split, typically 

1:5 every 5-7 days when sub-confluent. Cells were trypsinised and seeded into 

new flasks as described.

2.2.1.2.5 GM847

The GM847 cell line is an SV40 transformed human fibroblast cell line. The 

cells were grown in DMEM medium supplemented with 10% FCS, 100 lU/ml 

penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. Cells were 

tiypsinised as standard every 3-4 days, and reseeded at a ratio of approximately 

1:5.

2.2.1.2.6 CCL-176

The primary feline fibroblast culture CCL-176 was established from a post

mortem biopsy taken from the tongue of an embryonic female domestic cat. The 

cells were propagated in MEM Eagle medium with Earle’s salts supplemented 

with a normal concentration of non-essential amino-acids (Section 2.1.1.3.2), 

and 10% FBS. Cultures were split, typically 1:5 every 3-4 days when sub

confluent.

2.2.1.2.7 CMT7

CMT7 is an immortal cell line established from a canine mammary tumour. 

CMT7 cells were maintained in RPMI medium supplemented with 10% FCS, 

100 lU/mi penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. 

Cells were trypsinised as standard every 3-4 days, and reseeded at a ratio of 

approximately 1:5.

2.2.1.2.8 SFA

The canine primary fibroblast culture SFA was derived from a post-mortem 

flank biopsy from a 13 year old male Staffordshire Bull Terrier at GUVS. Cells
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were maintained in MEM-alpha medium supplemented with 10% FCS, 100 

lU/ml penicillin and 100 lU/ml streptomycin, 1,25 pg/ml fungizone and 2 mM 

L-glutamine. Cells were passaged routinely after 5-1 days. The culture was 

confirmed to be canine in origin by RT-PCR and sequence analysis for canine 

cyclophilin.

2.2.1.2.9 S22

The feline primary fibroblast culture S22 was derived from an eight week old 

female DSH cat from a flank skin biopsy. Cells were maintained in MEM-Eagle 

medium supplemented with 10% FCS, 100 lU/ml penicillin and 100 lU/ml 

streptomycin, 1.25 pg/ml fringizone and 2 mM L-glutamine. Cells were passaged 

routinely after 5-7 days growth in culture.

2.2.1.2.10 293T

A human derived, SV40 transformed cell line sourced from renal epithelial cells. 

Cells were maintained in DMEM medium supplemented with 10% FCS, 100 

lU/ml penicillin and 100 lU/ml streptomycin, 1.25 pg/ml fungizone and 2 mM 

L-glutamine. Cells were passaged routinely after 3-4 days growth in culture.

2.2.1.2.11 MCF7

The MCF7 cell line comprises epithelial-like cells derived from a human 

Caucasian breast adenocarcinoma patient. The cells were maintained in DMEM 

medium supplemented with 10% FCS, 100 lU/ml penicillin and 100 lU/ml 

streptomycin and 1.25 pg/ml fungizone. Cells were trypsinised as standard every 

3-4 days, and reseeded at a ratio of approximately 1:5.

2.2.1.2.12 AG08157

This canine primary fibroblast culture was established from a post-mortem skin 

biopsy taken from a 42-day-old male Beagle dog in 1985. The cell line was 

maintained in MEM Eagle medium with Earle’s salts, 2 times normal
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concentration of essential and non-essential amino-acids (Section 2.1.1.3.2), 

MEM Vitamins, 2 mM L-glutamine, 100 lU/ml penicillin and 100 lU/ml 

streptomycin, 1.25 pg/ml fungizone and 20% FBS. Cultures were split, typically 

1:5 every 5-7 days when sub-confluent. Cells were trypsinised and seeded into 

new flasks as described.

2.2.1.2.13 CMT8

CMT8 is an immortal cell line established from a canine mammary tumour. 

CMT7 cells were maintained in RPMI medium supplemented with 10% FCS, 

100 lU/ml penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. 

Cells were trypsinised as standard every 3-4 days, and reseeded at a ratio of 

approximately 1:5.

2.2.1.2.14 CMT3

CMT3 is also an immortal cell line established from a canine mammary tumour. 

Conditions for culture were as for CMT8.

2.2.1.2.15 CMLIO

This canine cell line contained epithelial-like cells and was derived from a 

melanoma biopsy taken from a 10-year-old female dog. The cells were 

maintained in DMEM medium supplemented with 10% FCS, 100 lU/ml 

penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. Cells were 

trypsinised as standard every 3-4 days, and reseeded at a ratio of approximately 

1:5.

2.2.1.2.16 D17

A canine osteosarcoma cell line derived from an eleven year old female poodle. 

Cells were maintained in DMEM medium supplemented with 10% FCS, 100 

lU/ml penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. Cells
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were trypsinised as standard every 3-4 days, and reseeded at a ratio of 

approximately 1:5.

2.2.1.2.17 A72

An immortal canine cell line comprising cells of fibroblast morphology derived 

from an 8 year old female dog. Cells were maintained in DMEM medium 

supplemented with 10% FCS, 100 lU/ml penicillin and 100 lU/ml streptomycin 

and 1.25 pg/ml fungizone. Cells were trypsinised as standard every 3-4 days, and 

reseeded at a ratio of approximately 1:5.

2.2.1.2.18 GHK

A cell line comprising renal epithelial cells derived from a greyhoimd at GUVS, 

age and gender unknown. Cells were maintained in DMEM medium 

supplemented with 10% FCS, 100 lU/ml penicillin and 100 lU/ml streptomycin 

and 1.25 pg/ml fungizone. The cells were trypsinised as standard every 3-4 days, 

and reseeded at a ratio of approximately 1:5.

2.2.1.2.19 3132T

This immortal canine cell line comprised cells of an epithelial morphology and 

was derived from a lymphoma sample taken from a 10-year-old female dog. The 

cells were maintained in RPMI medium supplemented with 10% FCS, 100 

lU/ml penicillin and 100 lU/ml streptomycin and 1.25 pg/ml fungizone. Cells 

were trypsinised as standard every 3-4 days, and reseeded at a ratio of 

approximately 1:5.

2.2.1.2.20 EQl

This primary equine fibroblast culture was derived from a skin biopsy taken 

from a 7 year old male neutered horse at GUVS. Cells were maintained in 

MEM-alpha medium supplemented with 10% FCS, 100 lU/ml penicillin and 100 

lU/ml streptomycin, 1.25 pg/ml fungizone and 2 mM L-glutamine. Cells were
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passaged routinely after 5-7 days growth in culture. Species of origin was 

confirmed by RT-PCR and sequence analysis for equine major 

histocompatability complex class II, DQB locus (Szalai, Bailey, et al 1993).

2.2.2 Preparation of DNA from blood samples
2.2.2.1 Phenol/chloroform/isoamyl alcohol extraction and ethanol 

precipitation

To each 3 ml blood sample 10 ml of lysis mix (Section 2.1.8.2) was added 

followed by gentle mixing and incubation on ice for 10 minutes. Samples were 

then centrifuged at 2800 g for 10 minutes at 4°C, the supernatant decanted and 

pellets resuspended in 500 pi o f nuclei lysis mix (Section 2.1.8.2) and 

thoroughly mixed. A 100 pi volume o f 10% SDS and 50 pi of proteinase K were 

then added and the samples were incubated at 37°C overnight. Samples were 

then deproteinised with an equal volume of a phenol/chloroform/isoamyl alcohol 

extraction mixture (25:24:1), followed by centrifugation at 2800 g for 10 

minutes to separate the samples into aqueous and organic phases. The upper 

aqueous phase of each sample was then carefully transferred to a sterile 1.5 ml 

eppendorf tube and the DNA recovered by precipitation in an equal volume of 

molecular biology grade 100% ethanol. DNA was pelleted by centrifugation at 

2800 g for 10 minutes at 4°C followed by a wash step in 70% ethanol. DNA was 

again pelleted and allowed to air diy, before resuspension in an appropriate 

volume of TE buffer (usually 50 pi) and storage at -20°C

2.2.2.2 DNA extraction using the QIAamp® DNA kit (QIAGEN, 

UK)

Both the Midi and Maxi kits were used for DNA extraction as per 

manufacturer’s instructions. These kits are used for total DNA purification from 

1-2 ml and 5-10 ml of whole blood respectively. Briefly, the protocol involved a 

lysis step, followed by adsorption of nucleic acid to a membrane contained 

within a specially designed QIAamp spin column through which lysate was
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forced by centrifligal force. DNA bound to the membrane was then washed in 

two fiirther centrifugation steps before elution in a concentrated form in elution 

buffer. All centrifugation steps were carried out at room temperature, and at 

3000 rpm.

2.2.3 Recombinant DNA techniques
2.2.3.1 Storage and growth of bacteria

Plasmid DNA was maintained and stored in the E.coli strain One Shot®. 

Glycerol stocks were prepared from these bacteria and their transformants for 

long-temi storage as outlined below.

The desired bacterial culture was streaked onto a 1.5% agar plate (15g agar in 1 

litre LB medium); as the plasmid conferred ampicillin resistance the medium 

was supplemented with 50-100 pg/ml ampicillin. The plate was then incubated 

overnight at 37°C and the following day single colonies were picked using a 

sterile pipette tip into a sterile universal containing 3-5 ml LB medium 

supplemented with 50-100 pg/ml ampicillin. These cultures were then incubated 

at 37°C overnight in a horizontal orbital incubator at 225 rpm. Confirmation that 

this overnight culture was derived from bacteria containing the correct plasmid 

was confirmed by DNA isolation and restriction digestion. Glycerol stocks were 

prepared by addition of 90 pi of 50% glycerol to 210 pi o f culture broth to 

produce a 15% glycerol mixture. These glycerol stocks were then stored at -  

20"C and -70°C. Bacterial stocks were subsequently revived by taking a surface 

sample of the glycerol stock and streaking this onto an agar plate.

2.2.3.2 Extraction and purification of plasmid DNA
2.2.3.2.1 Large-scale plasmid preparation

Large quantities of highly pure, endotoxin free plasmid necessary for 

applications such as transfections and sequencing were prepared using the 

EndoFree® Plasmid Maxi Kit (Qiagen,UK). A starter culture in 3-5 ml of LB 

broth was used to seed an overnight multiplier culture in 250 ml of LB broth
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incubated at 37®C with constant agitation. These exponentially growing bacteria 

were haiwested by centrifligation o f the culture broth in 50 ml sterile centrifuge 

tubes at 2800 rpm. The remainder of the protocol was perfomied according to 

the manufacturers instructions. DNA was stored at -20°C.

2.2.3.2.2 Small-scale plasmid preparation

Requirements for small amounts of plasmid DNA, such as sequencing, were met 

using the QIAprep® PCR Spin Miniprep Kit (QIAGEN, UK). This kit isolated 

plasmid DNA from 4 ml LB broth cultures o f exponentially growing bacteria. 

The bacteria were harvested by centrifugation (2800 rpm for 10 minutes), and 

the manufacturers protocol was then followed. The method involved lysis of the 

bacterial cells to release the DNA constructs, which were then haiwested after 

centrifugation, filtration and wash steps into 50 pi of sterile water. DNA storage 

was at -20°C.

2.2.3.3 Determination of nucleic acid concentration and quality
2.2.3.3.1 Determination by spectrophotometry

Nucleic acid samples were diluted 1:20 by addition of 5 pi of resuspended 

nucleic acid in 95 pi of dH^O. Optical density readings were taken at 260 nm 

and 280 nm, using blank dH20 as a comparison. An optical density reading of

1.0 at 260 nm conesponds to an approximate nucleic acid concentration of 50 

pg/ml for double stranded DNA, 40 pg/ml for RNA and 33 pg/ml for single 

stranded oligonucleotides. The ratio of the readings taken at 260 nm and 280 nm 

(OD2 6 0 /OD2 8 0 ) was used to give an estimate o f the purity of the nucleic acid. 

Pure preparations of DNA and RNA have an OD2 6 0 /OD2 8 0  of L8 and 2.0 

respectively; a lower value suggests contamination, typically with protein or 

phenol.
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2.2.3.3.2 Estimation of double stranded DNA concentration and quality by 

agarose gel electrophoresis.

This method was used when there were insufficient amounts of dsDNA for 

spectrophotometry, or when purity of a particular DNA fragment needed to be 

investigated. Agarose gel electrophoresis was carried out by standard methods as 

detailed elsewhere (Section 2.2.3.5), and the intensity of the fluorescence of the 

unknown DNA was compared to that of a known size marker (Low DNA 

Mass™ Ladder) following staining with ethidium bromide and visualisation by 

UV transillumination. Smearing of a DNA band indicated degi'adation of the 

sample and resulted in exclusion of that DNA from further analysis.

2.2.3.4 Restriction endonuclease digestion

The required amount of DNA was digested in a volume of 20 pi containing 

appropriate buffer for the restriction endonuclease(s), 4 units of each enzyme per 

microgram of DNA and dHzO to make up the volume. The reactions were 

incubated at the appropriate temperature for a minimum of 1 hour.

2.2.3.5 Electrophoresis of DNA

DNA fragments of 0.1-22 kb were separated and identified by agarose gel 

electrophoresis using a Hoefer HE 33 Mini Submarine Electrophoresis Unit 

(Amersham Pharmacia Biotech, San Franciso, CA.). Typically 0.5 g of agarose 

was added to 50 ml of 0.5% TBE buffer and heated in a microwave oven for 1-2 

minutes to produce a 1% gel. This was allowed to cool to 55''C before addition 

of 1.5 pi of 100 mg/ml ethidium bromide. The gel was then mixed and poured 

into a casting tray containing a comb with a suitable number of wells (10-20). 

After solidification the gel was transferred to the electrophoresis unit containing 

chilled 0.5% TBE buffer and the comb was carefiilly removed. DNA samples 

and molecular size standards were prepared by addition of a suitable amount of 

lOx DNA loading buffer (Section 2.1.8.2) and introduced to the wells using a 

micropipette. Gels were imn at 100 V for approximately 20 minutes, then
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removed from the electrophoresis unit and the DNA visualised using a UV 

transilluminator (Uvi tec, Thistle Scientific) and photographed using a 

Mitsubishi P91 photographic unit.

2.2.3.6 Purification of restriction enzyme fragments

When purification of DNA fragments was required for construction of 

recombinant plasmids, the DNA was purified from agarose gels using the 

QIAquick® Gel extraction kit (QIAGEN). DNA fragments of interest were cut 

from an agarose gel using a clean scalpel blade and the protocol was then 

performed according to the manufacturers instructions.

2,23.1 Ligation of vector and insert DNA

Fragments of DNA generated by restriction digestion were ligated with 

approximately 50-100 ng of vector DNA using T4 DNA ligase (Promega) 

according to the manufacturers instructions. The quantities of vector and insert 

DNA to be used were calculated to produce a molar ratio of between 1:1 and 1:5 

using the equation:

X ng of vector x Y kb of insert x insert : vector ratio = ng of insert required 

Z kb of vector

Vector and insert were mixed with ligation buffer and 1 unit of DNA ligase in a 

total volume of 10 pi. Ligation reactions proceeded at 16°C overnight.

2.2.3.8 Transformation of bacteria with plasmid DNA

The TOPIC cells used in transformation experiments were stored in volumes of 

25-50 pi in microcentrifrige tubes at -80°C. Aliquots were thawed on ice, and 

0.5-5 pi of ligation reaction was added to the cells representing 1-20 ng of DNA. 

Mixing was carried out very gently to avoid damage to the bacterial cells. The 

cells were then left on ice for 30 minutes, followed by a 30 second heat shock at

70



42”C. The cells were then quenched on ice for 2 minutes, 200 pi of SOC 

medium was added and the tubes were incubated at 37°C for 1 hour with shaking 

at 225 rpm. The cells were streaked onto LB agar plates containing ampicillin at 

100 mg/ml. The addition of ampicillin enabled selection o f transformants as the 

plasmid used in this project conferred ampicillin resistance on the host bacteria.

2.2.4 Preparation of total RNA

The unstable nature of isolated RNA and the necessity for very pure isolates for 

downstream applications required that all materials used in RNA preparation be 

totally free from ribonuclease (RNAse) activity. RNAse is a very stable, 

ubiquitous enzyme that degrades RNA requiring no cofactors for function. 

Inhibition of this enzyme was carried out using RNAse ERASE (ICN 

Biomedicals Inc., Ohio), followed by rinsing with DEPC treated water. All 

plastic-ware used for RNA storage was pre-treated by an overnight soak in 

DEPC treated water followed by autoclaving and drying. Solutions were also 

prepared using DEPC treated water only, and gloves were used in all procedures 

involving RNA.

2.2.4.1 RNA extraction using RNAwiz^i^

Various methods have been described for the isolation of undegraded RNA, and 

progress in the field have led to the development of single step methods for the 

procedure (Chirgwin, Przybyla, et al 1979) (Chomcyznski & Saachi 1987). 

RNAwiz'^*'  ̂ is a combination of dénaturants and RNAse inhibitors for the 

isolation of total RNA, and it is effective for animal, plant and microorganism 

based RNA. The samples used for RNA isolation in this project were cell pellets 

harvested from tissue culture experiments, stored in 1.5 ml DEPC treated 

eppendorf tubes, as described above. These were homogenised directly in 

RNAwiz™ by simply pipetting vigorously several times. One ml of RNAwiz™ 

was used per 10  ̂ cells. The homogenate was then incubated at room temperature 

for 5 minutes to allow dissociation of nucleoproteins from the nucleic acids. 

Chloroform was then added (0.2x starting volume), and thorough mixing was
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carried out by shaking the tube vigorously for approximately 20 seconds. The 

chloroform used was free from isoamyl alcohol and any other additives. The 

mixture was then centrifuged at 13000 rpm at 4“C for 15 minutes to allow 

separation of the mixture into three distinct phases, an upper aqueous phase 

containing the RNA, a semi-solid interphase containing most of the DNA, and a 

lower organic phase. The upper aqueous phase was removed carefully by 

pipetting and transferred to a clean DEPC treated 1.5 ml tube. RNase-free water 

was then added (0.5x starting volume), and thorough mixing carried out. This 

was followed by addition of Ix starting volume of isopropanol, mixing, and 

incubation of the sample at room temperature for 10 minutes. The RNA was then 

pelleted by centrifugation at 13000 rpm for 15 minutes at 4‘̂ C. The supernatant 

was decanted, and a wash step using 75% ethanol was carried out, followed by 

centrifligation as noted above.

The RNA samples were stored at -20°C in 70% ethanol until required. When 

required, the RNA samples were pelleted by centrifugation as above and the 

supernatant decanted. The pellets were then allowed to air dry for no longer than 

10 minutes (complete diying of the pellet makes resuspension very difficult) and 

resuspended in 40 pi of DEPC water.

2.2.4.2 Assessment of RNA using agarose gel electrophoresis

An aliquot of each RNA sample was run on a 1% agarose TAE gel (lOg agarose 

in 1 litre TAE buffer). Assessment of RNA quality was earried out by checking 

the integrity of the I8S and 28S ribosomal subunit bands, and examining their 

rate o f migration in comparison to a 100 bp molecular weight standard (GIBCO 

BRL).

2.2.4.3 DNase treatment of RNA

RNA samples were freed from contaminating DNA by use o f the DNA-free'^M 

kit (Ambion). O.lx volume of I Ox DNase buffer and 2 units of DNase 1 were 

added directly to RNA samples, mixed and incubated at 37°C for 30 minutes.
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The enzyme reaction was then halted by addition of 5 pi of well-mixed slimy of 

DNase Inactivation Reagent followed by a 2-minute incubation at room 

temperature. The inactivation reagent was then pelleted by centrifugation at

10,000 g for one minute and the RNA sample transferred to a clean DEPC 

treated eppendorf for storage.

2.2.5 Amplification of DNA by polymerase chain 

reaction

The polymerase chain reaction (PCR) is a technique that allows the 

amplification of a specific sequence of DNA and is effective even when the 

target DNA is very scarce. The technique was developed by Mullis et al, and 

allows large amounts of a single copy gene to be generated from genomic or 

viral DNA (Mullis, Faloona, et al 1986) (Mullis & Faloona 1987) (Saiki, 

Gelfland, et al 1988) (Kwok, Mack, et al 1987). The initial procedure used the 

Klenow fragment of DNA polymerase I. This enzyme needed to be replaced at 

each cycle as it was denatured by the reaction conditions. Efficiency was greatly 

improved by introduction of a thermostable Taq polymerase isolated from 

Thermits aquaticiis, as this allowed automation of the procedure (Saiki, 

Gelfland, et al 1988).

PCR allows the amplification of any unknown DNA sequence by the 

simultaneous extension of primer pairs flanking the unlmown sequence, each 

complementary to opposite strands of the DNA. An overview of PCR and its 

applications is available (Innis & Gelfland 1990), and although the basic 

technique has been developed to include other applications such as cloning 

(Scharf 1990), basic PCR remains widely used. An outline of the procedure is 

provided below.

2.2.5.1 Primer design

Primers were designed following the guidance of a standard text (Innis & 

Gelfland 1990). The goal of primer design is to produce an oligonucleotide that
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will hybridise efficiently with the DNA sequence of interest, and not hybridise 

with any other sequence. The amount of sequence permissible between primers 

is flexible, and up to 10 kb is possible, however beyond 3 kb efficiency is 

decreased (Jeffreys, Wilson, et al 1988). The disadvantages of minimising the 

distance between the primers include reducing the ability to re-amplify the 

sequence using nested internal oligonucleotides, and short distances between 

primers result in less sequence information being gained from the PCR. For any 

given pair of primers, the annealing temperatures (Tm) and GC content were 

balanced.

Whilst in many PCR applications the primer design will be exactly 

complementary to the template DNA, in some cases, such as efforts to clone or 

detect homologues when sequence information is lacking, mismatches will be 

unavoidable. Independent of the reason for mismatches between template and 

primer DNA, it is best if these are located close to the 5 ' end of the primer. The 

closer a mismatch is to the 3 ' end of the primer the more likely it will prevent 

extension, as DNA polymerase will be acting in a 5 ' to 3 ' direction.

The annealing portion of primers should generally be between 18 and 30 

nucleotides in length; any increase in size beyond this is unlikely to improve 

primer specificity significantly and this size of primer is sufficient for sequence 

as complex as the human genome. Other potential features of the primer 

sequence, such as restriction enzyme sites should be engineered onto the 5  ' end 

of the primer. Such additions can have a detrimental effect on primer specificity 

at low temperatures, and so are best used when amplifying from a single 

template vector. Primer GC content should match that of the template as closely 

as possible. Unusual stretches o f sequence such as internal complementarities 

can lead to secondary structures and a loss of annealing efficiency, and so should 

be avoided.

A common artefact in PCR is the fonuation of primer-dimers. A primer-dimer is 

the product o f primer extension annealing on itself or on the other primer in the 

PCR. Since the primer-dimer product contains one or both primer sequences and 

their complementary sequences it provides an excellent template for further
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amplification. Given the small size of the product, and that small products are 

copied more efficiently, primer-dimers can swamp the PCR and sequester primer 

from the real target on the template DNA. These can be avoided by not using 

primers with complementary sequences in the 3 ' region. Primer dimers can be 

minimised by optimising the M gC f concentration.

2.2.5.2 Preparation of PCR reactions

The sensitive nature o f PCR means that very stringent steps must be taken if 

contamination is to be avoided. First, physical separation o f the PCR area from 

bench space used for other work is recommended. In the case of PCRs carried 

out in this project, a dedicated PCR suite isolated from the main laboratory was 

used. In addition, a set of instruments used to aliquot reagents (micropipettes and 

their tips) were kept within the PCR suite and restricted to PCR use. Filter tip 

pipette tips were used to reduce the chance o f carryover from one step to the 

next, and master mixes of reagents were used whenever possible to reduce the 

number of pipetting steps required per reaction. Reaction components including 

primers were aliquoted prior to use and stored at -20°C.

2.2.5.3 Reaction conditions

A number of PCR amplification kits containing all the necessary reagents were 

used according to the manufacturers’ instructions. The reaction mixes were 

made up to either 50 or 25 pi and contained variable concentrations of primers, 

dATPs, dCTPs, dTTPs, dGTPs, MgCC, DNA polymerase, and Ix PCR buffer 

containing Tris-HCl, KCl, and gelatin. To this was added an appropriate volume 

o f DNA or cDNA template. Two thermal cyclers were used; a Perkin Elmer 480 

which requires a layer of mineral oil to be placed over the reaction mixes, and a 

Perkin Elmer 2400 with a heated lid that does not require any mineral oil. 

Reactions were placed in these machines in 0.5 ml and 0.2 ml thin walled 

eppendorf tubes respectively. The exact parameters of the reactions varied, but 

generally consisted of an initial dénaturation at 94°C for five minutes followed 

by 25-45 cycles of the following; dénaturation at 94°C for one minute, annealing
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at 55-72°C for one minute, extension at 72°C for one minute thirty seconds 

followed by a final extension step at 72°C for 4-30 minutes. Reaction products 

were visualised using agarose gel electrophoresis using 5-10 pi of the reaction 

mix.

2.2.5.4 Purification and assessment of PCR products

Single PCR products were purified following the QIAquick® PCR purification 

kit protocol (QIAGEN). Briefly, the DNA band of interest was removed from 

the agarose gel with a sharp scalpel. Visualisation was by UV transillumination. 

The DNA binds to the filter within the column, facilitating separation from all 

other components o f the mixture by a series of washing steps. The PCR products 

are finally eluted in 30-50 pi of sterile water, 4 pi of which was assessed by 1% 

TAE agarose gel electrophoresis against a 100 bp molecular weight standard 

(GIBCO BRL).

2.2.5.5 First strand DNA synthesis for reverse transcriptase 

(RT)-PCR

Analysis of gene expression requires accurate determination of mRNA levels, 

but as PCR is based on amplification of DNA, the process of amplifying RNA 

sequence requires an initial step of conversion of the RNA to cDNA by reverse 

transcription. The MMLV reverse transcriptase enzyme was used to mediate the 

formation cDNA for RT-PCR in the experiments detailed in this thesis. Reverse 

transcriptase synthesises a DNA strand complementary to an RNA template 

when provided with a primer that is base paired to the RNA and has a free 3 

OH group. Three types of primers are used, namely random primers, gene 

specific primers (GSP) and oligo-dT primers. Oligo-dT primers pair with the 

poly A sequence found at the 3 '-end o f most eukaryotic mRNA molecules. All 

of the above primers can be used to initiate the synthesis of cDNA strands in the 

presence of the four dNTPs. The RNA-DNA hybrid is subsequently hydrolysed 

by either raising the pH (as DNA, unlike RNA is resistant to alkaline 

hydrolysis), or by using a ribonuclease. The 3 ' end of the newly synthesised
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DNA strand forms a hairpin loop that primes the synthesis o f the complementary 

DNA strand. The hairpin loop is then removed by digestion with SI nuclease, 

which recognises unpaired nucleotides.

The specific conditions used involved first a dénaturation step of the RNA (in 9 

pi of DEPC water) at 65“C for 5 minutes to ensure no secondary RNA structure 

remained that might interfere with the process. The sample was then quenched 

on ice, and the first strand synthesis was carried out in a total reaction volume of 

25 pi containing the heat treated RNA, the MMLV reverse transcriptase enzyme 

and its buffer, DL-Dithiothreitol (DTT), dNTPs, an RNAse inhibitor and 

primers. The reaction conditions vary between protocols. A Perkin-Elmer 

thermal cycler 480 was used for the reaction, and the reaction mix was kept on 

ice immediately before use or at -20°C for more long-term storage.

2.2.6 DNA sequence analysis
2.2.6.1 Automated sequencing

Sanger dideoxy DNA sequencing is the most commonly used method for DNA 

sequencing, particularly for large-scale genomic sequencing (Sanger, Nicklen, et 

al 1977). A variation of automated DNA sequencing using dye-labelled 

teiininators, in which the dyes are attached to the terminating dideoxynucleoside 

triphosphates has been used in this project (Prober, Trainor, e/ a/ 1987).

2.2.6.1.1 Sample preparation

During sample preparation, DNA fragments in a sample are chemically labelled 

with fluorescent dyes. The dyes facilitate the detection and identification of the 

DNA. Typically each DNA molecule is labelled with one dye molecule, but up 

to five dyes can be used to label the DNA sample. More specifically, PCR 

reactions were performed using DNA samples (200-500 ng) in a total volume of 

20 pi containing 0.5 pM of primers, 40 mM Tris-HCl, 1 mmol/1 M gCb and 4 pi 

of Big Dye™ Terminator Cycle sequencing Ready Reaction (ABI Prism). 

Samples were prepared in the PE 2400 thermal cycler incoiporating 25 cycles of
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amplification, each cycle consisting of a denaturing step at 96”C for 10 seeonds 

followed by an annealing temperature of 50°C for 5 seconds, and an elongation 

step o f 60°C for 4 minutes. DNA was then purified by precipitation using 

ethanol (95%). Pelleted DNA (14000 rpm for 20 minutes) was washed in ethanol 

(70%) and repelleted before all ethanol was removed and the pellet dried at 90°C 

for 1 minute. Template Suppression Reagent (25 pi) was then added and the 

mixture heated to 95"’C for 5 minutes and chilled before transfer to genetic 

analyser sample tubes.

2.2.6.1.2 Sample sequencing

Samples were loaded and run on the ABI PRISM® 3100 Genetic Analyzer (PE 

Applied Biosystems, UK) under standard sequencing conditions for generation 

o f automated sequence data. The ABI PRISM® 3100 Genetic Analyzer is a 

multi-colour fluorescence-based DNA analysis system using the proven 

technology of capillary electrophoresis with 16 capillaries operating in parallel. 

The 3100 Genetic Analyzer is fully automated from sample loading to data 

analysis.

2.2.6.1.3 Sequence evaluation

The length of read is 750 bases at the 98.5% base calling accuracy with less than 

2% ambiguity. The output is in the fonn of a chromas file. A series of different 

computational software were utilised for sequence analysis including the ‘Blast’ 

search engine within the NCBI database, Genetics Computer Group (GCG) and 

ClustalW (http://www.ch.embnet.ore/software/CliistalW.html) .

2.2.7 Estimation of protein concentration

Protein concentrations were estimated using a bicinchoninic acid (BCA, Sigma, 

UK) method (Smith, Kiohn, et al 1985). The protocol combines the reduction of 

Cu^^ to Cu'^ caused by protein in an alkaline environment with the capability of 

BCA to fonn an intense purple complex with Cu*’*’. The complex produced from
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this reaction is stable and increases in a proportional fashion over a broad range 

of increasing protein concentration. It is also water-soluble and exhibits a strong 

absorbance at 562 nin, thus allowing the spectrophotoinetric quantification of 

protein in aqueous solution. A standard panel of 6  bovine serum albumin (BSA) 

dilutions from a 2 mg/ml stock solution (Sigma, UK) were used as a standard 

against which protein samples of unknown concentration could be compared. 

Standard concentrations were 80, 100, 200, 400, 1000, and 2000 ]ag/ml. A 10 p.1 

volume of each standard solution was added in duplicate to individual wells of a 

96 well plate. An additional 3 wells were used as blanks (ie. contained 10 |ul of 

dHiO). A 1:10 dilution of each protein sample to be tested was then made in 

dH 20 and 10 ql of each diluted sample added to the test wells in duplicate 

according to a predetennined pipetting scheme.

The developing solution was a mixture of 5 ml of BCA and 100 |ul o f CUSO4  

(Copper (II) Sulphate pentahydrate, 4% w/v solution, Sigma, UK). A 200 |il 

volume o f this solution was added to each of the standard, blank and test wells 

and the test plate then incubated at 37°C for 45 minutes to allow for colour 

development. Absorbance of wells was then measured using a microtitre plate 

reader and concentrations of test samples determined by comparison with the 

standard dilutions.

2.2.8 Electroblotting of DNA fragments to a positively 

charged nylon membrane

Electroblotting was necessary for the transfer of DNA fragments after 

polyacrylamide gel electrophoresis (Section 4.3.2.5) to a nylon membrane, as the 

small pore size of polyacrylamide gels does not allow the effective transverse 

diffusion of DNA required for successful Southern blotting.

After electrophoresis, the polyacrylamide gel was removed from its glass 

backing by laying a piece o f wet Whatmann 3MM filter paper slightly larger 

than the gel onto the gel surface, being careful to avoid air bubbles. This allowed
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the gel to be lifted safely from its backing without risk of breakage. Two Scotch- 

Brite pads and a farther 7 pieces of 3MM Whatmann filter paper o f the same 

size as the gel were presoaked for 15-30 minutes in 0.5% TBE, carefully 

removing air pockets from the Scotch-Brite pads by repeated squeezing and 

agitation. These pieces were necessary for building up a sandwich around the gel 

for electroblotting.

Electroblotting experiments carried out in this thesis used the Mini-PROTEAN® 

II cell (Bio-Rad) and non-denaturing polyacrylamide gels. The electroblot 

apparatus contains a gel holder consisting of hinged grey and black panels on 

which the components of the sandwich are built up on the grey panel as follows; 

Scotch Brite pad, 3x filter papers, filter paper with gel (gel surface uppermost), 

prewetted positively charged nylon membrane (Amersham, UK), followed by 

the remaining 4 pieces of filter paper and the second Scotch Brite pad. At each 

stage any air bubbles are carefully removed from between the layers, and the 

filter paper carrying the gel and the gel surface itself are flooded with 0.5% TBE 

before they are put into place. The gel holder is then closed and placed in the 

transfer cell with the grey panel facing the cathode. An ice block is included to 

prevent overheating of the transfer buffer. The cell is then filled with 0.5% TBE 

and electroblotted for 4 hours at 30 V. Following this the membrane is removed 

and denatured for 10 minutes, DNA side up in 0.4 M NaOH. The membrane is 

then rinsed in 2x SSC and is ready for downstream applications.
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Chapter III 
In vivo and in vitro canine and feline 

telomere studies

3.1 Abstract

The majority of telomere research carried out to date has focussed on humans, 

and has established links between telomere attrition and senescence. Senescence 

has been associated with organismal ageing, and failure or bypass of senescence 

has been associated with immortalisation and malignancy. Telomeres are 

therefore of great interest to both oncologists and gerontologists, however, 

despite a small number of studies demonstrating similarities between companion 

animal and human telomeres, the amount o f information available to veterinary 

researchers is relatively very small. The experiments detailed in this Chapter 

describe investigations to establish the typical range of telomere lengths found in 

the dog and cat in both healthy tissues and tumour samples. Possible associations 

between age, gender, breed, life expectancy and telomere length were 

investigated. A separate set of experiments aimed at demonstrating and 

quantifying telomeric attrition in vitro in the dog and cat using primary fibroblast 

cultures were carried out, and senescent cells in both species were characterised 

using a number of established biomarkers. The major aim of this research was to 

investigate possible links between telomere attrition, senescence and ageing in 

the dog and cat and thereby establish the importance of telomere biology to 

current veterinary research.
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3.2 Introduction

The study o f canine and feline telomeres is still a relatively new area. Interest in 

this subject has been spurred by advances in human telomere biology that have 

identified telomeres and their cellular functions as being important to the process 

of malignant transformation, and perhaps ageing itself (Artandi & DePinho 

2000) (Bearss, Laurence, et al 2000) (Corey 2002), and reviewed in (Campisi, 

Kim, et al 2001). In contrast to the large volume of work already dedicated to 

human telomere biology relatively little work has been carried out in other 

species, with the exception of the laboratory mouse. The experiments detailed in 

this chapter aim to improve understanding o f canine and feline telomere biology 

as it relates to organismal ageing and cancer.

Yazawa et al in 2001 were the first to provide telomere length data for canine 

tumours and somatic tissues (Yazawa, Okuda, et al 2001). This study 

investigated telomere lengths by restriction endonuclease digestion and Southern 

blot and in a panel of 27 mammary gland tumours found telomere length to vary 

from 11.0 to 21.6 kb. A panel of 12 normal mammary gland sections were found 

to have slightly longer telomeres but the gi'oups could not be compared, as a 

significant age difference existed between them. Increasing age was negatively 

correlated with telomere length in the control dogs, whilst such a relationship 

was not found in the tumour tissue sections. These data imply that the canine 

tumour samples investigated contained an active telomere length maintenance 

mechanism that is not found in the corresponding non-cancerous tissue (Yazawa, 

Okuda, et al 2001). Biummendorf et al examined the telomere lengths in 

peripheral blood leukocytes of cats ranging in age from newborn kittens to 1 0  

year old animals using fluorescence in situ hybridisation and flow cytometry and 

again could demonstrate that the older animals had shorter telomeres in the cell 

types examined (Brummendorf, Mak, et al 2002).

A negative correlation between age and telomere length has been a major finding 

in human telomere research (Lindsey, McGill, et al 1991) (Hastie, Dempster, et 

al 1990), and these preliminary investigations of telomere biology in the dog and
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cat have revealed similarities with human telomere biology, and represent an 

encouraging start. These data have also raised the possibility of using telomere 

length measurement as a novel way of determining age in wildlife, and a pilot 

study has produced promising results in birds (Haussmann & Vleck 2002). 

However studies to date have assumed a uniform rate of telomeric attrition with 

age for a given species, and as reeent work has detailed that other, variable 

factors such as oxidative stress affect telomeric decline these initial data must be 

treated with caution (von Zglinicki, Pilger, et al 2000) (von Zglinicki 2002).

The study o f ageing and age related disease is o f major importance in human 

medicine, and the centrepiece of most theories of the ageing process revolves 

around DNA damage. Telomeric loss, such as that noted to occur in dogs and 

cats can lead to DNA damage and this fact has lead some researchers in the 

human field to conclude that the ageing process begins in the embryo when 

telomerase activity is repressed in the majority o f human somatic tissues 

(Skulachev 1997) (Ahmed & Tollefsbol 2001). Evidence of an actual link 

between telomere length dynamics and the characteristic phenotypic changes 

associated with ageing is circumstantial only, so for example associating 

decreasing telomere length in human fibroblasts and B- and T- lymphocytes with 

the clearly age related changes of decreased wound healing and impaired 

immune function may be a case of confusing sequence with consequence 

(Allsop, Chang, et al 1995) (Weng, Levine, et al 1995).

There is also evidence o f telomere association with age related disease. However 

the short telomeres found in artherosclerotic blood vessels and endothelium 

under haemodynamic stress, compared with healthy tissue coimteiparts, may be 

an effect of the disease process, rather than the cause of it. Such associations 

may be useful in future diagnostic protocols; for example telomere length has 

been found to be inversely proportional to arthers cl erotic grade (Okuda, Khan, et 

al 2000). Recent work has also shown short telomeres in human peripheral blood 

leukocytes (PBLs) to be associated with an increased risk for the development of 

carcinomas in a number o f organs (Wu, Amos, et al 2003).
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Despite the lack of firm evidence of a link between telomeric attrition and 

ageing, it is interesting to hypothesise how such a relationship might work. A 

recent idea advances the prospect that the telomeric contribution to phenotypic 

ageing may revolve around a mosaic effect (Toussaint, Rem ade, et al 2002), 

Accumulation of functionally impaired senescent cells may cause a reduction in 

the ‘vitality’ of the tissue as a whole that is sufficient to produce a phenotypic 

effect and yet does not have a large impact on mean telomere length of the cell 

population.

