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Abstract

The structure of three-dimensional crack tip fields has been examined under elastic
perfectly--plastic conditions using both three-dimensional boundary layer formulations and
full-field solution of single edge notched bend bars and centre cracked tension panels. The
nature of the stress fields was examined at the crack tip (r = 0) and at a distance of T =
2J/o, as a function of load level and thickness. The three-dimensional nature of the crack
tip fields has been compared with the limiting cascs of plane strain and plane stress. The
proximity to plane strain has been assessed using a parameter related to the out-of-plane
stress deviator. The proximity to plane stress has been assessed using a parameter related
to the radial stress deviator. At the intersection of the free surface and the crack tip, an
elastic perfectly-plastic corer field which is different to the plane stress {ield is shown to
develop. Along the crack front, in specimens of different thickness, a family of asymptotic
fields develop which feature a constant stress sector, Within this sector the fields differ
both hydrostatically and deviatorically but are similar in respect of the maximum stress
deviator. This allows the level of the constraint to be assessed by a single parameter which

quantifies both the change in the maximum principal stress and the mean stress.

A simple expression for out-of-plane constraint loss in SENB and CCP specimens is
proposed. In CCP specimens, constraint loss arises trom both in-plane and out-of-plane
effects. In-plane constraint Joss can be estimated using the T-stress and this effect is then
combined with out-of-plane constraint loss. At any given section, constraint loss in any
thickness specimen can be unified into a single relationship. This allows the quantification

of out-of-plane constraint loss through a parameter based on J and the plate thickness.

Finally, a three-dimensional constraint based failure methodology based on Failure
Assessment Diagrams has been proposed using the analytical expression for consiraint
loss. The failure assessment scheme has been validated using experimental data on the

effect of thickness on toughness.
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Introduction

Fracture mechanics is intended to ensure the integrity of structures or components which
contain defects and cracks. The subject is based on the similarity of the stress and strain
fields at the tip of a crack in a laboratory specimen and a real flaw or defect. Similarity of
the crack tip fields ensures the transferability of toughness data between the two
geometries, and as such is a central requirement of fracture mechanics. A parameter that
characterises crack tip fields under largely elastic conditions is the stress intensity factor,
K, which was introduced by Irwin (1957). A critical value of the stress intensity factor can
be used to describe the toughness (K.) of structures containing cracks and defects.
Although structures are designed to behave broadly in an elastic manner, plasticity has
been shown to precede failure at the crack tip and limit the applicability of the siress
intensity factor approach. In a key development, based on the energetics of crack advance,
Rice (1968) proposcd a scheme to quantify the elastic-plastic deformation field al the crack
tip through the J-Integral. This extended the application of fracture mechanics to tough

structural materials.

However, when fracture occurs with substantial levels of plastic deformation, the
toughness becomes geometry dependent, McClintock (1971). The dimcnsions of the body
affect the level of hydrostatic or mean stress in the crack tip field. This is known as the
level of constraint. A constrained crack tip field cxhibits a lower toughness than
unconstrained field. In an early piece of research Irwin demonstrated that the thickness of a
cracked body affected its toughness. Thick specimens exhibited a lower bound plane strain
toughness which could be regarded as a material property and used to provide a
conservative estimate of failure. However, failure assessment schemes based on lower
bound toughness often caused the unnecessary repair of structures and outages of plant,

Similarly, defects were often prematurely sentenced as critical.

‘The conservatism associated with lower bound toughness fracture assessment can be

avoided when in-plane geometry effects are quantified by two-parameter fracture
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mechanics (Betegén and Hancock (1991) and O’Dowd and Shih (1991)). The first
parameter reflects the scale of crack tip deformation as measured by J while the second

parameter is used to identify the triaxiality or the level of constraint at crack tip

Although significant progress has been made on the application of two-parameter fracture
mechanics, it is limited to in-plane effects in thick specimens to the neglect of out-of-plane
or thickness effects. However, a practical anmalytical model to quantify out of plane

constraint loss, and express the effect of thickness on toughness is still lacking.

This thesis discusses opportunities to further reduce conservatism intrinsic to planc strain
failurc assessments by incorporating out-of-plane constraint loss. As a first step, it is
necessary to understand the nature of three-dimensional elastic-perfectly plastic crack tip
fields. The next step is to quantify how constraint is lost. Finally, the loss of constraint is

used to develop a three-dimensional constraint based failure assessment scheme.

Pollowing the current introduction, the relevant literature is reviewed in Chapters 2 and 3.
Chapter 2 introduces a review of the governing equations of elastic and plastic
deformation. This is followed by a review of single parameter and two parameter fracture
mechanics for linear elastic and elastic-plastic solids focussing on two-dimensional plane
strain and plane stress deformation. In Chapter 3, the key studies in the development of
three-dimensional fracture mechanics are discussed within the context of crack tip
constraint. This allows the current research to be placed on the context of previous

developments.

Chapter 4 introduces the numerical techniques used in the current research, which is based
on numetically stable, credible three-dimensional finite element models of a series of
cracked specimens. A three-dimensional boundary layer formulation was benchmarked
based on the work of Nakamura and Parks (1988a) to ensure that the configuration was a
valid representation of the critical annulus around the tip of crack. I'ull-field SENB and
CCP solutions were generated from the boundary layer formulations and benchmarked by

comparing solutions of stress intensity factor and T-stresses with standard solutions.
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In Chapter 5, the nature of the elastic-perfectly plastic three-dimensional crack tip stress
field of boundary layer formulations, full-field SENB and CCP are investigated in the
context of two-parameter fracture mechanics. The large amount of data presented in

Chapter 5 is analysed to establish a systcmatic pattern of constraint loss in Chapters 6 and
7.

Chapter 6 discusses constraint loss as a function of a planc strain parameter. A constraint
estimation scheme based on deformation and geometry is addressed in Chapter 7. This
leads to the introduction of a deformation parameter to unify constraint loss at different

scctions through the thickness.

In Chapter 8, constraint loss in three-dimensional ficld has been used to develop three-
dimensicnal constraint based failure assessment diagrams. The {ailure assessment schemes
have been validated using experimental data, Consiraint loss in constrained and
unconstrained geometries has been united by the proposed [ailure assessment scheme, Out-
of-plane constraint loss can now be related using a simple procedure depending on the

level of constraint for structural defects.
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Fundamentals of Deformation and
Fracture

This chapter introduces the basic concepts of solid mechanics and the fundamentals of
fracture mechanics, Tracture mechanics is discussed starting with linear elastic fracture
mechanics and extending into elastic-plastic fracture mechanics. Two-parameter fracture
mechanics is then introduced within the context of the loss of crack tip constraint. Finally,

the application of constraint based fracturc mechanics is discussed.
2.1 Stress

The theory which underlies the deformation of elastic solids is desciibed in standard texts
such as Timoshenko and Goodier (1971), Crandall, Dahl and Lardner (1978) and
McClintock and Argon (1966). A body subject to a system of external loads experiences an
internal field of varying forces which act on an arbitrary section through ihe body. The
ratio of components of the force to the area on which they act defines the components of
force intensity or stress. When referred to a set of Cartesian co-ordinate axes x; (i = 1, 2, 3),

stress 0y, which is a second otder tensor may be defined as:

~

G, = lim —* (1j,=1,2,3) 2.1)

The relationship 7 = j, defines normal stress components while 7 # j, defines the shear
stresses. Stress components may be referred to Cartesian co-ordinates axes as shown in
Figure 2.1(a), but for solutions in axisymmetric bodies, it is often convenient to use
cylindrical co-coordinates (r, 0, z) as shown in Figure 2.1(b). It may also be necessary to
transform the components of the stress tensor from one set of orthogonal axes x; to a new

set x,. The new set of axes x, is related to from old axcs x; by a sct of angles 8, where 0y

is the angle between the new x; axes and the old x; axes. The direction cosines of the new

axes with respect to the old axes are I;;:
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l, =cos 8, (2.2)

The transformation law for components of the stress tensor 0';:; can then be expressed as:

o;=l,1;, 0, Gihpg=12) (2.3)

where repetition of suffices in the same term implies summation as described by Nye
(1985).

At every point within the body, there are three mutually perpendicular planes on which the
shear stresses are zero, The normals to these planes form the principal axes of the stress
tensor. In this co-ordinate system, the corresponding stresses are principal stresses which
will be denoted 6,, 0;, 03 with the convention (01< 03 £ 63). The hydrostatic or mean
pressure, %,, is an important stress invariant that is independent of the choice of co-

ordinate axes:
1 o
o, = -?;-(o'l +0,+0,)= --3i‘-’9- (2.4)

In a three-dimensional body, 18 components of stress act on an infinitesimal cell such as
that shown in Figure 2.1. However, in the absence of distributed couples, equilibrium
rcquites that 6 = o, This reduces the number of independent stress components to six.
For a body in static equilibrium, the stresses acting on the body must satisfy the

equilibrium equations, which in the absence of body forces are:

3,00y
o =524 oo x =0 (2.5)
i = 2 i
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where the comma denotes differentiation. For crack problems with cylindrical symmetry, it

is convenient to refer the equations of equilibrium to cylindrical coordinates:

do 100

aazr Jrr — 0-95' =0

oy 2 ré +
or r 98 0z r
ao’rf) + laaﬁﬂ +ang? +2gr6 ={ (26)
or r @€ .z ¥

90, 190, 90, O, =0
or r 06 0z r

2.2 Strain

The effect of stress on a solid body is to cause deformation and rigid body motion. To

quantify deformation, it is initially useful to introduce a deformation tensor Dj;:

D.=u ,x,; G.7:1,2,3) 2.7

i i ’; i’
This can be divided into symmetric and anti-symmetric components:

D, =g, + o, 2.8}

i

The symmetric component, &, is the strain tensor;

£ = -:]-—i-(ui,ijruj,x,.) 2.9

while the antisymmetric component, wy, is the associated rotation;

w, = -—;—(ui,x‘—u x) (2.10)

if J i
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Normal components of strain occur when i = j, and shear components when i # j. Engineers

frequently define the components of shear strain y; without the factor of %4,
Yy =28, CES), 2.11)

Allowable functions of stress, strain and displacement must satisfy both the governing
equations and the boundary conditions and hence preserve continuity. In two-dimensions

(x1, x») the strain-displacement equations are:

ou, du, 1{ ou,  ou

g, = —=, £, =—%, €, =— —L +—=* 2.12
o, 2 %, ®olox,  ox 212)

Since the three strains are written in terms of two displacements, a relation must exist

between the three strains. Differentiating twice and climinating the displacements gives the

compatibility cquations. For cxample:

o’y n 9%y :2'32512 (2.13)
aJC:,!2 axlz dx]axg

2.3 Elastic Constitutive Relations.

Elastic deformation is reversible and instantaneous and when the applied loads are
removed, the body returns to its original state. Linear elasticity implies that the stresses are

proportional to the strains. In the most general casc, this implics:

Oy = Cyy &y (i,j,ki=1,2,3) 2.14)
This general anisotropic relation involves 81 elastic constants, Cyr. However, due to the
symmelry of the stress tensor Cyy = Cyu = Cyn = Cjin, and in view of the existence of a

strain energy density Cyy = Cuy, this reduces the elastic constants to 21. Symmetry
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considerations further reduce the elastic constants to 3 for cubic symmetry and 2 for an
isotropic solid. In a linear elastic isotropic solid, the stress-sirain relation can be written in

terms of the shear modulus, G, and Poisson’s ratio, v:

y
o, =2G [ag o 3, SHJ (2.15)

and & is the Kronecker delta.
(2.16)

The summation convention for repeated subscripts will only be considered to apply to

Cartesian coordinate and not to cylindrical polar r, 6, z.

The strain-stress relation for a linear elastic isotropic solid can also be written in terms of

Young’s modulus E, where E=2G (1 +v).

1
& EE[Gl ~v(o, +0,)]
g, = ]E[Uz ~v(o, +05,)| | (2.17)

1
€, :E[G3 -v(o, +0,)]

Relations between common isotropic elastic constants are given in McClintock and Argon
(1966).

Important modes of deformation occur in pure shear and hydrostatic states of stress. In
consequence, it is often advantageous to separate the stress tensor into hydrostatic and

deviatoric components, s;;:
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G,
sy =0y ~ %8, (2.18)

This allows the elastic strcss-strain relations to be written as:

£l = i[(l + Vo, + [1:521/) 8y 0’,‘,{} (2.19)

2.4 Plane States of Stress and Strain

Mathematical solutions to the deformation of three-dimensional bodies are frequently
intractable. In consequence, two-dimensional idealisations have been introduced to provide

an approximation to the deformation of three-dimensional solid bodies.

Generalised plane stress conditions in the x3 direction are assumed to apply when the stress
components Gs3, O3, Oz and their derivatives with respect to x3 are negligible in
comparison to the other components of stress. As a result, a state of plane stress is expected
to be realised in thin plates. If the thickness of the plate is siall compared to its transverse
dimensions the stress components Gy, G722, G2 can vary only slightly across the thickness

while the stress components involving x; are:

(=1,2,3) (2.20)
Tigs X3 =0

In plane strain, displacements are assumed to occur in the X;-x; plane and are independent
of x3. This implies that strain in the thickness direction is restrained and the out of plane

strain, and its derivatives in the out of plane direction, are zero:
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=i (‘xl’x2)’ U, =1, (xn xz): u; =0
€, =0 (i=1,2,3) 2.21)

€3, X3 =0

Plane strain is taken to occur in long prismatic bodies subject to loads which are normal Lo
the lateral surface and independent of X3;. For plane strain in the x3 direction, the linear

elastic stress-strain relations expressed in terms of the principal stresses give:

g, =2 y[ 2L, Z2lg, (2.22)
hence,
o, =vio, +0,) (2.23)

2.5 Closed Form Solutions: Airy Stress Function

In two-dimensional deformation, Airy (1862), demonstrated the existence of a stress
function, ¢, which satisfies equilibrinm and compatibility, and enables the stresses to be

related to the applied loads. The stresses in c¢ylindrical coordinates arc:

1oy 102% 9o __19%_10%

(8] - —— [8) - ) - .
T ror r?og* 0 g2 " rt 20% rordd

(2.24)

Substitution in the equilibrium equation shows that cquilibrium is satisfied. Compatibility

requires:

o 1a 1 9*Yo% 100 1 3% 5 losp :
A +— f—algp 2T = YRY = V= 0 2.25
[ar" ror ¢?o0® ](Brz ror rtoe? ( ¢) ¢ (2.25)
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Since the bi-harmonic equation satisfies the equilibrium equations, its solution with

appropriate boundary condition defines the coniplete state of stress.

For a circular hole in an infinite plate as illustrated in Figurc 2.2 with a the radius of the
hole, the stress function which satisfies the equilibrium equations, compatibility conditions

and the boundary conditions is:
¢=[_Zr —-—£~+%GJ cos 20 (2.26)

Direct differentiation of equation (2.24} shows that, the maximum value of hoop stress is

obtained when 6 = n1/2 and r = & and given by:
2 4

o = O (1 +2t §a—] (2.27)
r

This gives a maximum elastic stress concentration factor of 3 for a circular hole in an

infinite plate.

2.6 Plasticity

The discussion of plasticity essentially follows the definitive texts of Hill (1950) and
Kachanov (1974). Yielding in metals is associated with permanent irreversible
deformation. Yielding and plastic flow depends on the magnitudes of the component of

stress and is a function of the invariants of the deviatoric stress tensor, J» and J3:

1

5 S 8 (2.28)

I
Jy = 'é' Sy S i Sy (2.29)
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wherc s; arc the stress deviators. Plastic deformation in metals depend on the shear
components of stress and the differences of the normal stress components, but not on the

mean or hydrostatic pressure, Ou., which does not produce dislocation motion.

For metals undergoing purely plastic deformation, the volume remains constant because
deformation occurs by slip, Hill (1950). If small strain plastic deformation occurs at a

constant volume, V;

c g, = 0 (2.30)

The Tresca (1864) and von Mises (1913) yield criteria are widely used to describe isotropic
plastic deformation, Hill (1950). The Tresca criterion argues that yielding occurs when the
maximum shear stress, T, reaches a critical value, £, which can be related to the yield stress

in uniaxial tension o,.

g, — 0
Sk -—9{ (01 < 025 63) 231

The Miscs criterion suggests that yielding occurs when the elastic strain energy of

distortion reaches a critical value which can be expressed in terms of stresses, oy

1 2 2 2 2 2
G = JE [(Gu '“022) +(Gzz "033) +(533 _611) + 30y, +303, +3U§1] (2.32)
or more compactly using stress deviators, s;

o= % Sy S (2.33)

Yield occurs when the equivalent stress 6 reaches the vield stress in tension oo:
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o=0, (2.34)
Alternatively the yield critcrion can be expressed in terms of the yield stress in shear, &
c=A3k (2.35)
2.6.1 Elastic — Plastic Constitutive Relations

In elastic-plastic deformation, the incremental strains dey are sums of the elastic strain

increments de;” and the plastic strain increments dg;/.
de, = det, + de} (2.36)

The plastic strain increments can be derived from a plastic potential g {(J2, J3), which

defines the ratios of components of the plastic strain increment through a flow rule:

def === (2.37)

where dA is a scalur factor of proportionality which is not a material constant but varies
during deformation. For the plastic potential, g == J» = s; $;/2, the incremental plastic

strains can be written through an associated flow rule:

de!l = s, dA (2.38)

where dA =3de’ /20. Assuming isotropy is maintained under plastic deformation, the

flow stress may increase as a function of the equivalent plastic strain due to strain or work
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hardening. The equivalent plastic strain ¢”is obtained by integration of the strain

increments de’ over the loading history:

e

de’ = ﬁ—[{daf, —det, V1 (e, ~der, } + (der, —des, +%(d°y{’22 oyl dyh )] (2.39)

e’ = [ae’ (2.40)

The total strain increment which includes the elastic and plastic components can be

expressed compactly as:

de; = da; + d.s,.j-’

1 . 1-2vY . 3 —p 8y

(2.41)

In classical plasticity the relationship between the equivalent plastic strain and the
equivalent stress is independent of the stress or strain rate, and can be determined from a
single uni-axial tensile test, Yield and plastic flow is independent of the hydrostatic or
mean stress. The mean and equivalent stress can be combined into a single non-
dimensional parameter (G,,JE ), which defines the triaxiality of the stress state, A.t yield in
pure shear, (01 = k = -0y, 03 = 0) the triaxiality is zero, while in perfect hydrostatic tension

or compression, the triaxiality is infinite (o) = 03 = 03 = O).

In uniaxial tension elastic-plastic stress-strain relationship is often approximated by a pure

power law of the form:

(iJ = o [i} 2.42)
€, G,
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where » is the strain hardening exponent and &, is a reference strain and o, ts reference
stress, ¢ and € are the tensile stress and strain respectively and o is a material constant. As
the exponent n can vary from 1 to oo, a range of responses varying from linear elastic to

rigid-perfectly plastic can be described. A Ramberg-Osgood law is also frequently used to

describc nonlinear stress-strain responses in uniaxial tension:

Ei = b (3] (2.43)

The curve fitting constant &, 15 often associated with yield stress however, when ¢ = ©,, €,
does nol correspond to yield strain. The corrcsponding strain is € = g, (1+a), and the
relation does not model linear elasticity accurately. However, this relation gives good
overall description of the stress-strain relation at large plastic strains. The relations given
by Equations (2.42) and (2.43) can be generalised into multi-axial states of stress by  yield

criterion and an associated flow rule.
2.6.2 Elastic-Perfectly Plastic Deformation: Slip Line Fields

In elastic-plastic fracture mechanics, the deformation field directly ahead the crack tip
warrants an approach that focuses primarily on the plastic strain to the neglect of the elastic
strain components. The material is effectively assumed to be elastically rigid with an
infinite Young’s modulus, This simplification in conjunction with the assumption that
material does not strain harden defines a response described as elastic-perfcctly plastic.
This allows the application of plane strain slip line fields which were initially used for
large plastic strain deformation processes as described in Hill (1950) and Johnson Sowerby
and Venter (1982).

The theory is based on the fundamental governing equations: equilibrium, stress-strain
relations, the yield criteria and finally the compatibility rclations. In plane strain
incompressibility allows the stress-strain relations to define the out-of-plane stress o33 in

plane strain as:
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1 [ I
Oy ’:’5(011 + Gzz)=°m 2% (2.44)

Equation (2.44) can be rearranged to define a parameter which controls the out-of-plane

stress in plane strain, p:

p=Fn 1 (2.45)
Oy +0y 2

The Miscs yield criterion limits the difference of the in-plane stresses to 2k

o, -0, =2k (2.46)

as is illustrated by Mohr’s circle in Figure 2.3. This allows the three principal stresses to be

written in terms of the mean stress, G,

O, =0, +k
c,=0, -k (2.4N
03 = G?‘I

while the angular positions of the principal stresses are determined through:

tan 2 = 20,,
"o,

(2.48)
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Here, 0 is the anglc between x;-axis and first shear line denoted . Plane strain shear line
or slip line fields can be represented as two orthogonal sets of curvilinear curves defined-as
o and B axes. The ¢, f axes are the characteristics of the governing differential equations.
Physically these are the directions of zero extension, which in plane strain correspond to
the directions of maximum and minimum sheat stress. The maximum principal stress lies
in the first and third quadrants of the «, {} axes. The shear stress on the lines is equal to &,
the yield stress in shear. Hencky's first theorem, which is a statement of the equilibrium
equations in the ¢, {3 co-ordinate system, gives the change in mean normal stress in terms

of the rotation of a slip line direction:

dc,, = 2k d on an ¢ line

(2.49)
do, =—2kdd  onafline

A given slip line field can then be analysed by following the rotation of the slip lines from
free surface where the stress state is known and the slip lines necessarily are inclined at 1/4

to the surface. The compatibility of displacements is completed by Geirtinger’s equations
Tl (1950):

du —vd@' =0
(2.50)
dv —udd' =0

where u and v are displacements along o and 3 axes.
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2.7 Linear Elastic Fracture Mechanics
2.7.1 Stress Concentrations.

The fundamental concepts of fracture mechanics were established in the early 20" century
by. the early work of Inglis (1913) who identified the nature of stress concentrations such
as notches and cracks. The central problem is the stress field of an clliptical hole as
illustrated tn Figure 2.4. Using complex potentials to satisfy the boundary problem, Inglis

showed that the maximum stress 0,3 in the opening direction is:
= ol a
G = On “'“25 (2.51)

where a is major semi-axis of the ellipse, & is semi-minor axis and o, is the remoicly

applied uniaxial stress. The stress concentration can also be written in terms of the radius

of curvalure, p, at the end of the semi-major axis.

G, = ofF [1+2J%] (2.52)

As the radius of curvature approaches zero, the stresses at the tip of a sharp crack in an
clastic body become infinite, independent of the applied load or crack length. This

presented a dilemma which prompted an energetic approach to the analysis of sharp cracks.
2.7.2 Griffiths Criterion

The energetics of crack advance were first discussed by Griffiths (1920) in response to the
patadox that crack tip stresses in an elastic material are infinite. Griffiths argucd that the
energy (W) required to extend a crack is a balance between the change in the potential
energy (U) in the cracked body and surface encrgy (S) absorbed during crack growth. The

change in energy which occurs if the half crack length @ of a centre cracked panel is
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exlended by un infinitesimal amount 8z can be considered in either fixed displacement or
fixed load conditions as shown in Figure 2.5. The corresponding load-displacement curves

are shown in Figurc 2.6. In fixed displacement conditions (CACO), crack cxtension

. : N,
produces a release of strain cnergy, (U, ):

" e

strain

(P~B)u, =-—APu (2.53)

DR

where P and u# are load and displacement. In fixed load conditions (OABQ), crack

extension results in an increase in strain energy, but a release of potential energy,

(UFL

potemint ) :

L
U

potential

1 1
=L h-w) =L @59

It can be shown that in both conditions the potential energy release is the same through the

relationship between the displacement « and load P.
w=CP (2.55)

where C is the compliance of the system. As the change in crack length 8a tends to zero,

Ca) approaches Cy . &) and Equation (2.55) becomes:
Au=CAP (2.56)

Using Equation (2.55) and (2.56) in Equations (2.53) and (2.54) respectively, it can be

shown that:
FD 1 FL 1
Uslmi'n = "-_2_ AP CP :Upomn!ial == E P C AP (257)
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Using the calculations of Inglis (1913), Griffiths expressed the strain energy, Usyq, under

fixed displacement conditions as:

3 2
Uben = ~imoa B (2.58)
2 K
10U mwo’aB '
_1dU _mo aB 2.59
B 0a £ (2.59)

where £’=E in plane stress and E/(1-v®) in plane strain. In an ideally brittle material,
Griffiths assumed that the energy of crack advance was equal to the surface energy, §, to

form the new free surface,

S =aB (2.60)
108

—_—=2 ' 2.61
B du ¥ (2.61)

Here vy is the surfacc energy per unit area. The Griffiths criterion states that for crack to
advance, the decrease in potential energy must be greater or equal fo energy required to
create the crack surfaces such:

oU _ d§

— > 2.62
da Oa ( )

Equating the potential energy release rate to the work done in cracking fresh surface, gives

the fracture stress, Oy, as!

2¢ '
na

(2.63)
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Until the 1940s, Griffiths’ (1920) pioneering work was not considered to be relevant to
engineering structores because of the inherent brittleness of the material (glass) which was
used to validate the theoty. The work of Orowan (1945) led to the generalisation of
Griffiths’ work to less brittle materials. Orowan modified Griffiths’ energy balance criteria

to include materials that undergo plastic flow as:

’5(2 v )
o, = ikt SR PY) (2.64)
na

where ¥, represents the energy per unit area to break a solid when plastic flow occurs at the
crack tip. Ixperimentally it is found that y, >> 2y, which shows that crack tip plasticity
dominates the fracture process even in highly brittle materials. Irwin {1948) noted that the
energy expended in plastic deformation could be estimated from Orowan’s result and
concluded that Griffiths’ theory could be used if the plastic work were substituted for the
surface energy. Irwin (1957) defined the potential cnergy released for a unit increase in

crack area as the crack extension force G.

(2.05)

where E’'=E in plane stress and E/(1-1%) in plane strain. G quantifies the energy to
propagate a crack and a critical value of the strain (potential) energy release rate, G, can be

uscd as a material property which quantifies fracturc toughness:

2
nS, & (2.66)

(4 E.

where Oy is the fracture stress and . is the half crack length.
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2.7.3 Stress Intensity Factor

The nature of the asymptotic elastic crack tip field was established by Westergaard (1939)
and Williams (1957). Westergaard (1939), developed asymptotic solutions from algebraic
stress functions which identified the leading term of a series expansion of the crack tip
stress field. The Westergaard stress field for a central crack in an infinite plate can be given
using Cartesian siresses and cylindrical coordinates (r, ) centred at the crack tip as defined

in Figure 2.7.

6 va

[an}

o, = coe-«(1+cosgqinie-}

*J2r 20 27 2

oyzc acosg[l—cosgsin i@.} (r<<a) (2.67)
J2r 2 2 2
cva . @

Heie a is the half crack length. Irwin et al, (1958) expressed the Westergaard equations in a

gencralised form:

Q
Il

; o J% f,®) = ﬁf,}. (6) (r<<a){t, j=1,2) (2.68)

The term K’ = cr\fa, was originally termed the stress intensity factor, however, modern

notation defines the stress intensity factor, K for a Griffiths crack as:

K = ona (2.69)

The clastic dominant singularity in asymptotic crack tip fields can now be writien in the

form:
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c,(r.0) = (2.70)

K
-ﬁn—"‘—rfg (0)

The stress intensity factor, K, can be related to the Griffiths theory of potential strain

energy release rate, G, by the relation:
K?="- (2.71)

where B’ = E/(1-v?) for plane strain and E for plane stress. The stress intensity factor, K,
characterises the strength of the elastic crack tip singularity, and quantifies the strain

potential encrgy release rate in virtual crack extension,

Under arbitrary loading, a crack in a solid can deform in three different medes (frwin
(1960b)) as shown in Figure 2.8. Mode I is the opening modec. In this mode the body is
subjected to a normal stress and the displacement of the crack suiface are symmetsic about
the crack plane. In-plane shear results in the mode II or the cdge-sliding mode when
displacements are anti-symmetric with respect to the crack plane. The shearing mode or
mode III is caused by out-of-plane shear such that the displacements are in the plane of the
crack parallel to the leading edge of the crack. In practice, Mode I is usuvally the most
important. Each mode features the 1/Vr stress singularity at the crack tip, but the angular
functions f; (8) depend on the mode. The stress field and associated displacement field
ahcad of a crack tip in an isotropic linear elastic material in mode I can be written
following Rice (1968a):

o, 1-sin(8/2)sin (36/2)

Op ¢+ = K cos (0/2){ sin(B/2) cos(36/2) (2.72)
J2nr . .

Oy 14 sin (6/2) sin (30/2)

{ul} B &( r ]"2 {cos ©/2) [K—1+28i112{9/2)i|} @13

26\2m) |sin(9/2) [k + 1-2sin (8/2)
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where ¥ = (3 - 4v) for plane strain and k¥ = (3 - v)/(1 + v) for generalised plane stress, The
corresponding stress and displacement fields for mode II and mode III can also be found in
Rice (1968a),

The definition of the stress intensity factor given in Equation (2.70) applies to a central

crack in an infinite plate, however for finite plates, K can be expressed in a similar form:

K=o, 7a f(%) @74)

where W is the plate width and f (/W) is a non-dimensional function of geometry. The
non-dimensional function of geometry for single edge notch bend (SENB) specimens
given by Tada et al. (1985):

2 3 4
f[i‘-}=1.122—1.4(,1)+7.33(-“~) —13.08(—“——) +14.0[»‘—‘-) (2.75)
W W % W W

The form function for a centre crack panel (CCP) as a function of a/W is given in Table
2.1.

The stress intensity factor, K, characterises crack tip deformation when plasticity can be
regarded as a minor perturbation of a largely elastic field. For this state, Rice (1968a)
introduced the term small-scale yielding. Linear elastic fracture mechanics (henceforth
LEFM) deals with deviations from linearity which are limited to a region that is small
compared to the dimensions of the cracked body. Identical values of stress intensity factor
ensure that cracks of different lengths in geometrically different bodies have the same
crack tip stress, strain and displacement fields. This allows the failure conditions measured

from a laboratory test specimen to be applied to an engineering structure.

The critical stress intensity factor, K, associated with the onset of crack growth under

monotonic loading depends on the material, its temperature and possibly its environment.
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It also depends on the mode of loading and on whether plane strain or plane stress
conditions apply. Thc value of K. for any given set of conditions can only be obtained by
experiment using a calibrated precracked test specimen which meets the restrictions of
small scale yielding at the onset of fracture. The critical stress intensity factor in mode 1,

plane strain conditions, designated Ky, is called the fracture toughness.

2.7.4 Limits of LEFM

The application of LEFM is subjecl {o severe size limitations intcnded to ensure that
plasticity is restricted to a local perturbation of the elastic field. When materials fail in a
macroscopically elastic manner, Ky; is a measure of fracture toughness. A valid Ky test
according to ASTM (E399-83, 1988) can be performed using several types of specimen

subject to the size requirement:

2 2 2
a> 2.5[5’#]; W-a = 2.5(K’“J; Bz 2.5[5&—} (2.76)

where a is the crack length, W is the width of the specimen and B is the thickness of the
specimen. The value of Ky is calculated from a critical applied load Pg given in ASTM
(E399-83, 1988):

K, =—2 f(iJ @.77)
Ic Bﬁ W *

These limits ensure that radius of the plastic zone, which is proportional Lo (Klloo)z, is very
much smaller than the relevant in-plane dimensions of the body. The thickness requirement
ensures plane strain conditions while the requitements on the in-plane dimensions: a, W-a,
ensure that the macroscopic response is linear elastic and that plasticity is a minor

perturbation of a largely elastic field characterised by K.
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Structural metals and alloys frequently exhibit extensive plasticity before failure, and as
the thickness reduces, the fracture toughness increases as shown in Figure 2.9. This limits
the practical application of LEFM, as tough structural materials require large test

specimens which are very expensive to prepare and difficuit to test,



Chapter 2. Fundamentals of Deformation and Fracture 65

2.8 Elastic-Plastic Fracture Mechanics

The applicability of LEFM is severely limited by the restrictions on the size of the plastic
zone compared to the dimensions of the cracked body. In tongh structural steels, this limits
the usc of LEFM in assessing structural integrity, and establishes the need for elastic-
plastic fracture mechanics henceforth EPFM to characterise crack tip fields and define the

energetics of crack extension in non-lincar materials.
2.8.1 Crack Tip Plasticity

Linear clastic stress analysis of bodies containing sharp cracks feature crack tip
singularities. However in real materials, the stresses at the crack tip are finite because the
crack tip radius becomes finitc after deformation. More importantly in non-linear
materials, plastic deformation leads Lo relaxation of the crack tip stresses. Crack tip
plasticity was initially discussed by Irwin (1960b) and Dugdale (1960} as a corvection to
the linear elastic solution. Irwin suggested that the crack length could be regarded as being
enhanced by plasticity so that the effective crack length, a.4 can be regarded as the length

of the crack, a, plus a correction due to the plastic zone size:
Ay =a+r, (2.78)

where ¢ 18 half crack length, r, is the radius of plastic zone as in Figure 2.12.

The size and shape of crack tip plastic zone can be estimated by applying the Von Mises or
Tresca yield criterion, Hill (1950), to the elastic field. In the current work the Von Mises

criterion is used to estimate the boundary of plastic zone. In terms of principal stresses:

(0,-0,) +(o, —0,) +{o, —0,)* =207 2.79)

o

where g, is the uniaxial yield stress. The stress field of a mode I crack can be expressed in

terms of principal stresses using Mohr’s circle:
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2
o, 0, = Out0n ("% | o
) 2 2
o, =v(o,+0,)  for planestrain (2.80}
o, =0 for plane stress

substituting equation (2.72) into (2.80) gives:

e 2ol
o, = JEKE? cos (%J [1 _sin [—i-]] 2.81)

oy =2V K cos (—9—] for plane strain
N2 2
o, =0 for plane stress

Substitution of equation (2.81) into (2.79) gives a first estimate of the extent of plastic zone

as a function of the angular co-ordinate O:

2
7y {0)= K 5 r:i sin®(8)+ (L—2v)* (1 +cos (6))] for plane strain
4mo, L2 : (2.82)
K? 3.,
Yo {0)= 5|1+ sin () cos (0) for plane stress
4Ana;] 2

The shape of these plastic zones is shown in Figure 2.13. More accurate analyses were first

contributed by Tuba (1976) using a relaxation method as shown in Figure 2.14,
2.8.2 Asymptotic Crack Tip Fields: Slip Line Fields.
In elastic-perfectly plastic non-hardening materials, the crack tip stresses are finitc. This

allows the stresses to be discussed in terms of slip line fields. The slip lines fields for plane

strain and plane stress assuming plasticity completely surrounds the crack tip have been
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discusscd by McClintock (1971) and Rice (1982), In this thesis, Rice (1982) approach has
been adopted.

2.8.2.1 Plane Strain Slip Lines

For plane strain, it is convenient to usc polar coordinates which allow the equilibrium

equation (2.6) to be reduced to;

do,, 130, O, =0,

rr o 18 + rr - 0
or r 06 r (2.83)
00, L1 eLo 0 290 _ g

Multiplying through by r, the assumption of finite crack tip stress suggests that ag"’ .
N

and S0 . 5 0asT— 0 allowing the equilibrium equations to be further reduced to:
r
20,
O, — O t+ 6;“ =0 (2.84)
ilo)
20, +—2 =0 2.85

The Mises yield condition may be rewritien in polar coordinates for plane strain as:

—2
g =

o

%(C’n —0y) v O+ 115(0_” + 0, ~20,) =0} (2.80)

Differentiating equation (2.86) with respect to 0 and using the equilibrium equations (2.84-
2.85), simplifies the result to:
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oo, [ 3o, +0,)] oo, +0,-20,)
6 g r 68/ | — r 08 a3 2.87
’[ 36 }[ Y } 26 =50

Using the flow rule with the plane strain conditions requires that:

— dr}' + oSf}

Oy == (2.88)

Using equation (2.88), the right side of equation (2.87) vanishcs and the stress state at the

crack tip (r = 0} satisfies either:

(El) a(o.rr + 0-39) — adtl: —
ol 06

do
b) L =0
(b)=5

0
(2.89)

In sectors in which condition (a) holds, the mean stress does not change with angle around
the crack tip. This delines a constant stress sector in which the slip lines are straight and
the stress components (Gm, O11, Oz, Os3z) in Carlesian coordinates are constant. Such
sectors occur directly ahead of the crack tip and in region adjacent to the crack surfaces in

the Prandt! field, illustrated in Figure 2.15.

Condition (b) corresponds to a situation in which the shear stress o9 does not change with

90,

angle. Substituting i =0 in equation (2.84) gives:

Tgp =0, (2.90)
which reduces the yield criterion expressed in terms of shear stress, , to:

0% -k>=0 (2.91)
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The other stress components can be determined from equation (2.84):

gy,

ool =20, =2k (2.92)

which on integration with respect to 6 gives:
Op =F2k60+C (2.93)

The asymptotic stresses around the crack tip can be expressed as the Prandtl field which is
an important limiting crack tip field in which plasticity is assumed to completely surround
the crack tip. On this basis, the stresses can be solved from the traction free crack surface
region denoted I in Figure 2.15. In this region, the yield criterion and the frec surface

require that the stress field is a homogenous tensile ficld parallel to the crack flanks.

o, =2k (2.94)
G, =0 (2.95)
6y =0, =k (2.96)
oy =0 (2.97)

Cylindrical coordinates (r, 8) are employed to describe the stress field in region I as:

o, =k (1+cos 20) (2.98)
Tgp = k (1 —cos 20) (2.99)
0,9 =~k sin 26 (2.100)
o, =k (2.101)

The Hencky equations, Hill (1950), express the cquilibrium requirements in terms of the

rotation of the slip lines and allow the stress state in region II to be given as:
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Cg =0, =0, :0"" =k[1+—~—29j (2102)

G,=k (2.103)

The constant stress sector LI ahead of the crack comprises a stress system which consists

of a simple stress statc given by:

Goo = k{1t + 1+ cos 20) (2.104)
o, =k(m+1-cos 206) (2.105)
o, =0,= k{l+m) (2.106)
O,y = ksin 20 (2.107)

The plane strain Prandtl mode T asymptotic stress field in Cartesian and cylindrical

coordinates are shown in Figure 2.16.

