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Abstract

The structure of three-dimensional crack tip fields has been examined under elastic 

perfectly-plastic conditions using both three-dimensional boundary layer formulations and 

full-field solution of single edge notched bend bars and centre cracked tension panels. The 

nature of the stress fields was examined at the crack tip (r = 0 ) and at a distance of r = 

2J/cTo as a function of load level and thickness. The three-dimensional nature of the crack 

tip fields has been compared with the limiting cases of plane strain and plane stress. The 

proximity to plane strain has been assessed using a parameter related to the out-of-plane 

stress deviator. The proximity to plane stress has been assessed using a parameter related 

to the radial stress deviator. At the intersection of the free surface and the crack tip, an 

elastic perfectly-plastic comer field which is different to the plane stress field is shown to 

develop. Along the crack front, in specimens of different thickness, a family of asymptotic 

fields develop which feature a constant stress sector. Within this sector the fields differ 

both hydrostatically and deviatorically but are similar in respect of the maximum stress 

deviator. This allows the level of the constraint to be assessed by a single parameter which 

quantifies both the change in the maximum principal stress and the mean stress.

A simple expression for out-of-plane constraint loss in SENB and CCP specimens is 

proposed. In CCP specimens, constraint loss arises from both in-plane and out-of-plane 

effects. In-plane constraint loss can be estimated using the T-stress and this effect is then 

combined with out-of-plane constraint loss. At any given section, constraint loss in any 

thickness specimen can be unified into a single relationship. This allows the quantification 

of out-of-plane constraint loss through a parameter based on J and the plate thickness.

Finally, a three-dimensional constraint based failure methodology based on Failure 

Assessment Diagrams has been proposed using the analytical expression for constraint 

loss. The failure assessment scheme has been validated using experimental data on the 

effect of thickness on toughness.
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formulation for Qfar = 1, 3, 5, 8 , 20 at (a) the midplane, (b) the 
quarterplane and (c) the free surface non-dimensionalised Jioc/Gq.

Figure 5.7 The plastic zone determined in a non-hardening boundary layer 232
formulation for £2far = 8 for (a) the midplane, (b) the quarter plane 
and (c) the free surface non-dimensionalised by t at different Tapp.

Figure 5.8 The plastic zone determined in a non-hardening boundary layer 233
formulation for Ofar = 8 at (a) the midplane, (b) the quarter plane 
and (c) the free surface non-dimensionalised by Jioc/cto at different
T a p p .

Figure 5.9 The plastic zone for a non-hardening SENB B/(W-a) = 1 at (a) the 234
midplane, (b) the quarter plane and (c) the free surface non- 
dimensionalised by t.

Figure 5.10 The plastic zone for a non-hardening SENB B/(W-a) = 1 at (a) the 235
midplane, (b) the quarter plane and (c) the free surface non- 
dimensionalised by Jioc /Go.

Figure 5.11 The plastic zone for a non-hardening SENB B/(W-a) = 0.5 at (a) the 236
midplane, (b) the quarterplane and (c) the free surface non- 
dimensionalised by t.

Figure 5.12 The plastic zone for non-hardening SENB B/(W-a) = 0.5 at (a) the 237
midplane, (b) the quarter plane and (c) the free surface non-
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dimensionalised by Jioc/Gq.

The plastic zone for a non-hardening SENB B/(W-a) = 0.1 at (a) the 238 
midplane, (b) the quarterplane and (c) the free surface non- 
dimensionalised by t.

The plastic zone for a non-hardening SENB B/(W-a) = 0.1 at (a) the 239 
midplane, (b) the quarterplane and (c) the free surface non- 
dimensionalised Jioc/CTo-

The plastic zone for a non-hardening CCP specimen B/(W-a) = 1 at 240 
(a) the midplane, (b) the quarterplane and (c) the free surface non- 
dimensionalised by t.

The plastic zone for a non-hardening CCP specimen B/(W-a) = 1 at 241 
(a) the midplane, (b) the quarter plane and (c) the free surface non- 
dimensionalised by Jioc/Go.

The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.5 242 
at (a) the midplane, (b) the quarter plane and (c) the free surface 
non-dimensionalised by t.

The plastic zone for a non-hardening CCP specimen B/(W-a)=0.5 at 243 
(a) the midplane, (b) the quarterplane and (c) the free surface non- 
dimensionalised JiocMo.

The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.1 244 
at (a) the midplane, (b) the quarter plane and (c) the free surface 
non-dimensionalised by t.

The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.1 245 
at (a) the midplane, (b) the quarterplane and (c) the free surface 
non-dimensionalised Jioc/cTo.

The boundary layer formulation asymptotic polar stresses for Qfar = 246 
1, 3, 5, 8 , 20 at the midplane xa/t = 0. The solid lines represent the 
two-dimensional plane strain solution.

The boundary layer formulation asymptotic Cartesian stresses for 246 
Qfar = 1, 3, 5, 8 , 20 at the midplane xg/t = 0. The solid lines 
represent the two-dimensional plane strain solution.

The boundary layer formulation asymptotic polar stresses for Ofar = 247 
1, 3, 5, 8 , 20 at the quarterplane xg/t = 0.24. The solid lines represent 
the two-dimensional plane strain solution.

Figure 5.24 The boundary layer formulation asymptotic Cartesian stresses for 247
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Figure 5,25 

Figure 5.26 

Figure 5.27

Figure 5.28

Figure 5.29

Figure 5.30

Figure 5.31

Figure 5.32

Figure 5.33 

Figure 5.34 

Figure 5.35

Qfar = 1, 3, 5, 8 , 20 at the quarterplane xs/t = 0.24. The solid lines 
represent the two-dimensional plane strain solution.

The boundary layer formulation asymptotic polar stresses for Qfar = 
1, 3, 5, 8 , 20 at the free surface xg/t = 0.5.

248

The boundary layer formulation asymptotic Cartesian stresses for 248 
Qfar = 1, 3, 5, 8 , 20 at the free surface xg/t = 0.5.

The hoop stress Gee at load levels Jfar^OoBot = 1, 3, 5, 8 , 20 through 249
the thickness, Tapp = 0. The broken line determined from a boundary
layer formulation indicates the two-dimensional plane strain field
for Gee.

The radial stress Gn- at load levels JfaJ(5 oBot = 1, 3, 5, 8 , 20 through 250 
the thickness, Tapp = 0. The broken line determined in a boundary 
layer formulation indicates the two-dimensional plane strain field 
for Grr.

The shear stress Gre at load levels JfarlOoBot = 1, 3, 5, 8 , 20 through 251
the thickness, Tapp = 0. The broken line determined in a boundary 
layer formulation indicates the two-dimensional plane strain field 
for Gr0.

The direct stress Gh at load levels JjaJOoBot = 1, 3, 5, 8 , 20 through 252
the thickness, Tapp = 0. The broken line determined in a boundary 
layer formulation indicates the two-dimensional plane strain field 
for Gii.

The direct stress G22 at load levels 7/o,/Go6o? = 1, 3, 5, 8 , 20 through 253
the thickness, Tapp = 0. The broken line determined in a boundary 
layer formulation indicates the two-dimensional plane strain field 
for G22.

The shear stress Gn at load levels JfarlOoEot = 1, 3, 5, 8 , 20 through 254 
the thickness, Tapp = 0. The broken line determined in a boundary 
layer formulation indicates the two-dimensional plane strain field 
for Gi2.

The direct stress G33 at load levels JjaJOoBot = 1, 3, 5, 8 , 20 through 255 
the thickness, Tapp = 0 .

The mean stress Gm at load levels JfmJ^oBot = 1, 3, 5, 8 , 20 through 256 
the thickness, Tapp = 0 .

The out-of-plane stress G13 at load levels J/â GoEô  = 1, 3, 5, 8 , 20 257 
through the thickness, Tapp = 0. The diamond markers show the
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stress at the midplane while the circular markers show the stress at 
the free surface.

Figure 5.36 The out-of-plane stress G23 at load levels JfajBSo^ot = 1, 3, 5, 8 , 20 258
through the thickness, Tapp = 0 .

Figure 5.37 The Mises stress cflcF^ at load levels JfaJ<3o^ot = 1, 3, 5, 8 , 20
through the thickness, Tapp = 0 .

Figure 5.38 The modified boundary layer formulation asymptotic polai’ stresses 260
for Qfar = 8 with Tapp 0 , -0.5Go and +0.5Oo at the midplane xs/t = 0 .
The solid lines represent the two-dimensional plane strain solution 
(T = 0).

Figure 5.39 The modified boundary layer formulation asymptotic Cartesian 260
stresses for Qfar = 8 with Tapp 0 , -0.5cTo and +0.5Go at the midplane 
Xs/t = 0. The solid lines represent the two-dimensional plane strain 
solution (T = 0).

Figure 5.40 The modified boundary layer formulation asymptotic polar stresses 261
for the load level Qfar = 8 with Tapp 0, -0.5Go and +0.5Go at the 
quarterplane X3/t = 0.24. The solid lines represent the two- 
dimensional plane strain solution (T = 0).

Figure 5.41 The modified boundary layer formulation asymptotic Cartesian 261
stresses for the load level Qfar = 8 with Tapp 0, -0,5Go and +0.5Gq at 
the quarterplane xs/t = 0.24. The solid lines represent the two- 
dimensional plane strain solution (T = 0).

Figure 5.42 The modified boundary layer formulation asymptotic polai’ stresses 262
for Qfar = 8 with Tapp 0, -0.5Go and +0.5Gq at free surface xs/t = 0.5.

Figure 5.43 The modified boundary layer formulation asymptotic Cartesian 262
stresses for Qfar = 8 with Tapp 0 , -0.5Go and +0.5Go at free surface 
X3/t = 0.5.

Figure 5,44 The hoop stress G00 at a load level 7^/GoEof = 8 through the 263
thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for G00.

Figure 5.45 The radial stress Grr at a load level J/ar/OoBot = 8 through the 264
thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for Gn-.
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Figure 5.46 The shear stress Gro at a load level JfaJOoBot = 8 through the 265
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Figure 5.49

Figure 5.51 

Figure 5.52

Figure 5.53 

Figure 5.54 

Figure 5.55 

Figure 5.56

thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for Gre.

The direct stress Gn at a load level Jfar/OoBot = 8 through the 
thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for Gn.

The direct stress G22 at a load level J/arlOoBot = 8 through the 
thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for G22.

thickness, T,app

The Mises stress cr at a load level J/arldoBot = 8 through the 
thickness, Tapp = -0.5 and +0.5.

266

267

The shear stress G12 at a load level Jfarl(JoBot = 8 through the 
thickness, Tapp = -0.5 and +0.5. The broken line determined in a 
boundary layer formulation indicates the two-dimensional plane 
strain field for G12.

268

Figure 5.50 The out-of-plane stress Gn at a load level JfaJOoBot = 8 through the 269
-0.5 and +0.5. The diamond markers show the

midplane stress and the circular markers show the free surface 
stress.

The out-of-plane stress G23 at a load level Jfar/OoBot = 8 through the 270 
thickness, Tapp = -0.5 and +0.5.

271

The asymptotic cylindrical stresses at the midplane for a SENB 272 
specimen B/(W~a) = 1 compared with a two-dimensional plane 
strain field.

The asymptotic Cartesian stresses at the midplane for a SENB 272 
specimen B/(W-a) = 1 compared with a two-dimensional plane 
strain field.

The asymptotic cylindrical stresses at the quarterplane for a SENB 273 
specimen B/(W-a) = 1 compared with a two-dimensional plane 
strain field.

The asymptotic Cartesian stresses at the quarterplane for a SENB 273 
specimen B/(W-a) = 1 compared with a two-dimensional plane 
strain field.
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Figure 5.57

Figure 5.58 

Figure 5.59

Figure 5.60

Figure 5.61

Figure 5,62

Figure 5.64

Figure 5.65

Figure 5.67 

Figure 5.68

Figure 5.69

The asymptotic polar stresses at the free surface for a SENB 

specimen B/(W-a) = 1.

274

The asymptotic Cartesian stresses at the free surface for a SENB 274 
specimen B/(W-a) = 1.

The hoop stress Gee for SENB B/(W-a) = 1 through the thickness, 275 
Tapp = 0. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for Gee,

The stress g^ for SENB B/(W-a) = 1 through thickness, Tapp = 0. 276 
The broken line determined in a boundary layer formulation 
indicates the two-dimensional plane strain field for Gn-.

The shear stress Gre for SENB B/(W-a) = 1 through thickness, Tapp = 277 
0. The broken line determined in a boundary layer formulation 
indicates the two-dimensional plane strain field for Gre.

The direct stress Gn for SENB B/(W-a) = 1 through the thickness, 278 
Tapp = 0. The broken line determined from a boundary layer 
formulation indicates the two-dimensional plane strain for Gn.

Figure 5.63 The direct stress G22 for SENB B/(W-a) = 1 through the thickness, 279
Tapp = 0. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for G22.

The shear stress G12 for SENB B/(W-a) = 1 through the thickness, 280 
Tapp = 0. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for G12.

The mean stress Gm for SENB B/(W-a) = 1 through thickness, Tapp = 281 
0. The broken line determined in a boundary layer formulation 
indicates the two-dimensional plane strain field for Gm.

Figure 5.66 The shear stress Go for SENB B/(W-a) =1 through the thickness, 282
■app 0. The diamond markers and the circular markers indicate the

midplane and the free surface.

The shear stress G23 for SENB B/(W-a) =1 through thickness, Tapp = 283 
0 .

The Mises stress cr/<T̂  for SENB B/(W-a) = I through the 
thickness, Tapp = 0 .

The asymptotic cylindrical stresses at the midplane for a SENB 285 
specimen B/(W-a) = 0.5 compared with a two-dimensional plane
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Figure 5.70
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Figure 5.73 
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Figure 5.75

Figure 5.76

Figure 5.77

Figure 5.78

Figure 5.79

Figure 5.80

Figure 5.81

strain field.

The asymptotic Cartesian stresses at the midplane for a SENB 285 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

The asymptotic cylindrical stresses at the quarterplane for a SENB 286 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

The asymptotic Cartesian stresses at the quarterplane for a SENB 286 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
field.

The asymptotic cylindrical stresses at the free surface for a SENB 287 
specimen B/(W-a) = 0.5.

The asymptotic Cartesian stresses at the free surface for a SENB 287 
specimen B/(W-a) = 0.5.

The hoop stress Gee for SENB B/(W-a) = 0.5 through the thickness. 288 
The broken line determined in a boundary layer formulation 
indicates the two-dimensional plane strain field for Gee.

The radial stress G„- for SENB B/(W-a) = 0.5 through the thickness. 
The broken line determined in a boundary layer formulation 
indicates a two-dimensional plane strain field for Grr.

289

The shear stress Ĝ e for SENB B/(W-a) = 0.5 through the thickness. 290 
The broken line determined in a boundary layer formulation
indicates a two-dimensional plane strain field for Gro.

The mean stress Gm for SENB B/(W-a) = 0.5 through the thickness. 291 
The broken line determined in a boundary layer formulation
indicates a two-dimensional plane strain field for Gm.

The direct stress Gn for SENB B/(W-a) = 0.5 through the thickness. 292 
The broken line determined in a boundary layer formulation
indicates a two-dimensional plane strain field for Gn.

The direct stress G22 for SENB B/(W-a) = 0.5 through the thickness. 293 
The broken line determined in a boundary layer formulation
indicates a two-dimensional plane strain field for G22.

The shear stress G12 for SENB B/(W-a) = 0.5 through the thickness. 294 
The broken line determined in a boundary layer formulation
indicates a two-dimensional plane strain for G12.
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Figure 5.82 The shear stress G u  for SENB B/(W-a) = 0.5 through the thickness. 295
The diamond and circular markers indicate the midplane and the 
free surface.

Figure 5.83 The shear stress G23 for SENB B/(W-a) = 0.5 through the thickness. 296

Figure 5.84 The Mises stress a ! f o r  SENB B/(W-a) = 0.5 through the
thickness.

Figure 5.85 The asymptotic cylindrical stresses at the midplane for a SENB 298
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.86 The asymptotic Cartesian stresses at the midplane for a SENB 298
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.87 The asymptotic cylindrical stresses at the quarterplane for a SENB 299
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.88 The asymptotic Cartesian stresses at the quarterplane for a SENB 299
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.89 The asymptotic cylindrical stresses at the free surface for SENB 300
B/(W-a) = 0.1.

Figure 5.90 The asymptotic Cartesian stresses at the free surface for SENB 300
B/(W-a) = 0.1.

Figure 5.91 The hoop stress dee for SENB B/(W-a) = 0.1 through the thickness. 301
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for O00.

Figure 5.92 The radial stress d̂ r for SENB B/(W-a) = 0.1 through the thickness. 302
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for dn-.

Figure 5.93 The shear stress dre for SENB B/(W-a) = 0.1 through the thickness. 303
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for dre.

Figure 5.94 The mean stress dm for SENB B/(W-a) = 0.1 through the thickness. 304
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for dm.
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Figure 5.95 The direct stress dn  for SENB B/(W-a) = 0.1 through the thickness. 305
The broken line determined in a boundary layer formulation 
indicates the two-dimensional plane strain field for dn.

Figure 5.96 The direct stress d%2 for SENB B/(W-a) = 0.1 through the thickness. 306
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for d 22-

Figure 5.97 The shear stress d n  for SENB B/(W-a) = 0.1 through the thickness. 307
The broken line determined in a boundary layer formulation
indicates the two-dimensional plane strain field for dn.

Figure 5.98 The shear stress d n  for SENB B/(W-a) = 0.1 through the thickness. 308
The diamond and circular markers indicate the midplane and the 
free surface field.

Figure 5.99 The shear stress d23 for SENB B/(W-a) = 0.1 through the thickness. 309

Figure 5.100 The Mises stress o t a ^  for SENB B/(W-a) = 0.1 through the ^^0
thickness

Figure 5.101 The asymptotic cylindrical stresses at the midplane for a CCP 311
specimen B/(W-a) = 1 compared with the two-dimensional plane 
strain field.

Figure 5.102 The asymptotic Cartesian stresses at the midplane for a CCP 311
specimen B/(W-a) = 1 compared with the two-dimensional plane 
strain field.

Figure 5.103 The asymptotic cylindrical stresses at the quarterplane for a CCP 312
specimen B/(W-a) = 1 compared with the two-dimensional plane 
strain field.

Figure 5.104 The asymptotic Cartesian stresses at the quarterplane for a CCP 312
specimen B/(W-a) = 1 compared with the two-dimensional plane 
strain field.

Figure 5.105 The asymptotic cylindrical stresses at the free surface for a CCP 313
specimen B/(W-a) = 1.

Figure 5.106 The asymptotic Cartesian stresses at the free surface for a CCP 313
specimen B/(W-a) = 1.

Figure 5.107 The hoop stress dee for a CCP specimen B/(W-a) = 1 through the 314
thickness. The broken line determined in a boundary layer
foimulation indicates the two-dimensional plane strain field for dee.
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Figure 5.108

Figure 5.109

Figure 5.110

Figure 5.111

Figure 5.112

Figure 5.113

Figure 5.114

Figure 5.115 

Figure 5.116

Figure 5.117 

Figure 5.118 

Figure 5.119

The radial stress Cn- for a CCP specimen B/(W-a) = 1 through the 315 
thickness. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for drr.

The shear stress dre for a CCP specimen B/(W-a) = 1 through the 316 
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dro.

The mean stress dm for a CCP specimen B/(W-a) = 1 through the 317 
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dm.

The direct stress dn for a CCP specimen B/(W-a) = 1 through the 318 
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dn.

The direct stress diz for a CCP specimen B/(W-a) = 1 through the 319 
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d22.

The shear stress d i2 for a CCP specimen B/(W-a) = 1 through the 320 
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d^.

The shear stress d o  for a CCP specimen B/(W-a) = 1 through the 321 
thickness. The diamond and circular markers indicate the midplane 
and the free surface field.

The shear stress d23 for a CCP specimen B/(W~a) = 1 through the 322 
thickness.

The Mises stress cr/cr^for a CCP specimen B/(W-a) = 1 through the 
thickness.

The asymptotic cylindrical stresses at the midplane for a CCP 324 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

The asymptotic Cartesian stresses at the midplane for a CCP 324 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

The asymptotic cylindrical stresses at the quarterplane for a CCP 325 
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.
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Figure 5.120 The asymptotic Cartesian stresses at the quarterplane for a CCP 325
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

Figure 5.121 The asymptotic cylindrical stresses at the free surface for a CCP 326
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

Figure 5.122 The asymptotic Cartesian stresses at the free surface for a CCP 326
specimen B/(W-a) = 0.5 compared with the two-dimensional plane 
strain field.

Figure 5 123 hoop stress dee for a CCP specimen B/(W-a) = 0.5 through the 327
thickness. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for dee.

Figure 5,124 The radial stress dn- for a CCP specimen B/(W-a) = 0.5 through the 328
thickness. The broken line determined in a boundary layer 
formulation indicates the two-dimensional plane strain field for dir.

Figure 5.125 The shear stress dre for a CCP specimen B/(W-a) = 0.5 through the 329
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dre.

Figure 5.126 The mean stress dm for a CCP specimen B/(W-a) = 0.5 through the 330
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dm-

Figure 5.127 The direct stress dn  for a CCP specimen B/(W-a) = 0.5 through the 331
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dn.

Figure 5.128 The direct stress d22 for a CCP specimen B/(W-a) = 0.5 through the 332
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for 022.

Figure 5.129 The shear stress d i2 for a CCP specimen B/(W-a) = 0.5 through the 333
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d i2.

Figure 5.130 The shear stress d i3 for a CCP specimen B/(W-a) = 0.5 through the 334
thickness. The diamond and circular markers indicate the midplane 
and the free surface fields.

Figure 5.131 The shear stress d2s for a CCP specimen B/(W-a) = 0.5 through the 335
thickness.
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Figure 5.132 The Mises stress a ! f o r  a CCP specimen B/(W-a) = 0.5 through
the thickness.

Figure 5.133 The asymptotic cylindrical stresses at the midplane for a CCP 337
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.134 The asymptotic Cartesian stresses at the midplane for a CCP 337
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.135 The asymptotic cylindrical stresses at the quarterplane for a CCP 338
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.136 The asymptotic Cartesian stresses at the quarterplane for a CCP 338
specimen B/(W-a) = 0.1 compared with the two-dimensional plane 
strain field.

Figure 5.137 The asymptotic cylindrical stresses at the free surface for a CCP 339
specimen B/(W-a) = 0.1.

Figure 5.138 The asymptotic Cartesian stresses at the free surface for a CCP 339
specimen B/(W-a) = 0.1.

Figure 5.139 The hoop stress dee for a CCP specimen B/(W-a) = 0.1 through the 340
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dee.

Figure 5.140 The radial stress d^ for a CCP specimen B/(W~a) = 0.1 through the 341
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d^.

Figure 5.141 The shear stress dre for a CCP specimen B/(W-a) = 0.1 through the 342
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dro.

Figure 5.142 The mean stress dm for a CCP specimen B/(W-a) = 0.1 through the 343
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dm.

Figure 5.143 The direct stress dn  for a CCP specimen B/(W-a) = 0.1 through the 344
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for dn.

Figure 5.144 The direct stress d 22 for a CCP specimen B/(W-a) = 0.1 through the 345
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thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d22.

Figure 5.145 The shear stress Gi2 for a CCP specimen B/(W-a) = 0.1 through the 346
thickness. The broken line determined in a boundary layer
formulation indicates the two-dimensional plane strain field for d i2.

Figure 5.146 The shear stress Cn for a CCP specimen B/(W-a) = 0.1 through the 347
thickness. The diamond and circular markers indicate the midplane 
and the free surface fields.

Figure 5.147 The shear stress d 23 for a CCP specimen B/(W-a) = 0.1 through the 348
thickness.

Figure 5.148 The Mises stress g ! a^ for a CCP specimen B/(W-a) = 0.1 through ^49
the thickness.

Figure 5.149 The mean stress ahead crack front from midplane to free surface at 350
load Ufar = 3 between rdo/J = 0 and 10 using a boundary layer
formulation.

Figure 5.150 The mean stress ahead crack front from midplane to free surface at 350
load Ofar = 8 between xgJZ  = 0 and 10 using a boundary layer
formulation.

Figure 5.151 The hoop stress ahead crack front from midplane to free surface at 351
load Ofar = 3 between rOo/J = 0 and 10 using a boundary layer
formulation.

Figure 5.152 The hoop stress ahead crack front from midplane to free surface at 351
load Ofar = 8 between rOo/J -  0  and 10 using a boundary layer
formulation.

Figure 5.153 The mean stress at (a) midplane and (b) free surface for load Qfar = 352
1.3.5 ,  8 , 20 for boundary layer formulation. Broken lines indicate 
two-dimensional plane strain in (a) and plane stress in (b).

Figure 5.154 The hoop stress at (a) midplane and (b) free surface for load ^far = 352
1.3 .5 ,  8 , 20 for boundary layer formulation. Broken lines indicate 
two-dimensional plane strain in (a) and plane stress in (b).

Figure 5.155 Comparison of hoop stress ahead crack front 0 = 0° at radial 353
distance r/t = 0.013 for load level Qfar 1, 3, 5, 8 , 20 and r/t = 1 for 
load level ^far 5, 8 , 20 using boundary layer formulation. The
broken lines indicate a two-dimensional plane strain and plane
stress.
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Figure 5.156 Through thickness variation of opening stress/hoop stress ahead 353 
crack front 0  = 0° at various radial distances for load level Qfar = 8 
using boundary layer formulation. Broken lines indicate two- 
dimensional plane strain and plane stress.

Figure 5.157 The hoop stress ahead crack front from at (a) the midplane and (b) 354
the free surface for SENB B/(W-a) = 1.

Figure 5.158 The hoop stress ahead crack front from at (a) the midplane and (b) 354
the free surface for SENB B/(W-a) = 0.5.

Figure 5.159 The hoop stress ahead crack front from at (a) the midplane and (b) 354
the free surface for SENB B/(W-a) = 0.1.

Figure 5.160 The mean stress ahead crack front for SENB B/(W-a) = 1, at (a) the 355
midplane and (b) the free surface at increasing load levels.

Figure 5.161 The mean stress ahead crack front for SENB B/(W-a) = 0.5, at (a) 355
the midplane and (b) the free surface at increasing load levels.

Figure 5.162 The mean stress ahead crack front for SENB B/(W-a) .= 0.1, at (a) 355
the midplane and (b) the free surface at increasing load levels.

Figure 5.163 The hoop stress ahead crack front at 0 = 0° at load (a) small scale 356
yielding and (b) full plasticity for SENB B/(W-a) = 1.

Figure 5.164 The hoop stress ahead crack front at 0 = 0° at load (a) small scale 356
yielding and (b) full plasticity for SENB B/(W-a) = 0.5.

Figure 5.165 The hoop stress ahead crack front at 0 = 0° at load (a) small scale 356
yielding and (b) full plasticity for SENB B/(W-a) = 0.1.

Figure 5.166 The hoop stress ahead the crack front at (a) the midplane and (b) the 357
free surface at increasing load levels for a CCP specimen B/(W-a) =
1 .

Figure 5.167 The hoop stress ahead the crack front at (a) the midplane and (b) the 357
free surface at increasing load levels for a CCP specimen B/(W-a) =
0.5.

Figure 5.168 The hoop stress ahead the crack front at (a) the midplane and (b) the 357
free surface at increasing load levels for a CCP specimen B/(W-a) =
0 . 1.

Figure 5.169 The mean stress ahead the crack front at (a) the midplane and (b) 358
the free surface at increasing load levels for a CCP specimen B/(W- 
a) = 1.
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Figure 5.170 The mean stress ahead the crack front at (a) the midplane and (b) 358 
the free surface at increasing load levels for a CCP specimen B/(W- 
a) = 0.5.

Figure 5.171 The mean stress ahead the crack front at (a) the midplane and (b) 358
the free surface at increasing load levels for a CCP specimen B/(W- 
a) = 0 .1.

Figure 5.172 The hoop stress along the crack front at r/t = 0.01 to 0.35 at (a) 359
small scale yielding to (b) full plasticity for a CCP specimen B/(W- 
a) = 1.

Figure 5.173 The hoop stress along the crack front at r/t = 0.02 to 0.5 at (a) small 359
scale yielding to (b) full plasticity for a CCP specimen B/(W-a) =
0.5.

Figure 5.174 The hoop stress along the crack front at r/t = 0.1 to 1 at (a) small 359
scale yielding to (b) full plasticity for a CCP specimen B/(W-a) =
0. 1.

Figure 5.175 Comparison of the level of plane strain ahead of the crack front at 360
radial distance r/t = 0.013 at load levels 1,3, 5, 8 and at distance r/t
= 1 at load levels Qfar = 5,8.

Figure 5.176 Through thickness variation of the level of plane strain ahead of the 360
crack front 0 = 0 *̂ at various radial distances for load level Qfar = 8 .

Figure 5.177 In-plane degree of plane strain at 0 = 0° within the plastic zone 361
radius for load 1, 3, 5, 8 , 20 through the thickness. Broken line
corresponds to the plastic zone ahead of the crack.

Figure 5.178 The degree of plane strain in SENB specimens (B/(W-a) = 1) along 362
the crack front at r/t = 0.009 at increasing load levels.

Figure 5.179 The degree of plane strain in. SENB specimens (B/(W-a) = 0.5) 362
along the crack front at r/t = 0,009 at various load levels.

Figure 5.180 The degree of plane strain in SENB specimens (B/(W-a) = 0.1) 362
along the crack front at r/t = 0.009 at various load levels.

Figure 5.181 The degree of plane strain in SENB specimens along the crack front 363
at 0 = 0° in (a) small scale yielding and (b) full plasticity for B/(W- 
a) = 1.

Figure 5.182 The degree of plane strain in SENB specimens along the crack front 363
at 0 = 0° in (a) small scale yielding and (b) full plasticity for B/(W- 
a) = 0.5.
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Figure 5.183 The degree of plane strain in SENB specimens along the crack front 363
at 0 = 0° in (a) small scale yielding and (b) full plasticity for B/(W- 
a) = 0 .1.

Figure 5.184 The degree of plane strain in SENB specimens ahead of the crack 364
front at 0 = O*’ in (a) small scale yielding and (b) full plasticity for 
B/(W-a) =1.

Figure 5.185 The degree of plane strain in SENB specimens ahead of the crack 364
front at 0 = 0° in (a) small scale yielding and (b) full plasticity for 
B/(W-a) = 0.5.

Figure 5.186 The degree of plane strain in SENB specimens ahead of the crack 364
front at 0 = 0 ° in (a) small scale yielding and (b) full plasticity for 
B/(W-a) = 0.1.

Figure 5.187 The degree of plane strain in CCP specimens (BAV-a =1) along the 365 
crack front at increasing load levels at r/t = 0.015.

Figure 5.188 The degree of plane strain in CCP specimens (B/W-a = 0.5) along 365
the crack front at increasing load levels at r/t = 0.032.

Figure 5.189 The degree of plane strain in CCP specimens (B/W-a = 0.1) along 365
the crack front at increasing load levels at r/t = 0.065.

Figure 5.190 The degree of plane strain along the crack front at increasing r/t for 366
a CCP specimen B/(W-a) = 1.

Figure 5.191 The degree of plane strain along the crack front at increasing r/t for 366
a CCP specimen B/(W-a) = 0,5.

Figure 5.192 The degree of plane strain along the crack front at increasing r/t for 366
a CCP specimen B/(W-a) = 0.1.

Figure 5.193 The degree of plane strain ahead of the crack front at small scale 367
yielding to full plasticity in CCP specimens B/(W-a) = 1.

Figure 5.194 The degree of plane strain ahead of the crack front at small scale 367
yielding to full plasticity in CCP specimens B/(W-a) = 0.5.

Figure 5.195 The degree of plane strain ahead of the crack front at small scale 367
yielding to full plasticity in CCP specimens B/(W-a) = 0.1.

Figure 5.196 Proximity to plane stress along the crack front at r = 0 at increasing 368
deformation levels in a boundary layer formulation.

Figure 5.197 Proximity to plane stress at r = 0 in SENB, B/(W-a) = 1 along the 369
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crack front at different deformation levels.

Figure 5.198 Proximity to plane stress at r = 0 in SENB, B/(W-a) = 0.5 along the 369 
crack front at different deformation levels.

Figure 5.199 Proximity to plane stress at r = 0 in SENB, B/(W-a) = 0.1 along the 369
crack front at different deformation levels.

Figure 5.200 Proximity to plane stress in CCP, B/(W-a) = 1 along the crack front 370
at r = 0 at increasing load deformation levels.

Figure 5.201 Proximity to plane stress in CCP, B/(W-a) = 0.5 along the crack 370
front at r = 0  at increasing deformation levels.

Figure 5.202 Proximity to plane stress in CCP, B/(W-a) = 0.1 along the crack 370
front at r = 0  at increasing deformation levels.

Figure 6.1 The hoop stress in a boundary layer formulation as a function of the 378 
plane strain parameter, p, at the crack tip.

Figure 6.2 The mean stress in a boundary layer formulation as a function of the 378
plane strain parameter, p, at the crack tip.

Figure 6.3 The hoop stress as a function of the plane strain parameter, p, for 379
boundary layer formulations and SENB specimens B/(W-a) = 1, 0.5 
and 0.1. The load levels are shown at the midplane.

Figure 6.4 The mean stress as a function of the plane strain parameter, p, for 379
boundary layer formulations and SENB specimens B/(W-a) = 1, 0.5 
and 0.1. The load levels are shown at the midplane.

Figure 6.5 The hoop and the mean stress along the crack front for CCP 381
specimens B/(W-a) = 1, 0.5 and 0.1 at limit load as a function of the 
plane strain parameter, p.

Figure 6.6  The hoop stress at the crack tip parameterised through the plane strain 382
parameter, p, comparing boundary layer formulations and CCP 
specimens, B/(W-a) = 1, 0.5 and 0.1. The load levels are shown at the 
midplane.

Figure 6.7 The mean stress at the crack tip parameterised through the plane 382
strain parameter, p, comparing boundary layer formulations with CCP 
specimens, B/(W-a) = 1, 0.5 and 0.1. The load levels are shown at the 
midplane.



List of Figures 30

Figure 6 8 mean stress as a function of the plane strain parameter, p, at r = ^84
2J/Oo for boundary layer formulations.

Figure 6.9 The hoop stress as a function of the plane strain parameter, p, at r = 384
21/Go for boundary layer formulations.

Figure 6 10 mean stress as a function of the plane strain parameter, p, at r =
2J/Go for SENB specimens B/(W-a) = 1, 0.1 and 0.5. The load levels
are the midplane values.

Figure 6.11 The hoop stress as a function of the plane strain parameter at r = 2J/CTo 386 
for SENB specimens B/(W-a) = 1, 0.1 and 0.5. The load levels are the 
midplane values.

Figure 6.12 The mean stress in boundary layer formulation and SENB specimens 387 
as a function p at low load levels at r = 2J/ao.

Figure 6.13 The hoop stress in boundary layer formulation and SENB as a 387
function of p specimens at low load levels at r = 2J/Go.

Figure 6.14 The mean stress as a function of the plane strain parameter at different 388
sections (xg/t) across the thickness for SENB specimens at r = 2J/Go.
The diamond, square and triangular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 6.15 The hoop stress as a function of the plane strain parameter at different 389
sections (xs/t) across the thickness for SENB specimens at r = 2J/Go.
The diamond, square and triangular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 6.16 The mean stress as a function of the plane strain parameter at r = 390
2J/Go at limit load in CCP specimens B/(W-a) = 1, 0.5 and 0.1. The 
load levels are the midplane values.

Figure 6.17 The mean stress as a function of the plane strain parameter at r = 391
2J/Go at limit load in CCP specimens B/(W-a) = 1, 0.5 and 0.1. The 
load levels are midplane values.

Figure 6.18 The mean stress as a function of the plane strain parameter at different 392
sections (xg/t) across the thickness at limit load for CCP specimens at 
r = 2J/Go. The diamond, square and triangular markers represent the 
thick, intermediate thickness and thin specimens.

Figure 6.19 The hoop stress as a function of the plane strain parameter at different 393
sections (xg/t) across the thickness at limit load for CCP specimens at 
r = 2J/Oo. The diamond, square and triangular markers represent the 
thick, intermediate thickness and thin specimens.
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Figure 7.1 The crack tip dimensional length scales associated with (a) two- 405
dimensional, (b) semi-infinite three-dimensional boundary layer 
formulations and (c) finite three-dimensional problems.

Figure 7.2 The mean stress at the crack tip, r = 0 from the midplane to near the 406
free surface as a function of Jjoc/zcTo in a boundary layer formulation 
at load levels Qfar =1 ,3 ,  5, 8 , 20.

Figure 7.3 The hoop stress at the crack tip, r = 0 from the midplane to near the 406
free surface as a function of Jiœ/zGo in a boundary layer formulation 
at load levels Qfar =1 ,3 ,5 ,8 ,20 .

Figure 7.4 The mean stress at the crack tip (r = 0) of SENB specimens of 407 
different thickness at different sections (z/t) as a function of Jioc/zGo.
The square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.5 The hoop stress at the crack tip (r = 0) at different sections along the 408
crack front as a function of Jioc/zGo, in SENB specimens of different 
thickness. The square, triangular and circular markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.6 Compilation of plots from Figure 7.3 (a to f) for the mean stress at r = 409
0, as a function of Jioc/zGo for SENB specimens of different thickness.
The square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.7 Compilation of plots from Figure 7.7 (a to f) for the hoop stress at r = 409
0, as a function of Jioc/zGo for SENB specimens of different 
thicknesses. The square, triangular and circular markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.8 The hoop stress at the crack tip (r = 0) at different sections (z/t) as a 410
function of Jioc/zGo for CCP specimens of different thicknesses. The 
square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.9 The mean stress at the crack tip (r = 0) at different sections (z/t) for 411
CCP specimens of different thickness as a function of Jioc/zGq. The 
square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.10 Compilation of plots from Figure 7.4 (a) to (f) for the mean stress at r 412 
= 0, as a function of Jioc/zGq for CCP specimens of different 
thicknesses. The square, triangular and circular markers represent the
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thick, intermediate thickness and thin specimens.

Figure 7.11 Compilation of plots from Figure 7.8 (a) to (f) for the hoop stress at r 412
= 0, as a function of Jioc/zGo for CCP specimens of different 
thicknesses. The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.12 The mean stress at the crack tip (r = 0) along the crack front at 413
deformation level, Jioc/zcJo ^  0.05 along the crack front for boundary
layer formulations, SENB and CCP specimens independent of 
thickness.

Figure 7.13 The hoop stress at the crack tip (r = 0) along the crack front at 413
deformation level, Jioc/zGo > 0.05 along the crack front for boundary
layer formulations, SENB and CCP specimens independent of 
thickness.

Figure 7.14 The mean stress at r = 2J/Go at different sections (z/t) as a function of 414 
Jioc/zGo at load levels, Qfar = 1, 3, 5, 8 , 20 for a boundary layer 
formulation.

Figure 7.15 The hoop stress at r = 2J/ao at different sections (z/t) as a function of 414
Jioc/zGo at load levels, Qfar = 1 , 3 ,  5, 8 , 20 for a boundary layer
formulation.

Figure 7.16 The mean stress as a function of Jioc/zGo for SENB specimens of 415
different thickness at different sections (z/t). The square, triangular 
and plus markers represent the thick, intermediate thickness and thin 
specimens.

Figure 7.17 The hoop stress as a function of Jioc/zGo for SENB specimens of 416
different thicknesses at different sections (z/t). The square, triangular 
and circular markers represent the thick, intermediate thickness and 
thin specimens.

Figure 7.18 Compilation of the mean stress plots at rOo/J = 2 from Figure 7.16 as 417
a function of Jioc/zCTq at different sections (z/t) for SENB specimens.
The square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.19 Compilation of the hoop stress plots at ra J J  = 2 from Figure 7.17 as a 417
function of Jioc/zcJq at different sections (z/t) for SENB specimens.
The square, triangular and circular markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.20 The mean stress as a function of Jioc/zGo for CCP specimens of 418
different thicknesses at identical sections (z/t). The square, triangular
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and plus markers represent the thick, intermediate thickness and thin 
specimens.

Figure 7.21 The hoop stress as a function of Jioc/zĉ o for CCP specimens of 419
different thicknesses at identical sections (z/t). The square, triangular 
and circular markers represent the thick, intermediate thickness and 
thin specimens.

Figure 7.22 Compilation of the mean stress plots at rGo/J = 2 from Figure 7.20 as 420
a function of Jioc/zcto for CCP specimens. The square, triangular and
circular markers represent the thick, intermediate thickness and thin 
specimens.

Figure 7.23 Compilation of the hoop stress plots at rOo/J = 2 from Figure 7.21 as a 420
function of Jioc/zGq for CCP specimens. The square, triangular and 
circular markers represent the thick, intermediate thickness and thin 
specimens.

Figure 7.24  The plane strain parameter as a function of Jioc/zGo at the crack tip (r = 421
0 ) at different sections (z/t) for a boundai'y layer formulation at load 
levels, Qfar = 1 , 3 , 5 , 8 , 2 0 .

Figure 7.25 The plane strain parameter at the crack tip (r = 0) as a function of 422
Jioc/zOo for different thickness at identical sections (z/t) for SENB 
specimens. The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.26 The plane strain parameter at the crack tip (r = 0) as a function of 423
Jioc/zGo for different thickness at identical sections (z/t) for CCP 
specimens. The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.27 Compilation of the plane strain parameter plots from Figure 7.25 as a 424
function of Jioc/zGq for SENB specimens at different sections (z/t) and 
thickness. The square, triangular and plus markers represent the thick, 
intermediate thickness and thin specimens

Figure 7.28 Compilation of the plane strain parameter plots from Figure 7.26 as a 424
function of Jioc/zGq for CCP specimens at different sections (z/t) and 
thickness. The square, triangular and plus markers represent the thick, 
intermediate thickness and thin specimens.

Figure 7.29 The plane strain parameter as a function of Jioc/zGo at r = 2J/Gq at 425
different sections (z/t) for a boundary layer formulation at load levels,
Qfar = 1, 3, 5, 8, 20.
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Figure 7.30 The plane strain parameter as a function of Jioc/zGo at r = 2J/CTo, at 426 
identical sections (z/t) for SENB specimens. The square, triangular 
and plus markers represent the thick, intermediate thickness and thin
specimens.

Figure 7.31 The plane strain parameter as a function of Jioc/zGq at r = 2J/Go, at 427 
identical sections (z/t) for CCP specimens. The square, triangular and 
plus markers represent the thick, intermediate thickness and thin 
specimens.

Figure 7.32 Compilation of the plane strain parameter as a function of Jioc/zOo 428 
plots from Figure 7.30 at r = 2J/ao at different sections (z/t) for SENB 
specimens. The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.33 Compilation of the plane strain parameter as a function of Jioc/zGq 428 I
plots from Figure 7.31 at r = 2J/Go at different sections (z/t) for CCP 
specimens. The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.

Figure 7.34 The hoop stress as a function of Jioct/ẑ cfo at different sections (z/t) for 429
a boundary layer formulation at the crack tip at deformation, Qfar = 1,
3, 5, 8 , 20.

Figure 7.35 The mean stress as a function of Jioct/ẑ Go at different sections (z/t) for 429
a boundary layer formulation at the crack tip at deformation, Qfar = 1,
3, 5, 8 , 20.

Figure 7.36 The mean and the hoop stress as a function of Jioct/ẑ Go at different 430
sections (z/t) for SENB specimens at the crack tip at limit load.

Figure 7.37 The mean and the hoop stress as a function of Jioct/ẑ Go at different 430
sections (z/t) for CCP specimens at the crack tip at limit load.

Figure 7.38 The mean and the hoop stress as a function of Jioct/ẑ Go at different 431
sections (z/t) for a boundary layer formulation at r = 2J/ao at load 
levels Qfar =1,3 ,  5, 8 and 20.

Figure 7.39 The mean and the hoop stress as a function of Jioct/ẑ Go at different 432
sections (z/t) for SENB specimens at r = 2J/ao at limit load.

Figure 7.40 The mean and the hoop stress as a function of Jioct/ẑ Go at different 432
sections (z/t) for CCP specimens at r = 2J/Go at limit load.
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Figure 8.1 Aam°^/ao and A gqq^^/Gq as a function of Jioct/ẑ Go at r = 2J/Go for a 449
boundary layer formulation at z/t = 0.5, 0.25 and 0.18. The filled 
markers represent the mean stress, and the unfilled markers represent 
the hoop stress.

Figure 8.2 AGm°̂ /cto and Aaee° /̂Go as a function of 4Jioc/tGo in SENB specimens 450
at r = 2JOo at the midplane. The square, triangular and circular 
markers indicate thick, intermediate thickness and thin specimens.
The filled and unfilled markers represent Aam°‘’/cTo and A gqq^^/Go.

Figure 8.3 Aam°̂ /<7o and A gbq°^/Co as a function of 4Jjoc/tao for CCP specimens at 450
r = 2JGo at the midplane. The square, triangular and circular markers 
indicate the thick, intermediate thickness and thin specimens. The 
filled and unfilled markers represent AGm̂ /̂Oo and A gqq°^/Go.

Figure 8.4 The gradient of the curve indicates the constraint sensitivity, Yop» for 451
SENB specimens.

Figure 8.5 The gradient of the curve indicates the constraint sensitivity, Yop for 451
CCP specimens.

Figure 8.6 Curve fit of equations (8.9) and (8.11) at the midplane for difference 452
of stress as a function of deformation for (a) SENB and (b) CCP in 
geometries with different thickness. The circular, triangular and 
square markers represent the thick, intermediate thickness and thin 
specimens while the filled and unfilled markers represent Agbq, AOm.

Figure 8.7 The SENB through thickness variation of the effect of thickness on J- 453
Dominance (t > 30 Jc/Gq).

