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Abstract 

Carrion represents an important energy resource in the natural world, yet its 

ecological significance has often been overlooked. It also plays a crucial role 

facilitating energy transfer across trophic levels and between ecosystems. The 

aim of this thesis was to evaluate the role of marine mammal carrion in the 

ecology of coastal systems, investigating one of the most commonly occurring 

sources of marine mammal carrion in the UK, the grey seal (Halichoerus grypus). 

This was addressed by providing first a detailed documentation of the fate of a 

grey seal pup carcass with insights on the scavenging ecology existing in both 

terrestrial and marine ecosystems. On the shore, great black-backed gulls (Larus 

marinus), juvenile gulls and ravens (Corvus corax) fed on the carcass showing a 

distinct temporal succession using the food resource. The underwater carcass 

was initially dominated by Echinodermata (starfish), whose abundance dropped 

lately, while Malacostraca (crabs) were present in similar number during the 

whole monitoring. Bacterial activity was evident in both experiments. 

Predictability of seal carrion was then defined during the pupping season at one 

of the largest colonies in the UK, the Isle of May (Scotland). Data collected by 

aerial survey (11 years) and ground visual census (3 years) were used to estimate 

the inter-annual variability of carrion, from placentae and dead seals, according 

to its timing, biomass and energy released and spatial distribution on the island. 

For all measures considered, variability was below 34%, similarly to other 

resources, such as salmon runs, which appear to be predicted by consumers. 

Twenty one percent of the total biomass from dead seals was consumed at the 

end of the pupping season suggesting a clear response from the scavenging 

community to the presence of the resource carrion. 

The predictable nature of seal carrion was then tested exploring the spatial and 

temporal distribution of scavenging gulls at three geographical scales (regional, 

local and patch scales). The great black-backed gull was affected by carrion 

availability occurring on the Isle of May, while the herring gull (Larus argentatus) 

was not. In particular, the number of adult and juvenile great black-backed gulls 

feeding was directly correlated with carrion abundance, while searching 
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behaviour was greatest after the mean seal pupping date and at the peak in 

mortality. 

The behavioural dynamics of scavengers were finally explored monitoring the 

feeding activity on pup carcasses and placentae of adult and juvenile great 

black-backed gulls. It was predicted that under conditions of predictable and 

abundant carrion an equal scavenging effort would be found for the two age 

classes when consuming carcasses. Hierarchical dominance was, instead, 

expected during scavenging activity on placenta as it represents a preferred 

energy-rich food item. Temporal trends of scavenging activity and time spent 

feeding on carcasses were in fact similar between the two, while young 

individuals spent more time feeding on placenta, highlighting the importance of 

this food source for juvenile gulls during winter. The house mouse was also 

found to scavenge on seal carrion, which until now has been undocumented. 

This study demonstrates the importance of marine mammal carrion as a resource 

for multiple facultative scavenger species in both the marine and terrestrial 

environment.  
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1:Chapter 1: Introduction 

Carrion (etymology: from Latin caro, “flesh”) is defined as the tissue of dead 

animals; ecology (Greek οἶκος, "house" and λόγος, "study") is the study of the 

interactions between organisms and their environment. The subject of the PhD 

thesis is the role of marine mammal carrion in the ecology of coastal systems as 

a food source for marine and terrestrial scavengers inhabiting these areas and 

the behavioural relationships established around this resource. 

 

1.1 An overview on carrion ecology 

Carrion is a common food resource and the importance for its consumers has 

often been undervalued (DeVault et al. 2003). In some food webs scavenging 

links have been underestimated 16-fold, so that the energy transferred through 

scavenging is likely to be greater than that transferred by predation (Wilson and 

Wolkovich 2011). Scavenging is a widespread life history strategy employed by 

many carnivorous animals (Selva and Fortuna 2007). The multiple impacts of 

carrion on the ecosystem are dependent on the environment where it occurs, 

the local scavenging community and behavioural dynamics established, the 

nature of carrion availability (predictable and unpredictable) and the 

combinations of these factors. 

Fundamental differences exist between terrestrial and aquatic ecosystems 

that influence carrion ecology. The temperature characteristic of these 

environments, for example, affects the decomposition of carrion differently and 

consequently the scavenging activity to which it is exposed (Beasley et al. 2012). 

Higher temperatures cause greater microbial activity, which can prevent some 

vertebrate scavengers from consuming the carcass because of toxin production 

(DeVault et al. 2004; Burkepile et al. 2006). In water temperature fluctuations 

are minor and carrion can be preserved being available for longer to scavengers 

(Allison et al. 1991). Moreover, because of the three-dimensional space 

characterising the aquatic systems, the transfer of carrion between habitats is 

facilitated under the action of currents and waves (Britton and Morton 1994; 

Beasley et al. 2012). 

However, land and ocean are connected by coastal areas where both 

marine and terrestrial carrion inputs are transferred between the two 

ecosystems. In particular, marine inputs strongly affect the population of a 
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diverse range of animals living in this ecosystem of interface (Polis and Hurd 

1996a; Polis et al. 1996; Polis et al. 1997; Rose and Polis 1998; Anderson and 

Polis 1998; Sánchez-Piñero and Polis 2000; Stapp and Polis 2003). In fact marine 

energy inputs can often exceed energy derived from plant primary production in 

small islands (Polis and Hurd 1996b). 

Considering the multiple biomes and geographical areas in the world, 

birds, mammals and invertebrates are the most common scavengers found on 

vertebrate carcasses (Moleón and Sánchez-Zapata 2015). Among them vultures 

are considered the only obligate scavengers (Ruxton and Houston 2004a) 

together with abyssal fish (Ruxton and Bailey 2005) and some invertebrates. 

However, several other species behave opportunistically, adding facultative 

scavenging to their already existing predatory behaviour when carrion is 

available.  

The trophic links established by facultative scavengers are important as 

they enhance the stability of the ecosystem (Selva and Fortuna 2007). The social 

structure of a scavenging community may be determined by hierarchical 

dominance. Inter- and intraspecific competition, in fact, drives subordinate 

species or individuals to adopt some behavioural strategies such as temporal and 

spatial segregation to optimise access to carrion and reduce aggressive events 

(Blázquez et al. 2009; Kendall 2014). Nestedness is also common in scavenging 

assemblages: a nested pattern is evident when the assemblage characteristic of 

a smaller or less visited carcass is a subset of the aggregation occurring at larger 

or more visited resources. Several studies highlight therefore that scavenging 

communities are structured and not random  (Selva and Fortuna 2007; Moleón et 

al. 2015; Sebastián-González et al. 2016). The predictability of the food 

resource is one of the crucial determinants shaping the structure of a 

community, ultimately inducing some response by consumers at a population 

level (Polis and Hurd 1996a) such as changes in behaviour, ecology and 

adaptation (Overington and Lefebvre 2011). Wilmers et al. (2003b) found that 

animals with large foraging radii, such as bald eagles (Haliaeetus leucocephalus) 

and ravens (Corvus corax), monopolise the highly aggregate in space and time 

wolf (Canis lupus) and hunter (Homo sapiens sapiens) kills, while local dominant 

species (coyotes, Canis latrans) localise and access over-dispersed resources. 

However, at the feeding stations for vultures, where resources are more 

predictable than natural conditions, the most dominant species was the one 
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monopolising the carrion and consuming it at a higher extent (Cortés-Avizanda et 

al. 2012). Predictability can also influence the diversity of scavenger 

aggregations, where unpredictable food resources allow for higher scavenger 

diversity by reducing dominance effects (Cortés-Avizanda et al. 2012). 

Adaptation by consumers to predictability has been demonstrated for both 

natural and artificial (or man induced) sources of food. Chum salmon runs 

(Oncorhynchus keta) in riparian systems, for instance, induced the eco-evolution 

between feeding strategy and food input in black bears (Ursus americanus) (such 

as the increase in number of bears when salmon spawn) (Reimchen 2000). In 

British Columbia number of bears increased also 2–3 weeks in advance of major 

increases in numbers of Pacific salmons (Oncorhynchus spp.). Organic refuse, 

such as food and butchery waste, has been found to influence animal food webs 

since medieval times: the urban domestic cat (Felis catus) population of 

Northern Europe in fact was sustained by preying on red kites (Milvus milvus), 

which in turn were the main scavengers of town refuses (O’Connor 2000). 

Temporal and spatial distribution of foragers can also change in response to food 

inputs, as demonstrated by Allen et al. (2014) who investigated seasonal 

movements of black tailed deer (Odocoileus hemionus columbianu) hunted by 

puma (Puma concolor) in Mendocino National Forest in California: an overlap in 

the distribution was found between predators and scavengers, such as the black 

bear (U. americanus) (Allen et al. 2014). In coastal systems, in particular, 

predictable marine inputs attract terrestrial consumers whose number increase 

in the areas closest to the sea (Stapp and Polis 2003), while at sea, fishery 

discards are another example of predictable carrion subsidy driving the 

distribution of gulls in the Mediterranean (Cama et al. 2012). 

The indirect impact of carrion extends also to non-scavenging species, 

plants and soil. Passerine birds for instance were observed to take advantage of 

scavenging arthropods occurring on the carcass (Gende and Willson 2001; 

Moreno-Opo and Margalida 2013). Nutrients released during the decomposition 

process of carcasses were transferred to soil, enhancing its heterogeneity and 

shifting competitive relationships among regenerating herbaceous and tree 

species (Towne 2000; Bump et al. 2009).  

Scavenging ecology has been largely neglected in the past for different 

reasons including the natural human aversion for rotten material and the 

challenges encountered during the data collection (DeVault et al. 2003). 
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However, over the last decades, interest in studying the ecological impact of 

carrion on the ecosystem has increased rapidly, so that today it is considered to 

be “the golden age for scavenging research” (Moleón and Sánchez-Zapata 2015). 

In particular, recent reviews demonstrated that carrion is widely used by 

predators and not only by obligate scavengers. Most carnivores adopt a flexible 

foraging strategy according to seasonal changes in prey and carrion availability 

(Pereira et al. 2014). For instance, at northern latitudes, ungulates die naturally 

during winter because of lack of food resources and consequential thermal stress 

thus providing carcasses (once defrosted) to predators such as the wolverine 

Gulo gulo. In the Serengeti (Africa), instead, the peak of dead wildebeests, 

which coincides with the end of the dry season, is exploited by the spotted 

hyena Crocuta crocuta and some species of vultures. These additional trophic 

links created by facultative scavenging activity increase the complexity of the 

food web stabilising it: in fact, once carrion is included in the food network, the 

number of connections between animals drastically increases (Wilson and 

Wolkovich, 2011). As a result, competitive and/or facilitative relationships 

between scavengers and predators due to variation in the availability of food for 

carnivores can influence the behaviour and population dynamics of both types of 

consumers (Moleón et al. 2014). 

For these reasons it becomes crucial to assess the consequences that 

climate change and anthropogenic activity can have on carrion availability in 

order to predict potential changes in the scavenging dynamics forming around 

carrion. For instance, extreme weather conditions can provide more frequent 

pulses of carrion. Warmer winters, instead, can reduce the natural mortality of 

prey but increase the predation rate, as observed in the relationship between 

the re-introduced gray wolf (Canis lupus) and the elk (Cervus elaphus) in the 

Yellowstone National Park (USA) (Wilmers and Getz 2004). Human activity can 

also alter the natural provision of carrion and its predictability. Predictable 

anthropogenic food subsidies (PAFS), such as fishery discards at sea, human 

hunting and restaurants for endangered species, have in fact influenced the 

ecosystems modifying the natural biomass flow of the food web and affecting 

the behaviour of consumers. Opportunistic species may benefit more than others 

to the detriment of the overall community diversity (Oro et al. 2013). 

In the light of the eminent importance of carrion as shaping force of the 

ecosystem, scientists require that greater attention is addressed to scavenging 
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ecology. In particular, further investigations are needed on the relationships 

between obligate and facultative scavengers and the prey populations; the 

effects of carrion on trophic pathways within food webs and cascading effects on 

system stability (Wilson and Wolkovich 2011); the use of the Biomass 

Transformation Web theory (Getz 2011), based on flows among both live and 

dead biomass (Moleón et al. 2014); scavenging dynamics within the scenario of 

the global change and the role of food supply in a range of ecological and 

evolutionary processes at the ecosystem level (Oro et al. 2013). Moreover, there 

is a need to understand the contribution of different supplies of carrion to the 

total carrion resource pool and how the components of the scavenging 

community interact (microbes versus invertebrates versus vertebrates) (Barton 

et al. 2013b). Finally, recognising differences in carrion cycling belonging to 

different ecosystems (aquatic and terrestrial) and the ecology of their key 

scavengers would inform the mitigation of future effects of human activity on 

global ecosystem function (Beasley et al. 2012) and encourage the protection of 

crucial obligate and facultative scavenging species (Moleón and Sánchez-Zapata 

2015). 

 

1.2 The ecological role of marine mammals 

All marine mammals possibly influence the ecosystems in which they live (Bowen 

1997), due to their large body size and relative high abundance (Estes 1979; Ray 

1981; Laws 1984). They affect the behaviour and life history traits of prey 

species and competitors, but also have important effects on nutrient storage and 

recycling (Katona and Whitehead 1988). However the role that they generally 

play in the ecological processes of coastal environments is not completely 

understood.  

The movement of materials and nutrients between ecosystems is a 

common process in nature and it can be supported by fluxes of water, sediment, 

solutes, and gases or by biological transport when animals move from one system 

to another (e.g. Likens and Bormann 1975; Cederholm et al. 1999; Hedges et al. 

1997; Bouchard and Bjorndal 2000; Bardgett et al. 2001; Nakano and Murakami 

2001). Also marine mammals can take part in this process as biotic factors. In 

fact, many species periodically haul out onto dry land throughout the year and 

some species remain ashore continuously for several weeks during lactation 
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(Hindell 2009). At these particular times they are significant carriers of energy 

and nutrients across the marine/terrestrial interface and their influence extends 

further as their mobility increases (Moore 2002; Farina et al. 2003). Therefore 

marine vertebrates can exert important effects on the chemistry of soils through 

excreta and faeces (Mizutani and Wada 1988). In fact, the presence of marine 

bird and seal colonies is associated with increased concentrations of nitrogenous 

compounds such as ammonia and nitrite in soil (e.g. Iason et al. 1986; Erskine et 

al. 1998; Anderson and Polis 1999; Farina et al. 2003).  

Breeding colonies also provide other sources of nutrients in the form of 

food remains and carrion which are either used directly by above ground 

secondary consumers, or indirectly by increasing the input of nutrients 

(Anderson and Polis 1999). For instance, in sea lion colonies transport of 

nutrients occurs primarily through defecation and secondarily via onshore 

mortality (Hutchinson 1950). Mortality and placentae deposition in seal breeding 

sites are a normal occurrence. Trampling and wounds due to interactions 

between adults and pups may lead to infections, which may result in death of 

the pups. This problem is more severe in crowded colonies where the likely 

number of interactions is higher (Hammill 2009). Such carcasses of neonate seals 

may attract scavenging birds and mammals that would transfer marine-derived 

energy inland (Moore 2002). Moreover, other organisms from many phyla and 

most marine ecosystems consume carrion, thus changes in benthic habitats and 

communities are expected.  

 

1.3 The grey seal (Halichoerus grypus) 

The grey seal is the only member of the genus Halichoerus, and a member of the 

family of the true seals or Phocidae. This species is a subarctic and temperate-

water seal and it is distributed in both eastern and western sides of the North 

Atlantic.  

Grey seals exhibit sexual dimorphism with the mature males weighing 

between 170 and 310 kg and adult females between 100 and 190 kg. They have a 

long lifespan where males may live for over 20 years and females often live over 

30 years. Grey seals are highly successful predators in the North Atlantic. They 

feed on a variety of fish species and cephalopods (Hammond et al. 1994). 

However, a large proportion of their diet is sand eel (Ammodytidae), which can 
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make up to over 70% of the diet at some locations and in some seasons. Other 

prey include whiting (Merlangius merlangus), cod (Gadus morhua), haddock 

(Melanogrammus aeglefinus), saithe (Pollachius pollachius), and flatfish such as 

plaice and flounder (Pleuronectoidei).  

Seals mature at three to six years old. Females usually give birth, on land 

or on ice, to an individual white-coated pup, known as the lanugo, between 

September and March. In the north of the British Isles the breeding season is 

between October and November. Newborn pups weigh between 11 and 20 kg and 

by the end of the lactation period (18 days on average) can reach 40 kg. This is 

due to the fat-rich mother’s milk, around 50–60% lipid (Fedak and Anderson 

1982). From this milk, pups develop both lean body mass and a thick blubber 

layer depending on the level of maternal provision and pup metabolism (Fedak 

and Anderson 1982; Mellish et al. 1999). According to Mellish et al. (1999) pup 

growth rates increase significantly during lactation. They also found that fat 

deposition (up to 1.9 kg d-1) accounted for the majority of pup mass gain, and 

this deposition was primarily determined by milk intake. Grey seal pups doubled 

and even tripled their birth mass by weaning (range 1.7–3.6 times). Overall, fat 

deposition accounted for 66% of mass, while protein deposition accounted for 

only 8% of mass. Therefore, variation in pup birth mass was primarily due to 

differences in protein stores, whereas variation in weaning mass was primarily 

due to differences in fat content (Mellish et al. 1999). After lactation, the pup 

enters a post-weaning fast for an average of 25 days (Bennett et al. 2007), losing 

approximately 0.5 kg of body mass per day. Although not fully understood, it is 

believed that physiological changes during this time are necessary for the 

development of diving ability. When the pup is weaned, females enter oestrus 

and mate with males. Gestation lasts 8 months, but the fertilised egg is not 

implanted until 4 months after conception to permit a 12-month breeding cycle 

(Hammond et al. 1994). Grey seals exhibit high site fidelity and often return to 

within metres of their previous pupping site in successive breeding years (Twiss 

et al. 1994). 

Annual grey seal pup counts, by aerial survey, have been conducted since 

1960 by the Natural Environment Research Council (NERC), acting through the 

Sea Mammal Research Unit (SMRU). The total population size is estimated taking 

into account pup survival to maturity, age at first pup production, adult 

longevity and adult female fecundity. Approximately 28% of the world’s grey 
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seals breed in the UK, of which 88% breed at colonies in Scotland (SCOS 2013).  

The main colonies are located in the Outer Hebrides and in Orkney, with others 

established between Shetland and the north and east coasts of mainland Britain 

(Figure 1.1). Small colonies are also present in the South West of England and in 

Wales. The grey seal population in the UK, whose growth is levelling off, was 

estimated in 2012 to have been 112,300 (SCOS 2013) (Figure 1.2).  

The harbour seal (Phoca vitulina) UK population was instead estimated at 

33,385 in the most recent counts (2007-2012). The harbour seal (IUCN category: 

least concern) has undergone dramatic decline during recent decades, 

particularly in Scotland (from 1990s, 50% in Shetland; 68% in Orkney; and 90%in 

the Firth of Tay), for unclear reasons (Lonergan et al. 2007). 

 

Figure 1.1 The main grey seal breeding colonies in the UK. 
Colonies asterisked are potential Special Area of Conservation. Major colonies 
encircled are surveyed annually. Image provided by SCOS 2013. 
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Figure 1.2 Population size estimates of grey seal in Scotland. 

The total population size estimates from 2001 to 2012 (excluded 2011 when the 
survey was not carried out). Total population size estimates are made using the 
EDDSNM model of British seal population dynamics (numbers are posterior means 
of 95% credibility intervals).  Data collected by SCOS (SCOS 2013). 
 

1.4 Sources of grey seal carrion 

1.4.1 Natural sources of grey seal carrion 

Natural seal mortality is an important resource of carrion. For grey seals the 

highest mortality occurs between birth and weaning (Anderson et al. 1979; Baker 

1984), with a mortality rate up to 30% in grey seal pups younger than one month 

(Twiss et al. 2003).  In the grey seal, factors such as larger body mass, better 

condition at weaning, lower levels of post-weaning circulating immunoglobulins 

and habitat type have been shown to positively correlate with pre-weaning and 

first year survival (Hall et al. 2001; Twiss et al. 2003). Research in the 1960s and 

1970s focused on causes of pup mortality in grey seals (Boyd et al. 1962; Coulson 

and Hickling 1964; Boyd and Campbell 1971; Bonner 1972; Anderson 1976; 

Anderson et al. 1979). Baker’s study (1984) focused on pup mortality in North 

Rona, Monach Isles and Sound of Harris (Scotland, UK). Recently, the primary 

causes of pup mortality were detected in the seal colony of the Isle of May were 

starvation (30%), omphalitis-peritonitis (26%), septicaemia (22%), stillbirth (10%) 

and trauma (4%) (Baily 2014). Starvation is almost certainly due to the failure of 

92000

96000

100000

104000

108000

112000

116000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012

P
O

P
U

LA
TI

O
N

 S
IZ

E 

YEAR 



Chapter 1   28 

formation, or the breakdown, of the bond between mother and offspring. The 

latter can happen on crowded breeding sites due to disturbance by adjacent 

adults, storms, high tides or humans, and also due to pups leaving their mothers 

and becoming lost. Another cause is the incidence of peritonitis associated with 

navel infections during parturition and skin infections caused by the abrasive 

action of sand. Among the secondary lesions, Baker and Baker (1988) observed 

several cases of jaundice and hepatic rupture leading to exsanguination and 

death. 

In the UK, grey seals typically breed on remote uninhabited islands, 

coastal areas and in small numbers in caves. Preferred breeding locations allow 

mothers with young pups to move inland away from busy beaches and storm 

surges. However high mortality was found in gullies where pups were crushed by 

adults moving to and from the sea and also in deep, congested pools where they 

have drowned when they accompanied adults. Seals pupping on exposed beaches 

may experience higher levels of pup mortality as a result of limited opportunity 

to avoid storm surges (SCOS 2010). This happens when extreme weather 

conditions causes sudden changes in topography, as occurred in 1981 at Monach 

Isles beaches (Scotland). In conclusion, aggressive encounters with conspecifics 

(Baker and Baker, 1988), animal density and colony topography (e.g. Boyd et al. 

1962; Summers et al. 1975) can all be responsible for pup mortality. However, 

Twiss et al. (2003) also highlighted the importance of maternal condition as an 

additional possible cause of pup death. First year survival of the grey seal 

population is estimated to be 50% in Britain, but thereafter it improves greatly 

(Hall et al. 2001) with natural adult mortality rate estimated to be around 5% 

(Thomas and Harwood 2005). However when survival rates estimates, along with 

fecundity estimates, for adult females breeding at North Rona and the Isle of 

May have been evaluated, results suggested that differences in vital rates among 

colonies may be widespread (SCOS 2010). 

A second, but no less important, source of carrion is seal placenta. In the 

following half hour after the pup is born, seal mothers deliver the placenta. 

Unlike some other mammals, grey seals do not feed on their placenta. The 

amount of placenta available during the pupping season can therefore be easily 

estimated from pup productivity data. 
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1.4.2 Non-natural sources of grey seal carrion 

In addition to natural mortality, human activities may be responsible of 

supplementary carrion inputs. Local conflicts between individual seals and 

fisheries or fish farms, is now managed and shooting is regulated under licence 

(Marine Scotland Act 2010). In  2014 in Scotland the number of culled grey seals 

was 163, less than 0.2% of the population, while the number of harbour seals (P. 

vitulina) culled was 42, 0.2% of the population (Scottish Governement 2015). 

Maritime traffic was thought to be another cause of seal deaths as in the last 

decade several damaged seal carcasses have been found on beaches in eastern 

Scotland and England and in Northern Ireland presenting the same type of injury. 

The characteristic wound consisted of a single smooth edged cut that starts at 

the head and spirals around the body, was thought to be caused by the contact 

with a ducted propeller, a system very common in a wide range of ships 

(Thompson et al. 2010). Recently, on the Isle of May, it was discovered that this 

lethal ‘corkscrew shaped’ wound could be caused by an attack from an adult 

male grey seal on weaned pups (Thompson et al. 2015).  

 

1.4.3 Distribution of seal carrion 

The spatial and temporal distribution of seal carrion depends on the site where 

the death of the animal occurs. For pinnipeds which spend lot of time in the 

water it may be difficult to quantify fatalities at sea and determine where and 

when they occur. However, by using information on stranding location and the 

currents moving the carcass before depositing it on the coast, it is possible to 

estimate the original site of death (Peltier et al. 2012). During the seal-breeding 

season, instead, carrion inputs are concentrated on the coastal area of the seal 

colony where it becomes easier to estimate their magnitude together with their 

spatial distribution due to their relative immobility. Nevertheless, tidal action, 

waves, weather conditions and coastal topography may facilitate the transfer of 

carrion also to the marine system.  Extreme weather conditions, steep shore 

gradients and strong currents can in fact remove the carcasses from the coast, 

promoting their transport towards offshore areas in deeper waters. Movement of 

carcasses in the water are not only influenced by abiotic factors, the state of 

decomposition of the dead body when entering the marine system is in fact also 

crucial. Carcasses can in fact present two floating stages: the primary floating 
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stage is caused by gases formed in the digestive tract while the secondary re-

floating is due to bacterial growth within the body producing gas at sites other 

than the gastrointestinal tract (Teather 1994). Moreover, depth plays an 

important role in the re-floating process as well: at greater depths, in fact, the 

volume of gas produced is considerably less and highly soluble in water and in 

the surrounding tissues, impeding reflotation (Teather 1994).  

In contrast to carcasses, placentae occur only at the seal colony during 

the pupping season. Spatial distribution of placentae is also likely to coincide 

with the location and temporal pattern of seal aggregations.  

 

1.4.4 The marine mammal stranding data 

The marine mammal species found in and around the British Isles include two 

native species of pinnipeds, the grey seal H. grypus and the harbour seal P. 

vitulina. The Arctic species ringed seal (Phoca hispida), harp seals (Phoca 

groenlandica), bearded seals (Erignathus barbatus) and hooded seals 

(Cystophora crystata) also occur occasionally in the UK (vagrants). Additionally, 

23 cetacean species comprising whales, dolphins, porpoises (and vagrants) are 

also present.  

The marine mammal stranding database, provided by the Scotland’s Rural 

College (SRUC), offers a partial picture of marine mammal mortality occurring at 

sea in Scotland. Grey seals represent the greatest source of carrion in 

comparison to other pinnipeds (72.2% of identified pinnipeds) and among all the 

marine mammals (21.2% of total marine mammals) occurring as strandings in 

Scotland (SRUC 2015, Table 1.1). This is in line with the fact that its population 

in the UK was estimated more than three times larger than that of the harbour 

seal (SCOS 2013). As the grey seal is likely to provide the highest number of 

carrion inputs to coastal ecosystems, it was chosen as the study species.   



Chapter 1   31 

Table 1.1 Total marine mammal strandings (2001 - 2012) in Scotland collected by 
SRUC (SRUC 2015). 

Species Strandings 

Pinnipeds 2358 

Cystophora cristata 3 

Erignathus barbatus 1 

Halichoerus grypus 926 

Phoca vitulina 352 

Pinnipedia (indeterminate sp.) 1076 

Cetaceans 2004 

Balaenoptera acutorostrata 140 

Balaenoptera borealis 1 

Balaenoptera physalus 7 

Cetacea (indeterminate sp.) 59 

Delphinidae (indeterminate sp.) 102 

Delphinus delphis 92 

Delphinus delphis / Stenella coeruleoalba) (indeterminate sp.) 22 

Globicephala melas 168 

Grampus griseus 79 

Hyperoodon ampullatus 20 

Kogia breviceps 2 

Lagenorhynchus acutus 117 

Lagenorhynchus albirostris 100 

Lagenorhynchus (indeterminate sp.) 10 

Mesoplodon bidens 20 

Mysticeti (indeterminate sp.) 6 

Orcinus orca 6 

Phocoena phocoena 877 

Physeter microcephalus 47 

Ziphiidae (indeterminate sp.) 1 

Stenella coeruleoalba 48 

Tursiops truncates 43 

Ziphius cavirostris 31 
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Grey seal strandings occurring in Scotland showed a recent increase after the 

great mortality occurred in 2002 due to phocine distemper, a paramyxovirus of 

the genus Morbillivirus that is pathogenic for pinniped species, particularly seals 

(SRUC 2015; Figure 1.3). Some deaths derived from fishermen culls and 

corkscrew-shaped wounds are likely to be included in these figures.  

The main areas of grey seal strandings in Scotland were located at the north- 

eastern coast. In particular, the highest number of reports came from Orkney 

(around 15% of the total strandings) (Figure 1.4). The monthly trend in grey seal 

strandings reported between 2010 and 2012, instead, showed a marked increase 

between November and January, coinciding with the pupping season (Figure 

1.5). The following figures do not distinguish between natural and non-natural 

mortality. 

 

 

Figure 1.3 Total grey seals strandings (2001 - 2012) in Scotland collected by SRUC 
(SRUC 2015). 
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Figure 1.4 Map of grey seal strandings (2001 - 2012) in Scotland produced by 
SRUC (strandings.org). 
Categories of strandings density in legend.  

 

Figure 1.5 Monthly grey seal strandings reported in Scotland between 2010 and 
2012 collected by SRUC. Image provided by SCOS 2013. 
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1.5 Scavengers 

According to Getz (2011) scavengers are those animals which consume whole or 

specific parts of dead biomass (plants and animals) whose dimensions are 

typically smaller but sometimes larger than themselves (Getz 2011). Scavenging 

is a phylogenetically widespread foraging strategy of invertebrates and 

vertebrates, including such well-studied groups as ants, birds, crabs, fish and 

wolves (Wilson and Wolkovich 2011).  

The most common scavengers in the terrestrial ecosystem are birds, 

mammals and invertebrates. An extensive literature has been dedicated to 

vultures, which represent an efficient ecosystem service with important 

implications for human welfare (Moleón et al. 2014). Among the foraging 

strategies adopted by vultures they have the ability to fly over long distances 

covering large areas and sharing social information on the location of a food 

item (Moleón et al. 2014). Mammalian scavengers such as hyenas, instead, are 

much less mobile (Houston 1979; Ruxton and Houston 2004b) and use mostly the 

sense of smell to detect carrion (Mills 1989). Many predatory birds, reptiles and 

mammals (Ruxton and Houston 2004b) behave as facultative scavengers utilising 

carrion when available (Jędrzejewski et al. 2002; DeVault et al. 2003). 

 Britton and Morton (1994) defined marine scavengers as organisms that 

are “able to detect carrion, usually by distance and touch chemoreception, 

deliberating to move toward it, and eventually consume either part or all of it”. 

Even if marine species that exhibit scavenging behaviour form an extensive 

group across phyla (Kaiser and Moore 1999), Britton and Morton (1994) have 

argued that almost all marine scavengers, apart perhaps from some nassariid 

gastropods and lysianassid amphipods, are facultative rather than obligate 

scavengers. Carcasses release chemical odours which can disperse across large 

distances (Ide et al. 2006) and this is an important factor which effects foraging. 

Chemical cues can also indicate the direction, quantity and quality of the food 

source. The quality is determined by detection of nitrogenous compounds such 

as amino acids, ATP, and sugars (Zimmer-Faust 1991), and when concentrations 

of the chemical reach a certain threshold, locomotory responses toward the 

carcass may be triggered (Britton and Morton, 1994). Carcasses provide a large 

amount of nutrients and increase the diversity of food sources and habitats 

available, thus increasing species richness in marine systems. 
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In many systems, the occurrence of carrion may be temporally 

unpredictable and it is only available for a limited time before it is eaten or 

decays (Houston 1979) and a scavenger cannot control the conversion of living 

animals to carcasses (Andrewartha and Birch 1984). Furthermore in many 

systems carrion is available episodically as a pulsed resource (Nowlin et al. 2008) 

and consequently scavengers experience times when food is abundant, 

alternating to episodes of shortage (Houston, 1979). In situations where food 

webs are subsidised consumer populations can sometimes become enhanced, 

although this may depend on the quantity and temporal variability of the subsidy 

and on the life history characteristics of the consumer species (Polis et al. 1996). 

Carrion availability varies across space, and thus could be a structuring force 

underlying the movement and the spatial distribution of scavengers (Wilmers et 

al. 2003b; Blázquez et al. 2009; Cortés-Avizanda et al. 2009). Moreover the 

composition of scavenger assemblages may vary with habitat type in which the 

remains occur, and hence the responses of different scavenger species to 

increasing inputs of carrion may vary between habitats. However, it might also 

be expected that the magnitude of the response of each scavenging species 

would be linked to the density of that species in the surrounding area (Ramsay 

et al. 1997b).  

A large body of literature on scavenging ecology in the terrestrial 

environment has been developed during the last decade. Great attention has 

been devoted in the past to arthropod succession on carrion (e.g. Payne 1965; 

Putman 1983), with relevance to human forensics (Amendt et al. 2004). From an 

ecological perspective the state of carrion decomposition research has been 

previously overlooked (Carter et al. 2007). Moreover, the underestimated use of 

carrion by facultative scavengers (DeVault et al. 2003; Wilson and Wolkovich 

2011), the formation of a defined structure in the scavenging assemblage (Selva 

and Fortuna 2007) and the possible alteration caused by human activities in the 

environment open new directions for future investigations.  

Several studies have also been conducted on scavenging behaviour of 

marine organisms, but they are often confined to sublittoral or abyssal species 

(e.g. Bailey and Priede 2002; Kemp et al. 2006; King et al. 2007), often 

associated with fishing discards effects on seabirds and marine benthic 

scavenger populations (e.g. Camphuysen et al. 1995; Garthe et al. 1996; Ramsay 

et al. 1997b; Catchpole et al. 2006). Information on deep-sea scavengers 
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occurring on whale-falls has been accumulated since the 1850s, and there is 

evidence that whale carcasses support a widespread, characteristic faunal 

community passing through at different successional stages (Smith and Baco 

2003). Contrarily in shallow waters the influence of carrion availability on 

community structure is less well known (Ramsay et al. 1997b) and faunal 

colonization and decompositional changes on coastal carcasses seems to be 

understudied. The latter were investigated by forensic researchers to determine 

time of death for humans discovered in saltwater. In 2002, the Canadian Police 

Research Center evaluated aquatic scavenging organisms succession in a time 

interval of 140 days by using pig corpses as human models at two depths (7.6m 

and 15.2m). Five decompositional stages were identified (fresh, bloat, active, 

advanced and remains). Sediment type dictated the fauna present in the vicinity 

of the carcass: those bodies that rested on sand were scavenged much faster 

than those on rock, presumably due to the more abundant and greater diversity 

of animals which lived within the sand. Unlike the terrestrial environment, 

wounds and abraded skin on the carcass in marine conditions do not seem to 

attract scavengers (Anderson and Hobischak 2004). 

 

1.5.1 Scavenging species in the coastal environment 

Scavenging species inhabiting the coastal surface environment are vertebrates 

such as mammal and seabirds and invertebrates such as insects. Marine 

scavengers include molluscs, crustaceans, echinoderms and fish. In particular, 

scavengers known to feed on pinniped carrion include the southern and northern 

giant petrel (Macronectes giganteus and Macronectes halli) (Bruyn and Cooper 

2005), black vulture (Coragyps atratus) (Pavés et al. 2008), kelp gull (Larus 

dominicanus) (Gallagher et al. 2015), great black-backed gull (Larus marinus) 

(Ronconi et al. 2014), red fox (Vulpes vulpes) (Culloch 2012) and arctic fox 

(Alopex lagopus) (Roth 2002), polar bear (Ursus maritimus) (Bentzen et al. 2007) 

and brown hyena (Parahyaena brunnea) (Kuhn et al. 2008).  

In the marine system, the great white shark (Carcharodon carcharias) and 

the killer whale (Orcinus orca) adopt scavenging behaviour. Among the 

elasmobranchs, the Pacific sleeper shark (Somniosus pacificus) is thought to 

consume carcasses of Steller sea lions (Horning and Mellish 2014). Benthic 

gastropods Nassariidae and Buccinidae are opportunistic scavengers attracted 

from great distances by chemical stimuli emanating from suitable food (Morton 
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1990). Several studies have identified the hermit crab (Pagurus bernhardus) as 

one of the most important and abundant benthic scavengers that aggregate in 

areas of fishing activity (Morton and Yuen 2000). Together with starfishes, 

whelks, swimming crabs and fishes, hermit crabs feed upon fisheries discards 

which fall to the sea bed (Ramsay et al. 1997a; Ramsay et al. 1997b; Kaiser et 

al. 1998). In addition, P. bernhardus was shown to outcompete Pagurus 

prideauxi in areas of intense trawling activity (Ramsay et al. 1997a; Kaiser et al. 

1998). Intraspecific competition for food among P. bernhardus also exists and 

the number of aggressive interactions and the intensity of competition increased 

with increasing numbers of individuals (Ramsay et al, 1997a). Field studies have 

shown that sublittoral fish, dabs (Limanda limanda) and whiting (M. merlangus) 

were attracted to bags baited with trawl discards in shallow water (Kaiser and 

Spencer 1996). The potential importance of smaller scavenger species, such as 

amphipods, in different habitats and their feeding behaviour have been 

understudied (Ramsay et al, 1997b).  