2.8.2.2 Plane Stress Slip Lines

A state of plane siress is said to exist in the x3 direction if:

i S| (2.108)

A plane stress crack field can be developed assuming either that plasticity surrounds the
crack tip at all angles (Hutchinson (1968b)), or incomplete plasticity is permitted, Sham
and Hancock (1999). Both solutions are similar in the critical area ahead of the crack front.
In this thesis, incomplete plastic solution has been adopted to compare with the numerical

three~-dimensional solutions.
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Hill (1950) demonstrated that the characteristics of stress and velocity are the same in
plane stress and their directions coincide with that of zero rate of extension as in plane
strain. However in plane stress, the stress state will dictate whether the directions of zero
rale extension can exist in the xi-Xx plane, The staite of siress is governed by the partial
differential equations of equilibrium and compatibility which can either be hyperbolic,
parabolic or ¢lliptic. Under hyperbolic conditions, plane stress slip-lines comprise a noa-
orthogonal grid in which the direct stress across the line is twice that along the lines.
Consequently, the slip lines are lines of zero extension. The angle between the lines
depends on the stress state, but in the limit may become zero to give a single set of

characteristics when the equilibrium equations are paraholic.

In plane stress, the Mises yield criterion in cylindrical coordinate system conditions is

given as:

- _ 2 2 2 _ 2

O =0, +0p—0,0,+t30,, =0, (2.109)
Differcentiating the Mises yield criterion with respect to 0 gives:

a O.rﬂ

%,
20.09_— _(Jrraw)+60r0 o0

” =0 2.110
06 " 08 ( )

Substituting the equilibrium equations as in equation (2.84 and 2.85), gives:

ao—"! . aS"r -

20 06 N

where Oy, is the mean stress and sy i8S the radial stress deviator. The equations have two

solutions subject to the condition that the yield criterion is satisfied.
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oo

p m — ()

()=

or (2.112)
as

b)—~L=0

(b=

Rice (1982) has shown that two possible types of plastic sectors may exist at the crack tip
in plane stress: constant stress sectors and centred fans. Condition (a) implies that mean
stress does not vary with angle and defines constant stress sector in which the slip lincs are
straight but non-orthogonal. Condition (b) implies that the radial stress deviator does not
vary with angle and identifies centred fan sectors which comprise straight radial lines

intersected by a set of curved characteristics with equations of the form:
r? sin (0 - ¢ ) = constant (2.113)
where ¢ is the angle to which the curved lines are asymptotic. For isotropic Mises

materials, the centred fan condition 06,/d0 = 0 reduces to 26, = 6'99 and the equilibrivm

equations in equations (2.84-2.85) can be integrated to give:

o, =tk cos (8—9) (2.114)
0y = 2k cos(@ — ¢) (2.115)
0, =k sin(6 - @) (2.116)

When the stresses are assumed to be bounded in the elastic sector at the crack tip, the
stresses in the elastic can be cxpressed in terms of the semi-infinile wedge solution given

by Timoshenko and Goodier (1970) subject to the requirement that the yield criterion 1s not

violated:
O, = A 5in20+ A, cos28 + (A0 + A, )2 (2.117)
Opp = A 5in 20 — A, cos 20 + (45 + A, )/ 2 (2.118)

0,0 =A 0820 — Ay cos 20 — A, 14 (2.119)
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where Aj;, A, Az and A4 are constants that satisfy the conditions of equilibrium and

compatibility at the crack tip in plane stress.

The plane stress asymptotic mode T field for incomplete crack tip plasticity discussed by
Sham and Hancock (1999) can be regarded as a limiting case for a near mode-I field. The
field consists of a curved fan scctor directly ahead of the crack in the angular range 91 = %
39.126° complemented by elastic sectors extending to the crack flanks as shown in Figure
2.17. The mode I plane sttess asymptotic stress field for Cartesian and cylindrical

coordinates are shown in Figure 2.18,

2.8.3 Crack Tip Opening Displacement (CTOD)

Wells (1961) observed that inttially sharp crack tips are blunted by plastic deformation.
This observation led to the introduction of the crack tip opening displacement concept
(CTOD) to characterise fracture under conditions of large plastic deformation. Wells
(1961) argued that the degree of crack blunting at failure increases with the toughness of

the material. From the Dugdale (1960) analysis, the CTOD, §,, is given by:

ro’a
5, = degaln[secz "] = o (2.120)

a

If the applied suress 6 is very small compared to @, a series expansion of the (In sec) term
reduces to the small scale yiclding relationship including a constant » to distinguish plane

stress {m = 1) and plane strain (m = 2):

2 : 2
s - Zgrel X1 _G1 (2.121)
o,k m Eo,m o, m

]

This relates the CTOD approach to the elastic potential energy release rate, G, and stress

intensity factor, K, which are all equivalent in small-scale yielding. Experimentally, J, can
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be determined through the crack mouth opening displacement (CMOD) by measuring the
surface displaccment across the crack front, as shown in Figure 2.19(a). Computationally,
8; is usually determined by the 90° line intercept construction as illustrated in Figure

2.19(b) following Shih (1981).
2.8.4 The Path Independent Integral (J)

A key unifying concept which enables the characterisation of elastic and elastic-plastic
crack tip fields for rate-independent materials under monotonic loading is the J-Integral. J
is a path independent integral, that describes thc potential energy released during an
increment of virtual crack extension in non-linear clastic materials. Path independent
integrals were proposed independently by Cherepanov (1967), Eshelby (1968) and Rice
(1968b). Ilowever, it was Rice (1968b) who established their relevance to fracture
mechanics beyond the validity limits. of LEEM.

For a crack in a two-dimensional field, Rice (1968b) defined a path independent fine

integral, J:
i,
J =)\ W, dx,— o,;m—*ds (2.122)
: ox,

The arbitrary path I' starts at any point on the lower crack surface and ends at an arbitrary
point on the upper surface as illustrated in Figure 2.20. without including any other
singularities apart from the crack tip. The [irst term in the integral is the sirain energy

density, W, or work of deformation per unit volume:
w, = [o,de, (2.123)

The second term is the work done by the external forces where »; is the outward normal

unit vector to the path I, and o and u; are the stress and displacement fields, ds is the
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differential arc length of the virtual contour around the crack tip. Consequently, J
represents the change in potential energy during incremental crack extension da in a fixed
load-displacement curve. The area between the curves corresponds to the potential energy

loss when the crack length is extended to a + da:

1 {oU
J=- [,5;) (2.124)

and U is total potentiél energy in a plate of thickness, B. Under linear elastic conditions J is
directly equivalent to the potential energy release rate, G, as shown in Figure 2.21.
Experimentally, J can be measured at the load points of a two specimens which have
incrementally different crack lengths, g and a + 8a but otherwise are identical (Landes and
Begley (1972)). However this is a very impractical, and ASTM (E813-87, 1988) argues
that J can be determined from deeply cracked bend geometries (o/W = 0.45) in which J is

decomposed into elastic and plastic components:
J=JE+ " (2.125)
The elastic component J* is most simply calculated from stress intensity factor Ky:

K _

JE= L= 2.126
7 (2.126)

where E’ = E/(1-v*) for plane strain while K is obtained from the applied load relation
given in ASTM (E399-83, 1988):

K, == f(%) 2.127)

Here Pq is the applied load, S is the span between the loading points, while the function
fla/W) is given in ASTM (E399-83, 1988). In general, J becomes:
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2 _ 2 Y
K* (- )+ Tt 4up (2.128)

= BW —a) ™

where T is the non-dimensional plastic eta factor and AP is the plastic area under the

foad-displaccment curve, Comprehensive discussions of experimental methods for the
determination of J and CTOD from laboratory testpieces are given in Karstensen and

Hancock (2002).

Usefully, the J-integral can also be related to the CTOD, &; through the relation, Shih
(1981):

J=60, EL | (2.129)

where d, is a constant which depends strongly on the strain hardening exponent, n, but
weakly on 00/E. For nophardening cases n — oo, d, is 1 and 0.78 for plane stress and
plane strain, Shih (1981).

2.8.5 HRR Field

Path independence of the J-integral requires that the integrand in equation (2.122) has a 1/r
dependence:
W, —o,nu, )= f0) as r—0 (2.130)

¥

This allows J to be independent of the radius of the contour.

J = fﬂf(e) 40 (2.131)
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Path independence allows I to quantify the strength of crack tip singularities and
characterise crack tip deformation. A more explicit conneciion between J and crack tip
deformation is revealed using a power law relation between stress and strain. In nonlinear
clastic solids, material deformation can be approximated by a Ramberg-Osgood
relationship for uniaxial deformation equation (2.43). As the crack tip is approached
asymptotically, contributions to the strains that depend linearly on stress arc negligible
compated to power law terms which approximate to a power law such as that given in
equation (2.42). J» deformation theory can be used to gencralisc cquation (2.42) to

multiaxial siates,

n-1
a(%} Si. =B 2.132)
o 2

where sy are the stress deviators. Using this non-linear relationship with the J integral,
Hutchinson (1968a) and Rice and Rosengren (1968), identified the dominant crack tip
singularity for nonlinear deformation and showed that J characterises crack tip stress and
strain field which are known as the HRR fields. The stress, strain and displacement fields

associated with the dominant singularity are of the form:

1

J e
o, = O, |—— G. (O;n); 2.133
A 2139
oo 7 L
g, = —= g, (B;n 2.134
) E _800'001.1"1'] ‘f( ) ( )
T e
u, = ae;r|————I| @ (6n) (i=1,2) (2.135)
o, &, r

where 7, is an integration constant that depends on the strain hardening cxponent 7, foading

mode and on whether plane strain or plane stress. The functions &, (8,n), &, (6,n) and

7, (0;n) are non-dimensional angular functions tabulated by Shih (1983). Examples of
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plane strain and plane stress asymptotic angular functions for n = 3 and n = 13, are shown
in Figures 2.22 — 2.23 after Hutchinson (1968b)

2.8.6 Limits of Single Parameter Fracture Mechanics

With increased levels of deformation, the strict requirements of LEFM are invalidated by
the size of the plastic zone compared to dimensions such as the ligament, or the crack
Iength. However the crack tip field can be characterised by J from small-scale yielding into
full plasticity. Nevertheless, in full plasticity, McClintock (1971) first suggested that the
asymptotic plastic fields in the absence of strain hardening arc not unique but are functions
of the geometry, loading mode. This is illustrated by comparing the slip line field for
cenire crack panels, shallow and deeply cracked bend bars and shallow and deeply double

edge cracked bars as shown in Figure 2.24-2.27.

Crack tip fields for large scale yiclding in fcnsion are entirely different from those of
bending geometries which are associated with the Prandil field as shown in Figure 2.24
and 2.25. For the tension geometry, McClintock (1971) argued that intense shear
deformation is confined to slip planes emanating at 45 degrees from the tensile direction. A
state of plane strain tension exists ahead of the crack in the 90 degree wedge where the

stresses which satisfy equilibrium and yield criterion are given by:

Oy =2k (2.136)
oy, =0 (2.137)
o, =k (2.138)
O3 =0, =k (2.139)

The stress levels in tension efastic-perfectly plastic crack tip are much lower than the levels
in bending. McClintock’s (1971) observation implies that elastic-perfectly plastic crack tip
fields are not unique, but depend on geometry and loading. As a result fracture cannot be

characierised by a single parameter such as J or 8.



Chapter 2. Fundamentals of Deformation and Fracture 79

2.8.7 J-Dominance

McMeeking (1977) and McMeeking and Parks (1979) describe the ability of a single

parameter, such as J, to uniquely define the crack tip field as J-Dominance.

To assess J-Dominance, McMeeking and Parks (1979) comparcd large gcometry change
finite strain solutions for deep crack bend bar with the corresponding small scale yielding
solution. At distance greater than 2J/c, (or 2 to 39,), the effect of the crack tip blunting
diminishes and the stress field of a large geometry change solution is similar to a small

geometry change solution at distance greater than 2J/c, as illustrated in Figure 2.28.

McMeeking and Parks (1979) calculated the stresses in edge cracked bend bars and centre
crack tension panel into full plasticity and compared with small-scale yielding solutions.
For the edge cracked bend bars, it was found that the non-dimensionalised stresses and
strains field were independent of J even with non-hardening solutions. However, the cenire
crack tension panel deviated from the small-scale yielding solution. Based on this result,
the requirements of J-dominated zone in a crack tip field were expressed through a non-

dimensional grouping, u:

cO
e 2.140
J # ( )

where ¢ is a critical dimension of the cracked body. For deeply cracked bars ¢ = (W-a)
while for shallow cracked bars ¢ = a. For deeply cracked plane strain centre crack tension
panel, J-dominance is maintained as long as the ligament is greater than 200}/, (or W =
200), (McMeeking and Parks (1979). While for bend type configuration, the J is

maintained as long as the ligament is greater than 251/c,,

Shih and German (1981) repeated the work of McMeeking and Parks (1979) comparing
the full field solution for deeply cracked bend and centre crack tension panel in plane strain

with small strain formulations and proposed that, for I-dominant fields the hoop stress
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directly ahead the crack at a distance 1 = 2J/6, must be within 10 percent of the HRR field.
On this basis, the local stress ficld in deeply cracked plane strain edge notched bend bars,
scales in the same way as the small-scale yielding solution as long as the ligament (W-a) is
greater than 25J/G, (or u = 25). For deeply cracked plane strain CCP, J-dominance is

maintained as long as the ligament is greater than 200J/c, (or i = 200).

Al-Ani and Hancock (1991) examined the J-Dominance criteria ol deeply cracked and
shallow cracked bars in tension and bending. For shallow cracked bars J-dominance was
lost belore ac,/200. More importantly, they demonstrated that at different crack length the
plastic flow fields are not unique. For shallow cracked bending specimens, the plastic field
spreads to the face of the cracked ligament in accord with slip line field discusscd by
Ewing and Hill (1967). At deformation levels at which J-Dominance is lost, (wo parameter

characterisation is required.

Although the [ull plastic plane strain crack tip fields are not unique, Hancock and co-
workers (Al-Ani and Hancock (1991), Betegdn and Hancock (1991) and Du and Hancock
(1991)) have argued that the lack of uniqueness is not associated with the sudden
development of the fully plastic flow field but rather evolves from the small-scale yielding
and the gecometry dependent nature of the elastic field, Specifically, Betegdn and Hancock
(1991) and Du and Hancock (1991) identify the role of higher order terms in the elastic
asymptotic expression (T-stress) as having a critical role in determining J-Dominance.
Within this context it is now appropriate to introduce the T-stress as a precursor to a

discussinn of two-parameter fracture mechanics.
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2.9 Two-Parameter Fracture Mechanics
2.9.1 T-Stress

Williams (1957) cxpressed the asymptotic elastic stress field of a crack as a polynomial

series of the form:
o, (7.0) = A, @) +B,(0)r° +C, (@) +-- (2.141)

where A, B, C combine the angular functions and intensities and r is distance from the
crack tip. In classical LEEM, interest is focused on the first term of the asymptotic William
expansion, which incorporates the stress intensity factor. Larsson and Carlsson (1973)
demonstrated that under contained yielding conditions, the second term of the Williams
expansion has a pronounced effect on the size and shape of the plastic zone at the crack tip.
Rice (1974) denoted the sccond term of the Williams expansion, as the T-stress. The T-
stress is independent of the radial distance from the crack tip and corresponds to a uniaxial

stress parallel to the crack flanks,

|:°'11 Gni]= K [fn(e) fn(g)
Gy Oxn \[2?’:

T O
+ + higher order terms (2.142)
fu®) fn (e)] [0 OJ

where higher order terms vanish at the crack tip. Methods to determine the T-stress have
been reviewed in Sherry et al. (1995) and Karstensen and Hancock (2002). These include
the direct method used by Larsson and Carlsson (1973) which allows the T-stress to be
cvaluated directly from the stress on the crack flanks, 8 = * 7 using a refined crack tip

finite element mesh:

T =limo, (r,0=n), fir (Em) =0 (2.143)
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Sham (1991) developed generalised weight functions to calculate T for a given geometry.
Kfouri (1986) used Eshelby’s theorem to determine T by the ditference in J-integral of two
solutions with and without a superimposed crack tip point load in the dircction of crack
advance, In the line-spring method Rice and Levy (1972), T is calculated through the finite
element procedure by superimposing rcsults of cracked two-dimensional elastic I from
bending and tension calculated independently under the action of membrane force and

hending moment.

The T-stress has now been tabulated for a wide range of gcometries for which the results
are eilher expressed in terms of a T-stress concentration factor, T/o, or as a biuxiality

parameter, {3, following Leevers and Radon (1983):

= z f{a (2.144)

Tables 2.2(a-c) show the value of K; and P for a range of a/W ratios for single edge crack
bars under tension and bending following Sham (1991). The results of Lecvers and Radon
(1983) for centre cracked panels are shown in Table 2.3. Two-dimensional studies
(Larsson and Carlsson (1973), Leevers and Radon (1983), Cardew et al. (1984), Kfouri
(1986}, Sham (1991)) show that the T-stress depends strongly on the type of loading as
well as the geometry. However in all cases the T-stress is proportional to the applied load
and at asymptotically small load levels T = 0O for all geometrics. The ecffects of the

specimen thickness on the T-stress in threc-dimensional fields are discussed in chapter 3.
2.9.2 Boundary Layer Formulations

Boundary layer formulations were introduced by Rice (1966, 1967a, 1967b) to analyse
crack tip plasticity in contained yielding without having to model the geometry of the
whole cracked body. Small scale yielding occurs when crack tip plasticity is small
compared to the dimensions of the finite element model allowing the asymptotic elastic

field to be used as the boundary conditions on a domain around the crack tip. Figures
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2.29(a}, (b) show schematically how the full ficld geometry may be replaced by the
boundary-layer formulations where K s the stress intensity factor for the associated elastic

crack problem.

Tractions or displacements corresponding to the K field are applied on the outer boundary
of a region around the crack tip using equations (2.112) or (2.113) as shown schematically
in Figure 2.29(b). Boundary layer formulations are mathematically exact in the limit of a
vanishingly small plastic zone, but are accurate as long as plasticity is confined to less than

one tenth ot the mesh radius.
2.9.2.1 Modified Boundary Layer Formulations

The addition of the non-singular T-stress to the remote K field in the boundary condition is
known as a modified boundary layer formulation (MBLF). As the T-stress is dircctly
proportional to the load applied in an isotropic lincar clastic bedy, the load in medified

boundary layer formulations can be added using the superposition principle. The

mblf

displacement in #;"™ planc strain under the load due to K and T is therefore:

u;nblf — uiK, + ull' (2.145)
In plane strain deformation, £,, =0
o = T, Ty ={, e v /T (2.146)

Figure 2.30 schematically shows the components of distance around a circular boundary
layer formulation mesh which is used to derive the displacement ulT and .
Consequently, the remote displacements field for a mode I plane strain MBLF in terms of

cylindrical representation are:
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-y ,r 4 1-v?
mblf = —cos—(3~4v ~cos @)+ T e
w(r,0)=K, D) cos2( ~4v ~cos ) TR r cos (2.147)

up® (r,8)=K, 1-v _JL sin—q (3-4v —cos 9)—TM rsin @
E V2nr 2 E

The remote displacement field for plane stress modified boundary layer formulations can

also be given for a state of remote plane stress. In plane stress, 6, = 0:
o, =T, 0,5 =0 (2.148)

The mode I displacement field for plane stress in terms of cylindrical representation are:

w™ (r, 6)= K, 1-v /L_ cos? (3—4v—cose)+£rcosﬂ
22 2 E

E (2.149)

ugrblf(r’ 9):Ki 1;‘.’_ T sing-(3-4V~COS 9)—g—rsin &
E Y2m 2 E

2.9.3 J-T approach

Larsson and Carlsson (1973) have shown that the second term in the William’s expansion
has a significant effect on the shape and size of the plastic zone which develops at the
crack tip. Rice (1974) denoted the second term in the Williams expansion as the T-stress.

Significantly, the T-stress has no effect on the J-integral.

In an important development, Bilby et al. (1986) showed the effect of the second-order
term on the large gecometry change solution (L.GC) wiﬁmin 2J/6, of the crack tip. Negative
T-stresses were shown to reduce triaxial strcss level ahead of the crack. However, the
effect of T on crack tip fields was made clear through systematic analyses by Hancock and

co-workers (Betegén and Hancock (1991), Al-Ani and Hancock (1991), Du and Hancock
{(1991)).
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Betegén and Hancock (1991) modelled plane-strain elastic-plastic crack tip fields using
modified boundary layer formulations and a strain hardening material response. The results
indicate that the geometries characterised by zero and positive T stress causc the stress
field to approach the HRR field, while geometries with a negalive T cause the direct
stresses direcily ahead the crack to fall significantly. The effect of T stresses is to reduce
the direct stresses ahead of crack by an amount that depends only on T and is independent
of distancc 70,//. Based on these results, Betegdn and Hancock proposcd a family of stress

field differing only by a distance independent higher order term which depends on T:

2
( Oop J - (E@} ‘A [l] +B [_T_j (2.150)
S {r.r) Oy (r.7=0) G, S,

where A,, and B, are constants dependent on the strain hardening exponcnt # where values
A,, and B, for n = 13 and < are shown in Table 2.4. Betegén and Hancock (1991) argued
that J-Dominance should be maintained for T stresses greater than -0.2 o, for # = 13.
Wang (1993) reinforced the findings of Betegén and Hancock (1991), using three-term
polynomial fit to describe the effect. The important development from Betegén and
Hancock (1991) was that the problems of J-Dominance in different geometries were
unified. Geometries that show positive T-stress can be described by the HRR field and
characterised by J alone. Geometries that losc J-Dominance feature negative T-stresses and

can be characterised by two-parameters, J and T.

Al-Ani and Hancock (1991} studied the transition of crack lip fields from dcep to shallow
edge crack bend bars. J-Dominance was retained or lost according to the sign of T. Fully
constrained flow fields were found in deeply crack bars when plasticity is limited to
uncracked ligament and T 2 0, while shallow cracked specimen showed unconstrained
flow field in which plasticity spreads across uncracked and cracked ligament with T < 0.
These obscrvations imply that the stress fields can be characterised by two terms J and T.
This two-paramcter fracture mechanics approach uses the T-stress to quanlily constraint

while the applied load is scaled by J.
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Du and Hancock (1991), demonstrated the effect of T on structure of crack tip field in
plane strain under clastic perfectly-plastic conditions. Crack tip deformation was
represented as slip line fields within small-strain theory as shown in Figure 2.31. The
analysis clearly showed that in the leading sector of the crack tip field, T is similar
deviatorically but hydrostatically different as illustrated in Figme 2.32. Compressive
(negative) T-stresses reduce the level of stress triaxiality and cause the plastic zone to
swing forward. Tensile (positive) T-stresses increase level of crack tip stress triaxiality
towards the Prandtl field while the plastic zone decreascs and rotates towards the crack
flank. The change of plastic zone shape duc to T-stress is illustrated in Figure 2.33, where
the stress field is compared with the Prandt] field. For tensile T-stresses, plasticity envelops
the crack tip corresponding to the complete Prandtl field which is the limiting HRR field
characterised by J. Under compressive T-stresses, the triaxiality of stress stale was shown

to reduce and cause the appearance of elastic wedges at crack flanks so that plasticity does

not completely surround the crack tip.

Although the fully plastic crack tip fields are not unique, Hancock and co-workers (Al-Ani
and Hancock (1991), Betegén and Hancock (1991) and Du and Hancock (1991)) have
argued that the lack of uniqueness is not associated with the sudden development of the
fully plastic flow ficld but rather evolves from the small-scule yielding and the geometry

dependent nature of the elastic field as characterised by T.

2.9.4 J-Q Approach

Following Bilby et al. (1986) and Hancock and co-workers, O'Dowd and Shih (1991,
1992) presented a related approach to quantify the evolution of constraint from small-scale
yielding to full plasticity. O'Dowd and Shih (1991) carried out finite element studies using
large geometry change analyscs (LGC) as well as small-strain, small geometry change
solutions (SGC). In an annular region swrounding the tip between J/o, < r < 5J/0,, the

siress field was expressed as:
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a 7 H(n+l1} i q
A e &, (6,n)+ "1 8,(06.n 2.151
[OLE"G"I" rj "( ) Q[J/G,J U( ) . ( )

The first term is the HRR field in which the r and 6 are polar co-ordinates centered at crack

tip, n is strain hardening exponent, g, the yield strain and ¢ is a material constant

and, G, (0) and 6 (6) are angular functions that depend on 8. This can be expressed as:
o,=lo,) +00,5,, forr>Jic g <2 (2.152)
i ¥ /HRR o ! 0 ) ’

setting Q = 0 defines the HRR reference field and the perturbations are purely hydrostatic
in the leading sectors ahead of the crack tip. Physically Q measutes the change in crack tip
triaxiality from a reference field. In the context of contained yielding, 7/0, = T is uniquely
related to Q. This can be written exﬁiicitly comparing equation (2.152) with the modified

boundary layer solution in three-term with constants C,.. Q then becomes:
Q=0 +AT+B,7+C1 (2.153)
where Q. represents the difference between HRR and small scale yielding crack opening

stress at a rcference distance from the tip normally 2J/6,. A relinement Lo equation (2.152)

ariscs if the reference field is taken as the small scale yielding field resulting in a modified

definition of the constraint parameter O

s, =(o,) ., +00,8, (2.154)

i
Q=A,t+B 1 +C,1 (2.155)

Using Q = 0 as the reference field, the constraint of any stress component in full-field

solutions can be determined through:
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0 - -y ato=0,  r=23o, (2.156)
(o)

o

O’Dowd and Shih (1991) numerical solutions show that the stress distribution with the
same (-value collapse onto a single curve when the distance is normalized by J/G,. O is a
hydrostatic stress parameter in which negative values indicate that the hydrostatic stress is

reduced while positive values imply the hydrostatic stress is increased by Q..

The viability of two-paramectcr characterisation of fracture has been reviewed by Parks
(1992). The parametric descriptions correlated with the 7T-stress largely used by Hancock
and co-workers (Betegén and Hancock (1991), Al-Ani and Hancock (1991), Du and
Hancock (1991)) has been shown (o provide good correlations in small to moderate
plasticity but the rigorous application diminishes at large scale plasticity because the
MBLF itself is based on a assumption ol SGC plasticity occurrence however 7T-stresses are
easily obtainable for a wide range of geometries, (Leevers and Radon (1983), Kfouri
(1986), Sham (1991)). The J-@2 method provide complete description from small to large
scale plasticity however it entails detailed finite element modelling for every geometry at

all deformation levels.
2.10 Constraint E{fects on Toughness
2.10.1 In-plane Constraint Effects on Cleavage Failure

The cffect of constraint parameter T on cleavage fracture toughness has been discussed by
Betegdn and Hancock (1990) and Sumpter and Forbes (1992). Both examined the critical
value of J for geometries with different levels of constraint. Betegon (1990), Betegdn and
Hancock (1990) tested shallow cracked hend geometries with a/W < 0.3 and deep crack for
which a/W > 0.3. The shallow cracks exhibil negative T-siresses while deeply bend
specimens showed positive T-stresses. Specimens with negative T wcere systematically

found to be tougher than positive T specimens. For deep cracks in bending (a/W > 0.3) the
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critical valuc of toughness, J., is constant and independent of the T-stress as shown in
Figure 2.34,

Similar effects of constraint on cleavage toughness due to T were found by Sumpter (1993)
using centre cracked tension panels and bend burs of high strength weld steel at ~30°C as

shown in Figure 2.35.

Sumpter and Hancock (1994) rcanalysed the Sumpter (1993) data nsing Q as shown in
Figure 2.36. Sumpter and Hancock (1994) also showed the toughness of high strength weld
metal with a yicld stress 700 MPa at test temperature —30°C. Figure 2.37 shows J; as a
function of T/o, while Figure 2.38 shows the same data as a J.-Q locus. Constraint
enhanced toughness were found to be more marked for this type of material than for the
mild steel, and both J-T and J-Q loci describe the data well, Kirk, Koppenhoefer and Shih
(1993) presented cleavage toughness data for AS515 steel at room temperaturc with
different a/W ratios showed toughness can be classified based on T/G,. However, atternpts
to show effect of constraint on thickness were inconclusive becausc the range of specimen
thicknesses used were not sufficient to show the effect of out-of-plane constraint loss
associated with the reduction of thickness. The specimen thickness to ligament ratio B/(W-

a) ranged from 1.6 to 2 which broadly correspond to plane strain geometries,
In cleavage failure, the fracture toughness can be expressed within the context of two-

parameter fracture mechanics by expressing the toughness as a function of the T-stress or

Q-parameter:

J, = f(T,0) (2.157)
2.10.2 In-plane Constraint Effects on Ductile Tearing.

The resistance to stable ductile tearing has been addressed experimentally by Hancock,

Reuter and Parks (1993). Hancack, Reuter and Parks (1993) examined constraint effects in

stable ductile tearing using an A710 steel in a series of cracked configurations. CTOD and
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J were measured as a function of the T-stress for crack extensions Aa = 0, 200um and
400um as shown in Figures 2.39-2.40. The initiation toughncss was taken to be the critical
value of J at a crack extension Aa = 200um. At any finite crack extension, (Aa > 0) the

toughness increased with constraint loss, however at (Ae = 0), the initiation toughness

become constraint independent as I :«_lf— for all geometries (Figure 2.41).
(e 3

For geometries with compressive T-stresses such as CCP, the initiation toughness was
approximately four times greater than that of deeply cracked bend bar and compact tension
specimens as indicated in Figure 2.41. The effect of constraint was even more sigaificant
for higher crack extensions. An important result from the work of Hancock, Reuter and
Parks (1993) is that the tearing resistance of all cracked geometries is comrectly ordered by

the 'I'-stress, while Q has no meaning for growing cracks.

Figures 2.41 and 2.42 show that the effect of constraint loss in ductile tearing is due to the
effect of T on the slope of the resistance curves. This data may be discussed with the
numerical solutions of Varias and Shih (1993), which model the effect of constraint loss on

the resistance to stable fearing.
2.11 Application of Constraint in Structural Integrity Assessments.

Structural integrity assessments in structures containing cracks have been traditionally
based on single parameter toughness data Ky or J;. acquired from highly constrained flow
field in deeply cracked bend specimens. This provides a lower bound conservative
toughness, but may lead to unnecessary repairs and outage of engineering structures which
develop unconstrained flow fields. The observation that constraint parameters such as T/Q
can arder experimental toughness data on cleavage and ductile crack failure in constrained
and unconstrained flow field led to application of J-T/Q toughness loci in structural
intcgrity assessments. Two parameter {racture mechanics is applied by the constraint

matching or the failure assessment diagrams (FADs).
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2.11.1 Constraint Matching

In constraint matching, the toughness that corresponds to the constraint experienced by the
structural defect is used to predict [ailure. The conditions at failure can be inferred for
specific geometry and load dependent toughness by matching the constraint at fracture
with laboratory tests at the same constraint level, Constraint matching is illusirated in
Figure 2.43. Here a J-Q loci is develop through the result of experiment on highly
constrained and unconstrained geometries. Failure is predicted when the applied driving

force curve I-T/Q passes through the toughness locus (J.-T/Q):
JT or Q)2 J.(T or Q) (2.158)

2.11.2 Failure Assessment Diagrams

Failure Assessment Diagrams evolved from work at Central Electricity Generation Board
(CEGB) in the United Kingdom (Dowling and Townley (1973)). The proximity to failurc
is quantified by the ratio of the applied stress intensity factor, K to experimentally

measured material fracture toughness K
K
=K (2.159)
K e
The proximity to plastic collapse is given as:

=L (2.160)

Dowling and Townley (1975) proposed the first failure assessment diagram as a simple
square box in Figure 2.44. Interpolation between the extreme values of proximity of failure
K; and L, either based on failure at a critical value of J or a pragmatic approach to

experimental data shows the bound of safec operation of structure. Any load and crack
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combination that fall outside the region enclosed by a Failure Assessment Line (FAL) may

lead to failures.
The original R6 code was based on a non-hardening material and did not include the strain
hardening capability of real structural materials. To address this problem, R6 provides

three options for failure assessment: (1) A general failure assessment line (FAL) which can

be used for materials which do not exhibit a yield discontinuity:
K, =(1-0.1472 J0.3+0.7exp(-0.651¢)}  for L, < I (2.161)

(2) A material specific FAL curve based on J-Integral anulysis described by the equation:

3

true

(3) The FAL is based on the J-integral to calculate the K, which was originally introduced
by Bloom (1983) and Shih et al. (1983).

K, = /e

— 2.163
' ch ( )

The J-integral was calculated based on the explicit formulation given by the EPRI
estimnation scheme, Kumar, German and Shih (1981) in which J is decomposed into elastic
and plastic componenis as equation (2,125). The elastic component of J, J; is proportional
to (P/P,)%, while the plastic component of ¥, T, is proportional to (P/P)™". The total value

of J can thus be expressed as a function of L,. Failure at a critical value of J can then be

represented by a FAL for a specific hardening rate. To ensure calculations are not

invalidated by necking, the L, is truncated at L™ :
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e = Lo 0urs. (2.164)

2.11.3 Constraint Modified Failure Assessment Diagrams

Constraint based fracture mechanics has been used to modily lailure asscssment diagrams
(FADs) to take advantage of enhanced levels of toughness associated with constraint loss
in unconétrained flow field (MacLennan and Hancock (1995) and Ainsworth and O’ Dowd
(1995)). MaclLennan and Hancock (1995) adopted an approach based on T. The effect of

constraint on toughness was described by a relation of the form:

JE(T) =( i )III T < 0
7 T=0 lexp(T/a,) o, (2.165)
AU 1 LI
J.(r=0) a,

where m defines the constraint sensitivity of fracture. Constraint insensitive materials are
identified by m = 0 such that the toughness is both T and Q insensitive and non-zero values
of m correspond to increasing constraint sensitivity for negative value of T. Constraint
sensitive toughnesses are denoted Jir to indicate that the critical value of J at failure
initiation is a function of T (T < 0). The fully constrained field is identified with T = 0 field
and denoted as Jer - o). Failure initiation is taken to occur at the intersection of a (J-T)
loading history with the failure locus. Figure 2.45 illustrates the effect of constraint for a
hardening exponent n = 6 and SENB &/W < 0.3 which indicate that cnhanced toughness in
constraint sensitive material to increase safely margins. Although the FAL in Figure 2.45
are weakly sensitive to geometry but strongly dependent on constraint scnsitivity of the
material. Macl.ennan and Hancock (1995) proposed a modified FAD where K, is modified
and redefined as the square root of the elastic component of J to the constraint matched

toughness J, (T):
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g medned Je _ (2.166)

Joigrm)

Figure 2.46 show the modified FAD proposed by MacLennan and Hancock (1995} which
measures the toughness of shallow and deeply cracked bend bars as a function of T or Q
and the FAD is constructed using the constraint matched toughness as given in equation
(2.166).
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Figure 2.7: Co-ordinates used in Westergaard’s asymptotic solution.

G2z

T G2y O
//

l % <on

G222

Mode I- Opening ~ Mode I — In-plane Shear Mode III - Out-of-Plane
Shear
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100

oW £ (/W)
00 1.0000
0.1 1.0060
0.2 1.0246
0.3 1.0577
04 1.1094
i 0.5 1.1367
0.6 1.3033
0.7 14882
0.8 1.8160
0.9 25776

Table 2,1: Numerical values of f{u/W) for centre crack panels after Tada et al. (1973).
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Figure 2.9: Toughness as a function of thickness, B, = thin specimen, Bt = Thick specimen

after Broek (1974).
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Figure 2.10: Single edge notch in bending (SENB).
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Figure 2.11: Centre cracked tension panel (CCP).
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Figure 2.12: Plastic zone correction after Irwin (1961).

slane
strain

Figure 2.13: Approximate plastic zone shapes using Mises criterion for v = 0.3 after
Kanninen and Popelar (1985).
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Figurc 2.14: More accurate numerical calculations of the plastic zone shape in mode I
dcformation after Tuba (1976).

2(Y)

Figure 2.15: Prandtl field.
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Figure 2.16: The small scale yielding asymptotic crack tip stresses for plane strain perfect
plasticity determined from two-dimensional boundary layer formulations.
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Figure 2.17: Plane stress mode-1 asymptotic field configuration after Sham and Hancock
(1999).
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{a) (b)

Figure 2.19: The crack tip opening displacement & measured from (a) crack mouth
opening displacement (CMOD) (b) The 90° intercept construction method.

A

A2

Figure 2.20: J - Contour Integral for a flat surfaced notch in a 2-D deformation field. I is
an arbitrary contour surrounding the notch tip; I'y denotes the curved notch tip.
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Figure 2.21: The load-displacement relations for crack advance 8a under fixed
displacement condition for (a) linear elastic material (b) non-linear elastic material. The
shaded area indicates the loss in potential energy.



Chapter 2. Fundamentals of Deformation and Fracture 108

by ' i we S

e W fa

f]
i
[
x

(a)

(b)

Figure 2.22: Plane stress asymptotic stresses after Hutchinson (1968b) (a) Strain Hardening
field, (b) Elastic Perfectly-Plastic field.
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(a)

o

(b)

Figure 2.23: Plane strain asymptotic siresses after Hutchinson (1968b) (2) Strain Hardening
ficld, (b) Elastic Perfectly-Plastic field.
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Figure 2.24: Slip line field for a centre crack pancl (CCP) in tension.