Figure 8.8 Schematic of failure locus Jc as a function of AG(m, 09). 454

Figure 8.9 The trend of load history modelled using equations (8.9) for bend 454
specimens using constraint sensitivity, y  = 3 and constraint loss 
constant, (3 = 1.82 at different thicknesses (t4 < t] < t2 < ti) and failure 
locus based on Betegon’s (1990) data expressed in equation (8.12).

Figure 8.10 The effect of thickness on toughness from equation (8.14) 455
representing a crack in bend bar, P senb = L82, y  = 3. The markers 
represent the experimental cracked bend data of Irwin (1964) for 
7075-T6 Aluminium alloy tabulated in Table 8.2.

Figure 8.11 The effect of thickness on toughness of cracked bend bar from 456
equation (8.14). The markers represent the experimental cracked bend 
data for 2024-T4 Aluminium alloy of Irwin (1964) tabulated in Table 
8.2 .
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Figure 8.12 The failure assessment diagram showing failure assessment line 457 
(FAL) for SENB specimen in plane strain for a hardening exponent, n 
=  10.

Figure 8.13 The failure assessment line for out-of-plane constraint loss in SENB 457
specimen at different thickness, t, and at fixed ligament, (W-a), for a 
hardening exponent, n = 10. The continuous bold line indicates a 
SENB FAL in plane strain condition. (W-a) = 25 mm.

Figure 8.14 Failure assessment lines for in-plane and out-of-plane constraint loss 458
in CCP specimen at different thickness, t, and at fixed ligament, (W- 
a) = 25 mm, for a hardening exponent, n = 13. The t = oo indicate FAL 
for CCP in in-plane plane strain condition.

Figure 8.15 The effect of load on in-plane and out-of-plane constraint loss for 458
CCP specimens for a hardening exponent, n = 13. The continuous 
lines indicate in-plane and out-of-plane effects in CCP while broken 
lines indicate in-plane effect in CCP for (W-a)/t = 2. The bold line 
indicate FAL for CCP t = oo which represents in-plane, plane strain 
condition.

Figure 8.16 Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 460
7075-T6 Aluminium alloy, n = 10. The ligament (W-a) = 25.4 mm. t 
= oo indicates the plane strain FAL limit.

Figure 8.17 Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 460
2024-T4 Aluminium alloy, n = 10. The ligament (W-a) = 203.2 mm. t 
= oo indicates the plane strain FAL limit.

Figure 8.18 Failure Assessment Diagram, Rolfe and Novack (1970), SENB 18 Ni 461
Maraging Steel, n = 10. The ligament (W-a) = 75 mm. t = indicates 
the plane strain FAL limit.

Figure 8.19 Failure Assessment Diagram, Jones and Brown (1970), SENB Ti 6A1- 461
6V-2Sn Titanium Alloy, n = 10. The ligament (W-a) = 13.76 mm. t = 
oo indicates the plane strain FAL limit.

Figure 8.20 The effect of constraint sensitivity, ot, using Rolfe and Novack (1970) 462
material data at (W-a)/t = 150.
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List of Tables

Table 2.1 Numerical values of/(a/W) for centre crack panels after Tada et al. 100
(1973).

Table 2.2 (a) Values of Kj and p for single edge notched bars in tension, (b) 113
Values of Ki and p for single edge notched bars in pure bending,
(c) K i and P for single edge notched bars in three-point bending
after Sham (1991).

Table 2.3 Values of Ki and P for centre cracked panels after Levers and 114
Radon (1983).

Table 2.4 Curve fitting constants after Betegon and Hancock (1991). 115

Table 4.1 Dimensions of the SENB and CCP specimens. 182

Table 4.2 Three-dimensional thin plate boundary layer formulation elastic 188
solution compared against Nakamura and Parks (1988a and 1992 
solutions which are represented as ^ and #).

Table 4.3 SENB elastic correlation for plane strain and three-dimensional 188
models B/(W-a) = 1 with aAV = 0.5 at the midplane (xs/t = 0).

Table 5.1 Load levels along the crack front of three-dimensional boundary 222
layer formulations. For load = 20, the near free surface data is 
located at xg/t = 0,47.

Table 5.2 Load levels along the crack front of three-dimensional modified 222
boundary layer formulations at a remote load 8 with positive and 
negative applied T-stress.

Table 5.3 The radius of the plastic zone at 0 = 0° for three-dimensional thin 223
plate boundary layer formulations for a range of load levels.

Table 5.4 SENB full-field specimens characterised in terms of local load level 224
along the crack front, and J-Dominance parameter, c
GjJioc.for (a) BAV-a = 1 (b) 0.5 and (c) 0.1. The limit load is given 
in terms of as M/Mo where Mo is limit load in plane strain three- 
point-bend and M is bend load as given in equations (4.4) and (4.5).
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Table 5.5 CCP full-field specimens characterised in terms of load level along 225
the crack front for and J-Dominance parameter, c gJ 3 ioc>
The limit load is given in terms of as P/Po where Po is limit load in 
centre crack tension panel and P  is bend load as given in equations 
(4.7) and (4.9).

Table 5.6 The sections of the three-dimensional specimens (xs/t) and (z/t) at 226
which data are extracted.

Table 6.1 Curve fitting constants for a modified boundaiy layer formulation 380
after Karstensen (1996).

Table 6.2 The mean and the hoop stress estimated due to in-plane constraint 380
loss from equation (6.5) using three-dimensional CCP specimens 
limit load values.

Table 6.3 The hoop and the mean stress curve fitting constants Aj, A% and A3 383
values for boundary layer formulations of Figures 6.1 and 6.2 and 
SENB curves of Figures 6.4 and 6.5 as related through the general 
equation 6 .1.

Table 6.4 The hoop and the mean stress curve fitting constants Ai, A%, A3 and 383
A4 values for CCP of Figures 6.6  and 6.7 as related through 
equation 6.1. G is the thickness to ligament ratio B/(W-a).

Table 8.1 The out-of-plane constraint loss constant, p, and the constraint loss 452
sensitivity, y, for SENB and CCP specimens.

Table 8.2 Effect of thickness on toughness in 7075-T6 and 2024-T4 455
Aluminium alloys after Irwin (1964) tabulated data. The critical 
crack initiation, 1^ = 20.2 and 52.5 kN/m and the yield stress, Gq =
500 and 344 MN/ml

Table 8.3 SENB data for construction of Failure Assessment Diagrams. The 459
original thickness effect on toughness plots are shown in chapter 3 
(Irwin et al. (1958) in Figure 3.21; Rolfe and Novack (1970) in 
Figure 3.26; Jones and Brown (1970) in Figure 3.27).
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Introduction

Fracture mechanics is intended to ensure the integrity of structures or components which 

contain defects and cracks. The subject is based on the similarity of the stress and strain 

fields at the tip of a crack in a laboratory specimen and a real flaw or defect. Similarity of 

the crack tip fields ensures the transferability of toughness data between the two 

geometries, and as such is a central requirement of fracture mechanics. A parameter that 

characterises crack tip fields under largely elastic conditions is the stress intensity factor, 

K, which was introduced by Irwin (1957). A critical value of the stress intensity factor can 

be used to describe the toughness (Kc) of structures containing cracks and defects. 

Although structures are designed to behave broadly in an elastic manner, plasticity has 

been shown to precede failure at the crack tip and limit the applicability of the stress 

intensity factor approach. In a key development, based on the energetics of crack advance, 

Rice (1968) proposed a scheme to quantify the elastic-plastic deformation field at the crack 

tip through the J-Integral. This extended the application of fracture mechanics to tough 

structural materials.

However, when fracture occurs with substantial levels of plastic deformation, the 

toughness becomes geometry dependent, McClintock (1971). The dimensions of the body 

affect the level of hydrostatic or mean stress in the crack tip field. This is known as the 

level of constraint. A constrained crack tip field exhibits a lower toughness than 

unconstrained field. In an early piece of research Irwin demonstrated that the thickness of a 

cracked body affected its toughness. Thick specimens exhibited a lower bound plane strain 

toughness which could be regarded as a material property and used to provide a 

conservative estimate of failure. However, failure assessment schemes based on lower 

bound toughness often caused the unnecessary repair of structures and outages of plant. 

Similarly, defects were often prematurely sentenced as critical.

The conservatism associated with lower bound toughness fracture assessment can be 

avoided when in-plane geometry effects are quantified by two-parameter fracture
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mechanics (Betegon and Hancock (1991) and O'Dowd and Shih (1991)). The first 

parameter reflects the scale of crack tip deformation as measured by J while the second 

parameter is used to identify the triaxiality or the level of constraint at crack tip

Although significant progress has been made on the application of two-parameter fracture 

mechanics, it is limited to in-plane effects in thick specimens to the neglect of out-of-plane 

or thickness effects. However, a practical analytical model to quantify out of plane 

constraint loss, and express the effect of thickness on toughness is still lacking.

This thesis discusses opportunities to further reduce conservatism intrinsic to plane strain 

failure assessments by incorporating out-of-plane constraint loss. As a first step, it is 

necessary to understand the nature of three-dimensional elastic-perfectly plastic crack tip 

fields. The next step is to quantify how constraint is lost. Finally, the loss of constraint is 

used to develop a three-dimensional constraint based failure assessment scheme.

Following the current introduction, the relevant literature is reviewed in Chapters 2 and 3. 

Chapter 2  introduces a review of the governing equations of elastic and plastic 

deformation. This is followed by a review of single parameter and two parameter fracture 

mechanics for linear elastic and elastic-plastic solids focussing on two-dimensional plane 

strain and plane stress deformation. In Chapter 3, the key studies in the development of 

three-dimensional fracture mechanics are discussed within the context of crack tip 

constraint. This allows the current research to be placed on the context of previous 

developments.

Chapter 4 introduces the numerical techniques used in the current reseai'ch, which is based 

on numerically stable, credible three-dimensional finite element models of a series of 

cracked specimens. A three-dimensional boundary layer formulation was benchmarked 

based on the work of Nakamura and Parks (1988a) to ensure that the configuration was a 

valid representation of the critical annulus around the tip of crack. Full-field SENB and 

CCP solutions were generated from the boundary layer formulations and benchmarked by 

comparing solutions of stress intensity factor and T-stresses with standard solutions.



Chapter 1. Introduction 41

In Chapter 5, the nature of the elastic-perfectly plastic three-dimensional crack tip stress 

field of boundary layer formulations, full-field SENB and CCP are investigated in the 

context of two-parameter fracture mechanics. The large amount of data presented in 

Chapter 5 is analysed to establish a systematic pattern of constraint loss in Chapters 6 and 

7.

Chapter 6 discusses constraint loss as a function of a plane strain parameter. A constraint 

estimation scheme based on deformation and geometry is addressed in Chapter 7. This 

leads to the introduction of a deformation parameter to unify constraint loss at different 

sections through the thickness.

In Chapter 8 , constraint loss in three-dimensional field has been used to develop three- 

dimensional constraint based failure assessment diagrams. The failure assessment schemes 

have been validated using experimental data. Constraint loss in constrained and 

unconstrained geometries has been united by the proposed failure assessment scheme. Out- 

of-plane constraint loss can now be related using a simple procedure depending on the 

level of constraint for structural defects.
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Fundamentals of Deformation and 
Fracture

This chapter introduces the basic concepts of solid mechanics and the fundamentals of 

fracture mechanics. Fracture mechanics is discussed starting with linear elastic fracture 

mechanics and extending into elastic-plastic fracture mechanics. Two-parameter fracture 

mechanics is then introduced within the context of the loss of crack tip constraint. Finally, 

the application of constraint based fracture mechanics is discussed.

2.1 Stress

The theory which underlies the deformation of elastic solids is described in standard texts 

such as Timoshenko and Goodier (1971), Crandall, Dahl and Lardner (1978) and 

McClintock and Argon (1966). A body subject to a system of external loads experiences an 

internal field of varying forces which act on an arbitrary section through the body. The 

ratio of components of the force to the area on which they act defines the components of 

force intensity or stress. When referred to a set of Cartesian co-ordinate axes x\ (/ = 1, 2, 3), 

stress G ip which is a second order tensor may be defined as:

AF.
~  (W) ”  1) 3) (2 .1)■' Mj-^0 AAy

The relationship i -  j ,  defines normal stress components while i y, defines the sheai* 

stresses. Stress components may be referred to Cartesian co-ordinates axes as shown in 

Figure 2.1(a), but for solutions in axisymmetric bodies, it is often convenient to use 

cylindrical co-coordinates (r, 0, z) as shown in Figure 2.1(b). It may also be necessary to 

transform the components of the stress tensor from one set of orthogonal axes xj to a new 

set x  'l. The new set of axes x] is related to from old axes Xj by a set of angles 0ÿ, where 0ÿ

is the angle between the new axes and the old Xj axes. The direction cosines of the new 

axes with respect to the old axes are ly:
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~  cos 0 y (2 .2 )

The transformation law for components of the stress tensor can then be expressed as:

^ i j  ~  h p   ̂jq  ^ pq  (Z'7) Pi<i — ^1 2) (2.3)

where repetition of suffices in the same term implies summation as described by Nye 

(1985).

At every point within the body, there are three mutually perpendicular planes on which the 

shear stresses are zero. The normals to these planes form the principal axes of the stress 

tensor. In this co-ordinate system, the corresponding stresses are principal stresses which 

will be denoted Gi, Gz, G3 with the convention (gi< G2 < G3). The hydrostatic or mean 

pressure, g,„, is an important stress invariant that is independent of the choice of co­

ordinate axes:

+ 0'2 + 0 3̂) = - ^

In a three-dimensional body, 18 components of stress act on an infinitesimal cell such as 

that shown in Figure 2.1. However, in the absence of distributed couples, equilibrium 

requires that G// = Gjp This reduces the number of independent stress components to six. 

For a body in static equilibrium, the stresses acting on the body must satisfy the 

equilibrium equations, which in the absence of body forces are:



V -
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where the comma denotes differentiation. For crack problems with cylindrical symmetry, it 

is convenient to refer the equations of equilibrium to cylindrical coordinates:

d a , .
+

1 d^rO +
àr r d û dz

da,Q ■ + 1 ^ ^ 0 0 ■ +
dr r d û . dz

1 d^zO +
dr r d û dz

+ rr '- '0 9 =  0

+ 2 ^  = 0 (2.6)

+ 0

2.2 Strain

The effect of stress on a solid body is to cause deformation and rigid body motion. To 

quantify deformation, it is initially useful to introduce a deformation tensor Dy:

D.j = u. , Xj ; (/, j  : 1, 2 ,3)

This can be divided into symmetric and anti-symmetric components:

(2 7)

C2 8)

The symmetric component, 8,y, is the strain tensor;

e,j = ^ { u „ X j+ U j ,x , ) (2.9)

while the antisymmetric component, cOÿ, is the associated rotation;

(2.10)
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Normal components of strain occur when i = j ,  and shear components when i ^  j .  Engineers 

frequently define the components of shear strain Yÿ without the factor of Vi.

Yÿ=28ÿ (2.11)

Allowable functions of stress, strain and displacement must satisfy both the governing 

equations and the boundary conditions and hence preserve continuity. In two-dimensions 

(%i, X2) the strain-displacement equations are:

du. duj 1
(2.12)

Since the three strains are written in terms of two displacements, a relation must exist 

between the three strains. Differentiating twice and eliminating the displacements gives the 

compatibility equations. For example:

9^gii I (2.13)
dx2  ̂ dx^^ dx^dx2

2.3 Elastic Constitutive Relations.

Elastic deformation is reversible and instantaneous and when the applied loads are 

removed, the body returns to its original state. Lineai’ elasticity implies that the stresses are 

proportional to the strains. In the most general case, this implies:

^ij ~  ^ijkl ^kl i hj f  k, l ~  1,2,3) (2.14)

This general anisotropic relation involves 81 elastic constants, Cyki. However, due to the 

symmetry of the stress tensor = Cjiki = = Qm, and in view of the existence of a

strain energy density Cp; = Ckuj, this reduces the elastic constants to 21. Symmetry
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considerations further reduce the elastic constants to 3 for cubic symmetry and 2 for an 

isotropic solid. In a linear elastic isotropic solid, the stress-strain relation can be written in 

terms of the shear modulus, G, and Poisson’s ratio, v:

Gy = 2G (2.15)

and Ô;/ is the Kronecker delta.

:::: z
The summation convention for repeated subscripts will only be considered to apply to 

Cartesian coordinate and not to cylindrical polar r, 0, z.

The strain-stress relation for a linear elastic isotropic solid can also be written in terms of 

Young’s modulus E, where E = 2G (1 + v);

G, = - | k  - v ( 0 j + 0 3 )]

+CJ3)] (2.17)

E3 - v k

Relations between common isotropic elastic constants are given in McClintock and Argon 

(1966).

Important modes of deformation occur in pure shear and hydrostatic states of stress. In 

consequence, it is often advantageous to separate the stress tensor into hydrostatic and 

deviatoric components, Sif.
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This allows the elastic stress-strain relations to be written as:

E
(1 + v)cr.. + — —  cr,, (2-19)

\  ^ J  y

2.4 Plane States of Stress and Strain

Mathematical solutions to the defoimation of three-dimensional bodies are frequently 

intractable. In consequence, two-dimensional idealisations have been introduced to provide 

an approximation to the defoimation of three-dimensional solid bodies.

Generalised plane stress conditions in the xs direction are assumed to apply when the stress 

components O33, O13, O23 and their derivatives with respect to X3 aie negligible in 

comparison to the other components of stress. As a result, a state of plane stress is expected 

to be realised in thin plates. If the thickness of the plate is small compared to its transverse 

dimensions the stress components a n , 022, csii can vary only slightly across the thickness 

while the stress components involving X3 are:

a,-3 = 0
O'= 1 , 2 ,  3) (2.20)

1̂3 > ^3 = 0

In plane strain, displacements are assumed to occur in the X1-X2 plane and are independent 

of X3. This implies that strain in the thickness direction is restrained and the out of plane 

strain, and its derivatives in the out of plane direction, are zero:
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=  Mj ), ^2 =  «2  (-̂ 1 » .^2 ) ’ « 3 = 0

8,3 -  0 0 = 1 , 2 ,  3) (2.21)

8̂ 3 , %3 0

Plane strain is taken to occur in long prismatic bodies subject to loads which are normal to 

the lateral surface and independent of X3. For plane strain in the X3 direction, the linear 

elastic stress-strain relations expressed in terms of the principal stresses give:

83 = V
E  E

= 0 ; (2.22)

hence,

0-3 =v(C T i +CT2) (2.23)

2.5 Closed Form Solutions: Airy Stress Function

In two-dimensional deformation. Airy (1862), demonstrated the existence of a stress 

function, (j), which satisfies equilibrium and compatibility, and enables the stresses to be 

related to the applied loads. The stresses in cylindrical coordinates are:

I d ^  1 0 (̂j)
ç y  —  — “  *

" r  dr r^ 30^
3"(t) 
dr

1 9̂ (|) 1 3̂ (j)
r 30 r drdO

(2.24)

Substitution in the equilibrium equation shows that equilibrium is satisfied. Compatibility 

requires:

3 1 d
dr^ r dr r^ 30^

3 (j) 1 3(|) 1 3 (|)
dr^ r dr r^ 30^

(2.25)
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Since the hi-harmonic equation satisfies the equilibrium equations, its solution with 

appropriate boundary condition defines the complete state of stress.

For a circular hole in an infinite plate as illustrated in Figure 2.2 with a the radius of the 

hole, the stress function which satisfies the equilibrium equations, compatibility conditions 

and the boundary conditions is:

cos 20  (2,26)

Direct differentiation of equation (2.24) shows that, the maximum value of hoop stress is 

obtained when 0 = n ! 2  and r - a  and given by:

000 — O'
y

1 + ---7 + —-
Ir' :2r' y

(2.27)

This gives a maximum elastic stress concentration factor of 3 for a circular hole in an 

infinite plate.

2.6 Plasticity

The discussion of plasticity essentially follows the definitive texts of Hill (1950) and 

Kachanov (1974), Yielding in metals is associated with permanent irreversible 

deformation. Yielding and plastic flow depends on the magnitudes of the component of 

stress and is a function of the invariants of the deviatoric stress tensor, J2 and J 3 '.

J 2 "  Sjj Sy (2.28)

•^3 (2.29)
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where sij are the stress deviators. Plastic deformation in metals depend on the shear 

components of stress and the differences of the normal stress components, but not on the 

mean or hydrostatic pressure, which does not produce dislocation motion.

For metals undergoing purely plastic deformation, the volume remains constant because 

deformation occurs by slip, Hill (1950). If small strain plastic deformation occurs at a 

constant volume, V;

W
—  = = 0 (2.30)

The Tresca (1864) and von Mises (1913) yield criteria are widely used to describe isotropic 

plastic deformation, Hill (1950). The Tresca criterion argues that yielding occurs when the 

maximum shear stress, t, reaches a critical value, k, which can be related to the yield stress 

in uniaxial tension Oq.

■?3 == & (Oi < 0 2  < 0 3 ) (2.31)

The Mises criterion suggests that yielding occurs when the elastic strain energy of 

distortion reaches a critical value which can be expressed in terms of stresses, a*/

a  = [(a„ - G a J ' + k ,  -cr,i)^ + 3af^ +3o^ +3a^,] (2.32)

or more compactly using stress deviators, Sÿ

(2.33)

Yield occurs when the equivalent stress a  reaches the yield stress in tension Go:
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a  = G, (2.34)

Alternatively the yield criterion can be expressed in terms of the yield stress in shear, k  

G = S k  (2.35)

2.6.1 Elastic -  Plastic Constitutive Relations

In elastic-plastic deformation, the incremental strains de ,̂ are sums of the elastic strain 

increments d e /  and the plastic strain increments d e /.

dSij = + ^ef (2.36)

The plastic strain increments can be derived from a plastic potential g  (72, 7j), which 

defines the ratios of components of the plastic strain increment through a flow rule:

dE^.=^dk  (2.37)
OG,..

where dÀ is a scalar factor of proportionality which is not a material constant but varies 

during deformation. For the plastic potential, g = J 2 = Sij Sij/2, the incremental plastic 

strains can be written through an associated flow rule:

defj -  Sjj d k  (2.38)

where d k - l > d z ^  12(5. Assuming isotropy is maintained under plastic deformation, the 

flow stress may increase as a function of the equivalent plastic strain due to strain or work



Chapter 2. Fundamentals of Defoimation and Fracture 52

hardening. The equivalent plastic strain e is obtained by integration of the strain 

increments over the loading history:

(d£f, - d z ^ J  +(̂ £'■3 j (2.39)

(2.40)

The total strain increment which includes the elastic and plastic components can be 

expressed compactly as:

d£;j -  defj + d£^

(l + v)  dff,: - + ^  d V  %
(2 .41)

In classical plasticity the relationship between the equivalent plastic strain and the 

equivalent stress is independent of the stress or strain rate, and can be determined from a 

single uni-axial tensile test. Yield and plastic flow is independent of the hydrostatic or 

mean stress. The mean and equivalent stress can be combined into a single non-

dimensional parameter ( a j  g  ), which defines the triaxiality of the stress state. At yield in 

pure sheai", {g\ = k = -G2, G3 = 0 ) the triaxiality is zero, while in perfect hydrostatic tension 

or compression, the triaxiality is infinite (gi = G2 = Gs = G,„).

In uniaxial tension elastic-plastic stress-strain relationship is often approximated by a pure 

power law of the form:

a G
C142)
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where n is the strain hardening exponent and Eo is a reference strain and Go is reference 

stress. G and £ are the tensile stress and strain respectively and a  is a material constant. As 

the exponent n  can vary from 1 to a range of responses varying from linear elastic to 

rigid-perfectly plastic can be described. A Ramberg-Osgood law is also frequently used to 

describe nonlinear stress-strain responses in uniaxial tension:

£ a  .    1_
E.

C2.43)

The curve fitting constant Oo is often associated with yield stress however, when a  = Go, Eq 

does not correspond to yield strain. The corresponding strain is £ = Eq (1+oc), and the 

relation does not model linear elasticity accurately. However, this relation gives good 

overall description of the stress-strain relation at large plastic strains. The relations given 

by Equations (2.42) and (2.43) can be generalised into multi-axial states of stress by a yield 

criterion and an associated flow rule.

2.6.2 Elastic-Perfectly Plastic Deformation: Slip Line Fields

In elastic-plastic fracture mechanics, the deformation field directly ahead the crack tip 

warrants an approach that focuses primarily on the plastic strain to the neglect of the elastic 

strain components. The material is effectively assumed to be elastically rigid with an 

infinite Young’s modulus. This simplification in conjunction with the assumption that 

material does not strain harden defines a response described as elastic-perfectly plastic. 

This allows the application of plane strain slip line fields which were initially used for 

large plastic strain deformation processes as described in Hill (1950) and Johnson Sowerby 

and Venter (1982).

The theory is based on the fundamental governing equations: equilibrium, stress-strain 

relations, the yield criteria and finally the compatibility relations. In plane strain 

incompressibility allows the stress-strain relations to define the out-of-plane stress G33 in 

plane strain as:
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Equation (2,44) can be rearranged to define a parameter which controls the out-of-plane 

stress in plane strain, p:

P  =  =  i  (2.45)
O ' , ,+ 0-22 2

The Mises yield criterion limits the difference of the in-plane stresses to 2k

CTj -  02 = 2k  (2.46)

as is illustrated by Mohr’s circle in Figure 2.3. This allows the three principal stresses to be 

written in terms of the mean stress, Om

Gi = a,„ + k

G2 — ~~ k  (2.47)

while the angular positions of the principal stresses are determined through:

2 g
tan 2 (|) = 7--------— Î

(fax -  Oyyj

(2.48)
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Here, 0’ is the angle between xi-axis and first shear line denoted a. Plane strain shear line 

or slip line fields can be represented as two orthogonal sets of curvilinear curves defined as 

a  and p axes. The a, P axes are the characteristics of the governing differential equations. 

Physically these are the directions of zero extension, which in plane strain correspond to 

the directions of maximum and minimum sheai* stress. The maximum principal stress lies 

in the first and third quadrants of the a , P axes. The shear stress on the lines is equal to k, 

the yield stress in shear. Hencky’s first theorem, which is a statement of the equilibrium 

equations in the a, p co-ordinate system, gives the change in mean normal stress in terms 

of the rotation of a slip line direction:

= 2k  7(j) on an a  line
C2.49 )

~ -  2k  on a P line

A given slip line field can then be analysed by following the rotation of the slip lines from 

free surface where the stress state is known and the slip lines necessarily are inclined at n/4  

to the surface. The compatibility of displacements is completed by Geiringer’s equations 

Hill (1950):

du — vdQ' = 0
(2.50)

dv — udQ' = 0

where u and v are displacements along a  and P axes.
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2.7 Linear Elastic Fracture Mechanics

2.7.1 Stress Concentrations.

The fundamental concepts of fracture mechanics were established in the early 20̂ *̂  century 

by the early work of Inglis (1913) who identified the nature of stress concentrations such 

as notches and cracks. The central problem is the stress field of an elliptical hole as 

illustrated in Figure 2.4. Using complex potentials to satisfy the boundary problem, Inglis 

showed that the maximum stress G22 in the opening direction is:

^ 2 2  ”  ^22 (2.51)

where a is major semi-axis of the ellipse, b  is semi-minor axis and is the remotely 

applied uniaxial stress. The stress concentration can also be written in terms of the radius 

of curvature, p, at the end of the semi-major axis.

'22 ~  ^22

r  f—\
1 + 2 J -  

V VPy
(2.52)

As the radius of curvature approaches zero, the stresses at the tip of a sharp crack in an 

elastic body become infinite, independent of the applied load or crack length. This 

presented a dilemma which prompted an energetic approach to the analysis of sharp cracks.

2.7.2 Griffiths Criterion

The energetics of crack advance were first discussed by Griffiths (1920) in response to the 

paradox that crack tip stresses in an elastic material are infinite. Griffiths argued that the 

energy (W) required to extend a crack is a balance between the change in the potential 

energy (C/) in the cracked body and surface energy (5) absorbed during crack growth. The 

change in energy which occurs if the half crack length a o f  a centre cracked panel is
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extended by an infinitesimal amount ôa can be considered in either fixed displacement or 

fixed load conditions as shown in Figure 2.5. The corresponding load-displacement curves 

are shown in Figure 2.6. In fixed displacement conditions (OACO), crack extension 

produces a release of strain energy, ):

= - 1  -  A) «I = -  7  AP H (2.53)

where P  and u are load and displacement. In fixed load conditions (OABO), crack 

extension results in an increase in strain energy, but a release of potential energy,
^jjFL
V p o ten tia l  /  '

i  Pi («1 -  «2) = - ~ P  Au

It can be shown that in both conditions the potential energy release is the same through the 

relationship between the displacement u and load P.

« = C P  (2,55)

where C is the compliance of the system. As the change in crack length 5a tends to zero, 

C(aj approaches and Equation (2.55) becomes:

Au = CAP (2.56)

Using Equation (2.55) and (2.56) in Equations (2.53) and (2.54) respectively, it can be 

shown that:

AP CP = - ^ P  CA P (2.57)
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Using the calculations of Inglis (1913), Griffiths expressed the strain energy, Ustram under 

fixed displacement conditions as:

U Z .  =  4 ^  (2.58)

I W  a B  (2 .5 9 )
B da E '

where E’=E in plane stress and E/(l-v^) in plane strain. In an ideally brittle material, 

Griffiths assumed that the energy of crack advance was equal to the surface energy, S, to 

form the new free surface,

S = 2y a B  (2.60)

Here y  is the surface energy per unit area. The Griffiths criterion states that for crack to 

advance, the decrease in potential energy must be greater or equal to energy required to 

create the crack surfaces such:

(2.62)
oa da

Equating the potential energy release rate to the work done in cracking fresh surface, gives 

the fracture stress, oy, as:



Chapter 2. Fundamentals of Deformation and Fracture 59

Until the 1940s, Griffiths’ (1920) pioneering work was not considered to be relevant to 

engineering structures because of the inherent brittleness of the material (glass) which was 

used to validate the theory. The work of Orowan (1945) led to the generalisation of 

Griffiths’ work to less brittle materials. Orowan modified Griffiths’ energy balance criteria 

to include materials that undergo plastic flow as:

l î ÿ m J
V n a

where Yp represents the energy per unit area to break a solid when plastic flow occurs at the 

crack tip. Experimentally it is found that Yp »  2y, which shows that crack tip plasticity 

dominates the fracture process even in highly brittle materials. Irwin (1948) noted that the 

energy expended in plastic deformation could be estimated from Orowan’s result and 

concluded that Griffiths’ theory could be used if the plastic work were substituted for the 

surface energy. Irwin (1957) defined the potential energy released for a unit increase in 

crack area as the crack extension force G.

G  = (2.65)

where E '= E  in plane stress and E/(l-v^) in plane strain. G quantifies the energy to 

propagate a crack and a critical value of the strain (potential) energy release rate, Gc can be 

used as a material property which quantifies fracture toughness:

G. = (2 .66 )

where Gf is the fracture stress and ac is the half crack length.
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2.7.3 Stress Intensity Factor

The nature of the asymptotic elastic crack tip field was established by Westergaaid (1939) 

and Williams (1957). Westergaard (1939), developed asymptotic solutions from algebraic 

stress functions which identified the leading term of a series expansion of the crack tip 

stress field. The Westergaard stress field for a central crack in an infinite plate can be given 

using Cartesian stresses and cylindrical coordinates (r, 0) centred at the crack tip as defined 

in Figure 2.7.

(3 Va 0 r  0 . 30
a,. = —==r=r COS — 1 + COS — sin —

^ 2 7  2 l  2 2

' Va G /
cos — 

2
0 . 30 

1 -  cos— sin —
2 2 y

a
G . 0  0 30

r-=- S in  — cos — cos —
V Î7 2  2 2

(r «  a) (2.67)

Here a  is the half crack length. Irwin et al. (1958) expressed the Westergaard equations in a 

generalised form:

IJ 2 r
(2.68)

The term K’ = <ria, was originally termed the stress intensity factor, however, modern 

notation defines the stress intensity factor, K for a Griffiths crack as:

K  = a 4 %a (2.69)

The elastic dominant singularity in asymptotic crack tip fields can now be written in the 

form:



Chapter 2. Fundamentals of Deformation and Fracture 61

K
A  (6 ) (2.70)

The stress intensity factor, K, can be related to the Griffiths theory of potential strain 

energy release rate, G, by the relation:

TV
(2.71)

where E’ = E/(l-v ) for plane strain and E for plane stress. The stress intensity factor, K, 

characterises the strength of the elastic crack tip singularity, and quantifies the strain 

potential energy release rate in virtual crack extension.

Under arbitrary loading, a crack in a solid can deform in three different modes (Irwin 

(1960b)) as shown in Figure 2.8. Mode I is the opening mode. In this mode the body is 

subjected to a noimal stress and the displacement of the crack surface are symmetric about 

the crack plane. In-plane shear results in the mode II or the edge-sliding mode when 

displacements are anti-symmetric with respect to the crack plane. The shearing mode or 

mode m  is caused by out-of-plane shear such that the displacements are in the plane of the 

crack parallel to the leading edge of the crack. In practice. Mode I is usually the most 

important. Each mode features the 1/Vr stress singularity at the crack tip, but the angular 

functions / j  (0) depend on the mode. The stress field and associated displacement field 

ahead of a crack tip in an isotropic linear elastic material in mode I can be written 

following Rice (1968a):

a,
a.

n r
cos (0 /2 )

l-s in (0 /2 )  sin (30/2) 
sin(0/2) cos (30/2)

1 + sin (0/2) sin (30/2)
(2.72)

K , f r  Y" [cos (0 / 2) [k  - 1 + 2 sin" (0 / 2) |  
2G y i n )  [sin(8/2) [k  + 1 -  2sin" (6/2)])

(2.73)
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where K = (3 - 4v) for plane strain and k = (3 - v)/(l + v) for generalised plane stress. The 

corresponding stress and displacement fields for mode II and mode HI can also be found in 

Rice (1968a).

The definition of the stress intensity factor given in Equation (2.70) applies to a central 

crack in an infinite plate, however for finite plates, K can be expressed in a similar form:

(2.74)

where W is the plate width and /  (a/W) is a non-dimensional function of geometry. The 

non-dimensional function of geometry for single edge notch bend (SENB) specimens 

given by Tada et al. (1985):

/ f a  ^ 2 f a  V r= 1 .122-1.4 —  +7.33 -13.08 —  +14.0
W J ^ w j

(2.75)

The form function for a centre crack panel (CCP) as a function of a/W is given in Table 

2 . 1.

The stress intensity factor, K, characterises crack tip deformation when plasticity can be 

regai'ded as a minor perturbation of a largely elastic field. For this state, Rice (1968a) 

introduced the term small-scale yielding. Linear elastic fracture mechanics (henceforth 

LEFM) deals with deviations from linearity which are limited to a region that is small 

compared to the dimensions of the cracked body. Identical values of stress intensity factor 

ensure that cracks of different lengths in geometrically different bodies have the same 

crack tip stress, strain and displacement fields. This allows the failure conditions measured 

from a laboratory test specimen to be applied to an engineering structure.

The critical stress intensity factor, Kc, associated with the onset of crack growth under 

monotonie loading depends on the material, its temperature and possibly its environment.
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It also depends on the mode of loading and on whether plane strain or plane stress 

conditions apply. The value of Kc for any given set of conditions can only be obtained by 

experiment using a calibrated precracked test specimen which meets the restrictions of 

small scale yielding at the onset of fracture. The critical stress intensity factor in mode I, 

plane strain conditions, designated Kic, is called the fracture toughness.

2.7.4 Limits of LEFM

The application of LEFM is subject to severe size limitations intended to ensure that 

plasticity is restricted to a local perturbation of the elastic field. When materials fail in a 

macroscopically elastic manner, Kjc is a measure of fracture toughness. A valid K^ test 

according to ASTM (E399-83, 1988) can be performed using several types of specimen 

subject to the size requirement:

a > 2.5 W - a  > 2.5
J

B >  2.5 (2.76)

where a is the crack length, W is the width of the specimen and B is the thickness of the 

specimen. The value of K^ is calculated from a critical applied load Pq given in ASTM 

(E399-83, 1988);

b ] w ^ [ w
(2.77)

These limits ensure that radius of the plastic zone, which is proportional to (Ki/Gq) ,̂ is very 

much smaller than the relevant in-plane dimensions of the body. The thickness requirement 

ensures plane strain conditions while the requirements on the in-plane dimensions: a, W-a, 

ensure that the macroscopic response is linear elastic and that plasticity is a minor 

perturbation of a largely elastic field characterised by Kj.
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Structural metals and alloys frequently exhibit extensive plasticity before failure, and as 

the thickness reduces, the fracture toughness increases as shown in Figure 2.9. This limits 

the practical application of LEFM, as tough structural materials require large test 

specimens which are very expensive to prepare and difficult to test.
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2.8 Elastic-Plastic Fracture Mechanics

The applicability of LEFM is severely limited by the restrictions on the size of the plastic 

zone compared to the dimensions of the cracked body. In tough structural steels, this limits 

the use of LEFM in assessing structural integrity, and establishes the need for elastic- 

plastic fracture mechanics henceforth EPFM to characterise crack tip fields and define the 

energetics of crack extension in non-linear materials.

2.8.1 Crack Tip Plasticity

Linear elastic stress analysis of bodies containing sharp cracks feature crack tip 

singularities. However in real materials, the stresses at the crack tip are finite because the 

crack tip radius becomes finite after deformation. More importantly in non-lineai- 

materials, plastic deformation leads to relaxation of the crack tip stresses. Crack tip 

plasticity was initially discussed by Irwin (1960b) and Dugdale (1960) as a correction to 

the linear elastic solution. Irwin suggested that the crack length could be regarded as being 

enhanced by plasticity so that the effective crack length, Uejf can be regarded as the length 

of the crack, a, plus a correction due to the plastic zone size:

= a  + ry (2.78)

where a is half crack length, zy is the radius of plastic zone as in Figure 2.12.

The size and shape of crack tip plastic zone can be estimated by applying the Von Mises or 

Tresca yield criterion. Hill (1950), to the elastic field. In the current work the Von Mises 

criterion is used to estimate the boundary of plastic zone. In terms of principal stresses:

(<̂ 1 “  <̂ 2 F + (^2  -  ^3 + (^3 ~ ^1 = 2^0 (2.79)

where Go is the uniaxial yield stress. The stress field of a mode I crack can be expressed in 

terms of principal stresses using Mohr’s circle:
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_ ^11 ^22 + <̂11 ~<̂ 22
2 VV 2 

(7j -  v(z7j -i-0 '2 ) for plane strain 
0 -3 = 0

+ 0 -,12

for plane stress
(2.80)

substituting equation (2.72) into (2.80) gives:

cr, = K

K

cos
f j r " "  I

=
0

, cos I —
/ 2 # r  I 2

O3 - 2 u

0 3 = 0

K. — cos 
/ 2 # r  ( 2

1-sm
V U
0 for plane strain 

for plane stress

(2.81)

Substitution of equation (2.81) into (2.79) gives a first estimate of the extent of plastic zone 

as a function of the angular co-ordinate 0 :

>■, (e)=

'■p (e)=

4nGl
r 2

4nat

sin ̂  (0 ) + (l -  2v)  ̂ (1 + cos (o))

1 + — sin ̂  (o)cos (0 )

for plane strain 

for plane stress

C182)

The shape of these plastic zones is shown in Figure 2.13. More accurate analyses were first 

contributed by Tuba (1976) using a relaxation method as shown in Figure 2.14.

2.8.2 Asymptotic Crack Tip Fields: Slip Line Fields.

In elastic-perfectly plastic non-hardening materials, the crack tip stresses are finite. This 

allows the stresses to be discussed in terms of slip line fields. The slip lines fields for plane 

strain and plane stress assuming plasticity completely surrounds the crack tip have been
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discussed by McClintock (1971) and Rice (1982). In this thesis, Rice (1982) approach has 

been adopted.

2.8.2.1 Plane Strain Slip Lines

For plane strain, it is convenient to use polar coordinates which allow the equilibrium 

equation (2 .6 ) to be reduced to;

9(7,, I _ o
dr r do  r

+ + 2 ^  = 0 
dr r d o  r

Multiplying through by r, the assumption of finite crack tip stress suggests that ^ ■ r
0 r

and — ^  r 0  as r ^  0 allowing the equilibrium equations to be further reduced to: 
or

d(7
= 0 (2.84)

2 ( 7 , , + ^  = 0 (2.85)

The Mises yield condition may be rewritten in polar coordinates for plane strain as:

 2 2 1
O' = 7 ( o „ - ( 7 ^ J '  +  (7[5, + — {o-„  +  f 7 s s - 2 ( 7 , 3 f  =  (7„̂  ( 2 .8 6 )

Differentiating equation (2.86) with respect to 9 and using the equilibrium equations (2.84- 

2.85), simplifies the result to:
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» 6 '3 k , + ( T ^ r
.  9^ . ag d o

68

(2.87)

Using the flow rule with the plane strain conditions requires that:

(J33 - ^rr + ^00 (2 .88)

Using equation (2.88), the right side of equation (2.87) vanishes and the stress state at the 

crack tip (r = 0 ) satisfies either:

( x 9(g-„ + o-^) 3(t„
3 #  9 0

( b ) ^  = 0
(2.89)

In sectors in which condition (a) holds, the mean stress does not change with angle around 

the crack tip. This defines a constant stress sector in which the slip lines aie straight and 

the stress components (Om, G n , G22, G33) in Cartesian coordinates are constant. Such 

sectors occur directly ahead of the crack tip and in region adjacent to the crack surfaces in 

the Prandtl field, illustrated in Figure 2.15.

Condition (b) corresponds to a situation in which the shear stress Ĝ e does not change with

angle. Substituting d(J
do 0 in equation (2.84) gives:

(2.90)

which reduces the yield criterion expressed in terms of shear stress, k, to:

(2.91)
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The other stress components can be determined from equation (2.84): 

dcF,
do == - 2 oy, ==:P2& (2.92)

which on integration with respect to 0 gives:

a g p = T 2 k 0 4 - C  (2.93)

The asymptotic stresses around the crack tip can be expressed as the Prandtl field which is 

an important limiting crack tip field in which plasticity is assumed to completely surround 

the crack tip. On this basis, the stresses can be solved from the traction free crack surface 

region denoted I in Figure 2.15. In this region, the yield criterion and the free surface 

require that the stress field is a homogenous tensile field parallel to the crack flanks.

G , , = 2 k  (2 .94 )

f?22=0 (2.95)

^33 = = k  (2.96)

0-12 = 0  (2.97)

Cylindrical coordinates (r, 0) are employed to describe the stress field in region I as:

<7,, =&(l-f  cos 2 0 ) (2.98)

Gee - cos 20) (2.99)

<7̂ 0 = “  ^ sin 20  (2 .100)

(2 .101)

The Hencky equations. Hill (1950), express the equilibrium requirements in terms of the 

rotation of the slip lines and allow the stress state in region II to be given as:
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3tï \
(2 .102)

c y ^ = k  (2.103)

The constant stress sector III ahead of the crack comprises a stress system which consists 

of a simple stress state given by;

Oqq = A; (71 + 1 + cos 2 0 ) (2.104)

=  A:(71 +  1 - c o s  2 0 ) (2.105)

='T„, = ^(l + ") (2.106)

= Aisin 2 0  (2.107)

The plane strain Prandtl mode I asymptotic stress field in Caitesian and cylindrical 

coordinates are shown in Figure 2.16.

2,8.2.2 Plane Stress Slip Lines

A state of plane stress is said to exist in the X3 direction if:

0 -3 = 0  and ^ ^  = 0 (2.108)
OX.

A  plane stress crack field can be developed assuming either that plasticity surrounds the 

crack tip at all angles (Hutchinson (1968b)), or incomplete plasticity is permitted, Sham 

and Hancock (1999). Both solutions are similar in the critical area ahead of the crack front. 

In this thesis, incomplete plastic solution has been adopted to compare with the numerical 

three-dimensional solutions.
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Hill (1950) demonstrated that the characteristics of stress and velocity are the same in 

plane stress and their directions coincide with that of zero rate of extension as in plane 

strain. However in plane stress, the stress state will dictate whether the directions of zero 

rate extension can exist in the xi-xz plane. The state of stress is governed by the partial 

differential equations of equilibrium and compatibility which can either be hyperbolic, 

parabolic or elliptic. Under hyperbolic conditions, plane stress slip-lines comprise a non- 

orthogonal grid in which the direct stress across the line is twice that along the lines. 

Consequently, the slip lines are lines of zero extension. The angle between the lines 

depends on the stress state, but in the limit may become zero to give a single set of 

characteristics when the equilibrium equations are parabolic.

In plane stress, the Mises yield criterion in cylindrical coordinate system conditions is 

given as:

a  = <j I  +(t^ -  a„cTee + 3o-rf = crl (2.109)

Differentiating the Mises yield criterion with respect to 0 gives:

Substituting the equilibrium equations as in equation (2.84 and 2.85), gives: 

05....

d d  do = 0  (2 .111)

where am is the mean stress and Sn- is the radial stress deviator. The equations have two 

solutions subject to the condition that the yield criterion is satisfied.
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or (2 .112)

Rice (1982) has shown that two possible types of plastic sectors may exist at the crack tip 

in plane stress: constant stress sectors and centred fans. Condition (a) implies that mean 

stress does not vary with angle and defines constant stress sector in which the slip lines are 

straight but non-orthogonal. Condition (b) implies that the radial stress deviator does not 

vary with angle and identifies centred fan sectors which comprise straight radial lines 

intersected by a set of curved characteristics with equations of the form:

sin (O -  <!>)= constant (2.113)

where ^  is the angle to which the curved lines are asymptotic. For isotropic Mises 

materials, the centred fan condition 0arr/98 = 0 reduces to 2 arr = aee and the equilibrium 

equations in equations (2.84-2.85) can be integrated to give:

= ± k  cos {O -  (f) (2.114)

cTqq = ±2k Qos{0 -  (j>) (2.115)

<ĵ g -  ± k  sin(^ -  (2.116)

When the stresses are assumed to be bounded in the elastic sector at the crack tip, the 

stresses in the elastic can be expressed in terms of the semi-infinite wedge solution given 

by Timoshenko and Goodier (1970) subject to the requirement that the yield criterion is not 

violated:

=A^sm20+A2Cos2O+{A^0 + A^)/2 (2.117)

cTgg -  Aj sin 2 0  -  Ag cos 2 0  + (A3  + A4  )/ 2 (2 .118)

(7^0 = A ycos20 -  A 2 COS2 0  ~ A j / 4  (2.119)
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where Ai, A 2, A3 and A4 are constants that satisfy the conditions of equilibrium and 

compatibility at the crack tip in plane stress.

