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Abstract

Non-Keplerian trajectories around the Lagrange points of the three-body problem have 

been thoroughly investigated enabling many novel space science missions. Identification 

of heteroclinic manifolds linking halo orbits around the Lj and L2 Lagrange points has lead 

to the discovery of the so-called interplanetary superhighway. This thesis considers 

possible periodic and quasi-periodic non-Keplerian orbits around artificial libration points 

generated using solar sail propulsion.

Dynamical models are developed to represent the motion of a solar sail in a two- and three- 

body context. Artificial libration points are identified using the solar sail to provide a 

constant axial force. The stability of these libration points is investigated using a linear 

approximation of the equations of motion and a non-linear analysis. Established 

techniques are applied to identify halo orbits and Lissajous trajectories around these 

libration points. Manifolds are identified to provide transfer trajectories to these orbits 

from near the Earth. Solar sail control techniques are developed to prevent escape from the 

nominal orbit after insertion.
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Nomenclature

a - solar sail acceleration due to solar radiation pressure

A - linear coefficient matrix

B  - linear control matrix

c - speed o f light

C - Jacobi constant

e - orbit eccentricity

ep,ee,ez - cylindrical polar coordinates unit vectors

E  - total orbit energy

F - force due to solar radiation pressure

G - gain matrix

hz - z-component of angular momentum

H  - Hamiltonian

i J ,k  - Cartesian unit vectors

I  - identity matrix

J  - Bessel function o f the first kind

L - characteristic length

m “ mass of solar sail

M  - mass o f primary bodies

n - solar sail surface normal vector

N  - control weighting matrix

P^, Py, Pz - Cartesian coordinate momenta terms

Pp, Pq, Pz - cylindrical polar coordinate momenta terms

Q - state weighting matrix

r  - separation distance between solar sail and central body

R  - separation distance between primary bodies

Rs - separation distance between Sun and solar sail

t - time

T - kinetic energy

u  -  control matrix

U  - pseudo-potential energy

V - solar sail velocity magnitude

V - gravitational potential energy
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x,y,z - Cartesian coordinates with x-axis orientated along the Sun-line

X - state matrix

y - output matrix

- Cartesian coordinates in inertial reference frame

a - solar sail pitch angle relative to Sun-line

A - lightness number

Av - change in velocity

8 - Poincaré-Lindstedt expansion parameter

- sail yaw angle

0 - Hamilton-Jacobi separation constant

K - non-dimensionalised solar sail acceleration

P - gravitational parameter

- solar gravitational parameter

0 - angular position o f planet orbiting the Sim

G) - angular velocity o f circular displaced orbit

Q - angular velocity o f planet orbiting the Sun

p A ^ - cylindrical polar coordinates with z-axis orientated along Sun-line

<j - mass loading parameter

T - characteristic time

- parabolic coordinates/ confocal elliptical coordinates

IV
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Chapter 1 Introduction

1.1 Contribution of thesis

The main objective of this thesis is to investigate possible near-term applications of solar 

sail technology. Several missions have been achieved using conventional propulsion 

methods to deliver a payload to an orbit around the Li and L 2 Lagrange points. As the 

solar sail is not reliant on stored reaction mass, continuous thrust can be applied to generate 

artificial libration points displaced from the ballistic Lagrange points. Previously applied 

methods to define periodic and quasi-periodic orbits around L; and L2 will be applied in the 

solar sail dynamical problem to generate orbits around these artificial libration points.

The main contributions of this thesis include:

• Development of dynamical models in a two-body and three-body context to 

represent the motion of a solar sail in the vicinity of a planet. The acceleration due 

to solar radiation pressure was included assuming an ideal solar sail surface.

• A two-body stability condition was derived for circular displaced orbits using a 

linear approximation of the equations of motion and a non-linear analysis. Energy 

methods were used to verify this condition. It was demonstrated that the two-body 

stability condition is valid in the three-body problem when the circular displaced 

orbit is near to the central body.

• Identification of a new family of highly perturbed homoclinic orbits which enable 

orbit insertion to a circular displaced orbit from near the central body. A closed- 

form solution to the two-body problem including a uniform axial force was 

obtained using parabolic coordinates. It was demonstrated that the homoclinic 

orbits are bound to the surface of a paraboloid which can be used to determine the 

closest approach distance to the central body explicitly.

• Development of two-body solar sail optimal control techniques to provide station- 

keeping at a circular displaced orbit. The two techniques investigated were solar 

sail area variation and sail attitude variation, facilitating control of the sail

1



acceleration magnitude. These control methods were demonstrated for control of 

circular displaced orbits in the context of Hill’s approximation of the three-body 

problem.

Lissajous orbits were generated around artificial libration points using Hill’s 

equations. Manifolds were identified to enable insertion to Lissajous orbits from a 

point near the Earth. Station-keeping was demonstrated using a similar optimal 

control technique to that developed for the two-body problem.

Investigation of halo orbits around artificial libration points in the circular restricted 

three body problem. Using previously established methods from the ballistic case, 

such as Richardson’s third order approximation it was demonstrated that similar 

results are achieved around artificial libration points. A three-axis optimal control 

method combining the sail area and sail attitude control methods applied previously 

was developed.

The two-centre problem was applied to approximate the dynamics of particles 

between two stars. An explicit solution was derived using confocal elliptical 

coordinates. Homoclinic manifolds were shown to exist which wind on and off an 

unstable halo orbit. It was demonstrated that these manifolds are bound to an 

ellipsoid surface.

Investigation of possible near-term missions which could be enabled using solar 

sail propulsion. These include a mission to position a science payload in the 

geomagnetic tail to investigate the processes of magnetic reconnection and another 

mission to deliver a payload to analyse the solar wind upstream of the L; Lagrange 

point.