 

1.6 Field sites 

1.6.1 Isle of May 

The Isle of May (56°11’N, 2°33’W), the main study site, is situated at the 

entrance to the Firth of Forth on the east coast of Scotland, lying approximately 

8 km southeast of the coastal village of Anstruther and 17 km northeast of North 

Berwick. The island itself is 1.8 km long and less than half a kilometre wide with 

the long axis extending in a northwest-southeast direction. The island is 

effectively a single sill of olivine-dolerite (‘greenstone’) and is tilted in an 

easterly direction, with vertical cliffs up to 60 m in height on the western side, 

accompanied by numerous arches, stacks and caves. Several fault lines have 

given rise to intertidal channels which further divide the island into discrete 

islets, namely North Ness, Rona and the main island. 

The Isle of May has been designated as a Special Area of Conservation 

(SAC) under the EC Habitats Directive (92/43/EEC), the entire site occupying 

356.75 hectares. This designation is largely based on the Isle of May’s role in 

supporting a large breeding colony of the grey seal, H. grypus, which is listed as 

an Annex II species under the Habitats Directive. Furthermore, the widely 

distributed rocky ‘reefs’ that fringe approximately 90% of the coastline of the 
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island are an Annex I habitat and represent an additional qualifying feature for 

SAC designation (Moore, 2009). 

The Isle of May represents an excellent site for field research being unique in its 

accessibility to seal colonies. Thanks to its remote location animals live in 

natural conditions with minimal anthropogenic disturbance (only researchers are 

allowed at the island during the seal pupping season). 

Breeding colony and pupping site 

The grey seal is believed to have bred on the Isle of May in the past (in fact in 

Gaelic "Rona" means "Sea Calf" as in seal), but there were no records of grey seal 

pups till the 1950s, when three pups were born (Baker and Baker, 1988). During 

the following decades, grey seals used the island to haul out, and numbers 

gradually increased until the Isle of May has become the biggest single island 

colony on the east coast of the UK (Hiby, 1996) and the fourth largest in the UK, 

contributing approximately 4.5% to the annual UK pup production (Moore, 2009). 

Much of the west and south-east coasts of the Isle of May are cliff-bound and 

unsuitable for breeding seals (Figure 1.6). Formerly, most pups (c. 90%) are born 

on the northern part of the island, which is mainly low rock, in an area of about 

6 ha. This northern area is known collectively as Rona, but is composed of 

several discrete areas used for breeding with different access routes from the 

sea (Pomeroy et al. 2000). Baker and Baker (1988) describe the three breeding 

beaches characterized by the most important aggregations. Silver Sand is the 

only area of sandy beach on the islands (Figure 1.6). The tidal area, some 15 m 

long at low water and 6 m wide, is of clean sand, but most pups live on a much 

larger area of gently sloping stable sand behind the beach, which has a great 

deal of driftwood and other flotsam. By the end of the breeding season, this 

area is contaminated with matted, moulted seal hair, faeces and dead pups.  

West Rona Beach has access to the sea only by a narrow pebbly inlet about 5 m 

wide, with steep rocks up to 4 m high on either side. Most of the new-born pups 

are found at the edges of this gulley, protected by the rocks, but as they grow 

they tend to move, some to the level rocks above, but most to the level areas of 

mud and stagnant water inland. This area is fouled and completely cleared of 

vegetation by the middle of the breeding season. The latter two locations 

contain the overall highest observed density of seals (Pomeroy et al., 2000). 

Rona Rocks, on the north-east side of Rona, is an area of bare rock of about 100 

m in depth and 200 m from end to end. The volcanic greenstone is largely 
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fractured, with vertical faces of up to 3 m in height, and many deep faults and 

fissures. Most of the pools in the area are above normal high tide level, and are 

contaminated by the faeces and other debris of both seals and seabirds. 

The number of areas used by seals for breeding expanded as the population 

increased (Pomeroy et al., 2000). Grey seals occupy two new locations in the 

southern part of the Isle of May. From 1990 the beach at Pilgrim's Haven on the 

south-west coast has been used by seals but there was no evidence of increased 

pup production there. It is a pebbly inlet ca 20m wide with rocky walls on both 

sides (personal observations). While areas around Kirk Haven were used 

increasingly in the 1990s, when up to 22% of the pups counted on Rona were 

then found at the minor southern sites. Kirk Haven breeding site is a narrow 

sandy beach presenting rocks on the each side (personal observations). The 

latter southern breeding sites on the Isle of May are also characterized by having 

pups born later in the season than the main northern sites: the mean pupping 

date occurs on the 5th November (+/- 10days) (Hiby et al. 1996). 

 

Figure 1.6 Map of the Isle of May. 

Maps provided by EDINA Digimap Service, http://digimap.edina.ac.uk/roam/os. 

 

http://digimap.edina.ac.uk/roam/os
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1.6.2 Great and Little Cumbrae 

Additional fieldwork was carried out on the islands of Great Cumbrae and Little 

Cumbrae which are located on the south-western coast of Scotland (see Figure 

2.1 in Chapter 2). While Great Cumbrae is inhabited and represents a tourist 

attraction during summer, no people live in Little Cumbrae, with the exception 

of the island wardens. Despite the two islands being separated by less than a 

kilometre from each other, their morphology is different. In contrast to Great 

Cumbrae, which presents many fields dedicated to agriculture and farming, 

Little Cumbrae is characterised by many cliffs, rocky outcrops and wild 

vegetation. Some hauling-out sites for both grey and harbour seals occur on both 

islands. 

1.6.3 Expected scavenging community 

Several seabirds are scavengers, including the herring gull (Larus argentatus), 

the lesser black-backed gull (Larus fuscus) and the great black-backed gull 

(Larus marinus) (Camphuysen et al. 1995; Garthe et al. 1996). The great black-

backed gull, in particular, is the largest species of gull and its distributed in both 

the western and eastern Atlantic coasts (Olsen and Larsson 2004) extending to 

the extreme northwest portion of Russia. 

Gulls are opportunist carnivores, being both predator and scavenger, as 

their diets consist almost entirely of animal prey (Spaans 1971; Pierotti and 

Annett 1987; Annett and Pierotti 1989). They forage around ships in inshore 

areas, on shoaling fish, in the intertidal zone, in agricultural areas, on refuse 

tips and even in litterbins in busy streets. In coastal areas, gulls are proficient 

intertidal predators, foraging from the surface at low tides (Furness and 

Monaghan 1987), preying upon a wide range of animals such as crustaceans, 

molluscs and echinoderms.  Small mammals, like rats and rabbits, or birds are 

part of their diet as well (Harris 1965).  

Research on inter-specific interactions between the different gull species 

showed that the great black-backed gull out-competes the herring gull for food 

when the two species share the same breeding site (Rome and Ellis 2004), but 

also during scavenging activity on refuse tips (Greig et al. 1986) and fishery 

discards (Hudson and Furness 1988) during winter. 

Large-scale studies in the North Sea have demonstrated that scavenging seabirds 

make extensive use of fishery waste, above all of offal and roundfish, but also to 
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some extent of flatfish, cephalopods and benthic invertebrates (Camphuysen, 

1995). Even if fishery discards are considered responsible for the growth in 

populations of several scavenging seabirds, these species have also been 

recorded feeding on grey seal carcasses. Baker (1984) stated that surveys for 

post-mortem medical inspections on pup carrion were difficult as scavenging 

birds eviscerated bodies within a short period after death, particularly if the 

animal died with the umbilicus exposed. Twiss et al. (2003) also observed 

predatory behaviour of great black-backed gull on weak or unprotected grey seal 

pups at the seal colony of Rona. The great black-backed gull and the herring gull  

are identified Amber and Red listed in Birds of Conservation Concern 

respectively (Eaton et al. 2015). Changes in food availability and disease might 

be the main threats for the herring gull (Monaghan 2007), while human 

persecution, botulism and viral infection, and predation by brown rats (Rattus 

Norvegicus) and American mink (Neovison vison) are the possible main threats 

that acted upon the great black-backed gull population (Zonfrillo 2007). The Isle 

of May gull populations were subjected to drastic culls between 1972 and 1986 

when more than 45,500 gulls were killed to reduce the impact on other seabirds 

nesting on the island. The great black-backed gull population in particular was 

exterminated (SNH 2014).  As the seal pupping season coincides with the food-

scarce and cold winter months, these species could benefit heavily from eating 

carrion, possibly improving their current status. During the rest of the year, 

instead, a possible source of food for the gulls living in the island is the European 

rabbit (Oryctolagus cuniculus) that have been present here since at least the 

13th century (Southern 1938). In particular, during summer a certain amount of 

carrion becomes available to the gulls in the shape of dead rabbits killed by the 

disease myxomatosis (personal observation). 

The red fox (Vulpes vulpes), was spotted at the grey seal breeding colony 

of Donna Nook (England, UK) feeding on placenta or dead pups (Culloch et al. 

2012), but this mammal is not present on the Isle of May. The house mouse (Mus 

musculus) is not excluded as potential scavenger on the island. Mice were 

probably introduced more than once during human occupation, as the island was 

already inhabited by monks before the 8th century. The population was 

estimated ranging from 450-3250 animals occurring across all the island including 

Rona and North Ness which are isolated at high tide (Triggs 1991). Predation on 

by gulls is probably low (Harris 1965). 
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The resident bird populations of Little Cumbrae were estimated to 

comprise 120 great black-backed gulls, 1200 lesser black-backed gulls and 2000 

herring gulls (JNCC 2010). There are no data available on ravens (Corvus corax) 

nesting on the island, but it is likely that some individuals, if not resident, travel 

from the nearby island of Great Cumbrae (Zonfrillo personal comment). No rats 

live here. 

1.6.4 Energy transfer pathways of seal carrion 

Generally the relationship between carrion and scavenger has been neglected in 

food web models (Selva and Fortuna 2007). In particular, the role of seal carrion 

provided to coastal scavengers has been so far overlooked and little is known 

about the transfer of biomass and energy between trophic compartments and 

ecosystems. As seal carrion can occur in both the terrestrial and marine systems, 

it represents a source of food for different organisms, including carcasivores (or 

scavengers) and necrophages, but also bacteria during decomposition, before 

being available to detritivores and soil.  

Seal breeding colonies have the potential to greatly influence the 

surrounding ecosystem with an influx of carrion in the shape of pup and adult 

carcasses and placentae. These resources may be exploited by terrestrial 

vertebrates such as gulls and mice, but also invertebrates (Figure 1.7). Some 

carcasses may be located in the intertidal area, where, being submerged by 

water and exposed to air according to the tidal action, they become available to 

both terrestrial and marine organisms. Under the influence of the tide and other 

environmental factors, such as weather conditions, wind and wave action, a 

certain amount of carcasses (and possibly also placentae) can be removed from 

the shore and be exposed to the marine system and its inhabitants such as 

scavenging starfish and crabs. The biomass resulting from seal carrion has 

therefore the potential of supporting terrestrial and marine communities of 

facultative and obligate scavengers. These scavengers will, in turn greatly 

influence the surrounding ecosystem by redistributing nutrients (Payne and 

Moore 2006). However, the part of dead biomass which is not transferred to 

scavengers is going back into the environmental constituents (nutrients and 

organic molecules) (Getz 2011). The present thesis will evaluate the biomass 

transfer between some of the ecoystem compartments mentioned above. 
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Figure 1.7 Energy transfer pathways of seal carrion in the terrestrial and marine 
ecosystems. 
Biomass transfer through scavenging consumption or decomposition of a placenta 
located on land and a dead seal pup located on land, in the intertidal zone 
(between the mean high and low water levels) and underwater to vertebrate 
(gulls and mice), invertebrate scavengers (insects, crabs and starfish) and soil.  

 

1.7 My PhD research 

1.7.1 Knowledge gaps 

Although much is known about marine mammals, their role in the coastal 

ecosystem is often considered of limited relevance and some ecological 

processes of intertidal environments in which marine mammals are involved are 

understudied. The grey seal, which periodically hauls out on land in the British 

Isles, represents a significant importer and exporter of energy and nutrients 

across the marine/terrestrial interface, both as alive individuals and potentially 

as carrion (Moore 2002). 

 Since the potential of coastal marine mammal populations as a source 

of carrion to local marine communities is not well known (Watts et al. 2011), an 

important step is determining whether scavenging on top predator carrion is 
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important and common. At the present time this information is lacking. 

Moreover, recent reviews highlighted the necessity of investigating:  

1) differences between carrion cycling in marine and terrestrial ecosystems 

(Beasley 2012);  

2) the importance of carrion as a distinct and underestimated resource in various 

ecosystems (Barton et al. 2013b), including the marine coastal system;  

3) the influence of spatial and temporal pattern of occurrence of carrion on 

scavenging behaviour, with attention to facultative scavengers which adopt 

alternative strategies for energy acquisition (DeVault et al. 2003);  

4) the scavenged component of carnivore diets (DeVault et al 2003) and its 

significance for key scavenging species in order to encourage their protection 

(Moleón et al 2015). 

 

1.7.2 Aims 

Understanding the connections between terrestrial and marine habitats is 

essential for the protection and management of both systems. Coastal systems 

have been and will be deeply altered throughout this century by a number of 

natural and anthropogenic effects, such as climate change. Therefore 

understanding the ecological interface between terrestrial and marine systems 

will provide a basis for the conservation and protection of coastal habitats and 

species. The management of marine mammal and seabird populations is 

expensive (and sometimes controversial), so a full understanding of the 

ecological role of those species is valuable in determining what efforts are 

appropriate.  

 

This project took a multifaceted approach to determine the importance of seal 

carrion to scavengers and the coastal ecosystem. The aim was to answer the 

following questions:  

1. How decomposition and scavenger consumption of seal carrion differ 

between marine and terrestrial ecosystems? (Chapter 2) 

Simulating a dead pup stranding on a beach and a negatively buoyant carcass 

washed offshore, a detailed documentation of the decomposition of a grey seal 

pup carcass and its consumption by scavengers will be provided. It was predicted 

that the presence of the carcass on the beach alters the distribution of the local 

scavenging birds; thus more birds are expected to fly over the study area after 
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the carcass deployment than the control area. Secondly, a temporal succession 

of scavengers caused by inter-specific competition and/or different levels of 

tolerance to decomposition was predicted to occur during consumption of the 

carcass in both the terrestrial and marine systems. 

2. Is carrion provided by a seal colony, in the shape of placentae and 

carcasses, a predictable resource according to its timing, spatial 

distribution, biomass and energy released? (Chapter 3) 

Predictability of seal carrion was examined by using data on aerial survey (11 

years) and ground visual census (3 years) to evaluate the timing of the pupping 

season, quantifying the biomass and energy released by carrion and its spatial 

distribution. Inter-annual variability of these properties (expressed as 

percentage of relative standard errors, RSE%) was calculated and predicted to be 

similar to that one of other predictable resources such as salmons in spawning 

areas. The response of the local avian scavenging community to carrion in terms 

of biomass consumed at the end of the seal pupping season was finally 

estimated. 

3. What is the influence of seal carrion on the spatial and temporal 

distribution, and behaviour of scavenging gulls? (Chapter 4) 

This was first evaluated by analysing changes in the number of scavenging gulls 

occurring before and during the seal pupping season at regional scale (Scotland): 

an increase in the number of gulls counted on the Isle of May was predicted to 

appear between September and December, whereas a decreasing in abundance 

would have been observed in the surrounding region. BirdTrack data for South 

Scotland, WeBS counts for the Forth Estuary area and Daytime and Roost counts 

for the Isle of May were used for the comparison. At local scale (Isle of May), the 

relative abundances of gull species were predicted to change between day and 

night on the Isle of May. Assuming that gulls are mostly diurnal (Hailman 1964; 

Garthe and Hūppop 1996), the species dominating the Daytime counts would, 

therefore, represent the main exploiter of carrion. Differences in Daytime and 

Roost counts would also indicate the relative importance of the island as feeding 

and roosting site for the different species. At patch scale, a higher number of 

active gulls was predicted to be observed in areas where carrion occurs than in 

areas where it was not present. In particular, within the patch, it was predicted 

that foraging activity of scavenging gulls was positively related to carrion 

availability, so that the number of gulls flying over the patch was higher at the 
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peak in availability of carrion (both carcasses and placentae), while the number 

of individuals feeding would be proportional to the amount of carrion.      

4. Does seal carrion affect the behaviour among scavengers in conditions of 

abundant and predictable resources? (Chapter 5)  

The feeding activity and intra-specific interactions among scavenging gulls was 

investigated during the seal pupping season on the Isle of May where conditions 

are characterised by predictable and abundant carrion availability. It was 

predicted that there would be no formation of hierarchical dominance showing 

either successive stages of monopolisation of the carcass or temporal 

segregation induced by adult great black-backed gulls. Therefore, it was 

expected that the feeding rates (cumulative time feeding per day per carcass) of 

adult and juvenile gulls were equal and would show similar trends with time.  

Placenta was considered as the preferred food due to its higher energy density 

and lower handling time compared to carcasses, and regardless of its abundance 

and predictability during the seal pupping season, dominant individuals would 

have more access to the resource. Therefore, it was predicted that feeding rate 

of adult gulls (cumulative time feeding per bird per placenta) would be greater 

than juveniles. 

The final chapter (Chapter 6) presents an overall discussion of the implications 

arising from these scientific questions.
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2:Chapter 2: First investigations of the consumption 

of seal carcasses by terrestrial and marine 

scavengers 

2.1 Abstract 

Marine mammal carrion contains a large amount of nutrients and energy of 

potential value to terrestrial and marine scavengers, but its impact on coastal 

habitats has not been studied. This study aimed to document in detail the fate 

of two grey seal (Halichoerus grypus) pup carcasses, one placed on the shore and 

one at a depth of 6 m, recording the changes in the carcasses and the succession 

of scavengers using these resources. The carcasses were monitored using time 

lapse and/or motion-activated cameras. On the shore, great black-backed gulls 

(Larus marinus), juvenile gulls and ravens (Corvus corax) fed on the carcass and 

there was a distinct shift in the relative proportions of bird groups feeding over 

the period observed. Herring gulls (Larus argentatus) spent significantly less of 

their time at the carcass feeding than other birds, while lesser black-backed 

gulls (Larus fuscus) were not observed scavenging despite being common on the 

island. Over the six week period of observation, more than 90% of the carcass 

was consumed. However, the deployment of the carcass did not influence the 

spatial and temporal distribution of the scavenging birds. The underwater 

carcass was monitored for two periods of two and one week duration. In the first 

period Echinodermata (dominated by Asterias rubens) had the highest maximum 

number of individuals at the carcass, followed by Actinopterigii (fish) and 

Malacostraca (crabs). Numbers of fish and starfish decreased in the second 

period, while crustaceans were present in similar numbers as previously. The 

daily mass loss of the carcasses was 0.56 and 0.07 kg day-1 in the terrestrial and 

marine ecosystem respectively. Both experiments showed evidence of bacterial 

activity. In the absence of any previous detailed study, the present work 

provides important insights into the role of seal carcasses in coastal systems, 

especially in an era when carrion from fisheries discards will become 

increasingly unavailable. 
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2.2 Introduction 

Scavenging is a widespread and foraging strategy employed by many carnivorous 

animals (Selva and Fortuna, 2007). Although potentially valuable, carrion is 

often an unpredictable resource making scavenging a high risk-high reward 

strategy. This risk is reduced where animals can search large areas at low cost 

and can be accomplished by specialised birds (Ruxton and Houston, 2004a) and 

possibly by abyssal fish (Ruxton and Bailey, 2005). However, scavengers are 

often facultative rather than obligate: many large mammalian carnivores, for 

instance, switch from hunting to scavenging depending on prey availability 

(Pereira et al. 2014). In some food webs scavenging links have been 

underestimated 16-fold, so that the energy transferred through scavenging is 

likely to be greater than that transferred by predation (Wilson and Wolkovich 

2011). 

In UK coastal systems the families Laridae (gulls) and Corvidae (ravens) 

are opportunistic scavengers. In contrast to the Tubinares (petrels) which are 

seabirds highly dependent on carrion and use their excellent sense of smell to 

find it (Nevitt 2000), gulls and corvids employ sight, and probably olfactory 

information (Wikelski et al. 2015). This food-finding behaviour includes visual 

surveillance of the coast, recognition of the food item and attraction to the sight 

of other animals feeding (Frings et al. 1955). Although frequently observed, the 

role of marine mammal carrion on the scavenging activity of coastal birds is not 

clear as previous research on this subject has been opportunistic and qualitative 

(e.g. Bruyn and  Cooper 2005; Reid and Forcada 2005; Van den Hoff and Newbery 

2006).  

Knowledge of marine scavengers, focused mainly on deep-sea whale-falls, 

has shown that whale carcasses can support a widespread and characteristic 

faunal community during different successional stages (Smith and Baco 2003). By 

contrast, the impact of carrion in shallow waters is less well known. As food falls 

occur together with other natural and anthropogenic perturbations, it is difficult 

to evaluate their impact on coastal scavengers, being mostly facultative and not 

exclusively dependent on carrion (Ramsay et al. 1997b). In shallow water the 

main scavengers are thought to be benthic invertebrates (principally crustaceans 

and molluscs). These species likely detect carrion from the dispersion of 

chemical cues indicating the location, quantity and quality of the food source 
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(Britton and Morton 1994). Faunal colonisation and decompositional changes 

from marine mammal carcasses in coastal systems also appear to be 

understudied and only studies took into account these phenomena (e.g. Dahlgren 

and Wiklund 2006; Glover et al. 2010).  

The main factors driving the structure of the scavenging community 

include competitive and facilitative interactions, behavioural adaptations, 

carcass size and environment (Selva et al. 2005; Sebastián-González et al. 2013; 

Moleón et al. 2015; Sebastián-González et al. 2016). Intra and inter-specific 

interactions may lead to successional patterns in the scavenging community 

during the process of carrion consumption.  Many forensic studies focused on 

post-mortem intervals and the associated fauna, but they examined mostly the 

succession of terrestrial arthropods (Amendt et al. 2004). Exceptionally, 

Anderson and Hobischak (2004) observed the sequence of marine invertebrates 

associated with submerged pig carcasses. Terrestrial vertebrates were rarely 

considered when exploring temporal occurrence of species linked to carrion (e.g. 

Cortés-Avizanda et al. 2012; Young et al. 2014). 

The total UK populations of both harbour seals (Phoca vitulina) and grey 

seals (Halichoerus grypus) were estimated to be around 150,000 individuals in 

2012 (SCOS 2013). Owing to their body size, high energy demand and sometimes 

high local abundance, seals can strongly influence marine ecosystems, as they 

are capable of transporting energy and nutrients over long distances and 

between habitats. Large aggregations of seals occur on mainland and island 

coasts and it is therefore likely that mortality allows the major transfer of 

energy and nutrients between trophic levels and habitats. Annual mortality rate 

of UK adult grey seal population is estimated to be around 5% (Thomas and 

Harwood 2005), whereas pup mortality can reach more than 30% in the first 

month of life in certain areas of the colony (Summers et al. 1975). As a result, 

large adult seal carcasses containing very large amounts of nutrients and energy 

are relatively rare (one was observed on Great Cumbrae while the terrestrial 

experiment was underway, personal observation), while the smaller pup 

carcasses are probably common following the seal breeding season. Both 

terrestrial and the marine food webs can be affected by seal carrion, but the 

recycling processes in which it is involved can be fundamentally different 

(Beasley et al. 2012). Beasley et al. (2012) identified the physical properties of 

air and water as main drivers of the fate of carrion in the two ecosystems. Other 
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features of influence include the three-dimensional space of the aquatic system, 

which allows one more dimension for movements of carcasses. These properties 

can, then, lead to a diverse hierarchal structured assemblage of scavenging 

organisms (Beasley et al. 2012). 

The aim of this study was to document the decomposition of a grey seal 

pup carcass and its consumption by scavengers in both a terrestrial and a marine 

environment. The terrestrial experiment was a simulation of a dead pup 

stranded on a beach, whereas the underwater experiment represents a 

negatively buoyant carcass washed offshore. Firstly, it was predicted that the 

presence of the carcass on the beach alters the distribution of the local 

scavenging birds; thus more birds are expected to fly over the study area after 

the carcass deployment than the control area. Secondly, a temporal succession 

of avian scavengers was predicted during consumption of the carcass, caused by 

dominance, inter-specific competition and/or different levels of tolerance to 

decomposition. 

 

2.3 Methods  

The grey seal pup carcasses were originally found dead due to natural mortality 

on the Isle of May (Firth of Forth, Scotland, UK) during the 2011 pupping season. 

The island is owned by SNH, and the collection of carcasses was approved under 

research licences issued by SNH. The Sea Mammal Research Unit (University of St 

Andrews) collected them when still in fresh condition (around 3 days after 

death) for the purpose of this project. Carcasses were frozen at -20oC and stored 

at the University of Glasgow until the study commenced.  

The terrestrial experiment required the approval of the manager of Little 

Cumbrae for operations on the littoral zone of the island. No Marine Licence was 

necessary for the underwater experiment, as the proposal was treated as a 

scientific experiment. The permission for the use of the seabed (to the south of 

Clashfarland Point) was granted by the Crown Estate and Marine Scotland 

Licensing Operations. Use of the shore for the placement of the recording 

equipment for the underwater camera was granted by the Bute Estate.  Other 

authorities and institutes directly or indirectly involved in the experiment were 

informed, including the Local Authority’s Environmental Health Department, the 

University Marine Biological Station Millport (UMBSM, now Field Studies Council 
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Millport), the local police, the Scottish Agriculture College (SAC now SRUC), the 

Scottish Environmental Protection Agency (SEPA), the Scottish Natural Heritage 

(SNH), the Sea Mammal Research Unit (SMRU) and the Scottish Society for the 

Prevention of Cruelty to Animals (SSPCA). 

Terrestrial experiment 

The terrestrial experiment was conducted on the island of Little Cumbrae, SW 

Scotland (55°43'50.46"N, 4°56'18.59"W) (Figure 2.1) between the end of July and 

September 2012. The resident bird populations of Little Cumbrae were 

estimated to comprise 120 great black-backed gulls (Larus marinus), 1200 lesser 

black-backed gulls (Larus fuscus) and 2000 herring gulls (Larus argentatus) (JNCC 

2010). There are no data available on ravens (Corvus corax) nesting on the 

island, but it is likely that some individuals, if not resident, travel from the 

nearby Great Cumbrae (Zonfrillo personal comment). The study area (carcass 

present) and a control area (no carcass) were chosen at a distance of 

approximately 570 m from each other along the eastern coast of the island to 

avoid anthropogenic disturbance and were selected based on similar topographic 

features and ease of observation. Seabird surveys were undertaken at the study 

and control sites both before and after the deployment of a single grey seal pup 

carcass (study-before: N = 4; study-after: N = 13; control-before: N = 4; control-

after: N = 11) at intervals of 2-6 days for the total duration of the experiment 

(from 18/07 to 5/09/2012) (Appendix A.1). Counts were performed to evaluate 

the traffic of birds in the areas before and after the deployment of the carcass 

as an indication of changes in behaviour and spatial use after the carcass 

became available in the study area. This methodology was previously used also 

to assess the impact of wind turbines on birds present in the area of installation 

(e.g. Barrios and Rodríguez, 2004; Everaert and Stienen, 2006). Continuous 

sampling (Martin and Bateson 1993) of flying birds was used to obtain the 

number of passages during a period of 2 hours at each site (2 hours per survey). 

Counts were undertaken at different times of the day, at low and high tide at 

both sites. As suggested by Gregory et al. (2004), the vantage points for counts 

were raised and/or concealed positioned and were chosen at a sufficient 

distance (30 m) from the areas to minimise disturbance. Areas of observations 

had an approximate size of 150 x 40 m covering both land and sea and only birds 

flying over this area were counted. The bird counts included herring gulls, lesser 

black-backed gulls, great black-backed gulls and ravens. Immature individuals 
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belonging to the family Laridae, but of different species, were not distinguished 

and were grouped together. Avian scavengers were identified by researchers 

who were previously trained in bird identification and according to Grant (1982) 

and Holden et al. (2009). Prior to deployment, the seal carcass was intact, with 

the exception of a missing left eye. Its body length (nose to tail) was 110 cm and 

mass was 25.0 kg. The carcass was allowed to defrost and was deployed in the 

upper-littoral zone (at 3.49 m height and 38.8 m distance to the lower limit of 

the infralittoral zone) of the study area on the 26 July 2012. Appearance of the 

carcass was documented with photographs in order to define the 

decompositional stages. Mass loss was recorded by weighing the carcass on a 

plastic sheet using a digital scale (min = 10g, max = 40kg, accuracy = ± 10g) at 

approximately weekly intervals. The carcass was monitored by infrared motion-

triggered and time-lapse cameras (n = 3; Bushnell Trophy Cam models 119436 

and 119435) for the duration of the experiment. Cameras were located at a 

maximum distance of 3 m from the carcass. Two cameras were set on motion-

triggered time lapse mode (two 8 MB resolution photographs every five minutes 

and every two minutes if movement-triggered) (Hamel et al 2013); the third 

camera was set on motion-triggered 10s video mode (640 X 480 pixels resolution 

when movement-triggered). The entire photo/video collection was used in the 

analysis including times (max 30 minutes) when the researchers were present in 

the study area. For the periods 8/13, 16/19-08 and 2/5-09 only videos were 

available due to malfunction of the other cameras. Birds occurring in the field of 

view of the cameras were identified from images and the times spent actively 

scavenging on the carcass (feeding) and present but not scavenging (not feeding) 

were recorded. Time spent both actively and inactively by gulls on the carcass 

was estimated from the number of minutes included between consecutive 

images till the gull disappeared. When the body of the carcass was found 

opened, the rectangular area containing the internal organs was measured. Daily 

maximum number of individuals (mean MaxN day-1) feeding at one time at the 

carcass was calculated for each group of birds. Specimens of invertebrate 

scavengers were collected in the study area (on 02/08), preserved in ethanol 

70% and identified in the laboratory using Smith (1989). At the end of the study, 

the remains of the carcass were disposed off at sea. Data on daylight hours and 

air temperatures were obtained from timeanddate.com and metoffice.gov.uk, 

respectively. 
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Underwater experiment 

A second grey seal pup carcass was deployed on the seabed south of Clashfarland 

Point on Great Cumbrae, SW Scotland (55°45'44.40"N, 4°53'41.82"W) (Figure 

2.1), on the 1st August and recovered on 17th October 2013. The carcass was 

secured to the wire mesh base of a purpose-built steel frame (120 x 60 x 93 cm, 

LxWxH). The monitoring system consisted of an underwater 24/7 CCTV wired 

camera (1/4 inch Sharp Color CCD, 24 white LEDs ) attached to the frame and 

connected by 80 m cable to a SD-DVR, a memory card-digital video recorder 

onshore (Appendix A.2). The cable was protected from abrasion by being placed 

inside a length of garden hose. The unit was powered by two 12V-55Ah batteries 

(Camdenboss Electronics and Enclosures VRLA Lead Acid AGM). Batteries were 

charged and SD micro-card changed approximately every four days to keep the 

system working continuously. The carcass was intact, was 100 cm in length and 

had a mass of 19.7 kg. It was attached (still frozen to facilitate the deployment) 

to the base of the frame and then deployed at 6 m depth by the vessel Actinia 

(UMBSM). The frame’s position on the seabed was adjusted by two SCUBA divers, 

who then ran the camera cable back up the shore, attaching it to the seabed at 

intervals using lengths of chain. The frame was located in the circalittoral zone, 

close to the border with the infralittoral zone. The seabed was characterized by 

gravel and sand substrate with extensive beds of kelp (Laminaria spp.) within 3-

5 m of the frame at the start of the experiment. The carcass was monitored 

continuously for two periods (2-15/08 and 17-25/09). The interval between 

periods was caused by technical problems due to fouling by barnacles and 

ultimately leaks into the underwater camera, which had to be replaced. At the 

end of the experiment the carcass was removed from the frame by divers and 

placed within a waterproof dry-bag before being brought back to the shore. 

Excess water was drained from the dry-bag and then the carcass was frozen to -

20°C while still in the bag and weighed. After carcass removal the camera frame 

equipment was recovered using the vessel winch and A-frame. Seawater 

temperatures were provided by the Field Studies Council Millport and data on 

daylight hours were obtained from timeanddate.com. Videos were analysed 

using iDRV Player (version V3.5 2011/1/5) and times when bad visibility occurred 

due to turbulence or bad light conditions or algae interference were excluded 

(Appendix A.3).  Where possible, organisms were identified to the species level, 

but for the purpose of analysis the following taxonomic classes of marine 
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organisms were considered: Gastropoda, Bivalvia, Asteroidea (starfish), 

Malacostraca (crabs) and Actynopterigii (fish). Different sources were used to 

identify organisms and their feeding guilds, including Naylor (2005) and the 

marine species databases marlin.ac.uk and marinespecies.org. Individuals 

occurring on the carcass were counted at 10 min time intervals. The daily 

maximum number of individuals (MaxN) was calculated for the five groups. The 

proportions of visits of crustaceans were calculated for day and night in the two 

periods. Agonistic events were recorded when observed.  

 

Figure 2.1 Map of locations of the experimental areas. 
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The terrestrial experiment was run in Little Cumbrae (o) and the underwater 
experiment in Great Cumbrae (•), West of Scotland, UK.  Maps provided by 
EDINA Marine Digimap Service, http://edina.ac.uk/digimap.Crown Copyright / 
SeaZone Solutions Ltd [2008]. All Rights Reserved. Not to be used for Navigation. 

 

2.3.2 Statistical analysis 

Terrestrial experiment 

Generalised linear models were carried out to evaluate whether the deployment 

of the seal carcass at the study area altered the distribution of the scavenging 

birds. The response variable was the number of passages of each group of birds 

counted in two hour survey (N passages 2hours-1), while the explanatory 

variables were the Area (categorical: study and control), the Period (categorical: 

before and after the carcass deployment), the Tide (categorical: high and low) 

and the Time of the day (categorical: morning and afternoon). The primary aim 

was to test for a significant interaction effect between Area and Period as a 

significant interaction would imply that bird abundance changed differently in 

the study and control sites after the carcass was deployed. After exploring data 

according to Zuur et al. (2010), the model was run including all the explanatory 

variables and the only interaction of interest and the minimum adequate model 

was identified by step-wise removal of non-significant terms choosing the model 

with the lowest AIC. Dealing with counts, data were modelled with both Poisson 

and negative binomial distributions. The likelihood ratio test score was 

calculated in order to compare the null and final model. P values of significant 

terms came from an analysis-of-variance (anova function in R). Ravens were 

excluded from this analysis because of insufficient data. 

A generalised linear model followed by a Tukey post-hoc multiple 

contrasts test were run to to investigate differences among the absolute feeding 

times (mins day-1; response variable) among the groups birds (explanatory 

categorical variables). Again, dealing with count data were modelled with both 

Poisson and negative binomial distributions and the model with the lowest AIC 

was chosen. The analyses were performed in R 3.0.3 (R Development Core Team, 

2012), using the packages ‘MASS’ for the model (glm.nb()) (Venables and Ripley 

2002), ‘epicalc’ for the likelihood ratio tests (Chongsuvivatwong 2012) and 

‘multcomp’ for the Tukey contrast test (Torsten et al. 2008). 

A purely temporal scanning statistic was used to detect the predicted 

temporal succession of scavengers occurring during consumption of the carcass: 
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clusters of feeding activity (mins day-1) of the same group of birds at particular 

times at the carcass during the experiment were therefore identified. The 

temporal scan statistic uses a window, defined as an interval time of variable 

size, which scans the temporal data to be analysed. The number of observed and 

expected observations inside the window is noted and the window with the 

maximum likelihood is the most likely cluster. This analysis was performed in the 

program SaTScan (Kulldorff et al. 2005): the purely temporal analysis was 

implemented by selecting a discrete Poisson probability model and a temporal 

cluster size between 2 days and 50% of the study period. A total of 9999 Monte 

Carlo simulations were made to calculate p-values for detected clusters.  

Once checked for non-normal distribution running a Shapiro–Wilk test, the 

nonparametric pairwise Wilcox Mann-Whitney test with the adjustment method 

Holm, giving a strong control of the family-wise error rate, was used to compare 

the proportions of time spent actively feeding among groups of birds. Lesser 

black-backed gulls were excluded in the previously described three analyses 

because they were not observed feeding on the carcass. 

Underwater experiment 

A Poisson generalised linear model was used to evaluate differences in the 

composition of the scavengers’ assemblage between the two periods of the 

carcass monitoring. The maximum number of individuals (MaxN; response 

variable) was explained by the following variables: taxonomic Class of animals 

(excluding gastropods and bivalves because of insufficient data), Period of 

monitoring (categorical: period1 and period2) and the Time of the day 

(categorical: day and night). The minimum adequate model was identified by 

step-wise removal of non-significant terms choosing the model with the lowest 

AIC as final model; score of the likelihood ratio test between null and chosen 

model was reported.  

