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Abstract

Non-Keplerian trajectories around the Lagrange points of the three-body problem have
been thoroughly mvestigated enabling many novel space science missions. Identification
of heteroclinic manifolds linking halo orbits around the L; and L; Lagrange points has lead
to the discovery of the so-called interplanetary superhighway. This thesis considers
possible periodic and quasi-periodic non-Keplerian orbits around artificial libration points

gencrated using solar sail propulsion.

Dynamical models are developed to représent the motion of a solar sail in a two- and three-
body context. Artificial libration points are identified using the solar sail to provide a
constant axial force. The stability of these libration points is investigated using a linear
approximation of the cquations of motion and a non-linear analysis. Established
techniques are applied to identify halo orbits and Lissajous trajectories around thcse
libration points. Manifolds are identified to provide transfer trajectories Lo these orbils
from near the Earth. Solar sail control techniques are developed to prevent cscape from the

nominal orbit after insertion.
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Nomenclature

a - solar sail acceleration due to solar radiation pressure

A - linear cocfficient matrix

B - linear control matrix :
c - spced of light
C - Jacobi constant ;
e - orbit eccentricity

€,€0,€, - cylindrical polar coordinatcs unit vectors

E - total orbit energy

F - force due to solar radiation pressure

G - gain matrix

b, - z-component of angular momentum ;
A - Hamiltonian
ij.k - Cartesian unit vectors
7 - identity matrix

J - Bessel function of the first kind '

L - characteristic length h
m - mass of solar sail

M - mass of primary bodies

n - solar sail surface normal vector )
N - control weighting matrix 1
Py, Py, P, - Cartesian coordinate momenta terms :
Py Pp, P - cylindrical polar coordinate momenta terms

O - state weighting matrix

r - separation distance between solar sail and ceniral body

R - separation distance between primary bodies

Ry - separation distance between Sun and solar sail

t - time

r - kinetic energy

u - control matrix

U - pseudo-potential energy

v - solar sail velocity magnitude

~

gravitational potential energy
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XV,

X2

Cartesian coordinates with x-axis oricntated along the Sun-line
state malrix
outpul matrix

Cartesian coordinates in inertial reference frame

solar sail pitch angle relative to Sun-line
lightness number

change in velocity

Poincaré-Lindstedt expansion parameter
sail vaw angle

Hamilton-Jacobi separation constant
non-dimensionalised solar sail acceleration
gravitational parameter

solar gravitational parameter

angular position of planet orbiting the Sun
angular velocity of circular displaced orbit
angular velocity of planet orbiting the Sun
cylindrical polar coordinates with z-axis oricntated along Sun-line
mass loading parameter

characteristic time

parabolic coordinates/ confocal elliptical coordinates
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Chapter 1 Introduction

1.1  Contribution of thesis

The main objective of this thesis is to investigate possible ncar-term applications of solar

sail technology. Several missions have been achieved using conventional propuision

methods to deliver a payload to an orbit around the 7.; and L, Lagrange points. As the

solar sail is not reliant on stored reaction mass, continuous thrust can be applicd to generate

artificial libration points displaced from the ballistic Lagrange points. Previously applied

methods to define periodic and quasi-periodic orbits around Z; and L; will be applied in the

solar sail dynamical problem to generate orbits around these artificial libration points.

The main contributions of this thesis inctude:

Development of dynamical models in a two-body and three-body context to
represent the motion of a solar sail in the vicinity of a planet. The acceleration due

to solar raciation pressure was included assuming an ideal solar sail surface.

A two-body stability condition was derived for circular displaced orbits using a
linear approximation of the cquations of motion and a non-linear analysis. Energy
methods were used to verify this condition. It was demonstrated that the two-body
stability condition is valid in the three-body problem when the circular displaced

orbit is near to the central body.

Identification of a new family of highly perturbed homoclinic orbits which enable
orbit inscrtion to a circular displaced orbit from near the central body. A closed-
form solution to the two-body problem including a uniform axial force was
obtained using parabolic coordinales. It was demonstrated that the homoclinic
orbits are bound to the surface of a paraboloid which can be used to determine the

closest approach distance to the central body explicitly.

Development of two-body solar sail optimal control techniques to provide station-
keeping at a circular displaced orhit. The two techniques investigated were solar
sail area variation and sall attitude variation, facilitating control of the sail

I




acceleration magnitude. These control methods were demonstrated for control of
circular displaced orbits in the context of Hill’s approximation of the three-body

problem.

Lissajous orbits were gencrated avound artificial libration points using Hill's
cquations. Manifolds were identified to cnable insertion to Lissajous orbits from a
point near the Earth. Station-keeping was demonstrated using a similar optimal

control technique to that devcloped for the two-body problem.

Investigation of halo orbits around artificial libration points in the circular restricted
three body problem. Using previously established methods from the ballistic case,
such as Richardson’s third order approximation it was demonstrated that similar
results are achieved around artificial libration points. A three-uxis optimal control
method combining the sail area and sail attitude control methods applied previously

was developed.

The two-cenire problem was applied to approximale the dynamics of particles
between two stars. An explicit solution was derived using confocal elliptical
coordinates. Homoclinic manifolds were shown to exist which wind on and off an
unstable halo orbit. If was demonstrated that these manifolds are bound to an

ellipsoid surface.

Investigation of possible near-term missions which could be enabled using solar
sail propulsion. These include a mission to position a science payload in the
geomagnelic (ail to investigate the processes of magnetic reconnection and another
mission to deliver a payload to analyse the solar wind upstream of the L; Lagrange

point.
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1.2 Keplerian motion

Johannes Kepler (1571-1630) formulated his famous three laws of planetary motion during

the early decades of the seventeenth century. These three laws are stated as follows

1. The locus plot representing the orbit of a planet around the Sun forms an ellipse
with the Sun located at a focus

2. The area swept out by the radial vector representing the position of the planet
relative to the Sun is constant for equal times

3. The relationship between the semi-major axis, a, and the orbit period, 7, of two

planets is defined as

—————fe = (1.1)

where ¢ is a constant [Baker and Makemson, 1960].

These laws were developed while Kepler was investigating the otbit of Mars using
observational data obtained by his mentor, Tycho Brahe (1546-1601). The significance of
the first two laws is outlined in Fig 1-1. The area swept out by the radial vector forming
the arc, N8O is equal to the area swept out forming the arc, PSQ evaluated over an equal
time period. "These areas are denoted as A; and A; respectively. The semi-major and semi-
minor axis arc denoted as ¢ and b respectively. The centre of the ellipse is represented by

C and is located at distance ae from the focus 8, where ¢ represents the orbit eccentricity.




Figure 1-1 Schematic rcpresenting elliptical orbit with the Sun located at the focus S

The radial distance, r from the focus S at polar angle €, measured from the line §SP, is

expressed using the orbit equation

. afl- &) (1.2)

" 1+ecost

where =0 is refered to as the periapsis of the ellipse and is located at P while the apoapsis

is located at &=m.

A scientific cxplanation for the elliptical motion was provided by Newton (1642-1727)
when he devised the universal law of gravity. He postulated that the force due to
gravitational attraction between two masses is proportional to the inverse square of the
separation distance. Newton demonstrated that the universal law of gravitution provided
greater accuracy when predicting planctary position than the approximate calculations of

Kepler.

The dynamical two-body problem exhibits Keplerian motion. The two-body model obtains
good approximate trajectories for transfers between plancts using a patched conic
approach, The three-body problem exhibits non-Keplerian motion near the Lagrange

points where the gravitational attractions between the two primary masses cancel.




1.3 The three-body problem

Euler (1707-1783) is credited with developing the three-body problem while attempting to
produce an accurate model for lunar motion, which could explain the deviation of the
observed lunar motion from an cllipse. Perturbations to the elliptical motion of moons

were known from observations of the moons of Jupiter.

The three-body equations model the dynumics of a third body in the vicinity of two co-
orbiting primary bodies. Euler developed a rotating coordinate system (synodic), which
contains the motion of the two primaries [Szebehely, 1967]. Although the three-body
problem cannot be solved explicitly, applying some approximations to simplify the

dynamics enables solutions to be determined via numerical or perturbation methods.

Approximations include assuming the mass of the third body is infinitely smaller than the
mass of the two primary hodies, which leads to the restricted three-body problem. The
separation distance between the two primury bodies can also be assumed constant which
yields the circular restricted three-body problem. Jacobi (1804-1851) successfully
identified an integral in the restricted three-body problem, known as the Jacobi Tntegral.
This integral relates the energy of the infinitesimal body to its velocity in the synodic
frame of reference and can be used (o determine surfaces which bound a trajectory without

the need to solve the non-linear three-body equations [Szebehely, 1967; Marchal, 19901.

Hill (1838-1914) developed a useful representation for lunar motion using an expansion
theorem [Hagihara, 1975a]. TTill’s problem considers the planar case of three-bodies M,
M> and M3 where the mass M, 1s much greater than M, or M. If the distance between M
and Ma is large, then the dynamics can be approximated by separate two-body problems
M;-M; and M;-M; ignoring the gravitational interaction between M; and M3 If the
distance between M; and M; becomes relatively small, such as the case of the Sun-Earth-
Moon thsee body problem, then the interaction between M3 and M3z must also be included
[Hénon and Petit, 19806].

i e e
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Figure 1-2 Schemalic of Lagrange points in synodic reference frame

Solutions exist in the circular restricted three-body problem, which represent equilibrium
points in the synodic frame. Xuler identified three collinear libration points (L;, L3, L3)
while (wo triangular libration points (L4, Ls) were identified by Lagrange (1736-1813).
The positions of these libration paints, refeired to as the Lagrange poinis, are shown in

Fig 1-2.

it will be demonstrated, using eigenvalue methods, that the cellinear libration points
(Ls, Lz, L3) are unstable. This means that a spacecraft initially in the vicinity of thesc
points will escape. The triangular libration points are stable provided the system muss
parameter #<0.03852. The mass parameter is defined in the non-dimensionalised three-
body problem as z=M,/(M,+M,) where M; and M, represent the primary masses
[Szebehely, 1967]. Families of orbits have been identified around these libration points

which can be generated using 1* order and 3™ order approximations of the non-linear

three-body equations.




1.4 Non-Keplerian orbits

1.4.1 Orbits around the Lagrange points

Darwin (1845-1912) identified a set of periodic orbits around the libratien points during
the late nineteenth century while investigating the simple planar case of the circular
restricted three-body problem. Using numerical methods he was also able to perform a
stability analysis of these periodic orbits. During the early twentieth century, Strégren
[1870-1947] and colleagues at the Copenhagen observatory performed similar studies of
periodic orbits in the planar three-body case, attempting to classily these orbits depending

on stability and their associated libration point [Hagihara, 1975b].

Since these carly studics of libration point orbits, the development of the digital computer
has enabled more detailed studics. Thrce types ol natural orbit that exist around the
collinear Lagrange points include Lyapunov orbits, quasi-periodic Lissajous orbits and
periodic halo orbits. Lyapunov orbits exist in the orbit plane of the primary bodies. Halo
and Lissajous orbits both contain out-of-plane components so exist in three-dimensions.
Examples of these trajectories generated around the I, point are provided in Fig 1-3, where
thc axes scale has units Ry (Earth Radii). As neither of the primary bodies intersects the

plane of the orbit, these orbits do not agree with Kepler’s laws of motion. It is clear that

libration point orbits can be described as non-Keplerian orbits.

Figure 1-3 (a) alo orbit around L, genecated using Richardson’s 3" order solution

(b) Lissajous orbit around L; generated using 1st order solution
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During the 1960s, libration point orbits became of increasing interest with the possibility of
positioning a communication satellite at the Earth-Moon L, Lagrange point to enable
continuous contact between the Earth and a lunar lander on the rear of the moon. Columbo
demonstrated that the stationkeeping requirement to maintain a libration point orbit was
dependant on the accuracy of the nominal orbit {Columbo, 1961]. If the approximated
nominal orbit agrees closely to the actual non-linear trajectory then the station-keeping
requircment is minimised. An inaccurate nominal orbit requires a greatly increased Av as

the controller petforms manoeuvres forcing the spacecraft to follow the desired (rajectory.

In 1966, Farquhar designed a Lissajous orbit which would be visible from the Earth
requiring a smail Av of 10ms™ per year for station-keeping [Dunham and Farquhar, 2002].
Quasi-periodic Lissajous orbits can be generated by lincarising the three-body equations of
motion. In the x-y plane, the linearised equations have four eigenvalues — two real and two
imaginary. By selecting initial conditions which suppress the real eigenvalues, an
oscillatory solution is obtained. The out-of-plane motion produces two imaginary
cigenvalucs. As the ratio of out-of-plane to in-plane oscillation frequency is non-rational,
the resulting trajectory is periodic in the x-y plane but there is a precession in the y-z planc.

These trajectories are thetefore described as quasi-periodic.

The amount of fuel required to provide stationkeeping depends on the accuracy of the
nominal orbit when all significant perturbations are included. Farquhar and Kamel [1973]
used perturbation methods to detive accurate guasi-periadic orbits in the Earth-Moon
system, minimising the stationkeeping requirements. The Linstedt-Poincaré method was
applied to develop a third order solution of the non-linear equations including perturhations

due to solar gravity and the eccentricity of the Earth-Moon orbit.

By including higher order terms in the approximation of the non-linear equations it is
possible to select orbit amplitudes and frequencies which produce a periodic orbit. The
resulling ratio of the out-of-plane and in-plane frequency is rational. Farguhar coined the
term ‘halo’ orbits for these ftrajectories and he used the method of successive
approximations to define halo orbits in the Earth-Moon system, including the perturbations
caused by orbit eccentricity and the gravitational influence of the Sun
[Tarquhar, 1970a].

Breakwell and Brown [1979] investigated halo orbits around the L; and L, Lagrange points

in the Iarth-Moon system. A differential correction method was applied to improve the

8




initial conditions which generate the nominal halo orbit. The stability of these orbits was
investigated by examining the eigenvalues of the monodromy malrix, constructcd by
evaluating the fundamental solution matrix at onc orbit period. This study identified a
family of stable periodic halo orbits halfway between the Lagrange points and the moon.
Howell [1984| extended this stability study to consider other three-body mass ratios.
Identifying stable periodic orbits would significantly reduce (he station-kecping

requirements.

Richardson [1980a; 1980b] developed an approximation of the nonlinear Sun-Earth three-
body equations by expressing the gravitational potentials in terms of Legendre
polynomials. He applied the Lindstedt-Poincaré perturbation method to obtan a third
order solution, removing unbound secular terms. A constraint was found relating the out-
of-plane amplitude to the in-plane amplitude in order to achieve equal in-plane and out-of-

plane frequencies.

1.4.2 Invariant manifolds

Manifolds represent a subspace of dimension m embedded in a space of dimension »,
where m <n. Therefore, a manifold represents a surface in real space such as the surface
of a sphete, which has dimension =2 in space &. The term ‘invariant manifold’ refers to
a manifold to which the motion of a particle is bound for all time [Jordun and Smith,
1999].

Three classes of manifold that will be investigated are stable, unstable and centre
manifolds. Halo orbits represent centre manifolds in the three-body dynamics problem.
Trajectortes which wind-off and wind-onto the centre manifold, asymptotically, represent
stable and unstable manifolds of dimension m=1. An invariant manifold surface of
dimension m=2 can be generated by numerically identifying a series of stable and unstable
manifolds around the halo orbit. This surface of stable invariant manifolds represents
possible transfer trajcctorics for insertion to a halo orbit from near to the central body. An
individual {ransfer trajectory can be described as a sub-manifold of a 2 dimensional

invariant manifold surface [Folta, 2004].

A heteroclinic connection cxists between the stable and unstable manifolds winding on and
off halo orbits around the I; and L; Lagrange points. Figure 1-4 shows the intersection

between stable and unstable manifolds in the Sun-Jupiter system winding off halo orbits
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around L and Ly, produced by Koon, Lo, Marsden and Ross [Koon et al, 1999]. Transit
orbits refer to those inside the tube and non-transit orbits to these outside the tube. The
manifold tubes act as a separatrix which defines the boundary between transit orbits and
non-transit orbits [Gémez et al, 2004]. The tubes are generated by numerically identifying
unstable manifolds which wind off the L; halo orbit and pass near to the central body.
Stable manifolds, with matching energy to the unstable manifolds, which wind onte a halo
orbit around Z; arc identified starting near to the central body. ‘I'hese suifaces represent
possible transfer trajectories from halo orbits at L, to halo orbits at L;. Similarly, a
heteroclinic manifold surface connecting halo orbits around L; to hale orbits around Z; can
be generated by numerically identifying an intersection between the stable and unstable

manifolds.

Transit orbits, which pass through the manifold surface, offer the possibility of low energy
trunsfers between the exterior and interior region of a planetary Flhill surface. During 1991,
the Japanese Hiten spacecralt used a transit orbit to achieve ballistic capture at the moon
with a Tower Av requirement than offered by a direct Hohmann transfer [Belbruno and
Miller, 1993]. Belbruno demonstrates that starting from a 200k altitude Earth orbit,
transfer to 1 100km altitude lunar orbit with ballistic capture is achievable requiring 25%
less Av than performing a Hohmann transfer manoeuvre at the expense of an increase in

transfer time [Belbruno and Carrico, 2000].

. ’L“:m oty
v meM‘

Stable Umtablc“\
\’.tamfhld ; \fi.xmfﬁ]d

¥ {mondimensional units, Sun-Jupiter rotating frame}

092 094 085 083 1 502  A04 106 1.0
x (nondimensional units, Sun-Jupiter rotrting frame)

Figure 1-4 [nvariant manifold surface produced for the Sun-Jupiter system [Kaon ct al, 1999]
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The lunar ballistic transfer trajectories are identified by first generating stable manifolds in
the Sun-Earth three body system. Manifold surfaces which lead to lunar capture are
investigated in the Earth-Moon three-body system and the point where both sets of
manitolds interact is determined. By connecting the manifold surface and selecting a
trajectory that meets the mission Av and duration requirements, a possible ballistic transfer
from low Earth orbit to a low lunar orbit can be deternined. Treating the problem as two
coupled three-body models offers a good preliminary analysis of the system dynamics but
further analysis is then required by performing numerical integration ol the 4-body
problem to mininiise the required trajectory corrections during an actual mission {Koon et
al, 2001a].

Koon, Marsden, Lo and Ross extended the work on ballistic capture and escape via the
weak stability boundary in the Jupiter system and idenlified a possible (rajeclory for low
Av exploralion of the Jovian moons Europa, Ganymede and Callisto. By independently
identifying ballistic capture and escape trajectories in the Jupiter-Europa, Jupiter-
Ganymede and Jupiter-Callisto three body systems, trajectorics which lead to temporary
capture at these moons are identified. After escape from the moon, the spacecraft follows
a planet-centred orbit with complex gravitational perturbations due to the presence of other
moons, Using a combination of gravity assists and small impulsive manoeuvres the
capture and escape trajectories at cach moon can be patched forming a complete grand tour
of the Jovian system. The tour could be achieved with a Av of 22ms™ at the expense of a

long mission duration [Ross et al, 2003].

Intersections between the manifold surfaces passing through the lagrange points ol
planetary systems gives rise to the so called Interplanetary Superhighway. This complex
network of dynamical pathways facilitates transfer of comets, asteroids and zodiacal dust
throughout the solar systcm [Lo and Ross, 2001]. These pathways led comet Shoemaker-
Levy 9 to a collision with Jupiter during July, 1994. Also, the comets Oterma and Gehrels
3 frequently transfer between the exterior and interior regions of Jupiter via the
heteroclinic conneclion of L; and £,. These comets exhibit a mean motion resonance of

3:2 when interior and 2:3 when exterior to Jupiter’s orbit [Koon et al, 2001b].
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1.4.3 Lagrange point missions

1.4.3.1 ISEE-3 spacecraft

Periodic halo orbits are beneficial at the Sun-Earth L; Lagrange point to ensure the
spacecraft remains outside the solar telemetry exclusion zone. Commumication with the
spacccraft is restricted within this region due to solar radio interference. To avoid this
exclusion zone, the first Lagrange point orbiting spacecraft ISEE-3 (International Sun
Earth Explorer-3) was inserted onto a halo orbit around Ly during 1978, illustrated in Fig 1-
5. The exclusion zone has an angular radius of 3.5° which corresponds to a radius of

90,000 km radius at L; [Farquhar et al, 1977].

The ISEE-3 orbit dimensions were selected such that the z-axis amplitude was 120,300 km
with corresponding y-axis amplitude of 666,000 ki to avoid the exclusion zone.
Stationkeeping costs required a Av of less than 10 ms™! per year during the four year period

the ISEE-3 spent at the L; halo orbit [Farquhar, 2001].
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1.4.3.2 MAP spacecraft

MAP (Microwave Anisotropy Probe), the first I, orbitcr mission, was launched during
2001. The mission aim is to map the cosmic background radiation. The Lissajous
trajectory at L, offers an uninterrupted view of space as the Earth, moon and Sun are
always behind the spacecraft [Bennet et al, 2003]. Insertion to the orbit used lunar gravity
assists to lower the Ay requirement, The time elapsed between Jaunch and arrival at the
hominal orbit was approximately 3 months and the planned mission duration was 2 years.
Figure 1-6 shows a schematic of the trajectory used to deliver MAP (o the desired
Lissajous orbit. The spacecraft still remains in the Lissajous trajectory 4 years aftet

launch.

Top View e _~ bunar orbit

Figure 1-6 MAP spacecraft trajectory for insertion to £; Lissajous orbit

Image from http./fmap.gsfe.nasa. goviindex. himli

1.4.3.3 Genesis mission

Also during 2001, the Genesis spacecraft was inserted into a halo orbit around L;. A
‘heteroclinic-like’ trajectory was identificd which would deliver the spacecraft to a halo
otbit around I, and facilitate return to the Earth via an unstable manifold with low Av
requirements, as shown in Fig 1-7 [Marsden and Ross, 2005]. Genesis is the first mission
to be fully designed using dynamical systems theory and could not have been developed

using a patched conic approach [Serban et al, 2002].
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From its vantage point at Z;, the spacecraft collected samples of solar wind plasma
particles on a scries of metallic and silicon wafers. The mission objectives were to return
the collected solar wind particles (o Earth for extensive analysis providing information into
the origins of the universe. As the spacecraft passed within the vicinity of the Earth during
September, 2004, a sample return capsule was released. Meanwhile, the Genesis
spacecraft returned to the L; region and escaped into the interior region of the Earth-Sun

system.

Similar non-Keplerian orbits and transfer trajectories will be investigated around artificial

libration points generated using a constant axial acceleration provided by a solar sail.
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Figure 1-7 The Genesis trajectory centred on the Earth [Serban et al, 2002]
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1.5 Solar Sailing

1.5.1 Solar sail concept

The concept of solar sailing is accredited to Konstantin Tsiolkovsky and Friedrich Tsander
who suggested, during the 1920s, that the pressure of sunlight could be used to “propel
farge mirrors and attain cosmic velocities” [Tsander, 1924]. Sincc then, several authors
have considered solar sails as a visble means of propulsion which could enable many
exotic, high-encrgy space missions not achievable with conventional propulsion systems.
Garwin [1957] published a paper demonstrating that a solar sail could be used to escape
from an Earth orbit by strategically furling and unfurling the suil Lo increase the orbit
angular momentum. Tsu [1959] demonstratcd the application of solar saiis for

interplanetary travel using an approximate spiral trajectory.

Since then, there have been many studies investigating applications of solar sails.
Columbo [1961] and Farquhar {1970b] demonstrated that small area solar sails could he
applied to provide conirol of halo orbits around the Lagrange points. The potential offered
by solar sails for planetary and small body sample returns has been investigated by many
authors including Leipold [1999; 1996], Seboldt [2003], Dachwald [2003], Macdonald
[2004] and Hughes {2004].

Mcinnes [1994; 1998a; 1999b], Forward [199]] and Morrow [2001] have demonstrated
that solar sails can be used to generale arlificial libration points in the circular restricted
three-body problem. These artificial equilibria are of interest since the solar sail is being
used to provide new vantage points for observation, rather than as an efficient means of

transferring payloads between orbits.

Solar sails require a large gossamer structure with a reflective surface in order to intercept
a flux of photons and so generating thrust. The sail consists of a suitable substrate, such as
Mylar or Kapton, which is required to be of low areal density and resisiant to both tears
and ‘flex crack’. The substrate, with thickness of order 1-2 pm, is folded and stored duting

launch. Various designs of solar sail have been proposed including squate saii, circular

sail and the heliogyro [Wright 1992].
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The substrate is coated with a thin layer of aluminium, of order 100 nm, to provide a
reflective surface. Aluminium is selected due to its relatively low density of 2.70 gem™
and reasonably high melting point of 933 K. The aluminium coating is also reflective over
a wide range of the optical spectrum, including UV wavelengths. This is important to
prevent degradation of the substrate due to UV exposure after sail deployment. Kapton is
less susceptible to degradation caused by exposure to UV radiation than Mylar. The
substraie can be coated with a thin layer of aluminium using vapour deposition. This
techniguc involves vapourising aluminium in a vacuum chamber with the substrate
positioned below. The aluminium atoms condense on the substrate surface forming a thin,
reflective layer. To prevent the sail surface heating significantly, it is necessary to coat the
rear of the sail with a high emissivity film to radiate heat. A rear coating such as

chromium enables passive control of the sail surface temperature.

A reduction of the sail mass increases the achievable acceleration. Possible techniques to
reduce the sail mass include removal of the substrate after the sail is deployed or
perforation of the sail film. Scaglione considers two methods which could be used to
separate the aluminium layer from the substrate - chemical etching or UV degradation of a

buffer layer [Scaglione and Vulpett, 1999; Genta and Brusa, 1999].

Chemical etching makes use of atomic oxygen which is abundant (10° atoms/crn®) at
200km. - 600kin altitude [Peters ct al, 1986]. Exposcd polymer surfaces are etched by the
oxygen atoms due to the low activation energy requited for reaction to occur. Using this
method, the substrate could be removed after solar sail deployment in a low Earth orhit to
obtain an ultra-thin metal sail of 100nm thickness. Alternatively, Scaglione considered the
use of a thin butfer layer, which is susceptible to UV degradation, between the atuminium
coating and Lhe substrate. A suitable buffer candidate is DLC (Diamond Like Carbon)
which is a meta-stable solid consisting of amorphous carbon. When exposed to UV
radiation, the DLC layer degrades until separation of the substrate from the rellective sail

film is achieved.

Another technique to improve the solar sail performance, proposed by Dyson and Forward
is to reduce the solar sail mass by perforating the sail film. A significant reduction in
reflectivity is not experienced provided the perforations have a diameter smaller than the

wavelength of the incident photons [Forward, 1985].

16



1.5.2 Solar sails — current technology

A range of engincering issues have yet ta be overcome before the potential of solar sails
can be realised. A space demonstration of solar sail technology is requircd to enable future
science missions. Deployment of large gossamer structures in space has been thoroughly

investigated but there is a lack of successful demonstrations.

A solar sail mission feasibility study was conducted by collaboration between DLR
(German Acrospace Centre) and JPL (Jet Propulsion Laboratory). The mission was known
as ODISSEE (Orbital Demonstration of an Innovative, Solar Sail driven Expandable
structure Experiment) and aimed to demonstrate and validate solar sail technology. The
solar sail structure consisted of a 40m x 40m squarc sail supported by deployable booms
attached to a central hub. The paylead is connected to the sail via a 10m gimbalcd boom.
The study considered actuating steering by controlling the position of the gimbaled boom
to off-set the sails centre-of-pressure with respect to the centre-of-mass, producing steering
torques. The total mass of the sail and payload was estimated as 77.5 kg. The suil areal
density of 48.4 gm™ would enable an acceleration of 0.17 mms™. After deploying the sail
and demonstrating attitude control, the mission goal would be to orientate the solar sail
relative to the Sun such that it spirals outwards from the Earth reaching lunar distance
within 550 days {I.eipoid, 1999].

Although the ODISSEE mission has not yet been realised, the feasibility study led to a
ground test of a solar sail during 1999 by DLR and ESA (European Space Agency). The
ground deployment was successful and tested sail fabrication techniques as well as
demonstrating basic principles such as folding and storage of a solar sail. Light weight
CFRP (Carbon Fiber Reinforced Plastic) booms of 14 m length were used to support the
sail. A novel approach to simulate Og conditions was employed using helium filled

balloons to support the weight of the solar sail booms [Leipold, 2003].

The sail consisted of 4 triangular segments each of area 82.6 m®. To test and compare the
properties of various sail substrates, two of the segments were manufactured using a
7.5 yum Kapton substrate, one consisted of 4 um PEN (polyethylene naphthalate) and the
other of 12 pm thick Mylar. A thin Mylar film of 3 um thickness was also deployed by
JPL with the required area specified by DLR.
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The ground deployment investigated several substrate materials for the sail. Kapton is
suitable as it is space qualified and UV resistant but is only available in sheets of thickness
down to 7.5 pm. The PEN film can be produced with lower thickness than Kapton,
reducing the sail mass, but might not be suitable al high temperatures [Seboldt, 2003].
Extrapolating the sail size to the 40m x 40m sail proposed for ODISSEE, a total sail
loading of 35 g111'2 would be achigvable for a 4 pm thick PEN sail film including the boom
and deployment module masses. The redundant deployment module can be jettisoned after

the sail is fully deployed reducing the sail loading to 19 g,m'2 [Leipold, 2003].

On the 9™ August 2004, the Japanese space agency JAXA successfully deployed two 10m
diameter sclar sails. These solar sails were released from an S-310 rocket at altitudes of
122 km and 169 km. The sails were fabricated using 7.5 um Kapton and demonstrated two
different deployment methods — Clover and Fan. After deployment, the orbit rapidly

decayed and the solar sails ‘burnt-up’ in the atmosphere.

Recently, an attempt by a privately [unded orgunization, The Planetary Society, to deploy
the first solar in an orbit at 800 km altitude was performed. Cosmos 1 was launched on
June 21%, 2005 alter several delays. The sail configuration was an 8 bladed heliogyro with
total sail area of 600 m®. The sail was manufactured using 5 wm thick PET {polyethylene

teraphtalate) with areal density of 11 gm'2 [Friedman, 2004].

The aim of the mission was to demonstrate sail deployment and attitude control. The
mission objective was to use the sail to spiral cutwards from the Earth. The solar sail was
launched using a Volna rocket, a converted ICBM (Inter-Continental Ballistic Missile).
This was launched from the submarine Borisoglebsk of the Russian Northern Fleet in the
Barents Sea. Unfortunately, the rocket’s 1% stage failed 83 seconds into the flight at an
altitude of 75 km. The rocket including payload continued on a parabolic trajectory

eventually failing into the sea 6 minutes after launch {Friedman, 2005].

Proposed near-term missions which could be achieved using solar sail technology include
the Solar Polar Orbiter, the Geostorm and the Geosail mission. 'Fhese missions will be
briefly outlined including the solar sail technology requirements. The Geosail mission
uses a solar sail to precess an elliptical Eurth orbit by 1° per day so that the solar sail stays
continuously within the geomagnetic tail. This would cnable scientific investigation of the

plasma sheet and give betier understanding of reconnection processes. Without the solar
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sail, the spacecraft would remain within the magnetotail for only one month per year as the

Larth orbits the Sun.

Macdonald and McInnes [2003] performed a study to identify the solar sail requirements
and payload mass for the mission. The payload bus mass was estimated as 74.8 kg
including science payload. The specified sail area is 1500 m® munufactured using a PET
film of 3.5 um thickness. The total sail assembly mass is 54.6 kg with total sail areal

density of 86.3 gm™. The solar sail is required to achieve an acceleration of 0.1 mms ™,

The Geosuil mission is a good precursor to more advanced solar sail missions, although
SEP (Solar Electric Propulsion) could also be used to achieve the mission, with the
drawback that thc mission duration is limited by the stored Xenon reaction mass. A more
exotic mission which could only be achieved using the continuous acceleration provide by
a solar sail is Geostorm, proposed by JPL in 1996. The aim of this mission is to use a solar
sail to generate an artificial libration point sunwards of the £; Lagrange point. The
suggested libration point position 0,02 AU sunwards of the Earth requites a sail

acceleration of 0.31 mms™ {Yen, 2004].

The mission aims (o provide an advance waming of increased solar wind charge density
caused during Coronal mass ejections (CME) which leads to magnetic storms. The
warning time available at L; is 30 minutes to 1 hour. The ACE (Advanced Composition
Lxplorer) and SOIIO (Solar Heliospheric Observatory) currently orbit this location. A
solar sail can be used to control a halo orbit around an artificizl libration sunwards of L;

providing an increase in warning time by a factor of 2-3 [West and Derbes, 2000].

A solar sail can also be used to maneuver to high inclinations for the Solar Polar Orbiter
mission. High inclination orbits tequire large Av which makes solar sails a suitable
candidate. This mission would enable continuous observation of the solar poles. After
deployment, the solar sail can be used to spiral inwards to a distance of 0.48 AU from the
Sun. The solar sail is then used to crank the orbit to an inclination of 82°, taking advantage
of the increased solar radiation pressure nearer to the Sun. The required sail area is
23,000 m? using a sail manufactured from 2 um thick CP-1 film. The total mission

duration is calculated as 5 years and the solar sail characteristic acceleration is 0.42 mms ™
[MclInnes, 2004].
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1.5.3 Solar sail acceleration

Solar sails obtain thrust by intercepting a flux of photons, as shown in Fig 1-8. Incident
photons impart thelr momentum to the sail and the reflection results in an equal reaction
force, with the resulting thrust directed normal to the sail surface. Maxwell predicted the
phenomenon of radiation pressure from his electromagnetic equations in 1879. This was
confirmed experimentally by Peter Lebedew during the early 1900s using a torsion balance

experiment.

MeclInnes [1999a] outlines two complete derivations of acceleration due to solar radiation
pressure exerted on a flat reflecting sail surface using both a quantum and clectromagnctic
deseription of the radiation properties. The intensity of solar radiation at distance R from

the Sun is defined as

}:o‘s

W=—4
47R

1.3)

where L is the solar luminosity and Wis the radiation intensity. This represents the power
per unit area on the surface of a sphere with radius R. The energy transported across a

cross sectional area A for time period Af can he expressed as

AE =WAAt (1.4)

The momentum, Ap, of a photon is related to its energy as

Ap = AL (1.5)

c

where ¢ is the speed of light. The pressure, P, exerted by the photon on a surface of area A

is then

_1iap
P—A(AJ (1.6)

Substituting Eq (1.5) and Eq (1.4) into Eq (1.6) provides the relationship hetween solar

radiation pressure and solar radiation intensity
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P=— (1.7)

MclInnes [1999a] demonstrates that this relationship, derived using a quantum description
of photons, agrees with the relationship obtained using the eleclromagnelic wave

description,

Figure 1-8 shows the forces acting upon the sail surface in the ideal sail case, which
assumes the sail surface is flat and perfectly reflecting. The force resulling from the
photons incident on the sail surface and the recaction force caused by photon reflection is

defined as

f, = PA(v, m)v, (1.8.1)
£, =—PA(v, n)v, (1.8.2)

where P is the radiation pressure and A is the sai] surface area.

The vector identity v, — v, =2(v, m)n can be used to express the force directed normal to

the sail surface as

F =2PA(v, -n)'n (1.9)

Sail Vi

1

Incident
__Photon

Reflected
Photon

Figuare 1-8 Incident and reflected photons on a [lat sail

21

e




The dot product can also be evaluated as v, -n=cose where « represents the sail pitch

angle. The sail pitch is the angle between the sail surface normal and the Sun-line. The
expression for radiation pressure provided in Eq (1.7} can be substituted into Eq (1.9). This

leads to the expression for solar sail acceleration as

a:ﬁﬁgrmﬁan (1.10)

where (G is the gravitational constant, R, is the scparation distance between the solar sail
and the Sun, M; is the solar mass and f is a dimensionless parameter known as the sail
lightness number. This parameter represents the ratio of solar radiation pressure induced

acceleration ta gravitational acceleration and is defincd as

L
= 1.11
p 2meGM o (11D

where Ly represents the solar luminosity, ¢ is the speed of light and sail loading parameter

o =m/ A where » is the total sail mass.

Lquation (1.10) represents the acceleration case for an ideal solar sail which assumes no
non-specular reflections. The thrust is directed normal to the sail surface in the anti-Sun
direction and there are no transverse components of thrust due (o diffuse reflection. For
comparison, an acceleration model can be derived which includes non-specular reflection

for a partially reflecting flat sail,

Figure 1-9 shows a non-perfectly reflecting solar sail [Wie, 2002]. The actual thrust
direction is denoted by m, the sail normal direction denoted by n and the sail transverse
direction by t. The reflection index, g, represents the fraction of photons which arc
speculatly reflected resulting in a reaction force directed normal to the sail surface. The
total force excrted on the suil is defined as

F=Fn+Ft (1.12)

where the force components are determined as
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K =PA(l+ p, )cos® o (1.13.1)
F, = PA(1- p, )cosarsin & (1.13.2)

Substituting Eq (1.7) enables the acceleration, a, to be expressed as

{L+7)cos? cm+§GM-* {1-7)cos asin et (1.14)

a= Rz

BGM,
2 R’

where the thrust direction is denoted by m [McInnes, 1999b]. The angle between the

thrust vector and the sail normal veclor is delined as

tany = 8;? g tan & (1.15)

The solar sail acceleration can be used to generate artificial libration points in the two and

three-body problems. These problems including solar radiation pressure will be briefly

investigated to compare the ideal and non-perfect sail acceleration models.