1.2 Keplerian motion

Johannes Kepler (1571-1630) formulated his famous three laws of planetaiy motion during 

the early decades of the seventeenth century. These three laws are stated as follows

1. The locus plot representing the orbit of a planet around the Sun forms an ellipse 

with the Sun located at a focus

2. The area swept out by the radial vector representing the position of the planet 

relative to the Sun is constant for equal times

3. The relationship between the semi-major axis, a, and the orbit period, T, of two 

planets is defined as

(1-1)

where c is a constant [Baker and Makemson, I960].

These laws were developed while Kepler was investigating the orbit of Mars using 

observational data obtained by his mentor, Tycho Brahe (1546-1601). The significance of 

the first two laws is outlined in Fig 1-1. The area swept out by the radial vector forming 

the arc, NSO is equal to the area swept out forming the arc, PSQ evaluated over an equal 

time period. These areas are denoted as A; and A2 respectively. The semi-major and semi­

minor axis are denoted as a and b respectively. The centre of the ellipse is represented by 

C and is located at distance ae from the focus S, where e represents the orbit eccentricity.



Figure 1-1 Schematic representing elliptical orbit with the Sun located at the focus S

The radial distance, r from the focus S at polar angle 0, measured from the line SP, is 

expressed using the orbit equation

a{l-e^)  
l + ecos 0

(1.2)

where 6^0 is refered to as the periapsis of the ellipse and is located at P while the apoapsis 

is located at 0 =̂n.

A  scientific explanation for the elliptical motion was provided by Newton (1642-1727) 

when he devised the universal law of gravity. He postulated that the force due to 

gravitational attraction between two masses is proportional to the inverse square of the 

separation distance. Newton demonstrated that the universal law of gravitation provided 

greater accuracy when predicting planetary position than the approximate calculations of 

Kepler.

The dynamical two-body problem exhibits Keplerian motion. The two-body model obtains 

good approximate trajectories for transfers between planets using a patched conic 

approach. The three-body problem exhibits non-Keplerian motion near the Lagrange 

points where the gravitational attractions between the two primary masses cancel.



1.3 The three-body problem

Euler (1707-1783) is credited with developing the three-body problem while attempting to 

produce an accurate model for lunar motion, which could explain the deviation of the 

observed lunar motion from an ellipse. Perturbations to the elliptical motion of moons 

were known from observations of the moons of Jupiter.

The three-body equations model the dynamics of a third body in the vicinity of two co­

orbiting primary bodies. Euler developed a rotating coordinate system (synodic), which 

contains the motion of the two primaries [Szebehely, 1967]. Although the three-body 

problem cannot be solved explicitly, applying some approximations to simplify the 

dynamics enables solutions to be determined via numerical or perturbation methods.

Approximations include assuming the mass of the third body is infinitely smaller than the 

mass of the two primary bodies, which leads to the restricted three-body problem. The 

separation distance between the two primary bodies can also be assumed constant which 

yields the circulai' restricted three-body problem. Jacobi (1804-1851) successfully 

identified an integral in the restricted three-body problem, known as the Jacobi Integral. 

This integral relates the energy of the infinitesimal body to its velocity in the synodic 

frame of reference and can be used to determine surfaces which bound a trajectory without 

the need to solve the non-linear three-body equations [Szebehely, 1967; Marchai, 1990].

Hill (1838-1914) developed a useful representation for lunar motion using an expansion 

theorem [Hagihara, 1975a]. Hill’s problem considers the planar case of three-bodies Mj, 

M 2  and Ms where the mass Mi is much greater than M 2 ox M 3 . If the distance between M2 

and Ms is large, then the dynamics can be approximated by separate two-body problems 

M 1-M2 and Mj-Ms ignoring the gravitational interaction between M 2 and M3 . If the 

distance between M 2 and M 3 becomes relatively small, such as the case of the Sun-Earth- 

Moon three body problem, then the interaction between M 2 and M 3 must also be included 

[Henon and Petit, 1986].
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Figure 1-2 Schematic of Lagrange points in synodic reference frame

Solutions exist in the circular restricted three-body problem, which represent equilibrium 

points in the synodic frame. Euler identified three collinear libration points {Li, L2 , L3 ) 

while two triangular libration points {L4 , L5 ) were identified by Lagrange (1736-1813). 

The positions of these libration points, referred to as the Lagrange points, are shown in 

Fig 1-2.

It will be demonstrated, using eigenvalue methods, that the collineai' libration points 

(Ly, L2 , L3 ) are unstable. This means that a spacecraft initially in the vicinity of these 

points will escape. The triangular libration points are stable provided the system mass 

parameter //<0.03852. The mass parameter is defined in the non-dimensionalised three- 

body problem as ju = M 2 /{M ^+M 2 ) where My and Mz represent the primary masses

[Szebehely, 1967]. Families of orbits have been identified around these libration points 

which can be generated using 1®̂ order and 3̂  ̂ order approximations of the non-linear 

three-body equations.



1.4 Non-Keplerian orbits

1.4.1 Orbits around the Lagrange points

Darwin (1845-1912) identified a set of periodic orbits around the libration points during 

the late nineteenth century while investigating the simple planar case of the circular 

restricted three-body problem. Using numerical methods he was also able to perform a 

stability analysis of these periodic orbits. During the early twentieth century, Strogren 

[1870-1947] and colleagues at the Copenhagen observatory performed similar studies of 

periodic orbits in the planar three-body case, attempting to classify these orbits depending 

on stability and their associated libration point [Hagihara, 1975b].