The proportions of visits made by malacostracans at day and night for the 

two periods were compared by using the nonparametric pairwise Wilcox Mann-

Whitney test with the adjustment method Holm, after checking the non-

normality nature of the data by using a Shapiro–Wilk test. Analyses were 

performed in R 3.0.3 (R Development Core Team, 2012) using the same packages 

mentioned previously. 
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2.4 Results 

2.4.1 Terrestrial experiment 

Temperature and daylight hours 

The maximum and minimum air temperatures recorded in July were 18.1°C and 

11.2°C, 19.7° and 11.8° in August and 15.3°C and 8.9°C in September. The 

daylight hours ranged from 16.83 to 16.10 hours in July, from 16.02 to 13.88 

hours in August and from 13.80 to 13.50 hours in September. 

Consumption and decomposition of the carcass 

Within 24 h of placing the carcass, abrasions and wounds were evident. The first 

areas to be fed upon were the umbilicus and the eye region. From the camera 

footage, at day 2, a great black-backed gull was seen pulling out the intestines 

from the carcass which were then found spread over 18m2. From day 3 initial 

wounds were further opened and fly larvae and adults (Calliphora vicina, Lucilia 

sericata, Lucilia sp.) together with the burying beetle (Nicrophorous humator) 

were present in the mouth, nostrils and underneath the body. Occasionally crabs 

were observed visiting the carcass during the night. 

As the holes in the head and abdomen grew, wounds also began to appear on the 

flippers (day 8). At day 20 the spine and internal viscera were exposed and the 

head was disarticulated. The front flippers were consumed quickly. The rear 

flippers were only superficially damaged and appeared desiccated by the end of 

the experiment.   

The carcass showed successive stages of decay over the course of the 

study. In the initial stage arthropods quickly colonised the carcass (day 3). The 

next stage was characterized by bloating (day 9) and liquefaction, in which the 

carcass appeared much flatter and the tissues within the openings started to 

decay. A strong putrid smell was noted, apparently caused by liquids leaking 

from the carcass (day 11). The collapse stage was observed when a large 

quantity of the tissue was consumed and the head broke down (day 21). 

Approximately nine days later, the carcass appeared to be in the putrefaction 

stage (day 30). The carcass was disposed of at day 42, when only remains (bones 

and mummified hide) were present. 
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Movement of scavengers 

The presence of the carcass led to an increase of the mean number of great 

black-backed gulls, juvenile gulls, ravens and lesser black-backed gulls flying 

over the study area after the start of the experiment (Figure 2.2). In the control 

area the great black-backed and juvenile gulls together with ravens also 

increased their visits after the carcass became available, but there was a 

decrease in the presence of lesser black-backed and herring gulls.  

No best fitting model carried out for each group of birds showed a statistically 

significant interaction between Area and Period (Appendix A.4). In particular, 

the distribution of great black-backed gulls was explained by the variables Tide 

(P = 0.0296), Area (P < 0.0001) and Period (P = 0.0003), whereas the number of 

herring gulls varied according to the Tide (P = 0.0001). The fitted models for the 

other groups of birds did not have significant terms (Appendix A.4).  
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Figure 2.2 Total number of bird passages per 2 hour count. 

Great black backed-gulls (GBBG), ravens (RAVEN) , herring gulls (HG), lesser 
black-backed gulls (LBBG)  and juvenile gulls (JUV)  in the control (C) and study 
(S) areas before (B) and after (A) the deployment of the carcass in the study 
site. On each box, the central mark is the median, the edges of the box are the 
lower hinge (25th percentile) and the upper hinge (75th percentile), the 
whiskers extend to the maximum and minimum data points, outliers are plotted 
individually. 
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Scavenging activity 

Great black-backed gulls, herring gulls, juvenile gulls and ravens, but not adult 

lesser black-backed gulls, all scavenged the seal carcass (Figure 2.3). Juveniles 

spent more time at the carcass in comparison to the other group of birds for a 

total of 237.63 hours, both feeding (51.1%) and non-feeding (mins day-1; Table 

2.1). The second most frequent visitors were great black-backed gulls which 

spent a total of 41.02 hours on the carcass and actively scavenged for 81.4% of 

this time.  Ravens made infrequent visits, spending 11.43 hours around the 

carcass and were feeding for 66.5% of the time. Herring gulls were rarely seen 

scavenging on the dead seal (20.8% of a total of 2.88 hours), spending most of 

the time attending the scene without participating. Adult lesser black-backed 

gulls did not scavenge the carcass and their presence occurred for a total of only 

15 minutes. They were excluded from the subsequent analyses. The highest 

mean maximum number of individuals observed at the carcass at one time was 

observed in the juveniles. The latter were also the most frequent visitors of the 

experimental area, followed by great black-backed gulls, ravens and finally 

herring gulls (Table 2.1; images of scavenging birds in Figure 2.3). The absolute 

feeding times were compared between groups of birds and the great black-

backed gulls scavenged more than the ravens (Tukey contrasts test, P = 0.0116), 

but less than the juvenile gulls (P = 0.0383). All the other comparisons between 

groups of birds were highly significant (P < 0.001).  

 

Table 2.1 Daily means of feeding time, non-feeding time, number of visits and 
MaxN for groups of birds. 

Means and standard errors (SE) are presented in minutes. GBBG = great black-
backed gulls, HG = herring gulls, LBBG = lesser black-backed gulls, juvenile gulls 
and ravens. 
 Adult gulls Juvenile gulls Ravens 

 GBBG HG LBBG   

Feeding time day
-1 

(mins)   

(SE) 

47.95  

(11.58) 

0.85 

(0.43) 

0 

(0) 

173.52 

(23.4) 

10.85 

(3.25) 

Non-feeding time day
-1 

(mins) 

(SE) 

10.93 

(2.45) 

3.27 

(1.25) 

0.37 

(0.25) 

165.98 

(33.47) 

5.48 

(0.25) 

Visits (n day
-1

) 

(SE) 

3.17 

(0.54) 

0.50 

(0.16) 

0.12 

(0.08) 

11.29 

(1.58) 

1.69 

(0.42) 

Mean MaxN day
-1

 

(SE) 

0.86 

(0.009) 

0.33 

(0.07) 

0.07 

(0.04) 

1.83 

(0.18) 

0.67 

(0.12) 
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Figure 2.3  Avian scavengers occurring in the terrestrial experiment. 

A white arrow indicates the seal’s head. A) Great black-backed gull pulling out 
the internal organs of the carcass (day 3); B) Herring gull visiting the study area 
(day 3); C) Two juvenile gulls (day 21); D) Raven feeding on the carcass at a late 
stage of consumption and decomposition (day 29).  
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Temporal pattern in the feeding activity of different groups of birds was 

observed during the experiment (Figure 2.4) and temporal clusters were 

detected at different times for different groups: the great black-backed gulls 

opened the carcass the day following its deployment (27/07) and contributed to 

the dismantling of the carcass for a temporal cluster of 11 days (interval time 

27/07 – 06/08; P = 0.0001). Juveniles were the most common for a long period 

after the decrease in visits by great black-backed gulls (interval time 13-27/08; 

P = 0.0001). Ravens were active mostly in the final stage of consumption 

(interval time 23-31/08; P = 0.0001). Herring gulls visited the carcass forming 

the shortest time cluster (interval time 9-16/08; P = 0.0001) between great 

black-backed gulls and juveniles. The mass of the carcass decreased from 25.00 

to 1.83 kg, resulting in an estimated daily mass loss of 0.56 kg. 

 

Figure 2.4 Daily feeding activity (percentage) of groups of birds. 

Great black-backed gulls (GBBG, red), juvenile gulls (JUV, white), ravens (blue) 
and herring gulls (HG, yellow). Mass loss of the carcass (black ). 
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Great black-backed gulls (pairwise Wilcox Mann-Whitney test, P = 0.0017), 

juvenile gulls (P = 0.0005) and ravens (P = 0.0028) showed significantly higher 

proportion of feeding time than herring gulls.  

 

2.4.2 Underwater experiment 

Temperature and daylight hours 

The daily seawater temperature ranged from 14.8°C to 17.0°C during the first 

survey period in August and 12.0°C to 13.0°C during the second period in 

September. The mean daily seawater temperature for the month of August was 

15.3°C (SD = 0.81) and for September was 13.2°C (SD = 0.87). The daylight hours 

ranged from 16.03 to 13.90 hours in August and from 13.82 to 11.62 hours in 

September. 

Consumption and decomposition of the carcass 

Within five days from the start of the experiment the eye of the carcass was 

scavenged (Figure 2.5A). A large wound appeared on the front left flipper at day 

10 (Figure 2.5B) and another one of smaller size on the top of the shoulder at 

the day 13. After three days (day 15) the nose was bitten, the mouth opened, 

showing the teeth and the abrasion around the eye enlarged. Several whitish 

patches also developed on the fur which broadens in the following days to cover 

all visible areas of the body surface. Furthermore, the seal’s head appeared to 

have risen a few centimetres from the base of the structure suggesting that the 

carcass was positively buoyant (Figure 2.5C). At the beginning of the second 

period of monitoring the carcass was still in this floating state showing a more 

advanced stage of decomposition (at day 48 of submersion). The body appeared 

white and covered by new greyish patches; the head was damaged exposing the 

facial bones, and the jaws were still attached (Figure 2.5D). At day 54 (end of 

the camera recording) several sections of epidermis with fur had detached 

denuding small areas of exposed dermis. When recovered (day 78), the carcass 

was barely recognisable: it was still positive buoyant, even if flattened, and 

presented exposed bones of the neck and pelvic. The whole body was covered by 

a thick grey layer of bacteria. The mass of the carcass at the end of the 

experiment was 14.45 kg, resulting in a total reduction of 5.25 kg and an 

estimated daily mass loss of 0.07 kg. 
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Figure 2.5 Underwater experiment at different stages of consumption and 
decomposition of the carcass. 

A) The carcass shows a scavenged eye; starfish are feeding on it (day 5); B) A 
large wound appears on the front left flipper; a labrid, a crab and few starfish 
are present (day 10); C) The carcass shows positive buoyancy and several whitish 
patches; kelp is partially covering the dead seal (day 15); D) The carcass is at a 
late stage of decomposition and epidermis with fur detaches, bones are exposed 
on the area of the face (day 48). 
 

Scavenging activity 

Generally the carcass was visited by members of the phyla Mollusca, Arthropoda, 

Echinodermata and the subphylum Vertebrata. In total 4 phyla, 5 classes, 9 

orders, 14 families and 16 species were identified (Table 2.2).  
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Table 2.2 Systematic classification of marine organisms occurring on the carcass. 

For each species feeding guilds has been assigned: C = carnivore, D = 
detritivores, O = omnivore, Op = opportunistic, P = predator, S = scavenger, SF = 
suspension feeder. 
Phylum Class Order Family Species Feeding  

guild 

Mollusca Gastropoda Neogastropoda Muricidae Nucella lapillus O-P-S 

 Bivalvia Pectinoidea Pectinidae Pecten maximus SF 

Arthropoda Malacostraca Decapoda Paguridae Pagurus 

bernhardus 

P-S 

   Cancridae Cancer pagurus O-P-S 

   Portunidae Carcinus maenas O-P-S 

   Polybiidae Necora puber O- P 

    Liocarcinus 

depurator 

C-P 

Echinodermata Asteroidea Forcipulatida Asteriidae Asterias rubens C-S 

    Marthasterias 

glacialis 

P-S 

Chordata Actinopterygii Gadiformes Gadidae Pollachius virens P 

    Pollachius 

pollachius 

P 

  Perciformes Labridae Symphodus melops O -P 

    Labrus mixtus P 

   Blenniidae  D - Op 

   Gobidae  O 

   Pholidae Pholis gunnellus P 

  Pleuronectiformes Pleuronectidae Limanda sp. P 

  Syngnathiformes Syngnathidae Syngnathus acus P 

Tot        4 5 9 14 16  
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In the first period Asterias rubens belonging to the class Asteroidea (starfish) 

was the most common scavenger (mean MaxN = 11.03, SE = 0.72) followed by the 

classes Actinopterygii (fish; mean MaxN = 9.14, se = 1.16) and Malacostraca 

(crabs; mean MaxN=1.53, SE = 0.14) (Figure 2.6-1). The dog whelk Nucella 

lapillus was rarely observed and never more than one individual per time. The 

Atlantic scallop Pecten maximus was also observed in the video, however, its 

visits were probably coincidental. Starfish exhibited feeding preference on the 

head and on the areas of the joints. Some individuals were seen disappearing 

under the carcass and during the second period of monitoring a specimen was 

partly hidden in the eye cavity. Crabs scavenged in the same areas of starfish 

when accessible. Individual fish or schools were recorded, but particular 

behaviours were also noted: an adult of the family Labridae was seen interacting 

with the carcass by spitting its food on it, while the saithe Pollachius virens and 

the pollack P. pollachius were observed scraping their bodies on the surface of 

the carcass. During the night, a few individuals of Pholis gunnellus were seen 

around the carcass and sometimes attached to it pushing their heads on it. 

Agonistic interactions were only observed during the first period and involved 

intra- and inter-class events between two crabs (N = 4), a crab and starfish (N = 

4), two starfishes (N = 2) and a crab and fish (N = 1). C. pagurus successfully 

forced several starfish to abandon the carcass by moving them with its claws. 

Only once was a starfish seen to force a crab to move away. In the second period 

the maximum number of asteroids reduced drastically (mean MaxN = 1.13, SE = 

0.22) together with fish (mean MaxN = 2.8, SE = 0.81), while the relative 

abundance of crustaceans showed no obvious change (mean MaxN = 1.26, SE = 

0.15) (Figure 2.6-2). 

The best model describing the maximum number (MaxN) of organisms occurring 

on the carcass explained 22.84% of the deviance from the null model (likelihood 

ratio test: Χ2 (df = 8) = 464.89, P < 0.001). It included the variables Period (P < 

0.0001), Time (P = 0.0002), Class (P < 0.0001) and the interactions between 

Period and Class (P < 0.0001) and Time and Class (P = 0.0012), and excluded the 

remaining interactions (Appendix A.5). 
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Figure 2.6 Maximum number of individuals (MaxN) for the observed classes in the 
two periods of monitoring (Period 1 and 2).  

On each bar, the top of the bar is the mean of the MaxN day-1, error bars are ± 
SE. 
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Crustaceans visited the carcass more often during the first stage of the 

experiment with 14.64 (SE = 2.45) and 8.33 (SE = 1.41) mean visits per day 

during the first and second periods, respectively. The proportion of visits of 

crabs in the first period of monitoring was significantly higher during night than 

during day (pairwise Wilcox Mann-Whitney test, P = 0.0001), while in the second 

period there was no difference (P = 0.61) (Figure 2.7). 

 

 

Figure 2.7 Proportions of presence of malacostracans during day and night in the 
two periods of monitoring. 

On each box, the central mark is the median, the edges of the box are the lower 
hinge (25th percentile) and the upper hinge (75th percentile), the whiskers 
extend to the maximum and minimum data points, outliers are plotted 
individually. 
 

2.5 Discussion 

The present study represents the first detailed observations on scavengers 

feeding on pinniped carrion in both the terrestrial and marine systems: so far no 

study explored differences in carrion consumption between the two ecosystems 
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(Beasley et al. 2012). Existing literature concerning scavenging on seals consists 

mainly of singular opportunistic observations, as in the case of the red fox 

(Vulpes vulpes) and the southern giant petrel (Macronectes giganteus), seen 

feeding on dead seals around the colony (Culloch 2012) and in submerged 

conditions (Van den Hoff and Newbery 2006), respectively. Bruyn and Cooper 

(2005), instead, focused on inter- and intraspecific behaviour of southern and 

northern giant (Macronectes halli) petrels feeding on a southern elephant seal 

carcass, but for a limited time (150 and minutes). From stable isotope analyses 

seal carrion was found to be part of the diet of giant petrels (Forero et al. 2005) 

and without clear evidences also of Arctic foxes (Vulpes lagopus) (Roth 2002). 

Scat analyses combined with behavioural observations showed that seal carrion 

is also consumed by brown hyenas (Hyaena brunnea) on the Namibian coast 

(Kuhn et al. 2008). However, there are no studies investigating the patterns and 

processes involving these scavengers as part of a wider scavenging community 

and their interactions within it. 

In Scotland, grey seal strandings represent the greatest source of carrion 

in comparison to other marine mammals (SRUC 2015, see Chapter 1). This 

species therefore is likely to represent a relevant source of carrion inputs for the 

coastal ecosystem and its scavengers.  

 

2.5.1 Terrestrial experiment 

This experiment described how scavenging seabirds dismantle a marine mammal 

carcass: eyes were the first body regions consumed and feeding at the umbilicus 

was the most accessible way for scavengers to open the carcass. Secondary 

openings appeared to arise as a result of longer pecking activity on the carcass. 

Pavés et al. (2008) have described how vultures first feed on the eyes of dead 

sea lion pups and adults, and then the naval, genitals and anus. However, as 

scavenging and decomposition occur simultaneously, it was not possible to 

separately measure each of the two processes. It is likely that the carcass was 

influenced by temperature and moisture levels, which strongly affect the 

decomposition rate (Barton et al. 2013b). The carcass was also consumed by 

invertebrate scavengers, where the colonization by fly larvae contributed to the 

liquefaction of the tissues (Putman 1983).  

Results did not show a significant change in seabird passage in the study 

area compared to the control site after the deployment of the carcass. This can 
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be related to the infrequency of this resource for the scavenging birds of Little 

Cumbrae, but also by the little interest showed by some species such as the 

lesser black-backed gull and the herring gull. An increase in the number of 

passages of the great black-backed gull after the deployment of the dead seal 

was, instead, observed, but in both areas. The effect of a predictable resource 

on seabird foraging has been suggested also in other studies: Cama et al. (2012) 

identified the high density of vessels providing fishing discards as the best 

explanatory variable for the distribution of gulls in the Western Mediterranean. 

Monsarrat et al. (2013), instead, observed that vultures also restricted their 

searching home range around artificially-maintained feeding stations when 

weather conditions were not optimal or food was scarce.  

A defined temporal succession of scavenging birds feeding on the carcass 

was observed, in which segregation of different groups of birds was possibly 

related to competition owed to overlap in resource utilisation. The great black-

backed gull was the first to approach the carcass and was able to break through 

the thick skin of the carcass. As described by Camphuysen et al. (1995), it is a 

“powerful scavenger”, which out-competes the herring gull for food when the 

two species share the same breeding site (Rome and Ellis 2004). In fact, despite 

being the most abundant species, the herring and lesser black-backed gulls 

seldom visited the carcass and rarely exploited it, even though they are both 

known to scavenge in other contexts (Camphuysen et al. 1995; Catchpole et al. 

2006). During summer, Little Cumbrae is a breeding site for the three gull 

species with nesting occurring around mid- April and the first chicks hatching in 

May (Cramp et al. 1974). The numerous juveniles visiting the carcass may have 

been part of the new generation of gulls from the island. They were not 

observed early in the study during the dominance of the great black-backed gull 

on the carcass. Moreover, they spent a similar proportion between their active 

and inactive time at the carcass, possibly because of the lack of experience and 

the unfamiliarity with this food source. Seal carrion is a fairly uncommon 

resource outside of seal colonies (Culloch 2012) and juvenile gulls were unlikely 

to have previously encountered this food type. During the study period a natural 

seal carcass washed up on Great Cumbrae (personal observation), so such events 

clearly occur in this area. Despite being active carrion feeders (Heinrich 1988), 

ravens scavenged more consistently from day 30 onwards. It is likely that the 

ravens were unable to feed at the same time as the great black-backed gulls or 
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juveniles, as found by Hewson (1995). In this study the mass loss of the carcass 

was approximately linear. Although the single sample prevents any meaningful 

statistical comparison, a carcass mass loss has previously been shown to follow a 

sigmoidal decrease with time, being initially untouched, but then being 

dismantled quickly (Putman, 1983; Carter et al., 2007). In the current 

experiment, instead, the carcass was detected almost immediately (on day 2 

after the deployment) and consumed at a constant rate during time. On the final 

days the consumption rate decreased possibly due to the low availability of 

edible material left. The deterrent effect of decomposing matter and toxin 

production on the behaviour of terrestrial scavengers (DeVault et al. 2004; Selva 

et al. 2005; Parmenter and Macmahon 2009) was not observed, as the carcass 

was not abandoned prior to complete consumption.   

 

2.5.2 Underwater experiment 

The present experiment represents one of the few existing studies on the 

successional pattern of scavenging on carrion in the subtidal marine 

environment. Forensic science has paid attention to this subject before: 

Hobischak and Anderson (2002), for instance, examined the species and 

sequence of invertebrates associated with carrion, but in fresh water, whereas 

Anderson and Hobischak (2004) described which scavengers occur on 

experimental pig carcasses submerged in marine waters. 

Results showed that abundance of scavengers attracted to the carcass 

changed during time. This suggests that temporal variation in the extent of 

exploitation of carrion by different scavengers exists. In the first period the 

scavenging community was dominated by asteroids which occurred in great 

number (up to 17 individuals) to colonize the carcass. A. rubens is one of the 

most abundant scavenging species found in fishery discards in the west of 

Scotland (Bergmann et al. 2002). Moreover, the experimental area was in the 

ideal habitat for this sublittoral species which prefers sandy, muddy substrates. 

The occurrence of adult and juvenile fish, obviously not observed feeding on the 

carcass, could be linked to shallow coastal waters which may offer protection 

from predation, in particular to new recruitment of juvenile gadoids during 

summer (Pihl 1982). Decapods exhibited nocturnal habits mostly in the first 

period, while they showed less preference for the dark during the second period, 

probably due to the reduction of daylight hours towards the autumn and in the 
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number of starfish. Generally crabs are nocturnal predators with peaks of 

activity during high tide, like C. pagurus (Skajaa et al. 1998) and C. maenas 

(Naylor, 1958; Ropes, 1968), but they can also be diurnal (Novak 2004). In 

accordance with other studies focusing on scavenging aggregations on fishery 

discards in the Irish, Clyde and Adriatic Seas, L. depurator was the most 

abundant among all the other brachyuran scavengers (Ramsay et al. 1997a; 

Ramsay et al. 1998; Wieczorek et al. 1999). The infrequent visits of dogwhelks 

N. lapillus could be related to the fact that its seasonal peak in abundance 

occurs between April and June (Nickell and Moore 1992). 

At the second stage of the experiment the carcass showed an increase of 

what appeared to be microbial mat covering its surface and even if the number 

of crabs stayed stable, a drastic drop in the number of asteroids together with 

the number of fish occurred. Also Burkepile et al (2006) found that crabs still 

scavenge on aged fish carrion. Bacteria use chemicals to compete against other 

microbes, but these chemicals can also act as a deterrent from carrion for 

animal scavengers (Burkepile et al. 2006). Scavenging marine organisms detect 

prey by olfactory foraging cues and different taxa have specific chemo-

sensitivity according to the olfactory organ (e.g. Morton and Yuen, 2000; Tran et 

al., 2014). Therefore, the bacterial action is likely to be an important biotic 

factor influencing the post-mortem fate of a carcass in aquatic contexts. 

Burkepile et al. (2006) demonstrated that scavengers were 2.6 times more 

attracted by fresh carrion than microbe-laden carcasses. However, different 

species of crabs reacted differently, suggesting that species specific palatability 

exists. The present study focused on the scavenging mega-faunal succession on 

carrion, but it was evident that bacterial decomposers also benefited from it, 

taking part in the recycling of carrion. Dickson et al. (2011) described five 

different phases of bacterial colonisation on partial carrion proving that the rate 

at which successive stages appeared was temperature dependent with warmer 

waters allowing a faster decomposition. Therefore, seasonal changes in sea 

water temperature could underlie differences in the duration of successive 

decay stages dominated by either marine animals or bacteria. 

The floating stage of carcass generally occurs when bacteria start to 

produce gas inside the body (Reisdorf et al. 2012). In the current study the 

appearance of microbes on the body’s surfaces coincided with the carcass 

becoming positively buoyant; a state which lasted until the end of the 
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experiment. Carrion has two floating stages: the primary floatation is due to gas 

forming in the digestive tract, while the secondary floatation depends on 

bacterial activity within the corps (Teather 1994). Owing to the unknown post-

mortem age of the experimental carcass and its frozen conditions before the 

deployment, it is very likely that secondary floatation would occur if the carcass 

had not been tethered. Putrefaction gases are likely to cause the surfacing of 

the carcass in shallow waters at temperature above 4°C (Moreno et al. 1992; 

Sorg et al. 1997; Petrik et al. 2004), whereas negative buoyancy is expected 

when carcass integrity is compromised (Anderson and Hobischak 2004). However, 

floating marine mammal carcasses may be exposed to scavenging birds when 

reaching the water surface and even mammals when stranded on the beach. For 

example, Hewson (1995) observed great black-backed gulls defending floating 

carrion and pulling it to shallow water for consumption. This process may cause 

the carcass to sink quickly back to the seabed making it available again to the 

marine community. The two periods of recording may then approximate the 

seabed phases in the cycle of floating and sinking that occurs with natural 

carcasses in the marine environment.  

One other experiment carried out underwater observations and, similarly 

to the present study, the marine mammal carcasses were constrained to the 

seabed by using ropes during the period of monitoring (Glover et al. 2010). Thus, 

the floatation and natural drift of the carcasses were impeded. Glover et al. 

(2010), in fact, observed the first floating state of an experimental Phocoena 

phocoena for two days after implantation at 30m depth, but argued that 

negative buoyant carcasses are likely to occur at this depth. Pup carcasses are 

also likely to be found in shallow waters: during pupping season, for instance, a 

certain amount of dead pups may enter the marine system without reaching 

higher depths because trapped among rocks or sunk to the seabed. It is possible, 

in fact, that most of the carcasses provided during the grey seal pupping season 

are negative buoyant as the major cause of death is starvation (Baily 2014) 

which deprives the pups of blubber.   

 

2.5.3 Comparison between terrestrial and marine experiments 

Comparing the scavenging processes observed in the two experiments, it is clear 

that the daily mass loss of carrion was lower in the marine ecosystem than in the 

terrestrial one, with a ratio of 1:8. This could be in part due to the larger size of 
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terrestrial scavengers and their endothermic nature in comparison to their 

marine counterparts which permitted a faster consumption rate of the carcass. 

Generally, at deeper depths (1200-1800), bathyal scavenger assemblages remove 

tissue from whale carcasses at rates of 40–60 kg day-1 (Smith and Baco 2003). 

However, the scavengers involved are not only invertebrates, as observed in the 

current study, but also large vertebrates such as sleeper sharks, hagfish and 

grenadiers which aggregate in large numbers to remove the soft tissue of the 

whale carcass. This process can last from months to years and involved mostly 

obligate scavengers. Together with the scavenger community, it was suggested 

that the size of the carcass is a factor determining the rate of its consumption. 

In fact, at the same depth, smaller cetacean carcasses were eaten at a lower 

rate (1.2 - 9.6 kg day-1) than the whale falls (Jones et al. 1998; Smith and Baco 

2003). Also on land larger carcasses (>100 kg) were found to be consumed 33 

times faster than smaller ones (<10 kg) (Moleón et al. 2015). However, 

specialised scavengers may accelerate the process.  

Changes in the scavenging community were detected over the duration of 

both experiments. On land, a hierarchical succession of dominant scavengers 

through competitive displacement of subordinates occurred during the 

exploitation of the carcass. Underwater, instead, a change in the numbers of 

scavengers between the two periods of monitoring might be caused by the 

deterrent effect of the microbial mat formed on the dead pup on starfish rather 

than crabs.  

   

2.5.4 Future studies and implications 

The terrestrial experiment provides a long term and continuous dataset from the 

initial to the final stage of seal carcass consumption on land. Several studies 

have continuously monitored carcasses in terrestrial ecosystems until the total 

consumption of the carcass (Blázquez et al. 2009; Sebastián-González et al. 

2013; Huang et al. 2014; Moleón et al. 2015; Sebastián-González et al. 2016), 

but only few in the coastal system (e.g. Schlacher et al 2013). There is only one 

study of this type using marine mammal carrion in the terrestrial ecosystem that 

we are aware of (Pavés et al. 2008). The underwater experiment is one of the 

few existing studies on the succession of marine scavengers exploiting carrion in 

shallow waters (e.g. Anderson and Hobischak, 2004; Glover and Higgs, 2010). 

However, the long-term nature of the experiment and the technical constraints 
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limited the collection of a continuous dataset. Similar complications have been 

encountered also in other studies (e.g. Anderson and Hobischak, 2004). 

Further investigations are needed to assess the value of this food resource 

as energy and biomass inputs released to the ecosystem and its impact on the 

scavenging community. Coastal regions are, in fact, often affected by marine-

derived inputs (Polis and Hurd 1996a; Polis and Hurd 1996b; Polis et al. 1997; 

Rose and Polis 1998) whose effects on the receiving ecosystem include alteration 

of trophic species dynamics (Polis et al. 1997, Briggs et al. 2012) and their 

distribution (Monsarrat et al. 2013). In particular, bird and marine mammal 

carrion is frequently deposited ashore because of large scale or seasonal 

weather perturbations, especially in areas where these animals live (Bodkin and 

Jameson, 1991). Despite the limited number of experimental carcasses used, 

this novel study brings new insights to our understanding of the ecological 

process involving the exploitation of pinniped carrion by coastal scavengers. 

Marine mammal carrion could increasingly become an important part of 

the diet of European scavengers, partly because of the continual increase in grey 

seal pup production since the 1960s (SCOS 2013), but also because of regulations 

banning fish discards by pelagic and then demersal fishing operations (EU 

Regulation 1830/2013). Catchpole et al. (2006) estimated the partitioning of 

discards between marine and aerial scavengers based on the English Nephrops 

norvegivcus fisheries. The resulting bioenergetic model showed that 57% of 

discards was taken by seabirds with the remainder becoming available to marine 

fauna. The total amount of biomass and energy released were 4780 t and 19.7 x 

109 kJ respectively (Catchpole et al. 2006). Considering the high usage of fishery 

discards by scavengers, it is uncertain what repercussions the reformed Common 

Fisheries Policies will have to the foraging behaviour of scavengers. The discard 

ban came into force on 1st January 2014 and will gradually require EU fishing 

vessels to land all of their catches (http://www.scotland.gov.uk). Accordingly, a 

recent publication by Heath et al. (2014) suggested that the discard ban may 

cause a bottom-up trophic cascade which will lead to a reduction in biomass of 

scavengers such as benthic invertebrates and birds. At this point other sources of 

carrion, such as pinniped carcasses, could represent an important alternative 

resource for scavengers and understanding their impact on the ecology of these 

species will become necessary.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0024:0028:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0024:0028:EN:PDF
http://www.scotland.gov.uk/


Chapter 3   76 

3:Chapter 3: The role of a pinniped colony in the 

provision of carrion as a predictable resource for 

coastal systems 

3.1 Abstract 

Seal carrion is a pulsed resource of marine-derived nutrients provided by seal 

colonies to the coastal ecosystem in the shape of afterbirths and dead seals. 

When food is predictable, animals can respond to its temporal and spatial 

occurrence, but also its magnitude and energy value. This project aimed to 

define the resource of seal carrion occurring at the grey seal (Halichoerus 

grypus) colony on the Isle of May (Scotland, UK) in terms of predictability, 

evaluating its variability in time and space, as well as its quantity and quality. 

Data collected by aerial survey (11 years) and ground visual census (3 years) 

were used to evaluate the timing of the pupping season, quantifying the biomass 

and energy released by carrion and its spatial distribution. Each year an average 

of 6,893 kg corresponding to a 110.5 x 103 MJ was released for potential 

scavengers as placentae and dead seals, equivalent to 42,000 x gull daily rations. 

This study found that 32.5% of the total edible biomass from dead seals was 

consumed by the end of the pupping season mostlyby avian scavengers such as 

great black-backed gulls (Larus marinus). Distribution and clustering of carcasses 

were similar across different pupping seasons, and 28% of the total area 

presenting carcasses with a density higher than 0.001 carcasses m-2 was shared 

among all years. Seal carrion availability varied between pupping seasons and 

this was expressed as a percentage of relative standard errors (RSE%). For all 

measures of spatial and temporal variability the RSE% was below 34%, similarly 

to other resources, such as salmon runs, which appear to be predicted by 

consumers. 
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3.2 Introduction 

Ecosystems are spatially connected by flows of nutrients and energy, which 

provide resource subsidies for consumers belonging to disparate trophic levels 

(Polis et al. 1997; Power and Rainey 2000; Reiners and Driese 2001). These 

resources can have an impact on the receiving habitat, both altering dynamics of 

consumers and regulating the flows of nutrients in the ecosystem (Marcarelli et 

al. 2011). Coastal regions are often affected by marine-derived inputs 

transferred from the ocean to the terrestrial ecosystem, and vice versa (Polis 

and Hurd 1996a; Polis and Hurd 1996b; Polis et al. 1997; Rose and Polis 1998), by 

abiotic factors such as marine currents, air circulation and weather conditions, 

which are responsible for the upwelling of nutrients (Field et al. 1980; Cury and 

Roy 1989) or strandings of plant detritus and carrion on the shore (Polis et al. 

1996). Such marine resources can be responsible for aggregations of terrestrial 

animals to the coast (e.g. Polis and Hurd 1995; Rose and Polis 1998) and for local 

increases in the number of invertebrate consumers (e.g. Janetski et al. 2009; 

Spiller et al. 2010). However, before evaluating the impact of a resource on the 

ecosystem, it is essential to consider an appropriate scale, e.g. vultures and 

beetles, even if both scavengers, relate to the environment at different scales 

according to their mobility and activity (Wiens 1989).   

In addition to the abiotic transfer of resources, animals can also transport 

marine nutrients and deliver them when they move from one system to another. 

Salmon (Cederholm et al. 1999), sea turtles (Bouchard and Bjorndal 2000) and 

penguins (Erskine et al. 1998) have already been shown to play a fundamental 

role in this process affecting different components of the ecosystem. Salmon 

carrion for instance enriches soils and plants locally releasing nutrients (e.g. 

Quinn et al. 2009; Hocking and Reimchen 2009) and if the input is predictable 

the impact can be long term (e.g. Koyama et al. 2005) and the species 

composition of plants growing in that area change (Towne 2000; Barton et al. 

2013a). Likewise, marine mammals affect coastal systems and their impact is 

substantial when they assemble in colonies for breeding. Empirical studies have 

demonstrated that high concentrations of ammonia and nitrate released by 

animal excreta are found in soil and plants growing in the vicinity of seabird and 

pinniped aggregations (Erskine et al. 1998; Farina et al. 2003). However, 

breeding colonies also provide other sources of nutrients in terms of food 

remains and carrion which are used either directly by above ground secondary 
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consumers, or indirectly by increasing the input of nutrients (Anderson and Polis 

1998). In sea lion colonies, for instance, onshore mortality is the second largest 

source of nutrients after defecation (Farina et al. 2003).  

Carrion provided by salmon in spawning areas and seals at the breeding 

colonies are examples of seasonal pulses of biomass and energy released to the 

surrounding ecosystem and its local scavenging community. Being predictable, 

these subsidies are expect to influence the behaviour of their consumers 

(Overington and Lefebvre 2011). Predictability of resource subsidies is in fact an 

important concept applied to many ecological processes, but how is it explained? 

Colwell (1974) was one of the first to describe the predictability of an 

environment measuring environmental variation by using constancy and 

contingency of a phenomenon (temporally uniform and seasonal occurrence). 

More recently, instead, Yang et al. (2008) described the main features of a 

predictable resource as low frequency, large magnitude and short duration. 

Often the attribute ‘predictable’ is given to a particular food input when it 

induces some response by consumers at a population level (Polis et al. 1996) 

such as changes in behaviour, ecology and adaptation (Overington and Lefebvre 

2011). There are, in fact, several examples in the literature focusing on the 

impact on the ecosystem caused by the predictability of a food subsidy (e.g. 

Davenport 1995; Graham et al. 2006; Furness et al. 2007; Monsarrat et al. 2013; 

Oro et al. 2013). However, its definition is often not given.  

Before appraising the ecological consequences of a subsidy to the trophic web, it 

is important to evaluate its quantity and its proportional quality in terms of 

energy released (Marcarelli et al. 2011). Energy is a decisive factor in regulating 

animal population dynamics: the reproductive success of individuals and sudden 

growth of a population are often related to the quality of food available (see 

White 2008). According to foraging theory, in addition to quantity and quality, 

previous knowledge of the locations and temporal occurrence of food inputs are 

used by animals to predict their appearance (Stephens and Krebs 1986). For 

example, female Savanna elephants (Loxodonta africana) adjust their timing of 

reproduction according to future seasonal pulses in vegetation productivity using 

past experience and reproductive history (Wittemyer et al. 2007). This behaviour 

induces these animals to time birthing with the high quality primary production 

peak occurring 22 months in the future, aiding reproductive success and 

subsequent population growth. Quantity, quality, timing and spatial distribution 
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of a food resource are therefore the main features to be considered for defining 

its predictability. Moreover, considering that the predictability of an ecosystem 

is inversely related to the variation in its properties at a temporal and spatial 

scale (McGrady-Steed et al. 1997), the lower the variation of a resource in time, 

space, quantity and quality, the more predictable it is. 