Sail

Reflected
Photon

Figure 1-9 Schematic representing photons incident on a non-perfectly reffecling sail

23

%
&
#

%




1.5.4 Artificial libration points

‘T'he circular restricted three-body problem represents the dynaruics of a negligible nass in
the vicinity of two primary hodies. The two primaries orbit around a common barycentre
in a circular motion, shown in Fig 1-10. The complete derivation for this model will be
examined in greater detail throughout Chapter 3 and Chapter 4. In this section, it will be

used to provide a comparison of the two sail acceleration models.

The circular restricted three-body problem is derived by Mclnnes [1998a] using a rotating

reference frame with angular velocity ® as

=+ 20 ><£ +AU=a (1.16)

where a represents the acceleration due to solar radiation pressure, r is the position relative

to the barycentre and the pseudo-potential U is expressed as

1 2\ (l-u) u
=g y2 )AL K (1.17)
3

where ry and ry represents the distance of the solar sail from the Sun and Earth
respectively. The angular velocity is dirceted perpendicular (o the orbit plane of the two

primaries, such that o = ak .

0 -

Figurc 1-10 Schematic representing circular restricted three-body problem [Mclnnes, 1999b}
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In the case of a non-perfect solar sail, the thrust direction deviates from the sail surface
normal by the center-line angle, % Selecting a suitable sail lightness parameter and
orientation, it is possible to generate artificial libration points [Forward, 1991]. A
comparison is performed between the ideal and non-perfect reflectivity models for

artificial libration points which lie in the x-z plane of the Sun-Earth three-body system.

It can be seen from Eq (1.16) that the direction of the solar sail acceleration a = VU/|VU|

for an artificial equilibrium point. The acceleration components can be evaluated as

P TB(F ta), ﬂ(xl; Tj #) (1.18.1)
i 2
- (11—7:)»2 +|_&|Z§, (1.18.2)
ry X;

The magnitude of the acceleration is then determined as fa|=+/a,” +a,” and the angle of
the sail thrust relative to the x-axis is calculated using tan® =g _fa, . The angle of the

Sun-line relative to the x-axis can be expressed as tan¥ = z/ o so that the angle between

the Sun-line and the thrust direction can be expressed as & = @~V , which is referred to as

the cone angle.

As the solar sail thrust is generated using solar radiation pressure, the thrust vector must
always be directed in the anti-Sun direction. This imposes a limit on the sail pitch angle
—ml2<a<x/2. Figure 1-11 shows the region in the vicinity of the Farth where off-axis
artificial libration points can be generated using an ideal solar sail, The L, and L;
Lagrange points are also shown. The natural Lagrange points and their stability will be
discussed in greater detail during Chapter 4. In the case of an ideal sail, it is clear that

artificial libration points can be generated earthwards of L, and sunwards of L.

In the case of the non-perfect sail model, the thrust direction relative to the sail normal
varies as pitch angle is increased. The cone angle is calculated from the acceleration
components as discussed previously. The required pitch angle of the sail to achicve this
thrust direction is determined as « =&+ ¥. The centre-line angle, ¥ can be expressed in
terms of the cone-angle & by substituting the relationship for pitch angle into Eq (1.15)

[Molostov, 1992]. After some reduction, the relationship is obtained as follows
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2 1/2
tan}/:—p—‘ l—[l—l—e'\ tanzﬂj (1019)
(1+p,)tan @ 0.

A limit is imposed on the cone angle, &, to avoid imaginary centre-line angles where

5 N2
tanﬁs[ P ] (1.20)

For the ideal sail case p=1, which yields the expected pitch angle restriction
—7m/2<a<m/2 required to ensure the thrust is always directed in the anti-Sun direction.
Figure 1-12 shows the region of possible solutions achievable using a non-perfect solar sail
with p=0.9. Substituting this reflective index into Eq (1.20), it is clear that the limit
imposed on the thrust direction for the non-perfect solar sail is @=64.2°. This reduces the
achievable levitation distance above the ecliptic. Reduction of the reflective index value

subsequently reduces the maximum levitation distance sunward of Lj.
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Figure 1-11 Possible libration points in the Earth-Sun system for ideal flat solar sail

(Solutions possible — Light region; No solutions — Dark region)
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Figure 1-12 Possible libration points in the Earth-Sun system for partially reflecting flat solar sail (0=0.9)

(Solutions possible — Light region; No solutions — Dark region)

1.5.5 Sun displaced non-Keplerian orbits

The continuous acceleration produced by a solar sail can be used to displace a circular
orbit above the ecliptic plane. A dynamical model can be developed using the two-body
problem, as demonstrated by McInnes and Simmons [1992a]. A thorough analysis of non-

Keplerian orbits developed in a two-body context is provided in Chapter 2.

The two-body problem models the gravitational interaction between the Sun and the solar
sail including the acceleration due to solar radiation pressure. Figure 1-13 shows a

schematic of such a Sun displaced non-Keplerian orbit.

The two-body problem can be expressed as

F_—ﬁ;ﬂa (1.21)
r




where 4, is the solar gravitational parameter and a is the acceleration due to solar radiation

pressure. The radial position relative to the Sun is defined in the inertial trame as r, where
r|=+/0%+2* . For the orbit shown in Fig 1-13, the two-body problem can be expressed in

a rotating reference frame with angular velocity @

Representing the relative position to the Sun in the rotating reference frame as ¥, the
velocity in the inertial frame can be evaluated as F=¥+@x¥. The acceleration in the
inertial frame can be converled to the rotating frame using

F=F+dxXr+20Xr+oXoxF (1.22)

Substttnting into Eq (1.20) and assuming the ungular velocity is constant, @ =0, the two

body equations can bc expressed as
r+2oxr--VUT) =a (1.23)

where the pseundo-potential is formed by combining the centripetal term with the

gravitational acceleration as follows

U F) = |oxif -~ (1.24.1)
2 [
VUF) = X 0KF +#f (1.24.2)
r

Figure 1-13 Sun-centred displaced orbits [Mclines, 19924]
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The p- and z- axis directions are represented by the unit vectors e, and e, 1cspectively. The
position of the solar sail relative to the Sun can be expressed as ¥ = e, 1 ze, using

cylindrical polar coordinates. The angular velocity is directed normal to the plane such

that o = we,. The pseudo-potential from Eqn (1.23) can be expressed as

Ui(p,2)= ———(,00)) l| (125.1)

VU(p,z) = [ pw +|~|—Je +[| = J (1.25.2)

To achieve a circular orbit displaced a constant distance from the Sun, the velocity and

acceleration components r=r =0. The requited sail acceleration a=VU{p,z) and the
sail normal direction is defined by m=VU/|VU|. The pitch angle required to generate a

circular orbit displaced above the ccliptic is expressed as

[FxvU(p, z)

T VU(p.2) (1.26)

tan((x)z
The angular velocity of a circular orbit, with radial distance T from the central body can

be expressed as @, = ,u/ |i‘|3 . Substituting this term into Xq (1.25) obtains

pze’

tan(a) = 2, .0 )_pzwz

1.27
(0‘2 (p ( )

Mclnnes [1992a] extracts a factor of (w,0)° from the demominator, which after some

reduction leads Lo the following expression for pitch angle

@/ p)w! o)

tan{x) =
=) 1+(z/ o)~ (w/ @)

{1.28)

Similarly, the sail lightness number required to generate a circular displaced orbit can be

determined by re-arranging Eq (1.10) to obtain
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pm=EL Y0
7

(1.29)

——

I n)2
After some reduction this yields the scalar form

i f2Y Illkzie)f.+[l—(wf oy}
Ao ’Z)++(pj] e 0f ~li-(@ra )] (=0

These expressions will be used to determine the solar sail pitch angle and lightness number
required io generate a displaced Sun-centred circular orbit. These vatues can then be used

to determine the required sail acceleration and loading,.

It is possible to generate an orbit displaced above the ecliptic planc which has the same

orbit period as a Keplerian body. Assuming the planct has a circular orbit around the Sun,

~342

the angular momentum can be defined as w =R, ™", where R, represents the length of the

semi-major axis. Figure 1-14 to Figure 1-17 represent sail loading contours for a range of
orbit radius and displacement distances for cach of the inner planets — Mercury, Venus,
Earth and Mars. The left hand figures, (a), assume the ideal solar sail case where the thrust
vector is directed normal to the sail swface. The right hand figures, (b), represent a non-

perfect solar sail with reflectivity £,=0.9.

For the tdeal sail case, the sail lightness number and pitch angle are calculated for each p
and z value using Eq (1.28) and Eq (1.30). The sail loading parameter is then calculated by
reurranging Eq (1.11) and substituting the lightness number value. The S surface
represents the constrainl for acceleration directed in the anti-Sun direction. The sail pitch

angle is constrained by —zZ/2<a <7 /2, where § defines the surface ¥-n=0. Using Eq

(1.29), it can be shown that the constraining surface S = u/¥ - p*w*.
2 pIF~p

It is clear in the case of a non-petfect solar sail, the maximum levitation altitude achieved
for any loading parameter is less than the ideul sail case. This reduction becomes more
pronounced the greater the levitation above the cecliptic.  Also, the S contour, which
represents the constraint on the orbit parameters, is more acute in the case of a non-perfect

solar sail indicating that achievable orbit radius is reduced as fevitation height is increased.
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Figure 1-17 Sail loading parameter contours for Mars synchronous orbits
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It has heen demonstrated that a non-perfect flat solar sail results in deviation of the sail
thrust vector from the sail surfacc normal due to transverse acceleration componcents. The
deviation angle is significant when the sail is pitched at large angles relative to the Sun-
line. For small pitch angles, the ideal and non-ideal cases closely agree. As this thesis will
mainly consider on-axis artificial libration points, the ideal sail model will be assumed
when calculaling sail acceleration requirements.
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1.6 Obhjectives of thesis

The objectives of this thesis are to:

. Develop appropriate dynamical models representing the motion of a solar sail
in the vicinity of a planet. These models should include both the gravitational
influence of the relevant bodies and the acceleration due to solar radiation

Pressure.

. identify arlificial libration points using these dynamical models including the
acceleration due to solar radiation pressure. The stability of these libration

points can be determined using eigenvalue analysis methods.

. Generate non-Kepierian orbits around artificial libration points. This will
include both Lissajous and halo orbits demonstrated around the L; and L
Lagrange points of the three-body problem. The stability of these orbits will

be evaluated using eigenvalue and energy analysis methods.

¢ Identify manifolds associated with the non-Keplerian orbits which can be

utilised for orbit insertion from a point near to the central body.

. Investigate solar sail station-kecping tcchniques to prevent escape from the
desired orbits after insertion. Two possible methods Lo control the solar sail
acceleration include variation of the solar sail arca and variation of the solar

sail attitude.
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1.7 Outline of thesis

The problem of highly non-Keplerian orbits will be investligated in Chapter 2 using a two-
body context by modeling the dynamics of a solar sail in the vicinity of planet. The
assumption is made that the sofar sail is orientated such that the sail normal vector is
parallel to the Sun-planet axis. It will be demonstrated that a constant axial force due to
solar radiation pressure can produce a circular planet displaced orbit in the anti-Sun
direction. The stability of these orbits will be analysed using both a lincar approximation

of the equations of motion and a non-linear analysis.

New families of highly perturbed periodic orbits arc then gencrated by perturbing the
constant acceleration. 'This new family of orbits provides a set of homoclinic manifolds
which can be used for orbit insertion to a circular displaced orbit from a point near the
Earth. It is demonstrated that these manifolds are constrained to a paraboloid surface
which enables thc closest approach distance to the Earth to be determined explicilly. Solar
sail station-keeping techniques will be investigated, which include sail suifacc arca
variation or sail pitch angle variation, (0 prevenl escape after insertion to an unstable

displaced circular orbit.

in Chapter 3, the problem will be further developed in a three-body context using Hill’s
approximation to the three-body problem, including the acceleration due to solar radiation
pressure. Hill’s approximation includes the coriolis and centripetal terms due to the planet
orbiting the Sun and also includes solar tide terms due to the gravitational influence of the
Sun on the sail. Similar analysis is performed, identifying circular displaced orbits in the
Sun-Earth-sail problem. As expected, it i3 found that when the displaced orbits are
relatively closc to the Earth, the two-body analysis provides a goad approximation of the
dynamics of the problem. When the sofar sail is displaced far from the Earth, perturbations

due Lo the solar tide terms result in orbit instability.

The previously developed two-body control methods will be applied to provide orbit
controf at circular displaced orbits generated using Hill’s equations. The perturbed
homoclinic manifolds will also be generated, again enabling insertion from a point near to
the Earth.
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Quasi-periodic Lissajous arbits around artificial libration points will then be explored in
the context of Hill’s approximation. These trajectories are generated by linearising Hifl's
equations about the libration point. By suppressing real eigenvalues, which lead to escape,
an oscillatory solution can be derived. This yields initial conditions which converge to a
Lissajous orbit. During numerical integration including the nonlinear terms, the solar sail
eventually escapes the nominal Lissajous orbit. Solat sail control techniques will be

applied to prevent escape from the nominal Lissajous orbit after insertion.

In Chapter 4, the problem will be further extended to include the barycentric motion of the
Sun and Earth using the circular restricted three body problem. In the circular restricted
problem the L; and L, Lagrange points are not symmmetrically located either side of the
Earth, unlike the case of Hill’s approximation. For comparison, the elliptical restricted
problem will also be derived using a power series to represent the variation of the
separation between the primaties due to the eccentric motion of the planet. Artificial
libration points will be identified in both dynamical models using the solar sail

acceleration.

in the elliptical problem, there is an oscillation of the libration point position due to the
varying separation distance between the primaries. This oscillation perturbs the behaviour
of a spacecraft orbiting a libration point. The solar sail controller must be able to dampen

these perturbations to provide complete orbit control.

Richardson’s mecthod is applied to develop a third order approximation of the equations of
molion. A third order solution is derived using the Lindstedt-Poincaré perturbation method
to remove sccular terms which lead to unbounded solutions. The third order solution
yields initial conditions which converge to a periodic halo orbit about the libration point.
A differential correction method is applied to generate a periodic halo orbit by numerical

integration of the non-linear circular restricted three-bady equations.

The precision of the halo orbits generated is reasonable to assume they ate periodic for one
orbit period, However, inaccuracies during numerical integration due to ncglected higher
order terms lead to gradual escape from the nominal orbit. A three-axis solar sail control
method is developed which provides full controllability at the nominal orbit. This
controller combines the solar sail area variation and attitude vatiation methods which were
applied to demonstratc control of the circular displaced orbits and Lissajous trajectories. A

combination of these control techniques cnables the solar sail thrust magnitude and
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direction to be controlled to drive the sail towards the nominal orbit. The control technique
is demonstrated at halo orbits in the citcular restricted case sunwards of the I, and I,;
Lagrange points. Control of halo orbits in the elliptical restricted problem is also

demonstrated.

The two-centre problem, a special case of the restricted three-body problem investigated
by Euler, is considered in Chapter 5 as a possible method to examine libration points
between stars. This problem assumes the two primaries are fixed in the inertial frame, thus
the libration points exist where the gravitational acceleration due to the primnary bodies
cancel. This investigation considers the stability of thesc libration points and the

possibility of interstellar dust becoming terporarily trapped between stars.

The two-centre approximation is valid provided the relative stellar motion is negligible
during the period of particle trapping. To validate this approximation, several cases will be
examined including the effects of stellar radiation pressure, the gravitational perturbation
due to the presence of a third star and the perturbations due to relative stellar motion. Halo
orbits around these libration points will be investigated in both the gravitational and photo-
gravitational cases. The stability of these orbits is investigated to determine the likelihood

of interstellar particles becoming trapped at these orbits.

Homoclinic manifolds are investigated which wind off and onto thc unstable halo orbit.
These manifolds could represent transfet trajectories for particles ejected hy one star
system and transferred to another. An explicit solution is derived by converting the
problem to confocal elliptical coordinates. It is demonstrated that the homoclinic

manifolds are bound to ellipsoid sutfaces.

Finally, in Chapter 6 the solar sail dynamical models are used to investigate some feasible
missions which could be enabled by solar sail technology. These missians include
delivering a science payload io a circular displaced orbit 30 Rp (Earth Radii)} from the
Earth using a high performance solar sail. The objective of this mission would be to
provide continuous observation of the magnetic and electrodynamics in the magnetotail
and examine the processes of magnetic reconnection. The next mission considers a
trajectory which could deliver a solar sail to a halo orbit sunward of L;. This mission
outlines an initial delivery of an undeployed solar sail to a Lissajous orbit at £;. Upon
arrival, the solar sail is then gradually deployed and siowly spirals sunwards to a new halo

orbit. Positioning a science payload nearer to the Sun enables advance warning of coronal
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mass ejections which lead to magnctic storms. Both missions will be designed starting
from a low Earth orbit using a Hohmann transfer to deliver the craft to the sclected transfer
trajectory. The Av and sail performance requirements will be discussed. Tt will be
demonstrated that the sail requirements for these missions are achievable with near-term

technology.
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Chapter 2 Two-body Non-Keplerian Orbits

2.1 Two-body problem

The two-body problem mathematically models the gravitational forces between two
masses. In Chapter 1 it was demonstrated that the two-body problem can be used to madel
the gravitational influence of the Sun acting on a solar sail. Using the constant acceleration
provided by the sail, a planet synchronous orbit can be displaced above the ecliptic plane.
Similar analysis can be performed using the two-body problem to model the dynamics of a
solar sail in the vicinity of a planet or small body including the acceleration due to solar

radiation pressure.

Using the constant thrust provided by a solar sail, a continuum of artificial libration points
can be generated. Displaced non-Keplerian orbits can be generated around artificial
libration points where (he central body is not located on the orbit plane [McInnes, 1998b;
1994 Forward, 1991]. The stability of non-Keplerian orbits will be investigated in a two-

body context and possible station-keeping techniques will be examined.

The ideal sail model, derived in Chapter 1, will be asswmed with the acceleration due to

solar radiation pressure, a, defined as

a=2 coson 2.1)

R

where fis the sail lightness number, 4, is the solar gravitational parameter, R, is the radia!
distance between the solar sail and the Sun. The pitch angle ¢ is defined as the angle

between the Sun-line and the sail normal unit vector n.
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Figore 2-1 Schematic of two-body displaced non-Keplerian orbit

'T'o generate a displaced non-Keplerian orbit, the solar sail is orientated so the force due to
solar radiation pressure is directed in the anti-Sun direction with the sail pitch angle o=0.
A constant acceleration displaces the orbit in the anti-Sun dircction leading to a highly

non-Keplerian orbit.

A schematic of a displaced non-Keplerian orbit in a two-body context is provided in
Fig 2-1. As the orbit radius is much smaller than the separation distance between the Sun
and sail, the Sun-line is assumed to be parallel to the z-axis. The p-axis represents the
radial distance from the z-axis with unit vecltor e, and the z-axis represents the
displacement distance from the central body with unit vector e,. The distance between the

solar sail and the central body is represented by the vector r = ze, -+ pe,, with magnitude

\rl =4 2"+ 0* . The direction of angular motion orientated around the z-axis is represented

by the unit vecior eg where the angular position 8 = &,.

In the two-body problem, the solar tide gravitational terms and the centripetul effects of the
Earth orbiting the Sun are ignored. Only the gravitational acceleration of the Earth acting
on the solar sail is considered in this model. The total force, F, acting on the sail is
composed of the gravitational attraction of the central body and the acceleration due to

solar radiation pressure directed along the Sun-line

F=- GMn r-+mae, 2.2)

3
3
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where G represents the universal gravitational constant, M is the mass of the central body,

m is the mass of the solar sail and the constant acceleration due to solar radiation pressure

directed along the z axis, a = ﬁﬂ_ﬁ./‘R_ﬁ,F .

The two-body equations of motion for the problem can be derived using the Hamiltonian

method. The kinetic energy, 7, can be written in cylindrical polar coordinates and the

potential energy can be derived using Eq (2.2) as V =~ IF.dr which obtains

T:%m(z'z o+ p20?) @3.0)
V= ~——(-;-i—1-:|~ni — Az (2.3.2)

where the transverse velocity component of the solar sail is defined in cylindrical polar

coordinates as 08 .

The two-body Hamiltonian, H, is analogous to the total orbit energy defined as & =7 +V.
The Hamiltonian can be represented by the cylindrical polar coordinate momenta terms

Po=mz, P,=mp aod P, = mE*@ such that

. 2
H:ml-— PZZ+PP2+£@?— B naz 24)
2m ‘ |1|

0

where u = GM is the gravitational parameter of the central body.

The equations of motion can now be obtained from the Hamiltonian using oH / oP, =¢ and

oH / dg = _R; , where g=(p, 6z). This resulis in the following equations of motion

o

p=pt* - (2.5.1)
I
§=-2PY (2.5.2)
Je
= ui'ff[-f- ta (2.5.3)
I

40




These equations can be non-dimensionalised selecting the radius of the central body, L, as
the characteristic length. The resulting characteristic time is defined as 7 == 4 ﬂ/ I’ which

has thc same cffcct as setting the gravitational parameter =1,

The angular momentum of the problem can be derived by re-arvanging Eq (2.5.2) as
" o ldy o,
6+ 200 =——{p*0)=0 2.6
o 12 o dt (p ) (2.6}

which demonstrates that p26 is constant. This constant is the componenl of angular

momentum directed along the z-axis and is denoted by £, The non-dimensicnalised

equations can then be re-written in terms of the constant angular momentum as

ptc £ @2.7.1)
2 |l|
g = _200 (2.7.2)
o
F= mh%+ K (2.7.3)

where xrepresents the non-dimensionalised acceleration due to solar radiation pressure.

For a circular, planet displaced non-Kepletian orbit, the initial conditions require constant

displacement distance Z =0 and constant radial distance p =0. Re-amranging Bq (2.7.1)
to obtain 4, = ,02|r|~3"2 and substituting A, = 0°0, the required angular velocity for a

circular orbit can be derived as

9 = Y (2'8)
I

The required acceleration can be derived by re-arranging Eq (2.7.3) to obtain

K=—x Q2.9

41



A series of contours representing the required acceleration and angular velocity for a range

ol nominal orbit displacement and radius are provided in Fig 2-2 and Fig 2-3 respectively.
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Figare 2-2 x(p,z) acccleration contours for range of orbit displacement and radius

Contours: 1) x=0.01, 2} =0.005, 3) x=0.001, 4} «=0.0005, 5) k=0.0002, 6) k=0.0001
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Figure 2-3 é (0.2} angular velocity contours for range of orbit displacements and radii

Contours: 1) 8=002,2) §=0.009, 3) 6=0.006, 4) =0.004, 5) 6=0.002, 6) £=0.001
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2.2 Stability analysis

2.2.1 Linear stability condition

Consider a displaced non-Keplerian orbit with nominal displacement distance z, and radius
o The stability of such orbits can be investigated by applying a small perturbation (o the
nominal orbit conditions and observing the resulting trajectory. If the solar sail remains
within the vicinity of the nominal orbit after the conditions are perturbed the orbit can be

described as stable; escape indicates the orbit is unstable.
The resulting trajectory variation due to small perturbations dp and & applied to the p-

and z—axis respectively can be determined using Taylor’s theorem [McInnes, 1998a]. The

functions f,(p,z)=p and f,(0,z)= % we related to Eq (2.7.1) and Eq (2.7.3) as

foloz)=—t-2 2.10.1)

Fp2)= -tk (2.10.2)

The equations can be expanded to {irst order about p=p, +Jdp and z =z, +& with the

form

"9 2
falp, + o2, + &)= f, (p,,,zo)-{ai;] o -+ H&] & @2.11.1)
[ o, + 0,2, + &)= f, (po,zu)+[%—| o0 + [ai] & (2.11.2)
"O J(} Z o

A variational equation can then be obtained by noting that f (,00 , Zo) =0 which gives

0p)_[%,] - [,
3 L’P 05,0+ o 052: (2.12.1)
d*(&) [, [afz}
o -{—ap ]05,0+ > u& {2.12.2)
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Treating the non-dimensionalised acceleration, x; and the orbit angular momentum, %, as

constants the partial derivatives can be cvaluated as

- |
o | _ L, 3m (2.13.1)
- ap do 100 r:‘) lr.ll'.'

—-a - . "‘:

* | 3o, 9% | (2.13.2)
L az Jda Y ap ‘E"’

ra 1 3z°

F | __ 1 3 2.13.3
| aZ 1, roii ros ( )

The perturbations can be represented as a column vector 8Q=[dp & enabling

Eq (2.12.1) and Eq (2.12.2) to be written in matrix form as

1 0] [A A,).. [0
[o JaQ—[Am AJSQ{O] (2.14)

where the notation Ajy, Ajs, Azp, Ay tepresents the partial derivatives 9f ' /’ 0P, 9 f, /az,

d f,/0p and df, /9z respectively, evaluated on the nominal displaced circular orbit.

For a constant coefficient problem it can be assumed that 8Q = Q_exp(As), where A is a
constant. The two matrices on the Icft hand side of Eq (2.14) can be merged into one 2x2

nonsingular matrix by substituting & = 22&Q (o obtain
-4, -
{ 1 A } =0 (2.15)

The characteristic equation of Eq (2.15) has the form
A = (A 1 Ap) + (AL Ay, — A, ) =0 (2.16)

where A represents the eigenvalues of the matrix. For a stable otbit, the trajectory must

exhibit oscillatory motion with no positive real eigenvalues. This is achieved when A* <0
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resulting in eigenvalues which lie along the imaginary axis. Using this condition, and

solving Eq (2.16) for A? with a simple quadratic solution
g g

— (Au + qu)i\/(Au '+'Azz)?l “4(A11A12 - Alzz) <
2

A 0 (2.17)

Equation {2.17) can he simplified with some re-arranging to obtain the discriminant
A, A, —A," >0 for a stable orbit. Substituting the partial derivatives provided in Eq

(2.13), the discriminant can be expressed as

. .2 - 4 3 2 2
g, tSF, A Yo

Simplifying the expression further by using rf =z

* + 0,7, the resulting inequality can be

]

wriiten as

R Ty | (2.19)

Combining the expression for constant angular momentum /A, = 0°0 and the angular
. , . . A -3 . . p
velocity of a displaced circular orbit 6% =[x|™, the resulting expression #,” = 0,*/r,* can

be used to simplify Eq (2.19) which obtains the constraint
0, > 22z, (2.20)

This is the linear stability condition for a displaced non-Keplerian orbit derived from the
linearised two-body equations of motion. Provided the nominal conditions agree with
Eq (2.20), a small perturbation will not excite any divergent modes and the solar sail will

remain in the vicinity of the nominal orbit.

Figure 2-4 shows a stable orbit displaced z,= 15 L. (radius of central body) along the Sun-
line with a radius of g, = 50 L. The nominal orbit conditions correspond to a stable orbit.
Applying a small perturbation to the initial conditions it is found that the solar sail remains
in the vicinity of the nominal orbit.
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Figure 2-5 shows an unstable orbit produced by initial conditions z,= 20 L and p, = 50 1..
After applying a small perturbation, the solar sail is found to escape in the anti-Sun
direction. Although this is a necessary condition for linear stability it is not sufficient for

non-linear stability which must be derived using other methods.

-50

Figuare 2-4 Stable non-Keplerian orbit with perturbation applied
Lo=50 L, z7,=15L, K‘:1.0545X10_4, 0p=0z=0.01L

w/ D z

6D 20
Figure 2-5 Unstable non-Keplerian orbit with perturbation applied

0,=50 L, 2,=20 L, x=1.2807x10*, dp=8%=0.01L
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2.2.2 Nonlinear stability condition

A nonlinear method to determine orbit stability can be derived by considering the cffective
potential energy of the orbit. A pseudo-potential can be derived in the p-z planc which
includes the terms due to constant angular momentum, #%,. The pseudo-potential analyses

the potential energy in a reference frame rotating around the Sun-line.

The nominal conditions of a stable orbit will be located at a local minimum of the pseudo-
potential energy. A small perturbation to these conditions will result in a restoring force
that drives the sail back towards the nominal orbit. PFor solar sail escape to occur, the
perturbation to the initial conditions must be large cnough that the solar sail potential
energy rises out of the of the local minima. Unstable orbit initial conditions will be located

at a saddle point or local maxima of the pseudo-potential function.

The non-dimensionalised pseudo-potential function, U(p,z), can be derived using the

partial derivatives dU/dp =0 and oU/dz =-%, Thesc cxpressions can be solved for

U(p,z) by intcgrating Eq (2.7.1) and Eq (2.7.3) to obtain
U(p,2)=—"F———Kz 2.21)
Pt I

A local minimum of this function is identified when U pp>0, U,.>0 und

U,U, ~U mz >0 where Uy denotes the derivative 0%//0idj. The derivatives are

evaluated as

2 - 2
3 1 3p

- (2.22.1)
PP pll ‘r|3 |I"5
2
U, =432 (2.22.2)
el
3
U, = _H; =U,, {2.22.3)
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It can be demonstrated that U ,, >0 for all real values of o and z by rearranging Eq
(2.22.1) to show that this condition is met while p* >—4z%. As p® and z*® arc always
positive, this condition is always wue. By deduction, it U, >0 and U U, -U, 50

then U, > 0.

The condition which must be met for a local minimum of the potential energy function,

3 2 y . e o
U,U,, —U," >0 can be expressed us

2 4 . 2 g
[—3hi _ L, }( 1,32 J {3sz >0 (2.23)
AN N N

It is clear that this expression is equivalent to Eq (2.18). As before, expanding the brackets

' . 2 ) .
and substituting [rl =z* + p* obtains

3 2
b Oh 2, (2.24)

o' “lrl "

s . . . . . 3 -3
Non-dimensionalised angular velocity is equivalent to 8* = ‘1| and angular momentum

k. = 6. This can be substituted into Eq (2.24) to obtain

6*  9®

= (2.25)
"I

Multiplying by |r|’ and dividing by 67, the expression can be re-arranged to demonstrate
that the condition [or stability is met provided o > 242z, Conversely, a local saddle point

exists in the potential energy function if p < 232z with U = <0 which indicates unstable

initial conditions. This proves that the non-linear condition for stability agrees with the

condition derived using a linear approximation, provided in Eq (2.20).

The derived stability condition agrees with a study by Dankowicz [1996] which regularizes

the two body problem using KS (Kustannheimo-Stiefel) variables [Sticfel and Scheifele,

1971] and investigated the stability of orbits displaced by a constant axial force. In order
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to illustrate the stability condition, the nominal angular momentum and nominal sail
acceleration are evaluated at initial orbit conditions o, and z,. The potential energy
function is then evaluated to generate a contour surface. Figure 2-6 shows a contour plot
of the potential energy function for an orbit with stable initial conditions, It is clear that a
local minimum of the function exists at the nominal orbit conditions in this case. The
potential energy function for a set of unstable initial conditions is shown in Figure 2-7. In

this case, a saddle point is found to exist about the initial orbit conditions.

Figure 2-8 demonstrates that the resulting two-body stability using iterative methods
agrees with the derived stability condition. The darker region represents unstable orbit
conditions and the lighter region tepresents stable orbit conditions. T'he stability condition
is represented by the line with gradient 2+/2 which dissects the stable and unstable orbit
region. These results were obtained over a range of nominal orbit displacement and radius.
A small perturbation of dp=8&=0.01L was applied to the initial conditions and cach orbit

was numerically integrated over a timescale of 47, where the orbit period
TmZﬂ'/ 19:272.'|r|3ﬂ. An orbit was considered to be stable if the calculated (rajectory

remained within 2z, of the central body, whete z, is the nominal displacement distance.

Unstable orbits result in an escape in Lhe anti-Sun direction after the integration time.
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Figure 2-6 Potential energy tunction for stable initial orbit cenditions

0=50L, 7,=15 L, x=1.0545x10
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Figure 2-7 Potential energy function for unstable initial orbit conditions

P=50L, z,=20 L, x=1.2807x10*
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Figure 2-8 Stability of orbits investigated using an iterative method
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2.2.3 Jacobi-type energy surfaces

A method to visualize regions of bound orbital motion in the 2z plane can be obtained by
multiplying Eq (2.7.1) and Eq (2.7.3) by their respective velocity terms © and z then

summing the resulting expressions together as

. 17 aU] (2.26)

43— poU U
poT ['Oap Zaz

The partial derivatives of the pscudo-potential, in the right hand side of the expression, can
be reduccd to dU/dt as a consequence of the simple chain-rule of differentiation. An

integral can now be formed by factorizing the time derivative to obtain
22 +2
mdm(io—+2—+U}=0 @.27)

It can be scen that (p2 + zz)/ 2+U = E where the constant of integralion, £, is equivalent
to the total energy of the system. Substituting the pseudo-potential energy, Bq (2.21),

gives the total energy in the form

; 2
Ll e (2.28)

20 |1|

a

(p“+22)+

E=2
2
As the total cnergy is comserved, the initial energy I, =E. Given the initial orbit
conditions (@, 7, 2,, Z,), a value for E, can be calculated from Eq (2.28). For a nominal

orbit with constant displacement distance and constant radius 2, =9, =0.

Regions of bound motion can be identified by considering the solar sail velocity,
|v|2 = /" +2°. Tmaginary velocity, |¥|” <0, cotresponds to a region of forbidden motion.

The condition for allowed motion is therefore |v] 2 0. The surface representing the zero-

velocity boundary can be calculated from Eq (2.28) as

E,~U{p,2)=0 (2.29)
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Figure 2-9 represents the zero-velocity surface for a stable orbit. The lighter region
indicates forbidden motion and the darker region represents allowed motion. The white
line represents the resulting trajectory in the p-z plane. A small initial kinetic energy is
applied to perturb the solar sail from the nominal orbit. It is clear that the solar sail motion
is bound within a confined region of allowed motion which prevents the solar sail leaving

the vicinity of the nominal orbit.

Figure 2-10 represents the zero-velocity surface for an unstable orbit. As before, a small
initial kinetic energy is applied to perturb the solar sail from the nominal orbit. In this case,
there is no region which confines the solar sail motion near to the vicinity of the nominal

orbit. Instead, the solar sail is free to escape.
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Figure 2-9 Zero velocity surface of a stable non-Keplerian orbit

P=50L, z,=15 L, x=1.0545x10*, p =z =0.003
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Figure 2-10 Zero velocity surface of an unstable non-Keplerian orbit

P=50L, z,=20 L, k=1.2807x10™, p =z =0.003

2.3 Closed form solution of two-body problem

2.3.1 Closed form solution using parabolic coordinates

The gravitational two-body problem with a uniform force due to solar radiation pressure is
analogous to electron motion in the presence of a Coulomb field (hydrogen atom) with an
external homogeneous electric field, the so called Stark effect. It has been demonstrated
by several authors [Born, 1927; Burns, 1968; Howard, 1995a; Bookless, 2005] that the
Hamiltonian of such a problem is separable by transforming the problem using parabolic

coordinates (&,7,0).

Parabolic coordinates represent constant paraboloid surfaces in Euclidean space which are
generated by rotating a parabola about its axis of symmetry. For a paraboloid surface

symmetric around the z-axis (Sun-line), the conversion between parabolic coordinates and

polar coordinates (0,z) is define by o =£&n and z = (£* —n?*)/2 with time derivatives

N
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o=Eén+né (2.30.1)
5 =EE—nm (2.30.2)

The radial distance of the solar sail from the central body is given by |r| =(E*+n*)/2.

The two-body Hamiltonian, provided in Eq (2.4), can be non-dimensionalised and
rewritten using parabolic coordinates, The polar coordinate momenta terms (P,,7,,Pg) can

be rewritien as

PP =mp? = mz((fn)z +Enné + (7‘;5)2) @2.31.1)
PP=m*i* =m? ((5 J' - &enn (m;)’) (2.31.2)
P20 =mt p*6® = m* (Ep)*6° (2.31.3)

Substituting these terms into Eq (2.4) yields

1(e.n.0)="\én) +éme + 1P + (6 - nnt+ Gy + ne Y )
2um ma (§2 _7?2)

- (é:l -I—?]zj_“?

(2.32)

As before, this equation can be non-dimensionalised with characteristic length 7. and
characteristic time 7 = uf/} . The resulting gravitational parameter z=1 and
acceleration due to solar radiation pressurc, «, is represented using the non-
dimensionalised nomenclature x = g/ £¢. The Hamillonian can be expressed in terms of

the parabolic momenta F, F, and B, which arc equivalent to

P = _Her ) 2.33.1)
&
H oy

B = s U(f +7 ) (2.33.2)
OH L

Py === (EnY o= p*0 (2.333)
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The following expression is obtained for the non-dimensionalised Hamiltonian

X

1 2 2 af 1 I 2 5 3
H(f’?}):W[Pf +P7] +PB‘ (?+77_2J]_W_5(§ - ) (2.34)

Equation (2.34) is vartable separable uvsing the Hamilton-Jacobi method [Landan, 1976;

Goldstein, 1959]. A transforming function S(¢,&#) is required with the form
S(t,&,m)=—Et+ P8+ 8,(&)+ S, (7) (2.35)

where E represcnts the conserved total energy of the system, S£&) and Sy(#) are variable
separated functions, # is the time and @is the angular position. The transforming function
is defined such that it satisfies the Hamilton-Jacobi equation aS/dr+H (&, 77)=0.