Since these early studies of libration point orbits, the development of the digital computer 

has enabled more detailed studies. Three types of natural orbit that exist around the 

collinear Lagrange points include Lyapunov orbits, quasi-periodic Lissajous orbits and 

periodic halo orbits. Lyapunov orbits exist in the orbit plane of the primary bodies. Halo 

and Lissajous orbits both contain out-of-plane components so exist in three-dimensions. 

Examples of these trajectories generated around the L2 point are provided in Fig 1-3, where 

the axes scale has units Re (Earth Radii). As neither of the primary bodies intersects the 

plane of the orbit, these orbits do not agree with Kepler’s laws of motion. It is clear that 

libration point orbits can be described as non-Keplerian orbits.
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Figure 1-3 (a) Halo orbit around L2 generated using Richardson’s order solution 

(b) Lissajous orbit around L2 generated using 1st order solution



During the 1960s, libration point orbits became of increasing interest with the possibility of 

positioning a communication satellite at the Eaith-Moon L2 Lagrange point to enable 

continuous contact between the Earth and a lunar lander on the rear of the moon. Columbo 

demonstrated that the stationkeeping requirement to maintain a libration point orbit was 

dependant on the accuracy of the nominal orbit [Columbo, 1961]. If the approximated 

nominal orbit agrees closely to the actual non-linear trajectory then the station-keeping 

requirement is minimised. An inaccurate nominal orbit requires a greatly increased Av as 

the controller performs manoeuvres forcing the spacecraft to follow the desired trajectory.

In 1966, Farquhar designed a Lissajous orbit which would be visible from the Eaith 

requiring a small Av of lOms"  ̂ per year for station-keeping [Dunham and Fai-quhar, 2002]. 

Quasi-periodic Lissajous orbits can be generated by linearising the three-body equations of 

motion. In the x-y plane, the linearised equations have four eigenvalues -  two real and two 

imaginai'y. By selecting initial conditions which suppress the real eigenvalues, an 

oscillatory solution is obtained. The out-of-plane motion produces two imaginary 

eigenvalues. As the ratio of out-of-plane to in-plane oscillation frequency is non-rational, 

the resulting trajectory is periodic in the x-y plane but there is a precession in the y-z plane. 

These trajectories are therefore described as quasi-periodic.

The amount of fuel required to provide stationkeeping depends on the accuracy of the 

nominal orbit when all significant perturbations aie included. Farquhar and Kamel [1973] 

used perturbation methods to derive accurate quasi-periodic orbits in the Earth-Moon 

system, minimising the stationkeeping requirements. The Linstedt-Poincaie method was 

applied to develop a third order solution of the non-linear equations including perturbations 

due to solar gravity and the eccentricity of the Earth-Moon orbit.

By including higher order teims in the approximation of the non-linear equations it is 

possible to select orbit amplitudes and frequencies which produce a periodic orbit. The 

resulting ratio of the out-of-plane and in-plane frequency is rational. Farquhar coined the 

term ‘halo’ orbits for these trajectories and he used the method of successive 

approximations to define halo orbits in the Earth-Moon system, including the perturbations 

caused by orbit eccentricity and the gravitational influence of the Sun 

[Farquhar, 1970a].

Breakwell and Brown [1979] investigated halo orbits around the Lj and Lz Lagrange points 

in the Earth-Moon system. A differential correction method was applied to improve the



initial conditions which generate the nominal halo orbit. The stability of these orbits was 

investigated by examining the eigenvalues of the monodromy matrix, constructed by 

evaluating the fundamental solution matrix at one orbit period. This study identified a 

family of stable periodic halo orbits halfway between the Lagrange points and the moon. 

Howell [1984] extended this stability study to consider other three-body mass ratios. 

Identifying stable periodic orbits would significantly reduce the station-keeping 

requirements.

Richardson [1980a; 1980b] developed an approximation of the nonlinear Sun-Earth three- 

body equations by expressing the gravitational potentials in terms of Legendre 

polynomials. He applied the Lindstedt-Poincaré perturbation method to obtain a third 

order solution, removing unbound secular terms. A constraint was found relating the out- 

of-plane amplitude to the in-plane amplitude in order to achieve equal in-plane and out-of­

plane frequencies.

1.4.2 Invariant manifolds

Manifolds represent a subspace of dimension m embedded in a space of dimension n, 

where m < n  . Therefore, a manifold represents a surface in real space such as the surface 

of a sphere, which has dimension m=2 in space The term ‘invariant manifold’ refers to 

a manifold to which the motion of a paiticle is bound for all time [Jordan and Smith, 

1999].

Three classes of manifold that will be investigated are stable, unstable and centre 

manifolds. Halo orbits represent centre manifolds in the three-body dynamics problem. 

Trajectories which wind-off and wind-onto the centre manifold, asymptotically, represent 

stable and unstable manifolds of dimension m=I. An invariant manifold surface of 

dimension m=2 can be generated by numerically identifying a series of stable and unstable 

manifolds around the halo orbit. This surface of stable invariant manifolds represents 

possible transfer trajectories for insertion to a halo orbit from near to the central body. An 

individual transfer trajectory can be described as a sub-manifold of a 2 dimensional 

invariant manifold surface [Folta, 2004].

A heteroclinic connection exists between the stable and unstable manifolds winding on and 

off halo orbits around the Lj and Lz Lagrange points. Figure 1-4 shows the intersection 

between stable and unstable manifolds in the Sun-Jupiter system winding off halo orbits
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around Li and Lz, produced by Koon, Lo, Marsden and Ross [Koon et al, 1999]. Transit 

orbits refer to those inside the tube and non-transit orbits to those outside the tube. The 

manifold tubes act as a separatrix which defines the boundary between transit orbits and 

non-transit orbits [Gomez et al, 2004]. The tubes are generated by numerically identifying 

unstable manifolds which wind off the Lz halo orbit and pass near to the central body. 