The plane stress asymptotic mode I field for incomplete crack tip plasticity discussed by 

Sham and Hancock (1999) can be regarded as a limiting case for a near mode-I field. The 

field consists of a curved fan sector directly ahead of the crack in the angular range 0 i = ± 

39.126° complemented by elastic sectors extending to the crack flanks as shown in Figure 

2.17. The mode I plane stress asymptotic stress field for Cartesian and cylindrical 

coordinates are shown in Figure 2.18.

2.8.3 Crack Tip Opening Displacement (CTOD)

Wells (1961) observed that initially sharp crack tips are blunted by plastic defoimation. 

This observation led to the introduction of the crack tip opening displacement concept 

(CTOD) to characterise fracture under conditions of large plastic defoimation. Wells 

(1961) argued that the degree of crack blunting at failure increases with the toughness of 

the material. From the Dugdale (1960) analysis, the CTOD, 8t, is given by:

.y, = ^ l n n asec------
2 cr„

71: cr^ a

E(7„
+  • • • (2 . 120)

If the applied stress a  is very small compared to CTo, a series expansion of the (In sec) term 

reduces to the small scale yielding relationship including a constant m  to distinguish plane 

stress (m = 1) and plane strain (m = 2 ):

(2.121)
(7„E m  E a „  m  (7„ m

This relates the CTOD approach to the elastic potential energy release rate, G, and stress 

intensity factor, K, which aie all equivalent in small-scale yielding. Experimentally, 8t can
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be determined through the crack mouth opening displacement (CMOD) by measuring the 

surface displacement across the crack front, as shown in Figure 2.19(a). Computationally, 

8t is usually determined by the 90° line intercept construction as illustrated in Figure 

2.19(b) following Shih (1981).

2.8.4 The Path Independent Integral (J)

A key unifying concept which enables the characterisation of elastic and elastic-plastic 

crack tip fields for rate-independent materials under monotonie loading is the J-Integral. J 

is a path independent integral, that describes the potential energy released during an 

increment of virtual crack extension in non-linear elastic materials. Path independent 

integrals were proposed independently by Cherepanov (1967), Eshelby (1968) and Rice 

(1968b). However, it was Rice (1968b) who established their relevance to fracture 

mechanics beyond the validity limits, of LEFM.

For a crack in a two-dimensional field, Rice (1968b) defined a path independent line 

integral, J:

du j
Wp dx^ -  a. U: —^ ds  ̂ dx, (2.122)

The arbitrary path F starts at any point on the lower crack surface and ends at an arbitrary 

point on the upper surface as illustrated in Figure 2.20. without including any other 

singularities apart from the crack tip. The first term in the integral is the strain energy 

density. We or work of deformation per unit volume:

W

The second term is the work done by the external forces where tii is the outward normal 

unit vector to the path F, and and w,- are the stress and displacement fields, ds is the
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differential arc length of the virtual contour around the crack tip. Consequently, J 

represents the change in potential energy during incremental crack extension da  in a fixed 

load-displacement curve. The area between the curves corresponds to the potential energy 

loss when the crack length is extended to a + ô«:

d U
d a

(2.124)

and U  is total potential energy in a plate of thickness, B. Under linear elastic conditions J is 

directly equivalent to the potential energy release rate, G, as shown in Figure 2.21. 

Experimentally, J can be measured at the load points of a two specimens which have 

incrementally different crack lengths, a and a + ôa but otherwise are identical (Landes and 

Begley (1972)). However this is a very impractical, and ASTM (E813-87, 1988) argues 

that J can be determined from deeply cracked bend geometries (a /W  > 0.45) in which J is 

decomposed into elastic and plastic components;

(2.125)

The elastic component is most simply calculated from stress intensity factor Ki:

J "  ~  = G (2.126)

where E ’ = E /{l-v^)  for plane strain while K is obtained from the applied load relation

given in ASTM (E399-83, 1988):

A  5 J a ' '

Here Pq is the applied load, S is the span between the loading points, while the function 

J{alW ) is given in ASTM (E399-83, 1988). In general, J becomes;
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where r\pi is the non-dimensional plastic eta factor and Ajf® is the plastic area under the

load-displacement curve. Comprehensive discussions of experimental methods for the 

determination of J and CTOD from laboratory testpieces are given in Karstensen and 

Hancock (2002).

Usefully, the J-integral can also be related to the CTOD, Ôt through the relation, Shih 

(1981):

J  = S ,c r ^ - j -  (2.129)

where dn is a constant which depends strongly on the strain hardening exponent, n, but 

weakly on atJc/B. For nonhardening cases n -a  «», dn is 1 and 0.78 for plane stress and 

plane strain, Shih (1981).

2.8.5 HRR Field

Path independence of the J-integral requires that the integrand in equation (2.122) has a 1/r 

dependence:

r(w; -  ; ) = /(o ) as r - ^ 0  (2.130)

This allows J to be independent of the radius of the contour.

j  = £ / ( e )  rfe (2.131)
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Path independence allows J to quantify the strength of crack tip singularities and 

characterise crack tip deformation. A more explicit connection between J and crack tip 

deformation is revealed using a power law relation between stress and strain. In nonlinear 

elastic solids, material deformation can be approximated by a Ramberg-Osgood 

relationship for uniaxial deformation equation (2.43). As the crack tip is approached 

asymptotically, contributions to the strains that depend linearly on stress are negligible 

compared to power law terms which approximate to a power law such as that given in 

equation (2.42). J 2 defoimation theory can be used to generalise equation (2.42) to 

multiaxial states.

/ I  -  1

(2.132)

where are the stress deviators. Using this non-linear relationship with the J integral, 

Hutchinson (1968a) and Rice and Rosengren (1968), identified the dominant crack tip 

singularity for nonlinear deformation and showed that J characterises crack tip stress and 

strain field which are known as the HRR fields. The stress, strain and displacement fields 

associated with the dominant singularity are of the form;

-  a . (2.133)

E
J

(7, Ot/„

1 +  n

k  (8 ;») (2.134)

M; J l+;i
M,. (0 \n ) (i = 1, 2) (2.135)

where /„ is an integration constant that depends on the strain hardening exponent n, loading 

mode and on whether plane strain or plane stress. The functions (d,n), %j {Q,n) and

Uj{0;n)  are non-dimensional angular functions tabulated by Shih (1983). Examples of
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plane strain and plane stress asymptotic angular functions forn = 3 and n = 13, are shown 

in Figures 2.22 -  2.23 after Hutchinson (1968b)

2,8.6 Limits of Single Parameter Fracture Mechanics

With increased levels of deformation, the strict requirements of LEFM are invalidated by 

the size of the plastic zone compared to dimensions such as the ligament, or the crack 

length. However the crack tip field can be characterised by J from small-scale yielding into 

full plasticity. Nevertheless, in full plasticity, McClintock (1971) first suggested that the 

asymptotic plastic fields in the absence of strain hardening are not unique but are functions 

of the geometry, loading mode. This is illustrated by comparing the slip line field for 

centre crack panels, shallow and deeply cracked bend bars and shallow and deeply double 

edge cracked bars as shown in Figure 2.24-2.27.

Crack tip fields for large scale yielding in tension are entirely different from those of 

bending geometries which are associated with the Prandtl field as shown in Figure 2.24 

and 2.25. For the tension geometry, McClintock (1971) argued that intense shear 

deformation is confined to slip planes emanating at 45 degrees from the tensile direction. A 

state of plane strain tension exists ahead of the crack in the 90 degree wedge where the 

stresses which satisfy equilibrium and yield criterion are given by:

22 — 2 k (2.136)

0 -1 1 = 0 (2.137)

CF 22 — k (2.138)

^33 “  ~  ^ (2.139)

The stress levels in tension elastic-perfectly plastic crack tip are much lower than the levels 

in bending. McClintock’s (1971) observation implies that elastic-perfectly plastic crack tip 

fields are not unique, but depend on geometry and loading. As a result fracture cannot be 

characterised by a single parameter such as J or ôt.
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2.8.7 J-Dominance

McMeeking (1977) and McMeeking and Parks (1979) describe the ability of a single 

parameter, such as J, to uniquely define the crack tip field as J-Dominance.

To assess J-Dominance, McMeeking and Parks (1979) compared large geometry change 

finite strain solutions for deep crack bend bar with the corresponding small scale yielding 

solution. At distance greater than 2J/Œo (or 2 to 3ôt), the effect of the crack tip blunting 

diminishes and the stress field of a lai'ge geometry change solution is similar to a small 

geometry change solution at distance greater than 2J/ao as illustrated in Figure 2.28.

McMeeking and Fai'ks (1979) calculated the stresses in edge cracked bend bars and centre 

crack tension panel into full plasticity and compared with small-scale yielding solutions. 

For the edge cracked bend bars, it was found that the non-dimensionalised stresses and 

strains field were independent of J even with non-hardening solutions. However, the centre 

crack tension panel deviated from the small-scale yielding solution. Based on this result, 

the requirements of J-dominated zone in a crack tip field were expressed through a non- 

dimensional grouping, p:

■ ^  = n (2.140)

where c is a critical dimension of the cracked body. For deeply cracked bars c = {W~a) 

while for shallow cracked bars c -  a. For deeply cracked plane strain centre crack tension 

panel, J-dominance is maintained as long as the ligament is greater than 200J/ao (or p = 

200), (McMeeking and Parks (1979). While for bend type configuration, the J is 

maintained as long as the ligament is greater than 25J/ao.

Shih and German (1981) repeated the work of McMeeking and Parks (1979) comparing 

the full field solution for deeply cracked bend and centre crack tension panel in plane strain 

with small strain formulations and proposed that, for J-dominant fields the hoop stress
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directly ahead the crack at a distance r = 2J/ao must be within 10 percent of the HRR field. 

On this basis, the local stress field in deeply cracked plane strain edge notched bend bars, 

scales in the same way as the small-scale yielding solution as long as the ligament (W-a) is 

greater than 25J/ao (or p = 25). For deeply cracked plane strain CCP, J-dominance is 

maintained as long as the ligament is greater than 20 0J/bo (or p = 20 0 ).

Al-Ani and Hancock (1991) examined the J-Dominance criteria of deeply cracked and 

shallow cracked bars in tension and bending. For shallow cracked bars J-dominance was 

lost before a o J2 0 0 . More importantly, they demonstrated that at different crack length the 

plastic flow fields are not unique. For shallow cracked bending specimens, the plastic field 

spreads to the face of the cracked ligament in accord with slip line field discussed by 

Ewing and Hill (1967). At defoimation levels at which J-Dominance is lost, two parameter 

characterisation is required.

Although the full plastic plane strain crack tip fields ai’e not unique, Hancock and co­

workers (Al-Ani and Hancock (1991), Betegon and Hancock (1991) and Du and Hancock 

(1991)) have argued that the lack of uniqueness is not associated with the sudden 

development of the fully plastic flow field but rather evolves from the small-scale yielding 

and the geometry dependent nature of the elastic field. Specifically, Betegon and Hancock 

(1991) and Du and Hancock (1991) identify the role of higher order terms in the elastic 

asymptotic expression (T-stress) as having a critical role in determining J-Dominance. 

Within this context it is now appropriate to introduce the T-stress as a precursor to a 

discussion of two-parameter fracture mechanics.
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2.9 Two-Parameter Fracture Mechanics

2.9.1 T-Stress

Williams (1957) expressed the asymptotic elastic stress field of a crack as a polynomial 

series of the form:

(r.e) = A (0 > - ‘̂ '+s„(0)r“ + c ,(ey^ "  + (2.141)

where A , B, C  combine the angular functions and intensities and r  is distance from the 

crack tip. In classical LEFM, interest is focused on the first term of the asymptotic William 

expansion, which incorporates the stress intensity factor. Larsson and Carlsson (1973) 

demonstrated that under contained yielding conditions, the second term of the Williams 

expansion has a pronounced effect on the size and shape of the plastic zone at the crack tip. 

Rice (1974) denoted the second term of the Williams expansion, as the T-stress. The T- 

stress is independent of the radial distance from the crack tip and corresponds to a uniaxial 

stress parallel to the crack flanks.

^11 ^12 K

_^2I ^ 22_ ^ n r
'/..(e) /..(e )
. /2,(e) / 22(e).

Y 0"
+

0 0
+ higher order terms (2.142)

where higher order terms vanish at the crack tip. Methods to determine the T-stress have 

been reviewed in Sherry et al. (1995) and Karstensen and Hancock (2002). These include 

the direct method used by Larsson and Carlsson (1973) which allows the T-stress to be 

evaluated directly from the stress on the crack flanks, 0 = ± tt using a refined crack tip 

finite element mesh:

T  = lim CTii (r, 0 = 7i ) , /n  (±7t) -  0r—>0 (2.143)
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Sham (1991) developed generalised weight functions to calculate T for a given geometry. 

Kfouri (1986) used Eshelby’s theorem to determine T by the difference in J-integral of two 

solutions with and without a superimposed crack tip point load in the direction of crack 

advance. In the line-spring method Rice and Levy (1972), T is calculated through the finite 

element procedure by superimposing results of cracked two-dimensional elastic T from 

bending and tension calculated independently under the action of membrane force and 

bending moment.

The T-stress has now been tabulated for a wide range of geometries for which the results 

are either expressed in terms of a T-stress concentration factor, T/0 , or as a biaxiality 

parameter, (3, following Leevers and Radon (1983):

P = , (2.144)
A

Tables 2.2(a-c) show the value of Ki and P for a range of a/W ratios for single edge crack 

bars under tension and bending following Sham (1991). The results of Leevers and Radon 

(1983) for centre cracked panels are shown in Table 2.3. Two-dimensional studies 

(Larsson and Carlsson (1973), Leevers and Radon (1983), Cardew et al. (1984), Kfouri 

(1986), Sham (1991)) show that the T-stress depends strongly on the type of loading as 

well as the geometry. However in all cases the T-stress is proportional to the applied load 

and at asymptotically small load levels T = 0 for all geometries. The effects of the 

specimen thickness on the T-stress in three-dimensional fields are discussed in chapter 3.

2.9.2 Boundary Layer Formulations

Boundary layer formulations were introduced by Rice (1966, 1967a, 1967b) to analyse 

crack tip plasticity in contained yielding without having to model the geometry of the 

whole cracked body. Small scale yielding occurs when crack tip plasticity is small 

compared to the dimensions of the finite element model allowing the asymptotic elastic 

field to be used as the boundary conditions on a domain around the crack tip. Figures
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2.29(a), (b) show schematically how the full field geometry may be replaced by the 

boundary-layer formulations where Ki is the stress intensity factor for the associated elastic 

crack problem.

Tractions or displacements corresponding to the K field are applied on the outer boundary 

of a region around the crack tip using equations (2.112) or (2.113) as shown schematically 

in Figure 2.29(b). Boundary layer formulations are mathematically exact in the limit of a 

vanishingly small plastic zone, but are accurate as long as plasticity is confined to less than 

one tenth of the mesh radius.

2.9.2.1 Modified Boundary Layer Formulations

The addition of the non-singular T-stress to the remote K field in the boundary condition is 

known as a modified boundary layer formulation (MBLF). As the T-stress is directly 

proportional to the load applied in an isotropic linear elastic body, the load in modified 

boundary layer formulations can be added using the superposition principle. The 

displacement in plane strain under the load due to K and T is therefore:

- u f - '  + u j  (2.145)

In plane strain deformation, :

(7u = T ,  cf2 2 = 0 ,  (2.146)

Figure 2.30 schematically shows the components of distance around a circular boundary 

layer formulation mesh which is used to derive the displacement m / and U2̂ . 

Consequently, the remote displacements field for a mode I plane strain MBLF in terms of 

cylindrical representation are:
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u f ' f  (r. e )  = K , ^  j -  c o s -  (3 - # - c o s  O h T ^ r  c o s  ^

{r,0)  = KI  sin  -  (3 -  4v -  c o s  61) -  r   ̂sin  (9
 ̂  ̂  ̂ E  \ 2 ti  ̂ E

The remote displacement field for plane stress modified boundary layer formulations can 

also be given for a state of remote plane stress. In plane stress, Gzz = 0:

011 =F, 022 =0 (2.148)

The mode I displacement field for plane stress in terms of cylindrical representation are:

U»Mf 1 Y_ C l! cos — (3 ■” 4v -  cos 0)
 ̂  ̂  ̂  ̂ E  \ 2 ti: 2 ^  ^

(r, 0 ) ~  Kj  -—-  sin — (3 -  4y -  cos <9)-  —  r sin é*
 ̂  ̂ '  E  \ 2 ti 2 ^   ̂ E

T
+ — r cos 0  

E  (2.149)

2.9.3 J-T approach

Larsson and Carlsson (1973) have shown that the second term in the William’s expansion 

has a significant effect on the shape and size of the plastic zone which develops at the 

crack tip. Rice (1974) denoted the second term in the Williams expansion as the T-stress. 

Significantly, the T-stress has no effect on the J-integral.

In an important development, Bilby et al. (1986) showed the effect of the second-order 

term on the large geometry change solution (LGC) within 2J/cTo of the crack tip. Negative 

T-stresses were shown to reduce triaxial stress level ahead of the crack. However, the 

effect of T  on crack tip fields was made clear through systematic analyses by Hancock and 

co-workers (Betegon and Hancock (1991), Al-Ani and Hancock (1991), Du and Hancock

(1991)).
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Betegon and Hancock (1991) modelled plane-strain elastic-plastic crack tip fields using 

modified boundary layer formulations and a strain hardening material response. The results 

indicate that the geometries characterised by zero and positive T stress cause the stress 

field to approach the HRR field, while geometries with a negative T cause the direct 

stresses directly ahead the crack to fall significantly. The effect of T stresses is to reduce 

the direct stresses ahead of crack by an amount that depends only on T and is independent 

of distance raJ J .  Based on these results, Betegon and Hancock proposed a family of stress 

field differing only by a distance independent higher order teim which depends on T;

0 00

(r.r)

0c
+ A

(r,T=0)
+ (2.150)

where A,„ and are constants dependent on the strain hardening exponent n  where values 

A,„ and Bn for n = 13 and are shown in Table 2.4. Betegon and Hancock (1991) argued 

that /-Dominance should be maintained for T stresses greater than -0.2 0 o for n = 13. 

Wang (1993) reinforced the findings of Betegon and Hancock (1991), using three-term 

polynomial fit to describe the effect. The important development from Betegon and 

Hancock (1991) was that the problems of J-Dominance in different geometries were 

unified. Geometries that show positive T-stress can be described by the HRR field and 

characterised by J alone. Geometries that lose J-Dominance feature negative T-stress es and 

can be characterised by two-parameters, J and T.

Al-Ani and Hancock (1991) studied the transition of crack tip fields from deep to shallow 

edge crack bend bars. J-Dominance was retained or lost according to the sign of T. Fully 

constrained flow fields were found in deeply crack bars when plasticity is limited to 

uncracked ligament and T > 0, while shallow cracked specimen showed unconstrained 

flow field in which plasticity spreads across uncracked and cracked ligament with T < 0. 

These observations imply that the stress fields can be characterised by two terms J and T. 

This two-parameter fracture mechanics approach uses the T-stress to quantify constraint 

while the applied load is scaled by J.
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Du and Hancock (1991), demonstrated the effect of T on structure of crack tip field in 

plane strain under elastic perfectly-plastic conditions. Crack tip deformation was 

represented as slip line fields within small-strain theory as shown in Figure 2.31. The 

analysis clearly showed that in the leading sector of the crack tip field, T is similar 

deviatorically but hydrostatically different as illustrated in Figure 2.32. Compressive 

(negative) T-stresses reduce the level of stress triaxiality and cause the plastic zone to 

swing forward. Tensile (positive) T-stresses increase level of crack tip stress triaxiality 

towards the Prandtl field while the plastic zone decreases and rotates towards the crack 

flank. The change of plastic zone shape due to T-stress is illustrated in Figure 2.33, where 

the stress field is compared with the Prandtl field. For tensile T-stresses, plasticity envelops 

the crack tip corresponding to the complete Prandtl field which is the limiting HRR field 

characterised by J. Under compressive T-stresses, the triaxiality of stress state was shown 

to reduce and cause the appearance of elastic wedges at crack flanks so that plasticity does 

not completely surround the crack tip.

Although the fully plastic crack tip fields are not unique, Hancock and co-workers (Al-Ani 

and Hancock (1991), Betegon and Hancock (1991) and Du and Hancock (1991)) have 

argued that the lack of uniqueness is not associated with the sudden development of the 

fully plastic flow field but rather evolves from the small-scale yielding and the geometry 

dependent nature of the elastic field as characterised by T.

2.9.4 J-Q Approach

Following Bilby et al. (1986) and Hancock and co-workers, O’Dowd and Shih (1991, 

1992) presented a related approach to quantify the evolution of constraint from small-scale 

yielding to full plasticity. O’Dowd and Shih (1991) carried out finite element studies using 

large geometry change analyses (LGC) as well as small-strain, small geometry change 

solutions (SGC). In an annular region surrounding the tip between J!<3q < r < 5J/Go, the 

stress field was expressed as:
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J S je ,n ) + e  - f -  0,j(e,n) (2.151)

The first term is the HRR field in which the r and 0 are polar co-ordinates centered at crack 

tip, n is strain hardening exponent, 8o the yield strain and a  is a material constant 

and, Cy (0 ) and à  y (0) are angular functions that depend on 0. This can be expressed as:

'^9 =K )h«b+2ct„5j,.; f o r r > J / a „  | 0 |< |  (2.152)

setting <2 = 0 defines the HRR reference field and the perturbations are purely hydrostatic 

in the leading sectors ahead of the crack tip. Physically Q measures the change in crack tip 

triaxiality from a reference field. In the context of contained yielding, T/Co = x is uniquely 

related to Q. This can be written explicitly comparing equation (2.152) with the modified 

boundary layer solution in three-term with constants C,j. Q then becomes:

G = &  + + + C . f  (2.153)

where Qo represents the difference between HRR and small scale yielding crack opening 

stress at a reference distance from the tip normally 2J/c>o. A refinement to equation (2.152) 

arises if the reference field is taken as the small scale yielding field resulting in a modified 

definition of the constraint parameter Q  :

(̂ 9 = k ) L  (2-154)

Q = A„x + B „ t^  +C„T^  (2.155)

Using Q = 0 as the reference field, the constraint of any stress component in full-field 

solutions can be determined through:
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„ ^ " K  w  at 6 = 0, r = 2J/a„ (2.156)

O’Dowd and Shih (1991) numerical solutions show that the stress distribution with the 

same <2 -value collapse onto a single curve when the distance is normalized by J/Oo- Q is a 

hydrostatic stress parameter in which negative values indicate that the hydrostatic stress is 

reduced while positive values imply the hydrostatic stress is increased by <2 ao.

The viability of two-parameter characterisation of fracture has been reviewed by Parks

(1992). The parametric descriptions correlated with the T-stress largely used by Hancock 

and co-workers (Betegon and Hancock (1991), Al-Ani and Hancock (1991), Du and 

Hancock (1991)) has been shown to provide good correlations in small to moderate 

plasticity but the rigorous application diminishes at large scale plasticity because the 

MBLF itself is based on a assumption of SGC plasticity occurrence however T-stresses ai’e 

easily obtainable for a wide range of geometries, (Leevers and Radon (1983), Kfouri 

(1986), Sham (1991)). The J-Q  method provide complete description from small to large 

scale plasticity however it entails detailed finite element modelling for every geometry at 

all deformation levels.

2.10 Constraint Effects on Toughness

2.10.1 In-plane Constraint Effects on Cleavage Failure

The effect of constraint parameter T on cleavage fracture toughness has been discussed by 

Betegon and Hancock (1990) and Sumpter and Forbes (1992). Both examined the critical 

value of J for geometries with different levels of constraint. Betegon (1990), Betegon and 

Hancock (1990) tested shallow cracked bend geometries with a/W < 0.3 and deep crack for 

which a/W > 0.3. The shallow cracks exhibit negative T-stresses while deeply bend 

specimens showed positive T-stresses. Specimens with negative T were systematically 

found to be tougher than positive T specimens. For deep cracks in bending (a/W > 0.3) the
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critical value of toughness, Jc, is constant and independent of the T-stress as shown in 

Figure 2.34.

Similar effects of constraint on cleavage toughness due to T were found by Sumpter (1993) 

using centre cracked tension panels and bend bars of high strength weld steel at -30°C as 

shown in Figure 2.35.

Sumpter and Hancock (1994) reanalysed the Sumpter (1993) data using Q as shown in 

Figure 2.36. Sumpter and Hancock (1994) also showed the toughness of high strength weld 

metal with a yield stress 700 MPa at test temperature ~30°C. Figure 2.37 shows Jc as a 

function of T/Oo while Figure 2.38 shows the same data as a Jc-Q locus. Constraint 

enhanced toughness were found to be more marked for this type of material than for the 

mild steel, and both J-T and J-Q loci describe the data well. Kirk, Koppenhoefer and Shih

(1993) presented cleavage toughness data for A515 steel at room temperature with 

different a/W ratios showed toughness can be classified based on T/Oo- However, attempts 

to show effect of constraint on thickness were inconclusive because the range of specimen 

thicknesses used were not sufficient to show the effect of out-of-plane constraint loss 

associated with the reduction of thickness. The specimen thickness to ligament ratio B/(W- 

a) ranged from 1.6 to 2 which broadly correspond to plane strain geometries.

In cleavage failure, the fracture toughness can be expressed within the context of two- 

parameter fracture mechanics by expressing the toughness as a function of the T-stress or 

Q-parameter:

y  = / ( ? ’, e )  (2.157)

2.10.2 In-plane Constraint Effects on Ductile Tearing.

The resistance to stable ductile tearing has been addressed experimentally by Hancock, 

Reuter and Parks (1993). Hancock, Reuter and Parks (1993) examined constraint effects in 

stable ductile tearing using an A710 steel in a series of cracked configurations. CTOD and
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J were measured as a function of the T-stress for crack extensions Aa  = 0, 200pm and 

400pm as shown in Figures 2.39-2.40. The initiation toughness was taken to be the critical 

value of J at a crack extension Aa  = 200pm. At any finite crack extension, (Aa > 0) the 

toughness increased with constraint loss, however at (Aa = 0), the initiation toughness

become constraint independent as J _  for all geometries (Figure 2.41).
a  V3

For geometries with compressive T-stresses such as CCP, the initiation toughness was 

approximately four times greater than that of deeply cracked bend bar and compact tension 

specimens as indicated in Figure 2.41. The effect of constraint was even more significant 

for higher crack extensions. An important result from the work of Hancock, Reuter and 

Parks (1993) is that the tearing resistance of all cracked geometries is correctly ordered by 

the T-stress, while Q has no meaning for growing cracks.

Figures 2.41 and 2.42 show that the effect of constraint loss in ductile tearing is due to the 

effect of T on the slope of the resistance curves. This data may be discussed with the 

numerical solutions of Varias and Shih (1993), which model the effect of constraint loss on 

the resistance to stable tearing.

2.11 Application of Constraint in Structural Integrity Assessments.

Structural integrity assessments in structures containing cracks have been traditionally 

based on single parameter toughness data or acquired from highly constrained flow 

field in deeply cracked bend specimens. This provides a lower bound conservative 

toughness, but may lead to unnecessary repairs and outage of engineering structures which 

develop unconstrained flow fields. The observation that constraint parameters such as T/Q 

can order experimental toughness data on cleavage and ductile crack failure in constrained 

and unconstrained flow field led to application of J-T/Q toughness loci in structural 

integrity assessments. Two parameter fracture mechanics is applied by the constraint 

matching or the failure assessment diagrams (FADs).
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2.11.1 Constraint Matching

In constraint matching, the toughness that corresponds to the constraint experienced by the 

structural defect is used to predict failure. The conditions at failure can be inferred for 

specific geometry and load dependent toughness by matching the constraint at fracture 

with laboratory tests at the same constraint level. Constraint matching is illustrated in 

Figure 2.43. Here a L-Q loci is develop through the result of experiment on highly 

constrained and unconstrained geometries. Failure is predicted when the applied driving 

force curve J-T/Q passes through the toughness locus (Jc-T/Q):

j ( T o r Q ) > j X T o r Q )  (2.158)

2.11.2 Failure Assessment Diagrams

Failure Assessment Diagrams evolved from work at Central Electricity Generation Boaid 

(CEGB) in the United Kingdom (Dowling and Townley (1975)). The proximity to failure 

is quantified by the ratio of the applied stress intensity factor, K to experimentally 

measured material fracture toughness K^:

^  = K ^  (2.159)

The proximity to plastic collapse is given as:

y  = 4  (2.160)

Dowling and Townley (1975) proposed the first failure assessment diagram as a simple 

square box in Figure 2.44. Interpolation between the extreme values of proximity of failure 

Kr and Lr either based on failure at a critical value of J or a pragmatic approach to 

experimental data shows the bound of safe operation of structure. Any load and crack
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combination that fall outside the region enclosed by a Failure Assessment Line (FAL) may 

lead to failures.

The original R6 code was based on a non-hardening material and did not include the strain 

hardening capability of real structural materials. To address this problem, R6 provides 

three options for failure assessment; (1) A general failure assessment line (FAL) which can 

be used for materials which do not exhibit a yield discontinuity:

JC, = ( l - 0.144 )(o.3 + 0.7 exp(-0.654)) for 4  < 7 .^  (2.161)

(2) A material specific FAL curve based on J-Integral analysis described by the equation:

(3) The FAL is based on the J-integral to calculate the Kr which was originally introduced 

by Bloom (1983) and Shih et al. (1983).

(2.163)

The J-integral was calculated based on the explicit formulation given by the EPRI 

estimation scheme, Kumar, German and Shih (1981) in which J is decomposed into elastic 

and plastic components as equation (2.125). The elastic component of J, Je is proportional 

to (P/Po) ,̂ while the plastic component of J, Jp is proportional to (P/Po)"^\ The total value 

of J can thus be expressed as a function of I^. Failure at a critical value of J can then be 

represented by a FAL for a specific hardening rate. To ensure calculations are not

invalidated by necking, the is truncated at :
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I T '  (2.164)
2 (T.

2.11.3 Constraint Modified Failure Assessment Diagrams

Constraint based fracture mechanics has been used to modify failure assessment diagrams 

(FADs) to take advantage of enhanced levels of toughness associated with constraint loss 

in unconstrained flow field (MacLennan and Hancock (1995) and Ainsworth and O’Dowd 

(1995)). MacLennan and Hancock (1995) adopted an approach based on T. The effect of 

constraint on toughness was described by a relation of the form:

JÀT) 1
exp(r/crj

—  < 0
(2.165)

= 1
j Xt  = 0)

where m  defines the constraint sensitivity of fracture. Constraint insensitive materials are 

identified by m = 0 such that the toughness is both T and Q insensitive and non-zero values 

of m correspond to increasing constraint sensitivity for negative value of T. Constraint 

sensitive toughnesses are denoted J(t)c to indicate that the critical value of J at failure 

initiation is a function of T (T < 0). The fully constrained field is identified with T = 0 field 

and denoted as J(t = o)c- Failure initiation is taken to occur at the intersection of a (J-T) 

loading history with the failure locus. Figure 2.45 illustrates the effect of constraint for a 

hardening exponent n = 6 and SENB a/W < 0.3 which indicate that enhanced toughness in 

constraint sensitive material to increase safety margins. Although the FAL in Figure 2.45 

are weakly sensitive to geometry but strongly dependent on constraint sensitivity of the 

material. Macl^nnan and Hancock (1995) proposed a modified FAD where Kr is modified 

and redefined as the square root of the elastic component of J to the constraint matched 

toughness Jc (T):
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j^m oàified ^  \ _ J _ e ---  (2.166)
V '^c(Q!T)

Figure 2.46 show the modified FAD proposed by MacLennan and Hancock (1995) which 

measures the toughness of shallow and deeply cracked bend bars as a function of T or Q 

and the FAD is constructed using the constraint matched toughness as given in equation 

(2.166).
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Figure 2.1: A three-dimensional body showing the stresses in (a) Cartesian and (b) 
cylindrical co-ordinate systems.
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Figure 2.2: Stress concentration due to a circular hole in an infinite plate.
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Figure 2.3: Mises yield criterion expressed using Mohr’s circle.
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Figure 2.4: Elliptical hole in an infinite plate.
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Figure 2.5: Cracked bodies in (a) Fixed displacement conditions and (b) fixed load 
conditions.

Load, P
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Figure 2.6: Elastic Load-Displacement curves under fixed displacement conditions 
(OACO) and fixed load conditions (OABO).
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Figure 2.7: Co-ordinates used in Westergaard’s asymptotic solution.
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Figure 2.8: Modes of Deformation.
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a/W f(aAV)

0 .0 1.0000
0.1 1.0060
0.2 1.0246
0.3 1.0577
0.4 1.1094
0.5 1.1867
0.6 1.3033
0.7 1.4882
0.8 1.8160
0.9 2.5776

Table 2.1: Numerical values of/(aAV) for centre crack panels after Tada et al. (1973).

Thickness B

Figure 2.9: Toughness as a function of thickness, Bt = thin specimen, Bt = Thick specimen 
after Broek (1974).
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Figure 2.10: Single edge notch in bending (SENB),
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Figure 2.11: Centre cracked tension panel (CCP).
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Figure 2.12: Plastic zone correction after Iiwin (1961).

Figure 2.13: Approximate plastic zone shapes using Mises criterion for v = 0.3 after 
Kanninen and Popelar (1985).



Chapter 2. Fundamentals of Deformation and Fracture 103

- 0-66 ■■

Figure 2.14: More accurate numerical calculations of the plastic zone shape in mode I 
deformation after Tuba ( 1976).
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Figure 2.15: Prandtl field.
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Figure 2.16: The small scale yielding asymptotic crack tip stresses for plane strain perfect 
plasticity determined from two-dimensional boundary layer formulations.
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Elastic Sector
Centered Fan

Figure 2.17; Plane stress mode-I asymptotic field configuration after Sham and Hancock 
(1999).
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Figure 2.18: The small scale yielding asymptotic crack tip stresses for plane stress perfect 
plasticity determined from a two-dimensional boundary layer formulation.
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(a) (b)

Figure 2.19: The crack tip opening displacement 5t measured from (a) crack mouth 
opening displacement (CMOD) (b) The 90° intercept construction method.

Figure 2.20: J  -  Contour Integral for a flat surfaced notch in a 2-D deformation field. F is 
an arbitrary contour surrounding the notch tip; Ft denotes the curved notch tip.
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dU = G B daP

a + da

u

P

a + da

u

(a) (b)

Figure 2,21: The load-displacement relations for crack advance Ôa under fixed 
displacement condition for (a) linear elastic material (b) non-linear elastic material. The 
shaded area indicates the loss in potential energy.
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Figure 2.22: Plane stress asymptotic stresses after Hutchinson (1968b) (a) Strain Hardening 
field, (b) Elastic Perfectly-Plastic field.
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Figure 2.23: Plane strain asymptotic stresses after Hutchinson (1968b) (a) Strain Hardening 
field, (b) Elastic Perfectly-Plastic field.
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2W

Figure 2.24: Slip line field for a centre crack panel (CCP) in tension.

Figure 2.25: Slip line fields for deep and shallow-cracked bars in bending after Ewing 
(1968) and Green (1953). The solid and dotted lines represent the deep and shallow- 
cracked bars slip line fields.
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CRACK
CRACK

Figure 2.26: Prandtl slip line field for a deeply double edge cracked bar.

Figure 2.27: Slip line field for a shallow double edge cracked bar after Ewing and Hill 
(1967).
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Small Strain Solution

•Large Geometry Change Solution.4.5

n = 10

o

3,5

Crack Blunting Effect on 
Stress Field

2.5

43210
lOc

Figure 2.28: The difference between large geometry change and small geometry change 
solution at distance within 0 < r < 2J/ao.
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a/W
0.1 0.11877E1 -0.46436E0
0,2 0.13650E1 -0.43362E0
0.3 0.16570E1 -0.37070E0
0.4 0.21083E1 -0.27762E0
0.5 0.28210E1 -0.15293E0
0.6 0.40254E1 0.69027E-2
0.7 0.63457E1 0.2101GE0
0.8 0.11926E2 0.50105E0
0.9 0.34485E2 0.10306E1

(a)

a/W Cty/Wa
0.1 0.10458E1 -Ô.36263E0
0.2 0.10534E1 -0.22852E0
0.3 0.11220E1 -0.73444E-1
0.4 0.12586E1 0.92115E0
0.5 0.14951E1 0.26160E0
0.6 0.19100E1 0.43325E0
0.7 0.27210E1 0.61041E0
0.8 0.46642E1 0.83862E0
0.9 0.12406E2 0.12675E1

(b)

a/W K
aUna

0.1 0.10234E1 -0.36062E0
0.2 0.10272E1 -0.23295E0
0.3 0.10937E1 -0.90071E-1
0.4 0.12290EI 0.60928E01
0.5 0.14647E1 0.21685E0
0.6 0.18787E1 0.37921E0
0.7 0.26B80E1 0.5531 lEO
0.8 0.46270E1 0.78585E0
0.9 0.12358E2 0.12273E1

(c)

Table 2.2: (a) Values of Ki and P for single edge notched bars in tension, (b) Values of Kj 
and P for single edge notched bars in pure bending, (c) Ki and P for single edge notched 
bars in three-point bending after Sham (1991).
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a/W K
a\/nd

' 0 1 0.1006E1 -0.1017E1
0.2 0.1025E1 -0.1034E1
0.3 0.1058E1 -0.1051E1
0.4 0.1109E1 -0.1068E01
0.5 0.1187E1 -0.1085E1
0.6 0.1303E1 -0.1102E1
0.7 0.1488E1 -0.1261E1
0.8 0.1816E1 -0.1460E1
0.9 0.2312E1 -0.1930E1

Table 2.3: Values of Ki and P for centre cracked panels after Levers and Radon (1983).

Ml

L

Figure 2.29 (a), (b) : Boundary layer formulation Rice (1968a)



Chapter 2. Fundamentals of Deformation and Fracture 115

U2 = r sm

= r cos 0

T

Crack Flank

Figure 2.30: Components of distance around a circular boundary layer foimulation mesh in 
terms of cylindrical axes.

n An Bn

13 0.64 -0.4

oo 0.6 -0.75

Table 2.4: Curve fitting constants after Betegon and Hancock (1991).
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Figure 2.31: Slip line field after Du and Hancock (1991).
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0 19'

0.446

0{deg)
Figure 2.32: Angular variation of the mean stress around a crack tip as a function of T/Qq 
after Du and Hancock (1991).

oo

cro

Ô-2

Figure 2.33: Plastic zone shape after Du and Hancock (1991).
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Figure 2,34: Toughness of edge cracked bend bar as a function of T/Qq after Betegon 
(1990) and Betegon and Hancock (1990).
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Figure 2.35: Jc as a function of non-dimensionalised T-stress for three-point-bend and 
centre crack tension specimens of at -30°C after Sumpter (1993).
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Figure 2.36 : Critical value of J as a function of Q for 3PB and CCT specimens of high 
strength weld metal at -30°C after Sumpter and Hancock (1994).
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Figure 2.37: Critical value of J as a function of T/cTq for 3PB and CCT specimens, low- 
grade mild steel at -50°C after Sumpter (1993).
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Figure 2.38: Critical value of J as a function of Q for 3PB and CCT specimens, low-grade 
mild steel at -50°C after Sumpter (1993).
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Figure 2.39: CTOD as a function of the T-stress at crack extension of 0, 200 and 400 pm 
after Hancock, Reuter and Parks (1993).

. s
J  MN/m

o
..O

o oOJ

CO
CO

CO

- 0.5 0.0

Aa -  400 Jim 
Aa = 200 pm 

Aa = 0 pm

Figure 2.40: J as a function of the T-stress at crack extensions of 0, 200 and 400pm after 
Hancock, Reuter and Parks (1993).
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Figure 2.41; The initial slope of the CTOD-Aa resistance curve as a function of T after 
Hancock, Reuter and Parks (1993).

6

n

• i . f • t . f o.s

OO

Figure 2.42 : The initial slope of the J-Aa resistance curve as a function of T after Hancock, 
Reuter and Parks (1993).
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T/Q

Figure 2.43: General representation of the effect of constraint on the cleavage fracture 
toughness.
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Figure 2.44: Failure assessment lines as given by R6 Rev3 (1986) and the original (1976) 
form.
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(a) (6)

L™ 2

Figure 2.45 : FADS for a SENB with (a) constraint insensitive material, m= 0, n = 6 , (b) 
slightly constraint sensitive material m = 1, n = 6 , (c) constraint sensitive material, m = 2 , n 
= 6 , (d) highly constraint sensitive material, m = 3, n = 6 after MacLennan and Hancock 
(1995).

1.0

0.5

Figure 2.46: A modified FAD for a SENB with constraint sensitivity indices (m = 0, 1,2, 
3) and hardening exponent, n = 6 after MacLennan and Hancock (1995).
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Three-Dimensional Crack Tip Fields

Although real structural integrity problems are fully three-dimensional, classically, fracture 

problems have been largely analysed using two-dimensional idealisations based on plane 

strain or plane stress. Initial studies of three-dimensional crack problems focused on the 

determination of the nature of stress and strain fields close to the crack tip. The review in 

this chapter emphasises on the development of the features of crack tip fields in three- 

dimensions and the effect of thickness on constraint and toughness. Finally, a review of 

thickness effect on toughness is given as a precursor to three-dimensional crack constraint 

failure assessment.

3.1 Three-Dimensional Elastic Analyses

3.1.1 Elastic Stress Solutions

Sih and Liebowitz (1968) discussed the mathematical theories of brittle fracture including 

the theory of elastic cracks in three-dimensions. Several approaches to the determination of 

the singular behaviour of crack tip in three-dimensional geometries were discussed. In an 

ensuing work, Hartranft and Sih (1970) suggested an approximate three-dimensional stress 

solution at the crack tip:

(Ty, = = o(r'} as r - > 0

where Ox, Gy, Gxy and become infinite along the crack edge when r"̂ '̂  while the 

transverse shear stress Gyz and Gzx remain finite at the crack tip through the thickness. The
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angular variation of the in-plane stresses is identical to the two-dimensional asymptotic 

crack tip stress field equation (2.67). However, equation (3.1) may not be applicable to the 

singularity problem at the free surface field.

Paris and Sih (1965) reviewed early developments in the stress-intensity factor approach 

for three-dimensional elastic crack problems and provided some standard solutions for 

important configurations including ellipsoidal cracks in infinite bodies. This work initiated 

the collection of stress-intensity factors solution in compendia as exemplified by Sih 

(1973), Rooke and Cartwright (1976), Tada et al. (1985) and more recently by Murakami 

(1987). A collection of work carried out by Soviet scientists on three-dimensional linear 

elastic crack problems has been reviewed by Panasyuk et al. (1980, 1981).

The Sih and Liebowitz (1968) and Rice (1968a) reviews highlighted the importance of 

clarifying the three-dimensional features of crack tip deformation, and specifically 

understanding the effect of finite thicknesses and the accompanying plane strain to plane 

stress transition.

Cruse and Vanburen (1971) provided an early discussion of three-dimensional elastic 

stress analysis of a finite thickness compact tension fracture specimen using direct 

potential methods. The nature of the three-dimensional state of stress as the crack tip was 

discussed and argued that the out-of-plane stress, G% is a function of the thickness co­

ordinate, X3, In a subsequent paper, Cruse (1970) drew out the importance of out-of-plane 

constraint effects and presented some numerical results on plasticity effects in small scale 

yielding. Out-of-plane constraint factor was quantified by a factor p as given in equation 

(2.45) which measures the proximity to plane strain. The degree of plane strain as 

measured by equation (2.45) increases as crack front is approached. However the results 

only provided general trends and were not sufficiently accurate to quantify the magnitude 

of the stresses. Although accuracy of the solutions is debatable, Cruse (1971) showed that 

three-dimensional crack problems comprised of two types of singularity: the usual two- 

dimensional crack front stress singularity and a crack front-free surface intersection 

singularity.
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Finite element techniques have proved to be a powerful tool with which to address the 

intractable nature of three-dimensional crack analysis. Levy, Marcal and Rice (1971) 

formulated an early elastic finite element approach to three-dimensional crack tip problems 

in which the near tip elements featured coincident but independent nodes. This allows the 

crack tip to exhibit the necessary r'®'̂  stress singularity. For a straight through thickness 

crack, the proximity to plane strain was measured by the plane strain parameter, p. At 

distances less than 0.5r from the crack front, p was close to 1 on the midplane, indicating 

that the elastic field in the three-dimensional problem is similar to the two-dimensional 

plane strain singularity.

3.1.2 Elastic Stress Field

Many analyses have been carried out to understand out-of-plane effects in finite thickness 

plate and to identify the size of the three-dimensional field in cracked plates.

Yang and Freund (1985) employed an approximate method based on a boundary layer 

approach for a crack in a thin plate to assess the effect of out-of-plane effects in thin elastic 

plates. The model assumed the three-dimensional crack front to be surrounded by a plane 

stress field controlled by a remote stress intensity factor. The out-of-plane displacements 

were taken to be identical to the corresponding plane stress solution at radial distances 

from the front greater than half to three quarters of the plate thickness.