Substituting Eq (2.34) and re-arranging vields

2: p}

SREE 2B BB e )0 236)

Equation (2.36) can be re-arranged so that all terms containing £ are on the left and all
terms containing 7 are on the right hand side of the equation. The momenta terms

P, =08, [0 and P, =35, /on can also be substituted into Eq (2.36) as follows

s, P’ as, Y’ p
—2E& 4[—é—] -|--I:ﬁ’——4~x'§4=2E772"[—"] —%—m“ (2.37)

The coordinates & and # are independent, but arbitrary values must always produce an
agreement with the equality in Eq (2.37). A separation constant, &, can therefore be

defined and the resulting variable separated expressions are

25, \? p?
a—g —~2E%E - k& + ?‘z -4=-@ (2.38.1)
as, \’ 2

(__:J S B+ (2.38.2)
a7 n-




As demonstrated by McInnes [1999a], these expressions can be solved for 9S,/0¢ and

dS, /dn to obtain two bi-cubic polynomial solutions of the two-body equations

Y i p »

~ 172
By | 6 28,0 @ 0 B
an n| e K

" 2 |2
3, x f_ﬂJ (2.39.1)

(2.39.2)

‘The constants E, Py and @ can be evaluated at the initial orbit conditions. The constant
angular momentum £, = 26 and the constant energy can be calculated using Eq (2.28).
The separation constant, @ can be calculated using either Eq (2.38.1) or Eq (2.38.2)
evaluated at the initia] conditions. For initial conditions (0, z, 2,,%,), the corresponding
parabolic coordinates can be evaluated by substituting 77, = 2, /&, into z, = (£°—#,°)/2

and re-arranging to obtain
&' -22,8"-p, =0 (2.40)

This quadratic can be solved to obtain four solutions for & with corresponding values of
7. To calculate the initial momenta terms, Pgand Py, Tq (2.30.1) and Eq (2.30.2) can be

treated as simultancous cquations and solved for £ using

s P, 2L,

= 2.41)
&l +n,’ (

where the resulting value can be substituted back into Eq (2.30.1) or Eq (2.30.2) to find the

corresponding value for 77,. The momenta terms, Pg and P, are then calculated using

Eq (2.33.1) and Eq (2.33.2) respectively.

To identity paraboloid surfaces which bound the orbital motion, the parabolic coordinates

are evaluated when the momenta terms, £; =095, /05 =0 and P, =38, /017 =0 using the

previously calculated constants F, Py and @. Equation (2.39.1) and Eq (2.39.2) can be
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solved for & and # to identify paraboloid surfaces which bound the solar sail motion for a

given set of initial conditions.

2.3.2 Paraboloid hounding surfaces

Consider a displaced non-Keplerian orbit with stable initial conditions, as defined by the
stability condition o, > 2\620. Table 2-1 provides a set of parabolic coordinates which
bound the stable orbit after a small perturbation is applied. It was found that a stable orbit
is bound between four paraboloid surfaces. This is demonstrated in Fig 2-11 where the

perturbed orbit js clearly bound between the intersccting parabolae. An enlurged section of

the orbit is provided in Fig 2-12.

‘The applied perturbation introduces a periodic oscillation to the solar sail orbit. From Fig
2~13, it 1s clcar that the smaller the magnitude of the applied perturbation, the smaller the
amplitude of the resulting oscillation, Figure 2-14 demonstrates another bound orbit for an

orbit of smaller radius, displaced nearer to the central body.

Similarly, if an initial velocity is applied to £, and 2, a periodic oscillation is also
introduced to the solar sail orbit. Figure 2-15 demonstrates a bound orbit with initial
conditions comparable to the stable orbit produced in Fig 2-4. This shows an agreement
between the zero-velocity surfaces produced using the Jacobi-typce intcgral and the

paraboloid surfaces produced using the closed-form solution.

Initial Conditions Bounding Surface Parabolic Coordinates
Zo P<; 0. & &2 i 7z
15 50 0.1 8.2113 8.7645 6.1311 6.1013
15 50 0.01 8.1990 8.2310 6.1025 6.0995
15 50 0.001 | 8.1978 8.2009 6.0996 6.0993
10 30 0.1 6.8282 7.2582 5.1770 5.1405
10 30 001 [6.8134  |6.8430 5.1420 5.1384
10 30 0.001 |6.8120 6.8148 5.1385 5.1382

Table 2-1 Parabolic coordinate values for pertuebed initial conditions
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Figure 2-11 Stable displaced non-Keplerian orbit bound between parabolae

2o=50L, z=15 L, x=1.0545x10", So==0.1L
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Figure 2-12 Enlarged view ot bound orbil provided in Fig 2-11
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Figure 2-13 Stable displaced non-Keplerian orbit bound between parabolae
£=50 L, 2,=15 L, x=1.0545x 10, §p=57=0.01L.
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Figure 2-14 Stable displaced non-Keplerian orbit bound between parabolas

=351, 2,=10 1, x=2.0734x10", §p=8z=0.1L
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22
Figure 2-15 Stable displaced non-Keplerian orbit with initial velocity applied
2=50L, 7,=15 L, k=1.0545x10™, p,=z,=0.003

2.3.3 Periodic Looping Trajectory

Applying a small perturbation to the nominal acceleration, x,, introduces a periodic
oscillation to the solar sail trajectory. In the case of a stable orbit, applying a small

perturbation such that the acceleration &= &,(1~A) results in the parabolic surface

provided in Fig 2-16 where 4=0.01.

Figure 2-17 shows the resulting oand z displacement versus time due (o the small
reduction in the acceleration value. Over this time period, the range of radial distance

p=(49.097L — 50.067L) and displacement distance z = {13.750.—15L). Figure 2-18

represents this trajectory in a Cartesian plot and includes the bounding paraboloid surfaces.
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Figure 2-16 Stable orbit with small acceleration perturbation applied (A=0.01)
Pe=50 L, 2,=15 L, k= 1.0439x10°* 4=0.01
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Figure 2-17 Radial and z-displacment variation due to small acceleration perturbation

P=50 1, 7,15 L, &= 1,0439x10™* 4=0.01
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Figure 2-18 3D Cartesian plot of stable orbit with small acceleration perturbation
P=5S0L, z,=15 L, k= 1.0439x10* 4=0.01

In the case of an unstable orbit, the application of a small reduction in acceleration, again
A4=0.01, results in a highly perturbed trajectory. Two examples of the bounding parabolic
curves are provided in Fig 2-19 and Fig 2-20. The parabolic coordinate values for both

these surfaces are provided in Table 2-2.

Initial Conditions Bounding Surface Parabolic Coordinates (4=0.01)
2 Po &1 &2 N n2

50 15 8.0496 8.1977 6.1087 6.0993

50 20 7.3997 8.5937 5.8285 5.8182

20 30 1.1050 8.1275 2.4667 2.4608

Table 2-2 Parabolic coordinates representing surfaces bounding a periodic looping trajectory
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Figuare 2-19 Unstable orbit with small acceleration perturbation

2,=301, 2,=20 L, x=1. 2679x10™, 4=0.01
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Figure 2-20 Unstable orbit with small acceleration perturbation

0=20 L, z,=30 L, x=6.3364x10*, 4=0.01
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It is evident that the further thc initial conditions are from the 0> 242z stability
boundary, the closer to the central body the solar sail trajectory passes. Figure 2-21 shows
a Cartesian plot of the bound trajectory provided in Fig 2-20. In this case, the solar sail
leaves the nominal orbit and performs a loop around the central body before returning to
the nominal orbit. This trajectory is repeated periodically with a minimum approach
distance to the central body of 3.64 L. Figure 2-22 shows the radial and z-displacement

variation with time.

pol o

o -_th-ﬁ‘zli'
Body ...

40

Figure 2-21 Periodic looping trajectory gencrated by perturbing the nominal acceleration

£5=20 L, z5=30 L, x=6.3364x10", A=0.01
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Ifigure 2-22 Radial and z-displacement variation due to small acceleration perturbation

P20 L, 7,=30 L, x=6.3364x10", A=0.01
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This periodic looping trajectory is shown in Fig 2-23 fixed within a set of four paraboloid
surfaces. The trajeclory is bound to the surfaces represented by parabolic coordinates 7y
and 7. The [urthest distance of the solar sail from the central body is constrained by
surface & and the closest approach distance to the central body is constrained by surface

& ldentifying where surface & and #; intersect, the closest approach distance, 7y, can be

calculated using

min 9 (2.42)

Using the valucs provided in Table 2.2, the closest approach distance calculated using
Eq (2.42) for the orbit in Fig 2-23 is 3,6382 1.. This value agrees with ry, calculated for

the same orbit conditions using numerical methods.

Figurc 2-24 represents the closest approach distance calculated using Eq (2.42) for a range
of initial orbit radius and z-displacement values. It is clear that the greater the instability of
the initial orbit, the closer the solar sail approaches the central hody. ldentifying
trajectories which pass near to the central body is important for manifold inscition to non-

Keplerian orbits.

Figure 2-23 3D Cartesian representation of looping orbit bound within paraboloid surfaces

0:=20 L, z,=30 L, x=6.3364x10™, 4=0.01
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Figure 2-24 Closest approach distance to central body for range of initial orbit conditions (4=0.01)

2.3.4 Orbit insertion via invariant manifolds

Periodic looping trajectories provide a set of invariant manifolds that wind onto and off of
a limit cycle. Paths which approach the limit cycle as ¢t — —e are described as unstable
manifolds, commonly denoted as W*. Paths which approach the limit cycle as ¢ — e are

described as stable manifolds, commonly denoted as W* [Jordan and Smith, 1999].

Periodic looping trajectories can be described as homoclinic as the phase paths connect the
nominal orbit back to itself after passing near to the central body. As the invariant
manifolds are bound to the surface of a paraboloid, the manifold surface is of dimension 2

when represented in 3 dimensional Cartesian space.

A set of initial conditions can be calculated from the intersecting parabolic coordinates
(& 7). The total energy, E,, can be determined using Eq (2.28), evaluated at the nominal

orbit conditions (0,,2,, 0,,Z,). Initial conditions, denoted by the subscript ‘;’, which wind
onto a nominal orbit are calculated using p, =&n and z, = (52 -n? ) The z-component of
angular momentum, h, = 6, can also be evaluated using the nominal orbit conditions.
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As the angular momentum is constant, the value of angular velocity required at the initial

insertion point can be calculated using &, =4, /p, .

Table 2-3 provides a sct of calculated initial conditions that wind onto a range of desired
orbils. All these conditions were calculated with an acceleration perturbation 4=0.01. The

value of g, is calculated by rc-arranging Eq (2.28) and it is assumed that 7, =0, where
£, =0 in comparison to the magnitude of the initial angular velocity 9,.. It should be

noted that the initial conditions for ©,=10 L and z,=30 L result in closest approach distance
Fuin=0.8553 L. These initial conditions arc forbidden as ru<l L, which represents

insertion conditions located below the surface of the central body, with radius L.

Figure 2-25 demonstrates orbit insertion [rom near the central body to a nominal orbit with
conditions ©,=20 L und z,=30 I.. The initial conditions which deliver the solar sail onto
this orbit are provided in Table 2-3. Upon arrival at the nominal orbit, linear control
techniques must be applied to prevent the solar sail from returning towards the central

body via the unstable manifold.

Nominal Parabolic Coord Initial Conditions

o 2 £ n O o) 8, Zi

50 | 30 | 51458 | 5.3207 | 273793 | 2.6x10”° | 0.00749 | -0.9149
40 | 30 | 3.6424 | 44721 | 162894 | 3.7x10° | 0.01706 | -3.3664
30 | 30 | 22658 | 3.5251 7.9871 5.3x107 | 0.05105 | -3.6463
20 | 30 | 1.1050 | 24608 | 2.7191 1.1x10% | 0.02499 | -2.4173

10 30 0.2962 1.2739 0.3774 3.7x10° 3.9488 -0.7675

Table 2-3 Initial conditions calculated using intersecting paraboloid surfaces
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Figure 2-25 Periodic looping orbit inserted at r,, = 3.6382 L from the central body

0~=20L, 2,230 L, k=6.3364x10™*, 4=0,01
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2.4 Linear control techniques

2.4.1 Feedback control theory

To prevent the solar sail escaping from the desired non-Kepletian orbit after insertion via
the stable manifold, station-keeping techniques must be applied. Linear feedback control
can be utilised by designing a closed-loop system to keep the solar sail within the vicinity
of the desired trajectory. The basic principle is that a control signal x«(t) is uscd to drive a
system towards some desirable output value. Uroportional feedback is the most basic
method for calculating the control signal u(z)= G(:'c(r) - x(t)) where G is the gain
coefficient, Xx(¢)is the desired output and x(¢) is the actual output of the system. The

expression in the brackets is equivalent to the system error e(z).

Other control methods which can be used to improve system response ave outlined by Barr

[2002]. Derivative control uses the rate of change of the output signal to determine the
size of the control signal u(r) = G(x(t -T)- x(z)) where 7' is the feedback delay time [Li-
Xiang, 2001]. Integral control uses Lhe system errors summed over a period of time such

that u(r) =GZ(E(t)—x(r)). It is common fo use a combination of proportional and
i

derivative methods (PD) or of all three (PID) to improve the system response and avoid

large amplitude oscillations or overshoots from the desired output.

. Controf System
Desired Gain Procoss Actual
qufput output
- ¢ u
¥ G » H > Y

Figure 2-26 Closed-loop system with unity feedback
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A schematic of a basic closed loop system with unity feedback is included in Fig 2-26
[Jacobs, 1993]. The system error is defined as ¢ = (¥ — y) where ¥ represents the desired
output and y represents the actual output. The forward loop transfer function is defined by
GH which, in this case is cquivalent to the loop transfer function with unity fecdback. The
proportional control tecchnique is employed with control signal u# = Ge, where G represents
the gain of the control system. The actual output of the system y=ull, where H
represents the system process transfer function which defines the frequency response of the

state-space equation.

The control system transfer function, ¥, which is defined as the ratio of system output to

input can be represented by the transform

_ GH
1+ GH

v

(243)

where the system objective is to ensure the actual system outpur tracks the desired output
value. From Eq (2.43), it is clear this occurs if GH>>1 resulling in a ratio approximately
equal to unity. This is a very basic example and the transfer funclion becomes increasingly

complex if noise and disturbance terms are modeled within the system.

The zeros of the system represented by Eq (2.43) occur when GH=0 and the poles occur
when 1+GH=0 (when the transfer function tends to infinity). In order to obtain a stable
system, the roots of the transfer function must nol contain positive real values. Transfer
functions are frequency domain representations of the dynamical equations. The
conversion between the time-domain and frequency domain is achieved via the Laplace

transform

2a

Lix(®)] = jx(x)e—“ dt = X(5) (2.44)

0
where the resulting function X(s) is dependant on the complex opcrator s.
To design a proportional controller which demonstrates station-keeping at a desired non-
Keplerian orbit, the linearised two-body equations of motion can be expressed in the form

of statc cquations
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x(t) = Ax(¢) + Bu(t) (2.45.1)
y(2) = Cx(¢)+ Du(z) (2.45.2)

The matrix A is a square matrix of size nxn and is referred to as the linear coefficient
matrix. Matrix B is the control matrix which has same number of rows as A but has an
independent number of columns with dimensions nxm. The input vector x(z), control
vector u(¥) and output vector y(#) arc all column vectors of length #. The output matrix C
must have thc same number of columns as A with dimensions xn. The feed-forward
matrix 1 has dimensions /xm so has the same number of rows as C and the same number

of columns as B.

The transfer function for this state equation can be expressed in the form
H(s)=C(st ~A)' B+ D (2.46)

where [ is an identity matrix and H(s) =Y (s)/U(s). The term in the brackets (s] - A)_l,
arises from the Laplace transform L[dx/ dt]=sX(s)— x, used when converting Eq (2.45.1)
into the frequency domain. This term is equivalent to the Laplace transform of L[e™]

where x(z) = e” is a solution to the state equation x(t) = Ax(t) [Friedland, 1986].

2:4.2 Controllability and observability

When designing a controller it is important to mathematically prove that the control matrix,
B, is capable of providing stable control at the desired output value. A simple method
exists to demonstrate controllability for the linear system represented by Eq (2.43). The

controllability matrix, M., is defined as
M. =|B AB AB A’B..A"B| 2.47.1)

For a system to be fully controllable the controllability matrix must be full-rank,
carresponding to a non-singular matrix. A completely controllable system can transfer any

initial state x(7,) to any final state x(#;) via the control signal u(?) for all state space.
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‘The observability of a system can be examined using the obscrvability matrix, M,, defined

as
M,,z[C' ac (AYc (A')BC'...(A')”"C'] (2.47.2)

where C' and A'represent the transpose of matrix C and A respectively. A system can be
described as fully observable if the observability matrix is full-rank. A fully observable
system enables every initial state x(z,} to be determined from the output y(#). Essentially

this means y(r} is dependant on cvery state x(f) [D’azzo, 1995].
2.4.3 Root locus plot

To aid with the design of control systems, W.S, Evans deviscd the root-locus plot. As the
values of s essentially corresponds to the eigenvalues of the linear coefficient matrix A, a
stable orbit will have poles which lie in the left quadrants of the s-plane [Marshall, 1978].
The performance of a control system can be accessed by selecting gains which move the
poles to the left-quadrants. The root locus is based on a negative feedback controller shown

in Higure 2-27.

System
Input Process Quiput

)

X(s) » T » Hs) » Y(s)

Conlrol
Gain

G |

Figure 2-27 System [(s) with negative feedback control using gain G
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The resulting transfer function can be written as

Y(s)  H(s)

F(s)= =
X(s) 1+GH{(s)

(2.48})

where 71(s) is the system transfer function calculated from Eq (2.46) and G is the control

gain. The zeros of the system are located when the transfer function F{s)=0 and the
poles are located when F(s)=e0. These can be located by examining the denominator of

F(s) which is equivalent to 14+ GH(s).

The system transfer function has the form H{(s)=N (S)/ D{s) where N(s) represents the
transfer function numecrator and D(s) the denominator. These can both be rcpresented by
polynomials where N(sy=ans"+a,s"" +..as+a, and
D(sy=b,s" +b,_s"" +..bs+b,. The number of branches of the root loci is determined

="

trom the order of the polynomial D(s), denoted by m [Dougherty, 1995].

When drawing the root loci branches, the characteristic cquation 1+ GH (s) =0 can be re-
arranged into the more useful form D(s)+GN{(s) =0. This represents a polynomial in s
with coefficients including the gain G. The open-loop pole can be evaluated when the gain
G =0. The open loop zeros can be located when H({s)=0, which is equivalent to

numerator N{s) =0,

The pole (rajeclories start on an open-loop pole and terminate cither at an open-loop zero
or tend to infinity with the direction defined by an asymptote. The trajectories are plotted
by varying the gain, G, between 0 and infinity. It can be demonstrated the angle of the

asymptotes, £La , may be calculated using the angle condition

Za=(1+2Dz)(m-n) (2.49.1)

where the integer series /=0,1,..,(m-n-1). The symbol 7 represents the number of poles and
n represents the number of zeros. The real axis intersection of the asymplotes can be

calculated using
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o, = [im( ) —iRe(z,,)] /(m—n) (2.49.2)

H=1 =

where p, represents the position of the poles and z. represents the position of the zeros.
Using these rules, a root locus plot can be generated for a control system to aid design
[D’azzo, 1966].

2.4.4 Optimal control - linear quadratic regulator

The root-locus diagram provides a useful method to select gains which produce a stable
systemt. These gains may result in undesirable overshoots or may require control signals
which are too large for the actuator to produce in the real system. Design limits may
require &4 system that can maintain control to within a certain error of the desired output
and be achieved with a limited control signal size. An optimal controller can be utilised to

select gains which are optimised bused on a performance criteria.

Consider the linear system represented by Eq (2.45). Optimal control theory provides a
method for selecting a gain matrix which suppresses any unstable eigenvalues by

minimizing the cost function V

Ve '_[[x' (D)OX(T) + 0’ (D) Nu(r) it (2.50)

¢

where ¢ is the initial integration time, @ is the state-weighting matrix and & is the control-
weighting matrix. The first term inside the square brackets represents the penalty on the
deviation of state vector x from the desired state and the 2" term represents the cost of

contro} which limits the control signal size.

The aiin is to select a gain matrix G that minimises the performance function V. This can

be achieved using the Ricatti Equation

~M=MA+A'M -MBN'B'M +Q (2.51)
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where M is the performance matrix and is related to the performance function such Lhat

V =x'"Mx. Provided thal M converges to u limit as #->ee, it can be assumed that
M - 0. Equation (2.51) can be solved for M which enables the optimal gain matrix to be

calculated using G = N™'B'M [Friedland, 1986].

2.4.5 Solar sail area variation control

2.4.5.1 Design of state equations

An area variation controller can be designed using the linearised two-body equations and
constructing them in the state-space form of Eq (2.45). The input vector has the form

x(t) = [, z,0,2]" and the linear coefficient matrix is defined as

0 0O 1 0
0 0 0
A= df—p Q[g o 0 (2.52)
0 Oz
o Xy g
Ldp 2

where the partial derivatives are provided in q (2.13). The control matrix is dependant on
the variation of acceleration with respect to solar sail area. The acceleration components a,

and a, directed along the e; and e, axes respectively are defined as

a, = xcos’ g, (2.53.1)

a, = xcos® arsin e, (2.53.2)

The control matrix can be constructed as B=[0 0 oa,/ox da, /BK]r using the partial

derivatives of q (2.53) which are evaluated at the nominal pitch angle, =0, as

da o

—L =costasiner =0 (o =0) (2.54.1)
oK
da, 3
=cos” =1 (a=10) (2.54.2)
0K
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This yields the control matrix 8= [U 0 0 1]" for the sail area variation controller.

Using Eq (2.47.1), it can bc demonstrated that this control matrix produces a full-rank
controliability matrix (in this case rank 4). This proves that the control method is capable

of providing station-keeping at the desired non-Kepierian orbit.

The observability matrix, C =1, , is simply a 4x4 identity matrix which produces a full-
rank observability matrix using Eq (2.47.2). The feed-forward matrix is null as it is not
required within this system such that D=[0 0 0 0]". A suitable gain matrix is

obtained using either root-locus methods or optimal control methods. Both these

tcchnigues will be demonstrated.

The control requirement to maintain station-keeping at the desired orbit can be modelled

using a linear control law with the form
k=G (p-p, }+G,(z—2,)+ G (0—p,)+C, (2-2,) (2.55)

where ox represents the acceleration variation directed along the sun-line, o, z, 2, ¢ are the
integrated orbit conditions and p,,z,,0,,%, are the desired orbit conditions. For a

circular orbit displaced a constant distance from the central body ¢, =0 and 2z, =0.

2.4.5.2 Root-locus method

Consider applying solar sail area variation control as a stationkeeping method. To make
use of this technique would require the ability to slightly furl/unfurl the solar sail or

employ reflective tip-vanes which can be used to vary the total reflecting area.

Gains are selected such that the pole positions lie in the left quadrant of the root-locus plot,
suppressing the positive real eigenvalues which lcad to system instability. Tor an orbit of
radius 60 L displaced 20 L from the central body, the state equations result in the four
transfer functions with a common denominator, provided in Table 2-4. The order of the
denominator is 4, which results in 4 branches of the root locus plot for each transfer
function. Transfer functions 1-4 respectively correspond to the state equations for o, z, &

and 7.
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The root-locus method will be used with the aim of selecting a gain mairix which gives a
good response time and dampens any unwanted oscillations. The root-locus plots for each
transfer function are provided in Fig 2-28. The gains must also produce a reasonable

control signal size which can be generated using modest sail area variations.

Each subplot corresponds to the pole variation for gains associated with the position and
velocity components highlighted in Eq (2.55) where ‘Gainl’ - g, ‘Gain2’ -z, ‘Gain 3° - p
and ‘Gain 4’ - z. The respective gains are represented by the notation (Gy, Gz, G3, (G4).
Euch transfer function produces four poles, where the ‘+’ symbol represents the case when
G — 0, known as the open-loop pole and the ‘o’ symbol represents the case when G — o,

the open-loop 7ero.

Using the root locus  diagram,  suitable  gains  were  selected  as
G=[3.1x107° 7.6x10™" 0.01 0.05]. Figurc 2-29 demonstrates a controlied orbit after
insertion 1.71 L from the central body. Figure 2-30 demonstrates the solar sail area
variation and the comresponding solar sail acceleration required to provide stationkeeping

in the vicinity of the nominal orbit. The sail area variation is normalized with respect to

the nominal sail area, A,.

S4 S3 SZ S1 S"
N(s) 1 0 0 0 0 3.5576x10°
N(s) 2 0 0 1 0 1.4626x107
N(s) 3 0 0 0 3.5576x10™ 0
N(s) 4 0 1 0 1.4626x107 0
D(s) 1 0 7.9057x10°¢ 0 -1.1094x10°

Table 2-4 Numerator/Denominator polynomials in terms of 8
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Figure 2-28 Root-locus plot for area variation control

2,=20L, z, = 60L, x=2.3717x10™*

Figure 2-29 Orbit insertion with linear area contcol
Pe=601,7,=20L, k=23717x10"
Gy =3.1x10" G, = 7.6x10° G5 = 0.01 G4 = 0.05
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Figure 2-30 Solar sail acceleration variation and area varialion
2.4.5.3 Optimal Control Method

Using the performance criterion provided in Eq (2.50), optimal gains can be selected which
unprove the conftroller response time and limits the size of the control signal. Suitable
gains were obtained using a stute cosl function Q=51,, and a control cost function
N=1x10". The control cost function imposes a limit on the control signal size. The
smaller the valuc of N, the larger the optimal gain values which can result in large control
signals. Similarly, the state cost imposes a limit on the allowable error between the desired
and the actual orbit conditions. Small values for the matrix  reduce the overshoot during

control.

Figure 2-31 shows an orbit insertion 1.71 L from the central body where optimal control is
employed upon arrivai of the solar sail at the nominal orbit. Figure 2-32 shows the
acceleration variation throughout this trajectory and the required sail area variation

normalized with respect to the nominal sail area, A,.
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2.4.6 Solar sail pitch angle control

2.4.6.1 Design of state equaiions

In the case of a pitch-angle controller, the cos® @ acceleration dependency is used to
provide linear control ai thc nominal orbit. The partial derivatives of Eq (2.53) with

respect to pitch angle v are evaluated as

oa,

—%< =-3xcos’ asing {2.56.1)
do

a“p 3 f 2

?(; = K'C0S a(l + tan a:) (2.56.2)

which reduce to da,/d@=0 and da,/da =k at the nominal pitch angle a=0. The

control matrix B=[0 0 x 0] again produces a full-rank controllability matrix. The
linear coefficient matrix A, the output matrix C, and the feed-forward matrix D are

equivalent to those defined in Section 2.4.5.1.

The control signal required to maintain station-keeping at the desired orbit can be modelled

using the linear control law
Sa=G(p-0,)+G (2= 2,)+ G (P p,)+G(2~2,) (2.57)

where e represenis the solar sail pitch angle variation, p,z, 0, are the integrated orbit
conditions and p,,z,,0,.2, are the desired orbit conditions. The angle variation

produces a controlling acceleration calculated using Eq (2.53).

81



2.4.6.2 Rootlocus method

Solar sail pitch angle variation could be achieved via two methods, Reflective tip-vanes at
the corners ol the sail could be used to generate a torque which rotates the solar sail about
the centre of mass. Alternatively, a centre of mass/pressure offset could be generated to

produce a torque using a gimballed boom to displace the position of the payload.

Figure 2-33 shows the root locus plots for a non-Keplerian orbit displaced 60 L from the
central body with radius 20 L. Following thc same proccdurc as the area controller in
Section 2.4.5, gains are sclected resulting in poles which lie in the left quadrants of the
root-Jocus diagrams. Each of the subplots correspond to polc trajectories for the gains
associated with the position and velocity components highlighted in Eq (2.57) where
‘Gainl’ - p, ‘Gain2’ —~ z, 'Gain 3’ - P and ‘Gain 4° - z. The respective gains are

represented by the notation (G, G2, G, Gy).

Table 2-5 contains the four transfer function numerators and their common denominator.
As the order of the denominator is 4, each root locus plot has 4 branches. The maximum
acceleration is directed along the e, axis when the sail pitch angle is 35.7°. The control
signal should maintain a pitch angle below this critical value. Suitable values for the gain

were selected as G=[0.2 0.15 49.1 100].

o 84 S3 Sz S1 Sc
N(s) 1 0 0 0.2372 0 -1.5938x10°°
N(s) 2 0 0 0 0 8.4375x107
' N(s)3 0 0.2372 0 1.5938x10° 0
N(s) 4 0 0 0 | 8.4375x107 0
D(s) 1 0 [7.9057x10° 0 1.1094x107°

Table 2-5 Numerator/Denominator Polynomials in terms of's
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Figure 2-33 Root-locus plot for pitch angle variation control

0.5 201, 7, = 60L, k=2.3480x10°, A=0.01

Identical insertion conditions arc uscd as those in Section 2.4.5 located 1.71 L from the
central body. Figure 2-34 shows an orbit controiled using the pitch angle controller with
the gains selected using root locus plots. The controlling pitch angle is shown in Fig 2-35
with a variation between 0.13” and -15.21°. A negative angle means the sail normal vector
is pointing downwards toward the sun-line. This example meets the requirement that the
reflecting side of the sail always faces sunward. The resulting acceleration directed along
the p- and z- axes is provided in Fig 2-36. The acceleration components arc normalized

with respect to the nominal acceleration, .

83



pitch angle °

30 ,.,...........---...,.
20\.........,-,..

10\....... ......,.. Lt :

central,o
Bqd»y-

Figure 2-34 Orbit insertion with linear pitch angle control
P=60L,2,=20L, x=23717x10*
G1=02G,=0.15G3=49.1 G4= 100

| i
: | I
| e

z | |
! e i

1 42 14 = =
time )

el ]

Figure 2-35 Pitch angle variation required to control orbit
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Figure 2-36 Acceleration directed along e, and e, axes normalized with respect to &,

2.4.6.3 Optimal control method

Using the performance criterion provided in Eq (2.50), optimal gains can be sclected which
improve the response time of the controller and limits the size of the control signal.
Suitable gains were obtained using a state cost function Q=100/,,, and a control cost

function N=1x10%,

The resulting trajectory is provided in Fig 2-37. The pitch angle variation required to
control this orbit, shown in Fig 2-38, was between 0.14° and -2.25°, The controller quickly
dumpens the instabilities so as only minute angle variations arc required to control the

orbit. The corresponding acceleration components are provided in Tig 2-39.
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In a two-body context, the most suitable control method is pitch-angle variation, as varying
the sail pitch angle over a few degrees poses less risk to the sail structure than varying the
reflecting surface area.- Tip vancs could be used to produce unbalanced net forces at the
sail edges thus generating small torques [Wie, 2002]. Allernatively stecring can be
achieved using a gimbaled boom which can be moved to alter the centre of mass relative to
the centre of pressure producing a torque. Tt is clear from Fig 2-38, that control is possible
using an angle variation of about 2 degrees using the lineur quadratic regulator to select

optimal gains,
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2.5 Conclusions

This chapter has considered circular displayed non-Keplerian orbits in a two-body context.
The stability condition was derived using lincar and non-linear approximation methods.
Orbit bounding surfaces were identified using a conservation of energy method and an
explicit solution identified using parabolic coordinates. A family of homoclinic manifolds
were identified which provide a set of transfer trajectories to deliver the solar sail to a
circular displaced orbit from near to the central body. It was demonstrated that the
homoclinic manifolds are bound to a paraboloid energy surface enabling the closest

approach distance to the central boedy to be determined explicitly.

Stable manifolds which pass near the central body were found to wind onto an unstable
circular displaccd orbit, defined using the stability condition. Solar sail control technigues
were investigated to prevent escape after insertion to a nominal orbit. Applying trims to
the solar sail surface arca or pitch angle can be used to modulate the sail acceleration. The
solar sail controllers were developed using both a root locus method and lincar quadratic
regulator to select gains. The optimal control method was found to identify gains which
minimize the controller response time and control signal amplitude. In the two body case,
applying the pitch angle control method seems to be the most suitable control method not
requiring large modulation of the sail surface area which poses a risk of damaging the solar

sait surface.

The next chapter will consider circular displaced orbits in a three-body context. Hill's
approximation of the three-body problem will be used to represent the dynamics of a solar
sail including acceleration due to solar radiation pressure. As demonstrated in Chapter 1,
including the gravitational influence of the Sun acting on the solar sail and the centripetal
force of the Earth revolving around the Sun, limits the regions where artificial libration
points can be gencrated. The two-body controller will be applied to demonstrate control of

circular displaced orbits in the three-body problem.
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Chapter 3 Three Body Non-Keplerian Orbits ~

Hill’s approximation

3.1 Hill’s approximation of the three-body problem

The dynamics of a solar sail will be modelled using Hill’s approximation to the three-body
problem. These equations represent a case where the smaller bodies, M; and M; are
relatively close to each other and orbit a larger mass M;, where the general hierarchy of the
masses is M>>M>M;z;. A planet centred, rotating framc of reference is adopted. The
circular restriction is also applied assuming the separation between the planet and the Sun,
R, is constant. This problem meodels the dynamics of a solar sail non-Keplerian otbit in the
vicinity of a planet where the system is revolving around the Sun with angular velocity £2
[Elénon and Pectit, 1986; Scheeres and Bellerose, 2005], as shown in
Fig 3-1.

The solar sail is located at position r = xi + yj+ zk relative to the planet where (i, j, k) are

unit vectors along the planet centred axes (x,y,7). The planet and Sun are located on the x-

axis. The vector between the planet and Sun R=Ri. The approximation states that
[R| >> ], thus it is convenient to envisage ITill’s problem as a perturbed two-body model

including the effects of solar gravity.

£

Figurc 3-1 Schematic of Hill’s problem with displaced solar sail orbit
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The two body dynamics for a non-Keplerian orbit have been thoroughly investigated in

Chapter 2. The solar sail equation of motion, with respect to the planet, has the form
i = ur / ‘r|3 +a, where zis the planet gravitational parameter and a represents the solar

sail acceleration. A rotating frame of reference is chosen to include the dynamics of the

planet-sail system orbiting the Sun. The subscripts i’ and ‘R’ refer to the inertial and
rolating frames respectively. The 1% order derivative of r relative to the inertial frame

produces

l:gf-] =[§f—1[ +2x(r+R) 3.1
dt ; i

The second order derivative can be obtained from Fq (3.1) after grouping like-lerms as

2. 2
) _[dr +£‘Exr+ggx["i} QXX +R) (3.2)
e | ldr® |, dif dt |g

As the angular velocity is assumed constant, ¢€/dr =0 which removes the 2 term on the
right-hand side. The equation of metion representing the solar sail dynamics in the vicinity
of the planet can then be extended to a frame of reference rotating with angular velocity £2

as

i‘+2£!><i'+ﬂ}<ﬂ><r:—l’u§+an (3.3)
r

The finat aspect to consider is the gravitational influence of the Sun on the solar sail.
Consider the vector, R_ =R +r which represents the position of the solar sail relative to

the Sun. The Sun ecxerts a gravitational acceleration of -y R, / Rsf, where

,L¢5:1.334x1020 m’s? is the solar gravitalional parameter. Substituting R, =R+r, the

denominator can be expanded as
R+ =[R+e)R+2)]" = [ + 20 R+ R (3.4)

where 7 =r.r and R* =R R.
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Equation (3.4) can then be expressed as

T2
{1+ Rr, (’_] J] (3.5)
rR* R

which can be expanded using the binomial theorem to obtain

2R M ama 3
[ -

Hill’s approximation assumes that ‘R| >> |r|, therefore the third term on the right-hand side

R+1” =R

of Eqn (3.6) can be ignored. Since R=Ri, the dot product Rxr=Rx. Thercfore
|R+r|d3/2 =R>(1-3x/R) ignoring highet order terms. As the angular velocity

Q* = /R and (R+r1)={R+x)i+yj+zk the solar tide components can be expressed as

. (R+r) __Qz[

] = 1~3i] X+ R)i+ yj+ 7k 3.7)
Roe] ((x+ R+ yj+zk) (

R

The solar-tide terms are introduced to the right-hand side of Eq (3.3) to obtain the complete
Hill’s equations of motion [Morrow, 2001]. The terms can be further simplified by noting
that xy/R<<1, xz/R<<1 and x(x+R)/R=x. Evaluating the coriolis and centripetal

acceleration cross-products gives

#-2Qy = —$+ 302+ a, (3.8.1)
r
yr20i=-2 g (3.8.2)
"
7= —’ﬁ%—@zz ta, (3.8.3)
r

The equations of motion can be non-dimensionalised with characieristic length L and
characteristic time 7, where X =x/L y=y/L Z=z/L,T=r/L and 7 =¢/7. Equations

(3.8) can then be re-written as
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L d*%

oL __ 13

—_—— - +3Q%* X +a, 3.9.1
7% di* T df L \Ff : G20
L d*y Ldx 1 yu

z‘—z ([;‘:_2 ;Ez _F I—‘S -+ a}_ (3'9'2)
L d*z 1 Zu _

T -

Selecting Q%7° =1 and L = (‘cz,ta)"l3 the angular velocity and planet gravitational parameter

can be removed from the equations to obtain

d’c . dy X
dfz —Q-d—f-—_«—ﬁ+3x+f{x (3.10.1)
2 - - —
drf 2§_—1§—3—+K} (3.10.2)
r
2= —
%ﬁ{__if—a“z*ﬁ’z (3.10.3)
ly

where (x, &y, &) are thc non-dimensionalised acceleration componcnts such that

k=xrit+x j+xk. Table 3-1 provides the characteristic length and characteristic time

parameters for a variety of planets.