In this study, the predictability of seal carrion subsidy (placentae and 

dead seals) provided by one of the largest grey seal (Halichoerus grypus, 

Fabricius, 1791) colonies in the UK, located on the Isle of May, Scotland, during 

the seal pupping season was investigated. The seal carrion resource was 

predicted to show annual variability (expressed as percentage of relative 

standard errors, RSE%) of its timing, spatial distribution, biomass and energy 

available similar to other apparently predictable resources, such as the salmon 

aggregating in the spawning areas. The response of the local avian scavenging 

community to carrion was estimated in terms of biomass consumed at the end of 

the seal pupping season. Finally, the potential importance of seal carrion for the 

wider ecosystem will be explained.  

 

3.3 Methods 

3.3.1 Study area 

This study was undertaken on the Isle of May (56°11’ 19’’N, 2°33’ 27’’W), 

situated at the entrance to the Firth of Forth on the east coast of Scotland. The 

island is 1.8 km long and less than half a km wide, covering an area of 45 ha, 

with the long axis extending in a northwest-southeast direction (Figure 3.1). The 

Isle of May is a Special Area for Conservation (SAC) due to the breeding colony of 

grey seals. 

The grey seal is believed to have bred on this island in the remote past, 

but there were no systematic records of grey seal pups until the 1950s, when 

three pups were born (Baker and Baker 1988). Thirty pups were counted in 1977 

(Eggeling 1985) and approximately 300 pups only two years later (Harwood and 

Wylie 1987); in 1994 the number increased to 1408 pups born (Pomeroy et al. 

2000), while 1766 pups were counted in 1999 (SMRU unpublished data). The grey 

seal colony of the Isle of May appears now stable and contributes approximately 

4.3% to the annual UK pup production (in 2010, SCOS 2013); pup mortality is 

around 12.5% in the first month of life (Baker and Baker 1988). 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
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The northern parts of the island, known collectively as Rona, are characterised 

by several pupping areas. Most pups are born here, which is mainly flat rock, in 

an area of about 6 ha. Historically, the sandy Silver Sand and West Rona Beach 

and the rocky Rona Rocks were the first areas to be colonised (Pomeroy et al., 

2000), but more recently seals started also occupying the southern parts of Rona 

such as Rona Top and the rocky and tidal East Tarbet. As the population 

increased, new locations in the southern part of the Isle of May have been used: 

from the 1990s seals started to occupy the pebbly Pilgrim Haven and sandy Kirk 

Haven which are respectively on the south-west and south-east coast (Pomeroy 

et al., 2000). The latter are also characterised by having pups born later in the 

season than the main northern sites (Hiby et al. 1996). More recently, new 

individuals gathered in the Loan, Kaimes, Tennis Court and Cross Park (Figure 

3.1). These are grass flat areas in the south of the island, separated from the 

sea by a rocky area not used by the grey seals. Most of the west and south-east 

coasts of the Isle of May are cliff-bound and unsuitable for breeding seals. 

The main scavenger occurring in the island is the great black-backed gull (Larus 

marinus). After a steady increase from 20 pairs counted in 2002, 40 pairs of 

great black-backed gulls (L. marinus) were counted nesting during summer 2012 

(SNH 2012). After the breeding season most of the great black-backed gulls 

remain in Scotland (although some move south to England, Ireland or the 

European mainland), and between October and March the Scottish population 

increases owing to the arrival of other gulls from Scandinavia and Russia 

(Forrester et al. 2007). 
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Figure 3.1 Map of the Isle of May 

Maps provided by EDINA Digimap Service, http://digimap.edina.ac.uk/roam/os.  

 

3.3.2 Data collection 

In the present work the data collected by aerial surveys and ground visual 

censuses of pup carcasses were combined in order to investigate the 

predictability of seal carrion available at the seal colony. 

Aerial survey data 

The Sea Mammal Research Unit (SMRU) has performed aerial surveys since the 

early 1990s in order to estimate seal pup production (number of pups born per 

year) at major grey seal breeding colonies in Scotland. In the period 2000 – 2012 

between 4 and 7 aerial surveys have been performed on the Isle of May every 

year from October to December. From 2012 surveys were made every two years. 

The survey aircraft conducted three transects along the island’s long, northwest-

southeast axis. The entire area of the island was photographed in this way at 

approximately 10 day intervals resulting in five surveys being conducted for each 

breeding season. Photos (Linhof AeroTechica film camera and a twin Hasselblad 

http://digimap.edina.ac.uk/roam/os
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H4D digital system in 2012) taken at a standard altitude of c370m over the island 

were processed counting white coats, moulted and dead pups. Pup production 

estimates (with 95% confidence limits) were obtained by modelling counts of 

living pups taking into account the birth process and the development of pups. 

The model considered also a misclassification parameter (permitting for the 

misclassification of moulted pups as white coats or vice-versa), whose variation 

may be function of the quality of the aerial photograph, or dependent on the 

observer, the light conditions and the body position of the pup when the photo 

was taken. Pup production data are presented with a coefficient of variation 

(CV). Dead pups were also counted for each survey, but no model was performed 

to estimate the pup mortality. Dead animals were distinguished from live pups 

because they appeared either to be bleeding, in bad condition or were attended 

or scavenged by gulls. As difficulties could arise in distinguishing fresh carcasses 

from live pups, it is possible that some dead individuals were not counted at 

first. However, they were likely to be recorded more easily in the successive 

aerial surveys, permitting, as result, a more precise total number of carcasses. 

For further details see SCOS (2009).  

In the present study, the number of dead pups counted in the aerial 

surveys was used to approximate the number of carcasses released into the 

ecosystem. The highest number of dead pups counted each year (the highest 

among all the aerial surveys) was considered the closest number to reality, even 

if an underestimation. In order to minimise this underestimation, data obtained 

by ground visual census of carcasses (see below) made in 2008 and 2012 were 

used (229 and 233 carcasses, respectively). The latter, in fact, showed a greater 

number of dead pups than the highest count obtained by aerial surveys 

performed in both years. Therefore an error of underestimation was calculated 

from the percentage of dead pups missing in the temporally closest aerial survey 

count when the ground visual census was completed in 2008 and 2012 (35.0% and 

42.0% of extra carcasses were found in the two years, respectively). The mean 

error (38.5%, SD = 5.0%) was then used to adjust counts for all other years.   

Ground visual census data 

Ground visual census of carcasses was carried out at the end of the breeding 

season (late November - early December) of the years 2008, 2012 and 2013. 

Carcasses were detected by a single individual in 2008 and by a team in 2012 and 

2013 (3-6 people) systematically searching the seal breeding areas of the island. 
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The search team was spread out at approximately 5 m intervals in a line across 

the search axis. The areas covered were:  the whole Rona, Tarbet Top, East 

Tarbet, Tarbet Hole in the north, the Loan, Pilgrim Haven, Kaimes, Cross Park 

and Tennis Court in the south and the south-eastern area. When possible, sex 

and development stage (according to Kovacs and Lavigne, 1986; see Table 3.1) 

were determined for each carcass. Sex and/or development stage could not be 

attributed to those carcasses in poor condition, scavenged, in late state of decay 

or starved. Starvelings (dead pups which appeared to have died because of 

starvation) and dead adult individuals were also recorded. A state of 

consumption (from A to E) was attributed to carcasses recorded during the 

ground visual census 2012. Each state corresponded to an estimated mass loss 

(expressed in percentage) which was calculated using true values of mass loss 

measurements (N = 64) of experimental carcasses combined with the observed 

state of consumption (for details see Table 5.2). GPS fixes (Garmin eTrex 

Summit; accuracy: <15metres RMS) or marks on aerial photographs (in 2012), 

were made for all dead animals.  

Both aerial survey and ground visual census data did not consider the potential 

number of carcasses washed into the water during the season, but considered 

only the carcasses occurring on land. 
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Table 3.1 Development stages of grey seal pups. 

Each development stage is associated with a description and age (days ± SD) 
according to Kovacs and Lavigne (1986).  

Development 
Stage 

Description 
Ages 

days (± SD) 

1 
Yellow tint pelage, 
umbilicus present 

2.4 
(4.4) 

2 
Pelage white, should to 

hip region filled out 
4.8 

(3.1) 

3 
Pelage either to light 

grey, slight loss of lanugo 
in the facial region 

12.1 
(2.9) 

4 Lanugo being shed 
16.0 
(2.9) 

5 Moulted pup >21 

 

 

3.3.3 Data analysis 

Timing 

Mean pupping dates for the decade 2000-2010 and 2012 were compared and the 

inter-annual variability calculated. 

Biomass and energy content 

The annual total estimated pup productivity was used to calculate the mean 

annual biomass and equivalent energy of placentae released during the period 

2000 – 2010 and 2012. For this purpose average biomass and energy content 

values of placentae were acquired by analysing placenta samples collected in 

the field during the pupping season 2013. Six whole afterbirths (including 

amnion) were collected, weighed (± 10g) and sampled still in fresh condition. 

Samples were stored in individual plastic tubes and frozen for subsequent 

determination of water and energy content. When an afterbirth could be 

associated with a pup, its sex was also recorded. Analysis of the gross energy 

density (MJ kg-1) of placenta samples was undertaken by bomb calorimetry 

(Sciantec Analytical Service, UK). Biomass (kg) of afterbirth available to the 

ecosystem for each year was then estimated by multiplying the pup production 

for each year by the average wet mass of a grey seal afterbirth. The energy 
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content (MJ) of the total biomass of afterbirths was estimated by multiplying the 

total biomass with the energy density of grey seal afterbirth.  

Before proceeding in calculating the biomass of dead pups resulting from 

the ground visual censuses, the discrepancy between the mass of alive and dead 

pups was estimated: differences in masses recorded during the seal breeding 

season 2011 between alive (N = 80) and dead (N = 37) pups belonging to the 2nd-

3rd-4th development stages were analysed (Baily, 2014). The 1st and 5th were 

excluded because of the reduced sample size. Afterwards, mass (kg) of pup 

carcasses was calculated according to the equations provided by Kovacs and 

Lavigne (1986) and the resulting values were adjusted by subtracting the 

difference in mass found between alive and dead pups. Biomass of pups was 

estimated considering sex and development stage of carcasses; mass of unknown 

sex was approximated by averaging the mass of male and female pups for the 

different developmental stages. For starvelings and pups with an undetermined 

developmental stage the mass was estimated for dead female pups belonging to 

the first development stage as a conservative value.  The mean maternal mass at 

weaning according to Pomeroy and Fedak (1999) was given for female adult 

carcasses (117 ± 18kg).  A value equal to 234kg was assigned to dead male 

adults, as breeding adult males are typically twice the mass of females when 

animals mate (Pomeroy and Fedak 1999). Mass of dead juvenile seals (called 

yearlings) was 56.4 ±6.3kg (Addison and Stobo 1993). 

The body composition of carcasses was calculated according to Lang et al. 

(2011), in which percentages of water, protein and fat of grey seal pups at day 3 

and 12 post-partum and at weaning are given. Values belonging to pups nursed 

by primiparous grey seal mothers, instead of multiparous, were used as a 

conservative approximation because they were lower. Similarly to body mass, 

also body composition might differ between dead pups and healthy alive pups. 

Reduction or lack of blubber is evident in starvelings for instance (Trites and 

Jonker 2000; Baily 2014). However, there is no documentation comparing alive 

and dead starveling pups. Day 3 postpartum values were given to the first and 

second stages carcasses, but also to starvelings and pups without a determined 

development stage. Day 12 postpartum values were assigned to third stage 

carcasses, whereas at weaning values to the fourth and the fifth stage carcasses 

(Table 3.2). Percentages of each component were then calculated in terms of 

biomass. Body composition of female adult carcasses was also estimated from 
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Lang et al. (2011), considering values of primiparous grey seal mothers at day 12 

postpartum; whereas for male adult and juvenile carcasses, values provided by 

Lidgard et al. (2005) were used.  

The energy content (MJ) of protein and fat was quantified based on values 

of energy densities provided by Schmidt-Nielsen (1997): 39.33 kJ g–1 and 17.99 kJ 

g–1 for fat and protein, respectively. Zero energy was attributed to the water 

component. Results from this analysis represent an approximation of biomass 

and energy released into the ecosystem at the moment when pup carcasses 

become immediately available to the ecosystem. The mean energy density for 

all the development stages of pup carcasses was 14.1 MJ kg-1 (SE = 3.11; Table 

3.2). This analysis does not take into account the factors affecting the biomass 

and the energy of carrion over time, such as decomposition (see Chapter 5).  

 

Table 3.2 Energy content for development stage of grey seal pups according to 
energy density calculated per body component (%). 

Stage Body component Component 
content (%) 

(Lang et al. 2011) 

Energy density 
(MJ Kg

-1
) 

Energy content 
(MJ Kg

-1
) 

 water 65.1 0  

1 and 2 fat 9.4 3.8 7.9 

 protein 22.6 4.1  

 water 47.3 0  

3 fat 35.5 14.0 16.8 

 protein 15.1 2.8  

 water 45.7 0  

4 and 5 fat 38.1 15.0 17.6 

 protein 14.4 2.6  

 

Spatial distribution 

In order to identify the areas of the island impacted by carcasses, the 

locations of dead seals recorded during ground visual censuses in 2008, 2012 and 

2013 were used to map their distribution and intensity. From here onwards, the 

term intensity is used only when referring to kernel smoothed intensity of the 

point process for carcasses, while density in all other cases. Kernel estimation is 

a useful tool used in spatial ecology for detection of hotspots within the 

landscape (areas of high abundance or biomass) (Nelson and Boots 2008). Here, 
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the spatial pattern of dead seals was analysed in order to produce maps showing 

the kernel smoothed intensity of the point pattern created by the carcasses. 

Boundaries of the island and locations of dead pups were projected onto the 

British National Grid using the WGS 1984 coordinate system. Defining the 

intensity function for a point process as the average number of points in a 

region, the intensity of carcasses was calculated for the island including the area 

to the mean low water boundary (697,102 m2). Likelihood cross-validation was 

used to select the proper smoothing bandwidth for each year as it assumes an 

inhomogeneous Poisson process; the edge effect was set as ‘false’ as carcasses 

were not observed outside the window represented by the island. Following the 

methods of Pomeroy et al. (2000), 20 x 20 m pixels were used. Polygons of areas 

delimited by a minimum intensity of 0.001 carcasses m-2, used as spatial 

thresholds of presence of carcasses, were identified for each year. The union 

and the intersection of these polygons was plotted in order to highlight areas of 

persistent availability of carrion year to year.  Biomass density (kg m-2) was also 

calculated for the whole island and for the total area formed by the above-

mentioned polygons.  Mean density (placentae m-2) and the correspondent 

density of biomass (kg m-2) of placentae for the decade were also estimated 

considering the area of the island at low mean water (697,102 m2).  

Carcass depletion by scavengers and remains 

The depletion of biomass caused by gull scavenging activity was calculated for 

the pupping season 2012. The estimated percentage of scavenged mass, 

calculated according the given consumption state (from A to E), was removed 

from each carcass mass; afterwards the latter were summed to obtain the total 

scavenged biomass. Remains (skin and bones: 34.2% of dead pup mass) were 

considered as the inedible mass becoming available to invertebrate scavengers 

and the abiotic compartment of the soil. 

Statistical analysis 

Standard errors of the means and percentage of relative standard errors (RSE% = 

standard error/ mean *100) of results were used as measure of ecosystem 

variability expressing inter-annual variability of the different properties of the 

seal carrion resource (mean pupping date, biomass, energy and density of both 

placentae and carcasses).  
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A two way analysis of variance (ANOVA) was performed in order to 

evaluate whether mass varied between status of pups (dead/alive) and the 

development stage (1-5), including their interaction. 

Pearson’s Chi-square test was run in order to test the hypothesis that the 

number of carcasses belonging to different sex or development stage were 

independent of the year when they were counted.  

Ripley’s function (Ripley 1977) was used to analyse the spatial pattern 

and determine visually whether distribution of carcasses from different years 

were different. This method is used in epidemiology, but also in forensic science 

and plant ecology (Lancaster and Downes 2004) and permits visual comparison of 

the spatial distribution of points belonging to different patterns and to identify 

clustering. Considering a circle of r radius and the number of points inside the 

circle, the Ripley’s K function represents the expected number of points within 

an r distance from an arbitrary point, divided by the intensity of points occurring 

in the study area. The linearised 𝐿̂ function is the corresponding transformation 

of the Ripley’s K function and here it is used to facilitate the visualisation 

(Santos and Schiavetti 2014).  As the point patterns of this study did not have a 

homogeneous intensity of points, the inhomogeneous Linhom (r) function was 

used as proposed by Baddeley et al. (2000). The three functions for 2008, 2012 

and 2013 were estimated using the Ripley's isotropic correction for a polygonal 

window as an edge correction is needed to reduce bias (Ripley 1988; Baddeley 

1998); then they were tested for Complete Spatial Randomness (CSR) by running 

Monte Carlo permutations (n = 99) for statistical tests (Lancaster and Downes 

2004) providing a level of significance of clustering. The latter functions were 

finally compared by computing a bootstrap 95% confidence band for each 

function and plotted together in order to evaluate whether the pattern of the 

functions was repeated in years showing overlaps. The null hypothesis was that 

the distribution of points is random and this was identifiable by a horizontal line 

of null x values between the x and y axes corresponding respectively to the 

radius (r) (here shown in metres) and the 𝐿̂  function values. The function 

Linhom (r) is located above the horizontal line when the spatial pattern of points 

is aggregated and under it when it is uniform.  

Spatial analyses were run using R 3.1.1 and the following package: 

Spatstat, Maptools, Rgdal, Rgeos, Ggplot2 and Splancs (Baddeley and Turner 
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2005; Wickham 2009; Bivand et al. 2014; Bivand and Lewin-Koh 2014; Bivand and 

Rundel 2014). 

 

3.3.4 Comparison with other studies 

In order to investigate the extent to which seal carrion provided by the Isle of 

May was a predictable food supply, we compared our results with other 

published studies on predictable resources. The papers reviewed were: 

Davenport (1995), Polis and Hurd (1996b), Reimchen (2000), Bouchard and 

Bjorndal (2000) and Hocking and Reimchen (2009) whose study system was the 

coastal area. The key criterion for the inclusion of these published studies was 

that the papers showed there was a clear response in the behaviours of the users 

of the resource when it became available. These included, for instance, 

movements towards areas where the resources occur or higher density compared 

to other locations, resulting in important sources of sustainment for their 

consumers. In particular, movements or changes of behaviour which precede the 

actual availability of the carrion resource. When previous studies did not show 

values of variability between years, we compared our results to the original data 

given. 

 

3.4 Results 

3.4.1 Aerial survey data 

The annual mean pupping date observed during the decade 2000-2010 and 2012 

was the 30th October (SE = 0.58; RSE% = 1.97%) (Figure 3.2). 

The mean pup production was 1988 (SE = 47.72; N = 12; RSE% = 2.40%) pups per 

year. The mean number of dead pups estimated was 262 (SE = 16.32; N = 12; 

RSE% = 6.23%), representing a mean annual mortality of 13.3 % (SE = 0.91; N = 12; 

RSE% = 6.84%) (Figure 3.3).  

The number of placentae (corresponding to total pup production) was seven 

times more abundant than dead pups with a percentage of 88.4% (SE = 2.41; 

RSE% = 2.73%) of the total amount of carrion y number.   
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Figure 3.2 Mean pupping date (2000 – 2010 and 2012). 

Mean pupping date for the decade 2000-2010 and 2012 from aerial survey data (1 
= 1st Oct).  
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Figure 3.3 Estimated maximum number of dead pups and total pup production 
for the years 2000 – 2010 and 2012. 

Number of dead pups re-estimated by aerial survey data is represented by 
columns and referred to the y-axis on the left side. Pup productivity is 
represented by line with CV (%, ranged between 0.02 and 0.05) and referred to 
the y-axis on the right side. 
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The mean mass of a placenta (including amnion) was 1.6 kg (SD = 0.24; N = 6) 

(Table 3.3) and the resulting total biomass for the period 2000-2010 and 2012 

was estimated to be 3124.3 kg (SE = 74.99; N = 12; RSE% = 2.40%; range 2751.70 

– 3700.88). The mean gross energy density was estimated as 21.8 MJ kg-1 (SD = 

1.15; N = 6). From this the estimated average annual energy delivered as 

afterbirths on the Isle of May was 68.1 x 103 MJ (SE = 1.64; N = 12; RSE% = 

2.41%). 

Table 3.3 Information and measurements of grey seal afterbirths (N = 6). 

For each afterbirth date of collection, sex of the pup, total, amnion and 
placenta mass were recorded. Samples were collected for further analyses of 
energy content. 

Date 
of collection 

Pup 
Sex 

Total Wet 
Mass 
(kg) 

Amnion 
Mass 
(kg) 

Placenta 
Mass 
(kg) 

Wet 
Sample 

Mass (kg) 

Dry 
Matter 

(%) 

Energy 
Density 
MJ kg

-1
 

29-Oct F 1.42 0.76 0.66 0.03 15.66 22.165 

30-Oct n/a 1.91 0.46 1.45 0.03 16.96 22.474 

31-Oct n/a 1.46 0.34 1.12 0.03 15.44 22.099 

31-Oct F 1.19 0.64 0.55 0.05 14.88 20.297 

01-Nov M 1.81 0.33 1.48 0.04 17.23 20.328 

05-Nov n/a 1.63 0.36 1.27 0.03 17.20 23.490 

 

For the study period 2000 – 2012 the mean placental density on the island was 

0.003 afterbirths m-2, (SE = 0.00007; N = 12; RSE% = 2.33%) while the mean 

placental biomass density was 0.004 kg m-2 (SE = 0.0001; N = 12; RSE% = 2.50%). 

3.4.2 Ground visual census data 

The ground visual censuses performed in 2008 and 2012 showed similar numbers 

of dead pups with 229 and 233, respectively whereas in 2013 a total of 165 

carcasses were observed. The mean number of dead pups counted for the three 

years was 209 (SE = 22.03; N = 3; RSE% = 10.54%). Excluding carcasses with 

undetermined sex, a similar proportions of male (56.22%; N = 3; SE =2.64) and 

female (43.78%; N = 3; SE = 2.64) carcasses was found (Χ2 = 3.02, df = 2, P = 

0.22). For 9.61% of the carcasses it was not possible to detect the gender. On 

average around half of pups (53.63%; N = 3; SE = 4.15) were second stage pups 

(Figure 3.4), aged between 1.7 and 7.9 days (Χ 2 = 35.2285, df = 6, P < 0.0001). 

The following most abundant type of carcasses were those belonging to the third 
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and first stages. The other stages were represented by mean percentages around 

five times lower. Starvelings formed 8.66% (N = 3; SE = 3.94) of the total number 

of carcasses. Dead adults were found every year (2.12% of the total number of 

carcasses; N = 3; SE = 0.70), and 12 out of 14 individuals were female. A single 

yearling was found dead in 2013.  

  

 

  

Figure 3.4 Ground visual census data according to sex and development 
stage.Number of dead pups per year belonging to different sex and development 
stages from the ground visual census performed in 2008, 2012 and 2013: M = 
male, F = female and n/a = non-available sex; 1 = first, 2 = second, 3 = third, 4 = 
fourth, 5 = fifth development stage, starveling = pups who died of starvation, 
n/a = non-available development stage and adult. 
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There was a significant difference in mass between dead and alive pups (ANOVA, 

status F1,115 = 34.84, P < 0.001), between pup stages (ANOVA, F2,114 = 46.49, P < 

0.001) and there was no significant interaction (ANOVA, F2,114 = 0.11, P = 0.9). 

Therefore, the average difference in mass of 8.02 kg occurring between alive 

and dead pups for the three development stages was used to calculate the 

biomass from dead pups. Re- estimated masses of pups for each development 

stage are shown in Table 3.4. 

Table 3.4 Re-estimated mass of dead grey seal pups belonging to different 
development stages. 

Each development stage is associated with the re-estimated body mass (kg) for 
male and female pups calculated according to the equations of Kovacs and 
Lavigne (1986) and adjusted by the average difference on mass occurring 
between alive and dead pups. When sex of pup was unavailable, the body mass 
was calculated using the mean body mass of both sexes. 

 

Development 
Stage 

Mean mass 
Kg (± SD) 

Female Male 
Sex not 

determined 

1 9.6 
(12.05) 

11.7 
(14.43) 

10.6 
(13.24) 

2 12.6 
(10.43) 

15.0 
(12.62) 

13.8 
(11.52) 

3 21.7 
(10.18) 

25.1 
(12.34) 

23.4 
(11.26) 

4 32.6 
(42.47) 

36.1 
(43.50) 

34.3 
(11.39) 

5 28.8 
(44.75) 

33.2 
(45.21) 

31.0 
(53.00) 

 

The mean annual biomass of dead seals (adult and pups) was estimated to be 

3768.2 kg (SE = 713.73; N = 3; RSE% = 18.94%; range 2411.7 – 4831.4kg). Male 

carcasses averaged 49.9% (N = 3; SE = 3.02) of the total biomass available, while 

the second development stage contributed the greatest proportion and 

represented 42.1% (N = 3; SE = 5.16) of the total biomass released.  
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A large percentage of the annual biomass of dead seals (adults and pups) was 

composed of water (58.6%; N = 3; SE = 1.46) in greater amount than fat (18.9%, 

SE = 2.15) and protein (19.9%; N = 3; SE = 0.62) combined (Figure 3.5).  The 

latter two components, corresponding to an annual biomass equal to 1481.7 kg 

(SE = 329.43; N = 3; RSE% = 22.23%), were responsible for the release of 42.4 x 

103 MJ (SE = 10.42; N = 3; RSE% = 24.58%; range: 23.8 – 59.8 x 103 MJ) of energy 

into the ecosystem. Fat contributed 67.2% (SE = 3.12) to the total energy, while 

protein to 32.8% (SE = 3.12).  

 

 

Figure 3.5 Biomass (kg, ± 1 SE) of dead pups according to proportion of water, 
fat and protein in the body and estimated from ground visual census in 2008, 
2012 and 2013. 

 

In 2012 the total biomass scavenged was 1032.0 kg representing 21.4% of the 

total mass available and 32.5% of the edible mass. Most of the carcasses were 

scavenged on the eyes or showed one or more openings on the body 

(consumption state B: 28.8%; consumption state C: 25.3%). Inedible (skin and 

bones) and not scavenged mass was 1681.3 kg (34.8%) and 2118.1 kg (43.8%), 

respectively. The energy intake by scavengers was 9.1 x 103 MJ, while 14.8 x 103 

MJ and 18.6 x 103 MJ, respectively, were the energy of the uneaten and inedible 

mass left on the ground. 
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Carcasses found on the Isle of May were distributed according to the main 

breeding sites, mainly in the north and south of the island. The three years 

showed similar point patterns covering the following areas: North Ness, Rona and 

East Tarbet in the north and Pilgrim Haven, Kirk Haven and Loan in the south. 

Most of the dead pups found were located above the mean high water line, 

however on average 13.1% (SE = 3.85) of carcasses occurred in the area between 

the mean high and low water boundaries (166,902 m2). The mean kernel 

smoothed intensity was estimated to be 0.0003 carcasses· m-2 (SE = 0.00003; 

RSE% = 10.00%) on the whole island for the three years, whereas the mean 

density of carcasses in the polygons was 0.005 carcasses m-2 (SE = 0.001; RSE% = 

20.00%). The highest intensity each year was observed in the area between Rona 

and North Ness:  in particular in 2012, the maximum intensity was 0.03 carcasses 

m-2 (Figure 3.6).  The union of polygons characterised by an intensity higher than 

0.001 covered 74,965 m2 representing 11% of the total area of the island at mean 

low water and two thirds of it occurred in the north. The shared area among 

three years (or intersection), was 21,270 m2 corresponding to 3% of the total 

area of the island and 28% of the union of polygons and occurred mostly in the 

north (83%) (Figure 3.7). The density of biomass was 0.006 kg m-2 (SE = 0.001; 

RSE% = 16.67%) for the whole island and 0.09 kg m-2 (SE = 0.03, RES% = 33.33%) 

for the area covered by the polygons. 
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Figure 3.6 Kernel smoothed intensity of carcasses and polygons of density ≥ 
0.001.  

Left: maps of kernel smoothed intensity (N carcasses m-2; range= 0 – 0.03) for 
carcasses counted during the ground visual censuses performed in 2008, 2012 
and 2013. The smoothing bandwidth was selected by likelihood cross-validation. 
Pixel size: 20 x 20 m. Right: maps showing polygons characterised by intensity 
equal or higher than 0.001 carcasses m-2 in 2008 (red), 2012 (green) and 2013 
(yellow). 
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Figure 3.7 Union and intersection of polygons of intensity ≥ 0.001. 

Union of polygons characterised by intensity equal or higher than 0.001 carcasses 
m-2 for any of the three years (2008, 2012 and 2013) (blue) and polygons of areas 
used in all three years (yellow). 
 

Initially the pattern was highly aggregated, but as the value of the 

inhomogeneous Linhom (r) function increases, it became uniform. Two peaks in 

the aggregation pattern were observed in each year: one around 40-70m and the 

other around 150-180m, showing that the area of carcasses were repeated and 

had similar distance across years, both on the north and south of the island 

(Figure 3.8). Around 215-230m, the pattern became uniform and the function 

curves fell under the line illustrating complete spatial randomness (CSR). As the 

maximum r displayed does not exceed 400m, aggregations further than this 

distance are not shown. There was no statistical significance for the test of CSR, 

as the observed patterns were outside of the simulation envelopes representing 

the p-value 0.05. This indicated that well defined areas of carrion availability 

occurred. Moreover the bootstrap 95% confidence bands of the functions 
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overlapped demonstrating that the spatial pattern of carcasses is consistent 

across years. The 2008 curve, however, showed a faster decreasing towards 

uniformity.   

 

Figure 3.8 Test for Complete Spatial Randomness on Linhom summary functions. 

Comparison among Linhom summary functions illustrating spatial point patterns 
of carcasses found in 2008 (light grey, dashed line), 2012 (dark grey, midline 
ellipsis) and 2013 (medium grey, continuous line) during the ground visual 
census. Bands of 95% confidence interval were obtained by bootstrap simulations 
(n = 99). The three functions were tested for Complete Spatial Randomness 
(CSR, dashed red line) by running Monte Carlo permutations (n = 99) for 
statistical tests, bands borders represent the p-value 0.05. 

 

3.4.3 Comparison with other studies 

Our results showed relative standard errors (RSE%) for the number of dead seals 

and placentae (between 1.97% and 24.50%) and 33.33% in the spatial intensity of 

biomass for dead seals (Figure 3.9). Reimchen (2000) and Hocking and Reimchen 
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(2009) showed variability in quantity and biomass density across years of 

between 1.67 and 25%. Several papers described the predictable resource 

according to its properties without presenting variability among events 

(Appendix B.1-2).   
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Figure 3.9 Comparison between RSE% of resource availability resulting from the 
Isle of May seal carrion and spawning salmons. 

Inter-annual variability, measured as RSE%, of carcasses (black) and afterbirths 
(red) occurring on the Isle of May during seal pupping seasons 2008, 2012 and 
2013 and spawning salmons (orange) according to Reimchen (2000) and Hocking 
and Reimchen (2009) according to time (date of occurrence), quantity 
(abundance as N and total mass available as kg), quality (energy released as MJ) 
and space (density as N m-2 and kg m-2).   

 

3.5 Discussion 

3.5.1 Isle of May carrion 

Seal carrion on the Isle of May is an apparently stable resource occurring 

annually. Since the 1970s, when the grey seals appeared on the island for 

breeding, an increasing pulse of nutrients was released into the ecosystem from 

seal afterbirths and carcasses. During the last decade the mean pupping date 

occurred consistently at the end of October. However, the pupping season 

extends for up to 6 weeks (Harwood et al. 1991; Hiby et al. 1996) and during this 

prolonged period an average of 3124kg of afterbirths were discharged into the 

ecosystem. Although the population now appears stable (SCOS 2009), new areas 

have been occupied by pupping seals during the last decade: Pomeroy et al. 

(2000), describing the main areas used by seals in 2000, excluded a large part of 

the south of the island that are now colonised, such as the Loan, Tennis Court 

and Cross Park.  

In order to estimate pup mortality we compared aerial survey with ground 

visual census data: this process was carried out to reduce as much as possible 

the underestimation of dead pups observed by the aerial survey. The mortality 

estimated was 13.3% in comparison to 12.5% given in Baker and Baker (1988). 

Representing the longest extent of time (circa 7 days) compared to other stages, 

the second stage of development was the most abundant among carcasses. Adult 

mortality on the island was rare, estimated adult survival on the Isle of May is 

high with low variance 0.950 (95% CI 0.933 - 0.965) (SCOS 2013). First year 

survival of grey seal pups depends on pup condition at weaning and differs 

between males (0.193, SE = 0·084) and females (0·617, SE = 0·155) (Hall et al. 

2001). Pup mortality can also occur post-weaning, such as the lethal injuries 

called helical (corkscrew) wounds (Thompson et al. 2010). Interaction between 

ship propellers and seal was thought to be the most likely cause, but recently it 
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was shown that these events can also be attributed to cannibalism by adults 

(Thompson et al. 2015).  

Seal carrion biomass was calculated using true mass values of placentae 

and dead pups measured on the Isle of May, therefore estimates are accurate. 

Further investigations are, instead, necessary to improve the estimations of body 

composition and energy content of dead pups. Similar to mass, body composition 

of pups may vary between alive and dead pups, and this is certain in starvelings 

(Trites and Jonker 2000). As various causes of death can lead to different 

proportions of body components of the carcasses, in this study conservative 

estimates were used. Energy content of placenta has rarely been measured and 

in this study grey seal placenta was more than 3 times greater than for harp 

seals (Pagophilus groenlandicus) (4.73 MJ kg-1; Lavigne and Stewart 1979), but it 

had a very similar value to the west Atlantic grey seal’s one (23 MJ kg-1; Yunker 

et al. 2005). 

Distributions of carcasses were similar among years and certain areas 

were consistently influenced yearly by the occurrence of dead pups and 

placentae. However, the spatial pattern observed in 2008 (Figure 3.8) slightly 

differed from the other years, as smaller carrion patches were more distant from 

the main ones. This can be explained by the occupancy by seals of marginal 

areas in more recent years and their related mortality, so that carrion patches 

get closer. Grey seals are characterised by a high degree of site fidelity which 

bring them to the same area of the colony every year (Twiss et al. 1994) and 

mortality of pups can be related to specific topographical features (sensu Twiss 

et al. 2000). It was demonstrated that on the Isle of May females prefer to pup 

close to the sea or freshwater pools and mothers occupying further locations 

separate more often from their pup, reducing pup attendance. The latter 

together with increased aggressive behaviour among seals on the access routes 

to the water (Twiss et al. 2003) is likely to define areas of higher pup mortality, 

as observed in other pinnipeds (Doidge et al. 1984; Harcourt 1992; Baldi et al. 

1996).  

3.5.2 Impact on ecosystem compartments 

Numerous marine-derived resources have been shown to influence the coastal 

ecosystem. In the Isle of May the great black-backed gull L. marinus is the main 

consumers of seal carrion and its behaviour was already reported by Twiss et al. 

(2003) at another grey seal colony in Scotland. Other scavengers such as the 
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giant petrels Macronectes halli and M. giganteus in South Georgia are also 

important scavengers for different seal species (Hunter 1983). At the end of the 

breeding season 32.5% of the edible dead seals biomass available on the Isle of 

May was scavenged resulting in an energy intake estimate of 19.4 x 103 MJ. It is 

likely that the scavenging activity continues also after the seal pupping season 

has concluded and consumption increases. However, the lack of complete 

depletion of the carcasses may be related to the high abundance of these inputs 

(Wilmers et al. 2003b) and/or low abundance of scavengers. Generally, in the 

presence of a superabundant resource, greater than required by foragers 

(Rosenberg et al. 1982), the incomplete consumption of food items often occurs 

(e.g. Reimchen 2000) and a large proportion of it enters the detrital 

compartment (Yang et al. 2008). In our case, the incomplete consumption of 

carcasses can be related to the extended handling time and the necessity of 

effective skills to dismantle a dead seal. Placenta was seen to attract 

simultaneously a higher number of gulls than carcasses possibly due to it being 

the easier to obtain and utilise of the two different food items, often leading to 

its complete consumption (see Chapter 5). The energy resulting from placentae 

and dead seals utilizable by scavengers was respectively 68.1 x 103 MJ and 42.4 x 

103 MJ. Considering that the daily energy requirement for a great black-backed 

gull is 2.6 MJ (Camphuysen et al. 1993; Walter and Becker 1997), the total 

amount of energy released as dead pups and placentae provides potentially 

more than 42 thousand daily rations for these birds. Coastal inputs can attract 

organisms from both the terrestrial and marine environments. Similarly to sea 

turtles eggs, between 26 and 31% of which are predated by raccoons (Procyon 

lotor) and ghost crabs (Ocypode quadrata) while still in the nest (Bouchard and 

Bjorndal 2000), seal carcasses might be exposed not only to gulls, but also to 

marine scavengers. A proportion of dead seals (13%) was in fact found between 

mean high and low water where scavenging crabs and amphipods live. However, 

the number of dead seals found in the intertidal area may represent only a 

proportion of carrion potentially available to the marine system. Some 

carcasses, in fact, may have been already transported by tides and waves into 

the water before the ground visual census was carried out.  