The analytical approach of Yang and Freund (1985) can be compared to an experimental 

method developed by Rosakis and Ravi-chandar (1986). Rosakis and Ravi-chandar (1986) 

investigated the three-dimensional stress field at the vicinity of a through crack using 

transmitted and reflected caustics in Plexiglas specimens and in 4340 steel specimens. The 

nature of the stress field as the crack front was approached was analysed using shadow 

spot method. They proposed an analytical expression for the local stress intensity factor 

from the analysis of caustics as:
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■EXP 9.34Æ 2 _ 5/2

where is the stress intensity factor determined from caustics experiments, Zo is a 

reference distance, t is plate thickness, D  is the maximum transverse diameter of the 

caustic and c is the appropriate optical constant dependent for plane stress or plane strain 

conditions. is non-dimensionalised by the plane stress stress-intensity factor K jd 

given by Tada et al. (1985).

At distances r/t > 0.5 both materials demonstrate approaching 1 which indicates a

plane stress field. At r/t < 0.5, K^^^IK2d continued to decrease instead of reaching a 

constant value which demonstrated that the plane strain region is not clearly identified. 

Rosakis and Ravi-Chandar concluded that plane strain was only achieved at r!t -  0, and 

suggested that in the range 0 < r/t < 0.5 the three-dimensional stress gradients were weaker 

than the corresponding two-dimensional gradients.

The most complete stress analysis of the out-of-plane effects in thin plate has been given 

by Nakamura and Parks (1988a). Nakamura and Parks (1988a) studied the stress field of a 

thin cracked plate under mode I loading using three-dimensional finite element boundary 

layer formulations. The problem was defined by applying displacements corresponding to 

the two-dimensional plane stress K field given by equation (2.73) to the perimeter of a thin 

domain surrounding the crack tip. The transition from a two-dimensional to a three- 

dimensional field occurred within an annulus r/t <1.5. At r/t > 1.5, the in-plane stresses 

stalled to merge with the dominant plane stress solution. The transition from two- 

dimensional to three-dimensional fields was independent of Poisson’s ratio (v) although, 

the amplitude of the opening stress was greatly affected by v. In nearly incompressible 

solids. Poisson’s ratio affected the variation of opening stress, 022, from the midplane (xs/t 

= 0) to the free surface (X ]/t = 0.5)
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Within the near tip field, Nakamura and Parks showed that the characterising parameter J 

varied along the crack front. As the midplane field approached plane strain conditions, 

Nakamura and Parks (1988a) determined local K values using the plane strain conversion:

(3.3)

At the midplane (x^/t = 0), the local values of K and J were amplified, while near the free 

surface the values were attenuated depending on the magnitude of V. The normalised local 

J curves at different Poisson’s ratio intersected at Xg/t = 0.35 where Jioc/Jfar = 1. Similai* 

behaviour was observed for the normalised local K with curves for different Poisson’s 

ratios intersecting near xg/t = 0.47 where Kioc/Kfar = 0.99. Based on the linear elastic 

condition, K and J should be similar and the variation along the crack front should also be 

identical. However, the results showed that the local K and J values intersect at different 

positions. This could be due to the use of the local J values driven from an outer plane 

stress field to extract a local K values using the plane strain condition of equation (3.3).

Nakamura and Parks (1988a) used the plane strain parameter defined in equation (2.45), to 

characterise the three-dimensional nature of the stress field ahead of the crack front. The 

three-dimensional field was found to approach plane strain within distances of r/t < 0.5 

with the highest tendency towards plane strain at the midplane (xg/t = 0). At r/t = 0.0015, v 

= 0.3, and Xg/t = 0, the three-dimensional field exactly matched the angular distributions of 

stress in the asymptotic plane strain solution.
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3.2 Fracture Characterising Parameters

3.2.1 J-Integral in Three-Dimensional Analyses

Levy, Marcal and Rice (1971) have discussed finite element methods to model three- 

dimensional elastic-plastic crack tip fields. While the development of the energy release 

rate to obtain J has been implemented in finite element approach using the virtual crack 

extension method, Hellen (1975) and Parks (1974, 1977).

In three-dimensional crack analyses, J can be extracted using virtual domain integral 

methods Shih et al. (1986) in which the line integral form of J given in equation (2.122) is 

expressed in terms of a volume/domain integral, J d '-

J d = jky  «y.i dA (3.4)
A

This is identical to the potential energy release rate given in Li et al. (1985) and Nakamura 

et al. (1986b) and is consistent with path-independent integral J of Rice (1968b). Equation

(3.4) is domain independent when evaluated over an arbitrary annular area A, surrounding 

the crack tip.

In the limit, the three-dimensional crack analyses show that path-independent is not 

achieved (Nakamura and Parks (1988b, 1990) and Yusof and Hancock (2005)). For a given 

section (xg/t) along the crack front of a boundary layer formulation, the J-integral value 

remains path-independent for a limited distance ahead of the crack front. At large distances 

from the crack front, the J-integral approaches the applied values which drive the 

displacement field. Therefore, the local J that varies along the crack front approaches the 

uniform applied stress intensity factor on the perimeter of the boundary layer formulation. 

Nevertheless, the local J can still be regarded as a parameter which characterises the near 

tip field.
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3.2.2 T-stress in Three-Dimensional Analyses

Given the significance of the effect of the T-stress in two-dimensional crack tip analyses, 

Nakamura and Parks (1992) developed a method for extracting the T-stress along three- 

dimensional crack fronts from moderately detailed finite element solutions. The method is 

based on an interaction integral given by Kfouii (1986). Instead of a point load, a line load 

is introduced, and T is calculated from the difference in J, with and without the line load:

T { s )  = >̂ 3̂3 {^)] (3-5)

Here /  is the line load in the xi direction, I(s) is the interaction integral. Nakamura and 

Parks (1992) used the interaction integial method to extract the T-stress in elastic three- 

dimensional specimens and showed that the T-stress was influenced by the plate thickness 

as well as v. The thickness dependence of the T-stress distribution can be expressed as:

where B is the biaxiality factor and the two-dimensional biaxiality parameter B^^ has been 

tabulated for various crack configurations by Sherry et al. (1995). The function is the 

inherent biaxiality parameter of a thin plate which is independent of any loading 

conditions. Figure 3.1 shows the dimensionless biaxiality function of a thin plate. As 

Poisson’s ratio, v, increases, there is a marked increase in the biaxiality factor for nearly 

incompressible solutions as the free surface plane is approached. In thick plates the T- 

stress coincides with the two-dimensional solution where the first term on the right-hand 

side of equation (3.6) dominates, while the first term vanishes for an infinitely thin plate. 

Nakamura and Parks’ (1992) work demonstrates that thickness-dependence can elevate the 

negative biaxiality of two-dimensional crack configurations (B^^ < 0 ) as the thickness is 

reduced providing <~ g''"" .
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3.3 Three-Dimensional Elastic-Plastic Analyses

Fracture processes in engineering structures are dominated by plastic deformation even for 

materials that exhibit cleavage. Two-dimensional elastic-plastic crack analyses aie widely 

available but are usually based on plane strain conditions and focus on in-plane effects. 

However, crack tip deformation in the fracture process zone is affected by the combination 

of in-plane and out-of-plane effects. This section of the literature, reviews progress in 

understanding three-dimensional elastic-plastic crack tip fields.

3.3.1 Elastic-Plastic Stress Field in Finite Thickness Plates

Rice (1968a) has argued that the three-dimensional field in a finite thickness specimen 

should be bounded by the states of . plane strain and plane stress. However the transition 

between the two states has not conclusively been quantified.

A three-dimensional finite element analysis of a test specimen configuration has been 

given by Wellman et al. (1985). Three-point-bend plane strain specimens were analysed 

from elastic to full plasticity using data derived from a uniaxial tension test of a pressure 

vessel steel. The plane strain and plane stress solutions provided upper bound and lower 

bounds to the load-displacement characteristics as shown in Figure 3.2. In the three- 

dimensional three-point-bend model, the occurrence of plane strain was shown at 

midplane. Although thé Wellman et al. (1985) models were based on thick deeply cracked 

plane strain crack configurations (B/(W-a) = 1), they anticipated that plane stress should 

occur at the free surface. However, plane stress conditions were not shown to occur 

conclusively as illustrated in Figure 3.3.

Nakamura and Parks (1988b) analysed small scale yielding fields in a thin plate using 

boundary layer formulations. The material response was elastic-plastic with a strain 

hardening exponent, n = 10 in a Ramberg-Osgood power hardening law. The objective was 

to quantify /-Dominance conditions in thin plates. Three-dimensional fields occurred
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within an annulus r < t independent of load. The opening stress, G22, merged with the plane 

stress field at r =1.5t, while a significant variation of through-thickness field quantities 

only occurred within r < 0.5r.

A comparison of the local J along crack front at different load levels showed amplified 

values at the midplane (xg/t = 0), and attenuated values at the free surface (xg/t = 0.5). At 

low loads, the plastic zone shape was similar to the two-dimensional plane strain plastic 

zone shape both at the midplane and the free surface. As the load increased, the midplane 

plastic zone shape changed towards the two-dimensional plane stress plastic zone shape 

but the free surface plane retained the two-dimensional plane strain shape. These effects 

were attributed to the competition between the crack front singularity and the comer 

singularity. Nakamura and Parks (1988b) argued that under small scale yielding 

conditions, the coexistence of a plane strain HRR-field and a plane stress HRR-field along 

the crack front was very unlikely. A plane strain field was developed much more readily at 

the midplane than near the free surface. In the boundary layer formulation, the level of load 

to maintain a local plane strain HRR field at the distance (r = 2J/ao) was proposed to be

J far/ GoGgt ^ 10.

Horn and McMeeking (1990) employed large geometry change solutions to study a thin 

cracked plate modelled by boundary layer formulations at load levels of J/Gof = 2 for a 

nonhardening material and J/Cot = 2.7 for a hardening material response. The state of stress 

near the crack tip was quantified through the difference between the midplane and free 

surface hoop stresses at corresponding positions ahead of the crack front. The stress field 

was considered to be dominated by the plane stress field if the hoop stress ratio was less 

than 5 percent:

_ midplane   — freesurface
^ 0 0  ^ 0 0 _______

— free surface 
^00

< 5%  (3.7)

On this basis, the three-dimensional features of the stress field extended a distance of 6t 

ahead crack tip in non-hardening solution and 2 t in the strain hardening solution.
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Nakamura and Parks (1990) extended the three-dimensional boundary layer formulations 

studies of a thin cracked plate to model the transition from small scale yielding to large 

scale yielding. In this study, substructured three-dimensional meshes were constructed so 

that contained yielding could be extended to multiple plate thickness distances. Small scale 

yielding and moderate yielding were identified to occur when the plastic zone is r y «  t and 

ry = t. A strong three-dimensional effect was observed at r < 0.5r accompanied by relatively 

weaker through thickness variations of field quantities between 0.5 < rlt <1.5 and a nearly 

plane stress region at r = 1.5r were observed as the load increased to moderate yielding.

Plastic zone shapes were studied beyond small scale yielding and the results were 

presented at the midplane and the free surface. A plane stress plastic zone shape occurred 

through the thickness at load levels J/Oo£ot >5. However, at low loads, the plastic zone 

shape took a plane strain shape at the free surface but approached plane stress at the 

midplane. This was argued to be due to the local J values which were higher at the 

midplane than the free surface.

In the transition from small scale to moderate yielding, the level of hoop stress decreased 

with increase in distance r/t as illustrated in Figure 3.6. Plane strain dominance was 

attained at the crack tip but decreased with distance from the crack tip as shown in Figure 

3,7. A dominance parameter, p, was defined to determine the proximity to a local plane 

strain HRR field:

Lt — II

P = . J    (3.8)^ H R R {p l.s tra in )  
^ij

Near the midplane at moderately high load levels, the local plane strain HRR-dominated 

field was lost as shown in Figure 3.8.

Results for n = 3, 5, 10 were given in the fully plastic analysis in which a plane stress HRR 

field with plastic strains that exceeded the elastic strain was imposed on the tip-model.
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Three-dimensional effects occurred at distances less than r/t < 1 while the transition from a 

three-dimensional to two-dimensional field occurred within the range of 1< r/t <1.5, Using 

the plane strain dominance parameter given in equation (3.8) showed that, plane strain 

constraint was lost along the crack front as shown in Figure 3.9. The result is similar to that 

obtained from the boundary layer formulations.

Nakamura and Parks (1988b and 1990) indicated that in small strain hardening elastic- 

plastic solution the three-dimensional zone extends to r/t = 1.5. Hom and McMeeking

(1990) used a large geometry change solution to characterise crack tip field in thin plates 

but showed the three-dimensional field range from 2 t in hardening to 6 t in non-hardening 

materials.

The zone where the crack tip field is fully characterised by the J-integral is known as the J- 

Dominated zone. In three-dimensional crack tip fields, there are three zones along the 

crack front; a local near-plane strain, a plane stress and a comer field. Nakamura and Parks 

(1988b and 1990) showed the load to maintain the local plane strain J-Dominated HRR 

zone in a boundary layer formulation is Qfar < 10. A local plane stress field at the crack 

front has not been conclusively shown to exist, while the existence of a comer field in 

elastic-plastic field is still unresolved analytically and numerically.

3.3.2 Constraint Effects in Three-Dimensional Crack Tip Fields

It is now appropriate to focus on the effect of constraint in three-dimensional crack tip 

fields. In-plane constraint effects associated with the T/Q have been usefully adopted to 

increase margins associated with conservative plane strain fracture methodologies in 

problems of geometries dependent/non-dependent on J-Dominance. This has led to the 

engineering concepts of constraint matching and modified failure assessment diagrams 

which have been discussed in Chapter 2. However, an important aspect which has not been 

addressed is the effect of constraint in finite thickness specimens.
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Three-dimensional elastic-plastic crack solutions using finite element methods became 

viable when efficient finite element formulations were combined with the computing 

capability to handle problems with many large degrees of freedom in the early eighties. 

The development of the numerical techniques has been described by Levy, Marcal and 

Rice (1971).

The development of plasticity and the evolution of crack tip parameters such as the J- 

Integral and CTOD were initially given by deLorenzi and Shih (1983) for compact tension 

(CT) specimens with thickness to ligament ratio B/(W-a) = 1.25. They analysed three- 

dimensional elastic-plastic crack fields using deformation plasticity with a hardening 

exponent, n = 10. The energy release rates along crack the front were amplified at the 

midplane (xg/t = 0) and attenuated at the free surface (xg/t = 0.5). For loads ranging from 

small scale yielding to full plasticity, the crack opening stress normalised by the opening 

stress at the midplane was uniform at the midplane and reduced toward the free surface. 

This indicated that the opening stress reached a fully constrained value at midplane and 

reduced with increasing loads towards the free surface as shown in Figure 3.4. As the load 

increased, the plane strain constraint parameter (Gz/Gx+Gy), approached 0.5 at the midplane 

and zero at the free surface as indicated in Figure 3.5.

Brocks and Olschewski (1986) also analysed three-dimensional compact tension (CT) 

specimens in thicknesses ranging in thickness from the standard plane strain fracture 

toughness, (2a = W, 2B = W) B/(W-a) = 1, to thin specimens, using incremental plasticity. 

The effects of thickness on the stress field were studied by varying the thickness of CT 

specimen using the HRR field as a reference. The results showed a loss of constraint when 

the thickness of the CT specimens was reduced from the plane strain standard geometry 

(B/(W-a) =1. However, even in the thickest specimen, stress components did not compare 

well to the two-dimensional HRR stresses leading to the conclusion that plane strain two- 

dimensional solution might not be applicable in three-dimensional fracture analyses. This 

result may be questionable because the fineness of the mesh was far less than the two- 

dimensional studies used in their paper.
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Nevalainen and Dodds (1995), investigated constraint effects in the context of brittle 

fracture using SENB and CT specimens. For shallow cracked bend bars, a/W = 0.1 at the 

midplane, a loss of constraint was observed at very low deformation levels. Deeply 

notched thick specimens in bending, (a/W = 0.5 W/B = 1), showed a small increase in 

constraint at the midplane at high deformation levels due to in-plane effects. Thin deeply 

notched specimens showed a severe loss of constraint on the midplane while shallow 

notched specimens showed less severe constraint loss at the midplane. For deeply notched 

SENB and CT specimens, midplane levels of stress triaxiality were maintained to higher 

deformation levels in contrast to two-dimensional plane strain analyses.-

The effect of constraint on a ductile austenitic steel has been investigated by Yuan et al. 

(1995) using the J-Q methodology. The paper can be divided into two-dimensional and 

three-dimensional crack tip analyses. In three-dimensional analyses of CT specimens, they 

showed that the stress field tended toward the plane stress field in both thick, B/(W-a) = 1 

and thin B/(W-a) = 0.2 specimen as the load increased. In the thick specimen, the direct 

stresses at the midplane remained similar to the plane strain stress level even at high levels 

of deformation. However the free surface did not show conclusive evidence of a plane 

stress field. In the thin specimen, the midplane stresses were close to plane strain levels at 

low loads but developed toward a plane stress field with increasing load. Another 

important result showed that Q, varied significantly along the crack front and with distance 

from the crack tip which has profound implications to the applications of J-Q methodology 

to three-dimensional crack tip analyses, as Q should be distance independent.

The applicability of the J-Q approach in three-dimensional analyses has been discussed by 

O’Dowd (1995). O’Dowd (1995) argued that the J-Q method was applicable to three- 

dimensional crack in thick plates but is limited to midplane (xg/t = 0 ) where out-of-plane 

strain components are negligible compared to the in-plane singular terms.

Although the J-Q methodology may not be able to fully characterise the effect of finite 

thickness crack, it is useful to determine constraint effects at the midplane where crack 

propagation is normally expected to initiate in straight through crack problems. Henry and
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Luxmoore (1997) performed three-dimensional crack analyses on high and low constraint 

geometries to evaluate the effect of constraint in a low hardening response material using 

the J-Q methodology. The specimens dimensions for the high constraint geometry varied 

between B/(W-a) = 0.8 to 1.01 while the low constraint specimens dimensions varied from 

B/(W-a) = 0.8 to 5.6. All data were extracted at the midplane (xg/t = 0) but at two different 

in-plane distances { r a J J  = 1 and 2). The triaxiality factor defined as the mean stress 

divided with equivalent Mises stress (cr„, /<j = h) varied linearly with Q as shown in 

Figure 3.10. Figure 3.11 shows the triaxiality parameter as a function of Q indicating that 

for different hardening exponent, n, the triaxiality, h, increases at a fixed Q.

Yuan and Brocks (1998) analysed mode I cracks using both three-dimensional modified 

boundary layer formulations and full field bending and tension geometries with strain 

hardening responses similar' to those used by Nakamura and Parks (1990). The full-field 

specimens used thickness to ligament ratios of B/(W~a) = 1 and 0.2. The T-stresses in the 

modified boundary layer formulations varied in the range of -1< r  <1 (x = T/Gq). Q values 

were defined as differences between the hoop stress of the three-dimensional field and the 

plane strain reference solution near midplane (xg/t = 0.033) and near free surface (xg/t = 

0.994). Their results showed that the crack front stress fields were dominated by the plane 

strain solution at small plastic zone sizes, but the stress field approached the plane stress 

field as the plastic zone increased in size. Near the crack tip, Q depended on distance from 

the crack front and on the distance from the free surface. This suggests that Q parameter 

cannot describe the crack front constraint as the load increases. However, it was found that 

Q was related to the normalise hydrostatic stress, (jJOo  uniquely through a linear 

relationship for a particular constraint level as shown in Figure 3.12-3.14. They noted that 

the three-dimensional crack fields fall between the plane strain and plane stress 

idealisations although plane stress behaviour was not clearly identified. Finally they argued 

that any parameter defined under plane strain condition cannot characterise in-plane and 

out-of-plane constraint loss.

Kim et al. (2001) carried out three-dimensional analyses on a thin cracked plates using 

boundary layer formulations and correlated the numerical solutions with a three-term
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asymptotic crack tip expansion J-A2. The numerical results from their analyses essentially 

follow a J-T/Q approach and can be used in part to demonstrate three-dimensional crack tip 

constraint effects. The T-stress was applied to simulate the effect of geometries in 

boundary layer formulations. The results were compared with HRR plane strain and plane 

stress fields. For the low and high loads, data gathered at the midplane and near the free 

surface fell between the HRR plane strain and plane stress field, indicating a plane strain 

like field at midplane, and near plane stress field close to the free surface. The effect of T 

was similar to the effects which have been demonstrated in two-dimensional analyses. The 

effect of the plane strain parameter equation (2.45) was evaluated with varying T-stress as 

illustrated in Figure 3.15. It was found that the T-stress does not affect the plane strain 

parameter. In subsequent work, Kim et al. (2003) examined the effect of constraint on 

three-dimensional SENB specimens. The specimens had crack to width ratio of a/W = 0.5 

and 0.15 with an identical thickness B. In order to relate the results to the experimental 

cleavage toughness data of Sorem et al. (1989) and Wellman et al. (1988), specimens with 

B = W and W = 2B were selected. The results showed that at the midplane, the HRR plane 

strain field is approached and remained close to the HRR field for all load levels much 

more nearly in the W = 2B specimen when compared to the B = W specimen. With 

increasing load, the physical location of r = 2/JGo moves toward the global bending field 

and this affects the crack tip constraint field in the square specimen much earlier than the 

rectangular specimen at the same deformation level. At the free surface for the B = W 

specimen, the stress field did not approach the plane stress field. The shallow cracked B = 

W specimen showed a constraint loss similar to the effect seen in two-dimensional shallow 

crack bend specimens.

Three-dimensional crack analyses require a very detailed finite element mesh to bring out 

the characteristics of the crack tip field. In order to accommodate a stable stress gradient 

change from the midplane to the free surface, the mesh must have a build up of element 

layers through the thickness but weighted to the surface and away from the crack front, but 

weighted towards the crack tip. Three-dimensional crack problems are further complicated 

by the need to have significant computing resources to solve problems with many degrees 

of freedom. Brocks and Olschewski’s (1986) results are questionable as highlighted by
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Parks (1991) because the three-dimensional mesh was coarse compared to two- 

dimensional solutions. A reference three-dimensional analysis by Nakamura and Parks 

(1988b and 1990) provided initial results on the elastic-plastic constraint effect. The three- 

dimensional analyses of a thin plate largely focused in characterising the three-dimensional 

field and extent of J-Dominance. Subsequent work focused on applying two-parameter 

fracture methodology to full-field solutions. However the results were only given at the 

midplane and the free surface field from small scale to large scale yielding (Sorem et al.

(1991), Yuan et al. (1995), Nevalainen and Dodds (1995), Henry et al. (1996), Henry and 

Luxmoore (1999), Kim et al. (2001), Kim et al. (2003)). The results centre on in-plane 

geometry effects rather than the effect of thickness on constraint. Yuan and Brocks (1998) 

attempted to quantify thickness effect on constraint by showing results in boundary layer 

formulations and full-field solutions from small scale yielding to full plasticity. However, 

they concluded that a parameter based on plane strain cannot fully describe both in-plane 

and out-of-plane constraint loss.

Although the application of J-T/Q methodology in three-dimensional analyses is suspect, a 

detailed discussion on the limits has never been provided. J-T/Q theory requires the field to 

be deviatorically similar which means the shear stresses must remain identical under 

constraint loss, but direct stresses differ hydrostatically. An important requirement is that 

within the microstructural-separation distance ahead of the crack front normally within 

2J/Go < r < 5J/Go, the stress difference Q is distance independent. Yuan et al. (1995) and 

Yuan and Brocks (1998) showed that Q is not distance independent. In contrast, O’Dowd 

(1995) and Pardoen et al. (1999) argued that in very thick specimen when out-of-plane 

constraint is bounded, J-T/Q theory suffices to describe the constraint loss. A detailed 

investigation on out-of-plane constraint effect is needed to show limits of two-parameter 

methodology in three-dimensional analysis.
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3.4 Experimental Data on Toughness

The effect of thickness on fracture toughness is a fundamental issue in fracture mechanics. 

Irwin et al. (1958) found that fracture toughness varied with thickness. Using bend bars 

and centre cracked tension panels in aluminium alloys (7075-T6 and 2024-T3) which 

ranged in thicknesses from 0.016 to 1 inch: they showed that the critical crack extension 

force, Gc increased as the thickness decreased as shown in Figure 3.16. An important 

outcome from this work was the identification of the plane strain fracture toughness, K%c, as 

a material property.

Any discussion of the effect of thickness on fracture toughness requires fractographic 

analysis, such as that given by Knott (1973). Figure 3.17(b) illustrates the effect of 

thickness on fracture toughness. The fracture profiles can be divided into 3 regions: A, B 

and C. The C region is associated with plane strain fracture, B is associated with transition 

from plane strain to plane stress and A is region where necking precedes failures.

Fractographically C is the region where flat fracture occurs in the centre of relatively thick 

specimens with very small shear lips at the edges. Flat fracture occurs because lateral 

contraction is constrained under near plane strain conditions and a triaxial stress system is 

developed. However at the free surface, the lateral stress is zero and the stress state 

approaches plane stress causing a shear lip. Thickness-toughness data in this region are 

widely available as exemplified by Hudson and Seward (1978 and 1982). However, 

fracture toughness data for the same material seems to vary greatly as critically remarked 

by Chambers and Sinclair (1986) raising doubts about the safe application of fracture 

toughness data to structural integrity assessment by inexpert personnel. The variation of 

cleavage fracture toughness can be resolved by applying statistical methods. Wallin (1984) 

demonstrated that the scatter in the cleavage K^ data can be described by a Weibull 

distribution. The relative scatter described through the Weibull modulus is constant and 

equal to four. In ductile tearing, Wallin (1985) argued that valid fracture toughness data 

should be identified at the initiation of crack extension. Ductile fracture initiation is 

thickness independent if B > «(J/CTq). For bend specimens, the factor a  is usually suggested



Chapter 3. Three-Dimensional Crack Tip Fields 142

to be 25. Wallin (1985) showed typical experimental data on thickness effect on ductile 

crack initiation taken from (Keller and Munz (1977), Gilmore et al. (1983), Huang and 

Gehes (1984) and Druce (1980)) in Figures 3.18 -  3.20. When B < 251/Go, the toughness 

increases with reduction in thickness and corresponding to the transition to region B of 

Figure 3.17(a).

In region B the toughness increases with a reduction of the thickness and reaches a 

maximum critical crack extension force, Gc. Experimental data in the transition region 

from plane strain to plane stress have been shown by Irwin (1964), Tiffany and Masters 

(1965), Kaufmann and Hunsicker (1965), Brothers and Yukawa (1966), Srawley and 

Brown (1967), Rolfe and Novack (1970) and Jones and Brown (1970) in Figure 3.21-3.27. 

All data show that fracture toughness increases with reduction in thickness. The fracture 

profile in the intermediate thickness is shown in Figure 3.28. At low load levels, the stress 

field at the crack front is triaxial and specimens exhibit flat fracture surfaces, however, as 

plastic deformation increases, the lateral stress, Gzz relaxes and the flat surfaces tunnels 

between the shear lips. Krafft, Sullivan and Boyle (1965) developed a hypothesis to 

explain the behaviour in the transition of plane strain to plane stress in terms of the energy 

necessary to deform in the transition plane strain and plane stress. Plane strain fracture was 

associated to energy required to form new surfaces while plane stress fracture is the plastic 

energy contained in the shear lips. This established the crack resistance R-curve concept. 

Currently, ASTM-E1152 (1988) specifies the method to determine the fracture toughness 

in stable tearing using J-R curves. However, toughness testing based on crack resistance R- 

curve may not be practical because of problems associated with the accuracy of results. 

Landes and Brown (1998) reported round robin results on the standard method for 

measurement of fracture toughness and concluded that the J-R curves method could not 

provide a valid initiation fracture toughness data because of the difficulty of obtaining 

valid initiation toughness values from the R curve.

In region A, the fracture toughness reduces with a reduction of thickness. The effect of 

thickness on fracture toughness in region A have been inferred, (Knott (1973), Broek 

(1974), McClintock (1971)) although the literature usually concentrates on qualitative
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rather than quantitative explanation because of the complex nature of deformation and 

fracture. McClintock (1971) explained the behaviour in region A qualitatively by 

attributing the decrease in fracture toughness with the decrease in thickness to the effect of 

thinning of the specimen at the crack tip under deformation. This behaviour affects foils 

and very thin sheet metals.

Pardoen et al. (1999) studied the influence of thickness on thin aluminium 6082T0 plates 

in double edge cracked tension (DENT) specimens experimentally and numerically. The 

specimens thicknesses range from 1 to 6  mm, while the crack length, a, ranged from 20  to

27.5 mm, and the ratio a/W ranged from 0.66 to 0.91. The effect of thickness showed a 

decreasing toughness with reducing thickness as shown in Figure 3.29. The thickest 

specimen (B/(W-a) = 0.3) showed the toughness started to decrease with increasing 

thickness. A similar trend of reducing thickness and reducing toughness effect was also 

shown by Wang et al. (2003) as illustrated in Figure 3.30 using copper foils in DENT 

configuration with specimen thickness ranging from 20 micron to 1 mm and a/W = 0.4 (a = 

5 mm and W = 12.5 mm). Figure 3.30 also shows that the maximum toughness is attained 

at thickness 0.3 mm. The toughness undergoes a drastic reduction with further increase in 

thickness as shown in region II. However Wang et al. (2003) argued that region II occurs 

because of the transition from plane stress to plane strain without giving fractographic 

details on the fracture modes.

Collectively the thickness-toughness relation for wide range of materials is qualitatively 

similar to Figure 3.17(a) which shows a constant fracture toughness in region C followed 

by an increasing fracture toughness with decreasing thickness in region B and a reducing 

fracture toughness with further thickness reduction in region A. However, the discussion 

on the effect of thickness on fracture toughness has largely been centred on region C 

because of the opportunity to identify the fracture toughness as a material property.

Most textbooks on fracture mechanics (Knott (1973), Broek (1974), Anderson (1995)) 

have discussed qualitatively the thickness effect on toughness. A consensus has emerged
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which agrees that reduction of thickness caused the fracture toughness to increase 

corresponding to change from plane strain to plane stress fracture.

It is clear that toughness in plane strain is dependent on the state of flow field or 

constraint. The level of constraint in plane strain specimens can be indexed by the T-stress. 

A highly constrained geometry has positive T-stresses while geometry which loses 

constraint develop negative T-stresses. However a review of experimental data is still 

needed now because existing data were mostly obtained prior to the establishment of 

theory of constraint effect on fracture.

3.5 Corner Singularity Fields

Cruse (1970) identified the existence of a singularity field at the intersection of the free 

surface and the crack front which is known as a comer field. Benthem (1977, 1980) 

developed analytical solutions of the elastic comer singularity field in a quarter-half space 

using a separation variable technique. Bazant and Estenssoro (1978) used a potential 

energy technique in finite element analysis to identify comer singularity solution in Mode 

II and in  and elastic interface crack problems.

The comer field is usually discussed as a vertex formed by the intersection between the 

crack front and the free surface plane as illustrated in Figure 3.31 using spherical co­

ordinates (p, 0, (j)). Without loss of generality, the comer singularity asymptotic field can 

be expressed following Riedel (1987) in the form:

( ^ i i= 0 P ~ ‘ (3-9)

Here gij is a dimensionless angular function and the spherical coordinates centred at the 

vertex are:

p = (]) = tan  ̂ —1, z = — -  (3.10)
\ Z J  2



Chapter 3. Three-Dimensional Crack Tip Fields 145

equation (3.9) is analogous to the two-dimensional linear elastic crack tip problem solved 

by Benthem (1977, 1980) using variational principles and Bazant and Estenssoro (1978) 

using energy theorems. Both found that s = 0.5, 0.452 and 0.332 when Poisson's ratio is v 

= 0, 0.3 and 0.5 respectively. This implies that the vertex singularity is weaker than the 

usual inverse square root singularity except when v = 0. If v = 0, the surface field plays no 

particular role. For small (|), the vertex field approaches the plane strain crack tip field as:

fii (6 )g  as (j) 0 (3.11)
.^271 (j)

where f\^ (0 ) describes the angular stress distribution of the linear elastic crack tip fields. 

The factor P is undetermined by asymptotic analysis, and requires a full three-dimensional 

finite element analysis of the whole specimen. However, from the scaling laws for power- 

law materials, P is shown to be related to the applied stress and the specimen thickness:

P ° ^ < ^ n e ,K ,a l  (3.12)

where Ttotai is the full specimen thickness. From equations (3.9) and (3.11), the coefficient 

of the 1/Vr crack tip singulaiity approach 0  at the free surface according to:

K j  oc (3.13)

This behaviour is shown numerically in Figure 3.32 following deLorenzi and Shih (1983), 

for the local J ,J ° ^  { K \ f  which indicate that at the free surface, J  approaches 0.

Burton et al. (1984) presented a three-dimensional finite element analysis of a through 

cracked elastic plate and found a decay in the energy release rate through the plate 

thickness. This indicated that the drop in energy release rates as the free surface is
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approached is probably not significant from a fracture toughness testing point of view with 

the exceptions of residual stress fields near the crack surface intersection problems.

Nakamura and Parks (1988b) elucidated the effect of intersection of a crack front with free 

surface in three-dimensional boundary layer formulation. Using the stress intensity factor 

along the crack front with the asymptotic form of equation (3.9), Nakamura and Parks 

(1988a) showed that for small z,

K iocA z ) = P  (3 14)

where P is a constant which represents the stress intensity of comer singularity field. The 

coefficient, À+1/2 can be determined from the gradient of curves for different Poisson’s 

ratio plotted in a log-log scale, and from the values of computed three-dimensional local 

stress intensity factor very near the comer vertex (z/t<0.03). The normalised values of 

comer stress intensity factor P plotted against Poisson’s ratio v are shown in Figure 3.33. 

The stress tensor for the comer singularity field can be expressed as:

7̂.. = ^ ' (3.15)

Here the strength of the as exemplified by the exponent X depends on Poisson’s ratio, p is 

the comer stress intensity factor representing the magnitude of singularity field and its 

dependence on geometry and load. Equation (3.14) is similar to Riedel (1987) equation 

(3.9) with the addition of the term 1/V(2ti). From equations (2.70), (3.13) and (3.14), the 

dimensionless function gij must behave as:

/;;,.(e) = lim V^ (3.16)

where the in-plane components of/ÿ(0) are given in equation (2.72). The asymptotic comer 

field matched with Benthem dimensionless function gij is shown in Figure 3.34 for v = 0.3
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at a spherical radius of p/t = 0.48x10'^. The comer singularity region appears to dominate a 

spherical radius of approximately 3 percent of the plate thickness from the intersection of 

the free surface and the crack front.
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Figure 3,11: Variation of the triaxiality factor with the Q-value at TaJJ = 2 at midplane 
(xa/t = 0 ) for three-dimensional three-point-bend and centre crack tension panel as well as 
2-D three-point-bend and centre crack tension panel for different material hardening 
exponent, n, at different loads after Henry and Luxmoore (1997).
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crack front 0 = 0° at xgJ ^  = 2  and at the midplane (xg/t = 0.056) and the free surface (xs/t = 
0.996) under different loads. Broken lines denote plane strain estimates for small scale and 
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crack front 0 = 0° at rcio/J = 2  and at the midplane (xa/t = 0.056) and the free surface (xa/t = 
0.996) under different loads. Broken lines denote plane strain estimates for small scale and 
large scale yielding after Yuan and Brocks (1998).
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Figure 3.17: (a) Variation of fracture toughness with thickness for an 7075-T6 aluminium 
alloy from Irwin et al. (1958) as shown in Figure 3.16 and (b) Fracture profiles and stress- 
displacement curves typical of regions A, B and C after Knott (1973).



Chapter 3. Three-Dimensional Crack Tip Fields 158

100250

a„ = 326 HPaA1-7475= 497 MPa

200

150 0 25 100 200 300 400 500 600 700 800
B Go

150 250 300200100

Figure 3.18: The effect of thickness on ductile fracture initiation after Wallin (1985) from 
Keller and Munz (1977) for (a) 35NiCrMol6 steel and (b) Al-7475.
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Figure 3.19: The effect of thickness on ductile fracture initiation after Wallin (1985) from 
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Figure 3.20: The effect of thickness on ductile fracture initiation for HT-steel after Wallin 
from Gilmore et al. (1983).
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Figure 3.27: Thickness effect on toughness for Ti 6Al-6V-2Sn Titanium alloy after 
Koppenhoefer et al. (1995) from Jones and Brown (1970).
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Figure 3.28: Fracture profile in the intermediate B range after Knott (1973).
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Numerical Methods

This chapter describes the numerical methods used in the current work. These include 

boundary layer formulations and full-field SENB and CCP specimens in elastic-perfectly 

plastic conditions. Elastic solutions were compared against the three-dimensional boundaiy 

layer formulations of Nakamura and Parks (1988a). Three-dimensional elastic T-stresses 

have been extracted from the thin plate boundary layer formulation and full-field SENB 

and CCP solutions for thicknesses B/(W-a) = 1, 0.5 and 0.1 and a/W = 0.5.

4.1 Three-dimensional Boundary Layer Formulations.

A cracked geometry similar to that used by Nakamura and Parks (1988a) was adopted to 

study the three-dimensional stress field along the crack front using a boundary layer 

formulation method. A circular disk or cylinder was used to model the near tip region of a 

thin plate with thickness t, as shown in Figure 4.1. The geometry is defined by a system of 

right handed Cartesian axes Xi, X2, xg centred at the crack-tip on the midplane of the plate 

(X3 = 0 ) such that the crack front is located on the xs-axis and the crack flank lies on the 

plane (xa = 0; xi < 0). A symmetric quarter of the circular disk (region 0 < 0 <7T,Q< xg/r < 

0.5) was modeled with finite elements, as the problem has reflective symmetry with 

respect to the midplane (xg = 0) and the crack plane (X2 -  0). On planes perpendicular to 

the crack front (xi, X2), the element size was gradually increased with radial distance r 

from the crack tip, while the angular span of each element was kept constant, A  ̂= ;r/36, 

throughout the mesh. An identical planar mesh was repeated along the xs-axis from the 

symmetry plane (X3 = 0) to the free surface (xs/r = 0.5). To accommodate the variations of 

field quantities with respect to the X3-axis, the thickness of successive element layers was 

gradually reduced toward the free surface.
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4.1.1 Generation of Finite Element Mesh. V

Initially, two-dimensional plane strain and plane stress boundary layer formulations 

models were created using PATRAN (2003) and analysed using ABAQUS (2003). A 

typical two-dimensional boundary layer formulation mesh is shown in Figure 4.2.

Three-dimensional boundary layer formulations meshes were developed from the two- 

dimensional meshes using Microsoft Excel. In order to facilitate systematic node and 

element numbering for the post processing, the numbering order of the two-dimensional 

mesh was repeated through the thickness by assigning an additive factor to the node 

numbers across the mesh:

rstu^o assigned  numbering

(4.1)
a rstu^^ 3D  designated num bering

where r, s, t, u aie integers from 0 -  9, a is a numeric system that refers to the layers which 

constitute the three-dimensional mesh defining the section through the thickness. The 

assigned numbering refers to the numbering created from Patran (2003) while designated 

numbering refers to nodal and elemental numbering created in Microsoft Excel 

spreadsheet.

In contrast to the boundary layer formulations models used by Nakamura and Parks (1990), 

all the crack-tips were modelled by 19 coincident but independent nodes. It was found that 

the scheme proposed by Nakamura and Parks (1990) which used a crack tip notch in the 

outer-model significantly altered the displacement field near the crack tip and elevated the 

crack tip stresses in the tip-model. Substructured models with notches did not recover the 

remotely applied elastic plane stress field. When the outer and intermediate meshes had 

coincident but independent crack tip nodes, the normalised opening stress converged to the 

plane stress solution at r/t > 1.5 as shown in Figure 4,9 in accord with the results of 

Nakamura and Parks’ (1988a) elastic solution. It may be speculated that the notch in



Chapter 4. Numerical Methods 168

Nakamura and Parks (1990) analyses was needed because the mesh at crack tip could not 

meet the necessary element aspect ratios.

To achieve a highly refined crack tip mesh with suitable element aspect ratio, three 

substructured finite element meshes were employed. The loading applied to the coarse 

mesh was used to drive an intermediate mesh which was used to drive a refined crack tip 

mesh. The three meshes are referred as the outer-mesh, the middle-mesh and the near tip- 

mesh respectively.

The finite element models are shown in Figure 4.3 (a), (b) and (c). The outer-mesh had a 

radius to thickness ratio, rmaxit = 100 (r,„ax = 50000, t -  500), in which, one layer element 

modelled the entire disk in the quarter-half space. The outer-mesh consisted of 360 

elements (18 circumferential x 20  radial in-plane elements) arranged in a single layer 

through the half thickness) using 800 nodes.

The middle-mesh had a radius to thickness ratio, r,nax!t =18 {r„uix = 9000, t -  500), in order 

to capture the transitional field variation between plane stress applied field in the outer- 

mesh to the plane stress state near the crack tip as the crack front in the tip-mesh was 

approached (Levy, Marcal and Rice (1971), Nakamura and Parks (1988a)). Five element 

layers were built up in the through thickness direction (xs) with a thickness of (t = 50) for 

each layer. The middle-mesh consisted of 1350 elements (18 circumferential x 15 radial in­

plane) defined by 1800 nodes.

The tip-mesh had a radius to thickness ratio, r^axlt -  5 {r,„ax = 2500, t = 500). It is important 

to increase the density of the mesh near the crack tip because this determines the accuracy 

of the results. As the mesh must be able to analyse elastic-plastic contained yielding 

problems, the radius of the disk relative to the thickness was chosen so that the plastic zone 

remained well contained within the outer boundary. Sixteen element layers were build up 

in X3 direction with thicknesses 20, 20, 20, 20, 20, 20, 20, 20, 20, 16, 16, 12, 10, 6 , 5, 5 

toward the free surface. The tip-mesh comprised of 7776 elements (18 circumferential x 27 

radial in plane) arranged in 16 layers through the half thickness and 9520 nodes. The radial
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extent of the outer boundary was approximately 2500 or 5f, while the crack-tip elements 

had a radial extent of 2 or 0.004f. The thickness of the element adjoining the free surface 

was 5 or 0.0D.

To analyse crack tip stress and strain fields within the small-scale yielding, the tip-mesh 

must have radius greater than r/t = 10 to ensure numerical stability at the point of nodal 

interpolation in substructuring. A second crack tip mesh was setup to allow plasticity to 

extend to r/t = 10 while allowing the interpolation of nodal variables in an elastic domain 

neai’ to the plastic small-scale yielding boundary. The second tip-mesh consisted of thirteen 

element layers build up in xg direction with relative thicknesses 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 

2 0 , 2 0 , 2 0 , 18, 16, 16 toward the free surface.

All the meshes (out-mesh; middle-mesh; near tip-mesh) were built from 8 noded trilinear 

hexahedron isoparametric brick elements, using reduced integration and linear pressure 

interpolation (ABAQUS (2003) element type C3D8RH). The 8 noded trilinear hexahedron 

elements were collapsed at the crack tip to give four coincident but independent nodes as 

shown in Figure 4.4 by the element denoted by B. Elements elsewhere in the mesh follow 

the structure represented by element A.

4.2 Three-dimensional Full-field SENB and CCP models

The ability of boundary layer formulations to model crack tip plasticity is limited by the 

requirement that the plastic zone must be confined within one-tenth of the radius of the 

outer boundary, Rice (1973). In order to carry out elastic-plastic analysis beyond small 

scale yielding and into full plasticity, full-field solutions of standard plane strain fracture 

toughness specimens have been developed. Single edge notched specimens in three point 

bending (SENB) and centre crack tension panels (CCP) were built using the boundary 

layer formulation node and element scheme. The full-field models are shown in Figure 4.5 

which defines the notation used in the present work. For the SENB and CCP specimens, 

the crack lengths are a  and 2a  and the widths are W  and 2 W  respectively while the 

thickness is B. It should be pointed out that the thickness is also referred as t. The half
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length of the specimen L  was 3000. To consider the effect of thickness, three values of 

B/(W-a) were considered: B/(W-a) = 1, 0.5 and 0.1. The geometry B/(W-a) = 1, a/W = 0,5 

corresponds to the standard plane strain fracture toughness test specimen.

Figure 4.6 illustrates the three-dimensional full-field finite element meshes. The nodal and 

elemental configurations in SENB and CCP models are similar but differ in the boundary 

conditions applied. The radial extent in the domain used for data analysis was 250 or 0.5?, 

the crack-tip element had a radial extent of 2.0 or 0.004?, and the thickness of the element 

adjoining the free surface was 5 or 0.010? for B/(W-a) =1,4;  0.016? for B/(W-a) = 0.5, and 

2 or 0.040? for B/(W~a) = 0.1.

Each element layer through the thickness, comprised of 850 elements. The element layers 

were stacked according to the total thickness required and the ability to control the aspect 

ratio to provide a gradual reduction of element thickness from the midplane towards the 

free surface plane. At the crack tip, there were 19 coincident but independent nodes.

For the thickest model {B/(W-a) = 1), 20 element layers were build up in the xs direction 

with layer x thickness setup (13 x 16, Ix 12, 3 x 10, 1 x 6 , 2 x 5) from the midplane to the 

free surface. For the medium thickness model (B/(W-a) = 0.5}, 18 element layers were 

build in the X3 direction with layer x thickness setup (12x8,  1 x 6 ,  3 x 5 , 2 x 4 ) .  For the 

thin model {B/(W-a) = 0.1}, 9 element layers were built in in the X3 direction using layer x 

thickness setup (1 x 4, 5 x 3, 3 x 2).