Name R, x10°%km | 4 x10 %km’s™? Qs L, x10%m |7, days
Metcury 57.91 0.02203 8.788x10°" | 0.3177 13.97
Venus 108.21 0.3249 3.2447x107 | 1.4559 35.67
Earth 149.60 0.3986 1.9961x107 | 2.1547 57.98
Mars 22792 0.04283 1.0615x107 | 1.5607 109.04
Jupiter 778.57 126.686 16812 x10% | 76.5283 688.42

Table 3-1 Parameters for selection of planets [Williams, 2001]
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3.2 Libration points

3.2.1 On-axis libration points

Libration points can be identified by setting the acceleration and velocity components
X¥=x=¥=y=7=¢=0. Hill’s approximation yields two libration points for the ballistic
case (xk=0). These libration points are labeled L; and L, which arc located symmetrically
on the negative and positive side of the x-axis respectively. Setting the acceleration and
velocity components equal to zero in Eqn (3.10) and applying the on Sun-line condition

y=z=0 yields

—l—xi’]~§»+3xﬂ =0 (3.11)
x(l

Solving for x, gives the location of the two libration points x, =+(3)™"* = +0.69336.

Table 3-2 provides the location of these libration points for various planets orbiting the

Sun.

For the non-ballistic case (x>0}, a continuum of libration points can be generated
planetward of L; and sunward of L;. To generale a libration point at x,, the required

acceleration is determined as

k=23 (3.12)

Figure 3-2 shows a plot of the non-dimensional acceleration required to generate an on-
axis libration point. Assuming x 20, no solutions cxist beyond L, in the anti-Sun

direction or between Ly and the central body.
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Name L;,km L7, km

Mercury -2.2028x10° 2.2028x10°
Venus -1.0095x10° 1.0095x 10°
Earth -1.4940 x10° | 1.4940 x10°
Mars -1.0821 x10° | 1.0821 x10°
Jupiter -5.3062 x10" | 5.3062 x107

Table 3-2 Location of L; and L, for various planets in the sofar system
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¥igure 3-2 Artificial libration points generated using solar sail acceleration
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3.2.2 Jacobi integral

The Jacobi Integral and Hill's surfaces have been described in detail by many authors
[Marchal, 1990; Szehebely, 1967; Wie, 1998}, The integral provides a useful mcthod for
investigating bound motion given a set of initial orbit conditions. One technigue for
deriving the integral involves multiplying the equations of mation by the respective

velocity components and summing them together as follows
XX+ yP 4+ 2Z = [l | | | | | ]+3xx zz+K‘x+K y+KZ 3.13)
e

Re-arranging yields

A (R S VS g Bt (3.14)
dal2 | 27 2

As the time derivative is zero, the expression in the brackets is a constant. Iniegrating with

respect to time yields the Jacobi integral

v “——3r2+z2—2K.r=C (3.15)

I}
where v* = x* + 9> + 7> and the constant of integration, C, is known as the Jacobi constant.

The Jacobi constant can be evaluated at the Lagrange points by substituting x,=+377, y,=0
and z,=0 into Eqn (3.15) and setting v=0. The resulting Jacobi constant is
C =—(9)" = -4.3267 [Villac, 2001]. Figure 3-3 shows a zero-velocity surface evaluated

for constant C. It is evident that the surface closes symmetrically at the Lagrange points.

Artificial libration points are generated using the solar sail acceleration s Figure 3-3 also
shows a set of zero-velocity surfaces produced at aitificial libration points sunward of L.
Figure 3-4 shows a set of zero-velocity surfuces produccd at artificial libration poinls
sunwards of L;. The Jacobi constants, lbration point position and required solar sail

acceleration for each of the zero-velocity surfaces are provided in Table 3-3.
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As in the case of the Lagrange points, the zero-velocity surface is closed when evaluated at
the artificial libration point. Therefore the Jacobi constant evaluated at a libration point
represents a criticial value, Cery, above which the surface will be open. As the acceleration
is applied in the anti-Sun direction, the energy for libration points sunward of 7, is less
than C=-4.3267. Autificial iibration points sunward of L; have greater critical energies.
The curve is open on the anti-Sun side indicating unbound motion for trajectories

corresponding to this energy.

As Lhe Jacobi constant is analogous to the total energy, it is clear from Eq (3.15) that the

pscudo-potential function, U(x,y,z), can be expressed as
1,
Ulx,y, z)—r[+ X 57 K (3.16)

The energy surfaces produced by evaluating the Jacobi integral at v=0 are equivalent to
evaluating the pseudo-potential function at the libration point. Similuar to the non-linear
stability analysis performed in Chapter 2, it is clear from Iiig 3-3 and Fig 3-4 that a local
saddle point of the psendo-potential function exists at each of the on-axis libration points.
This graphically indicates that the on-axis libration points are likely to be unstable. An
analysis of the eigenvalues of the linearised system will be performed to determine the

libration point stability.

Surface Ceori X, K
1 -4.3267 0.6934 0
2 -4.8863 0.65 0.4169
3 -5.5867 0.6 0.9778
4 -6.3652 0.55 1.65358
5 -7.25 0.5 2.5
6 42443 0.7 0.0592
7 -3.0800 08 0.8375
3 -2.0144 0.9 1.4654

Table 3-3 Jacobi constants at the Lagrange point (1) and a series of artificial libration points (2-8)
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There are four regions of the zero-velocity surface. The region within the vicinity of the
central body is referred to as the capture region. A closed curve means that an orbit bound
within the capture region is trapped. The exterior region is located on the anti-Sun side of
the zero-velocity surface and the interior region exists sunward of the surface [Koon et al,

2002]. These regions are highlighted in Fig 3-5.

Figure 3-5 represents a series of Hill’s surfaces in the ballistic case (x=0) for a range of
Jacobi constant values 4.2<C<4.45. If the energy for a set of initial conditions corresponds
to C>C,, then the energy surface will be open enabling escape from the capture region.
In the ballistic case, the zero-velocity surface is symmetric about the y-axis, opening

around Z; and L, simultaneously.

Figure 3-6 shows an orbit bound within a closed zero-velocity surface with initial
conditions x,=0.4934, y,=0, x, =0 and y, =0.5. These initial condilions correspond to

a Jacobi constant C=-4,5340. Figure 3-7 demonstrates a transfer between the exterior and

interior region. These initial conditions correspond to a Jacobi constant C=-4.2375.
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Figure 3-5 Series of zero-velocity surfaces for the ballistic case (x=0)
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Similarly, a gap opens in the zero-velocity surface around an artificial libration point.
Figure 3-8 shows a series of surfaces for increasing energy wherc C.;=-7.25. The Jacobi
constants of the Hill’s surfaces range between ~7.75<C<-0.75. There is no gap present on
the sunward side of the surface for the applied acceleration, x:=2.5. As the acceleration is
applied in the anti-Sun direction, the énergy required to achieve an open surface on the
anti-Sun side is reduced. As the acceleration is increased, the achievable libration point

position moves closer to the planet and the value ol C,;; decreases.

Figure 3-9 shows a setries of surfaces for a libration point located sunward of Ly, x,=-0.7,
The crilical energy, Ceu= -4.2443 and the Jacobi constants range between -4.5<C<-4. As
the energy is increased, a gap clearly opens uround the libration point. Escape in the anti-

Sun direction is possible via this opening in the Hill’s surface.

It will now be shown that it is possible to generate non-Kepletian orbits around these
libration points. Two types of non-Keplerian orbits will be demonstrated, including the
displaced circular orbits investigated in the two-body problem and quasi-pertodic Lissajous
trajectorics. Stable manifolds will then be investigated which pass near to the central body
and wind onto the desired orbits, particularly useful in the Sun-Earth system for near-Earth

orbit insertions.
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Figure 3-8 Series of zero-velocity surfaces of increasing energy for k=2.5
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Kigure 3-9 Series of zero-velocity surfaces of increasing energy for ¥=0.0592

3.3 Circular displaced non-Keplerian orbit

3.3.1 Planet dependant acceleration perturbation

In Chapter 2, it was demonstrated that by orientating the solar sail normal to the Sun-line, a
circular orbit can be displaced in the anti-Sun direction, so that the orbit plane no longer
intersects the central body. From the two-body problem discusscd in Chapter 2, a circular
displaced orbit can be produced by selecting an appropriate initial orbit radius o, and
angular velocity W«Jm; . Treating Hill’s approximation as a perturbed two-body
model, a possible solution is assumed with z, = o, cos@ and y, = g,sin€. Evaluating at
0=0 gives the initial position (x,,0, z,) and velocity (O,a)za ,O) where the required

acceleralion is given by Eq (3.12),

While the solar sail normal is directed in the anti-Sun direction, the acceleration due to
solar radiation pressure is related to the lightness number, £, as x = fu, / R* where 1 is
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the solar gravitational parameter and R; is the separation between the solar sail and the

Sun. From Fig 3-1, the separation beiween the solar sail and the Sun at the nominal orbit is

defined as R, = ‘R+ro

, where 1, represents the nominal distance between the sail and the
planet. The acceleration can be evaluated al the nominal orbit conditions for any planet
such that &, = S, / R,* . Tor a solar sail with constant surface area, the suil acceleration
variation is dependant on time varying distance between the Sun and sail such that

R (1) :|R+r(t)‘. The time dependant acceleration relative to the nominal acceleration

can be expressed as «{t)=(R /R,(t))x,.
Including the acceleration variation due to relative distance from the Sun means the non-
dimensionalised Hill’s equations can no longer be scaled to any planet, as the resulting
trajectory is planet dependent. This section will focus on orbits where the Earth is the

central body. The results will be scaled to use Earth radii (Rg) as a suitable scale length.

3.3.2 Stability of circular displaced non-Keplerian orbit

The two-body stability criteria can be examined using Hill’s approximation and is valid
provided the orbit is within a reasonable distance of the Harth. Figure 3-10 shows a non-
Keplerian orbit with naminal radius 50 Rg displaced 15 Ry from the Earth, requiring an

acceleration x,=1.0238 mms™. This orbit can be described as stable when compared to the

two-body stability condition, p, >2+/2x

,.where 0, represents the nominal radius. The
nominal orbit peried is 7=22.1days. The trajectory exhibits a large deviation from the

nominal displacement distance, between 7.95 Rg and 24.76 Rg, but clearly does not escape.

An orbit classed as unstable compared to the two-body stability condition is shown in
Fig 3-11. This nominal orbit has a radius of 50 Rg and is displaced 20 Rg from the Farth,

2

requiring an acceleration #,=1.242x107 ms® The nominal orbit period 8 23.15 days.

Escape from the nominal orbit occurs within 20 davs.
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Figure 3-10 Stable circular displaced crbit computed using Hill's equations

%,=15Rg, 2,=30 Rg, 3,=1.04852x10° ms™, x,=1.0238x10" ms™
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Figure 3-11 Unslable circular displaced orbit computed using Hill’s equations

%=20 Rg, £,=50 Rg, 7,=1.0007x10°ms™, x,=1.242x107 ms™
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Figure 3-12 Stability of circular displaced Hills orbits
{Dark Region — Unstable; Light Region — Stable}

The stability of circular displaced orbits was computed over a nominal displacement range
of 2—50 R and radii range 2—150 Rg. Using an iterative process, Hill’s equations were
numerically integrated for each set of initial conditions. An orbit was defined as stable
provided after 10 orbit periods the maximum displacement distance remained within an
arbitrary distance, 3x,, of the Earth. The results are shown in Fig 3-12, where the light and

dark regions correspond to stable and unstable orbits respectively.

The line representing the two-body stability criteria, p, > 2\/5.\;, is included for
comparison. Hill’s problem shows agreement with the two-body stability criteria provided
the radial distance is near to the central body. The orbit displaced furthest from the central
body, which can still be classed as stable, has initial conditions x,=32.06 Rg and radius
Po=112.63 Rg. This orbit was found to be highly perturbed and perform large excursions

across the x-axis, frequently passing sunwards of the Earth (x<0).
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3.3.3 Periodic looping trajectories

‘T'he periodic looping trajectories identified in the two-body study can also be generated in
Hilt’s problem. This family of orbits is obtained by perturbing the required acceleration.
Figure 3-13 shows a stable orbit with the acceleration perturbed by A4=0.05, whcrc
Kk =kK,(1-A). Comparing this to the unperturbed stable orbit provided in Fig 3-10, the
acceleration perturbation increases the x-axis oscillation amplitude with a x-displacement

range spanning between x=23.28 Ry and x=3.63 Rg.

Figure 3-14 shows the cffect of perturbing the acceleration with A=0.05 for the samc initial
conditions as the unstable orbit shown in Fig 3-11. In this case, the trajectory does not
escape from the nominal orbit in the anti-Sun direction. Instead the orbit oscillates along

the x-axis with x-displacement range between x=26.48 Ry and x=4.49 RE.

‘The periodic looping trajectories provide a series of manifolds which wind-off (unstable)
and wind onto (stable) the nominal orbit. Figure 3-15 shows a louping Lrajectory which
passes within 1.52 Ry of the Earth before returning to the nominal orbit. Orbit inscrtion
conditions can be determined by numerically integrating the trajectory to obtain the
position and velocity coordinates at the minimum distance from the Earth. The unstable
manifold eventually intersects a stabic manifold near (o the central body which winds back
onto thc nominal orbit. This enables the minimum x-displacement conditions to be applied

directly to define a transfer trajectory between the Earth and the nominal orbit.
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Figure 3-13 Stable orbit with perturbed acceleration computed using Hill’s cquations

%,=15 Rg, z5=30 Rg, 3,=1.04852x10°ms™, x=9.72593x 10" ms™, 4=0.05
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Figure 3-14 Unstable orbit with perturbed acceleration computed using Hill’s equations

%=20Rg, 7,=50 Rg, 7,=1.0007x10° ms™”, x=1.17991x10> ms?, 4=0.05
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Figure 3-15 Periodic looping trajectory computed using Hill’s equations

%,=60 Rg, 2,20 Rg, 7, = 314.496 ms™, x=2.19134x10° ms?, 4=0.04
Alternatively, the mirror image theorem can be applied which takes advantage of the
symmetry of trajectorics in the three-body problem [Brouke, 1979; Miele, 1960].
Symmetry about the x-z plane can be achieved by transforming the initial conditions using

x y z x93 2 t)»k -y ¢ ~% 3 —%, -t (3.17)

This can be verified by substituting the transformed conditions into Egns (3.10) to yield

2
4 040N ) ik, (3.18.1)
d=ty"  d=n) ] '

LAY LA () (3.18.2)
di-1)" “d-  hf
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d*z __2
d0°  f

-z (3.18.3)

Comparing the resulting equations to Eqns (3.10) verifies that the y-axis direction has been
reversed but the x- and z-axis remain unaltered when the mirror image conditions are
applied. This corresponds to 4 mirror image of the trajectory reflected about the x-z plane,
which means the conditions obtained by integrating forward along the unstable manifold
will now wind onto the nominal orbit. Reversing the integration Uime wansforms the

unstable manifold into a stable manifold [Koon et al, 1999].

For Hill’s approximation, other symmetries exist as outlined by Scheeres and Villac
[2003]. For the ballistic case (x=0) several symmetries exist including reflections about afl
the axial planes x-z, x-y and y-z. The other symmetries arc obtained by combining the

transforms required for plane symmetric trajectories.
The transtorms for symmetry about the y-z and x-y planes are

x y z 23 2, t)>(x vy z i -y —z, —t) (3.19)
x vy z 3 2z, )k y -z ¥ 3 -z, 1) (3.20)

In the case of an artificial libration point, the acceleration term is always positive with the
implication that the symmeftry about the y-z axis does not exist as the x-axis direction is
reversed. This can be verilied when the transformed parameters from Eq (3.18.1) are

substituted into Eq (3.10.1) to obtain

d*(—x) L, dy {(—x)

- +3(—x)+ K, (3.21.1)
a? A
dx dy x
—_— 42— = —3x+K 3.21.2
dt* dt ||'|3 TR ( )

The direction represented by the x-axis equation has been reversed except for the
acccleration. This symmetry is only valid when &=0. In total there are three possible
symmetries in the non-ballistic case. The third possible symmetry is obtained by

combining the x-y and x-z transforms to yield
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x vy z x5 2z )= -y -z —% 3 2z, —1) (3.22)

Figure 3-16 (a) represents the initial conditions transformed using Eq (3.17). As the time
is ncgative for this transform, the trajectory is reversed when forward integration is applicd
i.e. unstable manifolds become stable manifolds. The transformed conditions are identified
by integrating the nominal orbit conditions forward for 3 orbit periods. The transformed

conditions produce the time reversed orbit, which is inverted in the x-z plane.

Figure 3-16 (b) shows the resulting orbit when the initial conditions are transformed using
Eq (3.22). Again, time is negative so the reverse of the original orbit is produced using the
transformed conditions. Thesc arc obtaincd after three periodic loops of the original orbit

conditions. It is clear that this transformed orbit is inverted in both the x-y and x-z planc,

Figure 3-16 (c) is computed using the transform provided in Eq (3.20). For this transform,
the time ¢ is positive so integration is forward. The initial conditions are determined by
first integrating the nominal orbit conditions forward for | periodic loop and selecting
conditions which correspond to the minimum x-axis distance from the central body. The
initial plot represents the trajectory obtained using these conditions. The transformed

conditions produce an inverted trajectory in the x-y plane.

Orbit inscrtion can be achieved by identifying initial conditions near to the central body
which wind onto the desired orbit. As the manifolds can be described as homoclinic, the
solar sail will eventually return to the central body via the unstable manifold. Station-
keeping strategies have to be employed to prevent the solar sail leaving the nominal orbit

after insertion.
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Figure 3-16 Trajectorics generated using mirror image theorem
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3.3.4 Optimal contro} of circular displaced orbits

The two solar sail station-keeping techniques examined in Chapter 2, were sail pitch angle
variation and sail surface area variation. The optimal controlier developed in the two-body
case can be used to control circular displaced orbits generated using Hill’s equations,
which can be considered as a perturbed two-body model provided the orbit is refatively

near to the central body (x,<160 Rg).

3.3.4.1 Hill’s sail area controller

The two-body optimal sail area controller is outlined in Section 2.4. For a desired orbit,
insertion trajectories are determined by perturbing the acceleration sufficiently to gencrate
a set of periodic looping manifolds. The minimum x-axis turning point is determined and
the inscrtion conditions at this point may either be applied directly or by using the mirror

image transforms, as discussed previously.

Area variation directly controls the acceleration of the solar sail. The gains (G,, G2, Gs,
G4) are obtained using the Ricalti equation, discussed in Section (2.4.4). The acceleration
variation necessary to maintain station-kceping at the desired orbit with displacement x,

and radius g, can be modelled using the linear contral law
O =~{Glo = p,)+ Gy (v = 2,)+ Gy (0= p,) + G, (i~ 4,)) (3.23)

where Ok represents the acceleration variation directed along the sun-line, (0, x, 0, %) arc

the integrated orbit conditions and (2,,x,, 9,, X, ) are the desired orbit conditions. As the

x-axis represents the Sun-line, the orbit radius £ =/y* + z* . The radial velocity can be
determined using o = (yy+z2)/p.
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For a circular orbit displaced a constant distance from the central body 0, =0 and x, =0,
which enables dx to be continuously calculated during trajectory integration to provide a
control signal, Initially, the controller is inactive while the solar sail traverses the stable
manifold which winds onto the nominal orbit. Once the solar sail has arrived at the
nominal orbit displacement distance, the controller is activated to prevent the sail winding

off the orbit via the unstable manifold.

Figure 3-17 shows an orbit cantrolled using sail area variation with insertion at a distance
of 1.55 R trom the Earth. This corresponds to an insertion starting point approximately
3500 km above the Barth’s surface. The nominal acceleration x,=2.2826 mms™ with a
reduction corresponding to A=0.04. The solar sail winds onto the nominal orbit with radius

20 Rg displaced 60 Rg from the Earth within 13.5 days.

Figure 3-18 shows the acceleration variation for a control period of 200 days. ‘The
acceleration varies between 2.4286 mms™ and 2.1198 mms™. The corresponding areu
variation for a 500 kg sail and payload muss is between 1.3332 x10° m? and 1.1638x10°
m?. Using 4 sail assembly with loading o=3 gm™ would require a total sail mass of 400 kg,

enabling control of a 100 kg payload at this orbit.

As the sail acceleration is linearly dependant on sail mass, the gradicnt of payload mass

against sail arca is determined as 1.3328x10° m’kg™.

A small 10 kg payload could be
controlled at the nominal orbit using a solar sail of area 13,328 m?, or a larger 500 kg

payload could be controlled with a sail area of 6.6642x10° m™.
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Figure 3-17 Circular planet displaced orbit achieved using sail arca control
0o =20Rg, 7, = 60 R, Q = 1000(L4q) N = 3x10"
G = [-3.0769x107° 7.4970x10° 0.012174 0.012245]

2.5 ! T 5 ; o : ! !

acc, ms?

200

area, m*

l H i 1 I i i 1
40 60 80 100 120 146 160 180 200
time, days

Figure 3-18 Solar sail acceleration and area variation required to control orbit
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3.3.4.2 Sail pitch and yaw controller

The two-body pitch angle controller uses the linearised two-body equations represented
using cylindrical polar coordinates. The control angles must be transformed into a
Cartesian pitch and yaw angles (¢, ) determined from the cylindrical polar roll and pitch
angle, (¢ ¢f). From Fig 3-19, the components for the unit vector n can be expressed using

cylindrical polar pitch and roll angles as

n, = RnCOS X (3.24.1)
n, =nsinasing (3.24.2)
i, =nsin@cos @ {3.24.3)

and using Cartesian pitch and yaw angles as

i, = 1COS PCOS Y (3.25.1)
n, =ncosgsiny (3.25.2)
n, =nsing (3.25.3)

From Eq (3.25.1) and By (3.25.2), a, / n, =tany which can be compared to Eq (3.24.1)

and Eq (3.24.2) to obtain the relationship for yaw angle as
W= tan'k(tan sin gv) (3.20.1)

Similarty, comparing Eq (3.25.3) to Eq (3.24.3), the Cartesian pitch angle can be

determined from
¢ =sin" (sin cxcos ) (3.26.2)

The acceleration can be expressed including the dependency on the sail pitch and yaw
angle as k{f) = x, [RU /}?(r)]2 cos® gcos’ ym. Using the Cartesian representation of unit

vector, n, from Eq (3.25), the resulting acceleration components can be expressed as
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x (1) = x,[R, /R cos® geos® v (3.27.1)
K,(f) = K, [R,/R(®)] cos® pcos® wsiny 3.27.2)

K, =&, [R, /R()] cos® gcos® i sin ¢ (3.27.3)

During numerical intcgration of Hill’s equations, the polar coordinate angular position can
be determined as @ =tan™'(y/z). The pilch angle variation is determined using the linear

control law
é‘a = _(G] (lo - pu)+ G‘Z('X - xn) + Gfi(p_pa) +G4(x_xo)) (3'28)
which is converted to Cartesian pitch and yaw angle variations d¢ and .

Figure 3-20 shows an orbit controlled using pitch and yaw angle variation with radius 20
Rg, displaced 60 Rg from the Earth. The same insertion conditions are employed as thosc
used in the sail area variation casc starting at a distance of 1.55 Rg from the Earth. The
controller is inactive until the solar sail arrives at the nominal orbit. The solar sail
acceleration is boosted to 1.05%, when the controller is activated to compensate for the

reduction in the acceleration directed along the x-uxis when the sail is pitched.

The pitch and yaw angle variation required to control this orbit is shown in Fig 3-21.
Figure 3-22 shows the yaw and pilch angle which demonstrates the periodic nature of the

control signal,

o
>

»x

Figure 3-19 Converting cylindrical polar pitch and roll angles into corresponding Cartesian pitch and yaw

angles
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pitch, degrees

yaw, degrees

Figure 3-20 Circular Earth displaced orbit achicved using sail pitch and yaw angle confrol
20=20L,z,=60L, @ =100 (Lxs) N = 1x10"
G =[0.2302098 0.81155271 43.426737 304.90421]

10 ! -r A ! ! ; ! !
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i i i ] i ' i
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0 20 40 60 80 100 120 140 160 180 200
time, days

Figure 3-21 Pitch and yaw angle variation required to control orbit
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Figure 3-22 Yaw against pitch angle reprosenting motion of the solar sail normal

The solar sail requires a continuous acceleration of 2.3968 mms™ during the control phase.
The gradient of payload mass against sail arca is 1.2528x10°. A payload mass of 10 kg
could be controlled using a 12,528 m? sail. This represents an 800 m? sail area reduction
compared to that required using the area variation controller. A larger 500 kg payload
could be controlled using a 6.2641x10° m* sail, which represents an area reduction of
40,000 m>. In this casc, use of a pitch angle controller greatly reduces (he required sail

area for larger payloads.
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3.4 Non-Keplerian orbit dynamics far from the central-body

3.4.1 Linear solution to Hill’s approximation

Periodic orbits around the natural and artificial Lagrange points can be generated by
selecling initial conditions which suppress divergent modes. In order to identify periodic
solutions, Hill’s equations are linearised at the desired Lagrange point (Xo, Yo, 2,) Using new

coordinates x=x, +dx, ¥y=y, +d and z=1z2, + & . The ballistic Lagrange points lead to
initial conditions x, =i(1/3)1"3, ¥,=0 and z,=0. Using Taylor’s theorem, the linearised

Hill’s cquations have the form

L TR T [ of, | I, 1
—2y=|Z2 ) G+ | Lo sy 4| a5 3.29.1
sl irwl e ay_"y*[azjo ¢ (3:29.1)
E rar. b
V4 2x= ___,‘}3_ dx -+ A 5y+ i‘i P (3.29.2)
| ox | L9y | Jz |
z:[ﬂaj—l v | Lol g0 Q”_} 5 (3.29.3)
ox | ay_a 9z |,

where Lhe partial derivatives are evaluated at the nominal conditions (indicated by the
Ly - 3 d 3
subscript ‘;"). The functions f, =——~x/|1'[ +3x, f,=- y/|r| and f, z—z/|r| — g and the

partial derivatives can be obtained as

2 .
fum it fo=2ey, =22y,
e el i ]
3yt 1 3yz _ . . 322 1
fo =15 T fye =75 =fy fo=—0——"1 (3.30)
il e I i

Evaluating these at the classical Lagrange point yields f, =9, f,, =-3, f,=-4 and

f\:y=fyz=fxz=0'
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The cigenvalues of the linearised Hill’s equations can be determined by forming a state-

space equation with the form X = Ax, where A is the linear coefficient matrix and the state
e e . . . o I .
vector x=[dx & & & & & . The linear coefficient matrix A = g a which

contains four 3x3 sub-matrices

00 0 1 00

0={0 0 0O I=|0 1 0
00 0 0 0 1
fo fo Ja 0 2 0

U=l fo [n Q=-2 0 0 (3.31)
I To 1= 0 00

The 6 eigenvalues, A, and corrcsponding eigenvectors can be extracted from the mairix to

obtain a set of solutions

o 6
x=Y e oxp(A,) 5= 0, expld,)
n=t a=l1
6 o
y= Z 0,'"77" cxp(/?’nt) y = Zannu'%n exp('&l‘ur)
n=l1 n=l
G 6
i= Z C(ngn exp(/lnt) Z = Z Otng”,l“ exp(ﬂ’ut) (3'32)

n=1 n=1

where &7 and {represent the eigenvectars and ¢, arc constants determined from the initial

conditions,

It is apparent from the linear coefficient matrix that z is linearly independent of x and y.
The four in-plane (x-y plane) eigenvalues can be determined from the characteristic

equation

x =%((—4+ Fo fyy)i \/(4_ Jo— fyy )2 _4‘(fxxfyy —f_\yz)) (3.33)

119



Substituting the values for f, f» and f; into Eq (3.33) leads to the expression
A =(li2ﬁ ) This yields two real eigenvalues, A, =14/1+24/7 and two imaginary
cigenvalucs 4, , ='i_*1,'1—2ﬁ . The eigenvalues of the independent variable z, can be

determined as A* = f,. Substituting thc valuc of f;, obtains two imaginary eigenvalues,

Consider only the dependant variables, x and y. The eigenvectors v = [vl v, ¥V Vv, I,
can be evaluated for each eigenvalue by forming the matrix (A — Ay =0, ignoring the z

and z rows as

A 0 -1 0 |v
0 A 0 ~1fw -0 (3.34)
-9 0 4 -2,
0 3 2 Alv,
Evaluating the rows for each eigenvalue obtains v, = v, v, = Av,, v, =— (/122;- & V.

The eigenvectors for the independant variable can be cvaluated by forming a 2x2

determinant from the rows of matrix A which contain z and 7 as

A el 3.35
“fzz '2’ 62 B (. )

where the eigenvectors here are represented as e =[e, ¢, . BEvaluating the rows leads to

the expression e, = d¢,. It is convenient to select e;=1 which yields e, = A, .

Selecting an arbitrary value of v;=1, the values of vi= F#0.3117171i cotresponding to
eigenvalues Aj4= +3.33142637x104. Por a periodic orbit, the positive real exponents
must be suppressed to prevent asymptotic escape. This can be achicved by setting

constants ag=ap=0. The solutions for x, y and z have the form
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X ==, iV exp(id 1) + oy dv exp(—id f) (3.36.1)
¥ =0 Xp(idb) + o, exp(—id f) (3.36.2)

z = a5 exp(id, 1)+ ez exp(—id 1) (3.36.3)

where v = Im{Jvl|}, Ay = Img}{gjl} and A, = Imﬂﬂml}. Setting the constants «;=as=A, and

as=a=A, these expressions can be re-written in {rigonometric terms using

exp(if) =cosf+isind as

% = A F{i cos(Ay ) — S A, J+ A,F(Fcos(A,, 1) +sin( A1) (3.37.1)
v = 4,lcos(A,0) +isin( A0 1+ 4, (cos(Ayt) —isin( A,0)) (3.37.2)
z = A_(cos(A0) +isin( A1)+ 4, (cos(Lt)—isin( A1) 3.37.3)

The expressions can be reduced to x=47Psin(A ), y=4,cos(d,7} and
z= A, cos(At+p) where ¢ represents the phase change of z. For a circular orbit in the y-
z plane, it is required that z is #7/2 out of phase with y. This leads to the tollowing initial
conditions x =0, ¥=4VA,,. y=4,, =0, z=0 and z=44, [Cielaszyk and Wie,

1996].

Figure 3-23 shows the quasi-periodic trajectory evaluated using the linear solution of Hill’s
equations, This trajectory is a result of the in-plane and out of plane frequency ratio,

A /ﬂz , being non-rational [Howell and Pernicka, 1993; Cobos and Masdemont, 2002;
Roberts, 2004].
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Figure 3-23 Quasi-periodic Lissajous trajectory

3.4.2 Lissajous orbits using Hill’s equations

Due to the orbit instability, escape still occurs from the Lissajous orbit during numerical

Q 0.2

84

0.6

:
0.6

integration. Figure 3-24 shows a Lissajous orbit around the £; point with y-azis amplitude

Ay=5 Rg. This orbit is generated by numerically integrating the linearised Hill’s equations,

provided in Eq (3.29). Escape occurs in the anti-Sun direction after 4.57, where the orbit

period T= 175,87 days.

Figure 3-25 shows a series of lissajous orbits around ZL; computed using numericul

integration of the nonlinear Hill’s equations, provided in Egns (3.10),

conditions for each orbit are provided in Table 3-4.

The initial

The initial conditions in Table 3-4 are determined using the linear seolution, provided in

Eq (3.37), evaluated at time r=0. Comparing the trajectory computed using the lincarised

Hill’s equations, Fig 3-24, to those computed using the non-linear Hill’s equations,
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Fig 3-25, it is clear that divergence from the nominal orbit occurs much sooner for the
latter case. This is due to the presence of nonlinear terms which are ignored in the linear

solution.

Z,Re
[ [}

A

@ &

T S R R R
e 4 2 @ 2 4 & )

Tigure 3-24 Lissajous trajectory gencrated by integrating linearised Iills equations about L,

Orbit Ay A, x, Z,
1 1Re 1 Re 1.0384625x10* | 32162924 x10™
2 2 Re 2 Re 2.0769250 x 107 | 6.4325848 x10™
3 3 Re 3 Re 3.1153875 x10* | 9.6488772 x10™
4 4 Re 4Re 4.1538501 x10* | 1.2865170 x10°
5 5Re SRe 5.1923126x10% | 1.6081462 x107

Table 3-4 Lissajous trajectory initial conditions for contours 1-5
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y, Re %, Re

Figure 3-25 Lissajous (rajectories around L, for A, amplitude equal to orbit numbcer

Using an iterative method, the &% component can be corrected using X, =%, +dx to

improve the precision of the initial conditions which converges the trajectory towards the
nominal Lissajous orbit. For an orbit around the L, point with y-axis amplitude, Ay=20 Rg,
the cotrection factor dv=4.914954741x10™ is applied improving precision to order 1x107,
The corrected initial conditions lead to the improved orbit shown in
Fig 3-26. Escape occurs after 4 orbit periods where 7=175 days. Increasing the
convergence accuracy for the solar sail trajectory reduces the amount of station-keeping

required to control the orbit.
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TMigure 3-26 Lissajons trajectory around L, computed using corrected initial conditions

3.4.3 Optlimal controller for Lissajous orbits

3.4.3.1 Solar sail area control

An optimal controller can be developed using Hill’s equations linearised at the libration

. . . . o . 0 1
point. As stated in Section 3.4.1, the linear coefficicnt matiix A:LJ QA’, where the

sub-matrices are defined in Bq (3.31). The control matrix is developed using the partial

derivatives of Eqns (3.27) with respect to the acceleration x(t) where

aa’f(‘;) =¢os” crcos’ ¢ (3.38.1)



K

?_=cos® @cos” Psin (3.38.2

P @sin ¢ )

X. = cos? @cos® gsin (3.38.3)
ox (1)

For area variation control, the control matrix has the form

s-lo 0 0 2K O Ok | (3.39)
- k@) k() k() -

Bvaluating the partial derivatives at the nominal orbit conditions, ¢=0 and ¢=0, obtains the

control matrix B=[0 0 0 1 0 0] . The output matrix C is a 6x6 identity matrix Zgg.

Using the optimal control laws developed in Section 2.4, a gain matrix can derived using
the state-weighting matrix @ and the control-weighting matrix, N. The solution leads to a

6 element gain matrix which can be used to determined the required acceleration variation
3K, =GO + G0 + G, 85 + G + G0 + GI¢ (3.40)

where the difference between the desired and actual position is calculated using

d¢ =¢ — A vsin(d, 1) (3.41.1)
on=n-A,cos(A,7) (3.41.2)
o5 =¢ — A sin(4,7) (3.41.3)
0L =& - A v, cos(A,7) (3.41.4)
S =1+ A2, sin(A,7) (3.41.5)
dg=¢—AA, cos(4,7) (3.41.6)

Selecting suitable values for the state and control weighting matrices minimizes the

magnitude of dx.

126



3.4.3.2 Solar sail pitch and yaw control

A similar design can be used to develop a pitch and yaw angle controller by lineatising
Hill’s cquations at the libration point. The linear coefficient matrix has the same form as

the area variation case. The control matrix has the form

ax, 9k, Ak |

000 aaf 0 0

—_ o (44
B= ok, %, O (3.42)

0 0 0 = : —

J¢ d¢ 09

where the partial derivatives of Eqns (3.27), with respect to sail pitch and yaw angle, are

expressed as

E;’f;“ =-3x(t)cos® asin acos’® ¢ . 3.43.1)
aaf:; = —3x(t)cos’ ozsin cos® ¢@sin ¢ (3.43.2)
?;; = K (f) cos’ @cos® ;ﬁ(l —2tan?® 0:) (3.43.3)
a;;; = -3x(f)cos’ arcos? @sin ¢ (3.43.4)
a’;" =x(r)cos® gcos® a’(l —2tan? gb) (3.43.5)
aa’;“ = -2x(t)cos” asin acos Psin ¢ (3.43.6)

Evaluating at the nominal orbit conditions x(0)=x,, o=0 and ¢=0, obtains the control

matrix

(3.42)

o000 0 x7
10000 x, O

This control matrix produces a 6x2 gain matrix. The pitch angle variation required to

control the orbit is determined using
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O = G, 08 + G, + G, 06 + G, 08 + G 01 + G % (3.43.1)
and the yaw angle variation using
8= G, 08 + Gy + Gpy5 A Gy OF + G + Gy O (3.43.2)

where gain clement Gy refers to value located at the " column of the i row in the gain

matrix. The difference between the actual and desired position is provided in Eqns (3.41).

344 Lissajous orbit control near I.; and L;

Both optimal controllers developed in the previous section will be demonstrated for control
of a Lissajous orbil neuar the natural Lagrange points. This control method offcrs a near-
term application for solar sails as the requircd sail area is much smaller than cases
examined for circular displaced orbits. Current technology could provide the nccessary
acceleration to enable orbit control near the L; and L, points {Farquhar, 1970b; Bookless

and Mclnncs, 2005].

3.4.4.1 Solar sail control near L,

Selecting appropriate gains, solac sail control techniques can be applied to control an orbit
near L. An insertion manifold was selected with a closest Earth approach of 19.1 Ry;.. The
zero velocity surface which bounds the orbit is provided in Fig 3.27 with Jacobi constant
C=-0.0131. After delivery to the insertion manifold, the solar sail is deployed and it winds
onto the nominal orbit within 91 days. 'L'he nominal orbit is located at x,=230 Rp with y-
axis amplitude A,=20 Rg. The solar sail controller is activated upon approach to the

nominal orbit at x> 0.99x,. The nominal acceleration required to generate this libration

point is xz=0.00831 mms>,

Figure 3-28 shows the insertion to the orbit via the stable manifold and control for a period
of 15 years. An enlarged view of the T.issajous orbit around the libration point at x=230
Rg is provided in Fig 3-29. The accelcration and corresponding area variation required to

control this orbit for a 200 kg tatal payload and sail mass is provided in Fig 3-30.
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The acceleration varies between 0.00682 mms™ and 0.0114 mms™>, which corresponds to
an area variation between 152 m® and 254 m’® for a 200 kg total mass. For solar sail
loading parameter =12 gm?, the sail mass is approximately 3 kg enabling a 197 kg

payload to be controlled at this Lissajous orbit.