Carrion is exploited when spatial variability of nutrient hotspots 

originated by seal carrion matches the scale of variability of foraging movements 

of scavengers. When exploring the effects of these nutrients on small 
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scavengers, such as rodents or invertebrates, for instance, it becomes relevant 

to identify where they are released in a fine scale. The latter is valid also for 

other biotic and abiotic compartments of the ecosystem, such as plants and soil 

which can be influenced by carrion (and also defecation) at a small spatial scale 

as well. On the Isle of May the unused seal carrion, which counted for 78.6% of 

the total mass of dead seals, was still available at the end of the seal pupping 

season on the delimited areas of the island where seal aggregations occur. 

Smaller scavengers, such as rodents and invertebrates, may aggregate for 

consuming further biomass, while the soil can absorb marine nutrients through 

decomposition of uneaten seal skin and bones. Such processes related to the 

fate of carrion have been already demonstrated in previous studies. For 

instance, denser assemblages of arthropods were found on the supralittoral than 

inland where algal wrack and carrion occurred (Polis and Hurd 1996b); plants 

growing in the vicinity of seal and penguin colonies, but also riparian conifers on 

the bank side of salmon-bearing streams showed greater marine- derived 

nitrogen enrichment in comparison to more distant plants (Erskine et al. 1998; 

Koyama et al. 2005). Seal colonies, in particular, were responsible for the 

highest nitrogen enrichment reflecting the high position of the pinnipeds in the 

trophic chain (Erskine et al 1998).  

3.5.3 Implications of predictability 

Despite predictability being well recognised and widely used in ecology, a 

standard approach to define a resource predictable seems missing. Here, a 

useful metric, which considers the main properties of a food subsidy, is 

provided. Factors influencing predictability were decided according to their 

relevance on having a potential effect on ecological processes involving the 

interaction between a resource and its foragers. Quantity and nutrient content 

of the food were chosen as they correlate with survival, health, reproductive 

success of animals, but also population and ecosystem dynamics (White 2008, 

Marcarelli et al. 2011). Moreover, when a resource is predictable, animals can 

preempt its future occurrence (e.g. Reimchen 2000; Wittemyer et al. 2007). The 

animal learning process involves the temporal awareness (when food occurs), 

which can be promoted by environmental cues (Frederiksen et al. 2004a), but 

also by spatial perception (where food occurs) (Sherry et al. 1992). Timing and 

location were therefore the other crucial features used to describe the 

predictability of a resource. In fact, considering different spatial scales, when a 
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subsidy occurs, the number of foragers increases (Polis and Hurd 1995a; Stapp 

and Polis 2003; Spiller et al. 2010), their distribution varies (Rose and Polis 

1998), the home ranges of individuals change (Monsarrat et al. 2013) and the 

species trophic dynamics alter (Polis et al. 1997; Briggs et al. 2012). Unifying 

measures such as timing, spatial distribution, biomass and energy value of a 

resource are indispensable for interpreting the effects it has on the ecosystem 

and should represent the foundation of any investigation related to predictable 

resources. 

Predictability is a measure of ecosystem stability explained by low 

variability in its properties both temporally and spatially. Standard errors and 

percentage of relative standard error (%RSE) were identified as tool for 

measuring the degree of predictability (McGrady-Steed et al. 1997). In 

particular, the %RSE was chosen in order to standardise data of different nature 

(date, abundance, biomass, energy, density of two separate carrion sources), 

taking into account the sample size and to compare different studies. Seal 

carrion and spawning salmon runs were demonstrated to be a predictable 

resource with %RSE between 1.67 and 33.33%. Predictability of salmon runs in 

riparian systems is responsible of co-evolution between feeding strategy and 

food input in black bears (U. americanus) and more recently in wolves (Canis 

lupus) (Reimchen 2000; Darimont et al. 2003). Depletion of seal carrion by gulls 

also suggested a clear response of consumers to this resource availability, but 

whether they developed any ecological adaptation to it has not been defined 

yet, even if it was demonstrated in the case of fishery discards (Bartumeus et al. 

2010; Cama et al. 2012). Gulls at sea, in fact, were distributed according to 

fishery vessels density during fish discarding time, showing to optimise their 

foraging strategy (Cama et al. 2012). Repeatibility of predictable events can 

show also long term impacts on the ecosystem. Stable isotope 15N signatures of 

salmon have been found in plants and invertebrates (Hocking and Reimchen 

2009) and persisted for decades after the salmon population disappeared 

(Koyama et al. 2005).  

In the presence of a predictable superabundant resource, inter-events 

variation can be high, but not affecting the response of foragers:  pre-spawning 

aggregation of eulachon (Thaleichthys pacificus), for instance, had seasonal 

impacts on the abundance of Steller sea lions (Eumetopias jubatus) attending 

the area for feeding (Sigler et al. 2004) despite the fact that food inputs greatly 
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vary between years.  A surplus of this subsidy was detected even when the 

quantity of this resource was at its minimum.  

Comparing seal carrion to other apparently predictable resources, it 

appeared that sea turtle eggs released much greater energy (267.8 x 103 MJ), but 

this was calculated according to 21 km stretch of beach where turtles nest 

(Bouchard and Bjorndal 2000) (Appendix B.1-2). The energy enters different 

compartments: returning back into the marine system as hatchlings (26.8%), 

taken by predators (27.7%) or used by plants, decomposers and detritivores 

(34.0%).  Seal carcasses, instead, were consumed by avian scavengers, and 

possibly mice, (32.5% of the edible mass), whereas the uneaten part became 

available to smaller scavengers and invertebrates or again to vertebrate 

scavengers for further consumption. Remains, considered as the inedible part of 

the carcasses (34.8% of the total biomass), were accessible to decomposers and 

soil. Also seabird colonies provide carrion as a pulsed food source: nesting 

islands in the Gulf of California, for instance, provide dead chicks in similar 

density of biomass to seal carrion, with a maximum of a tenfold difference (Polis 

and Hurd 1996b, Sánchez-Piñero and Polis 2000) (Appendix B.1-2). When 

comparing the absolute values describing different resources in its properties, 

difficulties arise as several different responses are expected according to the 

particular ecosystem.  Its predictability, instead, drives some important 

ecological processes regardless of the ecosystem considered. 

In conclusion, this study quantifies the value of seal carrion as a 

predictable food resource. Further investigation could reveal the importance and 

use of this resource by various scavenger groups, local vegetation as well as its 

effect on nutrient content of soils and sediments. In this way the often 

overlooked relevance of carrion in ecology will be rectified. 
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4:Chapter 4: The impact of marine mammal carrion on 

the spatial and temporal distribution of the 

scavenging community at different geographical 

scales 

4.1 Abstract 

Food resources drive the movement of animals: foragers migrate, change their 

home range, adopt different searching strategies and modify their behaviour to 

exploit food resources.  When assessing the effect of food availability on the 

temporal and spatial distribution of a species, it is crucial to consider multiple 

geographical scales. Here, we evaluated the distribution and behaviour of 

scavenging gulls wintering on the seal colony of the Isle of May (Scotland, UK) in 

response to a pulsed and aggregated source of carrion during the pupping 

season. Three levels of resolution were considered: 1) at the regional scale 

(Scotland) temporal trends of herring gull (Larus argentatus) and great black-

backed gull (Larus marinus) observed in South of Scotland, Forth Estuary and Isle 

of May were compared; 2) at the local scale (Isle of May), abundance of gull 

species recorded during the day and roosting at dusk were estimated to assess 

diel differences in their home range and relative species abundance on the 

island; and 3) at the patch level, temporal patterns of searching and feeding 

behaviour of gulls were measured in areas with and without available carrion. 

Results showed that great black-backed gull numbers increased during the seal 

pupping season on the Isle of May but not in the Forth Estuary and South 

Scotland suggesting a regional-scale effect of carrion availability. Herring gull 

trends, instead, were similar in all three areas considered. At the local scale, 

the great black-backed gull was the most dominant species during the day, 

whereas at dusk proportions changed in favour of the herring gull which roosted 

in higher numbers on the island. At the patch level gull activity was dominated 

by great black-backed gulls and juvenile gulls and was highest in carrion rich 

areas. The number of gulls feeding was directly correlated with carrion 

abundance, while searching behaviour was greatest after the mean seal pupping 

date and at the peak in mortality. Elucidating the relationship between 
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scavengers and carrion will not only aid our understanding of carrion ecology and 

inform studies investigating the current decline of scavenging gull species. 

 

4.2 Introduction 

Movements of animals are often driven by variation in the distribution of food 

resources occurring between the breeding sites and wintering areas (Rankin 

1985; Dingle 1996). In this way animals enhance their survival, growth and 

reproductive success (Taylor and Taylor 1977). Movements, such as migration, 

occur when organisms’ phenology and local environmental cues are synchronised 

and stimulate them to move to habitats characterised by higher food availability 

(Dingle and Drake 2007).  

When prey species pursue seasonal movements searching for new 

resources, predators respond to prey availability by adjusting in turn, diet, 

habitat and behaviour. Similar to the relationship between prey and predator, 

scavengers are also linked to the availability and accessibility of food (Wilmers 

et al. 2003b;  Blázquez et al. 2009). Sometimes a three way interaction among 

prey, predator and scavengers may also exist, as shown by seasonal black tailed 

deer (Odocoileus hemionus columbianus) killed by puma (Puma concolor) in 

northern California, the carcasses of which are later exploited by scavengers 

such as grey foxes, turkey vultures and ravens (Allen et al. 2014). Due to the 

ungulate migratory route, both kills and scavenging activity take place during 

summer and at similar altitude, suggesting that the three guilds share the same 

spatial and temporal distribution.  

Carrion predictability is a key factor influencing scavenger behaviour 

(Pereira et al. 2014). Previous experience in successful foraging areas combined 

with recent pay-off from the same, in fact, influence the animal’s future 

predictions (Harley 1981; Lefebvre 1983; Kamil and Yoerg 1985; Moody et al. 

1996). Scavenging opportunities often occur in spatially limited and temporal 

pulses of carrion, making this source a predictable food supply for the local 

community (e.g.Deygout et al. 2010; Cama et al. 2012; Allen et al. 2014). 

Scavenging birds such as griffon vultures (Gyps fulvus), for instance, may rely on 

predictable resources. In particular, the introduction of feeding stations for 

conservation and management purposes were always preferred by these vultures 

over unpredictable natural carrion (Monsarrat et al. 2013).  In some cases, this 
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resulted in a narrowing of the birds’ home range around the feeding stations (in 

the absence of optimal flight conditions). Seasonal sources of carrion such as 

ungulate carcasses caused by starvation or natural mortality during the dry 

season are also selected by avian obligate scavengers (Kendall et al. 2014), 

which some of them are well adapted to using aggregated carrion (Cortés-

Avizanda et al. 2012). The spatial and temporal distribution of a resource can 

therefore define the foraging areas of species. However, without considering 

multiple spatial scales related to the biology of the organism under study, 

results could be misinterpreted as some of the patterns could be overlooked 

(Wiens et al. 1993).  

At a regional, large scale spatial overlap of species is expected, whereas 

the latter reduces at a smaller scale where spatial segregation (Pinaud and 

Weimerskirch 2007) can be explained by species prey preference or differences 

in foraging strategy (Cherel and Klages 1998; Weimerskirch et al. 2005). For 

instance, in several studies using tracking data seabirds may appear to be 

foraging in the same large geographical area, but, once the spatial scale is 

reduced, increasingly localised searching efforts of seabirds can be identified in 

narrower areas (e.g. area restricted search or ARS) (Pinaud and Weimerskirch 

2007). Different levels of spatial and temporal overlap or separation can occur 

also between life stages of the same species. In particular, during winter 

juvenile birds can migrate along different routes, for longer distances than 

adults (Hake et al. 2003; Weimerskirch et al. 2006; Marques et al. 2009; Jorge et 

al. 2011) and rely on resources available in different locations. At the patch 

level, aggregations of conspecifics develop as searching foragers can be 

attracted by the feeding of other individuals (Pöysä 1992; Lima and Zollner 

1996).This phenomenon, called local enhancement, is the result of social cues 

originated from individuals whose decision was made by copying conspecific 

behaviour (Simons 2004; Dall et al. 2005). In vultures, foraging success is related 

to social cues used for locating carrion (Jackson et al. 2008; Moreno-Opo et al. 

2010). Finally, the finest scale over all is the food item (Gaillard et al. 2010) 

where other behavioural dynamics such as competitive events take place among 

consumers to gain access to the resource. 

As has been shown previously (see Chapter 3), seal carrion appears to 

form one such predictable carrion pulse and therefore the distribution of 

scavenging gulls could be affected by the availability of seal carcasses and 



Chapter 4   110 

placentae occurring during the grey seal pupping season. Gulls are opportunist 

carnivores, being both predator and scavenger, as their diets consist almost 

entirely of animal prey (Spaans 1971; Pierotti and Annett 1987; Annett and 

Pierotti 1989). They forage around ships in inshore areas, on shoaling fish, in the 

intertidal zone, in agricultural areas, on refuse tips and even in litterbins in busy 

streets. In coastal areas, gulls are proficient intertidal predators, foraging from 

the surface at low tides (Furness and Monaghan 1987), preying upon a wide 

range of animals such as crustaceans, molluscs and echinoderms.  Small 

mammals, like rats and rabbits, or birds are part of their diet as well (Harris 

1965). In Scotland temporal and spatial changes in food supply and prey stocks, 

possibly linked to changes in fishing practices and higher resources available in 

urbanised areas, may be the cause of the observed decline of some seabird 

species in the North Sea (Frederiksen et al. 2004b). These changes possibly 

impact on the resident winter population of herring (Larus argentatus, 

Pontoppidan, 1763) and great black-backed gull (Larus marinus, Linnaeus, 1758) 

in particular, which would explain why the migratory lesser black-backed gull 

(Larus fuscus, Linnaeus, 1758) is not affected, as it is mainly a summer visitor to 

Scotland (Forrester et al. 2007). The gull species which overwinter on the Isle of 

May (Scotland, UK) are the herring gull and the great black-backed gull which 

are identified Red and Amber listed, respectively, in Birds of Conservation 

Concern (Eaton et al. 2015). Additional knowledge on the structure of the 

scavenging gull populations and its distribution can be used to enhance 

conservation management of important sites for wintering gulls such as the Isle 

of May.  

In this study, we used a broad temporal and spatial approach to evaluate 

the influence of carrion on the distribution and behaviour of scavenging gulls 

before and during the grey seal season. Spatial scales were defined according to 

Johnson (1980): Scotland was the regional scale (distribution range or first order 

selection; 2 to 300 km), the Isle of May was the local scale (home range or 

second-order selection; 2 to 80 km) and the patch was the smallest scale 

considered (patch within home range or third-order selection; 100 to 2000 m).  

The scavenging species considered here were the great black-backed gull and 

the herring gull. The latter, differently from the great black-backed gull which 

consume seal carrion (Twiss et al. 2003), was rarely observed feeding on dead 

seals (see Chapter 2), despite its well-known scavenging habits (e.g. Monaghan 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://jncc.defra.gov.uk/page-4939
http://jncc.defra.gov.uk/page-4939
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et al. 1986; Hüppop and Wurm 2000). To avoid ambiguity in this study, carrion 

patch was intended as any area of the Isle of May containing carrion either dead 

seals or placentae. 

The hypotheses tested were:  

Regional scale 

- carrion will have an effect at a regional scale: a positive temporal trend in the 

number of scavenging gulls counted on the Isle of May (Daytime and Roost 

counts) was predicted to occur before and during the seal pupping season 

(between September and December), whereas a fall in abundance would have 

been observed in the surrounding region during the same period of the year 

(BirdTrack data for South Scotland and WeBS counts for the Forth Estuary area at 

higher distance than 40 km from the Isle of May). A similar temporal trend to the 

one observed on the Isle of May was, instead, predicted to appear in the closest 

area surrounding the island (WeBS counts for the Forth Estuary area at lower 

distance than 40 km) as it would reflect the possible movements of gulls nearby 

the island.  

Local scale 

– carrion influenced the diel distribution of scavenging species at a local scale: 

assuming that gulls are mostly diurnal (Hailman 1964; Garthe and Hūppop 1996) 

and the great black-backed gull is the main species scavenging on dead seals, 

the relative abundances of gull species were predicted to change between day 

and night on the Isle of May, as the species dominating the Daytime counts 

would represent the main exploiter of carrion. Differences in Daytime and Roost 

counts would therefore indicate the relative importance of the island as feeding 

and roosting site for the different species. 

Patch scale 

Among patches 

a – in areas where carrion occurred the number of gulls (moving, roosting, 

feeding and crossing over in flight) was higher than in areas where carrion was 

not present  

Within patches 

b – foraging activity of scavenging gulls was positively related to carrion 

availability: the number of gulls flying over the patches was higher at the peak 

of placenta and carcasses recorded during the seal pupping season, while 
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feeding activity was directly proportional to the amount of carrion accessible 

(both placenta and carcasses).  

 

4.3 Methods 

4.3.1 Regional scale 

Birdtrack data and WeBS counts 

The British Trust for Ornithology (BTO) provided data on the seasonal pattern of 

gulls from the BirdTrack project and the Wetland Birds Survey (WeBS). The 

BirdTrack project collects daily birdwatching lists of bird species (seen and 

heard) at all times of the year from throughout Britain and Ireland and 

determines the proportion of lists with a given species. This would provide a 

good measure of frequency of occurrence of a determined species that can be 

used for population monitoring. The latter provides a standardised and effort-

independent way of monitoring migration movements of birds across the whole 

UK (British Trust for Ornithology (BTO)). BirdTrack provided data on the relative 

percentage of complete birdwatching lists recording great black-backed gulls 

and herring gulls collected in South Scotland (Figure 4.1a) for the period 2005-

2014, by week for each year.  

WeBS monitors wetland birds around the UK, carrying out monthly Core 

Counts during the day at or near high tide on predetermined synchronised 

‘priority dates’.  Among the sites monitored, open coast and estuaries are also 

included. (For more details on the methods see: Bibby et al. 2000; Holmes and 

Stroud 1995; Rose and Scott 1997; Vinicombe et al. 1993). WeBS provided 

monthly counts of great black-backed gulls and herring gulls either roosting or 

feeding in the Forth Estuary (Figure 4.1b) for the period 1999-2013. The latter 

are monthly coordinated counts made principally during autumn and winter by 

volunteer ornithologists. The data here presented were originated by counts 

carried out in 50 sectors, which were grouped into three larger areas (Inner, 

North and South Forth) forming the Forth Estuary. The sectors of Ansthruther 

Bay and Elie Harbour on the north eastern coast were included in the larger area 

North Forth as not originally being part of the Forth Estuary. The counts included 

all gulls recorded within the sectors. As counts of gulls are optional in WeBS, 

sectors not showing data for gulls were excluded from the analyses. For the 

purpose of this project, the sectors were divided into two groups if they were 
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located at a greater to or within a distance of 40 km from the Isle of May. This 

threshold was chosen as it is indicative of herring gull’s daily foraging trip 

distance (Spaans 1971; Sell and Vogt 1986; Kubetzki and Garthe 2003).  

 

 

Figure 4.1 Multiple spatial scales used to study the influence of seal carrion on 
scavenging gulls. 

a) South of Scotland (dark grey) where Bird Track data were collected (source: 
BTO), the highlighted area (pink) represents the Forth Estuary and the star 
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symbol indicates the location of the Isle of May; b) the Forth Estuary where 
WeBS counts were performed (source: BTO):  the two highlighted sub-areas of 
survey define higher (green) and lower (yellow) than 40 km distance from the 
Isle of May; c) the Isle of May where Roost, Daytime counts and among/within 
patches behavioural observations were made (see legend for details). 

 

4.3.2 Local scale 

The Isle of May 

This study was undertaken on the Isle of May (56°11’ 19’’N, 2°33’ 27’’W; Figure 

4.1c), situated at the entrance to the Firth of Forth on the east coast of 

Scotland. The island is 1.8 km long and less than 0.5 km wide, covering an area 

of 45 ha, with the long axis extending in a northwest-southeast direction. The 

Isle of May is owned by Scottish Natural Heritage (SNH) and it is a Special Area 

for Conservation (SAC) and also part of the Forth Islands Special Protection Area 

(SPA) due to the breeding colony of grey seals H. grypus and seabirds, such as 

terns, puffin, auks and gulls. SNH and Centre for Ecology and Hydrology (CEH) 

carried out biennial monitoring of gull populations nesting during spring on the 

Isle of May. Herring and lesser black-backed gull (L. argentatus and L. fuscus) 

populations increased since the 1990s and in 2011, 3,215 and 2,348 occupied 

nests were estimated, respectively. After a steady increase from 20 pairs 

counted in 2002, 40 pairs of great black-backed gulls (L. marinus) were counted 

nesting on the island during summer 2012 (SNH 2012). Within the Isle of May, 

most of the nests of great black-backed gulls were distributed on Rona, along 

the eastern side, but in fewer numbers on Tarbet, The Maidens and near the 

Island Wreck. For the three species (herring gull, lesser black-backed gull and 

great black-backed gull), first incubation occurs in the second half of April with 

the first chicks born in late May (Alampo and Lamont 2008; Alampo and Ash 

2010). Common gulls were seen visiting the island, but not nesting (Squire and 

Pickett 2011). After the breeding season most of the herring and great black-

backed gulls remain in Scotland (although some move south to England, Ireland 

or the European mainland), and between October and March the Scottish 

population increases owing to the arrival of other gulls from Scandinavia and 

Russia (Forrester et al. 2007). The lesser black-backed gulls, instead, leave the 

island in late September for wintering in southern areas. 

The Isle of May grey seal colony contributes approximately 4.3% to the 

annual UK pup production (in 2010, SCOS 2013). During the decade 2000-2010 
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and 2012 the mean pup production was of 1988 (SE = 47.72) pups per year born 

around the 30th October (SE = 0.58), while the mean pup mortality at the seal 

colony during the same period was estimated to be 13.3 % (SE = 0.91) (see 

Chapter 3). When referring to the seal pupping season in this chapter, the period 

included between the mean pupping date (late October) and early December 

was considered.  During this time interval of approximately 40 days, at least 50% 

of the pregnant females reach the seal colony, give birth and nurse their pups 

before they enter the post-weaning stage (Kovacs and Lavigne 1986).  

Roost counts 

Counts of birds at dusk are the most convenient tool to estimate winter gull 

population and seasonal movements (Burton et al. 2012). On the Isle of May 

point counts of roosting gulls (Roost counts) were performed at dusk during the 

grey seal pupping seasons from late October to the beginning of December in 

2012 (N = 10) and from September to December in 2013 (N = 16). The interval 

times used were 17-18.00 GMT in September, 16-17.00 GMT in October and 15-

16.00 GMT during November and December. 

Point counts were carried out at the main roosting sites which were 

targeted after consulting with the SNH manager of the island (Figure 4.1c, 

yellow-spotted black dots): The Pillow-South Ness on the south-eastern side of 

the island, The Maidens on the east coast in front of the Low Light House and 

Rona located on the northern part of the island, representing the largest site 

among all (ca 10 times larger in area). The vantage points were respectively at 

the top of Kirk Haven hill, the Low Light House and Burnett's Leap. The latter 

was chosen because of the difficulties of using the North Horn located in Rona as 

a vantage point without disturbance to pupping seals. Roost counts were 

performed from south to north: in the smaller sites the Pillow-South Ness and 

The Maidens the number of gulls was recorded when light conditions were still 

good. As detectability declines rapidly during sunset and gulls reach the roosting 

sites at different times (Burton et al. 2012), in the largest roosting site of Rona 

five random sampled subsets of gulls with similar size were scanned in the 

stationary gull flocks when light conditions were good, while the total number of 

roosting gulls was recorded without discerning the species in darker light 

conditions. The average percentage occurrence of each species for the five 

random sampled subsets was calculated and used to finally determine the 

species relative abundance out of the total number of gulls counted (in principle 



Chapter 4   116 

similar to Banks et. al (2003) for wintering gulls in UK). When it was not possible 

to consider the random sampled subsets directly recorded in Rona, the average 

proportion observed in the other roosting sites were used. In order to make sure 

that counts were correct, a final total count was repeated until the same 

number of gulls was counted twice. During the Roost counts the following groups 

of birds were taken into consideration: great black-backed gull and herring gull. 

Juvenile gulls were recorded separately (Ralph et al. 1995) as a single category 

with all species pooled 2012, whereas in 2013 juvenile herring gulls were 

distinguished from juvenile great black-backed gulls. Time of day, site, high and 

low tide and weather conditions were also recorded whenever a gull count was 

made. 

Daytime counts 

Daytime counts were carried out to evaluate the number of gulls active on the 

island during the day. They were made between 12-14.00 GMT during the grey 

seal pupping seasons (from late October to the beginning of December) in 2012 

(N = 5) and from September to December 2013 (N = 18). 

Point counts of selected species (herring and great black-backed gulls) 

were undertaken at seven systematically placed stations located at a minimum 

distance of 250 m from each other (Ralph et al. 1995) (Figure 4.1c, both yellow-

spotted black dots and black dots). The systematic stations were chosen in order 

to cover the whole island from North to South, on both eastern and western 

sides of the island: Rona, The Maidens, the North Plateau, the Island Wreck, the 

South Plateau, the South-East, and the Pilgrim Haven - South (Figure 4.1c). Time 

spent at each station was around 5 minutes, as the walking time between 

counting stations was less than 15 minutes (Ralph et al. 1995). The same species 

considered during Roost counts were considered also during Daytime counts.  

 

4.3.3 Among and within patches 

Behavioural observations 

During the grey seal pupping season (from late October to early December) in 

2012 the daytime behaviour of gulls was recorded from three areas. East Tarbet 

and the Loan were colonised by seals whereas in the area called Island Wreck 

there were few seals present (Figure 4.1c, squares). 
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East Tarbet is a seawater inlet influenced by tidal action situated on the eastern 

side between the main island and Rona. Here, seals move between the upper 

muddy/grassy area and lower rocky areas through a steep rocky slope to avoid 

the tide when pupping or to have access to the sea. While most seals give birth 

on the upper area, during low tide some seals are also found pupping below the 

high tide level (Figures 4.2a and 4.2b). The Loan is a flat muddy/grassy area 

located in the south eastern part of the island characterised by small freshwater 

pools. The latter create aggregation points for seals which move from their 

pupping sites to the pools to thermoregulate (Twiss et al. 2003). A rocky zone 

separates the Loan from the sea, making the area colonised by seals not 

affected by tide (Figure 4.2c). The area called the Island Wreck was also 

selected on the eastern side of the Isle of May. Grassy on the top and gradually 

rocky reaching the sea, this area was characterised by only few seals pupping 

(two adult seals and two pups) (Figure 4.2d).    

Each behavioural observation was comprised of one hour of continuous 

sampling (used in e.g. Barrios and Rodríguez 2004; Everaert and Stienen 2006) 

suspended every 15 minutes by a focal scan (Martin and Bateson 1993), for a 

total of four scans. Continuous sampling and focal scans were performed in order 

to record, respectively, the number of gulls flying over the area (number of gull 

passages hour-1) and the number of individuals moving, roosting and feeding in 

the area (for each behaviour, total number of gulls counted during the four focal 

scans). Gulls actively walking in the area were counted as moving gulls; non 

active gulls observed perching in the area were recorded as roosting gulls; gulls 

feeding on placentae, carcasses, seal milk and regurgitation on the ground and 

intertidal invertebrates were considered as feeding gulls. Individual gulls were 

distinguished within each focal scan, but not between focal scans and during the 

continuous sampling.  

A total of 28, 30 and 6 observations were taken respectively in the Loan, East 

Tarbet and in the Island Wreck area between the 27th October and the 4th 

December 2012. Observations started one day after the mean pupping date, 

which in 2012 occurred on 26th October. Counts were undertaken daily at 

different times of the day, at low and high tide in the three areas. The vantage 

points for counts were raised and/or concealed positions in a hide and were 

chosen at a sufficient distance (>30 m) from the areas to minimise disturbance 

(Gregory et al. 2004). Areas of observations had an approximate size of 70 x 70m 
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and only birds flying approximately over this area were counted. The bird counts 

included in the observations were herring, great black-backed gulls and juvenile 

gulls (species not distinguished). The number of seal carcasses available and not 

submerged by tide in the areas was also recorded.  

 

 

Figure 4.2 Areas used for behavioural observations. 

a) East Tarbet at low tide; b) East Tarbet at high tide; c) the Loan; d) the Island 
Wreck. 

 

4.3.4 Statistical analysis 

Regional scale 

In order to evaluate the potential influence of carrion on the distribution of gulls 

at a regional scale, the temporal trends of herring and great black-backed gulls 

between September and December (before and during the seal season) from the 

Birdtrack data, WeBS, Roost and Daytime counts were compared.  

Birdtrack weekly percentages of complete birdwatching lists of herring and great 

black-backed gulls (N = 280) were re-scaled by considering as 100% the maximum 

percentage occurring in each year for both species. A linear mixed effect model 

(LME) was used to determine the relationship between the percentages of 
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complete lists (response variable with normal distribution) and the fixed effect 

factors Species, Week and their interaction. The variable Year (from 2005 to 

2014) was adopted as random effect factor selected a priori to explain the 

variation of percentages across years.  

WeBS counts (non-normal distribution) (N = 2214) were modelled in a 

generalised linear mixed effect model (GLMM) having Species, Week and 

Distance from the Isle of May (< and > 40km distance) as fixed effect factors. 

The highest order of interaction among fixed effect factors was included in the 

model. The random structure was selected a priori: Area (North, South and Inner 

Forth Estuary), Sector and Year (from 1999 to 2013). An additional observation 

level random effect (OLRE) where each data point receives a unique level of a 

random effect was added to cope with over-dispersion in count data (Harrison 

2014). If the model of best fit included the third way interaction this would show 

that the trend in the counts of gulls during time differed for each species at 

different distance from the Isle of May, suggesting that carrion availability at the 

seal colony influenced distribution of gulls at least in the closer area from the 

island (<40 km distance). 

Daytime (N = 46) and Roost (N = 52) counts performed on the Isle of May 

were modelled in two distinct GLMs having Species, Week and their interaction 

as explanatory variables. Juvenile gulls counted in 2012 were here excluded as 

the species level was not recorded. The variable Year was considered as a fixed 

factor. Dealing with counts, Daytime and Roost data were modelled with both 

Poisson and negative binomial distributions.  

For all the above described models, the range of the continuous 

explanatory variable Week considered was rescaled by using the range 0-14 

instead of 35-49 to avoid inaccuracy of results due to lack of data between the 

1st week (January) and the 35th (September). For all models carried out, the 

model of best fit was detected by backward model selection from the fully 

saturated model identifying the lowest Akaike’s Information Criterion (AIC) and 

using likelihood ratio tests against the null model (Zuur et al. 2009; Bolker et al. 

2009). When AIC values have a difference lower than 2, the simpler model was 

preferred. Visual checks of the residual plots were finally carried out to validate 

the model. 
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Local scale 

Using Daytime and Roost counts during only the seal pupping season (late 

October to early December), the relative abundance of great black-backed gulls, 

herring gulls and juvenile gulls were used to evaluate changes between Daytime 

and Roost counts possibly suggesting the influence of carrion on the distribution 

of scavenging  and non-scavenging species at the local scale. Assuming that gulls 

are mostly diurnal animals (Hailman 1964; Garthe and Hūppop 1996), the species 

dominating daytime counts would represent the main exploiter of carrion. At 

dusk, scavengers and non-scavengers would aggregate for roosting. 

A general linear model (GLM) with a negative binomial error distribution, 

was carried out to explain the changes in number of gulls according to Species, 

Type of count (Roost and Daytime counts) and Year (2012 and 2013) as 

categorical explanatory variables. For this first model the number of juvenile 

gulls for the year 2013 (when the two species were counted separately) were 

calculated pooling the two species together. The full model was run including all 

the explanatory variables and the higher-order interactions, in order to identify 

the minimum adequate model by comparing the AIC scores of progressively 

simpler models. The model with the lowest AIC score was accepted as the fitted 

model. Significance-testing for the best fitted model was carried out by 

conducting a likelihood-ratio (Chi-square) test against the null model (Bolker et 

al. 2009). Model validation was performed through visual inspection of the 

residuals plots.  

A second negative binomial GLM was performed to evaluate only the 

number of juveniles belonging to the species great black-backed gull and herring 

gulls counted in 2013. Again, the same process described above was used to 

select the best fitted model.  

A Tukey contrasts test was carried out afterwards for both the GLMs to 

perform a multiple comparison of means among interacted categories (Type of 

count, Species and Year) for each factor included in the final model.  

Patch scale 

Among patches 

Generalised linear models (GLMs) were carried out for each type of behaviour 

observed in 2012 to test differences in gull activity among the areas Loan and 

East Tarbet (where carrion occurred) and the Island Wreck (where carrion did 

not occur) for different species. The response variable was the total number of 
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gulls observed, respectively, moving, roosting, feeding during the four focal 

scans and crossing over in flight during one hour of sampling for each day of 

observation. The explanatory variables were the area (East Tarbet, Loan and 

Island Wreck) and the species (great black-backed gull, herring gull and juvenile 

gull with the species pooled together). Dealing with count data, Poisson and 

negative binomial GLMs were performed and their AICs were compared in order 

to establish the best model. Categories (Activity vs. Species vs. Area) dominated 

by zero values were excluded from the models. A Tukey contrasts test was 

carried out afterwards to perform a multiple comparison of means among 

interacted categories for each factor.  

 

Within patches 

General additive models (GAMs) were used to describe the foraging activity of 

gulls, intended as feeding and searching efforts, in the Loan and East Tarbet. 

The response variables considered were the number of feeding and crossing over 

in flight gulls recorded, respectively, during the four focal scans and one hour 

count for each day of observation. Group of gulls (great black-backed gulls and 

juvenile gulls without distinction of species) and Area (Loan and East Tarbet) 

were the categorical explanatory variables. Carrion (sum of placentae and dead 

seals present), Sea level (in m, above Admiralty Chart Datum - ACD), Time 

(numeric) and Date (where 1 was equal to the first day of observation) were the 

explanatory continuous variables. Date was considered as it can give an 

indication of how gull activity can change during the seal season considering that 

placenta was likely to be available at the beginning of the period of observation, 

while the mortality peak happened close to the end of the season.  If nonlinear 

patterns were found between the response and the continuous explanatory 

variables, the latter were tested as smoothers and the one presenting the lowest 

AIC was selected as definitive smoother (Zuur et al. 2010). If collinearity was 

detected between the proposed smoothers, the one having the highest AIC was 

declassed as the linear term in the model.  Poisson and negative binomial GAMs 

were run in order to select the best model with lowest overdispersion and AIC 

values.  

 

The latter analyses were performed in R 3.0.3 (R Development Core Team, 

2012), using the packages ’nlme’ for the LME (Pinheiro et al. 2014), ‘lme4’ for 
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the GLMER (Bates et al. 2014), ‘epicalc’ for the likelihood-ratio test 

(Chongsuvivatwong, 2012), ‘multcomp’ for the Tukey contrast test (Torsten et 

al. 2008), ‘MASS' for the negative binomial GLMs and GAMs (Venables and Ripley 

2002) and ‘mgcv' for GAMs (Wood 2011). 

 

4.4 Results 

4.4.1 Regional scale 

Model selection of percentage of completed lists of gulls in South Scotland 

supported the two way interaction between Week and Species suggesting that 

herring gull and great black-backed gull had different trends with time (Table 

4.1). Great black-backed gulls were in fact decreasing faster from September 

towards December than herring gulls, which were recorded in a higher number 

of complete birdwatching lists (Figure 4.3a). 

Table 4.1 Model selection for temporal trend of great black-backed gull and 
herring gull at regional scale using BirdTrack data. 

Linear mixed effect model (LME); S = species, W = week, D = distance, Y = year 

BirdTrack Data 

 df AIC BIC LogLik Test L. Ratio p value  

1 ~ S*W (full) 

2 ~ S + W 

3 ~ S (null) 

6     

5 

4 

2255.876 

2258.250 

2269.747 

2277.598 

2276.370 

2284.258 

-1121.938 

-1124.125 

-1130.874 

 

1 vs 2   

2 vs 3 

 

4.374121 

13.497430   

 

0.0365 

0.0002 

 

 

The best model selected for estimating temporal trend of gulls in the Forth 

Estuary retained the three-way interaction between the terms Species, Week 

and Distance (Table 4.2). In fact, the log number of herring gulls decreased 

similarly from September to December regardless of the distance considered 

(Tukey Contrast, P = 0.4471), whereas distance influenced great black-backed 

gull numbers (Tukey Contrast, P < 0.001) (Figures 4.3b and 4.3c). Close to the 

Isle of May (<40km) great black-backed gulls were in higher abundance and 

showed a negative trend during time. At a further distance to the Isle of May, 

numbers of great black-backed gulls were very low and without any evident 

trend.  
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Table 4.2 Model selection for temporal trend of great black-backed gull and 
herring gull at regional scale using WeBS counts data. 