W]

A
Y

Figure 2.25; Slip line fields for deep and shallow-cracked bars in bending after Ewing
(1968) and Green (1953). The solid and dotted lines represent the deep and shallow-
cracked bars slip line fields.
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Figure 2.27: Slip line field for a shallow double edge cracked bar after Ewing and Hil}
(1967).
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Figure 2.28: The difference between large geometry change and small geometry change
solution at distance within 0 < 1 < 2J/0,,.
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i13

oW | = | A=T¢"
0.1 | 0.11877E1 | -0.46436E0
0.2 | 0.13650E1 | -0.43362E0
0.3 | 0.16570E1 | -0.37070EQ
0.4 | 0.21083E1 | -0.27762E0
0.5 | 0.28210E1 | -0.15293E0
0.6 | 0.40254E1 | 0.69027E-2
0.7 { 0.63457E1 | 0.21010E0
0.8 | 0.11926E2 | 0.50106E0
0.9 | 0.34485E2 | 0.106306E1
(a)
W] i | A=
0.1 | 0.10458E1 | -0.36263E0
0.2 j 0.10534E1 | -0.22852E0D
0.3 | 0.11220E1 | -0.73444E-1
0.4 | 0.12586E1 | 0.92115EQ
0.5 | 0.14951E1 | 0.26160E0
0.6 | 0.15100E1 | 0.43325E0
0.7  0.27210E1 | 0.61041E0
0.8 | 0.46642E1 | 0.83862E0Q
0.9 | 0.12406E2 { 0.12675E1
(b)
W] K [ a-Tg
0.1 | 0.10234E1 | -0.36062E0
0.2 | 0.1027281 | -0.23295EQ0
0.3 | 0.10937E1 | -0.90071E-1
0.4 | 0.12290E1 | 0.60928E01
0.5 | 0.14647E1 | 0.21685E0
0.6 | 0.18787E1 | 0.37921E0
0.7 | 0.26880E1 | 0.55311E0Q
0.8 | 0.46270E1 | 0.78585E0
0.9 | 0.12358E2 | (.12273El
(c)

Tuble 2.2: (a) Values of Ky and P for single edge notched bars in tension, (b) Values of K

and B for single edge notched bars in pure bending, (c) Ky and 3 for single edge notched
bars in three-point bending after Sham (1991).
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o/W | sfm | B=2g"
0.1 | 0.1006E1 | -0.1017E1
0.2 | 0.1025E1 | -0.1034E1
0.3 { 0.1058E1 | -0.1051K1
04 | 0.1109E1 | -0.1068E01
0.5 | 0.1187E1 | -0.1085E1
0.6 | 0.1303E1 | -0.1102E1
0.7  0.1488E1 | -0.1261E1
0.8 | 0.1816EL | -0.1460E1
0.9 | 0.2312E1 | -0.1930El

Table 2.3: Values of X; and P for centre cracked panels after Levers and Radon (1983),

Figure 2.29 (a), (b) : Boundary layer formulation Rice (1968a)
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Figure 2.30: Components of distance around a circular boundary layer formulation mesh in

terms of cylindrical axes.

n A, B,
13 0.64 04
oo 0.6 -0.75

Table 2.4: Curve fitting constants after Betegdn and Hancock (1991).
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Figure 2.31: Slip line field after Du and Hancock (1991).
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Figure 2.32: Angular variation of the mean stress around a crack tip as a function of T/o,

after Du and Hancock (1991).
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Figure 2.33: Plastic zone shape after Du and Hancock (1991).
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Figure 2.34: Toughness of edge cracked bend bar as a function of T/o, after Betegén
(1990) and Betegdn and Hancock (1990).
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Figure 2.35: J; as a function of non-dimensionalised T-stress for three-point-bend and
centre crack tension specimens of at ~30°C after Sumpter (1993).
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Figure 2.36 : Critical value of J as a function of Q for 3PB and CC1 specimens of high
strength weld metal at -30°C after Sumpter and TTancock (1994).
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Figurc 2.37: Crilical value of I as a function of T/o, for 3PB and CCT specimens, low-
grade mild stecl at —=50°C after Sumpter (1993).
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Figure 2.38: Critical value of J as a function of Q for 3PB and CCT specimens, low-grade

mild stcel at —50°C after Sumpter (1993).
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Figure 2,39: CTOD as a function of the T-stress at crack extension of 0, 200 and 400 pwm
after Hancock, Reuter and Parks (1993).
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Figure 2.40: J as a function of the T-stress at crack extensions of 0, 200 and 400pm after
Hancock, Reuter and Parks (1993).
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Figure 2.41: The initial slope of the CTOD-Aa resistance curve as a function of T after
Hancock, Reuter and Parks (1993),
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Figure 2.42 ; The initial slope of the J-Aa resistance curve as a function of T after Hancock,
Reuter and Parks (1993),



Chapter 2. Fundamentals of Deformation and Fracture 123

J Ic

Toughness Lacus

/

Negative T/Q « » Positive T/Q

T/Q

Figure 2.43: General representation of the effect of constraint on the cleavage fracture
toughness.
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Figure 2.44: Failure assessment lines as given by R6 Rev3 (1986) and the original (1976)
form.
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Figure 2.45 : FADS for a SENB with (a) constraint inscnsitive malterial, m= 0, n = 6, (b)
slightly constraint sensitive material m = 1, n = 6, {c) constraint sensitive material, m =2, n
= 0, (d) highly constraint sensitive material, m = 3, n = 6 after MacLennan and Hancock

(1995).
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Figure 2.46: A modified FAD for a SENB with constraint seusitivity indices (m =0, 1, 2,
3) and hardening exponent, n = 6 after MacLennan and Hancock (1995).



Chapter 3. Three-Dimensional Crack Tip Fields 125

Three-Dimensional Crack Tip Fields

Although real structural integrity problems are fully three-dimensional, classically, fracture
problems have been largely analysed using two-dimensional idealisations based on plane
strain or plane stress. Initial studies of three-dimensional crack problems focused on the
determination of the nature of stress and strain fields close to the crack tip. The review in
this chapter emphasises on the development of the features of crack tip fields in three-
dimensions and the effect of thickness on constraint and toughness. IYinally, a review of
thickness effect on toughness is given as a precursor to three-dimensional crack constraint

failure assessment.

3.1 Three-Dimensional Elastic Analyses

3.1.1 Elastic Stress Solutions

Sih and Liebowitz (1968) discussed the mathematical theories of buittlc fracture including
the theory of elastic cracks in three-dimensions. Several approaches to the determination of
the singular behaviour of crack tip in three-dimensional geometries were discussed. In an
ensuing work, Hartranft and Sih (1970) suggested an approximate three-dimensional stress

solution at the crack tip:

=5 ( 2 —l—mﬂsin-a—q]+0(r")
2, (272 2
-»-—f-é_-L’-_— { osz ésmﬁam ?gJ-['O(r") (3])
-j;_u'—[}2-51n6cos—)+0 )
"
K!
e +0
7 2r[ 2] )
Jyr:U:x:O(r‘], as r—0
where Gy, Oy, Oy and ©, become infinite along the crack edge when r 03 while the

transverse shear stress Gy, and oy, remain finite at the crack tip through the thickness. The
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angular variation of the in-plane stresses is identical to the two-dimensional asymptotic
crack tip stress field equation (2.67). However, equation (3.1) may not be applicable to the

singularity problem at the free surface field.

Paris and Sih (1965) reviewed early developments in the stress-intensity factor approach
for three-dimensional clastic crack problems and provided some standard solutions for
important configurations including ellipsoidal cracks in infinite bodies. This work initiated
the collection of stress-intensity factors solution in compendia as exemplified by Sih
(1973), Rooke and Cartwright (1976), Tada et al. (1985) and more recently by Murakami
(1987). A collection of work catricd out by Soviet scientists on three-dimensional linear

elastic crack problems has been reviewed by Panasyuk et al. (1980, 1981).

The Sih and Liebowitz (1968) and Rice (1968a) reviews highlighted the importance of
clarifying the three-dimensional features of crack tip deformation, and specifically
understanding the effect of finite thicknesses and the accompanying plane strain to plane

stress transition.

Cruse and Vanburen (1971) provided an early discussion of three-dimensional clastic
stress analysis of a finite thickness compact tension fracture specimen using direct
potential methods. The nature of the three-dimensional state of stress as the crack tip was
discussed and argued that the out-of-plane stress, o, is a function of the thickness co-
ordinate, x3. In a subsequent paper, Cruse (1970) drew out the importance of out-of-planc
constraint effects and presented some numerical results on plasticity effects in small scale
yielding. Out-of-plane constraint factor was quantified by a factor p as given in equation
(2.45) which measures the proximity to plane strain, The degrce of plane strain as
measured by equation (2.45) increases as crack front is approached. However the results
only provided general trends and were not sufficiently accurate to quantify the magnitude
of the stresses. Although accuracy of the solutions is debatable, Cruse (1971) showed that
three-dimensional crack problems comprised of two types of singularity: the usual two-
dimensional crack front stress singularity and a crack front-free swiface intersection

singularity.
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Finite element techniques have proved to be a powerful tool with which to address the
intractable nature of three-dimensional crack analysis. Levy, Marcal and Rice (1971)
formulated an early elastic finite element approach to three-dimensional crack tip problems
in which the near tip elements featured coincident but independent nodes. This allows the
crack tip to exhibit the necessary r™ stress singularity. For a straight through thickness
crack, the proximity to plane strain was measured by the planc strain parameter, p. At
distances less than 0.5¢ from the crack front, p was close to 1 on the midplane, indicating
that the elastic field in the three-dimcnsional problem is similar to the two-dimensional

plane strain singularily.
3.1.2 Elastic Stress Field

Many analyses have been carricd out to understand out-of-plane effects in finite thickness

plate and to identify the size of the three-dimensional field in cracked plates.

Yang and Freund (1985) employed an approximate method based on a boundary layer
approach for a crack in a thin plate to assess the effect of out-of-plane effects in thin elastic
plates. The model assumed the three-dimensional crack front to be surrounded by a plane
stress field controlled by a temote stress intensity factor. The out-of-plane displacements
were taken to be identical to the corresponding plane stress solution at radial distances

from the front greater than half to three guarters of the plate thickness.

The analytical approach of Yang and Freund (1985) can be compared to an experimental
method developed by Rosakis and Ravi-chandar (1986). Rosakis and Ravi-chandar (1986)
investigated the three-dimensional stress field at the vicinity of a through crack using
transmitted and reflected caustics in Plexiglas specimens and in 4340 steel specimens. The
nature of the stress field as the crack front was approached was analysed using shadow
spot method. They proposed an amalytical expression for the local stress intensity factor

from the analysis of caustics as:
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K Fxe =;DS"Z (3.2)

where K%

1s the stress intensity factor determined from caustics experiments, z, is a
reference distance, ¢ is plate thickness, D is the maximum transverse diameter of the
caustic and ¢ is the appropriatc optical constant dependent for plane stress ot plane strain
conditions. K*** is non-dimensionalised by the plane stress stress-intensity factor Kap

given by Tada et al. (1985).

At distances 1/t > 0.5 both materials demonstrate K=**/K,p approaching 1 which indicates a
plane stress field. At r/t < 0.5, KEXPIKED continued to decrease instead of reaching a
constant value which demonstrated that the plane strain region is not clearly identified.
Rosakis and Ravi-Chandar concluded that plane strain was only achieved at r/t = 0, and
suggested that in the range 0 < r/t < 0.5 the three-dimensional siress gradients were weaker

than the corresponding two-dimensional gradients.

The most complete stress analysis of the out-of-plane ctfects in thin plate has been given
by Nakamura and Parks (1988a), Nakamura and Parks {1988a) studied the stress field of a
thin cracked plate under mode I loading using three-dimensional finite element boundary
layer formulations. The problem was defined by applying displacements cortesponding to
the two-dimensional plane stress K field given by equation (2.73) to the perimeter of a thin
domain surrounding the crack tip. The transition from a two-dimensional to a thrce-
dimensional field occurred within an annulus r/t <1.5. At v/t > 1.5, the in-plane stresses
statted to merge with thc dominant plane stress solution. The transition from two-
dimensional to three-dimensional fields was independent of Poisson’s ratio (v) although,
the amplitude of the opening stress was greatly affected by v. In nearly incompressible
solids, Poisson’s ratio affected the variation of opening stress, G2;, from the midplane (xs/t

=) to the free suface (xs/t = 0.5)
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Within the near tip field, Nakamura and Parks showed that thc characterising parameter J
varied along the crack-front. As the midplane ficld approached plane strain conditions,

Nakamura and Parks (1988a) determined local K values vsing the plane strain conversion:

K — EJZoc . (3.3)
loc E‘“—Vz) .

At the midplane (x3/t = 0), the local values of K and J were amplified, while near the free
surface the values were attenuated depending on the magnitude of v. The normalised local
J curves at different Poisson’s ratio intersected at xs/t = 0.35 where Jo/Jor = 1. Similar
behaviour was observed for the normalised local K with curves for different Poisson’s
ratios intersecting near xs/t = 0.47 where Kioo/Ke: = 0.99. Based on the linear elastic
condition, K and J should be similar and the variation along the crack front should also be -
identical. However, the results showed that the local K and J values intersect at different
positions. This could be due to the use of the local I values driven from an outer planc

stress field to extract a local K values using the plane strain condition of equation (3.3).

Nakamura and Parks (1988a) used the plane strain parameter defined in equation (2.45), to
characterise the three-dimensional nature of the stress field ahead of the crack front. The
three-dimensional field was found to approach plane strain within distances of r/t < 0.5
with the highest tendency towards plane strain at the midplane (xs/t = 0). At i/t = 0.0015, v
= {).3, and xa/t = 0, the three-dimensional field exactly matched the angular distributions of

stress in the asymptotic plane strain solution.
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3.2 Fracture Characterising Parameters
3.2.1 J-Integral in Three-Dimensional Analyses

Levy, Marcal and Rice (1971) have discussed finite element methods to model three-
dimensional elastic-plastic crack tip fields. While the development of the energy rclcase
ratc to obtain J has been implemented in finitc clcment approach using the virtual crack
extension method, Hellen (1975) and Parks (1974, 1977),

In three-dimensional crack analyses, J can be extracted using virtual domain integral
methods Shih et al. (1986) in which the line integral form of J given in equation (2.122) is

expressed in terms of a volume/domain integral, Jp:

Jp= j[cu M, uW(Su]q,’,. dA . (3.4)

A

This is identical to the potential energy release rate given in Li et al. (1985) and Nakainura
et al. (1986b) and is consistent with path-independent integral J of Rice (1968b). Equation
(3.4) is domain independent when evaluated over an arbitrary anmular area A, surrounding

the crack tip.

In the limit, the three-dimensional crack analyses show that path-independent is not
achieved (Nakamura and Parks (1988b, 1990) and Yusof and Hancock (2005)). For a given
section (x3/t) along the crack front of a boundary layer formulation, the J-integral value
remains path-independent for a limited distance ahead of the crack front. At large distances
from the crack front, the J-integral approaches the applied values which drive the
displacement ficld. Therefore, the local J that varies along the crack front approaches the
uniform applied stress intensity factor on the perimeter of the boundary layer formulation.
Nevertheless, the local J can still be regarded as a parameter which characterises the near

tip field.
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3.2.2 'I'-stress in 'Three-Dimensional Analyses

Given the significance of the effect of the T-stress in two-dimensional crack tip analyses,
Nakamura and Parks (1992) developed a method for extracting the T-stress along three-
dimensional crack fronts from moderately detailed finite element solutions. The method is
based on an interaction integral given by Kfouri (1986). Instead of a point load, a line load

is introduced, and T is calculated from the difference in J, with and without the line load:

T(s)= o onyl1(s)+ vem () 63)

Here f is the line load in the x; direction, I(s) is the interaction integral. Nakamura and
Parks (1992) used the interaction integral method to extract the T-stress in elastic three-
dimensional specimens and showed that the T-stress was influenced by the plate thickness

as well as v. The thickness dependence of the T-stress distribution can be expressed as:

T[xB t ’V) f 2D Hhin
= =B+ B X, v 3.6
K, (x,/t,v)m a (s /1.9) 3.6

where B is the biaxiality factor and the two—dimensional biaxiality parameter B** has been
tabulated for various crack configurations by Sherry et al. (1995). The function B¥™ is the
inherent biaxiality parameter of a thin plate which is independent of any loading
conditions. Figure 3.1 shows the dimensionless biaxiality function B™™, of a thin plate. As
Poisson’s ratio, v, increases, there is a marked increase in the biaxiality factor for nearly
incompressible solutions as the free surface plane is approached. In thick plates the I'-
stress coincides with the two-dimensional solution where the first term on the right-hand
side of equation (3.6) dominates, while the first term vanishes for an infinitely thin plate,
Nakamura and Parks’ (1992) work demonstrates that thickness-dependence can elevate the

negative biaxiality of two-dimensional crack configurations (B*" < 0) as the thickness is

reduced providing /77 g <~ g /l an|'
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3.3 Three-Dimensional Elastic-I"lastic Analyses

Fracture processes in engineeting structures are dominated by plastic deformation even for
materials that exhibit cleavage. Two-dimensional elastic-plastic crack analyses are widely
availablc but arc usually bascd on plane strain conditions and focus on in-plane cffects.
However, crack tip deformation in the fracture process zone is affected by the combination
of in-plane and out-of-plane effects. This section of the literature, reviews progress in

understanding three-dimensional elastic-plastic crack tip fields.

3.3.1 Elastic-Plastic Stress Field in Finite Thickness Plates

Rice (1968a) has argued that the three-dimensional field in a finite thickness specimen
should be bounded by the states of plane strain and plane stress. However the transition

between the two states has not conclusively been quantified.

A three-dimensional finite element analysis of a test specimen configuration has been
given by Wellman et al. (1985). Three-point-bend plane strain specimens were analysed
from elastic to full plasticity using data derived from a uniaxial tension test of a pressure
vessel steel. The plane strain and plane stress solutions provided upper bound and lower
bounds to the load-displacement characteristics as shown in Figure 3.2. In the three-
dimensional three-point-bend model, the occurrence of plane strain was shown at
midplane. Although the Wellman et al. (1985) models were based on thick deeply cracked
plane strain crack configurations (B/(W-a) = 1), they anticipated that plane stress should
occur at the {ree surface. However, plane stress conditions were not shown to occur

conclusively as illustrated in Figure 3.3.

Nakamura and Parks (1988b) analysed small scale yielding fields in a thin plate using
boundary layer formulations. The material response was elastic-plastic with a strain
hardening exponent, r = 10 in 2 Ramberg-Osgood power hardening law. The objective was

to quantity J-Dominance conditions in thin plates. Three-dimensional fields occurred
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within an annulus ¢ < t independent of load. The opening stress, 62, merged with the planc
stress field at r =1.5¢, while a significant variation of through-thickness field quantities

only occurred within r £ 0.5z,

A comparison of the local J along crack front at different load levels showed amplified
values at the midplane (x3/t = 0), and attenuated values at the free suiface (x3/t = 0.5). At
low loads, the plastic zone shape was similar to the two-dimensional plane strain plastic
zone shape both at the midplane and the free surface. As the load increased, the midplane
plastic zone shape changed towards the two-dimensional plane stress plastic zone shape
but the free surface plane retained the two-dimensional planc strain shape. These effects
were atiributed to the competition between the crack front singularity and the corner
singularity. Nakamura and Parks (1988b) argued that under small scale yielding
conditions, the coexistence of a plane strain HRR-field and a plane stress HRR-field along
the crack front was very unlikely. A plane strain field was developed much more readily at
the midplane than near the free surface. In the boundary layer formulation, the level of load
to maintain a local plane strain HRR field at the distance (r = 2J/0,) was proposed to be

JedGuEt £ 10,

Hom and McMeeking (1990) employed large geometry change solutions to study a thin
cracked plate modclled by boundary layer formulations at load levels of J/o.t = 2 for a
nonhardening material and J/G,¢ = 2.7 for a hardening material response. The state of stress
ncar the crack tip was quantified through the difference between the midplane and free
surface hoop stresses at corresponding positions ahead of the crack front. The stress field
was considered to be dominated by the plane stress field if the haop stress ratio was less

than 5 pereent:

idplane free surface
Tos ' — g
<
frecsurface - 5% (37)

0-6’5'

On this basis, the three-dimensional featurcs of the stress field cxtended a distance of 6t

ahead crack tip in non-hardening solution and 2t in the strain hardening solution.
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‘Nakamura and Parks (1990) cxtended the three-dimensional boundary layer formulations
studies of a thin cracked plate to model the transition from small scale yielding to large
scale yielding. In this study, substructured three-dimensional meshes were constructed so
that contained yielding could be extended to multiple plate thickness distances. Small scale
yielding and moderate yielding were identified to occur when the plastic zone is ry<< t and
1y = t. A strong three-dimensional effect was observed at r < 0.5¢ accompanied by relatively
weaker through thickness variations of field quantities between 0.5 < rf7 < 1.5 and a nearly

plane stress region at r = 1.5¢ were ohserved as the load increased to moderate yielding.

Plastic zone shapes were studied beyond small scale yiclding and the results were
presented at the midplane and the free surface. A plane stress plastic zone shape occurred
through the thickness at load levels J/G.€,t >5. However, at low loads, the plastic zone
shape took a plane strain shape at the free surface but approached plane stress at the
midplane. This was argued to be due to the local J values which were higher at the

midplane than the free surfacc.

In the transition from small scale to moderate yielding, the level of hoop stress decreased
with increase in distance 1/t as illustrated in Figure 3.6. Plane strain dominance was
attained at the crack tip but decreased with distance from the crack tip as shown in Figure
3.7. A dominance parameter, p, was defined to determine the proximity to a local plane
strain HRR field:

_. (o HRR(pl.strain)
3 H% Gy |

N (3.8)

HRR(pl.strain)
Oy |

Near the midplane at modcrately high load levels, the local plane strain HRR-dominated

field was lost as shown in Figure 3.8.

Results for n =3, 5, 10 were given in the fully plastic analysis in which a planc stress HRR

field with plastic strains that exceeded the elastic strain was imposed on the tip-model.



Chapter 3. Three-Dimensional Crack Tip Fields 135

Three-dimensional effects occurred at distances less than 1/t < 1 while the transition from a
three-dimensional to two-dimensional field occurred within the range of 1< r/t <1.5. Using
the plane strain dominance parameter given in equation (3.8) showed that, plane strain
constraint was lost along the crack front as shown in Figure 3.9. The result is similar to that

obtained from the boundary layer formulations.

Nakamuara and Parks (1988b and 199Q) indicated that in small sirain hardening elastic-
plastic solution the three-dimensional zone extends to r/t = 1.5, Hom and McMccking
(1990) used a large geometry change solution to characterise crack tip field in thin plates
but showed the threc-dimensional field range from 2t in hardening to 6t in non-hardening

materials.

The zone where the crack tip field is fully characterised by the J-integral is known as the J-
Dominated zone. In three-dimensional crack tip fields, there are thiee zones along the
crack front; a local near-plane strain, a plane stress and a comer field. Nakamura and Parks
(1988b and 1990) showed the load to maintain the local plane strain J-Dominated HRR
zone in a boundary laycr formulation is Qg < 10. A local plane stress field at the crack
front has not been conclusively shown to exist, while thc cxistence of a corner field in

elastic-plastic field is still unresolved analytically and numerically.

3.3.2 Constraint Effects in Three-Dimensional Crack Tip Fields

It is now appropriate to focus on the effect of constraint in three-dimensional crack tip
fields. In-plane constraint effects associated with the T/Q have been usefully adopled to
Increase margins associated with conservative plane strain fracture methodologies in
problems of geometries dependent/non-dependent on J-Dominance. This has led to the
engineering concepts of constraint matching and modified failure assessment diagrams
which have been discussed in Chapter 2. However, an important aspect which has not been

addressed is the effect of constraint in finite thickness specimens.
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Three-dimensional elastic-plastic crack solutions using finite elcment mecthods became
viable when efficient finite element formulations were combined with the computing
capability to bandlc problems with many large degrees of freedom in the carly eighties.
The development of the numerical techniques has been described by Levy, Marcal and
Rice (1971).

The development of plasticity and the cvolution of crack tip parameters such as the J-
Integral and CTOD were initially given by deLorenzi and Shih (1983) for compact tension
(CT) specimens with thickness to ligament ratio B/(W-a) = 1.25. They analyscd three-
dimensional elastic-plastic crack fields using deformation plasticity with a hardening
exponent, # = 10. The energy release rates along crack the front were amplified at the
midplane (xa/t = 0) and attenuated at the free surface (xs/t = 0.3). For loads ranging from
small scale yielding to full plasticity, the crack opening stress normalised by the opening
stress at the midplane was uniform at the midplane and reduced toward the free surface,
This indicated that the opening stress reached a fully constrained value at midplane and
reduced with increasing loads towards the free surface as shown in Figure 3.4. As the load
increased, the plane strain constraint parameter (G6,/0x+0y), approached 0.5 at the midplanc

and zero at the free surface as indicated in Figure 3.5,

Brocks and Olschewski (1986) also analysed three-dimensional compact tension (CT)
specimens in thicknesses ranging in thickness from the standard plane strain fracture
toughness, (2a = W, 2B = W) B/(W-a) = I, to thin specimens, using incremental plasticity.
The effects of thickness on the stress field were studied by varying the thickness of CT
specimen using the HRR field as a reference. The results showed a loss of constraint when
the thickness of the CT specimens was reduced from the plane strain standard geometry
(B/(W-a) =1. However, even in the thickest specimen, stress components did not compare
well to the two-dimensional HRR stresses leading to the conclusion that plane strain two-
dimensional solution might not be applicable in three-dimensional fracture analyses, This
result may be questionable because the fineness of the mesh was far less than the two-

dimensional studies used in their paper.
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Nevalainen and Dodds (1995), investigated constraint effects in the context of brittle
fracture using SENB and CT specimens. For shallow cracked bend bars, a/W = 0.1 at the
midplane, a loss of constraint was observed at very low deformation levels. Deeply
notched thick specimens in bending, (/W = 0.5 W/B = 1), showed a small increase in
constraint at the midplane at high deformation lcvels duc to in-plane effects. Thin deeply
notched specimens showed a severe loss of constraint on the midplaue while shallow
notched specimens showed less severe constraint loss at the midplane. For deeply notched
SENB and CT specimens, midplane levels of stress triaxiality were maintained to higher

deformation levels in contrast to two-dimensional plane strain analyses.-

The eifect of constraint on a ductile austenitic steel has been investigated by Yuan et al.
(1995) using the J-Q methodology. The paper can be divided into two-dimensional and
three-dimensional crack tip analyses. In three-dimensional analyses of CT specimens, they
showed that the stress field tended toward the plane stress field in both thick, BAW-a) = 1
and thin B/(W-a) = 0.2 specimen as the load increased. In the thick specimen, the direct
stresses at the midplane remained similar to the plane strain stress level cven at high levels
of deformation, However the free surface did not show conclusive evidence of a planc
stress field. In the thin specimen, the midplane stresses were close to plane strain levels at
low loads but developed toward a plane stress field with increasing load. Another
important result showed that Q, varied significantly along the crack front and with distance
from the crack tip which has profound implications to the applications of J-Q methodology

to three-dimensional crack tip analyses, as Q should be distance independent.

The applicability of the J-Q approach in three-dimensional analyses has been discussed by
O'Dowd (1995). O’Dowd (1995) argued that the J-Q method was applicable to three-
dimensional crack in thick plates but is limited to midplane (x3/t = 0) where out-of-plane

strain components are negligible compared to the in-plane singular terms.

Although the J-Q methodology may not be able to fully characterise the effect of finite
thickness crack, it is useful to determine constraint effects at the midplane where crack

propagation is normally expected to initiate in straight through crack problems. Henry and
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Luxmoore (1997) performed three-dimensional crack analyses on high and low constraint
geometries to evaluate the effect of constraint in a low hardening response material using
the J-Q methodology. The specimens dimensions for the high constraint geometry vatied
between B/(W-a) = 0.8 to 1.01 while the low constraint specimens dimensions varied from
B/(W-a) = 0.8 to 5.6. All data were extracted at the midplane (xs/t = 0) but at two different

in-plane distances (roo/J = 1 and 2). The triaxiality factor defined as the mean stress
divided with equivalent Mises stress (o, [o = h) varied linearly with Q as shown in

Figure 3.10. Figure 3.11 shows the triaxiality parameter as a function of Q indicating that

for different hardening exponent, n, the triaxiality, h, increases at a fixed Q,

Yuan and Brocks (1998) analysed mode I cracks using both three-dimensional modified
boundary layer formulations and full field bending and tension geometries with strain
hardening responses similar to those nsed by Nakamura and Parks (1990). The full-field
specimens used thickness to ligament ratios of B/(W-a) = 1 and 0.2. The T-stresses in the
modified boundary layer formulations varied in the range of -1< 1 <1 (T = T/6,). Q values
were defined as differences between the hoop stress of the three-dimensional field and the
plane strain reference solution near midplane (x3/t = 0.033) and near free surface (x3/t =
0.994), Their results showed that the crack front stress fields were dominated by the plane
strain solution at small plastic zone sizes, but the stress field approached the plane stress
field as the plastic zone increased in size. Near the crack tip, Q depended on distance from
the crack {ront and on the distance from the free surface. This suggests that Q@ parameter
cannot describe the crack front constraint as the load increases. However, it was found that
Q was related to the normalise hydrostatic stress, on/0, uniquely through a linear
relationship for a particular constraint level as shown in Figure 3.12-3.14. They noted that
the three-dimensional crack fields fall between the plane strain and plane stress
idealisations although plane stress behaviour was not clearly identified. Finally they argued
that any parameter defined under plane strain condition cannot characterise in-plane and

out-of-plane constraint loss.

Kim et al. (2001) carried out three-dimensional analyses on a thin cracked plates using

boundary layer formulations and correlated the numerical solutions with a three-term
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agymptotic crack tip expansion J-Az. The numerical results from their analyses essentially
follow a J-T/Q approach and can be used in part to demonstrate three-dimensional crack tip
constraint effects. The T-stress was applied to simulate the elfect of geometries in
boundary layer formulations. The results were compared with HRR plane strain and plane
stress fields, For the low and high loads, data gathered at the midplane and near the free
surface fell between the HRR planc strain and plane stress field, indicating a plane strain
like field at midplane, and near plane stress field clase to the free surface. The effect of T
was similar to the effects which have been demonstrated in two-dimensional analyses. The
effect of the plane strain parameter equation (2.45) was evaluated with varying T-stress as
illustrated in Figure 3.15. It was found that the T-stress does not affect the plane strain
parameter. In subsequent work, Kim et al. (2003) examined the effect of constraint on
three-dimensional SENB specimens. 'I'he specimens had crack to width ratio of /W = 0.5
and 0.15 with an identical thickness B. In order to relate the results to the experimental
cleavage toughness data of Sorem et al. (1989) and Wellman et al. (1988), specimens with
B = W and W = 2B were selected. The results showed that at the midplane, the HRR plane
strain field is approached and remained close to the HRR field for all load levels much
more nearly in the W = 2B specimen when compared to the B = W specimen. With
increasing load, the physical location of 1 = 2/Jo, moves toward the global bending field
and this affects the crack tip constraint field in the square specimen much carlicr than the
rectangular specimen at the same deformation level. At the free surface for the B = W
specimen, the stress field did not approach the plane stress field. 'Yhe shallow cracked B =
W specimen showed a constraint loss similar to the effect seen in two-dimensional shallow

crack bend specimens.

Three-dimensional crack analyses require a very detailed finite clement mesh to bring out
the characteristics of the crack tip field. In order to accommodate a stable stress gradient
change from the midplane to the free surface, the mesh must have a build up of element
layers through the thickness but weighted to the surface and away from the crack front, but
weighted towards the crack tip. Three-dimensional crack problems arc further complicated
by the need to have significant computing resources to solve problems with many degrees

of freedom. Brocks and Olschewski’s (1986) resulis are questionable as highlighted by
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Parks (1991) because the three-dimensional mesh was coarse compared to two-
dimensional solutions. A reference three-dimensional analysis by Nakamura and Parks
(1988b and 1990) provided initial results on the elastic-plastic constraint effect. The three-
dimensional analyses of a thin plate largely focused in characterising the three-dimensional
field and extent of J-Dominance. Subsequent work focused on applying two-parameter
fracture methodology to full-field solutions. However the results were only given at the
midplane and the free surface field from small scale to large scale yielding (Sorem et al.
(1991), Yuan et al. (1995), Nevalainen and Dodds (1995), Henry et al. {1996), Henry and
Luxmoore (1999), Kim et al. (2001), Kim et al. (2003)). The results ccntre on in-plane
geometry effects rather than the effect of thickness on consiraint. Yuan and Brocks (1998)
attempted to quantify thickness effect on constraint by showing results in boundary layer
formulations and full-field solutions from small scale yiclding to full plasticity. However,
they concluded that a parameter based on plane strain cannot fully describe both in-plane

and out-of-plane constraint loss,

Although the application of J-1/Q methodology in three-dimensional analyses is suspect, a
detailed discussion on the limits has never been provided. J-T/Q theory requires the field to
be deviatorically similar which means the shear stresses must remain identical under
consiraint loss, but direct stresses differ hydrostatically. An important requirement is that
within the microstructural-separation distance ahead of the crack front normally within
2J/o, = 1 < 51/6,, the stress difference Q is distance independent. Yuan et al. (1995) and
Yuan and Brocks (1998) showed that Q is not distance independent. In contrast, O’Dowd
(1995) and Pardoen et al. (1999) argued thatl in very thick specimen when out-of-plane
constraint is bounded, J-T/Q theory suffices to describe the constraint loss. A detailed
investigation on out-of-plane constraint effect is needed to show limits of two-parameter

methodology in three-dimensional analysis.
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3.4 Experimental Data on Toughness

The effect of thickness on fracture toughness is a fundamental issue in fracture mechanics.
~Irwin et al. (1958) found that fracture toughness vartied with thickness. Using bend bars
and centre cracked tension panels in aluminium alloys (7075-T6 and 2024-T3) which
ranged in thicknesses from 0.016 to 1 inch: they showed that the critical crack extension
force, G; increased as the thickness decreased as shown in Figure 3.16, An important
outcomce from this work was the identification of the plane strain fracture tonghness, Ky, as

a material property.

Any discussion of the effect of thickness on fracture toughness requires fractographic
analysis, such as that given by Knott (1973). Figure 3.17(b) illustratcs the effect of
thickness on fracture toughness. The fracture profiles can be divided into 3 regions: A, B
and C. The C region is associated with plane strain fracture, B is associated with transition

from plane strain to plane stress and A is region where necking precedes failures.

Fractographically C is the region where flat fraciure occurs in the centre of relatively thick
specimens with very small shear lips at the cdges. Flat fracture occurs because lateral
contraction is constrained under near plane strain conditions and a triaxial stress system is
developed. However at the free surface, the lateral stress is zero and the siress state
approaches plane stress causing a shear lip. Thickness-toughness data in this region are
widely available as exemplified by Hudson and Seward (1978 and 1982). However,
fracture toughness data for the same material seems to vary greatly as critically remarked
by Chambers and Sinclair (1986) raising doubts about the safe application of fracture
toughness data to structural integrity assessment by inexpert personmel. The variation of
cleavage fracture toughness can be resolved by applying statistical methods, Wallin (1984)
demonstrated that the scatter in the cleavage K. data can be described by a Weibull
distribution. The relative scatter described through the Weibull modulus is constant and
equal to four. In ductile tearing, Wallin (1985) argued that valid fracture toughness data

should be identified at the initiation of crack extension. Ductile fracture initiation is

thickness independent if B 2 a(l/c,). For bend specimens, the factor o is usually suggested



Chapter 3. Three-Dimensional Crack Tip Fields 142

to be 25. Wallin (1985) showed typical experimental data on thickness effect on ductile
crack initiation taken from (Keller and Munz (1977), Gilmore et al. (1983), Huang and
Gehes (1984) and Druce (1980)) in Figures 3.18 — 3.20. When B < 25J/0,, the toughness
increases with reduction in thickness and corresponding to the transition to region B of
Figure 3.17(a).

In region B the toughness increases with a reduction of the thickness and reaches a
maximum critical crack extension force, G.. Experimental data in the transition region
from plane strain to plane stress have been shown by Irwin (1964), Tiffany and Masters
(1965), Kaufmann and Hunsicker (1965), Brothers and Yukawa (1966), Srawley and
Brown (1967), Rolfe and Novack (1970) and Jones and Brown (1970) in Figure 3.21-3.27,
All data show that fracture toughness increases with reduction in thickness. The fracture
profile in the intermediate thickness is shown in Figure 3.28. At low load levels, the stress
field at the crack front is triaxial and specimens exhibit flat fracture surlfaces, however, as
plastic deformation increases, the lateral stress, 0, relaxes and the flat surfaces tunnels
between the shear lips. Krafft, Sullivan and Boyle (1965) developed a hypothesis to
explain the behaviour in the transition of plane strain to plane stress in terms of the energy
necessary to deform in the transition plane strain and plane stress. Plane strain fracture was
associated to energy required to form new surfaces while plane stress fracture is the plastic
energy contained in the shear lips. This established the crack resistance R-curve concept.
Currently, ASTM-E1152 (1988) specifies the method to determine the fracture toughness
in stable tearing using J-R curves, However, tonghness testing based on crack resistance R-
curve may not be practical because of problems associated with the accuracy of results.
Landes and Brown (1998) reported round robin results on the standard method for
measurement of fracture toughness and concluded that the J-R curves method could not
provide a valid initiation fracturc toughness data because of the difficulty of obtaining

-valid initiation toughness values from the R curve,

In region A, the fracture toughness reduces with a reduction of thickness. The effect of
thickncss on fracture toughuness in region A have been inferred, (Knott (1973), Broek
(1974), McClintock (1971)) although the literature usually concentrates on qualitative
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rather than quaniitative explanation because of the complex nature of deformation and
fracture. McClintock (1971) explained the behaviour in region A qualitatively by
attributing the decrease in fracture toughness with the decrease in thickness to the cffect of
thinning of the specimen at the crack tip under deformation. This behaviour affects foils

and very thin sheet metals.

Pardoen et al. (1999) studicd the influence of thickness on thin aluminium 6082TO0 plates
in double edge cracked tension (DENT) specimens experimentally and numerically. The
specimens thicknesses range from 1 to 6 mm, while the crack length, a, ranged from 20 to
27.5 mm, and the ratio /W ranged from 0.66 to 0.91. The effect of thickness showed a
decreasing toughness with reducing thickness as shown in Figure 3.29. The thickest
spcecimen (B/(W-a) = 0.3) showed the toughness started to decrease with increasing
thickness. A similar trend of reducing thickness and reducing toughness effect was also
shown by Wang et al. (2003) as illusirated in Figure 3.30 using copper foils in DENT
configuration with specimen thickness ranging from 20 micron to 1 mm and /W =04 (a =
5 mm and W = 12.5 mm). Figure 3.30 also shows that the maximum toughness is attained
at thickness 0.3 mm. The toughness undergoes a drastic reduction with further increase in
thickness as shown in region 1l. However Wang et al. (2003) argucd that region II occurs
because of the transition from plane stress to plane strain without giving fractographic

details on the fracture modes.

Collectively the thickness-toughness relation for wide range of materials is qualitatively
similar to Figure 3.17(a) which shows a constant fracture toughness in region C followed
by an increasing fracture toughness with decreasing thickness in region B und a reducing
fracture toughmess with further thickness reduction in region A. However, the discussion
on the effect of thickness on fracture toughness has largely been centred on region C

because of the opportunity to identify the fracturc toughness as a material property.

Most textbooks on fracture mechanics (Knott (1973), Broek {1974), Anderson (1995))

have discussed gualitatively the thickness effect on toughness. A consensus has emerged
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which agrees that reduction of thickness caused the fracture toughness to increase

corresponding to change from plane strain to plane stress fracture.

It is clear that toughness in plane strain is dependent on the state of flow field or
constraint. The level of constraint in plane strain specimens can be indexed by the T-stress.
A highly constrained geometry has positive T-stresses while geometry which loses
constraint develop negative T-stresses. However a review of experimental data is stil
needed now because existing data were mostly obtained prior to the establishment of

theory of constraint effect on fracture.
3.5 Corner Singularity Fields

Cruse (1970) identified the existence of a singularity field at the intersection of the free
surface and the crack front which .is known as a comer field. Benthem (1977, 1980)
developed analytical solutions of the elastic corner singularity field in a quarter-half space
using a separation variable technique, Bazant and Estenssoro (1978) used a potential
energy technique in finite element analysis to identify corner singularity solution in Mode

IT and III and elastic interface crack probiems.