4.3 Loading Conditions

In the three-dimensional thin plate boundary layer foimulations, an elastic plane stress 

field was applied on the nodes of the outer perimeter of the outer model shown in Figure 

4.3(a). The in-plane displacement u\ and «2 are given by equation (2.73) while the 

displacement in the out-of-plane «3 direction was left to develop freely. With or without 

the application of the remote out-of-plane displacement, M3, the crack tip stress field can
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develop a similar out-of-plane local kinematic at crack tip. Similar observations have been 

made by Kim et al. (2001).

The outer-mesh was used to drive the middle-mesh shown in Figure 4.3(b) through nodal 

interpolation of the displacement of the nodes at the perimeter of the middle-mesh 

boundary. The computed nodal displacement of the near tip-mesh boundary shown in 

Figure 4.3(c) was driven by displacements interpolated from the middle-mesh. The near 

tip-mesh was used to obtain accurate solutions near the crack front and at the intersection 

of the crack front with the free surface. Nodal interpolation was achieved through the 

ABAQUS (2003) submodeling analysis card.

For the full-field model, loading was applied by line displacements u\ across the thickness 

of a three-point-bending specimen. In the CCP models, a uniform tensile displacement U2 

was applied normal to the crack flank on the outer surface of the model.

4.4 Computational Procedure

The numerical method employed in the present analyses is the finite element method. In 

linear and nonlinear analysis, the code initially discretised the problem and then linearised 

the governing equations so that non-linear problems are solved incrementally as a sequence 

of linear problems. Typical elastic-plastic analyses used about a thousand increments to 

generate the complete response. Numerical results were generated using a Dell Precision 

450 series workstation with Intel Xeon processor 3.06 GHz with CPU processing speed of 

512 KB integrated level 2 cache. The central processing unit is equipped with system 

memory of 2 Gbyte which operates at 266 MHz. A disk space of at least 100 Gbyte is 

required to store the processed data. Typically a 9000 element boundary layer formulation 

model or a 16000 elements full-field model required 5 to 7 hours of clock time.

Under the near incompressible conditions associated with plastic flow, the use of reduced 

integration hybrid elements, combined with a Poisson’s ratio with a small departure from 

perfect incompressibility, v = 0.49, helped to avoid mesh locking problems. Analysis was
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based on infinitesimal strain theory using incremental plasticity and the modified B-bar 

method discussed in Nakamura et al. (1986) to stabilise the model against spurious 

pressure modes. In ABAQUS, the stabilisation procedure was carried out using a 

“^Stab ilise” card employing a weighting factor of .0001 together with the ''^S ta tic '’ 

analysis card. This method was employed for all geometries and material responses to 

obtain consistent results.

4.5 Material Response

The elastic-perfectly plastic material response, was based on uniaxial idealisation of the 

form:

c r= E a  (4.2)

cr = (T>a^ (4.3)

Here a  is the uni-axial stress. Go is the yield stress, e is strain and E  is Young’s modulus. 

For purely elastic analyses, equation (4.2) is applicable while both equations (4.2 - 4.3) are 

applicable for an elastic-perfectly plastic material response as shown in Figure 4.7. The 

material was homogenous isotropic with a Poisson’s ratio of 0.49 giving a nearly 

incompressible response. A Poisson’s ratio 0.3 was also used for the purpose of comparing 

solutions to those available in the literature.

The uni-axial stress-strain relations were generalised for multi-axial stress states of stress 

using the Mises yield criterion with an associated flow rule and incremental plasticity 

within a framework of small displacement deformation theory. Numerical calculations 

were performed with Young’s modulus, g JE o = E, of 200 GPa and yield stress, Gq, of 200 

MPa, although non-dimensional results are always presented to allow general applicability 

of the results.
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4.6 Benchmarking of Three-Dimensional Models

Two-dimensional elastic solutions are widely available and have been extensively applied 

in engineering applications. In contrast, three-dimensional crack analyses are complex and 

difficult. To ensure the three-dimensional solutions are credible, the results of three- 

dimensional elastic analyses are now compared with well established three-dimensional 

analyses and two-dimensional plane strain solutions.

4.6.1 Boundary Layer Formulations

The three-dimensional boundary layer formulations crack tip models have been developed 

with the purpose of analysing elastic-plastic solutions. Before directly embarking on 

elastic-plastic solutions, it is important to verify that the model can produce results in 

linear elastic cases. Well established results in three-dimensional thin plate boundary layer 

formulations have been given by Nakamura and Parks (1988a).

The comparison was initially carried out by analysing the opening stress as a function of 

distance ahead of the crack front at the midplane, and at the free surface, as shown in 

Figure 4.8 for Poisson’s ratio 0.49. Similar plots from Nakamura and Parks (1988a) are 

shown in Figure 4.9. The midplane and the free surface values in the three-dimensional 

boundary layer models agree within 2 percent of Nakamura and Parks’s (1988a) results. 

Another benchmarking comparison was made on the asymptotic stress very near the crack 

front. Figures 4.10 and 4.11 show the asymptotic stress field for Poisson’s ratio 0.3 and 

0.49 while the Nakamura and Parks (1988a) data are shown in Figure 4.12. The asymptotic 

stress fields are compared with the angular distributions of stress for a mode I given in 

equation (2.72). For both Poisson’s ratios, the asymptotic fields behave identically to the 

two-dimensional solution as well as the three-dimensional solution of Nakamura and Parks 

(1988a).

Nakamura and Parks (1992) gave the biaxiality parameter in a thin plate boundary layer 

formulation for various Poisson’s ratio as shown in Figure 3.1. The effect of the three­



Chapter 4. Numerical Methods 174

dimensional T-stress for v = 0.3 and 0.49 are shown in Figure 4.13. The current solutions 

correlate well with those of Nakamura and Parks (1988a) for both Poisson’s ratios.

It has been demonstrated that the substructured three-dimensional models can be used to 

analyse the three-dimensional crack tip stress and strain fields under largely 

incompressible response. This is important to ensure the model will be able to analyse 

incompressible plastic flow. The benchmarking results for boundary layer formulation are 

summarised in Table 4.2.

4.6.2 Full-Field Solutions

The three-dimensional full-field SENB and CCP solutions have been benchmarked using 

the stress intensity factor, K, the biaxiality function, p, and the T-stress concentration 

factor, T/aapp.

In three-dimensional fields, the local J or K varies along the crack front. However, a local 

plane strain condition has been shown to be approached on the midplane (xg/t = 0 ). 

Therefore the calculation at the midplane for SENB and CCP models have been 

benchmarked against the two-dimensional plane strain solution. The benchmarking is 

carried out by comparing the calculated shape functions, /  (a/W), to shape function 

published in standard stress intensity factor handbooks. Using Tada et al. (1985), the non- 

dimensional shape function for single edge notch bend (SENB) specimens is given in 

equation (2.75) while the shape function for centre crack panel (CCP) as a function of a/W 

is given in Table 2.1. The shape functions,/(a/W), for a/W = 0.5 are 1.46 and 1.18 for 

SENB and CCP specimens.

To calculate the shape function from the three-dimensional models, the stress intensity 

factor in terms of the J-integral can be changed to represent the stress intensity factor, K in 

plane strain using:
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The shape function /(a/W) is related to the stress intensity factor, K, as given in equation 

(2.74). The applied stress, (Japp, for SENB geometries can be determined through bending 

moment following Lianis and Ford (1958):

«  (4.5)

where M is the bending moment, B is thickness of the plate, W is the ligament length and a 

is the crack length. The moment, M, is determined from the reaction force, RF, parallel to 

the crack flanks :

M = R F -  (4.6)
2

S is the span from load to crack flanks.

The applied stress in the three-dimensional CCP models can be determined from the

remote reaction force from the three-dimensional model, RF :

a ,^ ^  = R F I W B  (4.7)

The applied load in the centre crack tension panel can be calculated from the applied stress, 

Oapp, per unit thickness is :

P  =  (4.8)
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Shape functions from the three-dimensional models are shown to be 1.4 and 1.27 which are 

accurate to 4 percent. A similar observation was made for the CCP specimen where the 

shape function was accurate to 7 percent. However, benchmarking based on shape 

functions /(a/W) is useful only when crack tip plasticity is negligible. In small scale 

yielding, crack tip plasticity is known to be affected by the T-stress and another benchmark 

used the biaxiality factors.

The biaxiality factors for plane strain SENB specimen given by Sham (1991) are tabulated 

in Tables 2.2. For a/W = 0.5, the biaxiality factor is 0.216. However, the T-stress in three- 

dimensional crack tip field is strongly affected by the Poisson’s ratio and the thickness of 

the plate as discussed by Nakamura and Parks (1992). Therefore a plane strain biaxiality 

factor can be defined by taking accounts the effects of Poisson’s ratio and thickness 

following equation (3.7). Using equation (3.7), the biaxiality factor for SENB becomes 

0.341. The three-dimensional SENB.model biaxiality function is 0.37 which demonstrate a 

correlation accurate to 8 percent.

The T-stress concentration factor, T/Oapp, can be obtained from the plane strain shape 

function of Sham (1991) by subtituting equation (2.74) into equation (2.144) to give:

(4.9)

The plane strain SENB T-stress concentration factor is T/aapp -  0.497. The calculated 

three-dimensional elastic SENB T/aapp is 0.52 which is accurate to 5 percent. The 

benchmark parameters for the full-field SENB specimens are tabulated in Tables 4.3.

As the SENB and the CCP finite element meshes are related, the same accuracy should be 

expected for both. These are reflected in the biaxiality functions and T-stress concentration 

factors as a function of thickness for different SENB and CCP specimens thickness as 

illustrated in Figures 4.14 to 4.17. The thickness effect indicates that the biaxiality function 

and the T-stress concentration factor approach the plane strain values as the thickness is
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increased in both the SENB and CCP specimens. From a different perspective, the 

biaxiality factor and the stress concentration factor are inversely related to the thickness. 

This is due to the inherent positive T-stress in thin plates as observed by Nakamura and 

Parks (1992) and indicated by Sherry et al. (1995).

Although the T-stress is significantly affected by Poisson’s ratio and the plate thickness, 

the shape function based on the stress intensity factor, K, correlates well with existing data. 

Therefore, it can be argued that the three-dimensional models produce acceptable results.

4.7 Conclusions

Three submodels were used to model a cracked thin plate using boundary layer 

formulations. To produce accurate crack tip kinematics, the submodels employ coincident 

and independent crack tip nodes in contrast to the Nakamura and Parks (1990) model 

which employed a notch in the outer-model. The advantage of the technique is the ability 

to simulate elastic and elastic-plastic analyses using the same model by changing the 

applied loads and material properties.

The benchmark calculations show that the three-dimensional models have been able to 

recover the behaviour of three-dimensional field in the way identified by Nakamura and 

Parks (1988a). The full-field solutions which used a similar crack tip mesh configuration to 

the boundary layer formulation have been shown to predict the two-dimensional plane 

strain parameters in an acceptable manner.
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Figure 4.1: Circular disk representing a thin cracked plate.

Figure 4.2: Typical two-dimensional boundary layer formulations mesh.
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Figure 4.3: Boundary Layer Formulation model in quarter half space for 
(a) Outer-mesh, (b) Middle-mesh and (c) near Tip-mesh.
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>  Ml
Crack F lank

Figure 4.4: Boundary layer formulation finite element mesh, three-dimensional element 
and boundary conditions applied to the nodes.
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Figure 4.5: Geometry of the SENB and CCP specimens.
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a W B L

B/(w-a) := 1 500 1000 500 3000

B/(W-a) = 0.5 500 1000 250 3000

B/(W-a) = 0.1 500 1000 50 3000

Table 4.1: Dimensions of the SENB and CCP specimens.
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(a) BAV-a = 1 (b) BAV-a = 0.5 (c) BAV-a = 0.1

Figure 4.6: Three-dimensional full-field models.
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£

Figure 4.7: Stress-Strain curve for an elastic-perfectly plastic material.
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Figure 4.8: The opening stress ahead of the crack front at the midplane and the free surface 
for Poisson’s ratio 0.49 normalised by the two-dimensional plane stress solution. The 
broken line indicates 022/(^22^^ = 1-
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Figure 4.9: The opening stress ahead of the crack front at the midplane and the free surface 
for various Poisson’s ratio after Nakamura and Parks (1988a). A broken line is drawn at 
a 2 2 l0 2 2 ^  which indicate a constant value is reached for all Poisson’s ratio at r/t > 1.5.
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Figure 4.10: The asymptotic plane strain behaviour at the midplane xg/t = 0 with Poisson's 
ratio = 0.30 compared to the two-dimensional plane strain solution.
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Figure 4.11: The asymptotic plane strain behaviour at the midplane xs/t = 0 with Poisson’s 
ratio = 0.49 compared to the two-dimensional plane strain solution.
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Figure 4.12: The asymptotic stress field for a thin plate boundary layer formulation at the 
midplane with Poisson’s ratio, v = 0.3 after Nakamura and Parks (1988a).
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Figure 4.13: Variation of the biaxiality factor, p, along the crack front in a thin plate for 
Poisson’s ratios, v = 0.3 and 0.49.
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Nakamura
Parks 3-DBLF Correlation

<3nJari° at r/t > 1.5* 1 1 1

v = 0 .4 9 , P ( x 3/t = 0)* 0.14 0.14 1

V = 0 .3 , P ( x 3/t = 0)* 0.05 0.05 1

Table 4.2: Three-dimensional thin plate boundary layer formulation elastic solution 
compared against Nakamura and Parks (1988a and 1992 solutions, which are represented 
as * and #).

2-D PI. Strain SENB; B/(W-a) = 1 Correlation

AaAV) = K/(aappV(7ta)) 1.46 1.4 0.96

P = (TV(7ia))/K 0.341 0.37 0.92

T/Gapp 0.497 0.52 0.95

Table 4.3: SENB elastic correlation for plane strain and three-dimensional models B/(W-a) 
= 1 with a/W = 0.5 at the midplane (xg/t = 0).
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AB/(w-a) = 0.1

Figure 4.14: The variation of the biaxiality parameter, p, along the crack front in SENB 
specimen with thickness B/(W-a) = 1, 0.5 and 0.1. The broken line shows the plane strain 
biaxiality factor calculated using equation (3.7).
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Figure 4.15: The variation of the stress concentration factor, T/Gapp, along the crack front in 
SENB specimen of thickness B/(W-a) = 1, 0.5 and 0.1. The broken line shows the plane 
strain T/Gapp factor calculated using equation (4.11),
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Figure 4.16: The variation of the biaxiality parameter, p, along the crack front in a CCP 
specimen of thicknesses B/(W-a) = 1, 0.5 and 0.1. Broken line shows the plane strain 
biaxiality factor from equation (3.7).
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Figure 4.17: The variation of the stress concentration factor, T/Gapp, along the crack front in 
a CCP specimen of thicknesses B/(W-a) = 1, 0.5 and 0.1. Broken line shows the plane 
strain T/Gapp factor from equation (4.11).
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Three-Dimensional Elastic-Plastic Fields

The structure of three-dimensional crack tip fields is a fundamental issue in fracture 

mechanics. Although a number of studies of three-dimensional elastic-plastic crack tip 

fields exist in the literature, conclusive results have been elusive due to problems with the 

numerical stability of three-dimensional numerical models and the interaction between in­

plane and out-of-plane effects. In this chapter, the nature of the elastic-perfectly plastic 

mode I three-dimensional crack tip field has been studied systematically using boundary 

layer formulations. These solutions are complemented by full-field analyses of deeply 

cracked bend bar and centre crack panels in varying thicknesses (B/(W-a) = 1, 0.5 and 0.1) 

while maintaining the crack to ligament ratio at a/W = 0.5. The three dimensional fields are 

compared with the plane strain small scale yielding field, and the plane stress slip line 

fields as limiting two dimensional solutions. Within this context the analysis addresses 

evolution of crack tip fields from the centre of the plate (mid-plane) to the free surface, as 

well as the way in which the stmcture of the fields changes from small scale yielding to 

full plasticity. The analyses inevitably produce a large amount of fundamental data which 

is presented in this chapter. Subsequent chapters draw out systematic and unifying trends 

in the data leading finally to a simple constraint estimation scheme.

The results are presented in three sections. Section 5.1 discusses crack tip deformation and 

the development of plasticity at the crack tip. Section 5.2 initially describes the asymptotic 

field at the crack tip, (r = 0) and at r = 2J/CTo. This section is sub-structured into sections 

which consider; boundary layer formulations; modified boundary layer formulations, 

deeply cracked bend bars, and finally centre cracked panels. Section 5.3 focuses on two 

important stress components which control fracture toughness: the mean or hydrostatic 

stress and the maximum principal stress. Interest is focused on the plane directly ahead of 

the crack (0 = 0°), and the way on which the stress field changes with distance. Section 5.4 

discusses the proximity of the three dimensional fields to the plane strain and the plane 

stress fields using boundary layer formulations; deeply cracked bend bars and centre
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cracked panels. Finally a systematic pattern of constraint loss in three-dimensional crack 

tip field emerges which is discussed in Chapters 6 and 7.

5.1 Crack Tip Deformation and Plasticity

In this section, the evolution of the plastic zone at the crack tip is described from small 

scale yielding to full plasticity. The shape of the plastic zone is compared with plastic zone 

shapes from two-dimensional plane strain and plane stress analyses.

5.1.1 Crack Tip Deformation

5.1.1.1 Boundary Layer Formulations

An elastic-perfectly plastic analysis of the crack tip field in a thin plate has been earned out 

using three-dimensional boundary layer formulations. The model is shown in Figure 4.3 

(a), (b) and (c). In contained yielding, the elastic field is driven by the stress intensity 

factor, K, which dominates the fai- field. This is related to the remote value of J, Jfar, by the 

relationship:

(5.1)

The deformation level is quantified by a non-dimensional grouping, Êîfar:

(5.2)

where Jfar is the J-integral at the outer boundary determined from the applied stress 

intensity factor K using equation (5.1). As usual Go is the yield stress, Go, the yield strain 

and t is the plate thickness. The data from three-dimensional boundary layer formulations 

are presented at deformation levels, ^far = 1, 3, 5, 8 , 20. Although the remote deformation
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is uniform, the intensity of deformation as quantified by the local values of the J-integral, 

Jioc varies along the crack front. Local values of J were determined by the domain integral 

method as implemented in ABAQUS (2003). Path independence is maintained close to the 

crack tip, but at contours remote from the tip, J converges to the applied value of J. 

Following equation (5.2), the non-dimensional defoimation can also be interpreted at a 

local level as i2ioc when J is interpreted as the local J. Table 5.1 shows how far field 

deformation translate into local deformation levels along the crack front; at the mid-plane 

Xa/t = 0; the quarter plane Xs/t = 0.25; near the free surface Xg/t = 0.49 and at the free 

surface xg/t = 0.5.

Figure 5.1 shows the variation of Jioc normalised by the remotely applied J, Jfar, along the 

crack front at five deformation levels, £2far =1 ,3 ,  5, 8 , 20. It shows that the local values of 

J  are amplified over the remotely applied value of J near the mid-plane but attenuated near 

the free surface. At all deformation levels the local J  profiles intersect at Xg/t = 0.2 and 

decrease as the free surface is approached.

5,1.1.2 Modified Boundary Layer Formulations

It is well known from two-dimensional plane strain analyses that the T-stress affects the 

shape of the plastic zone and the hydrostatic component. The effect of the T-stress has 

been studied in three dimensional fields at a deformation level Qfar = 8 by applying 

positive (+0.5Go) and negative (-0.5Go) T-stresses to the thin plate as a modified boundary 

layer formulation, in remote plane stress as given in equation (2.149). Table 5.2 shows the 

far-field defonnation levels and the corresponding local values along the crack front at Xg/t 

= 0, 0.25, 0.49 and 0.5.

Figure 5.2 shows the effect of changing the T-stress on the local J along the crack front. At 

the mid-plane (xg/t = 0), the local values of J are amplified, while the Tapp = 0 solution is 

similar to the Tapp/Go = 0.5 solution. This is due to the fact that three-dimensional boundary 

layer formulations develop an inherently positive biaxiality even if no T-stress is applied
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remotely. The normalised value of J does not change with deformation as the free surface 

is approached at xs/t > 0 .2 .

5.1.1.3 Full-field Solutions.

To study the development of plasticity in finite specimens, two fracture mechanics 

specimens were examined from small scale yielding to full plasticity. To represent a highly 

constrained configuration, a deeply cracked single edge notch three-point-bending (SENB) 

specimen with an a/W ratio of 0.5 was chosen. To represent configurations which lose in­

plane constraint a centre cracked tension panel (CCP) with an a/W ratio of 0.5 was chosen. 

The centre cracked panel has negative biaxiality as shown in Figure 4.16, in contrast to the 

positive biaxiality of the bend bar, which is shown in Figure 4.14.

The loading of the SENB and CCP specimens are shown schematically in Figure 4.5. For 

the three-point SENB specimen, a line displacement was applied across the thickness at 

distance L/W = 3 from the crack flanks. To study the loss of out-of-plane constraint, three 

different thicknesses were studied: B/(W-a) = 1, 0.5 and 0.1 where B, is the thickness, W is 

the width and a is the crack length, a/W = 0.5.

Initially, local plasticity developed at the crack tip. As the levels of loading are increased, a 

plastic hinge formed in the bend specimen which combined with local plasticity at the 

crack tip. In contrast, plasticity in the centre cracked tension panel (CCP) spread to the free 

surface in two bands inclined at 45 degrees to the tensile axis. The levels of deformation on 

both specimens is conveniently quantified by the non-dimensional grouping p:

ju ^  ^  (5.3)

where c = (W-a) is the uncracked ligament. When J is interpreted as the far field value Jfar, 

p represents the remote deformation. When J is interpreted as the local value at a particular 

section on the crack front, Jiocai, P represent the local deformation on the crack tip. The
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parameter jut is related to the J-dominance criterion for plane strain fields discussed by 

McMeeking and Parks (1979) and Shih and German (1981). To ensure the deformation 

levels in full-field solutions can be compared to boundary layer formulations, the 

deformation levels along the crack front has also been shown in terms of fiiioc* The 

deformation levels can also be described in terms of load over limit load or simply (M/Mo 

in bend bars or P/Po in centre cracked tension panels). Miller (1988) provides a 

comprehensive list of limit load calculations for structures containing defects. For SENB 

with a/W > 0.295, the limit moment, Mo, per unit thickness is given by:

l.lSW^a  ̂ r
1.261 1 - “ (5.4)

The applied moment, M can be calculated from equation (4.5). The CCP limit load, Po, per 

unit thickness given by Miller (1988) is :

2 cr„ ( W - a
(5.5)

The applied load, P, can be calculated from equation (4.8). Tables 5.4 and 5.5 show the 

local values of J non-dimensionalised as £2ioc and in terms of the non-dimensional local 

load p, at different sections through the thickness of both SENB and CCP geometries.

Figures 5.3(a), (b) and (c) show the local deformation levels (ccJo/Jioc) in the three bend 

bars while Figures 5.4(a), (b) and (c) show the local deformation levels in the centre crack 

tension panels. In the bend bars, the deformation was applied until the limit of J- 

Dominance was approached on the mid-plane (p = 25) McMeeking and Parks (1979) and 

Shih and German (1981). In the bend specimens, J-Dominance is limited by the global 

bending field which affects the in-plane constraint at the crack tip. In contrast, CCP 

geometries are not limited in this way and maintain two-parameter (J-Q/T) characterisation 

to higher deformation levels.
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5.1.2 Crack Tip Plasticity

5.1.2.1 Thin Plate Boundary Layer Formulations

The development of plasticity depends on the local variation in J and constraint along the 

crack front. The radius of plastic zone for deformation levels J/a^üo^ot = 1, 3, 5, 8 , 20 in 

the 0 = 0° direction are rit -  0.3, 1, 1.6 , 2.5, 6  and are tabulated in Table 5.3. The plastic 

zone shape is shown non-dimensionalised by t or by Jioo/cTo in Figures 5.5 (a), (b) and (c) 

and 5.6 (a), (b) and (c) at the mid-plane, the quarter plane and the free surface.

At low levels of deformation, the plastic zone on the free surface develops a shape similar 

to that exhibited by two-dimensional plane strain solutions. In contrast, the plastic zone 

shape at the mid-plane is initially similar to that which develops in plane stress. However, 

at higher deformation levels, a plane stress like plastic zone develops at all sections.

From a classical viewpoint, a plane strain shaped plastic zone might be expected at the 

mid-plane while the plane stress shape might be expected to develop on the free surface. 

However in three-dimensional solutions, this does not happen. The current observations 

can be explained by noting the variation of local J along the crack front. The local values 

of J are highest on the mid-plane offsetting constraint differences, while lower values of J 

develop on the free surface.

At the free surface, the three-dimensional plastic zone shape resembles the two- 

dimensional plane strain shape. This behaviour was also noted by Benthem (1977) who 

commented that the plastic zone shape estimated from linear elastic comer solutions 

closely resembled the plane strain plastic zone shape. As deformation increases, a plane 

stress shape plastic zone with a small elastic enclave develops near the crack front.
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5.1.2.2 Modified Boundary Layer Formulations

The plastic zone shapes associated with applied T-stresses at a remote deformation level 

î tfar = 8 are shown in Figures 5.7 (a), (b) and (c) and 5.8 (a), (b) and (c) for the mid-plane, 

the quarterplane and the free surface for all three thicknesses.

At the mid-plane, the applied positive T-stress and zero applied T-stress formulations show 

a plastic zone which fully envelops the crack tip. While the negative applied T-stress 

allows an elastic wedge to form on the crack flanks. At the quarter-plane, the plastic zone 

fully envelops the crack tip for positive, negative and zero applied T-stresses. While at the 

free surface, plasticity does not encompass the crack tip, and elastic sectors appear on the 

crack flanks for all values of applied T-stress either positive, negative or zero. The 

maximum extent of plasticity for positive T-stresses increased to r/t = 2.6 directly ahead 

the crack, compared to r/t = 2.0  for Tgpp = 0 .

5.1.2.3 Full-field Solutions.

The development of plasticity in full-field solutions can be discussed within the context of 

the slip line fields illustrated in Figures 2.24 and 2.25 for CCP and SENB. At low load 

levels, the plastic zone in all the SENB specimens develops a small scale yielding plane 

strain like shape for all sections through the thickness as shown in Figures 5.9-5.14 (a), (b) 

and (c) for the mid-plane, the quarterplane and the free surface.

As the load increases, two plastic zones develop, one at crack tip and one on the 

compression surface of the bend bar. The two zones grow and coalesce as the applied load 

increases. The development of the plastic zone in the thinnest bend specimen is similar to 

that in the boundary layer formulations. At low loads, the plastic zone shape is more 

similar to the plane strain shape at the free surface than at the mid-plane. At high 

deformation levels in all three thicknesses of the bend bar, the plastic zone shape 

approaches the slip line field of a deeply crack bend bar shown in Figure 2.25 as discussed 

by Ewing (1968) and Green (1953). As with the boundary layer formulations, an elastic
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enclave develops on the free surface near the crack front as the deformation level 

increases.

Figures 5.15-5.20 show the development of plasticity for all the CCP specimens. At low 

load levels in the thickest CCP specimen, the plastic zones are similar to a plane strain 

plastic zone but the plastic lobes are inclined at 45 degrees in all sections. However, at 

comparable load levels, the plastic zone for the intermediate thickness B/(W-a) = 0.5 and 

the thin B/(W-a) = 0.1 CCP specimens resemble a plane stress plastic zone at all sections. 

As deformation increases, the plastic zones extend across the ligament as a 45 degrees 

shear bands in the way illustrated to Figure 2.24.

It is evident from three-dimensional crack tip analyses, that the development of plasticity 

changes from an almost geometry independent plane strain plastic shape at very small 

deformation levels to a geometry dependent field in full plasticity.
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5.2 The Asymptotic Crack Tip Fields (r = 0)

Section 5.2 describes the asymptotic field at the crack tip (r = 0) as modelled by boundary 

layer formulations and full-field solutions. Initially the method by which the data was 

processed is described. This is followed by the results of three-dimensional boundary layer 

formulations at sections from the mid-plane to the free surface. A similar procedure is then 

followed for the full field solutions of bend bars with three different thicknesses. Finally 

the asymptotic stress field of centre cracked panels with three different thicknesses is 

described. Each sub-section presents the stresses at three representative sections: the mid­

plane; the quarter plane and the free surface. This is followed by a detailed presentation of 

the development each of the stress components through the thickness of the plate.

5.2.1 Data Extraction Procedures

Three-dimensional crack tip fields have been analysed using boundary layer formulations 

and full-field SENB and CCP geometries using the commercial finite element software 

package ABAQUS v 6.3 (2003). Post-processing routines were written using Python code 

available in ABAQUS. The routine extracted the stresses and strains along radial lines at 

1 0  degrees intervals around the crack tip and stored them in a report file (*.rpt).

The asymptotic crack tip stresses at each angle were obtained by extrapolating the data to 

the crack tip using Matlab v 5.3 (1998) programs which read the data from the report file 

and fitted a linear curve through nodal values. The asymptotic crack tip stresses were then 

written to an output file (*.out). Subsequently the data were structured and sorted through 

each element layer at each deformation level using Microsoft Excel. The specific sections 

in (xa/t) and (z/t) along the crack front where the stress components are presented are given 

in Table 5.6

5.2.2 Boundary Layer Formulations

The asymptotic crack tip stresses in Cartesian and cylindrical co-coordinates are shown at 

the mid-plane; at the quarter plane; and at the free surface in Figures 5.21-5.26 at
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defoimation levels Ofar= 1, 3, 5, 8 , 20. The plastic zone sizes for the corresponding levels 

of deformations are O.lt, 0.6r, 1.2?, I t  and 5.5?. In all the figures, the solid lines correspond 

to the plane strain small scale yielding solution (T = 0).

At the mid-plane, xa/t = 0 (Figures 5.21-5.22), the results clearly show that a fully 

constrained field is maintained at the crack tip even at the highest deformation level when 

the radius of the plastic zone is more than five times the plate thickness. At low 

deformation levels the stresses are close to the two-dimensional small scale yielding plane 

strain (T = 0) solution. Higher constraint levels than the small scale yielding solution 

develop with deformation because the three-dimensional boundary layer formulation 

possesses an inherently positive T-stress. In the angular range -45“ < 0 < 45°, the in-plane 

stresses a n , 0 2 2 , On are constant and independent of angular co-ordinate. Similarly in this 

sector the mean stress, am, and the out of plane stress, 0 3 3 , are also independent of angle as 

expected from a constant stress region sector in a plane strain field

Trailing the constant stress sector, the stresses in the angular range 45° < 0 < 135° 

correspond to the centred fan of the plane strain field. The hoop and the radial stress are 

closely similar and decrease linearly with angle, while the shear stress, 0 re, is equal to the 

yield stress in shear, E k  ■

At low levels of deformation elastic sectors appear on the crack flank as expected from the 

plane strain small scale yielding field discussed by Du and Hancock (1991). However at 

increased levels of deformation plasticity spreads to the crack flanks as a positive T-stress 

develops.

At the quarter plane, Xg/t = 0.25 (Figure 5.23-5.24), there is a loss of constraint which 

causes the direct stresses on the leading sections ahead of the crack tip to decay with 

deformation. The constraint loss is an out-of-plane effect which is associated with the loss 

of plane strain, discussed in more detail in Chapter 6 . Directly ahead of the crack, in the 

angular range -45° < 0 < 45° a constant stress sector appears as shown by the Cartesian
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stresses illustrated in Figure 5.24. In this sector, the mean stress is independent of angular 

co-ordinate but is less than the fully constrained value of 2.970o. On the mid-plane the out- 

of-plane shear stresses and 0 2 3  are necessarily zero due to symmetry as shown in 

Figure 5.35 and 5.36. However these shear stresses are also low on the quarter plane and 

the stress state in the sector ahead of the crack is essentially generalised plane strain in 

which the out-of-plane strain may be non-zero, but 0 3 3  is a principal stress.

Trailing the constant stress sector a degenerate centre fan appears in the angular range 45° 

< 0 < 135°. Here the hoop and the radial stresses are similar but not identical (as rigorously 

required by a plane strain centred fan). However both the radial and the hoop stress

decrease linearly with angle although angular stress gradients ^ jgee. ̂  jgm. ̂  _2 k are less
98 90 90

than that required by a plane strain field. Nevertheless the shear stress 0 ^ 9  is independent 

of angle and is close to the yield stress in shear P[o_as required by plane strain centred fans.
Vs

Finally in the trailing sector on the crack flanks the direct stress 0 2 2  and shear stress 0 1 2  

remain close to the plane strain values however the direct stress 0 u differs from the plane 

strain field. The Mises stress shown in Figure 5.37 demonstrates that yielding occurs all 

around the crack tip.

The crack tip stresses at the free surface, xs/t = 0.5 are shown in (Figure 5.25-5.26). The 

leading sector -45° < 0 < 45°, again comprises a constant stress regime in which the 

Cartesian stresses and the stress invariants are independent of angular co-ordinate 0. The 

stress system in this sector is a simple state of uniaxial tension at the yield stress:

O22 = CTo; Gii = 012 =  033 =  013 =  023 = 0; r -> 0, X3 -> 0 (5.6)

Trailing the constant stress sector is a sector in the approximate range 45° < 0 < 135°. The 

sheai' stress reduces from the plane strain value and the angular span of the constant shear 

stress region reduces to 60 to 80 degrees. However, unlike the related plane strain sector,



Chapter 5. Three-Dimensional Elastic-Plastic Fields 202

the radial stress is consistently greater than the hoop stress. In comparison with the mid­

plane, the angular stress gradients —- cl and are very much less than the plane
06  ̂ d 6

strain gradient of -2k. Finally on the crack flanks an elastic sector appears in the angular 

range 160° < 0 < 180°, as shown in Figure 5.37.

The free surface field should be compared with the two dimensional plane stress field 

which is shown in Figure 2.18. The plane stress field features a curved fan sector ahead of 

the crack in which the streses change with angle as given by equations (2.114 -  2.116). In 

contrast, the free surface field exhibits a constant stress sector in which the Cartesian 

stresses and the stress invariants are independent of angle. In the plane stress field the 

curved fan is complemented by an elastic sector to the crack flanks in the range 0 ° < 0  < 

39.126°, Sham and Hancock (1999). However in the free surface field plasticity extends 

over the approximately range 0° < 0 < 160° as shown in Figure 5.37.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress, 

the mean stress and the Mises stress at sections tabulated in Table 5.6 are shown in Figures 

5.27-5.37. The data are given in both cylindrical and Cartesian co-ordinates. In the leading 

sector (0° < 0 < 45°), the Cartesian stresses a n ,  0 2 2 , <̂ 12, Gm do not change with angle and 

can be regarded as comprising a family of constant stress sectors from the mid-plane to the 

free surface. This is most clearly seen in Figures 5.31 and 5.34 which show 0 2 2  and 0 m. In 

this family of fields, the mean stress changes systematically from the mid-plane to the free 

surface as shown in Figure 5.34. The change from the mid-plane to the free surface is 

accompanied by a change in strain state from plane strain to uniaxial tension. Thus the 

fields are rigorously not part of the plane strain family of J-Q/T fields which are 

deviatorically similar, but hydrostatically different, as these field differ hydrostatically, but 

also deviatorically. At the mid-plane the stress system corresponds to the fully constrained 

plane strain field which evolves to a state of simple uniaxial tension at the yield stress on 

the free surface.
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In the sector from 45 to 135 degrees, the shear stress 0re does not change with angle and is 

close to the yield stress in shear near the mid-plane. However the angular span of this 

sector becomes smaller toward the free surface and the shear stress eventually decays from 

the yield stress in shear as shown in Figure 5.29.

The out-of-plane shear cJn shown in Figure 5.35 is not completely non-zero around the 

crack tip in contrast to the 0 2 3  which can be regarded as being zero aound the crack tip as 

shown in Figure 5.36. Figure 5.35 shows that the out-of-plane shear stress, 0 1 3 , at the mid­

plane, is zero as indicated by the diamond markers and required by symmetry. The free 

surface field shows a near zero out-of-plane shear in front of the crack. Within the angular 

range of 45 to 135 degrees, out-of-plane shear, 0 1 3  is slightly negative. However, at the 

trailing sector, the out-of-plane stress, 0 1 3  approach zero to the crack flank.

5.2.3 Modified Boundary Layer Formulations

The effect of the T-stress is shown in Figures 5.38-5.43 for the mid-plane; the quarter 

plane and the free surface using cylindrical and Cartesian co-ordinate systems. A positive 

T-stress, Tapp = +O.50o and a negative T-stress, Tapp = -0.50 0  were applied at a level of 

deformation i2far = 8 . The effect of a negative T-stress is to decrease the direct stresses, 

(0 6 8 , Grr) around the crack tip uniformly from the plane strain field at the mid-plane and 

quarter plane, while the shear stress 0 re remained unaffected as shown at the mid-plane and 

the quarter plane in Figure 5.38 and 5.40. In the mid-plane of the plate the effect of applied 

T-stresses is the same as that observed in two-dimensional plane strain solutions. Negative 

T-stresses reduce the mean stress, giving rise to a family of fields which are broadly 

deviatorically similar, but hydrostatically different.

However at the free surface and near the free surface the effect of the T-stress is distinctly 

different. At the free surface (Figures 5.42 and 5.43), the hoop stress directly ahead of the 

crack is unaffected by the applied positive and negative T-stress. However directly ahead 

of the crack the radial stress for an applied positive T-stress is nearly half the hoop stress 

which may suggest that the free surface field at this orientation approaches a plane stress
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field when the T-stress is highly positive. However, this is only observed directly ahead of 

the crack tip ( 0  = 0 °), while at the remaining angles the free surface field does not show 

any similarity to the plane stress field. A negative T-stress causes the radial stress on the 

free surface to drop to zero and leads to a state of pure tension directly ahead of the crack.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress, 

the mean stress and the Mises stress at the sections tabulated in Table 5.6 are shown in 

Figures 5.44-5.52 for positive and negative applied T-stresses. The direct stresses through 

the thickness increase or decrease by the same amount according to the applied T-stresses 

in the leading sectors ahead of the crack front. The in-plane shear stresses for applied 

positive and negative T-stress are largely unaffected within the angular range 0° < 0 < 90°. 

However in the trailing sector 90° < 0 < 180°, the effect of applied T-stress affects the 

fields, although the out-of-plane shear stresses are largely unaffected.

The Mises stress is given in Figure 5.52. The figure shows that negative T-stresses increase 

the angular span of elastic wedge from the crack flanks compared to the T= 0 field. In the 

positive T-stress field, plasticity completely envelops the crack tip from the mid-plane to 

the free surface.

5.2.4 SENB Solutions

This section describes the stress field which develops at the crack tip in deeply cracked 

three point bend bars of three different thicknesses, B/(W-a) = 1, 0.5 and 0.1 with a/W = 

0.5.

5.2.4.1 Thick Specimen (B/(W-a) = 1)

Initially the asymptotic stress field is shown at the mid-plane; the quarterplane; and the free 

surface of a thick SENB specimen, B(W-a) = 1. This is given from small scale yielding to 

the limit of J-Dominance on the mid-plane in Figures 5.53-5.58. For reference, the solid 

lines show the small scale yielding plane strain (T = 0) field. Figures 5.53 and 5.54 show
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that at the mid-plane the asymptotic stresses are close but slightly higher than the plane 

strain (T = 0) values. The same effect can also be seen at the quarterplane (Figure 5.55 and 

5.56) where the plane strain field is maintained around the crack tip at all angles.

As the free surface is approached (Figure 5.57 and 5.58), the stresses directly ahead of the 

crack drop to a field which is distinctly different to the plane stress field, but similar to that 

on the free surface of thin plate boundary layer formulations. Notably in the leading sector, 

there is a state of uniaxial tension (oee = Go, Orr = Ore = Gzz = 0). In contrast, the Sham and 

Hancock (1999) plane stress field features a bi-axial stress system in which :

(5.7)

The development of the direct stresses, the in-plane shear and the out-of-plane shear 

stresses, the mean stress and the Mises stress are shown in Figures 5.59-5.68. The direct 

stresses are maintained at a level close to the plane strain (T = 0) field from small scale 

yielding to full plasticity. While the constraint loss through the thickness at all sectors (0° < 

0 < 180°) shows a similar pattern for all load levels. Within the sector 45° < 0 < 135°, the

angular stress gradients ^ r r  and reduce systematically from the mid-plane to the
d0  do

free surface.

The in-plane stresses (Figures 5.61 and 5.64) show that the stress field around the crack tip 

and through the thickness are similar to the plane strain (T = 0) field within the angular 

range 0° < 0 < 90°. At angles approximately greater than 90 degrees, the in-plane shear 

stresses reduce through the thickness. The out-of-plane sheai’ stresses (Figures 5.66 and 

5.67) 0 1 3  and 0 2 3  show a similar behaviour to the boundary layer formulations.

The Mises stress as a function of angle from small scale yielding to full plasticity is shown 

in Figure 5.68. At the mid-plane, plasticity completely envelops the crack tip field even at 

low load levels. In contrast, an elastic sector can be seen to develop in sections close to the
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free surface at very low load levels. However, at increased load levels, plasticity fully 

envelops the crack tip field at all sections.

S.2.4.2 Intermediate Thickness Specimen (B/(W-a) = 0.5)

The asymptotic stress fields in the intermediate thickness bend bar, B/(W-a) = 0.5 aie 

shown in Figures 5.69-5.74 at the mid-plane; the quarter plane and the free surface using 

cylindrical and Cartesian co-ordinate system. At the mid-plane, the asymptotic stresses are 

close to the fully constrained plane strain (T = 0) field as on the mid-plane of the thick 

bend bar.

At the quarter plane, constraint is lost as shown in Figure 5.71 and 5.72. The constraint loss 

is evidenced by a drop in the direct stresses while the shear stresses remain unchanged. As 

in the boundary layer formulations, which show constraint loss with increase in 

deformation, constraint loss in SENB is caused by the global bending field which perturbs 

the local crack tip field with increasing levels of deformation.

At the free surface (Figure 5.73 and 5.74), an elastic-plastic comer field can be identified 

directly ahead of the crack. In this field, a uniaxial constant stress sector develops in the 

leading sector -45° < 0 < 45° similar to that observed on the free surface of the boundary 

layer formulation.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress, 

the mean stress and the Mises stress are shown in Figures 5.75-5.84. In the intermediate 

thickness SENB specimen, the components of stress were similar to the thick SENB 

specimen. A reduction of fifty percent in the thickness while maintaining the in-plane 

dimensions does not affect constraint. To examine the effect of thickness on constraint, a 

much thinner specimen was generated, B/(W-a) = 0.1.
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5.2.4.3 Thin Specimen (B/(W-a) = 0.1)

In the thinnest SENB specimen, B/(W-a) = 0.1, the asymptotic stress field at the mid-plane, 

the quarterplane and the free surface are shown in Figure 5.85-5.90. At the mid-plane 

(Figures 5.85 and 5.86), the stresses are close to the plane strain (T = 0) values within the 

leading sector -45° < 0  < 45° at small levels of deformation. However, at deformation levels 

close to limit of plane strain J-Dominance (as measured at the mid-plane) constraint is lost 

at the mid-plane. The constraint loss is associated with a reduction in the direct stress while 

maintaining the shear stresses.

On the quarter plane, xs/t = 0.25 (Figure 5.87-5.88), there is a loss of constraint which 

causes the direct stresses on the leading sections ahead of the crack tip to decay from the 

plane strain (T = 0) field. Directly ahead of the crack, in the angular range -45° < 0 < 45° a 

constant stress sector appears as shown by the Cartesian stresses illustrated in Figure 5.88. 

In this sector, the mean stress is independent of angular co-ordinate but is less than the 

fully constrained value of 2.970q.

Trailing the constant stress sector a degenerate centre fan appears. In plane strain centred 

fans, the radial and hoop stress are equal to each other and reduce with angle. However in 

the thinnest SENB specimen, the hoop stress and the radial stress reduce but are not equal. 

The angular span of the fan-like feature reduces with deformation. At low levels of 

deformation it extends from 45 to 110 degrees while at high levels of deformation near the 

limit of plane strain J-Dominance the centred fan extends from 45 to 80 degrees. 

Nevertheless the shear stress 0 r8 is independent of angle and is equal to the yield stress in

shear . ^ a s  required by plane strain centred fans. Finally in the trailing sector on the crack 
-v3

flanks, the direct stress 0 2 2  and shear stress 0 1 2  remain close to the plane strain (T = 0) 

values although the direct stress 0 1 1  falls.

On the free surface directly ahead of the crack tip, Figure 5.89-5.90, a comer field again 

develops. This is similar to that found in the modified boundary layer formulations with
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positive T-stresses. As deformation increases, the radial stress at 0 = 0° tends to increase 

and approaches a plane stress field. This can be attributed to the inherently positive T- 

stress of very thin bend bars as shown in Figure 4.14. However, at all other angles, the free 

surface field differs significantly from the plane stress field.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress, 

the mean stress and the Mises stress at sections as tabulated in Table 5.6 are shown in 

Figures 5.91-5.100. In small scale yielding, the stress fields through the thickness behave 

in similar way to the thin plate boundary layer formulation. Within the forward sector -45° 

< 0 < 45°, the direct stresses show constraint loss but feature a constant stress sector. The 

sector outwith the -45 < 0 < 45 degrees shows a slightly different feature at deformation 

levels smaller than cOo/J <1284.3. The out-of-plane shear stresses (Figure 5.98 and 5.99) 

are generally unaffected at all angles. The 0 2 3  shear component is close to zero at all angles 

through the thickness while the 0 1 3  shear component is finite and similar to the boundary 

layer formulations. The Mises stress shows a similar behaviour to thick and intermediate 

thickness SENB plates in which the sections near the free surface are elastic at low levels 

of deformation but are engulfed by plasticity as deformation develops.