The ability to accurately identify senescent cells in vitro and in vivo is therefore 

central to telomere-based studies of ageing. The most commonly used biomarker 

is senescence associated P-galactosidase activity at pH 6.0, useflil both in vitro 

and in vivo (Dimri, Lee, et al 1995). The expression o f the cyclin dependant 

kinase inhibitor p2 1  increases as cells near senescence, and p i 6 '̂ '̂"'̂ “ has been 

shown to accumulate in senescent cells, is also a cyclin dependant

kinase inhibitor, and acts as an inhibitor of cell replication through its interaction 

with the retinoblastoma gene product pRb (Huschtscha & Reddel 1999) This 

interaction results in the maintenance of pRb in a hypophosphorylated form in 

senescent cells, and this has been advanced as additional means by which 

senescent cells may be identified in vitro (Alcorta, Xiong, et al 1996).

More than one method has been described to determine telomere length. The 

bulk of telomere length research carried out to date, and all the experiments 

detailed in this chapter use a Southern Blot and hybridisation approach, though 

recent studies reflect a trend towards variations on the original technique or use 

o f completely new methodologies. A discussion o f the other methods currently 

in common usage is detailed in Section 3.2.1.
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3.2.1 Alternative methods for determining telomere 

length in mammalian cells
3.2.1.1 Hybridisation protection assay

The hybridisation protection assay (HPA) is a rapid (45 minutes) and sensitive 

way to determine telomere lengths directly by a chemiluminescent method. Cell 

lysate or DNA solution is mixed with a hybridisation solution containing a light 

emitting (acridium ester labelled) telomere specific probe. A selection buffer 

then differentially hydrolyses unhybridised probe, allowing chemiluminescence 

of the sample to correlate directly with the amount of telomere repeats it 

contains (Nakamura, Hirose, et al 1999). As only telomeric DNA is included in 

the analysis, the concern over inclusion of sub-telomeric DNA that has been 

raised with reference to the Southern Blot method is avoided (Saldanha, 

Andrews, et al 2003). Shearing o f the sample DNA has no effect on the result, 

and the DNA used does not require purification either from cells or tissue 

lysates. The entire procedure can be performed in a reaction tube. Results 

obtained using the HP A method compare favourably with those obtained by 

Southern Blot; however in common with Southern Blot this method does not 

allow measurement of telomeres in individual cells. The equipment required for 

the HP A method is not specialised beyond that available in most laboratories so 

it is not an expensive method to adopt (Nakamura, Hirose, et al 1999).

3.2.1.2 Fluorescent in situ hybridisation (FISH)

The original theme of the FISH method consisted of hybridising fixed cells to a 

fluorescent peptide nucleic acid probe that is complementary to the telomere 

sequence. This method has the advantage over the HP A method that the 

telomere lengths of individual cells may be assessed; the usefulness of it is 

clearly demonstrated by the number o f variations that have been created. The 

variants in cuiTent use include quantitative FISH (Q-FISH), quantitative flow 

cytometry (Q-FISH''^^) and flow cytometry and FISH (flow FISH) (Hultdin, 

Gronlund, et al 1998). The direct labelling of the telomere sequence with the 

fluorescent probe and its visualisation allows for greater accuracy in
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measurement of telomere length than other methods, however the method 

requires the use of metaphase spreads thus introducing an inherent bias to the 

method as senescent cells are excluded from the sample population. The addition 

of flow cytometry allows small subsets o f cells to be included in the analysis on 

an individual basis, however another level of complexity is added to an already 

technically demanding technique. The most complex variant includes the use of 

digital fluorescence microscopy in a technique. This method utilises

both a telomere specific fluorescent PNA probe and the 4', 6-diamidino-2- 

phenylindole (DAPI) dye specific for chiomosomes allowing accurate telomere 

length measurements of individual chromosomes within the same cell to be 

performed.

3.2.1.3 Telomeric-oligonucleotide ligation assay (T-OLA)

This method is comparatively less complex than FISH derived methods, 

however telomeric DNA must be isolated from sub-telomeric sequence, a large 

amount o f DNA (approximately 30 pg) is required, and the method requires the 

use o f an electron microscope. The assay involves hybridisation o f a highly 

specific ^^aP-labelled oligonucleotide to non-denatured DNA. The 

oligonucleotide binds in the presence of ligase to single stranded DNA with high 

base pairing specificity and the products are resolved on a denaturing 

polyacrylamide gel. The probe specificity for single stranded portions of non

denatured DNA allow this method to be used to estimate the length o f the 3' 

single stranded overhang found at the telomere terminus, and has an effective 

range from 24-650 nucleotides. As this method involves the use of radioactive 

nucleotides, safety is more of a concern than with the other procedures 

(Huffman, Levene, et al 2000) (Cimino-Reale, Pascale, et al 2001).

A summary o f the methods detailed above is provided in Table 3-1.
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Table 3-1. Methods currently used to measure telomere lengths and G-rich 

overhang. Southern Blot is the least complex technique and requires the least 

specialist equipment, however the higher throughput capabilities of the newer 

methods reduce time constraints and improve accuracy.

Technique Summaiy

Southern Blot Time consuming, labour intensive

HPA Simple rapid and sensitive

Q-FISH Labour intensive and more complex than Southern Blot and HPA

rFCM Similar complexity to Q-FISH, however process takes 
approximately 30 hours

Q-FISH"

Q-FISH^*^^ and Use of digital fluorescence microscopy reduces time required,
digital fluorescence 

microscopy

T-OLA

however very complex technique

Less complex than FISH based methods, used primarily to 
measure G-rich overhangs
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3.2.2 Chapter aims

The aims o f the experiments detailed in this chapter were to evaluate telomere 

lengths in a number of different breeds of dogs and the domestie shorthaired cat 

(DSH) across a wide age range o f individuals. This study allowed the effect of 

age, breed and gender on telomere length in the dog and cat to be investigated. 

In vitro studies aimed at exploring the replicative potential of a number of 

primary fibroblast cell lines and the interrelationship between replicative 

potential and the age o f the donor animals concerned. In addition, the analysis of 

telomere lengths of necropsy specimens from healthy tissues, and a panel of 

canine and feline tumour specimens were carried out.



3.3 Materials and Methods

3.3.1 Sample details
3.3.1.1 Blood samples

Five ml jugular blood samples were taken from dogs and cats kept in 

environmentally enriched housing at the Waltham Centre for Pet Nutrition 

(WCPN). Samples also included excess blood from 2 ml jugular samples taken 

from clinical cases for routine biochemical analysis at GUVS. A total of 112 

dogs and 30 cats were sampled. Sampling carried out at WCPN was in 

accordance with WALTHAM® research ethics guidelines. Cats ranged in age 

from 1 to 17 years and were all Domestic Shorthaired (DSH). Dogs sampled 

were aged from <1 to 15 years from five recognised breeds, the Labrador 

Retriever {n = 24), Miniature Schnauzer {n = 16), Beagle {n = 10), Golden 

Retriever {n = 22), and Great Dane {n = 4), and 37 dogs described as cross breed. 

All animals were clinically healthy at the time of sampling following a routine 

health inspection by a veterinary surgeon.

3.3.1.2 Necropsy specimens

Tissue samples were collected from canine and feline necropsy cases at GUVS. 

In all cases animals had either been euthanased for unrelated medical reasons at 

GUVS prior to necropsy or had been delivered for necropsy to the pathology 

department. All necropsies performed at the school are carried out with infoixned 

owner consent.

Approximately 1 cm^ tissue samples were taken under aseptic conditions from as 

many organs as the particular necropsy would allow and immediately flash 

frozen in liquid nitrogen (LNO2 ) before storage at -70°C. Details of individual 

animals are shown in Table 3-2.
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Table 3-2. Details of necropsy sample animals. Canine (a) and feline (b) 

necropsy sampling was carried out with informed owner consent on each of the 

animals detailed. Tissue samples of approximately 1 cm^ were harvested from as 

many organs as the particular necropsy would allow. Any evidence o f post

mortem DNA degradation (OD2 6 0 /OD2 8 0  <1.7, or evidence of smearing after 

agarose gel electrophoresis) resulted in exclusion o f the particular sample from 

the study.

(a)

Breed Age (years) Gender Cause of death

CNl English

Bulldog

0.25 Female Aspirational

pneumonia

CN2 Yorkshire

terrier

0.75 Male Tracheal

collapse

CN3 Dachshund 6 Male Vertebral disc 

collapse

CN4 Cross breed 11 Female

neuter

Neoplasia

CN5 Staffordshire 

Bull terrier

13 Male Trauma

(b)

FELINE Breed Age (years) Gender Cause of death

FNl DSH 1 Male neuter Trauma

FN2 DSH 1.5 Male neuter Trauma

FN3 DSH 3 Male neuter Protein losing 

nephropathy

FN4 DSH 13 Female neuter Intestinal

carcinoma

FN5 DSH 15 Male Trauma
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3.3.1.3 Tumour samples

Tumour samples were collected from two sources; necropsies carried out at 

GUVS and samples from excisional biopsies harvested at the time of surgeiy at 

the Peoples’ Dispensary for Sick Animals (PDSA) hospital, Shamrock Street, 

Glasgow. All necropsies were carried out with informed owner consent, and 

decisions to perform excisional biopsies were made solely on clinical grounds 

and with informed owner consent, the samples used in this project representing 

surplus tissue beyond that required for histological diagnosis of tumour type as 

part of routine diagnostic work-up. Samples were flash frozen in LNO2 at time 

of harvesting before storage at -70°C. A total of 21 tumour samples were used in 

this study, 17 canine and 4 feline. All tumours were identified by histopathology 

carried out at the pathology department of GUVS, and samples included 

examples of anaplastic sarcoma, chondrosarcoma, fibrosarcoma, 

haemangiosarcoma, leiomyosarcoma, liposarcoma, lymphoma, nephroblastoma, 

neurofibrosarcoma, rhabdomyosarcoma, spindle cell tumour, synovial cell 

sarcoma, mammary carcinoma and squamous cell carcinoma.

3.3.1.4 Cell lines

Cells used in this chapter include the SFA, AG08157, AG07648, AG08075, 

CCL-176 and S22, all o f which are primary fibroblast cell cultures as detailed in 

Section 2.2.1.2. Cells were grown in T75 flasks and passaged routinely upon 

reaching approximately 80% confluence. The timing of passage is particularly 

important for telomere length studies, as evidence exists that prolonged 

confluence may affect telomeric attrition rate (Sitte, Saretzki, et al 1998). Cell 

numbers were counted (Section 2.2.1.1.1) upon harvesting, and all cell lines 

were seeded at 1 xlO^ eells/ml. 2  xlO^ cells were retained at each passage, 

transferred to 1.5 ml eppendorf tubes and pelleted at 500 g for 5 minutes. The 

growth media was discarded and the pellets washed in sterile PBS. A further 5- 

minute centrifugation step was perfoiined; PBS was carefully aspirated from the 

cell pellet, which was then flash frozen in LNO2  before storage at -70°C. DNA 

extracted from these pellets was used for telomere length estimation.
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Cell counts at harvesting were used to generate growth curves for the cell lines 

according to the fomiula:

Tc- 0.3T 

Log (ri/rio)

Where % represents the doubling time for the cell population, T is the time 

elapsed, A is the number of cells at the time of harvesting and Aq is the number 

of cells at an initial point (Wieder 1999).

3.3.2 DNA extraction
3.3.2.1 Isolation of DNA from peripheral blood samples

Canine DNA was isolated from 5 ml blood samples using either the QIAamp 

DNA blood maxi kit, or phenol/chloroform extraction as detailed in Section 

2.2.2. DNA was resuspended in 50 pi TE buffer, and DNA quality and quantity 

were estimated using spectrophotometry (GeneQuant), and quality of all DNA 

isolates was confirmed by 1% agarose TBE gel electrophoresis (Section 2.2.3.3). 

DNA samples were then stored at -20°C in screw-top 1.5 ml Eppendorf tubes 

until required for analysis.

3.3.2.2 Isolation of DNA from necropsy specimens and cell pellets

Cell lysis and digestion was carried out in 1.5 ml eppendorf tubes using either 2 

xlO^ cells or approximately 100-200 mg of tissue. Tissue samples were cmshed 

in the eppendorf tubes using a sterile pestle. Digestion buffer consisted of 100 

mM NaCl, 10 mM Tris HCl (pH 8 ), 25 mM EDTA (pH 8 ), 0.5% sodium 

dodecyl sulphate (SDS) and 0.1 mg/ml proteinase K (Roche). Approximately 1 

ml o f digestion buffer was used per tissue sample, whilst cell pellets required 

only 0.3 ml per sample. All samples were incubated with shaking at 50°C for 

between 12 and 16 hours in tightly capped tubes. Deproteination was achieved 

by equal volume phenol/chloroform/isoamyl alcohol (25:24:1) extraction. 

Separation of the phases was achieved by a 10 minute centrifugation at 1700 g;
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separation was further aided by eariying out this step in 15 ml tubes containing 

Phase Lock gel (eppendorf) which forms a stable barrier between the upper, 

DNA containing aqueous phase and the lower organic phase. This allowed the 

aqueous phase to be easily transferred to a fresh tube for precipitation of the 

DNA in 2x(original) volumes o f 100% ethanol and K volume of 7.5 M 

ammonium acetate. This precipitation step in the presence o f high salt 

concentration helps reduce the amount of RNA in the DNA sample. The DNA 

was then pelleted by centrifugation at 1700 g for 2 minutes. A frirther wash step 

in 70% ethanol was then carried out before again pelleting the DNA, decanting 

the alcohol and allowing the DNA to ah dry. DNA samples were then 

resuspended in 50-100 |ul o f TE buffer and quality and quantity checked as 

described in Section 2.2.3.3.

3.3.3 Telomere length analysis
3.3.3.1 Digestion of DNA with HiniHRsal

The selection of the restriction endonucleases H inli and Rsal was based on the 

fact that these enzymes do not contain recognition sequences that cut within 

mammalian telomeric sequence. These enzymes are not alone in this respect, 

however, they are the most commonly used in the literature (Nakamura, Hirose, 

et al 1999) (Lauzon, Dardon, et al 2000). The use of these enzymes allows 

complete digestion of non-telomeric DNA, up to the first recognition site for the 

enzymes. The remaining intact telomeric DNA is referred to as a Telomere 

Restriction Fragment (TRF). Three p.g of DNA was digested per sample at 4U of 

enzyme mix/jig of DNA for 12-16 hours at 37°C.

3.3.3.2 DNA fragment separation
3.3.3.2.1 Agarose gel electrophoresis and Southern blot

Separation of digested DNA was achieved by 0.8% agarose gel electrophoresis 

in Ix TAE buffer using highly pure agarose (SIGMA) following a standard 

protocol (The DIG system user's guide for filter hybridisation 2003) (Southern 

1979). A DIG molecular weight marker was used (23.1 kb- 0.12 kb, Roche UK).
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Equal amounts of sample DNA were mn in each lane, and each sample was mn 

in duplicate. Individual samples were made up to 20 p.1 using dHzO and 2 ql of 

lOx DNA loading buffer (Section 2.1.8.2). Samples were mn at 5 V/cm for 

between 4 and 5 hours until the loading dye was approximately 2 cm from the 

base of the gel.

Southern transfer (Southern 1975) o f the digested DNA was canied out by 

capillary action using 20x SSC as a transfer buffer following a standard protocol 

(Current protocols in molecular biology) to a high quality positively charged 

nylon membrane (Amersham, UK). Gels were pre-treated first by submersion in 

0.25 M HCl for 5-10 minutes; completion o f this step was indicated by a change 

in colour of the bromophenol blue loading dye from blue to yellow. Following a 

rinse in dH2 0  the gels were submerged in dénaturation solution (0.5 M NaOH, 

1.5 M NaCl) for 30 minutes, with a change of solution after 15 minutes. This 

step was not complete until the loading dye colour had changed from yellow to 

blue. After a further rinse in H 2 O the gels were submerged in a neutralisation 

solution (0.5 M Tris-HCl, 3 M NaCl at pH 7.5) for 30 minutes with a change to 

fresh solution after 15 minutes. All pre-treatment steps were canied out at room 

temperature and with gentle agitation using a rocking table (Luckham, UK).

Gels were flipped before Southern transfer as this reduced the likelihood of 

irregularities in the upper gel surface resulting in uneven DNA transfer. Transfer 

was carried out overnight, and the DNA was then UV cross linked with 120 

mJoules of energy using a trans-illuminator (Sigma) to the nylon membrane. 

After twice washing the membrane with 2x SSC the blot was ready for probe 

hybridisation and chemiluminescent detection (Section 3.3.3.3).

3.B.3.2.2 Pulsed field agarose gel electrophoresis

Pulsed field electrophoresis was carried out using a CHEF-DR® II system 

(Biorad). This system allows resolution of large DNA fragments (approximately 

1 0 - 2 0 0 0  kb) beyond the capacity of simple gel electrophoresis and is necessary 

for resolution of DNA fragments beyond approximately 25 kb in size (Carle,
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Frank, et al 1986). The pulsed field electrophoresis used in this Chapter is 

described as ‘contour clamped homogenous electric field’ (CHEF). In this 

system the gel is surrounded by a set of electrodes that allows alternation of the 

electric field to be coupled with a uniform direction of DNA migration (Chu, 

Vollrath, et al 1986). One percent agarose gels in 0.5% TBE as buffer were used 

in all procedures, and the apparatus includes a pump and cooling system to keep 

the buffer temperature steady at 14°C for the duration of the electrophoresis. The 

gels were run at 6  V/cm with a 1 to 6  second ramped switch time and a total mn 

time of 15 hours. These parameters are within that recommended by the 

manufacturer to resolve DNA of 1-100 kb in length. An 8-48 kb CHEF DNA 

size standard (Bio-Rad) was used consisting o f 13 bands; 8.3, 8 .6 , 10.1, 12.2, 15, 

17.1, 19.4, 22.6, 24.8, 29.9, 33.5, 38.4 and 48.5 kb.

Following electrophoresis, gels were stained for 30 minutes in 1.0 jag/ml 

ethidium bromide to visualise the DNA size standard that was then 

photographed with the aid of UV transillumination (Uvi, Thistle Scientific, UK). 

These photographs allowed the position of the DNA marker bands to be 

accurately recorded on the final autoradiographs. Gels were UV treated in a UV 

cross-linker with 60 mJoules of energy to cleave the separated DNA fragments; 

this is necessary to allow efficient Southern transfer of fragments gi*eater than 

approximately 20 kb. The gels were pre-treated in 0.4 M NaOH, 1.5 M NaCl for 

15 minutes to reduce background and increase transfer efficiency then Southern 

blotted using the same solution as a transfer solvent onto a positively charged 

nylon membrane overnight. Following this the nylon membranes were 

neutralised in 0.5 M Tris, pH 7.0 for 5 minutes, then briefly rinsed in 2x SSC 

(Section 2.1.8.2) before proceeding with hybridisation. The hybridisation and 

chemiluminescent method are common to the standard and CHEF 

electrophoresis protocols.

3.3.3.3 Hybridisation and chemiluminescent detection

All hybridisation steps were caiTied out using a Hybaid Maxi hybridisation oven 

(Hybaid) and standard hybridisation flasks on a rotary mount. Pre-hybridisation
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was carried out at 42°C for 45 minutes using 25 ml of DIG Easy Hyb solution 

(Roche, UK). This solution was then discarded and replaced with 10 ml of DIG 

Easy Hyb containing 2 jil o f digoxigenin (DIG) labelled telomere probe 

(TTAGGG?). Hybridisation was carried out at 42°C for 3 hours.

Two stringency washes were carried out; the first consisted of two washes in 2x 

SSC, 0.1% SDS for 5 minutes each at room temperature. This was followed by 2 

washes in 0.2x SSC, 0.1% SDS at 50°C for 20 minutes each. Gentle agitation of 

the membrane was carried out during both stringency washes and throughout the 

detection procedure.

Membranes were rinsed in a washing solution (0.3% w/v Tween® 20, 0.1 M 

maleic acid, 0.15 M NaCl, pH 7.5) for 5 minutes at room temperature followed 

by a 30-minute incubation at room temperature in freshly prepared blocking 

buffer (Roche, UK) dissolved in maleic acid buffer solution (0.1 M maleic acid, 

0.15 M NaCl, pH 7.5). Blots were then incubated with a DIG specific antibody 

(750 units/ml Anti-Digoxigenin, Fab fragments) covalently coupled to alkaline 

phosphatase (Anti-DIG-AP) (Roche, UK). The Anti-DIG-AP working solution 

was prepared to a final concentration of 75 mU/ml (1:10,000) in blocking buffer 

(Roche, UK). The antibody solution was centrifuged for 5 minutes at 13000 ipm 

before careful pipetting from the surface of the liquid to avoid background signal 

being generated by aggregated antibody.

Incubation in the antibody solution was followed by two further 15-minute 

washes at room temperature in wash buffer (Roche, UK), followed by a 5- 

minute incubation in detection buffer (100 mM Tris-HCl, pH 9.5, 100 mM 

NaCl). Excess detection buffer was briefly blotted from the membrane by 

placing it DNA side up on a piece of 3MM Whatman filter paper. The blot was 

then placed on an acetate sheet and approximately 3 ml of substrate solution 

placed di'op wise onto the DNA side before overlaying with another acetate. The 

system used the chemiluminescent alkaline phosphate substrate CSPD® (25 mM 

Disodium 4-chloro-3-(4-methoxyspiro( 1,2-dioxetane-3,2 ’-(5 ’-

ehioro)tricycio[3.3.1.1^’̂ ]decan)-4-yl) phenyl phosphate) (Roche, UK) diluted
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1:100 in detection buffer. Any bubbles were carefully removed from between the 

sheets and the composite was incubated at room temperature for 10 minutes. 

Exeess substrate solution was then squeezed out and the two plastic sheets sealed 

with sellotape. The sealed membrane was incubated at 37°C for a further 10 

minutes to aid the chemiluminescent signal. The membranes were then used to 

generate autoradiographs. Exposure time varied between 5 and 20 minutes to 

achieve optimum image quality for analysis.

3.3.3.4 Analysis of autoradiographs

Autoradiographs were analysed by densitometry using TotalLab v2.01 software. 

Mean TRF (kb) values were determined from the densitometric readings 

according to the formula:

TRF (kb) = EfOdiLii 

Z(Odi)

Where Od; is the chemiluminescent signal and Li is the length of the TRF 

fragment at position i. The calculation takes into account the higher signal 

intensity from larger TRF fragments because of multiple hybridization of the 

telomere specific probe. Duplicate analyses were carried out on each sample.

3.3.4 Confirmation of senescence

Replicative senescence in primary cultures was marked by cessation of cellular 

replication and morphological changes of the senescent cells, involving an 

increased cell size and a rounded, flattened appearance. In addition to these 

visual indicators, a number o f biomarkers were employed to confirm the 

presence of senescent cells in cultures, and these are detailed below.
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3.3.4.1 Senescence associated p-galactosidase (SA-p-GAL) 

staining at pH 6

Replicative senescence was detected in cell lines by staining for the presence of 

a senescence associated p-galactosidase activity at pH 6.0. This method was 

developed from that originally outlined by Dimri et al (Dimri, Lee, et al 1995) 

and detects SA-p-GAL using the compound X-Gal, which forms a perinuclear 

blue precipitate upon cleavage (Miller 1972). Cells were stained in situ in tissue 

culture flasks or grown on cover slips contained in 6 well plates, and were first 

washed three times in PBS, then fixed for 10 minutes at room temperature in 2% 

fonnaldehyde/0.2% glutaraldehyde in PBS. Cells were then washed a further 

three times in PBS and incubated at 37°C (without CO2 ) in fresh SA- p -GAL 

staining solution consisting of 40 mM citric acid/sodium phosphate buffer 

(pH6.0), 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM 

sodium chloride, 2 mM magnesium chloride and 2 rag/ml X-gal dissolved in 

dimethylformamide all made up in distilled water.

Staining was evident after 2-4 hours and maximal after 12-16 hours. Five fields 

o f at least 100 cells were counted, and cells positive for SA- p -G A L activity 

expressed as a percentage of the total number counted. Staining was recorded by 

digital photography.

3.3.4.2 Immunocytochemistry

Immunocytochemistry (ICC) is a technique that allows identification o f cellular 

or tissue antigens by means of a specific antigen-antibody interaction. The 

method has been greatly refined since the initial direct labelling experiments that 

employed a primary antibody conjugated directly to a fluorochrome (Coons, 

Creech, et al 1941). A common variation that uses an indirect 

immunoperoxidase labelling approach is used in these experiments (Sternberger, 

Hardy, et al 1970). This method involves a dual antibody system in which an 

unlabelled primary antibody is bound to a secondary biotinylated ‘bridging’ 

antibody. A complex formed from strept-avidin and horseradish peroxidase
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(HRPO) is then conjugated to this secondary antibody to provide signal 

amplification at the site of the primaiy antibody. The final substrate for the 

HRPO is 3,3 diaminobenzidine (DAB) (Sigma, USA) which produces a brown 

end product at the antigen site that is highly insoluble in alcohol and other 

inorganic solvents. This method was used to identify the presence of p i 

and p21 in cells grown on cover slips in the primary canine culture SFA and the 

primary feline culture S22 (both detailed in Section 2.2.1.2). The primary 

p2giNtc4a antibody used was the H-156 purified rabbit polyclonal antibody (Santa 

Cruz Biotechnology) raised against a recombinant protein corresponding to 

amino acids 1-156 representing full length pl6^ '̂^^^“ of human origin. The p21 

antibody, SX118 (murine IgGi) was sourced from BD PharMingen and is raised 

against the final 20 amino acids of human p21.

Accumulation of both p i6'̂ ^̂ "*̂  and p21 has been associated with replicative 

senescence in human cultures (Alcorta, Xiong, et al 1996) (Huschtscha & 

Reddel 1999). Alcorta et al found that p21 accumulated as human fibroblasts 

approached senescence (in the last few passages), and then reduced in the 

senescent cells, concomitant with an increase in p i jgygjg (Alcorta, Xiong, 

et al 1996). The staining carried out on the SFA and S22 cultures detailed in this 

chapter were on the final passages (p i2 and plO respectively) and the cells had 

been senescent, as determined by SA-p-GAL activity, for two weeks before 

staining was canied out.

3.3.4.2.1 Staining optimisation

This procedure involves identifying a concentration of primary antibody that 

provides the maximum amount of specific staining with the least amount of 

background. A range of dilutions (1/50, 1/100, 1/200, 1/400) is used to stain a 

positive control tissue for each antigen to be investigated. Repeating this 

procedure and omitting the primary antibody provides negative controls. 

Evaluation o f control slides by light microscopy identified the most favourable 

dilution for each antibody, which was then used on all subsequent test cells. The 

H-156 (p i6) antibody has previously been shown to cross react with canine 

pj^[Nic4a fibroblasts (Koenig, Bianco, et al 2002), and the MCF7 cell line
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(Section 2.2.1.2) was used as a positive control for the p21 antibody as 

recommended in the product datasheet.

3.3.4.2.2 Immunocytochemical staining procedure

The antibody diluent used in this study consisted of 0.1 g BSA (BDH, UK) and 

0.01 g sodium azide (BDH, UK) in 100 ml o f 0.01 M TBS (pH 7.5). Test cells 

were incubated with primary antibodies for two hours at room temperature 

followed by three five minute wash steps in the wash buffer (Tween20, 0.01 M 

TBS at pH 7.5). A standard 1/200 dilution o f the appropriate secondary antibody 

(polyclonal swine anti-goat/mouse/rabbit, biotinylated, Dako, UK) was then 

applied for a 45-minute incubation at room temperature. This was followed by 

another thi’ee five minute washes in wash buffer before signal amplification was 

achieved by a 45-minute incubation with the HRPO conjugated strept-avidin 

complex (Dako, UK). The chromagen DAB was reconstituted in 5 ml tap water 

as per manufacturers instructions as ions contained in the tap water enhance the 

reaction and improve the intensity o f the final staining. The chromagen was then 

applied for 5 minutes to produce the stable brown insoluble product that may be 

viewed by light microscopy. Couterstaining was performed using Gills’ 

haematoxylin followed by washing of the stained cells in water, dehydration via 

a series of graded alcohols and clearing in Histo-Clear (AGTC Bioproducts). 

Cover slips were then permanently mounted using DPX mountant (BDH, UK) 

onto microscope slides before examination by light microscopy.
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3.4 Results

3.4.1 DNA quantity and quality

Genomic DNA was isolated from PBLs using both phenol/chloroform extraction 

with ethanol precipitation, and also using the QIAamp DNA blood maxi kit 

(QIAGEN, UK). Good quality DNA samples were obtained and checked by 

spectrophotometry to have an A2 6 0 /A2 8 0  value o f >1.7. Agarose gel assessment 

was also carried out revealing intact, high molecular weight DNA with no 

evidence o f smearing associated with DNA degradation, as shown in Figure 3- 

la. Complete digestion of the DNA was confirmed by agarose gel 

electrophoresis to reveal a smear of DNA with no evidence of residual high 

molecular weight DNA. An example of a post digestion gel is shown in Figure 

3-lb.

3.4.2 Comparison of CHEF electrophoresis and standard 

agarose gel electrophoresis

A number of samples were analysed using both standard agarose gel 

electrophoresis and CHEF electrophoresis (Figure 3-2). TRF results were found 

to be comparable in size using the two methodologies (average difference 0.6 kb, 

standard deviation 0.44). All future TRF investigations were performed using 

standard agarose gel electrophoresis.

3.4.2.1 Analysis of autoradiographs

A TRF value was deteiinined for each sample as detailed in Section 3.3.3.4. 

Duplicate analysis was carried out for each sample, and the average difference 

between samples was 0.42 kb with a standard deviation of 0.42. A representative 

autoradiograph with telomere length analysis is shown in Figure 3-3.
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Figure 3-1 (a) 1% agarose gel electrophoresis of genomic DNA isolated from 

canine PBLs, and (b) canine DNA after a 2-hour digestion with 4 iu/|Lig of H inï 

I and Rsa I. Both gels include a 100 bp marker (100-2072 bp, Invitrogen)

(a) (b)
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Figure 3-2. Comparison of CHEF and standard agarose gel electrophoresis

The autoradiographs below demonstrate comparable telomere smears generated 

using both CHEF and standard agarose gel electrophoresis. Both 

autoradiographs show necropsy samples from an 11 -year-old female crossbred 

bitch. The autoradiograph shown on the left contains smears generated from 

specimens using CHEF electrophoresis as described in Section 3.3.3.2.2. The 

samples shown are duplicates of skeletal muscle (lanes 1 and 2), liver (3 and 4) 

and kidney (5 and 6). The same samples were re-analysed to produce the 

autoradiograph shown on the right using the same protocol except that these 

smears were separated by standard agarose gel electrophoresis as outlined in 

section 3.3.3.2.I. Skeletal muscle is shown in lanes 1 and 2, liver in lanes 3 and 

4 and kidney in lanes 7 and 8. Lanes 5 and 6 contain a lung sample. Averages of 

the duplicates were taken to demonstrate that for each of the three samples the 

telomere lengths were comparable. Skeletal muscle was estimated at 22.7 kb 

using CHEF and 22.4 kb using standard gel electrophoresis, liver at 21.5 kb by 

CHEF and 20.4 kb by standard gel electrophoresis and kidney at 17.4 kb by 

CHEF and 17.8 kb by standard agarose electrophoresis.
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Figure 3-3. Autoradiograph of feline TRFs highlighted by 

chemiluminescence. Lanes order is as follows- Lane 1, DNA molecular weight 

marker II (Roche); lane 2, control DNA (3.9 kb, Roche, UK); lanes 3 and 4, 10 

year old mean TRF 5.0 kb; lanes 5 and 6; 1 year old mean TRF 7.3 kb; lanes 7 

and 8, 9 years old, mean TRF 6.4 kb; lanes 9 and 10, 9 years old, TRF 7.2 kb; 

lanes 11 and 12, 4 years old, TRF 16.3 kb; lanes 13 and 14, 1 year old, TRF 13.3 

kb; lane 15, second marker lane.
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3.4.3 In vivo telomere length studies
3.4.3.1 TRF analysis of PBL samples in the dog

Duplicate TRF analysis was canied out on a total of 112 canine PBL DNA 

samples. The final mean TRF value was then determined by averaging each pair 

of analyses. Canine samples were derived from five distinct breed groups and 36 

cross breed dogs revealing a heterogeneous population o f telomeres ranging 

from 9.6 kb to 23.5 kb. O f these individuals, 24 animals were Labrador 

Retrievers, comprising 15 females and 9 males with an age range of <1 to 13 

years, and mean TRF values o f 14.7 to 19.7 kb. Sixteen dogs belonged to the 

Miniature Schnauzer breed comprising 7 females and 9 males with an age range 

of <1 to 9 years and a mean TRF range of 9.7 to 19.9 kb. Two females and 8 

males represented the Beagle breed, with an age range of 4 to 13 years and a 

mean TRF range of 14.9 to 22.3 kb. Four Great Dane dogs were also included, 1 

female and 3 males, age range 2 to 3 years and TRF values of 10.7 to 18.5 kb. 

Gender data was unavailable for the Golden Retriever and crossbreed group. 

Golden Retrievers numbered 22, aged from 1 to 13 years and with mean TRFs 

ranging from 9.6 to 22.1 kb. Thirty-six crossbreed dogs made up the remainder 

of the canine PBL samples, ranging in age from 1 to 15 years and with a mean 

TRF range of 12 to 23.5 kb. TRF results for individual dogs are shown in Tables 

3-3, 3-4, 3-5, 3-6, 3-7 and 3-8, corresponding to Labrador Retrievers, Miniature 

Schnauzers, Golden Retrievers, Beagles, Great Danes, and Crossbreeds 

respectively.

These data were used to examine the effect of age, breed and gender on telomere 

length in the dog. Regression plots of age against TRF in the canine PBL 

samples are shown in Figures 3-4 and 3-5. An analysis o f covariance for all 112 

dogs revealed no trend o f changing telomere length with age (Figure 3-6), 

however a significant association between decreasing telomere length and 

increasing donor age was identified in all pedigree dogs (p = 0.001) when these 

were analysed in isolation. In contrast, the crossbreed group showed a trend of 

increasing telomere length with increasing age. An analysis of covariance 

including the five pedigree breed groups (Beagle, Great Dane, Golden Retriever,
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Labrador Retriever and Miniature Schnauzer) revealed breed to have a highly 

significant effect on telomere length (p = <0.0001). This is the first report of 

breed specific differences in telomere length in the dog. There was no significant 

interaction between age and breed in the analysis, so the age distributions of the 

individuals within each breed group did not contribute to the breed effect on 

telomere length. A Least Squares means analysis was carried out on the pedigree 

dog PBL samples as shown in Table 3-9. This revealed that when mean TRF 

values are corrected for age the Great Dane group had the shortest telomeres, 

and that the telomeres o f the Great Danes and the Miniature Schnauzers were 

significantly shorter than the Golden Retriever and Beagle gi’oup (p <0.05). The 

Miniature Schnauzer breed also displayed significantly shorter telomeres than 

the Labrador Retrievers (p <0.05).

Gender had no effect on telomere length within the canine PBL sample 

population.
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Table 3-3. TRF analysis of PBL DNA isolated from Labrador Retrievers; 15

females (F), 9 males (M) ranging in age form <1 to 13 years old. TRFs in this

gi'oup ranged from 14.7 to 19.7 kb.

Sample number Age (years) Gender Mean TRF (kb)

1 <1 F 14.8

2 <1 F 18.5

3 <1 F 19.5

4 1 M 15.8

5 1 M 18.2

6 1 F 16.9

7 3 M 17.4

8 3 M 14.7

9 3 M 17.5

10 3 M 18.2

11 3 F 18.2

12 3 F 17.1

13 4 F 16.3

14 4 M 18.5

15 5 F 17.7

16 5 F 17.1

17 5 M 14.8

18 5 F 14.8

19 6 M 16.3

20 6 F 19.7

21 7 F 17.7

22 8 F 17.9

23 13 F 15.2

24 13 F 15.8
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Table 3-4. TRF analysis of PBL DNA isolated from Miniature Schnauzers; 7

females (F), 9 males (M) ranging in age from <1 to 9 years. TRFs in this group

ranged from 9.7 to 19.9 kb.

Sample number Age (years) Gender Mean TRF (kb)

1 < 1 F 15

2 < 1 M 14

3 < 1 M 14.6

4 < 1 F 15.2

5 2 F 19.2

6 2 F 19.9

7 5 M 15.4

8 6 F 15.8

9 6 M 16.9

10 6 F 14.5

11 6 M 15.1

12 6 M 10.6

13 7 M 12

14 9 M 12.6

15 9 M 10.3

16 9 F 9.7
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Table 3-5. TRF analysis of PBL DNA isolated from Golden Retrievers;

ranging in age from 1 to 13 years, gender information for this group is not

available. TRFs in this group ranged from 9.6 to 22.1 kb.

Number Age (years) Mean TRF (kb)

1 1 18

2 2 17.8

3 2 17.7

4 2 17.4

5 4 17.9

6 4 17.8

7 5 20.6

8 5 19.7

9 5 18.4

10 6 18.5

11 7 21.3

12 8 19.7

13 9 20.4

14 9 16.7

15 9 22.1

16 10 19.1

17 10 16.4

18 11 16.7

19 12 15.1

20 12 10.2

21 13 9.6

22 13 18
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Table 3-6. TRF analysis of PBL DNA isolated from Beagles; 2 females (F)

and 8 males (M), with an age range o f 4 to 13 years, represent the breed. TRFs in

this group ranged from 14.9 to 22.3 kb.

Number Age (years) Gender Mean TRF (kb)

1 4 M 21.7

2 4 M 16.3

3 5 M 21.6

4 6 F 22.3

5 6 M 18.7

6 7 F 14.9

7 9 M 15.1

8 12 M 18.7

9 12 M 16.7

10 13 M 18.1
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Table 3-7. TRF analysis of PBL DNA isolated from Great Danes, 3 males 

(M) and one female (F). TRFs ranged from 10.7 to 18.5 kb.

Number Age (years) Gender Mean TRF (kb)

1 2 M Î&5

2 2 M 13.5

3 2 F 10.7

4 3 M 16.5
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Table 3-8. TRF analysis of PBL DNA isolated from crossbreeds; gender 

information for this group is not available, ranging in age from 1 to 15 years. 

TRFs in this group ranged from 12 to 23.5 kb.

Number Age (years) Mean TRF (kb)
1 1 16
2 1 20
3 1 19.8
4 1 12
5 1 17.9
6 1 14
7 1 19.2
8 2 19.4
9 2 16.9
10 2 12.3
11 3 16.3
12 4 19.1
13 4 21.7
14 5 19.2
15 6 19.2
16 7 21.2
17 7 20.8
18 7 20.4
19 7 14.8
20 8 21.8
21 8 20.9
22 8 2T5
23 8 20.9
24 9 21.9
25 9 23
26 9 21.5
27 9 21.6
28 10 19.9
29 10 21.9
30 10 21.7
31 10 22
32 11 23,5
33 12 19.4
34 12 18.7
35 12 16
36 15 17.3
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Figure 3-4. Regression plot of TRF against age for the Golden Retriever, 

Beagle and Crossbreed dogs. A regression plot of TRF against age for the 

Golden Retriever and Beagle PBL DNA samples both show a trend of 

decreasing TRF with increased age. However the group of 36 cross breeds show 

a trend of increasing TRF with increasing age. It is believed this is an artefact 

caused by a breed effect on TRF, therefore the apparent increase in TRF with 

increasing age is considered to reflect the breed backgrounds within the sample 

population and is not a true reflection of the effect o f age on telomere length.
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Figure 3-5. Regression plot of TRF length against age for Miniature 

Schnauzer and Labrador Retriever PBL DNA samples. In this case both 

breeds show a trend o f decreasing TRF with increased age.
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Figure 3-6. Regression plot of TRF length against age for all canine PBL 

DNA samples combined, including and excluding crossbreed animals.