The comer field is uswvally discusscd as a vertex formed by the intersection between the
crack front and the free surface plane as illustrated in Figure 3.31 using spherical co-
ordinates (p, 0, ¢). Without loss of generality, the corner singularity asymptotic field can

be expressed followin g Riedel (1987) in the form:
o =fp" g (9, ¢) 3.9

Here gy is a dimensionless angular function and the spherical coordinates centred at the

VErtex are:

p:.‘frz-i-zz, ¢=tim_l(£], Z=£——’C3 (3.10)

z 2
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equation (3.9) is analogous to the two-dimensional linear elastic crack tip problem solved
by Benthem (1977, 1980) using variational principles and Bazant and Estenssoro (1978)
using energy theorems. Both found that s = 0.5, 0.452 and 0.332 when Poisson’s ratio is v
= 0, 0.3 and 0.5 respectively. This implies that the vertex singularity is weaker than the
usual inverse square root singularity except when v = 0. If v = 0, the surface field plays no

particular role. For small ¢, the vertex [ield approaches the plane strain crack tip field as:

o 1
i xm

asp — 0 3.1DH

where f;; (0) describes the angular stress distribution of the linear elastic crack tip fields.
The factor B3 is undetermined by asymptotic analysis, and requires a full three-dimensional
finite element analysis of the wholeISpecimen. However, from the scaling laws for power-

law materials, (3 is shown to be related to the applied stress and the specimen thickness:

5

ﬂ oc Uner ool (3'12)

where T is the full specimen thickness. From equations (3.9) and (3.11), the cocfficient

of the 1/Vr crack tip singularity approach 0 at the free surtace according to:
1/2-s
K, o Bz (3.13)

This behaviour is shown numerically in Figure 3.32 following del.orenzi and Shih (1983),

for the local J, J o< (K7)* which indicate that at the free surface, J approaches 0.

Burton et al. (1984) presented a three-dimensional finite element analysis of a through
cracked elastic plate and found a decay in the energy release rate through the plate

thickness. This indicated that the drop in energy release rates as the free surface is



Chapter 3. Three-Dimensional Crack Tip Fields 146

approached is probably not significant from a fracture toughness testing point of vicw with

the exceptions of residual stress fields near the crack surface intersection problems.

Nakamura and Parks (1988b) clucidated the effect of intcrscction of a crack front with free
surface in three-dimensional boundary layer formulation. Using the stress intensity factor
along the crack front with the asymptotic form of cquation (3.9), Nakamura and Parks
(1988a) showed that for small z,

Kiocal (z): B 2 3.14)

where [} is a constant which represents the stress intensity of corner singularity field. The
coefficient, A+1/2 can be determined from the gradient of curves for different Poisson’s
ratio plotted in a log-log scale, and from the values of computed three-dimensional local
stress intensity factor very near the corner vertex (z/t<0.03). The normalised values of
corner stress intensity factor § plotted against Poisson’s ratio v are shown in Figure 3.33,

The stress tensor for the corner singularity field can be expressed as:
o, = L_pg.(20.9) © @19
N2

Here the strength of the as exemplified by the exponent A depends on Poisson’s ratio. f§ is
the corner stress intensity factor representing the magnitude of singularity field and its
dependence on geometry and load. Equation (3.14) is similar to Riedel (1987) equation
(3.9) with the addition of the term 1N(2:ﬂ:). From equations (2.70), (3.13) and (3.14), the

dimensionless [unction g; must bebave as:
£;(0)=lim Jo ¢, (1:0.9) (3.16)

where the in-plane components of f;(6) are given in equation (2.72). The asymptotic corner

field matched with Benthem dimensionless function gy is shown in Figure 3.34 for v = 0.3
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at a spherical radius of p/t = 0.48x107?. The corner singularity region appears to dominate a

spherical radius of approximately 3 percent of the plate thickness from the intersection of

the free surface and the crack front.
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Numerical Methods

This chapter describes the numerical methods used in the current work. These include
boundary layer formulations and full-field SENB and CCP specimens in elastic-perfectly
plastic conditions. Elastic solutions were compared against the three-dimensional boundary
Jayer formulations of Nakamura and Parks (1988a). Three-dimensional elastic T-stresses
have been extracted from the thin plate boundary layer formulation and full-ficld SENB
and CCP solutions for thicknesses B/(W-a) = 1, 0.5 and 0.1 and a/W = 0.5.

4.1 Three-dimensional Boundary Layer Formulations.

A cracked geometry similar to that used by Nakamura and Parks (1988a) was adopted to
study the three-dimensional stress field along the crack front using a boundary layer
formulation method. A circular disk or cylinder was used to model the near tip region of a
thin plate with thickness t, as shown in Figure 4.1. The geometry is defined by a system of
right handed Cartesian axes Xy, X3, X3 centred at the crack-tip on the midplane of the plate
(x3 = 0) such that the crack front is located on the xs;-axis and the crack flank lies on the
plane (x2 = 0; xy < 0), A symmetric quarter of the circular disk (region0<0 <7 0< x5/t <
0.5) was modcled with finite elements, as the problem has reflective symmetry with
respect to the midplane (x3 = 0) and the cruck plane (x; = 0). On planes perpendicular to
the crack front (x,, X2), the element size was gradually increased with radial distance r»
from the crack tip, while the angular span of each element was kept constant, A¢=7/36,
throughout the mesh. An identical planar mesh was repeated along the x;-axis from the
symmetry planc (x3 = 0) to the free surface (xa/f = 0.5). To accommodate the variations of
field quantities with respect to the x3-axis, the thickness of successive element layers was

gradually reduced toward the free surface.
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4.1.1 Generation of Finite Element Mesh.

Initially, two-dimensional plane strain and plane stress boundary layer formulations
models were created using PATRAN (2003) and analysed using ABAQUS (2003). A

typical two-dimensional boundary layer formulation mesh is shown in Figure 4.2.

Thrce-dimensional boundary layer formulations meshes were developed from the two-
dimensional meshes using Microsoft Excel. In order to facilitate systematic node and
element numbering for the post processing, the numbering order of the two-dimensional
mesh was repeated through the thickness by assigning an additive factor to the node

numbcts across the mesh:

rstu,, 2D assigned numbering
_ 4.1)
a rstis,, 3D designated numbering

where 7, s, £, # are integers from 0 — 9, a is a numeric system that refera to the layers which
constitute the three-dimcnsional mesh defining the section through the thickness. The
assigned numbering refers to the numbering created from Patran (2003) while designated
numbering refers to nodal and elemental numbering created in Microsoft Excel

spreadsheet.

In contrast to the boundary laycr formulations models used by Nakamura and Parks (1990),
all the crack-tips were modelled by 19 coincident but independent nodes. It was found that
the scheme proposed by Nakamura and Parks (1990) which used a crack tip notch in the
outer-model significantly altered the displacement field near the crack tip and elevated the
crack tip stresses in the tip-model. Substructured models with notches did not recover the
remotely applied elastic plane stress field. When the outer and intermediate meshes had
coincident but independent crack tip nodes, the normalised opening stress converged to the
plane stress solution at 1/t > 1.5 as shown in Figure 4,9 in accord with the results of

Nakamura and Parks’ (1988a) elastic solution. It may be speculated that the notch in
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Nakamura and Parks (1990} analyses was needed because the mesh at crack tip could not

meet the necessary element aspect ratios.

To achieve a highly refined crack tip mesh with suvitable element aspect ratio, three
substructured finite element meshes were employed. The loading applied to the coarse
mesh was used to drive an intermediate mesh which was used to drive a refined crack tip
mesh. The three meshes are referred as the outer-mesh, the middle-mesh and the near tip-

mesh respectively.

The finite element models are shown in Figure 4.3 (a), (b) and (¢). The outer-mesh had a
radius to thickness ratio, ryat = 100 (ryq = 50000, ¢ = 500), in which, one layer element
modelled the entire disk in the quarter-half space. The outer-mesh consisted of 360
clements (18 circumferential x 20 radial in-plane elements) arranged in a single layer

through the half thickness) using 800 nodes.

The middle-mesh had a radius to thickness ratio, ¥t = 18 (i = 9000, ¢ = 500), in order
to capture the transitional field variation between plane stress applied ficld in the outer-
mesh to the plane stress state near the crack tip as the crack front in the tip-mesh was
approached (Levy, Marcal and Rice (1971), Nakamura and Parks {1988a)). Five element
layers were built up in the through thickness direction (x3) with a thickness of (t = 50) for
each layer. The middle-mesh consisted of 1350 elements (18 circumferential x 15 radial in-
plane) defined by 1800 nodes.

The tip-mesh had a radius to thickness 1atio, rym/t = 5 (Fmar = 2500, ¢ = 500). It is important
to increase the density of the mesh near the crack tip because this determines the accuracy
of the results. As the mesh must be able to analyse elastic-plastic contained yielding
problems, the radius of the disk relative to the thickness was chosen so that the plastic zone
remained well contained within the outer boundary. Sixicen element layers were build up
in x3 direction with thicknesses 20, 20, 20, 20, 20, 20, 20, 20, 20, 16, 16, 12, 10, 6, 5, 5
toward the free surface. The tip-mesh comprised of 7776 elements (18 circumferential x 27

radial in plane) arranged in 16 layers through the half thickness and 9520 nodes. The radial
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extent of the outer boundary was approximately 2500 or 5z, while the crack-tip elements
had a radial extent of 2 or 0.004¢. The thickness of the element adjoining the free sarface
was 5 or 0.01z.

To analyse crack tip stress and strain fields within the small-scale yielding, the tip-mesh
must have radius greater than r/t = 10 to ensure numerical stability at the point of nodal
interpolation in substructuring. A second crack tip mesh was setup to allow plasticity to
extend to 1/t = 10 while allowing the interpolation of nodal variables in an elastic domain
near to the plastic small-scale yielding boundary. The second tip-mesh consisted of thirteen
element layers build up in x5 direction with relative thicknesses 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 18, 16, 16 toward the free surface.

All the meshes (out-mesh; middle-mesh; near tip-mesh) were built from 8 noded trilinear
hexahedron isoparametric brick elements, using reduced integration and linear pressure
interpolation (ABAQUS (2003) element type C3D8RH). The 8 noded trilinear hexahedron
elements were collapsed at the crack tip to give four coincident but independent nodes as
shown in Figure 4.4 by the element denoted by B. Elements elsewhere in the mesh follow

the structure represented by element A.

4.2 Three-dimensional Full-field SENB and CCP models

The ability of boundary laycr formulations to model crack tip plasticity is limited by the
requirement that the plastic zone must be confined within one-tenth of the radius of the
outer boundary, Rice (1973). In order to carry out clastic-plastic analysis beyond small
scale yielding and into full plasticity, full-ficld solutions of standard plane strain fracture
toughness specimens have been developed. Single edge notched specimens in three point
bending (SENB) and centre crack tension panels (CCP) were built using the boundary
layer formulation node and element scheme, The full-field models are shown in Figure 4.5
which defines the notation used in the present work. For the SENB and CCP specimens,
the crack lengths are @ and 2a and the widths are W and 2W respectively while the
thickness is B. It should be pointed out that the thickness is also referred as 7. The half
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length of the specimen L was 3000. To consider the effect of thickness, three values of
B/(W-a) were considered: B/(W-a) = 1, 0.5 and 0.1. The geometry B/(W-a) =1, &/W = (.5

corresponds to the standard plane strain fracturc toughness test specimen.

Figure 4.6 illustrates the three-dimensional full-field finite element meshes. The nodal and
elemental configurations in SENB and CCP models are similar but differ in the boundary
conditions applied. The radial extent in the domain used for data analysis was 250 or 0.5¢,
the crack-lip element had a radial extent of 2.0 or 0.004, and the thickness of the element
adjoining the frce surface was 5 or 0.010z for B/(W-a) = 1, 4; 0.016¢ for B/{W-a) = 0.5, and
2 or 0.040¢ for B/(W-a) = 0.1.

Tach element layer through the thickness, comprised of 850 elements. The element layers
were stacked according to the total thickness required and the ability to control the aspect
ratio to provide a pradual reduction of element thickness from the midplane towards the

free surface plane. At the crack tip, there were 19 coincident but independent nodcs.

For the thickest model {B/(W-a) = 1}, 20 element layers were build up in the x5 direction
with layer x thickness setup (13 x 16, 1x 12,3 x 10, 1 x 6, 2 x 5) from the midplane to the
free surface. For the medium thickness model {B/(W-a) = 0.5}, 18 element layers were
build in the x3 direction with layer x thickness setup (12x 8, 1 X 6, 3 x 5, 2 x 4). For the
thin model {B/(W-a) = 0.1}, 9 element layers were built in in the X3 direction using layer x
thickness setup (1 x 4,5 x 3,3 x 2).

4.3 Loading Conditions

In the three-dimensional thin plate boundary layer formulations, an elastic plane stress
field was applied on the nodes of the outer perimeter of the outer model shown in Figure
4.3(a). The in-plane displacement #z; and zp are given by equation (2.73) while the
displacement in the out-of-plane u3 direction was left to develop freely. With or without

the application of the remote out-of-plane displacement, s, the crack tip stress field can
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develop a similar out-of-plane local kinematic at crack tip. Similar observations have been
made by Kim et al. (2001).

The outer-mesh was used to drive the middle-mesh shown in Figure 4.3(b) thror‘lgh nodal
interpolation of the displacement of the nodes at the perimeter of the middle-mesh
boundary. The computed nodal displacement of the near tip-mesh boundary shown in
Figure 4.3(c) was driven by displacements interpolated from the middle-mesh. The near
tip-mesh was used to obtain accurate solutions near the crack front and at the intersection
of the crack front with the free surface. Nodal interpolation was achieved through the
ABAQUS (2003) submodeling analysis card.

For the full-field model, loading was applied by line displacements u; across the thickness
of a three-point-bending specimen. In the CCP models, a uniform tensile displacement u;

was applied normal to the crack flank on the outer surface of the model.
4.4 Computational Procedure

The numerical method employed in the present analyses is the finite element method. In
linear and nonlinear analysis, the code initially discretised the problem and then linearised
the governing equations so that non-linear problems are solved incrementally as a scquence
of linear problems. Typical clastic-plastic analyses used about a thousand increments to
generate the complete response. Numerical resnlts were generated using a Dell Precision
450 series workstation with Intel Xeon processor 3.06 GHz with CPU processing speed of
512 KB integrated level 2 cache. The central processing unit is equipped with system
memory of 2 Gbyte which operates at 266 MHz. A disk space of at least 100 Gbyte is
required to store the processed data. Typically a 9000 element boundary layer formulation

model or a 16000 elements full-field model required 5 to 7 hours of clock lime.

Under the near incompressible conditions associated with plastic flow, the use of reduced
integration hybrid elements, combined with a Poisson’s ratio with a small departure from

perfect incompressibility, v = (.49, helped to avoid mesh locking problems. Analysis was
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based on infinitesimal strain theory using incremental plasticity and the modified B-bar
method discussed in Nakamura et al. (1986) to stabilise the model against spuricus
pressure modes. In ABAQUS, the stabilisation procedure was catried out using a
“*Stabilise” card employing a weighting factor of .0001 together with the “*Static”
analysis card. This method was employed for all geometrdes and material responses to

obtain consistent results.

4.5 Material Response

The elastic-perfectly plastic material response, was based on uniaxial idealisation of the

form:
o =Eo T, (42)
o =0, gz, (4.3}

Here ¢ is the uni-axial stress, 0, is the yicld stress, € is strain and £ is Young’s modulus.
For purely elastic analyses, equation (4.2) is applicable whilc both equations (4.2 - 4.3) are
applicable for an elastic-pertectly plastic material response as shown in Figure 4.7. The
material was homogenous isottopic with a Poisson’s ratio of 0.49 giving a nearly
incompressible response. A Poisson’s ratio 0.3 was also used for the purpose of comparing

solutions to those available in the literature,

The uni-axial stress-strain relations were generalised for multi-axial stress states of stress
using the Mises yield criterion with an associated flow rule and incremental plasticity
within a framework of small displacement deformation theory. Numerical calculations
were performed with Young’s modulus, o/¢, = £, of 200 GPa and yield stress, G,, of 200
MPa, glthough non-dimensional results are always presented to allow general applicability

of the results.
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4.6 Benchmarking of Three-Dimensional Models

Two-dimensional elastic solutions are widely available and have been extensively applied
in engineering applications. In contrast, three-dimensional crack analyses are complex and
difficult. To ensure the thrce-dimensional solitions are credible, the results of three-
dimensional elastic analyses are now compared with well established three-dimensional

analyses and two-dimensional plane strain solutions.
4.6.1 Boundary Layer Formulations

The three-dimensional boundary layer formulations crack tip models have been developed
with the purpose of analysing elastic-plastic solutions. Before directly cibarking on
elastic-plastic solutions, it is important to verify that the model can produce results in
linear elastic cases. Well established resuits in three-dimensional thin plate boundary layer

formulations have been given by Nakamura and Parks (1988a).

The comparison was initially carried out by analysing the opening stress as a function of
distance ahead of the crack front at the midplane, and at the free surface, as shown in
Figure 4.8 for Poisson’s ratio 0.49. Similar plots from Nakamura and Parks (1988a) ate
shown in Figure 4.9. The midplane and the free surface values in the three-dimensional
boundary layer models agree within 2 percent of Nakamura and Parks’s (1988a) results.
Another benchmarking comparison was made on the asymptotic stress very near the crack
front. Figures 4.10 and 4.11 show the asymptotic stress field for Poisson’s ratio 0.3 and
0.49 while the Nakamura and Parks (1988a) data are shown in Figure 4.12. The asymptotic
stress fields arc compared with the angular distributions of stress for a mode I given in
equation (2.72). For both Poisson’s ratios, the asymptotic fields behave identically to the
two-dimensional solution as well as the three-dimensional solution of Nakamura and Parks
(1988a).

Nakamura and Parks (1992) gave the biaxiality parameter in a thin plate boundary layer

formulation for various Poisson’s ratio as shown in Figure 3.1. The effect of the three-
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dimensional T-stress for v = 0.3 and 0.49 are shown in Figure 4.13. The current solutions

correlate well with those of Nakamura and Parks (1988a) for both Poisson’s ratios.

It has been demonstrated that the substructured threc-cdimensional models can be used to
analyse the three-dimensional crack tip stress and strain fields under largely
incompressible response. This is important to ensure the model will be able to analyse
incompressible plastic flow. The benchmarking results for boundary layer formulation are

summarised in Table 4.2,
4.6.2 Full-Ficld Solutions

The three-dimensional full-field SENB and CCP solutions have been benchmarked using
the stress intensity factor, K, the biaxiality function, 3, and the T-stress concentration

factor, T/Oapp.

In three-dimensional fields, the local J or K varies along the crack front. However, a local
plane strain condition has been shown to be approached on the midplane (xs/t = 0).
Therefore the calculation at the midplanc for SENB and CCP models have been
benchmarked against the two-dimensional plane strain solution. The benchmarking is
carried out by comparing the calculated shape functions, f (a/W), to shape function
published in standard stress intensity factor handbooks. Using Tada et al. (1985), the non-
dimensional shape function for single edge notch bend (SENB) specimens is given in
cquation (2.75) while the shape function for centre crack panel (CCP) as a function of a/W
is given in Table 2.1. The shape functions, f{a/W), for /W = 0.5 are 1.46 and 1.18 for
SENIB and CCP specimens.

To calculate the shape function from the three-dimensional models, the stress intensity
factor in terms of the J-integral can be changed to represent the stress intensity factor, K in

plane strain using:
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K= ; (4.4)

The shape function f(afW } is related to the stress intensity factor, K, as given in equation
(2.74). The applied stress, Gagp, for SENB geometries can be determined through bending

moment following Lianis and Ford (1958}:

p = T2V~ 4.5)

where M is the bending moment, B is thickness of the plate, W is the ligament length and a
is the crack length. The moment, M, is determined from the reaction force, RF, parallel to

the crack flanks :

M = RF — (4.6)

S is the span from load to crack flanks.

The applied stress in the three-dimensional CCP models can be determined from the

remote reaction force from the three-dimensional modcl, RF :
G pp = RIIWB @

The applied load in the centre crack tension panel can be calculated from the applied stress,

Oapp, Per unit thickness is :

P=g_W (4.8)
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Shape functions from the three-dimensional models are shown to be 1.4 and 1.27 which are
accurate to 4 percent. A similar observation was made for the CCP specimen where the
shape function was accurate to 7 peréent. However, benchmarking based on shape
functions fla/'W) is useful only when crack tip plasticity is negligible. In small scale
yielding, crack tip plasticity is known to be aflected by the I'-stress and another benchmark

used the biaxiality factors.

The biaxiality factors for plane strain SENB specimen given by Sham (1991) are tabulated
in Tables 2.2. For a/W = 0.5, the biaxiality factor is 0.216. However, the T-stress in three-
dimensional crack tip ficld is strongly affected by the Poisson’s ratio and the thickness of
the plate as discussed by Nakamura and Parks (1992). Thercfore a planc strain biaxiality
factor can be defined by faking accounts the effects of Poisson’s ratio and thickness
following equation (3.7). Using equation (3.7), the biaxiality factor for SENB becomes
0.341. The three-dimensional SENB.model biaxiality function is 0.37 which demonstrate a

correlation accurate (o § percent,

The T-stress concentration factor, '[/Guy,, can be obtained from the plane strain shape

function of Sham (1991) by subtituting equation (2.74) into equation (2.144) to give:

T a
0-_ - Bf(ﬁ;) 4.9)

apy

The plane strain SENB T-stress concentration factor is T/, = 0.497. The calculated
three-dimensional elastic SENB T/6;,, is 0.52 which is accurate to 5 percent. The

benchmark parameters for the full-field SENB specimens are tabulated in Tables 4.3,

As the SENB and the CCP finite element meshes are related, the same accuracy should be
expected for both. These are reflected in the biaxiality functions and T-stress concentration
factors as a function of thickness for different SENB and CCP specimens thickness as
illustratcd in Figures 4.14 to 4.17. The thickness effect indicates that the biaxiality function

and the T-stress concentration factor approach the plane strain values as the thickness is
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increased in both the SENB and CCP specimens. From a different perspective, the
biaxiality factor and the stress concentration factor are inversely related to the thickness.
‘This is due to the inherent positive T-stress in thin plates as observed by Nakamura and
Parks (1992) and indicated by Sherry et al. (1995).

Although the T-stress is significantly affected by Poisson’s ratio and the plate thickness,
the shape function based on the stress intensity factor, K, correlates well with existing data.

Therefore, it can be argued that the three-dimensional models produce acceptable results.
4.7 Conclusions

Three submodels were used to model a cracked thin plate using boundary layer
formulations. To produce accurate crack tip kinematics, the submodcls employ coincident
and independent crack tip nodes in. contrast to the Nakumura and Parks (1990) model
which employed a notch in the outer-model. The advantage of the technigue is the ability
to simulate clastic and elastic-plastic analyses using the same model by changing the

applied loads and material properties.

The benchmark calculations show that the three-dimensional models have been able to
recover the behaviour of three-dimensional field in the way identified by Nakamura and
Parks (1988a). The full-field solutions which used a similar crack tip mesh configuration to
the boundary layer formulation have been shown to predict the two-dimensional plane

strain parameters in an acccptable manner.
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Figure 4.1: Circular disk representing a thin cracked plate.

Figure 4.2: Typical two-dimensional boundary layer formulations mesh.
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Figure 4.3: Boundary Layer Formulation model in quarter half space for
{a) Outer-mesh, (b) Middle-mesh and {(c) near Tip-mesh.
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Figure 4.4: Boundary layer formulation finite element mesh, three-dimensional element
and boundary conditions applied to the nodes.
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Figure 4.5: Geometry of the SENB and CCP specimens.
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a W B L
Bf(w-a) =1 500 1000 500 3000
B/(W-2)=0.5 500 1000 250 3000
B/(W-a)=0.1 3500 1000 50 3000

Table 4.1: Dimensions of the SENB and CCP specimens.
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Figure 4.6: Three-dimensional full-field models.
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Figure 4.7: Stress-Strain curve [or an elastic-perfectly plastic material,
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Figure 4.8: The opening stress ahead of the crack front at the midplane and the free surface
for Poisson’s ratio 0.49 normalised by the two-dimensional plane stress solution. The
broken line indicates 622/0‘222D =1.
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Figure 4.9: The opening stress ahead of the crack front at the midplane and the free surface
for various Poisson’s ratio after Nakamura and Parks (1988a). A broken line is drawn at

622/0222D which indicate a constant value is reached for all Poisson’s ratio at 1/t > 1.5.
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Figure 4.10: The asymptotic plane strain behaviour at the midplane xs/t = O with Poisson’s
ratio = 0.30 compared to the twa-dimensional plane strain solution.
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Figure 4.11: The asymptotic plane strain behaviour at the midplane x5/t = 0 with Poisson’s
ratio = 0.49 compared to the two-dimensional plane strain solution.
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Figure 4.12: The asymptotic stress field for a thin plate boundary layer formulation at the
midplane with Poisson’s ratio, v = 0.3 after Nakamura and Parks (1988a).
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Figure 4.13: Variation of the biaxiality factor, B, along the crack front in a thin plate for
Poisson’s ratios, v = 0.3 and 0.49.
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Nakamura and

Parks 3-D BLF Correlation
G2/ at t/t > 1.5” 1 1 1
v=049,B xsi=0)"  0.14 0.14 1
v =03, B (xs/t = 0)" 0.05 0.05 1

Table 4.2: Three-dimensional thin plate boundary layer formulaiion elastic solution
compared against Nakamura and Parks (1988a and 1992 solutions, which are represented
as * and #).

2-D Pl Strain SENB; B/(W-a)=1  Correlation

faW) = Ki(ogpN(ma)) 146 1.4 0.96
B = (TV(ma)/K 0.341 0.37 0.92
T/Gupyp 0.497 0.52 0.95

Table 4.3: SENB elastic correlation for plane strain and three-dimensional models B/(W-a)
= 1 with /W = 0.5 at the midplane (x3/t = 0).
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Figure 4.14: The variation of the biaxiality patameter, B, along the crack front in SENB
specimen with thickness B/(W-a) = 1, 0.5 and 0.1. The broken line shows the plane strain
biaxiality factor calculatcd using equation (3.7).
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Figure 4.15: The variation of the stress concentration factor, T/o,pp, along the crack front in
SENB specimen of thickness B/(W-a) = 1, 0.5 and 0.1. The broken line shows the plane
strain T/a,,, factor caleulated using equation (4.11).
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Figure 4.16: The variation of the biaxiality parameter, 3, along the crack front in a CCP
specimen of thicknesscs B/(W-a) = 1, 0.5 and 0.1. Broken linc shows the plane strain
biaxiality Tactor from equation (3.7).
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Figure 4.17: The variation of the stress concentration factor, T/, along the crack front in
a CCP specimen of thicknesses B/(W-a) = 1, 0.5 and 0.1. Broken line shows the plane
strain T/0qp, factor from equation (4.11).
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Three-Dimensional Elastic-Plastic Fields

The structure of three-dimensional crack tip fields is a fundamental issue in fracture
mechanics. Although a number of studies of three-dimensional elastic-plastic crack tip
fields exist in the literature, conclusive results have been elusive due to problems with the
numerical stability of three-dimensional numerical models and the interaction between in-
plane and out-of-plane effects. In this chapter, the nature of the elastic-perfectly plastic
mode I three-dimensional crack tip field has been studied systematically using boundary
layer formulations. These solutions are complemented by full-field analyses of deeply
cracked bend bar and cenlre crack panels in varying thicknesses (B/(W-a) =1, 0.5 and 0.1)
while maintaining the crack to ligament ratio at &/W = 0.5, The three dimensional fields are
compared with the plane strain small scale yielding field, and the plane stress slip line
fields as limiting two dimensional solutions. Within this context the analysis addresses
evolution of crack tip fields from the centre of the plate (mid-plane) to the free surface, as
well as the way in which the structure of the fields changes from small scale yielding to
full plasticity, The analyses jnevitably produce a large amount of fundamental data which
is presented in this chapter. Subsequent chapters draw out systematic and unifying trends

in the data leading finally to a simple constraint estimation scheme.

The results ate presented in three sections. Section 5.1 discusses crack tip deformation and
the development of plasticity at the crack tip, Section 5.2 initially describes the asymptotic
field at the crack tip, (r = 0) and at r = 2J/0,. This section is sub-structured into sections
which consider; boundary layer formulations; modified boundary layer formulations,
deeply cracked bend bars, and finally centre cracked panels. Section 5.3 focuses on two
important stress components which control fracture toughness: the mean or hydrostatic
stress and the maximum principal stress. Interest is focused on the plane directly ahead of
the crack (& = 0%), and the way on which the stress field changes with distance. Section 5.4
discusses the proximity of the three dimensional fields to the plane strain and the planc

stress fields using boundary layer formulations; deeply cracked bend bars and centre



Chapter 5. Three-Dimensional Elastic-Plastic Fields 192

cracked panels. Finally a systematic pattern of constraint loss in three-dimensional crack

tip field emerges which is discussed in Chaplers 6 and 7.
5.1 Crack Tip Deformation and Plasticity

In this section, the evolution of the plastic zone at the crack tip is described from small
scale yielding to full plasticity. The shape of the plastic zone is compared with plaslic zone

shapes {Tom two-dimensional plane strain and plane stress analyses.
5.1.1 Crack Tip Deformation
5.1.1.1 Boundary Layer Formulations

An elastic-perfectly plastic analysis of the crack tip field in a thin plate has been carried out
using three-dimensional boundary layer formulations. The model is shown in Figure 4.3
(a), (b) and {c). In contained yielding, the elastic field is driven by the stress intensity
factor, K, which dominates the far field. This is related to the remote value of I, I, by the

relationship:

J oy = 5.1

The deformation level is quantificd by a non-dimensional grouping, Qe

J
Qp =—2— (5.2)
[0 22 5

where Jg, is the J-integral at the outer boundary determined from the applied stress
intensity factor K using equation (5.1). As usual 0, is the yield stress, &,, the yield strain

and t is the plate thickness. The data from three-dimensional boundary layer formulations

are presented at deformation levels, €24, = 1, 3, 5, &, 20. Although the remote deformation
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is uniform, Lthe intensity of deformation as quantified by the local values of the J-integral,
Jioc vatics along the crack front. Local values of J were determined by the domain integral
method as implemented in ABAQUS (2003). Path independence is maintained close ta the
crack tip, but at contours remote from the tip, J converges to the applied value of I.
Following equation (5.2), the non-dimensional deformation can also be interpreted at a
local level as Q. when J is interpreted as the local J. Table 5.1 shows how far ficld
deformation translate into local deformation levels along the crack front; at the mid-plane
X3/t = 0; the quarter plane xs/t = 0.25; near the free swface x3/t = 0.49 and at the fice

surface x3/t = 0.5.

Figure 5.1 shows the variation of Jj,, normaliscd by the remotely applied I, Ig,, along the
crack front at five deformation levels, Qg = 1, 3, 5, 8, 20. It shows that the local values of
J are amplified over the remotely applied value of J near the mid-plane but attenuated near
the free surface. At all deformation levels the local J profiles interscct al x5/t = 0.2 and

decrecasc as the free surface is approached.

5.1.1.2 Modified Boundary Layer Formulations

It is well known from two-dimensional plane strain analyses that the T-stress affects the
shape of the plastic zone and the hydrostatic component. The effect of the T-stress has
been studied in three dimensional fields at a deformation level Qe = 8 by applying
positive (+0.50,) and negative {-0.56,) T-stresses 1o the thin plate as a modified boundary
layer formulation, in remote plane stress as given in equation (2.149). Table 5.2 shows the

far-field deformation levels and the corresponding local values along the crack front at x3/t
=0, 0.25, 0.49 and 0.5.

Figure 5.2 shows the effect of changing the T-stress on the lacal J along the crack front. At
the mid-plane (x3/t = 0), the local values of J are amplified, while the T,p, = 0 solution is
similar to the Tpp/0s = 0.5 solution. This is due to the fact that three-dimensional boundary

layer formulations develop an inherently positive biaxiality even if no 1-stress is applied
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remotely. The normalised value of J does not change with deformation as the frec surface

is approached at x5/t = 0.2.

5.1.1.3 Full-field Solutions.

To study the development of plasticity in {inite specimens, two fracture mechanics
specimens were examined from small scale yielding to full plasticity. To represent a highly
constrained configuration, a deeply cracked single edge notch three-point-bending (SENB)
specimen with an a/W ratio of 0.5 was chosen. To represent configurations which lose in—
plane constraint a centre cracked tension panel (CCP) with an a/W ratio of 0.5 was chosen.
The centre cracked panel has negative biaxiality as shown in Figure 4.16, in contrast to the

positive biaxiality of the bend bar, which is shown in Figure 4.14.

The loading of the SENB and CCP specimens are shown schematically in Figure 4.5, For
the three-point SENB specimen, a line displacement was applied across the thickness at
distance I/W = 3 from the crack flanks. To study the loss of out-of-plane constraint, three
different thicknesses were studied: B/(W-a) = 1, 0.5 and 0.1 where B, is the thickness, W is
the width and a is the crack length, a/W = 0.5.

Initially, local plasticity developed at the crack tip. As the levels of loading are increased, a
plastic hinge formed in the bend specimen which combined with local plasticity at the
crack tip. In contrast, plasticity in the centre cracked tension panel (CCP) spread to the free
surface in two bands inclined at 45 degrees to the tensile axis. The levels of deformation on

both specimens is conveniently quantified by the non-dimensional grouping j:

Hoo= ‘ (3.3)

where ¢ = (W-a) is the uncracked ligament. When J is interpreted as the far field value Jg;,
L represents the remote deformation. When J is interpreted as the local value at a particulax

section on the crack front, Jiocal, |t represent the local deformation on the crack tip. The
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parameter | is related to the J-dominance criterion for plane strain fields discussed by
McMeeking and Parks (1979) and Shih and German (i1981). To ensure the deformation
levels in full-field solutions can be compared to boundary layer formulations, the
deformation levels along the crack front has also been shown in terms of Q. The
deformation levels can also be described in terms of load over limit load or simply (M/Mo
in bend bars or P/P, in centre cracked tension panels). Miller (1988) provides a
comprehensive list of limit load calculations for structures containing defects. For SENB

with /W > 0.295, the limit moment, M,, per unit thickness is given by:
1.15W? 2
p, =1V 0 1.261[1—,—“—) (5.4)
4 w

The applied moment, M can be calculated from equation (4.5). The CCP limit load, Py, per
unit thickness given by Miller (1988) is :

w5 () e

The applied load, P, can be calculated from equation (4.8). Tables 5.4 and 5.5 show the
local values of J non-dimensionalised as Q. and in terms of the non-dimensional local

load  at different sections through the thickness of both SENB and CCP geometries.

Figures 5.3(a), (b) and (c) show the local deformation levels (cGo/Jic) in the three bend
bars while Figures 5.4(a), (b) and (c) show the local deformation levels in the centre crack
tension panels. In the bend bars, the deformation was applied until the Iimit of J-
Dominance was approached on the mid-plane (4 = 25) McMeeking and Parks (1979) and
Shih and German (1981). In the bend specimens, J-Dominance is limited by the global
bending field which affects the in-plane constraint at the crack tip. In contrast, CCP
geometries are not limited in this way and maintain two-parameter (J-Q/T) characterisation

to higher deformation levels.
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5.1.2 Crack Tip Plasticity

5.1.2.1 Thin Plate Boundary Layer Formulations

The development of plasticity depends on the local variation in J and constraint along the
crack front, The radius of plastic zone for deformation levels Ji/Cotot = 1, 3, 5, 8, 20 in
the 6 = 0° direction are #/t = 0.3, 1, 1.6, 2.5, 6 and are tabulated in Tablc 5.3, The plastic
zone shape is shown non-dimensionalised by ¢ or by Jio/0, in Figures 5.5 (a), (b) and (¢)

and 5.6 (a), (b) and (c) at the mid-plane, the quarter plane and the free surface.

At low levels of deformation, the plastic zone on the free smface develops a shape similar
to that exhibited by two-dimensional plane strain solutions. In contrast, the plastic zone
shape at the mid-plane is initially similar to that which develops in plane stress. However,

at higher deformation levels, a plane stress like plastic zone develops at all sections.

From a classical viewpoint, a plane strain shaped plastic zone might be cxpected at the
mid-plane while the plane stress shape might be expected to develop on the free surface.
However in three-dimensional solutions, this docs not happen. The current observations
can be explained by noting the variation of local J along the crack front. The local values
of T are highest on the mid-plane offsetting constraint differences, while lower values of J

develop on the free surface,

At the free surface, the three-dimensional plastic zone shape resembles the two-
dimensional plane strain shape. This behaviour was also noted by Benthem (1977) who
comnmented that the plastic zone shape estimated from linear elastic corner solutions
closely resembled the plane strain plastic zone shape. As deformation increases, a plane

stress shape plastic zone with a small elastic enclave develops near the crack front.
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5.1.2.2 Modified Boundary Layer Formulations

The plastic zone shapes associated with applied T-stresses at a remole deformation level
Qg = 8 are shown in Figures 5.7 (a), (b) and (c¢) and 5.8 (a), (b) and (c) for the mid-plane,

the quarterplane and the free surface for all three thicknesses.

At the mid-plane, the applied positive T-stress and zero applied T-stress formulations show
a plastic zonc which fully envelops the crack tip. While the negative applied T-stress
allows un elastic wedge to form on the crack flanks. At the quarter-plane, the plastic zone
fully envelops the crack tip for positive, negative and zero applied T-stresses. While at the
free surface, plasticity does not encompass the crack tip, and elastic sectors appear on the
crack flanks for all values of applied T-stress either positive, negative or zero. The
maximum extent of plasticity for positive T-stresses increased to 1/t = 2.6 directly ahead

the crack, compared to r/t = 2.0 for Typ, = 0.
5.1.2.3 Full-field Solutions.

The development of plasticity in full-field solutions can be discussed within the context of
the slip line fields illustrated in Figures 2.24 and 2.25 for CCP and SENB. At low load
levels, the plastic zone in all the SENB specimens develops a small scale yielding plane
strain like shape for all sections through the thickness as shown in Figures 5.9-5.14 (a)}, (b)

and (¢) for the mid-plane, the quarterplane and the free surface.

As the load increases, two plastic zones develop, one at crack tip and one on the
compression surface of the bend bar. The two zones grow and coalesce as the applied load
‘increases. The development of the plastic zone in the thinnest bend specimen is similar to
that in the boundary layer formulations. At low loads, the plastic zone shape is more
similar to the plane strain shape at the free surface than at the mid-plane. At high
deformation levels in all thrcc thicknesses of the bend bar, the plastic zone shape
approaches the slip line field of a deeply crack bend bar shown in Figure 2.25 as discussed
by Ewing (1968) and Green (1953). As with the boundary layer formulations, an elastic
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enclave develops on the free surface near the crack front as the deformation level

increcases.

Figures 5.15-5.20 show the development of plasticity for all the CCP specimens. At low
load levels in the thickest CCP specimen, the plastic zones are similar ta a plane strain
plastic zone but the plastic lobes are inclined at 45 degrees in all scctions. However, at
comparable load levels, the plastic zone for the intermediate thickness B/{W-a) = 0.5 and
the thin B/(W-a) = 0.1 CCP spccimens resemble a plane stress plastic zone at all sections.
As deformation increases, the plastic zones extend across the ligament as a 45 degrees

shear bands in the way illustrated to Figure 2.24.