5.2.5 CCP Solutions.

This section describes the stress field which develops at the crack tip in deeply cracked 

tension panels of three different thicknesses, by B/(W-a) = 1, 0.5 and 0.1. The important 

point to note about the CCP geometry is that it features a compressive T-stress which leads 

to a loss of in-plane constraint. Thus in full three-dimensional specimens, constraint loss 

arises from both in-plane and out-of-plane effects.

5.2.5.1 Thick Specimen (B/(W-a) = 1)

Initially the asymptotic cylindrical and Cartesian stress field is shown at the mid-plane; the 

quarter plane; and the free surface of a thick specimen, B/(W-a) = 1 in Figures 5.101-
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5.106. The figures show the asymptotic hoop, radial and shear stress at the mid-plane; the 

quarter plane; and the free surface at low levels of deformation to full plasticity.

At the mid-plane (Figures 5.101 and 5.102), the effect of in-plane constraint loss within 

the leading sector -45° < 0 < 45° causes the direct stresses to fall from the fully constrained 

plane strain value. However the shear stresses remain similar to the plane strain shear 

stress within the same angle. In the sector 45° < 0 < 135°, the effect of compressive T- 

stress inherent for CCP specimens causes a decrease in the angular span of the centred fan. 

This directly affects the angular extent of plasticity around the crack tip. An elastic field 

dominates trailing the angle 0 > 135° where the yield criteria is not satisfied.

At the quarter plane, constraint is lost due to both in-plane and out-of-plane effects as 

shown in the forward sector Figure 5.103 and 5.104. The constraint loss is evidenced by a 

drop in the direct stresses while the shear stress remain unchanged. The direct stresses in 

the sector 45° < 0 < 135° show a further decrease in the angular span of the centred fan 

when compared to the stress field on the mid-plane. The trailing sector is elastic similar to 

the trailing sector of the mid-plane.

Directly ahead of the crack on the free surface (Figure 5.105 and 5.106), an elastic-plastic 

comer field characterised by a uniaxial tension sector can be identified which is similar to 

the free surface of the boundary layer formulation and the SENB specimens.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress, 

the mean stress and the Mises stress are shown in Figures 5.107-5.116. In-plane effects 

cause the direct stresses to drop in response to the level of compressive T-stress. The direct 

stresses are then influenced by an out-of-plane effect similar to those observed in boundary 

layer formulation or the full-field SENB solutions. In all three configurations, the free 

surface field exhibits an elastic-plastic comer field.

The in-plane shear stresses are similar to the plane strain field within the plastic sectors, 

while the out-of-plane shear stresses are similar to the boundary layer formulation and the
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full-field SENB solution. The Mises stress in Figure 5.116 shows that the elastic wedge on 

the mid-plane is bigger than at the free surface. Increase in deformation levels causes the 

span of the elastic wedge to reduce from the mid-plane to the free surface.

5.2.5.2 Intermediate Thickness Specimen (B/(W-a) = 0.5)

The asymptotic stress field in the intermediate thickness CCP specimen, B/(W-a) = 0.5 are 

given in Figures 5.117-5.122 while the development of the direct stresses, the in-plane 

shear and the out-of-plane shear stress, the mean stress and the Mises stress are shown in 

Figures 5.123-5.132.

From these figures, it is clear that the stress fields are similar to the thick specimen. This is 

consistent with the level of T-stress which is close to the thick CCP specimen paiticularly 

at the mid-plane as shown in Figures 4.15 to 4.17. However as the free surface is 

approached the level of T-stress in the intermediate thickness specimen increases 

markedly. This causes the span of plasticity around the crack tip to increase toward the free 

surface as shown in the Mises stress in Figure 5.132.

5.2.5.3 Thin Specimen (B/W-a) = 0.1)

A thin speeimen, one-tenth of the thickness of the thickest specimen, was generated to 

examine out-of-plane effects in a very thin CCP specimen. The asymptotic stress fields are 

presented in Figures 5.133-5.138 while the development of the direct stresses, the in-plane 

shear and the out-of-plane shear stress, the mean stress and the Mises stress are shown in 

Figures 5.139-5.148.

At the mid-plane within the leading sector (-45° < 0 < 45°) as shown in Figures (5.133 and 

5.134), the stress field features a constant stress sector in which the direct stresses are 

reduced because of the in-plane effect associated with a compressive T-stress. However the 

in-plane shear stresses are similar to the plane strain (T = 0) field in the leading sector as 

shown in Figures 5.141 and 5.145. The sector 45° < 0 < 135° shows that the direct stresses
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reduced with angle. In the trailing sector, the yield criterion was not fulfilled leading to 

elastic sectors as shown by the Mises plot of Figure 5.148.

At the quaiter plane (Figures 5.137 and 5.138), the stress field exhibits further constraint 

loss due to out-of-plane effects which occur at all angles. At the free surface, the forward 

sector exhibits a constant stress uniaxial tension field similar to the boundary layer 

formulation and the SENB specimens.

The out-of-plane effect in the thin specimen features a similar constraint loss as discussed 

in the thick and intermediate thickness CCP specimens. However, the Mises stress shown 

in Figure 5.148 indicates an increase in angle span of plasticity around the tip because thin 

CCP specimen have a less negative T-stress than thick specimens.
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5.3 Stress Field Ahead of the Crack Front (0 = 0°)

5.3.1 The Mean Stress and the Maximum Principal Stress

In this part of chapter 5, attention is focused on two stress components which are 

particularly important in fracture mechanics: the hydrostatic stress or mean stress, Gm, and 

the maximum tensile stress or the hoop stress, Gee, directly ahead of the crack

Fracture mechanisms can be broadly described as being ductile or brittle. In ductile failure, 

crack extension occurs by the nucléation, growth and coalescence of micro-voids which 

form at inclusions and second phase particles by interface decohesion or particle cracking. 

The voids grow by plastic strain and mean stress, and finally coalesce with the blunting 

crack tip. Rice and Tracey (1969) have given an analysis of the growth of a spherical hole 

in a perfectly plastic matrix in terms of rate of change of the mean hole radius R with 

plastic strain as:

1 dR

^dTs
—  = 0.28 exp

2a
(5.8)

The void growth rate is markedly amplified by the mean stress or triaxialitycr,^/cr, which 

is known to affect ductility as shown experimentally by Hancock and Mackenzie (1976).

In contrast, brittle failure occurs by the low energy separation of atomic planes through 

cleavage. This occurs when the maximum principal stress attains a critical value Gee = Gc, 

over a characteristic micro-structural distance, r = rc (usually two grain diameters) for 0  = 

0° as discussed by Ritchie, Knot and Rice (1973).

The maximum principal stress and the mean stress, Gm, are thus important drivers for two 

mechanisms of crack extension. In this section, the stress state ahead of the crack front is 

investigated with particular reference to the mean stress and the hoop stress normalised by 

the yield stress. Go, while the radial distance ahead of the crack front, r, is non- 

dimensionalised by J/Gq. The investigations attempt to show the transition from plane
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strain to plane stress in the three-dimensional field ahead of the crack front, and to 

systematically examine the applicability of constraint based fracture mechanics to three- 

dimensional crack tip fields.

5.3.2 Boundary Layer Formulations

Figures 5.149-5.150 show the mean stress directly ahead of the crack while Figures 5.151- 

5.152 show the hoop stress. Data is presented between the crack tip and a distance r 

=10J/Go, on sections from the mid-plane to the free surface, and at deformation levels Qfar 

= 3 and 8. At these deformation levels, the mean stress, Gm = 2.39Gq, and the hoop stress, 

Gee -  2.91 Go at the mid-plane crack tip correspond to a fully constrained field. At both 

levels of deformation, the hoop and the mean stress decrease with distance from the crack 

tip. The difference between the stresses on the mid-plane and that on any given section is 

almost distance independent (i.e. the stress profiles are broadly parallel). However an 

increase in deformation is shown to increase the stress gradient. Similar observations are 

presented for the hoop stress in Figure 5.151-5.152.

The effect of deformation on the mean and hoop stress on the mid-plane and free surface 

are shown in Figures 5.153 and 5.154. The mean and hoop stress become increasingly 

dependent on distance as the deformation level increases. At the crack tip, the mean and 

the hoop stress approach the limiting plane strain value at the mid-plane. However at the 

free surface, stress field can not be simply identified as being a plane stress field because 

the stresses attained in a perfect plane stress field (0 = 0°) are Gm = 0.577Go, Gee = 1.1 5Gq.

To determine the location of the plane stress field, the hoop stress has been used as shown 

in Figure 5.155. This figure shows the hoop stress ahead of the crack front at r/t = 0.013 

and 1 for various levels of deformation and on sections normal to the crack front. On the 

mid-plane, the hoop stress approaches the plane strain value of 2.97Gq. However at r/t = 1, 

the hoop stress on the mid-plane and on the free surface are both close to Gee ~ 1 . 1  5Gq, 

indicating a plane stress-like field. Detailed insight into the hoop stress at Jfa/Go^o ? = 8  is
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shown in Figure 5.156 in which the hoop stress reduces across the thickness until at a 

distance, r = t a plane stress field dominates across the full section.

5.3.3 SENB Stress Field

In this part of chapter 5, the hoop and mean stress in full-field SENB solutions are shown 

at the mid-plane and the free surface ahead of the crack front for a sequence of increasing 

levels of deformation and for three different thicknesses, B/(W-a) = 1, 0.5 and 0.1.

Figures 5.157-5.159 show the hoop stress at the mid-plane and at the free surface at 

increasing levels of deformation. In this series of figures, those denoted (a) describe the 

mid-plane. In all cases, the hoop stress at the crack tip on the mid-plane is close to the 

limiting value of Om = 2.97Go for all thicknesses. Ahead of the crack front, this stress is 

maintained at a distance of 2J/Oo in the two thicker specimens. However, in the thinnest 

specimens, the plane strain constraint hoop stress is lost immediately. At small distances 

from the crack tip, the hoop stress becomes distance dependent. Foi; the thinnest specimen, 

the hoop stress eventually approaches 1.150o at the free surface indicating a plane stress 

field at a distance 5J/Go when the deformation level, p, is greater than 82.4.

In the series of Figures 5.157-5.159, those denoted (b) describe the free surface. At the 

intersection of the free surface and the crack front, the hoop stress does not approach the 

plane stress field in any of the three geometries. In the thinnest specimen, a full plane stress 

field develops at distance of 301/Go. For the B/(W-a) = 1 and 0.5, the hoop stress show a 

stress field pattern that becomes independent of distance at r = 30J/Go, but not identical to 

the plane stress field.

Similar trends aie shown for the mean stress at the mid-plane and the free surface in 

Figures 5.160-5.162. The plane strain level is achieved at the mid-plane for B/(W-a) = 1 at 

distances less than 2J/Gq. While a plane stress field develops at distance r > 30J/Go in the 

thinnest SENB specimens.
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The proximity to plane stress has been examined as a function of r/t in Figures 5.163 to 

5.165. In these figures, the three-dimensional fields are examined on lines parallel to the 

crack front, and at an increasing distance r/t from the crack tip. Results are presented for all 

specimen thicknesses from low levels deformation to the limit of J-Dominance on the mid­

plane (p = (W~a)Go/Jioc ~ 25). All the figures show a similar pattern, in which plane strain 

conditions are approached near the crack front at the mid-plane while plane stress 

conditions develop on the free surface but away from the comer intersection. At the crack 

tip on the free surface, the field is perturbed by the comer field.

5.3.4 CCP Stress Field

In the CCP solutions, the hoop and mean stress were determined as a function of distance 

from the crack tip, at the mid-plane and the free surface at a sequence of increasing levels 

of deformation and for three different thicknesses, B/(W-a) = 1 , 0.5 and 0.1.

Figures 5.166-5.168 show the hoop stress as a function of distance, r, normalised by J/Gq 

ahead of the crack front on the mid-plane and the free surface. In the series of Figures 

5.166-5.168, those denoted (a) describe the mid-plane. Significantly the hoop stress at the 

crack tip is less than the fully constrained plane strain field and the stress is dependent on 

distance from the crack tip. The first effect is due to in-plane constraint loss associated 

with the CCP geometries which feature a negative T-stress. In-plane constraint loss effects 

are recognised to be largely distance independent. Ahead of the crack front the stress 

approaches plane stress levels at distance remote from the crack tip. This is most clearly 

shown in the thinnest specimen B/(W-a) = 0.1 shown in Figure 5.168(a).

In the series of Figures 5.166-5.168, those denoted (b) represent the free surface, the field 

approaches the plane stress conditions at distance remote from the crack tip.

Similar trends at the mid-plane and at the free surface are shown in Figures 5.169-5.171 for 

the mean stress where (a) and (b) denote the mid-plane and the free surface field. A loss in 

the plane strain constraint is shown at the mid-plane for all thickness. On the mid-plane the
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mean stress starts at a lower level because of in-plane constraint loss associated with a 

negative T-stress and additional out-of-plane constraint loss develops with increase in 

deformation. Increasing deformation causes the field to approach a plane stress field 

remote from the crack tip. Significantly, the mean stress is dependent on distance on the 

mid-plane and the free surface near to the crack tip.

At distances far from the crack front in the thinnest specimen B/(W-a) = 0.1, the mean 

stress approaches 0.577Go which corresponds to plane stress. However, remote from the 

tip, the mean stress at the mid-plane and the free surface approaches a plane stress field 

regardless of specimen thickness and levels of deformation.

When the distance, r, is normalised with J/Go, the physical location of stresses which are 

being measured move away from the crack tip with increasing levels of deformation. 

Consequently, in the subsequent figures, the occurrence of plane stress field has been 

analysed at a fixed distance r/t at increasing levels of deformation for all specimen 

thicknesses. Figures 5.172-5.174 show the hoop stress ahead of the crack front from small 

scale yielding to full plasticity in CCP specimens of different thicknesses. The figures 

show that plane strain conditions are lost at the mid-plane and with increasing distance 

from the crack front. At the free surface, the field is perturbed by the comer field which 

features a uniaxial tension field close to the crack front. In the thinnest CCP specimen, the 

plane stress field across the thickness is located at r/t > 1 .
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5.4 Proximity to Plane Strain and Plane Stress

Initially it is necessary to identify the way in which full three dimensional fields 

correspond to, or differ from, the two dimensional idealisations of plane strain and plane 

stress. The proximity to plane strain is easily assessed by a parameter derived from the 

requirement that the out of plane stress deviator is zero. Unfortunately, this does not 

distinguish between a plane stress field and a comer singularity, and a different parameter 

is introduced for this specific purpose.

5.4.1 Proximity to Plane Strain

5.4.1.1 Boundary Layer Formulations

For an incompressible material (v = 0.5), plane strain conditions in the z direction require 

that the out-of-plane stress de viator Szz is zero and p as given by equation (2.45) is 0.5.

In the three-dimensional boundary layer formulations, the proximity to plane strain has 

been examined at levels of deformation Qfar = 1, 3, 5, 8  and at a distance which is very 

close to the crack tip (r/t = 0.013) and at r/t = 1 as shown in Figure 5.175. On the mid­

plane close to the crack tip, the parameter p which measures the proximity to plane strain 

increases slightly with deformation but is largely uniform along the crack front until the 

free surface is approached, when plane strain constraint is necessarily lost. At a distance r/t 

= 1 from the crack tip, which is within the plastic zone at deformation levels Qfar = 5, 8 , 

plane strain conditions are entirely lost, and p = 0 .

The through thickness variation of p is shown in Figure 5.176 for a deformation level Ofar 

= 8 . At this level of deformation, p is shown from r/t = 0.013 to r/t = 1. As the distance 

from the crack front increases, plane strain conditions are lost. At distances greater than 

one plate thickness, plane stress conditions occur and within r/t < 1 three-dimensional 

fields develop.
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In Figure 5.177, the proximity to plane strain has been assessed at 0 = 0° within the plastic 

zone at levels of deformation 2̂far = 1, 3, 5, 8 , and 20. On the mid-plane, plane strain is 

only approached very near the crack tip. Across the thickness, the tendency to plane strain 

reduces with distance from mid-plane.

5.4.1.2 Full-Field Solutions

In Figures 5.178-5.180, the proximity to plane strain along the crack front from the mid­

plane to the free surface is given at fixed positions r/t = 0.015, 0.032 and 0.065 for the 

SENB specimens. The proximity to plane strain is dependent upon the thickness of the 

specimen and largely independent of deformation. On the mid-plane, plane strain is 

attained in the thickest specimen B/(W-a) = 1 and is maintained with deformation. At the 

free surface, plane strain conditions are lost sharply in thicker specimens but gradually 

reduce in the thinnest specimen. As the thickness is reduced, out-of-plane effects reduce 

the proximity to plane strain at the mid-plane. However, on the free surface p = 0 

regardless of thickness.

Figures 5.187-5.189 show p as a function of distance ahead of the crack front (0 = 0°) for 

the CCP geometries. The CCP specimens behave in a similar way to the bend bars in the 

sense that p is affected by thickness but is independent of deformation. A distinct 

difference is the gradient of p near the free surface in the thinnest specimen B/(W-a) = 0.1 

compared with the intermediate and full thickness specimens.

The proximity to plane strain at increasing r/t parallel to the crack front is shown for SENB 

in Figures 5.181-5.183 and for CCP in Figures 5.190-5.192 respectively. The figures show 

that p is highest near the mid-plane of the specimen and close to the crack tip. Constraint is 

entirely lost at (r/t > 1) for both SENB and CCP specimens.

Figures 5.184-5.186 and Figures 5.193-5.195 show p for SENB and CCP specimens ahead 

of the crack at 0 = 0° from small scale yielding to full plasticity for plate thicknesses B/(W- 

a) = 1, 0.5 and 0.1. From the figures, the distance at which p approaches zero increases
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slightly with deformation for both SENB and CCP specimens. Comparing the SENB and 

the CCP specimens, there is a small difference in the transition near the free surface. For 

SENB, the stress drops to zero but increase slightly between 0.1 < r/t < 0.5 and then 

approach to zero. While in CCP, the field drops slightly below zero at r/t > 0.5 and 

approaches zero with increase in distance.

5.4.2 Proximity to Plane Stress

The plane strain parameter, p, defined in equation (2.45) necessarily becomes zero at a free 

surface. At the free surface, the out-of-plane stresses vanish but in-plane components may 

exist. As a result, the parameter, p, cannot distinguish between plane stress and comer 

fields.

In elastic-perfectly plastic crack tip analyses in plane stress conditions, the slip lines 

comprise a non-orthogonal grid in which the direct stress across the lines is twice that 

along the lines. Consequently, the slip lines are lines of zero extension. From this 

argument, the proximity to plane stress can be assessed by a parameter X  :

a  (5.9)
^ 0 9  4  (7 zz

For incompressible elastic-perfectly plastic plane stress conditions X  = 0.5. Significantly, 

the requirement of a traction free surface normal to the z direction does not necessaiily lead 

to À = 0.5, allowing plane stress and comer fields to be distinguished.

5.4.2.1 Boundary Layer Formulations

In Figure 5.196, X  is plotted along the crack front at r = 0 . On the mid-plane, X  remains 

close to 0.4 for all levels of deformation until xg/t = 0.32. Close proximity to plane stress 

occurs at xa/t = 0.465 but plane stress conditions are lost at the free surface. At the 

intersection of the free surface and the crack front, a comer field develops. Figure 5.196,
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shows that in the boundary layer formulation, the comer field dominates over the range 0  < 

z/t < 0.035 (z is distance from the free surface) which is consistent with observations by 

Nakamura and Parks (1988a) that the elastic comer singularity field which dominates in a 

spherical zone of approximately 3 percent of the plate thickness from the intersection of 

the free surface and the crack front.

S.4.2.2 Full-Field Solutions

The behaviour of the full-field solutions is similar to the boundary layer formulation. The 

proximity to plane stress at increasing levels of deformation is shown in Figures 5.197- 

5.199 for the SENB geometries and Figures 5.200-5.202 for the CCP geometries. At the 

crack tip (r = 0), plane stress occurs at xg/t = 0.46 for all specimen thicknesses. A domain 

dominated by the comer singularity field occurs independent of specimen thickness at 

about 3.5 percent of the plate thickness from the free surface.

5.5 Conclusions

Three-dimensional crack tip analyses indicate that the loss of out-of-plane constraint is 

associated with asymptotic fields which differ both hydrostatically and deviatorically while 

the stress ahead of the crack front is distance dependent. However, plane strain J-Q/T 

theory requires the stress fields to be deviatorically similar and differ only hydrostatically. 

J-Q/T theory also requires that within the microstmctural-separation distance ahead of the 

crack front normally 2J/ao < r < 5J/Oo, the stress difference Q is distance independent. In 

three-dimensional crack tip fields, the two requirements are not met. This suggests that J- 

T/Q theory may not be applicable to three-dimensional crack problems which do not 

approximate to plane strain.

Rice (1974) indicated that a three-dimensional crack tip field should be bounded by a plane 

strain and plane stress fields. However, three-dimensional crack tip analyses do not show 

the plane stress bound conclusively. In the current work, the fields have been shown to be 

bounded by a plane strain field close to the crack tip at the mid-plane. However, at the free
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surface, there are two distinct fields. At the intersection of the crack front and the free 

surface, a comer field occurs as identified by a uniaxial tensile field in the leading sector. 

A stress field similar to the plane stress field occurs at approximately X3 = 0.97t. This crack 

tip comer field has been shown in boundary layer formulations and full-field SENB and 

CCP solutions independent of specimen thickness. An exact plane stress field through the 

thickness occurs for the thin specimens of boundary layer formulation, SENB and CCP at 

r/t = 1. In the thick and the intermediate thickness specimens of SENB and CCP, a nearly 

plane stress field occurs at r/t = 1. The departure from plane stress in the thicker specimens 

is associated with the gradient of out-of-plane stress.

In the three-dimensional boundary layer formulation analyses, the J-Integral varies along 

the crack front although a uniform stress intensity, Kfar, is applied on the remote boundary 

of the mesh. At each section along the crack front, the contour integral has been shown to 

be path independent for contours with a small radius. However at large contours, the J- 

Integral reduces to the applied value of J known as Jfar. Consequently in three-dimensional 

cases, the contour integral is ultimately path dependent.

The out-of-plane constraint loss has been shown to occur in a similar manner in SENB and 

boundary layer formulations. In CCP specimens, out-of-plane constraint loss is 

complicated by in-plane constraint loss associated with the geometry but still shows a 

similai* decreasing trend across the thickness. In all specimens, the lower bound stress field 

approaches the plane stress field. The systematic development of out-of-plane constraint 

loss from a three-dimensional field at the crack tip and ahead of the crack front is discussed 

in detail in chapters 6  and 7.
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Midplane

Xa/t=0
Quarterplane

X3/t=0.25

Near Free 

surface* 

X3/t=0.49

Free Surface 

X3/t=0.5

Lo&d (̂ far) — 
J faj/

JloJ Jloc/^o^o^ J\oJ

1 1.13 1.08 0.28 0.21
3 3.65 3.09 0.60 0.46
5 7.12 5.11 0.92 0.78
8 11.99 7.91 1.34 1.26
20 30.46 19.43 5.22 3.95

Table 5.1: Load levels along the crack front of three-dimensional boundary layer 
formulations. For load = 20, the near free surface data is located at xg/t = 0.47.

Midplane

X3/t=0
Quarterplane

X3/t=0.25

Near Free 

surface 

X3/t=0.49

Free surface 

X3/t=0.5

f̂ar'̂ ’Tapp lo J  O'oEô J lo J J lo J Jlocf

8 +OGo 11.99 7.91 1.34 1.26

8+0.5ao 11.82 8.13 1.58 1.27

8"0.5(Jo 10.28 8.07 1.57 1.64

Table 5.2: Load levels along the crack front of three-dimensional modified boundary layer 
formulations at a remote load 8  with positive and negative applied T-stress.
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Plastic zone 

r/tLoad — Jfar/^o^o^

1 0 . 1

3 0 . 6

5 . 1 . 2

8 2

2 0 5.5

Table 5.3: The radius of the plastic zone at 0 = O°for three-dimensional thin plate boundary 
layer formulations for a range of load levels.
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(a)SENB B/(W-a) = 1

Midplane xs/t^O
Quarterplane

X3/t=0.25

Near Free Surface 

X3/t=0.49

Free Surface 

X3/t=0.5

M/Mo Tp/t J \<xJ C CTq/Jioc J\<x! C O g/Jloc C Q ç/Jioc Jloĉ  OoGof C CJq/Jioc

0.55 0.04 0.62 1615.5 0.56 1759.4 0.16 5994.3 0.12 8393.1

0.956 0.3 4.90 204.1 4.3 232.2 0.55 1786.5 0.56 1768.6

0.971 1 10.9 92 9.04 110.5 1.13 879 1.22 817.1

0.977 1 17.4 57.4 13.8 72.1 1.8 546.8 1.92 519.8

0.98 1 23.9 41.7 18.7 53.5 ’ 2.6 389.3 2.63 380

0.985 1 34.0 29.3 26.2 38.2 3.7 268.6 3.6 272

(b)SENB B/(W-a) = 0.5

Midplane X3/t=0
Quarterplane

X3/t=0.25

Near Free Surface 

X3/t=0,49

Free Surface 

X3/t=0.5
M / M o r /t J\oJ tToEô C CTq/Jioc JloC^tJoGo? C CTq/Jicx: J\oJ r̂ oGô C (Tq/Jioc J|oc^ O qEo^ C C q/Jioc

0.268 0.15 0.61 1634.3 0.57 1737.4 0.18 5499.4 0.13 7545.4

0.436 0.75 5.6 178.6 3.9 256.2 0.72 1392.6 0.65 1520

0.443 2 12.2 82.2 7.7 129.2 1.3 765.5 1.33 749.8

0.445 2 18.8 52.9 11.6 85.7 1.9 505.5 2.03 492.3

0.447 2 25.7 38.9 15.6 63.8 2.7 368.7 2.73 366.2

0.45 2 35.9 27.7 21.7 45.9 3.87 258.2 3.73 267.9

(c) SENB B/(W-a) = 0.1

Midplane Xs/t=0
Quarterplane

X3/t=0.25

Near Free Surface 

X3/1-0.42

Free Surface 

X3/t=0.5
M / M o r /t J log/tJoGô c e / J i o c J l o c ^  EToGq^ C C T/Jioc l lo c /  rToEot c C T/J ioc ■llOĈtJoEĝ c cr/J|Qç

0.034 0.5 0.24 4178.5 0.22 4583.4 0.14 6987.5 0.07 13893

0.054 1.2 0.77 1284.3 0.53 1851.9 0.31 3215.8 0.16 6081.9

0.088 3.5 6.15 162.5 3.58 279.3 1.73 577.4 0.92 1084.8

0.096 3.7 12.1 82.4 7.24 138 3.5 284.4 1.62 617

0.103 10 17.7 56.2 10.9 91.6 5.4 184.4 2.32 430.8

0.109 10 23.3 42.8 14.6 68.4 7.4 134.2 3.02 331.3

0.119 10 31.6 31.6 20.3 49.2 10.6 94.1 3.98 251.2

Table 5.4: SENB full-field specimens characterised in terms of local load level along the 
crack front, Jioc/c»o£o? and J-Dominance parameter, c CTo/Jiocfor (a) B/W-a = 1 (b) 0.5 and (c) 
0.1. The limit load is given in terms of as M/Mq where Mo is limit load in three-point-bend 
and M is bend load as given in equations (4.4) and (4.5).
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(a) CCP B/(W-a) = 1

Midplane X3/t=0
Quarterplane

X3/t=0.25

Near Free Surface 

X3/t=0.49

Free Surface 

X3/t=0.5

P/Po r /t J ioc/CToGq^ c  (r/J|oc J|oc/O oE q? C C j / J j o c J loĉ C Cj/Jioc J \ o J  tT o E g t C C T /J ]o c

0.005 0.25 0.85 1170.6 0.84 1188.1 0.26 3803.9 0.22 4414.7

0.734 0.8 1.9 512.9 1.8 557.9 0.56 1779.8 0.515 1939.6

0.912 1 6.9 144.6 5.9 169.6 2.1 476.6 1.89 529.3

0.938 1 18.3 54.8 15.1 66.1 5.4 184.2 4.9 202.1

0.953 1 35.4 28.2 29.3 34.1 9.4 95.1 9.4 105.9

0.985 1 57.4 17.4 47.9 20.8 16.8 59.6 14.9 66.8

(b) CCP B/(W-a) = 0.5

Midplane Xs/t=0
Quarterplane

X3/t=0.25

Near Free Surface 

X3/t=0.49

Free Surface 

X3/t=0.5

P/Po r /t JlcK̂ tToGô C Cj/Jjoc J|oc/ rT gE ot c  c r / J i o c h o c / CoEg/ c O/Jioc J loc/C o E o f C tT/J[oc

0.729 0.56 0.95 1049.7 0.88 1139.8 0.27 3746.5 0.23 4314.3

0.897 1.4 2.2 453.3 1.87 534.4 0.62 1614.7 0.55 1825.6

0.917 2 7.4 134.7 6.1 164.7 2.2 450 1.9 525

0.922 2 19.1 52.3 15.4 64.7 5.8 172.5 4.94 202,4

0.926 2 36.1 27.7 29.3 34.1 10.6 94.3 9.34 107.1

0.931 2 58.9 17.2 47.7 20.9 16.9 59.2 14.6 68.5

(c) CCP B/(W-a) = 0.1

Midplane Xs/t-O
Quarterplane

Xs/t=0.25

Near Free Surface 

Xs/t=0.42

Free Surface 

X3/t=0.5

P / P o r /t J  lo c /^ o E o / C C j / J i o c J  lo c / tT g E o f c  e / J [ o c l ] o c /  C toE gt C O / J i o c J  loc/t^o E o ^ C C j / J i o c

0.724 3 1.2 834.7 0.89 1124.4 0.48 2060.6 0.3 3330.2

0.876 7.5 2.5 400 1.9 523.8 1.1 939.1 0.63 1568.5

0.887 9.8 8 125.4 6.24 160,4 3.7 272.4 1.89 526.8

0.892 10 19.2 52.7 15.3 65.4 9.6 107.8 4.84 206.6

0.898 10 35.4 28.3 28.5 35.1 17.8 56.1 9.05 110.5

0.904 10 56.9 17.5 46.0 21.7 28.9 34.5 13.8 72.1

Table 5.5: CCP full-field specimens characterised in ternis of load level along the crack 
front for Jioc/<7o£ô  and J-Dominance parameter, c CTo/Jioc- The limit load is given in terms of 
as P/Po where Po is limit load in centre crack tension panel and P is bend load as given in 
equations (4.7) and (4.9).
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SENB and CCP
BLF/MBLF BLF* B/(W-a) = 1 B/(W-a) = 0.5 B/(W-a) = 0.1
Xg/t z/t Xg/t z/t Xg/t z/t Xg/t z/t Xg/t z/t
0 0.5 0 0.5 0 0.5 0 0.5 0 0.5
0.04 0.46 0.04 0.46 0.032 0.468 0.032 0.032 0.08 0.42
0.08 0.42 0.08 0.42 0.064 0.436 0.064 0.064 0.14 0.36
0 . 1 2 0.38 0 . 1 2 0.38 0.096 0.404 0.096 0.096 0 . 2 0.3
0.16 0.34 0.16 0,34 0.128 0.372 0.128 0.372 0.25 0.25
0 . 2 0.3 0 . 2 0.3 0.16 0.34 0.16 0.34 0.32 0.18
0.25 0.25 0.25 0.25 0,192 0.308 0.192 0.308 0.38 0 . 1 2

0.28 0 . 2 2 0.28 0 . 2 2 0.224 0.276 0.224 0.276 0.42 0.08
0.32 0.18 0.32 0.18 0.25 0.25 0.25 0.25 0.47 0.03
0.36 0.14 0.36 0.14 0.288 0 . 2 1 2 0.288 0 . 2 1 2 0.5 0

0.39 0 . 1 1 0.4 0 . 1 0.32 0.18 0.32 0.18
0.42 0.08 0.436 0.064 0.352 0.148 0.352 0.148
0.45 0.05 0.47 0.033 0.384 0.116 0.384 0.116
0.46 0.04 0.5 5 0.408 0.092 0.408 0.092
0.48 0 . 0 2 0.428 0.072 0.428 0.072
0.49 0 . 0 1 0.448 0.052 0.448 0.052
0.5 0 0.468 0.032 0.468 0.032

0.48 0 . 0 2 0.49 0 . 0 1

0.49 0 , 0 1 0.5 0

0.5 0

Legends
a) BLF = Boundary Layer Formulations, MBLF = Modified Boundary Layer 

Formulations.
b) BLF*: Only in tip-mesh for Qfar = 20.
c) t and B are interchangeably use to represent the thickness.
d) The sections (xg/t) = 0, 0.25 and 0.5 represent the midplane, the quarterplane 

and the free surface.
e) xg/t is referenced from the midplane while z/t is referenced from the free 

surface.

Table 5.6: The sections of the three-dimensional specimens (xg/t) and (z/t) at which data are 
extracted.
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0.2 0.40.1 0.3 0.50
Xs/t

Figure 5.1: The variation of the local J along the crack front for load levels, = 1, 3, 5, 8, 
20.
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Tapp — 0.5cTc
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Figure 5.2: The variation of the local J along the crack front at a remote load levels £2far = 8 
showing the effect of Tapp.
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(a)

(b)

(c)
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Figure 5.3: The local loading parameter (cOo/Jioc) along the crack front of SENB specimens 
(a) B/(W-a) = 1, (b) B/(W-a) = 0.5, (c) B/(W-a) =0.1 at load levels characteiised by the 
radius of plasticity at the midplane xg/t = 0.
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Figure 5.5: The plastic zone determined in a non-hardening boundary layer formulations for
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dimensionalised by t.
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Figure 5.17: The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.5 at (a) the
midplane, (b) the quarter plane and (c) the free surface non-dimensionalised by t.
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Figure 5.19: The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.1 at (a) the
midplane, (b) the quarter plane and (c) the free surface non-dimensionalised by t.
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Figure 5.21: The boundary layer formulation asymptotic polar stresses for Ê̂ far = 1, 3, 5, 
8, 20 at the midplane xa/t = 0, The solid lines represent the two-dimensional plane strain 
solution.
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Figure 5.22: The boundary layer formulation asymptotic Cartesian stresses for i2far = 1, 3, 
5, 8, 20 at the midplane xs/t = 0. The solid lines represent the two-dimensional plane 
strain solution.
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Figure 5.23: The boundary layer formulation asymptotic polar stresses for Qfar =1,3,  5, 8, 
20 at the quarterplane xg/t = 0.24. The solid lines represent the two-dimensional plane 
strain solution.
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Figure 5.24: The boundary layer formulation asymptotic Cartesian stresses for Ofar =1 ,3 ,  
5, 8, 20 at the quarterplane Xg/t = 0.24. The solid lines represent the two-dimensional 
plane strain solution.
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Figure 5.25: The boundary layer formulation asymptotic polar stresses for jQfar = 1, 3, 5, 8, 
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Figure 5.26: The boundary layer formulation asymptotic Cartesian stresses for Qfar = 1 ,3 ,  
5, 8, 20 at the free surface xg/t = 0.5.
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Figure 5.27: The hoop stress CTee at load levels J f J O o ^ o t  -  1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined from a boundary layer formulation
indicates the two-dimensional plane strain field for aee.
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Figure 5.28: The radial stress g „  at load levels J f a jG o ^ o t  -  1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
the two-dimensional plane strain field for cTit.
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Figure 5.29: The shear stress 0re at load levels 7/à/Goeor = 1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
the two-dimensional plane strain field for g q̂ .
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Figure 5.30: The direct stress a n  at load levels J/at^cSo^ot = 1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
the two-dimensional plane strain field for an .
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Figure 5.31: The direct stress G 22 at load levels Jfar/<^o^ot = 1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
the two-dimensional plane strain field for (J22.
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Figure 5.32: The shear stress < J u  at load levels J f J ( S o Z o t  ~  1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
the two-dimensional plane strain field for
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Figure 5.33: The direct stress 033 at load levels Jfa^Go^ot = 1, 3, 5, 8, 20 through the 
thickness, Tapp = 0.
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Figure 5.34: The mean stress cTm at load levels JfarJcSo^ot = 1, 3, 5, 8 , 20 through the
thickness, Tapp = 0 .
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Figure 5.35: The out-of-plane stress On at load levels J fa J c^ o ^ o t = 1, 3, 5, 8 , 20 through the
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Figure 5.36: The out-of-plane stress 0 2 3  at load levels J f a J ^ o ^ o t = 1, 3, 5, 8 , 20 through the
thickness, Tgpp = 0 .
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Figure 5.37: The Mises stress at load levels J fa r /O o E o t = 1, 3, 5, 8 , 20 through the
thickness, Tapp = 0 .
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Figure 5.38: The modified boundary layer formulation asymptotic polar stresses for Ufar = 
8 with Tapp 0, -0.500 and +0.5ao at the midplane xs/t = 0. The solid lines represent the 
two-dimensional plane strain solution (T = 0).
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Figure 5.39: The modified boundary layer formulation asymptotic Cartesian stresses for
ilfar = 8  with Tapp 0, -0.500 and +O.50o at the midplane xg/t = 0. The solid lines represent
the two-dimensional plane strain solution (T = 0).
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Figure 5.40: The modified boundary layer formulation asymptotic polar stresses for the 
load level Qfar = 8 with Tapp 0, -O.SOo and +0.5ao at the quarterplane x^/t = 0.24. The solid 
lines represent the two-dimensional plane strain solution (T = 0).
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Figure 5.41: The modified boundary layer formulation asymptotic Cartesian stresses for
the load level Ê2far = 8  with Tapp 0, -0.5Go and +0.5ao at the quarterplane x ^ / t  = 0.24. The
solid lines represent the two-dimensional plane strain solution (T -  0).
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Figure 5.42; The modified boundary layer formulation asymptotic polar stresses for £2fa 
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Figure 5.44: The hoop stress Oee at a load level J/aJ^o^ot = 8 through the thickness, Tapp = 
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the 
two-dimensional plane strain field for aee.
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Figure 5.45: The radial stress Qrr at a load level J /a i^ G o ^ o t = 8  through the thickness, Tapp =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for
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Figure 5,46: The shear stress Qre at a load level Jfa rJ O o ^ o t =  8  through the thickness, Tapp =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for Qre.
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Figure 5.47: The direct stress a n  at a load level J fa tJ ^ o ^ o t -  8  through the thickness, Tapp =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for an .
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Figure 5.48: The direct stress a %2 at a load level J fa J c S o ^ o t = 8  through the thickness, Tapp =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for a 22.
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-0,5 and +0.5. The broken line determined in a boundary layer formulation indicates the
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Figure 5.50: The out-of-plane stress a n  at a load level JfJ<5o2,ot -  8 through the thickness, 
Tapp = -0.5 and +0.5. The diamond markers show the midplane stress and the circular 
markers show the free surface stress.
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Figure 5.51: The out-of-plane stress 023 at a load level Jfar/OoBot = 8 through the thickness, 
Tapp = -0.5 and +0.5.
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Figure 5.53: The asymptotic cylindrical stresses at the midplane for a SENB specimen B/(W- 
a) = 1 compared with a two-dimensional plane strain field.
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Figure 5.54; The asymptotic Cartesian stresses at the midplane for a SENB specimen B/(W-
a) = 1 compared with a two-dimensional plane strain field.
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Figure 5.55: The asymptotic cylindrical stresses at the quarterplane for a SENB specimen 
B/(W-a) = 1 compared with a two-dimensional plane strain field.
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Figure 5,56: The asymptotic Cartesian stresses at the quarterplane for a SENB specimen
B/(W-a) -  1 compared with a two-dimensional plane strain field.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 274

Go

O000, M- = 1786.5

[]0 8 8 , IX = 272

+ 0 m |X= 1786.5

X O r r ,  IX = 272

A 0 r0 , IX = 1786.5

O010, \x ~  272

0 20 40 60 80 ^  100 120 140 160 180

Figure 5.57: The asymptotic polar stresses at the free surface for a SENB specimen B/(W-a) 
= 1.