Stable manifolds, with matching energy to the unstable manifolds, which wind onto a halo 

orbit around L; are identified starting near to the central body. These surfaces represent 

possible transfer trajectories from halo orbits at Lz to halo orbits at Lj. Similarly, a 

heteroclinic manifold surface connecting halo orbits ai'ound Li to halo orbits around Lz can 

be generated by numerically identifying an intersection between the stable and unstable 

manifolds.

Transit orbits, which pass through the manifold surface, offer the possibility of low energy 

transfers between the exterior and interior region of a planetary Hill surface. During 1991, 

the Japanese Hiten spacecraft used a transit orbit to achieve ballistic capture at the moon 

with a lower Av requirement than offered by a direct Hohmann transfer [Belbruno and 

Miller, 1993]. Belbruno demonstrates that stalling from a 200km altitude Earth orbit, 

transfer to a 100km altitude lunar orbit with ballistic capture is achievable requiring 25% 

less Av than performing a Hohmann transfer manoeuvre at the expense of an increase in 

transfer time [Belbruno and Carrico, 2000].
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Figure 1-4 Invariant manifold surface produced for the Sun-Jupiter system [Koon et al, 1999]

10



The lunar ballistic transfer trajectories are identified by first generating stable manifolds in 

the Sun-Earth three body system. Manifold surfaces which lead to lunar capture ai’e 

investigated in the Earth-Moon three-body system and the point where both sets of 

manifolds interact is determined. By connecting the manifold surface and selecting a 

trajectory that meets the mission Av and duration requirements, a possible ballistic transfer 

from low Earth orbit to a low lunar orbit can be determined. Treating the problem as two 

coupled three-body models offers a good preliminary analysis of the system dynamics but 

further analysis is then required by performing numerical integration of the 4-body 

problem to minimise the required trajectory corrections during an actual mission [Koon et 

al, 2001a].

Koon, Marsden, Lo and Ross extended the work on ballistic capture and escape via the 

weak stability boundary in the Jupiter system and identified a possible trajectory for low 

Av exploration of the Jovian moons Europa, Ganymede and Callisto. By independently 

identifying ballistic capture and escape trajectories in the Jupiter-Europa, Jupiter- 

Ganymede and Jupiter-Callisto three body systems, trajectories which lead to temporary 

capture at these moons are identified. After escape from the moon, the spacecraft follows 

a planet-centred orbit with complex gravitational perturbations due to the presence of other 

moons. Using a combination of gravity assists and small impulsive manoeuvres the 

capture and escape trajectories at each moon can be patched forming a complete grand tour 

of the Jovian system. The tour could be achieved with a Av of 22ms'^ at the expense of a 

long mission duration [Ross et al, 2003].

Intersections between the manifold surfaces passing through the Lagrange points of 

planetary systems gives rise to the so called Inteiplanetary Superhighway. This complex 

network of dynamical pathways facilitates transfer of comets, asteroids and zodiacal dust 

throughout the solar system [Lo and Ross, 2001]. These pathways led comet Shoemaker- 

Levy 9 to a collision with Jupiter during July, 1994. Also, the comets Oteima and Gehrels 

3 frequently transfer between the exterior and interior regions of Jupiter via the 

heteroclinic connection of Li and Lz. These comets exhibit a mean motion resonance of 

3:2 when interior and 2:3 when exterior to Jupiter’s orbit [Koon et al, 2001b].
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1.4.3 Lagrange point missions

1.4.3.1 ISEE-3 spacecraft

Periodic halo orbits are beneficial at the Sun-Earth Lj Lagrange point to ensure the 

spacecraft remains outside the solar telemetry exclusion zone. Communication with the 

spacecraft is restricted within this region due to solar radio interference. To avoid this 

exclusion zone, the first Lagrange point orbiting spacecraft ISEE-3 (International Sun 

Earth Explorer-3) was inserted onto a halo orbit around L; during 1978, illustrated in Fig 1- 

5. The exclusion zone has an angular radius of 3.5°, which conesponds to a radius of 

90,000 km radius at Lj [Farquhar et al, 1977].

The ISEE-3 orbit dimensions were selected such that the z-axis amplitude was 120,000 km 

with corresponding y-axis amplitude of 666,000 km to avoid the exclusion zone. 

Stationkeeping costs required a Av of less than 10 ms'^ per year during the four year period 

the ISEE-3 spent at the Li halo orbit [Farquhai’, 2001].
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Figure 1-5 ISEE-C Insertion to halo orbit at L; [Farquhar, 2001]
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1,4.3.2 MAP spacecraft

MAP (Microwave Anisotropy Probe), the first L2 orbiter mission, was launched during 

2001. The mission aim is to map the cosmic background radiation. The Lissajous 

trajectory at L2 offers an unintenupted view of space as the Earth, moon and Sun are 

always behind the spacecraft [Bennet et al, 2003]. Insertion to the orbit used lunar gravity 

assists to lower the Av requirement. The time elapsed between launch and arrival at the 

nominal orbit was approximately 3 months and the planned mission duration was 2 years. 

Figure L6 shows a schematic of the trajectory used to deliver MAP to the desired 

Lissajous orbit. The spacecraft still remains in the Lissajous trajectory 4 years after 

launch.