Generalised mixed effect model (GLMM); S = species, W = week, D = distance, Y 
= year. 

WeBS Counts 

 df AIC BIC LogLik Test Chisq 

df 

Chisq    Pr (>Chisq) 

1 ~ S*W*D (full) 

2 ~ S + W + D + S*W + S*D + W*D 

3 ~ S + W + D + S*W + S*D 

4 ~ S + W + D + S*D 

5 ~ S + W + D 

6 ~ S + W 

7 ~ S 

8 ~ 1(null) 

12 

11 

10 

9 

8 

7 

6 

5 

15388 

15390 

15393 

15403 

15456 

15460 

15489 

16488 

15456 

15452 

15450 

15454 

15502 

15500 

15524 

16516 

-7682.1    

-7683.9 

-7686.6 

-7692.3 

-7720.2 

-7723.1 

-7738.7 

-8238.7 

 

1 vs 2 

2 vs 3 

3 vs 4 

4 vs 5 

5 vs 6 

6 vs7 

7 vs 8 

 

1 

1 

1 

1 

1 

1 

1 

 

3.6882 

5.354 

11.4191 

55.7986   

5.8039 

31.1286   

1000.188 

 

0.054800 

0.02067 

0.000727 

8.029e-14 

0.015990 

2.415e-08 

< 2.2e-16 
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The best models selected for explaining the number of gulls counted at Daytime 

and Roost counts both dropped the factor Year but retained the two-way 

interaction between Species and Week showing that great black-backed gulls 

and herring gulls have different temporal trends on the Isle of May, but 

consistent across years (Figures 4.3d and 4.3e; Table 4.3 and 4.4). Herring gulls 

decreased towards the winter whereas the great black-backed gulls increased 

from September and during the seal season. At dusk, however, the number of 

gulls was generally higher than during the day for both species. 

 

Table 4.3 Model selection for temporal trend of great black-backed gull and 
herring gull at regional scale using Daytime counts data. 

Generalised linear model (GLM); S = species, W = week, D = distance, Y = year. 

Daytime Counts 

 df AIC BIC Test Chisq df Chisq p value  

1 ~ S + W + S*W + Y (Poisson) 

2 ~ S + W + S*W + Y (NegBin full) 

3 ~ S + W + S*W  

4 ~ 1 (null) 

5  

6 

5 

2   

886.8152 

420.4126 

418.4160 

442.7998 

895.9584 

431.3844 

427.5592 

446.4571 

 

 

2 vs 3 

3 vs 4 

 

 

1 

3 

 

 

0.00340605 

30.38381 

 

 

0.953461 

<0.001 

 

 

 

Table 4.4 Model selection for temporal trend of great black-backed gull and 
herring gull at regional scale using Roost counts data. 

Generalised linear model (GLM); S = species, W = week, D = distance, Y = year. 

Roost Counts 

 df AIC BIC Test Chisq df Chisq p value  

1 ~ S + W + S*W + Y (Poisson) 

2 ~ S + W + S*W + Y (NegBin full) 

3 ~ S + W + S*W  

4 ~ 1 (null) 

5 

6 

5 

2 

2112.0444 

629.3155 

629.4460 

660.9782 

2121.8006 

641.0229 

639.2022 

664.8807 

 

 

2 vs 3 

3 vs 4 

 

 

1 

3 

 

 

2.130553 

37.5322 

 

 

0.144389 

<0.001 
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Figure 4.3 Fitted values for models explaining the distribution of gulls at regional 
scale. 
Fitted values (solid line) taken from the model of best fit of the percentage of 
complete birdwatching lists collected in South Scotland (BirdTrack data) (a), the 
logarithm number of gulls counted at a lower (b) and higher (c) distance than 40 
km from the Isle of May (WeBS counts), the logarithm number of gulls counted at 
daytime (Daytime counts) (d) and at dusk (Roost counts) (e) in the Isle of May 
versus week for herring gull (grey) and great black-backed gull (black) with 95% 
confidence intervals (dashed lines). The vertical line shows the timing of the 
mean pupping date; the seal pupping season expands from the line afterwards. 
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4.4.2 Local scale 

Numbers of gulls counted in the Isle of May were best explained by a GLM with 

negative binomial distribution (likelihood ratio test: Χ2 = 166.15, df = 8, P < 

0.0001) that included the variables Type of count, Species, Year and the 

interactions between Type and Species and Species and Year (Table 4.5). No 

differences were found between counts performed in the two years, with the 

exception of juvenile gulls which were in lower abundance in 2013 (Table 4.6 

and 4.7). Counts performed at dusk were different from those during the day 

(Table 4.7 Roost vs Daytime). Generally numbers of gulls were higher at night 

than during the day (Figure 4.4). The most common species during the day was 

the great black-backed gull, while at night the herring gull was in greater 

number.  

Table 4.5 Model selection for number of gull per group counted at daytime and 
at dusk in 2012 and 2013. 

Negative binomial generalised linear model (GLM): S = species or group of birds 
(great black-backed gull, herring gull, and juvenile gull), T = type of count 
(Daytime and Roost), Y = year (2012 and 2013). 

Number of gulls IOM 

 df AIC BIC Test Chisq 

df 

LR stat p value 

1 ~ S*T*Y 13 1001.3855 1034.722     

2 ~ S + T + Y + S*T + S*Y + T*Y 11 998.1234 1026.331 1 vs 2 2 0.737946 0.6914441 

3 ~ S + T + Y + S*T + S*Y 10 996.6670 1022.311 2 vs 3 1 0.5436266 0.4609336 

4 ~ S + T + Y + S*T 8 999.77 1020.287 3 vs 4 2 7.105541 0.02864517 

5 ~ 1 (null) 2 1146.8174 1151.946 4 vs 5 6 159.0448 < 0.001 
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Table 4.6 Roost and Daytime counts performed on the Isle of May during the seal 
seasons 2012 and 2013. 

Data are presented per year and per group of birds: GBBG = great black-backed 
gull, HG = herring gull and JUV = juvenile gull. 

 Roost counts Daytime counts 

 2012 2013 2012 2013 

Mean 
(SE) 

773.2 
(68.02) 

471.56 
(42.36) 

148.0 
(24.74) 

108.75 
(9.28) 

Range 444 – 1230 243 - 611 83 - 226 79 - 160 

Date of peak 25
th

 Nov 30
th

 Nov 19
th

 Nov 29
th

 Nov 

 Roost counts - 2012 Daytime counts - 2012 

 GBBG HG JUV GBBG HG JUV 

Mean 
(SE) 

213.0 
(22.7) 

395.9 
(42.61) 

171.6 
(22.53) 

74.2 
(10.45) 

20.2 
(7.75) 

53.6 
(12.40) 

 Roost counts - 2013 Daytime counts - 2013 

 GBBG HG 
JUV 

GBBG 
JUV 
HG 

GBBG HG 
JUV 

GBBG 
JUV 
HG 

Mean 
(SE) 

167.8 
(14.48) 

225.3 
(33.28) 

58.2 
(7.16) 

20.2 
(4.79) 

68.9 
(4.39) 

15.9 
(4.48) 

21.9 
(2.50) 

2.1 
(0.51) 

 

 

Figure 4.4 Mean number of great black-backed gulls, herring gulls and juvenile 
gulls (both species) from Daytime (white) and Roost (grey) counts performed on 
the Isle of May during the seal seasons 2012 and 2013. 

On each box, the central mark is the median, the edges of the box are the lower 
hinge (25th percentile) and the upper hinge (75th percentile), the whiskers 
extend to the maximum and minimum data points, outliers are plotted 
individually. 
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Table 4.7 Tukey contrast tests performed between interacted categories of the 
explanatory variables Type (Daytime and Roost counts), Species (GBBG = great 
black-backed gull, HG = herring gull and JUV = juvenile gull – both species 
grouped together) and Year (2012 and 2013). 

2012 vs 2013 

Type Roost Daytime 

 estimate se z value Pr(>|z|) estimate se z value Pr(>|z|) 

GBBGx2013 – GBBGx2012 -0.23865 0.18993 -1.257 0.9835 -0.07447 0.24146 -0.308 >0.99 

HGx2013 – HGx2012 -0.56333 0.18891 -2.982 0.1105 -0.24094 0.26752 -0.901 0.9991 

JUVx2013 – JUVx2012 -0.73789 0.19226 -3.838 0.0066 -0.80350 0.25046 -3.208 0.0577 

Roost vs Daytime 

Year 2012 2013 

 estimate se z value Pr(>|z|) estimate se z value Pr(>|z|) 

GBBGxRoost –GBBGxDaytime 1.05453 0.22982 4.588 <0.001*** 0.89035 0.2038 4.368 <0.001*** 

HGxRoost– HGxDaytime 2.97523 0.24456 12.166 <0.001*** 2.65284 0.21782 12.179 <0.001*** 

JUVxRoost– JUVxDaytime 1.12014 0.23237 4.821 <0.001*** 1.18575 0.21378 5.547 <0.001*** 

Between species at roost 

Year 2012 2013 

 estimate se z value Pr(>|z|) estimate se z value Pr(>|z|) 

HG  - GBBG 0.61962 0.18391 3.369 0.0355* 0.29494 0.19477 1.514 0.9350 

JUV - GBBG -0.25960 0.18488 -1.404 0.9618 -0.75883 0.19712 -3.850 0.0065** 

JUV - HG -0.87922 0.18429 -4.771 <0.001*** -1.05377 0.19669 -5.357 <0.001*** 

Between species at daytime 

Year 2012 2013 

 estimate se z value Pr(>|z|) estimate se z value Pr(>|z|) 

HG - GBBG -1.30108 0.28072 -4.635 <0.001*** -1.46755 0.22598 -6.494 <0.001*** 

JUV  - GBBG -0.32522 0.26950 -1.207 0.9881 -1.05424 0.22000 -4.792 <0.001*** 

JUV  - HG 0.97587 0.28255 3.454 0.0264* 0.41331 0.23337 1.771 0.8294 
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The best model explaining the number of juvenile gulls counted in 2013 (GLM 

with negative binomial distribution, likelihood ratio test: Χ2 = 54.78, df = 3, P < 

0.0001) showed in general that there were higher numbers of juvenile gulls 

roosting than in the day (Table 4.8). In particular, juvenile great black-backed 

gull were the most abundant at both times of the day (Figure 4.5 and Table 4.9). 

 

Table 4.8 Model selection for number of gull per species of juvenile gulls 
counted at daytime and at roost in 2013. Negative binomial generalised linear 
model (GLM): S = species (great black-backed gull, herring gull), T = type of 
count (Daytime and Roost). 

Number of juvenile gulls IOM 

  AIC BIC Test df LR stat p value  

1 ~ S*T  

2 ~ S + T  

3 ~ 1 (null) 

 

 

 

 

247.1255 

254.9512 

295.9093 

254.7573 

261.0566 

298.9620 

 

1 vs 2     

2 vs 3 

 

1 

2 

 

9.825686 

44.95813 

 

0.001720915 

< 0.001 

 

 

 

Figure 4.5 Mean number of juvenile great black-backed and juvenile herring gulls 
at Daytime (light grey) and Roost (dark grey) counts performed in the Isle of May 
during the seal season 2013.  

On each box, the central mark is the median, the edges of the box are the lower 
hinge (25th percentile) and the upper hinge (75th percentile), the whiskers 
extend to the maximum and minimum data points, outliers are plotted 
individually. 
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Table 4.9 Tukey contrast test performed among interacted categories of the 
explanatory variables Type (Daytime and Roost counts), Species (JUV GBBG = 
juvenile great black-backed gull and JUV HG = juvenile herring gull). 

Between juveniles 

Type Roost 

 estimate se z value Pr(>|z|) 

JUV HG – JUV GBBG -37.889 6.527 -5.805 <0.001*** 

Type Daytime 

 estimate se z value Pr(>|z|) 

JUV HG – JUV GBBG -19.750 6.923 -2.853 0.0225* 

Type Roost vs Daytime 

 estimate se z value Pr(>|z|) 

JUV GBBGxRoost – JUVGBBGxDaytime 36.347 6.728 5.402 <0.001*** 

JUV HGxRoost – JUV HGxDaytime 18.208 6.728 2.706 0.0343 * 

 

4.4.3 Patch scale 

During the period of observation (1 – 39 days) in 2012 carrion was not available 

in the island Wreck area, while in the Loan and East Tarbet both placentae and 

seal carcasses occurred. Four and eight placentae were respectively recorded in 

the Loan and East Tarbet (between day 1 and 12), while day zero was the mean 

pupping date for 2012 (Figure 4.6). Seal carcasses, instead, were present during 

the whole period of observation and on day 30 the maximum number of 15 

carcasses was reached in both areas. Due to bad weather the number of 

carcasses decreased drastically at day 31 in East Tarbet, where the dead seals 

were washed away from the original position and no longer recorded. 

 

 



Chapter 4   131 

 

Figure 4.6 Number of seal carcasses and placentae occurring for each 
observation in the Loan (black) and in east Tarbet (red) during the seal season 
(Date, 1 = 27th Oct 2012). 

Activity of gulls was generally higher in the Loan and East Tarbet compared to 

the Island Wreck area. In fact, only one great black-backed gull, one juvenile 

gull and no gulls were observed moving, roosting and feeding in this control 

area, respectively. Herring gulls were rarely seen active: a total of five, two and 

two individuals were counted in the three areas moving, roosting and feeding, 

respectively for the entire observation period.  As the categories ‘Island Wreck’ 

and ‘Herring gull’ were dominated by or contained only zeros, they were 

removed from the models of the activities moving, roosting and feeding (Figure 

4.7 and 4.8). Negative binomial GLMs were selected as best models for the four 

activities.  

Counts of gulls showed that similar numbers of great black-backed gulls 

were observed moving within the two areas (Tukey, P = 0.7176), whereas 

juveniles were more often counted moving in the Loan than East Tarbet (P < 

0.0001) (Figure 4.7). Few animals were seen roosting: the great black-backed 

gulls showed preference for roosting in East Tarbet (P < 0.001), whereas no 

significant difference was found between the areas for the juvenile gulls (P = 

0.0545). Feeding activity of great black-backed gulls was similar in the two areas 
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(P = 0.5495); juvenile gulls, instead, were observed feeding in greater numbers 

in the Loan than in East Tarbet (P = 0.0080). No gulls were seen foraging in the 

control area. Flying over (crossing) observation areas was, instead, a common 

activity for all the groups of gulls, even if in the Island Wreck herring gulls were 

observed more often than great black-backed gulls and juveniles. The latter 

crossed equally both East Tarbet and the Loan (GBBG: P = 0.2506, JUV: P = 

>0.99). Comparing the two areas with the Island Wreck no significant differences 

were found between the number of flying gulls, with the exception of the 

number of great black-backed gull that was greater in East Tarbet compared to 

the Island Wreck area (P = 0.0031) (Figure 4.8). The number of herring gulls was 

lower than the other two groups of gulls in both East Tarbet (GBBG P < 0.001; 

JUV P < 0.001) and the Loan (GBBG: P < 0.001; JUV: P < 0.001). The number of 

herring gulls crossing East Tarbet and the control area was greater than in the 

Loan (P = 0.0111).  
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Figure 4.7 Total number of great black-backed, herring and juvenile gulls 
counted respectively moving, roosting and feeding during the four focal scans for 
each day of observation within the study areas (Island Wreck, East Tarbet and 
Loan). 

On each box, the central mark is the median, the edges of the box are the lower 
hinge (25th percentile) and the upper hinge (75th percentile), the whiskers 
extend to the maximum and minimum data points, outliers are plotted 
individually. 
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Figure 4.8 Total number of great black-backed, herring and juvenile gull 
passages recorded in one hour sampling for each day of observation flying over 
the study areas (Island Wreck, East Tarbet and Loan). 

On each box, the central mark is the median, the edges of the box are the lower 
hinge (25th percentile) and the upper hinge (75th percentile), the whiskers 
extend to the maximum and minimum data points, outliers are plotted 
individually. 
 

The feeding activity of gulls (total number of gulls during four focal scans day-1) 

was best explained by a negative binomial GAM presenting Carrion as smoother, 

one for each Group of gulls (great black-backed gull, P < 0.0001 and juvenile 

gulls, P = 0.0003). Date (P = 0.0025) and Time (P = 0.0066) were included as 

linear terms, whereas the variable Area (Loan and East Tarbet) was dropped in 

the model selection as not significant (Appendix C.1). The number of gulls 

feeding on carrion increased according to the increasing number of placentae 

and seal carcasses available. The feeding pattern for the juvenile gulls showed a 

rise when the value of carrion is around seven, before increasing again (Figure 

4.9a). 

A second negative binomial GAM was selected for describing the crossing 

activity of gulls (total number of gulls hour-1 day-1) over the carrion patches by 

using Date as smoother (P < 0.0001), the linear terms Sea level (P = 0.0004) and 

Carrion (P = 0.009785) and the categorical variable Area (P = 0.0048). Group of 

birds (great black-backed gull and juvenile gull) instead was dropped as not 

significant (Appendix C.2). The number of passages was at its greatest at the 

start of the observational study. Two peaks were detected around day 10 and 

day 32, separated by a fall in the number of crossing gulls around day 20, then 

after day 32 the number decreased again (Figure 4.9b). 
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Figure 4.9 Trends in feeding and crossing activity of gulls at patch scale. 

a) Trends in feeding activity of gulls (total number of gulls during four focal 
scans day-1) according to carrion availability for great black-backed gulls (black 
dots and smoother) and juvenile gulls (brown dots and smoother); b) Trends in 
crossing activity of gulls (total number of gulls hour-1 day-1) during time in the 
Loan (blue dots and smoother) and in East Tarbet (black dots and smoother).  
Shaded area on smoother line represents the 95% CIs. 
 

4.5 Discussion 

The objective of the present study was to assess the effect of seal carrion 

on the spatial and temporal distribution of scavenging gulls. Herring gulls and 

great black-backed gulls were the species considered in this work as the main 

component of the gull population wintering on the Isle of May. The latter are 

listed as species of conservation concern in the UK (Eaton et al. 2015) and the 

role of seal carrion as predictable food subsidy for these animals during winter is 

a topic so far overlooked.  

The significance of carrion to gulls was demonstrated in this study in 

three ways. The species which fed on carrion (great black-backed gull) increased 

in abundance at the Isle of May at a time when they were falling in the 

surrounding region. Numbers in the species which did not feed on the seal 

carrion (herring gull) declined in the same way as abundance in the surrounding 

region. Both species showed a negative temporal trend also in the area closer to 

the Isle of May (less than 40 km distant) suggesting that seal carrion is not 
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affecting the distribution of gulls on the coastal area. Herring gulls were more 

likely to leave the island to feed during the day than great black-backed gulls, 

rather than staying close to the carrion. Great black-backed gull numbers at 

areas with carrion were higher than in areas without carrion, while no such 

difference was seen for herring gull. Therefore for the seal carrion feeding 

species, great black-backed gull, the presence of carrion affected their 

abundance and behaviour at scales from the region to the patch. This 

relationship was investigated by using different types of data, such as counts and 

behavioural observations on gulls directly carried out on the Isle of May together 

with long-term database provided by JNCC. The latter represented a sensible 

alternative of more expensive methods such as telemetry, which would have 

been prohibitive if applied at a population level. 

Little is known about the spatial ecology of these species especially during 

winter, as gulls disperse from the breeding sites and monitoring can be 

challenging.  However, decadal surveys (Winter Gull Roost Survey or WinGS, 

BTO) and extensive work by Mitchell et al. (2004) revealed that the herring gull 

is resident in the UK between summer and winter, migrating during autumn, 

with Scotland holding 37% of the total UK wintering population. The great black-

backed gull is also largely sedentary in the UK and its movements from the 

breeding colony appear to be relatively localised and mostly driven by feeding 

opportunities. Nevertheless southward movements, together with a substantial 

influx of non-breeders from Russia and Norway peaking in midwinter, are 

expected to explain the disparity in percentages between the wintering 

population estimates of England (70%) and Scotland (24%) (Wernham et al. 2002) 

as 85% of the nests are in Scotland (Mitchell et al. 2004). A ringed great black-

backed gull juvenile was observed feeding on carrion on the Isle of May during 

the seal season 2013: it was a migrant from its natal site in Aberdeenshire in 

July 2013. On the Isle of May from 40 pairs of great black-backed gulls nesting 

during summer (SNH 2012), a maximum of 361 and 259 adults were counted at 

dusk in 2012 and 2013, respectively. The Isle of May therefore may not only be 

an important source of carrion but represents a winter roost site for gulls. 

However, the lower number recorded during the day suggested that not all the 

individuals observed at dusk stayed on the island during daytime, implying that a 

proportion of gulls of both species come back at dusk for roosting in the island 

and leave the following morning. As the number of great black-backed gulls 
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counted on the coastal area of the Firth of Forth did not show any increase 

during the seal pupping season, it is possible that during the day these gulls use 

feeding sites which are not in the estuary or they forage at sea. In this study 

point counts were carried out, for both Daytime and Roost counts, as they 

represent the best compromise between accuracy and collection efforts (Ralph 

et al. 1995). However, difficulties can arise because of the uncertainty of 

recording the same bird twice (Gregory et al. 2004). This issue has been 

minimised counting gulls on the ground and not those birds observed flying over 

land or at sea and at a determined time of the day. Finally, as gull roosting sites 

were located in the same area where seal aggregated, it is likely that also gulls 

feeding on carrion at the time of the count have been recorded, maximising the 

accuracy. 

At the local scale, a reversed relationship was found between proportions 

of species at dusk and at daytime. The great black-backed gull was the 

predominant species during the day and the herring gull was more common on 

the roosting sites. Our results showed that despite the abundant food resources 

on the Isle of May, the herring gull, together with a proportion of great black-

backed gulls, appeared to forage somewhere else during the day. Therefore, a 

larger home range than the great black-backed gull could be attributed to the 

herring gull which potentially has alternative feeding habits than carrion, shared 

with first-winter conspecifics (Harris 1965). The competitive advantage of the 

great black-backed gull over the herring gull was the cause of diet partitioning 

during the breeding season (Rome and Ellis 2004; Steenweg et al. 2011) and 

during scavenging activity on fishery discards (Hudson and Furness 1988) and 

refuse tips (Greig et al. 1986) during winter. However, on the Isle of May only a 

few herring gulls stayed during daytime and competitive events between the two 

species were not seen (MMQ, personal observation). In fact, the few times that 

herring gulls were recorded feeding on the island they were pecking on milk 

regurgitation and not carrion. During the day the two species were therefore 

spatially and partially temporally segregated, however during night they shared 

the same roosting site. Generally, birds roost together for different reasons such 

as enhancement of thermoregulation (Watt et al. 2013; Brenner 1965; du Plessis 

and Williams 1994), avoidance of predators (Lack 1968), collective information 

sharing (Giraldeau et al. 2002) or family relationships when young individuals 
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still depend on their parents (Lack 1968). In particular, herring gulls are known 

to be gregarious outside of the breeding season (Olsen and Larsson 2004). 

The patch is the spatial level lower than the local and changes in the 

foraging behaviour are expected at this resolution. Results showed that activity 

of gulls was low in the area without carrion and no gulls were observed feeding 

in the same area, despite the possibility of exploiting intertidal resources such 

macro-invertebrates. Despite the low number of observations made on the Island 

Wreck, they are likely to provide a picture comprehensive enough as most of the 

counts were zero, and the error bars of boxplots presenting the data on gulls 

flying over the area were small (see Figure 4.7 and 4.8). The two more abundant 

groups of gulls, the juveniles and the great black-backed gulls, also flew across 

the Island Wreck area, suggesting that gulls were also flying between patches, 

possibly passing over other areas. Foragers should increase their searching 

efforts on patches where resources are abundant and predictable (Pinaud and 

Weimerskirch 2007) adopting a behaviour called Area- Restricted Search (ARS) to 

increase the food encounter rate and consequently food intake (Kareiva and 

Odell 1987). Social cues and consequent attraction towards conspecifics is 

another strategy acquired by social foragers for detecting patches (Beauchamp 

1998) and it is used by a variety of animals(e.g. Kruuk 1967; Krebs 1974; Waite 

1981; Pitcher and House 1987; Kirk and Houston 1995). This social behaviour 

could have affected the spatial distribution of the foragers on the Isle of May 

through local enhancement (Pöysä 1992), but also the habit of switching 

between patches (Houston et al. 1995; Frischknecht 1996) following the example 

of other individuals. Moreover, a learning component from present foraging 

success and past experience may have influenced the animal’s choice of 

returning to the patch (Bell and Baum 2002).  

The finest spatial scale is the food item (Gaillard et al. 2010) that is 

exploited by the foragers in the patch. During the seal breeding season there 

were two main food sources available to scavengers: seal carcasses and 

placentae. The crossing behaviour displayed by both juvenile gulls and the great 

black-backed adults showed two distinct peaks during the seal season. The first 

peak was after the mean seal pupping date suggesting that gulls were searching 

longer for afterbirths, because they previously experienced a high density of this 

resource (Smith and Dawkins 1971). This is likely to be true, as data showed that 

during the days before the recorded peak in pupping, gull crossing rate was also 
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higher. The second greatest point of the searching activity curve instead may be 

related to the time when seal carcasses were at the greatest abundance, which 

occurred on day 30, and the density of alive seals diminished revealing more 

detectable feeding opportunities to be selected. However, on day 31 the amount 

of carrion fell considerably in East Tarbet due to wave action, making our 

interpretation uncertain. Feeding behaviour in response to carrion availability 

demonstrated that the number of feeding gulls was related to the amount of 

carrion, as previously found in cinereous (A. monachus) and griffon vultures (G. 

fulvus) (Bosè and Sarrazin 2007; Moreno-Opo et al. 2010). Therefore, the 

behaviour of gulls adaptively changed according to the temporal variation in 

carrion opportunities during the pupping season. 

Juvenile gulls were active scavengers on seal carrion on the Isle of May 

suggesting that it may be an important energy resource during winter, 

opportunistically exploited because of inexperience in foraging. Also young 

vultures feed on predictable carrion during the post-fledging stage in winter 

showing segregation from the adults which use predictable carrion preferably 

during summer when energy requirements are higher (Moreno-Opo et al. 2010). 

Elucidating the relationship between scavengers and carrion will aid our 

understanding of carrion ecology and inform studies investigating the current 

decline of scavenging gull species. This study provided further insights in the 

cumulative impacts of food utilisation by gull species, which may help guide the 

future direction of gull conservation through effective management of areas 

characterised by abundant and predictable food resources for gulls, as already 

developed for other scavenging species such as vultures (Deygout et al. 2009; 

Deygout et al. 2010; Cortés-Avizanda et al. 2014). Due to the wide range of gull 

diet, seal carrion is an alternative resource. However, it can be still relevant to 

those populations overwintering on areas where seal colonies and predictable 

food occur. Buckley (1990) suggested that the return of the great black-backed 

gull after risking extinction around the beginning of the nineteen century was 

due to a reduction of both persecution and an increase of food supplies such as 

fish offal and refuse tips (Buckley 1990). Presently, new legislation reducing 

fishery discards in Europe (EU Regulation 1830/2013) could hasten the current 

decline of gulls by reducing foraging opportunities. In the future seal carrion 

may acquire increased significance for scavenging gulls.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0024:0028:EN:PDF
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5:Chapter 5: The impact of marine mammal carrion on 

the spatial and temporal distribution of the 

scavenging community at different geographical 

scales 

5.1 Abstract 

At seal colonies carrion is a common resource for scavengers whose influence on 

the behavioural dynamics of scavengers has not been fully defined. On the Isle of 

May, one of the largest grey seal (Halichoerus grypus) colonies in the UK, the 

feeding behaviour of juvenile and adult great black-backed gulls (Larus marinus) 

exploiting carrion was evaluated by monitoring 11 pup carcasses and 16 birth 

events (natural and experimental) using time lapse photography and video. No 

hierarchical succession of dominant scavengers through competitive 

displacement of subordinate individuals was predicted to 

occur under conditions of predictable and abundant carrion during the seal 

pupping season, leading to an equal scavenging effort by the two age classes.  

Hierarchical dominance was, instead, expected during scavenging activity on 

placenta as it represents a preferred energy-rich food item. Results indicate that 

temporal trend of scavenging activity and time spent feeding on carcasses were 

similar between adult and juvenile gulls and a nocturnal preference for feeding 

was evident. The house mouse was also found scavenging on carcasses during the 

night and it is likely this is the first study documenting this small rodent feeding 

on dead pinnipeds. Birth events attracted a higher number of competitors than 

carcasses, but no difference was found in the number of juvenile and adult gulls 

attending these births. However, adults spent less time than young con-specifics 

feeding on placenta, but were competitively superior during aggressive 

encounters with juvenile gulls both at carcasses and placenta. The present study 

gives an insight into the scavenging behaviour of different life stages of the main 

scavengers on grey seals and in particular highlights the importance of this food 

source for juvenile gulls during winter. 
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5.2 Introduction  

Competition is ubiquitous in the lives of animals and the dominance of some 

species or individuals over others is often displayed through aggressive behaviour 

(Huntingford and Turner 1987). Dominant individuals out-compete subordinates 

during feeding, ultimately obtaining access to the food resource (Kruuk 1967; 

Houston 1975). Dominance is generally linked to larger body size and better 

fighting abilities than competitors (French and Smith 2005; Broom et al. 2009; 

Thornton et al. 2015). Moreover, age and sex are also crucial determinants of 

success during competitive events: young animals are usually subordinate to 

adults and lose more frequently when fighting, while sometimes males dominate 

females of the same age (Wallace and Temple 1987; Sheppard et al. 2013). 

Among scavengers, inter and intra-specific interactions drive most of the 

scavenging processes where the most dominant animals monopolise the carrion 

(see Chapter 2). This is evident among a wide range of obligate scavengers such 

as vultures and condors (Wallace and Temple 1987; Mundy et al. 1992; Donázar 

et al. 1999; Cortés-Avizanda et al. 2012). To overcome aggressive encounters 

and to reduce competition, subordinate individuals adopt some strategic 

behaviours, such as resource partitioning and spatial and temporal segregation 

(Blázquez et al. 2009). Less dominant individuals, therefore, may use different 

parts of the food item or adjust their arrival to the carcass to avoid competitors 

and increase foraging efficiency (Kruuk 1967; Houston 1975).  

Social interactions are linked to resource availability and determine which 

individuals consume food when limited through competition (White 2008). In 

environmental conditions of food saturation, instead, a reduction of aggressive 

behaviour is expected (Wilmers et al. 2003b; Houle et al. 2006). In the absence 

of competition the consumption of the resource is predicted to be similarly 

partitioned among different consumers, either belonging to different species, 

age or sex. Additional factors influencing animal interactions are the distribution 

of resources and animal food preferences. Clumped resources, being 

defendable, promote a clear dominance hierarchy among consumers  through 

competition (Houle et al. 2006). Moreover, according to optimal diet theory, the 

best diet is the one which maximises both the rate of energy and mass intake 

(Pyke et al. 1977), meaning that food with higher energy content and less 

handling time is preferred. During the consumption of a preferred resource, 
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higher levels of competition are found and social dominance is encouraged (e.g. 

Rose 1994; Daily and Ehrlich 1994), eventually resulting in a change in food 

choice of subordinates when the density of dominant individuals increases (Pimm 

et al. 1985).  

Carrion is common within pinniped colonies, and is likely to be extremely 

important to animals living nearby (Colombini and Chelazzi 2003). However, the 

potential of coastal marine mammal populations as a source of carrion to local 

marine communities is not well known (Watts et al. 2011). Grey seals 

(Halichoerus grypus) gather in late autumn in colonies for the pupping season. 

During this period carrion represents a predictable, abundant and nutrient-rich 

source of food in the form of placentae and dead pups for facultative avian 

scavengers such as great black-backed gulls (Larus marinus) (Ronconi et al. 2014 

and Chapter 4). For many birds, scarcity of food corresponds to the wintering 

months, rather than during the breeding season, when food availability is super-

abundant (Martin 1987). Thus, the energy acquired in wintering areas can be 

crucial for survival, especially for younger stages (Sanz-Aguilar et al. 2015) 

which have less experience in foraging and fewer skills in competing for food 

(Greig et al. 1983). Moreover, the two types of food item available at seal 

colonies greatly differ from each other, potentially establishing different 

relationships among consumers. Both seal carcasses and placentae are 

ephemeral resources; however, at the same temporal scale, the availability of a 

single placenta is shorter than a carcass as its smaller size and lower handling 

time permit a faster consumption. The energy density is also different, being 

higher for placentae (carcass: 14.1 MJ kg-1, Table 3.2; placenta: 21.8 MJ kg-1, 

Table 3.3). These differences could lead to a preference for placenta by 

scavenging gulls, which would potentially increase competition and enhance the 

establishment of the dominance hierarchy, while the abundant and longer 

lasting carcasses would relax the antagonistic interactions among consumers 

allowing a more egalitarian partition of the food resource.  

Recognising and understanding the behavioural dynamics established 

among consumers would permit an estimation of the relative significance of 

carrion as source of food for its users. However, it is also crucial to consider the 

nature of feeding opportunities as different levels of food availability could 

change the relationship among foragers.  
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Here, the feeding activity and intra-specific interactions among 

scavenging gulls was investigated during the seal pupping season on the Isle of 

May where conditions are characterised by predictable and abundant carrion 

availability. It was predicted that there would be no formation of hierarchical 

dominance showing either successive stages of monopolisation of the carcass or 

temporal segregation induced by adult great black-backed gulls. Therefore, it 

was expected that the feeding rates (cumulative time feeding per day per 

carcass) of adult and juvenile gulls were equal and would show similar trends 

with time. Placenta was considered as the preferred food due to its higher 

energy density and lower handling time compared to carcasses, and regardless of 

its abundance and predictability during the seal pupping season, dominant 

individuals would have more access to the resource. Therefore, it was predicted 

that feeding rate of adult gulls (cumulative time feeding per bird per placenta) 

would be greater than juveniles. This study will provide not only greater insight 

into the ecology of seal carrion in an ecosystem context, but reveal new 

information on the feeding behaviour of one of the prominent avian scavenging 

species in the UK. Owing to an evident decline of several species of seabirds, 

more studies are needed if we are to implement management measures which 

take into account the needs of all life history stages of the species (Finkelstein 

et al. 2010).  

 

5.3 Methods 

5.3.1 Study area 

Scavenging activity on seal carrion (carcasses and placenta) was monitored 

during the grey seal pupping season in 2013 on the Isle of May (56°11’ 19’’N, 

2°33’ 27’’W) (Figure 5.1).  This island is 1.8 km long and less than half a km 

wide, covering an area of 45 ha, with the long axis extending in a northwest-

southeast direction. The Isle of May is a Special Area for Conservation (SAC) due 

to the breeding colony of grey seals H. grypus, one of the largest breeding 

colony of the UK contributing 4.5% to the annual UK pup production (in 2010, 

SCOS 2013). In 2013, the total number of seal pups found dead was 165. No pup 

production estimate was available for the 2013 seal season. However, the mean 

annual pup production for the decade 2000-10 and 2012 averaged 1988 (SE = 

47.72), with a mean pupping date of 30 October (SE = 0.58). 
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The most visible scavengers occurring on the island are members of the family 

Laridae, the great black-backed gull (Larus marinus) and the herring gull (Larus 

argentatus). They both nest during summer and roost during winter on the 

island. Numbers of gulls per species counted on the island during the seal 

pupping season in 2013 are provided in Chapter 4. Carrion crows (Corvus corone) 

are also present on the island, but in low numbers. A previous study found only 

one crow nesting on the island (Alampo and Ash 2010).  

 

5.3.2 Data collection and analysis 

Carcasses 

Fourteen grey seal pup carcasses were collected during the seal pupping season 

of 2013 (October and November) on the Isle of May (8.5% of total dead pups). 

Collection date, location, sex, developmental stage (1-5) according to Kovacs 

and Lavigne (1986), mass (± 0.01 kg) girth (± 0.5cm), body (nose to tail) length 

(± 0.5cm) and blubber thickness (± 0.5mm) by incision on the neck (where 

thinner; Beck and Smith 1995) were recorded (Appendix D.1). The carcasses 

were either completely intact or lacking one or both eyes prior to deployment. 

Carcasses were then placed on labelled metallic meshes at the edges of the 

main seal aggregations for the duration of the experiment (Figure 5.1). 

Carcasses were monitored by infrared time-triggered cameras (Bushnell Trophy 

Cam model 119436) for duration of between 8 and 34 days from the 28 October 

to the 30 November, dependent on when carcasses were found and collected. 