The gradient of payload mass against sail surface area is 1.2917 for loading o=12 gm"z. A
relatively small payload of 100 kg could be controlled using a 129 m? solar sail or a large
2000 kg payload could be controlled with a 2583 m? sail. Area variation could be achieved

using four reflective tip-vanes attached to the payload.

250 - e

100F - - e

250 j i . i i
200 -400 Q 100 200
X, RE

Figure 3-27 Iill’s surface bounding insertion conditicns to Lissajous orbit near L,

Iigure 3-28 Insertion to Lissajous orbit around x,=230 Rg controlled using sail area variation
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Figure 3-30 Acceleration and area variation required to control Lissajous orbit

Gains: Gy=4.839x107 (G7=-8.630x10° G3=1.485x10""° 3,=8.295x10* G5=4.394x10™ Gg= -4.048x 102
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Solar sail pitch and yaw angle variation can also be used to control a Lissajous orbit around
the libration point. Using the same insertion manifold, the optimal controller ts activuted
upon arrival at the nominal orbit. When the controller is activated the sail is fully deployed
to provide an acceleration of 1.054,. The increase in nominal acceleration is required to
prevent the solar sail escaping towards the Earth as pitching the sail reduces the
acceleration component directed along the x-axis. Figure 3-31 shows the orbit insertion

and control for 15 ycars duration. An enlarged view of this orbit is provided in Fig 3-32.

20 .

230
220 X, RE

Tigure 3-32 Enlarged view of Lissajous orbit around x,=230Rg
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Figure 3-33 Pitch and Yaw angle variation required to control Lissajous orbit

Gain $:Gp=-5.157x10" G,=9.628x10" Gy=1.568x10° G,=-8.788x10™" Gs=-4.631x10"" G= 1.7564

Gain & G=0.9103 G,=-0.1618 G5=4.032x10™"* G,=1560.8995 G;=818.3383 G¢= -4.631x10!!

Figure 3-33 shows the pitch and yaw angle variation required to control the orbit around
the artificial libration point. The pitch angle varies between -42.9° and 2.9°. The yaw
angle varies between -0.69° and 0.78°. For a 200 kg total sail and payload mass, the
constant area of this sail is 222 m*. The required sail area is approximately 30 m? less than
that required for sail area variation control, The gradient of payload mass against sail area
is 1.1268. An angle variation controller slightly reduces the required sail area by 13%

compared to the area variation controller.

3.4.4.2 Solar sail control near L,;

Insertion to an orbit sunward of L; can also be achieved. Direct insertion of a deployed sail
is demonstrated which requires an increased Av compared to a ballistic insertion to L;. A
Lissajous orbit is generated around the artificial libration point x,=-240 Rg with y-axis
amplitude A,=20 Rg. The nominal acceleration required to generate the artificial libration

point #,=0.0141mms™".
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A stable manifold which winds onto the desired orbit is identified by perturbing the X,

value slightly so the solar sail escapes from the nominal orbit in the anti-Sun direction.
The zero-velocity surface bounding this orbit is shown in Fig 3-34, with Jacobi constant
C=-0.01205. The Hill’s surface is open on the anti-Sun side of the Earth at this energy. As
the libration point position is moved sunward, the energy required for insertion to a
Lissajous orbit increascs, resulting in a larger gap in the zero-velocity surface on the anti-
Sun side of the Earth. It becomes increasingly difficult to identify manifolds which pass
near (o the Earth as the larger gap in the zero-velocity surface allows escape [rom the

capture region into the exterior region.

Using the stable manifold, the solar sail arrives at the nominal orbit within 320 days.
Figure 3-35 shows the insertion and control of a solar sail at the Lissajous orbit for 15
years duration. An cnlarged view of the Lissajous orbit is provided in Fig 3-36. Figure 3-
37 shows the acceleration variation and corresponding area variation for a 200 kg total sail

and payload mass.

300

100 A o - o

«3Q00 «200 -100 0 100 200 300
X, R

Figure 3-34 Hill’s surface bounding insertion conditions to Lissajous orbit near L,
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Figure 3-36 Lnlarged view of Lissajous orbit around x,~-240R;
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Figure 3-35 Insertion to Lissajous orbit around x,=-240 R controlled using sail area variation
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Figure 3-37 Acccleration and area variation required to control Lissajous arbit
Gains: G=4.655x107 (3,;=-8.379x10" G3=1.4x10""% G,=8.068x 107 Gs=4.355x10"* Gy= 2.345x10"2

The acceleration required to control the orbit varies between 0.0115 mms? and 0.0159
mms 2. For a 200 kg total mass, this corresponds to an area variation between 246 m” and
340 m’. For sail Joading ¢=12 gm®, the sail mass is 4 kg enabling control of a 196 kg

payload around this libration point.

Spacecraft orbiting on-axis libration points sunwards of the Earth require suitable y- and z-
axis amplitudcs to avoid telemetry interference [rom the solar radio disk, Farquhar [1977]
states that (he angular radius of the radio intcrference disk is 3.5° relative to the Earth. For
a Lissajous orbit around the libration point, x,=-240 Rg, thc solar radio disk has radius
93,500 km. Throughout the 15 yeat control period, the selar sail spends approximatcly

1/4"™ of the time within the telemetry interference zone.

Solar sail pitch and yaw angle control is also demonstrated using the sume insertion
conditions. Figure 3-38 shows insertion and control of a Lissajous orbit arcund the
artificjal libration point near L;. An enlarged view of the Lissajous orbit is provided in Fig
3-39. Upon arrival at the nominal orbit, the solar sail is fully deployed to provide

acceleration ,=0.0247 mms . A total sail and payload mass of 200 kg could be controlied
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using a 529 m? sail. Figure 3-40 shows the sail pitch and yaw angle variations controlling

this orbit.

SR 400
Lt <
y, RE -0 R ~150

100 " 200

Figare 3-38 Insertion to Lissajous orhit aronund x,=-240 Ry controlled using pitch and yaw angle variation
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Figure 3-39 Enlarped view of Lissajous orbit acound x,=-240 Ry
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Figure 3-40 Piich and yaw angle variation required ta control Lissajous orbit
Gain ¢: G=1.872x10™" G,=-3.405x10™"* G;=1.283x 10" G,=-3.295x10""" Gs=1.836x 100 G= 3.19x10°C
Gain ¢z Gp=0.916 G;=-0.0575 G5=-5.666x10" G,=554.3190 G+=309.7840 G,= 1.836x10™°

The pitch angle vaties between -52.3° and 8.3°. The yaw angle is exiremely small varying
between -1.8x10° © and 1.9x10° °. Throughout the control period, the solar sail spends
1/5™ of the time within the radio exclusion zone. In this case, angle variation decreases the
amount of time the payload spends within the solar exclusion zone compared to sail area
variation, However, solar sail area variation control requires 64% the total sail surface area

required by the pitch and yaw angle controller, in this case, due to the increase in nominal

acceleration.
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3.5 Conclusions

Circular displaced orbits were investigated using Hill’s approximation of the three-body
problem. At displacement distances relatively near to the Earth (x,<100 Rg} the two-body
dynamics provide a reasonablc approximation of the solar sail dynamics as the influence of
the Earth’s gravity on the solar sail is significantly larger than the Sun. A quasi-periodic
solution was also derived by lincatising Hill’s cquations at the artificial libration point.
'The linear solution vields initial conditions which converge toward a Lissajous trajectory.
The solar sail area variation and pitch angle variation control techniques were shown to

provide linear control for both types of orbit.

Sunward of the Earth, Lissajous orbits have the disadvantage that the trajectory spends part
of the time within the telemetry exclusion zone. Richardson [1980a, 1980b] derived a
method to obtain matching in-plane and out-of-plane frequencies, thus producing periodic
halo orbits. This method will be investigated in Chapter 4 to generate halo orbits around

artificial libration points.
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Chapter 4 Three body non-Keplerian orbits —

Restricted Problem

4.1 Restricted three-body problem

The study of non-Keplerian orbits will now be taken further using the circular and the
elliptical restricted three-body problems. The circular restricted model assumes that the
distance between the planet and the Sun is fixed. The elliptic model improves the
dynamics by including the orbit eccentricity of the planet which results in the position of
the libration points continually oscillating between the planctary apoapsis and periapsis.
Richardson’s third order approximation will be used to identify initial conditions which
converge toward periodic halo orbits around artificial libration points in both restricted

problems.

4.1,1 Circular restricted three-body problem

Complete derivations of the equations of motion are provided by Matchal [1990] and
Szehebely [1967]. In this case, the relative motion of the two primary bodies is assumed

circular. Figure 4-1 provides a schematic of the problem.

Figure 4-1 Schematic of circular restricted three-body problem
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The angle between the inertial (sidereal) coordinate system (X,¥,Z) and the rotating
(synodic) coordinate system (x,y,z) is defined as @. The constant distance between the Sun
and the planet is defined as R. The problem will first be considered in the inertial frame
and then the coordinates will be transformed into the rotating frame relative to the
batycentre O. In the inertial reference frame, the general form of the gravitational

attraction of each body is given by

] e

mx, =0 i mjmk‘z (rj _rk) (4.1)

It iz assumed that the mass of the solar sail is negligible and therefore does not exert a
gravitational influence on the two primary masses. The acceleration of the solar sail in the

inertial frame can be written as

dZ? =_GM1(1'33"1'1)_GMz("ss_rz)+a @d.2)
d }rls ‘rzzl

where X = ‘rj ~rk|, In the inertial frame, the solar sail is located at coordinates (X,¥,7),
the Sun at (X;,¥7,Z;) and the Earth at (X5,¥5,7,). The acceleration due to solar radiation
pressure has components a=ai+a,j+a k. The masses co-rotate around the barycentre with

constant angular velocity =©. The Sun-Planet and Sun-Sail separation distances are

defined as

s = {(x - %, P+ (¥ X Y+ (z -2z, F)" @3.1)

e ((X ~X, P +(y-v,Y +(z-2,) )Vz (4.3.2)

Equation (4.2) can be transformed into a rotating system about the z-axis using the

following matrix. The motion of the primary masses is assumed to be in the X-Y plane.

X cos& —sin&dt O x
Y |=|sinQt cos&t Oy (4.4)
Z 0 0 1]z
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As || = (X fryrez? )['2 , the 2™ order time derivatives of the transform can be calculated

as follows

X = (3-209 - Q%*x)cos Qt ~ (¥ +2Qx — Q% y) sin Ot 4.5.1)

Y = (% —2Q5 - Q7 x)sin Qt + (¥ + 2Qx - Q%y) cos Qt 4.5.2)

From Keplers laws, it is assumed that the angular velocity is constant where

2= \/ GM +M 2)/ R’ . These components can be substituted into the Eq (4.2) to obtain

thc following expressions [Escobal, 1968] after re-arranging and grouping the

trigonometric terms

AcosQf—-Bsinft =0 (4.6.1)
AsinQf + BeosQt = 0 (4.6.2)
where
A=i-205- Q%+ om, E2E) ygpy, BB, 4.7.1)
s 23]
B=§+205- Qx4 G, LI L gy, DY) 4.7.2)
|rl3l [rzal

Equations (4.6) require that variables A=R=0 so these conditions are true for all £. In the
rotating frame, the location of the Sun is defined by coordinutes (x;,y;,2;) and of the planet
(*¥2,¥2,22). Equation (4.7) can be further simplified by re-writing the expression in non-
dimensional coordinates. The characteristic mass of the planet can be cxpressed as

it=M, /M where the total mass of the primaties M =M, + M,. The mass of the Sun is

therefore (1-20).

The coordinate system is chosen such that the Sun and planet are co-axial, located on the
synodic x-axis. The barycentre is located at the centre of mass of the two primaries. The
characteristic length is selected as the separation distance between the two primaries. It

can be demonstrated that the Sun is located at (-, 0, 0) and the planet at (1-g, 0, 0).

The angular velocity and the gravitational constant terms can be removed from the

equations using characteristic time, ¢ The non-dimensionalised time derivatives, denoted
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by * are equivalent to dfdi=7"'d*/dr. The gravitational constant
G=Q*R*/(M, +M,) where the non-dimensionalised total mass (M, +M,)/M =1.

Substitution into Eq (4.7) results in the following equations of motion

o T o T e e
RV poRD* opy_ Uiy g o 4.8.2)
'Z‘ df T dt |r13| Irm‘

R dzz"‘ Q;;R(l 10z T WA

3 “4.8.3)
- ot |r]3[ |r23|

b

The angular velocity can be removed by setting 7Q =1 which requires that the

characteristic time 7=+R°/G(M,+M,). Dropping the “** notation from the

expressions, the final non-dimensionalised equations can be expressed as

d? ;r_,)dy x=_(1‘ﬂ)(§+”)_/”(x“ljf‘%xx (4.9.1)
dat lt |r13 | |r23 I
d’y _d 1—

Yo%, ( #3)3’ ik, (4.9.2)
dt dt | {33

“ ik, 4.9.3)

where (%, &y, k) represent the non-dimensionalised acceleration components due to solar

radiation pressure and the Sun-sail and FEarth-Sail distances are dcfined as

|r131 = \f(x+:u)2 +y°+z" and ll'23| = \/(x— 1 +,u)2 +y*+72 respectively.

The coordinate system is easily transformed to obtain planet centred equations by

substituting x = (¥ —1+ &), where X denotes the x-axis position relative to the planet.

Therefore, the Sun-sail distance li‘l3|:\/ (+1)°+y*+7z* and the planet-sail distance

|F23|=\/352+ y>+z* relative to the planet. Equation (4.9) can finally be expressed in

planct centred coordinates as
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EF_dy o (-p)E+)  uE

2 g +(l- @) +x, (4.10.1)

a’ |5, [&5s]” (=40
dy  dX -y my

Yo g W e (4.10.2)
atTa T R Rl
d*z _ (1-wz  uz

2. -z o (4.10.3)
dt” Irwl3 |r23|1

The resulting Tagrange points obtained will be compared to those of the planet centered

IHil’s approximation.

4.1.2 Elliptical restricted three-body problem

An extension to the circular restricted problem is to include the elliptical nature of the
planets orbit around the Sun. The derivation is similar to the circular restricted problem
derived previously. However, the angular velocity ® and separation distance & of the

two primaries can no langer be assumed constant,

A suitable method to represent the variation of the angular velocity and separation distance
is to define both as an eccentricity power series. This method is adopted by both Farquhar
[1970a] and Wie [1998], and is valid provided the eccentricity is relatively small. The

separation distance, R, between two masses is determined by

B a(l—e?)

- 4,11
l+ecos® ( )

where a is the length of the semi-major axis, ¢ is the orbit eccentricity and @ represents the
trac-anomaly. Figure 4.2 shows a schematic of an ellipse with each of these parameters

outlined.
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Figure 4-2 Schematic of elliptical urbit where eccentricity ¢ =0.6

The eccentric anomaly, E, is related to the true anomaly by the equation
12 ,
1+ :
an & = [—-5) tan% (4.12)

A thorough derivation is provided by Smart [1953] outlining how the true-anomaly and
radial separation distance are expanded in terms of the eccentric anomaly using Bessel

functions of the first kind.

The mean anomaly, M =v(i —7), where the ombit frequency v =27z/T, t is the curreni
time, 7 is time elapsed at periapsis and 7' is the orbit perfod. The mean anomaly is related
to the eccentric anomaly by the equation

M =F-e¢sink (4.13)

Using the methodology of Smart [1953], the relationship between true anomaly and

eccentric anomaly provided in Eq (4.12) can bc represented by the series
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Q= r+22ﬁ sinnk (4.14)

puril /)

where £ contains powcrs of cceentricity and is equivalent to

n.._in '”"MMEZ”
ﬁ ‘“(2] {1 { H; ;n!(n—]—}ﬂ.)! (2] } (4.15)

where n and m: are integers,

The eccentric anomaly can be expressed as a power series of mean anomaly

sinnll = Z % ¥ wnlKE)+ T, (ke))sin kM 4.16)

k=1

where J,(x)is a Bessel function of the first kind. The Bessel function has the form

(1) (2™
0= Zk'l"(k%ﬂ? 1) (4.17)

which has the property J_ (x)=(=1)"J,(x). The series representing tyuc anomaly, Eqg

(4.14), can be represented in terms of the mean anomaly by re-arranging Eq (4.13) to

obtain E=M +esinE,

Using the series from Eq (4.16) the true anomaly can be expressed as

(E):M+2Zl.l (ne)qmnMnZ Z Joonke)+J, , (ke)lsinkM  (4.18)
wt 7

n=l k=1

Similarly, the radial distance can also be expressed in terms of eccentricity and mean
anomaly. The term cosE can be expressed as a series in terms of the mean anomaly

where

cos E = -—2—e + Zw——{.f (ne)tcosnM (4.19)

=1 F
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1t can be shown that the radial distance R =a(l —eCosE) which can be expressed as

{J“ (ne) fcos nM (4.20)
€

Hﬂl
This is non-dimensionalised with respect to the semi-major axis length where R =R/ a.

The non-dimensionalised power series for true-anomaly and radial distance is outlined to

the 7 powcr of e in Wie [1998]. Both series can be expressed as follows

)‘?=1+le2 %--[w---e--l-zea ~—ie ! e \JcosMﬁ— -~1- +1€4——1—€ cos2M
2 8 192 9210 2 3 16

+(~§e3+ .t e - 567 e’ |cos3M + —le4+ge° cosdM
8 128 5120 3 5

125 5 4375

+[ -t 4 22

384 9216

16807

cos M
46080

gl cosSM—-%ze“ cos6M —
80
{4.21.1)

96 4608 24
-l—(_l—ge3~£e5+ 9_5 J sin3M +| — 103 et — 45166]COS4M
12 64 512 96 480
1097 5 5957
+ e ———
960 4608

@=M+[2e~ie3+ie5-}-ﬂe?JsinM +[3 2 11 4*—1—’-7—6(')5in2ﬂ/!
4 4 192

3
e’ |cosSM + 1‘—2—:3)'-—«!3‘5 cos6M + 47273 e’ cosTM
960 6

(4.21.2)

The mean anomaly represents the non-dimensionalised time with units 1/v. The

expansions for R and © are convergent provided e<0.6627.
The elliptical three-body problem including solar radiation pressure is represcated by the

same schematic as the circular restricted case, Fig 4-1. The equations of motion for the

solar sail will be constructed relative to the planet where 1y, =1; ~T,.
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Relative to the barycentre

Iy = .{%}r 13 _[ GJM: ]rzs +xn (4.22.1}
| [
¥, = [_Gn—i]rzs - [%Jﬁz d.22.2)
Irzsl |r12|

where M, , M, and m are the mass of the Sun, planet and sail respectively. The motion of

the solar sail relative to the planet can therefore be expressed as

= —~G(M +m)—B oM | 212 |, (4.23)
|r23 | Irls |r12]

The mass of the solar sail m << M, thus, can be neglected from the first term. Using the
non-dimensionalised mass =M, /(M +M 2) and  (1— ) =M, f(M, + M, ), the

expression can be re-written as

by = — 2 (1 ;:)[-5”———‘"!&-} 0 4.24)

[rzs |l'13‘3 ‘ru]s

The vector representing motion of the solar sail relative to the planet r,, = xi + yj+zk and
the motion of the planet relative to the Sun is described by the expansion provided in Eq

(4.21.1), such that r,=Ri. The motion of the solar sail rclative to the Sun

I, = (e+R)i+ yj+zk.

The motion of the solar sail in the rotating frame is determined using the rotational matrix

X cos® —sin® Of x
Y |=|s8mm©® cos©® 0Oy (4.25)
Z 0 0 1]z

which has second order time derivatives
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% = (- 202~ 250 - y0)cos O+ (~ j+ yO? — 250 - xO)sin©®  (4.26.1)
¥ = (5- 10 + 210+ x0)c0s O + (- 6" - 270 — yO )sin © (4.26.2)
Z=1% (4.26.3)

Substitating these expressions into Eq (4.24), the non-dimensionalised equations of motion

can be expressed as

20— y0=0"x-_ - X+ R —:1?— K, (4.27.1)
|rzsl J"ls[ R '
507y +10 =250 - _(1- 2tk 4.27.2)
]’ e nI
¥ = 4.27.3)

. I Iml

These equations are time dependant due to the variation of the separation distance R and

the variation of the true-anomaly derivatives © and 6. The elliptical three-body problem

will be used to examine the perturbations duc to orbit cceentricity of the primary masses.
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4.2 Ballistic and artificial Lagrange points

4.2.1 Classical Lagrange points

In the circular restricted thiee-body problem there exists five naturally occurring Lagrange
points. Figure 4-3 provides a schematic indicating the location of the Lagrange points.
The three co-linear points (L;, L;, L3) were identified by Euler and the triangular points (Ly,
Ls) by Lagrange [Lo, 2001].

The location of the co-linear points can be solved by forming a quintic equation and
calculating the real roots [Farquhar, [970a]. As the libration points lie on the x-axis, y=z=0
and as they are stationary points ¥=X¥=3Vp=3=7=7=0 in the synodic coordinate
system, the location of the L; and L, Lagrange points, relative to the planet, are

determined by solving Eq (4.28.1) for x

x5 (B p)xt + G- 2% £ i £ 20k =0 @.28.1)

where the upper sign corresponds to I; and the lower sign to L. The L Lagrange point,

located on the opposite side of the Sun, can be determined by solving Eq (4.28.2) for x
x5+ B )xt +(3-2)x* +2x% +2x— =0 (4.28.2)

Given a system mass ratio for the primaries, g =M, /(M, + M) it is possible to locate
the co-linear lagrange points of the system. In the case of the Sun-Earth-Sail system the
mass ratio is defined as #=3.00373x10°, The locations of the co-linear Lagrange points

are provided in Table 4-1.

The triangular Lagrange points, Ly and s, are focated at the apex of an equilatera) triangle
where |rzj=1, |rzs|=1 and |rioJ=1. This can be verified by evaluating the x and y
components of motion at the stationary point. Simultancous equations can be found which
yield x=~1/2 and y=%+/3/2. The positions of L, and L; relative to the Earth in the

Sun-Earth system are also provided in Tablc 4-1.

149



Ls

Figure 4-3 Schematic of Lagrange points in the circular restricted problem

Lagrange Point Position in x-y plane
L x=-0.0099707 | y=0
L, x=0.01003740 | y=0
L x=-2.0 y=0
La x=-0.5 y=0.8660
Ls x=-0.5 =-0.8660

Table 4-1 Location of Lagrange points in ballistic case (4=0)

4.2.2 Artificial libration points

Artificial libration points can be gencrated using a solar sail to producc an additional
uniform acceleration which yields artificial stationary points. A complete stability analysis
of the on-axis case will be investigated in the circular restricted problem. The solar sail is
orientated such that the thrust vector is directed along the x-axis which generates a constant

axial acceleration with magnitude determined by

L) B
K, = Gy + a (— ) (4.29)

where the upper sign corresponds to a libration point sunward of Z; and the lower sign

corresponds to a libration point sunward of ;.
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Figurc 4-4 shows the acceleration required to generate such artificial libration points. The
stabilily of these libration points can be deteymined from the eigenvalues of the lineatiscd
equations of motion. As the solar sail acceleration can only be directed in the anti-Sun

direction (x, >0), there arc no on-axis libration points beyond L, or betwecen the planet

and L,
1 1 T T T ] T
S 051 ‘ . | -
I e s A

0.02

Figure 4-4 Artificial libration points generated using solar sail acceleration

4.2.3 Libration points in the elliptical restricted problem

In the case of the ¢lliptical restricted problem, the distance between the Sun and the planet
pulsates. As a result, the libration point position also varies. The symboals, I and I; denote
the distance between the planet and the Lagrange points, L and L;, respectively. The
ratio, /,/R and I,/R remain constant as the separalion distance between the two

primarics varies due to the eccentricity of the orbit [Wie, 1998].

The variation of the L; position can be determined by setting the velocity and acceleration
components equal to zero in Eq (4.27). The resulting quintic expression can be solved to
find the location of the on-axis libration point relative to the planet. For libration points

Sunward of L, the expression has the form
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O’ R*x* +(20°R® +1- p+ i)t +(67 R“+2 ,u+fr)R) 4301
—(pu-KOR?x* —24Rx— tR* = o
The quintic expression for libration points sunward of L; has the form
O'R*x" +{20° R +1- g+ x)x* +(O°RY +2(1— 4+ k)R &*
o+ werjet (- p+x)R ) (4.30.2)

+(u+&)R2x* +2uR x4 R * =0

When the orbit cccentricity e=0, the angular velocity ©=1and separation distance R=1,
thc quintic expressions representing libration points in the circular restricted case are

recovered.

Table 4-2 contains the distance of the Lagrange points relative to a selection of planets at
apoapsis and periapsis, evaluated at x=0. In the case of the Earth, this motion corresponds

to a displacement greater than 50,000 km throughout the year.

The acceleration required to gencrate an artificial libration point can be calculated using
Eq (4.29). Figure 4-5 shows the position variation of artificial libration points generated

using constant acceleration due to the eccentric motion of the planet around the Sun.

The further the libration point is located from the planet, the larger the position variation.
Orbits near the L; Lagrange points will be more noticeably affected by the elliptical motion
than orbits located near to the planet. Similarly, the position fluctuation is larger for orbits

around libration points displaced sunwards of £; than for libration points near to 7.;.

Planet | Eccentricity u semi-major L; Location Ls Location
E (x10°%) a (xigiskn1) Apoapsis | Periapsis | Apoapsis | Periapsis
Mercory | 0.2056 0.1660 | 5791 -0.00466 | -0.00299 | 0.004675 | 0.002993
Venus | 0.0067 24476 | 108.21 -0.00938 | -0.00925 | 0.009302 | 0.009442
Earth 0.0168 3.00373 | 149.60 -0.01016 | -0.00979 | 0.010224 | 0.009852
Mars 0.09335 0.3227 | 227.92 -0.00524 | -0.00427 | 0.005255 | 0.004283
Jupiter | 0.0489 95359 | 778.57 -0.07024 | -0.06314 | 0.073590 | 0.066013

Table 4-2 Position of Lagrange points refative to planet at periapsis and apoapsis
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Figure 4-5 Variation of artificial libration point. position for eccentric orbit

4.3 Jacobi integral

4.3.1 Jacobi integral of the circular restricted problem

The Jacobi Integral and Hill's surfaces provide a useful method for investigating bound

motion given the initial orbit conditions. From Eqns (4.10) it can be seen that

Q2D [ 1yt i 2]~ [kt y v 2] (- i

XX+ Py +2E = Xkt yy ——
l'1| |I'2

4.31)

Factoring a time derivative from the above expression gives the integral

a1, oP+y) -1 u 1
Ll g - - x—wor | =0 4.32
dtLv 2 k) d=fr—wer @.32)

where v¢ =i+ 32 + 27,



Integrating with respect to time gives the Jacobi integral for the circular restricted problem

including the effects of solar radiation pressure as

21 —
oyt 2L 2R etk =C 4.33)

s I

where C is a constant, known as the Jacobi constant which is analogous to the total orbit
energy £ (C=2FR). Zero velocity surfaces are calculated Ly first evaluating C at a set of
initial conditions and then generating a surface for constant € in the x-y plane when

velocity v=0.

4.3.2 Zero-velocity surfaces of the Lagrange points

The Jacobi constants evaluated at the L, and 7, L.agrange points are C =-2.00089675 and
C,, =-2.00089275 respectively. Figure 4-6 shows the Hill’s surfaces generated for these
energies. It is evident that the zero-velocity surfaces sutrounding the Earth are closed
when the Jacobi constant €' < C; . As energy is increased, the zero-velocity surface opens
around the Lagrange points. In the casc of the surface C=C, , there is a gap in the

surface around L;. Unlike the Hill's approximation, the surfaces are not symmetric and

open around L at a slightly lower energy than at L,.

As the Jacobi constant is analogous to the total energy, evaluating a zero-velocity surface
at a libration point produces a surface equivalent to the pseudo-potential function, A local
saddle point of the pseudo-potential function clearly exists at the libration points
suggesting that the on-axis libration points are likely to be unmstable. This will be

confirmed using eigenvalue analysis as in the case of Hill’s approximation.
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Figure 4-6 Zero-velocity surfaces in vieinity of Earth for C=Cy; and C=Cj

4.3.3 Zero-velocity surfaces of artificial libration points

Including the affects of acceleration due to solar radiation pressure alters the shape of the
zero-velocity surface. A scrics of zero-velocity surfaces generated at artificial libration
points sunward of L; and L, are provided in Fig 4-7. The accelerations requited to
generate these libration points are calculated using Eq (4.29). The values of Jacobi constant

for each surface is provided in Table 4-3.

In the case of artificial libration points between 7., and the Earth, there is no gap in the
surface sunward of the Earth. Howcver, for libration points generated sunward of L; there
is a gap in the zero-velocity surface around L;. This can be attributed to the solar sail

acceleration reducing the energy required for escape in the anti-Sun direction.

Time is explicitly present in the elliptical restricted problem thus no Jacobi integral can be
derived [Brouke, 1969]. However, surfaces of zero-velocity exist instantaneously resulting
in time dependant capture regions which pulsate periodically as the planet orbits the Sun
f Astakhov and Farrelly, 2004].
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Figure 4-7 Zero-velocity surfaces for series of attificial libration points sunward of Ly and L,

Surface Libration point Acceleration Jacobt Constant

2
X0, R K, mms C

220 0.0379 -2.001016

200 0.0957 22.0011891

180 0.1685 -2.0013866

-260 0.0543 -2.0007055

Lt &~ W N —

-280 (.0900 -2.0005678

6 -300 0.1218 -2.0004359

‘Table 4-3 Parameters for zero-velocity surfaces evaluated at artificial libration
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4.4 Periodic halo orbits

4.4.1 Richardson’s method

An approximation of the circular restricted three-body problem can be derived which
enables initial conditions to be identified that lead to periodic solutions. A linear
approximation of the equations provides a crude estimate of initial conditions which lead
to halo or Lissajous trajectories but for more accurate sofutions, which require less station-
keeping after orbit insertion, several higher order non-linear terms must also he considered.
The problem of identifying an analytical solution which yields accurate initial conditions
has been studied extensively by Farquhar and Kamel [1973], and Richardson [1980a;
1980b].

Richardson developed a method for representing the three-body equations as a series
expansion using Legendre polynomials [Richardson, 1980a; 1980bjJ. This method involves
expressing the Lagrangian in terms of gravitational disturbing functions representing the

gravity of the two primaries. Figure 4-8 shows a schematic of the three-body problem.

Fi2

Iigure 4-8 Schematic of three-body system with motion of M; derived relative to L;
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The vector position of mass M; relative to Mz, r, can be cxpressed as

= fe—(1 m[ —‘l‘T] (4.34)
["| "'13| e

where the cxpression is non-dimensionalised with mass ratio g=M,/{M,+M,) and
A~py=M /(M +M,). The characteristic length is selected as the separation distance

between the two primaries |r,2| and the characteristic time is equivalent to 7 =8¢ .

As I'=-VV , where V is the potential function, the Lagrangian can be represented in terms

of r as

L=%(i'.i-)+%+(1—- M[T' L Tut } 4.35)

41| n,
where 1;; =Xy, +r and for the circular restricted case, |ry,| is constant.

The third right-hand tcrm represents the disturbing function, perturbing the motion of A;
relative to M. By changing the coordinate system relative to the lagrange points, it is
possible to express the second right-hand term in a similar form. The vector, p, represents
the position of M3 relalive to L;, such that r =p —r,, which can be substituted into Eq

(4.35) to obtain

7

lp_rz‘

lop) e T2 ey @36

T, . . 1, .
=—(p-p)—¥, p+—{k, X, )+
) 2 2(2 2) |p~—l‘1| ‘l‘n‘

where 1y, +r=p—r1, since r,, =r, —1;.

3 . . .
To remove the term 1y, / lrul . the motion of 3> relative Lo L; is expressed as

=—(1- ;z)( L T . R 4.37)

l“n' “'1‘ |"z
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Re-atranging the expression and substituting the two-body equation ¥, +r, / |rn|3 =( yields

(1 )2 —p—i 4.38)
|"12] ‘ 12| |r2\

This can be substituted into Eq (4.36) to obtain the Lagrangian in the form

L= Gy 2Rty gy =B ) BT 439
|’ [p-r] |, -] |r,f

where [ contains constant terms of ry, rz and rys,

The second and third terms in Eq (4.39) can be combined vsing the identity

2" . , d .
rd—‘-:'rz‘p:___(p‘rz) (4.40)
|r]2I ddt

. . . d, .
which allows 4 new Lagrangian, L*=L+ . (p-x,), to be expressed as
d

L“=l(f>-f>)+,t{ : ~¥}+(I )[ - "] (4.41)
2 lp=m| ey pxl ol

ignoring the constant term, /.

The scalar products in the second and third terms can be expressed as r,-p = (r2||p|cosa

and r,-p= |r1||p] cos f, where ¢zis the angle between p and ra, and £ is the angle hetween p

and r¢. The Lagrangian can be expressed as

| U — 13| l"2| I \9_"1‘ Ir,|

=—(p p)+_( o) |p|°°wJ+(1"“)[ nl__lpleos } (4.42)

As demonstrated by Thurman and Worfolk [1996], the first terms in either brackets can be

written as
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|P2‘ Mcosatl l"| : 3.
== \1 2 (M] @43.1)
(e () "
o1 ﬂ{l) -

Equation (4.43.1) can be expressed as |r,|/|p—1;|= 1+ g™, where g = j*> ~2jcosa and

J=|pl/Ir;|. Expanding using Taylor’s formula yields the expression

-2 _ k (2;&') I3
(i+q) -—gé( 1) Lo ! (4.44)

Using a binomial expansion of ¢ yields

£ k! - —
k »k+H k=1 k-l
= ~2 08T o 4.45
q élf(k—l)!J (-2)" co (4.45)
Subsgtituting Bq (4.45) into Eq (4.44) obtains

i £ 250 . _
1+ 1/2 — —1 { : ( k=l sk 4.4
(1+4) ;ﬂg( ) Pk (4.46)

As demonstrated by Barrabés [2004], the summation index can be replaced by n=% 41 to

obtain

AR & 20— 21)! )
1+¢) 7 = i 1 L cos" ™ aj" 4.47
(+a) %M,( ) D) n = 2D ] @47)

This represents a power scries of j=|p|/frl‘ with coefficients which arc polynomials
ofcosa. A similar expression can be derived for Eq (4.43.2) where j =|p|/|r1| and the

cocfficients are polynomials of cos /3.

Equation (4.47) can be re-written in terms of Legendre polynomials, P,(z) where
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1 d°
P2y =——
(@) 2"l dz"

(z2 -1)" (4.48)

Using binomial theotem to expand the brackets, the n™ derivative can be represented as

2=S(1Y al @n-=-2D . 4.49
Filz Z,:( ) Nn-1) (a—21)1° (449)

From Bq (4.47), il is clear that z commesponds to cos ¢ (or cos #in the case of j=|p|/j|)

which yields

=30 (c,osa)( ] 4.50.1)

Ip r2| n20
B- "
|p--r,| Z{;  (cos ,3)(1] {4.50.2)

These expressions can be substituted into Eq (4.42) to obtain

nz ne2

:_(p p)+|—2~[1+2("} P(cos(l)J l | (HZ( ]P;(cosﬂ)J (4.51)

It is convenient to normalize the distances so that the separation between the libration point

and My, |r,|=1. This can be achieved using the dimensionless parameter, ¥ =r,/[r,|,
where p=p/y and p=_&+nj+¢k. TFrom Fig 4-8, cosar=E&/|p| and cos f=-&/p| at

L; and using the relationship of Legendre polynomials, P{-z)=(~1)"P(2), the

Lagrangian can be exprcssed as

S P[l l] ws)

nz2

Sincc |r1] * |r2| =1, the constant ¢, is equivalent to
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-3 n s (1 _ :u)y,m J
" = +1¥ g+ (=1) L 4.53
(n y (( ) +( ) (1+ :V)ml ( )

where the upper sign refers to L; and the lower sign to L.

The Lagrange equation can be applied to obtain the following equations of motion

o/ §= jﬂ ﬂlr‘“[ll] (4.54.1)

n>2

(_J @542)
7 w2 [ ‘

s 0 | €
=2y P2 4.54.3
é' aé/ Culp| "(IﬁIJ ( )

ﬁ+25—n—

nz2

The Legendre polynomials can be expressed via the recursion relation

Rr(z) = [2’1 _I Z]Rx—l - (n—_ljpu—l‘ (4'55)

il

where P (z)=1 and F(z) =z [Thurman and Worfolk, 1996]. This enables Eqns (4.54) to

be evaluated as a series where by increasing the number of (erms improves the accuracy of

the approximation.

4.4.2 Approximate periodic solution

The Lindstedt-Poincaré perturbation tcchnique can be applied to find an asymptotic
approximation to the periodic solution of Eqns (4.54). This method uses a frequency
variation represented by @(e)= o, + £w, + £*@, to remove secular terms from the solution
where the linear system frequency @,=1 |[Nayfeh, 1973]. Secular terms are unbounded,
growing over time resulting in eventual escape from the periodic orbit. These terms
include those where the time variable appears as a coefficient or those which result in

groups of trigonometric terms in the solution causing unbounded meotion.
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Using a time variable 7 = w(g)r, the time derivative can be represented as ( )= @d/d7 .