Analysis of all samples together does not reveal any trend o f decreasing TRF 

with increasing age. However, removal of the crossbreed dogs from the analysis 

reveals an association between decreasing telomere length and increasing age (p 

= 0.001) in pedigree dogs. These data are likely a reflection o f large genetic 

diversity in the crossbreed group, in effect some individuals inheriting longer 

than average telomeres, others shorter than average telomeres. Although it is not 

possible to examine whether there is any interaction between breed inheritance 

and age within the crossbreed dogs such an interaction could cause an 

overshadowing of the age effect on telomere length. These data underscore the 

importance of removing breed as a variable when examining the effect of age on 

telomere length in the dog.
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Table 3-9. Least Squares Means analysis of canine PBL TRF length from 

the five pedigree breed groups. Great Dane and Miniature Schnauzers had 

significantly shorter TRFs than the Golden Retriever and Beagle groups, and the 

Miniature Schnauzer group had significantly shorter TRFs than the Labrador 

Retrievers. Groups with overlapping confidence limits are denoted with the same 

superscript letter.

Breed Mean TRF 95% confidence limits

Great Dane^'’ 13.8 11.4-16.3

Miniature Schnauzer'^ 14.2 13.0-15.4

Labrador Retriever"^ 16.7 15.7-17.7

Golden Retriever^ 18.2 17.1-19.2

Beagle^ 19.0 17.5-20.6
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3.4.3.2 TRF analysis of PBL samples in the cat

All thirty feline PBL DNA samples were derived from cats belonging to the 

DSH breed group. O f these, 12 were female and 18 male with ages ranging from 

1 to 17 years and mean TRF values ranging from 4.7 to 20.6 kb. TRF results for 

individual cats are shown in Table 3-10. A regression plot o f TRF against age 

(Figure 3-7) showed a significant association between decreasing TRF length 

and increased donor age (p -0.001).

An analysis o f covariance was also carried out on the 30 feline samples to 

investigate the effect of age and gender on telomere length in the cat. Breed was 

not included in the analysis as all the cats were DSHs. Again age was shown to 

have a significant effect on telomere length {p = 0.001), whilst gender did not 

affect telomere length at a significant level. In addition the cats had significantly 

different PBL TRF values to the dogs sampled {p = <0.01).
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Table 3-10. TRF analysis of PBL DNA samples taken from 30 DSH cats, 12

female (F) and 18 male (M). TRF values range from 4,7 to 20.6 kb.

Number Age (years) Gender TRF (kb)
1 1 F 14.5
2 1 M 14.9
3 1 M 9.2
4 1 M 7.6
5 1 M 13.3
6 1 M 20.6
7 1 M 4.7
8 1 M 9.5
9 1 M 12.6
10 4 F 10.8
11 4 M 9.4
12 4 F 9.2
13 4 M 9.2
14 9 FN 11.4
15 9 M 10.4
16 9 FN 7.2
17 9 M 6.9
18 9 MN 11.3
19 9 FN 6.4
20 9 M 8.9
21 10 FN 5
22 10 M 7.1
23 10 FN 4.8
24 10 FN 11.3
25 10 F 7.4
26 12 M 6.1
27 12 M 6.1
28 12 M 7.6
29 12 F 6.1
30 17 FN 5.6
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Figure 3-7. Regression plot of TRF length against age for the feline PBL 

DNA samples. The cats sampled all belong to the DSH breed type, with an age 

range of 1 to 17 years, TRFs ranged from 4.7 to 20.6 kb, and show an 

association of decreasing size with increasing age {p = 0.001).

DSH cats

^  15

10

Age (years)

119



3.4.3.3 TRF analysis of necropsy samples in the dog and cat
3.4.3.3.1 Normal tissue

Tissue samples were harvested from 5 dogs and 5 cats necropsied at GUVS for 

unrelated medical reasons. Details of donor animals are shown in Table 3-2. 

After DNA extraction and quality assessment as detailed in Section 2.2.2, 48 

DNA samples were considered fit for duplicate TRF analysis comprising 26 

canine and 22 feline samples. The canine samples included cardiac muscle {n = 

2), liver {n ~ 4), skeletal muscle {n = 4), lung {n = 2), kidney {n = 4), small 

intestine {n = 3), spleen {n = 2), stomach {n = 3), testis (« = 1) and ovary { n ^  1). 

The feline samples included brain {n = 2), cardiac muscle {n = 2), liver {n = 5), 

skeletal muscle {n = 3), lung {n = 4), kidney {n = 3), small intestine {n = 2), and 

testis {n = 1). TRF values for each sample are shown in Table 3-11. Regression 

plots of TRF against age of donor animal are detailed In Figures 3-8, 3-9, 3-10 

and 3-11. These are included in cases where more than 2 samples per organ are 

available for comparison.

When all canine organ samples were analysed together (TRFs ranged from 11.6- 

22.8 kb) no trend in telomere length between the different ages o f animal is 

visible, however when tissue samples were analysed individually the liver, 

kidney and small intestine samples showed a trend of decreasing TRF with 

increased age of donor animal. A repeat of this analysis using only the feline 

samples (TRFs ranged from 8.5-26.3 kb) revealed a trend of decreasing TRF 

with increased donor age even when the different tissue types were included in 

the same analysis. The canine and feline necropsy sample TRFs were not 

significantly different from the range of TRFs found in canine (9.6-23.5 kb) , 

and feline (4.7-20.6 kb) PBLs.

3.4.3.3.2 Tumour tissue

A total of 21 tumour samples, 17 canine and 4 feline were subjected to TRF 

analysis. TRFs ranged from 7.2 to 22.2 kb for the canine samples and 11.6 to
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18.3 kb for the feline samples. Details o f individual results are shown in Table 3- 

12 .
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Figure 3-8. Regression plot of TRF length against age for canine necropsy 

specimens (1). A trend of decreased TRF with increased donor age is present in 

both the canine liver (range 13.5 to 22.7 kb) and kidney samples analysed (range 

14.8 to 22.8 kb). Both liver and kidney trends may reflect cell turnover in these 

organs. No such trend is seen with canine skeletal muscle samples, reflecting the 

post-mitotic nature of this tissue. The increased TRF in the samples from older 

animals may reflect individual variation in donor animals.
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Figure 3-9. Regression plot of TRF against age for canine necropsy 

specimens (2). A trend o f decreased TRF with increased donor age is present in 

the canine small intestine samples (range 11.6 to 20.3 kb), but not in the stomach 

samples (range 13.7 to 18.6 kb). A regression plot of TRF length against age for 

the entire canine necropsy samples combined displays no trend of changing TRF 

with age. This may reflect breed variation in the sample population.
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Figure 3-10. Regression plot of TRF length against age for feline necropsy 

specimens (1). Feline liver (range 9.2 to 22.7 kb), lung (range 11.5 to 26.3 kb) 

and skeletal muscle (range 11.3 to 19 kb) all show a trend of decreased TRF 

length with increased age of donor animal.
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Figure 3-11. Regression plot of TRF against age for feline necropsy 

specimens (2). Feline kidney (range 13.7 to 22.8 kb) samples show a trend of 

decreasing TRF length with increased age of donor. Combining all feline organ 

samples (range 9.4 to 26.3 kb) reveals the same trend.
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Table 3-12. TRF analysis of canine (a) and feline (b) tumours sampled 

during biopsy and at post-mortem examination. Matched normal tissue 

samples from each individual case were unavailable.

(a)

Number Tumom- type TRF (kb)
1 Anaplastic sarcoma 18.3
2 Chondrosarcoma 17.6
3 Fibrosarcoma 20.9
4 Haemangiosarcoma 20
5 Leiomyosarcoma 14.7
6 Leiomyosarcoma 17.5
7 Leiomyosarcoma 19.4
8 Leiomyosarcoma 16.7
9 Liposarcoma 21.4
10 Lyphoma 19.1
11 Nephroblastoma 14
12 N eurofibrosarcoma 7.2
13 Rhabdomyosarcoma 15.5
14 Spindle cell tumour 22.2
15 Spindle cell tumour 19.5
16 Spindle cell tumour 12.8
17 Synovial cell sarcoma 222

(b)

Number Tumour type TRF (kb)
1 Mammary carcinoma 14.9
2 Squamous cell 11.6

carcinoma
3 Squamous cell 14.9

carcinoma
4 Squamous cell 18.3

carcinoma
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3.4.4 In vitro telomere studies
3.4.4.1 Growth of primary fibroblast cultures

The canine primary fibroblast cultures AG08075, AG08157, AG07648, SFA and 

the feline primary fibroblast culture S22 (all detailed in Section 2.2.1.2) were 

maintained in culture until cell replication ceased. Growth curves were generated 

for each cell line and used to determine how many population doublings 

occurred in the cell population before replication arrest. This ranged from 4.7 to

16.6 population doublings, as shown in Figures 3-12 and 3-13. The AG08075, 

AG08157, AG07648 and SFA cultures were then maintained in the growth 

medium of the S22 culture, as it displayed the greatest replicative potential (16.6 

PDs). The change of growth medium did not increase the replicative potential of 

the other cultures beyond that which had already been achieved.

3.4.4.2 TRF analysis of primary fibroblast cultures

Telomere length analysis was carried out on selected passages of the SFA, S22 

and AG07648 cell lines, as shown in Figures 3-14 and 3-15. The SFA canine 

primary fibroblast culture underwent a reduction in mean TRF from 20.5 kb at 

passage 2 to 17.5 kb at passage 13 during which the culture underwent 13.3 

population doublings. This equates to a telomere loss of approximately 220 bp 

per cell division. The S22 feline fibroblast culture demonstrated telomere loss 

from 10.6 kb at passage 3 to 9.3 kb at passage 10, during which the cell line 

underwent 16.6 population doublings, in this case equating to approximately 80 

bp per cell division. The AG07648 cell line also underwent telomere loss, from 

11.0 kb at passage 2 to 9.7 kb at passage 15. This occurred over 10.1 population 

doublings, and thus equates to a telomere loss of approximately 130 bp per cell 

division. No correlation between age of donor animal and replicative potential of 

the in vitro culture derived from it could be identified.
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Figure 3-12 Growth curves for canine primary fibroblast cultures SFA, 

AG07648, and AG08157. These cell lines underwent 13.3, 10.1 and 8.9 

population doublings respectively before cell replication ceased.
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Figure 3-13. Growth curves for the canine primary fibroblast culture 

AG08075 and the feline primary fibroblast culture S22. These cell lines 

underwent 4.7 and 16.6 population doublings respectively before replication 

ceased.
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Figure 3-14. Autoradiographs demonstrating teiomeric attrition in the SFA 

and AG07648 cell cultures. Lanes 1 ,2 ,3 , 4, and 5 in the SFA autoradiograph 

represent passages 2, 4 ,7 , 10 and 12 respectively, and equate to telomere lengths 

of 20.5, 20.1, 19.7, 18.9, and 17.5 kb. The SFA cell culture ceased replicating at 

passage 13 after a total of 38 days in culture. Lanes 1 and 2 both represent 

passage 2 and lanes 3 and 4 passage 14 of the AG07648 cell culture and equate 

to telomere lengths o f 11.0 and 9.7 kb respectively. The AG07648 culture was in 

culture a total of 98 days. Lane 5 is a standard TRF marker lane (DNA molecular 

weight marker II, Roche, UK).
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Figure 3-15 Autoradiograph demonstrating teiomeric attrition in the S22 

feline fibroblast culture. Cells were maintained in MEM Eagle medium 

(Sigma) supplemented with 10% heat inactivated PCS, penicillin-streptomycin 

and fungizone and passaged routinely upon reaching approximately 80% 

confluence. The cell line was initially seeded with 2 xlO  ̂ cells, and reseeded 

after passage at a concentration of 1x10  ̂ cells/ml. After 66 days in culture the 

cell line ceased replication and the majority of cells within it were shown to be 

senescent by SA-p-GAL staining. Autoradiograph lanes 1 and 2 show teiomeric 

smears generated from passage 3 cells, 3 and 4 correspond to passage 5, 5 and 6 

to passage 7 and lanes 7 and 8 to passage 9. These teiomeric smears represent 

mean telomere lengths of 10.6, 10.7, 9.9 and 9.3 kb respectively.
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3.4.4.3 Detection of senescence in vitro

SA-p-GAL staining was the main method by which the accumulation of 

senescent cells in vitro was recorded. Presence of a perinuclear blue dye 

indicates that a cell is senescent, and staining was found to be clear and easily 

interpreted in the cell lines used, as illustrated by Figure 3-16. Staining of the 

SFA primary culture was carried out at passage 2, 4, 10 and 12. For comparison 

pui'poses all other cell cultures were stained initially, again at passage 10 and 

when the culture had effectively stopped replicating. The S22 and AG08075 cell 

cultures did not grow beyond passage 10 and were therefore stained only twice. 

In addition, the replicatively immortal human cell line GM847 was stained as a 

negative control.

Initial staining, carried out as soon as possible after the cell lines were 

introduced to culture conditions revealed varying percentages of senescent cells. 

Both the SFA and S22 cultures contained less than 5% senescent cells, 

increasing to 20% at passage 4 in the SFA culture. The other cell cultures 

contained 14, 16 and 21% SA-P-GAL positive cells at passage 2 in the 

AG08157, AG08075 and AG07648 cultures respectively. The S22 and 

AG08075 lines were the first to cease replicating, and at passages 10 and 7 

respectively both these cell lines contained >95% SA-p-GAL positive cells. At 

passage 10 AG08157, SFA and AG07648 were 43%, 80% and 65% SA-P-GAL 

positive, and these cell lines stopped replicating and reached >95% SA-P-GAL 

positive status at passages 14, 12 and 17 respectively. The GM847 cell line, as 

expected did not contain any SA-P-GAL positive cells.

Further confirmation of senescence in the primary fibroblast cultures was 

determined by ICC for p i6'̂ '̂̂ '̂ ''' and p21, as detailed in Section 3.3.4.2. Working 

dilutions of 1/50 were used for both the H-156 (p i6) and the SX118 (p21) 

antibodies. ICC was carried out on the final passage of each culture tested, (p i2 

and plO for SFA and S22 respectively). The test cells had been in a state of 

replicative senescence for 2 weeks prior to ICC, and had previously been shown 

to be SA-P-GAL positive, as described above. In both cell cultures, ICC for
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pj îN[C4a in Strong nuclear, and moderate cytoplasmic staining,

indicating the accumulation of in the senescent cells. A representative

image o f this staining for the S22 culture is shown in Figure 3-17. In both cases 

the cultures were found to be negative for p21, as shown in Figure 3-18. These 

results follow the pattern noted by Alcoita et al in senescent human fibroblasts 

(Alcorta, Xiong, et al 1996).
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Figure 3-16. Senescence associated p-galactosidase activity at pH 6. A stable 

perinuclear blue dye allows visual identification of cells that have entered 

replicative senescence, as indicated in image (a) by arrows. Five fields of at least 

100 cells were counted, and cells positive for SA- p -GAL activity expressed as 

a percentage o f the total number counted. Percentage positive varied greatly 

depending on the replicative age of the cell line, as shown in image (b), 

indicating the canine primary fibroblast cell line SFA at p4 with 20% of cells 

estimated to be SA-p-GAL positive and image (c), generated from the same cell 

line at p i2, where 100% of the cell population appear to be SA- p -GAL  

positive.

(a) (b)
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Figure 3-17. ICC for in late passage S22 primary feline fibroblasts.

Image (a) shows the presence of the brown insoluble DAB end product in 

passage 10 S22 feline fibroblasts using the H-156 anti-pl6 primary antibody 

(Santa Cruz Biotech). This culture entered replicative arrest 2 weeks before 

staining was carried out, and staining was strongest in the nuclei o f the senescent 

cells. Image (b) is taken from the same passage cells with omission of the 

primary (H-156) antibody. No uptake of stain is apparent, implying that the stain 

is binding specifically to the primary antibody. Counterstaining of nuclei used 

Gills haematoxylin. Both images are at 200x magnification.
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Figure 3-18. ICC detection of p21 in late passage canine and feline 

fibroblasts. Both the passage 12 canine fibroblasts from the SFA culture (a), and 

the passage 10 feline fibroblasts from the S22 culture (b) entered replicative 

senescence 2 weeks before staining. No DAB stain is visible in either culture, 

implying an absence of p21 in both cell cultures. Image (c) shows staining of the 

positive control cell line (MCF7), illustrating that the primary antibody (SXl 18, 

BD PharMingen) was working effectively. All images are at 400x magnification.

(a)

(b)

(c)
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3.5 Discussion

The primary aims of this chapter were to investigate telomere lengths in the dog 

and cat and to determine what if any effect the variables of age, breed and 

gender have on telomeres in these two species. An analysis o f 112 canine PBL 

DNA samples demonstrated that PBL telomeres range from 9.6 to 23.5 kb in the 

dog. Analysis of the same cell types from 30 DSH cats revealed a similar range, 

from 4.7 to 20.6 kb. Furthermore, this study found telomere lengths in a panel of 

26 canine and 22 feline somatic tissues to range from 11.6 kb to 22.8 kb, and 8.5 

kb to 26.3 kb respectively. These ranges are very similar to those typical of 

human telomeres (Blackburn 1990) (Harley 1995), and are in contrast with the 

much longer telomeres found in the mouse, which is a species commonly used to 

model human telomere biology (Kipling & Cook 1990).

3.5.1 Age effect on PBL telomere length in the dog and 

cat

This study has shown age to have a significant effect on telomere length in five 

pedigree dog breeds and the DSH cat, (p = 0.001 for both species). This age 

effect supports previous reports documenting the effect of age on telomere 

length in human PBLs (Ruler, Bmmmendorf, et al 1999), in canine mammary 

tissue (Yazawa, Okuda, et al 2001) and feline blood cells (Bmmmendorf, Mak, 

et al 2002).The rate o f telomere loss in human PBLs is not linear thi oughout life, 

instead telomere loss appears accelerated in infancy. In granulocytes this 

corresponds to 3052 bp/year for the first 6 months of life, compared with an 

average of 39 bp/year over a human lifespan (Rufer, Bmmmendorf, et al 1999). 

Such a pattern is not apparent for the dog and cat PBLs investigated in this 

study; however the priority in this investigation was to encompass a broad age 

range of animals, and particularly in the cat this has resulted in the majority of 

the samples being from either old or young individuals. The use of animals from 

the tails of the age distribution is a powerful tool to investigate the relationship 

between age and telomere length as this experimental design emphasizes the
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contribution of age to the variation in telomere length. The results indicate that 

old dogs and cats have shorter telomeres than young individuals. This implies 

that telomere length reduces with increasing age; however flirther work will be 

required to reveal whether this relationship is linear or more complex.

3.5.2 Breed effect on telomere length in the dog

In addition, this study has considered the effect of breed on canine telomere 

length. We have shown breed to have a significant effect in the pedigree canine 

PBL sample population {p = <0.0001). This is interesting as it correlates with 

findings in human research that have determined telomere length to be a 

heritable trait (Slagboom, Droog, et al 1994) (Jeanclos, Schork, et al 2000), and 

also because breed has an effect on lifespan in the dog. An age corrected 

analysis of the breeds examined revealed the Great Dane population to have the 

shortest mean TRFs, and the Beagle breed to have the longest. O f the five 

pedigree breeds examined the Great Dane also has the shortest life expectancy 

(Maynagh 1983) (Michell 1999). The same sources of breed specific data also 

credit the Beagle breed with the longest life expectancy (Maynagh 1983) 

(Michell 1999).

These correlations between breed specific telomere length and life expectancy 

provide evidence of a link between telomere length and ageing in the dog, albeit 

circumstantial evidence from a relatively small population, but nevertheless 

adding to the growing list o f such evidence linking telomere dynamics with the 

ageing process (Rohme 1981) (Oshima, Campisi, et al 1995) (Benetos, Okuda, 

et al 2001). In addition these data provide an area for further investigation in 

canine telomere studies. It would be interesting to investigate if selective 

breeding such pedigrees on the basis of longer than average telomeres in the 

parental stock would result in an increased life expectancy in the progeny. It is 

realised such a study would require careful selection of candidates to avoid 

interference with existing breeding programmes aimed at reducing the 

prevalence of inherited disease.
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3.5.3 Gender effect on telomere length in the dog and cat

Gender did not have a significant effect on telomere length in the sample 

population for which gender data was available. This is interesting as a gender 

effect on telomere length has been identified in humans (Benetos, Okuda, et al 

2001), and more recently rats (Cherif, Tarry, et al 2003). In both these studies, 

males were found to have shorter telomeres than females in an age corrected 

analysis. This provides a novel mechanism for the gender related differences in 

lifespan that are known to exist in both humans and rats; in both species females 

have a greater life expectancy (Cherif, Taiiy, et al 2003). The results of studies 

on the effect of gender on canine lifespan are complicated by factors such as 

entire versus neutered, and natural death versus euthanasia within the sample 

population. Michell found entire female dogs to have the greatest natural life 

expectancy in a panel of over 3000 individuals (Michell 1999), and whilst 

Moore et al found castrated male dogs to have the greatest life expectancy in a 

different study, this sample population o f 927 military animals did not include 

any entire females (Moore, Burkman, et al 2001). Thus the effect of gender on 

canine lifespan is still unclear, and therefore the lack of gender effect on 

telomere length in the canine samples in this study does not add or detract from a 

possible link between telomere length and life expectancy in the dog.

The author is unaware o f any research on the effect of gender on life expectancy 

in the DSH cat, and so the lack o f relationship between telomere length and 

gender in the DSH population cannot be correlated with life expectancy at 

present.

3.5.4 Telomere length analysis of normal canine and 

feline organ samples

Necropsy sample analysis showed a trend of TRF length reduction with 

increased donor age in canine liver, kidney and small intestine, and all the feline 

samples for which a comparison was possible, including liver, lung, skeletal 

muscle and kidney. Tissue renewal times are not available for canine and feline
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tissues, however these results correlate with findings in the adult, non-growing 

mouse where only neurones and myocardium were found to be static with 

respect to cell turnover (Cameron 1970). Other tissues would be expected to 

undergo a decline in telomere length proportional to their renewal rates. Human 

liver and renal cortex also show a trend of decreased telomere length with 

increased donor age (Takubo, Izumiyama-Shimomura, et al 2002), as does 

gastric mucosa, small and large intestinal mucosa and the spleen (Furugori, 

Hirayama, et al 2000) (Hiyama, Hiyama, et al 1996) (Takubo, Izumiyama- 

Shimomura, et al 2002). However, given the small sample size the experiment 

primarily provides an insight into the average size of telomeres in these organs 

in the dog and cat, as the trends noted may simply be a reflection of natural 

variation in the telomere lengths o f the individuals concerned. This is clearly 

illustrated in the canine gastric mucosal samples. If tissue renewal times are 

similar in the dog and the mouse a gi'eater teiomeric loss would be expected in 

gastric mucosa than any of the other tissues examined, yet no such trend is 

displayed. This may simply be a reflection o f individual variation and the small 

sample size {n -  3). However, it is also possible that the unusually high turnover 

of gastric mucosa may be key to explaining the lack of appreciable telomere loss 

with age. Telomerase activity has been detected in gastrointestinal mucosa in 

humans and in dogs (Section 4.4.1) (Bachor, Bachor, et al 1999), and so it is 

possible that transient telomerase activity in canine gastric mucosa counteracts 

the effect of end replication problem brought on by high cell turnover. This is 

also likely to be the case in human gastric mucosal samples, as despite what 

must be a higher cell turnover in this tissue, telomere loss is not significantly 

greater in gastric mucosa than any other human tissues that have been examined 

(Takubo, Izumiyama-Shimomina, et al 2002).

3.5.5 Telomere length analysis of canine and feline 

tumours

Telomere lengths in a panel of canine and feline tumours were also examined to 

determine if a quantifiable reduction in telomere length of the cancerous tissue 

had occurred before transformation. Unfortunately matched normal tissue
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samples from the same individual were not available for comparison, and so it is 

not possible to gauge how many cell divisions were undergone in each case 

before transformation occurred. It is only possible to state that the tumours 

examined did not show any significant difference in telomere length to normal 

canine and feline organ or PBL samples.

Recent work has identified short PBL telomeres as a risk factor for the 

development of a number of diseases in humans, including cancer and 

myocardial infarction (Wu, Amos, et al 2003) (Reviewed in Wong & dePinho, 

2003). This raises the possibility that assessment of telomere length in PBLs 

may provide a non-invasive aid to diagnosis of a range of diseases (Reviewed in 

Wong & dePinho, 2003). Furthermore, this research in the human field raises the 

possibility that a genetic predisposition to short telomeres may predispose a 

canine breed to, for example, cancer development. Whilst the situation in vivo 

will be more complex than this simple relationship it would be interesting to 

discover whether this single factor is important by determining whether a breed 

with an increased cancer risk also tends to display shorter than average PBL 

telomeres. If such an association were discovered, this would have great 

potential for use in evaluating disease risk in individuals, or aid non-invasive 

diagnosis.

3,5.6 In vitro telomere studies

The in vitro study earned out using canine and feline primary fibroblast cultures 

revealed these cultures to have much less replicative potential than their human 

counterparts. Normal human primary fibroblast cultures will enter replicative 

senescence after approximately 50 population doublings (Harley 1995), however 

the greatest replicative potential of any of the canine or feline primary cultures 

used was only 16.6 population doublings. Replicative potential of canine and 

feline primary fibroblast cell cultures has not been investigated before and it is 

possible the reduced proliferative potential of the cell lines studied in this project 

represent a genuine species difference between companion animals and humans. 

Rohme et al (Rohme 1981) demonstrated a correlation between species lifespan
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and replicative potential of fibroblasts in a study that included mammalian 

species with a wide range o f life expectancy; those findings indicate that the 

shorter the lifespan o f the species the poorer the replicative potential o f the 

fibroblast cell line derived from it. These data fit well with our findings, and 

provide an explanation for the comparatively poor replication of our canine and 

feline primary cultures.

Furthermore, no clear coiTelation between age of donor and replicative potential 

of cell line could be demonstrated in this study. Although the cell line with the 

gi'eatest replicative potential was derived from an eight-week-old feline, a cell 

line derived from a six-week-old canine had less replicative potential than one 

derived from a thirteen year old dog. Whilst studies have presented evidence that 

a negative conelation between age and replicative potential does exist (Bruce, 

Deamond, et al 1986) (Cristofalo & Pignolo 1993), a more recent evaluation has 

not been able to repeat the findings (Cristofalo, Allen, et al 1998). It must also 

be borne in mind that the in vitro environment is a cmde simulacmra of the 

situation encountered by the cell in vivo; even the best regulation of culture 

conditions and the constituents of growth media lag far behind physiological 

regulation in the living organism. It is therefore possible that the variation in 

replicative potential of the primary fibroblast cultures may be in part the product 

of sub-optimal conditions, or ‘culture shock’ (Sherr & dePinho 2000).

In addition, it is possible that the initial telomere length o f the specific cell from 

which a culture is derived is the more important factor in determining its 

proliferative potential (Allsopp, Vaziri, et al 1992), however applying these 

criteria did not reveal any insight into the varying potentials of the cell lines 

studied. The S22 cell line initially contained mean TRFs o f 10.6 kb, and 

although these were eclipsed by the mean TRF of the SFA cell line at the first 

passage (20.5 kb), the SFA cell line imdei-went 3.3 fewer population doublings 

before senescence. It is possible that inclusion of a larger number of cell lines in 

the experiment might reveal a relationship between initial mean telomere length 

o f a culture and its replicative potential, however far fewer canine and feline 

primary fibroblast cell lines are available than human equivalents, and make 

such an analysis beyond the scope o f this project.
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All primary cell cultures demonstrated SA-P-GAL staining that increased with 

passage number and approached 100% once replicative exhaustion had been 

reached. Furthermore, >95% positive SA-p-GAL staining was shown to 

correlate with an accumulation o f p i i n  primary canine and feline 

fibroblast cultures, thus confirming that senescence was the cause of the 

replicative arrest rather than quiescence (Dimri, Lee, et al 1995) (Alcorta, 

Xiong, et al 1996) (Huschtscha & Reddel 1999).

Telomere attrition was detected in vitro in the SFA, S22 and AG07648 cell lines 

despite the small number o f population doublings before senescence. At 220, 80 

and 130 bp per cell division respectively, only the SFA cell line demonstrated 

telomere loss greater than that usually detected in human cells in vitro (estimated 

at 30-200), and only by a small margin (Harley 1995). It is also likely that these 

values overestimate the rate at which teiomeric attrition would occur under 

normal circumstances in vivo, as this has been shown to be the case in human 

tissues where a realistic estimate is closer to 10-50 bp per cell division (Harley 

1995).

The choice of TRF analysis for these telomere length studies was governed by 

the fact that this is still widely regarded as the method o f choice (Saldanha, 

Andrews, et al 2003), and also by the practical consideration o f available 

equipment and expertise. However, the TRF method is not without its critics, 

and the chief query regarding the accuracy of the technique lies in the inclusion 

of sub-telomeric repeats in the analysis, up to the first restriction enzyme cutting 

site in the target DNA. Typically comments on the subject refer to a study 

earned out by Hultdin et al that estimated this sub-telomeric DNA component to 

average 3.2 kb in a number of human cell lines and cell suspensions by 

comparing a Southern Blot analysis with a fluorescence in situ hybridisation and 

flow cytometry (Q-FISH^^^) protocol developed for the purpose (Hultdin, 

Gronlund, et al 1998). Given these data it must be conceded that the telomere 

length values presented in these experiments will encompass a small proportion 

o f sub-telomeric DNA. However, the same study found that results gained by Q-
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coiTelated significantly with those gained by Southern blotting. This is 

evidence that the sub teiomeric DNA content was consistent given the same 

experimental conditions across the whole sample population, and therefore does 

not exclude the use of TRF analysis for the accurate investigation o f telomere 

length changes.

Without comparison of TRF analysis with telomere length estimation methods 

beyond the scope of this project it is impossible to state the actual amount of 

sub-telomeric DNA included in the canine and feline telomere length results 

documented, however human sub teiomeric DNA has been found to vary 

between 2.5 and 4 kb in a review carried out by de Lange (de Lange 2003).

The TRF analysis method has been found to give reproducible results that meet 

the demands of the project, however it is clear that the labour intensive nature of 

the technique make it less suitable for larger scale applications. From receiving a 

tissue, blood or cell pellet sample to getting a TRF value takes three to four days, 

and the technique is prone to complications such as uneven transfer o f DNA to 

the membrane, uneven probe and chemiluminescent substrate distribution, and 

high, uneven or mottled background all of which can interfere with analysis of 

the final blot and result in exclusion of a blot from the study. Even with 

experience o f the technique and due attention paid to optimisation, the multi-step 

nature o f the Southern Blot and chemiluminescent detection will inevitably 

result in loss of a number of blots to these complications. Whilst an investigation 

of the newer techniques for telomere length analysis has not been carried out in 

our laboratory it is envisioned that if  techniques such as the hybridisation 

protection assay (Section 3.2.1.1) compare favourably with Southern Blot in 

ternis of sensitivity and repeatability then the TRF method will not remain in 

common use for large scale telomere length analysis.

The decision to examine mean telomere length rather than investigate telomere 

length on individual chromosomes was again based on what was practically 

achievable within the scope of the project, however it is noted that although 

mean telomere length decreases as the canine and feline cells investigated divide 

it is likely, given research carried out in the mouse that the trigger for entering
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senescence is the shortest telomere within a particular cell, rather than the 

average length of all the telomeres (Hemann, Strong, et al 2001).
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3.6 Summary

The experiments described in this Chapter have determined the range of 

telomere lengths that are found in both canine and feline PBLs and normal, 

healthy organ samples taken from a wide spectrum of ages using a standard TRF 

method. A TRF analysis of PBL samples taken from 112 dogs of various breeds, 

and 30 DSH cats found TRFs to range from 4.7 to 20.6 kb, and 9.6 to 23.5 kb 

respectively. PBL telomere lengths in both the pedigree dog and DSH cat have 

been shown to decrease significantly with increased age, and whilst gender did 

not have a significant effect in either species, an intriguing finding was that 

breed o f pedigree dog had a significant effect on telomere length. An age 

coiTected analysis revealed that the shortest mean PBL TRFs in the sample 

population were sourced from the breed with the shortest life expectancy. 

Telomere lengths in a panel of canine and feline tumours were not found to be 

significantly different from telomere lengths o f PBL or healthy organ origin. In 

vitro telomere length studies determined that the replicative potential o f four 

canine primary fibroblast cultures was an average of 10 population doublings, 

whilst a feline primary fibroblast culture had a replicative potential of 16 

population doublings. Once replicative potential had been exhausted, the cells 

adopted an enlarged and rounded appearance typical of senescence, were 

positive for SA-^-GAL activity and plb*^’̂ '̂ ". Telomere attrition was 

demonstrated in vitro in primary fibroblast cultures of canine and feline origin, 

and averaged 175 and 130 bp/cell division respectively. The in vivo and in vitro 

datasets have demonstrated that teiomeric attrition occurs in both the dog and 

cat; that the telomere lengths of companion animals are similar to humans, and 

the data supports the idea that the telomere may be involved in companion 

animal ageing.
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Chapter IV 

In vivo and in vitro canine and 

feline telomerase studies

4.1 Abstract

Activity of the ribonucleoprotein telomerase is absent from the majority of 

normal human somatic tissues, however telomerase activity has been detected in 

approximately 80% of human malignancies. These findings have established a 

clear link between telomerase activity and cancer in humans. However, very 

little research has been carried out on the biology of telomerase in companion 

animal species, and the experiments described in this Chapter aim to address this 

lack of information. First, an investigation was canied out to detemiine if 

telomerase is active in noiinal canine and feline somatic tissues. Second, an 

investigation of telomerase activity in a panel of canine and feline tumour 

samples, and immortalised canine cell lines was undertaken to determine if 

telomerase activity in dogs and cats is associated with immortalisation and 

malignancy. Further to this work, a study on the potential use of a reverse 

transcriptase inhibitor to inhibit telomerase activity in two immortalised canine 

cell lines is described. Finally, an attempt was made to transfect the human 

telomerase reverse transcriptase sequence into primary canine and feline 

fibroblasts to reconstitute telomerase activity in those cells. This was undertaken 

in a bid to extend the replicative lifespan of the fibroblasts, and thereby provide 

direct evidence of a link between teiomeric attrition and replicative senescence 

in the dog and cat.
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4.2 Introduction

The ribonucleoprotein telomerase has been a major focus for research since its 

telomere specific DNA polymerase activity, initially identified in Tetrahymena 

was confirmed to have a specific association with immortal cells and cancer 

(Greider & Blackburn) (Kim, Piatyszek, et al 1994). This initial study led to a 

large volume of research aimed at determining exactly where this polymerase 

activity could be found in normal, pre-malignant and malignant tissues (for 

review see Dhaene, Van Marck, et al 2000). The conclusion of this large volume 

of work was, that with the exception o f germ cells and the stem cells of 

renewable tissues, telomerase is not readily detectable in normal human tissue. 

In contrast telomerase activity is found in the vast majority of human cancers 

(Shay & Bacchetti 1997) and this has led to the identification o f telomerase as a 

promising molecular target for therapeutic intervention in the field o f oncology. 

At present this is one of three main applications that have been identified with 

respect to telomerase, the other two being cancer diagnosis and prognosis, and 

tissue engineering (Kelland 2001).

4.2.1 Telomerase and cancer

The six hallmarks of cancer are described as being a self-sufficiency in growth 

signals, insensitivity to antigrowth signals, avoidance of programmed cell death, 

sustained angiogenesis, invasion and metastasis and finally, limitless replicative 

potential (Hanahan & Weinberg 2000). The trait of limitless replicative 

potential, acquired by all cancer cells, is dependant in the majority of cases on 

telomerase and for this reason it has become a key player in cancer research 

today. In fact, less than 20 years after its discovery, the ectopic expression of its 

catalytic subunit is one of only three conditions required to successflilly produce 

direct tumorigenlc conversion of nonual human epithelial and fibroblast cells 

(Hahn, Counter, et al 1999).

The strategies for targeting telomerase have been outlined elsewhere (Section 

1.8.2), and the significant advances that have been made in the field appear to at
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least partly justify the initial optimism with which researchers approached the 

subject. A number of companies involved in drug discovery have made 

significant investments into targeting telomerase for new cancer dmgs. Geron 

Corporation has produced an oligonucleotide telomerase inhibitor (GRN163) 

that targets the template region of liTERT, and has been shown to inhibit 

telomerase activity and has passed initial safety tests. Geron is also in the 

process of developing a telomerase vaccine with Phase I clinical trials already 

underway (Goldman 2003). Isis phannaceuticals, a drug discovery company that 

focuses entirely on RNA targeting have a number of oligonucleotide based anti- 

telomerase therapies in various stages of development, several of which have 

reached Phase II clinical trials (Corey 2002). In addition, telomerase positive 

cancer cells have been targeted using an adenovims vector containing bacterial 

nitroreductase under the control of the hTR and liTERT promoters. Bacterial 

nitroreductase bioactivates the prodmg CB1954 into an active cytotoxic 

alkylating agent, and this approach has produced favourable results in both 

telomerase positive cell lines and in vivo (Bilsland, Anderson, et al 2003).

One of the major criticisms levelled at anti-telomerase therapies is termed the lag 

effect, meaning the time required after telomerase inhibition for natural telomere 

attrition to lead to senescence or apoptosis. For instance, one of the earliest 

strategies employed an antisense vector directed against hTR in the cervical 

cancer cell line HeLa; this did result in teiomeric attrition and crisis (M2) 

however the strategy required up to 26 population doublings in the transfected 

cells to be effective. In vivo such a degree of tumour growth would almost 

certainly result in death of the patient before destruction of the transformed cells 

(Feng, Funk, et al 1995).

These data imply that it will be necessary to assess telomere length in individual 

cancers before the decision to use antitelomerase therapy can be made. Whilst 

this is certainly a drawback, a survey of telomeres across 60 human tumour cell 

lines in the US has revealed mean telomere length to be only 5 kb (Chu, 

Piatyszek, et al 2000), implying that a large proportion of human telomerase 

positive tumours would lend themselves to such therapy. In addition it has been 

found that functional p53 is not required for telomere driven apoptosis to occur,
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thus allowing telomerase therapy to be effective in a much broader range of 

cancers, given that p53 function is Icnown to be abrogated in a wide range of 

human malignancies (Zhang, Mar, et al 1999).

A second major concern over telomerase as a target for cancer therapy is the 

potential that the selection pressures such therapy would cause could result in the 

emergence o f an ALT competent phenotype that would be resistant to the 

treatment. This may well be a problem in individual cases, however a number of 

studies already carried out have found no evidence that such a switch from 

telomerase to ALT under the selection pressure of antitelomerase therapy occurs 

(Herbert, Pitts, et al 1999) (Zhang, Mar, et al 1999). Furthermore, telomerase 

inhibitors that target the G-rich single strand overhang at the end o f the telomere 

(G-quadruplex interacting compounds) may be less susceptible to ALT as a 

resistance mechanism as they target the substrate of telomerase, and do not 

interfere with the enzyme itself. An example o f such a compound is telomestatin, 

which has shown favourable results in vitro using a number o f human leukaemia 

cell lines (Tauchi, Kazuo, et al 2003). An important feature of this compound is 

that it appears to act at least partly by inducing telomere dysfunction rather than 

shortening, and therefore does not suffer a Tag effect’ in its mode of action 

(Tauchi, Kazuo, et al 2003). This may make it ideal choice to combine with 

other types of telomerase inhibitor, which may be potent but not immediate in 

their effect, for an overall improved efficacy.