Cameras were located at a maximum distance of 5 m from the carcass, set on a 

triggered time-lapse mode and two photographs (8 MB resolution) were taken 

every five minutes (and every two minutes if movement-triggered) (Hamel et al. 

2013). At approximately five-day intervals, carcasses were visited to download 

data from the cameras, record condition and mass. At the end of the study, the 

remains of each carcass was left in situ and weighed again in January 2014, if 

re-sighted.  

Three carcasses (control carcasses, 12, 13 and 14) were collected and put 

into cages constructed from anti-mouse metal mesh (5mm aperture, 60L x 100W 

x 18H cm, weight = 1.16kg) to detect changes in mass without any scavenging 

activity involved from both avian and terrestrial scavengers (Appendix D.1).  
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Figure 5.1 Map of the Isle of May. 

Numbers indicate the location of experimental carcasses.Maps provided by EDINA 
Digimap Service, http://digimap.edina.ac.uk/roam/os.  

 

  

http://digimap.edina.ac.uk/roam/os
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Carcasses were scored for consumption state, where: A = carcass was intact, B = 

lack of both eyes and/or occurrence of one opening on the body, C = additional 

openings, D = body appeared flat and lacking internal organs and/or missing 

head and bones, E = remains (only bones and skin). For each consumption state 

the mean percentage mass loss was recorded from changes in mass (Figure 5.2). 

 

 

Figure 5.2 Consumption states of carcasses (A - E). 

The number of avian scavengers and non-scavenging passerine and non-passerine 

birds present around the carcass in an area of approximately 10 m radius was 

quantified and identified to the species level from photos. Juvenile gulls were 

distinguished from adults: individuals that exhibited at least some aspects of 

brown juvenile plumage or black beak, including birds belonging to their third 

winter, were classified as juveniles (Grant 1982). As individual recognition was 

not possible, only the maximum number (MaxN) of gulls appearing in the photo 

belonging to the two categories adults and juvenile gulls were considered. Time 

spent by gulls actively scavenging on the carcass was estimated from the number 

of minutes included between consecutive images till the gull disappeared. This is 

the maximum time that a bird could stay on the carcass. Birds observed roosting, 

walking or fighting were considered as not-feeding. When more than one bird 

was found scavenging simultaneously on the carcass, the resulting feeding time 

was adjusted according to the maximum number of active individuals. 

 Competitive events among individuals were also recorded and the 

successful bird identified. The bird showing aggressive behaviour and being able 

to displace its competitor from the area around the carcass was considered 
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successful. Events were divided according to the following categories: 

competition between two adult gulls, two juvenile gulls and between one adult 

and one juvenile gull. 

The scavenging activity of nocturnal mice was analysed separately as 

difficulties arose in determining the length of time in which they were feeding 

on the carcass, because of their small size and ability to hide underneath, 

behind and also inside the carcass. Time of arrival and maximum number of 

individuals (MaxN) for each experimental day was recorded. The proportion of 

photos in which mice were present out of the total number of photos taken by 

night (as they were only detected during the hours of darkness) was used as 

approximate estimate of mice attendance at the carcass per each experimental 

night. 

Placenta 

Scavenging activity on placenta was video-recorded (Nikon Coolpix P510). These 

experiments occurred in two ways. A previously-collected placenta was placed in 

an open area close to a hide from which observations were made (N = 6; 

observation 1-7), or if a natural seal birth occurred within range of an observer 

this was opportunistically recorded (N = 9; observations 8-16). Six whole 

afterbirths were collected in order to run the experimental events, they were 

weighed (± 10g), stored in individual plastic bags and frozen prior to the 

experiment. When an afterbirth could be associated with a pup, its sex was also 

recorded. Energy density for each experimental placenta was also estimated 

(Appendix D.2 and see Chapter 3). For both natural and experimental events, 

data collection (video and annotation when necessary) started once the placenta 

became available and ended either at its total consumption, when abandoned or 

when no longer visible because it had been moved by scavengers. For 

observations 1 and 2, the same experimental placenta was used, as it was 

ignored on its first deployment. The percentage of placenta consumed was 

estimated at the end of each event.  

For both natural and experimental afterbirth events, species and life 

stage of scavenging birds occurring in the area of 10 m radius centered on the 

position of placenta were recorded. Juveniles were distinguished from adults as 

above.  The maximum number of individuals present in the area (MaxN, feeding 

and not feeding grouped together), total feeding time and the number of 
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ingestions, here called swallows, for each gull life stage were registered for each 

event. When more than one individual was in contact with the food item, the 

feeding time was calculated multiplying the number of gulls by the time spent 

feeding on placenta. Number of agonistic events was also recorded: adult 

against adult, juvenile against adult and juvenile against juvenile, including 

different species. The bird showing aggressive behaviour and being able to 

displace its competitor from the placenta was considered successful. Video 

analyses were performed using EventMeasure (SeaGIS Pty Ltd). 

For experimental events the known mass of placenta was considered 

while for live births the mean mass was used (1.6 kg, SD = ±0.24; energy density: 

21.8 MJ kg-1; SD =± 1.15) (Appendix D.2). For one of the natural events 

(observation 13), it was not possible to quantify the gull’s swallows as most of 

the placenta was consumed behind some rocks, preventing the observer from 

counting them precisely. 

 

5.3.3 Statistical analysis 

Carcasses 

Only the feeding activity of adult and juvenile great black-backed gulls was used 

in the following statistical analyses. Herring gulls and carrion crows rarely visited 

the carcasses and so there was insufficient data for analysis.  

Occasions when researchers were present in the area, cameras did not operate 

or were displaced by seals were not included. Carcasses 5 and 9 were excluded 

from the analysis as scavengers did not open them and scavenging activity 

observed was lower or equal to 1% of total monitoring time.  

Mass loss of experimental carcasses was modelled using a linear mixed 

model (LME) where the mass change for a determined interval time between two 

mass measurements was explained by Feeding activity (total minutes per time 

interval) and the gull Stage (adult and juvenile), while the term Carcass was a 

random effect. 

A general linear mixed effect model (GLMM) was performed to determine 

the effect of the fixed factors Stage (adult and juvenile), Experimental day 

(1/34 days, where 1 = first day of deployment of the carcass) and their 

interaction on the number of minutes of daily feeding activity of gulls (response 

variable with Poisson distribution). The variable Carcass (N = 9) was included as 

a random effect to explain the variation of scavenging activity across carcasses. 
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To explore variation in feeding activity among carcasses, a generalised linear 

models was also fitted for each carcass: Poisson and negative binomial GLM were 

performed using Stage, Experimental day and their interaction as before and 

finally the model with the lowest AIC was chosen, checking residual plots.  

A general additive mixed model was carried out to detect differences in 

scavenging activity between gull stages (juvenile and adult) with time of day. In 

this model the proportion of time spent feeding for each hour of the day 

(response variable, binomial family) was modelled according to Stage (adult and 

juvenile) and Hour (1-24). Again, Carcass was used as the random effect. To take 

into account the temporal autocorrelation among hourly data the model was 

fitted using an AR(1) correlation structure (Zuur et al. 2009). The model of best 

fit was detected by the lowest Alkaike’s Information Criterion (AIC) (Zuur et al. 

2009).  

A Chi-square goodness of fit test was carried out to test whether the 

observed frequencies of the number of competitions won by adult and juvenile 

gulls were as expected. Expected frequencies were set as equal number of 

aggressive events won by adult and juvenile individuals in order to understand 

which gull stage was competitively superior.  

Finally two linear mixed model (LMEs) were performed to show mass loss 

of both experimental and control carcasses during time of deployment, to test 

the effect of scavenging activity on dead pups in comparison to carcasses 

located in cages and protected by scavengers. 

Placenta 

The non-parametric Mann-Whitney U-tests were performed to test for 

differences in the first arrival time of gulls between the two type of events 

(experimental and natural placentae), but also between maximum number 

(MaxN), feeding activity (minutes event-1) and swallowing rate (N swallows min-1) 

of the two gull stages. As for carcasses, the observed frequencies in the number 

of successful competitive performances of adult and juvenile gulls were tested 

with a Chi-square goodness of fit test against the expected frequencies, set as 

equal between the two gull stages.  

The latter analyses were performed in R 3.0.3 (R Development Core Team, 

2012). 
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5.4  

5.5 Results 

5.5.1 Carcasses 

The collection of time-lapse photos analysed included 147,630 photos resulting 

in a total of 482,081 minutes of monitoring. Avian scavengers detected were the 

great black-backed gull, the herring gull and the carrion crow. The house mouse 

(Mus musculus) was also identified during nocturnal hours. Other species present 

but not feeding on the carcasses included oystercatcher (Haematopus 

ostralegus), redshank (Tringa tetanus), purple sandpiper (Calidris maritima), 

turnstone (Arenaria interpres), curlew (Numenius arquata), grey heron (Ardea 

cinerea), rock pipit (Anthus petrosus), starling (Sturnus vulgaris) and blackbird 

(Turdus merula).  

Three carcasses were opened by adult great black-backed gulls after 7.25 

days (carcasses 2, 4, 8; SE = 2.30), three by juveniles after 9 days (carcasses 3, 

6, 7; SE = 7.02). One carcass was exclusively opened by mice after 4 days from 

its deployment (carcass 1), while one carcass started to be dismantled by the 

combined scavenging activity of both house mice and adult great black-backed 

gulls on its second day (carcass 10). For a carcass (carcass 11), instead, it was 

not possible to detect which scavenger got access first. At the end of the 

experiment two, out of a total of eleven deployed, carcasses were not opened 

by scavengers (carcasses 5 and 9) (Appendix D.3). 

Excluding those ignored by consumers, the rest of experimental carcasses 

were monitored for a total of 460,899 minutes: adult and juvenile great black-

backed gulls scavenged, respectively, for 3.0% and 3.4% of the whole time, while 

adult and young herring gulls and carrion crows for small portions of time 

(0.007%, 0.001% and 0.008%, respectively). The maximum number of scavengers 

foraging together was two, with the exception of the herring gull which always 

scavenged individually (Table 5.1). Scavenging activity of the mice was detected 

in 17.3% (SE = 1.48) of the photos taken by night and started on average at 16:52 

(SE = 0. 28min); the maximum number of individuals detected was 10.  
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Table 5.1 Total feeding time (min) and maximum number (MaxN) of scavenging 
birds active on experimental carcasses. 

 GBBG adult GBBG juvenile HG adult HG juvenile Carrion crow 

Feeding time 

(min) 
13847 15421 31 5 35 

MaxN 2 2 1 1 2 

 

The rate of mass loss of carcasses was positively related to feeding 

activity of great black-backed gulls, but no interaction between age class and 

total minutes spent feeding per interval was significant (Figure 5.3, Appendix 

D.4).   

Feeding activity of gulls increased during time from the first day of 

carcass deployment. Best model (GLMM, Poisson distribution) retained the 

interaction between Stage and Experimental day (Appendix D.5) showing that 

feeding rate at carcasses increased similarly, but not equally, with time for 

adult and juvenile gulls (Figure 5.4). However, variation in the scavenging 

activity of the two stages was evident when looking at different carcasses 

individually (Figure 5.5). Best models showed that for five carcasses (2, 6, 7, 8 

and 11) the interaction between stages was not significant, while for the rest it 

was (Figure 5.5). The first three carcasses to be deployed for the purpose of this 

experiment (1, 2 and 3) showed similar patterns characterised by null feeding 

activity during the early experimental days and a drastic increasing towards the 

late ones.  Carcasses 6 and 8 were instead scavenged immediately once 

deployed causing a negative trend during time, whereas feeding activity 

gradually increased on carcasses 7 and 11. Different and opposite trends 

between stages were depicted when exploring scavenging activity on carcasses 4 

and 10, where a decreasing in the feeding activity was observed, respectively, 

for adult and juvenile gulls, while the other stage’s trend stayed almost constant 

during time (Figure 5.5). 
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Figure 5.3 Plot of mass loss of experimental carcasses per monitored interval 
time versus feeding time of adult (black dots) and juvenile (blue dots) great 
black-backed gulls of the same interval. 

 

 

Figure 5.4 Fitted values (solid line) taken from the model of best fit (GLMM) of 
feeding activity (minutes day-1) of adult (black) and juvenile (blue) great black-
backed gulls versus Experimental day (where 1 is equal to the first day of 
deployment of the carcass) with 95% confidence intervals (dashed lines). 
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Figure 5.5 Fitted values (solid line) taken from the model of best fit (GLM) of 
feeding activity (minutes day-1) of adult (black) and juvenile (blue) great black-
backed gulls versus Experimental day (where 1 is equal to the first day of 
deployment of the carcass) with 95% confidence intervals (dashed lines) for 
individual carcasses (numbers on top of plots). 
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The proportion of feeding activity of gulls by hour (minutes hour-1) was best 

explained by a binomial GAMM presenting Hour as unique smoother (P < 0.001) 

for both Stages of gulls (P = 0.071) (Figure 5.6 and Appendix D.6). The time 

spent feeding on carcasses increased during nocturnal hours and in the early 

hours after sunrise, but decreased during the day. Considering that the amount 

of hours with daylight in a day were 8.5 (SE = 0.14), while the hours of darkness 

were 15.5 (SE = 0.14), the mean feeding activity performed by the class of 

juvenile gulls during daylight and hours of darkness was, respectively, 4.8 (SE = 

0.30) and 3.1 (SE = 0.20) minutes per hour. The adult stage scavenged, 

respectively, for a mean of 2.1 (SE = 0.21) and 3.9 (SE = 0.22) minutes per hour 

per carcass during the day and night.  

 

 

Figure 5.6 Trend in proportion of feeding activity during the day (minutes hour-1) 
of adult (dark grey smoother) and juvenile (blue smoother) great black-backed 
gulls on experimental carcasses; shaded area on smoother line represents the 
95% CIs. Hours of darkness are grey-shaded, while daylight hours are white-
shaded. 

Competition 

A total of 99 competitive events were detected. There was a difference in 

proportion of competitive events between juvenile and adult gull: 59 (59.6%) 

were competitions between a juvenile and an adult, 15 (15.2%) between two 

juveniles and 25 (25.3%) between two adults. Adults were more successful than 

juveniles in competing for the carcass (Χ2 = 20.55, df = 1, P = 0.001).  
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Consumption states of carcasses 

The mean cumulative mass loss (in %) for consecutive consumption states 

observed on experimental carcasses was calculated (Table 5.2).  Small changes 

in the carcass mass were visible also when the body appeared still intact (state 

A). Generally, scavenging gulls consumed the eyes of the dead seals first. 

Following, they accessed the internal organs by pecking and breaking the 

abdominal skin (state B). The latter process was facilitated when the neonatal 

umbilicus was still present (first development stage of seal pups). It was 

observed that other openings rather than, or in addition to, the umbilicus were 

produced when the carcass position did not expose the abdomen. The areas 

most targeted after the abdomen were the scapula and axilla regions (state C). 

The seal’s head was strongly consumed by gulls which emptied the orbital cavity 

and softened the area of the neck, provoking its disarticulation and creating 

additional access to internal parts. At this late stage, the continuous scavenging 

activity would have depleted most of the body organs, also from the thorax 

(state D). The maximum consumption of the carcass, represented solely by seal 

remains, was often associated with the gull’s ability to turn the seal body inside 

out through the openings generated before in order to exploit the carcass 

completely (state E). Scavenging activity of mice was characterised by wounds 

generated often on soft tissues, such as the seal’s eyes, nose and gums, but also 

on other parts of the body surface, as observed for carcass number 1.  

Mass loss depicted by consecutive measurements on experimental carcasses 

during time were owed only to scavenging activity rather than decomposition, as 

the variable Experimental Day was significant when modelling the mass loss of 

experimental carcasses (P < 0.0001) (Figure 5.7a), whereas it was not significant 

when explaining variation in mass loss of those carcasses deployed in cages 

(control carcasses, P = 0.4037) (Figure 5.7b). Feeding activity of scavengers 

caused an average loss of 0.3 kg per day. The small changes observed in the 

mass of both un-scavenged experimental and control carcasses were probably 

due to wetting and drying according to weather. 
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Table 5.2 States of consumption of scavenged carcasses (N = 11) with associated 
description and cumulative percentage mass loss. 

State of 
consumption 

Description 
Mean % 

mass loss 
(SE) 

N sample 

    

A intact 
0.4 % 
(0.49) 

15 

B 

lack of both 
eyes and 

occurrence of 
one opening on 

the body 

10.2 % 
(2.23) 

30 

C 
additional 
openings 

31.3 % 
(4.89) 

8 

D 

body appears 
flat and lacking 
internal organs; 
loss of the head; 

missing bones 

41.2 % 
(2.43) 

7 

E 
remains (only 

bones and skin) 
65.2 % 
(3.00) 

4 

  

 

 

Figure 5.7 Mass (kg) of experimental carcasses (N = 11) (a) and control carcasses 
(N = 3) (b) as function of experimental day (where 1 = first day of deployment of 
each carcass). Each colour identifies a carcass. 
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5.5.2 Placenta 

Gulls detected the afterbirth in 15 out of 16 events, reaching the area 

surrounded the placenta on average after 7.1 minutes (SE = 3.59).  Avian 

scavengers were attracted to female grey seals already before the placenta was 

available showing a slightly earlier first arrival of gulls than during experimental 

events, but this difference was not significant (Wilcoxon rank sum test : W = 18, 

P = 0.2910) (Appendix D.7). The maximum number of gulls attending all events 

was similar for adult and juvenile individuals (W = 174.5, P = 0.0800). Excluding 

the event where placenta was not detected by any bird (observation 1), adult 

gulls did not take part on three other occasions (observations 4, 11 and 12). 

Overall, feeding activity per event (minutes bird-1) of adults was less than 

juveniles (W = 190.5, P = 0.0191), but the swallowing rate (number of swallows 

minute-1 bird-1) was similar (W = 140, P = 0.2598) (Figure 5.8). 
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Figure 5.8 a) Mean feeding activity per bird (minutes bird-1) and b) Swallow rate 
(number of swallows minute-1 bird-1) of adult (black) and juvenile (blue) great 
black-backed gulls on placenta observations. 

Competition 

A total of 273 competitive events were observed among gulls feeding on 

placenta during 879 minutes of observation: 116 involved a juvenile and an adult 

(42.5%), 132 two juveniles (48.4%) and 25 two adults (9.2%). Intraspecific 

competition showed that again adult gulls were more successful in competing 

than juvenile gulls (adult: 79.6% and juvenile: 20.4%). 
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5.6 Discussion 

As predicted, results show that in conditions of predictable and abundant carrion 

availability a similar trend in feeding activity on experimental carcasses 

occurred between adult and juvenile great black-backed gulls, suggesting that 

both stages take advantage of this resource evenly without monopolisation by 

adult individuals to the detriment of juveniles. Opposite to the expectations, 

adult great black-backed gulls did not show to spend feeding a greater amount 

of time than juveniles, even if it was predicted that they would have had more 

access to this type of carrion with greater energy density being competitively 

superior. 

At the carcass, despite adult and juvenile great black-backed gulls 

exhibiting similar feeding rates, the scavenging efforts of young gulls slightly 

exceeded that of adults on later stage of carcasses: juvenile birds can, in fact, 

spend more time feeding to overcome their lack of feeding skills or inexperience 

(Greig et al. 1983; Forero et al. 2005), showing overall to be less efficient than 

the older stage. Both juvenile and adult gulls increased the time spent feeding 

towards the end of the experiment; this may reflect the easier consumption for 

gulls after the carcass was opened. However, variation in scavenging activity 

among carcasses was also evident, but generally the extent of feeding time was 

similar between the two gull life history stages, even if different trends during 

time occurred for different carcasses. It appeared, in fact, that the first three 

carcasses to be deployed were seldom visited in the first twenty days, but 

feeding activity drastically increased afterwards, while other experimental dead 

pups, deployed later, were detected and scavenged immediately. Temporal 

variation in scavenging activity on different carcasses reflected also changes in 

their mass loss. This discrepancy could be associated with a preference for 

placenta rather than carcasses in the period just after the mean pupping date, 

but also lower abundance of gulls at the beginning of the seal season (see 

Chapter 4). Other reasons might include their locations on the colony or human 

disturbance. Decomposition can result in a less valuable resource, more 

repulsive to scavengers (DeVault et al. 2004; Selva et al. 2005; Parmenter and 

Macmahon 2009), but our results showed that older carcasses were also 

consumed suggesting that lower temperatures during winter inhibit bacterial 

growth and insect activity making them still palatable. Finally, the lack of mass 
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loss in caged carcasses as opposed to the other experimental carcasses 

demonstrated that scavenging activity, and not decomposition, had a significant 

effect on reducing the mass of carcasses in winter conditions.  

Because of its energy density and reduced handling time necessary for its 

consumption, placenta was considered a priori the preferred food by gulls. 

Despite this resource being valuable in energy density (twice that of carcass), 

juvenile great black-backed gulls spent more time feeding, regardless they were 

competitively inferior. However, due to a similar number of adult and juvenile 

gulls attending birth events, kin interactions between individuals might have 

helped the younger ones to have greater access to the food item (Pierotti and 

Murphy 1987). Furthermore, considering that observations were carried out only 

during daylight, it is possible that also feeding efforts of gulls on placenta were 

higher during night, as was the case for carcasses. 

It is often assumed that gulls are diurnal (Hailman 1964; Garthe and 

Hūppop 1996), whereas in this study the great black-backed gulls fed more on 

seal carrion during nocturnal hours. Herring and great black-backed gulls were 

active scavenging at fish offal provided by fishing vessels not only during the 

day, but also during night (Garthe and Hüppop 1996), while ring-billed gulls 

(Larus delawarensis) preying were predominantly active at night when nocturnal 

anti-predatory behaviours to protect their chicks were less intense (Hebert and 

McNeil 1999). Opportunities can therefore drive gulls’ behaviour, enabling them 

to be active also during hours of darkness. Seal carrion is spatially predictable 

and may represent a convenient food source in a safer environment when 

visibility decreases. Nocturnal consumption may suggest that gulls did not feed 

enough during the day, because of reduced number of daylight hours during 

winter, or reduced availability of other food resources. Rubbish tips, fishery 

discards and coastal invertebrates are plausible food options available to these 

scavengers (Greig et al. 1986; Furness and Monaghan 1987; Buckley 1990; Rome 

and Ellis 2004). The energy value of the latter resources are similar to seal 

carcasses, but lower than placentae (placenta: 21.8 MJ kg-1; carcass: 14.1 MJ kg-

1; garbage: 6.28 MJ kg-1; capelin: 7.95 MJ kg-1, round fish: 5.5 MJ kg-1, shrimps: 

4.3 MJ kg-1, flatfish: 4 MJ kg-1 and marine invertebrate: 3 MJ kg-1) (Kamil et al. 

1987; Walter and Becker 1997) more energetically costly as they require 

movement from the colony where they roost. A recent European ban of fishery 

discards (EU Regulation 1830/2013) is decreasing the availability of this type of 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0024:0028:EN:PDF
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resources, but gulls might still using it, explaining the reduced feeding time 

observed during the day on the Isle of May. Seal carrion, however, may be an 

alternative food resource for gulls, because of its incomplete utilisation and 

lower number of gulls observed in the island during the day (see Chapter 4). 

Regardless abundance of carrion occurring on the Isle of May, the herring 

gull and the carrion crow were rarely observed feeding. It is known that the 

great black-backed gull outcompetes the smaller herring gull (Rome and Ellis 

2004), however their low scavenging activity on seal carrion suggests that, 

between the two, the great black-backed gull is specialised in exploiting carrion. 

Ronconi et al. (2014), also found that in the seal colony of Sable Island (Canada) 

the diet of herring gull was different from the great black-backed gull, 

composed mostly of invertebrates rather than seal remains. Carrion crows 

scavenged very little and always in pairs, a fact which can be explained by the 

low number of individuals inhabiting the island (one nest recorded in 2010) and 

by their tolerance of conspecifics during foraging when food abundance is high 

(Miller et al. 2014).  

The house mouse was another active scavenger of seal carrion on the Isle 

of May. Mice are invasive on this island and were probably introduced here more 

than once during human occupation. The population was estimated to range 

from 450-3250 animals occurring in all areas of the island including Rona and 

North Ness which are isolated at high tide (Triggs 1991). In this study it was 

found that mice visited at all the carcasses and surprisingly at least one carcass 

was accessed and opened solely by the action of the small rodents, usually 

starting from just after dusk.  The use of marine inputs by terrestrial rodents has 

already been highlighted in other studies (Polis and Hurd 1996b; Stapp and Polis, 

2003) and the smaller the island, the greater the transfer inland of marine 

nutrients by the mice population (Stapp and Polis, 2003). Owing to the small 

geographical size of the Isle of May and presence of mice at seal carcasses 

located at different distances from the littoral zone, it is possible that the seal 

carrion represents a fundamental component of the diet of the overall mice 

population in the island during winter. Moreover, on the Isle of May other carrion 

is available throughout the year, including the ten species of seabirds which 

breed there during summer (SNH 2012). Brown et al. (2015, in press) found that 

the invasive red fox (Vulpes vulpes) had large effects in the coastal scavenging 

community occurring on a sand barrier island in eastern Australia. The presence 
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of foxes, in fact, modified the nature of the scavenging process as they consume 

the largest part of the carrion available to detriment of raptors which also feed 

on beach-carrion. Because of their size compared to gulls, it is possible that 

mice do not reduce carrion availability to a detrimental extent to the scavenging 

birds wintering on the Isle of May. However, they can enhance their abundance 

because of seal carrion and could affect gull breeding productivity of the local 

population during summer by predating on chicks, as already observed for the 

critically endangered Tristan Albatross (Diomedea dabbenena) (Davies et al. 

2015). In this study it is believed that this is the first documented case of mice 

scavenging pinniped carcasses.  

The impact of carrion on the ecosystem is probably underestimated 

(DeVault et al. 2003; Wilson and Wolkovich 2011) as the energy flow derived 

from carcasses is often associated with predation instead of the alternative 

foraging strategy represented by facultative scavenging (Wilson and Wolkovich 

2011). Weak links established in the trophic web, as defined by McCann et al 

(1998), can be crucial for the stability of the ecosystem. Among them there are 

those originated between facultative scavengers and the resource carrion (Selva 

and Fortuna 2007), such as gulls and seal carrion of the present study. 

Competition between consumers is one of the factors influencing any scavenging 

process as it shapes the structure of the scavenging assemblage gathering around 

the food source.   

Competition requires energy and it can be avoided when resources are 

abundant and predictable: consumers in fact can have access to multiple 

resource opportunities, of equivalent energy value, occurring simultaneously in 

the same environment. In these conditions food is not required to be defended 

(Houle et al. 2006), competition is reduced (Wilmers et al. 2003b) and 

dominance effects can be weakened, resulting in “shared” exploitation by 

competitors. Aggressive social interactions can be detrimental for less dominant 

species or individuals whose access to the resource can be reduced or temporally 

adapted to avoid competition (Moreno-Opo et al. 2015). On the Isle of May, 

competitive events have been recorded during the scavenging processes of both 

carcasses and placentae, and adult gulls were competitively superior over their 

younger counterparts. However, the aggressive behaviour displayed by the two 

gull stages did not lead to a temporal and spatial segregation of subordinate 

individuals or a lower carrion consumption.  Investigations into the interactions 
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between species and age classes at feeding stations, which are important for 

conservation of vultures, highlight the need for consideration of the effect of 

dominance in order to be effective in safeguarding the more endangered species 

(Moreno-Opo et al 2015). In light of the results of this study, seal carrion 

provided a relevant feeding opportunity for the great black-backed gull, which is 

currently Amber listed endangered in Birds of Conservation Concern 3 (Eaton et 

al. 2015), without detrimental effects on subordinate juveniles. Considering the 

lower relative abundance of juvenile great black-backed gulls wintering on the 

island comparing to adults (see Chapter 4), carrion provided by seal colonies is a 

crucial resource during winter for young gulls in particular, easy to exploit and 

potentially enhancing chances of survival (Sanz-Aguilar et al. 2015) and 

stabilising pre-adult population (Votier et al. 2008; Margalida et al. 2011). The 

great black-backed gull could therefore benefit from this resource and its 

population potentially recover. Finally, the importance of seal carrion can 

increase over time: a recent study made in Sable Island (Canada) showed that 

this species is now consuming more seal remains than forty years ago (Ronconi et 

al 2014) due to an increasing seal population, but possibly also because of 

changes in fish availability, reduction of scavenging via fishery discards and 

alterations in the surrounding ecosystem. These same changes are also true 

throughout the UK, so it is expected that gull populations here may increasingly 

use seal carrion in the near future. 
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6:Chapter 6: Discussion 

The thesis set out to investigate the role of marine mammal carrion in the 

ecology of coastal systems. This was addressed by providing first a detailed 

documentation of the fate of a grey seal (H. grypus) pup carcass with insights on 

the scavenging ecology existing in both terrestrial and marine ecosystems 

(Chapter 2). Then the predictability of the resource carrion, specifically 

carcasses and placentae, was defined in the largest single-island grey seal colony 

of the UK examining its timing, spatial distribution, biomass and energy released 

during the pinniped pupping season (Chapter 3). Finally, the impact of this 

predictable and abundant subsidy was determined by exploring the spatial and 

temporal distribution of scavenging gulls (Chapters 4) and their behavioural 

dynamics (Chapter 5).  

In the terrestrial ecosystem a distinct shift in the relative proportions of 

bird groups feeding at the carcass was observed over the duration of the 

experiment: great black-backed gulls (Larus marinus) fed first, followed by 

juvenile gulls and ravens (Corvus corax). Against the expectations, the 

deployment of the carcass did not influence the spatial and temporal 

distribution of the scavenging birds. Difference in the relative abundance of 

marine scavengers occurred on the two periods of monitoring of the underwater 

carcass, as a drop in the number of starfish characterised the later stage of the 

experiment, while crabs were present in similar number to the early stage. It 

was clear that the daily mass loss of carrion was lower in the marine ecosystem 

than in the terrestrial one, with a ratio of 1:8, and bacterial activity occurred in 

both systems (Chapter 2). In one of the largest grey seal colony in the UK, inter-

annual variability of seal carrion availability was below 34% of Relative Standard 

Errors (RSE%), similarly to other resources, such as salmon runs, which appear to 

be predicted by consumers (Chapter 3). For the seal carrion feeding species, 

great black-backed gull, the presence of carrion affected their abundance and 

behaviour at scales from the region to the patch: the analysis of their spatial 

and temporal distribution and behavior show that the great black-backed gulls, 

which fed on carrion, increased in abundance at the Isle of May while they were 

falling in the surrounding region. The herring gull, instead, which did not feed on 

the seal carrion, fell in abundance in the same way as abundance in the 

surrounding region (regional scale). The latter were also more likely to leave the 
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island in the morning than great black-backed gulls, rather than staying close to 

the carrion (local scale). Areas with carrion were visited in higher number by 

great black-backed gulls than areas without carrion, while no such difference 

was seen for herring gull (patch scale) (Chapter 4). Juvenile and adult great 

black-backed gulls scavenged carcasses at similar extent without showing 

temporal shift in the access of these abundant and predictable resources. 

Dominance of adults, instead, was expected to be displayed during the 

consumption of placentae, but results showed that juvenile gulls spent more 

time feeding than older more dominant individuals, despite these were 

competitively superior (Chapter 5). 

The potential impact of carrion inputs occurring on the coastal area can 

extend to both the marine and terrestrial ecosystems. However, the processes 

dominating carrion decomposition and the dynamics in scavenging activity can 

notably differ in the two systems (Beasley et al. 2012; Chapter 2). Slower 

consumption was evident on the seal carcass deployed in the water, in 

comparison to the carcass placed in the littoral zone, due to differences in the 

scavenging community. Bacterial activity was noticeable in both environments. 

However, the deterrent effect of decomposing matter and toxin production on 

the behaviour of terrestrial scavengers (DeVault et al. 2004; Selva et al. 2005; 

Parmenter and Macmahon 2009) was not observed, as the carcass was not 

abandoned prior to complete consumption. This was observed also on the Isle of 

May, as dead pup remains were recorded at the end of the seal pupping season 

during the ground visual census. However, decomposition was not as advanced as 

the one detected on the experimental carcass deployed during summer, 

probably because of the lower temperatures characterising the winter season. 

Gulls habits in scavenging on animal carrion and at landfills suggest that these 

birds have a natural tendency of feeding on rotting organic matter and their 

tolerance is high. This behaviour exposes them to toxins and microbiological 

diseases, such as botulism (e.g. Macdonald and Standring 1978). However, it was 

found that the proliferation of this bacterium and the incidence of the disease 

on gulls is not only related to warm weather, but also to landfill sites which 

generate heat (Ortiz and Smith 1994), implying that feeding on natural seal 

carrion might be a less risky alternative, especially during winter in Scotland. 

Temporal shifts in the access of the carcass by scavenging birds was likely to be 

driven by the dominance structure established by inter and intra-specific 
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competition. In the underwater experiment, instead, bacterial activity possibly 

induced changes in the scavenging community during time as observed by 

Burkepile et al 2006. Differently from deep waters where carrion is preserved 

against decomposition (Beasley et al. 2012) because of temperature and 

pressure conditions (Jannasch 1978), in shallow waters bacterial action appeared 

to be an important factor driving the fate of the experimental seal carcass. 

After simulating the unpredictable availability of marine mammal 

carcasses on both the marine and terrestrial ecosystems, the study then 

examined a predictable carrion resource provided at the seal colony of the Isle 

of May (Chapter 3). The predictability of the food resource is, in fact, one of the 

critical determinants shaping the structure of a community, ultimately inducing 

some response by consumers at a population level (Polis et al. 1996) such as 

changes in behaviour, ecology and adaptation (Overington and Lefebvre 2011). 

Considering that predictability is a measure of ecosystem stability explained by 

low variability in its properties both temporally and spatially (McGrady-Steed et 

al. 1997), inter-annual variation of seal carrion according to its timing and 

spatial distribution were evaluated together with its released biomass and 

energy. Using data on pup production and ground visual censuses of carcasses for 

multiple years, seal carrion was found to be predictable (Chapter 3). Similar to 

other predictable resources such as salmon carcasses derived by mortality at 

spawning areas, which are notably responsible for the co-evolution between 

feeding strategy and food input in black bears (Reimchen 2000), seal carrion may 

therefore influence the behaviour of scavengers.  

Activity and distribution patterns of scavengers can be driven by the 

temporal and spatial predictability of the food (Cama et al. 2012; Allen et al. 

2014). This was also demonstrated for seal carrion which affected the 

distribution of scavenging great black-backed gulls at regional, local and patch 

scales (Chapter 4). Moreover, higher searching efforts were displayed at the 

peak of placenta and carcass availability, while number of scavengers was 

directly related to the amount of the resource as previously found for vultures 

(Bosè and Sarrazin 2007; Moreno-Opo et al. 2010). The herring gull was included 

in the study as a potential scavenger, but it was evident that its behaviour was 

not affected by seal carrion at any scale. The higher number of individuals 

counted at dusk at the roosting sites of the island suggested that the herring gull 

may pursue other resources rather than carrion during the day. This species is, in 
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fact, more urbanised than the great black-backed gull (Camphuysen 2013) and it 

was observed feeding at landfills in higher number (Greig 1984), so that 

differences in food preference together with the higher position of great black-

backed gull in the dominance hierarchy may explain the resource partitioning 

between the two species.   

On the Isle of May the annual amount of energy available as placentae and 

dead seals to potential scavengers was estimated to be 110.5 x 103 MJ, 

corresponding to more than 42 thousand daily gull meals. The fact that only 

32.5% (9.1 x 103 MJ) of the resource carcasses was consumed at the end of the 

pupping season (Chapter 3), suggests that the ecosystem was saturated by 

carrion. In environmental conditions of food saturation competition among 

consumers may reduce (Wilmers et al. 2003b; Houle et al. 2006) weakening the 

structure of dominance, so that subordinate individuals can also access the 

resource (Chapter 5). Juvenile great black-backed gulls in fact fed on carcasses 

to a similar extent as adult conspecifics and did not adopt any alternative 

foraging strategy such as temporal and spatial segregation to avoid the superior 

competitors. At feeding stations where carrion is predictable, instead, dominant 

vultures species monopolise the carrion (Cortés-Avizanda et al. 2012). Differing 

from the seal colony, where carcasses were dispersed over large areas, feeding 

opportunities at feeding stations for vultures are highly clustered making it 

difficult to avoid aggression. Moreover, number of vultures is higher than 

scavenging gulls of the Isle of May. It was also found that the younger gulls spent 

more time than adults feeding actively on placenta, highlighting the potential 

significance of this resource for juvenile stages of this species during winter. 

Continuous monitoring using infrared cameras revealed that gulls are highly 

nocturnal, counter to what it is often assumed (Hailman 1964; Garthe and 

Hūppop 1996). This behaviour may also explain that carrion may be a safer and 

easier alternative resource to capitalise on once back around roosting sites. 