Lunar qrfjitTop View

Earth
Phasing loopsTo Sun

L 5 million km

Side View

To Sun

Figure 1-6 MAP spacecraft trajectory for insertion to L2 Lissajous orbit 

Image from http://map. gsfc. nasa. gov/index, html

1.4.3.3 Genesis mission

Also during 2001, the Genesis spacecraft was inserted into a halo orbit around Lj. A 

‘heteroclinic-like’ trajectory was identified which would deliver the spacecraft to a halo 

orbit around Lj and facilitate return to the Earth via an unstable manifold with low Av 

requirements, as shown in Fig 1-7 [Marsden and Ross, 2005]. Genesis is the first mission 

to be fully designed using dynamical systems theory and could not have been developed 

using a patched conic approach [Serban et al, 2002].
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From its vantage point at Lj, the spacecraft collected samples of solar wind plasma 

particles on a series of metallic and silicon wafers. The mission objectives were to return 

the collected solar wind particles to Earth for extensive analysis providing information into 

the origins of the universe. As the spacecraft passed within the vicinity of the Earth during 

September, 2004, a sample return capsule was released. Meanwhile, the Genesis 

spacecraft returned to the Lj region and escaped into the interior region of the Earth-Sun 

system.

Similar non-Keplerian orbits and transfer trajectories will be investigated around artificial 

libration points generated using a constant axial acceleration provided by a solar sail.
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Figure 1-7 The Genesis trajectory centred on the Earth [Serban et al, 2002]
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1,5 Solar Sailing

1.5.1 Solar sail concept

The concept of solar sailing is accredited to Konstantin Tsiolkovsky and Friedrich Tsander 

who suggested, during the 1920s, that the pressure of sunlight could be used to “propel 

large mirrors and attain cosmic velocities” [Tsander, 1924]. Since then, several authors 

have considered solar sails as a viable means of propulsion which could enable many 

exotic, high-energy space missions not achievable with conventional propulsion systems. 

Garwin [1957] published a paper demonstrating that a solar sail could be used to escape 

from an Earth orbit by strategically furling and unfurling the sail to increase the orbit 

angular momentum. Tsu [1959] demonstrated the application of solar sails for 

interplanetary travel using an approximate spiral trajectory.

Since then, there have been many studies investigating applications of solar sails. 

Columbo [1961] and Farquhar [1970b] demonstrated that small area solar sails could be 

applied to provide control of halo orbits around the Lagrange points. The potential offered 

by solar sails for planetary and small body sample returns has been investigated by many 

authors including Leipold [1999; 1996], Seboldt [2003], Dachwald [2003], Macdonald 

[2004] and Hughes [2004].

Mclnnes [1994; 1998a; 1999b], Forward [1991] and Morrow [2001] have demonstrated 

that solar sails can be used to generate artificial libration points in the circular restricted 

three-body problem. These artificial equilibria are of interest since the solar sail is being 

used to provide new vantage points for observation, rather than as an efficient means of 

transferring payloads between orbits.

Solar sails require a large gossamer structure with a reflective surface in order to intercept 

a flux of photons and so generating thrust. The sail consists of a suitable substrate, such as 

Mylar or Kapton, which is required to be of low areal density and resistant to both tears 

and ‘flex crack’. The substrate, with thickness of order 1-2 jam, is folded and stored during 

launch. Various designs of solar sail have been proposed including square sail, circular 

sail and the heliogyro [Wright 1992].
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The substrate is coated with a thin layer of aluminium, of order 100 nm, to provide a 

reflective surface. Aluminium is selected due to its relatively low density of 2.70 gcm'^ 

and reasonably high melting point of 933 K. The aluminium coating is also reflective over 

a wide range of the optical spectrum, including UV wavelengths. This is important to 

prevent degradation of the substrate due to UV exposure after sail deployment. Kapton is 

less susceptible to degradation caused by exposure to UV radiation than Mylar. The 

substrate can be coated with a thin layer of aluminium using vapour deposition. This 

technique involves vapourising aluminium in a vacuum chamber with the substrate 

positioned below. The aluminium atoms condense on the substrate surface fonning a thin, 

reflective layer. To prevent the sail surface heating significantly, it is necessary to coat the 

rear of the sail with a high emissivity film to radiate heat. A rear coating such as 

chromium enables passive control of the sail surface temperature.

A reduction of the sail mass increases the achievable acceleration. Possible techniques to 

reduce the sail mass include removal of the substrate after the sail is deployed or 

perforation of the sail film. Scaglione considers two methods which could be used to 

separate the aluminium layer from the substrate - chemical etching or UV degradation of a 

buffer layer [Scaglione and Vulpett, 1999; Genta and Brusa, 1999].

Chemical etching makes use of atomic oxygen which is abundant (10^ atoms/cm^) at 

200km - 600km altitude [Peters et al, 1986]. Exposed polymer surfaces are etched by the 

oxygen atoms due to the low activation energy required for reaction to occur. Using this 

method, the substrate could be removed after solar sail deployment in a low Earth orbit to 

obtain an ultra-thin metal sail of lOOnm thickness. Alternatively, Scaglione considered the 

use of a thin buffer layer, which is susceptible to UV degradation, between the aluminium 

coating and the substrate. A suitable buffer candidate is DEC (Diamond Like Carbon) 

which is a meta-stable solid consisting of amorphous carton. When exposed to UV 

radiation, the DLC layer degrades until separation of the substrate from the reflective sail 

film is achieved.

Another technique to improve the solar sail performance, proposed by Dyson and Forward 

is to reduce the solai’ sail mass by perforating the sail film. A significant reduction in 

reflectivity is not experienced provided the perforations have a diameter smaller than the 

wavelength of the incident photons [Forward, 1985].
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1.5.2 Solar sails -  current technology

A range of engineering issues have yet to be overcome before the potential of solar sails 

can be realised. A space demonstration of solar sail technology is required to enable future 

science missions. Deployment of large gossamer structures in space has been thoroughly 

investigated but there is a lack of successful demonstrations.