4.2.2 Telomerase as a tumour marker and prognostic 

indicator

It is not surprising that the greatest part of research that has been carried out in 

this area has focussed on humans and the traditional model species, the mouse. 

However, a number of investigators have begun to examine the extent of 

telomerase activity in the tissues of the dog and cat, and this research has already 

uncovered interesting parallels between human, canine and feline telomerase 

biology (Nasir, Devlin, et al 2001) (Argyle & Nasir 2003) (Biller, Kitchell, et al 

1998) (McKevitt, Nasir, et al 2002). Yazawa et al detected telomerase activity in
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26/27 examples of mammary carcinoma in the dog, compared to telomerase 

activity in 4/12 examples of normal canine mammary tissue (Yazawa, Okuda, et 

al 2001). Fiinakoshi et al also investigated the telomerase activity of canine 

mammaiy tumours, and found telomerase activity in all the adenomas, benign 

mixed tumours and adenocarcinomas examined. In contrast to the findings of 

Yazawa, Funakoshi also found telomerase activity to be entirely absent from 

normal and hypeiplastic canine mammary tissue, though interestingly telomerase 

activity was also absent from two malignant mixed tumours (Funakoshi, 

Nakayama, et al 2000). This is evidence that an ALT pathway may be present in 

a subset of canine cancers. In addition there was a relatively greater level of 

telomerase activity in the adenocarcinomas than any of the other positive tissues, 

raising the possibility that relative telomerase activity (RTA) could be used as a 

prognostic indicator. These findings are also reflected in the human literature, 

were telomerase is considered a useful marker for the detection of cancer cells, 

and in cancers were telomerase becomes up regulated during tumour progression 

telomerase is considered a usefiil prognostic indicator (reviewed in Hiyama & 

Hiyama 2003).

Telomerase activity is considered to be absent from normal human somatic 

tissues (Forsyth, Wright et al 2002), and this has been linked to the fact that the 

majority of mammalian somatic tissues do not require gi*eat replicative potential, 

and so telomerase activity has been tightly down regulated as an anti-cancer 

mechanism. However Leri et al have detected telomerase activity in a large 

proportion of canine cardiac myocytes (up to 20%) (Leri, Barlucchi, et al 2001). 

The animals included in the study were all suffering from a fonn of dilated 

cardiomyopathy, and these data alone raise an interesting question mark over the 

simple association between telomerase activity in somatic tissue and malignancy 

(Kim, Piatyszek, et al 1994). These data also imply that canine myocytes from 

non-growing adults are capable of division, as even in cells that are telomerase 

competent telomerase activity appears to be tightly correlated with entry into the 

cell cycle and replication (Chadeneau, Siegal, et al 1995).

In this context the intriguing findings of Leri et al (Leri, Barlucchi, et al 2001) 

underscore the importance of considering health screening of samples for
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telomerase activity assays and make it clear that a simple association between 

telomerase activity, immortalisation and malignancy is by no means all 

encompassing. Indeed, the discovery of telomerase activity in the heart has been 

a substantial addition to the evidence calling into question the dogma that the 

heart is one of the two major organs in the body that are unable to undergo 

physiological repair (the other being the brain), due to the inability of myocytes 

and neurones to divide (Kajstura, Leri, et al 1998) (Horner & Gage 2000).

A number of studies have also investigated telomerase activity in the tissues of 

the cat. Cadile et al (Cadile, Kitchell, et al 2001) examined the potential of using 

telomerase activity as a marker for malignancy in feline tissues. The results are 

encouraging; 1/22 benign samples and 29/31 malignant samples were positive 

for telomerase activity, translating to a sensitivity and specificity for cancer 

detection of 94 and 95% respectively. In addition telomerase activity has been 

detected in normal feline lenses, and a number of feline immortalised cell lines 

(Colitz, Davidson, et al 1999) (Muleya, Nakaichi, et al 1998).

4.2.3 Telomerase therapy

Not all potential therapeutic interventions involving telomerase are concerned 

with switching off the enzyme. The ability of telomerase to extend the 

proliferative life of a cell population has lead to the possibility of using 

telomerase to intervene in disease states where the pathogenesis includes failure 

of cellular proliferation. A potential application for this approach is in the 

treatment of liver cirrhosis; a common disorder, which, left unchecked, results in 

end-stage liver failui'e and ultimately death (Williams & Iredale 1998). A major 

component of liver cirrhosis is the failure of hepatocyte proliferation, and it is 

likely that telomere attrition has a large part to play in this because the sustained 

hepatocyte turnover associated with liver disease results in accelerated telomere 

loss compared with a healthy organ (Miura, Horikawa, et al 1997). Rudolph et al 

have shown that adenoviral delivery of mTR inhibited the development of 

experimental liver cinhosis in mTR' " mice by enabling hepatocytes to overcome 

the proliferative block imposed by short telomeres (Rudolph, Chang, et al 2000).
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The telomeres of human cirrhotic patients have been shown to be short enough 

to produce a proliferation check, and so it is feasible that a variation of this 

technique could be used to treat liver cirrhosis in humans, and that such an 

approach could be extended to the veterinary field (Rudolph, Chang, et. al 2000).

Another area where therapeutic use of telomerase activity has already shown 

great promise is in bone regeneration and repair. A new and very effective 

treatment for large bone defects beyond the capacity of normal healing is the use 

o f bone marrow stromal stem cells (BMSSCs). These are defined as pluripotent 

progenitor cells with the ability to differentiate into osteoblasts, chondrocytes, 

adipocytes, muscle and neural cells (Caplan & Binder 2001). These cells must 

be expanded ex vivo to produce the large numbers necessaiy to aid bone repair 

upon cell transplantation to the site of a defect. The major restriction to the 

application of the technique is the limited replicative potential o f BMSSCs in 

cell culture, coupled with a gradual loss of osteogenic potential (Bianco, 

Riminucci, et al 2001). Shi et al have demonstrated that ectopic expression of 

hTERT in these cells extended their lifespan and maintained their osteogenic 

potential (Shi, Gronthos, et al 2002). Again, clear potential exists to exploit this 

application of telomerase in both the medical and veterinary medical fields.

A major concern over the use of telomerase for therapeutic intervention is the 

potentially increased risk of malignant transfoiination in the target tissue (Kim, 

Piatyszek, et al 1994). In the examples described here, it is envisioned that the 

risk o f developing cancer secondary to telomerase therapy will be slight. For 

example, when considering telomerase for the treatment of human liver cirrhosis 

it is likely that any telomerase therapy will be used only to prolong the life of a 

patient until such time as a liver transplant becomes possible, therefore 

minimising the long-term risk of exposure to the initial therapy. Furthermore, 

Shi et al have been able to show that the bone generated by their telomerase 

expressing stem cells is of a normal architecture (Shi, Gronthos, et al 2002). This 

is an important finding as lack o f normal architecture and failure to differentiate 

would be indicative of genetic instability and therefore risk of malignant 

transformation. However, not all findings in this area have been so encouraging. 

Recent work carried out by Mondello et al found that ectopic expression of
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hTERT resulted in karyotype instability and anchorage independent growth in 

human fibroblast cell lines (Mondello, Chiesa, et al 2003). These results indicate 

that a case-by-case approach will be necessary when assessing the safety of 

telomerase therapy in the future, and that such therapy might not be entirely 

without risk.

All these studies based on the analysis o f telomerase activity have utilised a 

protocol originally designed by Kim et al teimed the Telomeric Repeat 

Amplification Protocol (TRAP) (Kim, Piatyszek, et al 1994). Initially this 

technique was qualitative only, utilising an oligonucleotide primer as a substrate 

for telomerase. If the telomerase enzyme is active in a sample then telomeric 

repeats are synthesised and added to the 2>' end of the primer. These extension 

fragments are subsequently amplified by PCR and may be detected by 

polyacrylamide gel electrophoresis. The assay is sensitive enough to detect one 

telomerase positive cell in 10,000 negatives. The original technique has been 

modified and updated to improve sensitivity and quantification (Kim & Wu 

1997), and Roche molecular biochemicals have produced a variant that includes 

an enzyme linked immunosorbent assay (ELISA) to allow semi-quantification of 

telomerase activity and more accurate comparison between samples.

Whether the TRAP assay can be used as the basis for clinical applications of 

telomerase testing is still debatable. Tseng et al deteiinined the TRAP assay to 

be 100% sensitive and 90% specific in relation to the detection of malignant 

ascites secondary to ovarian cancer in a series of 97 cases. These results 

compared favourably to the 96% sensitivity and 100% specificity of cytology, 

and led the authors to recommend telomerase activity testing as an adjuvant to 

cytopathological methods (Tseng, Jain, et al 2001). Braunschweig et al earned 

out a similar test of the assay as a marker o f malignancy in cytological effusions 

and in a total of 291 cases determined the TRAP assay to perfonn relatively 

poorly; only 76% sensitive and 82-91% specific (Braunschweig, Guilleret, et al 

2001) when compared to routine histopathological diagnosis. The TRAP assay is 

vulnerable to false negatives caused by inadequate handling and storage of 

material for the assay. To ensure integrity o f the telomerase RNA subunit it has
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been proposed that samples should be snap frozen in liquid nitrogen and stored 

at “80°C within 20 minutes of collection, as the assay relies on the presence o f 

functionally intact RNA (Cadile, Kitchell, et al 2001).

Telomerase is not an oncogene (Harley 2002), and therefore coupling a 

telomerase activity assay with other markers o f abnormal behaviour in a tissue 

may be necessary to reduce the potential for false positives when associating 

telomerase activity with malignancy. Work carried out by Chu et al (Chu, Lin, et 

al 2001) on canine transmissible venereal tumour (CTVT) is a good example o f 

why such a strategy may be necessary. CTVT occurs in two phases, a 

progressive growth phase (P-phase) followed by spontaneous regression (R- 

Phase). Telomerase activity is present in both phases of the disease, but is higher 

in P-phase tissue samples. These samples also have a greater mitotic index. 

However, despite the fact that P-phase tissue has high telomerase activity and an 

increased mitotic index, it inevitably regresses to the R-phase. Therefore whilst 

telomerase activity is broadly acceptable as a marker of malignancy it will be 

necessary to validate results in a case-by-case approach before the results o f 

telomerase testing are used as a basis for making clinical decisions (Chu, Lin, et 

al 2001).

4.2.4 Chapter aims

4.2.4.1 To investigate telomerase activity in normal canine and 

feline somatic tissue and tumour samples

As described, to date only limited information is available on telomerase activity 

in the tissues of the dog and cat. In light of this, an investigation of telomerase 

activity was conducted encompassing a wide variety of tissue samples taken 

from healthy organs o f the dog and cat. In addition telomerase activity was 

assessed in a panel of canine and feline tumour samples to ascertain if  the 

widespread dependence on telomerase reactivation found in human tumours was 

mirrored in the dog and cat, such that telomerase status may be o f 

diagnostic/prognostic significance in companion animals.
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4.2.4.2 To assess if telomerase inhibition could be achieved using 

a potential telomerase inhibitor in vitro

Some of the earliest anti-telomerase strategies tested in human immortalised cell 

lines involved the use of reverse transcriptase inhibitors (RTIs) (Strahl & 

Blackburn 1996). A number of these dmgs were found to be capable of 

inhibiting telomerase activity and reducing telomere length in vitro. In this 

chapter, the effect o f the reverse transcriptase inhibitor 3'-Azido-3'- 

deoxythymidine triphosphate (AZT-TP) on telomerase activity was assessed in 

two telomerase positive canine cell lines.

4.2.4.3 Telomerase reactivation study

It is known that ectopic expression of the catalytic component of human 

telomerase, hTERT, greatly extends the lifespan of primary human cell cultures 

in vitro by causing reconstitution of telomerase activity in the transformed cells 

(Bodnar, Ouellette, et al 1998). Whilst at the time o f this study the canine and 

feline homologous sequences to hTERT were not known, an investigation was 

conducted to determine if ectopic expression of hTERT in primary canine and 

feline cell lines is capable of reconstituting telomerase activity using 

heterologous gene expression, and whether this is sufficient to expand 

replicative potential in vitro.
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4.3 Materials and Methods

4.3.1 Sample details
4.3.1.1 Normal somatic tissues

Normal somatic tissue samples were collected from the same animals that were 

described in Chapter III for telomere length assessment. These were 5 dogs 

(CN1-CN5) and 5 cats (FN1-FN5). Details including age, sex, breed and cause 

o f death of individual animals from which samples were taken are presented in 

Table 3-2. The 26 canine samples included kidney (n = 4), liver (/? = 5), ovary {n 

= 1), skeletal muscle {n = 4), small intestine {n = 4), stomach {n = 2), cardiac 

muscle {n = 3), lung {n ^  2) and testis {n = 1). The 25 feline samples included 

brain {n = 4), cardiac muscle {n = 3), liver {n = 5), skeletal muscle {n = 4), lung 

{n = 4), small intestine {n = 3), testis {n = 1) and kidney {n = 1).

4.3.1.2 Tumour tissues

A total of 19 tumour tissue samples were collected from 15 dogs and 4 cats 

during necropsy examination at GUVS and surgical biopsy at the PDSA 

hospital, Shamrock Street, Glasgow. The canine samples included 10 examples 

of mammary carcinoma, 3 fibrosarcomas and 2 squamous cell carcinomas. The 

four feline samples included 1 mammary carcinoma and 3 squamous cell 

carcinomas. The tumour types were confirmed by routine histopathological 

examination canied out at GUVS, and all samples were haivested with informed 

owner consent. Each o f the tissue samples was snap frozen in LNO2  at the time 

of collection to ensure integrity o f the telomerase RNA until required.

4.3.1.3 Primary cultures and cell lines

Primaiy fibroblast cultures o f canine (SFA and AG08157), feline (S22 and CCL- 

176) and equine (EQ l) origin, and a human immortalised cell line (GM847) 

were used in the telomerase reactivation study. Additionally, a number of
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immortal cell lines of both canine and human origin (results shown in Table 4- 

14) were used for telomerase activity testing. Two cell lines from this panel 

(MDCK and CMT7) were subsequently used to test the efficacy o f a potential 

telomerase inhibitor in vitro. The sources of each of these cells are provided in 

Section 2.1.1,1, and individual details including culture requirements are 

provided in Section 2.2.1.2. Additional details of the investigation o f telomerase 

activity in cell lines and the telomerase reactivation study are provided below.

4.3.1.3.1 Telomerase reactivation study

Primary fibroblast cell cultures were utilised for this study. These included the 

canine cultures SFA and AG08157 and the feline cell cultures S22 and CCL- 

176. All the primary fibroblast cultures were at passage 2 at the beginning of the 

experiment to preserve the greatest possible replicative potential for the 

experimental procedure. The human ALT competent cell line GM847 and the 

primary equine fibroblast culture EQl were included, GM847 as a positive 

experimental control and EQl as a further species control for the specificity of 

the hTERT sequence. A full-length hTERT clone was kindly donated by Robert 

Weinberg (Whithead Institute for Biomedical research, Cambridge, MA), and 

the mammalian expression vector PCIneo (Promega, UK), detailed in Section

2.1.5.1 was used as the vehicle for entry of hTERT into the test cells.

4.3.1.3.2 Telomerase inhibition study

The ability of a RTI to reduce telomerase activity was assessed in two 

immortalised canine cell line lines that were found to be telomerase positive in 

the telomerase activity study. The RTI AZT-TP was used in this study. The drug 

was supplied as a 10 mM solution of the tetralithium salt in water (Calbiochem, 

La Jolla CA), and was stored in a tightly closed container in aliquots o f 60 pi at - 

70°C, and protected from light when not in use. The drug is considered toxic and 

was used only with appropriate safety precautions (within a Rime cupboard and 

wearing protective clothing and gloves).
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4.3.2 The TRAP assay

TRAP assay testing of all samples in this project used the TeloTAGGG 

Telomerase PCR ELISA^^^^ kit available commercially from Roche, UK.

4.3.2.1 Sample preparation for the TRAP assay

Samples used for telomerase activity analysis included cell pellets derived from 

cultured cells and protein extracts derived from tissue samples. Cells were 

harvested and counted as described elsewhere (Section 2.2.1). A total of 2 x 10̂  

cells were harvested for each assay. Cells were pelleted at 3000 g for 5 minutes 

at 4°C, the supernatant decanted, and following a brief resuspension in 100 pi of 

PBS the cells were again pelleted and the supernatant carefully removed. Cell 

pellets were then resuspended in 200 pi ice-cold lysis reagent (Roche, UK) and 

incubated on ice for 30 minutes. The lysate was then centrifuged at 16000 g for 

20 minutes at 4°C and the supernatant carefully removed with a micropipette, 

taking care not to disturb the pellet o f cellular debris. To facilitate this, only 175 

pi was removed per sample. Cell extracts were then either used immediately for 

the TRAP assay or snap frozen in LNO2 and stored at -80°C for later use.

Normal tissue samples and tumour samples were placed in tumour pots and snap 

frozen in LNO2 immediately after harvesting. Samples were then stored at - 

80°C. Such precautions in tissue handling were necessary to safeguard the 

integrity of telomerase RNA and catalytic subunit and thus reduce the likelihood 

of false negative results (Cadile, Kitchell, et al 2001). Thin slices of frozen 

samples were then removed (approximately 10 slices being sufficient) using 

sterile scalpel blades on disposable petri dishes and immediately transferred to 

1.5 ml eppendorf homogenisation tubes containing 200 pi o f ice-cold lysis 

reagent (Roche, UK). Samples were then thoroughly homogenised using a sterile 

pestle and stored on ice for 30 minutes to achieve thorough lysis.
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Following lysis, samples were centrifuged at 16000 g for 20 minutes at 4°C and 

the protein rich supernatant carefully removed with a micropipette, as described 

for cell pellets. Protein concentration was then determined using a standard 

protocol, as described in Section 2.2.7. The tissue extracts were either 

immediately used for the TRAP assay or snap frozen in LNO2 and stored at - 

80°C for later use.

4.3.2.2 Primer elongation and amplification

All preparation steps for the TRAP PCR procedure were canied out on ice, 

including the thawing of frozen samples prior to analysis. Unless othenvise 

indicated sample numbers were limited to six per individual assay to minimise 

the potential cost in reagents of failure o f any assay. Master mixes were made up 

for all samples and controls consisting of 25 pi of a 2x reaction mixture (Roche, 

UK) and 5 pi of an internal standard (Roche, UK). A 30 pi volume of the mix 

was placed into a PCR tube for each sample and to this was added 1 pi of the 

cell extract or a volume equivalent to 5 pg of total protein. A 1 pi volume o f two 

separate positive controls, one of high and one of low telomerase activity were 

used, and 1 pi of lysis buffer alone was used as a negative control. Analysis of a 

heat-inactivated version of each test sample provided an additional level of 

control. Heating these control samples to 85°C for 10 minutes inactivates 

telomerase protein within the sample and ensures any positive result is specific 

to telomerase activity. All reactions were then made up to a total volume of 50 

pi using nuclease-free water (Roche, UK) and transferred to a DNA Thermal 

Cycler (Perkin Elmer) for the combined primer elongation/amplification 

reaction. Reaction conditions are shown in Table 4-1.

4.3.2.3 Hybridisation and ELISA

Hybridisation steps were carried out in 0.5 ml eppendorf tubes placed in colour 

coded racks to differentiate between test, internal standard and negative 

(including heat inactivated) controls. A 2.5 pi volume of amplification product 

from the previous step was added to 10 pi of a dénaturation reagent (Roche, UK)
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in the corresponding eppendorf tube. These mixtures were then incubated at 

room temperature for 10 minutes before addition of 100 pi of either a test 

hybridisation buffer (to test and control samples) or an internal standard buffer 

(to internal control samples). These buffers contained DIG-labelled detection 

probes specific for telomeric repeats and the internal standard respectively. 

Thorough mixing of the contents of all Pibes was ensured by vortexing before 

100 pi of the contents of each was removed and placed in a corresponding well 

o f a streptavidin precoated microtitre plate (Roche, UK) according to a 

predetermined pipetting scheme. A plate contained 12 modules of 8 wells each, 

and modules could be removed to facilitate separate analysis such that more than 

one assay could be performed per kit.

The microtitre plate wells were then clearly labelled, covered with an adhesive 

strip to prevent evaporation and incubated at 37°C on a heated plate shaker 

(Dynatech, UK) rotating at 300 rpm for 2 hours. This allowed immobilisation of 

the telomerase and internal standard products with their corresponding detection 

probes to the streptavidin-coated walls of the plate wells, via the biotin label of 

the kit primer. Following hybridisation the solutions were completely removed 

from the wells, following which the wells were washed three times for a 

minimum of 30 seconds per wash with 250 fil of wash buffer, (Roche, UK) 

ensuring complete removal of the buffer from the wells between steps.

The anti-DIG working solution was a polyclonal antibody (Roche, UK) raised in 

sheep conjugated to HRP that was diluted to a concentration of 10 mU/ml in a 

conjugate dilution buffer (Roche, UK). A 100 |ul volume of this anti-DIG-HRP 

working solution was then added to each of the wells that were again covered 

with adhesive film and incubated for 30 minutes at room temperature on a plate 

shaker rotating at 300 rpm. The working solution was then removed completely 

from the wells and five, 30-second wash steps carried out as described 

previously. Following this, 100 pi o f a substrate solution, equilibrated to room 

temperature and containing the HRP sensitive compound 3,3% 5,5'-

tetramethylbenzidine (TMB) was added to each well and the plate covered and 

incubated for colour development at room temperature for 10 minutes with
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rotation at 300 rpm. Without removal of the substrate solution from the well, 100 

pi o f a stop reagent (< 5 %  sulphuric acid, Roche, UK) was then added; this 

stopped the reaction and in addition caused a colour change o f the reacted HRP 

substrate from blue to yellow, which increased the sensitivity o f the reaction. 

The absorbance of the samples was then immediately measured at 450 nm, with 

a reference wavelength o f 690 nm using a microtitre plate reader (Dynex 

Technologies, UK). An oveiwiew of the TRAP assay procedure is provided in 

Figure 4-1.
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Table 4-1. Telomerase primer elongation/ampliücation reaction protocol

Step Time Temerature Cycle

Primer elongation 20 minutes 25°C

Telomerase inactivation 5 minutes 94°C

Amplification

Denaturing 30 seconds 94°C 30 cycles

Annealing 30 seconds 50°C 30 cycles

Polymerisation 30 seconds 72“C 30 cylces

10 minutes 72°C 

Hold 4°C
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Figure 4-1. Overview of the TRAP assay. In the first step, telomerase adds 

telomeric repeats (TTAGGG) to the 3' end of the biotin labelled synthetic primer 

(green rectangle). These elongation products, as well as the internal standard 

included in the same reaction vessel are amplified by PCR. The PCR products 

are split into two aliquots, denatured and hybridised separately to DIG labelled 

detection probes, specific for telomeric repeats (blue) and internal standard (red), 

respectively. The resulting products are immobilised to the streptavidin-coated 

microtitre plate wall via the biotin label. The immobilised amplicons are then 

detected with an antibody against DIG that is conjugated to HRP and the 

sensitive peroxidase substrate TMB.
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4.3.2.4 Quantification of telomerase activity

The level of telomerase activity in positive samples was determined from the 

absorbance of each test sample and the absorbance obtained from 1 pi of the 

control templates. The control templates (TS8) were identical to a telomerase 

elongation product of 8 telomeric repeats and were at a concentration of 0.001 

amol/ml (low activity) and 0.1 amol/ml (high activity). As amplification of the 

telomerase specific products and internal standards were competitive, both low 

and high controls were used in each experiment to cover for a potentially broad 

range of telomerase activity in the test samples. The most appropriate control 

was then used depending on the level of telomerase activity in the test samples. 

In practice this meant use of the high activity control in the majority of cases. 

RTA in a sample was then determined using the foiinula:

(As-Aso)/As,is

RTA =   X 100

( A t S 8 -A  TS8,o) / A tS8,IS

where,

As = absorbance o f sample

Aso = absorbance of heat-treated sample

As,IS = absorbance of the internal standard of the sample

Ats8 = absorbance o f the control template (TS8)

A ts8 ,o  = absorbance of lysis buffer

A t s 8 ,i s  = absorbance of the internal standard of the control template

The values ( A j s s - A  t s 8 ,o ) /A t s s , i s  obtained using 1 pi of the high and low control 

templates were considered acceptable if within the range o f 2.0-4.0 and 0.2-0.5 

respectively after 10 minutes o f substrate reaction. Test samples with absorbance 

readings greater than three times the background reading (mean absorbance of 

the heat treated samples) were considered to be telomerase positive.
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4.3.2.5 Detection of telomerase mediated DNA-Iadder

The biotin labelled primer used in the TRAP assay allowed identification of the 

amplification products by polyaciylamide gel electrophoresis (PAGE). The Mini 

PROTEAN 3 vertical gel electrophoresis system (Bio-rad) was used for this 

procedure. First, 20 pi of the PCR product was mixed with a loading dye 

containing bromophenol blue and xylene cyanol. Separation o f amplification 

products was achieved using a precast 12% non-denaturing polyacrylamide gel 

(Bio-Rad, Hertfordshire, UK) run for 30 minutes at 100 V. After electrophoresis, 

products were transferred by electroblotting (Section 2.2.8) to a positively 

charged nylon membrane (Amersham, UK), which was then blocked with a 2% 

blocking reagent (Roche, UK) for 30 minutes at room temperature to prevent 

binding at non-specific sites. Blocking solution was then discarded and the 

membrane incubated with 20 ml of a streptavidin-alkaline phosphate conjugate 

which bound to the biotin labels on the DNA fragments. Following this the 

membrane received two 15-minute rinses in 100 ml of wash buffer (0.1 M 

Maleic acid, 0.15 M NaCl pH 7.5; 0.3 v/v Tween 20) at room temperature before 

equilibration with 20 ml of detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 

9.5) for 2-5 minutes. The membrane was then placed DNA side up on an acetate 

sheet and 1 ml of CSPD ready-to-use (Roche, UK) applied drop wise. (CSPD 

ready-to-use is a chemiluminescent substrate for alkaline phosphatase at a 

concentration of 0.25 mM). A second acetate sheet was placed over the 

membrane, ensuring no air bubbles were trapped in the process, to help 

distribute the substrate solution evenly over the surface after which there was a 5 

minute incubation at room temperature before excess CSPD solution was 

squeezed out and the acetate sheets sealed with sellotape. At this point an 

incubation o f the damp membrane at 37°C for 10 minutes helped to enhance the 

chemiluminescent reaction. The membrane was then exposed to X-ray film for 

15-20 minutes to produce an autoradiograph.

4,3.3 Telomerase inhibition study
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The effect of the RTI AZT-TP on telomerase activity of canine cells was 

investigated in vitro using the immortalised canine cell lines MDCK and CMT7 

(detailed in Section 2.2.1.2). An initial investigation assessed the toxicity of the 

dmg to the test cells before any telomerase inhibitory effects could be examined.

4.3.3.1 Investigation of acute cytotoxic effect

Both test cell lines were maintained in two-fold dilutions of AZT-TP in a 96 well 

plate format to assess cytotoxicity o f the dmg. Each cell line was seeded at 1 

xlO^ cells/ml in triplicate and allowed to settle overnight before exposure to 

concentrations of 480, 240, 120, 60, 30, 15, 7.5 and 3.75 pM AZT-TP in 

complete culture medium for a period o f 7 days. Treated medium was replaced 

with fresh, dmg containing solution after 3 days, following nonnal practice for 

growth medium replacement. Parallel cultures of the test cell lines, seeded at the 

same concentration were maintained in complete culture medium without the 

addition of the test dmg. These cultures also received fresh medium after 3 days. 

This experiment allowed the identification o f AZT-TP concentrations that did 

not kill the test cells outright, and the experiment was then repeated in duplicate 

using the identified concentrations of AZT-TP in a T25 flask format, as this 

allowed easier harvesting and counting o f cells, given the relatively greater 

numbers. This second stage was used to identify the highest concentration of 

AZT-TP that did not effect cell morphology or growth rate, and this 

concentration was duly selected for the main study.

4.3.3.2 Investigation of effect of AZT-TP on telomerase activity

MDCK and CMT7 cells were maintained in T75 flasks under normal culture 

conditions. Each cell line was initially seeded at 1 x 10  ̂ cells/ml, and two 

batches of each cell line were maintained. One batch of each cell line was 

exposed to AZT-TP at a concentration previously determined not to exert any 

acute cytotoxic effects on the cells. A second batch was maintained in parallel in 

AZT-TP free medium. Cells were passaged normally as described elsewhere 

(Section 2.2.1) upon reaching 80% confluence, and at each passage cells were
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counted (Section 2.2.1.1.1) and 2 xlO^ and 2 xlO*̂  cells from each treated and 

control cell line haivested and retained for analysis. These cells were pelleted at 

3000 g for 5 minutes to facilitate removal of the culture medium. The pellets 

were then briefly resuspended in cold PBS, repelleted as described and the 

supernatant decanted to remove the last traces of culture medium. These 

precautions were necessary due to the theoretical possibility of the presence of 

Taq DNA polymerase inhibitors in the media used to culture the cells. Pellets 

were then snap frozen in LNO 2 and transferred to -80°C storage. The 2x10^ cell 

pellet was subsequently used to assess telomerase activity in the sample by the 

TRAP assay, and the 2 xlO^ pellet used for telomere length analysis. In addition, 

growth curves were generated for each cell line and any difference in growth 

rate between test and control cells noted. The techniques used for telomere 

length analysis and the production of growth curves have been detailed 

elsewhere (Sections 3.3.3 and 3.3.1.4).

4.3.4 Telomerase reactivation study
4.3.4.1 Cell lines

In addition to the canine and feline primary cultures used in this study (Section 

4.3.1.3) a number of other cell lines were included as controls. Telomerase 

activity has been successfully reconstituted in the human ALT positive cell line 

GM847 by ectopic expression of hTERT (Perrem, Colgin, et al 2001), and this 

cell line was therefore included to ensure the experimental protocol was working 

effectively. In addition, the ability o f hTERT to reconstitute telomerase activity 

was investigated in an equine primary fibroblast culture, EQ l. The aim here was 

to use equine cells as an additional control to determine whether heterologous 

TERT expression is sufficient to activate telomerase in a range of mammalian 

cells. Currently, there are no published data on the feline, equine or canine 

TERT sequences which limits the investigation o f homologous TERT 

reconstitution analyses. However, during the preparation o f this thesis, our group 

have isolated and cloned the cDNA encoding the canine TERT sequence 

(submitted for review, Nasir, Gault, et al 2004).
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4.3.4.2 Cloning of hTERT cDNA into a mammalian expression 

vector

The PCIneo mammalian expression vector (Section 2.1.5.1) was selected to act 

as the plasmid for introducing hTERT into the test cells as it is designed 

specifically for mammalian gene expression studies and includes a strong, 

constitutively active CMV promoter, and has the capacity for selection of 

transfected cells via its neomycin phosphotransferase sequence. Furthermore, 

PCIneo has been successfully used to transfect several canine cell lines within 

the laboratory. PCIneo required linearization to facilitate insertion of the hTERT 

cDNA, and this was achieved by a 2-hour digestion of 5 pg o f PCIneo with 4 

lU/pg each of EcoR 1 and Sal I at 37°C. As these restriction enzymes have one 

recognition site each within the PCIneo sequence (at nucleotide positions 1096 

and 1120 respectively), they were ideal for linearising the vector. Following 

digestion, linearised vector was subjected to 1% agarose gel electrophoresis 

(Section 2.2.3.5) with a 1 kb DNA ladder to confirm integrity of the DNA and 

size of fragment. The band containing the vector was visualised using a UV 

transilluminator (Sigma, UK), removed from the gel using a sterile scalpel blade 

and purified using the QIAquick® Gel extraction kit (QIAgen, UK) following the 

manufacturers recommended protocol. Concentration of plasmid DNA was then 

determined by a standard protocol (Section 2,2.3.3.2).

A full-length hTERT clone (Table 4-2) was kindly donated by Robert Weinberg 

(Whithead Institute for Biomedical research, Cambridge, MA), supplied cloned 

into the pBABE-puro retroviral vector. The hTERT cDNA was isolated from 

this vector using the same enzymes as described for the PCIneo, and vector and 

insert DNA were then ligated using T4 DNA ligase (Promega, UK) following 

the protocol detailed in Section 2.2.3.7. A molar ratio of vector: insert DNA of 

1:3 was used. A 1 pi volume o f the ligation products from each reaction were 

then used to transform E. coli TOP 10 bacterial cells as described in Section 

2.2.3.8. After overnight growth on agar containing ampicillin at 100 mg/ml 

individual colonies were picked and gi*own as described in section 2.2.3.1.
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Table 4-2. hTERT done sequence

ORIGIN
1 GCAGCGCTGC GTCCTGCTGC GCACGTGGGA AGCCCTGGCC CCGGCCACCC CCGCGATGCC 

6 1  GCGCGCTCCC CGCTGCCGAG CCGTGCGCTC CCTGCTGCGC AGCCACTACC GCGAGGTGCT
1 2 1  GCCGCTGGCC ACGTTCGTGC GGCGCCTGGG GCCCCAGGGC TGGCGGCTGG TGCAGCGCGG
1 8 1  GGACCCGGCG GCTTTCCGCG CGCTGGTGGC CCAGTGCCTG GTGTGCGTGG CCTGGGACGC
2 4 1  ACGGCCGCCC CCCGCCGCCC CCTCCTTCCG CCAGGTGTCC TGCCTGAAGG AGCTGGTGGC
3 0 1  CCGAGTGCTG CAGAGGCTGT GCGAGGGCGG CGCGAAGAAC GTGCTGGCCT TCGGCTTCGC
3 6 1  GCTGCTGGAC GGGGCCCGCG GGGGCCCCCC CGAGGCCTTC ACCACCAGCG TGCGCAGCTA
4 2 1  CCTGCCCAAC ACGGTGACCG ACGCACTGCG GGGGAGCGGG GCGTGGGGGC TGCTGCTGCG
4 8 1  CCGCGTGGGC GACGACGTGC TGGTTCACCT GCTGGCACGC TGCGCGCTCT TTGTGCTGGT
5 4 1  GGCTCCCAGC TGCGCCTACC AGGTGTGCGG GCCGCCGCTG TACCAGCTCG GCGCTGCCAC
6 0 1  TCAGGCCCGG CCCCCGCCAC ACGCTAGTGG ACCCCGAAGG CGTCTGGGAT GCGAACGGGC
6 6 1  CTGGAACCAT AGCGTCAGGG AGGCCGGGGT CCGCGTGGGC CTGCCAGCCC CGGGTGCGAG
7 2 1  GAGGCGCGGG GGCAGTGCCA GCCGAAGTCT GCCGTTGCCC AAGAGGCCCA GGCGTGGCGC
7 8 1  TGCCCCTGAG CCGGAGCGGA CGCCCGTTGG GCAGGGGTCC TGGGCCCACC CGGGCAGGAC
8 4 1  GCGTGGACCG AGTGACCGTG GTTTCTGTGT GGTGTCACCT GCCAGACCCG CCGAAGAAGC
9 0 1  CACCTCTTTG GAGGGTGCGC TCTCTGGCAC GCGCCACTCC CACCCATCCG TGGGCCGCCA
9 6 1  GCACCACGCG GGCCCCCCAT CCACATCGCG GCCACCACGT CCCTGGGACA CGCCTTGTCC

1 0 2 1  CCCGGTGTAC GCCGAGACCA AGCACTTCCT CTACTCCTCA GGCGACAAGG AGCAGCTGCG
1 0  8 1  GCCCTCCTTC CTACTCAGCT CTCTGAGGCC CAGCCTGACT GGCGCTCGGA GGCTCGTGGA
1 1 4 1  GACCATCTTT CTGGGTTCCA GGCCCTGGAT GCCAGGGACT CCCCGCAGGT TGCCCCGCCT
1 2  0 1  GCCCCAGGGC TACTGGCAAA TGCGGCCCCT GTTTCTGGAG CTGCTTGGGA ACCACGCGCA
1 2 6 1  GTGCCCCTAC GGGGTGCTCC TCAAGACGCA CTGCCCGCTG CGAGCTGCGG TCACCCCAGC
1 3  2 1  AGCCGGTGTC TGTGCCCGGG AGAAGCCCCA GGGCTCTGTG GGGGCCCGCG AGGAGGAGGA
1 3  8 1  CACAGACCCC CGTCGCCTGG TGCAGCTGCT CCGCCAGCAC AGCAGCCCCT GGCAGGTGTA
1 4 4 1  CGGCTTCGTG CGGGGCTGCC TGCGCCGGCT GGTGCCCCCA GGCCTCTGGG GCTCCAGGCA
1 5 0 1  CAACGAACGC CGCTTCCTCA GGAACACCAA GAAGTTCATC TCCCTGGGGA AGCATGCCAA
1 5 6 1  GCTCTCGCTG CAGGAGCTGA CGTGGAAGAT GAGCGTGCGG GACTGCGCTT GGCTGCGCAG
1 6 2 1  GAGCCCAGGG GTTGGCTGTG TTCCGGCCGC AGAGCACCGT CTGCGTGAGG AGATCCTGGC
1 6 8 1  CAAGTTCCTG CACTGGCTGA TGAGTGTGTA CGTCGTCGAG CTGCTCAGGT CTTTCTTTTA
1 7 4 1  TGTCACGGAG ACCACGTTTC AAAAGAACAG GCTCTTTTTC TACCGGAAGA GTGTCTGGAG
1 8  0 1  CAAGTTGCAA AGCATTGGAA TCAGACAGCA CTTGAAGAGG GTGCAGCTGC GGGAGCTGTC
1 8  6 1  GGAAGCAGAG GTCAGGCAGC ATCGGGAAGC CAGGCCCGCC CTGCTGACGT CCAGACTCCG
1 9 2 1  CTTCATCCCC AAGCCTGACG GGCTGCGGCC GATTGTGAAC ATGGACTACG TCGTGGGAGC
1 9  8 1  CAGAACGTTC CGCAGAGAAA AGAGGGCCGA GCGTCTCACC TCGAGGGTGA AGGCACTGTT
2 0 4 1  CAGCGTGCTC AACTACGAGC GGGCGCGGCG CCCCGGCCTC CTGGGCGCCT CTGTGCTGGG
2 1 0 1  CCTGGACGAT ATCCACAGGG CCTGGCGCAC CTTCGTGCTG CGTGTGCGGG CCCAGGACCC
2 1 6 1  GCCGCCTGAG CTGTACTTTG TCAAGGACAG GCTCACGGAG GTCATCGCCA GCATCATCAA
2 2 2 1  ACCCCAGAAC ACGTACTGCG TGCGTCGGTA TGCCGTGGTC CAGAAGGCCG CCCATGGGCA
2 2  8 1  CGTCCGCAAG GCCTTCAAGA GCCACGTCCT ACGTCCAGTG CCAGGGGATC CCGCAGGGCT
2 3 4 1  CCATCCTCTC CACGCTGCTC TGCAGCCTGT GCTACGGCGA CATGGAGAAC AAGCTGTTTG
2 4 0 1  CGGGGATTCG GCGGGACGGG CTGCTCCTGC GTTTGGTGGA TGATTTCTTG TTGGTGACAC
2 4 6 1  CTCACCTCAC CCACGCGAAA ACCTTCCTCA GCTATGCCCG GACCTCCATC AGAGCCAGTC
2 5 2 1  TCACCTTCAA CCGCGGCTTC AAGGCTGGGA GGAACATGCG TCGCAAACTC TTTGGGGTCT
2 5 8 1  TGCGGCTGAA GTGTCACAGC CTGTTTCTGG ATTTGCAGGT GAACAGCCTC CAGACGGTGT
2 6 4 1  GCACCAACAT CTACAAGATC GTCCTGCTGC AGGCGTACAG GTTTCACGCA TGTGTGCTGC
2 7 0 1  AGCTCCCATT TCATCAGCAA GTTTGGAAGA ACCCCACATT TTTCCTGCGC GTCATCTCTG
2 7 6 1  ACACGGCCTC CCTCTGCTAC TCCATCCTGA AAGCCAAGAA CGCAGGGATG TCGCTGGGGG
2 8 2 1  CCAAGGGCGC CGCCGGCCCT CTGCCCTCCG AGGCCGTGCA GTGGCTGTGC CACCAAGCAT
2 8 8 1  TCCTGCTCAA GCTGACTCGA CACCGTGTCA CCTACGTGCC ACTCCTGGGG TCACTCAGGA
2 9 4 1  CAGCCCAGAC GCAGCTGAGT CGGAAGCTCC CGGGGACGAC GCTGACTGCC CTGGAGGCCG
3 0 0 1  CAGCCAACCC GGCACTGCCC TCAGACTTCA AGACCATCCT GGACTGATGG CCACCCGCCC
3 0 6 1  ACAGCCAGGC CGAGAGCAGA CACCAGCAGC CCTGTCACGC CGGGCTCTAC GTCCCAGGGA
3 1 2 1  GGGAGGGGCG GCCCACACCC AGGCCCGCAC CGCTGGGAGT CTGAGGCCTG AGTGAGTGTT
3 1 8 1  TGGCCGAGGC CTGCATGTCC GGCTGAAGGC TGAGTGTCCG GCTGAGGCCT GAGCGAGTGT
3 2 4 1  CCAGCCAAGG GCTGAGTGTC CAGCACACCT GCCGTCTTCA CTTCCCCACA GGCTGGCGCT
3 3 0 1  CGGCTCCACC CCAGGGCCAG CTTTTCCTCA CCAGGAGCCC GGCTTCCACT CCCCACATAG
3 3 6 1  GAATAGTCCA TCCCCAGATT CGCCATTGTT CACCCCTCGC CCTGCCCTCC TTTGCCTTCC
3 4 2 1  ACCCCCACCA TCCAGGTGGA GACCCTGAGA AGGACCCTGG GAGCTCTGGG AATTTGGAGT
3 4  8 1  GACCAAAGGT GTGCCCTGTA CACAGGCGAG GACCCTGCAC CTGGATGGGG GTCCCTGTGG
3 5 4 1  GTCAAATTGG GGGGAGGTGC TGTGGGAGTA AAATACTGAA TATATGAGTT TTTCAGTTTT
3 6 0 1  G
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Plasmid DNA was then purified from each individual clone using the QIAprep® 

PCR Spin Miniprep Kit (QIAGEN, UK, detailed in Section 2.2.3.2.2). This kit 

allowed isolation of plasmid DNA from 4 ml LB broth cultures of exponentially 

growing bacteria. The bacteria were harvested by centrifugation (2800 rpm for 

10 minutes), and the manufacturers protocol was then followed. The method 

involved lysis of the bacterial cells to release the DNA constructs, which were 

then harvested by centrifugation, filtration and wash steps into 50 pi o f sterile 

water. DNA was stored at -20°C.