3
XO22, |x = 1786.5

2.5

E l  2
d o

1.5 

1

0.5

0

-0.5

-1

-1.5

-2

022

+ + + -1- 4.

u a Ù Ù a gg

X X :  :  ^ ^ a 8 :
011

é  é  ^  ^

% ^ ^
ES @ @

012

t  9 ? 

g  0  S  ^

X
X
9

s
□
A

X

X 0 2 2 , |X = 272 

o 0 1 1 , |X = 1786.5 

+ 011, |X = 272 

□ 012, |x= 1786.5 

A 012, |x = 272

Figure 5.58: The asymptotic Cartesian stresses at the free surface for a SENB specimen 
B/(W-a) = 1.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 275

Gee
Go

xvt = 0: c g J J  = 1615.5

reducing xs/t

xg/t = 0.49; 
CQo/J = 5994.3

40 60 80  100 120 140 160 180

G gq

Go

xg/t -  0; CQo/J = 204.1

reducing x g /t

xg/t = 0.49; 
c0o/J = 1786.5

3.53,5

Xg/t = 0; c a J J  = 57.4Xg/t = 0; c a J J  = 92
2 .5 - 2 .5 -

reducing xg/treducing x g /t

0 ,5

-0,5
-0 ,5 -

0 20 40 60 80 100 120 160140 180
400 20 60 100 14080 120 160 180

0

3 5 3 5

Xg/t = 0; C0o/J = 41.7
Xg/t = 0; cCTo/J = 29.3

25

reducing x g /t reducing x g /t1,6

0.5 0 5

Xg/t = 0.49; 
c(7o/J = 389.3

Xg/t = 0.49; 
c<jJJ = 268.6

-0,5 -0.5

0 20 40 GO 100GO ISO 140 160 180 0 20 4 0 60 80 100 120 140 160 180

0 0

Figure 5.59: The hoop stress 0 9 0  for SENB B/(W-a) = 1 through the thickness, Tapp = 0. The
broken line determined in a boundary layer formulation indicates the two-dimensional plane
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Figure 5.63: The direct stress 0 2 2  for SENB B/(W-a) = 1 through the thickness, Tapp = 0. The
broken line determined in a boundary layer formulation indicates the two-dimensional plane
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Figure 5.65: The mean stress am for SENB B/(W-a) = 1 through thickness, Tgpp = 0. The
broken line determined in a boundary layer formulation indicates the two-dimensional plane
strain field for am.
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Figure 5.66: The shear stress aia for SENB B/(W-a) = 1 through the thickness, Tapp = 0. The
diamond markers and the circular markers indicate the midplane and the free surface.
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Figure 5.67; The shear stress G23 for SENB B/(W-a) =1 through thickness, Tapp = 0.
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Figure 5.68: The Mises stress cr/cr„ for SENB B/(W-a) =1 through the thickness, Tapp = 0.
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Figure 5.69: The asymptotic cylindrical stresses at the midplane for a SENB specimen B/(W- 
a) = 0.5 compared with a two-dimensional plane strain field.
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Figure 5.70: The asymptotic Cartesian stresses at the midplane for a SENB specimen B/(W-
a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.71: The asymptotic cylindrical stresses at the quarterplane for a SENB specimen 
B/(W-a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.72: The asymptotic Cartesian stresses at the quarterplane for a SENB specimen
B/(W-a) = 0.5 compared with the two-dimensional plane field.
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Figure 5.73: The asymptotic cylindrical stresses at the free surface for a SENB specimen 
B/(W-a) = 0.5.
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Figure 5.74: The asymptotic Cartesian stresses at the free surface for a SENB specimen
B/(W-a) = 0.5.
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Figure 5.75: The hoop stress aee for SENB B/(W-a) = 0,5 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for aee.
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Figure 5.76: The radial stress arr for SENB B/(W-a) = 0.5 through the thickness. The broken
line determined in a boundary layer formulation indicates a two-dimensional plane strain
field for a^.
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Figure 5.77: The shear stress a ê for SENB B/(W-a) = 0.5 through the thickness. The broken
line determined in a boundary layer formulation indicates a two-dimensional plane strain
field for are.
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Figure 5.78: The mean stress a^  for SENB B/(W-a) = 0.5 through the thickness. The broken
line determined in a boundary layer formulation indicates a two-dimensional plane strain
field for am.
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Figure 5.79: The direct stress an  for SENB B/(W-a) = 0.5 through the thickness. The broken
line determined in a boundary layer formulation indicates a two-dimensional plane strain
field for ail.
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Figure 5.80: The direct stress G22 for SENB B/(W-a) = 0.5 through the thickness. The broken
line determined in a boundary layer formulation indicates a two-dimensional plane strain
field for G22.
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Figure 5.82: The shear stress a n  for SENB B/(W-a) = 0.5 through the thickness. The
diamond and circular markers indicate the midplane and the free surface.
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Figure 5.83: The shear stress aia for SENB B/(W-a) = 0.5 through the thickness.
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Figure 5.84: The Mises stress cr/cr^ for SENB B/(W-a) = 0.5 through the thickness.
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Figure 5.85: The asymptotic cylindrical stresses at the midplane for a SENB specimen B/(W- 
a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.86: The asymptotic Cartesian stresses at the midplane for a SENB specimen B/(W-
a) = 0 . 1  compared with the two-dimensional plane strain field.
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Figure 5.87; The asymptotic cylindrical stresses at the quarterplane for a SENB specimen 
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.88: The asymptotic Cartesian stresses at the quaiterplane for a SENB specimen
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.89: The asymptotic cylindrical stresses at the free surface for SENB B/(W-a) = 0.1.
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Figure 5.90: The asymptotic Cartesian stresses at the free surface for SENB B/(W-a) = 0.1.
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Figure 5.91: The hoop stress cTee for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for O qq.
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Figure 5.92: The radial stress an- for SENB B/(W~a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for ( y „ .
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Figure 5.93: The shear stress Gre for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for Gre.
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Figure 5.94: The mean stress G^for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for Gm.
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Figure 5.95: The direct stress a u  for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for Oil.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 306

xyt = 0; ccTo/J = 162.5
Xg/t = 0; ccTo/J = 1284.3

reducing 
Xs/t

reducing 
V Xa/t

Xa/t = 0.42; ccTo/J = 3215.8 Xa/t = 0.42; cOo/J = 577.4

20 40 60 80 100 120 140 160 180
e 0 20 40 60 80 100 120 140 160 180

0

^ 2 2

Gn

as
3'

2.5- 

2-
1.5- 

1 -
0.5-

0

351 
3-

______ t A.3't W g U O*-»*'Ï ”— —==»U.X3/t = 0; C0o/J = 56.2
reducing 022  , reducing xa/t

1.5 -

1 -
35-
0

Xa/t =  0.42; cGo/J = 284.4
I 1 — 1..... "1.... 1 1 1.... -'I'...—

-0.5- 
-1 -

Xa/t =  0.42; C0 O/J = 184.4
1 1 1 1 1 1 'T ......1

20 40 60 80 100 120 140 160 180

0
20 40 00 80 100 120 140 160 180

0

G22

0 7

35

3 -

2 5 -

2
1.5- 

1 - 
0.5- 

0 
-0.5-1 

-1

35-1

_  ______  Xa/t =  0; cCTq/J  = 42.8 3 - .. .............. X a/t = 0; C0 O/J = 31.6

^  reducing x a /t

------^

2 5 -

. ^ 1.5
Oo 1 ,

0.5 -

reducing x a /t

0 -
Xa/t = 0.42; cGo/J = 134.2

-0.5- 

-1 -

Xa/t = 0.42; c a J J  = 94.1

1 \ 1 1  1 1 " ' I 1 "  '

0 20 40 60 80 100 120 140 160 180

0

0 20 40 60 80 100 120 140 160 180

0

Figure 5.96: The direct stress Ü 22 for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for 0 2 2 -
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Figure 5.97: The shear stress ( 5 n  for SENB B/(W-a) = 0.1 through the thickness. The broken
line determined in a boundary layer formulation indicates the two-dimensional plane strain
field for a^ .
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Figure 5.98: The shear stress aia for SENB B/(W-a) = 0.1 through the thickness. The 
diamond and circular markers indicate the midplane and the free surface field.
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Figure 5.99: The shear stress CT23 for SENB B/(W-a) = 0.1 through the thickness.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 310

1.2

a

0 .8 -

0 .6 -

0.4-

0 .2 -

0 20 40 60 80 100 120 140 160 180

1.2

G

0.8 -

xa/t = 0.5
0.6

0.4-

xa/t = 0; cGq/J = 162.50.2

0 20 40 60 80 100 120 140 160 180

1.2

G

0.8-

0 .6 -

0.4 - Xa/t = 0; c g J J  = 82.4
0.2

0 20 40 60 80 .100 120 140 160 180

1.2

0.8 -

0.6 -

Xa/t = 0; cGq/J = 42.8
0.4-

0.2 -

0 20 40 60 80 100 120 140 160 180
0

0.8 -

xa/t = 0.5
0.6

0.4
Xa/t = 0; c g J J  = 56.2

0.2

0 20 40 60 80 100 120 140 160 180

0
1.2

0. 8 -

0.6 - xa/t = 0; CGo/J = 31.6
0.4-

0.2 -

0 20 40 60 80 100 120 140 160 180

0
Figure 5.100: The Mises stress <71 for SENB B/(W-a) = 0.1 through the thickness.
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Figure 5.101: The asymptotic cylindrical stresses at the midplane for a CCP specimen 
B/(W-a) = 1 compared with the two-dimensional plane strain field.
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Figure 5.102: The asymptotic Cartesian stresses at the midplane for a CCP specimen B/(W-
a) = 1 compared with the two-dimensional plane strain field.
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Figure 5.103: The asymptotic cylindrical stresses at the quarterplane for a CCP specimen 
B/(W-a) = 1 compared with the two-dimensional plane strain field.
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Figure 5.107: The hoop stress aee for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for aee.
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Figure 5.108: The radial stress Qrr for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for q „ .
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Figure 5.109: The shear stress are for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for are.
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Figure 5.110: The mean stress Qm for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for q^.
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Figure 5.111: The direct stress an  for a CCP specimen B/(W~a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for an .
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Figure 5.112: The direct stress Q22 for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Q22.
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Figure 5.113: The shear stress for a CCP specimen B/(W-a) = 1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Gi2 .
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Figure 5.114: The shear stress g  13 for a CCP specimen B/(W-a) = 1 through the thickness.
The diamond and circular markers indicate the midplane and the free surface field.
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Figure 5.115: The shear stress O23 for a CCP specimen B/(W-a) = 1 through the thickness.
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Figure 5,116: The Mises stress rr/cr^for a CCP specimen B/(W-a) = 1 through the
thickness.
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Figure 5.117: The asymptotic cylindrical stresses at the midplane for a CCP specimen 
B/(W-a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.118: The asymptotic Cartesian stresses at the midplane for a CCP specimen B/(W- 
a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.120: The asymptotic Cartesian stresses at the quarterplane for a CCP specimen
B/(W-a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.121: The asymptotic cylindrical stresses at the free surface for a CCP specimen 
B/(W-a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.122: The asymptotic Cartesian stresses at the free surface for a CCP specimen 
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Figure 5.123: The hoop stress G00 for a CCP specimen B/(W-a) = 0.5 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for G00.
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Figure 5.124: The radial stress Crr for a CCP specimen B/(W-a) = 0.5 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Qrr.
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Figure 5.125: The shear stress Ore for a CCP specimen B/(W-a) = 0.5 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
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Figure 5.126: The mean stress Gm for a CCP specimen B/(W-a) = 0.5 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Gm.
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Figure 5.127: The direct stress a n  for a CCP specimen B/(W-a) = 0.5 through the
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Figure 5.128: The direct stress 0 2 2  for a CCP specimen B/(W-a) = 0.5 through the
thickness. The broken line determined in a boundary layer formulation indicates the two-
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Figure 5.129: The shear stress G12 for a CCP specimen B/(W-a) = 0.5 through the thickness.
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Figure 5.130: The shear stress Gis for a CCP specimen B/(W-a) = 0.5 through the thickness.
The diamond and circular markers indicate the midplane and the free surface fields.
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Figure 5.131: The shear stress G23 for a CCP specimen B/(W-a) = 0.5 through the thickness.
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Figure 5.132; The Mises stress for a CCP specimen B/(W-a) = 0.5 through the
thickness.
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Figure 5.133: The asymptotic cylindrical stresses at the midplane for a CCP specimen 
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.134: The asymptotic Cartesian stresses at the midplane for a CCP specimen B/(W- 
a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.135: The asymptotic cylindrical stresses at the quarterplane for a CCP specimen 
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.136: The asymptotic Cartesian stresses at the quarterplane for a CCP specimen 
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5,137: The asymptotic cylindrical stresses at the free surface for a CCP specimen 
B/(W-a) = 0.1.
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Figure 5,138: The asymptotic Cartesian stresses at the free surface for a CCP specimen
B/(W-a) = 0.1.
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Figure 5.139: The hoop stress CTqg for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer foimulation indicates the two-dimensional
plane strain field for CT00.
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Figure 5.140: The radial stress Grr for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Grr.
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Figure 5.141: The shear stress Gro for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Gro.
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Figure 5.142: The mean stress cTm for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for
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Figure 5.143: The direct stress an  for a CCP specimen B/(W-a) = 0.1 through the
thickness. The broken line determined in a boundary layer formulation indicates the two-
dimensional plane strain field for an .
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Figure 5.144: The direct stress 0 2 2  for a CCP specimen B/(W-a) = 0.1 through the
thickness. The broken line determined in a boundary layer formulation indicates the two-
dimensional plane strain field for 0 2 2 .



Chapter 5. Three-Dimensional Elastic-Plastic Fields 346

0.2-1 0.21

0.1 - Xg/t = 8; cOq/J = 834.7 0.1 = 8; cao/J = 488 ^

0*12 -0.1 , ’■'y/
0 -

G 1 2 -0.1 -
G o -0.2

-0.3- -0.3-
-0.4 -0.4 -
-0.5- xs/t = 8 . 4 7  ; -0.5- Xg/t = 8.47; '
-0.6 • cGq/J = 2868.6 -0.6- cOo/J = 939.1
-0.7-1 ■ ■ 1 1 I..-■-I.... -1 1 - I-..... '----- -0.7-

0 20 40 60 80 100 120 140 160 180

0
0 20 40 60 80 100 120 140 160 180

8

<̂ 12
0 7

Q2
Q1
0

-Û1
-0.2
-03
-04
-05

-06
-07

Xg/t = 8; ccTo/J =125.4
0.6 - 

0.4 - 

G i2  G2- x g /t  = 8; CŒo/J = 52.7 /V \
CTo 0-

-0.2-

Xg/t = 8.47; ^ -0.4- Xg/t = 8.47;
cOo/J = 272.4 -0.6- CGn/J = 187.8 " '

-0.8-

0 2D 40 60 80 100 120 140 160 180
8

20 40 60 80 100 120 140 160 180

0

02 02
xs/t = 8; cgJJ  = 28.301 - 0.1 - xVt = 8; cQo/J = 17.5

^  .01- 
-02

-0.1

-03

Xg/t = 8.47; 
caJJ  = 56.1

-0.4-

-0.5

-0.6-
-07 -0.7

0 20 40 60 80 100 120 140 100 180 0 20 40 60 80 100 120 140 160 180
8 0

Figure 5.145: The shear stress G \2 for a CCP specimen B/(W-a) = 8.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for a  12.
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Figure 5.146: The shear stress aia for a CCP specimen B/(W-a) = 0.1 through the thickness.
The diamond and round markers indicate the midplane and the free surface fields.
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Figure 5.147: The shear stress azg for a CCP specimen B/(W-a) = 0.1 through the thickness.
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Figure 5.148: The Mises stress for a CCP specimen B/(W-a) = 0.1 through the
thickness.
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Figure 5,149: The mean stress ahead crack front from midplane to free surface at load Ofa 
= 3 between r<jJJ = 0 and 10 using a boundary layer formulation.
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Figure 5,150: The mean stress ahead crack front from midplane to free surface at load Ofar 
= 8 between roJJ  = 0 and 10 using a boundary layer formulation.
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Figure 5.151: The hoop stress ahead crack front from midplane to free surface at load £2fa 
3 between v o j i  ~ 0 and 10 using a boundary layer formulation.
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Figure 5.152: The hoop stress ahead crack front from midplane to free surface at load ^far 
8 between rcTo/J = 0 and 10 using a boundary layer formulation.
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Figure 5.153: The mean stress at (a) midplane and (b) free surface for load Ofar = 1, 3, 5, 8, 
20 for boundary layer formulation. Broken lines indicate two-dimensional plane strain in 
(a) and plane stress in (b).
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Figure 5.154; The hoop stress at (a) midplane and (b) free surface for load Qfar = 1, 3, 5, 8, 
20 for boundary layer formulation. Broken lines indicate two-dimensional plane strain in 
(a) and plane stress in (b).
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Broken lines indicate two-dimensional plane strain and plane stress.
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Figure 5.157; The hoop stress ahead crack front from at (a) the midplane and (b) the free 
surface for SENB B/(W-a) = 1.
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Figure 5.158: The hoop stress ahead crack front from at (a) the midplane and (b) the free
surface for SENB B/(W-a) = 0.5.
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Figure 5.159: The hoop stress ahead crack front from at (a) the midplane and (b) the free 
surface for SENB B/(W-a) = 0.1.
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Figure 5.160: The mean stress ahead crack front for SENB B/(W-a) = 1, at (a) the midplane 
and (b) the free surface at increasing load levels.
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Figure 5.161: The mean stress ahead crack front for SENB B/(W-a) = 0.5, at (a) the 
midplane and (b) the free surface at increasing load levels.
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Figure 5.162: The mean stress ahead crack front for SENB B/(W-a) = 0.1, at (a) the
midplane and (b) the free surface at increasing load levels.
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Figure 5.163: The hoop stress ahead crack front at 6 = 0° at load (a) small scale yielding 
and (b) full plasticity for SENB B/(W-a) = 1.
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Figure 5.164: The hoop stress ahead crack front at 0 = 0° at load (a) small scale yielding 
and (b) full plasticity for SENB B/(W-a) = 0.5.
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Figure 5.165: The hoop stress ahead crack front at 0 = 0° at load (a) small scale yielding
and (b) full plasticity for SENB B/(W-a) = 0.1.
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Figure 5.166: The hoop stress ahead the crack front at (a) the midplane and (b) the free 
surface at increasing load levels for a CCP specimen B/(W-a) = 1.
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Figure 5.167: The hoop stress ahead the crack front at (a) the midplane and (b) the free 
surface at increasing load levels for a CCP specimen B/(W-a) = 0.5.
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Figure 5.168: The hoop stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 0.1.
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Figure 5.169: The mean stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 1.
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Figure 5.170: The mean stress ahead the crack front at (a) the midplane and (b) the free 
surface at increasing load levels for a CCP specimen B/(W-a) = 0.5.
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Figure 5.171: The mean stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 0.1.
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Figure 5.172: The hoop stress along the crack front at r/t = 0.01 to 0.35 at (a) small scale 
yielding to (b) full plasticity for a CCP specimen B/(W-a) = 1.
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Figure 5.173: The hoop stress along the crack front at r/t = 0.02 to 0.5 at (a) small scale 
yielding to (b) full plasticity for a CCP specimen B/(W-a) = 0.5.
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Figure 5.174: The hoop stress along the crack front at r/t = 0.1 to 1 at (a) small scale
yielding to (b) full plasticity for a CCP specimen B/(W-a) = 0.1.
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Figure 5.175: Comparison of the level of plane strain ahead of the crack front at radial 
distance r/t = 0.013 at load levels 1, 3, 5, 8 and at distance r/t = 1 at load levels Qfar = 5, 8 
for boundary layer formulations.
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Figure 5.176: Through thickness variation of the level of plane strain ahead of the crack 
front 0 = 0° at various radial distances for load level Ofar = 8 for boundary layer 
formulations.
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Figure 5.177: In-plane degree of plane strain at 0 = 0° within the plastic zone radius for 
load 1, 3, 5, 8, 20 through the thickness. Broken line corresponds to the plastic zone ahead 
of the crack.
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Figure 5.178: The degree of plane strain in SENB specimens (BAV-a = 1 )  along the crack 
front at r/t = 0.009 at increasing load levels.
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Figure 5.179: The degree of plane strain in SENB specimens (B/(W-a) = 0.5) along the 
crack front at r/t = 0.009 at various load levels.
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Figure 5.180: The degree of plane strain in SENB specimens (B/W-a = 0.1) along the crack 
front at r/t = 0.009 at various load levels.
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Figure 5.181: The degree of plane strain in SENB specimens along the crack front at 0 = 0° 
in (a) small scale yielding and (b) full plasticity for B/(W-a) = 1.
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Figure 5.182: The degree of plane strain in SENB specimens along the crack front at 0 = O*’ 
in (a) small scale yielding and (b) full plasticity for B/(W-a) = 0.5.
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Figure 5.183: The degree of plane strain in SENB specimens along the crack front at 0 = 0̂  
in (a) small scale yielding and (b) full plasticity for B/(W-a) = 0.1.
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Figure 5.184: The degree of plane strain in SENB specimens ahead of the crack front at 0 = 
0° in (a) small scale yielding and (b) full plasticity for B/(W-a) =1.
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Figure 5.185: The degree of plane strain in SENB specimens ahead of the crack front at 0 = 
0° in (a) small scale yielding and (b) full plasticity for B/(W-a) = 0.5.
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Figure 5.186: The degree of plane strain in SENB specimens ahead of the crack front at 0 = 
0° in (a) small scale yielding and (b) full plasticity for B/(W-a) = 0.1.
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Figure 5.187: The degree of plane strain in CCP specimens (B/W-a = 1) along the crack
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Figure 5.188: The degree of plane strain in CCP specimens (B/W-a = 0.5) along the crack 
front at increasing load levels at r/t = 0.032.
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Figure 5.189: The degree of plane strain in CCP specimens (B/W-a = 0.1) along the crack 
front at increasing load levels at r/t = 0.065.
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Figure 5.190: The degree of plane strain along the crack front at increasing r/t for a CCP 
specimen B/(W-a) = 1.
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Figure 5.191; The degree of plane strain along the crack front at increasing r/t for a CCP 
specimen B/(W-a) = 0.5.
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Figure 5.192: The degree of plane strain along the crack front at increasing r/t for a CCP
specimen B/(W-a) = 0.1.
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Figure 5.193: The degree of plane strain ahead of the crack front at small scale yielding to 
full plasticity in CCP specimens B/(W-a) = 1.
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Figure 5.194: The degree of plane strain ahead of the crack front at small scale yielding to 
full plasticity in CCP specimens B/(W~a) = 0.5.
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Figure 5,195: The degree of plane strain ahead of the crack front at small scale yielding to 
full plasticity in CCP specimens B/(W-a) = 0.1.
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Figure 5.196: Proximity to plane stress along the crack front at r = 0 at increasing 
deformation levels for a boundary layer formulation.
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Figure 5.197: Proximity to plane stress at r = 0 in SENB, B/(W-a) = 1 along the crack front 
at different deformation levels.
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Figure 5.198: Proximity to plane stress at r = 0 in SENB, B/(W-a) = 0.5 along the crack 
front at different deformation levels.
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Figure 5.199: Proximity to plane stress at r = 0 in SENB, B/(W-a) = 0.1 along the crack 
front at different deformation levels.
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Figure 5.200: Proximity to plane stress in CCP, B/(W-a) = 1 along the crack front at r = 0 at 
increasing deformation levels.
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Figure 5.201: Proximity to plane stress in CCP, B/(W-a) = 0.5 along the crack front at r = 0 
at increasing deformation levels.
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Out-of-Plane Constraint Effects Quantified 
by a Plane Strain Parameter

The quantification of constraint loss is a central objective of three-dimensional crack tip 

analyses. Chapter 5 presented the basic data from which systematic trends must be 

extracted. Chapter 6 starts this process. Constraint loss through the thickness, and as a 

function of distance from the crack tip is related to a parameter which measures the 

proximity to plane strain. A similar approach is taken to identifying the zone in which 

plane stress dominates.

6.1 Out-of-Plane Constraint Loss at the Crack Tip (r = 0)

6.1.1 Boundary Layer Formulations and Single Edge Notched Bend Bars

Fracture processes usually initiate in the leading sector ahead of the crack tip. It has 

already been shown that in three-dimensional fields that this is a constant stress sector. 

Two important stress components; the maximum hoop stress (oee) and the mean stress (Gm) 

have been used to quantify out-of-plane constraint loss.

The hoop and the mean stress determined from boundary layer formulations are given as a 

function of the plane strain parameter, p, defined in equation (2.45) in Figures 6.1 and 6.2 

for defoimation levels t2far = 3, 5, 8. The constraint loss exhibits a unique behaviour which 

can be expressed by a single curve which is bounded by plane strain conditions at the 

midplane. Near the free surface, the field approaches a plane stress field or a comer 

singularity field which cannot be distinguished by p. Figures 6.3 and 6.4 show the hoop 

and the mean stress as a function of p for both boundary layer formulations and full-field 

SENB solutions. The deformation levels in the full-field solutions ranged from small 

plasticity to fully plastic. Figures 6.3 and 6.4 show that the out-of-plane constraint loss at 

the crack tip in boundary layer foimulations and full-field solutions fall on a single unified 

locus.



Chapter 6. Out-of-Plane Constraint Effects Quantified by a Plane Strain Parameter 372

6.1.2 Centre Crack Tension Panels

In CCP specimens, constraint loss is more complex because constraint is lost due to in­

plane and out-of-plane effects. To quantify the out-of-plane constraint loss, it is initially 

necessary to quantify in-plane constraint loss. An in-plane constraint estimation scheme for 

a family of crack tip stress field based on the T-stress was proposed by Betegon and 

Hancock (1991). Karstensen (1996) extended the range of the estimation scheme from - I  < 

T/Go < 1 and proposed values for the two constants, An and Bn tabulated in Table 6.1. The 

T-stress is related to the applied stress, Gapp, through:

^  = TO-.,, (6.1)

where T/Gapp is known as the T-stress concentration factor. The applied load, P, from 

equation (4.8) normalised by the limit load, Pq, from equations (5.5) can be expressed in 

terms of the applied stress, Gapp, normalised by the yield stress, Go :

p  _  Vs f  1
(6.2)

P„ a„ 2 \ l - a l W  )

If a/W = 0.5, P/Po reduces to:

f  = (6.3)
(} ^  o

Putting equation (6.3) into (6.1) gives:

T  T P

 ̂s  p„
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In-plane constraint loss for three-dimensional CCP specimens can be estimated stalling 

with a two-dimensional plane strain constraint assessment scheme from the modified 

boundary layer formulation. The Q term is given in equation (2.150). For a non-hardening 

response, and Bn are 0.83 and -0.88. The Q values associated with in-plane constraint 

loss in the CCP specimens can be calculated at all loads. Specifically for thicknesses 

B/(W-a) = 1, 0.5 and 0.1, Q was determined to be -0.70, -0.68 and -0.38 at limit load. The 

mean and the hoop stress are then given by :

^  I Q (6.5)
cr,. (j,.

The hoop and the mean stresses in CCP specimens at limit load are tabulated in Table 6.2.

Figures 6.5(a) to (f) show the constraint level as a function of the plane strain parameter for 

all the centre cracked panels. In each plot, constraint loss has been shown at limit load. The 

in-plane constraint loss for each configuration is indicated with broken lines. From the 

figures, it is clear that the out-of-plane effect causes an additional constraint loss in all the 

CCP specimens. As a first hypothesis it is appropriate to consider constraint loss due to in­

plane and out-of-plane effects to be additive.

Figures 6.6 and 6.7 show the hoop and the mean stresses as a function of the plane strain 

parameter for all thicknesses of CCP specimens. This data is compared with the boundary 

layer formulations at defonnation levels 2̂ioc = 7.12 and 12. If the in-plane and out-of­

plane effects are regarded as being additive, the boundary layer formulations show greater 

levels of out-of-plane constraint loss than the CCP specimens but both configurations 

approach the comer singularity field at the free surface. Different thickness CCP 

specimens do not exhibit a unique relation between out-of-plane constraint loss in contrast 

to the SENB specimens due to the different levels of in-plane constraint loss which is 

indexed by T. The highest out-of-plane constraint loss occurs in the thickest CCP 

specimen. As the CCP specimen thickness is reduced, the out-of-plane constraint loss 

approaches the boundary layer formulation data.
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The mean and the hoop stress constraint loss at the crack tip in boundaiy layer 

formulations and full-field SENB and CCP specimens can be expressed as a simple 

polynomial expression :

= + (6.6)
<J„

where An, An+i are the constants determined by a curve fitting and p is the plane strain 

parameter.

The hoop and the mean stress out-of-plane constraint loss in the boundary layer 

formulations and the SENB specimens in Figures 6.1-6.2 and Figures 6.3-6.4 can be fitted 

using a quadratic polynomial curve and the associated constants A„ tabulated in Table 6.3.

The hoop and the mean stress in the CCP specimens shown in Figure 6.6-6.7 can be fitted 

using a cubic polynomial curve using the constants tabulated in Table 6.4.

6.2 Out-of-PIane Constraint Loss Ahead of the Crack Front (r = 2J/Go)

The distance 2J/Go is important in fracture analyses because it is a distance where the small 

strain theory converges to large strain analyses. On this basis, out-of-plane effects are now 

examined at distance 2J/Oq.

6.2.1 Boundary Layer Formulation and Single Edge Notched Bend Bars

Out-of-plane effects at increasing levels of deformation have been examined using the 

mean and the hoop stress as a function of the plane strain parameter at a distance of r = 

2J/Oo along the crack front. The objective is to develop an understanding on out-of-plane 

constraint loss over distances from the crack tip involved in the physics of failure.
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Boundary layer foimulations and the SENB solutions are discussed together because both 

develop positive T-stresses.

Figures 6.8 and 6.9 show the mean and the hoop stress as a function of the plane strain 

parameter in boundary layer formulations at a distance of r = 2J/Go and at deformation 

levels, Ofar = 1 , 3 ,  5, 8 and 20. At small levels of deformation (£2far = 1 , 3 ,  5), constraint 

loss fall on a single curve from the midplane to the free surface at increasing defoimation. 

However as the deformation levels increase (^far = 8, 20), constraint loss is load

dependent.

Figures 6.10 (a) to (c) and 6.11 (a) to (c) show the mean stress as a function of the plane 

strain parameter at increasing levels of deformation in the SENB specimens. Constraint 

reduces with deformation along the crack front and approaches the plane stress field on the 

free surface.

It is important to highlight that measurement of deformation using J cause the physical 

location of stresses to move away from the crack tip. As constraint is lost with distance 

from the crack tip, this causes constraint loss when measured at r = 2J/CTo shows a decaying 

trend.

However at low levels of deformation, the constraint loss for SENB solutions and the 

boundary layer formulations are similar as demonstrated in Figures 6.12 and 6.13. When 

the levels of deformation is small, essentially the measured J can be regarded as near the 

crack tip, therefore constraint loss through the thickness can be united into a single 

relationship.

Even though analyses of constraint loss in the same specimen thickness at increasing level 

of deformation show an independent decreasing pattern, constraint loss in different 

specimen thicknesses at the same section (xs/t) regardless of thickness can be united into a 

single relationship. Constraint loss at the same section (xg/t) as a function of the plane 

strain parameter are shown in Figures 6.14 (a) to (f) and 6.15 (a) to (f).
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6.2.2 Centre Cracked Tension Panels

Initially, constraint loss at r = 2J/Go is shown as a function of the plane strain parameter at 

increasing levels of deformation as illustrated in Figures 6,16 (a) to (c) and 6.17 (a) to (c) 

for the mean and the hoop stress. Increasing deformation causes constraint loss in all three 

thicknesses as shown in Figures 6.16 (a) and (b). However, as with the SENB specimens, 

the constraint loss is dependent on the levels of deformation due to the physical point at 

which stresses are measured changes because of deformation measured by J.

Figures 6.18 (a) to (f) and 6.19 (a) to (f) show the mean and the hoop stress for CCP 

specimen for different thicknesses at the same section (xa/t) as a function of the plane 

strain parameter. First, in-plane constraint loss causes the crack tip stress field to drop from 

the limiting plane strain field, and then the out-of-plane constraint loss starts from the 

inherent in-plane constraint loss associated with the negative Q. For different specimen 

thicknesses but at identical sections (x3/t), the out-of-plane constraint is lost in a similar 

way. The out-of-plane constraint loss at similar sections (xg/t) of CCP specimens of 

different thicknesses exhibit similar behaviour.

6.3 Conclusions

At the crack tip, the out-of-plane constraint loss has a unique relation to p which is 

independent of levels of deformation. This relation is bounded by the plane strain and the 

plane stress or corner fields. In the CCP specimens, the out-of-plane constraint loss is 

bounded by a geometry dependent constraint loss at the midplane while the free surface 

field is similar to that of the boundary layer formulation and the SENB specimens. The loss 

of constraint in the CCP specimens arises from in-plane effects which can be identified 

from a constraint estimation scheme combined with out-of-plane effects.

Out-of-plane constraint loss is dependent on the level of deformation at r = 2J/Oo. The 

measurement of deformation by J essentially moves away from the crack tip and cause the
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independent loss of constraint with increase in deformation. However, constraint loss in 

different thickness specimens at the same section (xs/t) can be united into a single 

relationship.

There is a significant difference between the behaviour at a fixed physical location (the 

crack tip) and a moving location (at r = 2J/Go). If the level of deformation is small 

compared to limit load, constraint loss can be united into a single curve for boundary layer 

formulation and SENB at the crack tip and at r = 2J/Go- The constraint loss at the limit load 

in SENB specimens is still unique when measured at the crack tip. However, at r = 2J/Go 

the physical measured distances are dynamic with increase in deformation and causes 

measurement of constraint at different position. This cause constraint cannot be unified on 

a single relationship. Similar behaviours are observed in the CCP specimens. Although 

there are differences in the pattern of constraint loss at r = 2J/Go, the loss of constraint in 

different thicknesses full-field solutions can be united at the same sections (xg/t).

Although the plane strain parameter can quantify out-of-plane constraint loss, the analyses 

can not be directly applied unless p and the development of constraint loss can be 

expressed simply in terms of geometry and deformation level. This is now addressed in 

chapter 7.
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Figure 6.1: The hoop stress in a boundary layer formulation as a function of the plane strain 
parameter, p, at the crack tip.
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Figure 6.2: The mean stress in a boundary layer formulation as a function of the plane
strain parameter, p, at the crack tip.
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Figure 6.3: The hoop stress as a function of the plane strain parameter, p, for boundary 
layer formulations and SENB specimens B/(W-a) = 1, 0.5 and 0.1. The load levels are 
shown at the midplane.
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n A.n Bji
3 0.21 -0.08
6 0.48 -0.25
13 0.64 -0.4
oo 0.83 -0.88

Table 6.1: Curve fitting constants for a modified boundary layer formulation after 
Karstensen (1996).

B/(W-a) T/ <7app T/Go Q CfBG*'’ Cm'P
1 -0.94 -0.54 -0.70 2.27 1.69

0.5 -0.92 -0.53 -0.68 2.29 1.71
0.1 -0.6 -0.34 -0.38 2.59 2.01

Table 6.2: The mean and the hoop stress estimated due to in-plane constraint loss from 
equation (6.5) using three-dimensional CCP specimens limit load values.
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(7m (768

Ai 0.577 1.15

A2 0 . 6 6 -0 . 2

A3 7.7 10,5

Table 6,3: The hoop and the mean stress curve fitting constants A 2 and A3 values for 
boundary layer formulations of Figures 6.1 and 6.2 and SENB curves of Figures 6.4 and 6.5 
as related through the general equation 6 .1 .

(7m (700

G=1 G = 0.5 G = 0.1 G= 1 G = 0.5 G = 0.1

Ai 0.577 0.577 0.577 1.15 1.15 1.15

A2 -0.79 0.37 -2.39 0.77 1.64 -1 .2

A3 -1.78 -6.24 19.6 -10.53 -13.63 14.3

A4 19.6 27.2 -17.8 32.6 39.1 -9.78

Table 6.4: The hoop and the mean stress curve fitting constants Ai, A2 , A3 and A4 values for 
CCP of Figures 6 . 6  and 6.7 as related through equation 6.1. G is the thickness to ligament 
ratio B/(W-a).
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Figure 6.10: The mean stress as a function of the plane strain parameter, p, at r = 2J/Oo for
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Chapter 6. Out-Of-Plane Constraint Effects Quantified by a Plane Strain Parameter 387

2.5
PI. Strain

PI. Stress0.5 f

0.10 0.2 0.3 0.4 0.5

O = 1.13 
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Figure 6.14: The mean stress as a function of the plane strain parameter at different sections 
(x3/t) across the thickness for SENB specimens at r -  2J/Go. The diamond, square and 
triangular markers represent the thick, intermediate thickness and thin specimens.
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(xs/t) across the thickness for SENB specimens at r = 2J/Go. The diamond, square and 
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Figure 6.16: The mean stress as a function of the plane strain parameter at r = 2J/ao at limit
load in CCP specimens B/(W-a) = 1, 0.5 and 0.1. The load levels are the midplane values.
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Figure 6.17: The mean stress as a function of the plane strain parameter at r = 2J/ao at limit 
load in CCP specimens B/(W-a) = 1, 0.5 and 0.1. The load levels are midplane values.
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Figure 6.18; The mean stress as a function of the plane strain parameter at different sections 
(x s /t)  across the thickness at limit load for CCP specimens at r = 2J/Oo. The diamond, 
square and triangular markers represent the thick, intermediate thickness and thin 
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Figure 6.19: The hoop stress as a function of the plane strain parameter at different sections 
(xs/t) across the thickness at limit load for CCP specimens at r = 2J/ao. The diamond, 
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Out-of-Plane Constraint Loss

Conservative approaches to defect assessment are based on the toughness in plane strain 

conditions. Unlike two-dimensional solutions, the structure of three dimensional crack tip 

fields has proved to be elusive. A systematic investigation of constraint loss in three- 

dimensional cracked problems has been a central focus in this thesis. Chapter 7 starts' by 

considering a dimensional analysis of the problem. This leads to hypotheses about 

parameters which can quantify out-of-plane constraint loss as a function of deformation. 

These hypotheses are tested against the cun'cnt numerical data.

7.1 A Dimensional Analysis

In order to consider the structure of three-dimensional elastic-plastic crack tip fields, it is 

appropriate to start by considering the dimensional nature of the problem, with the 

knowledge that continuum mechanics problems are inherently non-dimensional. Initially 

consider a two-dimensional (plane stress or plane strain) asymptotic crack tip field, 

possibly modelled by a two-dimensional boundary layer formulation as illustrated 

schematically in Figure 7.1(a). The local stresses at a point defined by co-ordinates (r, 0) 

are naturally normalised by the yield stress in tension, (aÿ/Go). The co-ordinates involve 

one length scale, r. The only other parameter in the problem which has the dimensions of 

length is the loading parameter J/Gq. Physically J/Go can be regarded as being proportional 

to the crack tip opening displacement, or equivalently the radius of the plastic zone. As a 

result, when the stress normalised by the yield stress are expressed as a function of i’Go/J, 

the stresses are self similai*. A specific and important case arises at the crack tip (r = 0) 

when there are no length dimensions in the problem, and for a perfectly plastic material the 

crack tip stress system is simply defined as (Gÿ/Go) independent of applied load as 

measured by (J/Gq).
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Now consider a semi-infinite three-dimensional boundaiy layer formulation, as illustrated 

schematically in Figure 7.1(b). As usual the crack flanks lie on 0 = ± 7t, and a free surface 

exists at z = 0. The co-ordinates of an arbitrary point (z, r, 0) now involve two length 

scales. However at the crack tip (r = 0), there is only one co-ordinate in the problem, z. 

This can only be non-dimensionalised by J/Gq. The appropriate parameter is thus zGq/J. It is 

worth noting that highly constrained (near plane strain) fields would be expected to occur 

remote from a free surface (z —> oo), and at small deformation levels (J —> 0), while 

constraint is expected to be lost near a free surface, and at lai’ge defoimation levels (z—>0, 

oo ). The parameter zo^J thus has the correct form to unify these effects.

Ahead of the crack there are three length parameters (z, r, J/Oo) which can not be uniquely 

arranged by purely dimensional arguments. However on a plane normal to the crack front, 

defined by zgJ],  the non-dimensionalised distance must at least incoiporate rcJJ,

In a full three-dimensional problem Figure 7.1(c), such as a thin plate full-field solutions, 

the co-ordinates are still involve two physical length scales (z, r), while two additional 

length scales are introduced by the plate thickness, t, and the loading parameter J/Gq. 

Consider the stress profile on two plates of different thickness within contained yielding. 

The stress profiles ahead of the crack, must involve the loading parameter J/Gq, allowing 

distances to be expressed as rOo/J. A scaling argument suggests that at sections defined by 

z/t the stress profiles should be identical at the same applied load, J/tGo. However, the 

profiles are expected to change with both (z/t) and loading. Insight into the way that this 

change for specimens of different thickness may be obtained by recalling that in the semi­

infinite problem the stress fields at the tip are expected to be unified by z g J L  This 

parameter is investigated as a way of unifying out of plane constraint effects in boundary 

layer foimulations and full-field solutions of different thicknesses.
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7.2 Out-of-Plane Constraint Loss at the Crack Tip ( r = 0, 0 = 0®) 

7.2.1 Boundary Layer Formulations

To quantify out-of-plane constraint loss, attention is again focused on the mean stress and 

the hoop stress in the leading sector ahead of the crack tip. Figures 7.2 and 7.3 show the 

mean stress, Gm, and the hoop stress, Ggg, as a function of the defoimation parameter 

(Jioc/zcJo) from the midplane to a plane close to the free surface at the crack tip using a 

boundary layer fomiulation. The defoimation levels applied in the boundary layer 

formulation ranged through Hfar = 1 , 3 ,  5, 8 and 20. On the midplane (z/t = 0.5), the mean 

stress and the hoop stress maintain stress levels close to the fully constrained plane strain 

values from small to moderate load levels (f2far = 1 to 8). However, at the maximum load 

(Qfar = 20), constraint is lost. Across the plate thickness, constraint loss increases from the 

midplane to the free surface while an increase in load causes a drop in constraint at each 

section (z/t). At sections near the free surface, the constraint level approaches that 

associated with a plane stress field, but at the intersection of the crack front and the free 

surface, the field is perturbed by a comer field which features a uniaxial tension sector 

directly ahead of the crack.

7.2.2 SENB Specimens

In the SENB specimens, the mean stress and the hoop stress are shown as a function of 

deformation in Figure 7.4 (a) to (f) and Figure 7.5 (a) to (f). The order of the figures 

coiTespond to the order of the sections along the crack front; from z/t = 0.5 to 0.04. The 

stresses are represented by square, triangular and circular markers for the thick, 

inteimediate thickness, and thin bend specimens. The important result is that identical 

constraint loss occurs at the conesponding sections (z/t) of different thickness specimens 

when deformation is parameterised by J ioc/zGq. As a result, the mean and the hoop stress at 

a given same section (z/t) in different thickness specimens can be unified as illustrated in 

Figures 7.4 and 7.5. The maximum deformation level in this data set, approaches the limit
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of plane strain J-dominance of 25Jioc/<7o in bending at the midplane. The thin specimen 

exhibited the highest Jjoc/zGo before the limit of plane strain J-dominance was reached at 

the midplane.

A compilation of all the out-of-plane constraint loss data at different sections of SENB 

specimens is shown in Figures 7.6 and 7.7. The figures, show that the stresses at the crack 

tip eventually approaches a steady state for each section for deforaiation levels Jioc/z<7o ^  

0.05, which corresponds to limit load. At limit load the deformation becomes constant, and 

the stress distribution at the crack tip and all other fixed distances must also therefore 

become steady state.

7.2.3 CCP Specimens

In the CCP specimens, constraint is lost due to both in-plane and out-of-plane effects. The 

in-plane effect can be estimated using the load combined with the appropriate T-stress 

concentration factor, T/a^pp, for the geometry, and then using modified boundary layer 

formulation calculations to connect T/Gq to the level of constraint loss, Q. The in-plane 

constraint loss at limit load, calculated by this method is shown in Table 6.2. The table 

gives the level of the mean and the hoop stress for all thicknesses of CCP specimens. It is 

clear that constraint loss before limit load is largely attributable to the in-plane effect, 

while the out-of-plane effect dominates beyond limit load.

Figures 7.8 (a) to (f) and 7.9 (a) to (f) illustrate the mean stress and the hoop stress for CCP 

specimens at different sections (z/t) for three different thicknesses. Constraint loss in thick, 

intermediate thickness and thin CCP specimens is represented by the square, triangular and 

circular markers. Both figures show that the out-of-plane constraint loss is identical at the 

same section (z/t) of different thickness specimens when deformation is parameterised by

Jioc/zGq,

The data presented in Figures 7.8 (a) to (f) and 7.9 (a) to (f) are plotted in Figures 7.10 and

7.11 to show the constraint loss as a function of Jioc/zGo at all sections along the crack
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front. Constraint loss increases with distance from the midplane to the free surface. The 

mean and the hoop stress fall as out-of-plane constraint is lost with increasing levels of 

defonnation at limit load, Jio/zGo > 0.05. At limit load, the deformation and the 

coiTesponding stress distribution become stationary.

Consequently, the constraint loss at the crack tip in both SENB and CCP specimens 

approaches a steady state in full plasticity. Therefore at limit load, the mean and the hoop 

stress along the crack front at the crack tip (r = 0) can be simplified as shown in Figures

7.12 and 7.13. These figures show that independent of thickness and at limit load, the out- 

of-plane constraint loss at the crack tip can be represented by single relationships from the 

midplane to the free surface. In the SENB specimens there is no in-plane constraint loss, 

unlike the CCP geometry, which allows the constraint loss to be split into in-plane and out- 

of plane components. The out-of-plane constraint loss in CCP specimen qualitatively 

follows a similar pattern to the SENB specimens but at a lower level due to in-plane 

constraint loss. At the free surface, the constraint level for SENB and CCP specimens both 

reduce to that of a comer field. The boundary layer formulation data is also similar to the 

SENB results. This demonstrates that, for positive T-stress configurations, the out-of-plane 

constraint loss at the crack tip (r = 0) for the mean and the hoop stress can be generally 

represented by the SENB curves for loads Jioc/zoto > 0.05.

7.3 Out-of-Plaiie Constraint Loss (r = 2J/ao, 0 = 0”)

7.3.1 Boundary Layer Formulations

Out-of-plane constraint loss as a function of deformation and thickness is now examined at 

distance r = 2J/ao from the crack tip. Figures 7.14 and 7.15 show the mean and hoop stress 

as a function of defoimation in a boundary layer formulation. Both figures show that the 

constraint is lost with increasing deformation at all sections through the thickness. For all 

sections, the stress start at the fully constrained plane strain level and decays with 

increasing deformation. The loss of constraint is highest on planes close to the free surface. 

At the same applied load, the constraint loss at the crack tip (r = 0) is less than that at r =
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2Jioc/t7o, which is consistent with the observation that constraint loss increases both with 

distance from the tip and deformation.

7.3.2 SENB Specimens

The mean and the hoop stress at r = 2J/Gq, at different sections (z/t) along the crack front of 

SENB specimens are shown in Figures 7.16 (a) to (f) and 7.17 (a) to (f). The data from 

thick, intermediate thickness and thin SENB specimens are represented by square, 

triangular and plus markers repectively. The plots show that the stresses at the same 

section (z/t) of different thickness specimens are unified when deformation is quantified by 

Jioc/zQo. However, unlike the behaviour at the crack tip, constraint continues to be lost at all 

deformation levels in contrast to the behaviour at the crack tip which reach a steady state at 

limit load. It is important to realise that the distance r = 2J/Go is not constant but increases 

with deformation. Although the applied load and the stress distribution which equilibrates 

with it are expected to be stationary at limit load, the distance 2J/Go continues to sample 

the stress at increasing distances from the crack tip, even at limit load. As a result the stress 

at 2J/Godoes not reach a steady state at limit load.

Figures 7.18 and 7.19 show compilations of the out-of-plane constraint loss for different 

sections (z/t) from the data presented in Figures 7.16 (a) to (f) and 7.17 (a) to (f). An 

increase in defoimation causes significant loss of constraint across the crack front. The 

trends show that the constraint loss at all sections approaches the plane stress field at high 

deformation levels.

7.3.3 CCP Specimens

The constraint loss in CCP specimens at r = 2J/Go is shown in Figures 7.20 (a) to (f) and 

7.21 (a) to (f) as a function of Jioc/zGq. Initially, constraint is lost due to the in-plane effect, 

followed by out-of-plane constraint loss. For a given section (z/t), the out-of-plane 

constraint loss in all the CCP specimens can be unified by using the parameter Jioc/zrto-
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Figures 7.22 and 7.23 show compilations of the out-of-plane constraint loss plots from 

Figures 7.20 (a) to (f) and 7.21 (a) to (f) for the mean and the hoop stress. The value of the 

mean and the hoop stress attributable to in-plane constraint loss in CCP specimens has 

been calculated at limit load using T/Gq- Although the in-plane constraint loss for different 

thicknesses varies slightly with T/Gq given in Table 6.2, the stress field for different 

thicknesses converge to a unified curve. The mean and hoop stress at limit load for Q = - 

0.7 occurs on the midplane at approximately 1.69Go and 2.27Gq. However as the load is 

increased, out-of-plane effects cause a rapid loss of constraint and the stresses approach the 

plane stress field at deformation levels of the order Jioc/zcJo = 0.5 when they approach a 

steady state. Conversely at r = 2J/Gq, plane stress conditions occur on the centre plane for 

plates thinner than 4Jioc/cJo which is approximately 4 crack tip opening displacements (48). 

At the free surface, the comer field affects the constraint at low load levels when the field 

exhibits a uniaxial tension sector ahead of the crack. However, as the load increases, the 

field approach the plane stress field.

In both SENB and CCP specimens, the pattern of out-of-plane constraint loss is similar at 

the crack tip and at r = 2J/Gq at low loads, but differs at high levels of defoimation. At 

Jioc/zGo < 0.05, constraint loss at the crack tip and r = 2J/Gq depends on the section (z/t). At 

Jioc/zGo > 0.05, the constraint loss at the crack tip become steady state for each section (z/t). 

However, at r = 2J/Gq and at high deformation levels, a steady state is only finally reached 

when a uniform state of plane stress is approached at deformation level Jioc/zGo > 0.5.

7.4 The Proximity to Plane Strain with Deformation

In chapter 6, out-of-plane constraint loss was shown to con el ate with the plane strain 

parameter, p. In this section, the plane strain loss has been coupled with the deformation 

parameter (Jioc/zGo) in an attempt to unify out-of-plane constraint loss.
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7.4.1 Plane Strain Loss at the Crack Tip (r =0)

Figure 7.24 shows the plane strain paiameter as a function of deformation in a boundary 

layer formulation. The plane strain conditions aie lost with increasing distance from the 

midplane. However at a given section (z/t), the plane strain parameter at the crack tip 

approaches steady state.

Figures 7.25 (a) to (f) and 7.26 (a) to (f) show the plane strain parameter for SENB and 

CCP specimens as a function of Jioc/zQo at five sections across the crack front in different 

thicknesses. The proximity to plane strain for thick, intermediate thickness and thin 

specimens of different thickness fall on a single curve for a given section (z/t).

Compilations of p as a function of J ioc/zGo m SENB and CCP specimens for different 

section (z/t) are shown in Figures 7.27 and 7.28. Proximity to plane strain is lost along the 

crack front as shown in different sections. However, the proximity to plane strain at similar 

sections (z/t) exhibits a similai' behaviour with deformation, and does not show significant 

differences between specimens with different levels of in-plane constraint.