Equations (4.54) can be cxpanded to the third order as

P E"~20n'~(1+ 2¢,)E = -;—cs QE —? =L+ 20,E2E =307 =3 (4.56.1)
" ] = 3 2 z 2
W' 208+ (e, — 1 = -3¢,én 5 e~ =) (4.56.2)

WIS Se e i () rAg 563

The correction term, 4, is assumed to have order of magnitude A(EZ), where A = A2 -C,.
The correction term is required to ensure the ratio of in-plane and out-of-plane frequencies
is rational, producing periodic orbits as opposed to the quasi-periodic trajcctories

demonstrated in Hill’s approximation.

The position coordinates can similarly be represented as §((5}= e + &%, + 8L,
n(e)=en +en,+e’n, and &(e)=el,+£L, +&°L,. A general solution can be derived
by substituting the power series representing frequency and position into Eqns (4.56). This
can be achieved by evalualing particular integrals at each of the powers of the perturbing
parameter & Richardson [1980a; 1980b] derived a solution up to order, &, using the

frequency constants to remove secular terms leading to a periodic solution. The technique

which results it Richardson’s solution is outlined below.
4.4.2.1 Linear solution

Grouping terms which contain a perturbing parameter of order & vyields the linear

equations

&-2m—-(1+2¢,)€ =0 4.57.1)
n'+28,+(c, =Dy, =0 (4.57.2)
&AL =0 (4.57.3)
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A solution to the linear equations can be obtained by forming a matrix and cxtracting the

cigenvalues and corresponding eigenvectors. For the in-plane case, a 2x2 matrix is formed

using the vector Q=[& nT as

L 0)g [0 —2]g [-r2en 0 o -
0 1¥72 o ¥ o -p[* '

Assuming that Q =Q, exp(A7), the resulting characteristic equation cuan be expressed as
Ar@-e)A—2," +c, +1 (4.59)

EBquation (4.59) yields two real and two imaginary eigenvalues as demonstrated in previous

examples. The eigenvalues have the form

A, = \/(c?,-2)+\I9cf—8c2

2

=

(4.60.1)

A, = \! (€, 72) 7y, ~8c 4.60.2)

where /4, are real eigenvalues and A, are imaginary eigenvalues. As the linear

equations contain both oscillatory and divergent modes, this confirms that the on-axis

libration points are nnstable.
The corresponding eigenvectors relating £to #7 can be expressed as

~24,

YV =72 Ve
v A+, -1 "

(4.61)

where the index /=(1,2,3,4), Eigenvectors v, and v, correspond to the £- and # - axis

respectively. The solution to the linear equations can be expressed in terms of the

eigenvalucs and eigenvectors as

4
E(@) =Y av, exp(A7) (4.62.1)
j=1
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7)) = i a,v,; exp(4,7) (4.62.2)

=l

where « represents a constant matrix. The real eigenvalues, A;2, result in asymptotically
increasing terms and can be suppressed by setting a;=a,=0, as demonstrated in Chupter 3.

The oscillatory terms containing imaginary eigenvalues can be expressed as

E(T)y=—A, cos(AT +¢) (4.63.1)
(%) = kA, sIn(AT + ¢) (4.63.2)

where A, denotes the x-axis amplitude and ¢ represents the phase angle.

‘The imaginary part of eigenvalues Az, is represented by Awhere £ represents the

relationship between the £- and 77 - axis evaluated at 4. Thesc terms can be expressed as

A= \/ G \;29c,' — 86, (4.64.1)

K e (4.64.2)

To ensure the orbit is periodic, the solution for the out-of-plane motion is required to be
G(T)= A, sin(AT + @) (4.65)
where A, is the z-axis amplitude and @ represents the phasc angle. These expressions

represent the 1% order solution which can be used to evaluate higher order expressions.

Following the notation used by Thurman and Worfolk {1996], the frequency terms will be

represented by 7, = AT +¢ and 7, = AT +@.
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4.4.2.2 Second order solution

The second order solution is evaluated by collecting perturbing parameter terms of order

82, which yields the equations

" 2 Tl [ 3 2 -
‘fz =277, —(1+ 2(-'2)‘52 = “260[(51 /! )+"2"Cs (261 _7712 - 412) (4.66.1)
7,428, e, =Dy, = -2, (7?1 "+&')- e,y (4.66.2)
6,4, = 20,8, "-3¢,4.4, (4.66.3)

The solution to the 1*' order terms &, 77, and £7 have been obtained previously and can be

substituted into these equations to obtain

E,"-217,"(L+ 2¢,)E, = 200,A Ak — A)cos 7, +3¢,A,” cos® 7, — % ¢, (kZsz sin® 7, + A_” sin” z‘z)
(4.67.1)
7,"12&, (e, — Vg, = 20, A ARA —)sin T, +3c,kA  cosTsing,  (4.67.2)

& A, = 2w A, A cos T, +3¢,4, A, cos T sin T, (4.67.3)

The eguations can be reduced by substituting the trigonomceiric relationships

2¢0s* 7, =cos 27, +1 (4.68.1)
2sin? T, ==cos2t, +1 {4.68.2)
2cos 7, sin, = sin{z, + 7, )+sin(z, —7,) (4.68.3)
2cos7,8in7, =sin 2z, (4.68.4)

The secular terms present in Eq (4.67.1) and (4.67.2) contain cos7, and sinz,. The
coefficients for these terms arc 2wA Ak — 1) and 2m,4,A(kA—1) respectively and can be

easily removed by setting @y=0. The equations can then be re-written in the form

&"=2n,'-(+2¢,)E, = ey + @, cos 27, + @, 05 27, (4.69.1)
n,"+28, +(c, ), = f, sin 27, (4.69.2)
&, A, = vy sin(T, +7, )+ ¥y, sin(z, - 7)) (4.69.3)
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where the coefficients are provided in Appendix 1. To solve these equations for &, %, and

{71t can be assumed that the solutions have the [orm

E(T) = Py A 2, €08 27, + p,, COS 2T, (4.70.1)
M,(7T) = 0, 5in 27, + 0", 810 27, 4.70.2)
¢, (%) = 8, sin(z, +7,) + 8y, sin{r, —7,) (4.70.3)

The coefficients are determined by substituting these solutions into Egns {4.69) and

grouping the trigonometric terms. The time derivatives are evaluated as

&' (7T) = -24p,, 3in 27, - 240, 5in 27, (4.71.1)
E\(F) = 4L p,, cos 21, — 44 p,, cos 27, (4.71.2)
7, (F) =240, cos 27, + 240,, cos 27, 4.71.3)
1,"(F)=-420, sin 27, ~44%0,,5in 27, 4.71.4)
£, (F) =28, Acos(z, + 7,) (4.71.5)
£, (F) = —48,, A2 sin(z, +7,) (4.71.6)

Firstly, the constant terms can be equated to obtain the coefficient

% 4.72
P =5 2e,) @472

Grouping the corresponding ttigonometric terms yields the following systems of cquations

which are used to identify the remaining coefficients for the dependant variables

(~4A42 +c, —1)o,, — 420, = B, (4.73.1)
(~4 % =1-2¢,) 0, —~4A0y, = 2y (4.73.2)
(42 + ¢, )0y, —4A0,, =0 (4.73.3)
(~4A =1-2¢,) 0, — 420, = (4.73.4)

The coefficients &zr, T2z, P2y, P2z ave evaluated in terms of A, ¢2, Fa2s, az; and oz The

resulting expression are provided in Appendix 1.
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In the case of the dependant variable, {3, the derivatives represented by Eq (4.71.5) and Eq
(4.71.6) are substituted into Eq (4.69.3) to obtain

48, 2 sinlz, +7,)+ 128, sin(z, + 7, )+ £y, sin(z, — 7, ) = ¥, sin{z, + 7, )+ ¥y, sin{z, - 7,)

4.74)

Again, grouping the sin(z‘l +2'2) and sin (1'2 —'z.'l) terms and solving for &z, and dz; leads to

the coefficients

d, = _;fi' (4.75.1)
5, =12 (4.75.2)
A

Having obtained the expressions for the coefficients, Eqns {(4.70) now represent particular
solutions of the second order equations. This can be used to evaluate the coefficients in the

third order approximation.
4.4.2.3 Third order solution

The third order solution is evaluated by collecting perturbing parameter terms of order &

and noting that @, =0 from the second order solution, which yields the equations

L4 1 - il 1 3 -
& 21 —(1+2¢,)¢, = ~2w2(§1 = )+§c3(2¢f1§2 =M - 4'14’2)

@.76.1)
+2¢,8 (287 ~3m7 -3¢7)
17 zl "'5'252 - (Cz - 1)77 2= —2602 (771 ' '+§I () - 3‘“'3 (Sgl??;: + éz’?l)
3 4.76.2)
- ‘504??1 (4‘5-:12 - 7712 - :IZ)
X} 1t g - 3 2
6."+A'G, = —2w,¢,"-3¢, (é:l 62t &l )"E € (442 =1 =4 12)'*' Ag, 4.76.3)

The previously obtained solutions to the linear and second order terms can be substituted
into these expressions which can be solved for third order terms &3 77 and {3 Richardson

noted that after substitution, the expressions can be reduced to the following form
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E"-2n, —(1+2¢, ), = o, +2w,A Mk — A)cos 7, + ey, cos 3z,

4.77.1
+ s c:os(z'l +27, ) +a, cos(zr2 —T, ) ¢ )
7,428, —(1—c, ), =B, + 20,4 A(kA-1)}sin 7, + B, sin 37, @772
+ B, sin(z, + 27, )+ By, cos(27, —7,) o
&A= [yg,l +A, (20)2/12 + A)] SINT, + ¥y, 8in 37, @.77.3)

+94,8(27, +7, )+ 7, 5in(27, —7;)

where the coefficients are provided in Appendix 1 [Kim and Hall, 2001;
Thurman and Worfolk, 1996].

The sccular teems in Eq (4.77.3) are sin(2z, —7,) and sinz,. These ferms are removed by
adjusiing the phuse angles such that ¢ =@+nzw/2, where integer #=0,1,2,3. The term
sin(27, —7,) = sin 7, if the value of #=0,2 and sin (27‘ ~r, )= —sin7, if n=1,3. Combining
the sin 7, cxpressions, it is clear that removal of secular terms from Eq (4.77.3) is achieved
provided

Ve + A Lo, 2+ A)+ (=1 y,, =0 4.78)

To remove secular terms [rom Eq (4.77.1) and Eq (4.77.2), the constraint derived by
Richardson [1980a] is defined as

@, = 5,4, + 5,4, (4.79)

where s; and s» are provided in Appendix 1. Substituting into the constraint defined in

Eq (4.78) leads to the expression

LAZ+1L,A°+A=0 (4.80)
This expression imposes a constraining relationship between the in-planc and out-of-plane
amplitudes, A, and A;, to cnsurc removal of secular terms from the solution, A complete

third order solution after removal of the secular terms is provided by Thurman and
Worfolk [1996].
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The final solution obtained by Richardson [1980a] is provided below

f('rl) = a, Ax* + anA;“ —A, cosT, + (aﬁAf - aMAZ?' )CDS 27+ (a3| Af - a'.ﬂAxAz2 }cos 37,
4.81.1)
n(z,) = kA, sinz, + (b, A7 ~by, A2 Jsin 27, + (b, A By A A7 Jsin3z, 4.81.2)

Q’(’r )_ +A, cost +dyAA (cos 27, — 3)+ (alﬂAzAI2 - d:“AZj )cos 37, n=02
7 -4, cosg —dy,A A (cos2z, ~3)- (a’_nAzAf —d, A’ )cos 3, n=13

{(4.81.3)

This solution is achieved by adding the particular solutions calculated at each order of
perturbing pavameter, £ They are expressed in terms of the in-plane and out-of-plane
amplitudes, A, and A,, which are constrained by Eq (4.80). As a consequence of the phase
constraint ¢ =@+nz/2, two cquations are obtained for the out-of-plane solution, ¢ (’q)
Farquhar and Kamel [1973] demonstrated that this constraint leads to two diffcrent classes

of orbit, shown in Fig 4-9. Class I occurs for 7#=0,2 and Class II occurs when nz=1,3.

These solutions define a nominal halo orbit in the three-body problem where the ratic of
the in-plane and out-of-plane frequency is rational, Evaluating this expression at 7 =0
yields initial conditions which converge toward halo orbits around the {ibration peints.
Several authors have investigated halo orbits around the collinear Lagrange points of the
three-body problem [Farquhar, 1970a; 1973; Breakwell and Brown, 1979; Richardson,
1980a; 1980b; 1980c; Howell, 1984]. It will be demonstrated that similar methads can be

applied to generate halo orbits around an artificial libration point using a solar sail.
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Figure 4-9 Class I and Class II halo orbits around L, of Sun-Earth system (4,=280,000km)

4.4.3 Halo orbits around artificial libration points

4.4.3.1 Differential correction methods

The coefficients of the third order solution, provided in Appendix 1, are evaluated at the
artificial libration point. For a required z-axis amplitude, A;, Eq (4.80) can be solved to
determine a valuc of x-axis amplitude, A4, which suppresses divergent terms. The
amplitudes and evaluated coefficients can then be substituted into Eq (4.81), and
evaluating at time 7;=0 yields a set of initial position conditions. The ™ order derivatives,
with respect to time, of Eq (4.81) can also be determined to yield a set of initial velocity
conditions. These conditions do not immediately produce periodic halo-orbits within the
non-linear three-body cquations but do provide a solution which converges toward a

periodic halo orbit after applying a differential correction method.

A numerical method is developed similar to that used by Breakwell and Brown {1979], and
Howell [1984]. This method uses the Matlab 5" order Runge-Kutta integrator to
numerically integrate a periodic orbit with period 7' starling at the initial conditions

X, =[x, 0 z, 0 3 O] andintegrating until time 772. The integration time of 7/2 is

]

171



indicated when |y| <1x10 ', at which point the time and orbit conditions are stored. To

achieve this precision requires the integrator to step forward until y <0. The step-size is

then reduced and the integration is repeated starting at conditions near 7/2. In this way,

precisien is improved without greatly increasing the integration time.

The lincarised equations can be represented in the form of a state equation x = Ax, where

the state vector X =[x y z x ¥ 2| and the linear coefficient matrix is defined as

0O o0 0 1 00
0O 0 0 0 10
0 0 0 0 01
A= (4.82)
v, U, U, 0 20
v, U, U, -2 0 0
UU UZV UEZ 0 O OM
where the partial derivatives of the pscudo-potential
]. I} 1 - :
U= ——(xz + y")+ (-p) A (4.83)
2 Y

are represented as U for 7, 7={x,y,z}. These derivatives are evaluated at the on-axis

libration point where x, =y, y, =0 and z, =0.

The eigenvalues and cigenvectors of the linear coetficient matrix A can be used to form a

fundamental solution matrix @Xz) with solution x(r)=®(t)x, . The solution of the linear

o

statc cquation can be expressed as x(f) = exp(tA)x, , which suggests ®(¢)=exp(rA) . The

eigenvalues and eigenvectors of the linear coefficient matrix are represented by matrices A
and P respectively, where AP =AP. As demonstrated by Glendinning [1994], the

transform x = Py can be applied to form a fundamental matrix using the eigenvalues and

eigenvectors A and P.

It follows that y =P™'x which has timc derivative §=P"'%. Substituting the state
equation gives y =P Ax=P'APy. The relationship between the cigenvalucs and

eigenvectors can be re-arranged as A = P7 AP which obtains the state equation ¥ = Ay .
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This state equation has the solution y{r)=cxp(tA)y, and further substitution obtains the
expression x(t):Pexp(tA)P"lxo. Comparing the solutions for x(z) proves that
Cb(r)zexp(tA) = Pexp(tA)P‘l, where A is a diagonal matrix of eigenvalues. The

fundamental matrix evaluated at #=0 is cquivalent to a 6xG identity matrix, ®(0)=17, .

The required variation of the initial conditions, 8x, is calculated using the relationship

ox = ®(T/2,0)8x, + %“t‘- &(T/2) (4.84)

where (D(T/ 2,0) is the fundamental matrix cvaluated at time 7/2 [Breakwell and Brown,

1979, Howell, 1984].

For a periodic orbit at time 772, dy =0 and as the initial conditions & =& =0, Eq (4.84)

leads to the expression

B, 0%, + P % + By, + 0T 12)=0 (4.85)

where ¢ represents elements of the fundamental matrix <1>(T/2,0). Re-arranging

Eq (4.85) enables the time variation 8( 772) to be evaluated as
. 1
§(f / 2) = “;((32[6:’(0 + ¢235Za s }’o) (4.86)

The aim of this method is to alter the initial conditions to obtain & =& =0 at time 772.
Varying two of the initial conditions is sufficient to provide orbit correction. Keeping the

value of x, fixed, such that dx, =0, leads to the expression

2 _ By B || 2, X
[&H«a @J[&HJ(;(T/ 2) 487

Substituting the expression for X772) derived in Tig (4.86), into Eq (4.87) gives the

correction expression used by Breakwell and Brown [1979], and Howell {1984] as
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dk _ P s JZ,, ~_“1_ X 530
[&:]_[¢53 ¢ﬁ5}i:®o:| V[Z}[%} tﬂﬁ{ﬁyo] (4.88)

The required change in the initial conditions ¢, and dy, is calculated from the required

change to the velocities at 7/2, —dt and —& . Through an iterative process of numerical
integration and correction, the initial conditions obtained from Richardson’s third order
approximation converge toward a periodic halo orbit. This correction method will be

demonstrated for periedic halo orbits around the L; and £, Lagtange points.

Figure 4-10 demonstrates the effectiveness of the differential correction method. The
trajectory produced by the initial conditions obtained by Richardson’s theorem winds off
the nominal orbit escaping in the anti-Sun direction. The correction method gradually
improves the resulting trajectory by varying the initial z, and yp  conditions in order to
force the conditions at time 772 towards thal required for a periodic orbit. Trajectory 6
represents the periodic halo orbit achieved after 6 iterations. At each stage of correction,

the resulting trajectory converges compatably closer to the nominal orbit,

The initial conditions obtained using the differential correction method arc provided in
Table 4-4. The correction method required 6 iterations to obtain suitable values of
x=-3.515%107% and 7=15792x107° at time 7/2=90.7 days.. The in-plane and out-ot-
plane amplitudes correspond to A, = 40.26 Ry and A, = 20 Rg.  The initial conditions
yielded from Richardson’s approximation arc converted to a planet centred coordinate

system for use in the non-linear equations derived in Section 4.1.

Figure 4-11 demonstrates the iterative correction proccss which converges toward a
periodic halo orbit around the L; Lagrange point after 12 iterations. The in-plane and out-
of-plane amplitudes are defined as A=20 Rg and A,=38.9 Ra. Table 4-5 provides the
corrected initial conditions for each iteration of the correction method. After 12 iterations
suitable values of ¥=-9.180x10"" and 7=7.455x10" were obtained at time 7/2=89.3
days.

It was found that the correction method can ‘overshoot’ the desired orbit if the calculated
change in initial conditions, d, and %, are applied directly. To improve the accuracy of

the convergence method, a cocfficient n was introduced such that the initial conditions are
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altered by a factor ndp,andndz,. The value of n was selected arbitrarily between the

limits 0.1 < »n <0.5 providing a trade~-off between accuracy and efficiency.

Figure 4-10 Iterative method improving initial conditions towards a periodic halo orbit around £,

-150

[

150 200

250

i
300
X, FtE

400

X, Yo Z, %, Yo Z,
Initial 0.00799589840 | 0 | 0.00075906746 | 0 |0.01237406764 | 0
1 Tteration 0.00799589840 | 0 | 0.00072933473 | 0 |0.01209224716| 0
2™ Iteration | 0.00799589840 | O | 0.00070939306 | O |0.01191541801 ] 0
3" Tteration 0.00799589840 | O 0.00069750983 0 [0.01179636391: 0
4™ Tteration 0.00799589840 | 0 0.00069294029 0 | 0.01174034054 | O
5" Tteration [ 000799589840 | 0 | 0.00069282234 | 0 [0.01173611718| 0
Corrected 0.00799589840 | 0 | 0.00069307255 | O |0.01173670786 | 0

Table 4-4 Initial conditions yielded from the third order approximation and the corrected conditions of L,

orbif
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Figure 4-11 Iterative method improving initial conditions towards a periodic halo orbit around L;
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X, Yo z, X, Py Z,

Tnitial - 0 0.0009593422 1 0 | 0.01107461150 | ©
1% Tteration - 0 0.00107262323 | 0 | 0.01010643172| ©
29 Tteration | - 0 0.00106617368 0 |0.01011405614 | 0©
3% Tteration - 0 0.00106119927 0 |0.01012023328 | 0
4% Tteration - 0 0.00105738480 0 |0.01012507391 | 0O
5% Tteration - 0 0.00105446338 0 | 001012876494 | ©
6™ Itcration - 0 0.00105221807 0 [0.01013151518 | 0O
7™ Tteration - 0 0.00105047797 0 | 001013352251 | ©
8™ teration i 0 0.00104911165 0 |0.01013495810| 0
9" Tteration - 0 0.00104801980 0 1001013596183 | ©
10® Iteration | - 0 0.00104712841 0 001013664373 | 0O
11 Tieration | - 0 0.00104638282 0 |0.01013708815| 0
Corrected - 0 0.00104574299 | 0 | 0.01013735855 | 0

Table 4-5 Initial conditions yielded from the third order approximation and the corrected conditions of L;

orbit
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4.4.3.2 Halo orbits sunward of L

A solar sail can be used to generate an artificial libration point sunwards of L.
Richardson’s third order approximation can be used to identify periodic halo orbits around
an artificial libration point. Figure 4-12 shows a family of periodic orbits around an on-
axis artificial libration point at x,=150 Rg. The constant acceleration required to generate

these orbits is 0.323 mms ™.

The constraint imposed by Fq (4.80) on the A, amplitude, to achieve periodic halo orbit,
decreases as the orbit is displaced closer (o the ceniral body. Figure 4-13 shows the
minimum A, amplitude and corresponding kA, calculated for A,=0 at a range of libration
point distances sunward of ;. The y-axis amplitude is approximately equivalent to kA,. It
is clear that the minimum x-axis and y-axis amplitude decrease asymptotically toward y=0

as the libration point is displaced towards the Eatth.
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Figure 4-12 Family of periodic halo orbits around artificial libration sunward of L, (150Ry from Earth)
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Figure 4-13 Minimum y-axis and x-axis amplitude for periodic halo orbit sunward of L, (4 =0}

4.4.3.3 Halo orbits sunward of L,

Similarly, an artificial libration point can be generated sunward of L; and Richardson’s
approximation applied to identify periodic halo orbits. Figure 4-14 shows a family of halo
orbits around an artificial libration point generated sunward of L; at x=-300 Rg. The
constant acceleration required to generate this libration point is 0.12 mms~. Compating
these halo orbits to the example of a libration point sunward of L, the y-axis and x-axis

amplitudes are much larger for the same out-of-plane amplitude, A,.

Figure 4-15 shows the minimum A, and kA, values for libration points sunward of 7;
extending to .02 AU from the Earth. The values of A, and kA, lineatly increase becoming

very large as the libration point is displaced further sunward of L;.

Although the nominal orbit defines a periodic halo orbit, numerical integration of the non-

linear circular three-body equations results in a gradual escape due to limited precision of
the || and [4] values at 7/2. Including the effects of the Earth’s eccentricity and solar sail

acccleration variation leads to perturbations, which result in gradual escape from the

nominal orbit. Solar sail control laws will be developed which damp these perturbations.
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4.4.4 Control of periodic halo orbits using solar sail control laws

4.4.4.1 Three-axis controller design

The solar sail diverges rapidly from the nominal periedic halo orbit if the trajectory varies
slightly from the nominal path. Control techniques were developed for the ISEE-3
(International Sun Earth Explorer) mission launched into a halo orbit around Z; in 1978,
To prevent escape from the nominal orbit after insertion, stationkceping techniques were
applied which used hydrazine thrasters to track a reference trajectory. The trajectory was

optimised requiring an annual Ay of 10-15 ms™ for orbit control [Farquhar et a, 1980].

The SOHO mission, launched in 19935, also followed a periodic halo trajectory around L;
with a y-axis amplitude of 600,000 km. SOHO performs thrust maneuvers every 8 to 12
weeks ensuring the spacecraft remains within the vicinity of the nominal oibit and with the

correct attitude relative to the Sun [Beckman, 2002].

An orbit controller was developed which tracks the nominal trajectory produced by the
differential correction method. The corrected initial conditions were used to numerically
generate onc complete orbit with a maximum time step of 10%t. This resulted in
approximately 1x10° data points representing the desired position and velocity around the

nominal orbit, x, =[x, vy, z, %, ¥, Z;|. The angular position relative to the

libration point in the x-y plane was calculated using 8, = tan(y, /x, ).

The difference between the actual and desired position and velocity was determined as
dx=x-x,. The angle &=tan(y/x) was calculated for each point during numerical
integration of the actual trajectory. Using a look-up table method, this angle was compared
to the desired orbit angle, &, to identify the valuc closcst to angle & The corresponding
position and velocity values were used as the desired conditions. By storing the focation in
the table of the previous value, the next value could be found much quicker as the angle &
only chunges gradually with each iteration. This technique was found to greatly improve

the numerical integration rate during orbit control.
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The control gains were selected using optimal methods similar to those applied for the
solar sail area and angle variation coniroller. Unlike these cascs, 3-axis control was
enabled providing full controllability in the three-body problem. The control matrix has

the form

()

B [ sxs] (4.89)
I 3x3

where Oszx3 and Tsxs represent 3x3 zero and identity matrices respectively. As before, the

statc equation has the form

% = Ax+ Bu (4.90.1)
y=Cx (4.90.2)

where the linear coefficient A is provided in Eq (4.82), C represents the output matrix, u is
the control vector and ¥ is the output vector. The controllability matrix was found to be
full-rank, indicating that this control method provides total three-axis control in the three-

body problem.

As demonstrated in Section 3.4.4, the state weighting matrix, N, and the control weighting
matrix O can be used to construct a 3x6 optimal gain matrix, G. This gain matrix is uscd

to calculate the required acceleration directed aleng each axis as

Ok, = G, 0+ G, +G, ;2 + G, , K+ G, 00 + G, (% (4.91.1)
Ok, =G, 00+ G, +G,,00+ G,  Hi+ G, .7 + G, o &% (4.91.2)
Ok, = Gy 0+ Gy 10y + Gy ;& + Gy (FE+ Gy Oy + Gy (OF (4.91.3)

where N and Q are selected so as to minimise the required acceleration. The state

weighting matrix N = vl where vis a constant factor selected to minimise the deviation

from the nominal orbit and the control weighting matrix, ¢, has the form

. 0 0O
Q=0 g, 0 (4.92)
0 0 g,
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where (ql_, qy,qz) are parameters selected to minimise the required control signals.

The solar sail could achieve three-axis control by combining variation of the reflecting sail
surface arca with variation of the sail pitch and yaw angle to cnsurc the required thrust
ortentation and magnitude is achieved. The effective sail acceleration to control the orbit

is determined as

2 2 -2
Kg =K, +&, +&, {4.93)

where & is the nominal acceleration required to gencrate an artificial libration point,

K, = Kk+0K,, kK, =0k, and x,=Jx,. The sail pitch and yaw angles can be calculated as

a=sin™ ((SKZ / fcw) and ¢ =tan™ (K‘y / Kx) respectively.

Pitching the sail reduces the effective acceleration, therefore the actual sail acceleration

must be increased accordingly such that

.
S/ M (4.94)

K 2 2
cos” cos” ¢

actund

The effective sail acceleration also varies as the solar sail distance relative to the Sun
changes. The solar sail area can also be varied accordingly to achieve the required

acceleration as

2

A, = .%{%iﬂi_.,._.ffé.‘!{{R_(t_)_ (4.95)

where ¢ is the speed of light, L, is the solar luminosity, m is the solar sail mass and R() is

the distance between the solar satl and the Sun at time 7. Orbit control in the circular snd

elliptical three-body problem will now be demonstrated using this control method.
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4.4.4.2 Control of periodic halo orbit sunward of L;

A periodic halo orbit was generated avound a libration point sunward of L, using the
developed control method. A libration point generated 200 Rg from the Earth can be
achieved with solar sail acceleration x=0.0095 mms™. The z-axis amplitude was sclected
as A,=10 Rg which requires in-plane amplitudes A,=23.83 Ry and Ay~90.42 Rg. The
controller gains were selected using state weighting factor »=1 and control weighting

elements g,=1, go=1 and gs=0.5.

Figure 4-16 shows the resulting orbit controlled for a period of 2 years in the circular
restricted problem. The orbit period is 148 days giving approximately five controlled
periods. Figure 4-17 provides the acceleration and corresponding area variation required
to contro! this orbit for a 100 kg sail and payload mass. The acceleration varies between
0.099 mms™ und 0.094 mm> which corresponds to an area variation of between 1093 m’
and 1043 m®. Figure 4-18 shows the required solar sail pitch and yaw angle variulion over

the 2 year control period.
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Figure 4-16 Controlled periodic halo orbit around artiticial libration point in the circular restricted problem
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Figure 4-18 Solar sail pitch and yaw angle varialion required to control halo orbit
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Similarly, orbit control can be achieved in the elliptical three body problem using this sotar
sail control method.  Figure 4-19 shows the controlled orbit around a libration peint 200
Rg from the Earth with the same amplitudes as investigated in the circular restricted case,
The eccentricity of the Earth’s orbit e=0.0167 means the actual position of the libration

point fluctuates throughout the year between 196 Rg and 204 Rg.

The controlier gains were selected using state weighting factor ©=20 and control weighting
elements ¢,;=0.01, ¢,=0.1 and ¢3=0.05. These differ from those selected in the circular
restricted case as the control signal is rcquired to be larger in order to dampen the
perturbations introduced by the elliptical motion of the Earth. Figure 4-20 shows the
acceleration and corresponding sail area variation for a 100 kg sail and payload mass. The

acceleration varies between 0.177 mms™ and 0.077 mms™>

resulting in sail area variation
hetween 2026 m* and 822 m? This is over a wider range than exhibited in the circular
restricted problem. Figure 4-21 shows the sail pitch and yaw angle variation required to

control the solar sail at the nominal orbit.

Figure 4-19 Controlled periodic halo orbit around artificial libration point in the elliptical restricted problem
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Figure 4-20 Solar sail acceleration and corresponding area variation required to control halo orbit
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Figure 4-21 Solar sail pitch and yaw angle variation required to control halo orbit
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4.4.4.3 Control of periodic halo orbit sunward of L;

The orbit controler can also be used o control an orbit Sunward of L;, see Figure 4-22.
The nominal orbit was selected with z-axis amplitude A,=20 Rp with corresponding in-
plane amplitudes A,=53 Rg and Ay=151 Rg. The artificial libration point is located
270 Rg sunwards of the Earth requixing a solar sail acccleration of x=0.072 mms?. The
coniroller gains werc selected using state weighting factor =1 and control weighting

elements ¢;=5, g:=5 and gz=0.01.

The acceleration and corresponding sail area variation for a 100 kg sail and payload mass
are provided in Fig 4-23. The acceleration varies between 0.073 mms™ and 0.059 mms™
which corresponds to an area variation 805 m” and 695 m® The pitch and yaw angle
variation is provided in Fig 4-24, The ‘spikes’ in the plot occurring once every orbit
period are a result of the deviation between the starting and end conditions of the reference
orbit. By improving the precision of the differential correction method used to generate

the reference orbit, these ‘spikes’ could be reduced.
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TFigure 4-22 Controlled periodic halo orbit around artificial libration point in the circular restricted problem
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Orbit control is now demonstrated including the perturbations due to the elliptical motion
of the Earth orbiting the Sun. Figure 4-25 shows a controlied orbit around an artificial
libration 270 Rp sunwards of the Earth with the same amplitudes us investigated in the
circular restricted casc. Due to the cccentric motion of the Earth, the libration point
oscillates between -275 Rg and -265 Rg.

This example highlights a possible problem with the solar sail contral method in the
elliptical three-body problem when it is used to conirol an orbit around a libration point
displaced far from the Earth. The oscillations in the libration point position combined with
the large x- and y-axis amplitudes requires large control accelerations directed along the y-
axis. When a small acceleration is required along the x-axis but large acceleration directed
along the y-axis, the sail yaw angle tends toward 7/2 and the required sail area becomes

unbound.

Figure 4-26 shows the acceleration requited to provide control at this orbit. It is apparent

that the magnitude of &, is comparable to thc magnitude of x;. Occasionally, as x, — 0
the value of x, >> kx;, which results in unrealistic sail area requirements of order 1x10° m’,
For short intervals during control of this orbit, the acceleration directed along the x-axis
k. <0. A constraint imposed on the solar sail acceleration requires that it is always
directed in the anti-Sun direction. Applying the constraint &, 20, would result in the

solar sail escaping (oward the Earlh meaning the control method is not suitable for control

of this orbit.

The annual Av requirement for control in the elliptical three-body problem was analysed at
this orbit. The x-axis control requires a total annual Av of 2.73 kms™ and control in the y-z
plane requires an annual Av of 162 ms'. Comparing these requirements to other
conventional propulsion methods excludes the feasibility of using chemical propulsion,
however, the Av could be achicvable using solar electric propulsion with the longevity of

stored reaction mass limiting the mission duration.
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Figure 4-26 Acceleration components for orbit control at orbit sunward of L,
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Unrealistic sail area requirements occurring when the yaw angle tends toward 70/2 can be
avoided by generating a periodic halo orbit around a libration point displaced further from
L;. This requires a larger nominal acceleration, x; which prevents the acceleration, &g,
tending toward zero. Figure 4-27 shows a periodic halo orbit controlled around a libration
point 350 Rg sunward of the Earth. The dynamics are modeled using the elliptical
restricted three-body problem and the resulting libration point oscillates between -343 Rg
and -357 Rg. The nominal acceleration x=0.189 mms™, the orbit out of plane amplitude

A=30 Ry and corresponding in-plane amplitudes A,=89 Rg and 4,=213 Rg.

Figure 4-28 shows the required sail acceleration and atea variation required to provide
station-keeping at the nominal orbit for the duration of 2 years. The controller gains were
selected using state weighting factor =20 and control weighting elements g=0.1, ,=0.05
and ¢3=0.05. During orbit control, the sail acceleration varies between 0.17 mms™~ and 0.3
mms? with corresponding area variation between 1886 m? and 3092 m® for a 100 kg sail

and payload mass.

The pitch and yaw angle variation is provided in Figure 4-29. The yaw angle varies
between -40.7° and -0.6°, and the pitch angle varies between -1,3% and 3.2°. Although the
nominal acceleration is larger than for artificial libration points near L, the yaw angle does

not tend toward 7/2 enabling full orbit controllability using a reasonable sail area.
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Figure 4-27 Controlled periodic halo orbit around artificial libration point in the elliptical restricted problem
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4.5 Conclusions

Periodic halo orbits have been investigated in the circular and elliptical restricted threc-
body ptoblem. Initial conditions which lead to these orbits were identified using
Richardson’s approximation method. A differential correction method was applied and
provided reasonable convergence toward a periodic halo orbit. Precision crrors lead to
cventual escape from the nominal orbit and optimal control techniques were employed 1o

provide orbit control.

The orbit control method was demonstrated for periodic halo orbiis around libration points
sunwards of L; and L. A possible three-axis solar sail control method was investigated
using a combination of sail area variation and sail pitch and yaw angle variation to control
both the thrust direction and magnitude. This method was [ound to work well in the
circular restricted case providing accurate orbit control for achicvable sail surface aveas.
Perturbations due to the elliptical motion of the Earth required an increased acceleration

directed along the y-axis to achieve control.

In the elliptical problem, the libration point position oscillates throughout the year where
the size of oscillation is larger for libration points displaced (urther from the Earth. In the
case of orbits sunwards of Ly, the perturbations were found to be more significant. Due to
the dependency of sail acceleration on cos®@rcos® ¢, as the pitch and yaw angle tend
towards /2, the required sail area becomes unbound in order to generate the necessary sail
acceleration for orbit control. It was shown that selecting a libration point at a greater
distance from L; increases the x-axis acceleration but reduces the sail yaw angle variation

required to control the orbit.

The next chapter will investigate periodic orbits around possible interstellar libration
points. The stability of such orbits will be examined in order to determine if interstellar
matter can become temporarily trapped at these orbits. The two-centre approximation will
be used to model the gravitational dynamics assuming, over a short timescale, the stars are

fixed relative to each other.

193




Chapter 5 Two-Centre Problem

5.1 Gravitational two-centre problem

5.1.1 Gravitational two-centre equations of motion

The problem of two fixed centres was first investigated by Euler as a restriction of the
three-body equations of motion. It considers a non-rotating system where a particle of
negligible mass is moving under the gravitational influence of two fixed masses (or

electrostatic influence if fixed charges are considered) [Howard and Wilkerson, 1995b].

Figure 5-1 provides a schemalic of the two-centre problem where the two fixed masses, M;
and M, are positioned on the z-axis separated by a distance R. The centre of mass is
located at position C. A point mass, m, is located a distance p from the z-axis. The

separation distance between the point mass and the primary bodies is r; and r»

respectively, where |r,|=+/0° + 2> and |r,|=+/0® +(R—~2)*. The angular position & is

orientated around the z-axis.