A solar sail mission feasibility study was conducted by collaboration between DLR 

(German Aerospace Centre) and JPL (Jet Propulsion Laboratory). The mission was known 

as GDIS SEE (Orbital Demonstration of an Innovative, Solar Sail driven Expandable 

structure Experiment) and aimed to demonstrate and validate solar sail technology. The 

solar sail structure consisted of a 40m x 40m square sail supported by deployable booms 

attached to a central hub. The payload is connected to the sail via a 10m gimbaled boom. 

The study considered actuating steering by controlling the position of the gimbaled boom 

to off-set the sails centre-of-pressure with respect to the centre-of-mass, producing steering 

torques. The total mass of the sail and payload was estimated as 77.5 kg. The sail areal 

density of 48.4 gm"  ̂would enable an acceleration of 0.17 mms'^. After deploying the sail 

and demonstrating attitude control, the mission goal would be to orientate the solar sail 

relative to the Sun such that it spirals outwards from the Earth reaching lunar distance 

within 550 days [Leipold, 1999].

Although the GDIS SEE mission has not yet been realised, the feasibility study led to a 

ground test of a solar sail during 1999 by DLR and ESA (European Space Agency). The 

ground deployment was successful and tested sail fabrication techniques as well as 

demonstrating basic principles such as folding and storage of a solar sail. Light weight 

CFRP (Carbon Fiber Reinforced Plastic) booms of 14 m length were used to support the 

sail. A novel approach to simulate Og conditions was employed using helium filled 

balloons to support the weight of the solar sail booms [Leipold, 2003].

The sail consisted of 4 triangular segments each of area 82.6 m^. To test and compare the 

properties of various sail substrates, two of the segments were manufactured using a 

7.5 jutm Kapton substrate, one consisted of 4 \im PEN (polyethylene naphthalate) and the 

other of 12 \im thick Mylar. A thin Mylar film of 3 jam thickness was also deployed by 

JPL with the required area specified by DLR.
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The ground deployment investigated several substrate materials for the sail. Kapton is 

suitable as it is space qualified and UV resistant but is only available in sheets of thickness 

down to 7.5 p,m. The PEN film can be produced with lower thickness than Kapton, 

reducing the sail mass, but might not be suitable at high temperatures [Seboldt, 2003]. 

Extrapolating the sail size to the 40m x 40m sail proposed for ODISSEE, a total sail 

loading of 35 gm'^ would be achievable for a 4 [tm thick PEN sail film including the boom 

and deployment module masses. The redundant deployment module can be jettisoned after 

the sail is fully deployed reducing the sail loading to 19 gm"  ̂ [Leipold, 2003].

On the 9‘̂ ' August 2004, the Japanese space agency JAXA successfully deployed two 10m 

diameter solai' sails. These solar sails were released from an S-310 rocket at altitudes of 

122 km and 169 km. The sails were fabricated using 7.5 [im Kapton and demonstrated two 

different deployment methods -  Clover and Fan. After deployment, the orbit rapidly 

decayed and the solar sails ‘burnt-up’ in the atmosphere.

Recently, an attempt by a privately funded organization, The Planetary Society, to deploy 

the first solar in an orbit at 800 km altitude was performed. Cosmos 1 was launched on 

June 21^, 2005 after several delays. The sail configuration was an 8 bladed heliogyro with 

total sail area of 600 m^. The sail was manufactured using 5 [tm thick PET (polyethylene 

teraphtalate) with areal density of 11 gm‘̂  [Friedman, 2004].

The aim of the mission was to demonstrate sail deployment and attitude control. The 

mission objective was to use the sail to spiral outwards from the Earth. The solar sail was 

launched using a Volna rocket, a converted ICBM (Inter-Continental Ballistic Missile). 

This was launched from the submarine Borisoglebsk of the Russian Northern Fleet in the 

Barents Sea. Unfortunately, the rocket’s stage failed 83 seconds into the flight at an 

altitude of 75 km. The rocket including payload continued on a parabolic trajectory 

eventually falling into the sea 6 minutes after launch [Friedman, 2005].

Proposed near-term missions which could be achieved using solar sail technology include 

the Solar Polar Orbiter, the Geostorm and the Geosail mission. These missions will be 

briefly outlined including the solar sail technology requirements. The Geosail mission 

uses a solai’ sail to precess an elliptical Eaith orbit by 1° per day so that the solar sail stays 

continuously within the geomagnetic tail. This would enable scientific investigation of the 

plasma sheet and give better understanding of reconnection processes. Without the solar
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sail, the spacecraft would remain within the magnetotail for only one month per year as the 

Earth orbits the Sun.

Macdonald and Mclnnes [2003] performed a study to identify the solar sail requirements 

and payload mass for the mission. The payload bus mass was estimated as 74.8 kg 

including science payload. The specified sail area is 1500 m^ manufactured using a PET 

film of 3.5 |im thickness. The total sail assembly mass is 54.6 kg with total sail areal 

density of 86.3 gm" .̂ The solar sail is required to achieve an acceleration of 0.1 mms'^.

The Geosail mission is a good precursor to more advanced solar sail missions, although 

SEP (Solar Electric Propulsion) could also be used to achieve the mission, with the 

drawback that the mission duration is limited by the stored Xenon reaction mass. A more 

exotic mission which could only be achieved using the continuous acceleration provide by 

a solar sail is Geostorm, proposed by JPL in 1996. The aim of this mission is to use a solar 

sail to generate an artificial libration point sunwards of the Lj Lagrange point. The 

suggested libration point position 0.02 AU sunwards of the Earth requires a sail 

acceleration of 0.31 mms'^ [Yen, 2004].