7.4.2 Plane Strain Loss Ahead of the Crack Front (r = 2J/ao)

The loss of plane strain as a function of Jioc/zGo at 2J/Go in a boundary layer formulation is 

shown in Figure 7.29. Unlike the trend at the crack tip, which exhibits a loss of plane strain 

before becoming constant at each section (z/t). The plane strain loss at 2J/ao reduces 

continuously on a unified locus as the deformation level increases at all sections (z/t).

The plane strain parameter as a function of deformation for SENB and CCP specimens at a 

distance of r = 2J/Gq at various sections (z/t) of different thickness specimens are shown in 

Figures 7.30 (a) to (f) and 7.31 (a) to (f). Plane strain conditions are lost at all sections as 

deformation increases, but approach a steady state as the plane stress field is approached.
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Figures 7.32 and 7.33 show the plane strain parameter as a function of J ioc/zGo at all 

sections of the SENB and CCP specimens. Plane strain conditions are lost from the 

midplane to the free surface as the load level increases and can be unified into a single 

locus.

At the crack tip, the plane strain parameter, p, approaches a constant value at limit load at 

each section across the crack front. Flowever, when the p is measured at r = 2J/Go, it 

continues to fall with deformation at all sections and approaches the plane stress field.

7.5 Unification of Out-of-Plane Constraint Loss

In previous sections, the deformation parameter J/zGo has been used to demonstrate a 

systematic pattern of out-of-plane constraint loss. However a useful and simple 

inteipretation of out-of-plane constraint loss requires the unification of constraint loss for 

all sections (z/t). A three-dimensional deformation parameter is proposed which is 

modified from equation (7.2) ;

(7.4)
za„ z

Figures 7.34 and 7.35 illustrate the mean and the hoop stress as a function of Jioct/z^Go at 

the crack tip for boundary layer formulations. The out-of-plane constraint loss at all 

sections (z/t) and at all deformation levels can be unifieMnto a single curve.

Figures 7.36 (a) and (b) and 7.37 (a) and (b) show the mean and the hoop stress as a 

function of the deformation parameter Jioct/z^Go for the SENB and CCP specimens. In full 

field solutions of SENB and CCP specimens, limit load can be reached, and this allows the 

stresses at the crack tip to reach a steady state. In contrast, boundaiy layer formulation can 

never reach limit load conditions because it has no physical geometry. To relate constraint 

loss in SENB and CCP specimens to the boundary layer formulation at the crack tip, 

constraint loss can be discussed at low loads and at the limit load. At low loads, constraint
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loss as a function of Jjoct/z^Go across the thickness exhibits a single unified trend shown by 

the boundary layer formulations. At limit load, constraint loss at the crack tip reaches a 

steady state as shown in Figures 7.12 and 7.13.

At a distance of 2J/ao ahead of the crack tip, remarkably, constraint loss can be unified 

onto a single curve at different sections (z/t) for all geometries and load levels. This 

behaviour is shown for the boundary layer formulation and full-field SENB and CCP 

specimens as demonstrated in Figures 7.38 (a) and (b), 7.39 (a) and (b), 7.40 (a) and (b), 

which allows the deformation parameter Jtoct/z^Go to systematize the constraint loss at 

different section (z/t) by a single unified curve.

7.6 Conclusions

Constraint loss in three-dimensional problems has been evaluated at the crack tip (r = 0) 

and at a distance of r = 2J/Co. The out-of-plane constraint loss in boundary layer 

formulations, SENB and CCP specimens exhibit a similar pattern at r = 2J/ao. Constraint is 

lost with an increase in defoimation particularly in sections near the free surface. 

Constraint loss allows the stress field to approach the plane stress level at all sections at 

deformation of the order of J/zGq ^  0.5. Constraint loss at different sections (z/t) can be 

united as a function of Jbct/z^cio, so that :

(7.5)

At the crack tip the pattern of constraint loss is different from that at r = 2J/Gq. For 

geometries which exhibit positive T-stresses, the constraint loss is identical to three- 

dimensional non-hardening boundary layer foimulation. However SENB specimens differ 

from the boundary layer formulation at the crack tip at high deformation levels. 

Fundamentally, boundary layer formulation has no physical dimensions and never reaches 

limit load in contrast to the SENB and CCP configurations. In non-hardening plasticity, the
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stresses reach a steady state at limit load which implies that the constraint at a fixed 

physical distance will reach a steady state. At the crack tip, at limit load, constraint loss has 

a single profile across the crack front. However, at low levels of defoimation, constraint 

loss for SENB and boundary layer formulation is similar.

Constraint loss is dependent on distance from the tip. The out-of-plane constraint loss at 

the crack tip is always less than at r = 2J/Go- Consequently the distance r = 2J/ao can be 

used as a conservative reference field to estimate constraint levels associated with real 

cracks and defects. A failure assessment scheme is now discussed in chapter 8.
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(b)

(c)

Figure 7.1: The crack tip dimensional length scales associated with (a) two-dimensional, 
(b) semi-infinite three-dimensional boundary layer formulations and (c) finite three- 
dimensional problems.
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Figure 7.2: The mean stress at the crack tip, r = 0 from the midplane to near the free surface 
as a function of J ioc/zcTo in a boundary layer formulation at load levels Q,far = 1 ,3 ,5 ,8 ,2 0 .
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Figure 7.3: The hoop stress at the crack tip, r = 0 from the midplane to near the free surface 
as a function of Jioc/zcto in a boundary layer formulation at load levels £2far = 1, 3, 5, 8, 20.
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Figure 7.4: The mean stress at the crack tip (r = 0) of SENB specimens of different
thickness at different sections (z/t) as a function of Jjoc/zao. The square, triangular and
circular markers represent the thick, intennediate thickness and thin specimens.
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as a function of Jioc/z(7o, in SENB specimens of different thickness. The square, triangular
and circular markers represent the thick, inteimediate thickness and thin specimens.
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Figure 7.6: Çompilation of plots from Figure 7.3 (a to f) for the mean stress at r = 0, as a 
function of Jioc/zGo for SENB specimens of different thickness. The square, triangular and 
circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.7: Compilation of plots from Figure 7.7 (a to f) for the hoop stress at r = 0, as a
function of Jjoc/zao for SENB specimens of different thicknesses. The square, triangular and
circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.9; The mean stress at the crack tip (r = 0) at different sections (z/t) for CCP
specimens of different thickness as a function of Jioc/zQq. The square, triangular and circular
markers represent the thick, intermediate thickness and thin specimens.



Chapter 7. Out-of-Plane Constraint Loss 412

2.5 PI. Strain, T = 0

—  2

z/t = 0.5
z/t = 0.25 
-G z/t = 0.18

■o z/t = 0.08 PI. Stress
0.5

z/t = 0.04

10 2 3 4  J,oc 5 6
ZOo

Figure 7.10: Compilation of plots from Figure 7.4 (a) to (f) for the mean stress at r = 0, as a 
function of Jioc/zcTo for CCP specimens of different thicknesses. The square, triangular and 
circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.11; Compilation of plots from Figure 7.8 (a) to (f) for the hoop stress at r = 0, as a
function of Jioc/zOo for CCP specimens of different thicknesses. The square, triangular and
plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.13: The hoop stress at the crack tip (r = 0) along the crack front at deformation 
level, Jioc/zGo > 0.05 along the crack front for boundary layer formulation, SENB and CCP 
specimens independent of thickness.
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Figure 7.14: The mean stress at r = 2J/Co at different sections (z/t) as a function of Jioc/zGo 
at load levels, t2far = 1, 3, 5, 8, 20 for a boundary layer formulation.
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Figure 7.15: The hoop stress at r = 2J/o"o at different sections (z/t) as a function of Jioc/zao at
load levels, £2far =1 ,3 ,  5, 8, 20 for a boundary layer formulation.
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Figure 7.16: The mean stress as a function of Jioc/zGq for SENB specimens of different 
thickness at different sections (z/t). The square, triangular and plus markers represent the 
thick, intermediate thickness and thin specimens.
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Figure 7.17; The hoop stress as a function of Jioc/zGo for SENB specimens of different 
thicknesses at different sections (z/t). The square, triangular and circular markers represent 
the thick, intermediate thickness and thin specimens.
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Figure 7.19: Compilation of the hoop stress plots at rG jJ  = 2 from Figure 7.17 as a function 
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Figure 7.22: Compilation of the mean stress plots at ro J J  = 2 from Figure 7.20 as a 
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Figure 7.26: The plane strain parameter at the crack tip (r = 0) as a function of Jioc/zcio for
different thickness at identical sections (z/t) for CCP specimens. The square, triangular and
plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.27: Compilation of the plane strain parameter plots from Figure 7.25 as a function 
of Jioc/zcTo for SENB specimens at different sections (z/t) and thickness. The square, 
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Figure 7.28: Compilation of the plane strain parameter plots from Figure 7.26 as a function
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Figure 7.30: The plane strain parameter as a function of Jioc/zGq at r = 2J/Go, at identical
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Figure 7.32: Compilation of the plane strain parameter as a function of Jioc/zOo plots from 
Figure 7.30 at r = 2J/Oo at different sections (z/t) for SENB specimens. The square, 
triangular and plus markers represent the thick, inteimediate thickness and thin specimens.

0.6

0.5

,□ □0.4

0.3

0.2

- 0.1
10 0.5 1.5 2 2.5 3

lo c

ZGo
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Figure 7.36: The mean and the hoop stress as a function of Jioct/ẑ cJo at different sections 
(z/t) for SENB specimens at the crack tip at limit load.
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Failure Assessment Methodologies

A widely used engineering approach to defect assessment is based on failure assessment 

diagrams (R6 (2001) and BS 7910 (2005)), which were originally developed within the 

context of single parameter fracture mechanics. The approach has been subsequently 

modified to take account of in-plane constraint loss within the framework of plane strain 

fracture mechanics (MacLennan and Hancock (1995) and Ainsworth and O’Dowd (1995)). 

Although part of the conservatism associated with single par ameter fracture mechanics has 

been avoided, real structures do not necessarily fail in plane strain conditions. This chapter 

discusses a failure assessment scheme based on three-dimensional constraint loss which 

can incoi-porate both in-plane and out-of-plane effects.

8.1 Application of Out-of-Plane Constraint Loss for Failure Assessment

All the analyses in this chapter are carried out at a distance r = 2J/ao. This distance is 

chosen because constraint is distance dependent and is lost with distance from the tip. In 

local micromechanics analyses of cleavage failure such as Ritchie et al. (1973), it has been 

shown that failure initiates at a distance greater than r = 2J/g'o. Therefore, analyses of 

failure at r = 2J/o"o are an underestimate of the constraint loss over the critical micro- 

structural distance. This leads to an underestimate of the constraint enhanced toughness 

which is conservative in defect assessment schemes.

The failure assessment scheme can also be extended to failure initiation by ductile tearing. 

Ductile tearing is associated with nucléation, growth and coalescence of voids which 

initiate within the finite strain zone (r < 2J/cTo). On the assumption that the equivalent 

plastic strain profiles are similar in the three-dimensional crack tip field, the stress 

de viators in a plane strain field are -1, +1 and 0 in the xi, X2 and xs direction while in a 

plane stress field (0 = 0°), the deviators are 0, +1 and -1 in the x;, X2 and X3 direction. The 

deviatoric components change directions during the transition from plane strain to plane 

stress, but in the limit, the strain states are identical. Hancock and Brown (1983) showed
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that in circumferentialiy notched tension specimens, effective plastic strain to initiate 

failure is strongly dependent on state of stress, ! a  but weakly dependent on the strain

state. Ductile tearing can be assumed to depend on the state of stress at r = 2J/ao which 

allows the three-dimensional failure assessment scheme to be applied to ductile tearing.

Two-parameter plane strain failure assessment schemes aie based on a description of the 

crack tip field in which constraint loss is independent of distance, (Betegon and Hancock 

(1991) and O’Dowd and Shih (1991)). In-plane constraint loss is based on a family of 

fields which are hydrostatically different but deviatorically similar. However, out-of-plane 

constraint loss features fields which are hydrostatically and deviatorically different, and the 

difference is distance dependent. At this point, many researchers who have discussed three- 

dimensional crack tip fields have come to a conclusion that three-dimensional crack 

analyses can not be used to develop a viable approach for failure assessment using 

constraint based fracture mechanics.

To address constraint loss in three-dimensional fields, it is appropriate to consider the way 

in which the fields change. Interest is focused in the mean stress, Gm and the maximum 

principal stress, G00, in the leading sector directly ahead of the crack. The loss of constraint 

can be expressed as the difference in mean stress, AOm, between a given field and a 

reference field at a distance r = 2J/Go. It is natural to take the reference field as the small 

scale yielding field (T = 0) field under perfect plane strain conditions. A similar approach 

is adopted for the maximum principal stress, Agqq. The stress difference between a given 

field and the plane strain reference field has been evaluated for three-dimensional 

boundary layer fonnulations and full-field solutions. It is important to note that if this 

approach is adopted under perfect plane strain conditions.

(8,1)
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It is appropriate now to consider the stress system in a three-dimensional crack tip field. 

The stress tensor can be expressed in terms of the hydrostatic and deviatoric components 

following equation (2.18). Assuming, the maximum principal stress. Geo, at 0 = 0° is 

considered for discussion:

(0 = 0°) (8.2)

where sqq is the maximum stress deviator and Gm is the mean stress. A change in the 

maximum principal stress can arise from a change in the associated stress deviator and, or, 

a change in the mean stress:

^6Q  "b ~  ^00 J" ^^00 J" (^-3)

Comparing equations (8.2) and (8.3), if AGee = AGm, then Asee = 0.

Figure 8.1 shows AGm/Go and AGee/Go in the boundary layer foimulation at r = 2J/Go at 

sections, z/t = 0.5, 0.25 and 0.18 as a function of Jioct/ẑ Go. The change in the hoop stress 

and the mean stress is closely similar at all sections (z/t) and can simply be expressed as a 

single curve. The similarity of AGm and AG90 implies that the difference in the maximum 

stress deviator is zero. As99 = 0. This implies that during out-of-plane constraint loss, the 

stresses in the leading sector ahead of the crack differ hydrostatically, but that the 

maximum stress de viators are similar. Similar results from full-field solutions are shown in 

Figures 8.2 and 8.3.

It is known that failure by cleavage is driven by the maximum principal stress while ductile 

tearing is a function of the mean stress, Gm and equivalent plastic strain. Constraint loss 

quantified by the maximum principal stress, G09, or the mean stress, Gm are identical and 

can be used to characterise cleavage and ductile tearing. On this basis, it is possible to 

develop a failure criterion incoiporating in-plane and out-of-plane constraint loss.
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8.2 Analytic Expression for Out-of-Plane Constraint Loss

The change in the mean stress and the maximum principal stress has been shown to be 

similar. The designation for out-of-plane constraint loss, AG°̂ /Go is proposed where Ag 

may be considered to be either the change in the mean stress or the maximum hoop stress. 

The superscript “op” denotes an out-of-plane effect. The general nature of out-of-plane 

constraint loss can be expressed by an exponential expression of the form:

 = l3 (e  (8,4)

The form of exponential decay is such that at very small levels of deformation (J -4- 0), or 

equivalently in sections remote from a free surface (z —> oo), a fully constrained field

develops, ___ ^p. At very large levels of deformation (J oo) or equivalently on

sectors very close to the free surface (z —> 0 ), the field approaches the plane stress field.

Consequently, the value of p in fully constrained flow fields (T > 0) coiresponds to the 

difference in constraint between the plane strain (T = 0) and the plane stress field.

_  ssy{ pi.strain  ) p i.stress

j3 = ^ -------------- ^ -------  (8.5)

In fully constrained geometries such as the SENB, Psenb = 1.82. The other constant in 

equation (8.4) is y which is the constraint loss sensitivity. The constraint sensitivity, y, for 

SENB is detennined by reaiTanging equation (8.4) to a linear fit.

In + 1
V y

r
z ^ a

( 8 .6 )

O J
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Figures 8.4 show constraint sensitivity, y, to be close to 3 for SENB specimens.

Constraint loss in CCP specimens is more complex because it is affected by both in-plane 

and out-of-plane effects. In-plane effects can be estimated through the two-dimensional in­

plane effects based on T/Q which have been discussed in Chapter 6 and 7. Out-of-plane 

effects become pronounced at limit load. Using this as a reference, the out-of-plane 

constraint loss curve has a similar form to that given in equation (8.4). Assuming that in­

plane and out-of-plane constraint loss effects affect P, Pccp for CCP can be expressed as:

If the plane strain constraint loss, Q, is calculated from T, the applied load causes Q to 

become more negative with load until it becomes constant at limit load. In the present case, 

this leads to pccp = 1.44. The constraint loss in CCP specimen can therefore be regarded as 

a combination of in-plane and out-of-plane effects. The constraint sensitivity, y, for the 

CCP specimen has been determined in a similar way to the SENB specimens and is shown 

to be 3 for perfect plasticity.

8.2.1 Effect of Thickness on Plane Strain J-Dominance

Any criterion for the loss of plane strain J-Dominance is largely subjective but Shih and 

GeiTuan (1981) argued that in fully constrained plane strain flow fields, J-Dominance can 

be regarded as being maintained when the stresses are within ten percent of the HRR field 

at r = 2J/Go. For in-plane constraint loss, Betegon and Hancock (1991) proposed that plane 

strain J-Dominance should be maintained for T-stresses greater than -0.2ao for a hardening 

exponent, % = 13, which is consistent with the ten percent criterion used by Shih and 

German (1981). However, Shih and German (1981) and Betegon and Hancock (1991) 

discussion is centred on J-Dominance specific to in-plane effects. The effect of thickness 

on plane strain J-Dominance can be discussed based on an observation which originated
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from Wallin (1985), and has subsequently been adopted in the ASTM (E813-1988) 

standard test method for Jic. To maintain plane strain J-Dominance in a bend test :

r > 2 5 ^  (8.8)

This empirical requirement has been supported by numerical and experimental results. 

Nevalainen and Dodds (1995) suggested the plane strain J-Dominance requirement to be t 

> 25-50Jc/Go for hardening exponent, n = 5 - 10. A tighter limit on the thickness 

requirement to maintain plane strain J-Dominance was proposed by Koppenhoefer and 

Dodds (1996) at t > 25-30Jc/Gq for cleavage failure based on impact-loaded, pre-cracked 

Chaipy specimens.

In the cuixent three-dimensional analyses, it has been shown that on the centre plane of 

SENB fully thick square specimen (B/(W-a) = 1) constraint loss is almost negligible at the 

limit of in-plane J-Dominance (cGq/J = 25), where c = (W-a) is the ligament length. In 

order to maintain consistency for thinner specimens, the out-of-plane constraint loss curve 

which initiates from Jioct/ẑ Go = 0 for Ag°p/Go = 0 can be modified to be consistent with the 

ten percent criterion (Shih and Geixnan (1981)). A plane strain J-Dominance limit can be 

drawn on the constraint loss curves as shown in Figure 8.2. If the mean stress is 

considered, a ten percent departure from the Prandtl conesponds to Ag/Gq = -0.24. Within 

this limit, it is reasonable to consider constraint loss to be negligible so that Ag/Gq = 0 

when Jioct/ẑ Go < 0.25. The expression for out-of-plane constraint loss in the fully in-plane 

constrained field is now proposed to be:

^  = 0 
<J„

for ^ 3 J  t  ̂
0 < ^ 1 ^ < 0 .2 5 and _Z1  > 0

(8.9)

^ ^ ^  = 1.82(e -1) for
cr„

^ 3 J  t ^
^ ^ < 0 . 2 5

y
and 7 1  > 0
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The addition of 0.25 as a constant in the exponential term does not change the constraint 

sensitivity, y, which remains 3. The effect of thickness on plane strain J-Dominance can 

now be identified by calculating the intersection of equation (8.9) to the ten percent offset 

shown in Figure 8.6 (a). Out-of-plane constraint loss is negligible at the midplane for 

thicknesses greater than:

? > 3 o2 l (8 10)

which is consistent with the existing thickness limit of ASTM (E813-1988). In addition, 

the three-dimensional analyses can be used to demonstrate plane strain J-Dominance in a 

three-dimensional field as shown in Figure 8.7. Plane strain J-Dominance is lost at 

distances z/t <0.18 from the free surface.

In an unconstrained flow fields such as the CCP geometry, in-plane constraint loss causes 

J-Dominance to be lost at very small applied loads, and no offset is required Ag° /̂Go = 0 as 

shown in Figure 8.6 (b). The out-of-plane constraint loss for unconstrained fields, 

Aa^^uc/rto, of a CCP specimen can be given as:

\fjOP “31 4 ^
^^^"^-1) (T<0) (8.11)

cr„

Figure 8.6 (a) and (b) show the fit of the curve of equations (8.9) and (8.11) to the SENB 

and CCP numerical data plotted at the midplane, z = t/2.

8.3 Effect of Thickness on Toughness

In order to examine the effect of thickness on toughness, data from Betegon (1990) shown 

in Figure 2.43 is used. From the figure, the failure locus due to in-plane constraint loss, can 

be reasonably expressed as:
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J  = J Ic

J = J Ic I - a —

T

cr.

(J,

>0

<0

(8.12)

where a  = 3 is the in-plane constraint loss sensitivity for the Betegon’s (1990) data and 

using Jlc = 200 kN/m and Gq = 400 MN/m^. If the out-of-plane constraint loss has a similar 

effect to in-plane constraint loss, the out-of-plane constraint loss can be matched to the 

failure locus as shown schematically in Figure 8 .8 . The load history at the midplane for a 

given thickness specimen can be expressed by equation (8.9) for SENB specimens. The 

thickness of the cracked bend specimens was 22 mm. The load history of different 

thickness specimen is plotted in Figure 8.9. At a thickness of 22 mm, the load history 

intersects the failure locus close to .Jic and specimens of this thickness are almost fully 

constrained. As the thickness reduces, the out-out-of-plane constraint loss approaches the 

plane stress field.

If the intersection of the load path and the failure locus is extracted from Figure 8.9, 

toughness as a function of thickness failure locus can be determined using equation (8 .12). 

Out-of-plane constraint loss saturates as plane stress is approached. The exponential 

expression in equation (8.9) can be expressed in a simpler form for Jioct/ẑ Go «  1 :

J„(l-0.75yg) 

1 -3 Æ
(8.13)

"" z V

From the variation of the J-integral along the crack front, the highest deformation occurs 

on the midplane and sensibly, failure can be assumed to initiate at the centre of the plate. 

By replacing z = t/2 in equation (8.13):
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J, = for JAs. < 0.3 (8.14)
i A .
tcr„

Equations (8.13) and (8.14) essentially provides an estimation of failure at the midplane of 

the plate.

8.3.1 Experimental Validation for Thickness Effect on Toughness

It is now appropriate to use this method on experimental data to verify the predicted effect 

of thickness on fracture toughness. Irwin et al. (1958) have presented data for cracked bend 

bars of 7075-T5 and 2024-T3 Aluminium alloys, and tabulated in Irwin (1964). Originally, 

the toughness data versus thickness consists of notched bend and centre cracked tension 

panels but for comparison, only the cracked bend data is used as tabulated in Table 8.2 in 

order to eliminate in-plane constraint loss effects. A further caveat arises as the data were 

only originally analysed using LEFM which will underestimate the toughness in full 

plasticity.

Figures 8.10 and 8.11 show the effect of thickness on toughness using equation (8.14) at 

the midplane, compared with the experimental data of Ii'win (1964) for 7075-T6 and 2024- 

T4 Aluminium alloys. The model agrees well within experimental data for SENB (fully 

constrained) specimens.

This is a significant step in understanding the effect of specimen thickness due to out-of­

plane loss on toughness, which was discussed initially about five decades ago. The 

compaiison between the experimental data and the analytical expression provides 

validation that the deformation parameter Jioct/ẑ Go can successfully quantify out-of-plane 

constraint loss. The necessary data are the plane strain fracture toughness, Jic, and the yield 

stress in tension, Qq combined with a plane strain J-Q/T locus. It is pertinent to highlight 

the effects of (3 on the L-thickness failure locus. In a through cracked problem, p is the 

initial difference in constraint between the midplane and the free surface field at
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asymptotically small load levels. For the present configurations, the constraint sensitivity, 

Y, has been shown to be similar in SENB and CCP geometries and thus only P is shown to 

be dependent on geometry through the T/Q term. For different materials, the J-Q/T failure 

locus may differ, and the in-plane constraint sensitivity, a  in equation (8 .12) may also 

vary. However, Wallin (2001) suggested a simple expression for constraint loss which he 

argues to be universal.

The representation of toughness as a function of thickness is a useful indication of the level 

of toughness for a given material in a specified cracked configuration. However, a more 

convenient and practical method in assessing the safety margin of a flawed structure is the 

failure assessment diagram. This is discussed in the following section.

8.4 Failure Assessment Diagrams (FADs)

Although the three-dimensional crack tip analyses presented in this thesis were earned out 

for a non-hardening material, the expressions for the constraint loss can be used to 

approximate failure in real materials, as demonstrated by the effect of thickness on 

toughness in the preceding section. Therefore, the same approach can now be used to 

demonstrate a methodology of assessing failure based on failure assessment diagrams.

8.4.1 SENB Out-of-Piane Effects

In order to develop failure assessment diagrams to evaluate the effects of out-of-plane 

constraint loss in structural problems, it is appropriate initially to define the reference 

failure locus for the plane strain conditions. J can be decomposed as usual into elastic and 

plastic components:

to ta l "^elastic J "  p lastic  (8.15)

Following Kumar et al. (1981), the elastic and plastic crack driving force, J is:
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J  elastic -  a \ { a i w  ,n )
\ P o J

(8.16)

Elastic = a a ^ e ^ { y i f -a )h ,{ a lW ,n )
/  p \"+i

P\  o y
(8.17)

where a  is a constant taken as 1. The yield strain, 8q, can be calculated from the yield 

stress, Go, and Young’s modulus, E. P/Pq is the load over limit load which is also expressed 

as Lr. The expression h] (a/W, n) is a tabulated function of geometry and strain hardening 

exponent, n, given by Kumar et al. (1981). For a deeply cracked bend bar (a/W = 0.5), the 

limit load is given by equation (4.4). For material with hardening exponent of n = 10, the

= 1.41 and = 0.331. Noting that Kr = , a failure assessment line for a
V /,

J.
Zc

plane strain SENB geometry can be plotted as shown in Figure 8.12 given that failure 

occurs at a critical value of J. This failure assessment line is a failure locus for which t is 

infinite or simply a state of plane strain.

For a finite thickness SENB geometry, out-of-plane constraint loss, Ag°̂ /Go, can be 

expressed by equation (8.9). The toughness L  due to out-of-plane constraint loss 

normalised by the fully constrained, is taken to be:

•̂ c(ACT/cr.,) _  2 _ (2^ ^  ^

Jjc <̂0
(8.18)

where a  is the constraint sensitivity which is dependent oh the material failure locus and 

Betegon’s data a  = 3 has been used in all calculations.

A failure assessment diagram in three-dimensional problem is represented by Lr on the 

abscissa which is the load nonnalised by the limit load. The ordinate is represented by Kr. 

Kr in terms of the enhanced toughness due to constraint loss has been discussed following
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MacLennan and Hancock (1995) or Ainsworth and O’Dowd (1995). MacLennan and 

Hancock (1995) have shown that the failure assessment line derived from the EPRI scheme 

(equation (2.163)) is identical to the failure assessment line for constraint matched 

toughness given in equation (2.166). A failure assessment line that more clearly 

demonstrates the enhanced mai'gins (Ainsworth and O’Dowd (1995)) is given as:

Ic

where has been given in equation (2.166). Following the same argument, for

the out-of-plane constraint loss can be given as:

= K f -  X, I— — (8. 20)
JIIc

where j is the toughness associated with constraint loss. Figure 8.13 show the effect

of out-of-plane constraint loss on the failure assessment diagrams. As the thickness 

reduces, the toughness increases. At very low load levels, the toughness of the specimen 

coiTesponds to the plane strain Jic toughness regardless of thickness. At very small loads, 

the extent of plasticity is small in relation to the size of the specimen and failure occurs at 

Kr = Kjc. However as deformation increases, and plasticity increases prior to failure, out- 

of-plane constraint loss increases and this increases the toughness of the specimen towards 

plane stress toughness. For all specimen thickness, the failure assessment line converges to 

a single line which is the limit for plane stress toughness (excluding necking). The failure 

assessment diagrams are able to show the effect of thickness on toughness which is a 

significant step in identifying the transition of toughness from plane strain to plane stress, 

and the loss of out-of-plane constraint.



Chapter 8. Failure Assessment Methodologies 445

8.4.2 CCP In-Plane and Out-of-Plane Effects

In three-dimensional centre cracked tension panels (CCP), constraint is lost due to both in­

plane and out-of-plane effects.

(8 ,2 1 )

where, Acr/ao = ACm/Go = Acee/Go is the total constraint loss in the leading sectors ahead of 

the crack tip. The superscript ip and op refer to in-plane constraint loss and out-of-plane 

constraint loss. The in-plane constraint loss has been determined in chapter 6 . Following 

equations (6.1 to 6.4), in-plane constraint loss in three-dimensional CCP specimen can be 

estimated using the Q term given in equation (2.150). Using equation (6.4) in equation 

(2.150) gives:

A c t

A. + B
V 3 P j  " I V S P ,

(8.22)

The out-of-plane constraint loss in CCP specimens can be quantified using equation (8.11) 

where (3 is defined in equation (8.7). The failure assessment diagram for CCP can now be 

constructed from Kumar et al.’s (1981) expression for J given in equations (8.16) and 

(8.17). For a hardening exponent, n = 10, the CCP constants = 2.21 and =

1.52. For CCP specimens with a/W = 0.5, the toughness due to out-of-plane constraint loss 

Jc{haia„) can be calculated through equation (8.18).

Figure 8.14 shows failure assessment diagrams for CCP specimens, B/(W-a) = 1 and 0.1 

with a/W = 0.5 and n = 10. The failure assessment line in CCP specimens depends on the 

level of T/Q. At very small loads, the toughness is similar regardless of thickness. As the 

load increases, the failure assessment line depends on the level of T/Q. Thick CCP 

specimens have very negative biaxiality compared to the thin CCP specimen. It is shown
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that the failure assessment line in B/(W-a) = 10 are higher than the thick CCP specimen 

(B/(W-a) = 1). However, at very high loads, the failure assessment lines aie independent of 

T/Q. The CCP specimen failure assessment diagrams has been able to show the transition 

of plane strain to plane stress however the level of enhanced toughness is dependent on the 

level of T/Q. Figure 8.15 shows in-plane effect compared to the out-of-plane effect for 

constraint loss for CCP specimens for different thickness, which show that out-of-plane 

effect dominates at and after limit load.

It has been demonstrated that enhanced level of toughness associated with the loss of out- 

of-plane constraint can be incoiporated into the failure assessment diagram scheme. 

Constraint loss in unconstrained flow field is dominated by in-plane effects up to limit 

load. At loads greater than limit load, the toughness is strongly affected by out-of-plane 

effects. The three-dimensional constraint based failure assessment diagram can alleviate 

the traditional approach of using lower bound plane strain toughness in structural integrity 

assessment, and avoid unnecessary conservatism.

8.4.3 Experimental Validation of FADs

The three-dimensional failure assessment diagram methodology is now applied to the 

experimental results of Ii win, Kies and Smith (1958), Rolfe and Novack (1970) and Jones 

and Brown (1970). These data are tabulated in Tables 8.3. Irwin et al. (1958) used 7075-T6 

and 2024-T4 Aluminium alloys while Rolfe and Novack (1970) used 18 Ni Maraging 

Steel. Jones and Brown (1970) used a Ti 6Al-6V-2Sn Titanium alloy. All the experiments 

were earned out on deeply cracked SENB (three-point-bend) configurations. The failure 

modes of most of specimens were cleavage except for the aluminium alloys. The failure 

mode in the aluminium alloys has been discussed in terms of the percentage of flat or shear 

lip fracture, Irwin (1964). All the aluminium alloys specimens failed by flat fracture except 

the thinnest 7075-T6 which failed by 100% shear.

Initially the original data which is expressed in terms of Gc and Kc is changed to Jc using 

equation (2.126). For all cases, a hardening exponent, n = 10 has been assumed. The out-
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of-plane constraint loss is then calculated using equation (8.18) with the condition that 

plane strain J-Dominance is maintained for t > SOJc/Gq for deeply cracked bend bars. The 

transformed experimental data for FADs is tabulated in Table 8.3.

Figures 8.16-8.19 show the three-point-bend failure assessment diagrams for different 

materials in the order given above. All the failure assessment diagrams show that the 

experimental data at a given thickness fall on or above the failure assessment line for the 

same experimental data thickness. When the calculated out-of-plane constraint loss Ag/Go 

= 0 for the experimental data, failures fall on the plane strain failure assessment line. This 

indicates that the failure methodology presented can be regarded as a conservative estimate 

of failure. In all diagrams, the toughness approaches a limiting failure assessment line 

which can be identified with a plane stress limit before necking.

As all results has been presented based on a constraint sensitivity, a  = 3, it is appropriate to 

discuss this effect on the limit of plane stress toughness failure assessment lines in the 

failure assessment diagrams. Figure 8.20 shows the effect of changing a  for a given 

thickness using the data of Rolfe and Novack (1970). Increasing or decreasing value of a  

causes the plane stress toughness limit to increase or decrease conespondingly.

8.5 Conclusions

Within the leading sector ahead of the crack, the stress fields differ hydrostatically but the 

maximum stress de viators are similar. This allows a single parameter to quantify the 

change in the mean stress and the maximum principal stress and lead to a viable two- 

parameter fracture mechanics scheme.

In fully constrained crack tip fields, the limit of J-Dominance has been determined through 

a practical out-of-plane constraint loss scheme. In three-dimensional analyses, a thickness 

J-Dominance limit is maintained at t > SOJ/Gg. At a distance of r = 2J/Go along the 

thickness J-Dominance is lost at distance z/t <0.18 from the free surface.
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The application of failure assessment diagrams to existing experimental data has been 

demonstrated. Significant advantage from the effect of out-of-plane constraint loss on 

toughness can now be realised through a practical method in which failure due to cleavage 

or ductile tearing can be described through a three-dimensional failure assessment 

methodology.



Chapter 8. Failure Assessment Methodologies 449

-0 .5

0 0.1 Jloct 0 .2 0 .3
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Figure 8.1; àG^^/Go  and Aa00°^/ao as a function of Jioct/ẑ cjo at r = 2J/Oo for a boundaiy 
layer foimulation at z/t = 0.5, 0.25 and 0.18. The filled markers represent the mean stress, 
and the unfilled markers represent the hoop stress.
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Figure 8.2; AcTm°̂ /cFo and Aaee^ /̂Oo as a function of 4Jioc/tao in SENB specimens at r = 2JOo 
at the midplane. The square, triangular and circular* markers indicate thick, intermediate 
thickness and thin specimens. The filled and unfilled markers represent Aom° /̂o'o and 
Acre0°P/cro.
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Figure 8.3: A O m ° ^ /G o  and Aaee°*̂ /cro as a function of 4J,oc/tGo for CCP specimens at r = 2Joo
at the midplane. The square, triangular and circular mar'kers indicate the thick, intermediate
thickness and thin specimens. The filled and unfilled markers represent and
Aa00°P/ao.
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Figure 8.4; The gradient of the curve indicates the constraint sensitivity, Yop, for SENB 
specimens.
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Figure 8.5; The gradient of the curve indicates the constraint sensitivity, Yop for CCP 
specimens.
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SENB CCP

p 1.82 1.44

Yop 3 3

Table 8.1: The out-of-plane constraint loss constant, p, and the constraint loss sensitivity, y, 
for SENB and CCP specimens.
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Figure 8.6: Curve fit of equations (8.9) and (8.11) at the midplane for difference of stress as 
a function of deformation for (a) SENB and (b) CCP in geometries with different thickness. 
The circular, triangular and square markers represent the thick, intermediate thickness and 
thin specimens while the filled and unfilled markers represent Aaee, Aam-

' .
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Figure 8.7: The SENB through thickness variation of the effect of thickness on J-
Dominance (t > 30 Jc/ao).
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Figure 8.8: Schematic of failure locus Jc as a function of AO(m, 00).
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Figure 8.9: The trend of load history modelled using equations (8.9) for bend specimens 
using constraint sensitivity, y  = 3 and constraint loss constant, P = 1.82 at different 
thicknesses (t4 < ts < t2 < t,) and failure locus based on Betegon’s (1990) data expressed in 
equation (8.12).
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7075-T6 2024-T4
Thickness, mm Jc, kN/m Thickness, mm Jc, kN/m

25.4
19.05 
9.32 
3.175

22.8
23.5
27.7
112.1

203.2
101.6
50.8
25.4

57.2 
60.7
64.2 
78.6

Table 8.2: Effect of thickness on toughness in 7075-T6 and 2024-T4 Aluminium alloys 
after Ii'win (1964) tabulated data. The critical crack initiation, J^ = 20.2 and 52,5 kN/m and 
the yield stress, Co = 500 and 344 MN/m^.

120 -

J c  (kN/m)

80  -

3015 2510 200

.equation (8.14)

□ Ii'win (1964)

Jic = 20 kN/m

t (mm)

Figure 8.10: The effect of thickness on toughness from equation (8.14) representing a crack 
in bend bar, Psenb = 1.82, y = 3. The markers represent the experimental cracked bend data 
of Irwin (1964) for 7075-T6 Aluminium alloy tabulated in Table 8.2.
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equation (8.14)
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□  Ii'win (1964)

100 -
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Figure 8.11; The effect of thickness on toughness of cracked bend bar from equation (8.14). 
The markers represent the experimental cracked bend data for 2024-T4 Aluminium alloy of 
Irwin (1964) tabulated in Table 8.2.
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Figure 8.12: The failure assessment diagram showing failure assessment line (FAL) for 
SENB specimen in plane strain for a hardening exponent, n = 13.
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Figure 8.13: The failure assessment line for out-of-plane constraint loss in SENB specimen 
at different thickness, t, and at fixed ligament, (W-a), for a hardening exponent, n = 13. The 
continuous bold line indicates a SENB FAL in plane strain condition. (W-a) = 25 mm.
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Figure 8.14: Failure assessment lines for in-plane and out-of-plane constraint loss in CCP 
specimen at different thickness, t, and at fixed ligament, (W-a) = 25 mm, for a hardening 
exponent, n = 13. The t = oo indicate FAL for CCP in in-plane plane strain condition.
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Figure 8.15: The effect of load on in-plane and out-of-plane constraint loss for CCP 
specimens for a hardening exponent, n = 13. The continuous lines indicate in-plane and 
out-of-plane effects in CCP while broken lines indicate in-plane effect in CCP for (W-a)/t = 
2. The bold line indicates FAL for CCP i -  oo which represents in-plane, plane strain 
condition.
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Thickness 
(t), mm

Co,
MPa

E , Cu, 
GPa MPa

Je,
kN/m

Jlc,
kN/m Lr Je,

kN/m Aa/Oo Kr

Aluminium alloy 7075-T6, Irwin et al. (1958)

25.4 22.8 0.42 22.5 0 0.999

19.05 23.5 0.43 23.2 0 0.999
500 70 570 20.1

9.32 27.7 0.468 27.3 0 0.999

3.175 112 0.895 102.5 -1.078 1.974

Aluminium alloy 2024-T4, Irwin et al. (1958)

203.2 57.26 0.921 49.92 0 0.948

101.6 60.76 0.941 52.12 0 0.938
344 72 469 52.53

50.8 64.26 0.957 53.9 0 0.929

25.4 78.26 1.013 60.46 0 0.889

18 Ni Maraging Steel, Rolfe and Novack (1970)

75 695.6 0.88 649.2 0 0.964

55 719.0 0.89 661.1 0 0.961

47.5 707.3 0.885 653.6 0 0.963
1323 207 1379 695.6

25.4 766.9 0.91 694.2 -0.042 1.011

12.7 803.9 0.93 714.1 -0.581 1.567

6.25 960.4 0.98 801.5 -2.07 2.458

Titanium alloy Ti 6Al-6V-2Sn, Jones and Brown (1970)

13.76 10.13 0.145 9.27 0 1

13.24 10.63 0.150 9.92 0 1

12.7 10.63 0.150 9.92 0 1

12 9.81 0.150 9.92 0 1

6.35 1200 117 1269 11.48 10.47 0.162 11.49 0 1

3.17 10.63 0.155 10.59 0 1

1.76 20.89 0.216 20.56 0 0.99

1.58 21.37 0.221 21.52 0 0.99

0.75 30.76 0.260 29.79 -0.268 1.34

Table 8.3; SENB data for construction of Failure Assessment Diagrams. The original 
thickness effect on toughness plots are shown in chapter 3 (Irwin et al. (1958) in Figure 
3.21; Rolfe and Novack (1970) in Figure 3,26; Jones and Brown (1970) in Figure 3.27).

?

Î
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Figure 8.16: Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 7075-T6 
Aluminium alloy, n ~ 10. The ligament (W-a) = 25.4 mm. t = oo indicates the plane strain 
FAL limit.
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Figure 8.17: Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 2024-T4 
Aluminium alloy, n = 10. The ligament (W-a) = 203.2 mm. t = indicates the plane strain 
FAL limit.
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Figure 8.18: Failure Assessment Diagram, Rolfe and Novack (1970), SENB 18 Ni 
Maraging Steel, n = 10. The ligament (W-a) = 75 mm. t -  oo indicates the plane strain FAL 
limit.
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Figure 8.19: Failure Assessment Diagram, Jones and Brown (1970), SENB Ti 6Al-6V-2Sn 
Titanium Alloy, n = 10. The ligament (W-a) = 13.76 mm. t = °o indicates the plane strain 
FAL limit.
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Figure 8.20: The effect of constraint sensitivity, a , using Rolfe and Novack (1970) material 
data at (W-a)/t = 150.



Chapter 9. Conclusions 463

Conclusions

The nature of three-dimensional crack tip fields has been analysed for an elastic perfectly- 

plastic material within the framework of small defoiTnation theory. The geometries studied 

include a three-dimensional boundary layer foiTnulation, and three-dimensional full-fields 

solutions of single edge notched bend bais and centre crack tension panels. The full-field 

solutions have different thicknesses enabling out-of-plane constraint effects to be examined 

through the plane strain to plane stress transition.

The nature of the stress field has been examined at two important distances; at the crack tip 

(r = 0) and at a distance r = 2J/Qo from the crack tip. In a constrained flow field such as the 

boundary layer foiTnulation and SENB at very small load levels, a plane strain field 

initially develops at all sections except the free surface, which exhibit a corner field. 

However, as the load increases to limit load, the plane strain field is confined to the 

midplane while other sections (apart from the free surface) decay from the plane strain 

field. At the crack tip, the free surface remains a comer field but a plane stress field 

develops at r = t. In an unconstrained flow field such as CCP, the field is similar to the 

fully constrained flow field at very small load levels. Increase in deformation causes in­

plane constraint to be lost at all sections except the free surface which remains a corner 

field.

Proximity to plane stress and corner field has been demonstrated to be similar in 

constrained and unconstrained flow fields. The comer field at the crack tip is a local effect 

extending over a radius of z < 0.04t from the free surface. This allows a plane stress like 

field to occur on the crack tip at z = 0.04t from the free surface. On the free surface, the 

plane stress field is recovered at a distance of r = t from the crack tip.

Out-of-plane constraint loss is dependent on the distance from the crack tip, the distance 

from the free surface, and the applied load. The stress field ahead of the crack (-45° < 0 < 

45°) is a constant stress sector in which the Cartesian stresses and stress invariants are
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independent of angular co-ordinates. Out-of-plane constraint loss is associated with a 

family of fields which differ both hydrostatically and deviatorically. However, the 

maximum principal stress and the mean stress within the leading sectors at different 

sections (z/t) differ from the reference small scale yielding field by an identical amount 

implying that the maximum stress de viators ai*e similar.

Out-of-plane constraint loss has initially been quantified through a plane strain parameter, 

p. In order to unify out-of-plane constraint loss as a function of deformation through the

thickness, a dimensionless parameter has been introduced. The out-of-plane constraint

loss at the corresponding sections (z/t) of different thickness of the same geometry can be 

unified into a single constraint loss curve. However, the out-of-plane constraint loss at 

different sections (z/t) have different profiles. In order to unify out-of-plane constraint loss

at all sections, a parameter has been introduced. This allows the out-of-plane

constraint loss at different sections (z/t) to be united into a single relationship. An 

analytical expression for out-of-plane constraint loss has been developed as a function of

he
Ẑ CT.

- .  This parameter has been able to quantify out-of-plane constraint loss at any section

along the crack front for any specimen thickness. In geometries that lose constraint due to 

in-plane and out-of-plane effects such as the CCP specimens, in-plane constraint loss can 

be estimated through the T/Q constraint estimation scheme coupled with a scheme to

assess out-of-plane constraint loss based on

The observation that a change in the mean stress, G m ,  and the hoop stress, G qq , from the 

small scale yielding field are similar allow out-of-plane constraint loss to be placed in the 

context of two-parameter failure scheme. Finally, a conservative failure assessment scheme 

from three-dimensional constraint loss crack analyses has been proposed. In fully 

constrained geometries, the out-of-plane constraint loss has been validated with 

experimental data successfully. In geometries that lose in-plane constraint, the total
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constraint loss can be estimated by T/Q for in-plane loss and combined with an out-of- 

plane constraint loss.

The practical importance of the work is that it enables a way in which toughness data can 

be transferred to structures directly without depending on lower bound plane strain values. 

This will allow enhanced safety margins to be demonstrated in defect assessment 

procedures leading to judicious repair and maintenance strategies in which plant and 

structures can operate in optimum conditions of safe performance.
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