Figure 5-1 Schematic of two-centre problem with fixed masses M; and M,
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Similar to the derivation of the two-body problem, provided in Section 2.1, the equations
of motion can be obtained from the Hamiltonian. The two-centre kinetic energy, 7, can be

defined using polar coordinates as
T = %m(ﬁz 00+ ) G.1)

and the two-centre potential energy, V, can be defined as

Ve-o GM 1 + GM ,m (5.2)

| Ir2]

where G is the gravitational constant. This gives the Hamiltonian, H =7 +V which can

be expressed using the momenta terms P, =mi, P, =mp and F, = mp’# as

. 2
g=2lpripi B |y M My (5.3)
2m| = 7 p? el e

The cquations of motion can be obtained from the Hamiltonian using dH /BP,I =g and

0H/dq=—P, where g =(p,0,z). This obtains the following cquations of motion

b= pb?+ G(_ M_@’.J,M] (G.4.1)
ml el
G 200 (5.4.2)
0
¥ = —G[M’lf + MZ(R:;_ Z)] (5.4.3)
Iy I

The two-~centre equations of motion can be non-dimensionalised using the characteristic

length R as the separation between the two primary masses and the characteristic time
T= JRJ/ GM, . From Eq (5.4.2), the z-component of angular momentum can be derived

as h, = p*@. This can be substituted into Hq (5.4.1) to obtain the non-dimensionalised

equations as
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L T . i (5.5.1)
TP RE k
z  All-z)

.‘ |r1!3 |"2|]

5.52)

where the constant, 4, is equivalent to the mass ratio Mz/M;. For a circular orbit about the

z-axis, the acceleration and velocity component ¢ =0 =0. Trom Hq (5.5.1), the required

. . b . A -3 -3
angular velocity for such a circular orbit is given by @ = |r1| T A[r2| .

5.1.2 On-axis libration points

Consider a libration point which lies on the z-axis (£=0) collinear with the (wo primaries.
In this case, the respective distance of the point mass from M; and M; is |r|=z and

Ir,| = (R — z) . Equation (5.5.2) reduces to

(5.0)

A libration point exists when Z =0 and the location depends on the mass ratio, A, The

position of the libration point is given by

=1iﬂ
1-A

z 8.7

which has limits at A=1, where the solution no longer has a quadratic form but instead
represents a linear equation with solution z=0.5. As thc libration point is formed by
balancing the gravitational forces between the two masses, it is clear that the libration

points can only exist for 0 < z <.

The stability of the on-axis libration point can be determined using a 1% order Taylor
expansion of Tiq (5.6). This gives a state equation with the form Z = [3f /9z], 7, where the

function f(z) is equivalent to
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fz)=——5+ 3 (5.8)
(1-2)
and the derivative evaluated at the nominal libration point has the form
2 24
[Qj:] =—+ 3 5.9
dz |, z, -z, )

The eigenvalues for the linear state equation can be determined using a change of variables

z, =z and z, = ;. This state equation can then be expressed in the form

m =[[af/oaz]u (I)L} (5.10)

I.et the symbol, A represent the square matrix in Eq (5.10). The cigenvalues, /1 can be

calculated using [AI - A\ = 0. This lcads to the characteristic equation

AZ-[%+ 24 ]:0 (5.11)
Zo

(-2}

For a stable orbit the eigenvalues must be imaginary. Therefore A? <0, which requires the

expression in the brackets also to be less than zero. Figure 5-2 demonstrates that between
the two masses located at z=0 and z=1, A’ >0 for A=2.17. Analytical analysis of Eq
(5.11) shows that for A* > 0, the inequality condition (L—z,)’ > —4z, must be true. As the
mass ratio A>0 and 0 < z, <1, this condition is true for all values of A. This demonstrates

that a saddle point always exists at the on-axis equilibrium point as there is one positive

and onc negative eigenvalue [or all possible mass ratios.
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5.1.3 Haloe orbits around Libration points

Halo orbits can be identified from Eq (5.5) when the acceleration and velocity components

Pp=p=0and ¥=7=0. A pseudo-potential function, I/ (v, z} can then be derived as
U(p, =571 (8.12)

which includes the z-component of angular momentum, 2,

Figure 5-3 shows a contour plot of the potential energy function for a constant value of
h,=04 and mass ratio A=0.5. Figure 5-4 shows a contour plot for the same angular
momentum value A,=0.4 but for mass ratio A=2. It is clear that there exists three
equilibrium points in this system corresponding to circular orbits about the z-axis. The two
points (£, E») nearest M; and M; are stable, indicated by the local minima of the potential
energy tunction. These are similar to the (wo-body problem with a uniform axial force

displacing the orbit from the central body. The local saddle point indicates that the central

libration point (3) is unstable.
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From Eq (5.5), the angular momentum parameter 4, can be selected such that =0 with

the requirement that §%>0. Halo orbit contours representing the initial conditions, 0, and
2, in the rotating reference frame arc provided in Fig 5-5. For any fixcd valuc of g,<0.4, it
is clear that there exists three possible halo orbits, each with a different angular
momentum. When 0,>0.4, there exists only one possible halo orbit, which is located

nearest to the body of larger mass.

An example of the three possible halo orbits at selected distances along the z-axis is
provided in Fig 5-6. These halo orbits cortespond fo a system with mass ratio A=2. The
initial conditions are calculated numerically from the contours provided in Fig 5-5. This is
performed by selecting a desired value of z, and calculating the corresponding vaiue of 0,
which gives 7=0. An angular momentum is then calculated which obtains 2 =0 for the
necessary value of g,. Orbit 1 and orbit 3 are stable, and the central orbit 2 is unstable
which agrees with the potential energy contours provided in Fig 5-4. The calculated initial

conditions for each of these orbits are provided in Table 5-1.

Figure 5-5 Confours represent halo orbit initial conditions for varying k,
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Orbit No. Do Zo h,

1 0.3554 0.1 0.5935

2 1 0.2358 0.38 0.2362,

3 0.5057 0.95 1.0243

Table 5-1 Numerically calculated initial conditions for two-centre halo orbits (A=2)

St;iﬁlq

08 e : - orhit3,

stable | :
Orbit 1 Unstable .
: Dbt 2

N s 08
0.3 0.2 Tz

Figure 5-6 Two-centre halo orbits for system with mass ratio A=2
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5.2 Photo-gravitational two-centre problem

5.2.1 Investigation of intersteilar libration points

‘The two-centre problem could have a possible application for the study of libration points
beiween stars,  Investigation of the libration peint stability could determine whether
interstellar dust can become trapped, al leasl temporatily, in the vicinity of these libration
points. If the relative motion of the stars is negligible compared to the instability timescale
of the trapped dust, the two-centre problem could provide a reasonable approximation of
the dynamics. A thorough study has been performed by Bookless and McInnes [2004]

investigating the possible existence of libration points between the Sun and nearby stars.

The nearest star system to the Sun is o-Centauri separated by a distance of 4.36 1y (light
year) where 1 ly is equivalent to 9.4605 x 10'° m, Table 5-2 contains the spectral details of
the Sun and the ¢-Centauri system taken from the Nstars database [1988]. Centauri is a
triple star system with components A, B and C. A and B represent a binary system which
orbit each other with a period of 80 years. Their separation varies between an apoapsis of
35AU and periapsis of 11AU [Soderblom, 1987]. The third component, o-Centauri C
(also known as Proxima Centauri), is a much smaller red-dwarf possibly arbiting the two

larger bodies from a much larger distance.

The influence of radiation pressure exerted on the small dust particles will be included in
the equations of motion. Only the effects of direct radiation pressure will be considered in
this model, ignoring Poynting-Robertson drag [Krivov et al, 1996; Mignard, 1982].

Assuming the dust particles have an absorbing surface, the lightness number is defined as

L

p= 4mcGMo

(5.13)

where L is the stellar luminosity, M is stellar mass and ¢ is the velocity of light. The
loading parameter is defined as o =m/ A where A is the illuminated sutface area and m is
the particle mass. The dominant force influencing the dust depends on the value of 8. If
p>1, the force due to stellar radiation pressure is dominant and if f<1, the force due to

stellar gravity is dominant.
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Name Spectral Class Absolute Mag Luminosity (W)
Sun G2-V +4.77 3.86x10°°
o-Centauri A G2-V +4.38 5.58x10°°
o-Centauri B K1-V +5.71 1.61x10%
Proxima MS5.5-V +15.49 7.41x10"

Table 5-2 Spectral properties of nearby stars from the NStars database

The luminosity of a star can be calculated from its spectral magnitude. The difference in

magnitude of two stars can be determined using

(5.14)

2
m, —m, ==2.3 10gu{4:7ml2 LIJ

4md 'L,

where m; and m; are the spectral magnitude of the stars, d; and d; are the stellar distances
and L; and L are the stellar luminosities. The absolute magnitude is the magnitude of a
star as would be observed from a distance of 10 pe (parsec), where 1 pc = 3.0857x10" m
Centauri A and B are of similar magnitude to the Sun and C is & very dim red dwarl.
Neglecting C, the luminosities of A and B can be combined to give the overall system

luminosity of 7.19x10°*W. This is much larger than the Sun’s luminosity of 3.86x10% W

5.2.2 Photo-gravitational two-centre equations of motion

Figure 5-7 represents a schematic of the Sun-Centauri system ignoring the relative stellar
motion, The Centauri triple syster is located approximately 4.36 ly from the Sun and has

a combined mass of 2.17 M, (solar mass), where I M = 1.989x10% kg. The force
= ,6’#/ |r|?' , where r

1s the distance from the star and g is the stellar gravitational parameter. The iwo-centre

exerted on the particles by stellar radiation pressure is equivalent to F,

kinetic energy corresponds to Eq (5.1} and the potential energy can be written ag

GM, m

UG g I\ i-8,) (5.15)

V=
Irll

where the lightness numbers f; and /3 comespond to the Sun and Centauri system
respectively.
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Centauri

S
R=4.361ly

M= 2.17M,

Fignre 5.7 Schematic of Sun-Centauri system

The Hamiltonian method is applied to derive the equations of motion where H =T +V.

The photo-gravitational Hamiltonian has the form

1

_ U e B M, ¢ ;
H 21."1[Pz + P+ ng Gm[ |r1| ﬂi iz‘ )J (5.16)

The equations of motion arc derived in polar coordinates (0,6,7) using 0H /an = ¢ and

oH / dg =—P, , which yields components

h-z (1 - 181))0 ;"(l N ﬁz)p

LR . (5.17.1)
p p} |I'1F ‘l |
b ”2L50 (5.17.2)
Ve,
U [;‘1 2 Al-B)i-2) (5.17.3)
s 112!

The equations are non-dimensionalised with the separation distance between the two stars

selected as characteristic length =436 ly and characteristic time 7= JRS/GM s+ The

system mass ratio is defined as A=2.17M,.
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The angular velocity required for a circular orbit ( ¢ = 0) is defined using Eq (5.17.1) as

0= \/ - B[ + A0~ B[ (5.18)

with the condition #* > 0 required for a real orbit. It is clear from these equations, if S=1
or =1, the repulsion force due to stellar radiation pressure balances the gravitational force

and the influence of that star on the dust particles is cancelled.

5.2.3 Light extinction

Photons traversing between stars are subject to absorption and scattering by gaseous
atoms/ions and dust grains collectively known as interstellar matter. Neutral hydrogen is
abundant in the interstellar medium, detectable from Earth as it emits the 21 cm radio line,
which can be used to probe the galactic structure. A plethora of molecules exist ranging
from basic types such as HyO, CO, CHy and NHj to complex carbon structures such as
polycyclic aromatic hydrocarbons and spherical fullerenes [Ehrenfreund and Foing, 1996,
Salma et al, 1996}. Estimates from the Goddard High Resolution Specirograph of the
Hubble space telescope indicate there are as few as 140420 ppm (parts per million) carbon

atoms present in the interstellar matter [Groth, 2003].

In the galactic plane, the estimated average light extinction value 1s L to 2 magnitudes per |
kpe (kiloparsec) pathlength [Scheffler and Elsisser, 1988]. Shorter wavelength light
intensity 1s greater reduced by scattering and absorption than longer wavclength light thus
there is a reddening of starlight which increases systematically with distance [Bertin,
2000]. For simplicity, the increased extinction at shorter wavelengths or extinction curve
structures such as the 2175A bump [Massa and Savage, 1998] will be neglected to provide

a basic extinction model.

A suitable location to calculate the stellar luminosities is the gravitational on-axis libration
point between the two primary masses. This libration point is located 1.763 ly from the
Sun and 2.597 ly from «-Centaurl evaluated using Eq (5.7). The apparent luminosity of
the Sun at this distance is 3.8581x10™ W and the combined luminosity of the Centauri
system is 7.1848x10% W which represents a reduction of only 0.05% and 0.07%
respectively duc to light extinction,
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5.2.4 Halo orbits around libration points

Including the lightness number terms alters the apparent system mass ratio by a factor

(1= 3,)/(1- 3. Figute 5-8 shows a set of contours representing possible hulo orbit initial

conditions for a selection of particle loading parameters. These contours are generated in

the rotating -z planc where the angular velocity is calculated using Eq (5.18).

The particle loading parameters and corresponding lightness numbers are provided in

Table 5-3

The lightness numbers are calculated using Eq (5.13) with the respective

luminosities of the Sun and the Centauri system. Consider three cases

Bl

pl<fy

,3]>ﬁ2>11

In this case stellar gravity is the dominant potential field. For particles with
o>3 gm’z, the lightness number values are small and possible orbit conditions,
O, and z, are not displaced significantly from the values calculated when
radiation presswe forces are ignored. As ¢ decrcases, the on-axis libration
point position moves towards the Sun and the nominal radius at which the three
halo orbits bifuricate to just one possible halo orbit decreases until 0<0.7673

gm’z.

Betwceen loading values of 0.6584<0<0.7673 gm™ there exists a scenario where
there are no possible halo orbits to trap particles between the two stars. In this
case the dominant force from the Sun is solar radiation pressure and the

dominant force from ¢-Centauri is gravity.

Contour 2, in Fig 5-8 provides an example of this case. The required angular
velocity for a citcular halo orbit is imaginary near the Sun thus no possible halo
otbits exist. Near o-Centauri, the angular velocity is real, resuling in a contour

of possible halo orbit conditions on the opposite side of the Centauri system.

In this case, the dominant force is radiation pressure and halo-orbits can no
Ionger exist as the combined radiation pressure will push any particles out of
the system. Contour 1, in Fig 5-8 provides an example of this case. The on-
axis libration point is unstable and any motion off-axis will cause the particle to

be swept from the system due to radiation pressure.
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p (I¥)

z(ly)

Figure 5-8 Possible halo orbit p-z values for ditferent patticle loading values

Values of o(gm™) contours: 1=0.5 2=0.7 3=0.9 4=1 5=3

“dotted-line corresponds to imaginary values of & therefore orbit can not exist

oy (kgm™) B 5
3x107 0.2558 0.2195
1x10” 0.7673 0.6584
9x10™ 0.8525 0.7315
7x10™° 1.0961 0.9405
5x10* 1.5346 1.3167

Table 5-3 Sail loading a corresponding lightness numbers for Sun-Centauri system

Ombit | o(gm?) | po(ly) 2o (ly) 6, (ms) T Myr)
1 1.2757 0.4360 4.0775x10°° 48.863
2 1 1.2349 1.0900 3.3075x10°™" 60.239
3 1.8742 42728 4.2480x10°" 46.901
4 0.7 1.9832 45730 1.5615x107" 127.594

Table 5-4 Halo orbit initial conditions including orbit period
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Figure 3-9 shows a set of paossible halo orbits for different particle loading parameters
corresponding to the first lightness number case where fx<f<1 (03 gm'z) and second
case where fx<1<8; (3=0.7 gm?). The initial conditions for each orbit are provided in
Table 5-4.

Orbits 1, 3 and 4 can be described as stable as they are observed to remain within the
vicinity of the nominal orbit after applying a small perturbation. This agrees with the
potential energy analysis which indicates that local minima exist around the orbit
conditions for 1,3 and 4. The orbit period is extremely long, in the order of 10 Myrs
(million years), Orbit 2 is unstable with escape occuring rapidly exhibiting homaoclinic
behaviour [Jordan and Smith, 1999}, see Fig 5-10. Hscape from the nominal orbit occurs
after roughly 60 Myrs and the trajectory performs a loop around the Centauri system 75

Myrs later. The trajectory returns to the nominal orbit 150 Myrs after escape.

The two-centre problem provides a basic model of the dynamics between two stars,
ignoring the photo-gravitational influence of other nearby stars and the relative stellar
motion. The two-centre equations can be adapted to investigate how these perturbations

affect the system dynamics.

x (Iy)

Figure 5-9 Possible halo orbits for particles with loading 3 gm™ (1,2,3) and 0.7 gm™> (4)
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Fipure 5-10 ‘Homoclinic-like’ trajectory of unstable halo orbit

5.3 Closed-form solution of the two-centre problem

5.3.1 Derivation using confocal elliptical coordinates

In Chapter 2, it was demonstrated that an explicit solution exists for the two-body problem
using parabolic coordinates. The stable and unstable manifolds winding onto/off the
circular displaced orbit were shown (o be bound within a paraboloid surtace. Similarly, a
closed-form solution can be derived for the photo-gravitational two-centre problem by
transforming Eq (5.5.1) and Eq (5.5.2) into confocal elliptical coordinates [Waalkens et ai,
2003].

These equations are represented in a rotating frame with angular momentum /4;. Elliptical

coordinates (& 7)can be used to express the radial distance from M; and M, as

bey|=(&+7) and |r,|=(£-7). The polar coordinates can be transformed into elliptical

r,| for z to

coordinates using |r1\ = 0% +2z% and |r2‘ =4/ 0* +(1-2)* then solving |r1‘—-

obtain
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z=2&n +% (5.19.1)

o= \E (482 - 1f1--45°) (5.19.2)

The time derivatives of p and z are obtained as

2 =28+ 28n (5.20.1)
o=58 (1—anty - Mg (5.20.2)
o 0

The non-dimensionalised photo-gravitational Hamiltonian can then be written as

1 22, a2 242 (1"16) )b(l_ﬂ)
H=—|p*+3*+ 06" )~ 12 2 (5.21)
AR -

The first term on the right hand side corresponds to the kinetic energy. The p- and z-

velocity terms can be expanded as
. g =477 L (4E 1
2= 4E R —8&Enn+4n'n? 5.22.1
=457 %E; Seln+4°n %'IT??Q% ( )
22 =48 +BE gD + AL (5.22.2)

Subslitution of these expressions into Eq (5.21) gives the Hamiltonian in terms of elliptical

coordinates

1 £2| g2 _42 2 221 .2 : - 2 £2 2152
Hz—z—[alg [f %ﬁ%+n J+4n {7? %%}Z%Jrf ]+-;li-(45 —1)(1—4?7 )6 }

=8 Aa-8)
&+ (E-n)

(5.23)

210

FEEE



The momenta terms can be identified using P, = 0H [o&, P, =0H /07 and P, =oH /06

— a8 #2 1— 47 2 ,

F —45(4’ %—34 Z 7 ] (5.24.1)
248 -1 4,

F, = 4?7(?7 - 4}2 +£ } (5.24.2)

= %(452 ~ 11472} (5.24.3)

as

These terms can be substituted into the Hamiltonian to oblain

11_ 1%2(45":'2—1) N (1 ~4n’ ) _Pii

2| WP e 1)) (452(-477 Jra g -1 o’ (5.25)
(1_)81)_’%(1_:62)

(+n)  (&-n)

A common factor of 1/(452 — 4772} can be extracted from the Hamiltonian as follows

1 2 2
g el g
+??[(I_;81)_’%(1“/3(2)]—¢[(] ﬂi)'* ;”( ] .

&’

The Hamilton-Jacobi method can now be applied to separate the Hamiltonian using the
transforming function S(z, £ 7,6 [Landau and Lifschitz, 1976; Goldstein, 1959], which is
defined as

5(t.£,17,0)=—Et + B,E+S(&Y+ S(p) (5.27)
where E represents the total energy. The transforming function is selected to meet the

Hamiton-Jacobi condition d$/d¢+H =0. Equation (5.26) can be substituted into this

condition to obtain
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1 2{4z2 2 ( ! —'
o _1 —-4- 4' ¢
4
-n

l-p) A1) el e -
o=

This expression can be re-arranged (o group Lhe separable variables as

2

2 4F . .
En* By (-t frp—y el - )40 )=
5.29
. (529)

8EE? - P, (4£7 —1)—(452—_1)+8§[(1~;6’, )+ AL-5,)]

The expression on the left-hand side is dependant only on 7 and the left-hand side

dependant on & The expression can be split using the separation constant @ to obtain

sz(4 Iz ~1)~ SEE + 41?—1 —8&[(1~ B+ Al - B} = -@ (5.30.1)

1y 2

e IS S

Elliptical bounding surfaces can then be determined from the initial conditions by
evaluating the constants E, @ and Py The expressions are then solved for £ and 7, with

the momenta terms F, =B =0. The constants A=[1-8)+A(1-4,)] and

B=[1-8)-A1-4,)] are used to obtain the following quartic equations

REE +8AE —(2E+D)E - 248~ 1) +% =0 (5.31.1)
4 3 A2 2z @
8En' +8Bn’ —-(QE+®)* ~2Bn-B° + i 0 (5.31.2)

Each sct of constants gives 4 values of 7 and of £ Each value corresponds to an ellipsoid
surface in Cartesian space which bounds the orbit. The initial conditions (g, z,) are used

to determine the elliptical coordinate &, from

agf -8z, ~12F +4p, +1)7 +(z,-1/2F =0 (5.32)
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which can be substituted into |r;|= (£ +7) or B, = (£ —~#) to determine the corresponding

value of #, The velocity components can be calculated by treating Eq (5.20) as a
simultaneous equation problem and solving for & and 7 at the initial conditions. Once the
parameters (& n&,n) are evaluated, the momenta terms can then be calculated using
Eq (5.24). These terms are required to calculate the separation constant @ from Eqg (5.30).
After evaluating the three constants E, Pg and &, the zero-velocity ellipsoid surfaces are

identified by solving Eq (5.31) for £and 7.

5.3.2 Stablc halo orbits bound by elliptical surfaces

In the casc of stable halo orbits, 4 bounding surfaces trap the orbit represented by
coordinates (£, &, 175, 772). Figure 5-11 shows the bounding surfaces for a stable orbit,
0,=0.3367 and z,=0.1, with particle loading 0=3x10" kem™ where the initial conditions
are perturbed slightly by setting 0,=-0.1. A closer view of the bounding surfaces is

provided in Fig 5-12. Redundant surfaces have been removed to make the figure easier to

view.

The elliptical bounding surfaces for a stable halo orbit near the Centauri system is provided
in Fig 5-13. The initial conditions are again perturbed slightly by sctting 2, =-0.1. A

closer view of the bound orbit is provided in Fig 5-14.

Figure 5-15 shows a stable halo orbit for a particle of loading &=0.7 gm™. In this case the
dominant force from the Sun is solar radiation pressure which produces a displaced orbit in
the anti-Sun direction at Centauri. The initial conditions are again slightly perturbed by
setting £,=-0.1, The elliptic coordinates representing the bounding surfaccs for each of

these examples are provided in ‘l'able 5-5.
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Figure 5-11 Perturbed stable orbit bounded by elliptical surfaces
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Figure 5-12 Closer view of haunded perturhed stable orbit
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Kigure 5-13 Stable Orbit near Centauri bound by elliptical surfaces
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Figure 5-14 Closer view of stable orbit near Centauri
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Figure 5-15 Stable orbit for particle with loading 0.7 gm™

@ s Zo 2, z, & &z i Nz
1.8018 | 0.3367 0.1 -0.1 0 0.6678 | 4.6455 | -0.3181 | -0.2851
0.6138 | 0.4385 0.97 0.1 0 0.7671 0.7384 | 0.3914 | 0.3050
-0.2524 | 0.4548 1.05 -0.1 0 09018 | 0.7431 0.3640 | 0.3172

Table 5-5 Elliptical coordinates representing surfaces bounding stable orbit

5.3.3 Elliptical bounding surfaces for unstable initial conditions

It has been demonstrated that four clliptical surfaces bound the motion of a stable orbit.
Consider the clliptical surfaces bounding an unstable orbit. Tn the unstable case, the
resulting trajectory can be described as homoclinic, winding off the nominal orbit and
passing near to the Sun or Centauri system, Figure 5-16 shows a set of elliptical surfaces
bounding a ‘homoclinic-like’ trajectory which loops around the Centauri system. The
reflection of the #; suiface is declared redundant as it evidently does not play a role in

bounding the trajectory. A Cartesian plot of this trajectory is provided in Fig 5-17.

A homoclinic trajectory which loops around the Sun is produced by slightly perturbing the
7o, condition sunward. A cylindrical polar coordinate plot of this orbit is provided in

216




Fig 5-18, including the elliptical surfaces which bound the orbit. A Cartesian plot of this
trajectory is provided in Fig 5-19. The initial conditions and the elliptical coordinates of

the bounding surfaces in the case of both trajectories are pravided in Table 5-6.

— Traja{:':t'o'rym
— Bounding Surface
-+ Redundant Surface

! v \ o-Cent

0 = :
0.2 Q 0.2 0.4 0.6 0.8 1 1.2
z (R)

Figure 5-16 Elliptical surfaces bounding homoclinic trajectory between unstable limit cvcle and the Centausi

system

x{ly}

" sun

0

Figure 5-17 Homoclinic trajectory between unstable limit cycle and the Centauri system
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Figure 5-18 Elliptical surfaces bounding homoclinic trajectory between unstable limit cycle and the Sun

Figure 5-19 ITomoclinic trajectory between unstable limit cycle and the Sun

P 05 2o o, z, & &z N 12
1.1664 | 0.3251 0.3 0 0 0.6071 0.6071 | -0.1647 | 0.4874
1.1666 | 0.3251 0.2999 0 0 0.6071 0.6071 | -0.4521 | -0.1647

Table 5-6 Elliptic coordinates representing surfaces bounding unstable orbit
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5.3.4 Stellar transfer trajectories

Similar to the weak-stability boundary of the three-body problem, trajectories which
asymptotically wind on and off a halo orbit produce a surface of manifolds. Depending on
the energy, a particle can remain trapped on a manifold surface between the two stars, The
invariant manifolds arc bound by an cllipsoid surface determined using the explicit
solution obtained with confocal elliptical coordinates. Using the manifold surfaces, it is
possible to identify trajectories which could enable dust particles to be transferred between

passing star systems.

The starting location can be determined from the bounding surface intersection. From
Scetion 5.3.3, the closest approach to the Sun of the homoclinic trajectory occurs when
surfaces 77; and & intersect. The values of z; and g; can be calculated by substituting the
clliptic coordinatc values of the intersecting surfaces into Eq (5.19.1) and Eq (5.19.2).

The z-component of angular momentum, /4., evaluated at the nominal halo orbit is used to
calculate the angular velocity at the intersection point as 6, =k, / o, . The calculated

insertion conditions are 0:=0.1471, zz=-0.0490 and =17.1284. In order to complete the
transfer and break through the boundary set by surface 7, a small velocity perturbation is
applied, z. The resulting transfer trajectory is provided in Fig 5-20 including the

bounding surfaces,

The elliptic coordinates representing the bounding sutfaces are provided in Table 5-7. The
& 2 surfaces arc slightly further separated due 1o the increased energy resulting from the
applied 7 velocity. The 772 surfaces arc identical to those obtained in the Sun and
Centaari ‘homoclinic-like’ trajectories investigated in Section 5.3.3. The state-space
representation of this transfer trajectory is provided in Figure 5-21. The transfer time

between the Sun and the Centauri system is approximately 65 Myrs.

@ )00 2o )0 n Zn é:-f 52 ?} 7 ??2

1.1675 | 0.1471 | -0.0490 0 0.05 (.6098 | 0.6045 | -0.4521 | 0.4874

Table 5.7 Elliptic coordinates representing surfaces bounding transfer trajectory
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Figure 5-20 Elliptical surfaces bounding transfer trajectory between the Sun and Centauri
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Figure 5-21 Transler wajeclory between (he Sun and Centauri
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5.4 Effect of additional body on two-centre dynamics

5.4.1 Local stellar neighbourhood

The perturbation caused by inlroducing the photo-gravitational potential of a third star will
now be included in the two-centre equations of motion. The local stellar neighbourhood
within 3pc (parsec) of our Sun is included in Fig 5-22. There are 11 stars in total including
two binary systems (Sirius and Luyten 726-8A) and one ternary system, o-Centauri. The
relative distances from the Sun, equatorial spherical coordinates and spectral class are
provided in Table 5-8.

Right ascension is provided in the form (hours minutes seconds) where the 360° celestial
sky is divided into 24 hours; 1 hour cortesponds to 15°. Declination is provided in the
form (degrees minutes seconds) which defines the angular location accurate to 1 arc
second (1/3600th degree). Combined with the separation distance {rom the Sum, this
provides a spherical coordinate system representing a fixed reference frame with the Sun

located at the origin.

10 ._.........-_...‘-.:_..
: *J'a'a“da 21185 P
)
~ Oy : 4Sirius Sun S
D Wolf 359 T
5] e IS N A
a0l T RossAse |
10 DT T
..-.._.-'.-.I....... - _III- .II ‘I-.E
- 10
B 5
0
e 5 o
A0 10

Figure 5-22 Local stellar neighbeurhood within 3pc
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Star name Distance from Sun Right Declination Spectral Type
(Iy) Ascension (d m s}

Proxima 4.22 14 29 43.0 -60 50 13.8 M5.5V
o~Centauri A 4.36 14 39 36.5 +04 41 36.2 G20V
o-Centauri B 4.36 14 39 36.5 +04 41 36.2 K10V
Barnard’s Star 5.96 17 57 48.5 +04 41 36.2 M3.8V
Wolf359 | 778 10 56 29.2 +3558 11.6 M6.0V
Lalande 21185 8.29 1103 20.2 +3558 11.6 M2.0V
Sirius A 8.58 06 45 08.9 -16 42 58.0 AlOY

Sirius B 8.58 0645089 -16 42 58.0 DA2

Luyten 726-8A 8.72 01 39 01.3 -17 57 01.0 M5.5V
Luyten 726-8B 8.72 0139013 -175701.0 M3.5V
Ross 154 9.68 1849 49.4 -23 50 10.5 M3.5V
Table 5-8 Position and spectral data of all stars within 3pe of the Sun
Spectral Type Colour Surface Temperature (°K)
0O Blue >30,000
B Blue/White ) 11,000-30,000
A White 7500-11,000
F Yellow/White 5900-7500
G Yellow 5200-5900
K Yellow/Orange 3900-5200
M Red 2500-3900

Table 5-9 Spectral classification of stars

A common method for categorising stars is to use the MX spectral scale devised by

Morgan, Keenan and Kellman [1943]. The stars are classed according to their spectlral and

tuminosity propertics. The different speetral classcs are represented by the letters O, B, A,

F, G, K and M which categorise star swface temperature range and subsequently colour,

see Table 5-9. The temperature range represented by each letter is sub-divided depending

on the value following the letter i.e A9—A0. The sequence is ordered such that the spectrat

type B9 1s immediately followed by AQ.

The stellar luminosity is defined using roman numerals 1-V. Type I corresponds to a

super-giant, type II to a bright giant star, type IIT to a giant star, type IV to a sub-giant and

type V to a main sequence dwarf star.
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It is clear from Table 5-8 that most stars within 3pc of the Sun fall into the category of red-
dwarf. Thesc stars have a long lifespan due to the slow burn rate. They have a relatively
small mass compared to the Sun so the gravilational influence exerted on the ideal two-
centre model will be neglected. The largest star within 3pc of the Sun is Sirius. “Ihe

gravitational potential of this star will be included in the two-centre model.

Sirius is actually a binary systcin located 8.58 ly from the Sun. The lacger star, Sirius A is
one of the brightest stars in the night sky. The size is roughly 2 M and it has a luminosity
of 8.0647x10% W. Sirius B is a much smaller, but extremely heavy white dwarf, defined as
spectral type DA2, with a mass similar to the Sun’s compressed into a volume 90% that of
the Earth. The total mass of the Sirius system is 3.2 M giving mass ratio 4=3.2. The
extinction corrected luminosity of Sirius relative to the on-axis equilibrium point, focated
9.55 ly from Sirius, is 8.0430x10*" W; a luminosity reduction of 0.27%.

5.4.2 Derivation of gravity perturbed two-centre equations

Figure 5-23 shows the Sun-Centauri-Sirius system, assuming all stars arc fixced relative to
cach other. The coordinate system is selected such that the Sun and -Centauri are
positioned along the x-axis. Also, the three stars are coplanar with the x-y plane. The

photo-gravitational potential energy can be expressed as

(5.33)
|r1! l"zl |"3|

- me[Mlu B M=), M- ,6’3)}
where £, f2and £ are the respective lightness numbers of the Sun, Centauri and Sirius for
a given particle size. Using Cartesian coordinates, the respective distances hetween the

Sun, Centauri, Sirius and the point mass wm, located at postion (x,v,z), are

="+ 2 +2%,

The mass of the Sun M;=1M
M3=3.2M,,.

r2|=\/(R-—x)2 +y*+z* and |r_,|=J(X -x)+ T -y’ +(Z-2).

o Mass of Cenlauri M2=2.17M and the mass of Sirius
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Figure 5-23 Schematic of three fixed stars Sun-Centauri-Sirius

The kinetic energy T = (E"f+PJ,2 +P_,_2)/2m where P, Py and P; are the components of

momentumm. The Hamiltonian function H =7 +V is equivalent to

H Z”I‘"(P.f +p° +Pf)—(¥m MAa-p) M,A-F) M A-f) (3.34)
om ¢ | I sl

As before, the equations of motion can be obtained using partial derivatives 9H / oF, =g

and dH / og = —Pq where g=(x,y,z). The non-dimensionaliscd cquations havc the form

__ M=)  AU-B)-x) AU B)X )

_ / ) 4 (5.35.1)
|l'1|‘ |r2| ‘r3|
§er y(l —3;3.) _Ad- ,36’2)}* LAl ﬁ’);(y ), (5.35.2)
|1‘1| L0 ‘r3|
__d-p) AUz, AA-BNZ-2) (5.35.3)
|1'1 | |r1 l Il.-” |

where the characteristic length R=4.36ly and characteristic time 7 = JRS/‘ GM, . The mass
ratio between M; and M, A;/=2.17 and the mass ratio between M; and M3, 4;=3.2. The
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right ascension and declination angle of a-Centauri are rotated to position the stellar
system at (1,0,0). Applying the same rotation to the right ascension and declination angles
of Sirius, the co-planar position coordinates can be calculated as (-0.9425, -1.7275, 0).
These equations can now be used to investigate the existence and stability of interstellar

libration points.

5.4.3 Gravity perturbed two-centre libration points

Consider libration points between the three stars, The coordinate system is selected so that
the three stars are co-planar with the x-y plane, thus libration points must also lie in this

plane. The non-dimensionalised potential energy U(x,y,z) is equivalent to

(1“‘“.6,1)_/11(1_/32) __'3'2(1_.33)

|rll |r2| Irzl

Ulx,y,2)=~ (5.36)

Figure 5-24 shows the potential energy contours for the case fr=Fsf50, excluding the
solar radiation pressure terms. “As expected, Sirius produces the largest potential-well
followed by Centauri and then the Sun. A potential energy saddle point, E;, exists between
the Sun and Centauri, which cortesponds to the two-centre on-axis libration point.
Another saddle point, E;, cxists between Sirius and the combined system of the Sun and

Coentauri.
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Figure 5-24 Potential energy contours of Sun-Centauri-Sirius system ignoring solar radiation pressure

The potential energy contours will be investigated for a number of particle loading cases:

P=<L<P<1: Figure 5-25 shows the potential energy contours for a particle with loading

parameter o=7 gm’

. Particles of this mass/area ratio would have lightness
numbers f;=0.1096, B> =0.0941 and f#3=0.7140. The dominant force
acting on these particles would be gravity from all three stars. There are two
libration points which lie in this plane, one between o-Centauri and the Sun
and one between both these stars and Sirius. Both of these points are unstable

as determined from the saddle point in the potential energy function.

PP <1<fs Figure 5-26 shows the case when particle loading o©=3 gm‘z. The
corresponding lightness number values are f;=0.2558, f,=0.2195 and
f3=1.6659. In this case the dominant force exerted by Sirius is stellar
radiation pressure; the other stars both have dominant gravitational forces.
Particles corresponding to these lightness numbers are pushed away from
Sirius and those which don’t exceed the escape velocity of the Sun or -
Centauri, can become trapped within the potential-well of these stars.
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P<pP<1~P5 Figure 5-27 shows the case for particles with loading parameter o=5 gm'z.
The lightness values would be £;=0.1535, £,=0.1317 and f;=0.9996. As
the lightness number due to Sirius, f; is approximately unity, the stellar
radiation pressure cancels the gravitational force. There remains a saddle
point in the potential function between the Sun and o-Centauri, but the

potential well due to Sirius has vanished as it no longer influences the particle

motion.