It is evident from three-dimensional crack tip analyses, that the development of plasticity
changes from an almost gecometry independent plane strain plastic shape at very small

deformation levels to a geometry dependent field in full plasticity,
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5.2 The Asymptotic Crack Tip Fields (r = 0)

Section 5.2 describes the asymptotic ficld at the crack tip (r = 0) as modelled by boundary
layer formulations and full-field solutions. Initially the method by which the data was
processed is described. This is followed by the results of three-dimensional boundary layer
formulations at sections from the mid-plane to the free surface. A similar procedure is then
followed for the full field solutions of bend bars with three different thicknesses. Finally
the asymptotic stress field of centre cracked panels with three different thicknesses is
described. Each sub-section presents the stresses at three representative sections: the mid-
plane; the quarter plane and the free surface. This is followed by a detailed presentation of

the development each of the stress components through the thickness of the plate.

5.2.1 Data Extraction Procedures

Three-dimensional crack tip fields have been analysed using boundary layer formulations
and full-field SENB and CCP geometrics using the commercial finite element software
package ABAQUS v 6.3 (2003). Post-processing routines were written using Python code
available in ABAQUS. The routine extracted the stresses and strains along radial lines at

10 degrees intervals around the crack tip and stored them in a report file (*.1pt).

The asymptotic crack tip stresses at cach angle were obtained by extrapolating the data to
the crack tip using Matlab v 5.3 (1998) programs which read the data from the report file
and fitted a linear curve through nodal values. The asymptotic crack tip stresses were then
written to an output file (*.out). Subsequently the data were structured and sorted through
cach element layer at each deformation level using Microsolt Excel. The specific sections
in (x3/t}) and (z/t) along the crack front where the stress components are presented are given
in Table 5.6

5.2.2 Boundary Layer Formulations

The asymptotic crack tip stresses in Cartesian and cylindrical co-coordinates are shown at

the mid-plane; at the quarter plane; and at the frec swmface in Figures 5.21-526 at
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deformation levels Qp= 1, 3, 5, 8, 20. The plastic zone sizes for the corresponding levels
of deformations are 0.1z, 0.6¢, 1.2¢, 2¢ and 5.5¢. In all the figures, the solid lines correspond

to the plane strain small scale yielding solution (T = 0).

At the mid-plane, xs/t = 0 (Figures 5.21-5.22), the results clearly show that a fully
constrained field is maintained at the crack tip even at the highest deformation level when
the radius of the plastic zone is more than five times the plate thickness. At low
deformation levels the stresses are close to the two-dimensional small scale yielding plane
strain (T = 0) solution. Higher constraint levels than the small scale yielding solution
develop with deformation because the three-dimensional boundary layer formulation
possesses an inherently positive T-stress. In the angular range -45° < 8 < 45°, the in-plane
stresses G711, G2, G2 are constant and independent of angular co-ordinate. Similarly in this
sector the mean stress, O, and the out of plane stress, Gas, are also independent of angle as

expected from a constant stress region sector in a plane strain field

Trailing the constant stress sector, the stresses in the angular range 45° < @ < 135°
correspond to the centred fan of the planc strain field. The hoop and the radial stress are

closely similar and decrease linearly with angle, while the shear stress, Gyq, is equal to the

yield stress in shear, €

—2..

V3

At low levels of deformation elastic sectors appear on the crack flank as expected from the
plane strain small scale yielding field discussed by Du and Hancock (1991). However at
increased levels of deformation plasticity spreads to the crack flanks as a positive T-stress

develops.

At the quarter plane, X3/t = 0.25 (Figure 5.23-5.24), there is a loss of constraint which
causes the direct stresses on the leading sections ahcad of the crack tip to decay with
deformation. The constraint loss is an out-of-plane effect which is associated with the loss

of plane strain, discussed in more detail in Chapter 6. Directly ashead of the crack, in the

angular range -45” < 0 < 45° a constant stress sector appears as shown by the Cartesian
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stresses illustrated in Figure 5.24. In this sector, the mean stress is independent of angular
co-ordinate but is Iess than the fully constrained value of 2.976,. On the mid-plane the out-
of-plane shear stresses o3 and o3 are necessarily zero due to symmetry as shown in
Figure 5.35 and 5.36. However these shear stresses are also low on the quarter plane and
the stress state in the sector ahead of the crack is essentially gencralised plane strain in

which the out-of-plane strain may be non-zcro, but o33 is a principal stress.

Trailing the constant stress sector a degenerate centre fan appears in the angular rangc 45°
< 9 < 135° Here the hoop and the radial stresses are similar but not identical (as rigorously
required by a plane strain centred fun). However both the radial and the hoop stress

decrease linearly with angle although angular stress gradients ag_ér :.3%1& :aaiéu .2k are less

than that required by a plane strain field. Nevertheless the shear stress Gy is independent

of angle and is close to the yield stress in shear f’/_o_ as required by plane strain centred fans.
' 3

Finally in the trailing sector on the crack flanks the direct stress o, und shear stress o2
remain close to the plane strain values however the direct stress ¢y differs from the plane
strain field. The Mises stress shown in Figore 5.37 demonstrates that yielding occurs all

around the crack tip.

The crack tip stresses at the free surtace, x3/t = 0.5 are shown in (Figure 5.25-5.26). The
leading sector -45° £ 0 < 45° again comprises a constant stress regime in which the
Cartesian stresses and the stress invariants are independent of angular co-ordinate 6. The

stress system in this sector is a simple state of uniaxial tension at the yield stress:
00 =05 011 =0122013=03=03~0r—0,53—0 (5.6)
Trailing the constant stress sector is a sector in the approximate range 45° < @ < 135° The

shear stress reduces from the plane strain value and the angular span of the constant shear

stress region reduces to 60 to 80 degrees. However, unlike the related plane strain sector,
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the radial stress is consistently greater than the hoop stress. In comparison with the mid-

oo A0 4
g

plane, the angular stress gradients . and are very much less than the plane

strain gradient of -2k. Finally on the crack flanks an elastic sector appears in the angular

range 160° <0 < 180°, as shown in Figure 5.37.

The free surface field should be compared with the two dimensional plane stress field
which is shown in Figure 2.18. The plane stress field features a curved fan sector ahead of
the crack in which the streses change with angle as given by equations (2.114 ~ 2.116). In
contrast, the free surface field exhibits a constant stress sector in which the Cartesian
stresses and the stress invariants are independent of angle. In the plane stress field the
curved fan is complemented by an elastic sector to the crack flanks in the range 0° < 8 <
39.126°, Sham and Hancock (1999). However in the free surface field plasticity extends

over the approximately range 0° < 8 < 160° as shown in Figurc 5.37.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress,
the mean siress and the Mises stress at sections tabulated in Table 5.6 are shown in Figures
5.27-5.37. The data are given in both cylindrical and Cartesian co-ordinates. In the leading
sector (0° < O < 459, the Cartesian stresses 031, G232, O12, O do not change with angle and
can be regarded as comprising a family of constant stress sectors from the mid-plane to the
frce surface. This is most clearly seen in Figures 5.31 and 5.34 which show 63; and 6. In
this family of fields, the mean stress changes systematically from the mid-plane to the free
surface as shown in Figure 5.34. The change from the mid-plane to the free surface is
accompanied by a change in strain state from plane strain to uniaxial tension. Thus the
fields are rigorously not part of the plane strain family of I-Q/T fields which are
deviatorically similar, but hydrostatically different, as these field differ hydrostatically, but
also deviatorically. At the mid-plane the stress system corresponds to the fully constrained
plane strain field which evolves to a state of simple uniaxial tension at the yield stress on

the free surface.
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In the sector from 45 to 135 degrees, the shear stress o does not change with angle and is
closc to the yield stress in shear near the mid-planc. However the angular span of this
sector becomes smaller toward the free surface and the shear stress eventually decays from

the yield stress in shear as shown in Figure 5.29.

The out-of-plane shear o3 shown in Figure 5.35 is not completely non-zero around the
crack tip in contrast to the 0,3 which can be regarded as being zero aound the crack tip as
shown in Figure 5.36. Figure 5.35 shows that the out-of-plane shear stress, 613, at the mid-
plane, is zero as indicated by the diamond markers and required by symmetry. The free
surface field shows a near zero out-of-plane shear in front of the crack. Within the angular
range of 45 to 135 degrees, out-of-planc shear, 613 is slightly negative. However, at the

trailing sector, the out-of-plane stress, o3 approach zero to the crack flank.

5.2.3 Modified Boundary Layer Formulations

The effect of the T-stress is shown in Figures 5.38-5.43 for the mid-plane; the quarter
plane and the free surface using cylindrical and Cartesian co-ordinate systems, A positive
T-stress, Tapp = +0.56, and a negative T-stress, Ty, = -0.50, were applied at a level of
detformation Qf,, = 8. The effect of a negative T-stress is to decreasc the direct stresses,
(Cog, Or) around the crack tip unitformly from the plane strain field at the mid-plane and
quarter plane, while the shear stress 6.9 remained unaffected as shown at the mid-plane and
the goarter plane in Figure 5.38 and 5.40. In the mid-plane of the plate the effect of applied
T-stresses is the same as that observed in two-dimensional plane strain solutions. Negative
T-stresses reduce the mean stress, giving rise to a Tamily of fields which are broadly

deviatorically similar, but hydrostatically different.

However at the free surface and near the free surface the effect of the T-stress is distinctly
different. At the free surface (Figures 5.42 and 5.43), the hoop stress directly ahead of the
crack is unaffected by the applied positive and negative T-stress. However directly ahead
of the crack the radial stress for an applied positive T-stress is nearly hall the hoop stress

which may suggest that the free surface field at this orientation approachcs a plane stress
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field when the T-stress is highly positive. However, this is only obscrved directly ahead of
the crack tip (0 = 0°), while at the remaining angles the free surface field does not show
any similarity to the plane stress field. A negative T-stress causes the radial stress on the

free surface to drop to zevo and leads to a state of pure tension directly ahead of the crack.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress,
the mean stress and the Mises stress at the sections tabulated in Table 5.6 are shown in
Figutes 5.44-5.52 for positive and negative applied T-stresses. The direct stresses through
the thickness increase or decrease by the same amount according to the applied T-stresses
in the leading sectors ahead of the crack front. The in-planc shear stresses for applied
positive and negative T-stress are largely unaffected within the angular range 0° < 8 < 90°,
However in the trailing sector 90° < 8 < 180°, the effect of applied T-stress affects the

fields, although the out-of-plane shear stresses are largely unaffected.

The Mises stress is given in Figure 5.52. The figure shows that negative T-stresses incrcase
the angular span of elastic wedge from the crack flanks compared to the T= 0 field, In the
positive T-stress field, plasticity completely envelops the crack tip from the mid-plane to

the free surface.

5.2.4 SENB Solutions

This section describes the stress field which develops at the crack tip in deeply cracked
three point bend bars of three different thicknesses, B/(W-a) = 1, 0.5 and 0.1 with a/W =
0.5.

5.2.4.1 Thick Specimen (B/(W-a) = 1)

Initially the asymptotic stress field is shown at the mid-plane; the quarterplane; and the free
surface of a thick SENB specimen, B(W-a) = 1, This is given from small scale yielding to
the limit of J-Dominance on the mid-plane in Figures 5.53-5.58. For reference, the solid

lines show the small scale yielding plane strain (T = 0) field. Figures 5.53 and 5.54 show
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that at the mid-plane the asymptotic stresses are close but slightly higher than the plane
strain (T = 0) values. The same effect can also be seen at the quarterplane (Figure 5.55 and

5.56) where the plane strain field is maintained around the crack tip at all angles.

As the free surface is approached (Figure 5.57 and 5.58), the stresses directly ahead of the
crack drop to a field which is distinctly different to the plane stress field, but similar to that
on the free surface of thin plate boundary layer formulations. Notably in the leading sector,
therc is a state of uniaxial tension (Ogg = Og, O = Gy = O, = 0). In contrast, the Sham and

Hancock (1999) plane stress field features a bi-axial stress system in which :

O-go = 20-”.’ O',,O =0 = 0 (5 7)

2z

The development of the direct stresses, the in-plaﬁe shear and the out-of-plane shear
stresses, the mean stress and the Mises stress are shown in Figures 5.59-5.68. The direct
stresses are maintained at a level close to the plane strain (T = 0) {field from small scale
yielding to full plasticity. While the constraint loss through the thickness at all sectors (0° <

f < 180°) shows a similar pattern for all load levels. Within the sector 45° < 8 < 135°, the

a(;’ » and 9% reduce systematically from the mid-plane to the
g 00

angular stress gradients

free sutface.

The in-plane stresses (Figures 5,61 and 5.64) show that the stress field around the crack tip
and through the thickness are similar to the plane strain (T = 0) field within the angular
range 0° < 0 < 90° At angles approximately greater than 90 degrees, the in-plane shear
stresses reduce through the thickness. The out-of-plane shear stresses (Figures 5.06 and

5.67) 013 and 023 show a similar behaviour (o the boundary layer formulations.

The Mises stress as a function of angle from small scale yielding to full plasticity is shown
in Figure 5.68. At the mid-plane, plasticity completely cnvelops the crack tip field even at

low load levels. In contrast, an elastic sector can be seen to develop in sections close to the
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free surfacc at very low load levels. However, at increased load levels, plasticity fully

envelops the crack tip field at all sections.

5.2.4.2 Intermediate Thickness Specimen (B/(W-a) = 0.5)

The asymptotic stress fields in the intermediate thickness bend bar, B/(W-a) = 0.5 are
shown in Figures 5.69-5.74 at the mid-plane; the quarter planc and the free surface using
cylindrical and Cartesian co-ordinate system. At the mid-plane, the asymplotic stresses are
close to the fully constrained plane strain (T = 0) ficld as on the mid-plane of the thick
bend bar.

At the quarter plane, constraint is lost as shown in Figure 5.71 and 5.72. The constraint loss
is evidenced by a drop in the direct stresses while the shear stresses remain unchanged. As
in the boundary layer formulations, which show constraint loss with increase in
deformation, constraint loss in SENB is caused by the global bending field which perturbs

the local crack tip field with increasing levels of deformation.

At the free surface (Figure 5.73 and 5.74), an elastic-plastic corner field can be identificd
directly ahead of the crack. In this field, a uniaxial constant stress sector develops in the
leading sector -45° < & < 45° similar to that obsetved on the free surface of the boundary

layer formulation.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress,
the mean stress and the Mises stress are shown in Figures 5.75-5.84. In the intermediatc
thickness SENB specimen, the components of stress were similar to the thick SENB
specimen. A reduction of fifty percent in the thickness while maintaining the in-plane
dimensions docs not affect constraint. To examine the effect of thickness on constraint, a

much thinner specimen was generated, B/(W-a) = 0.1.
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5.2.4.3 Thin Specimen (B/(W-a) = 0,1)

In the thinnest SENB specimen, B/(W-a) = 0.1, the asymptotic stress field at the mid-plane,
the quarterplane and the free surface are shown in Figure 5.85-5.90. At the mid-plane
(Figures 5.85 and 5.86), the stresses are close to the plane strain (T = 0) values within the
leading sector -45° < 6 < 45° at small levels of deformation. However, at deformation levels
close to limit of plane strain J-Dominance (as measured at the mid-plane) constraint is lost
at the mid-plane. The constraint loss is associated with a reduction in the direct stress while

maintaining the shear stresses.

On the quarter plane, x3/t = 0.25 (Figure 5.87-5.88), therc is a loss of constraint which
causes the direct stresses on the leading sections ahead of the crack tip to decay from the
plane strain (T = 0) field. Directly ahead of the crack, in the angular range -45° <0 <45° a
constant stress sector appears as shown by the Cartesian stresses illustrated in Figure 5.88.
In this sector, the mean stress is independent of angular co-ordinate but is less than the

fully constrained value of 2.970,,.

Trailing the constant stress sector a degenerate centre fan appears. In plane strain centred
fans, the radial and hoop siress are equal to cach other and reduce with angle. However in
the thinnest SENB specimen, the hoop stress and the radial stress reduce but are not equal.
The angular span of the fan-like feature reduces with deformation. At low levels of
deformation it extends from 45 to 110 degrees while at high levels of deformation near the
limit of plane strain J-Dominance the centred fan extends from 45 to 80 degrees.

Nevertheless the shear stress ;9 is independent of angle and is equal to the vield stress in

shear 31 as required by plane strain centred fans. Finally in the trailing sector on the crack
3

fanks, the direct stress a3, and shear stress o7, remain close to the plane strain (T = 0)

values although the direct stress o, falls.

On the free surface directly ahead of the crack tip, Figure 5.89-5.90, a corner field again

develops. This is similar to that found in the modified boundary layer formulations with
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positive T-stresses. As deformation increascs, the radial stress at 8 = 0° tends to increase
and approaches a plane stress field. This can be attributed to the inherently positive T-
stress of very thin bend bars as shown in Figure 4,14, However, at all other angles, the free

surface field differs significantly from the plane stress field.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress,
the mean stress and the Mises stress at sections as tabulated in Table 5.6 are shown in
Figures 5.91-5.100. In small scale yielding, the stress fields through the thickness behave
in similar way to the thin plate boundary layer formulation. Within the forward sector —45°
< 0 < 45°, the direct stresses show constraint loss but feature a constant stress sector, The
sector outwith the —45 < 8 < 45 degrees shows a slightly different feature at deformation
levels smaller than co/J <1284.3. The out-of-plane shear stresses (Figure 5.98 and 5.99)
are generally unaffected at all angles. The 0,3 shear component is close to zero at all angles
through the thickness while the 613 shear component is finite and similar to the boundary
layer formulations, The Mises stress shows a similar behaviour to thick and intermediate
thickness SENB plates in which the sections near the free surface arc clastic at low levels

of deformation but are engulfed by plasticity as deformation devclops.
5.2,5 CCP Solutions.

This section describes the stress field which develops at the crack tip in deeply cracked
tension panels of three different thicknesses, by B/(W-a) = 1, 0.5 and 0.1. The important
point to note about the CCP geometry is that it features a compressive T-stress which leads
to a loss of in-plane constraint. Thus in full three-dimensional specimens, constraint loss

arises from both in-plane and out-of-plane effects.
5.2.5.1 Thick Specimen (B/(W-a) = 1)

Initially the asymptotic cylindrical and Cartesian stress field is shown at the mid-plane; the

quarter plane; and the free surface of a thick specimen, B/(W-a) = I in Figures 5.101-



Chapter 5. Three-Dimensional Elastic-Plastic Fields 209

5.106. The figures show the asymptotic hoop, radial and shear stress al the mid-plane; the

quarter plane; and the free surface at low levels of deformation to full plasticity.

At the mid-plane (Figures 5.101 and 5.102), the effect of in-planc constraint loss within
the leading sector -45° < 8 < 45° causes the direct stresses to fall from the fully constrained
plane strain value. However the shear stresses remain similar to the plane strain shear
stress within the same angle. In the sector 45° < B < 135°, the effcct of compressive T-
stress inherent for CCP specimens causes a decrcase in the angular span of the centred fan.
This directly affects the angular extent of plasticity around the crack tip. An elastic field

dominates trailing the angle 8 > 135° where the yield critcria is not satisfied.

At the quarter plane, constraint is lost due to both in-plane and out-of-planc etfects as
shown in the forward sector Figure 5.103 and 5.104. The constraint loss is evidenced by a
drop in the direct stresses while the shear stress remain unchanged. The direct stresses in
the sector 45° < 0 < 135° show a further decrease in the angular span of the centred fan
when compared to the stress field on the mid-plane. The trailing sector is elastic similar to

the trailing sector of the mid-plane.

Directly ahead of the crack on the free surface (Figure 5.103 and 5.106), an elastic-plastic
corner field characterised by a uniaxial tension sector can be identified which is similar to

the free surtace of the boundary layer formulation and the SENB specimens.

The development of the direct stresses, the in-plane shear and the out-of-plane shear stress,
the mean stress and the Mises stress are shown in Figures 5.107-5.116. In-plane effects
cause the direct stresses to drop in responsc to the level of compressive T-stress, The direct
stresses are then influenced by an out-of-plane cffect similar to those observed in boundary
layer formulation or the full-field SENB solutions. In all three contigurations, the free

surface field exhibits an elastic-plastic corner field.

The in-plane shear stresses are similar to the plane strain field within the plastic sectors,

while the out-of-plane shear stresses are similar to the boundary layer formulation and the
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full-field SENB solution. The Mises stress in Figure 5.116 shows that the clastic wedge on
the mid-plane is bigger than at the free surface. Increase in deformation levels causes the

span of the elastic wedge to reduce from the mid-plane to the free surface.

5.2.5.2 Intermediate Thickness Specimen (B/(W-a) = 0.5)

The asymptotic stress field in the intermediate thickness CCP specimen, B/(W-a) = 0.5 are
given in Figures 5.117-5.122 while the development of the direct stresses, the in-plane

shear and the out-of-plane shear stress, the meun stress and the Mises stress are shown in
Figures 5.123-5.132.

From these figures, it is clear that the stress fields are similar to the thick specimen. This is
consistent with the level of T-stress which is close to the thick CCP specimen particularly
at the mid-plane as shown in Figures 4.15 to 4.17. However as the free surface is
approached the level of T-stress in the intermediatc thickness specimen increases
markedly. This canses the span of plasticity around the crack tip to increase toward the free

surface as shown in the Mises stress in Figure 5.132.

5.2.5.3 Thin Specimen (B/W-a) = 0.1)

A thin specimen, one-tenth of the thickness of the thickest specimen, was generated to
examine out-of-planc effects in a very thin CCP specimen. The asymptotic stress fields are
presented in Figures 5.133-5,138 while the development of the direct stresses, the in-plane
shear and the out-of-plane shear stress, the mcan stress and the Mises stress are shown in
Figures 5.139-5.148.

At the mid-plane within the leading sector (-45° < 8 < 45°) as shown in Figures (5.133 and
5.134), the stress field featurcs a constant stress sector in which the direct stresses are
reduced because of the in-plane effect associated with a compressive T-stress. However the
in-plane shear stresses are similar to the plane strain (T = 0) field in the lcading sector as

shown in Figures 5.141 and 5.145. The sector 45° < 8 < 135° shows that the direct stresses
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reduced with angle. In the trailing sector, the yield criterion was not fulfilled leading to

elastic sectors as shown by the Mises plot of Figure 5.148,

At the quarter plane (Figures 5.137 and 5.138), the stress field exhibits further constraint
loss due to out-of-plane effccts which occur at all angles. At the free surface, the forward
sector exhibits a constant stress uniaxial tension field similar to the boundary layer

formulation and the SENB specimens.

The out-of-plane effect in the thin specimen features a similar constraint loss as discussed
in the thick and intermediate thickness CCP specimens, However, the Mises stress shown
in Figure 5.148 indicates an increasc in angle span of plasticity around the tip because thin

CCP specimen have a less negative T-stress than thick specimens.
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5.3 Stress Field Ahead of the Crack ¥ront (0 = 0%)

5.3.1 The Mean Stress and the Maximum Principal Stress

In this part of chapter 5, attention is focused on two stress components which are
particularly important in fracture mechanics: the hydrostatic stress or mean stress, O, and

the maximum tensile siress or Lhe hoop stress, Gag, divectly ahead of the crack

T'racture mechanisms can be broadly described as being ductile or brittle. In ductile failure,
crack extension occurs by the nucleation, growth and coalescence of micro-voids which
form at inclysions and second phase particles by interface decohesion or particle cracking.
The voids grow by plastic strain and mean stress, and finally coalcsce with the blunting
crack tip. Rice and Tracey (1969) have given an analysis of the growth of a spherical hole
in a perfectly plastic matrix in terms of rate of change of the mean hole radius R with

plastic strain as:

e ™ (5.8)
R dgp 2

The void growth rate is markedly amplified by the mean stress or triaxiality &, /o, which

is known to affect ductility as shown experimentally by Hancock and Mackenzie (1976).

In contrast, brittle failure occurs by the low energy separation of atomic planes through
cleavage. This occurs when the maximum principal stress attains a critical value Ggg = G,
over a characteristic micro-structural distance, 1 = r. (usuvally two grain diameters) for 6 =
0° as discussed by Ritchie, Knot and Rice (1973).

The maximum principal stress and the mean stress, Oy, are thus important drivers for two
mechanisms of crack cxtcnsion. In this section, the stress state ahead of the crack front is
investigated with particular refcrence to the mean stress and the hoop stress normalised by
the yield stress, o, while the radial distance ahead of the crack front, 1, is non-

dimensionalised by J/o,. The investigations attempt to show the transition from planc
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strain to plane stress in the three-dimensional field ahead of the crack front, and to
systematically examine the applicability of constraint based fracture mechanics to three-

dimensionat crack tip fields.
5.3.2 Boundary Layer Formulations

Figures 5.149-5.150 show the mean stress directly ahead of the crack while Figures 5.151-
5.152 show the hoop siress. Data is presented between the crack tip and a distance r
=10J/a,, on sections from the mid-plane to the free surface, and at deformation levels L,
= 3 and 8. At these deformation levels, the mean stress, 6 = 2.3906,, and the hoop stress,
Oy = 2.970, at the mid-plane crack tip correspond to a fully constrained field. At both
levels of deformation, the hoop and the mean stress decrease with distance from the crack
tip. The difference between the stresses on the mid-plane and that on any given section is
almost distance independent (i.e. the stress profiles are broadly parullel). However an
increase in deformation is shown to increase the stress gradient. Similar observations are

presented for the hoop stress in Figure 5.151-5.152,

The effect of deformation on the mean and hoop stress on the mid-plane and free surface
are shown in Figures 5.153 and 5.154. The meén and hoop stress become increasingly
dependent on distance as the deformation level increases. At the crack tip, the mean and
the hoop stress approach the limiting plane strain value at the mid-plane. However at the
free surface, stress field can not be simply identified as being a plane stress field because

the stresscs attained in a perfect plane stress field (6 = 0°) are oy, = 0.5770,, 0ge = 1.150..

To determine the location of the plane stress field, the hoop stress has been used as shown
in Figure 5.155. This figure shows the hoop stress ahead of the crack front at i/t = 0.013
and 1 for various levels of deformation and on sections normal to the crack front. On the
mid-plane, the hoop stress approaches the plane strain value of 2.970,. However at i/t = 1,
the hoop stress on the mid-plane and on the free surface arc both close to gy = 1.150,,

indicating a plane stress-like field. Detailed insight into the hoop stress at Ju,/0.8,f = 8 is
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shown in Figure 5.156 in which the hoop stress reduces across the thickness until at a

distance, r = t a plane stress field dominates across the full section.

5.3.3 SENB Stress Field

In this part of chapter 5, the hoop and mean stress in full-field SENB solutions are shown
at the mid-plane and the free surface ahead of the crack front for a sequence of increasing

levels of deformation and for three different thicknesses, B/(W-a)= 1, 0.5 and 0.1.

Figures 5.157-5.159 show the hoop stress at the mid-plane and at the free surface at
increasing levels of deformation. In this series of figures, those denoted (a} describe the
mid-plane. In all cases, the hoop stress at the crack tip on the mid-plane is close to the
limiting value of o, = 2.970, for all thicknesses. Ahead of the crack front, this stress is
maintained at a distance of 2J/c, in the two thicker specimens. However, in the thinnest
specimens, the plane strain constraint hoop stress is lost immediately. At small distances
from the crack tip, the hoop stress becomes distance dependent. For the thinnest specimen,
the hoop stress eventually approaches 1,150, at the free surface indicating a plane stress

field at a distance 5J/6, when the deformation level, y, is greater than 82.4.

In the series of Figures 5.157-5.159, those denoted (b) describe the free surface. At the
intersection of the free surface and the crack front, the hoop stress does not approach the
planc stress field in any of the three geometries. In the thinnest specimen, a full plane stress
field develops at distance of 30J/c,. For the B/(W-a) = 1 and 0.5, the hoop stress show a
stress field pattern that becomes independent of distance at ¢ = 30J/6,, but not identical to

the plane stress field.

Similar trends are shown for thc mcan stress at the mid-plane and the free surface in
Figures 5.160-5.162. The plane strain level is achicved at the mid-plane for B/(W-a) = 1 at
distances less than 2J/o,. While a plane stress field develops at distance r > 30J/g, in the

thinpest SENB specimens.
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The proximity to plane stress has been examined as a function of r/t in Figures 5.163 to
5.165. In these figures, the three-dimensional fields are examined on lines parallel to the
crack front, and at an increasing distance t/t from the crack tip, Results are presented for all
specimen thicknesses from low levels deformation to the limit of J-Dominance on the mid-
plane (kL = (W-a)0/Jio. = 25). All the figurcs show a similar pattern, in which plane strain
conditions are approached near the crack front at the mid-plane while plane stress
conditions develop on the free surface but away from the corner intersection. At the crack

tip on the free surface, the field is perturbed by the comer field,
5.3.4 CCP Stress Field

In the CCP solutions, the hoop and mean stress were determined as a function of distance
from the crack tip, at the mid-plane and the free surface at a sequence of increasing levels
of deformation and for three different thicknesses, B/(W-a) = 1, 0.5 and Q.1.

Figures 5.166-5.168 show the hoop stress as a function of distance, r, normalised by J/o,
ahead of the crack front on the mid-plane and the free surface. In the series of Figures
5.166-5.168, those denoted (a) describe the mid-plane. Significantly the hoop stress at the
crack tip is less than the fully constrained planc strain field and the stress is dependent on
distance from the crack tip. The first cffect is due to in-plane constraint loss associated
with the CCP geometries which feature a negative T-stress. In-plane constraint loss effects
are recognised to be largely distance independent. Ahead of the crack front the stress
approaches plane stress levels at distance remote from the crack tip. This is most clearly

shown in the thinnest specimen B/(W-a) = 0.1 shown in Figure 5.168(a).

In the series of Figures 5.166-5.168, those denoted (b) represent the free surface, the field

approaches the plane stress conditions at distance remote from the crack tip.

Similar trends at the mid-plane and at the free surface are shown in Figures 5.169-5.171 for
the mean stress where (a) and (b) denote the mid-plane and the free surface field. A loss in

the plane strain constraint is shown at the mid-plane for all thickness. On the mid-plane the
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mean stress starts at a lower level because of in-plane constraint loss associated with a
negative T-stress and additional out-of-plane constraint loss develops with increase in
deformation. Increasing deformation causes the field to approach a plane stress field
remote from the crack tip, Significantly, the mean stress is dependent on distance on the

mid-plane and the free surface near to the crack tip.

At distances far from the crack front in the thinnest specimen B/(W-a) = 0.1, the mean
stress approaches 0.5770, which corresponds to planc stress. However, remote from the
tip, the mean stress at the mid-plane and the free surface approaches a plane stress field

regardless of specimen thickness and levels of deformation.

When the distance, r, is normalised with J/o,, the physical location of stresses which are
being measured move away from the crack lip with increasing levels of deformation.
Consequently, in the subsequent figures, the occurrcnce of plane stress field has been
analysed at a fixed distance 1/t at increasing levels of deformation for all specimen
thicknesses. Figures 5.172-5.174 show the hoop stress ahcad of the crack front from small
scalc yielding to full plasticity in CCP specimens of different thicknesses. The figures
show that plane strain conditions are lost at the mid-plane and with increasing distance
from the crack front. At the free surface, the field is perturbed by the corner field which
features a uniaxial tension field close to the crack front. In the thinnest CCP specimen, the

plane stress field across the thickness is located at r/t > 1.
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5.4 Proximity to Plane Strain and Plane Stress

Initially it is necessary to identify the way in which full three dimensional fields
correspond to, or differ from, the two dimensional idealisations of plane strain and plane
stress. The proximity to plane strain is easily assessed by a parameter derived from the
requirement that the out of plane stress deviator is zero. Unfortunatcly, this does not
distinguish between a plane stress field and a corner singularity, and a different parameter

is introduced for this specific purpose.

5.4.1 Proximity to Plane Strain

5.4.1.1 Boundary Layer Formulations

For an incompressible material (v = 0.5), plane strain conditions in the z direction require

that the out-of-planc stress deviator s, is zero and p as given by equation (2.45) is 0.5.

In the three-dimensional boundary layer formulations, the proximity to plane strain has
been examined at levels of deformation g, = 1, 3, 5, 8 and at a distance which is very
close ta the crack tip (1/t = 0.013) and at r/t = [ as shown in Figure 5.175. On the mid-
plane close to the crack tip, the parameter p which measures the proximity to plane strain
increases slightly with deformation but is largely uniform along the crack front until the
free surface is approached, when plane strain constraint is necessarily lost. At a distance r/t
= [ from the crack tip, which is within the plastic zone at deformation levels Qg = 5, 8§,

plane strain conditions are entirely lost, and p = 0,

The through thickness variation of p is shown in Figure 5.176 for a deformation level Qg
= 8. At this level of deformation, p is shown from 1/t = 0.013 to 1/t = 1. As the distance
from the crack front increases, plane strain conditions arve lost, At distances greater than
one plate thickness, plane stress conditions occur and within 1/t < I three-dimensional

fields develop.
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In Figure 5.177, the proximity to plane strain has been assessed at 8 = 0° within the plastic
zone at levels of deformation Qg = 1, 3, 5, 8, and 20. On the mid-plane, plane strain is
only approached very near the crack tip. Across the thickness, the tendency to plane strain

teduces with distance from mid-plane.
54.1,2 Full-Field Solutions

In Figures 5.178-5.180, the proximity to plane strain along the crack front from the mid-
plane to the free surface is given at fixed positions r/t = 0.015, 0.032 and 0,065 for the
SENB specimens. The proximity to plane strain is dependent upon the thickness of the
specimen and largely independent of deformation. On the mid-plane, plane strain is
attained in the thickest specimen B/(W-a) = 1 and is maintained with deformation. At the
free surface, planc strain conditions are lost sharply in thicker specimens but gradually
reduce in the thinnest specimen. As the thickness is reduced, out-of-plane effects reduce
the proximity to plane strain at the mid-plane. However, on the free surface p = 0

regardless of thickness.

Figures 5.187-5.189 show p as a function of distance ahead of the crack front (6 = 0°) for
the CCP geometries. The CCP specimens behave in a similar way to the bend bars in the
sense that p is affected by thickness but is independent of deformation. A distinct
difference is the gradient of p near the free swface in the thinnest specimen B/(W-a) = 0.1

compared with the intermediate and full thickness specimens,

The proximity to plane strain at increasing 1/t parallel to the crack front is siown for SENB
in Figures 5.181-5.183 and for CCP in Figures 5.190-5.192 respectively. The figures show
that p is highest near the mid-plane of the specimen and close to the crack tip. Constraint is

entirely lost at (r/t >> 1) for both SENB and CCP specimens,

Figures 5.184-5.186 and Figurcs 5.193-5.195 show p for SENB and CCP specimens ahead
of the crack at @ = 0° from small scale yielding to full plasticity for plate thicknesses B/(W-

a) = 1, 0.5 and 0.1. From the figures, the distance at which p approaches zero increases
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slightly with deformation for both SENB and CCP specimens. Comparing the SENB and
the CCP specimens, there is a small difference in the transition near the free surface. For
SENB, the stress drops to zero but increase slightly between 0.1 < v/t < 0.5 and then
approach to zero, While in CCP, the field drops slightly below zero at r/t > 0.5 and

approaches zero with increase in distance,

5.4.2 Proximity to Plane Stress

The plane strain parameter, p, defined in equation (2.45) necessarily becomes zero at a free
surface. At the free surface, the out-of-plane stresses vanish but in-plane components may

exist. As a result, the parameter, p, cannot distinguish between plane stress and comer
fields.

In elastic-perfectly plastic crack tip analyses in plane stress conditions, the slip lines
comprisc a non-orthogonal grid in which the direct stress across the lines is twice that
along the lines, Consequently, the slip lines arc lincs of zero extension. Irom this

argument, the proximity to plane stress can be assessed by a parameter A :

_ %% 3 (5.9)
Ogp + O‘zz

For incompressible elastic-perfectly plastic plane stress conditions A = 0.5. Significantly,
the requirement of a traction free surface normal to the z direction docs not necessarily lead

to A = 0.5, allowing plane stress and corner fields to be distinguished.

5.4.2.1 Boundary Layer Formulations

In Figure 5.196, A is plotted along the crack front at r = 0. On the mid-plane, A remains
close 1o 0.4 for all levels of deformation until x3/t = 0,32, Close proximity to plane stress
occurs at X3t = 0.465 but plane stress conditions are lost at the free swrface. At the

intersection of the free surface and the crack front, a corner field develops. Figure 5,196,
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shows that in the boundary fayer formulation, the corner field dominates over the range 0 <
7/t < 0.035 (z is distance from the free surface) which is consistent with observations by
Nuakamura and Parks (1988a) that the elastic corner singularity field which dominates in a
spherical zone of approximately 3 percent of the plate thickness from the intersection of

the free surface and the crack front,

5.4.2.2 Full-Field Solutions

The behaviour of the fulf-field solutions is similar to the boundary layer formulation. The
proximity to plane stress at increasing levels of deformation is shown in Figures 5.197-
5.199 for the SENB geometrics and Figures 5.200-5.202 for the CCP geometrics. At the
crack tip (r = 0), plane stress occurs at x3/t = 0.46 for all specimen thicknesses. A domain
dominatcd by the corner singularity field occurs independent of specimen thickness at

about 3.5 percent of the plate thickness from the free suiface,

5.5 Conclusions

Three-dimensional crack tip analyses indicate that the loss of out-of-plane constraint is
associated with asympitotic fields which differ both hydrostatically and deviatorically while
the stress ahead of the crack front is distance dependent. However, plane strain J-Q/T
theory requires the stress fields to be deviatorically similar and differ only hydrostatically.
I-Q/T theory also requires that within the microstructural-separation distance ahead of the
crack front normally 2J/6, < r < 5J/0,, the stress difference Q is distance independent. In
three-dimensional crack tip fields, the two requirements are not met. This suggests that J-
T/Q theory may not be applicable to three-dimensional crack problems which do not

approximate to plane strain.

Rice (1974) indicated that a three-dimensional crack tip field should be bounded by a plane
strain and plane stress fields. However, three-dimensional crack tip analyses do not show
the plane stress bound conclusively. In the current work, he fields have been shown to be

bounded by a plane strain field close to the crack tip at the mid-plane. However, at the free
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surface, there are two distinct fields, At the intersection of the crack front and the free
surface, a corner field occurs as identified by a uniaxial tensile field in the leading sector,
A stress field similar to the plane stress field occurs at approximately x3 = 0.97t. This crack
tip corner field has been shown in boundary layer formulations and full-field SENB and
CCP solutions independent of spccimen thickness. An exact plane stress field through the
thickness occurs for the thin specimens of boundary layer formulation, SENB and CCP at
r/t = 1. In the thick and the intcrmediate thickness specimens of SENB and CCP, a ncarly
plane stress field occurs at r/t = 1. The departure from plane stress in the thicker specimens

is associated with the gradient of out-of-plane stress.