Finally, the presence of the house mouse and its ability to actively open the pup 

carcasses was unanticipated; it is likely that this is the first study documenting 

this small rodent feeding on dead pinnipeds. The seal carrion, therefore, may be 

an important resource for mice, especially during winter. 

Outside of the seal pupping season, other types of carrion may be 

available on the Isle of May for scavenging mice and gulls. During spring and 

summer, twelve species of seabirds breed there (SNH 2012) providing chick 
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carcasses to scavengers as result of natural mortality or predation. Also marine 

scavengers may take advantange of this source of food, as some dead birds may 

fall into the sea from the western cliff of the island where some species nest. 

Outbreaks of myxomatosis, an infectious and usually fatal viral disease, 

experienced by the population of rabbits living on the island, during summer 

may also contribute to the carrion pool. 

In light of the findings of the present thesis, seal carrion is likely to 

influence the coastal systems as unpredictable events such as a strandings, but 

also as predictable, abundant and high energy resources at the seal colony. In 

both cases, its impact is not only limited to the terrestrial ecosystem, but also to 

the marine one, where it would affect a different scavenging community. 

According to our estimates, 32.5% of the total amount of edible matter derived 

from seal carcasses on the Isle of May was taken by terrestrial scavengers such as 

great black-backed gulls and mice by the end of the seal pupping season. The 

uneaten remaining carrion could be possibly be further consumed by these 

vertebrate scavengers later during winter or finally become available to 

invertebrates and soil, which would receive additional nutrients released by the 

inedible skin and bones (34.8% of the total seal carcass biomass) (Chapter 3). 

Because most of the pups are born far from the sea, placentae are for the major 

part available to the terrestrial system. Placenta intake by gulls was estimated 

to be 67.9% (Chapter 5), while insects can probably have access to the dry 

remains. Carcasses found on the area between mean high and low tide 

represented 13.1% of the total number of carcasses recorded during the ground 

visual census. At sea carrion biomass, when negative buoyant, is transferred to 

benthic invertebrate scavengers such as crabs and starfish which can feed at a 

rate of 0.07 kg day-1 (Chapter 2). However, knowledge on the fate of seal 

carcasses in shallow waters is still limited. Internal decomposition, body 

composition, currents and tides, but also type of substrate and depth can in fact 

all contribute to generate different scenarios of biomass transfer to the 

scavenging community or nutrients to the abiotic factors in the marine system.  

When predictable, seal carrion has an effect on the distribution of 

scavengers, but also on their behavioural dynamics, favouring a weaker 

dominance structure and diminishing competition. It is therefore likely to be of 

particular significance to juveniles unable to compete for other high quality 

resources. Carrion availability coincides with the wintering months when food is 
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usually scarce. This may be crucial for the declining great black-backed gull 

(Foster and Marrs 2012) as survival of early life stages during the cold season can 

mitigate the current endangered status of this species (Sanz-Aguilar et al. 2015). 

Due to global changes in the environment and the high level of carrion 

availability, there is the potential for gulls (and other facultative scavengers) to 

rely more heavily on carrion in the future.  

 

6.1 Lessons for future research 

Various approaches were used to address the range of ecological questions 

forming the basis of this work (Chapter 1) with the aim of overcoming both 

technical and circumstantial challenges. Ecological research has recently been 

enhanced by the development of numerous non-invasive methods, such as 

camera traps to monitor wildlife at any time of day or year (O’Connell and 

Nichols 2010) and underwater cameras for marine monitoring (Willis and Babcock 

2000). Infrared time-lapse cameras were therefore used when exploring the 

scavenging activity on seal carcasses in the terrestrial ecosystems (Chapter 2 and 

5) as they permitted a 24/7 monitoring instead of limited intervals of 

observations performed by individual researchers. In this way, human 

disturbance was minimised, while data collection of wildlife was maximised, 

including hours of darkness which eventually revealed fascinating aspects of the 

ecology of scavengers. Similarly, the underwater camera permitted the 

continuous surveying of the decomposition and consumption of a pup carcass 

without repeated inspections by divers, representing a time consuming and 

expensive alternative. However, technical problems are inherent to cameras, to 

the extent that they have been even addressed in a study aiming to guide 

sampling design in ecology when using camera-traps (Hamel et al. 2013): 

environmental conditions, humidity and battery exhaustion were some of the 

reasons identified. To maximise a “problem-free” monitoring, silica gel sachets 

(1 x 2cm) were inserted in the cameras to reduce humidity, electrical tape used 

to seal them and new batteries deployed regularly. Seal movements also 

interfered with instrumentation causing camera displacement, and eventually 

also re-placing it in the exact position. Circumstances like these were avoided 

when cameras were located on man-made structures such as the small stone 

walls occurring on the Isle of May. However, the absence of trees on the island 

and the necessity to deploy cameras and experimental carcasses as close as 
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possible to the main aggregations made the installation difficult. In the marine 

system, instead, corrosion, oxidation and leakage can cause malfunction of 

underwater instruments. In our case the underwater camera failed twice: the 

first time because of leakage and the second time because the buoy was hauled 

up breaking the camera housing off. This damage could have been avoided by a 

different design of the mooring. A lesson learnt. In order to limit these 

problems, the infrared camera functioning was checked regularly, while the 

underwater camera was replaced once the problem had been identified. 

The experiments simulating the unpredictable events of a stranding and 

availability of seal carrion in the marine system (Chapter 2) were limited to two 

single carcasses, or observations. Among the reasons there were time and 

budget constraints and technical challenges (also experienced by Hobischak and 

Anderson 2002). To increase the sample size of the terrestrial experiment, 

multiple grey seal carcasses should have been used on different islands located 

on the west coast of Scotland, over the same period during summer. Seabirds, 

such as gulls, in fact, move seasonally and in order to obtain comparable results 

it would have been appropriated to carry out simultaneous experiments. 

Unfortunately, this was not feasible. As this sample size can restrain the 

inference of the results obtained, even if they were in line with previous studies, 

further experiments might be useful to increase their significance.  

To study the spatial distribution and temporal trend of the gull 

populations different types of data were used: counts directly carried out on the 

Isle of May were compared with long-term databases provided by JNCC as best 

compromise between economy of collection effort and completeness of data to 

be used. In particular, for the purpose of this thesis counts data were a sensible 

alternative of more expensive methods such as telemetry (Franco et al. 2007), 

which would have been prohibitive if applied at a population level. Moreover, 

counts of different types were not modelled together, because of the risk of 

making an incorrect statistical interpretation, but only the temporal trends 

obtained from different models were compared.  

The use of the Isle of May as a study site had the advantage of possessing 

the largest grey seal colony in the UK and a history of ecological research, 

however it would be prudent to expand the research present in this thesis 

beyond into other islands and mainland colony sites, during both day and night. 

This would elucidate the role of marine mammal carrion in different ecosystems 
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each with potentially varying or unexpected endemic facultative scavengers 

(e.g. house mouse in Chapter 5) and anthropogenic interactions. As such the 

importance of carrion on coastal ecosystems is likely global but care should be 

taken in extrapolating the specific findings of this thesis into significantly 

different ecosystems. 

 

6.2 Implications, applications and future investigations 

Scavenging is documented globally in both extant and even in extinct species, 

such as Tyrannosaurus rex during the Cretaceous era (Ruxton and Houston 2003) 

and the Ice Age spotted hyena (Crocuta crocuta spelaea) during the Late 

Pleistocene (Diedrich 2015), meaning that it is a well-established foraging 

strategy. New evidence on the use of carrion by carnivore species, which utilise 

this resource opportunistically as an alternative to predation, brought attention 

to the importance of scavenging behaviour in the food web (Moleón et al. 2014), 

emphasizing its role in stabilising the ecosystem (Selva and Fortuna 2007). This 

thesis elucidated the relationship between carrion and facultative scavengers, 

which is generally underestimated 16-fold in food webs, suggesting that the 

energy transferred through scavenging is likely to be greater than that gained by 

predation (Wilson and Wolkovich 2011).  

Despite recent research focusing on carrion ecology, the current scientific 

literature lacks studies evaluating the role of pinnipeds as key species in coastal 

systems, providing potentially abundant and high energy resources, such as 

carrion, to the surrounding marine and terrestrial ecosystems and their 

scavengers. Seals occur worldwide, from the Northern to the Southern 

Hemisphere: of the 33 species of pinnipeds existing, 20 breed on land, and the 

remaining 13 breed on ice (Cappozzo 2001). The latter statistics could be 

already indicative on how carrion derived from these marine mammals may be a 

crucial resource in many biomes, whose impact is still little understood. In the 

present work the study species considered as the carrion provider was the grey 

seal as it is the marine mammal likely providing the highest number of carrion 

inputs onto coastal ecosystems in the UK. In the absence of obligate scavengers, 

the great black-backed gull was the main scavenger feeding on seal carrion in 

land. The present thesis quantifies for the first time the amount of carrion 

released during the pupping season in the shape of placentae and carcasses and 
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determined its predictable nature highlighting its impact on the main scavenging 

gull benefitting from this resource. The great black-backed gull is an Amber 

listed species in the UK (Eaton et al. 2015), which declined in the UK during the 

last decades. Human persecution, botulism and viral infection, and predation by 

brown rats (Rattus Norvegicus) and American mink (Neovison vison) are the 

possible main threats that acted upon the population (Zonfrillo 2007). The actual 

decline in fishery discard opportunities, due to the landing obligation of the 

whole catch by fishing vessels, may represent an additional threat to this species 

which sustain itself by using this resource. However, the reduction of discards 

together with the increasing of the UK grey seal population (SCOS 2013), may 

lead to a higher consumption of seal carrion as alternative resource by great 

black-backed gulls. Ronconi et al. (2014) found that the same species, living in 

Sable Island, the largest grey seal colony in the world, notably increased the use 

of seal remains during the last forty years due to alterations in the offshore 

waters of Atlantic Canada and the increasing of breeding grey seals. The English 

Nephrops norvegicus fishery during the fishing season in 2001 to 2002 disposed of 

an estimate of 4,780 tonnes of discards, of which 57% were taken by seabird 

scavengers. The energy equivalent was 11,647 103 MJ (Catchpole et al. 2006), 

which is three orders of magnitude higher than the energy released annually on 

the Isle of May as seal carrion. Although grey seal colonies can not provide such 

amounts of energy, it is possible that seal carrion will become a relevant 

alternative of fishery discards, at least for the great black-backed gull. 

Monitoring the proportion of pup carcasses consumed at a seal colony may 

therefore represent a valuable method to evaluate changes in the feeding habits 

of scavengers such as the great black-backed gull. Moreover, knowing the 

temporal trend in consumption of seal carrion during consecutive years may help 

in determining which other variables should be included or excluded from the 

list of possible causes for the decline in the population. Restaurants for vultures 

represent a reasonable solution for conservation purpose, as they rebalance the 

lack of carrion caused by regulation of livestock carcasses, helping the 

productivity to increase. However, now it is clear that there are also some side 

effects such as changes in the behavior and ecology for these obligate 

scavengers (Deygout et al. 2009), which were used to forage on unpredictable 

resources (Ruxton and Houston 2004a). On the contrary, seal colonies are natural 

providers of predictable carrion, whose impact on the consumers is not caused 
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by a perturbation of anthropogenic origin. PAFS (predictable anthropogenic food 

subsidies) may have some negative effects: landfills, for instance, have been 

shown to provide some exotic species with junk food and pollutants, making 

them obese, ill and incapable to react to predators (e.g. Carrete et al. 2009). It 

is possible that this type of diet could compromise also the health of gulls.  

Investigating carrion consumption on other seal colonies could also reveal 

differences in behavioural dynamics of gulls established by the relation between 

carrion availability and number of scavenger consuming it: for instance, if 

carrion is completely depleted by scavengers at the end of the pupping season, 

this would probably imply that the food resource was limited on that seal 

colony, and a higher level of competition between age classes occurred. The 

latter would indicate that the juvenile gulls wintering on that area might have 

less access to the resource carrion, eventually negatively affecting their 

survival. Considering that seal aggregations occur in eighteen out of 29 great 

black-backed gull colonies located on the north eastern coast of Scotland (SMRU 

unpublished data), it is possible that seal colonies may enhance productivity of 

the local gull population.  

Seals and birds can act as disease vectors (e.g. Higgins 2000; Fuller et al. 

2012) facilitating the transmission to the human population and viceversa. The 

enteropathogenic Escherichia coli was found, for instance, in the Antarctic fur 

seal pups Arctocephalus gazelle (Hernandez et al. 2007), while the foraging area 

of herring gulls carrying Salmonella corresponded to the incidence of 

salmonellosis in humans living nearby (Monaghan et al. 1985). The link between 

gulls and seal carrion, explored in this thesis under a pure ecological 

prospective, can therefore have some health implications.  

More attention should be also devoted to the impact of predictable seal 

carrion occurring in the intertidal system around the seal colony: in this study, in 

fact, 13.1% of carcasses occurred in the area between the mean high and low 

water boundaries, suggesting that marine scavengers, such as benthic 

invertebrates, may exploit this resource as well. Moreover, as the effect of 

carrion is not limited only to terrestrial and marine scavengers, but also to other 

biotic and abiotic compartments of the ecosystem, such as plants and soil 

(Erskine et al. 1998; Koyama et al. 2005), additional research can be pursued in 

this direction. 
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The future looks promising for taking advantage of entering the “golden age for 

scavenging research”.  
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A:Appendix A: Chapter 2 Statistical outputs 

A.1 Seabird surveys details. 

AREA PERIOD DATE TIME TIDE 

control before 

18/07 17:30 low 

20/07 06:20 low 

24/07 15:55 high 

26/07 17:10 high 

study before 

19/07 12:35 high 

19/07 18:20 low 

25/07 09:40 low 

25/07 16:30 high 

control after 

26/07 17:10 high 

29/07 08:10 high 

02/08 17:50 low 

03/08 13:15 high 

04/08 07:10 low 

14/08 15:47 low 

15/08 09:45 high 

20/08 19:05 low 

21/08 08:15 low 

29/08 16:00 low 

30/08 08:20 high 

study after 

27/07 10:30 low 

29/07 14:00 low 

30/07 09:35 high 

02/08 12:25 high 

03/08 17:50 low 

04/08 14:05 high 

05/08 07:30 low 

14/08 15:35 low 

15/08 09:35 high 

20/08 14:50 high 

21/08 08:30 low 

29/08 16:15 low 

30/08 09:00 high 

 

 

  



Appendix A  176 

A.2 Mini DVR system with IR camera. 

Featuring small size and lightweight, the Mini SD DVR's compact dimensions 
mean it requires very little space, fitting easily into restrictive spaces. 

 

Ultra-compact pocket size digital video recorder with enhanced features that is 
ideal for surveillance.  
 

1. PLAYBACK 
Recordings can be played back via the AV output to a compatible display. 
Alternatively video clips can be exported to a PC via the USB port or simply by 
removing the SD card.  
 

2.  FEATURE 
 

 DC 12V Adapter 

 One Video in, one video out  

 Support TF card of max 16G Storage, video is recorded in real time 
monitoring. 

 Smart detector to moving objects, to save the storage space. 1 
Frame/sec when moving Objects detected, and 1Frame/2min when no 
moving Objects detected 

 AV cables to Monitor, Real-time monitoring and playback with switch 
button shifted 

 Timetable adjustable supported 

 Work with Special PC Software, convenient and friendly to user 

 
3. . SPECIFICATION 

 

 TV Format NTSC/PAL 

 VIDEO IN (CVBS) 1Channel 

 VIDEO OUT (CVBS) 1Chanbel 

 Resolution 352*288 
 

4.  NORMAL WORKING STATUS 
 

 The MINI DVR will shoot automatically 1 frame images in every two 
minutes and store them if there aren’t any moving objects appears in the 
view. 

 The MINI DVR will shoot continually until the moving targets disappeared 
and freeze completely if there has any moving object appears in the view. 
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A.3 – Times of bad visibility during the underwater experiment. 

Period 1  Period 2  

Date Time Date Time 

02/08 05:00 / 08:50 17/09 23:40 

02/08 22:30 18/09 02:20 

03/08 04:40 / 07:10 18/09 03:30 

03/08 22:50 18/09 20:50 / 21:30 

04/08 01:10 19/09 00:30 

04/08 03:30 19/09 05:20 

04/08 23:30 19/09 21:50 / 22:00 

05/08 01:20 / 01:40 19/09 22:30 / 23:20 

05/08 02:20 20/09 00:00 / 00:20 

05/08 13:20 20/09 04:00 / 04:20 

05/08 22:40 / 23:40 20/09 - 21/09 14:40 / 14:00 

06/08 00:00 21/09 21:30 

06/08 00:50 / 01:20 23/09 03:20 

06/08 02:40 24/09 02:40 / 03:00 

06/08 03:30 24/09 05:30 

06/08 04:00 / 04:20 25/09 00:50 

06/08 23:10 25/09 04:10  /04:20 

06/08 23:40 25/09 05:40 

07/08 02:00 

07/08 04:.30 

07/08 23:00 

08/08 01:20 

08/08 02:00 / 02:20 

09/08 04:30 

10/08 02:00 

10/08 02:40 / 02:50 

10/08 05:00 /  05:10 

11/08 00:00 / 00:20 

11/08 02:40 

11/08 23:00 

12/08 14:00 / 15:00 

13/08 01:00 

13/08 01:50 / 02:10 

14/08 12:00 

14/08 20:00 / 23:00 

15/08 03:10 / 03:30 
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A.4 Terrestrial experiment: summary of results obtained by individual negative 
binomial GLMs for each group of birds. 

Count of bird passages (GBBG = great black-backed gull, HG = herring gull, LBBG 
= lesser black-backed gull, JUV = juveniles gulls) undertaken at the study and 
control sites both before (Period 1) and after (Period 2) the deployment of a 
single grey seal pup carcass. Formula = Log (Total Number of Bird Passages) ~ 
Tide + Time of the day + Area : Period. 

 

GBBG (likelihood ratio test: Χ
2
 (df = 3) = 25.98, P < 0.001) 

 Estimate Std. Error Z value Pr (>|z|) 

Intercept -2.3401      0.8343 -2.805 0.0050 

Tide - Low 0.5789 0.2818 2.055 0.0399 

Area - Study 1.2523 0.2951    4.244 < 0.0001 

Period - 2 1.4395 0.4120 3.494 0.0005 

HG (likelihood ratio test: Χ
2
 (df = 4) = 15.54, P = 0.0037) 

 Estimate Std. Error Z value Pr (>|z|) 

Intercept 3.8625      0.6382 6.052 < 0.0001 

Tide - Low 0.8318 0.2191 3.797 0.0001 

Area - Study -1.1621 0.8955 -1.298 0.1944 

Period – 2 

Area – Study : Period - 2 

-0.7410 

0.7798 

0.3554 

0.4988 

-2.085 

1.563 

0.0371 

0.1180 

LBBG (likelihood ratio test: Χ
2
 (df = 3) = 4.32, P = 0.2290) 

 Estimate Std. Error Z value Pr (>|z|) 

Intercept 4.9236 0.7949 6.194 < 0.0001 

Area - Study -2.0490 1.1334 -1.808 0.0706 

Period – 2 

Area – Study : Period - 2 

-0.8293 

1.1116 

0.4459 

0.6317 

-1.860 

1.760 

0.0629 

0.0785 

JUV (likelihood ratio test: Χ
2
 (df = 1) = 2.51, P =  0.1130) 

  Estimate Std. Error Z value Pr (>|z|) 

Intercept 3.8410 0.2253 17.0510 < 0.0001 

Area - Study -0.4921 0.3055 -1.6110 0.1070 
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A.5 Underwater experiment: summary of results obtained by the Poisson GLM. 

Maximum number of individuals (MaxN) observed for the classes Actinopterygii 
(fish), Asteroidea (starfish) and Malacostraca (crabs) in the periods of monitoring 
(1 and 2) at day and night time. Formula = Log (MaxN) ~ Period + Time + Class + 
Period : Class + Time : Class. 
 
 Estimate Std. Error Z value Pr (>|z|) 

Intercept 2.39795     0.08115   29.550   < 0.0001 

Period - 2 -1.08606     0.16804   -6.463 < 0.0001 

Time – Night -0.61826     0.12657   -4.885 < 0.0001 

Class - Asteroidea 0.07745     0.11157    0.694   0.4876    

Class - Malacostraca -2.12147     0.22680   -9.354   < 0.0001 

Period – 2 : Class - Asteroidea -1.18476     0.30052   -3.942 < 0.0001 

Period – 2 : Class - Malacostraca 0.88407     0.32279    2.739   0.0062 

Time – Night : Class - Asteroidea 0.46377     0.16840    2.754   0.0059 

Time – Night : Class - Malacostraca 0.90308     0.28691    3.148   0.0016 
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B:Appendix B: Chapter 3 

B.1 Comparison between the Isle of May seal carrion availability and apparently 
predictable pulses in resource availability according to time (a), quantity (b) and 
quality (c). 

Time (a) 

Reference Resource Mean SE RSE% Effect 

Present 

study 

Seal pupping 30
th

 Oct 0.58 1.97 Scavengers: great black-backed gulls 

Quantity (b) 

Reference Resource Mean            SE RSE% Effect 

Present 

study 

Dead seals 

(ground visual 

census) 

N = 209.0 22.03 10.54% 

Scavengers: great black-backed gulls 
3777.7 kg 720.87 19.08% 

Afterbirths 

(aerial survey) 

N = 1,988.1       47.72 2.40% 

3,124.3 kg       74.99 2.40% 

Reimchen 

2000 

Salmon spawning 

run 
N = 4,000      1,011.60 25.00% 

Black bears (Ursus americanus) 

predation 

Bouchard 

and 

Bjorndal 

2000 

Sea turtle nesting 

N = 14,305  

 (1.6 · 106 eggs) 
  Raccoon  and ghost crab  predation 

9,841.84 kg 

Quality (c) 

Reference Resource Mean            SE RSE% Effect 

Present 

study 

Dead seals 

(ground visual 

census) 

42.4 10
3 

MJ 10.42 4.58% 

Scavengers: great black-backed gulls 

Afterbirths 

(aerial survey) 
68.1 10

3
 MJ 1.64 2.41% 

Bouchard 

and 

Bjorndal 

2000 

Sea turtle nesting 267.8 10
3 

MJ   Raccoon  and ghost crab  predation 
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B.2 Comparison between the Isle of May seal carrion availability and apparently 
predictable pulses in resource availability according to space (d). 

Space (d) 

Reference Resource Mean SE RSE% Effect 

Present 

study 

Dead seals 

(ground visual 

census) 

0.005 carc  m-
2 A

    0.001    20.00% 

Scavengers: great black-backed gulls 

0.09 kg m
-2

 
A
   0.03    33.33% 

Afterbirths 

(aerial survey) 

0.04 plac ·m
-2 B 

  
 
   0.001 2.50% 

0.07 kg m
-2

 
B
    0.002    2.86% 

Hocking and 

Reimchen 

2009 

Salmonids 16.3 Kg m
-1

   5.00    1.67% 
Marine enrichment in  

riparian food webs 

Polis and 

Hurd 1996b 

Chick carcasses 
0.77 carc m

-2 

0.16 Kg m
-2

 

  

Land animal species observed in 

coastal areas 
Pelican chick 

carcasses 

0.09 carc m
-2 

0.17 Kg m
-2

 
  

Bouchard 

and 

Bjorndal 

2000 

Sea turtle nesting 
0.032 Kg m

-2 C 

0.85 MJ m
-2 C

 

  Raccoon  and ghost crab  predation 

Davenport 

1995 

Calanoid copepods, 

chaetognaths and 

pteropods 

<4 Kg m
-2

   Kelp gulls, sheathbills and terns 

Summary table showing results obtained by the present study and other 
published sources. The table is divided horizontally according to the factors 
explaining predictability (time, quantity, quality and space) and by columns 
according to the type of predictable resource, values considered and effect 
observed in the ecosystem. Values in kg are of wet mass. 
A calculated considering polygons of intensity higher than 0.001 (2008 = 55976 
m2, 2012 = 32746 m2, 2013 = 50803 m2) 
B calculated considering polygons of intensity higher than 0.001 (mean of the 
three years, mean = 46508 m2) 
C calculated considering 21 km stretch of beach (11m beach width) in Brevard 
County Florida 
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C:Appendix C: Chapter 4 Statistical outputs 

C.1 Model selection for feeding activity of gulls during seal pupping season using 
negative binomial general additive model (NB GAM). 

BG = Bird group (great black-backed gull and juvenile gulls), Site = East Tarbet 
and Loan. 

Feeding activity 

Model df AIC 

1 ~ f BG + f Site + s Carrion 

2 ~ f BG + f Site + s Time 

3 ~ f BG + f Site + s SeaLevel 

4 ~ f BG + f Site + s Date 

7.752840 

5.001181 

6.339486 

9.386395 

528.371153 

537.9466 

542.671953 

532.6151 

1 ~ f BG + f Site + s Carrion + s SeaLevel   

2 ~  f BG + f Site + s Carrion + s Date 

3 ~  f BG + f Site + s Carrion + s Time 

10.010854 

10.010854 

8.915908 

528.207551    

517.3300 

520.8179 

1 ~ f BG + f Site + Carrion + s Date  

2 ~ f BG + f Site + Date  + s Carrion 

9.868550 

8.877449 

522.940951 

517.7664 

1 ~ f BG + f Site + s SeaLevel + s Carrion s Date 

2 ~ f BG + f Site + s Time +s Carrion + s Date 

12.48696 

10.62407 

515.6323 

513.9346 

1 ~ f BG + f Site + Date + S Carrion + s Time  

2 ~ f BG + f Site + Carrion + s Date + s Time  

9.846593 

10.716321 

513.4144 

1518.5358 

1 ~ f BG + f Site + Date + s carrion + s Time 

2 ~ f BG + Date+ s Carrion + s Time 

3 ~ f BG + Date + Time + s Carrion  

9.846593 

8.896637 

8.896434 

513.414451 

511.4690 

511.4688 

1 ~ f BG + Date + Time + s Carrion 

2 ~ f BG + Date + s (Carrion, by = BG) 

8.896434 

11.971145 

511.46889 

510.9466 
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C.2 Model selection for crossing activity of gulls during seal pupping season using 
negative binomial general additive model (NB GAM). 
BG = Bird group (great black-backed gull and juvenile gulls), Site = East Tarbet 
and Loan. 

Crossing activity 

Model df AIC 

1 ~ f BG + f Site + s Carrion 

2 ~ f BG + f Site + s Time 

3 ~ f BG + f Site + s SeaLevel 

4 ~ f BG + f Site + s Date 

7.911940 

8.713801 

7.076107 

10.494497 

1029.146 

1027.428 

1024.117 

1008.095 

1 ~ f BG + f Site + s Date  + s SeaLevel  

2 ~  f BG + f Site + s Date  + s Carrion 

3 ~  f BG + f Site + s Date  + s Time 

12.77685 

18.65041 

13.59967 

999.6510 

987.8856 

997.0193 

1 ~ f BG + f Site + f Carrion + s Date  

2 ~ f BG + f Site + Date  + s Carrion 

11.075330 

9.050258 

1005.986 

1030.625 

1 ~ f BG + f Site + s SeaLevel + s Carrion s Date 

2 ~ f BG + f Site + s Time +s Carrion + s Date 

19.90647 

18.26077 

978.9979 

983.4252 

1 ~ f BG + f Site + f Carrion + s SeaLevel + s Date 

2 ~ f BG + f Site +f Date + s SeaLevel + s Carrion  

12.56086 

13.10045   

996.3519 

1018.0026 

1 ~ f BG + f Site + f Carrion + s SeaLevel + s Date 

2 ~ f Site + f Carrion + s SeaLevel + s Date 

3 ~ f Site + f Carrion + s SeaLevel + s Date  

12.56086 

11.61642 

11.61192 

996.3519 

994.3872 

994.3793 

1 ~ f Site + f Carrion + s SeaLevel + s Date 

2 ~ f Site + f Carrion + s SeaLevel + s(Date, by Site) 

11.61642 

14.98552 

994.3872 

999.7193 
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D:Appendix D: Chapter 5 Statistical Outputs 

D.1 Details of experimental carcasses. 

Carcass N Group Collection 

date 

Original 

Location 

Deployment 

date 

Experimental 

Location 

Sex Development 

stage 

Consumption 

stage 

Weight 

(kg) 

Girth 

(cm) 

Length 

(cm) 

Nose 

to 

scalpo 

(cm) 

Blubber 

thickness 

(mm) 

1  1 27-Oct Rona 28-Oct Cross park F 1 A 13.7 52.6 91.0 36.0 7.0 

2 1 27-Oct Rona 28-Oct Cross park F 1 A 14.5 55.2 85.0 32.0 8.0 

3 1 29-Oct Kirkhaven 29-Oct Far Cross Park F 1 A 11.5 47.4 84.5 32.0 7.0 

4 2 06-Nov Rona 08-Nov Rona M Starveling A 13.6 49.6 99.0 45.0 1.5 

5 / 07-Nov Pilgrim Haven 08-Nov Rona M 2 A 13.6 50.0 93.0 43.0 1.5 

6 2 07-Nov Pilgrim Haven 08-Nov Rona M 1 A 14.3 48.0 102.0 43.0 1.8 

7 2 08-Nov Rona 09-Nov Loan M 2 A 14.8 59.2 101.0 45.0 7.0 

8 2 09-Nov Loan 09-Nov Loan M 1 B 11.5 50.6 95.0 36.0 8.0 

9 / 11-Nov Rona 14-Nov Rona M Starveling B 12.4 49.6 102.0 40.0 1.0 

10 3 22-Nov Loan 22-Nov Loan M 1 B 10.8 50.8 95.0 38.0 9.0 

11 3 25-Oct Rona 17-Nov Kirkhaven M 2 B 12.1 52.0 97.0 43.0 10.0 

12 cage 18-Nov Pilgrim Haven 19-Nov Byres M 1 A 12.4 48.1 93.5 36.0 6.5 

13 cage 18-Nov Pilgrim Haven 19-Nov Byres M 1 A 9.4 41.8 90.0 37.0 3.0 

14 cage 18-Nov Pilgrim Haven 19-Nov Byres F 1 A 14.3 51.8 99 38.0 5.0 

  



Appendix D           186 

D.2 Details of placenta events. 

Observation 
Event 

type 
Location Date Mass (kg) 

Energy 

Density 

(MJ kg
-1

) 

Start time 

(hh:mm) 

Duration 

(hh:mm) 

1 experimental Rona 02-Nov 1.42 22.17 10:22 05:34 

2 experimental Loan 03-Nov 1.42 22.47 09:47 00:04 

3 experimental Loan 04-Nov 1.91 22.10 09:23 00:53 

4 experimental Loan 10-Nov 1.46 20.30 10:44 00:13 

5 experimental Loan 15-Nov 1.19 20.33 10:38 01:23 

6 experimental Loan 17-Nov 1.81 23.49 11:45 01:50 

7 experimental Rona 21-Nov 1.63 21.81 10:19 00:03 

8 natural Loan 03-Nov 1.57 21.81 15:47 00:30 

9 natural Loan 03-Nov 1.57 21.81 10:42 00:16 

10 natural Loan 05-Nov 1.57 21.81 14:33 01:04 

11 natural Cross Park 07-Nov 1.57 21.81 16:28 00:1 

12 natural Loan 07-Nov 1.57 21.81 15:50 00:22 

13 natural Rona 08-Nov 1.57 21.81 11:57 00:16 

14 natural Rona 11-Nov 1.57 21.81 10:44 00:13 

15 natural Loan 14-Nov 1.57 21.81 15:15 00:52 

16 natural Loan 26-Nov 1.57 21.81 12:29 00:42 
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D.3 Details of the scavenging activity performed by adult and juvenile great black-backed gulls on experimental carcasses. 

Carcass 
N 

Group Opener 
Adult 
MaxN 

Juvenile 
MaxN 

Adult 
feeding 

time 
(min) 

Juvenile 
feeding 

time 
(min) 

Consumed 
carcass 

(kg) 

 
Adult 

VS 
Juvenile 

Competition 
Juvenile 

VS 
Juvenile 

 
Adult 

VS 
Adult 

1 1 mice 1 1 3928 2704 9.29 13 3 5 

2 1 adult GBBG 2 1 1282 2978 4.99 1 1 1 

3 1 juv GBBG 1 2 261 808 5.81 2 3 1 

4 2 adult GBBG 1 1 955 262 2.61 4 0 5 

5 / not opened / / 115 86 0.42 1 1 1 

6 2 juv GBBG 1 1 162 857 3.19 8 4 1 

7 2 juv GBBG 2 1 1048 1679 3.81 2 0 3 

8 2 adult GBBG 2 1 1926 1116 5.67 9 0 1 

9 / not opened / / 9 59 0.31 0 0 1 

10 3 
mice and 

adult GBBG 
2 1 3045 375 4.22 9 0 4 

11 
 

3 unknown 1 1 529 3437 7.01 5 3 1 
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D.4 Model selection for mass loss (kg interval-1) of carcasses VS feeding activity (minutes interval-1) of gulls using Linear mixed effect 
model (LMM). 

LMM Mass loss VS Feeding activity 

Model df AIC BIC LogLik Test Chisq df L. Ratio p-value 

1 ~ Feeding * Stage + random (Carcass) 

2 ~ Feeding + Stage + random (Carcass) 

3 ~ Feeding + random (Carcass) 

4 ~ 1 (null) + random (Carcass) 

6     

5 

4 

3 

259.4406 

243.948 

240.5538 

266.1960 

273.732 

255.9206 

250.1806 

273.4525 

-123.7203 

-116.9742 

-116.2769 

-130.0980 

 

1 vs 2   

2 vs 3 

3 vs 4 

 

1 

1 

1 

 

27.642207 

1.394554 

13.492236  

 

<.0001 

0.2376 

0.0002 

 

D.5 Model selection for feeding activity (minutes day-1) of gulls VS experimental day (1/34) using General linear mixed model, family 
Poisson (GLMM). 

GLMM Feeding activity VS Experimental day 

Model df AIC BIC LogLik Test Chisq df Chisq Pr (>Chisq) 

1 ~ Stage * Expday + random (Carcass) 

2 ~ Stage + Expday + random (Carcass) 

3 ~ Expday + random (Carcass) 

4 ~ 1 (null) + random (Carcass) 

5     

4 

3 

2 

52408.5 

52458.1 

52540.8 

57907.6 

52428.3 

52474.0 

 52552.7 

57915.5 

-26199.3 

-26225.0 

-26267.4 

-28951.8 

 

1 vs 2   

2 vs 3 

3 vs 4 

 

1 

1 

1 

 

51.583 

84.689 

5368.771 

 

6.863e-13 

< 2.2e-16 

< 2.2e-16 
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D.6 Model selection for feeding activity (minutes hour-1) of gulls VS hours of the day (1-24) using general additive mixed model, family 
binomial (GAMM). 

GAMM Feeding activity  VS Hour 

Model  df AIC intercept 

1 ~ f Stage + s Hour 

2 ~ f Stage + s Hour + random(Carcass) 

3 ~ f Stage + s Hour + random(Carcass) + AR1 

4 ~ f Stage + s (Hour, by = Stage) 

7.368 

4.286 

3.858 

Ad: 3.870 

Juv: 6.423 

155864.05 

45129.36 

45063.82 

45197.54 

3.2673 

2.83571 

2.8347 

2.8186 
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D.7 Details of the scavenging activity performed by adult and juvenile great black-backed gulls during experimental and natural 
placenta events. 

Obs Type 
First 

Arrival 
(min) 

Adult 
MaxN 

Juvenile 
MaxN 

Adult 
feeding 

time 
(min) 

Juvenile 
feeding 

time 
(min) 

Consumed  
placenta 

(%) 

 
Adult 

VS 
Juvenile 

Competition 
Juvenile 

VS 
Juvenile 

 
Adult 

VS 
Adult 

1 experimental / 0 0 0.00 0.00 0 0 0 0 

2 experimental 0.00 1 11 0.00 3.68 100 0 0 0 

3 experimental 41.50 1 6 0.55 9.48 100 6 13 0 

4 experimental 2.00 0 1 0.00 7.73 20 0 0 0 

5 experimental 6.58 2 3 0.22 6.55 100 2 8 0 

6 experimental 8.65 3 5 7.10 9.65 95 7 6 0 

7 experimental 0.00 6 5 1.18 1.33 50 12 1 2 

8 natural 0.00 1 11 0.42 15.82 95 8 57 0 

9 natural 0.00 4 6 3.18 7.73 95 16 31 1 

10 natural 2.92 3 1 2.72 4.53 33 3 0 0 

11 natural 1.78 0 1 0.00 7.47 10 0 0 0 

12 natural 2.63 0 2 0.00 7.53 80 0 0 0 

13 natural 0.00 5 6 16.45 1.15 NA 22 2 3 

14 natural 0.00 4 15 2.97 10.45 100 7 1 0 

15 natural 39.85 3 5 2.42 5.33 50 5 11 0 

16 natural 0.00 6 4 32.27 5.45 90 28 2 19 
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