The mission aims to provide an advance warning of increased solar wind charge density 

caused during Coronal mass ejections (CME) which leads to magnetic storms. The 

warning time available at L; is 30 minutes to 1 hour. The ACE (Advanced Composition 

Explorer) and SOHO (Solar Heliospheric Observatory) currently orbit this location. A 

solar sail can be used to control a halo orbit around an artificial libration sunwards of L; 

providing an increase in warning time by a factor of 2-3 [West and Derbes, 2000].

A solar sail can also be used to maneuver to high inclinations for the Solar Polar Orbiter 

mission. High inclination orbits require large Av which makes solar sails a suitable 

candidate. This mission would enable continuous observation of the solar poles. After 

deployment, the solar sail can be used to spiral inwards to a distance of 0.48 AU from the 

Sun. The solar sail is then used to crank the orbit to an inclination of 82°, taking advantage 

of the increased solar radiation pressure nearer to the Sun. The required sail area is 

23,000 m^ using a sail manufactured from 2 \xm thick CP-1 film. The total mission 

duration is calculated as 5 years and the solar sail characteristic acceleration is 0.42 mms'^ 

[Mclnnes, 2004].
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1.5.3 Solar sail acceleration

Solar sails obtain thrust by intercepting a flux of photons, as shown in Fig 1-8. Incident 

photons impart their momentum to the sail and the reflection results in an equal reaction 

force, with the resulting thrust directed normal to the sail surface. Maxwell predicted the 

phenomenon of radiation pressure from his electromagnetic equations in 1879. This was 

confirmed experimentally by Peter Lebedew during the early 1900s using a torsion balance 

experiment.

Mclnnes [1999a] outlines two complete derivations of acceleration due to solar radiation 

pressure exerted on a flat reflecting sail surface using both a quantum and electromagnetic 

description of the radiation properties. The intensity of solar radiation at distance R from 

the Sun is defined as

where is the solar luminosity and W  is the radiation intensity. This represents the power 

per unit area on the surface of a sphere with radius R. The energy transported across a 

cross sectional area A for time period At can be expressed as

AE = WAAt (1.4)

The momentum, Ap, of a photon is related to its energy as

Ap=—  (1.5)
c

where c is the speed of light. The pressure, P, exerted by the photon on a surface of area A 

is then

A ^ A t
(1.6)

Substituting Eq (1.5) and Eq (1.4) into Eq (1.6) provides the relationship between solar 

radiation pressure and solai' radiation intensity
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p  = TV (1.7)

Mclnnes [1999a] demonstrates that this relationship, derived using a quantum description 

of photons, agrees with the relationship obtained using the electromagnetic wave 

description.

Figure 1-8 shows the forces acting upon the sail surface in the ideal sail case, which 

assumes the sail surface is flat and perfectly reflecting. The force resulting from the 

photons incident on the sail surface and the reaction force caused by photon reflection is 

defined as

fj = PA(Vj •n)v. 

fr =-FA (V ;-n)v,

(1.8.1)

(1.8.2)

where P is the radiation pressure and A  is the sail surface area.

The vector identity Vj -  = 2(v; n)n can be used to express the force directed normal to

the sail surface as

F = 2PA{y. - n f  n (1.9)

Sail

Incident
Photon

Reflected
Photon

Figure 1-8 Incident and reflected photons on a flat sail
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The dot product can also be evaluated as Vj -n = cos<3f where a  represents the sail pitch 

angle. The sail pitch is the angle between the sail surface normal and the Sun-line. The 

expression for radiation pressure provided in Eq (1.7) can be substituted into Eq (1.9). This 

leads to the expression for solar sail acceleration as

a = ^ cos^cm (1.10)

where G is the gravitational constant, Rs is the separation distance between the solar sail 

and the Sun, Ms is the solar mass and y? is a dimensionless parameter known as the sail 

lightness number. This parameter represents the ratio of solar radiation pressure induced 

acceleration to gravitational acceleration and is defined as

13 = ----- ^ -----  (1.11)
iTKGM.a

where Ls represents the solar luminosity, c is the speed of light and sail loading parameter 

o - m i  A  where m is the total sail mass.

Equation (1.10) represents the acceleration case for an ideal solar sail which assumes no 

non-specular reflections. The thrust is directed normal to the sail surface in the anti-Sun 

direction and there are no transverse components of thrust due to diffuse reflection. For 

comparison, an acceleration model can be derived which includes non-specular reflection 

for a partially reflecting flat sail.

Figure 1-9 shows a non-perfectly reflecting solar sail [Wie, 2002]. The actual thrust 

direction is denoted by m, the sail normal direction denoted by n and the sail transverse 

direction by t. The reflection index, ps, represents the fraction of photons which are 

specularly reflected resulting in a reaction force directed normal to the sail surface. The 

total force exerted on the sail is defined as

F = F„n + F;t (1.12)

where the force components are determined as
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= PA(1 + p,)cos^ a  

Ff -  PA{1 -  ) cos 6̂  sin a

(1.13.1)

(1.13.2)

Substituting Eq (1.7) enables the acceleration, a, to be expressed as

a =  — — ^ ( I  + ?7jcos cm -I r^(l-??)cosf%sincd (1.14)

where the thrust direction is denoted by m [Mclnnes, 1999b]. The angle between the 

thrust vector and the sail normal vector is defined as

tan Y -  ^ ^  tan a  
(1 +  A .)