In the three-dimensional boundéry fayer formulation analyses, the J-Integral varics along
the crack front although a uniform stress intensity, Ky, is applied on the remote boundary
of the mesh. At each section along the crack front, the contour integral has been shown to
be path independent for contours with a small radius. However at large contours, the -
Integral reduces to the applied value of J known as Jg.. Consequently in three-dimensional

cases, the contour integral is ultimatcly path dependent.

The out-of-plane constraint {oss has been shown to occur in a similar manner in SENB and
boundary layer formulations, In CCP specimens, out-of-planc coustraint loss is
complicated by in-plane constraint loss associated with the geometry but still shows a
similar decreasing irend across the thickness. In all specimens, the Jower bound stress field
approaches the plane stress field. The systematic development of out-of-plane constraint
loss from a three-dimensional field at the crack tip and ahead of the crack front is discussed

in detail in chapters 6 and 7.
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Near Free | Free Surface
Midplane | Quarterplane
surface* X3/t=0.5
Xaft=0 x3/t=0.25
X3/t=0.49
Load (£, =
J J(Jt! Cobof J !m.*"‘ GoEof J fanl’ Cotot g Inc/ Goeot
Tt/ Gl
1 1.13 1.08 0.28 0.21
3 3.65 3.09 0.60 046
5 7.12 5.11 0.92 0.78
8 11.99 7.91 1.34 1.26
20 30.46 19.43 522 3.95

Table 5.1: Load levels along the crack front of three-dimensional boundary layer
formulations. For load = 20, the near free surface data is located at xa1/t = 0.47.

' Near Free | Free surface
Midplane Quarterplane
surface Xaft=0.5
X3/t=0 Xa/t=0.25
Xa/t=0.49

Qfﬂ:‘l‘Tﬂpp J{,—,JUOEQI‘ Jlgcl‘cugot Jloo/cocot Jfgbjcoeot
8+00, 11.99 7.91 1.34 1.26
8+0.56, 11.82 8.13 1.58 1.27
8-0.50, 10.28 8.07 1.57 1.64

Table 5.2: Load levels along the crack front of three-dimensional modified boundary layer
formulations at a remote load 8 with positive and negative applied T-stress.
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Plastic zone
Load (Q¢) = T/ Coot I/t
1 0.1
3 0.6
5 1.2
8 2
20 5.3

Table 5.3: The radius of the plastic zone at 0 = 0° for three-dimensional thin plate boundary

layer formulations for a range of load levels.
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(a)SENB B/(W-a)=1
Midplane xyft=0 Quarterplane Near Free Surface | Free Surface
X3/t=0.25 X3/t=0.49 Xq/t=0.5
M/M, | r/t o/ Octiat | € OfTioe | Tioef Gt | € OfTiae | Jia/Oobot | € Ooffine Jie/Otot [ € Oelline
055 | 004 {062 1615.5 0.56 17594 | 0.16 5994.3 0.12 8393.1
0.956 | 0.3 4.90 204.1 4.3 2322 0.55 1786.5 0.56 1768.6
0971 | 1 109 92 9.04 110.5 1.13 879 1.22 817.1
0917 {1 174 574 13.8 72.1 L8 546.8 1.92 519.8
098 |1 23.9 41.7 18.7 53.5 2.6 389.3 2.63 380
0985 | 1 34.0 29.3 262 38.2 3.7 268.6 3.6 272
(b)SENB B/(W-2) = 0.5
Midplave xy/t=0 Quarterplane Near Free Swrface | Free Surface
X3/t=0.25 x3/1=0.49 Xa/t=0.5
MM, | i/t | Jia/Ook? | € Ooflioe | Jio/Oe€ot | € T/Tioe | Tof OBt | ¢ 0fdine | Tiw/Cutut | € OulTion
0268 | 0.15 | 061 1634.3 0.57 17374 | 0.18 54994 {0.13 75454
0.436 | 0.75 | 5.6 178.6 3.9 256.2 0.72 1392.6 } 0.65 1520
0.443 | 2 122 82.2 7.7 129.2 1.3 765.5 1.33 749.8
0445 | 2 18.8 529 11.6 85.7 19 505.5 2,03 492.3
0.447 12 25.7 389 156 63.8 2.7 3G68.7 2.73 366.2
0.45 2 359 277 21.7 459 3.87 258.2 3.73 267.9
(¢) SENB B/(W-a) =0.1
Midplane xs/t=0 Quarterplane Near Free Surface | Freco Surface
Xaft=0.25 *al1=0.42 Xy/t=0.5
M/M, | ryt ToelGatat | € Olice | JioefOetof | € Oofhioe | J1o/ Okt | € O/Fioe | TioefOotat | € OofVioe
0.034 | 0.5 0.24 4178.5 0.22 4583.4 | 0.14 6987.5 0.07 13893
G054 | L2 0.77 1284.3 0.53 18519 | 031 3215.8 0.16 6081.9
0.088 | 35 6.15 162.5 3.58 279.3 1.73 577.4 092 1084.8
0.006 | 3.7 12.1 82.4 7.24 138 3.5 284.4 1.62 617
4.103 |1 10 17.7 56.2 10.9 91.6 54 184.4 2.32 430.8
0.109 | 10 233 42.8 14.6 68.4 7.4 1342 3.02 3313
0.119 | 10 31.6 31.6 20.3 49.2 10.6 94.1 3.98 251.2

Table 5.4: SENB full-field specimens characterised in terms of local load level along the
crack front, Ji,./00€,f and J-Dominance parameter, ¢ Go/Ji. for (2} B/W-a = 1 (b) 0.5 and (¢)
0.1. The limit load is given in terms of as M/M, where M, is limit load in three-point-bend
and M is bend load as given in equations (4.4} and (4.5).
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(a) CCP B/{(W-a)=1
Midplane 1/t=0 Quarterplane Near Free Surface Free Surface
xy/t=0.25 x3/t=0.49 X3/t=0.5
PPy | 1yt | Jic/Sbint | € 6eflie | JiocfOobol { € Ooflie 1| Jioc/Tololt | € OulTiac | Jioc/ Tkl { € GoTio:
0.005 | 0.25 0.85 1170.6 0.84 1188.1 0.26 3803.9 0.22 4414.7
0.734 1 0.8 1.9 512.9 1.8 557.9 0.56 1779.8 0.515 1939.6
0912 ) 1 6.9 144.6 5.9 169.6 2.1 476.G 1.89 529.3
0938 1 18.3 54.8 15.1 66.1 5.4 184.2 49 202.1
09531 1 354 28.2 29.3 34.1 2.4 93.1 9.4 1059
09851 1 574 17.4 47.9 20.8 16.8 59.6 14.9 66.8
(b) CCP B/(W-a) = 0.5
Midplane x/t=0 Quarterplane Near I'ree Surface Free Surface
x:3/t=0.25 Xa/1=0.49 Xaft=0.5
PP, T/t § JioefCobt § € Ooflice | Jiac/Tofist | ¢ Goflios Jod 0ot | ¢ OfTioc b Jiee/Colol | € OofJTi0e
0.729 | 056 0.95 1049.7 0.88 1139.8 0.27 3746.5 023 4314.3
0.897 | 14 2.2 453.3 1.87 534.4 0.62 16147 { - 0.55 1825.6
0917 2 7.4 134.7 6.1 164.7 22 450 1.9 525
0.922 2 19.1 52.3 154 64.7 5.8 172.5 4.94 202.4
0.926 2 36.1 27.7 293 34.1 10.6 94.3 9.34 107.1
0.931 2 589 17.2 477 20.9 16.9 59.2 14.6 68.5

(c) CCP B/(W-a) =0.1

Midplane x41=0 Quarterplane Near Free Surface Free Surface
Xa/t=0.25 Xaft=0.42 Xaft=0).5

PPo | 1yt | Dio/Ootst §} 0l | Tic/Oo€f | € OofTioe | Tio/CeBot | € Oo/lie | I/ Ol | € Gofdiue
0.724| 3 1.2 834.7 0.89 11244 0.48 2060.6 0.3 3330.2
0.876 | 7.5 25 400 1.9 523.8 i.l 9390.1 0.63 1568.5
0.887 | 9.8 8 125.4 6.24 160.4 3.7 2724 1.89 526.8
0.892§ 10 19.2 52.7 15.3 65.4 9.6 107.8 484 206.6
0.898 § 10 354 28.3 28.5 51 17.8 56.1 9.05 110.5
0904 10 56.9 17.5 46.0 217 28.9 34.5 13.8 72.1

Table 5.5 CCP full-field specimens characterised in terms of load level along the crack
front for Ji,/GE0t and J-Dominance parameter, ¢ 64/J15c. The limit load is given in terms of
as P/P, where P, is limit load in centre crack tension panel and P is bend load as given in
equations (4.7) and (4.9).




Chapter 5. Threc-Dimensional Elastic-Plastic Fields 226

SENB and CCP
BLE/MBLF | BLF* B/(W-a) =1 B/(W-a)=0.5 B/(W-a)=0.1
X3/t z/t Xaft z/t Xaft z/t Xaft z/t Xt 7/t
0 05 |0 0.5 0 0.5 0 0.5 0 0.5
004 (046 |0.04 [046 [0.032 0.468 | 0.032 0.032 {008 042
008 [042 |0.08 [042 |0.064 0436 | 0.064 0064 10.14 |0.36
012 [0.38 |0.12 [0.38 |0.096 0.404 | 0.096 0.096 | 0.2 0.3
0.16 034 [0.16 |0.34 |0.128 0.372 | 0.128 0.372 1025 [0.25
0.2 03 |02 0.3 0.16 034 |0.16 034 1032 [0.18
025 1025 [025 (025 ;0.192 0.308 | 0.192 0,308 1038 10.12
028 1022 (028 [0.22 |[0.224 0.276 | 0.224 0.276 042 |0.08
032 018 (032 {018 [0.25 025 |[0.25 0.25 (047 |0.03
036 |0.14 036 |0.14 |0.288 0.212 | 0.288 0.212 { 0.5 0
039 10.11 104 0.1 0.32 0.18 |0.32 0.18
042 1008 | 0436 | 0.064 [ 0.352 0.148 | 0.352 0.148
045 (005 | 047 |0.033]0.384 0.116 | 0.384 0.116
046 (004 |05 O 0.408 0.092 | 0.408 0.092
048 |0.02 0.428 0.072 | 0.428 0.072
049 10.01 0.448 0.052 | 0448 0.052
0.5 0 0.468 0.032 | 0.468 0.032
0.48 0.02 |0.49 0.01
049 001 (0.5 0
0.5 0
Yegends
a) BLF = Boundary Layer Formulations, MBLF = Modified Boundary Layer
Formulations.
b) BLF*: Only in tip-mesh for Qg = 20.
¢) tand B are interchangeably use to represent the thickness.
d) The sections (x3/t) = 0, 0.25 and 0.5 represent the midplane, the quarterplane
and the free surface.
€) xalt is referenced from the midplane while z/t is referenced from the free
surface.

Table 5.6: The sections of the three-dimensional specimens (X3/t) and (z/t} at which data are

extracted.
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Figure 5.1: The variation of the local J along the crack front for load levels, Q¢ = 1, 3, 5, 8,
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Figure 5.3: The local loading parameier (cGo/Jioc) along the crack front of SENB specimens
(a) B(W-a) = 1, (b) B/{W-a) = 0.5, (c) B/(W-a) = 0.1 at load levels characterised by the

radius of plasticity at the midplane xs/t = 0.
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Figure 5.4: The local loading parameter (co,/J o) along the crack front of CCP specimens
(a) B/{W-a) =1, (b) B/(W-a) = 0.5, (c) B/(W-a) = 0.1 at load levels identified by the radjus
of plasticity at the midplane X3/t =



Chapter 5. Three-Dimensional Elastic-Plastic Ficlds 230

{(a) 3
2.5 A "'ngar = 1
e Qg =3
XZ/t1. | Q=5
L =8
%7 L Qg = 20

(b) ~Qpar =1
2.5 A —
" X"-\ft = (.25 "‘Qfar =3
Xaft
1.5 Q=5
v X > Qpar = 8
0.5
*Qpe = 20
0 = ¥ T T
05 0 c.% 1 1.5 2 25 3 35 4 45 § 58 5]
X/t
3 e - x ..
© —
25 - ~Lpr =1
xoft 2] Qg =3
1.5 4 Qe =5
i Qe = §
0.5 - Qe =20
0 — Kk —k—

1 05 D 05 1 1.8 '2 2:5/ G 3..5 4 4:5 .I5 5:5 [}
X/t
Figure 5.5: The plastic zone determined in a non-hardening boundary layer formulations for
Qe = 1, 3, 5, 8, 20 at (a) the midplane, (b) the quarterplane and (¢) the free surface non-
dimensionalised by t.
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Figure 5.6: The plastic zone determined in a non-hardening boundary layer formulation for
L = 1, 3, 5, 8, 20 at (a) the midplane, (b) the quarterplane and (¢) the free surface non-

dimensionalised Jio/Co.
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Figure 5.7. The plastic zone determined in a non-hardening boundary layer formulation for

Qe = 8 for (a) the midplane, (b) the quarter plane and (c¢) the free surface non-
dimensionalised by t at different Tapp.
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Figure 5.8: The plastic zone deterinined in a non-hardening boundary layer formulations for
Qs = 8 at (a) the midplane, (b) the quarter plane and (c) the free surface non-
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Figure 5.9: The plastic zone for a non-hardening SENB B/(W-a) = 1 at (a) the midplane, (b)
the quarter plane and (c) the free surface non-dimensionalised L.
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Figure 5.10: The plastic zone for a non-hardening SENB B/(W-a} = 1 at (a) the midplane,
(b) the quarter plane and (c) the free surface non-dimensionalised by Iy /0.
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Figure 5.11: The plastic zone for a non-hardening SENB B/(W-a) = 0.5 at (a) the midplane,
(b) the quarterplane and (¢) the free surface non-dimensionalised t.
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Figure 5.12: The plastic zone for non-hardening SENB B/{(W-4) = 0.5 at (1) the midplane,
{(b) the quarter plane and (¢) the free surface non-dimensionalised by Jio/Go.
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Figure 5.13: The plastic zone for a non-hardening SENB B/(W-a) = 0.1 at (a) the midplane,

(b) the quarterplane and (c) the free surface non-dimensionalised t.
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Figure 5.14: The plastic zone for a non-hardening SENB B/(W-a) = 0.1 at (a) the midplane,
(b) the quarterplane and (¢) the free surface non-dimensionalised Ji./Go.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 240

a 14 . EOp = 1170.6
(a) T
1.2
X/ . J_'cﬁ0 =512.9
Jige
08 -
i cgg = 144.6
0.6 T
0.4 _
| e £Ta = 54.8
0.2 Too
0
0.2 1.2
., €0, =1188.1
) . e
€O, =557.9
Xoft | el Troc
| ¢, =169.6
Jloc
¢ £0g = 6.1
Jluc
1.2
. L00 =4414.7
(C} I]DC
-]loc
4.0 = 529.3
JIDC
e £0o = 202.1
Jioe

-0.2 0 02 04 06 08 1 1.2
X/t

Figure 5.15: The plastic zone for a non-hardening CCP specimen B/(W-a) = 1 at (a) the
midplane, (b) the quarterplane and (c) the free surface non-dimensionalised by t.
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Figure 5.16: The plastic zone for a non-hardening CCP specimen B/(W-a) = 1 at () the
midplane, (b) the quarter plane and (c) the free surface non-dimensionalised by Jyuc/Go.
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Figure 5.17: The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.5 at (a) the
midplane, (b} the quarter plane and (c) the free surface non-dimensionalised by t.
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Figure 5.18: The plastic zone for a non-hardening CCP specimen B/(W-a)=0.5 at (a) the
midplane, (b) the quatterplane and (¢} the free surface non-dimensionalised Jio/0,.
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Figure 5.19: The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.1 at (a) the
midplane, (b) the quarter planc and (c) the [ree surface non-dimensionalised by t.
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Figure 5.20: The plastic zone for a non-hardening CCP specimen B/(W-a) = 0.1 at (a) the
midplane, (b) the quarterplane and (c) the free surface non-dimensionalised Jio/Go.
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Figure 5.21: The boundary layer formulation asymptotic polar stresses for Qg = 1, 3, 5,
8, 20 at the midplane xs/t = 0. The solid lines reprcsent the two-dimensional plane strain
solution.
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Figure 5.22: The boundary layer formulation asymptotic Cartesian stresses for Qg = 1, 3,
5, 8, 20 at the midplane X3/t = 0. The solid lines represent the two-dimensional plane
strain solution,
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Figure 5.23: The boundary layer formulation asymptotic polar stresses for Qe = 1, 3, 5, 8,
20 at the quarterplane xs/t = 0.24, The solid lines represent the two-dimensional plane

strain sojution,
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Figure 5.24: The boundary layer formulation asymptotic Cartesian stresses for Qg = 1, 3,
5, 8, 20 at the quarterplane xs/t = 0.24. The solid lines represent the two-dimensional

plane strain solution,
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Figure 5.25: The boundary layer formulation asymptotic polar stresses for Qer= 1, 3, 5, 8,
20 at the free surface x5/t = 0.5.
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Figure 5.26: The boundary layer formulation asymptotic Cartesian stresses for Qg = 1, 3,

5, 8, 20 at the free surface xa/t = 0.5.
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Figure 5.27: The hoop stress Ogg at load levels Ju/Goest = 1, 3, 5, 8, 20 through the
thickness, Ty, = 0. The broken line determined from a boundary layer formulation
indicates the two-dimensional plane strain field for Ggp.




Chapter 5. Three-Dimensional Elastic-Plastic Fields 250

25 25
= =0 Q=3
2 Qg =1 24 .
Aft=0 reducing i5. reducing xs/t
1.5 - e
L
o, ' -
0.5 Jd. Y
K3ft =
0 4
‘0-5 T T ¥ T T T T T '1 1 T T T T T T T |
G 20 4 60 80 100 120 140 160 180 0O 20 4 60 80 100 120 140 160 180
0 )
25 2.5
2- ™ X3/t=0 Qe =5 2 ] aft=0 Qe =8
15 - 3 reducing Xa/t 5 = \ reducing xs/t
Grr 1+ 0ﬂl"} - :
Fo 051 Fons |
01 0
05| X/t=049 V| x=049
-1 T T T T - r T T ~1 T T T T . . . ;
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 18O
0 0

2.5 ..........

c 20 tﬁ] 60 80 100 120 140 160 180
3]
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Figure 5.29: The shear stress G, at load levels Jz, /o8t = 1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates
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Figure 5.30: The direct stress 11 at load levels J /gt = 1, 3, 5, 8, 20 through the
thickness, Tapp = 0. The broken line determined in a boundary layer formulation indicates

the two-dimensional plane strain field for o1;.
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thickness, Tapy = 0. The broken line determined in a boundary layer formulation indicates
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Figure 5.32: The shear stress oy, at Joad levels Jg/Gotot = 1, 3, 5, 8, 20 through the
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Figure 5.36: The out-of-plane stress 63 at load levels Jg,/Go€0f = 1, 3, 5, 8, 20 through the
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Figure 5.38: The modified boundary layer formulation asymptotic polar stresses for Qe =

8 with Ty 0, -0.50, and +0.56, at the midplane x5/t = 0. The solid lines represent the
two-dimensional plane strain solution (T = 0).
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Bigure 5.39: The modified boundary layer formulation asymptotic Cartesian stresses for

Q¢ = 8 with Tapp 0, -0.50, and +0.50, at the midplane x3/t = 0. The solid lines represent
the two-dimensional plane strain solution (T = 0),
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Figure 5.40: The modified boundary layer formutation asymptotic polar stresses for the
load level Qg = 8 with Ty 0, -0.50, and +0.5a, at the quarterplane xa/t = 0.24. The solid
lines represent the two-dimensional plane strain solution (T = 0).
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Figure 5.41: The modified boundary layer formulation asymptotic Cartesian stresses for
the load level Qg = 8 with Ty, 0, -0.50, and +0.50, at the quarterplane xa/t = 0.24. The
solid lines represent the two-dimensional plane strain solution (T = 0).
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-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for ogp.
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Figure 5.45: The radial stress o at a load level Jy,/0o€qf = 8 through the thickness, Tapp =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for oy.
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two-dimensional plane strain field for o.
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Figure 5.48. The dircct stress 022 at a load level Jg,/04€.t = 8 through the thickness, Ty, =
-0.5 and +0.5. The broken line determined in a boundary layer formulation indicates the
two-dimensional plane strain field for o,,.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 268

0.1

I/GQSot - 8; Tapp - "O.SGD

01 -
0.2 -

-0.3
0.4 -

-0.5

L1
‘: i

0.6 NN

"0.? 1 ] i T T 3 A ] T
0 20 40 60 80 100 120 140 160 180

J/GOEUt = 8; Tapp = '+'0.50u

"0.7 T T T T 3 [ { ¥
0 20 40 60 80 100 120 140 160 180
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Figure 5.54: The asymptotic Cartesian stresses at the midplane for a SENB specimen B/(W-

a) = 1 compared with a two-dimensional plane strain field.
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Figure 5.55: The asymptotic cylindrical stresses at the quartetplane for a SENB specimen
B/(W-a) = 1 compared with a two-dimensional plane strain field.
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Figure 5.56: The asymptotic Cartesian stresses at the quarterplane for a SENB specimen
B/(W-2) = 1 compared with a two-dimensional plane strain field.
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Figure 5.58: The asymptotic Cartesian stresses at the free surface for a SENB specimen
B/(W-a) = 1.
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Figure 5.64: The shear stress o1, for SENB B/(W-a) = 1 through the thickness, Ty = 0. The
broken line determined in a boundary layer formulation indicates the two-dimensional plane
strain field for G2,



Chapter 5. Three-Dimensional Elastic-Plastic Fields 281

1x3/t =0; co /T =204

2 ™ reducing

— T e

0sd X3t =049; oI =1786.5 .

X3/t =0.49; ¢6,/J=5994.3

o 0 20 40 60 80 10 ‘IéO 1:10 1%0 180 ! 0 20 4ID E;] E"(; 1(;'} 1;0 1::{1 180 180
0 8
3 3
s | X3/t =0; co/J =92 e X3/t =05 co/] =574
Om oy 77 reducing Sm reducing
Oo 15 Vo 157
1 14
08 051 et =
o I o . ““::-:;:,‘:_ e,
05| Xalt=0.49; co/T =879 05|  Xt=049 co/T=546.8 NI

0 20 40 6 80 10 10 140 60 18

0

T T T
0 D 0 O T W D O 10 0

25| Xt=0; co/T =417 X3/t =0; co/1=29.3

reducing

T T ! ' -1 T 3 T T T

9 D 4 @ L0 W W W W W 6 B o O m W W W @ W
0 :

Figure 5.65: The mean stress o, for SENB B/(W-2) = 1 through thickness, Topp = 0. The

broken line determined in a boundary layer formutation indicates the two-dimensional plane

strain field for op,.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 282

3 3
25 A _ 2.5 .
X3/t =0; coJJ=1615.5 Xt =0; co/T =204
G132 ] G133 2-
Oy 15 O, 15
1 14
0.5 -
0.5 -
-1 T T T T T T - T -1 T T T T 1 T T T
0 20 40 60 80 100 120 140 160 180 0 20 40 60 306100 120 140 180 180
0
3 3
25 25 -
5 xaft =0 cofT=92 ) X3/t =0; cofI =574
O13 013
—15 o186
00 Q 1

10 2KO 4I0 60 BIO 160 1I20 1:10 1I60 180 10 20 40 60 80 100 120 40 16C 180
8 ' 0
3 3
mgz:: %t =0; coff =417 6132'2: Xaft = 0; coof/J =29.3
G0 15 % 5]
14 1

0 20 40 60 80 100 120 140 1680 180 0
0 6

Figure 5.66: The shear stress o3 for SENB B/(W-a) = 1 through the thickness, Tap, = 0. The
diamond markers and the circular markers indicate thc midplane and the free surface.



Chapter 5. Three-Dimensional Elastic-Plastic Fields

283

X3t = 0; co/J =1015.5

0 20 40 &0 8 100 120 140 160 1&0
&)

25 1

X3/t =0; ce/J =92

Oa3 157

0

X3t =0; c6 /I =417

'0.5 i T I T 1 T T T
0 20 40 6 & 100 120 140 160 180
0

O23
Gy

27 %4t = 0; co/T = 204

T I 1 ’ i T T

0 20 40 o 8 100 120 140 180 180

0

X3/t =0; co /I =574

25
.
15-
1
05 -

0+

X3/t =0; co/] =203

05

0 20 40 60 &

100 120 140 €0 180

0

Figure 5.67: The shear stress 023 for SENB B/(W-a) =1 through thickness, Ty, = 0.



Chapter 5. Three-Dimensional Elastic-Plastic Fields

3
T 25+ Xaft =0; ¢co /T =1615.5
00 2 i
15 - X3/t =0
1 B """""'""’""""“"“'“TT"_ ZS—
‘\‘t\ ey
05 - X3/t =05 / p _
Xaft = 0.49
0 T T T T dl 1] 1 H
0 20 40 60 80 100 120 140 160 180
0
3
_ 251
o X3/t = 0; co /) =92
O, 2-
15 -
’ -
05
0 T ] 1] [ . T T T 1]
0 20 40 60 80 100 120 140 180 180
f
3
T 25 -
— Xt =0; co/T=41.7
Go 2 N
1.5 1
14 e i e
0.5 1
0 T T T T L) T T T
0 20 40 60 80 100 120 140 160 180

Figure 5.68: The Mises stress &/ o, for SENB B/(W-a) =1 through the thickness, Tapp = 0.

0

a|al

1x3/l=0; co/T =204

Xs/t = 0.49

0 T T T

T T

{

0 20 40 60 80 100 120 140 160 180

e

25 1
) X3t =0; co/I =574
1.5 -

1 [

05

0 Ll 1 1 1 I

0 20 40 60 80 100 120 140 160 180

0

X3/t =0; ¢co,/f =293

0 T H T T T

T

0 20 40 60 80 100 120 140 160 180

0



Chapter 5. Three-Dimensional Elastic-Plastic Fields 285
3.5 —2D o
¥ ¥ xo = 178.6
oy 21 X }éﬂﬂ a Opp, b =178,
Co 2.5 - 8 X x Cgg, W= 27.7
WAL
& —2Do
28 8B 8 @ % oy
O 4 00, L= 1786
15 - ° g
: o
& % o ® o O, =277
" : . 2D
— 2D o
O ; 10
051 % 3 G0, b= 178.6
0 = T T T T T T T T + 61'9) u = 27.7
0 20 40 60 80 0 100 120 140 160 180
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Figure 5.83: The shear stress 023 for SENB B/(W-a) = 0.5 through the thickness,
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Figure 5.87. The asymptotic cylindrical stresses at the quarterplane for a SENB specimen
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Figure 5.102: The asymptotic Cartesian stresses at the midplane for a CCP specimen B/(W-
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The broken line determined in a boundary layet formulation indicates the two-dimensional
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Figure 5.117: The asymptotic cylindrical stresses at the midplane for a CCP specimen
B/(W-a) = 0.5 compared with the two-dimensional plane strain field.
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Figure 5.119: The asymptotic cylindrical stresses at the quarterplane for a CCP specimen
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Figure 5.125: The shear stress Op fotr a CCP specimen B/(W-a) = 0.5 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
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Figure 5.126: The mean stress Oy, for a CCP specimen B/(W-a) = 0.5 through the thickness.
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plane strain field for o).
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Figure 5.130: The shear stress 03 for a CCP specimen B/{W-a) = 0.5 through the thickness.
The diamond and circular markers indicate the midplane and the free surface fields.



Chapter 3. Three-Dimensional Elastic-Plastic Fields

335

3 3+
251 25
o . X3/t =0; ¢o4/) = 1049.7 Go xalt=0; cG,/J =453.3
=N 154
11 1
05 05 1
0
'(15 T T T T T T T T 'QS T T T T T T T T
0 0 4 € 8 10 120 140 160 10 0 X 40 6 & 10 120 140 10
0 0
3 3
254 Xaft = 0; co/T=134.7 254 Xaft =0; co/I =52.3 ,
Oy 2 On3 2- [
— I
O, 151 Ou 15- !
17 1
05 05 -
05 T T T T T T 0 T {15 T T T T T T ¥ T 1
D 2D 4 0 O 10 1D M W 1w 0 20 4O 0 B 10 0 140 {60 10
5] §]
3 )
O3 25-
23 25" . G325
Oo » Xaft = 0; co/J =277 . X3/t =0; cofI=172
O
15- 15+
1 1-
05 05+
T LA TR A SR o Lo O S
0 rrememrecsE B
05 ; t T T T T T 05 ; T T T T T T r
O 20 4 6 & 10 120 1140 e 10 0 2 4 & 8 1 120 140 180 1w

0

6

Figure 5.131: The shear stress o3 for a CCP specimen B/(W-a) = 0.5 through the thickness.
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Figure 5.133: The asymptotic cylindrical stresses at the midplane for a CCP specimen
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.134: The asymptotic Cartesian stresses at the midplane for a CCP specimen B/(W-
a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.135: The asymptotic cylindrical stresses at the quarterplane for a CCP specimen
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Figure 5.136: The asymptotic Cartesian stresscs at the quarterplane for a CCP specimen
B/(W-a) = 0.1 compared with the two-dimensional plane strain field.
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Figure 5.139: The hoop stress 6 for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional

plane strain field for ogo.
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Figure 5.140: The radial stress 6 for a CCP specimen B/(W-a) = 0.1 through the thickness.
The broken line determined in a boundary layer formulation indicates the two-dimensional
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Figure 5.142: The mean stress Gy, for a CCP specimen B/(W-a) = 0.1 through the thickness,
The broken line determined in a boundary layer formulation indicates the two-dimensional
plane strain field for Gy,
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Figure 5.143: The direct stress oy, for a CCP specimen B/(W-a) = 0.1 through the
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Figure 5.144: The direct stress 03, for a CCP specimen B/(W-a) =
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thickness. The broken line determined in a boundary layer formulation indicates the two-

dimensional plane strain field for 03;.
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Figure 5.145: The shear stress o3 for a CCP specimen B/(W-a) = 0.1 through the thickness.
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Figure 5.146: The shear stress 03 for a CCP specimen B/(W-a) = 0.1 through the thickness.
The diamond and round markers indicate the midplane and the free surface fields.
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Figure 5.147: The shear stress 633 for a CCP specimen B/(W-a) = 0.1 through the thickness.
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Figure 5.148: The Mises stress o/ o, for a CCP specimen B/(W-a) = 0.1 through the
thickness.
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Figure 5.149: The mean stress ahead crack front from midplane to free surface at load Qg
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Figure 5.150: The mean stress ahead crack front from midplane to free surface at load L2y,
= 8 between ra/J = 0 and 10 using a boundary layer formulation.
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Figure 5.152: The hoop stress ahead crack front from midplane to free surface at load L2y, =
8 between ro/J = (0 and 10 using a boundary layer formulation.



Chapter 5. Three-Dimensional Elastic-Plastic Fields 352

3 e e _ ) .
Qﬁ'r'— ' o9 Qfar =5
i eariaausrnmrenssnsaomerrirosssmonies ¥ Qﬁ..—=3 ou
Ous 2-h\ m"“""""--h--..,__-__\_‘_ S Q'f:u- =3 L e Cprr = 8
5y ol ‘\‘\\ BRI __I — Q=8 Gy o5 .
1---——-;_____\'\[ LY l\u,._‘_:_:_:: S e s ey ] TN Ql‘ﬂr =20
! - Ql‘nr =20 03 ——
051 -+--P.Strain 1 mene .
. T =0 ..,; P.Stuess
1] 3 4 [ a 1‘0 5 10 15 20 % 40
L7 G,
I J
() (b)

Figure 5,153: The mean stress at (a) midplane and (b) free surface for load Q¢ = 1, 3, 5, §,
20 for boundary layer formulation. Broken lines indicatc two-dimensional plane strain in
(a) and plane stress in (b). '

a5 — Qrm. - 1 1 J—— .
Y remgatacgat s s e s s ase ot tneecea 14 Qee=3
Yoy e Hh% —— -
S N TRl
Cpe , ‘\\ e B qur =35 Ggy 1 g e T g A “Lew=8
Ty s — e T Gy 08+
06 —% _——
1 - a 'Ql‘m' — 20 gl’dr 20
0.4
o B -I;S_tr:[.}un vz 1 -« P.Stress
0 . . . . 0 . - . ey
q 2 4 6 8 10 6 i 16 20 25 30
LY -
J )
J
(@) (b)

Figure 5.154: The hoop stress at (a) midplane and (b) free surface for load Qg; = 1, 3, 5, 8,
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Figure 5.155: Comparison of hoop stress ahead crack front 8 = 0° at radial distance 1/t =
0.013 for load level Qg 1, 3, 5, 8, 20 and 1/t = 1 for load level Qg 5, 8, 20 using boundary
layer formulation. The broken lines indicate a two-dimensional plane strain and plane
stress.
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Figure 5.156: Through thickness variation of opening stress/hoop stress ahead crack front ©
= (° at various radial distances for Ioad level £, = 8 using boundary layer formulation.
Broken lines indicate two-dimensional plane strain and plane stress.
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Figure 5.159: The hoop stress ahecad crack front from at (a) the midplane and (b) the free

surface for SENB B/(W-a) = 0.1.
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Figure 5.160: The mean stress ahead crack front for SENB B/(W-a) = 1, at (a) the midplane
and (b) the free surface at increasing load levels.
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Figure 5.161: The mean stress ahead crack front for SENB B/(W-a) = 0.5, at (a) the
midplane and (b) the free surface at increasing load levels.
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Figure 5.162: The mean stress ahead crack front for SENB B/(W-a) = 0.1, at (a) the
midplane and (b) the free surface at increasing load levels.
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Figure 5.163: The hoop stress ahead crack front at 0 = 0° at load (a) small scale yielding
and (b) full plasticity for SENB B/(W-a) = 1.
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Figure 5.164: The hoop stress ahead crack tront at 8 = 0° at load (a) small scale yielding
and (b) full plasticity for SENB B/(W-a) = 0.5.

25
23
Too
Ga 15
1
081  xyft=0; p=162.5 051 xyft=0; =316
X3ft=0.5; w=1084.8 *3ft=0.5, 1 =2512
4] T T T n T T v T
0 o1 02 xsf’t 03 oA s 0 .1 02 xalt <] 04 05
() (b)

Figure 5.165: The hoop stress ahead crack front at @ = 0° at load (a) small scale yielding
and (b} full plasticity for SENB B/(W-a) = 0.1.




Chapter 5. Three-Dimensional Elastic-Plastic Fields 357

* u=5129 —h=476.6
J3eveaveacvasnrrarernr VraresvrrrrevnarrarEm Vrdnr ey 1_2- ————————————————————————— i
= 1446 = 1842
Ogo 1-
o e a =t T .
R=SE T s B T = 95.1
—m n=282 0.6 1
— 4 =59.6
! =174 0
05 0.2 1 i
««- P, Strain, T=0 «... Dl Stress
0 ; . .
00 é 4 ;1 é 10 Q 10 20 0 40 50
Ic
FO o
T 7
(a) )

Figure 5.166: The hoop stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 1.
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Figurc 5.167: The hoop stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/{W-a) = 0.5.
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Figure 5.168: The hoop stress ahead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 0.1,
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Figure 5.169: The mean stress abead the crack front at (a) the midplane and (b) the free
surface at increasing load levels for a CCP specimen B/(W-a) = 1.
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Figure 5.172: The hoop stress along the crack front at r/t = 0.01 to 0.35 at (a) small scale
yielding to (b) full plasticity for a CCI* specimen B/(W-a) = 1.
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Figure 5.173: The hoop stress along the crack front at r/t = 0.02 to 0.5 at (a) small scale
yielding to (b) full plasticity for a CCP specimen B/(W-a) = 0.5.
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Figure 5.174: The hoop stress along the crack front at t/t = 0.1 to 1 at (a) small scale
yielding to (b) full plasticity for a CCP specimen B/(W-a) =0.1.
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for boundary layer formulations.

0.5
decreasing 1/t
0.4 4
0.3
Gy
Oy -+ Ogo 0.2
0.1
0 4 - 7 - S R -
rit=0.013, 0.0{9, 0.026, 0.035, 0.047, 0.061, 0.078, 0.1, 0.13,
0.1 0.16, 0.20, 0.25, 0.32, 0.40, 0.51, 0.64, 0.80, 1.0
Y. T ¥ T g 1
0 .1 0.2 0.3 0.4 0.5
Xaft

Figure 5.176: Through thickness variation of the level of plane strain ahead of the crack
front O = 0° at various radial distances for load level Qg = 8 for boundary layer
formulations.
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Figure 5.178: The degree of plane strain in SENB specimens (B/W-a = 1) along the crack
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Figure 5.179: The degree of plane strain in SENB specimens (B/{W-a) = 0.5) along the

crack front at r/t = 0.009 at various load levels.