Interestingly, this indicates that the possible transfer of materials between star systems is
dependant on the material mass and reflective surface area. If a particle has lightness
number f>1, it will be ejected by the star system and cannot be recaptured by M; as
radiation pressure is the dominant force. The particle can only be captured by a star where
corresponding lightness number fx<1. This leads to a selection process of the possible

material properties which may become trapped in the vicinity of a star.
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Figure 5-25 Potential energy contours for particle loading 0=7 gm™
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Figure 5-26 Potential energy contours for particle loading o=3 gm™

Figure 5-27 Potential energy contours for particle loading =5 gm™
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5.5 Two-centre problem with relative stellar motion

5.5.1 Relative stellar motion

The relative motion of the stars was first noticed by Edmund Halley during 1718 while
comparing the positions of Sirius, Arcturus and Aldebaran with the measurements
performed by the Greek astronomer, Hipparchus. It was noticed that the star positions

were greater than half a degree from the positions measured 1850 years earlier.

Angular variation of the position of the stars is known as the proper motion and can bc
calculated by measuring parallax changes over a long period of time. Stellar motion along
the line of site can be calculated using Doppler shilt (echniques, although effects such as
gravitational red-shift, stellar atmospheric convection and stellar rotation can iead to

inaccuracies of order 1 kms™ [Lindegren and Dravins, 2003].

Barnard’s star is found to move at high velocity relative to the Sun. First estimated by
Edward Barnard [1916], Barnard’s star has proper-motion of 10.31 arcsec/yr. Table 5-10
contains the radial and proper motion, taken from the Gliese Catalogue [1991], of some
nearby stars. The velocity components (v, vy) are provided which are co-planar to the Sun

and the respective star,

Star Dist (Iy) | Radial vel | Proper Motion | vy (kms™) | vy(kms™)
(kms™") (arcsec/yr)

o-Centauri A 4.36 -26.2 3.689 -26.2 23.39

o-Centauri B 4.360 ~-18.1 3.689 -18.1 23.39

Proxima 4.22 -16.0 3.809 -16.0 23.38

Sirius 8.58 -9.4 1.328 94 16.57

Barnards Star 5.96 ~-111.0 10.31 -111.0 89.37

Table 5-10 Proper and radial motion of stars relative to the Sun
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It is clear that the stars move at high velocities relative to the Sun. Barnard’s star has a
velocity magnitude of 142.51 kms’' relative 1o the Sun. The two-centre problem
approximates that the stars are fixed in position relative to each other, which from these
velocities it is evident that they are not. However, due to the immense distances between
the stars, the model may still be valid if the period of trapping is relatively short. Despite
the high relative stellar velocities, it is clear that the stellar positions vary only a few arc
seconds per year. The stellar motion can be included in the two-centre equations of motion

to examine the validity of the two-centre approximation.
5.5.2 Derivation of two-centre equations including relative stellar motion

Consider the relative motion of the Centauri system in the x-y plane, approximating that
the velocity of all three stars is identical and the velocity remains constant throughout
integration time. The radial motion is directed along the x-axis, v,=-206.2 kms™ and the
proper motion is directed along the y-axis, v,=23.39 kms™', using the velocity components
of o-Centauri A from the Gliese Catalogue. Due to the changimg position of Centauri, the

separation distances from point m to the Sun and Centauri respectively are

e f=yx*+y*+2° and [r,()]= \/(1+ vt =) + (v t—y)? +z* which is dependant on

time 7.

The potential energy is now time dependant due to the changing position of the Centauri

system

GM m

Kl

GMzm (

A 5.37
ol -4,) (5.37)

V@) =-——=(1-4)+

and the kinetic energy 7" = ()—‘ff +P, 'y PZZ)/ 2w where Py, Py and P, are the components of

momentum. The Hamiltonian function # =7 +V can be expressed as

L (p2, p2, p2 M Q-8) M,(1-f)
H=—A{p*+P*+P*)-G ML, 5.38
PG m[ NG } >:39
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The equations of moation can be obtained using partial derivatives dH/dP, =g and

oH / og = —Pq where g=(x,y,z). The non-dimensionalised equations have the form

__x(1=8) A0=pg)d+vi-x)

4 - (5.39.1)
| I, )]

joo 2= ) MZB)0 ) (5.39.2)
\rll ‘l‘z (1‘)1

. z(1 "*;31) A~ .32)2 (5.39.3)
I Iy ()]

where the characteristic length R=4.36 ly and the characteristic time 7= /&’ /GM , - The
mass ratio A=2.17 for the Sun-Centauri system. These equations will now be used to

examine the motion and stability of the on-axis libration points,

5.5.3 Motion of on-axis libration point

'I'he non-dimensionalised potential energy can be expressed in the form

(l_ﬁl) . "11(1—)82)

Vix,y,z,0)=—
(x,y,2,1) | Q)

(5.40)

Figure 5-28 shows the potential energy contours evaluated at time 7=0. The potential
energy contours after a period of 100,000 years are provided in Fig 5-29, showing a
translation of the Centauri system and subsequently, the on-axis libration point. ‘The

libration point remains unstable, indicated by the saddle point.

The translation of the Centauri system relative to the Sun is demonstrated in Fig 5-30 over
4 period of 1x10° years. The on-axis libration point between the stars, moves with
horizontat velocity -10.44 kms™ and vertical velocity 9.32 kms™. Due to the high velocity
and instability of the on-axis libration point dust particles would not be temporarily

trapped. An investigation into the possibility of particles becoming trapped on a stable

halo orbil will be considered.
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Figure 5-30 Motion of the Centauri system relative Lo the Sun

5.5.4 Halo orbits including the effects of stellar motion

When the motion of the Centauri system is considered, halo orbits around the libration
points are not possible. Figure 5-31 shows a homoclinic trajectory when the motion of
Centauri is not included. The nominal orbit is an unstable limit cycle with radius 0.34 ly
located 0.3 ly [rom the Sun with a period of 36.81 Myrs. The lightness numbers
correspond to a particle loading of o=3 gm™. When the motion of Centauri is included, the
resulling orbit is provided in Fig 5-32. Tt is clear that the initial conditions produce an

clliptical hcliocentric orbit.

Halo orbits which are stable while the motion of the Centawri system is ignored are shown
in Fig 5-33. In the case of a halo orbit near the Centauri system, particles with these initial
conditions cscape [rom the Sun when stellar motion is included, as shown in Fig 5-34. The
stable halo-orbit near the Sun results in a heliocentric elliptical orbit when stellar motion is

included, as demonstrated in Fig 5-35.
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Figure 5-31 Unstable halo orbit excluding stellar molion

Figure 5-32 Unstable halo orbit in¢cluding stellar motion
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Figure 5-33 Stable halo orbits excluding stellar motion
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Figure 5-34 Stablc halo orbit including stellar motion
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Figure 5-35 Stable halo orbit including stellar motion

The velocity of the Centauri system relative to the Sun is too large for particle trapping to
be observed around the libration points. Searching through the Gliese catalogue for
relative stellar velocities, it was found that all stars move with velocities of order several
kms™ relative to the Sun. For particle trapping to occur at the libration points between

stars, the relative motion of the stars must be of order 1 ms™.

Figure 5-36 demonstrates a stable orbit near a star M;, which is located at the origin. Star

I The effective mass ratio of this

M- 1s moving relative to M; with a velocity of 1.01 ms’
system corresponds to A=2.2759. Figure 5-37 shows this trajectory viewed in the z-y
plane. The orbit precesses as star M moves such that the halo orbit is always centred on

the star-fine. The orbit has a period of 33 Myrs and the motion is computed for 1000 Myrs.

In this case, it would be envisioned that dust particles moving with a velocity of order 10
ms™ relative to M; could become trapped temporarily in periodic halo orbits which precess
as the stars move relative to each other. Heavier particles would become trapped in orbits
with larger radius than lighter particles due to the effects of radiation pressure. Also, due
to differing reflective properties, there would be a grouping of interstellar dust particles
with similar material propertie:;a. ‘Transfer of materials between passing stars, via the stable
and unstable manifolds which wind onto the unstable halo orbit could also occur, as shown
in Fig 5-38.
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Figure 5-37 View of x-y plane for case where relative star velocity is of order 1 ms™




Figure 5-38 Transfer of particle between slars for relative stellar velocity of order 10 ms™?

'J'he preccssion of a stable orbit is still observed for stellar velocities of order 100 ms™. In
the case of relative stellar velocities greater than 100 ms™, the star position changes rapidiy
with respect to the orbit period of order several million years. Initial conditions which
produce a stable halo orbit near M; in the two-centre problem will result in a Keplerian
orbit around M; when relative stellar motion is included. This can be explained by
considering the relative velocity of the particle compared to M; and M>. Due to the inverse
square dependency on distance, at interstellar distances the acceleration due to gravily
acting on a particle is extremely small. For a relative stellar vclocity of order 1 kms™, star
M> does not remain in the vicinity of the particle long enough to noticeably perturb the
particle velocity. In this case, the lwo-centre approximation is not accurate and results in
rrajectories similar to the two-body problem with M; as the central body. For slower
relative stellar velocities, the particle motion is noticeably influenced by both stars and the

two-centre problem represents a valid approximation of the dynamics.
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5.6 Conclusions

The two-centre problem was investigated as a possible model to represent the gravitational
dynamics of (wo nearby stars. An on-axis libration point was identified between the
masses and potential energy analysis demonstrated that the point is unstable. Two stable
and one unstable limit cycle were also shown to exist between the stars. The stable limit
cycles represent possible halo orbits which could trap interstellar dust patticles temporarily
as they pass between the stars. The unstable limit cycle leads to a set of *homoclinic-like’
manifolds which represent a sct of possible transfer trajectories between the two star
systems. By converting the problem into confocal elliptical coordinates, it was shown that

the manifolds ure bound to an ellipsoidal energy surface.

The problem was thoroughly investigated in the case of the Sun and its nearest star system,
0-Centauri. The photo-gravitational problem was studied including the accelerations due
to stellar radiation pressure exerted on the interstellar dust particles by each star. It was
demonstrated that including the influence of light pressure leads to families of halo orbits
dependant on particle areal density. In the case of particles where lightness number
parameters are greater than unity with respect to both stars, there exists no possible halo

orbits between the stats.

To validate this model, the gravitational perturbation introduced by the presence of a third
star and the effects of relative stellar motion were included. It was shown that particle
trapping is unlikely in the Sun-Centauri system due to the large relative stellar motion.
However, the model could be applied in the case of star systems with relative stelfar

velocities in the order 100 ms™.
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Chapter 6 Mission Analysis

6.1 Geomagnetic tail mission

6.1.1 Mission ountline

The reconnection point within the geomagnetic tail is located less than 30 Rg (Earth Radii)
from the Earth [Dungey, 1961; Russsel, 19741, Positioning a science payload within the
tail to observe the electric and magnetic field variation would enable an accurate model of

the dynamics to be constructed.

Several missions have gathered data on tail dynamics using satellites in highly elliptical
orbits such as ISEEa and ISEEb [Richardson, 1980c]. As the otbit plane is co-planar with
the Earth’s centre, the payload is continually passing through the inner geomagnetic tail.
Obtaining good temporal resolution of the changing dynamics within the geomagnetic tail
is difficult as the charge density varies continuously throughout the tail. Also, the
precession of the orbit around the Earth means the orbit only passes through the tail for a
few months per year. A non-Keplerian orbit would be an improvement as the payload can
be positioned at a constant displacement distance from the Earth. The data collected would

represent the changing electrodynamics of the magnetic tail over a period of time.

Solar sail technology may be used to position a 100 kg science payload in a highiy non-
Keplerian orbit displaced 30 Rg from the Eatth with radius 20 Re. Orbit insertion from a
200 km altitude, parking orbit will be performed using a kick-stage to pciform a Hohmann
transfer manoeuvre. The inclination of the orbit is chosen such that the resulting ¢lliptical
orbit intersecis the insertion manifold. A second kick-stage supplies the required Av to
deliver the payload onto the stable manifold, which winds onto the desired non-Keplerian
orbit. The solar sail is deployed immediately after the insertion kick-stage. Upon arrival at
the nominal orbit, the solar sail controller is activated to prevent cscape. Both sail area
variation and sail angle variation control methods will be demonstrated [Bookless and
Mclnnes, 2006].
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6.1.2 Hohmann transfer manoeuvre

A Hobmann transfer ellipse can be used to insert the solar sail onto the corrcct manifold

from a 200 km saltitude circular parking orbit. The tangential velocity of the circular orbit
is determined as v = M where r, represents the radius of the circular orbit and #is the
Barth’s gravitational parameter. The tangential velocity of the ellipse is defined as
V= m , where a is the semi-major axis and r, represents the apogee of the
transfer ellipse. As the equations of motion are non-dimensionaliscd, the gravitational

parameter g=1 [Wie, 1998].

The change in velocity required to insert a transfer vehicle onto an elliptical orbit from an

initial circular orbit is calculaied using

ave |21 [1 6.1)
r, d r,

The inclination of the circular orbit and the burn time i1s determined using three rotational
transforms. The 1% rotation is performed about the z-axis for the angle 4, = tan™'(y,/x,),
where the manifold insertion conditions are (x,, X, Yo, ¥, 20, 2,). The z-rotation transform,

T, can be expressed as

cosf, sind, 0
T, =|—-sinf cosf 0 {0.2)
0 0 1

Column vectors F = [xo ¥, 2,/ and V = [J'co ¥, z':o]r, which represent the position
and velocity coordinates, can be transformed using 7; to obtain P'=T7,P and V'=7)V .
The transformed coordinates can be used to determine the angle 8, =tan™ (zo '/ x, ']. The

sccond transform is performed about the y-axis using

cost), O siné,
T,= 0 1 0 (6.3)
—sinf, 0 cosé,
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where the transformed column vectors are P'=7,P and V"=17,V'.  These
transformations are required to position (he insertion point on the new x-axis. A rotalion
can now be performed about the x-axis to align the y-z plane velocity vector with the

Hohmann transfer maneuver. The velocity vector angle is determined as

6, = tan ! (z'u”/j)o ).

These three angles can be used to sclect a Hohmann ellipse which intersects the manifold
insertion point with matching velocity direction for the 2*! kick-stage to be applicd.
Initially, the circular and elliptical orbits are co-planar with the x-y plane. The initial

position and velocity conditions which produce the circular orbit are represented as

P={x y, z.[ and V.=[%, 3, 2. The initisl conditions which produce the

fd

elliptical orbit are represented as P, = [x, Yo Z, I and V, = [)'c‘, ¥y, 2, IF.

The velocity conditions are transformed using the revetse angle rotations about the x-axis,

y-axis and z-axis as follows

cos(—6,) sin(-f) 0j cos(-8,) 0 sin(-8,) (1 0 0
T, =|—sin(-60) cos(-6,) 0O 0 1 0 0 cos(—#,) sin(-8,)
0 0 L||=sin(~,) 0 cos(-6,}{0 -sin(~8,} cos(-&,)

(6.4)

which can be expressed as

cos @, cos0, —cos®, sin0,sin0, —cos@, sin@, —cosd,cosd, sind, +sind,sinG,
T,=|cosb,sind, cosd, cos@ ~sinf,siné,sind, -—cosl,sind,-cosd,sind,sind,
sin g, cos g, sin 8, cos @, cos G,
(6.5)

The velocity coordinates are transformed using V,'=T,V. and V,'=7,V,. The initial

position coordinates are also transformed by applying a reverse rotation about the y-axis

and z-axis using the transform

cosf,cosd -—sinf, —cosé, sind,
T, =|cosf,sinf, cosd, —sind,sing, (6.6)
sin@, 0 cosd,
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The position coordinates for the circular orbit and the cllipse are transformed using
P'=T,P. and P'=T,P . The transformed position and velocity coordinates produce a

circular and elliptical orbit with the required orientation to intersect the manifold insertion

point.

The period of the transfer ellipse is obtained using 7 = erw./}d . The second kick-stage is

initiated al the apoapsis of the transfer ellipse. The time ellapsed between the two burns is

therefore T/2 =z+va’ . Evaluating the velocity magnitude at the transfer ellipse apoapsis

enables the insertion Av to be determined.

6.1.3 ‘'Trajectory analysis

Tor a nominal orbit with displacement distance x,=30 Ry and radius 2,=20 Rg the nominal
sail acceleration is x,=6.26 mms>. A periodic looping trajectory was identified with
acceleration reduction A=0.04, such that x=6.0]1 mms™>. The closest approach distance to

the Earth is 3.39 Rg where the initial conditions are provided in Table 6-1.

Figure 6-1 shows the Hohmann ellipse necessary to insert the solar sail onto the correct
manifold from a 200 km altitude parking orbit. The 1* kick stage requires Av=1.857 kms™
and the 2™ kick stage requires Av=2.680 kms™'. The time elapsed between the two burns is

2 hours 18 minutes.

Figure 6-2 shows the non-Keplerian orbit produced by the initial conditions provided in
Table 6-1. A sail area variation controller is activated upon arrival at the nominal orbit.
The control periad is over 100 days and the nominal orbit has a petiod of 12.7 days. The
acceleration and corresponding area variation required to control this orbit is provided in
Fig 6-3.

The solar sail acceleration varies between 6.636 mms™ and 5.438 mms™. For a total sail
mass and payload of 500 kg, this cotresponds to an area variation between 3.6336x10° m*
and 2.9776 x10° m®. For the sail to transport a 100 kg payload, the total sail mass is 400

kg requiring a sail loading of 1.1 gm'z.
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Figure 6-4 shows a non-Keplerian orbit controlled using sail pitch and yaw angle variation.
The sail orientation over 100 days is provided in Figure 6-5. The controlier is activated
when the solar sail x-displacement distance x>0.99x,. The solar sail acceleration is aiso
increased to &=1.05x,, which is equivalent to 6.57 mms™, This is to prevent the solar sail
escaping Earthwards, as increasing the pitch or yaw angle reduces the component of

acceleration directed along the x-axis.

The pitch angle varies between 7.2° and -15.4° and the yaw angle varies between 7.9° and
-11.8°. Figure 6-6 represents the yaw against pitch angle variation which represents the
attitude of the sail surface normal vector, For a total sail mass and payload of 500 kg, the

required sail area is 3.5994x10° m* which corresponds to a sail loading of 1.111 gm™.

Figure 6-7 shows the required sail area and Fig 6-8 sail loading parameter for a total mass
ranging between 200 kg and 5000 kg. For 3 cases of payload mass — 100 kg, 50 kg and 20
kg, the varying sail loading parameter is demonstrated to exponentially increase towards
1.389 gm>. It is clear that achieving smaller loading parameters will increase the possible

payload mass.

Xo(RE) %, (kms™) Yo (Rp) ¥, (kms™) Zo (Re) z, (kms™)
22652 | 2.5952x10° | 2.1185 3.3506 1.3728 -4.4995

Table 6-1 Insertion conditions for Geomagnetic tail mission
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Figure 6-1 Insertion to non-Keplerian orbit with two kick stages
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Kigure 6-2 Sail area variation controlling a non-Keplerian orbit within the Geomagnetic tail
2. = 20 Rg, X, = 30 Rg, (Barth Radii)
K= 6.01 mms™>, @ = 15004, V= 1x10%°
G =[-1.1562x10"  5.1455x10°*  0.044469 0.032082]
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Tigure 6-3 Required sail area and acceleration variation to prevent escape from a non-Keplerian orbit
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Figure 6-4 Sail pitch and yvaw angle variation controlling a non-Keplerian orbit within the Geomagnetic Lail
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6.1.4 Conclusions

This mission would require an extremely high performance solar sail. A sail loading
parameter of t)‘:l.lgm’2 results in a solar saii lightness number £=1.4. Improved subslrale
technology could achieve lower sail loading paramcters [Murphy et al, 2004]. Novel
fabrication techniques such as sublimation of the substrate from the reflective aluminium
layer |Enea and Telespazio, 1999; Genta and Brusa, 1999], or micro-pore perforation of

the sail surface could be employed to increase the performance of large area solar sails
{Forward, 1985].
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6.2 Geostorm mission

6.2.1 Mission outline

Positioning a science payload sunward of the L; point would enable continuous monttoring
of the solar wind charge density upstream of the magnetosphere, Currently, the spacecraft
SOHO (Solar and Heliospheric Observatory) and ACE (Advanced Composition Explorer)
follow a halo orhit trajectory around L;. These spacecraft can detect interplanetary shock

fronts prior to encounter with the Earth’s magnetosphere [Huttunen et al, 2002].

Delivering a solar sail to an initial Lissajous trajectory around L; can be achieved by
identifying a stable manifold which passes near to the Barth. Initial condifions are
provided using the linear solution of Hiil’s approximation of the three-body problem.
Small variations to the x-axis velocity are applied to converge the resulting (rajectory
toward an improved Lissajous orbit. The closest approach distunce to the Earth is
calculated and the mirror image theoremn is then applied to find conditions starting from
near to the Earth which wind onto a Lissajous trajectory. The necessary kick-stages to
intercept the insertion manifold with the correct velocity are investigated starting from a

200 km altitude parking orbit.

After insertion to the Lissajous trajectory at Ly, the solar sail is slowly deployed using a
linear controller to select optimal gains. These gains are used to track the nominal
Lissajous trajectory while the x-displacement distance is steadily increased sunward. Once
the desired displacement distance is reached, the sail deployment stops and area control
techniques are employed to prevent the solar sail escaping the final orbit |Bookiess and

Melnnes, 2005].
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6.2.2 Trajectory analysis

'The corrected initial conditions, which lead to the desired Lissajous orbit around L; with
amplitude A,=50 Rg, are provided in Table 6-2, The manifold insertion conditions are
located 11.15 Rg from the Earth and the transfer vehicle initially travels in the anti-Sun
direction eventually arriving at an orbit around L, after 186.5 days. Figure 6-9 shows the
insertion trajectory contained within a zero-velocity surface with Jacobi constant C = -
0.01226.

The insertion from a 200 km parking orbit is achieved using a Hohmann transfer, shown in
Fig 6-10. The parking orbit is inclined 4.86° relative to the equator. The 1% kick-stage
requires Av=2.749 kms™’ to inserts the transfer vehicle onto an elliplical path which
intercepts the manifold insertion coordinates. The 2 kick-stage requires Av=2.259 kms"

with the burn directed at a 12° angle sunward of the direction of motion,

The solar sail is deployed after 373 days, having spent 1806.5 days following the Lissajous
Lrajectory around L;. During deployment, the optimal gains are recalculated cvery 5 days
for a new libration point, 1 Rg further sunward than the previous. The desired orbit
conditions are ulso displaced 1 Rg further thus increasing the nominal acceleration
gradually. As the solar sail acceleralion can only be directed in the anti-Sun direction, the

condition x () 2 0 must be mct, After 1 year of gradually shifting the nominal libration

point, the position is 73 Rg sunward of L;.

As the solar sail spirals sunwards from the Lissajous orbit, the area variation controller
generates a larger control signal to drive the solar sail towards the desired orbit.
Eventually, the control signal is large enough that the trajectory arrives at a Lissajous orbit
around an artificial libration point on the Sun-line. This libration point is sunward of the
nominal orbif, as the sail acceleration is the result of the ditference between the nominal
orbit and the actual orbit. The solar sail atrives at an orbit around an artificial libration
point displaced 390 Ry sunward of the Earth, 2.56 years after launch and 561 days after
initial deployment.

Figure 6-11 shows the completc ballistic insertion from near the Earth to the Lissajous

trajectory around L; followed by sail deployment and the gradual spiral to a Lissajous orbit
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around an artificial libration point. A section of the final orbit is provided in Fig 6-12,

which represents the trajectory between 2.56 years and 5.1 years.

A 3.5° angular radius exclusion zone is required to prevent excessive interference from the

solar radio disc with the telemetry system [Farquhar et af, 1977]. This corresponds to an

exclusion radius of about 90,000 km centered on the y-z plane at L;. At the area controlled

orbit around the artificial libration point, the required cxclusion zone has a radius of

150,000 km. It is clear from Fig 6-12, that the solar sail does not cross the radio exclusion

zone during the control period.

The acccleration and arca variation required to produce the final trajectory is shown in

Fig 6-13. The maximum acceleration is 0.27 mms™~ and the corresponding area for a total

sail and payload mass of 100 kg is 2864 m?. Fora generous solar sail loading of =12

gm'z, the total sail mass is 34.4 kg. The remaining possible payload mass is 65.6 kg.

Xo (RB)

X, (kms™)

Yo (RE)

¥, (kms™h)

zo(Re)

z, (kms™)

~a

-10.8281

-0.7225

1.7271

-2.7658

-2.0226

1.5108

Table 6-2 Insertion conditions (o uncontrotled Lissajous orbit around L;
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6.2.3 Conclusions

This study demonstrates a possible near-term mission for solar tail technology. The sail
loading of 12 gm™ is comparable to the Cosmos 1 solar sail which has sail loading of
11 gm™ [Freidman, 2005]. The total sail area of 2864 m?” is achicvable using near-term

gossamer structure fabrication techniques.

As the transfer vehicle is initially inserted onto a Lissajous trajectory otbiting /.;, the
option exists for transfer to be achieved as a ‘piggy-back’ on a mission destined for orbit at
Lj. The sail could be deployed gradually spiralling sunwards while the transfer vehicle is
left in a controlled orbit about the Lagrange point. For a new propulsion technology, it is
important to lower the mission risks to improve feasibility. If an crror occurs during sail

deployment, the primaty mission at /.y could still achieve some useful science goals.
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Chapter 7 Conclusions and Further Work

Five key work objectives to be investigated for this thesis were listed in Section 1.6. These
objectives are reproduced below along with the relevant findings and conclusions,

Suggestions for further study are also ontlined.

1. Develop appropriate dynamical models representing the motion of a solar sail in
the vicinity of a planet. These models should include both the gravitational
influence of the relevant bodies and the acceleration due to solar radiation

pressure.

The dynamics of an idea}l solar sail in the vicinity of a planet were initially
investigated in a two-body context. The two-body equations of motion, including a
constant axial force to represent the acccleration due to solar radiation pressure,
were derived using cylindrical polar coordinates in Section 2.1. [t was
demonstrated in Section 1.5 that the ideal sail acceleration model provides a good
approximation of the force exerted on the sail provided the sail surface normal

vector dees not deviate greatly [rom the Sun-line.

The problem was further investigated in a three-body context including the solar
gravitational influence and the rotational effects of the planet orbiting the Sun.
Three models were investigated including Hill’s approximation of the three-body
problem, the circular testricted and elliptical restricted threc-body problems with
complete derivations provided in Section 3.1, Section 4.1.1 and Section 4.1.2
respectively.  The sail ucceleration model was improved to include the

perturbations due to the time varying distance between the Sun and the solar sail.

In addition, the photo-gravitational two-centre problem was also derived to
investigate temporary frapping of interstellar matter at libration points between
nearby stars. This model represents a special case of the three-body problem which
assumes a scenario where the two primary bodies are fixed relative to cach other.
The two-centre problem was shown to reprosent a reasonable approximation of the

interstellar dynamics provided the relative stellar motion is less than 100ms™.
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2. Identify artificial libration points using these dynamical models including the

acceleration due to solar radiation pressure. The stability of these libration points

can be determined using eigenvalue analysis methods.

Artilicial libration points were investigated in each of the dertved dynamics

models. In the two-body case, the solar sail acceleration can be used {o produce a
continuum of libration points in the anti-Sun direction by cancelling a component
of gravity. In the three-body cases, as the solar sail acceleration is constrained to
the anti-Sun direction, artificial libration points are restricted o a region sunwards
of L, or between the central body and L. As demonstrated in Section 1.5, if the
non-pesfect sail acceleration model is applied, the distance above the ecliptic plane
which a libration point can be generated is reduced due to the restriction on the

achievable sail pitch angle relative to the Sun-line.

A Jacobi integral was derived in the three-body cases and a series of Hill’s surfaces

were generated using Jacobi constants calculated at the artificial libration points.
Jacobi constants evaluated at an on-axis libration point were shown (o represent
critical values which define a closed zero-velocity surface. Tor energies greater
than the critical energy, a gap in the Hill’s surface opens around the libration point.
Hill’s surtaces are a useflul tool for investigating bound motion as gaps in the
surface can facilitate escape. The acceleration due to solar radiation pressuse
reduces the energy required for escape in the anti-Sun direction therefore, the
surface is closed sunward of the central body in the case of libration points between ‘

the central body and L.

It was apparent that the Jacobi integral evaluated at a libration point with zero- |
velocity is analogous to generating a pseudo-potential energy surface in the vicinity 5
of the libration point. A local saddle point exists in the vicinity of the on-axis

libration points which suggests that these points are likely to be unstable. This was

verified using eigenvalue analysis of the linearised equations which yiclds two

oscillatory and two divergent modes of the in-plane motion. ;

In the two-centre model, an on-axis libration point was identified at the centre of
mass of the two primary bodies. Including the acceleration duc to solar radiation
pressure was found to reduce the effective mass of the primary bodies displacing

the centre of mass depending on the stellar Juminosity.
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3. Generate non-Keplerian orbits around artificial libration points. This will include

both Lissajous and halo orbits demonstrated around the L; and L, Lagrange points
of the three-body problem. The stability of these orbits will be evaluated using

eigenvalue and energy analysis methods.

Circular displaced orbits were investigated in both a two- and three-body context.
A stability condition was derived for these orbits as @, >2\57,,, using a linear

approximation of the two-body equations and a nonlinear analysis. Further analysis
of the orbit stability was performed using a Jacobi-type integral where by it was
demonstrated that the motion of a stable orbit is bound within a closed zero-
velocity surface. As expected, the two-body stability condition agrees closely with
the observed three-body stability in cases where the orbit is near to the central
body.

Further from the Earth, the solar sail experiences a comparable gravilational
influence from the Sun therefore the circular displaced orbit no longer represents an
accurate solution of the dynamical equations. A more accurate solution was
developed using a linear approximation of Hill’s equations, which yiclds initial

conditions that converge toward a quasi-petiodic Lissajous orbit.

Periodic halo orbits were also investigated around artificial libration points in the
circular and elliptical three-body problem. Richardson’s third order approsimation
was applied to obtain initial conditions which converge toward a halo orbit. These
large amplitude trajectories have the advantage that the solar sail avoids the
telemetry exclusion zone sunwards of the Earth, unlike the smaller amplitude quasi-

periodic Lissajous orbits.

Halo orbits were also investigated in the two-centre problem. If was demonstrated
that for constant angular velocity, an unstable orbit exists in the vicinity of the
centre of mass and two stable orbits near each of the fixed masses. ‘L'he stable
orbits correspond to the two-bady circular orbits displaced from the respective star
due to the uniformn axial gravity exerted by the distant star. In the photo-
gravitational problem, the effective stellar mass is reduced due to the repelling
stellar radiation pressure, which leads to a range of possible orbit radius depending

on the particle areai density.
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4. Identify manifolds associated with the non-Keplerian orbits which can be utilised

for orbit insertion from a point near to the central body.

Manifold surfaces were investigated for the two-body circular displaced orbits and
three-body Lissajous trajectories. A closed-form solution was obtained by
transforming thc two-body problem into parabolic coordinates and applying the
Hamilton-Jacobi method. Tt was demonstrated that manifolds which wind-off and
onto a circular displaced orbit are bound between a set of paraboloid surfaces. A
new family of highly perturbed orbits were identified by slightly perturbing the
nominal acceleration. In the case of unstable circular displaced orbits, the resulting
trajectories were shown to provide transfer trajectories which pass near to the
Earth. These new manifold families were used in Section 6.1 to identify a set of
initial conditions to insert a solar sail onto a circular displaced orbit for a novel

Geomagnetic tail mission,

Manifolds were also investigated which wind-off and onto a Lissajous trajectory
around artificial libration points near 7y and 7. TTill’s surfaces were generated in
order to identify the closest approach distances to the Earth. It was apparent that, in
some cases, the closest approach distance occurred after several encounters with the
Earth. This results in a trade-off between the time duration for insertion and the
mission Av requirements. In the case of orbits around libration points sunwards of
L;, the Hill’s surface is open around L, which indicates that escape is likely in the
anti-Sun direction. In this case, the first encounter of the solar sail with th¢ Earth is
selected as the closest approach distance for orbit insertion. An example of
insertion to a Lissajous orbit around I; was investigated in Section 6.2 for the

proposed Geostorm mission.

Manifolds were also investigated in the photo-gravitational two-centre problem. A
closed-form solution, similar to the two-body case, was derived by transferming the
problem into confocal elliptical coordinates. It was demonstrated that the
manifolds are bound between ellipsoid surfaces. These surfaces represent possibie
trausfer trajectories for particle transits between passing star systems. An
implication of stellar radiation pressure is that particies can only be captured by star
systems where the arcal density corresponds to lightness number less than unity.
This implies there would be a natural selection of the particle surface areas which

can be captured by a star depending on the stellar luminosity.
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5. Imvestigate solar sail station-keeping techniques 1o prevent escape from the desired

orbits after insertion. Two possible methods fo control the solar sail acceleration

include variation of the solar sail area and variation of the solar sail attitude.

Solar sail control techniques were investigated to provide orbit control after
insertion to circular displaced orbits, Lissajous trajectories and periodic halo orbits
generated around artificial libration points. A two-body controller was developed
which applies trims to the sail area or sail pitch angle based on an etror between the
actual trajectory and a reference trajectory. Optimal gains were calculated using
lincar quadratic regulator. Both techniques were demonstrated for control of
circular displaced orbits generated in a two- and three-body contcxt. Due to the
close proximity to the Earth, circular displaced orbits require solar sail
accelerations of order 1 mms~?, which corresponds to a sail area of order 1x10° m?
for a 100 kg payload. Due to the large sail area, the sail pitch angle variation
technigue is the more appropriate of the two control methods to avoid damaging the
thin solar sail. For the Geomagentic tail mission, investigated in Section 6.1, the
required sail acceleration is approximately 6 mms? which corresponds to a 3x10°
m’ solar sail with total payload mass of 100 kg. This mission clearly requires an
extremely high performance solar sail which is not achievable in the foresecable

future.

Similar control methods were developed to provide station-keeping at a nominal
Lissajous orbit. Again, optimal gains were selected using a linear quadratic
regulator. Both techniques were demonstrated o provide control after near Earth
insertion to Lissajous orbits sunwards of L; and L,. Near to the Lagrange points,
the required sail acceleration 1s of order 0.01 numns™ which requires sail areas of
order 100 m® for a 100 kg payload. These small sail accclerations could be
achicved using four reflective tip-vanes attached to a central payload. The sail area
variation technique is the more appropriate method in this case as control can be
achieved with small variations to the reflecting sail surface area. The sail area
variation controller was applied in Section 6.2 to produce a trajectory which
gradually spirals sunwards [rom L; 10 a controlled Lissajous orbit 390 Rg from the
Earth. This mission would require a sail acceleration of 0.3 mms~, which can be
achieved using a 3000m? solar sail with a (otal mass of 100 kg. This reasonable

sail performance could be achicved with ncar-tcrm solar sail technology.
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By combining the sail area and sail pitch angle variation control methods, a three-
axis control method was developed which provides full controilability in a three-
body context. This method was demonstrated to provide control at periodic halo
orbits in both the circular and elliptical restricted three-body problems. In the case
of an artificial libration point generated ncar to L; in the elliptical three-body
problem, the required y-axis acceleration is comparable to the x-axis acceleration.
The resulting sail yaw angle tends toward 7/2 which produces an unbound sail area
due to the cos®¢ acceleration dependency. It was found that generating an
artificial libration point displaced further sunward of L, requires a larger x-axis

acceleration which subsequently reduces the required yaw-angle for orbit control,

The dynamics of a solar sail in the vicinity of a planet have been thoroughly mmvestigated in
a two- and three-body context. Recommended further work includes cxtending the problem
te include the gravitational influence of the moon forming a Sun-Earth-Moon-sail four
body problem. The lunar gravity would have a significant influence on the two-hody
circular orbits displaced 60 Rg from the Earth. It would be interesting to examine how the

insertion manifolds are mutated by the inclusion of the lunar tide terms.

Solar sail area and pitch anglc variation has been demonstrated to provide control at a
nominal reference orbit. The three-axis solar sail contral method could also be applied to
prevent escape from the transfer trajectory during orbit insertion. This would enable the
solar sail to perform correction maneuvers during transit to the orbit and prevent gradual

divergence {rom the manifold.

The investigation of circular displaced orbits could be extended to near-Earth asteroids.
Due to the reduced gravity of these comparatively smaller bodics, artificial libration points
could be generated using lower performance solar sails than in the case of the Earth. This
would offer a possible near-term application of circular displaced orbits generated using
solar sail propuision. However, the non-uniform gravitational field due to the often
irregular shape of the asteroids would require complicated dynamics models to be
developed to accurately represent the solar sail motion. Alternatively, circular displaced
orbits could be investigated at planets nearer to the Sun, such as Mercury. The increased
solar radiation pressure would enable displaced orbits to be generated using smaller solar

sails.
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Other possible applications of solar sails could he considered to increase mission lifetimes
by enabling improved orbit control. This may include pitching the solar sail to
increase/reduce the otbit angular velocity to alter the radius of a circular displaced orbit.
Also, a process of furling/unfurling the solar sail could be adopted to enable patching of
heteroclinic and homoclinic manifolds. This would cnablc transfer of the solar sail
between Lissajous trajectories or halo orbits around artificial libration points near L; and
L. Similarly, the displacement distance of circular displaced orbits could be altered by
identifying intersecting manifolds which wind onto alternative orbits requiring negligible

Av.

Finally, it would be useful to determine the limitations of the sail area and sail pitch angle
variation controllers. The optimal gain method determines the required sail surface area or
sail orientation to prevent escape from a reference orbit. The rate at which the solar sail
can be turled/unturled, to modulate the sail surface area, or the sail orientation controlled,
using reflective tip-vanes or centre-of-mass/centre-of-pressure offset, will restrict the

accuracy of the actual control signal compared to the required control signal.
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Chapter 9
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Final solution coefficients [Richardson, 1980a]
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