A 5 pi volume of each plasmid was then digested with 4 lU/pg of EcoR 1 and 

Sal I as described previously, and the digests run out on a 1% agarose gel to 

confirm the correct size of plasmid and insert. Plasmids found to contain the 

hTERT insert were then used to produce bulk stocks of purified PCIneo/hTERT 

(Section 2.2.3.2.1) and glycerol stocks o f bacteria containing the construct as 

described in Section 2.2.3.1.

4.3.4,3 Stable transfection of cell cultures

Transfections were carried out using Trans Fast™ (Promega, UK) and 

Lipofectamine™/Plus'^‘'̂  transfection reagents (Invitrogen life technologies, UK). 

Test cell cultures were transfected with PCIneo/hTERT and PCIneo empty 

vector as a control.

4.3.4.3.1 TransFast^^ reagent

The Trans Fast transfection reagent relies on interaction between liposomes and 

DNA to facilitate entry of the nucleic acids into mammalian cells. Liposomes are 

lipid bilayers that form colloidal particles in an aqueous medium. The lipids 

contained in TransFast include the synthetic cationic lipid, (+)-N,N [bis (2- 

hydroxyethyl)-N-methyl-N-[2,3-di(tetradecanoyloxy)propyl] ammonium iodide, 

and the neutral lipid L-dioleoyl phosphatidyethanolamine (DOPE).
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The incubation of cationic lipid containing liposomes and nucleic acids results in 

rapid association and compaction of the nucleic acid; this is thought to be caused 

by electrostatic interactions between the negatively charged nucleic acid and the 

positively charged head group of the synthetic lipid. Thus the negative charge o f 

the nucleic acid is shielded, allowing closer association with the target cell 

membrane. Entry of the liposome into the cell may then occur by either 

endocytosis or fusion with the cell membrane (Gao & Huang 1995). The neutral 

lipid DOPE, which allows the complexes to escape from endosomes and 

lysosomes into the cytoplasm, enhances this process (Farhood, Serbina, et al 

1995). It is not laiown how the transfected DNA of DNA/liposome complex 

gains entry to the nucleus.

4.3.4.3.Z Transfection protocol using TransFast™ reagent

Cells were plated at normal concentration (1 xloVml) the day before transfection 

and allowed to settle overnight. The TransFast reagent was reconstituted with 

400 pi of water on the same day to result in a 1 mM concentration o f lipid. The 

reagent was then vortexed thoroughly to resuspend the lipid film and stored at - 

20°C overnight. The first stage of the transfection process involved optimisation 

of the conditions. This involved a trial o f different amounts of DNA in the 

transfection reaction, and different charge ratios of TransFast reagent to DNA. 

This was done in a 24 well plate format, and for each cell line to be transfected, 

0.25, 0.5, 0.75 and 1.0 pg of DNA was used with a 1:1, 2:1 and a 3:1 charge 

ratio. Each combination was also tested in complete medium, and medium 

without the addition of FCS. The conditions resulting in the most effective 

transfection were then adopted for the main study.

Master mixes adequate for 6 replicates o f each DNA concentration and charge 

ratio were made up. First the required amount of medium (with or without FCS, 

and prewanned to 37°C) was combined with the requisite amount of DNA and 

voitexed. To this was added the amount of TransFast reagent indicated by the 

charge ratio. For a 24 well plate fonnat, the total volume of these 3 constituents 

was 200 pi per well. The mixture was allowed to incubate for 15 minutes at
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room temperature, then growth medium was carefully aspirated from the test 

cells and after a final vortex the TransFast/DNA mixture was added to the cells, 

which were then incubated under normal culture conditions for 1 hour.

At the end of the incubation period the cells were overlaid with prewarmed 

complete medium (1 ml per well in the 24 well plate format). Cells were then 

returned to the incubator and left undisturbed for 48 hours. At the end of this 

period, selection for transfected cells was achieved by the addition of fresh 

medium containing the antibiotic G418 at a concentration previously determined 

to select strongly for transfected cells. In general, mammalian cells require a 

concentration of 400-600 pg/ml of G418 to achieve the selection criteria of 

>90% cell death in control cells within 5-7 days (Manufacturer’s transfection 

guidelines). As such, control (untransfected) cells from each cell line were 

exposed to concentrations of 300, 350, 400, 500 and 600 pg/ml of G418 initially 

to determine the concentration of drug required for adequate selection.

Test cells were maintained in selective medium for 3-4 weeks with twice-weekly 

changes of medium to eliminate dead cells and debris until, if stable 

transfectants were achieved, distinct colonies of suiwiving cells appeared. At this 

point surviving cells were haiwested and pooled to produce a cell line containing 

stable transfectants only. These were maintained in selective medium and 

otherwise cultured normally. In addition a parallel transfection with empty 

plasmid vector was can ied out, to provide a negative control.

4.3.4.3.3 Lipofectamine'*'^ and PIus^^ reagents

Lipofectamine is a different liposome formulation consisting of the polycationic 

lipid 2,3-dioleyloxy-N-[2(spenninecarboxamido)ethyl]-N,N-dimethyl-1 -

propanaminium trifluoroacetate (DOSPA) and DOPE. It has the same mode of 

action as TransFast™, and it is recommended for use with the proprietary Plus^'^ 

reagent (Invitrogen, UK). The Plus reagent is used for precomplexing with DNA 

and has been found to enhance cationic lipid-mediated transfection. Optimisation
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of conditions using Lipofectamine was determined in the same manner as 

detailed for the TransFast reagent.

4.3.4.3.4 Transfection using the Lipofectamine/Pius reagents

Cells were plated at normal concentration (1 xlO^/ml) the night before the 

procedure such that they would be 60-80% confluent at the time of transfection. 

Plasmid DNA was precomplexed with the Plus reagent; for each well of a 24 

well plate format this involved dilution of 0.4 pg of DNA in 25 pi of medium 

without semm before the addition of 4 pi of the Plus reagent to the mixture, a 

thorough mixing of the components and a 15 minute incubation at room 

temperature.

A 1 pi volume of Lipofectamine reagent was then diluted in 25 pi of serum free 

medium in a second tube and mixed before this was added to the tube containing 

the precomplexed DNA. After a thorough mixing there then followed another 

15-minute incubation at room temperature. During this incubation, the growth 

medium covering the test cells was replaced with 0.2 ml of transfection medium 

(normal or without FCS) per well. The DNA-Plus/Lipofectamine complexes 

were then added to the test wells, mixed gently and incubated under normal 

culture conditions for 3 hours. After the incubation, transfection medium was 

completely removed and replaced with nonnal growth medium for each o f the 

cell types. Cells were then incubated under normal growth conditions for 72 

hours, after which growth medium was replaced with selective medium 

containing G 418 at the previously determined concentration.

Cell lines were maintained under nonnal gmwth conditions in the selective 

medium and passaged upon reaching 80% confluence. At each passage, cell 

pellets were retained for TRP and TRAP analysis, as described previously for 

the telomerase inhibition study (Section 4.3.3.2) Cell counts at passage were 

monitored and used to constmct growth curves for each surviving test cell line.
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43.4.4 Confirmation of transfection

Successful transfection of the hTERT gene sequence into test cell lines was 

confirmed by RT-PCR (Section 2.2.5). Any possible DNA contamination in the 

isolated RNA samples was removed by inclusion of an RNAse-free DNAse 1 

digestion step for each sample before RT-PCR (Section 2.2.4.3). First strand 

cDNA synthesis was carried out using both random primers and the gene 

specific primers detailed below. The use of oligo-dT primers was not appropriate 

in this case as the mature hTERT transcript is not polyadenylated. The gene 

specific primer sequences were 5'-ACTGTTCAGCGTGCTCAACTA-3' 

(DNHTOOl) and 5 -TCATTCAGGGAGGAGCTCTGCT-3 ' (DNHTOOIR), 

corresponding to nucleotide numbers 1980-2000 and 2378-2399 respectively on 

the Homo sapiens telomerase reverse transcriptase mRNA sequence, accession 

number NM 003219. The PCR was then carried out at 95"C for 5 minutes 

followed by 25 amplification cycles of 94”C for 30 seconds, 55°C for 30 

seconds, and 72°C for 30 seconds. The final polymerisation incubation at 72”C 

was canied out for 7 minutes, after which the PCR products were held at 4°C 

until Rirther analysis. The PCR products were visualised by agarose gel 

electrophoresis to confirm they were o f the coixect size, and then gel purified 

before sequencing using the ABI PRISM® 3100 Genetic Analyzer (Section 

2.2.6) and confinning the origin of the sequence using the ‘B lasf search engine 

(Section 2.2.6.1.3).
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4.4 Results

4.4.1 Telomerase activity profile of normal canine and 

feline tissues

Telomerase activity was assessed in a panel of tissues (26 canine and 25 feline) 

sampled from 5 dogs (CNl-5) and 5 cats (FNl-5) as detailed in Table 3-2. Not 

all the tissue types sampled were available from each of the 10 animals, due to 

the individual nature of each necropsy examination. RTA values were generated 

from absorbance readings of test, control and internal standard wells as detailed 

in the Materials and Methods (Section 4.3). A sample was described as 

telomerase positive if the value determined by subtraction of background 

absorbance (average of the absorbance o f the heat inactivated samples. Ago) 

from the absorbance of the sample. As resulted in a value greater than twice the 

background; i.e. As - Aso / Ago > 2.0. To reduce the likelihood of false 

negatives due to this highly stringent standard, samples with As - Ago / Ago > 1- 

2 were said to contain low, or borderline telomerase activity. These samples 

contained telomerase activity that was between two and three times greater than 

the background. Background readings of less than 0.1 were acceptable, any 

higher reading indicated inadequate heat inactivation and resulted in repetition of 

the experiment. All experiments utilised the high activity positive telomerase 

control, and (Ajss-A t s 8,o) / A t s 8,is values after 10 minutes of colour development 

were between 2.0 and 4.0.

RTA values determined for the canine tissue samples from subjects CN l, CN2, 

CN3, CN4 and CN5 are shown in Tables 4-2 to 4-6. In all the subjects where 

kidney tissue samples were available for analysis, these were negative for 

telomerase activity. Similarly, no activity could be detected in liver, cardiac 

muscle, lung or skeletal muscle samples isolated from several dogs. Small 

intestinal tissue samples were available for analysis in 4 subjects and low levels 

of telomerase activity could be detected in 2 cases (CN2 and CN3). Similarly, 

low levels of activity were identified in a stomach sample from CN1, however a
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stomach sample from CN5 was negative for telomerase activity. One ovarian 

sample was available for analysis (CNl), however this sample was negative. A 

single testis sample was also analysed (CN5), and this sample showed the 

presence of low levels of activity.

RTA values determined for the feline tissue samples from subjects FNl,  FN2, 

FN3, FN4 and FN5 are shown in Tables 4-7 to 4-11. O f the feline samples 

examined, telomerase activity was not detected in the following tissue samples 

from several subjects; brain, cardiac muscle, liver, skeletal muscle, lung and 

small intestine. Telomerase activity was also absent from the single feline kidney 

specimen (FN5). The one sample that was telomerase positive out of the 25 

examined was a testis sample taken from subject FN5.

The telomerase positive and low telomerase activity results for both dogs and 

cats were all confirmed by repeat TRAP analysis.

4.4.2 Telomerase activity profile of canine and feline 

tumour samples

Telomerase activity was assessed in a panel of 15 canine and 4 feline tumours 

utilising the same criteria as described above for normal tissues, including the 

use of the high activity positive control for all experiments. Canine tumours 

sampled included fibrosarcoma {n = 3), mammary carcinoma {n = 10), and 

squamous cell carcinoma (/? = 2). Feline tumour samples included mammary 

carcinoma {n = 1), and squamous cell carcinoma {n = 3). All tumour samples 

were identified by histopathology carried out at the Pathology department at 

GUVS. All tumour samples were either harvested during surgical biopsy and 

immediately flash frozen in LNO2 , or in the case of tumours harvested post

mortem, the necropsy was carried out the same day as euthanasia.

High levels of telomerase activity were detected in 4 of 4 (100%) feline tumour 

samples, and in 15 of 17 (88%) canine tumour samples. The remaining two 

canine tumour samples contained low levels of telomerase activity, which was
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confirmed by repeat TRAP analysis. The TRAP results for the canine and feline 

tumour samples are shown in Tables 4-12 and 4-13 respectively.
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Table 4-2. TRAP analysis of necropsy specimens from canine CNl. As is the

absorbance o f the sample, Aso the absorbance of the heat inactivated version of 

the sample, AAg was determined by subtraction of the mean of the heat 

inactivated samples ( Aso or backgi'ound) from As, AAs / Aso is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAs) was greater than twice the backgi'ound activity (AAs / Aso > 2.0). 

Samples contained low telomerase activity if  AAs / Aso was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEC) for telomerase activity. The CNl assay gave a 

background absorbance of 0 . 0 4 4 ,  and a ( A t s s - A  t s s ,o) / A t s 8,is value of 2 . 5 2  after 

10 minutes o f colour development using the high activity positive control.

CNl As Aso AAs M s

Aso

RTA Result

Kidney 0.042 0.05 0 0 0 NEC

Liver 0.054 0.046 0.01 0.23 4 NEC

Ovary 0.076 0.043 0.032 0.73 3 NEC

Skeletal 0.041 0.042 0 0 0 NEC

muscle

Small 0.041 0.036 0 0 6 NEC

intestine

Stomach 0.090 0.046 0.044 1.05 3 LOW
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Table 4-3. TRAP analysis of necropsy specimens from canine CN2. As is the

absorbance o f the sample, Aso the absorbance of the heat inactivated version of 

each sample, AAs was deteimined by subtraction of the mean of the heat 

inactivated samples ( Aso or background) from As, AAs / Ago is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAs) was greater than twice the background activity (AAs / Ago > 2.0). 

Samples contained low telomerase activity if AAs / Ago was between i and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The CN2 assay gave a 

background absorbance of 0.046, and a (Apss-A t s 8,o) / A t s 8,is value of 2.14 after 

10 minutes of colour development using the high activity positive control.

CN2 As Aso AAs AAs

Ago

RTA Result

Cardiac

muscle

0.042 0.045 0 0 0 NEG

Kidney 0.041 0.046 0 0 0 NEG

Liver 0.041 0.045 0 0 0 NEG

Small

intestine

0.101 0.048 0.055 1.20 3 LOW
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Table 4-4. TRAP analysis of necropsy specimens from canine CN3. As is the

absorbance of the sample, Aso the absorbance of the heat inactivated version of 

each sample, AAs was determined by subtraction of the mean of the heat 

inactivated samples ( Aso or backgi'ound) from As, AAs / Aso is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAs) was greater than twice the background activity (AAs / Aso > 2.0). 

Samples contained low telomerase activity if  AAs / Aso was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The CN3 assay gave a 

background absorbance of 0.052, and a (Apsg-A t s s , o ) / A t s 8 , i s  value of 3.58 after 

10 minutes of colour development using the high activity positive control.

CN3 As Aso AAs AAs

Aso

RTA Result

Cardiac

muscle

0.032 0.037 0 0 0 NEG

Kidney 0.063 0.073 0.011 0.2 0 NEG

Liver 0.034 0.037 0 0 0 NEG

Lung 0.091 0.042 0.039 0.75 5 NEG

Skeletal

muscle

0.033 0.037 0 0 0 NEG

Small

intestine

0.388 0.086 0.336 6.5 172 POS
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Table 4-5. TRAP analysis of necropsy specimens from canine CN4. As is the

absorbance of the sample, Aso the absorbance of the heat inactivated version of 

each sample, AAs was deteimined by subtraction of the mean of the heat 

inactivated samples ( Aso or backgi'ound) from As, AAs / Aso is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAs) was greater than twice the background activity (AAs / Aso > 2.0). 

Samples contained low telomerase activity if AAs / Aso was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The CN3 assay gave a 

background absorbance of 0.055, and a ( A t s s - A  t s 8 , o ) / A t s 8 , i s  value of 2.35 after 

10 minutes of colour development using the high activity positive control.

CN4 As Aso AAs AAs

Aso

RTA Result

Cardiac

muscle

0.071 0.067 0.016 0.3 <1 NEG

Kidney 0.061 0.070 0.006 0.1 0 NEG

Liver 0.058 0.038 0.003 0.1 3 NEG

Lung 0.086 0.063 0.031 0.6 3 NEG

Skeletal

muscle

0.072 0.060 0.017 0.3 7 NEG

Small

intestine

0.072 0.031 0.017 0.3 3 NEG
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Table 4-6. TRAP analysis of necropsy specimens from canine CN5. As is the

absorbance of the sample, Aso the absorbance of the heat inactivated version of 

each sample, AAs was determined by subtraction of the mean o f the heat 

inactivated samples ( Aso or background) from As, AAs / Aso is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAs) was greater than twice the backgi'ound activity (AAs / Aso > 2.0). 

Samples contained low telomerase activity if AAs / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The CN5 assay gave a 

background absorbance of 0.062, and a (Ajss-A t s 8 , o ) / A t s s , i s  value o f 3.00 after 

10 minutes of colour development using the high activity positive control.

CN5 As Aso AAs AAs

Aso

RTA Result

Liver 0.070 0.069

Skeletal 0.059 0.068

muscle

Stomach 0.062 0.052

Testis 0.152 0.059

0.008

0

0

0.09

0.1

0

0

1.5

<1

0

0

< 1

NEG

NEG

NEG

LOW
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Table 4-7. TRAP analysis of necropsy specimens from feline FN l. As is the

absorbance of the sample, Aso the absorbance of the heat inactivated version of 

each sample, AAs was deteimined by subtraction of the mean of the heat 

inactivated samples ( Ago or background) from As, AAs / Ago is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if  the difference in absorbance 

(AAg) was greater than twice the backgi'ound activity (AAg / Ago > 2.0). 

Samples contained low telomerase activity if  AAg / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The FNl assay gave a 

background absorbance of 0.063, and a ( A t s s ' A  t s 8 , o ) / A t s 8 , i s  value o f 3.00 after 

10 minutes of colour development using the high activity positive control.

FNl As Ago AAg AAs

Ago

RTA Result

Brain 0.069 0.070 0 0 0 NEG

Cardiac 0.063 0.053 0.01 0.2 2 NEG

muscle

Liver 0.072 0.067 0.005 0.1 <1 NEG

Skeletal 0.103 0.059 0.04 0.6 8 NEG

muscle

Lung 0.119 0.063 0.056 0.9 22 NEG
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Table 4-8. TRAP analysis of necropsy specimens from feline FN2. As is the

absorbance o f the sample, Ago the absorbance of the heat inactivated version of 

each sample, AAg was deteimined by subtraction of the mean o f the heat 

inactivated samples ( Ago or background) from Ag, AAg / Ago is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAg) was greater than twice the background activity (AAg / Ago > 2.0). 

Samples contained low telomerase activity if  AAg / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The FN2 assay gave a 

background absorbance of 0.063, and a (Ajss-A T S 8 ,o )/A T S 8 ,ts  value of 3.00 after 

10 minutes o f colour development using the high activity positive control.

FN2 Ag Ago AAg AAg

Ago

RTA Result

Brain 0.071 0.067 0.004 0.1 <1 NEG

Cardiac 0.063 0.072 0 0 0 NEG

muscle

Liver 0.056 0.041 0.015 0.24 3 NEG

Lung 0.066 0.061 0.005 0.1 1 NEG
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Table 4-9. TRAP analysis of necropsy specimens from feline FN3. Ag is the

absorbance of the sample, Ago the absorbance o f the heat inactivated version of 

each sample, AAg was deteimined by subtraction of the mean of the heat 

inactivated samples ( Ago or background) from Ag, AAg / Ago is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAg) was greater than twice the background activity (AAg / Ago > 2.0). 

Samples contained low telomerase activity if AAg / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The FN3 assay gave a 

background absorbance o f 0.038, and a (A-rss-A TS8,o)/ATg8,is value of 2.27 after 

10 minutes of colour development using the high activity positive control.

FN3 Ag Ago AAg AAs

Ago

RTA Result

Lung 0.037 0.046 0 0 0 NEG

Cardiac 0.033 0.032 0 0 1 NEG

muscle

Brain 0.043 0.032 0.005 0.13 <1 NEG

Liver 0.039 0.035 0.001 0.03 5 NEG

Skeletal 0.037 0.033 0 0 5 NEG

muscle

Small 0.052 0.052 0.014 0.37 0 NEG

intestine
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Table 4-10. TRAP analysis of necropsy specimens from feline FN4. Ag is the

absorbance of the sample, Ago the absorbance of the heat inactivated version of 

each sample, AAg was deteimined by subtraction of the mean of the heat 

inactivated samples ( Ago or backgi'ound) from Ag, AAg / Ago is the ratio of 

sample to background activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAg) was greater than twice the background activity (AAg / Ago > 2.0). 

Samples contained low telomerase activity if  AAg / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The FN4 assay gave a 

background absorbance o f 0.030, and a (A-pgg-A t s 8 ,o) / A t s 8 , i s  value of 3.97 after 

10 minutes of colour development using the high activity positive control.

FN4 Ag Ago AAg AAg

Ago

RTA Result

Liver 0.025 0.035 0 0 0 NEG

Skeletal 0.040 0.035 0.005 0.17 <1 NEG

muscle

Small 0.027 0.021 0.006 0.2 <1 NEG

intestine
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Table 4-11. TRAP analysis of necropsy specimens from feline FN5. Ag is the

absorbance of the sample, Ago the absorbance of the heat inactivated version of 

each sample, AAg was deteimined by subtraction of the mean o f the heat 

inactivated samples ( Ago or backgi'ound) from Ag, AAg / Ago is the ratio of 

sample to backgi’ound activity, and RTA the relative telomerase activity. 

Samples were considered telomerase positive if the difference in absorbance 

(AAg) was greater than twice the backgi'ound activity (AAg / Ago > 2.0). 

Samples contained low telomerase activity if AAg / Ago was between 1 and 2. 

Using these criteria samples were designated positive (POS), low activity 

(LOW) or negative (NEG) for telomerase activity. The FN5 assay gave a 

background absorbance of 0.043, and a (Aygg-A t s s ,o ) / A t s 8 , i s  value o f 2.69 after 

10 minutes of colour development using the high activity positive control.

FN5 Ag Ago AAg M s

Ago

RTA Result

Brain 0.048 0.043 0.005 0.12 <1 NEG

Kidney 0.041 0.042 0 0 0 NEG

Liver 0.041 0.040 0 0 0 NEG

Lung 0.044 0.044 0.001 0.02 0 NEG

Small 0.047 0.041 0.004 0.09 <1 NEG

intestine

Skeletal 0.037 0.047 0 0 0 NEG

muscle

Testis 0.171 0.047 0.128 2.98 7 POS
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Table 4-12. TRAP analysis of canine tumour samples. Ag is the absorbance of 

the sample, Ago the absorbance of the heat inactivated version of each sample, 

AAg was determined by subtraction o f the mean of the heat inactivated samples 

( Ago or background) from Ag, AAg / Ago is the ratio of sample to backgi'ound 

activity, and RTA the relative telomerase activity. Samples were considered 

telomerase positive if the difference in absorbance (AAg) is greater than twice 

the background activity (AAg / Ago > 2.0). Samples contained low telomerase 

activity if AAg / Ago was between 1 and 2. Using these criteria samples were 

designated positive (POS), low activity (LOW) or negative (NEG) for 

telomerase activity. The canine tumour assay gave a background absorbance of 

0.071, and a (Ajgs-A t s 8 ,o) / A t s 8 , i s  value of 2.10 after 10 minutes of colour 

development using the high activity positive control. Low telomerase activity 

results were confirmed by repeat analysis.

Tumour Ag A'so AAs AAg

Ago

RTA Result

Mammary carcinoma 0.335 0.07 0.264 3.72 11 POS

Mammary carcinoma 0.155 0.07 0.084 1.18 6 LOW

Mammary carcinoma 0.277 0.065 0.206 2.9 8 POS

Mammary carcinoma 0.301 0.07 0.23 3.24 14 POS

Mammary carcinoma 0.272 0.07 0.201 2.83 10 POS

Mammary carcinoma 0.256 0.075 0.185 2.61 7 POS

Mammary carcinoma 0.284 0.073 0.213 3.0 9 POS

Mammary carcinoma 0.15 0.064 0.079 1.11 3 LOW

Mammary carcinoma 0.709 0.074 0.638 8.99 29 POS

Mammary carcinoma 0.363 0.072 0.292 4.11 13 POS

Fibrosarcoma 0.835 0.067 0.764 10.8 54 POS

Fibrosarcoma 0.322 0.074 0.251 3.54 14 POS

Fibrosarcoma 0.646 0.073 0.575 8.10 36 POS

Squamous cell carcinoma 0.24 0.074 0.169 238 8 POS

Squamous cell carcinoma 1.428 0.072 1.357 19.1 81 POS
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Table 4-13. TRAP analysis of feline tumour samples. Ag is the absorbance of 

the sample, Ago the absorbance of the heat inactivated version of each sample, 

AAg was determined by subtraction of the mean of the heat inactivated samples 

( Ago or background) from Ag, AAg / Ago is the ratio of sample to background 

activity, and RTA the relative telomerase activity. Samples were considered 

telomerase positive if the difference in absorbance (AAg) is greater than twice 

the background activity (AAg / Ago > 2.0). Samples contained low telomerase 

activity if  AAg / Ago was between 1 and 2. Using these criteria samples were 

designated positive (POS), low activity (LOW) or negative (NEG) for 

telomerase activity. The feline tumour assay gave a background absorbance of 

0.04, and a (Ajgg-A t s 8 ,o) / A t s 8 , i s  value of 3.90 after 10 minutes of colour 

development using the high activity positive control.

Tumour Ag Ago AAg AAg

Ago

RTA Result

Mammary carcinoma 0.510 0.037 0.47 11.8 13 POS

Squamous cell carcinoma 0.232 0.040 0.192 4.8 4 POS

Squamous cell carcinoma 0.481 0.043 0.441 11.0 10 POS

Squamous cell carcinoma 0.477 0.039 0.437 10.9 11 POS
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4.4.3 Telomerase activity in immortalised cell lines

Telomerase activity was assessed in the canine immortalised cell lines CMLIO, 

MDCK, D17, A72, GHK, CMT3, CMT7 and CMT8, and in a number of 

immortalised cell lines of human origin (GM847, 293T and 3132T), which were 

included for comparison of telomerase activity levels. The canine primary 

fibroblast culture SFA was included as a negative control. Details of the entire 

panel of cell lines used are provided in Section 2.2.1.2, and the results of the 

TRAP assay are shown in Table 4-14. Telomerase activity was confirmed in all 

of the canine immortalised cell lines tested, with RTA values ranging from 3 in 

the A72 cells to 38 in the CMT3 cells. The human cell lines 293T and 3132T 

were also positive for activity, and with RTA values of 12 and 47 respectively, 

the human cell lines displayed a similar level of telomerase activity to their 

canine counterparts. No activity was detected in the human ALT competent cell 

line GM847 or the primary fibroblast culture, which were confirmed to be 

telomerase negative by repeat analysis. A representative autoradiograph showing 

TRAP PCR products form three immortalised canine cell lines is shown in 

Figure 4-2.

4.4.4 Effect of the RTI AZT-TP on telomerase activity in 

canine telomerase positive cells

Canine MDCK and CMT7 cells identified as positive for telomerase activity 

(Section 4.4.3) were used to test the telomerase inhibitory effects of AZT-TP. 

The initial step in this investigation was to assess the highest concentration of 

AZT-TP to which the test cell lines could be exposed without inducing an acute 

cytotoxic effect. To this end, cells were exposed to two-fold dilutions of AZT- 

TP in a 96 well plate format, whilst control cell cultures were maintained in dmg 

free medium. The initial screening ran for 7 days. Concentrations of 120 pM and 

above resulted in death of both the cell lines. An AZT-TP concentration of 60 

pM and below allowed survival of test cells, and the experiment was then 

repeated in a T25 flask format with cells seeded at 1 xlO^ cells/ml.
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Table 4-14. TRAP analysis of immortalised cell lines. Ag is the absorbance of 

the sample, Ago the absorbance of the heat inactivated version of each sample, 

AAg was determined by subtraction of the mean of the heat inactivated samples 

( Ago or background) from Ag, AAg / Ago is the ratio of sample to backgi'ound 

activity, and RTA the relative telomerase activity. Samples were considered 

telomerase positive if the difference in absorbance (AAg) was greater than twice 

the background activity (AAg / Ago > 2.0) On these criteria samples were 

designated positive (POS) or negative (NEG) for telomerase activity. The cell 

line assay gave a background absorbance of 0.060, and a (Argg-A t s 8 ,o) / A t s 8 , is  

value of 2.78 after 10 minutes of colour development using the high activity 

positive control.

Cell line Ag Ago AAg AAg

Ago

RTA Result

A72 0.287 0.062 0.225 3.75 3 POS

CMLIO 0.544 0.055 0.489 8.15 10 POS

CMT3 1.194 0.060 1.134 18.9 38 POS

CMT7 0.492 0.072 0.42 7 9 POS

CMT8 0.862 0.071 0.791 13.2 11 POS

D17 0.382 0.058 0.324 5.4 7 POS

GHK 0.605 0.057 0.548 9.1 11 POS

GM847 0.072 0.062 0.01 0.2 <1 NEG

MDCK 0.182 0.052 0.13 2.2 4 POS

SFA 0.064 0.066 0 0 0 NEG

293T 3.45 0.061 3.389 56.5 47 POS

3132T 1.190 0.060 1.13 18.8 12 POS
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Figure 4-3. Autoradiograph image of a representative PAGE of TRAP assay 

PCR products. LB indicates the lysis buffer only negative control, lanes 1 and 2 

are the CMLIO cell line, lanes 3 and 4 are from the CMT7 cell line, and lanes 5 

and 6 from the CMT3 cell line. The 216 bp internal standard is indicated. The 

banding pattern is caused by the presence of TTAGGG repeat sequences of 

varying length, produced by active telomerase in the samples.

216 bp
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This repetition was carried out to facilitate harvesting and counting o f cells, 

Cells were passaged upon reaching approximately 80% confluence, and the 

doubling time for each test and control flask noted. A concentration of 60 pM of 

AZT-TP caused an increase in doubling time and in the number of dead cells in 

the culture, as shown in Table 4-15, compared with the control cell lines for both 

MDCK and CMT7 cells. A 30 pM concentration of AZT-TP did not result in 

any acute cytotoxic effect to either cell line. This concentration was 

subsequently used for the main study with both cell lines.

4.4.4.1 Effects of AZT-TP on cell growth parameters

In the main study, test cells were grown in T75 flasks and exposed to 30 pM of 

AZT-TP throughout the course o f the experiment. Control cells were also 

maintained in T75 flasks in parallel with the test cultures and passage of each 

culture was carried out as normal. Cell counts and population doubling times for 

each of the cell lines were recorded at passage and are shown in Tables 4-16 and 

4-17. These data were used to generate growth curves for comparison between 

control and test cell lines, as shown in Figures 4-3 and 4-4. Control CMT7 cells 

reached 36.2 population doublings over the time course of the experiment (70 

days), whilst at 32.5 population doublings the AZT-TP treated CMT7 cells 

achieved only 3.7 fewer divisions. The more rapidly replicating MDCK control 

and test cells achieved 52.0 and 45.3 population doublings respectively, a 

difference o f 6.7 population doublings over the 70 days of the experiment. No 

significant difference in the growth rates between control cells and cells cultured 

in the presence of AZT were discernible in either the MDCK cells or the CMT7 

cells.

4.4.4.2 Effects of AZT-TP on telomerase activity

Telomerase activity was monitored in the control and AZT-TP treated versions 

of each cell line at a number of time points during the course of the experiment. 

These data were used to generate an RTA value for each cell type to allow a 

comparison between the telomerase activity of the control and treated cells, as
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shown in Tables 4-18 and 4-19. Figure 4-5 illustrates that AZT-TP exposure did 

not result in a sustained, demonstrable reduction in telomerase activity in the 

CMT7 cell line. The equivalent analysis for the MDCK cell line is also shown in 

Figure 4-5 and established that whilst the AZT-TP treated cells had a generally 

lower RTA value than the control cells suggestive of a telomerase inhibitory 

effect, they retained demonstrable telomerase activity. Telomerase activity was 

found to be lower in the control MDCK cell line than the control CMT7 cell line, 

and whilst all the AZT-TP treated CMT7 cell pellets assayed for telomerase 

activity remain telomerase positive (AAg / Ago > 2.0), passage 32, 44 and 49 of 

the treated MDCK cell line had AAg / Ago values of between 1 and 2, and are 

therefore classified as containing low telomerase activity.

4.4.43 Effects of AZT on telomere lengths

Telomere length was also monitored in the cell lines using 2 xlO^ cell pellets 

retained at passage. The analysis was carried out as described previously 

(Section 3.3.3) using standard agarose gel electrophoresis, and was undertaken 

to determine if  exposure to the RTI translated into any reduction in telomere 

length in the test cells. Mean TRF length was found to be 5.2 kb and 5.1 kb in 

the control MDCK cells at the first and last passages used in the experiment 

(passage 30 and passage 48). The AZT-TP treated cells had a mean TRF value 

of 5.0 kb at passage 30, and 4.9 kb at passage 48. A similar result was obtained 

for the CMT7 cells. In these cells, both the control and AZT-TP treated cells 

were found to contain mean TRFs o f 4.2 and 4.3 kb at the beginning and end of 

the experiment respectively (passage 49 to 67). Hence, no discernible change in 

telomere lengths could be detected in cells cultured in the AZT-TP. The TRF 

smears generated from the AZT-TP treated cells are shown in Figure 4-6.
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Table 4-15. Investigation of acute cytotoxic effect of AZT-TP on CMT7 and 

MDCK cells. Tc is the average doubling time in hours for cell lines maintained 

in 0, 30, and 60 pM AZT-TP counted at day 3 and 7 of the experiment; these 

values are followed by the average percentage of cells found to be dead during 

cell counting as defined by uptake of trypan blue stain (Section 2.2.1.1.1).

Cell line Tc 0 % dead Tc 30 % dead Tc 60 % dead

"CMT7 4Ô9 <5 353  <5 593  14

MDCK 19.4 <5 19.3 <5 29.3 9
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Table 4-16. Proliferation of CMT7 control and AZT-TP treated CMT7 cells.

All cell counts are xlO^, Tc indicates the doubling time of the cell populations in 

hours since the previous time point, and PD indicates the cumulative population 

doublings undergone by the control and AZT-TP treated cells during the course 

of the experiment.

Time

point

Cell

count

(control)

Cell

count

(treated)

Tc

(control)

Tc

(treated)

PD

(control)

PD

(treated)

1 3.6 3.0 25.7 30.2 1.9 1.6

2 2.6 3.6 52.1 38.8 3.3 3.5

3 3.2 2.0 42.8 71.8 5 4.5

4 3.0 2.8 60.4 64.4 6.6 6.0

5 3.6 2.0 38.8 71.8 8.5 7.0

6 3.2 3.4 57.0 54.2 10.2 8.8

7 2.7 2.4 50.1 56.8 11.6 10.1

8 6.2 4.6 45.4 54.3 14.2 12.3

9 3.2 3.6 28.5 25.9 15.9 14.2

10 3.4 2.6 81.3 104.1 17.7 15.6

11 2.0 2.0 95.7 95.7 18.7 16.6

12 5.6 5.4 19.2 19.7 21.2 19.0

13 4.2 3.4 34.7 40.6 23.3 20.8

14 7.0 6.6 42.6 43.9 26.1 23.5

15 6.0 5.4 64.8 68.8 28.7 25.9

16 1.6 1.6 105.8 105.8 29.4 26.6

17 6.6 6.6 35.1 35.1 32.1 29.3

18 3.4 3.2 40.6 42.8 33.9 31.0

19 4.8 2.8 31.7 48.3 36.2 32.5
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Table 4-17. Proliferation of MDCK control and AZT-TP treated MDCK 

cells. All cell counts are xlO^, Tc indicates the doubling time of the cell 

populations in hours since the previous time point, and PD indicates the 

cumulative population doublings undergone by the control and AZT-TP treated 

cells during the course o f the experiment.