0.35 T~ -

0.3 4

0.2

O

O -+ Ogo

£.65

Xy/t=0; p=162.5
erafs;o.s; h=577.4
: +{x3!'t=0; W= 82.4
! %/6=0.5; 1 =284.4

Xa/t=0; K= 56.2
{x_y‘t:(].s; p=184.4

_ { X3/1=0; u=42.8
L xaft=0.5; u=134.2

4{ x3ft=0; =316
X/t=0.5; n=94.1

1] aos DR Q.15 B2 025

Xalt

L3

Figure 5.180: The degree of plane strain in SENB specimens {B/W-a = 0.1) along the crack

front at r/t = 0.009 at various load levels,
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Figure 5.181: The degree of plane strain in SENB specimens along the crack front at € = 0°
in (a) small scale yielding and (b) full plasticity for B/(W-a) = 1,
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Figure 5.182: The degree of plane strain in SENB specimens along the crack front at 0 = Q°
in (a) small scale vielding and (b) full plasticity for B/(W-a) = 0.5.
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Figure 5.183: The degree of plane strain in SENB specimens along the crack front at € = 0°
in (a) small scale yielding and (b) full plasticity for B/{{W-a) = 0.1.
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Figure 5.184: The degree of plane strain in SENB specimens ahead of the crack front at © =
0° in (a) small scale yielding and (b) full plasticity for B{W-a) =1.
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Figure 5.185: The degree of plane strain in SENB specimens ahead of the crack front at 6 =
0° in (a) small scale yiclding and (b) full plasticity for B/(W-a) = 0.5.
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Figure 5.186: The degree of plane strain in SENB specimens ahcad of the crack front at 6 =
0° in (a) small scale yiclding and (b) full plasticity for B/(W-a) = 0.1.
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Figure 5.187: The degree of plane strain in CCP specimens (B/W-a = 1) along the crack
front at increasing loa(dl#gevels at r/t = 0.015.
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Figure 5.188: The degree of plane strain in CCP specimens (B/W-a = 0.5) along the crack
front at increasing load levels at r/t = 0.032.
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Figure 5.189: The degree of plane strain in CCP specimens (B/W-a = 0.1) along the crack
front at increasing load levels at 1/t = 0.065.
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Figure 5.190: The degree of plane strain along the crack front at increasing r/t for a CCP
specimen B/(W-a) =1,
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Figure 5.191: The degree of plane strain along the crack front at increasing 1/t for a CCP
specimen B/f(W-a) =0.5.
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Figure 5.192: The degree of plane strain along the crack front at increasing t/t for a CCP
specimen B/(W-a) = 0.1.
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Figure 5.193: The degree of plane strain ahead of the crack front at small scale yielding to
full plasticity in CCP specimens B/(W-a) = 1.
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Figure 5.194: The degree of plane strain ahead of the crack front at small scale yielding to
full plasticity in CCP specimens B/(W-a) = 0.5.
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Figure 5,195: The degree of plane strain ahead of the crack front at small scale yielding to
full plasticity in CCP specimens B/(W-a) =0.1.
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deformation levels for a boundary layer formulation.
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Figure 5.197: Proximity to plane stress at r = 0 in SENB, B/(W-a) = 1 along the crack front
at different deformation levels.
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Figure 5.198: Proximity to planc stress at r = 0 in SENB, B/(W-a) = 0.5 along the crack
front at different defor‘%ation levels.
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Figure 5.199: Proximity to plane stress at r = 0 in SENB, B/(W-a) = 0.1 along the crack
front at different deformation levels.
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Figure 5.200: Proximity to plane stress in CCP, B/(W-a) = 1 along the crack front at r = 0 at
increasing deformation levels.
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Figure 5.201: Proximity to plane stress in CCP, B/(W-a) = 0.5 along the crack front at r = 0
at increasing deformation levels.
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at increasing deformation levels.
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Out-of-Plane Constraint Effects Quantified
by a Plane Strain Parameter

'The quantification of constraint loss is a central objective of three-dimensional crack tip
analyses. Chapter 5 presented the basic data {rom which systematic trends must be
extracted. Chapter 6 starts this process. Constraint loss through the thickness, and as a
function of distance from the crack tip is related to a parameter which measures the
proximity to plane strain. A similar approach is taken to identifying the zone in which

plane stress dominates,

6.1 Out-of-Plane Constraint Loss at the Crack Tip (r = 0)

6.1,1 Boundary Layer Formulations and Single Edge Notched Bend Bars

Fracture processes usually initiate in the leading sector ahead of the crack tip. It has
already been shown that in three-dimensional [ields that this is a constant stress sector.
Two important stress components; the maximum hoop stress {cgo} and the mean stress (G,,)

have been used to quaniily out-ol-planc constraint loss.

The hoop and the mean stress determined from boundary layer formulations are given as a
function of the plane strain parameter, p, defined in equation {2.45) in TFigures 6.1 and 6.2
for deformation levels Qg = 3, 5, 8. The constraint loss exhibits a unique behaviour which
can be expressed by a single curve which is boundcd by planc strain conditions at the
midplane. Near the free surface, the ficld approaches a plane stress field or a corner
singularity ficld which cannot be distinguished by p. Figures 6.3 and 6.4 show the hoop
and the mean stress as a function of p for both boundary layer formulations and full-field
SENB solutions. The delormation levels in the full-ficld solutions ranged from small
plasticity to tully plastic. Figures 6.3 and 6.4 show that the out-of-plane constraint 1oss at
the crack tip in boundary layer formulations and full-field solutions fall on a single unificd

focus.
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6.1.2 Centre Crack Tension Panels

In CCP specimens, constraint loss is more complex because constraint is lost due to in-
plane and out-of-plane effccts. To quantify the out-of-plane constraint loss, it is initially
necessary to quantify in-planc constraint loss. An in-plane constraint estimation scheme for
a family of crack tip stress field basced on the T-stress was proposed by Betegdn and
Hancock (1991). Karstensen (1996) extended the range of the estimation scheme from -1 <
T/, < 1 and proposed values for the two constants, A, and B, tabulated in Table 6.1. The

T-stress is related to the applied stress, Gy, through:

=710, 6.1)
where T/0y,, 18 known as the T-stress concentration factor. The applied load, P, from

equation (4.8) normalised by the limit load, P,, from equations (5.5) can be expressed in

terms of the applied stress, Oypp, normalised by the yield stress, o, :

P _om (1) o
P o, 2\l-alW '
H a/W =10.5, /P, reduces to:

P dﬂ))

=3l {6.3)
P o

2} 24

Putting equation (6.3) into (6.1) gives:

2 (6.4)
Jn '\/5 R) ‘
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In-plane constraint loss for three-dimensional CCP specimens can be estimated starting
with a two-dimensional plane strain constraint assessmcat scheme from the maodified
boundary layer formulation. The Q term is given in equation (2.150). For a non-hardening
response, A, and B, are 0.83 and -0.88. The Q values associated with in-plane constraint
loss in the CCP specimens can be calculated at all loads. Specifically for thicknesses
B/(W-a)=1, 0.5 and 0.1, Q was dctermined to be ~0.70, -0.68 and -0.38 at limit load. The

mean and the hoop stress are then given by :

SSY
d(&();m) — G(Sb';m) +0 (6.5)
o (o3

o a

The hoop and the mean stresses in CCP specimens at limit load are tabulated in Tabic 6.2,

Figures 6.5(a) ta (f) show the constraint level as a function of the plane strain paramcter for
all the centre cracked panels. In each plot, constraint loss has been shown at limit load. The
in-plane constraint loss for each configuration is indicated with broken lines. From the
figures, it is clear that the out-of-plane effect causes an additional constraint loss in all the
CCP spcecimens. As a first hypothesis it is appropriate to consider constraint loss due to in-

plane and out-of-plane effects to he additive.

Figures 6.6 and 6.7 show the hoop and the mean stresses as a function of the plane strain
parameter for all thicknesses of CCP specimens. This data is compared with the boundary
layer formulations al deformation levels €y = 7.12 and 12, If the in-plane and out-of-
plane effects are regarded as being additive, the boundary layer formulations show greater
levels of out-of-plane constraint loss than the CCP specimens but both configurations
approach the corner singularity field at the free surface. Different thickness CCP
specimens do not exhibit a unique relation between oul-of-plane constraint foss in contrast
to the SENB specimens due to the different levels of in-plane consiraint loss which is
indexed by T. The highest out-of-plane constraint loss occurs in the thickest CCP
specimen. As the CCP specimen thickness is reduced, the out-of-plane constraint loss

approaches the boundary layer formulation data,
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The mean and the hoop siress constraint loss at the crack tip in boundary layer
formulations and full-field SENB and CCP specimens can be expressed as a simple

polynomial expression :

T (1,00}
o

= Anp” teeet Ani—lpu (66)

4]

where 4,, Ay are the constants determined by a curve fitting and p is the plane strain

parameter,

The hoop and the mean stress out-of-plane constraint loss in the boundary layer
formulations and the SENB specimens in Figures 6.1-6.2 and Figures 6.3-G.4 can be fitted

using a quadratic polynomial curve and the associated constants A, tabulated in Table 6.3.

The hoop and the mean siress in the CCP specimens shown in Figure 6.6-6.7 can be fitted

using a cubic polynomial curve using the constants tabulated in Table 6.4.

6.2 Out-of-Plane Constraint Loss Ahead of the Crack Front (r = 2]/c,)

The distance 2J/cv, is impoitant in fracture analyses because it is a distance where the smali
strain theory converges to large strain analyses. On this basis, out-of-plane effects are now

examined al distance 2J/0,.

6.2.1 Boundary Layer Formulation and Single Edge Notched Bend Bars

Out-of-plane effects at increasing levels of deformation have been examined using the
mean and the hoop stress as a function of the plane strain parameter at a distance of r =
2J/o, along the crack front. The objective is to develop an understanding on out-of-plane

constraint loss over distances from the crack tip involved in the physics of fajlure.
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Boundary layer formulations and thc SENB solutions are discussed together because both

develop positlive T-stresses.

Figures 6.8 and 6.9 show the mean and the hoop stress as a function of the plane strain
parameter in boundary layer formulations at a distance of r = 2J/6, and at deformation
levels, Qs = 1, 3, 5, 8 and 20. At small levels of deformation (¢, = 1, 3, 5), constraint
loss fall on a single curve from the midplane to the free surface at increasing deformation.
However as the deformation levels increase (Qp, = 8, 20), constraint loss is load

dependent.

Tgures 6.10 (a) to {¢) and 6.11 (a) to (c) show the mean stress as a function of the plane
strain parameter at increasing levels of deformation in the SENB specimens. Constraint
reduces with deformation along the crack front and approaches the plane stress ficld on the

free surface.

It is important to highlight that measurement of deformation using J cause the physical
location of stresses to move away from the crack tip. As constraint is lost with distance
{rom the crack tip, this causes constraint loss when measured at r = 2J/o, shows a decaying

trend.

However at low levels of deformation, the constraint loss for SENB solutions and the
boundary layer formulations are similar as demonstrated in Figures 6.12 and 6.13. When
the levels of deformation is small, essentially the measured J can be regarded as near the
crack tip, therefore constraint loss through the thickness can be united into a single

relationship.

Even though analyses of constraint loss in the same specimen thickness at increasing level
of deformation show an independent decreasing pattern, constraint loss in different
specimen thicknesses at the same section (X»/t) regardless of thickness can be united inio a
single relationship. Constraint loss al the samc scetion (X3/t) as a function of the plane

strain parameter are shown in Figures 6.14 (a) to () and 6.15 (a) to (f).
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6.2.2 Centre Cracked Tension Panels

Initially, constraint loss at r = 2J/5, is shown as a function of the plane strain parameter at
increasing levels of deformation as illustrated in Figures 6.16 (a) to (c) and 6.17 (a) to {(c)
for the mean and the hoop stress. Increasing deformation causes constraint loss in all three
thicknesses as shown in Figures 6.16 (1) and (b). However, as with the SENB specimens,
the constraint loss is dependent on the levels of deformation due to the physical point at

which stresses are measured changes because of deformation measured by .

Figures 6.18 (a) to (f) and 6.19 (a) to (f} show the mean and the hoop stress for CCP
specimen for different thicknesscs at the same section (x#/t) as a function of the plane
strain parameter, First, in-plane constraint loss causes the crack tip stress field to drop from
the limiting plane strain field, and then the out-of-plane constraint loss starts from the
inherent in-plane constraint loss associated with the negative Q. For differcnt specimen
thicknesses but at identical sections {xs/t), the out-of-planc constra’int is lost in a similar
way. The out-ol-plane constraint loss at similar sections (x3/t) of CCP specimens of

different thicknesses exhibit similar behaviour.

6.3 Conclusions

At the crack tip, the out-of-plane constraint loss has a unique relation to p which is
mdependent of levels of deformation, This relation is bounded by the plane strain and the
plane stress or corner fields. In the CCP specimens, the out-of-plane constraint loss is
bounded by a geometry dependent constraint loss at the midplane while the frec surlface
field is similar (o that of the boundary layer formulation and the STENB specimens. The loss
of constraint in the CCP specimens arises from in-plane effects which can be identified

from a constraint estimation scheme combined with oul-ol-plane effects.

Qut-of-plane constraint loss is dependent on the level of deformation at r = 2J/G,. The

measurement of deformation by J essentially moves away from the crack tip and cause the
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independent loss of constraint with increase in deformation. However, constraint loss in
different thickness specimens at the same section (Xs/t} can be united into a single

relationship.

There is a significant difference between the behaviour at a fixed physical location (the
crack tip) and a moving location (at r = 2J/o,). If the level of deformation is small
compared Lo limit load, constraint loss can be united into a single curve for boundary layer
formulation and SENB at the crack tip and at r = 2J/¢s,. The constraint loss at the limit load
in SENB specimens is still unique when measured at the crack tip, However, at r = 2J/0,
the physical measured distances arc dynamic with increase in deformation and causes
measurement of constraint at different position, This cause constraint cannot be unified on
a single relationship. Similar behaviours are observed in the CCP specimens. Although
there are differences in the pattern of constraint loss at t = 2J/0,, the loss of constraint in

different thicknesses full-field solutions can be united at the same sections {Xa/t).

Although the plane sirain parameter can quantity out-of-planc constraint loss, the analyses
can nol bc directly applied unless p and the development of constraint loss can be
cxpressed simply in terms of geometry and deformation level. This is now addressed in

chapter 7.



Chapter 6. Qut-Of-Plane Constraint Effects Guantified by a Plane Strain Paramcter 378

PL Strain, T =10 B Q=3

A Qf:l.r =3
X Qfar =3
X3/t =0.5 X3/t =0
0.5 Decreasing xs/t
’.
O T T T T
0 0.1 0.2 O 0.3 0.4 0.5

o JoT:T}

Figure 6.1: The hoop stress in a boundary layer formulation as a function of the plane strain
parameter, p, at the crack tip.
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Figure 6.2: The mean stress in a boundary layer {ormulation as a function of the plane
strain parameter, p, at the crack tip.
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Figure 6.3: The hoop stress as a function of the plane strain parameter, p, for boundary
laycr formulations and SENB specimens B/(W-a) = 1, 0.5 and 0.1. The load levels are
shown at the midplane.
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Figurc 6.4: The mean stress as a function of the plane strain parameter, p, for Boundary
Jayer formulations and SENB specimens B/(W-a) = 1, (1.5 and 0.1. The load levels are
shown at the midplane.
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n Al’l Bll

3 0.21 -0.08
6 0.48 -0.25
13 0.64 0.4
oo 0.83 -0.88

Table 6.1: Curve fitting constants for a modified boundary layer formulation after
Karstensen (1996).

B’{(W'a) T"!(Tapp T“‘Gu Q GB’Bip Glhip
1 -0.94 -0.54 -0.70 2.27 1.69

0.5 -0.92 -0.53 -0.68 2.29 1.71
0.1 -0.6 -0.34 -0.38 2.59 2.01

Table 6.2: The mean and the hoop stress estimated due to in-plane constraint loss from
equation (6.5) using three-dimensional CCP specimens limit load values.
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Figure 6.5: The hoop and the mean siress along the crack front for CCP speciruens B/(W-a)
=1, 0.5 and 0.1 at limit load as a function of the plane strain parameter, p.
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Figure 0.6: The hoop stress at the crack tip parameterised through the plane strain
parameter, p, comparing boundary layer formulations and CCP specimens, B/(W-a) = 1,
0.5 and 0.1. The load levels are shown at the midplane.
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Figure 6.7. Thc mean stress at the crack tip parameterised through the plane strain
parameter, p, comparing boundary layer formulations with CCP specimens, B/(W-a) =
0.5 and 0.1. The load levels are shown at the midplane.
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Om Ouo
A 0.577 1.15
Ay 0.66 -0.2
Az 7.7 10.5

Tablec 6.3: The hoop and the mean stress curve fitting constants 41, Ay and Az values Tor
boundary laycr formulations of Figures 6.1 and 6.2 and SENB curves of Figures 6.4 and 6.5
as related through the general equation 6,1.

Om Cas
G=1 | G=05|G=01] G=1 | G=05 | G=0.1
Aj 0.577 0577 | 0577 1.15 1.15 1.15
A; 0.79 0.37 239 [ 077 1.64 1.2
Ay -1.78 -6.24 196 | 1053 | ‘1363 14.3
Aq 19.6 27.2 -17.8 32.6 39.1 9.78

Table 6.4: The hoop and the mean stress curve [itting constants A, A2, A3 and A4 values for
CCP of Figures 6.6 und 6.7 as relaled through equation 6.1. G is the thickness (o ligament
ratio B/(W-a).
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Figure 6.8: The mean stress as a function of the planc strain parameter, p, at r = 2I/a, for
boundary layer formulations.
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Figure 6.9: The hoop stress as a function of the plane strain parameter, p, at r = 2/, for
boundary layer formuiations.
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SENB specimens B/(W-a) =1, 0.1 and 0.5. The load levels are the midplane values,
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Out-of-Plane Constraint L.oss

Conservative approaches to defect assessment are based on the toughness in plane strain
conditions. Unlike two-dimensional solutions, the structure of three dimensional crack tip
fields has proved to be clusive. A systematic investigation of constraint loss in three-
dimensional cracked problems has been a central focus in this thesis. Chapter 7 staris by
considering a dimensional analysis of the problem. This leads to hypotheses about
parameters which can guantify oui-ol-plane constraint loss as a function of deformation.

These hypotheses ure tested against the current numerical data.
7.1 A Dimensional Analysis

In order to consider the structure of thiee-dimensional elastic-plastic crack tip ficlds, it is
appropriate to start by considering the dimensional natarc of the problem, with the
knowledge that continuum mechanics problems are inherently non-dimensional. Initially
consider a two-dimensional (plane stress or plane strain) asymptotic crack tip field,
possibly modelled by a two-dimensional boundary layer formulation as illustrated
schematically in Figure 7.1(a). The local stresses al a point defined by co-cordinates (r, 8)
are naturally normalised by the yield stress in tension, (0j/0). The co-ordinates involve
one tength scale, . The only other parameter in the problem which has the dimensions of
length is the loading parameter J/o,. Physically I/, can be regarded as being proportional
to the crack tip opening displacement, or equivalently the radius of the plastic zone. As a
result, when the stress normalised by the yield stress are expressed as a function of roy/J,
the siresses are self similar, A specific and important case arises at the crack tip (r = 0)
when there are no length dimensions in the problem, and for a perfectly plastic matcrial the
crack tip stress system is simply defined as (oj/0,) independent of applied ioad as

measured by (J/6,).
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Now consider a semi-infinite three-dimensional boundary layer formulation, as illustrated
schematically in Figure 7.1(b). As usual the crack flanks lie on 6 = + m, and a free surface
exists at z = 0. The co-ordinates of an arbitrary point (2, r, 8) now involve two length
scales. However at the crack Up (r = 0), there is only one co-ordinate in the problem, z.
This can only be non-dimensionalised by J/o,. The appropriate patameter is thus z6/J. It is
worth noting that highly constrained (near plane strain) fields would be expected to occur
remole from a free swface (z ~» o), and at small deformation levels (J — 0), while
constraint is expected to be lost ncar a free surface, and at large deformation levels (z—0,

J—> e ). The parameter zog/J thus has the correct form to unify these effects.

Ahead of the crack there are three length parameters (z, r, I/Go) which can not be uniquely
arranged by purely dimensional arguments. However on a plane normal to the crack front,

defined by za/J, the non-dimensionalised distance must at least incotporate ro/J.

In a full three-dimensional problem Figure 7.1(c), such as a thin plate full-field solutions,
the co-ordinatcs are still involve two physical length scales (z, 1), while two additional
length scales are introduced by the plate thickness, t, and the loading parameter [/o,.
Consider the stress prefile on two plates of different thickness within contained vielding.
The stress profiles ahead of the crack, must involve the loading parameter J/g,, allowing
distances to be expressed as ro/J. A scaling argument suggests that at sections defined by
z/t the stress profiles should be identical at the same applied load, J/to,. However, the
profiles are expected to change with both (z/t) and loading. Insight into the way that this
change for specimens of different thickness may be obtaincd by recalling that in the semi-
infinitc problem the stress fields at the tip are expected to be unified by zo,/J. This
parameter is investigated as a way of unifying out of plane constraint effects in boundary

layer formulations and {ull-field solutions of different thicknesses.
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7.2 Out-of-Plane Constraint Loss at the Crack Tip (r =0, 0 = 0%

7.2.1 Boundary Layer Formulations

To quantify out-of-plane constraint loss, attention is again focused on the mean siress and
the hoop stress in the leading sector ahead of the crack tip, Figures 7.2 and 7.3 show (he
mean Stress, Om, and the hoop stress, Ogg, as a function of the deformation parameter
(Jioe/20,) from the midplane to a plane close to the free suiface at the crack tip using a
boundary layer formulation. The deformation levels applied in the boundary layer
formulation ranged through Qg =1, 3, 5, 8 and 20. On the midplanc (2/t = 0.5), the mean
stress and the hoop stress maintain stress levels close to the fully constrained plane strain
values [rom small to moderate load levels (C2g, = 1 to 8). However, at the maximum load
(L2fr = 20), constraint is lost. Across the plate thickness, constraint loss incieases from the
midplane to the free surface while an increase in load causes a drop in constraint at each
section (z/t). At sections near the free surface, the constraint level approaches that
associated with a plane stress field, but at the intersection of the crack front and the free
surface, the field is perturbed by a corner field which features a uniaxial tension sector

directly ahead of the crack.

7.2.2 SENB Specimens

In the SENB specimens, the mcan stress and the hoop stress are shown as a function ol
deformation in Figure 7.4 (a) to (f) and Tigure 7.5 (a) to (f). The order of the figures
correspond to the order of the sections along the crack front; from z/t = 0.5 to 0.04. The
stresses are represented by square, triangular and circular markers for the thick,
intermediate thickness, and thin bend specimens. The important result is that identical
constraint loss occurs at the corresponding sections (z/t) of different thickness specimens
when deformation is parameterised by Joo/20,. As a result, the mean and the hoop stress at
a given same section (z/t) in different thickness specimens can be unified as illustrated in

Figures 7.4 and 7.5. The maximurmn deformation level in this data set, approaches the limit
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of plane strain J-dominance of 251,,./0, in bending al the midplane. The thin specimen
exhibited the highest Jj./20, before the limit of plane strain J-dominance was reached at

the midplane.

A compilation of all the out-of-plane constraint loss data at differcnt sections of SENB
specimens is shown in Figures 7.6 and 7.7, The figures, show that the stresses at the crack
tip eventually approaches a steady state for each section for deformation levels Jio/20, =
0.05, which corresponds to limit load. Al limit load the deformation becomes constant, and
the stress distribution at the crack tip and all other fixed distances must also therefore

become steady stute.

7.2,3 CCP Specimens

In the CCP specimens, constraint is lost due to hoth in-plane and out-of-plane effects. The
in-plane effect can be estimated using the load combinced with the appropriate T-stress
concentration factor, T/capp, for the geometry, and then using medified boundary layer
formulation calculations to connect T/g, to the level of constraint loss, Q. The in-plane
constraint loss at limit load, calculated by this method is shown in Table 6.2. The table
gives the level of the mean and the hoop siress for all thicknesses of CCP specimens. It is
clear that constraint loss before limit load is largely attributable to the in-plane effect,

while the out-of-plane effect dominates beyond limit load.

Figures 7.8 (a) to (f) and 7.9 () to (f) illustrate the mean stress and the hoop stress for CCP
specimens at different sections (z/t) for three different thicknesses. Constraint loss in thick,
intermediate thickness and thin CCP specimens is represented by the square, triangular and
circular markers. Both figures show that the out-of-plane constraint loss is iden(ical at the
same section (z/t) of different thickness specimens when deformation is parameterised by

J 10(_-/ Z 00.

The data presented in Figures 7.8 (a) to (f) and 7.9 (a) to ()} are plotted in Figures 7.10 and

7.11 to show the constraint loss as a function of Ji,/zG, at all sections along the crack
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front. Constraint loss increases with distance from the midplane to the free surface. The
mean and the hoop stress fall as out-of-plane constraint is lost with increasing levels of
deformation at limit load, I/zo, > 0.05. At limit load, the deformation and the

corresponding stress distribution become stationary.

Consequently, the constraint loss at the crack tip in both SENB and CCP specimiens
approaches a steady state in full plasticity. Therefore at limit load, the mean and the hoop
stress along the crack front at the crack tip (r = 0) can be simplified as shown in Figures
7.12 and 7.13. These figures show that independent of thickness and at limit load, the out-
of-plane constraint loss at the crack tip can be represented by single relationships from the
midplane to the free surface. In the SENB specimens there is no in-plane constraint loss,
unlike the CCP geometry, which allows the constraint loss to be split into in-plane and out-
of planc components. The out-of-plane constraint loss in CCP specimen qualitatively
follows a similar pattern (0 the SENB specimens but at a lower level due to in-plane
constraint loss. At the [ree surface, the constraint level for STNB and CCP specimens both
reduce (o that of a corner f{ield. The boundary layer formulation data is also similar to the
SENB results. This demonstrates that, for positive T-stress configurations, the out-of-plane
constraint loss at the crack tip (r = 0) for the mean and the hoop stress can be generally

represented by the SENB curves for loads Jig/20, = 0.05.

7.3 Out-of-Plane Constraint Loss (r = 2J/c,, 0 = 0)

7.3.1 Boundary Layer Formulations

Out-of-plane constraint loss as a function of deformation and thickness is now examined at
distance r = 2J/6, from the crack tip. Figures 7.14 and 7.15 show the mean and hoop stress
as a function of deformation in a boundary layer formulation. Both figures show that the
constraint is lost with increasing deformation at all scctions through the thickness. For all
sections, the stress start at the fully constrained plane strain level and decays with
increasing deformation. The loss of constraint is highes( on planes close to the free surface.

At the same applied load, the constraint loss at the crack tip (r = 0) is less than that at r =
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2)n/06, Which is consistent with the observation that constraint loss increases both with

distance from the tip and deformation.
7.3.2 SENB Specimens

The mean and the hoop stress at r = 2J/0,, at different sections (z/t) along the crack front of
SENB specimens arc shown in Figures 7.16 (a) to (f} and 7.17 (a) to (f). The data from
thick, intermediate thickness and thin SENB specimens are represented by square,
triangular and plus markers repectively. The plots show that the stresses at the same
section (z/t) of different thickness specimens are unified when deformation is quantified by
Je/20,. However, unlike the behaviour at the crack tip, constraint continues to be lost at all
deformation levels in contrast to the behaviour at the crack tip which reach a steady state at
limit load. It is important to realise that the distance r = 2J/6, is not constant but increases
with deformation. Although the applied load and the stress distribution which equilibrates
with it are expected to be stationary at limit load, the distance 2J/0, continues to sample
the stress al increasing distances (rom the crack tip, even at limit load. As a result the stress

at 2J/0, does not reach a steady state at limit load.

Figures 7.18 and 7.19 show compilations of thc out-of-planc constraint loss for different
sections (z/t) from the data presented in Figures 7.16 (a) to (f) and 7.17 (a) to (). An
increase in deformation causcs significant loss of constraint across the crack front. The
trends show that the coustraint foss at all sections approaches the plane stress field at high

deformation fevels,
7.3.3 CCP Specimeuns

The constraint loss in CCP specimens at r = 2J/6, is shown in Figures 7.20 (a) to (f) and
7.21 (a) to (f) as a function of J,/20,. Initially, constraint is lost due to the in-plane effect,
followed by out-of-plane constraint loss. For a given section (#/t), the out-of-plane

constraint loss in all the CCP specimens can be unilied by using the parameter Ji,o/Z,.
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Agures 7.22 and 7.23 show compilations of the out-of-plane constraint loss plots fram
Figures 7.20 (a) to (f) and 7.21 (a) to (f) for the mean and the hoop stress. The value of the
mean and the hoop stress attributable to in-plane constraint Joss in CCP specimens has
been calculated at limit load using T/o,. Although the in-plane constraint loss for different
thicknesses varies slightly with T/o, given in Table 6.2, the stress field for different
thicknesses converge to a unificd curve. The mean and hoop stress at limit load for Q = -
0.7 occurs on the midplane at approximately 1.690, and 2.276,. However as the load is
increased, out-of-plane effects cause a rapid loss of constraint and the stresses approach the
plane stress field at deformation levels of the order Jio./zG, = 0.5 when they approach a
steady state. Conversely at r = 2J/G,, plane stress conditions occur on the cenire plane for
plates thinner than 4J,,./c, which is approximaltely 4 crack tip opening displacements (48).
At the free surface, the corner field affects the constraint at low load levels when the ficld
exhibits a uniaxial tension sector ahead of the crack. However, as the load increases, the

field approach the plane stress field. -

In both SENB and CCP specimens, the pattern of out-of-plane constraint loss is similar at
the crack tip and at r = 2J/6, at low loads, but differs at high levels of deformation. At
J10e/20, < 0.05, constraint Joss at the crack tip and r = 2J/a, depends on the section (z/t). At
Te/20, > 0.03, the constraint loss at the crack tip become steady state {or each section (z/t).
However, at r = 2J/o, and at high deformation levels, a steady state is only finally rcached

when a unifarm state of planc stress is approached at deformation level Ji,/z26, = 0.5,
7.4 The Proximity to Plane Strain with Deformation
In chapter 6, out-of-plane constraint loss was shown to correlate with the plane strain

parameter, 0. In this section, the plane strain loss has been coupled with the deformation

parameter (Jine/Z0a) in an attempt to unify out-of-plane constraint loss.
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7.4.1 Plane Strain Loss at the Crack Tip (r =0)

Figurc 7.24 shows the plane strain parameter as a [unction of deformation in a boundary
layer formulation. The plane strain conditions are lost with increasing distance from the
midplane. However at a given section (7/t), the plane strain parameter at the crack tip

approaches steady state.

Figurcs 7.25 (a) to ({) and 7.26 (a) to (F) show the plane strain parameter for SENB and
CCP specimens as a function of Jy,/zG, at five sections across the crack front in different
thicknesses. The proximity to plune strain for thick, intermediate thickness and thin

specimens of different thickness fall on a single curve for a given section (z/t).

Compilations of p as a function of Jjw/zo, in SENB and CCP specimens for different
section (z/t) are shown in Figures 7.27 and 7.28. Proximity 1o plune strain is lost along the
crack front as shown in different sections. However, the proximity to plane strain at similar
sections (z/t) exhibits a similar behaviour with deformation, and does not show significant

differences between specimens with different levels of in-plane constraint.

7.4.2 Planc Strain Loss Abead of the Crack Front (r = 2)/0,)

The loss of plane strain as a function of Jio/z6, at 2J/0, in a boundary layer formulation is
shown in Figure 7.29. Unlike the trend at the crack tip, which exhibits a loss of plane strain
before becoming constant at each section (z/t). The plane strain loss at 2J/c, reduces

continuously on a unified locus as the deformation level increases at all sections (z/t).

'The planc strain parameter as a function of deformation for SENB and CCP specimens at a
distance of 1 = 2J/G, at various sections (z/t) of different thickness specimens are shown in
Figures 7.30 (a) to (f) and 7.31 () to (f). Plane strain conditions are lost at all scctions as

deformation increases, but approach a steady state as the plane stress field is approached.
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Figures 7.32 and 7.33 show the plane strain parameter as a function of J../z¢, at all
sections of the SENB and CCP specimens. Plane strain conditions are lost from the
midplane to the free surface as the load level increases and can be unified into a single

locus.

At the crack tip, the plane strain parameter, p, approaches a constant value at limit load at
each section across the crack front. However, when the p is measured at r = 2J/0,, it

continues to fall with deformation at all sections and approaches the plane stress field.
7.5 Unification of Qut-of-Plane Constraint Loss

In previous sections, the deformation parameter J/zo, has been used to demonstrate a
systematic pattern of out-of-plane constraint loss. However a useful and simple
interpretation of out-of-planc constraint loss requires the unification of constraint loss for
all sections (z/t). A three-dimensional deformation parameier is proposed which is

modificd from equation (7.2) :
o _t_ {7'4)

Figures 7.34 and 7.35 illustrate the mean and the hoop stress as a function of Ttz G, at
the crack tip for boundary layer formulations. The out-of-plane constraint loss at all

sections (z/t) and at all deformation levels can be unified¥into a single curve.

Figutes 7.36 (a) and (b) and 7.37 (a) and (b) show the mean and the hoop stress as a
function of the deformation parameter Tioct/z%a, for the SENB and CCP specimens. In full
field solutions of SENB and CCP specimens, limit load can be reached. and this allows the
stresses at the crack tip to reach a steady state. In contrast, boundary layer formulation can
never reach limit load conditions because it has no physical geometry. To relate constraint
logs in SENB and CCP specimens to the boundary layer formulation at the crack tip,

constraint }oss can be discussed at low loads and at the limit load. At low loads, constraint
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loss as a function of Jluct/zzcro across the thickness exhibits a single unified trend shown by
the boundary layer formulations. At limit load, constraint loss at the crack tip reaches a

steady state as shown in Figures 7.12 and 7.13.

At a distance of 2J/c, ahead of the crack tip, remarkably, constraint loss can be unified
onto a single curve at different sections (z/t) for all geometries and load levels. This
behaviour is shown for the boundary layer formulation and full-field SENB and CCP
specimens as demonstrated in Figures 7.38 (a} and (b), 7.39 {(a) and (b), 7.40 (a) and (b),
which allows the deformation parameter Yoct/z26, to systematize the constraint loss at

different scetion (z/t) by a single unified curve.
7.6 Conclusions

Constraint loss in three-dimensional problems has been evaluated at the crack tip (r = 0)
and at a distance of r = 2J/o,. The out-of-planc constraint loss in boundary layer
formulations, SENB and CCP specimens cxhibit a similar patiern at r = 2)/6,. Constraint is
lost with an increase in deformation particularly in sections near the free suiface.
Constraint loss allows the stress field to approach the plane stress level at all sections at
deformation of the order of J/zG, = 0.5. Constraint loss at different sections (z/t) can be

united as a function of Ji,.t/2°G,, so that ;

{
Olmoe) = f (-Jz"i] (7.5)

VaNe)

0

At the crack tip the pattern of constraint loss is different from that at r = 2J/c,. For
geometries which exhibit positive T-stresses, the constraint loss is identical to three-
dimensional non-hardening boundary layer formulation. However SENB specimens differ
from the boundary layer formulation at the crack tip at high deformation levels.
Fundamentally, boundary layer formulation has no physical dimensions and never reaches

limit load in contrast to the SENB and CCP configurations. In non-hardening plasticity, the
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stresses reach a steady state at limit load which implies that the constraint at a fixed
physical distance will reach a steady state. At the crack Lip, at limit load, constraint loss has
a single profile across the crack front. However, at low levels of dcformation, constraint

loss for SENB and boundary layer formulation is similar.

Constraint loss is dependent on distance from the tip. The out-of-plane constraint loss at
the crack tip is always less than at r = 2J/0,. Consequently the distance 1 = 2J/G, can be
uscd as a conservative reference field to estimate constraint levels associated with real

cracks and defects. A failure assessment scheme is now discussed in chapter 8.
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()

(b)

Figure 7.1: The crack tip dimcnsional length scalcs associated with (a) two-dimensional,
(b) semi-infinite three-dimensional boundary layer formulations and (c) finite three-
dimensional problems.
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Figure 7.2: The mean stress al the crack tip, r = 0 from the midplane to near the free surface
as a function of J,./zC, in a boundary layer formulation at load levels Qg = 1, 3, 5, 8, 20.
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Figure 7.3: The hoop stress at the crack tip, r = 0 from the midplanc to near the frec surface
as a function of J,,/7G, in a houndary layer formulation at load levels Qg, =1, 3, 5, §, 20.
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Figure 7.5: The hoop stress at the crack tip (1 = 0) at differcnt sections along the crack front
as a function of Ji0/z20,, in SENB specimens of different thickness. The square, triangular
and circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.6: Compilation of plots from Figure 7.3 (a to f) for the mean stress at r =0, as a
function of Jjo./zG, for SENB specimens of different thickness. The square, triangular and
circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.7: Compilation of plots from Figure 7.7 (a to f) for the hoop stress at r = 0, as a
function of Ij,./zG, for SENB specimens of different thicknesses. The square, triangular and
circular markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.10: Compilation of plots from Figure 7.4 (a) to (f) for the mean stress at 1 =0, as a
function of Jj,/z0, for CCP specimens of different thicknesses. The square, triangular and
circular markers represent the thick, intermediate thickness and thin specimens.

3.5
B e SR T =0
Goo
G =-0.38
Op 2.5 ______________________________________________ _Q _______________
0zt =0.5
e oy 7/t = 0.25
! S Oz =0.18
1.5 A A _ o2/t =0.08
N ) 2/t = 0.04
1717 Pl Stress
0.5 -
0 T T T T T
O 1 2 3 4 J!nc 5 6
Z0,

Figure 7.11: Compilation of plots from Figure 7.8 (a) to (f) for the hoop stress at r =0, as a
function of Jio/z0, for CCP specimens of different thicknesses. The square, triangular and
plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.12: The mean stress at the crack tip (r = U) along the crack front at deformation

level, Jio/z6, 2 0.05 along the crack front for boundary layer formulation, SENB and CCP
specimens independent of thickness.
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Figure 7.13: The hoop stress at the crack tip (r = 0) along the crack front at deformation

level, Jjo/z0, = 0.05 along the crack front for boundary layer formulation, SENB and CCP
specimens independent of thickness.
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Figurc 7.14: The mean stress at r = 2J/0, at diffcrent sections (z/t) as a function of Jy, /20,
at load levels, £, = 1, 3, 5, 8, 20 for a houndary layer formulation.
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Figure 7.15: The hoop stress at 1 = 2J/G, at different sections {z/1) as a function of Ji./20, at
load levels, S = 1, 3, 5, 8, 20 for a boundary layer formulation.
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Figure 7.16: The mean stress as a function of J./z0, for SENB specimens of different
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Figure 7.17: The hoop stress as a function of Ji/z6, for SENB specimens of different
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Figure 7.18: Compilation of the mean stress plots at 1o,/] = 2 from Figure 7.16 as a
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Figure 7.19: Compilation of the hoop stress plots at 16,/J = 2 from Figurc 7.17 as a function
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Figure 7.21: The hoop stress as a function of J./z0, for CCP specimens of different
thicknesses at idenlical sections (z/t). The square, triangular and circular markers represent
the thick, intermediate thickness and thin specimens.
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Figure 7.22: Compilation of the mean stress plots at 16,/J = 2 from Figurc 7.20 as a
function of J/z6, for CCP specimens. 'The square, triangular and circular markers
represent the thick, intermediate thickness and thin specimens.
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Figure 7.23: Compilation of the hoop stress plots al 16,/J = 2 from Figure 7.21 as a function
of Jiacfz6, for CCP specimens. The square, triangular and circular markers represent the
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Figure 7.24: The plane strain parameter as a function of Ji/20, at the crack tip (r = 0) at
differcnt scctions (z/t) for a boundary layer formulation at load levels, Qe = 1, 3, 5, 8, 20,
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Figure 7.25: The plane strain parameter at the crack tip (r = 0) as a function of J,./za, for
different thickness at identical sections (z/t) for SENB specimens. The square, triangular
and plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.26: The plane strain parameter at the crack tip (r = 0) as a [unction of Ji,./zG, for
different thickness at identical sections (z/t) for CCP specimens. The square, triangular and
plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.27: Compilation of the plane strain parameter plots from Figure 7.25 as a function
of Jiu/z0, for SENB specimens at different sections (z/t) and thickness. The square,
triangular and plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.28: Compilation of the plane strain parameter plots frony Figure 7.26 as a function
of Jioofzo, for CCP specimens at different sections (z/t) and thickness. The square,
triangular and plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.29: The plane strain parameter as a function of J,./z0, at r = 2J/G, at different
sections (z/t) for a boundary layer formulation at load levels, Q. = 1, 3, 5, 8, 20.
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Figurc 7.30: The plane slrain parameter as a function of J,/zG, at r = 2J/G,, at identical
scctions (z/t) for SENB specimens. The square, triangular and plus markers repicsent the
thick, intermediate thickness and thin specimens.