Time

point

Cell

count

(control)

Cell

count

(treated)

Tc

(control)

Tc

(treated)

PD

(control)

PD

(treat

1 6.3 4.0 18.0 23.9 2.7 2.0

2 5.2 2.9 30.2 46.7 5.1 3.5

3 5.3 3.3 29.8 41.7 7.5 5.2

4 6.3 4.3 36.0 45.5 10.2 7.3

5 4.6 2.9 32.6 46.7 12.4 8.8

6 7.7 4.4 32.5 31.3 15.4 11.9

7 6.5 4.3 26.6 34.1 18.1 14.0

8 7.9 8.3 40.1 39.2 21.1 17.1

9 2.8 3.8 32.2 24.8 22.6 19.0

10 7.6 6.7 49.0 52.3 25.5 21.8

11 7.2 5.2 33.6 40.2 2K4 24.2

12 8.2 6.2 15.8 18.2 31.4 26.8

13 6.5 5.6 26.6 2K9 34.1 29.3

14 10.2 8.1 35.7 39.6 37.5 32.3

15 11.3 8.1 47.9 55.5 41.0 35.3

16 4.6 2.8 32.6 48.3 43.2 36.8

17 7.7 7.5 32.5 32.9 46.1 39.7

18 5.3 5.4 29.8 29.5 48.5 42.1

19 11.0 9.0 20.7 22.6 52.0 45.3
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Figure 4-4. Growth rates of control CMT7 cells and CMT7 cells exposed to 

30 pM AZT-TP. Population doubling o f the control cells are represented by 

blue squares, whilst green squares represent test cells. No significant difference 

existed between the growth rates o f the two cultures.
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Figure 4-5. Growth rates of control MDCK cells and MDCK cells exposed 

to 30 pM AZT-TP. Population doubling of the control cells are represented by 

blue squares, whilst green squares represent the AZT-TP treated test cells. No 

significant difference in growth rate existed between the two cultures.

O)c
Z
3O

■O

cg
%
3
Q .O

Q .

6 0

50

4 0

30

20

10

0

0 20 4 0 60 80

Time (days)

201



Table 4-18. Relative telomerase activity of AZT-TP treated and control 

CMT7 cells. As represents the absorbance o f the sample, Aso the absorbance of 

the heat inactivated control of the sample, As,is the absorbance of the internal 

standard of the sample and RTA the relative telomerase activity. (Tx) and (Cx) 

denote AZT-TP treated and control cells, respectively. The assay gave a 

background absorbance of 0 . 0 6 9 ,  and a (A ysrA  t s s .oV A t s s .is value of 2 . 1 1  after 

10 minutes of colour development using the high activity positive control.

Passage As

(Tx)

As

(Cx)

Aso

(Tx)

Aso

(Cx)

As,IS 

(Tx)

As, IS 

(Cx)

RTA

(Tx)

RTA

(Cx)

49 0.706 1.563 0.064 0.056 0.568 1.279 54 56

53 0.635 1.137 0.066 0.060 1.487 1.394 18 36

57 1.272 1.050 0.072 0.056 1.296 1.384 44 34

60 1.206 0.660 0.075 0.095 1.396 0.955 38 28

63 0.667 0.638 0.062 0.096 1.569 0.940 18 27

67 0.633 0.457 0.096 0.088 1.195 1.492 21 12
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Table 4-19. Relative telomerase activity of AZT-TP treated and control 

MOCK cells. As represents the absorbance of the sample, Aso the absorbance of 

the heat inactivated control of the sample, As,is the absorbance of the internal 

standard of the sample and RTA the relative telomerase activity. (Tx) and (Cx) 

denote AZT-TP treated and control cells, respectively. The assay gave a 

background absorbance o f 0.075, and a ( A t s s “ A  t s 8 ,o) / A t s s , i s  value of 2.05 after 

10 minutes of colour development using the high activity positive control.

Passage As

(Tx)

As

(Cx)

Aso

(Tx)

Aso

(Cx)

As,is

(Tx)

As,IS 

(Cx)

RTA

(Tx)

RTA

(Cx)

30 0.342 0.154 0.074 0.066 2.278 2.728 6 2

32 0.163 0.699 0.074 0.080 1.476 2.134 3 14

37 0.279 0.346 0.068 0.077 2.658 2.166 4 5

39 0.305 0.834 0.076 0.070 1.577 1.401 7 27

41 0.304 0.330 0.073 0.079 1.973 1.786 6 7
44 0.158 0.659 0.078 0.079 2.503 1.534 2 11

49 0.192 0.244 0.075 0.079 2.229 1.624 3 5
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Figure 4-6. Effect of AZT-TP on the RTA of CMT7 and MDCK cells.

Control cells are represented by blue squares, whilst green squares denote AZT- 

TP treated cells. Comparison o f RTA values established that AZT-TP is 

ineffective at reducing telomerase activity in vitro in the CMT7 cell line. Whilst 

RTA values of AZT-TP treated MDCK cells are generally lower than the 

matched control samples the test cells retain active telomerase.
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Figure 4-7. TRF analysis of first and last passage AZT-TP treated CMT7 

and MDCK cells. Lanes 2 and 3 show passage 30 and passage 48 respectively 

of the MDCK cell line, corresponding to mean TRFs of 5.0 and 4.9 kb. Lanes 4 

and 5 show passages 49 and 67 o f the CMT7 cell line, corresponding to TRFs of 

4.2 and 4.3 kb respectively. Lane 1 contains the DNA molecular weight marker 

II (Roche).
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4.4.5 Ectopic expression of hTERT in primary canine, 

feline and equine fibroblasts
4.4.5.1 Generation of a PCIneo/hTERT expression vector

Prior to embarking on the experiments aimed at reconstituting telomerase 

activity in canine, feline and equine primary fibroblasts, the hTERT DNA was 

cloned into the PCIneo mammalian expression vector. PCIneo vector DNA was 

linearised by EcoR  1 and Sail restriction digestion, as described in Section 

4.3.4.2, and visualised following agarose gel electrophoresis. This generated a 

fragment o f the expected size of approximately 5.6 kb that was then quantified 

by agarose gel electrophoresis using the Low DNA Mass Ladder (GibcoBRL) 

following gel purification, as shown in Figure 4-7. Purified hTERT clone was 

isolated from the pBABE-puro vector and quantified in the same manner and the 

expected size product of approximately 3.5 kb identified as shown in Figure 4-7. 

Vector and hTERT DNA were found to be at a concentration of 25 and 10 ng/jul 

respectively.

Following ligation and transformation, plasmid DNA was isolated from 12 

overnight bacterial cultures and the presence of hTERT insert confirmed by 

EcoR 1 and Sail digestion. Eleven of the 12 plasmids were confirmed to contain 

the hTERT insert as shown in Figure 4-8. The use of two different restriction 

enzymes ensured the correct orientation of the insert.

Following large sale purification of endotoxin free plasmid DNA (Section 

2.2.3.2.1), the DNA quantity and quality was confirmed by UV 

spectrophotometry. This process was also carried out using PCIneo empty vector 

to provide sufficient empty vector to act as an experimental control. Plasmid 

DNA concentration was determined to be 0.12 and 0.14 pg/pl for the empty 

vector and PCIneo/hTERT constmct respectively. A2 6 0 /A2 8 0  values for the 

suspensions were 1.71 and 1.79 respectively, indicating the plasmid DNA was of 

a sufficiently high quality to be used for transfection.
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Figure 4-8. Quantification of PCIneo vector and hTERT insert. A 2 pi

volume of the vector and insert were quantified by comparison with DNA 

fragments contained in the low DNA Mass^”̂ Ladder (GibcoBRL). The ladder 

contained an equimolar mix of 6 blunt ended DNA fragments of 2000, 1200, 

800, 400, 200 and 100 bp. Electrophoresis o f a 2 pi volume of this ladder 

resulted in bands containing 100, 60, 40, 20, 10 and 5 ng of DNA respectively. 

Samples of unknown concentration were then subjectively quantified by 

comparing the intensity of the sample bands with the intensities of the bands in 

the ladder. By this method, the hTERT and vector samples shown were 

estimated to contain 10 and 25 ng/pl of DNA respectively. The 1 kb plus ladder 

illustrated that each fragment was of the correct size; 3.5 kb for hTERT and 5.6 

kb for PCIneo vector.

kh pIllN h l l K l  \I; lss  huklci
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Figure 4-9. Confirmation of ligation of hTERT with PCIneo vector. Plasmid 

DNA isolated from 12 transformed bacterial colonies was digested with EcoR 1 

and Sal I for 2 hours at 37 ®C to cut insert DNA from the PCIneo plasmid 

backbone. Digestion products were then separated by gel electrophoresis to 

confirm that a correctly sized insert (3.5 kb) was present in the plasmid samples. 

This process confirmed the presence of hTERT insert in all samples except 

number 4.
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4.4.S.2 Transfection of PCIneo-hTERT into cells using the 

Transfast® reagent

Several cell cultures v/ere used to generate stable hTERT expressing cells. These 

included the canine primary fibroblasts (SFA, AG08157), feline primary 

fibroblasts (S22, CCL-176), equine primary fibroblasts (EQ l) and the human 

ALT cell line (GM847). Further information on these cultures is provided in 

Section 2.2.1.2. The cells were initially exposed to varying concentrations of 

G418 antibiotic to determine the concentration required to produce selection for 

transfected cells. This was carried out in a 24 well plate format. Untransfected 

SFA, AG08157, S22, CCL-176, GM847 and EQl cells were seeded at 1 xlO^ 

cells/ml and after settling overnight were exposed to concentrations of 300, 350, 

400, 500 and 600 pg/ml of G418. Control cells were maintained in parallel in 

drug free medium. In all cases, by day 7, a concentration o f 400 pg/ml or above 

of G418 had resulted in the death of >90% of the cells, and this concentration 

was adopted for all subsequent experiments.

Each cell line was transfected using a wide variety of conditions to offer the 

greatest chance of success. In a 24 well plate format, each cell line was 

transfected with 0.25, 0.5, 0.75, and 1.0 pg of plasmid DNA using a 1:1, a 2:1 

and a 3:1 charge ratio in serum free and complete growth medium as described 

in Section 4.3.4.3.2. After the application of selective medium containing 400 

pg/ml of G418, three weeks were allowed for the development of distinct islands 

o f surviving cells to form, representing clonal expansion of successfully stably 

transfected cells. Selective medium was replaced every 3 days during this period 

to facilitate removal o f dead cells and debris.

The GM847 (human ALT), SFA (canine) and EQl (equine) cell lines all 

developed islands of surviving cells within this timeframe, providing evidence 

for the generation of stable transfectants. The cells surviving in selective media 

were trypsinised and pooled to form new cell lines. Each o f these three cell lines 

produced successful transfectants using 1.0 pg of plasmid DNA and a 2:1 charge 

ratio (TransFast reagent to DNA) in medium containing semm, and the
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transfection was also successful in the GM847 cell line using 0.75 pg of plasmid 

DNA in a 2:1 charge ratio in serum containing medium, and 1.0 pg DNA, with a 

2:1 charge ratio in serum free medium.

Stable transfectants could not be generated in any of the other cell cultures 

(AG08157, S22 or CCL-176) using any of the varying conditions described 

above. Transfection of these cells was repeated in a 6 well plate format using the 

most successful conditions described above. This was carried out as the greater 

cell numbers provided a relatively improved opportunity for successful 

transfection. The repeat involved scaling the experiment up fivefold to account 

for the greater area of the wells in 6 well plates. Transfection time was reduced 

to 30 minutes in an attempt to reduce possible cell damage during the 

transfection process, but again after 3 weeks in selective medium, no 

successfully transfected cells were apparent in any of the cell lines, and all of the 

test cells had been killed by the selective medium. In summary, modifying 

various transfection protocol parameters including the quantity of DNA, the 

quantity of transfection reagent, transfection time, presence or absence of serum 

within the media and increasing the number of cells had no effect on transfection 

efficiency in the AG08157, S22 or CCL-176 cell cultures.

4.4.5.3 Transfection using the Lipofectamine and Plus reagents

For the cell cultures in which Transfast failed to generate stable transfectants, the 

transfection process was repeated using a second reagent to investigate if  a 

different liposome formulation would improve efficiency. The AG08157, S22 

and CCL-176 cell cultures were transfected as described in Section 4.3.4.3.4. 

After introducing selective medium to the test plates three weeks was again 

allowed for removal o f dead cells and the emergence of colonies of surviving 

cells. Using this methodology, cells of the AG08157 fibroblast culture were 

successfully transfected, however neither of the two feline cultures (S22 and 

CCL-176) suiwived the process. These cells exhibited cell death following 

transfection with Lipofectamine/Plus as obseiwed following transfection using 

Transfast reagent.
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4.4.5.4 Evaluation of hTERT expression in stably transfected 

cells

To further confirm the generation o f stable transfectants, the presence of hTERT 

mRNA was confirmed in the cells surviving in G418 supplemented medium by 

RT-PCR as detailed in Section 4.3.4.4, and shown in Figure 4-9. In all cells RT- 

PCR amplified a product of approximately 400 bp as expected, confirming 

expression of hTERT. This demonstrated that the transfection process had been 

successful in the SFA, GM847 and EQl cell lines. Too few cells remained after 

negative TRAP analysis of the hTERT-transfected AG08157 cells to carry out 

RT-PCR analysis for that cell line.

Further positive confinnation for the generation of hTERT expressing cells was 

provided by sequence analysis of the PCR products using the ABI PRISM® 3100 

Genetic Analyzer as detailed in Section 2.2.6. A BLAST homology search 

demonstrated that the sequences isolated from the cells showed 100% similarity 

to the hTERT mRNA sequence. The sequence data is shown in Figure 4-10.

4.4.5.5 Propagation of transfected cell lines and investigation of 

telomerase activity

Stably transfected cell lines were maintained in normal growth medium 

supplemented with 400 pg/ml of G418 and passaged normally. However, after 

pooling of the initial islands o f transfected cells, the SFA/hTERT and 

AG08157/hTERT cell lines did not require further passage as in both cases the 

cells developed a senescent appearance and ceased replicating before reaching 

confluence. TRAP analysis confirmed that both hTERT transfected canine cell 

lines remained telomerase negative.

The GM847/hTERT cell line and the EQl/hTERT cell line were passaged 

normally upon reaching approximately 80% confluence, and at each passage cell 

pellets were retained for TRAP analysis. The results o f this analysis for 

GM847/hTERT are shown in Table 4-20. The GM847/hTERT cell line was
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passaged for 80 population doublings post transfection, and was shown to 

maintain a high level of telomerase activity throughout this time. The replication 

rate of the cell line remained steady with a mean population doubling time of 58 

hours (standard deviation of 17.1 hours). In contrast, the EQl/hTERT cell 

exhibited increasing population doubling time with increased passage, and after 

23.2 population doublings replication ceased (Figure 4-11). An untransfected 

EQl culture maintained in parallel underwent 23.0 population doublings before 

entering senescence, as also shown in Figure 4-11. SA-p-GAL staining was 

carried out in the final passages of both these cell lines, which at 80 and 85% 

positive were found to contain a majority of senescent cells, as shown in Figure 

4-12. Whilst TRAP analysis of the EQl/hTERT cell line proved telomerase 

negative at three separate time points corresponding to passages 5, 9 and 15, 

duplicate TRAP analysis of first passage transfected EQl/hTERT cells was 

telomerase positive, as shown in Table 4-21. RT-PCR carried out on RNA 

isolated from the three telomerase negative passages confirmed that hTERT 

mRNA could not be detected in any of the three, as shown in Figure 4-13.

In summary, generation of stable transfectants was successf.il in the SFA, 

AG08157, EQl and GM847 cell lines, as confirmed by RT-PCR and sequence 

analysis. Whilst hTERT expression was sufficient to reconstitute telomerase 

activity in a human ALT cell line, no telomerase activity was detected in the 

hTERT transfected canine fibroblasts. hTERT expression in the equine 

fibroblasts did reconstitute telomerase activity briefly, but this was not 

maintained, and the cells subsequently returned to a telomerase negative status.
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Figure 4-10. RT-PCR confirmation of hTERT mRNA in SFA/hTERT, 

GM847/hTERT and EQl/hTERT cell lines. Duplicate analysis for each cell 

line was carried out, using both random primers and gene specific primers for 

the generation of cDNA. Lanes 1 and 2 represent SFA/hTERT, lanes 3 and 4 

GM847/hTERT, lanes 5 and 7 EQl/hTERT, lane 6 is a negative control and lane 

8 contains a 1 kb plus DNA ladder. The DNHTOOl forward and reverse primers 

used for the amplification of the cDNA produce a 380 bp product in the presence 

of hTERT mRNA, therefore the results indicated successful transfection o f the 

SFA, GM847 and EQl cell lines.
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Figure 4-11. Sequence analysis of PCR products generated using the 

DNHTOOl forward and reverse primers for hTERT mRNA. In all three cases 

the sequence data shared 100% similarity with the hTERT mRNA sequence, 

confirming the expression o f hTERT mRNA in the EQl/hTERT, 

GM847/hTERT and SFA/hTERT cell cultures.

EQl/hTERT (nucleotide positions 2094-2454)

NGGNGGCGGGCGCCGGGCGTCCTGGGCGCCTCTGTGCTGGGCCTGGAACGATAT 
GGAGANTTNGGTGGGGGAGGTTGGTGGTGGGTGTGGGGGGGGAGGAAGGGGGGG 
GGTGAGGTGTAGTTTGTGAAGGTGGATGTGAGGGGGGGGTAGGAGAGGATGGGG 
GAGGAGAGGGT G AGGGAGG T GAT GGGGAGGAT GAT GAAAG G G GAGAAGAGGTAG 
TGGGTGGGTGGGTATGGGGTGGTCGAGAAGGGGGGGGATGGGGAGGTGGGGAAG 
GGGTTGAAGAGGGACGTGTGTAGGTTGAGAGAGGTGGAGGGGTAGATGGGAGAG 
TTGGTGGGTGAGGTGGAGGAGAGGAGGGGGGTGAGG

GM847/hTERT (nucleotide positions 2035-2422)

TAGTGTTGAGGGTGGTGAAGTAGGAGGGGGGGGGGGGGGGGGGGGTGGTGGGGG
GGTGTGTGGTGGGGGTGGAGGATATNGAGAGGGGGTGGGGGAGGTTGGTGGTGG
GTGTGGGGGGGGAGGAGGGGCGGGGTGAGGTGTAGTTTGTGAAGGTGGATNTNA
GGGGGGGGTAGGAGAGGATGGGGGAGGAGAGGGTGAGGGAGGTGATGGGGAGGA
TGATGAAAGGGGAGAAGACGTAGTGGGTGGGTGGGTATGGGGTGGTGGAGAAGG
GGGGGGATGGGGAGGTGGGGAAGNGGTTGAAGAGGGAGGTGTGTAGGTTGAGAG
AGGTGGAGGGGNAGATGGGAGAGTTTGGTGGCTGAGGTGGAGGAGAGGAGGGGG
TTGAGGGATG

SFA/hTERT (nucleotide positions 2084-2410)

AGGGTGNTNAAAGTAGGANGGGGGGGGGGGGGGGGGGGGGTTGGTGGGGGGGTG
TGTNGTGGGGGTGGAGGATATNGAGAGGNGGTGGGGGAGGTTGGTGGTGGGTGT
GGGGGGGGAGGAGGGGGGGGCTGAGGTGTAGTTTGTGAAGGTGGATGTGAGGGG
GGGGTAGGAGAGGATGGGGGAGGAGAGGGTGAGGGAGGTGATGGGGAGGATGAT
GAAAGGGGAGAAGAGGTAGTGGGTGGGTGGGTATGGGGTGGTGGAGAAGGGGGG
GGATGGGGAGGTGGGGAAGGGGTTGAAGAGGGAGGTGTGTAGGTTGNGANNGGT
GGG
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Table 4-20. Telomerase activity of GM847/liTERT cell line. TRAP analysis 

was carried out as described previously before transfection and at the passages 

indicated after transfection. RTA values are not included as the assays were 

carried out at different times. Telomerase activity was shown to be absent before 

transfection, and maintained at a high level after transfection. This human cell 

line control validated the suitability of the TransFast reagent for the transfection 

of PCIneo/hTERT. As represents the absorbance of the sample, and Aso the 

absorbance of the heat inactivated control of the sample.

Passage As Aso AAs AAs

Aso

Result

Pretransfection 0.072 0.051 0.021 0.4 NEC

3 2.039 0.050 1.989 3^8 POS

20 1.627 0.077 1.550 20.1 POS

25 2.197 0.084 2.113 25.2 POS

29 1.430 0.072 1.358 18.9 POS

48 1.557 0.053 1.504 2&4 POS
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Figure 4-12. Growth of untransfected and hTERT transfected EQl cells.

Both cell lines had equivalent replicative potentials o f 23 population doublings. 

The hTERT transfected cell line averaged 1.37 population doublings per passage 

(s.d. 0.51), whilst the untransfected cell line averaged 2.04 population doublings 

per passsage (s.d. 0.85).

EQl/hTERT

EQl
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n  20
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Figure 4-13. SA-p-GAL staining of EQl and EQl/hTERT ceil lines. Staining 

was carried out on the final passage (p i2) of the EQl cell line, shown in (a) 

below, and the final passage (p i7) o f the EQl/hTERT cell line shown in (b) 

below. These passages were found to contain 80 and 85% SA-P-GAL positive 

cells, confirming that both cultures were entering senescence.

(a) (b)
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Table 4-21. TRAP analysis of EQl/hTERT cell line. As is the absorbance of 

the sample, Aso the absorbance of the heat inactivated version of the sample, 

AAs was determined by subtraction of the mean of the heat-inactivated samples 

( A so or background) from A s, and A A g / A so is the ratio of sample to 

background activity. Samples were considered telomerase positive if the 

difference in absorbance (A A s) was greater than twice the background activity 

(A A s / A so > 2 .0 ). Using these criteria samples were designated positive (POS) 

or negative (NEG) for telomerase activity. The assays were carried out at 

different times, however all assays used the high activity positive control, and 

(A ts8-A  ts8,o) /A ts8,is valucs were between 2 and 4  for each assay. RTA values 

are not included as results of different assays are shown together.

Passage A s A so A A s /  Aso Result

1 0 .1 8 4 0 .0 3 2 4 .7 5 POS

1 0 .1 1 3 0 .0 3 0 2 .7 7 POS

5 0 .0 6 5 0 .0 4 9 <1 NEG

9 0 .0 4 9 0 .0 4 7 <1 NEG

15 0 .0 4 6 0 .0 4 6 <1 NEG
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Figure 4-14. RT-PCR investigation of hTERT mRNA expression in the 

EQl/hTERT cell line. RT-PCR investigation o f hTERT mRNA expression in 

passages 5, 9 and 14 of the cell line EQl/hTERT, corresponding to lanes 2, 3, 

and 4 respectively. Random primers were used for the generation of cDNA, the 

production of which was confirmed by PCR for the equine major 

histocompatability complex. The DNHTOOl forward and reverse primers were 

then used for the amplification of the cDNA to produce a 380 bp product in the 

presence of hTERT mRNA. Lane 5 is a positive control (GM847/hTERT), and 

lane 1 shows the 1 kb plus DNA ladder. These results demonstrate that hTERT 

mRNA is not expressed in any of the three passages.
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4.5 Discussion

4.5.1 Assessment of telomerase activity in canine and 

feline somatic and tumour tissues

A primary aim o f this chapter was to investigate the distribution of telomerase 

activity in canine and feline somatic and tumour tissues. To identify tissue 

specific telomerase activity in these species, TRAP analysis of post-mortem 

healthy organ samples from 5 dogs and 5 cats was canied out. This investigation 

found telomerase activity to be absent from a wide range of normal canine 

tissues including canine liver, cardiac muscle, lung, skeletal muscle and kidney, 

and feline brain, cardiac muscle, liver, skeletal muscle, lung, small intestine and 

kidney. The only canine sample in which telomerase activity was detected, 

resulting in an A A s / A so value of >2 .0 , was taken from the small intestine o f a 

6 -year-old male dachshund. The positive feline sample was testicular tissue 

harvested from a 15-year-old DSH. In both these cases, the tissues in question 

have previously been found to harbour telomerase activity in human samples. 

Wright et al found the tissue of the human testis to be telomerase positive, whilst 

mature human spermatozoa were telomerase negative (Wright, Mieczyslaw , et. 

al 1996). Similarly, stem cells of the lower intestinal crypt have been found to be 

telomerase positive using an immunohistochemical method in human sections 

(Forsyth, Wright, et al 2002). Overall, these data reveal that telomerase activity 

is absent from the majority of canine and feline somatic tissues, and highlight a 

marked similarity between the distribution of telomerase activity in human 

somatic tissues (Shay & Bacchetti 1997), and the tissues of the dog and cat.

Telomerase activity in the small intestine is likely a reflection of the replicative 

demand placed upon basal intestinal cells, and as this high turn over is common 

to the intestinal tracts o f both species it is unsurprising that a canine sample was 

also shown to be telomerase positive. Telomerase activity in the intestine is 

likely to vary with the rate of cellular turnover, which in turn may vary 

depending on factors such as the constituents of the diet and the feeding patterns
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of the individual animals. It is possible that these variables are the cause of the 

lower absorbencies o f the six other small intestinal samples (four canine and two 

feline).

Given the function of the testis and ovary and considering previous findings of 

telomerase activity in human gonadal tissue, the telomerase positive result for 

feline testis was not surprising, however a canine testicular sample, and a canine 

ovarian sample were found to have AAs / Aso values of < 2.0. Aside from the 

issue of telomerase RNA integrity, it is important to note that for a sample to 

have met the standard for classification as telomerase positive the requirement 

was for telomerase activity that was at least three times the level o f background 

absorbance. This was a highly stringent system, and it would therefore be 

misleading to categorically declare all samples that did not meet this standard as 

telomerase negative. For example, the testicular sample mentioned had an A A s /  

Aso value of 1.5, meaning that this sample contained telomerase activity that 

was 250 % greater than the background. It is for this reason that the low 

telomerase activity (A A s / A so values of between 1 and 2 ) class was included. 

Included in this class were a stomach and small intestinal sample from dogs CNl 

and CN2 respectively, in addition to the second testicular sample.

Even with a two-tier classification scheme the ovarian sample from CNl was 

still telomerase negative, however rather than this being the permanent state for 

that particular tissue it is likely that the activity of telomerase in canine and 

feline ovarian tissues fluctuates with time. This idea is based on recent findings 

in human ovarian epithelium where it has been shown that it is incorrect to 

regard this tissue as simply telomerase negative or positive; instead its status is 

dependant upon the level of the sex hormone oestrogen. This interaction is 

facilitated by oestrogen receptors that interact directly with a specific set of 

DNA sequences, the oestrogen response elements (EREs). The EREs are located 

in the 5' flanking regions of hormone-regulated genes, and can cause 

transcriptional silencing or activation o f the target. An ERE has been identified 

within the hTERT promoter, and it has recently been shown that addition of 

oestrogen to human ovaiy epithelium cell cultures results in the induction of
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hTERT expression and telomerase activity (Misiti, Nanni, et al 2000). An 

equivalent hormonal control mechanism operating in the dog is likely to result in 

mostly telomerase negative results for canine ovarian tissue, given the long 

periods o f anoestms and associated periods of low oestrogen levels in the bitch 

(Johnson 2000). This applies directly to the ovarian sample from CN l, as the 

animal concerned was 3 months old at time of sampling and therefore still 

prepubescent with basal oestrogen levels.

Telomerase activity was also assessed in a panel of 15 canine and 4 feline 

tumour sections harvested during both necropsy examinations and at the time of 

excisional surgery. The specific association between malignancy and telomerase 

activity has long been established in the human literature (Kim, Piatyszek, et al 

1994), and a large scale survey has found telomerase to be active in the majority 

of human cancers (approximately 80%, Shay & Bacchetti 1997). Given this 

evidence, the results of the survey carried out in this chapter point to a very 

similar association between telomerase activity and malignancy in the dog and 

cat. High telomerase activity (AAs / Ago >2 .0 ) was found in 13/15 canine 

tumours, and 4/4 feline tumours, equating to 89% of the tumour sample 

population. These results indicate that telomerase is active in the majority of 

canine and feline tumours. The low telomerase activity (AAs / Ago 1-2) found in 

duplicate analyses o f the remaining two canine tumours is very likely to be 

sufficient for continued cell division, however as work carried out in this chapter 

and elsewhere (Perrem, Colgin, et al 2001) has shown that ALT and telomerase 

activity can coexist in vitro it is possible that the lower telomerase activity in the 

two samples may be supported by other telomere maintenance mechanisms.

It is also possible that partial degradation of telomerase RNA might have lead to 

the two lower telomerase results, however considering that all the tumour 

samples were handled in the same manner this is thought to be an unlikely 

explanation. In both cases the internal standard of the PCR reactions worked 

normally indicating there were no inhibitors of the PCR reaction active in the 

samples. A third possibility is that the particular sample contained too few 

malignant cells to be detected by the assay. Whilst there will be inherent
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variability in the cellular composition of different tumour samples this is not felt 

to be a major issue for two reasons; first all tumour sections were sampled by 

harvesting thin full transverse sections of the tissue thus ensuring that tumour 

cells in the core o f the section, and not surrounding normal tissues were 

analysed. Second, the PCR based TRAP assay is known to be highly sensitive 

and capable of detecting telomerase activity in as few as 10 positive cells (Shay 

& Bacchetti 1997). The most plausible explanation is that the Tow’ telomerase 

activity was simply sufficient for the replicative demands of the two tumour 

samples in question.

In addition, telomerase activity was assessed in a number of immortalised canine 

and human cell lines, and all of these were found to be telomerase positive with 

the exception o f the human cell line GM847, which is known to use an ALT 

mechanism for continued proliferation (Bryan, Englezou, et al 1995). In this 

case the RTA values were usehil in that they provided a semi-quantitative 

comparison of telomerase activities between the cell lines. This analysis showed 

that the CMT3 cell line had relatively the greatest telomerase activity of all the 

canine cell lines tested. The fact that a greater than 10-fold difference in RTA 

value between the canine cell lines with the highest and lowest activities (CMT3 

and A72 respectively) existed clearly demonstrated that relatively low 

telomerase activity can allow cellular replication to proceed. That such a broad 

range exists reinforced the idea that the two borderline tumour samples 

discussed above might well overcome end replication problem by telomerase 

activity alone.

Overall, the results of the TRAP analysis have demonstrated that telomerase 

activity is absent from the majority of canine and feline somatic tissues. Tissues 

that did contain telomerase activity either contained germ line cells, or were 

from tissues that are subject to a high replicative burden. In contrast, telomerase 

activity was detected in all the samples from a panel of canine and feline 

tumours, and all canine immortalised cell lines that were tested, linking 

telomerase reactivation in the dog and cat with immortalisation and malignancy.
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4.5.2 The in vitro inhibition of telomerase activity using 

the RTI AZT-TP

The use of RTIs to target telomerase in malignant cells is an approach that has 

recently shown some success in human leukaemia cell lines (Brown, Sigurdson, 

et al 2003). The experiment described in this chapter investigated the effect of a 

30 pM concentration of the RTI AZT-TP on two telomerase positive immortal 

canine cell lines, MDCK and CMT7 (cell lines detailed in Section 2.2.1.2). The 

ultimate goal of such a treatment is to reduce telomerase activity in the target 

cells to such an extent that end replication problem will eventually result in 

growth arrest or apoptosis via critically short telomeres. The concentration of 

drug used was determined in an initial calibration study, and corresponded to the 

highest concentration of drug to which the cells could be exposed without 

inducing an acute cytotoxic effect. This concentration was significantly less than 

the 100 pM of AZT-TP to which human immortalised cell lines were exposed in 

a similar study, (Strahi & Blackburn 1996). This is likely a reflection o f species 

differences between the human and canine cell lines.

The experiment ran over a course of 32.5 population doublings for the CMT7 

and 45.3 population doublings for MDCK AZT-TP treated cell lines. The 

experiment was discontinued at these points due to the economic consideration 

of the cost of AZT-TP, in addition to which data gained from further population 

doublings would be o f little relevance to the possible usefulness of the drug in 

the in vivo setting, as beyond these limits the majority of canine malignancies 

would have already proven fatal to the affected animal. The relatively poor 

effect of the drug on the replication rates of the treated cell lines, (i.e. 3.7 and 6.7 

fewer population doublings over the entire experiment for the CMT7 and 

MDCK cell lines respectively), was reflected in the negligible effect on the 

telomere lengths o f the treated cells. This is interesting as in the MDCK cell line, 

monitoring o f RTA values indicated that at several time points in the experiment 

telomerase activity was reduced in the AZT-TP treated cells compared with the 

controls. This indicated that residual telomerase activity in the treated cell lines 

was sufficient to maintain telomere length in the face of partial inhibition. This
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again indicated that a wide range of telomerase activity is capable of supporting 

replication in canine cell lines, and raised the potential that a successM single 

agent telomerase inhibitor may need to almost completely inhibit telomerase 

activity in target cells before this translates to a reduction in telomere length 

sufficient to result in growth arrest or cell death. Whilst these findings are 

disappointing, and similar to the results of an experiment carried out in human 

immortalised cell lines (Strahl & Blackburn 1996) it was important to determine 

that species differences did not effect the susceptibility of canine cells to the RTI 

inhibitor. Furthermore, the efficacy o f RTI inhibitors such as AZT-TP may be 

greatly enhanced by the conciiiTent use o f other agents that target the telomere 

itself (e.g. Telomestatin, Tauchi, Kazuo, et al 2003). The specific example of 

Telomestatin is given as this agent, which inhibits telomerase by the formation 

of stable G-quadruplexes at the telomere terminus, also appears to act at least 

partly by causing telomere dysfunction (Tauchi, Kazuo, et al 2003). This effect 

will complement the use of RTIs by helping to alleviate any Tag effect’ caused 

by the strategy of targeting telomerase alone.

4.5.3 Ectopic expression of hTERT in primary 

fibroblasts

The generation o f stable transfectants was successful in the SFA, AG08157, 

EQ l and GM847 cell lines, as confirmed by RT-PCR and sequence analysis. 

Whilst hTERT expression was sufficient to reconstitute telomerase activity in a 

human ALT cell line, no telomerase activity was detected in the hTERT 

transfected canine fibroblasts. hTERT expression in the equine fibroblasts did 

reconstitute telomerase activity briefly, but this was not maintained, and the cells 

subsequently returned to a telomerase negative status.

The successful entry of DNA into primary fibroblast cultures is difficult due to 

their limited replicative potential and relative resistance to DNA transfection 

(Quilliet, Chevallier-Lagente, et al 1996), however a number of different 

strategies have evolved to facilitate this process. These methods include lipid 

mediated transfection, calcium phosphate transfection, diethylaminoethyl
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(DEAE)"dextran transfection, electroporation, biolistics, polybrene, and virus 

mediated transduction, (reviewed in Sambrook & Russell 2001) and (Ausubel, 

Brent, et al 1994). All these methods rely on different strategies to negate the 

repulsion between the negatively charged DNA and the negatively charged cell 

membrane to allow successful DNA entry to the target cells, or they facilitate 

this entry by a physical (electroporation and biolistics) rather than a biochemical 

means. Lipid mediated transfer strategies were used in this chapter as these 

techniques are recommended for use in difficult situations (i.e. primary cultures) 

where other methods have proved unreliable (Thompson, Frazier-Jessen, et al 

1999).

Both of the liposome formulations used (TransFast and Lipofectamine) are 

commercially available, and both have been successful with a wide variety of 

cell types, including for the Lipofectamine reagent primary fibroblasts (Baker & 

Gotten 1997). The charge ratios and other conditions that were found to be 

successful for canine, equine and human cells were typical for those described in 

the manufacturer’s recommended protocols, and validate the choice of reagents. 

However the manufacturers also note that individual variation in cell lines can 

result in failure of tested methodologies in specific cases, and this was tme for 

the primary feline cell cultures. This particular type of culture has previously 

been shown to be resistant to transfection using a liposome formulation (Koksoy, 

Phipps, et al 2001). Furthermore, lipid mediated transfection is known to result 

in variable toxicity in different cell lines (Sambrook & Russell 2001), and the 

fact that the feline culture used in this project did not survive the procedure 

despite repeated attempts and the use of transfection medium that included 

semm would suggest that the feline fibroblast is at the upper end of this variable 

toxicity range.

As the main aim o f the experiment was to investigate the species specificity of 

the hTERT gene product, hirther work concentrated on the successfully 

transfected canine cell lines (SFA and AG08157). The fact that neither of the 

transfected cell lines required passage immediately suggested that telomerase 

activity had not been reconstituted and that the cells had entered senescence. 

TRAP analysis confirmed that both cell lines remained telomerase negative after
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transfection, and the phenotypic appearance o f the cells indicated they were 

senescent. This could not be confirmed by SA-p-GAL staining as the number of 

cells available never exceeded one sub confluent T25 flask for each culture, and 

the overriding priorities were the confirmation o f transfection and analysis for 

telomerase activity.

It is interesting that neither the SFA/hTERT or the AG08157/hTERT cell line 

required passage despite how each entered the experiment at passage 2 , with the 

majority of replicative potential intact. This may be explained by the very low 

transfection efficiency of the PCIneo/hTERT constmct. In each case, it was 

noted that only three or four distinct ‘islands’ of transfected cells repopulated the 

test flasks after transfection and the introduction of selective medium. 

Considering that each of these islands derived possibly from only one cell, it is 

not surprising that the cultures reached replicative exhaustion before confluence. 

However, this did not occur with the equine cell line, EQl/hTERT. This cell line 

underwent 17 passages before finally entering senescence, as confirmed by SA- 

P-GAL staining. This discrepancy is probably due to one or possibly two factors. 

First, as confirmed by the control EQl cell line (see Figure 4-11), the equine 

cells had almost twice the replicative potential of the two canine cell lines (see 

Figure 3-12). Second, transfection of the equine cell line was more efficient than 

the canine cell lines, resulting in a greater pool of cells to begin the new culture.

Despite the fact that telomerase activity was briefly detected in one early passage 

of the EQl/hTERT cell line, this did not increase the replicative potential, as 

shown in Figure 4-11. Why this cell line should subsequently revert to a 

telomerase negative status was investigated with further RT-PCR analysis for 

liTERT mRNA. The negative results from three later passages of post 

transfection EQl/hTERT cells implied that hTERT was no longer expressed in 

the cells, explaining the telomerase negative status. The reason for this loss of 

hTERT mRNA is likely due to the selection process that occurred after the 

introduction of selective medium containing G418. Despite the efforts made to 

confirm that the transfected vector contained the required insert (Figure 4-8) it is 

possible that some empty vector was also transfected into the primary equine 

cells, providing G418 resistance without expressing hTERT. These empty vector

227



cells might have a survival advantage and overgrown hTERT-expressing cells in 

the culture. It is also possible that the PCIneo/hTERT construct removed the 

hTERT insert post-transfection, thus producing cells containing empty PCIneo 

vector. Alternatively, mutation in the primary culture could have enabled 

untransfected cells to survive in selective medium, and again overgrow hTERT- 

expressing cells.

The finding that hTERT had the capacity, albeit briefly to reconstitute 

telomerase activity in a primary equine culture raises the question o f why this 

was not possible in the primary canine cell lines in which hTERT mRNA was 

detected. The main issue surrounding this question is the fact that the experiment 

was earned out with the premise that hTERT regulation alone determined the 

telomerase status of the cell lines investigated. This was not an unreasonable 

presumption, given that ectopic expression of hTERT is sufficient to reconstitute 

telomerase activity in a number o f human tissues (Bodnar, Ouellette, et al 1998), 

and given the experimental success detailed in this project with the 

GM847/hTERT cell line. However, evidence exists that hTERT status is not 

alone in determining whether telomerase is active (Liu, Schoonmaker, et al

1999). Successful activation of telomerase in the canine cell lines would require 

that no post-transcriptional inhibition of hTERT mRNA was active, and that the 

hTERT gene product associated successfully with mature canine telomerase 

RNA in a process that would require the participation o f numerous cellular 

factors for both maturation o f the RNA and association o f this factor with the 

catalytic component (reviewed in Collins & Mitchell 2002). It is not 

unreasonable to suggest that one o f these many factors, including cleavage of the 

primary telomerase RNA transcript; primary and secondary structural 

rearrangements to facilitate association with the catalytic component (Mitchell & 

Collins 2000), and association with other protein elements necessary for 

maturation (Martin-Rivera & Blasco 2001) may have been inactive, inhibited or 

otherwise unsuited to the production of functionally active telomerase. That the 

experiment was transiently successful in an equine cell line underscores the 

point that differing status o f these co-factors, rather than species variation might 

be the cause of the continued telomerase inactivity in the hTERT transfected 

canine cell lines. An avenue for further investigation is to test this hypothesis by
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repeating the experiment using the recently cloned cTERT sequence (submitted 

for review Nasir, Gault, et al, 2004).
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4.6 Summary

The experiments detailed in this chapter have demonstrated that telomerase 

activity is strongly down regulated in a wide range of somatic tissues of the dog 

and cat. The only normal tissues found to contain telomerase activity at a low 

level were canine and feline testis, and canine small intestine and stomach. 

Telomerase activity in canine and feline tissues is however associated with 

immortalisation and malignancy; telomerase activity was detected in 19/19 

tumour samples analysed. Telomerase activity was also detected in a panel of 

canine immortalised cell lines, and the relative telomerase activity in these cell 

lines was similar to that detected in immortalised cell lines of human origin. The 

attempt to reconstitute telomerase activity in canine and feline primary 

fibroblasts was ultimately unsuccessful. Whilst the hTERT sequence was 

successfully transfected into primary canine fibroblast cultures, the cells 

remained telomerase negative and entered replicative senescence normally. This 

may be a product of significant differences between the human and canine TERT 

sequences. Overall, the biology of telomerase in the dog and cat is very similar 

to that found in humans, and the research described in this Chapter has identified 

telomerase as a promising target for the development of future cancer treatments 

for companion animals.
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Chapter V 

Gene expression profiling in 

association with telomerase 

reactivation and the onset of 

replicative senescence

5.1 Abstract

Telomeres and telomerase show considerable promise as targets for new anti- 

cancer treatments; flirthemiore they may provide insights into the mechanisms of 

phenotypic ageing, and therapeutic reactivation of telomerase may have 

applications for the treatment of conditions where loss of replicative potential is 

a major part of the pathology, such as liver cirrhosis. This wide range of 

potential applications is reflected in the availability of a wealth o f infoimation on 

the biology of telomeres and telomerase in the human literature; however there is 

a paucity of information regarding the wider effects of replicative senescence 

and telomerase reactivation on the transcriptome of the mammalian cell. A wider 

view of the effects of telomeric attrition and telomerase reactivation than is 

currently available will be necessary to assess the safety of any potential 

therapeutic intervention involving telomeres and telomerase. Recent

technological advances in the development of cDNA micro arrays, typified by 

Affymetrix GeneChips® have allowed researchers to take a global view of 

changes in gene expression in human cells, and this technology can be used to 

investigate the cellular consequences o f telomeric attrition and telomerase
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reactivation at the level of the transcriptome. The experiments detailed in this 

Chapter describe the use Affymetrix technology to carry out an investigation of 

the changes in mRNA expression levels as canine primary fibroblasts change 

from actively replicating to senescent, and following the reconstitution of 

telomerase activity in a human cell line.
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5.2 Introduction

Genome projects worldwide have vastly increased our knowledge of the 

genomic sequences of humans and other organisms, as well as the genes that 

they encode. However, until relatively recently the study of the regulation and 

function of these genes has been restricted to labour intensive step-by-step 

analysis of individual genes. The last decade has seen a major advance in the 

field with the advent of DNA microarrays, consisting of thousands of DNA 

probes immobilised on a solid surface and hybridised against fluorophore 

labelled cDNA or cRNA targets from template RNA sources. Although the 

technology is heralded as breakthiough it is in essence a variation of a standard 

Southern Blot (Southern 1979) with the traditional nitrocellulose membrane 

replaced by a glass slide. DNA microaiTays, along with Serial Analysis of Gene 

Expression (SAGE) (Patino, Mian, et al 2003) have become the core technology 

used in gene expression profiling, and are also o f major importance in the fields 

of comparative genomics and genotyping (Harrington, Rosenow, et al 2000). 

The main reason for the wide application of this technology is the growing 

awareness of the limitations imposed upon what may be extrapolated from 

research based around a ‘gene by gene’ approach, as typified by the Northern 

blot (Ausubel, Brent, et al 1994). If the aim of genomics is to advance 

understanding of the organisation and evolution of genomes (McKusick & 

Ruddle 1987) then attempting to place the relevance of each single gene 

individually is a hopelessly ineffective approach to a biological system with the 

complexity of a mammalian genome containing 30,000-40,000 genes (Venter, 

Adams, et al 2001) and with complexities such as polymorphic variation, time 

and place of expression of RNAs and intermolecular interaction of gene 

products.

DNA microarrays take a ‘global’ approach to gene expression studies, allowing a 

simultaneous readout of all the relevant components at a given time, thus 

allowing for rapid assessment of gene expression profiles in disease states and 

thereby representing a technological breakthrough in the analysis of biological 

specimens. The technology also allows researchers to take a broader view than
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was possible before the advent of the technology, and this global approach allows 

the identification of complex patterns of interaction that are invisible at the 

individual component level. In effect, the more genes and biological conditions 

studied simultaneously the more obvious the underlying organisation becomes.

5.2.1 Applications of microarray technology

Microarray technology, despite being relatively new, has already proved very 

useful to researchers and has lead to significant advances in the molecular 

classification of tumours and the discovery of subsets previously not known to 

exist. Notably, gene expression profiling using a DNA microarray has led to the 

discovery of two distinct forms of diffuse large B-cell lymphoma likely arising 

from two distinct non-transformed cellular progenitors. These two new groups 

are associated with significantly different prognoses, and thus the use of the 

technology has directly lead to more reliable predictions of the clinical course of 

the disease and the expected treatment response (Alizedeh, Risen, et al 2000).

Furthermore, use of a DNA microarray has allowed Sorlie et al to classify breast 

carcinomas by gene expression profile. This system is sufficiently robust to be 

used as a basis for judgements on prognosis in a subset of patients receiving 

uniform therapy and has lead to the identification of a subset of tumours based 

on an oestradiol receptor positive group not previously known to exist. This 

example is particularly interesting as it represents an advance in understanding 

directly attributable to the microarray approach where previous research based 

on individual genes in isolation could not correlate established findings with 

clinical outcome (Sorlie, Pérou, et al 2001). Microarray technology also has 

potential for use in dmg discovery applications by facilitating identification of 

novel di'Lig targets. The technology has already proved useful in antibiotic 

development (Ivanov, Schaab, et al 2000).

A clear application o f this technology to the field of telomere biology is the use 

o f micro arrays to help assess the safety of telomerase reactivation as a 

therapeutic approach to conditions such as liver cirrhosis (Rudolph, Chang, et al
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2000) and large bone defects (Shi, Gronthos, et al 2002). O f paramount 

importance to such a therapeutic strategy will be the safety o f reactivating 

telomerase in an already diseased tissue given the clear association between 

telomerase and cancer (Kim, Piatyszek et al 1994), Initial studies have identified 

an encouraging lack of cancer associated changes in the phenotype of telomerase 

immortalised cells (Jiang, Jimenez, et al 1999) (Morales, Holt et al, 1999), 

however an association between immortalisation by telomerase and activation of 

the oncogene c-myc has been found in human mammary epithelial cells 

(Wang,J, Hannon,G et al 2000). This study alone suggests that the use of 

telomerase reactivation for therapeutic puiposes must be approached with 

caution. To this end, the global view of the transcriptome provided by 

micro array technology provides an excellent tool with which to identify 

previously overlooked consequences of telomerase reactivation and telomeric 

attrition.

5.2.2 Microarray platforms

The two main forms of arrays are cDNA, ‘spotted’ arrays and oligonucleotide 

aiTays. The technology is essentially the same in both types, and consists of well 

characterised and annotated hybridisation probes arranged on glass microscope 

slides or nylon membranes, against which sample fluorophore labelled cDNA or 

cRNA is applied and allowed to hybridise. The advantage o f  the spotted arrays is 

that they may be manufactured in the laboratory, and therefore tailored to suit 

specific experimental needs. Such arrays are usually robotically spotted onto 

glass slides by a commercially purchased ‘arrayer’ robot. The main advantages 

o f the oligonucleotide arrays are that they are much more comprehensive; the 

manufacturing process allows significantly smaller individual spots to be 

produced (50-150 um in diameter, McGall, Barone, et al 1997) allowing 

approximately 15,000-20,000 genes to be accommodated on each array, rather 

than the several hundred genes usually represented on spotted arrays. This 

allows inteiTOgation of the entire transcriptome, allowing the detection of 

relevant changes that would be missed by a tailored anay. Second, as 

oligonucleotide arrays are available commercially, this technology facilitates 

comparison of results between laboratories. Oligonucleotide array technology is
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typified by Affymetrix GeneChip ' arrays, an overview of which is provided in 

Figure 5-1, As these arrays were used in all the experiments detailed in the 

chapter this technology will be the focus o f discussion.

5.2.3 Affymetrix GeneChip® arrays

The GeneChip® (Affymetrix, Santa Clara, CA) oligonucleotide arrays consist of 

high-density synthetic oligonucleotide probe sets on a 1.28 x 1.28 cm glass 

surface, with a capacity of up to one million probe sets per aiTay in experimental 

versions. The system has the advantage that sequence data alone is sufficient for 

array manufacture without intermediate steps such as cloning or FCR. In 

addition as little as 200 to 300 bases of sequence is required to generate 

independent, usually non-overlapping 25 base oligonucleotide probe sets unique 

to the target. The sequence chosen for oligonucleotide formation is usually 

selected from the 3' end of the gene sequence to reduce problems that might 

arise from the use of partially degraded mRNA.

A number of controls are built into the system to reduce the likelihood of false 

positives and interference from background signal. Crucial to the process is the 

use o f probe redundancy, meaning that a number of oligonucleotides of varying 

sequence are designed to hybridise to different regions of the same mRNA. The 

use of multiple detectors for the same molecule augments results by improving 

signal to noise ratios (due to averaging over the intensities of multiple array 

features) and improves the accuracy o f RNA quantitation (by averaging and 

outlier rejection). This greatly reduces the effects of cross-hybridisation and 

miscalls (Lipshutz, Fodor, et al 1999), and allows the system to provide an 

accurate representation of the relative abundance of each targeted transcript in 

the sample, referred to as the expression value.
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Figure 5-1. Overview of a GeneChip microarray experiment. The aim of

any microarray experiment is to detect a given mRNA species (transcribed 

genes) in a tissue or ceil type. In a GeneChip experiment this is achieved by 

reverse transcribing the RNA isolated from the sample to the more stable cDNA 

state. In vitro transcription is used to produce biotin labelled cRNA that is 

hybridised to the array surface, and stained with a fluorophore for detection.

Cell / tissue sample

Isolate total RNA

Reverse transcriptase

In vitro transcription

cDNA

Biotin labelling

cRNA

I
Hybridise to GeneChip array

I
Stain with phycoerythrin

I
Laser excitatation and image capture
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A second control is the use of mismatch (MM) oligonucleotides for every perfect 

match (PM) contained on the array. MM oligonucleotide probes differ by only 

one base in a central position from their PM counterparts, and therefore allow a 

direct subtraction of background signal to be made for each probe set, in addition 

to providing another specificity safe-guard. The use of PM/MM probe sets are 

the best way to ensure that fluorescence signals are being generated by the 

intended target mRNA, and allow accurate quantification of the RNA molecule 

in the target solution (Lipshutz, Fodor, et al 1999).

5.2.3.1 Affymetrix data collection and normalisation

The fluorophore signal from the hybridised target cRNA (Figure 5-1) is 

stimulated by means of laser excitation directed through the back of the glass 

array support focussed at the interface of the array surface and the target 

solution. Fluorescence emission is collected by a lens coupled to a sensitive 

detector through a series of optical fibres allowing a two-dimensional image of 

hybridisation intensity to be obtained. These images must then be analysed to 

identify arrayed spots and measure the relative fluorescence intensities. A typical 

GeneChip® DNA array is the Human genome (HG)U133-A and B chipset, which 

contains over 1 million oligonucleotides targeting over 33,000 human genes in a 

two chip set. A representative scan image from a HGU133-A GeneChip is 

shown in Figure 5-2.

Each GeneChip® experiment presents researchers with a very large volume of 

information, so much so that initial problems with the technology tended to 

revolve around data analysis rather than experimental procedure. Data analysis 

software, designed to reliably extract biological information and aid meaningful 

interpretation has been developed in tandem with the technological hardware. 

The GeneChip® array images utilised in this chapter used Affymetrix® 

Microarray Suite software (MAS) for acquisition and processing of the 

GeneChip generated data. This software package also provides indicators of 

sample integrity, assay execution, and hybridisation performance through the 

assessment of control hybridisations. The MAS software evaluates the
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abundance of each transcript represented on the array and labels it as either 

present, absent or marginal. An algorithm identifies and removes contributions 

from stray hybridisation signals, and combines the results from probes that 

interrogated different fragments of the same transcript. The statistical 

significance of each detection call is indicated by an associated p-value.

The software allows for adjustments to be made to sensitivity and specificity as 

appropriate for a particular experimental design, for example if the main thmst 

of the experiment is high sensitivity the parameters may be changed, requiring a 

less stringent p-value for a positive call. This has the effect of increasing the 

sensitivity, however the number of miscalls is increased.
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Figure 5-2. Representative Affymetrix GeneChip array scan for HGUI33-A

chip. The chip contains a total of 22,283 oligonucleotide targets with which 

fluorescently labelled complimentary nucleic acid targets may bind. Subsequent 

laser excitation through the glass back o f the array cartridge produces 

fluorescent emission that is recorded as the final image. The complexity o f the 

resultant scan is only appreciable when magnified, as shown in the 12x- 

magnified image below on the right. Automated image capture and processing is 

carried out using microarray suite software (Affymetrix), and analysis of the 

processed results uses GD Expressionist Analyst and Refiner software 

(Genedata).

GeneChip
cartridge

Captured array scan image 12x magnified
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InteiTOgation of the processed results is then performed using GD 

Expressionist^^ Refiner and GD Expressionist^M Analyst software (Genedata, 

Basel, Switzerland). The Expressionist software is a bundle of client seiwer 

based programs that are specifically for use with Affymetrix technology (for 

tutorial see http:/AYWvv.msi.umn.edu/software/expressionist/). The Refiner is a 

tool for assessing, standardising and tracking microarray data. It allows quality 

control when comparing data from different GeneChip microarrays, identifying 

and highlighting errors in individual microarrays and standardising the data 

quality from all arrays in the experiment. The Analyst component allows user 

defined investigation o f the biological context of the standardised data. For 

example, this program allows a direct comparison of gene expression levels at 

different time points in an experiment using data obtained from separate 

microarrays.

5.2.4 Chapter aims

The aims and objectives o f  this chapter were

1. To investigate changes in gene expression with increasing cell division in a 

primary canine fibroblast culture (SFA) as the cells switched from actively 

replicating to senescent, and to identify potential genes that may be associated 

with cellular ageing and limiting cell proliferation.

2. To investigate changes in gene expression profiles in human ALT 

immortalised cells (GM847) following reactivation of telomerase activity, to 

identify genes that may be associated with an immortalised phenotype.
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5.3 Materials and Methods

5.3.1 Sample details
5.3.1.1 SFA

Cell pellets containing 2 x 1 0 ^  cells were harvested at passage from passages 2 , 4 

and 10 of the primary canine fibroblast cell culture SFA as described elsewhere 

(Section 3.3.1.4). Cells were washed in ice-cold PBS, repelleted and after 

removal of the supernatant were flash frozen in LNO2 and stored at -80“C until 

required. These passages were chosen to reflect a change in the culture from 

actively replicating, (at passage 2 < 5% SA-(3-GAL positive) to a majority of 

senescent cells (at passage 10 80% SA-p-GAL positive), as detailed in Section 

3.4.4.3. Too few cells were available from the two later passages of the SFA 

culture for analysis.

5.3.1.2 GM847 and GM847/hTERT

Pellets of 2 xlO^ cells were harvested at passage and stored as described above. 

Four time points were analysed in this experiment, the first corresponding to the 

passage of the GM847 cell line that was used for the hTERT transfection 

experiment (p i3). The remaining three time points utilised different passages of 

the hTERT expressing, telomerase positive cell line GM847/hTERT, including 

p i, p l9  and p26.

5.3.2 Isolation of total RNA from canine fibroblasts

Total RNA was isolated from primary canine fibroblast cultures using the 

RNeasy Total RNA Isolation Kit (QIAGEN, UK) following the manufacturer’s 

recommended protocol. Isolated RNA was eluted in 35 pi of RNAse free water 

and then precipitated by addition of 1/10 volume of 5 M NaOAc at pH 5.2 

(Sigma, UK), and 2.5 volumes of 100% ethanol. Samples were thoroughly 

mixed and incubated at -20°C for one hour before pelleting at 14000 g for 20
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minutes at 4°C. Glycogen (Ambion, UK) was added (1 pi o f a 5 mg/niL 

solution) as a co-precipitant to aid visualization of the RNA pellet. RNA quality 

and quantity were confirmed using the Nanodrop and Agilent 2100 Bioanalyzer 

(Agilent Technologies). A2 6 0 /A 2 8 0  ratios between 1.9 and 2.1 were considered 

acceptable.

5.3.3 Synthesis of double-stranded cDNA from total 

RNA
5.3.3.1 First strand cDNA synthesis

Synthesis reactions were carried out in 1.5 ml RNAse free tubes. A 5 pg amount 

o f total RNA was used for each sample. This protocol uses only high 

performance liquid chromatography (HPLC)-purified T7 01igo(dT)24 primer 

(100 pmol/pl, Affymetrix) as this is essential for efficient downstream 

applications. RNA and primer were made up to a total volume of 20 pi with 

DEPC treated H2 O. Primer hybridisation proceeded for 10 minutes at 70“C 

followed by a brief centrifugation step and quenching on ice. To each sample 4 

pi o f 5x First strand cDNA buffer (Invitrogen, UK), 2 pi of 0.1 M DTT and 1 pi 

o f 10 niM dNTP mix (Invitrogen) were added, samples were mixed well and 

then incubated at 42®C for 2  minutes. A volume containing 200 U of Superscript 

11 reverse transcriptase enzyme (Invitrogen) was then added to each sample, 

mixed thoroughly and incubated at 42“C for 1 hour.

5.3.3.2 Second strand cDNA synthesis

First strand reactions were placed on ice following a brief centrifugation step to 

bring down condensation on tube sides. To each sample was then added the 

components of the second strand reaction; 30 pi of 5x second strand reaction 

buffer (Invitrogen), 3 pi of a 10 mM dNTP mix, 10, 40 and 20 U each of the 

enzymes E.coli DNA Ligase, E.coli DNA polymerase 1 and E.coli RNAse H 

respectively (all sourced at Invitrogen), and 91 pi of DEPC treated water for a 

final total volume of 170 pi. Second strand reaction mixtures were gently mixed 

and then incubated at 16"C for 2 hours, after which 10 U of T4 DNA polymerase

243



was added to each sample, samples were returned to 16“C for a 5 minute 

incubation before addition of 10 pi of 0.5 M EDTA to each sample. Samples 

were then ready for a cDNA clean-up procedure.

5.3.4 Clean-up of double-stranded cDNA

The cDNA clean-up procedure involves a standard phenol/chloroform/isoamyl 

alcohol extraction and the use of phase lock gel (PEG) (Eppendorf, UK) in 1.5 

ml eppendorf tubes. PEG forms an inert seal between the aqueous and organic 

phases and so allows complete recovery of the aqueous phase without 

contamination from the interphase. An equal volume o f (25:24:1) 

phenol'.chlorofonn;isoamyl alcohol saturated with 10 mM Tris-HCl pH 8.0, 1 

mM EDTA was added to the final cDNA synthesis preparation and vortexed 

before transfer to the 1.5 ml eppendorf tube containing pelleted PEG. Samples 

were then centrifuged at 14000 g for 2 minutes, and the resulting upper aqueous 

phase transferred to a fresh 1.5 ml tube.

5.3.5 Ethanol precipitation

Precipitation of purified cDNA was achieved by addition of 0.5 volumes of 7.5 

M NH4 OAC and 2.5 volumes of absolute ethanol (stored at -20°C) followed by 

vortexing. cDNA was immediately pelleted by centrifugation at room 

temperature for 2 0  minutes, followed by two wash steps in 80% ethanol (stored 

at -20°C). cDNA pellets were then air dried thoroughly before resuspension in 12 

pi of RNAse-free water.

5.3.6 Synthesis of biotin-labelled cRNA

In vitro transcription (IVT) and biotin labelling were carried out using the 

ENZO® Bioanay High Yield RNA transcript labelling kit (Affymetrix). Briefly, 

5 pi of each of the 12 pi cDNA samples were used per reaction, 7 pi being held 

in reserve. To each 5 pi sample was added 4 pi of lOx HY reaction buffer, 4 pi 

of biotin labelled ribonucleotides, 4 pi o f lOx DTT, 4 pi of lOx RNAse inhibitor
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mix, 2 pi of 20x T7 RNA polymerase and 17 pi of DEPC treated water for a 

total volume per reaction of 40 pi. Reactions were mixed by gentle pipetting, 

briefly spun to bring down mix from the sides of the reaction vessels and 

incubated at 37°C for 4 hours. This is the optimal time for producing good 

quality biotin labelled cRNA; overnight incubation has been found to produce 

relatively shorter products.

5.3.7 Clean-up and quantification of IVT products
5.3.7.1 Clean-up procedure

Clean up of IVT products are essential for 260 nm absorbency readings to truly 

reflect the quality of the cRNA product. Clean up facilitates this by removing all 

unincorporated NTPs from the reactions. Phenol/choloform extraction may not 

be used in this instance as the biotin label will cause some of the cRNA to 

partition into the organic phase and result in a low yield. Instead clean up was 

carried out using RNeasy spin columns (Qiagen) following the manufacturers’ 

standard protocol. A 20 pi volume of each 40 pi cRNA sample was used in the 

clean-up procedure, the other 20 pi being held in reserve to minimise the chance 

of the sample being lost completely.

5.3.7.2 Quantifying the cRNA

Spectrophotometric analysis was carried out on 1 pi of each sample using the 

Nanodrop® ND-IOOO system (Nanodrop technologies, Portland, DE). Yields of 

0.6 pg/ul or above and A2 6 0 /A2 S0 ratios between 1.9 and 2.1 were considered 

acceptable. Adjusted cRNA yields were calculated for each sample to reflect the 

carryover of unlabelled total RNA in each sample. Using an estimate of 100% 

carryover the true yield is determined by the formula:

adjusted cRNA yield = RNAm-(total RNAi)(y) 

where,

RNAm = amount of cRNA measured after IVT (pg) 

total RNAi = starting amount of total RNA (pg)
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y = fraction of cDNA used in IVT reaction

5.3.8 Fragmentation of cRNA for target preparation

A 20 pg amount of cRNA was used per sample for fragmentation, A minimum 

concentration of 0.6 pg/pl of cRNA allows each reaction to be carried out in a 

40 pi volume consisting o f 8 pi of 5x fragmentation buffer, cRNA and RNAse- 

free water. Fragmentation was carried out at 94”C for 35 minutes after which 

samples were quenched on ice. A 1 pi aliquot from each sample was used for 

confiiination of fragmentation using the Agilent 2100 Bioanalyzer. Fragmented 

RNA was then stored at -20°C until hybridisation.

5.3.9 Target hybridisation

Array chips used in these experiments were standard size human genome 

HGU133A, requiring 15 pg o f fragmented cRNA per hybridisation reaction. In 

addition the hybridisation cocktail contained 3 pi of 10 mg/ml Herring sperm 

DNA, 3 pi of 50 mg/ml acetylated BSA, 150 pi of 2x hybridisation buffer and 

20 pi of hybridisation controls. These comprised 15 pi o f a 20x Eukaryotic 

hybridisation control mix containing transcripts for the prokaryotic genes BioB, 

bioC, bioD and ere. BioB, bioC  and bioD are genes from the biotin synthesis 

pathway in E.coli, and ere is the recombinase gene from PI bacteriophage. The 

20x hybridisation control mix was heated to 65‘’C for 5 minutes to completely 

resuspend the cRNA before aliquotting. A 5 pi volume of B2 control oligo 

(Affymetrix) completed the control sets. The final volume o f the hybridisation 

cocktail was made up to 300 pi with RNase-free water.

Once complete the hybridisation cocktails for each sample were mixed by gentle 

pipetting and heated to 99*̂ C for 5 minutes in a heat block. HU133A probe arrays 

were equilibrated to room temperature immediately before use and then filled 

with approximately 250 pi of Ix hybridisation buffer using a micropipette and 

appropriate tips. The probe array cartridge is filled using two pipette tips inserted 

through rubber sealed septa located on the back of the array cartridge. Solutions
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enter through one septum and the second allows venting of air from the array to 

ensure the cartridge remains at atmospheric pressure. Filled array chips were 

incubated at 45°C for 10 minutes with rotation in a GeneChip® Hybridisation 

oven (Affymetrix).

The hybridisation cocktail was transferred from 99^C to a heat block at 45“C for 

5 minutes, before centrifugation at 14000 g for 5 minutes to facilitate removal of 

any insoluble material from the hybridisation mixture. Buffer solution was then 

removed completely from the array cartridge and replaced with 200 pi of the 

clarified hybridisation cocktail. Array cartridges were then placed in the 

hybridisation oven at 45°C and rotated at 60 rpm for 16 hours.

5.3.10 Washing and staining of arrays

Washing and staining of the array cartridges was carried out using the 

GeneChip® Fluidics Station 400 (Affymetrix) following the manufacturer’s 

recommended protocol. The fluidics station was operated using MAS software 

set to the specific array cartridges used in all experiments (HGU133-A). The 

fluidics station was primed with appropriate non-stringent (6x standard saline 

phosphate with EDTA, 0.01% Tween 20, and 0.005% antifoam) and stringent 

wash buffer (100 mM Wmorpholinoethanesulfonic acid, 0.1 M NaCl, and 0.01% 

Tween 20), placed in reservoirs A and B respectively.

Following hybridisation, the hybridisation cocktail was removed completely 

from the array cartridges and filled completely with non-stringent wash buffer 

(approximately 250 pi required). Array cartridges were then ready for washing 

and staining procedures once they had equilibrated to room temperature.

5.3.11 Antibody amplification procedure for eukaryotic 

targets

This procedure is one of two protocols available for washing and staining the 

anay sets. This procedure was chosen in preference to the non-amplification
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protocol as this is recommended for HU133-A array cartridges due to the small 

size of the probe cells.

The staining solution comprised 600 pi of 2x 2-(N-Morpholino)ethanesulphonic 

acid (MES) stain buffer, 48 pi o f 50 mg/ml acetylated BSA, 12 pi of 1 mg/ml 

streptavidin-phycoerythrin (SAPE) and 540 pi of distilled H 2 O for a total volume 

of 1200 pi. Staining solution was mixed thoroughly and divided into two 600 pi 

aliquots per an*ay cartridge. Antibody solution mix consisted of 300 pi of 2x 

MES stain buffer, 24 pi of 50 mg/ml acetylated BSA, 6 pi of 0.1 mg/ml normal 

goat IgG antibody, 3.6 pi of 0.5 mg/ml goat anti-streptavidin antibody, and 

266.4 pi of distilled water for a total volume of 600 pi per array cartridge. The 

protocol used for washing and antibody amplification is outlined in Table 5-1.

The washing and staining protocol is semi-automated requiring only placement 

of required stains and antibody solutions when prompted by the LCD display on 

the fluidics station. When washing and staining is complete the probe arrays are 

ejected from the fluidics station and are stored at 4‘’C in the dark until scanning.

5.3.12 Probe array scan

Probe array cartridges were scanned using the Gene Array® Scanner. The scanner 

uses an argon-ion laser and is also controlled by the Affymetrix® MAS software. 

The laser performs a duplicate scan at a wavelength of 570 nm for each array 

cartridge, forming a final image that is an average of both scans. Cartridge 

windows may be carefully cleaned with a lint free tissue before scanning if this 

is required.

5.3.13. Data analysis

Data analysis was carried out using the standard data processing and analysis 

software detailed in Section 5.2.3.1. All user definable parameters remained at 

the Affymetrix default settings, and the search strategy used for the processed 

data is detailed in Section 5.4. The use o f replicates as controls in micro array
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experiments have been proposed at three different stages in experiment design, 

namely biological, or sample replicates, technical, or array replicates, and 

duplicate spots within individual arrays (Xiang, Yang et al 2003). These three 

levels of control are designed to reduce eiTor attributable to biological variation 

in the sample tissue or cells, technical error during extraction, labelling and 

hybridisation o f samples, and measurement error due to imperfections or 

blemishes such as dust on the array surface, respectively (Churchill 2002). It has 

been accepted that the cost of microarray experiments are such that the use of 

replicates are usually kept to the minimum required for meaningful interpretation 

of the data (Xiang, Yang et al 2003), and the design of the Affymetrix GeneChip 

array has reflected this concern with a number of inbuilt controls. First, the use 

of multiple probes interrogating non-overlapping areas of sequence o f each RNA 

target at physically different areas on the array reduces error when measuring the 

fluorescent signal. Second, the control hybridisation cocktail, detailed in Section 

5.3.9 allows quantification of technical error at the hybridisation stage of the 

experiment, and exclusion of GeneChips that do not meet an automatically 

defined standard required for inter-Chip comparison. Finally, the numbers of 

time points interrogated in both the SFA and GM847 experiments were 

increased beyond the 2 that were technically required in each experiment to 

investigate replicative senescence and telomerase reactivation respectively. In 

the SFA experiment, an additional time point at passage 4 was included, and in 

the GM847 experiment, three post-transfection time points corresponding to 

passages 1, 19 and 26 post-transfection were used. The Expressionist Analyst 

software was then used to isolate only those genes that displayed consistent 

patterns of expression, as detailed in Section 5.4.1. For the SFA experiment, this 

translated to those genes that displayed an increasing or decreasing level of 

expression in the cell population as the number of senescent cells increased. In 

the GM847 experiment, only those genes that were consistently up or down- 

regulated in all three of the post transfection time points were considered for 

further analysis.

249



Table 5-1. Antibody amplification protocol for eukaryotic targets. Wash 

buffer A refers to non-stringent wash buffer (6x standard saline phosphate with 

EDTA, 0.01% Tween 20, and 0.005% antifoam), and wash buffer B refers to 

stringent wash buffer (100 mM W-morpholinoethanesulfonic acid, 0.1 M NaCl, 

and 0.01% Tween 20).

Stage- Comprises-

Post hybridisation wash 1 10 cycles of 2 mixes/cycle with wash buffer A at

25"C

Post hybridisation wash 2 4 cycles of 15 mixes/cycle with wash buffer B at

50°C

Stain the probe array for 10 minutes in SAPE 

solution at 25^C

10 cycles of 4 mixes/cycle with wash buffer A at 

25°C

Stain the probe array for 10 minutes in antibody 

solution at 25®C

Stain the probe array for 10 minutes in SAPE 

solution at 25"C

15 cycles of 4 mixes/cycle with wash buffer A at 

30“C, followed by the holding temperature of 25°C

Stain

Post stain wash

Second stain

Third stain

Final wash
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5.4 Results

Each HGU133-A probe array contained targets for 22,283 gene sequences. O f 

these, approximately 15% are called present for the typical cross species array 

using canine samples, and approximately 45% are present using human derived 

samples (Chismar, Mondala, et al 2002). The results obtained with the 7 

GeneChips used in this chapter followed this established pattern. For the canine 

primary fibroblasts, array experiments 1 (passage 2), 2 (passage 4), and 3 

(passage 10) called 14.7, 13.6, and 13.2% of the target mRNA sequences present 

respectively. For the human GM847 cell line, array experiments I 

(pretransfection), 2 (passage 1), 3 (passage 19), and 4 (passage 26) called 46.4, 

48.1, 49.7, and 47.7% present. In all cases, the arrays met the required standard 

for signal quality using the control sets detailed in Section 5.3.9, as 

automatically defined by the MAS software.

5.4.1 Initial data interrogation

Initial analysis of the microarray data was performed using a profile distance 

search. This method of viewing the data allowed identification of gene profiles 

that resembled a complex reference profile that could not be defined by any 

method other than drawing. Using this method, genes that were up regulated and 

down regulated as the SFA primary culture approached senescence were 

identified and isolated into appropriately labelled subgroups, as illustrated in 

Figure 5-3. The same process was applied to identify genes in the GM847 cell 

line that showed a consistent change in expression level after transfection. The 

reference profiles generated for genes identified as up regulated and down 

regulated in the SFA cell culture are shown respectively in Figure 5-4 and Figure 

5-5. The corresponding reference profiles for the GM847 cell line are shown in 

Figure 5-6 and Figure 5-7.
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5.4.2 Analysis of SFA subgroups

The SFA subgroups were defined by profile distance search as described above 

and could be divided into two categories; genes that were up regulated and genes 

that were down regulated as the cell line approached senescence. These groups 

included 627 and 689 genes respectively. The groups were then further filtered 

by an expression ratio analysis. This analysis selected genes from the two groups 

based upon highest ratio values. This value was calculated by dividing the 

highest expression value for an item by the lowest value for the same item, 

allowing genes with expression levels that had undergone the greatest change to 

be identified. The expression value is a measure of the relative abundance of 

each transcript. This tool was also used for identifying genes within the 

subgroups that had undergone small changes in expression levels (e.g. 2 fold 

change or less) allowing these possibly background variations to be removed 

from the analysis. Using this method, genes that underwent 4 fold and 8 fold or 

greater increase or decrease in mRNA expression over the time course o f the 

experiment were identified as shown for up regulation in Figures 5-8 and 5-9, 

and for down regulation in Figure 5-10 (no SFA genes underwent an 8 fold or 

greater decrease in expression level over the course of the experiment). In total, 

mRNAs from 12 genes underwent a four fold or greater increase as the SFA 

culture approached senescence. A group of 5 mRNAs underwent the same ratio 

change of down regulation as the culture approached senescence. Ontologies of 

these genes were then compiled by an accession number search using the Gene 

Finder search engine provided by the Cancer Genome Anatomy Project (CGAP) 

(http://cgap.nci.nih.gov/) . CGAP is a subsidiary o f the National Cancer Institute, 

which is the U.S. federal governmenf s principal agency concerned with cancer 

research. Details of the results of this search are provided in Table 5-2 and Table 

5-3.

5.4.3 Analysis of GM847 subgroups

The same analytic strategy was applied to the GM 847^GM 847/hTERT 

experiment. The initial profile distance search identified 887 genes that had a
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low expression value before transfection, switching to a consistently high 

expression value in the three post transfection time points. The converse profile; 

high expression before transfection switching to consistently low expression 

after transfection produced a group of 707 genes for analysis. Further selection 

was carried out by expression ratio analysis as detailed for the SFA experiment. 

The results of this analysis for 4-fold and 8-fold increase in mRNA expression 

are shown in Figures 5-11 and 5-12 respectively. Four-fold and 8-fold decrease 

in expression post transfection is shown in Figures 5-13 and 5-14 respectively. 

Descriptions of those genes undergoing 8 fold and greater decrease or increase in 

mRNA expression value post transfection (numbering 8 and 4 respectively) were 

accessed using the same search facility detailed for the SFA experiment, and are 

provided in Tables 5-4 and 5-5.
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Figure 5-3. Overview of the sampling strategy for the SFA culture. The three 

time points sampled correspond to passages 2, 4 and 10 o f the SFA primary 

culture, during which the culture went from containing less than 5% senescent 

cells (at passage 2) to 80% senescent cells (at passage 10), as defined by SA-p- 

GAL staining. These time points were chosen to allow comparison between an 

actively replicating cell population with most of its replicative potential intact 

and a cell population made up of a majority of senescent cells. The search 

strategy employed using Expressionist™ Analyst software was then to identify 

those genes with mRNA expression levels that had increased or decreased at 

least four fold over this time, thus highlighting those genes that experience the 

greatest change in expression level in association with the onset of replicative 

senescence in canine fibroblasts.

Few 
senescent cells

1—  + 8 fold

—  + 4 fold

<5% 80%20%

—  - 4 fold

—  - 8 fold

100% senescent 
cells
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Figure 5-4. Profile distance search for the SFA cell culture highlighting up 

regulation. The linear display profile charts the expression level of mRNAs of 

each gene over the three time points corresponding to passages 2, 4 and 10 

respectively. The black line may be set by the user and indicates the preferred 

expression profile, in this case up regulation. The software then isolates each 

gene in the entire group that fits the specified profile (highlighted in red), 

allowing this group of genes (numbering 689) to be isolated in a subgroup for 

further analysis.
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Figure 5-5. Profile distance search for the SFA cell culture highlighting 

down regulation. The linear display profile charts the expression level of each 

gene over the three time points corresponding to passages 2, 4 and 10 

respectively. The black line may be set by the user and indicates the preferred 

expression profile, in this case down regulation. The software then isolates each 

gene in the entire group that fits the specified profile (highlighted in red), 

allowing this group of genes (numbering 627) to be isolated in a subgroup for 

further analysis.
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Figure 5-6. Profile distance search for the GM847 cell line highlighting up 

regulation. The linear display profile has been set to select for mRNAs that 

demonstrate sustained up regulation in post transfection cells compared with the 

original parent cell line. This pattern is reflected in the black line that represents 

the reference profile against which genes were selected. The group contained a 

total of 887 genes that are highlighted in red. This subgroup was then selected 

for further analysis by highest ratio profiling. Time points 2, 3 and 4 are all taken 

from passages o f the successfully transfected GM847 cell line (pi, p i 9, and p26 

respectively), whilst time point 1 is the passage of the parent GM847 cell line 

from which the transfected cell line was created.
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Figure 5-7. Profile distance search for the GM847 cell line highlighting 

down regulation. The linear display profile has been set to select for genes that 

demonstrate sustained down regulation in post transfection cells (time points 2, 3 

and 4) compared with the original parent cell line (time point 1 ). This pattern is 

reflected in the black line that represents the reference profile against which 

genes were selected. The selected group contained a total o f 707 genes that are 

highlighted in red. This subgroup was then selected for further analysis by 

highest ratio profiling.
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Figure 5-8. Gene group demonstrating four fold increase in expression 

value and above for mRNAs of the SFA cell culture. This figure illustrates a 

highest ratio analysis for increasing gene expression level in the SFA cell 

culture. The filter is set to select only those genes with mRNAs that have 

undergone a four-fold or greater increase in expression value over the course o f  

the experiment. This group is highlighted in blue and totals 12 genes. Horizontal 

blue bars indicate genes not detected at all three time points; for example a 

horizontal blue bar to the left o f time point 2 indicates expression o f that gene 

was not detected at time point 1.