Chapter 7. Out-of-Plane Constraint Loss 427

(@) B

Os S — 0.6

Gy 0.5 1
Gl'l'+oliﬁ 0.4 -

0.3 1
0.2 1
0.1

0 -

“0.1 T 1 T T ..0.1 . T .o o
0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 15
Jloc

20,

(c)

08

o, 05 z/t = 0.08

Tt Gy 4

= =k

z/it = 0.04

=

Figure 7.31: The plane strain parameter as a function of l./2G, at v = 21/0,, at identical
sections (z/t) for CCP specimens. The square, triangular and plus markers represent the
thick, intermediate thickness and thin specimens.
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Figure 7.32: Compilation of the plane strain parameter as a function of Ji,./zG, plots from

Figure 7.30 at r = 2J/0, at different sections (z/t) Tor SENB specimens. The square,

triangular and plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.33: Compilation of the plane strain parameter as a function of Ji/z0, plots from

Figure 7.31 at r = 2J/c, at different secttons (#/t) for CCP specimens. The square, triangular
and plus markers represent the thick, intermediate thickness and thin specimens.
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Figure 7.34: The hoop stress as a function of Jloct.fz200 at different sections (&/t) for a

boundary layer formulation at the crack tip at deformation, £2g,= 1, 3, 5, 8, 20.
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Figure 7.35: The mcan stress as a function of T tiz20, at different sections (z/t) for a

boundary layer formulation at the crack tip at deformation, Qg = 1, 3, 5, &, 20,
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Figure 7.36: The mean and the hoop stress as a function of Jct/z°c, at different sections
(z/t) for SENB specimens at the crack tip at limit load.
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Figure 7.37: The mean and the hoop stress as a function of J mcl'fzzo'o at different scctions

(z/t) for CCP specimens at the crack tip at limit load.
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Figure 7.38: The mean and the hoop stress as a function of Joet/z*a, at different sections
(z/t) for a boundary layer formulation at r = 21/6, at load levels Qg = 1, 3, 5, 8 and 20.



Chapter 7. Out-of-Plane Constraint Loss 432

(a)
25- T T 1 e
Pl Strain PL. Strain
A
_____________________ PL. Stress
0.5 1 |
O I ] ¥ 0 T T { I:
0 2 4 6 8 10
0 2 4 -[Eoc t 6 8 10 JIGC I.
z*o, G,

Figure 7.39: The mean and the hoop stress as a function of J wet/22G, at different sections
(z/1) for SENB specimens at r = 2J/0,, at limit load.
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Failure Assessment Methodologies

A widely vsed engineering approach to dcfect assessment is based on failure assessment
diagrams (R6 (2001) and BS 7910 (2005)), which were originally developed within the
context of single parameter {racture mechanics. The approach has been subsequently
modified to take account of in-plane constraint loss within the framework of plane strain
fracture mechanics (MacLennan and Hancock (1995) and Ainsworth and O’ Dowd (1995)}).
Although part of the conservatism associated with single parameter fracture mechanics has
been avoided, real structurcs do not necessarily fail in plane strain conditions. This chapter
discusses a failure assessment scheme bascd on three-dimensional constraint loss which

can incorporate both in-plane and ount-of-planc cffects.
8.1 Application of Out-of-Plane Constraint Loss for Failure Assessment

All the analyses in this chapter are carried out at a distance r = 2J/6,. This distance is
chosen because constraint is distance dependent and js lost with distance from the tip. In
local micromechanics analyses of cleavage failure such as Ritchie et al. (1973), it has been
shown that failure inmitiates at a distance greater than r = 2J/0,. Therefore, analyses of
failure at r = 2J)/0, are an undcrestimate of the constraint loss over the critical micro-
structural distance. This leads to an underestimate of the constraint enhanced toughness

which is conservative in defect assessment schemes.

The failure assessment scheme can also be ¢xtended to failure initiation by ductile tearing.
Ductile tearing is associated with nucleation, growth and coalesccnce of voids which
initiate within the finite strain zone (r < 2J/6,). On the assumption that the equivalent
plastic strain profiles are similar in the three-dimensional crack tip field, the stress
deviators in a plane strain field are -1, +1 and O in the x1, X2 and x5 direction while in a
plane stress field (0 = 0"), the deviators are 0, +1 and —1 in the X;, x; and x5 direction. The
deviatoric components change directions during the transition from plane strain to plane

stress, but in the limit, the strain states are identical. Flancock and Brown (1983) showed
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that in circumlflerentially notched tension specimens, effeclive plastic strain to initiate
failure is strongly dependent on state of stress, o, /o but weakly dependent on the strain

state. Ductile tearing can be assumed to depend on the state of stress at r = 2J/¢, which

aliows the three-dimensional failure assessment scheme to be applied to ductile tearing.

Two-parameter plane strain failure assessment schemes are based on a description of the
crack tip field in which constraint loss is independent of distance, (Betegdn and Hancock
{1991} and O’Dowd and Shih (1991)). In-plane constraint loss is based on a family of
fields which are hydrostatically different but deviatorically similar. However, out-of-plane
constraint loss features ficlds which are hydrostatically and deviatorically different, and the
difference is distance dependent. At this point, many researchers who have discussed three-
dimensional crack tip fields have come to a conclusion that three-dimensional crack
analyscs can nol be used (o develop a viable approach for failure assessment using

constraint based fracture mechanics.

To address constraint {oss in three-dimensional fields, it is appropriate to consider the way
in which the fields change. Interest is focused in the mean stress, ¢, and the maximum
principal stress, Ogg, in the leading sector directly ahead of the crack. The loss of constraint
cun be expressed as the difference in mean stress, AGy,, between a given field and a
reference field at a distance r = 23/6,. 1t is natural to take the reference field as the small
scale yielding field (T = 0) field under perfect plane strain conditions. A similar approach
is adopted for the maximum principal stress, Aggg. The stress difference between a given
field and the plane strain reference field has been evaluated for three-dimensional
boundary layer formulations and full-field solutions. It is important to note that if this
approach is adopted under perfect plane strain conditions,

Ao, Aoy B

i

Q (8.1)
(o) (93

[ o
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It is appropriate now to consider the stress system in a three-dimensional crack tip field.
The stress tensor can be expressed in terms of the hydrostatic and deviatoric components
following equation (2.18). Assuming, the maximum principal stress, ogg, at 0 = 0° is

considered for discussion:

0(70 = Sep + o-m (9 =~ OO) (8.2}

where sgp i the maximum stress deviator and O is the mean siress. A change in the

maximum principal stress can arise from a changc in the associated stress deviator and, or,

a change in the mean stress:

Oga tAC gy =859 T Asgp + 0, + A0, (8.3)

Comparing equations (8.2) and (8.3), if ACgg = AGy, then Asgg = 0.

Figure 8.1 shows AG /T, and Aoyy/C, in the boundary layer formulation at v = 2¥o, at
sections, »/t = 0.5, 0.25 and 0.18 as a function of JIOCD’ZZGU. The change in the hoop stress
and the mean stress is closely similar at all sections (z/t) and can simply be expressed as a
single curve. The similarity of Aoy, and AGgy implies that the difference in the maximum
stress deviator is zero, Asgg = 0. This implies that during out-of-plane constraint loss, the
stresses in the leading sector ahead of the crack differ hydrostatically, but that the

maximum stress deviators are similar. Similar results from full-ficld solutions are shown in
Figures 8.2 and 8.3.

It is known that failure by cleavage is driven by the maximum principal stress while ductile
tearing is a function of the mean stress, G, and equivalent plastic strain, Constraint loss
quantified by the maximum principal stress, Gge, or the mean siress, G, are identical and
can be used to characterise cleavage and duclile tearing. On this basis, it is possible to

develop a failure criterion incorporating in-plane and out-of-plane constraint loss.
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8.2 Analytic Expression for Out-of-Plane Constraint Loss

The change in the mean stress and the maximum principal stress has been shown to be
similar. 'Fhe designation for out-of-plane constraint loss, Ac®/c, is proposed where Ac
may be considered to be either the change in the mean stress or the maximum hoop stress.
The superscript “op” denotes an out-of-plane effect, The general nature of out-of-plane

constraint loss can be expressed by an exponential expression of (he form:

2l

- ﬁ(e’y[z’oj -1 (8.4)

FaVoatd

The form of exponential decay is such that at very small Icvels of deformation (J — 0), or
equivalently in sections remote from a free surface (z — <o), a fully constrained field

develops, Ao™ — 0. At very large levels of deformation (J — o) or equivalently on

g

o

sectors very close to the free surface (z — 0), the field approaches the plane stress field.

Consequently, the value of [3 in fully constrained flow ficlds (T > 0) corresponds to the

difference in constraint between the plane strain (T = 0) and the plane stress field.

a

ssy( pl strain) pl.stress
it . O

B =

(8.5)
o)

a

(o3

(4]

In fully constrained geometries such as the SENB, Bsgnp = 1.82. The other constant in
equation (8.4) is v which is the constraint loss sensitivity. The constraint sensitivity, v, for

SENB is determined by rearranging eguation (8.4) to a lincar {it.

Ac”® S ioct
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Figures 8.4 show constraint sensitivity, v, to be close to 3 for SENB specimens.

Constraint loss in CCP specimens is more complex because it is affected by both in-plane
and out-of-plane effects. In-plane effects can be estimated through the two-dimensional in-
plane effects based on T/Q which have been discussed in Chapter 6 and 7. Out-of-planc
effects become pronounced ai limit load. Using this as a reference, the oul-of-plane
constraint loss curve has a similar form to that given in equation (8.4). Assuming that in-

plane and out-of-plane constraint loss effects affect B, Bocp for CCP can be expressed as:

55y pl.stress

O
,8 — Q _m (8.7)
) (o2

Q o

If the plane strain constraint loss, Q, is calculated from T, the applied load causes Q to
become more negative with load until it becomes constant at limit load. In the present case,
this leads to fece = 1.44. The constraint loss in CCP specimen can therefore be regarded as
a combination of in-plane and out-of-plane effects. The constraint sensitivity, v, for the
CCP specimen has heen determined in a similar way to the SENB specimens and is shown

to be 3 for perfect plasticity.
8.2.1 Effect of Thickness on Plane Strain J-Dominance

Any criterion for the loss of plane strain J-Dominance is largely subjective but Shih and
German (1981) argued that in fully constrained plane strain flow fields, J-Dominance can
be regarded as being maintained when the stresses are within ten percent of the HRR field
at r = 2J/0,. For in-plane constraint loss, Betegdén and Hancock (1991) proposed that planc
strain J-Dominance should be maintained for T-stresses greater than -0.20, for a hardening
exponent, # = 13, which is consistent with the ten percent criterion used by Shih and
German (1981). However, Shih and German (1981) and Betegén and Hancock (1991)
discussion is centred on J-Dominance specific to in-plane effects. The effect of thickness

on plane strain J-Dominance can be discussed based on an observation which originated



Chapter 8. Failure Assessment Mcthodologics 438

from Wallin (1985), and has subsequently been adopted in the ASTM (E813-1988)

standard test method for Ji.. To maintain plane strain J-Dominance in a bend test :

J
t > 25— (8.8)
o

o

This empirical requirement has been supported by numerical and experimental results.
Nevalainen and Dodds (1995) suggested the plane strain J-Dominance requirement to be t
2 25-50J /0, for hardening exponent, n = 5 - 10. A tighter limit on the thickness
requirement o maintain plane strain J-Dominance was proposed by Koppenhoefer and
Dodds (1996) at t = 25-30)/0, for cleavage failure based on impact-loaded, pre-cracked

Charpy specimens.

In the current three-dimensional analyses, it has been shown that on the centre plane of
SENB fully thick square specimen (B/(W-a) = 1) constraint loss is almost negligible at the
limit of in-plane J-Dominance (co,/J = 25), where ¢ = (W-a) is the ligament length. In
order (o maintain consistency for thinner specimens, the out-of-plane constraint loss curve
which initiates from Jict/2°G, = 0 for Ac®/6, = 0 can be modified to be consistent with the
ten percent criterion (Shih and German (1981)). A plane strain J-Dominance limit can be
drawn on the constraint loss curves as shown in Figure 8.2. If the mean stress is
considered, a ten percent departure from the Prandtl corresponds to Ac/a, = -0.24, Within
this limit, it is reasonable to consider constraint loss to be negligible so that Ac/c, = 0
when Jiot/27G, < 0.25. The expression for out-of-plane constraint loss in the fully in-plane

constrained field is now proposed to be:

Ao -0 for [0 < % < 0_25J and _L_ >0
bed

2o, o

o

[

(8.9)

o 0, g,

34t
up - =32 10,25
B0 182 ["""J —1y for [3—{—‘2430.25} and L5 g



Chapter 8. Failure Assessment Methodologies 439

The addition of 0.25 as a constant in the exponential term does not change the constraint
sensitivity, v, which remains 3. The effect of thickness on plane strain J-Dominance can
now be identified by calculating the intersection of equation (8.9) to the ten percent offset
shown in Figure 8.6 (a). Qut-of-plane constraint loss is negligible at the midplane for

thicknesses greater than:

J.
1>30—= (8.10)

which is consistent with the existing thickness limit of ASTM (E813-1988). In addition,
the three-dimensional analyses can be used to demonstrate pléne strain J-Dominance in a
three-dimensional field as shown in Figure 8.7. Plane strain J-Dominance is lost at

distances z/t < 0,18 from the free surface.,

In an unconstrained flow fields such as the CCP geometry, in-plane constraint loss causes
J-Dominance to be lost at very small applied loads, and no offset is required Ac®/c, = 0 as
shown in Figure 8.6 (b). The out-of-plane constraint loss for unconstrained fields,

Ac™ /o, of a CCP specimen can be given as:

Ao "{ifij ~
ue ﬁ(@ T, ) 1) ('l' <0) (S.I 1)

4]

Figure 8.6 {(a) and (b) show the fit of the curve of equations (8.9) and (8.11) to the SENB
and CCP numerical daia plotled al the midplane, z = t/2.

8.3 Effect of Thickness on Toughness
In order to examine the effect of thickness on toughness, data from Betegén (1990) shown

in Figure 2.43 is used. From the figure, the failure locus due to in-plane constraint loss, can

be reasonably expressed as:
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J = Jf(: —22 O
Ty (8.12)
I = J,{lualj T .o
GD (TU

where O = 3 is the in-plane constraint loss sensitivity for the Betegdn’s (1990) data and
using Jic = 200 kN/m and o, = 400 MN/m?. If the out-of-plane constraint loss has a similar
effect to in-plane constraint loss, the out-of-plane constraint loss can be matched (o the
failure locus as shown schematically in Figure 8.8, The load history at the midplane for a
given thickness spceimen can be expressed by equation (8.9) for SENB specimens. The
thickness of the cracked bend specimens was 22 mm. The load history of different
thickness spccimen is plotied in Figure 8.9, At a thickness of 22 mm, the load history
intersects the failure locus close to Ji. and specimens of this thickness are almost fully
constrained. As the thickness reduces, the out-out-of-plane constraint loss approaches the

plane stress field.

If the intersection of the load path and the failure locus is extracted from Figurc 8.9,
toughness as a function of thickness failure locus can be determined using equation (8.12).
Qut-of-plane constraint loss saturates as planc stress is approached. The exponential

expression in equation (8.9) can be cxpressed in a simpler form for Jioet/z%c, << 1 :

;=L -075p)
1_3ﬁy{1[) Ji‘-r

(8.13)

2
',

From the variation of the J-integral along the crack front, the highest deformation occurs
on the midplanc and sensibly, failure can be assumed to initiate at the centre of the plate.

By replacing z = t/2 in cquation (8.13):



Chapter 8. Failure Assessment Methodologies 441

J, (1-0.75
I, = -i-(——~—4fl for Hige <0.3 (8.14)
]__Bﬁyop Yl fgn
o

o

Equations (8.13) and (8.14) essentially provides an estimation of failure at the midplane of

the plate.
8.3.1 Experimental Validation for Thickness Effect on Toughness

It is now appropriate to use this method on experimental data to verify the predicted effect
of thickness on fracture toughness. Irwin et al. (1958) have presented data for cracked bend
bars of 7075-T5 and 2024-T3 Aluminium alloys, and tabulated in Irwin (1964). Originally,
the toughness data versus thickness consists of notched bend and centre cracked tension
panels but for comparison, only the cracked bend data is used as tabulated in Table 8.2 in
order (0 eliminate in-plane constraint loss effects. A further caveat arises as the data were
only originally analysed using LEFM which will underestimate the toughness in full

plasticity.

Figures 8.10 and 8.11 show the effect of thickness on toughness using equation (8.14) at
the midplane, compared with the experimental data of Irwin (1964) for 7075-T6 and 2024-
T4 Aluminium alloys. The model agrees well within experimental data for SENB (fully

constrained) specimens.

This 18 a significant step in understanding the effect of specimen thickness due to out-of-
plane loss on toughness, which was discussed initially about five decades ago. The
comparison between the experimental data and the analytical expression provides
validation that the deformation parameter Ji,t/z°c, can successfully quantify out-of-plane
constraint loss. The necessary data are the plane strain fracture toughness, Ji., and the yield
stress in tension, G, combined with a plane strain J-Q/T locus. It is pertinent to highiight
the effects of B on the J.-thickness failure locus. In a through cracked problem, P is the

imitial dilference in consiraint between the midplane and the free surface field at
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asymptotically small load levels. For the present configurations, the constraint sensitivity,
¥, has heen shown to be similar in SENB and CCP geometries and thus only [ is shown to
be dependent on geometry through the T/Q term. For different materials, the J-Q/T failure
locus may differ, and the in-planc constraint sensitivity, o in equation (8.12) may also
vary. However, Wallin (2001) suggested a simple expression for constraint loss which he

argues o be universal.

The representation of toughness as a function of thickness is a useful indication of the level
of toughness for a given matcrial in a specified cracked configuration. However, a more
convenient and practical method in assessing the safety margin of a flawed structure is the

failure assessment diagram. This is discussed in the following section,
8.4 Failure Assessment Diagrams (FADs)

Although the three-dimensional crack tip analyses presented in this thesis were carried out
for a non-hardening material, the expressions for the constraint loss can be used to
approximate failure in real materials, as demonstrated by the effect of thickness on
toughness in the preceding section. Therefore, the same approach can now be used to

demonstrate a methodology of assessing failure bascd on failure assessment diagrams.

8.4.1 SENB Out-of-Plane Effects

In order (o develop failure assessment diagrams to cvaluate the effects of out-ol-planc
constraint loss in structural problems, it is appropriate initially 1o deline the reference
failure locus for the plane strain conditions. J can be decomposed as usual into elastic and
plastic components:

J J

elastic + Jpla.s‘tic (8.13)

total =

Following Kumar et al, (1981), the clastic and plastic crack driving force, J is:
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2
Jelm'lic = “o'u go (W —a )h‘[ (CZ/'W, n{}'{:‘} (8 ]6)
P n--1
T prasic = 00 ,€,(W —a)hy(afW, n)[F] (8.17)

where o is 4 constunt taken as 1. The yield strain, €, cun be calculated from the yield
slress, Gg, and Young's modulus, I. P/P, is the load over limit load which is also expressed
as L. The expression Ay (a/W, n) is a tabulated function of geometry and strain hardening
exponent, n, given by Kumar et al. (1981). For a deeply cracked bend bar (a/W = 0.5), the
limit load is given by equation (4.4). For material with hardening exponent of n = 10, the

A" = 1.41 and hP™"™ = (1.331. Noting that K = T , 4 failure assessment line for a
J,

C
plane strain SENB geometry can be plotted as shown in Figure 8.12 given that failure
occurs at a critical value of J. This failure assessment line is a failure locus for which t is

infinite or simply & state of plane strain.

For a finite thickness SENB geometry, out-of-plane constraint loss, Ac/c,, can be

expressed by equation (8.9). The toughness J. due to out-of-plane constraint loss

normalised by the fully constrained, Jy is taken to be:

J, "
daota) (B0 (8.18)
ch g

0
where o is the constraint sensitivity which is dependent on the material failure locus and

Betegdn’s data o = 3 has been used in all calculations.

A failure assessment diagram in three-dimensional problem is represented by L, on the
abscissa which is the load normalised by the limit load. The ordinate is represented by K.

K; in terms of the enhanced toughness duc to constraint loss has been discussed following



Chapter 8. Failure Assessment Methodologics 444

Macl.ennan and Hancock (1995) or Ainsworth and O’Dowd (1995). Maclennan and
Hancock (1995) have shown that the failure assessment line derived from the EPRI scheme
(equation (2.163)) is identical to the failure assessment line for constraint matched
toughness given in cquation (2,166). A failure assessment line that more cleasly

demonstrates the enhanced margins (Ainsworth and O’Dowd (1995)) is given as:

K:p - K,(J!..m'aiu J(;Z/T) (8.19)
Ry’

()

where K.”*"™" has been given in equation (2.166). Following the same argument, K, for

the out-of-plane constraint loss cun be given as:

K ;)p - Kp(. srain %

r

(8.20)

where 7 is the toughness associated with constraint loss. Figuie 8,13 show the effect
) g g

cfderter,

of out-of-plane constraint loss on the failure assessment diagrams. As the thickness
reduccs, the toughness increases. At very low load levels, the toughness of the specimen
coiresponds to the plane strain Ji. toughness regardless of thickness. At very small loads,
the extent of plasticity is small in relation to the size of the specimen and failure occurs at
K; = K. However as deformation increases, and plasticity increases prior to failure, out-
of-planc constraint loss increases and this increases the toughness of the specimen towards
planc stress toughness. For all specimen thickness, the failure assessment line converges to
a single line which is the limit for plane stress toughness (excluding necking). The failure
assessment diagrams are able to show the effect of thickness on toughness which is a
significant step in identifying the (ransition of toughness from plane strain to plane stress,

and the loss of out-of-plane constraint.
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8.4.2 CCP In-Plane and OQut-of-Plane Effects

In three-dimensional centre cracked tension panels (CCP), constraint is lost due to both in-

plane and out-of-plane effcets.

Ao Ac” Aok
La = @8.21)

[/ o o

where, AC/O, = AT G, = AT/, is the total constraint loss in the leading sectors ahead of
the crack tip. The superscript ip and op refer to in-plane constraint loss and out-of-plane
constraint loss. ‘I'he in-plane constraint loss has been determined in chapter 6. Following
equations (6.1 to 6.4), in-plane constraint loss in three-dimensional CCP specimen can be
estimated using the Q term given in equation (2.150). Using equation (6.4) in equation
(2.150) gives:

i 2
Ac? T P T P
A +B | —=— 8.22
{'\/710} n(\/g PGJ ( )

The out-of-plane constraint loss in CCP specimens can be quantified using equation (8.11)

where 3 is defined in equation (8.7). The failure assessment diagram for CCP can now be
constructed from Kumar et al.’s (1981) expression for ] given in equations (8.16) and
(8.17). For a hardening exponent, n = 10, the CCP constlanis hf’"“"" = 2.21 and h,"‘““”‘ =
1.52. For CCP specimens with a/W = 0.5, the toughness due to out-of-plane consiraint loss

J (ao10,) CaN be calculated through cquation (8.18).

Figure 8.14 shows failurc asscssment diagrams for CCP specimens, B/(W-a) = 1 and 0.1
with /W = 0.5 and n = 10. "The failure assessment line in CCP specimens depends on the
level of T/Q. At very small loads, the toughness is similar regardless of thickness. As the
load increases, the failure assessment line depends on the level of T/Q. Thick CCP

specimens have very negative biaxiality compared to the thin CCP specimen. It is shown
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that the failurc asscssment linc in B/(W-a) = 10 are higher than the thick CCP specimen
(B/{W-a) = 1}. However, at very high loads, the failure assessment lines are independent of
T/Q. The CCP specimen failure assessment diagrams has been able to show the transition
of plane strain to plane stress however the level of enhanced toughness is dependent on the
level of T/Q. Figure 8,15 shows in-plane effect compared to the out-of-plane effect for
constraint loss for CCP specimens for different thickness, which shaw that out-of-plane

effect dominates at and after limit load.

It has heen demonstrated that enhanced level of Loughness associated with the loss of out-
of-plane constraint can be incorporated into the failure assessment diagram scheme.
Constraint loss in unconstrained [low field is dominated by in-plane effects up to limit
load. At loads greater than limit load, the toughness is strongly affected by out-of-plane
etfects. The three-dimensional constraint based failure assessment diagram can alleviate
the traditional approach of using lower bound plane strain toughness in structural integrity

assessment, and avoid unnecessary conservatism.
8.4.3 Experimental Validation of FADs

The three-dimensional failure assessment diagram methodology is now applicd to the
experimental results of Irwin, Kies and Smith (1958), Rolfe and Novack (1970) and Jones
and Brown (197(). These data are tabulated in Tables 8.3. Irwin et al. (1958) used 7075-T6
and 2024-T4 Aluminium alloys while Rolfe and Novack (1970) used 18 Ni Maraging
Steel. Jones and Brown (1970) used a Ti 6A1-6V-28n Titanium alloy. All the experiments
were carried out on deeply cracked SENB (three-point-bend) configurations. The failure
modes of most of specimens were cleavage except for the aluminium alioys. The failure
made in the aluminium alloys has been discussed in terms of the percentage of flat or shear
lip fracture, Irwin (1964). All the aluminium alloys specimens failed by flat fracture except
the thinnest 7075-T6 which failed by 100% shcar.

Initially the original data which is expressed in terms of G and K, is changed to J. using

equation (2.126). For all cases, a hardening exponent, n = 10 has been assumed. The out-
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of-plane constraint loss is then calculated using equation (8.18) with the condition that
plane strain J-Dominance is maintained for t > 30J/G, (or deeply cracked bend bars. The

transformed experimental data or FADs is tabulated in Table 8.3.

Figures 8.16-8.19 show the three-point-bend failure assessment diagrams for different
materials in the order given above. All the failure assessment diagrams show that the
experimental data at a given thickness fall on or above the failure assessment line for the
samc experimental data thickness. When the calculated out-of-plane constraint loss Ac/a,
= 0 [or the experimental data, [ailures fall on the plane strain failure assessment line. This
indicates that the failure methodology presented can be regarded as a conservative estimate
of failure. In all diagrams, the toughness approaches a limiting failure assessment line

which can be identified with a plane stress limit before necking,

As all results has been presented based on a constraint sensitivity, o = 3, it is appropriate to
discuss this effect on the limit of plane stress toughness failure assessment lines in the
failure assessment diagrams. Figure 8.20 shows the effect of changing o for a given
thickness using the data of Rolfe and Novack (1970). Increasing or decreasing value of «

causes the plane stress toughness limit to increase or decrease correspondingly.

8.5 Conclusions

Within the leading sector ahead ol the crack, the stress fields differ hydrostatically but the
maximum stress deviators are similar. This allows a single parameter to quantify the
change in the meaun stress and the maximum principal stress and lead to a viable two-

parameter [raclure mechanics scheme.

In fully constrained crack tip fields, the Jimit of J-Dominance has been determined through
a practical out-of-plane constraint loss scheme. In three-dimensional analyses, a thickness
J-Dominance limit is maintained at t > 30J/0,. Al a distance of r = 2J/5, along the

thickness J-Dominance is lost at distance z/t < 0.18 [Tom the {ree surlace.
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The application of failure assessment diagrams (o existing experimental data has been
demonstrated. Significanl advantage from the effect of out-of-plane conslraint loss on
toughness can now be realised through a practical method in which failure due to cleavage
or ductile tearing can be described through a three-dimensional failure assessment

methodology.
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Figure 8.1: Ac,™/0, and Atgs™/0, as a function of Jit/z’C, at r = 2J/o, for a boundary
layer formulation at z/t = 0.5, 0.25 and 0.18. The fillcd markers represent the mean stress,
and the unfilled markers represent the hoop stress.
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Figure 8.2: AGq, P/, and Aoy "/0, as a function of 4Jy,./to, in SENB specimens at r = 2J0,
at the midplane. The square, triangular and circular markers indicate thick, intermediate
thickness and thin specimens. The filled and unfilled markers represent Ac,"/o, and
Acg /o,
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Figurc 8.3: Ao, /o, and AGg™/0, as a function of 4),,/LG, for CCP specimens at r = 2Jo,
at the midplane. The square, triangular and circular markers indicate the thick, intermediate
thickness and thin specimens. The filled and unfilled markers rcpresent Acy™/c, and
AG@@OP / Gy.
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Figure 8.4: The gradient of the curve indicates the constraint sensitivity, Yop, for SENB
specimens.
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Figure 8.5: The gradient of the curve indicates the constraint sensitivity, Yo, for CCP
specimens.
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SENB CCP
B 1.82 1.44

Yop 3 3

Table 8.1: The out-of-plane constraint loss constant, f}, and the constraint loss sensitivity, v,
for SENB and CCP specimens.

G,

(@) (b)

Figure 8.6: Curve fit of equations (8.9) and (8.11) at the midplane for difference of stress as
a function of deformation for (a) SENB and (b) CCP in geometrics with different thickness.
The circular, triangular and square markers represent the thick, intermediate thickness and
thin specimens while the filled and unfilled markers represent AGgg, AGy,.
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Figure 8.7: The SENB through thickness variation of the effect of thickness on J-
Dominance (t > 30 J./c,).
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Figure 8.8: Schematic of failure locus J. as a function of Aoy, gu).
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Figure 8.9: The trend of {oad history modelled using equations (8.9) for bend specimens
using constraint sensitivity, Y = 3 and constraint loss constant, f = 1.82 at different
thicknesses (4 < t3 < 2 < 1) and failure locus based on Betegdn’s (1990) data expressed in

cquation (8.12).
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7075-T6 2024-T4
Thickness, mm T, kN/m Thickness, mum Je, KN/m
254 22.8 203.2 57.2
19.05 23.5 101.6 60.7
9.32 27.7 50.8 64.2
3.175 112.1 254 78.6

Table 8.2: Effect of thickness on toughness in 7075-T¢ and 2024-T4 Aluminium alloys
after Irwin (1964) tabulated data. The critical crack initiation, Ji = 20.2 and 52.5 kN/m and
the yield stress, G, = 500 and 344 MN/m?.

120 -
.
Je (KN
- e m€Quation (8.14)
80 -
O Irwin (1964)
40 -
............. ch - 20 kN,rm
U] 0
(JI v U T T T
0 5 10 15 20 25 30
t (mm)

Figure 8.10: The effect of thickness on toughness from equation (8.14) representing a crack

in bend bar, Bsgne = 1.82, ¥ = 3. The markers represent the experimental cracked bend data
of Irwin (1964) for 7075-T6 Aluminium alloy tabulated in Table 8.2.
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Figure 8.11: The effect of thickness on loughness of cracked bend bar from equation (8.14).
The markers represent the cxperimental cracked bend data for 2024-T4 Aluminium alloy of
Irwin (1964) tabulated in Table 8.2.
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Figure 8.12: The failure assessment diagram showing failure assessment line (FAL) for
SENB specimen in plane strain for a hardening exponent, n = 13.
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Figure 8.13: The lailure assessment line for out-of-plane constraint loss in SENB specimen
at different thickness, L, and at fixed ligament, (W-a}, for a hardening exponent, n = 13. The

continuous bold line indicates a SENB FAL in plane strain condition. (W-a) = 25 mm.
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Figure 8.14: Failure assessment lines for in-plane and out-of-planc constraint loss in CCP
specimen at different thickness, t, and at fixed ligament, (W-a) = 25 mm, for a hardening
exponent, n = 13. The t = e indicate FAL [or CCP in in-plane plane strain condition.
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Figure 8.15: The effect of load on in-plane and out-of-plane constraint loss for CCP
specimens for a hardening exponent, n = 13. The continuous lines indicale in-plane and
out-of-plane effects in CCP while broken lines indicate in-plane effect in CCP for (W-a)ft =
2. The bold line indicates FAL for CCP t = o which represents in-plane, plane strain
condilion.
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Thickness G £, Gu. T Jtes L Je
(t), mm MPa GPa MPa kIN/m kN/m '

Alumininm alloy 7075-T0, Irwin et al. (1958)

kN/m

25.4
19.05
9.32
3.175

203.2
1016
50.8
254

73
55
47.5
254
12.7
6.25

13.76
13.24
12.7

6.35
3.17
1.76
1.58
0.75

344

1323

1200

70

570

22.8
235
27.7
112

20.1

0.42
0.43
0.468
0.895

22.5
232
27.3
102.5

Aluminium alloy 2024-T4, Trwin et al. (§958)

72

469

57.26
60.76
64.26
78.26

18 Ni Maraging Steel

207

117

1379

1269

695.6
719.0
707.3
706.9
803.9
960.4

10.13
10.63
10.63
9.81
£1.48
10.63
20.89
21.37
30.76

52.53

695.6

10.47

0.921
0.941
0.957
1.013

0.88
0.89
0.885
0.91
0.93
0.98

0.145
.150
0.150
0.150
0.162
0.155
0216
0.221
0.260

49.92
52,12
53.9

60.46

, Relfe and Novack (1970)

649.2
661.1
653.6
694.2
714.1

801.5

Titanium alloy Ti 6Al-6V-28n, Jones and Brown (1970)

9.27
9.92
9.92
9.u2
11.49
10.59
20.56
21.52
28.79

Ao/, Kr

0 0.999

Q €.099

0 0.959
-1.078 1.974

0 0.948

0 0.938

0 0.929

0 0.889

0 0.964

0 0.961

0 0.963
-0.042 1.011
-0.581 1.567
-2.07 2458

0 1

0 1

0 1

] |

0 1

0 i

0 0.99

0 0.99
-0.268 1.34

Table 8.3: SENB data for construction of Failure Assessment Diagrams. The original
thickness effect on toughness plots are shown in chapler 3 (Irwin et al. (1958) in Figure

3.21; Rolfc and Novack (1970) in Figure 3.26; Jones and Brown {1970) in Figure 3.27).
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Figure 8.16: Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 7075-T6
Aluminium alloy, n = 10. The ligament (W-a) = 25.4 mm. t = o indicates the plane strain
FAL limit.
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Tigure 8.17: Failure Assessment Diagram, Irwin, Kies and Smith (1958), SENB 2024-T4

Aluminium alloy, n = 10, The ligament (W-a) = 203.2 mm. t = o indicates the plane strain
FAL limit.
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FAIL for (W-a)/t=3,6, 12

25 (W= 12
5 o

2 7 FAL at increasing
(W-ayit

Figure 8.18: Failure Assessment Diagram, Rolfe and Novack (1970), SENB 18 Ni
Maraging Steel, n = 10. The ligament (W-a) = 75 mm. t = o indicates the plane strain FAL
limit.
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(W-a)/c= 183
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Figure 8.19: Failure Assessment Diagram, Jones and Brown (1970), SENB Ti 6Al-6V-2Sn
Titanium Alloy, n = 10. The ligament (W-a) = 13.76 mm. t = e indicates the plane strain
FAL limit.
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L

Figure 8.20: The effect of constraint sensitivity, o, using Rolfe and Novack (1970) material
data at (W-a)/t = 150.
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Conclusions

The nature of three-dimensional crack tip fields has been analysed for an elastic perfectly-
plastic material within the framework of small deformation theory. The geometries studied
include a three-dimensional boundary layer formulation, and three-dimensional full-fields
solutions of single edge notched bend bars and centre crack tension panels. The full-field
solutions have different thicknesses enabling out-of-plane constraint effects to be examined

through the plane strain to plane stress transition.

The nature of the stress ficld has been examined at two important distances; at the crack tip
(r =0) and at a distance 1 = 2J/0, from the crack tip. In a constrained flow field such as the
boundary layer formulation and SENB at very small load levels, a plane strain field
initially develops at all scctions cxcept the fice surface, which exhibit a corner field.
However, as the load increascs to limit load, the plane strain ficld is confined to the
midplane while other sections (apart from the free surface) decay trom the plane strain
field. At the crack tip, the free surface remains a corner field but a plane stress field
develops at r = t. In an unconstrained flow field such as CCP, the field is similar to the
fully constrained flow field at very small load levels, Increase in deformation causes in-

planc constraint to be lost at all seclions except the free surface which remains a corner

field.

Proximity to plane siress and corner field has been demonsirated to be similar in
constrained and unconstrained flow fields. The corner field at the crack tip is a local effect
extending over a radius of z £ 0.04t from the free surface. This allows a plane stress like
field to occur on the crack tip at z = 0.04t from the free surface. On the free surface, the

plane stress field is recovered at a distance of r= t from the crack tip.

Out-of-plane constraint loss is dependent on the distance from the crack tip, the distance
from the free surface, and the applied load. The stress field ahcad of the crack (-45° <0 <

45% is a constant stress sector in which the Cartesian stresses and stress invariants are
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independent of angular co-ordinates. Out-of-plane constraint loss is associated with a
family of fields which differ both hydrostatically and deviatorically. However, the
maximum principal stress and the mean stress within the leading sectors at different
sections (z/t) differ from the reference small scale yielding field by an identical amount

implying that the maximum stress deviators are similar.

QOut-of-planc constraint loss has initially been quantified through a plane strain parameter,
p. In order to unify out-of-plane constraint loss as a [unction of deformation through the

J;‘oe
U

a

thickness, a dimensionless parameter has been introduced. The out-of-plane constraint

loss at the corresponding sections (z/t) of different thickness of the same geometry can be
unified into a single constraint loss curve. Ilowever, the out-of-plane constraint loss at

different sections (/1) have different profiles. In order to unify out-of-plane constraint loss

at all sections, a parameter JZ’”"I has been introduced. This allows the out-of-plane
‘o

o

constraint loss at different sections (&/t) to be united into a single relationship. An
analytical expression for out-of-plane constraint loss has been developed as a function of

ot This parameter has been able to guantify out-of-plane constraint loss at any section

7’0o,

along the crack front for any specimen thickness. In geomeltries that lose constraint due to
in-plane and out-of-plane effects such as the CCP specimens, ip-plane constraint loss can
be estimated through the T/Q constraint estimation scheme coupled with a scheme to

assess out-of-plane constraint loss based on Tl

2
z'o,

The observation that a change in the mean stress, Gy, and the hoop stress, Ggg, ftom the
small scale yielding field are similar allow out-of-plane constraint loss to be placed in the
contexl of twa-parameter failure scheme. Finally, a conservative failure assessment scheme
from three-dimensional constraint loss crack analyses has been proposed. In fully
constrained geometries, the out-of-plane constraint loss has been validated with

experimental data successtully. In geometries that lose in-plane counstraint, the total
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constraint loss can be estimated by T/Q for in-planc loss and combined with an out-of-

plane constraint loss.

The practical importance of the work is that it enables a way in which toughness data can
he transferred to structures dircetly without depending on lower bound plane strain values.
This will allow enhanced safety margins to be demwonstrated in defect assessment
procedures leading to judicious repair and maintenance strategies in which plant and

structures can operate in optimum conditions of safe performance.
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