0)3
(Q
>
Co

2
S'

UJ

3

10^

10:

I-'

259



Figure 5-9. Gene group demonstrating eight-fold increase in mRNA 

expression and above for the SFA cell culture. The three genes in this group 

are highlighted in blue, whilst the grey background indicates genes below the 

highest ratio threshold of eight.
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Figure 5-10. Gene group demonstrating between four and eight fold 

decrease in mRNA expression for the SFA cell culture. Selected genes are 

highlighted in red, whilst unselected genes are shown in grey in the background.
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Figure 5-11. Gene group demonstrating four-fold or greater increase in 

mRNA expression value by highest ratio analysis in the GM847 cell line 

experiment. This group comprised 72 different genes.
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Figure 5-12. Gene group demonstrating eight-fold or greater increase in 

mRNA expression value by highest ratio analysis in the GM847 cell line 

experiment. This group comprised 8 different genes, highlighted in blue. 

Unselected genes in this analysis group are shown in grey in the background.
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Figure 5-13. Gene group demonstrating four-fold or greater decrease in 

mRNA expression value for the GM847 cell line experiment. This group 

comprised 15 genes highlighted in red. Unselected genes are shown in grey in 

the background.

10*-

10?:

£s-Ui 10^

10:

I-:

264



Figure 5-14. Gene group demonstrating eight-fold or greater decrease in 

expression value for the GM847 cell line. This group comprised 3 different 

genes, highlighted in red. Unselected genes are shown in grey in the background.
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5.5 Discussion

The primary aims of this chapter were to cany out investigations of the changes 

in mRNA expression in cell cultures in experiments concerned with two 

different areas of telomere related biology; namely the changes during in vitro 

cellular ageing and the onset of replicative senescence in canine fibroblasts, and 

the changes following reactivation of telomerase in a human telomerase 

independent ALT cell line. The Affymetrix technology utilised for this purpose 

is currently the market leader in tenus of commercially available DNA arrays 

and allows a global picture of gene expression in human cells to be fonuulated. 

The HGU133-A and B Chip sets contain over 1 million oligonucleotides, 

representing more than 33,000 human genes (for product details refer to 

http://www.affymetrix.com/products/arrays/index.affx). The ‘A ’ chip was used 

in these experiments as it contained the greatest number o f oligonucleotides 

(22,283) targeted against well-characterised human genes. The lack of detailed 

information available on many o f the genes, and the smaller number of genes 

represented on the remaining ‘B’ chip precluded its use in the experiments in 

terms of cost/benefit. Even at the subsidised prices available for academic 

research, each ‘A’ GeneChip alone cost approximately £500 at the time of the 

experiments, and this despite the cost of purchase being reduced by at least half 

since the creation of the HGU133 Chip set in 2001 (Hasseman 2002).

5.5.1 Use of the Affymetrix HGU133-A GeneChip for 

cross-species hybridisation

Currently, no canine specific DNA microarrays with the complexity of the 

GeneChip platform are commercially available; at present canine specific arrays 

are much less complex and are designed with specific applications, such as 

toxicology in mind, as exemplified by the canine arrays o f Phase 1 Molecular 

Toxicology Inc., Santa Fe, NM (http://www.phaseltox.com/). Hence, 

investigation of large scale gene expression changes in canine samples is 

currently limited to using human specific arrays, and relies on cross species
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hybridisations. There are few reports o f the use of GeneChips for cross-species 

hybridisation experiments, and those that do exist tend to focus on non-human 

primates (Bigger, Brasky, et al 2001) (Kayo, Allison, et at 2001). The author is 

not aware of any published reports of the use of human genome array Chips for 

cross-species hybridisation with canine RNA samples and the present study 

therefore provides the first report o f such an investigation, and demonstrates that 

approximately 15% of the human mRNAs probed by the HGU133-A GeneChip 

can consistently be identified in canine samples.

The design of Affymetrix technology is such that a gene is called present only if 

multiple oligonucleotide targets, in the vast majority of cases interrogating 

unique, non-overlapping units of sequence make a present call. In addition, 

negative calls must be made by the corresponding MM probe sets, which differ 

in only one base from their PM counterparts (Section 5.2.3). With the use of 

such positive and negative controls it is therefore expected that cross-species 

genomic differences will be reflected in a lower percentage of genes being called 

'present' (as was identified in the SFA samples), rather than any degradation in 

the reliability of a positive call. This is corroborated by a study on the variability 

of results in cross-species GeneChip an ays using a non-human primate {Rhesus 

macaque) as the test species (Chismar, Mondala, et al 2002). In that study the 

percentage of genes called present in the non-human primate samples were 

29.4% +/- 3.5, (average +/- standard deviation) compared with 46.4% +/- 3.3 for 

the human derived samples. Whilst a comprehensive comparison between the 

complete canine and human genomic sequences has yet to be undertaken 

(Kirkness, Bafna, et al 2003), it is likely that the smaller percentages present in 

the SFA chips (13.8% +!- 0.78) compared with the human samples analysed in 

these experiments (48.0 +/- 1.4) reflect the greater diversity between the human 

and canine genomes than between the human Rhesus macaque genomes.

A second possibility is that the smaller percentages present in the canine samples 

reflect a genuine difference in canine and human biology in tenns of numbers of 

genes expressed in the cell at a given time. Whilst variations will occur, they are 

unlikely to be great enough to account for the 34.2% difference in the number of 

genes found present in the two species. Instead, it is likely that a proportion of
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this subset o f genes that were typically called present in human samples yet 

typically called absent in canine samples are in fact active, but sequence 

differences between the two species results in a failure of Affymetrix to detect 

them. Some of the genes within this gioup will undoubtedly be o f experimental 

and biological significance, therefore the use of cross species arrays do not allow 

examination of global gene expression changes in the canine test cells. Despite 

this, Affymetrix is undoubtedly the most effective tool available at present for 

these types o f investigation.

5.5.2 Genes with significant changes in mRNA levels

In total, 28 genes that had undergone at least a four-fold change in mRNA levels 

during the course of both experiments were flagged by expression ratio analysis 

for further investigation. The biological function of each of these genes, to the 

extent of present knowledge, was then determined as described previously 

(Section 5.4.1). It was not possible, nor was it expected that each of these 28 

genes could be in some way directly related to the biological phenomena 

(senescence and telomerase activation) that were under investigation. However, 

a number of this group have interesting functions, and their possible relation to 

telomere biology is discussed below.

5.5.2.1 Genes up regulated between passages 2 and 10 in the SFA 

culture

A total o f 12 genes were identified from GeneChip analysis of the SFA culture 

with mRNA levels that increased at least 4 fold from passage 2 to passage 10. 

Included in this group was the gene that encodes phosphatidic acid phosphatase 

type 2A (PAP2), which is an integral membrane glycoprotein that hydrolyses a 

number o f structurally related lipid phosphate substrates and appears partly 

responsible for the uptake of lipids from the extra cellular space (Roberts & 

Morris 2000). Interestingly, this gene product has also been implicated in a 

tumour suppressor role, and is down regulated in both colonic tumours and 

prostatic cancer cell lines (Leung, Tompkins, et al 1998) (Porlcka & Visakorpi
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2001). Considering these previous studies, the finding that PAP2 was strongly 

up regulated in senescent canine primary fibroblasts may implicate it in a tumour 

suppressive role in this species, and it may provide a further molecular marker 

for senescence in canine cells, in the same manner that p i h a s  been found 

to accumulate in the senescent human and canine cells (Alcorta, Xiong, et al 

1996) (Koenig, Bianco et al 2002).

A second gene in this group, with mRNA expression levels that increased over 8 

fold between passages 2 and 10 is an inhibitor of angiogenesis, Thrombospondin 

1 (TSP-1). This antiangiogenic factor appears to act by binding with, and 

subsequently reducing the bioavailability of angiogenic factors such as fibroblast 

growth factor (Margosio, Marchetti, et al 2003). Oncogenes act as inducers of 

tumour neovascularization in part by suppression of factors such as TSP-1 

(Kalas, Gilpin, et al 2003), and so it is possible that a marked increase in TSP-1 

mRNA levels as the canine fibroblasts approached senescence reflects an 

attempt by the cells to counteract any such action. It has even been suggested 

that restoration of TSP1 levels might be a means with which to inhibit tumour 

angiogenesis (Kalas, Gilpin, et al 2003).

Levels of mRNA encoding insulin-like growth factor binding protein 2 (ÏGFBP- 

2) were also increased over 4 fold in the passage 10 SFA cells compared with 

passage 2. Elevated IGFBP-2 levels are associated with malignancy in many 

different types o f human tissue, particularly in the prostate (Richardsen, 

Ukkonen, et al 2003), and this molecule has even been proposed as a marker for 

malignant transformation in prostate epithelium (Richardsen, Ukkonen, et al 

2003). The increased expression of its mRNA in the SFA culture was initially 

unexpected, however studies have shown that IGFBP-2 appears to play a 

different role in cultures of primary cells, were it has been shown to act as a 

growth inhibitor in more than one type of tissue (Hoflich, Lahm, et al 1998) 

(Moore, Wetterau, et al 2003). The results would indicate that IGFBP-2 might 

have a similar growth inhibitory effect in primary canine fibroblasts.

Whilst breast cancer anti-oestrogen resistance gene 3 is described in the CGAP 

ontology as involved with regulation of the cell cycle, as the name suggests this
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has been primarily in association with breast cancer cells, rather than normal 

primary cultures (van Agthoven, van Agthoven, et al 1998), and so any 

significance of the increase in mRNA levels noted in this experiment is unclear.

Double homeobox 4 is linked with transcription factor activity (CGAP), 

however this particular gene transcript is not widespread, having been found in 

association with a type of muscular dystrophy (Gabriels, Beckers, et al 1999), so 

this gene cannot be readily linked to telomere biology. The remaining members 

o f this group, as detailed in Table 5-2 include genes such as synaptosomal 

associated protein, 91 kD homolog (mouse), Mannosyl (alpha-l,3-)-glycoprotein 

beta-1,4-N-acetylglucosaminyltransferase, isoenzyme B, and amyotrophic lateral 

sclerosis 2 chromosome region, candidate 2. These genes highlight the fact that 

technology as sensitive as Affymetrix will often highlight changes in the 

transcriptome that bear, with the extent of current knowledge, no relation to the 

area under investigation.

Another interesting finding in this group was the absence of the mRNAs of 

genes with products that have previously been associated with the onset of 

replicative senescence. Examples of this class have been described previously, 

such as p i6 and SA-P-GAL (Alcorta, Xiong, et al 1996) (Dimri, Lee, et al

1995); as these two are in common use as biomarkers o f senescence. However, 

over expression of a number of other genes have also been associated with the 

onset of replicative senescence in human cells. Examples include interferon beta, 

which was found up regulated in a primary human fibroblast culture at the end of 

its replicative lifespan, and was therefore implicated in replication suppression 

(Tahara, Kamada, et al, 1995). Satoh et al identified preferential expression of 

the gene encoding vimentin in senescent human fibroblasts (Satoh, Kashimura, 

et al 1994). Vimentin is a cytoskeletal protein, and its overproduction in 

senescent fibroblasts has been suggested as a possible explanation for the 

enlarged and flattened phenotype that is characteristic of senescence (Nishio, 

Inoue, et al 2001). Senescent human endothelial cells were found to contain high 

levels of the transcript for interleukin-1 alpha, a known inhibitor of endothelial 

cell proliferation in vitro, providing a further marker for senescence in that cell 

type (Maier, Voulalas, et al 1990), Up regulation of mRNA and protein levels
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for the glycoprotein Chisterin/apolipoprotein J have been detected in senescent 

human fibroblasts, and have been hypothesised to represent a secondary 

consequence of the senescent phenotype rather than a causal agent (Petropoulou, 

Trougakos, et al 2001). Gonos et al identified a number of genes that were up 

regulated in both senescent rat embryo fibroblasts and senescent human 

osteoblasts that included fibronectin, osteonectin, al-procollagen, 

apolipoprotein J, SM22, and G TP-a (Gonos, Derventzi, et al 1998). Fibronectin, 

osteonectin and a  1-procollagen are all extra cellular matrix genes, and the 

changes in expression levels of these are likely to be related to the cytoskeletal 

changes associated with the senescent phenotype. SM22 and GTP-a are both 

involved with negative regulation of calcium dependant signal transduction, and 

it has been suggested that the over expression of these genes may be responsible 

for the poor homeostasis of senescent cells (Gonos, Derventzi, et al 1998). In 

addition, Chang et al have described up regulation of a number of genes in 

association with growth arrested, SA-p-GAL positive cells produced by 

doxorubicin chemotherapy in the human colon carcinoma cell line HCT116. A 

number of these expression changes were found to correlate with changes in 

protein levels, and included maspin, keratin 18, and cyclin D1 (Chang, Swift, et 

al 2002). Maspin is a secreted growth inhibitor, whilst keratin 18 is known to 

have antiapoptotic activity, and cyclin D1 has been associated with ageing colon 

tissue (Chang, Swift, et al 2002).

Whilst activity of SA- P-GAL and the presence of p l6  have been identified 

in late passage SFA cells, as detailed in Section 3.4.4.3, none of the other genes 

outlined above were up regulated. This is not considered to be an unusual 

finding; for example it is important to note that only one of the additional nine 

gene products listed above (Apolipoprotein J), was detected in more than one of 

the referenced studies. This raises the point that all senescent cultures will not 

display up regulation of exactly the same genes. Even within the same cell type, 

minute variations in the culture environment may alter the expression profile of 

the study culture. Instead, it will be more useful to generate a list of genes that 

are associated with senescence, and use this infonuation to aid understanding of 

the phenotypic changes that are occurring in a culture as it ceases to be
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replicatively active. Furthermore, it is possible that the inability o f Affymetrix to 

detect the mRNAs of some of these gene products is an example of species 

differences in RNA sequence resulting in a failure of detection due to the 

stringent Affymetrix mismatch controls. The significantly lower percentage of 

genes called present in the SFA GeneChips compared with a typical human 

sample (approximately 15% compared with approximately 45%) implies that a 

large number of genes might fall into this category, and underlines the point that 

whilst the HGU133 Chipset has proved useful for cross species hybridisations, 

the results o f these investigations cannot be said to encompass changes in global 

gene expression in canine cells.

5.5.2.2 Genes down regulated between passages two and ten in 

the SFA culture

A total of 5 genes were identified from GeneChip analysis of the SFA culture 

with mRNA levels that decreased at least 4 fold from passage 2 to passage 10. 

Changes in the mRNA levels o f the ATPase, Na+/K+ transporting, beta 1 

polypeptide included it in this group. The significance of this is unclear, however 

the Na+/K+ ATPase is involved with the regulation of cell volume via 

maintenance of ionic gradients (Hernandez & Cristina 1998), and changes in 

Na+/K+ ATPase activity have been associated with ageing of skeletal muscle in 

rats (Sun, Nagarajan, et al 1999). Whether a change in activity o f the Na+/K+ 

ATPase system is in any way related to the increased volume of senescent cells 

in vitro (Mitsui & Schneider 1976), or whether this is purely a reflection of the 

lack of cell division is speculative. The control of cell volume is a complex field 

beyond the scope of this discussion, however it is recognised that the in situ 

mechanisms for governing cell volume will almost certainly extend beyond 

transcriptional regulation of a single gene product.

The finding that mRNA for the anti-proliferative B-cell translocation gene 1 was 

down regulated with the approach of senescence was surprising, as this gene is 

associated with negative regulation of proliferative activity (Maekawa, Nishida,
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et al 2002). However, the full range of functions of this gene in all tissues is not 

understood, and the gene has also been associated with cell proliferation, as 

listed in the CGAP ontology. The remaining three genes in this group, namely 

Methyl-CpG binding domain protein 2, discs, large (Drosophila) homolog 1, and 

adaptor-related protein complex 4, epsilon 1 subunit, are all widely expressed, 

and as detailed in Table 5-3, involved with general molecular processes within 

the cell that do not link readily with telomere biology.

Down regulation of a number of genes not included in the above group have 

previously been associated with senescence, including the c-fos component of 

the API transcription factor, the Idl and Id2 negative regulators of helix-loop- 

helix transcription factors, the E2F-1 component of the E2F transcription factor 

and MAD-2, which is involved in progression of mitosis (Dimri, Testori, et al

1996) (Chang, Swift, et al 2002). As described previously for gene up regulation 

(Section 5.5.2.1), genes with expression changes associated with senescence will 

not follow a characteristic pattern in all senescent cell populations that are 

investigated (for example, the additional genes noted above do not overlap 

between the two studies from which they were sourced). However, as none of 

the genes down regulated in the SFA study could be linlced directly to telomere 

biology, it is possible that all 5 of these genes are secondary to the senescent 

phenotype, rather than acting directly to trigger it.

S.5.2.3 Genes up regulated in association with reconstitution of 

telomerase activity

Microarray analysis of the human telomerase independent cell line GM847 

identified a greater than 8 fold up regulation of eight genes post telomerase 

reactivation. The most interesting result in this group was the finding that 

epiregulin mRNA levels were gi'eatly increased (> 8 fold) in GM847/hTERT 

cells assayed at three different time points compared with the parent GM847 cell 

line. Epiregulin is a potent growth factor belonging to the epidermal growth 

factor family and has been associated with the progression of certain carcinomas 

(Toyoda, Komurasaki, et al 1997). This result concurs with a previous cDNA
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study of hTERT immortalised human fibroblasts were epiregulin was found to 

be highly expressed in hTERT immortalised fibroblasts, but not in normal 

primary fibroblasts. This discovery was listed as the principal finding of the 

research and lead the authors to conclude that therapeutic use of telomerase 

should be approached with caution, due to the association between epiregulin 

and tumorigenesis (Lindvall, Hou, et al 2003). In addition it was concluded that 

epiregulin up-regulation is required for sustained cell proliferation. The fact that 

up-regulation of this gene has now been identified in association with the 

process of immortalisation in two separate studies adds credence to the idea that 

epiregulin has an important role to play in telomerase mediated cellular 

immortalisation. Whether the same applies to ALT immortalised cells is open to 

question, as the parent ALT dependent cell line had the ability to replicate with a 

very much lower epiregulin mRNA level than was detected post transfection. 

However, the detection of epiregulin mRNA at any level contrasts with the 

complete absence o f epiregulin activity detected in a previous study using 

human primary fibroblasts (Lindvall, Hou, et al 2003), and in this study using 

canine primary fibroblasts. It must be borne in mind that the hTERT mRNA 

copy number per cell o f the hTERT transfected cells in this study will be much 

higher than that encountered in vivo, due to their expression being driven by a 

strong constitutively active CMV promoter. This high hTERT mRNA expression 

translated to high telomerase activity and was reflected in the TRAP results of 

the GM847/hTERT cells, which were by far the highest of all the telomerase 

positive samples assayed in this project (Table 4-20). It may be that the lower 

epiregulin levels detected in the original GM847 cells were enough to permit 

continued proliferation, and that epiregulin mRNA activity is associated with 

both telomerase, and ALT activity.

The increase in mRNA levels of enolase 1 (alpha) were also of interest, as this 

gene product has been associated with transcription factor activity; however this 

ubiquitously expressed gene has also been associated with glycolysis (CGAP), 

and so the relevance o f the mRNA changes noted in this experiment were 

unclear, as they may simply reflect changes in cellular metabolism. A recent 

report found differential abundance of enolase 1 protein between human 

infiltrating ductal carcinoma of the breast and normal tissue (Somiari, Sullivan et
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al 2003) however the pattern of protein abundance was not consistent in all of 

the test samples, and so any possible association between enolase 1 and 

tumorigenesis remains unclear.

The remaining 6 members of this group contained two genes of unlmown 

biological function (Melanoma antigen family A, 6 and G protein-coupled 

receptor 61), whilst the remainder, as detailed in Table 5-4 are associated with 

very disparate ftinctions, as defined by CGAP. These include intracellular 

transport (Solute carrier family 16, member 3 and coated vesicle protein 

RNP24), protein manufacture (HIRA interacting protein 5), and lipid and protein 

metabolism (Ceroid-lipofuscinosis, neuronal 2, late infantile (Jansky- 

Bielschowsky disease)). All these biological functions are concerned with 

general cellular metabolism, and are therefore likely to vary with time in a 

typical cell population.

5.S.2.4 Genes down regulated in association with reconstitution 

of telomerase activity

This group contained a total of three different genes with niRNA levels that 

decreased at least 8 fold in association with the reconstitution of telomerase 

activity. Two o f the three genes in this group, Mannosyl (alpha-1,3-)- 

glycoprotein beta-1,4-N-acetylglucosaminyltransferase isoenzyme B, and 

eukaryotic translation initiation factor 5A, are involved with metabolic processes 

such as carbohydrate metabolism and protein biosynthesis, processes that are 

associated with active, replicating cells, and so the down-regulation of these 

mRNAs post transfection is intriguing. However, these results were not reflected 

in any change in the population doubling time of the cell line, and likely 

represent background changes in cellular metabolism that are of little direct 

relevance to the transfection process. Similarly, the change in expression of the 

third member of the group, member G of the H4 histone family could not be 

linked directly to the experimental process.
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5.5.3 Biological significance of Affymetrix generated 

data

DNA microarray analyses have identified genes of interest related to both the 

onset of replicative senescence and the reconstitution of telomerase activity that 

waiTant further investigations. The primary concern of these investigations must 

be to ensure that the changes in the transcriptomes of the test cells that were 

identified in these studies were also reflected by changes in the proteomes. This 

is important as much modification and regulation occurs with mammalian gene 

products post transcription, and this raises the question of how related mRNA 

levels are to the biological activity of the proteins they encode. It may be 

misleading to inteipret great changes in mRNA levels as equalling changes of 

great biological significance. It is known that mRNA abundance in a cell often 

correlates poorly with the amount of protein synthesised, and furthermore 

proteins rather than mRNA transcripts are the major effector molecules in the 

cell (Gygi, Rochon, et al 1999). Whilst a protein equivalent of the Affymetrix 

DNA microarray is not technically feasible at present due to the structural 

diversity and complexity o f proteins compared with nucleic acids (Talapatra, 

Rouse, et al 2002) (Huber 2003), two-dimensional gel electrophoresis 

techniques have greatly improved identification and analysis o f changes at the 

protein level in cells (Ong & Pandey 2001). Such techniques could be adopted to 

aid confirmation of the significance of the results gained by the use of 

Affymetrix technology.

Potentially the most significant finding of the experiments was the consistent up 

regulation of epiregulin mRNA in association with telomerase reactivation. The 

association between epiregulin and cancer progression that has been identified 

previously in carcinomas (Toyoda, Komurasaki et al, 1997), and the finding that 

epiregulin up-regulation was necessary for sustained proliferation of hTERT 

immortalised fibroblasts (Lindvall, Hou et al 2003), and the failure to detect 

epiregulin mRNA in either normal human fibroblasts (Lindvall, Hou et al 2003) 

or canine fibroblasts in these experiments all suggest that the hTERT 

immortalised cells may in fact show changes associated with a transfonned
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phenotype. Although validation o f the results using the methods detailed above 

are an area for further investigation, the conclusion of the hTERT reactivation 

experiment detailed in this Chapter must be that any future therapeutic use of 

telomerase must be approached with caution.

Finally, the very large amount of data produced by these Affymetrix studies 

enforced a filtering of the results to facilitate interpretation. This was achieved 

by an expression ratio analysis, and excluded genes with mRNAs that had 

undergone a less than 4 fold change in expression. This is highly likely to 

exclude genes of biological significance, and again demonstrates that whilst the 

method detailed in this Chapter was usefiil for identifying genes o f interest in the 

two studies, it cannot be said to have identified all the genes that are associated 

with either senescence or telomerase reactivation that were active in the two cell 

cultures. An improved version of the primary canine fibroblast study, using a 

canine specific array of the complexity of the HGU133-A GeneChip would 

undoubtedly uncover more genes o f interest. At the time the experiments were 

carried out such technology was not available, however, the canine genome 

project and the interest it has generated within both the medical and veterinary 

medical research fields (Ostrander & Kruglyak 2000) will undoubtedly result in 

canine specific microainays of the complexity of the GeneChip in the near 

fliture.
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5.6 Summary

Affymetrix® GeneChip technology has proved very useful for the analysis o f

changes in mRNA expression in canine fibroblasts. The experiments detailed in 

this chapter have identified changes in mRNA expression of a number o f genes 

in association with replicative senescence that warrant further investigation. 

These include thrombospondin-1, phosphatidic acid phosphatase type 2A, and 

ATPase, Na+/K+ transporting, beta 1 polypeptide. Additionally, changes in 

mRNA levels in association with the reconstitution of telomerase activity in a 

human cell line have been identified that are o f relevance to the therapeutic use 

of telomerase reconstitution. Specifically, mRNA levels of the epiregulin gene 

were up regulated greater than 8 fold in the cell line in which telomerase had 

been reconstituted compared with the telomerase negative parent cell line. 

Epiregulin has been associated with the progression of human carcinomas, and is 

not detectable in normal human fibroblasts.
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Chapter VI

General Discussion

6.1 Work described in this thesis

The aims of this thesis were to carry out a study o f the biology of telomeres and 

telomerase in the dog and cat. The advances that have been made towards 

manipulating the biological functions of the telomere to provide novel treatments for 

cancer and age related disease in humans have spurred interest in this particular 

subject. In the veterinary field it is hoped that such a strategy could be used in a 

similar manner to provide new treatment regimes for the benefit of companion 

animals.

Given the relatively small amount of work in the literature concerning the telomeres 

o f companion animals, the thesis was concerned with the gathering of background 

data rather than focussing on research with a directly clinical bias; however this does 

not imply that clinical considerations were not taken into account. The key factor of 

interest in human telomere biology is evidence that the telomere is the ‘mitotic clock’ 

at the centre of a replication control mechanism in cells (Vaziri et al 1994), and that 

the growth arrest associated with this effect is a potent anti-cancer mechanism 

(Ishikawa 2000). Phenotypic ageing may even be a side-effect of the process 

(Campisi 2001). The main mechanism at work is telomere attrition; this cellular 

countdown is believed to be the trigger for cellular senescence. It was therefore 

fundamental in this thesis to establish that the phenomenon of telomere attrition 

occurs in both the dog and cat, both in vitro and in vivo, and a large proportion of the 

work undertaken focussed on this. The TRT methodology used for these experiments
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first identified a range of telomere lengths in the dog and cat that is comparable to that 

found in humans, and then comparison of samples taken from a wide age range of 

dogs and cats established that a significant decline in the telomere lengths of PBLs 

does occur as both dogs and cats get older. Blood samples were selected for this in 

vivo investigation primarily due to the twin considerations of ease of gathering the 

samples (within WCPN ethical policies) and a minimum of distress to the donor 

animals, allowing a much greater number of samples to be gathered than would 

otherwise have been possible. The only other route considered for sampling was 

cheek cell scraping, however this was abandoned due to the relatively small amount, 

and the generally poor quality of DNA harvested by this technique. Furthermore, it 

was subjectively felt that the animals sampled by cheek cell scrapings found this 

procedure more distressful than blood sampling.

In vitro investigations used primary fibroblast cell cultures. These are often used as 

the ‘typical’ cell for in vitro work, as is reflected in the human telomere literature 

(Allsopp et al 1992) (Hayflick 1965). Primary fibroblasts were also available within 

GUVS, which was a consideration given the relatively small number of commercially 

available primary cultures o f companion animal origin, in comparison with cultures of 

human origin.

Using these in vivo and in vitro approaches it was established that teloraeric attrition 

occurs in the dog and cat, and it was therefore plausible that an important link 

between telomeres, telomerase and cellular immortalisation exists in the companion 

animals, as has been found in humans (Artandi and DePinho 2000). The next logical 

step was to investigate the distribution of telomerase activity in the somatic tissues of 

the two species. Telomeric attrition will only occur to an effective degree in the 

absence o f telomerase activity, and so for a telomere based replicative arrest to be 

active in canine and feline somatic tissues the majority must be telomerase negative. 

To this end, the highly sensitive TRAP assay was employed to categorise a wide 

range o f normal somatic tissue in the dog and cat as either telomerase positive or 

negative. As is the established pattern in human tissues (Burger et al 1997), 

telomerase aetivity was found to be restricted to a handful o f sites, all of which 

contained tissues with high replicative burdens (Section 4.4.1). Furthermore, high 

telomerase aetivity was detected in the vast majority of canine and feline malignant
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tumours in a survey carried out on post-mortem and biopsy specimens, and in 

immortalised canine cell lines using the same protocol. Taken together these two 

findings demonstrate clearly that telomerase reactivation is central to continuing 

cellular proliferation in the dog and cat, and that telomerase activity is strongly down 

regulated in the vast majority of normal canine and feline somatic tissues.

All o f these findings link the telomere with the control of cellular proliferation in the 

dog and cat, and verified that telomerase may be a target for novel anti-cancer 

strategies in the companion animal species. Therefore a study was undertaken to 

investigate if a RTI could affect cell-doubling time in two immortalised canine cell 

lines shown previously to be telomerase positive. This particular category o f drug was 

chosen given previous findings that RTI inhibitors could demonstrably effect cell 

doubling times in human telomerase positive cell lines (Strahl and Blackburn 1996). 

Whilst the results of the study carried out in this project were disappointing in that 

exposure to AZT-TP did not have any discernable effect on the growth rate of the cell 

lines, this was in effect a pilot study, and lays the groundwork for possible future 

investigations into combinational therapy with a number of agents. A strategy that has 

received some recent attention is the use of agents to target both telomerase (e.g. 

AZT-TP) and its substrate, the telomere (e.g. G-quadmplex interacting compounds 

such as telomestatin, Tauchi et al 2003). The data recorded in the AZT-TP study may 

be combined with a fiiture larger study using a number of potentially therapeutic 

agents.

A major finding in human telomere research has been the discovery that ectopic 

expression of the catalytic subunit o f telomerase alone is sufficient to reconstitute 

activity in a number of different cell types (Bodnar et al 1998). Whilst the canine 

TERT gene and its promoter has now been cloned by this group, at the time of the 

experiments neither the canine or feline homologous sequences to hTERT were 

available. Instead, telomerase reactivation experiments in the dog and cat were carried 

out using a clone of the hTERT gene, and using a human ALT cell line and an equine 

fibroblast culture as controls. Whilst there were technical difficulties associated with 

transfecting feline primaiy fibroblasts, canine primary fibroblasts transfected with 

hTERT remained telomerase negative and entered senescence normally. The human 

cell line was successfully transfected using the same protocol employed for the canine
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and feline cells, and subsequently was shown to be telomerase positive, thus 

demonstrating that the experimental protocol was adequate. It is possible that the 

canine fibroblasts remained telomerase negative due to sequence differences between 

the human and canine TERTs, as the cTERT and hTERT sequences show only 77% 

similarity; (Nasir, L 2003, unpublished report). Given that the cTERT sequence is 

now Icnown, an interesting area for further investigation would be to repeat the 

experiment with the same protocol and substitute the cTERT sequence for the hTERT 

sequence in the canine fibroblasts. If species-specific sequence differences are to 

blame for the failure to reconstitute telomerase activity in the canine fibroblasts then 

the use of the homologous sequence should overcome this difficulty.

Targeting telomeres and telomerase for therapeutic intervention in a number of 

disease states may involve selection of co-factors and associated gene products in 

conjunction with targeting the telomere and the telomerase ribonucleoprotein directly. 

A good example of this is the recent finding of the association between epiregulin 

upregulation and continued cell proliferation in a cell population immortalised by 

ectopic expression of hTERT (Lindvall et al 2003). The upregulation of this gene 

product was identified by the use of a cDNA microarray, and this approach was also 

adopted in this project to investigate the changes associated with the approach of 

senescence in canine fibroblasts, and the reactivation of telomerase in an ALT cell 

line. Ideally, a canine fibroblast culture would have been used rather than the GM847 

ALT cell line for the telomerase reactivation experiment, however given the failure of 

ectopic expression of hTERT to reactivate telomerase activity in the canine primary 

fibroblast culture SFA, this option was not available. As described previously, a study 

of the changes in gene expression in association with telomerase reactivation in a 

human cell culture has been carried out previously, however that study used a human 

primary fibroblast culture. The use o f the immortal cell line GM847 in this thesis 

provided additional insight into the changes in mRNA levels found in association with 

telomerase reactivation beyond that already in place due to activation o f the ALT 

mechanism.
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6.2 Future studies

The work carried out in this project examined a number of different aspects of 

telomere biology, and within each area topics were identified that would benefit from 

further research. These are detailed below.

6.2.1 Telomere studies

It is felt that the most interesting finding of this work was the significant breed 

specific differences in telomere length in the dog. Although the sample numbers 

available were relatively small (;? = 112), a trend was identified that relatively low life 

expectancy in a canine breed is associated with shorter mean TRF in age matched 

individuals (Section 3.5.2). Whilst the differences in life expectancies of breeds such 

as the Miniature Schnauzer and Beagle are small, and with a possibly large degree of 

variation, it is noted that certain breeds, generally grouped as the ‘Giant breeds’ (e.g. 

the Great Dane) do have a significantly shorter life expectancy than other breeds and 

crossbreeds (Michell 1999). The small sample number of Great Danes examined in 

this thesis did prove to have the shortest telomeres of all the breeds examined, and it 

is felt that it would be interesting to extend this work to a much larger study 

comparing the TRFs o f Great Danes to those o f a physically smaller breed. The main 

hurdles to the gathering of this data will be harvesting an adequate number of blood 

samples from healthy individuals, due to the relative scarcity of Giant breeds in 

Britain, and the natural reluctance of owners to submit healthy animals to a procedure 

such as blood sampling. Involving breed associations in such a study would be 

productive; as owners affiliated with such societies may be more receptive to the idea 

of research with potential health benefits for the breed as a whole. Specifically, if an 

association between telomere length and life expectancy could be conclusively proven 

in dog breeds, then not only would this benefit human research into the potential 

association between the telomere and the ageing process, but it also might allow the 

development of a selective canine breeding program, based on telomere lengths in the 

hope of producing progeny with greater life expectancy.
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6.2.2 Telomerase studies

The specific association between telomerase reactivation and malignancy that has 

been identified in this thesis has verified that telomerase is a target for novel anti

cancer di'ug development in the dog and cat. The pilot study carried out using the RTI 

AZT-TP may be used as the basis for a study on the efficacy of combining a number 

o f agents for a greater effect on telomerase activity, which should translate to a 

discernable effect on the growth rates o f immortal canine and feline cells. Although 

other agents rather than AZT-TP could be selected to act as one of these potential 

therapeutic agents, the work described in this thesis has shown that AZT-TP was 

capable of affecting telomerase activity in the MDCK cell line, and so it may be worth 

persisting with this dmg and combining it with other agents for a greater inhibitory 

effect. In addition, AZT-TP alone has been shown recently to have a significant effect 

on the growth rates of a human cancer cell line (Brown et al 2003), so this drug is not 

without promise. The nature o f this expanded study would be concerned with one or 

possibly two strategies combined. First, the addition of a second RTI inhibitor to 

effect an overall greater telomerase inhibition in the test cell lines, and / or combining 

this approach with one of the newer dmgs that target the availability of the telomere 

to the telomerase enzyme (e.g. Telomestatin, Tauchi et al 2003).

6.2.3 Gene expression studies

The Affymetrix work detailed in this thesis has identified a number of potential areas 

for fliither investigation. The most promising of these is the finding that epiregulin 

mRNA is upregulated in association with telomerase reactivation in the GM847 cell 

line. This corroborates with the findings o f a previous study, and inhibition of 

epiregulin activity has been shown to have an inhibitory effect on the growth rate of 

human immortalised cell lines (Lindvall et al 2003). This gene product shows 

considerable promise for targeting in human immortalised cells, and it would be 

interesting to determine, using canine and feline immortalised cell lines whether such 

an effect can be demonstrated in companion animal cells. This approach o f targeting 

potential telomerase co-factors could be combined with some of the therapies outlined 

above for the overall targeting o f telomerase in canine and feline cancers.
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GLOSSARY

293T Human renal cell line

3132T Canine lymphoma cell line

A 2 6 0 /A2 8 O Measure o f DNA/RNA quality

A72 Canine fibroblast cell line

AG07648 Primaiy canine fibroblasts

AG07906 Primary equine fibroblasts

AG08075 Primaiy canine fibroblasts

AG08157 Primary canine fibroblasts

ALT Alternative lengthening of telomeres

APB ALT associated PMLs

ATCC American Type Culture Collection

AZT-TP 3'-Azido-3'-deoxythymidine triphosphate

BCA Bicinchoninic acid

BMSSCs Bone marrow stromal stem cells

bp base pairs

BSA Bovine serum albumin

CCL-176 Primary feline fibroblasts

CCR Coriell Cell Repositories

cDNA Complementaiy DNA

CGAP Cancer Genome Anatomy Project

CHEF Contour clamped homogenous electric field

CMLIO Canine melanoma cell line

CMT3 Canine osteosarcoma cell line

CMT7 Canine mammary tumour cell line

CMT8 Canine osteosarcoma cell line

CMV Cytomegalovirus

D17 Canine osteosarcoma cell line

DAB 3,3 diaminobenzidine

DEPC Diethylpolycarbonate
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dHzO Distilled water

DIG Digoxigenin

(D)MEM (Diilbecco’s) Minimum Essential Medium

DNA-PK DNA dependant protein kinase

DOPE L-dioleoyl phosphatidyethanolamine

DSH Domestic Shorthaired (cat)

DTT DL-Dithiothreitol

ECTR Extra chiomosomal telomere repeats

EQl Primary equine cells

EREs Oestrogen response elements

PCS Foetal calf serum

FISH Fluorescent in situ hybridisation

GHK Canine renal cell line

GM847 Human fibroblast cell line

GSP Gene specific primers

GUVS Glasgow University Veterinary school

HGU133 Human genome Affymetrix GeneChip

HPA Hybridisation protection assay

HRPO Horseradish peroxidase

ICC Immunocytochemistiy

IGFBP-2 Insulin-like growth factor binding protein 2

lU International units

IVT In vitro transcription

Kb kilobase pairs

kDa Kilodaltons

LNO2 Liquid nitrogen

M l,M2 Mortality stages 1 and 2

MAS Affymetrix microarray suite software

MCF7 Human mammary tumour cell line

MDCK Madin Darby canine kidney cell line

MES 2-(N-Morpholino)ethanesulphonic acid

MM Mismatch

MMLV-RT Murine Moloney Virus reverse transcriptase
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mTR‘̂‘ Murine telomerase RNA knockout

PAGE Polyacrylamide gel electrophoresis

PAP2 phosphatidic acid phosphatase type 2A

PARP Polyadenosine phosphate ribose polymerase

PBLs Peripheral blood leukocytes

PBS Phosphate buffered saline

PGR Polymerase chain reaction

PDs Population doublings

PLG Phase lock gel

PM Perfect match

PML Promyelocytic leukaemia nuclear bodies

RNAi RNA interference

RNAse Ribonuclease

RTA Relative telomerase activity

RTI Reverse transcriptase inhibitor

RT-PCR Reverse transcriptase PCR

S22 Primary feline fibroblasts

SA- p -G A L Senescence associated p-galactosidase

SAGE Serial analysis of gene expression

SAPE Streptavidin-phycoerythiin

SDS Sodium dodecyl sulphate

SFA Primaiy canine fibroblasts

siRNAs Short interfering RNAs

SV40 Simian virus 40

TEPi Telomerase associated protein 1

TERT Telomerase reverse transcriptase

Tm Annealing temperature

TMB 3,3% 5,5'-tetramethylbenzidine

TPE Telomere position effect

TR Telomerase RNA

TRAP Telomeric repeat amplification protocol

TRF Telomere restriction fragment

TSP-1 Thrombospondin 1
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WCPN Waltham Centre for Pet Nutrition

WTl W ilms’ tumour 1 tumour supressor
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