(1.15)

The solai' sail acceleration can be used to generate artificial libration points in the two and 

three-body problems. These problems including solar radiation pressure will be briefly 

investigated to compare the ideal and non-perfect sail acceleration models.

Sail

mIncident
Photon

Reflected
Photon

Figure 1-9 Schematic representing photons incident on a non-perfectly reflecting sail
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1.5.4 Artificial libration points

The circular restricted three-body problem represents the dynamics of a negligible mass in 

the vicinity of two primary bodies. The two primaries orbit around a common barycentre 

in a circular motion, shown in Fig 1-10. The complete derivation for this model will be 

examined in greater detail throughout Chapter 3 and Chapter 4. In this section, it will be 

used to provide a comparison of the two sail acceleration models.

The circular restricted three-body problem is derived by Mclnnes [1998a] using a rotating 

reference frame with angular velocity co as

d \  _ dr—-  + 2mx hAU = a
d r  dt

where a represents the acceleration due to solar radiation pressure, r is the position relative 

to the barycentre and the pseudo-potential U is expressed as

(1.17)

where r i and V2  represents the distance of the solar sail from the Sun and Earth 

respectively. The angular velocity is directed perpendicular to the orbit plane of the two 

primaries, such that =

Sui arth

Figure 1-10 Schematic representing circular restricted three-body problem [Mclnnes, 1999b]
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In the case of a non-perfect solar sail, the thrust direction deviates from the sail surface 

normal by the center-line angle, y. Selecting a suitable sail lightness parameter and 

orientation, it is possible to generate artificial libration points [Forward, 1991]. A 

comparison is performed between the ideal and non-perfect reflectivity models for 

artificial libration points which lie in the x-z plane of the Sun-Earth three-body system.

It can be seen from Eq (1.16) that the direction of the solar sail acceleration a = VU/|VU| 

for an artificial equilibrium point. The acceleration components can be evaluated as

Fi F21

a. = 6 7 - ^ + / %  (1.18.2)

The magnitude of the acceleration is then determined as |a| = and the angle of

the sail thrust relative to the x-axis is calculated using tanO = a^ja^ . The angle of the 

Sun-line relative to the x-axis can be expressed as tan T  = z/yO so that the angle between 

the Sun-line and the thrust direction can be expressed as ^ = which is refeiTed to as

the cone angle.

As the solar sail thrust is generated using solar radiation pressure, the thrust vector must 

always be directed in the anti-Sun direction. This imposes a limit on the sail pitch angle 

- 7i l 2 < a < n l 2 . Figure 1-11 shows the region in the vicinity of the Earth where off-axis 

artificial libration points can be generated using an ideal solar sail. The L; and L2 

Lagrange points are also shown. The natural Lagrange points and their stability will be 

discussed in greater detail during Chapter 4. In the case of an ideal sail, it is clear that 

artificial libration points can be generated eaithwards of L2 and sunwards of Li.

In the case of the non-perfect sail model, the thrust direction relative to the sail normal 

varies as pitch angle is increased. The cone angle is calculated from the acceleration 

components as discussed previously. The required pitch angle of the sail to achieve this 

thrust direction is determined as a  = 6 -\-y, The centre-line angle, y  can be expressed in

terms of the cone-angle ^  by substituting the relationship for pitch angle into Eq (1.15) 

[Molostov, 1992]. After some reduction, the relationship is obtained as follows
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tan x =
(l + yojtan^

1 - l - b : ^ t a n ^ 0 ( 1 . 1 9 )

A limit is imposed on the cone angle, 0, to avoid imaginary centre-line angles where

tan^ <  ̂ a '  
l - A  /

(1.20)

For the ideal sail case /%=!, which yields the expected pitch angle restriction 

~ n 1 2 < a  < n 1 2 required to ensure the thrust is always directed in the anti-Sun direction. 

Figure 1-12 shows the region of possible solutions achievable using a non-perfect solar sail 

with/?v=0.9. Substituting this reflective index into Eq (1.20), it is clear that the limit 

imposed on the thrust direction for the non-perfect solar sail is 6^64.2°. This reduces the 

achievable levitation distance above the ecliptic. Reduction of the reflective index value 

subsequently reduces the maximum levitation distance sunward of L2.

0.015

Forbidden

0.005

-0.005

0.995 1.005
X. AU

- 0.015
0.985  0.99 1.015

Figure 1-11 Possible libration points in the Earth-Sun system for ideal flat solar sail 

{Solutions possible — Light region; No solutions — Dark region)
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Figure 1-12 Possible libration points in the Earth-Sun system for partially reflecting flat solar sail (p^O.9) 

{Solutions possible -  Light region; No solutions -  Dark region)

1 . 5 . 5  S u n  d i s p l a c e d  n o n - K e p l e r i a n  o r b i t s

The continuous acceleration produced by a solar sail can be used to displace a circular 

orbit above the ecliptic plane. A dynamical model can be developed using the two-body 

problem, as demonstrated by Mclnnes and Simmons [1992a]. A thorough analysis of non- 

Keplerian orbits developed in a two-body context is provided in Chapter 2.

The two-body problem models the gravitational interaction between the Sun and the solar 

sail including the acceleration due to solar radiation pressure. Figure 1-13 shows a 

schematic of such a Sun displaced non-Keplerian orbit.

The two-body problem can be expressed as

r  = - ^ - F a (1.21)

27



where fis is the solar gravitational parameter and a is the acceleration due to solar radiation 

pressure. The radial position relative to the Sun is defined in the inertial frame as r, where

|r| -  -yjp^ + z^ . For the orbit shown in Fig 1-13, the two-body problem can be expressed in

a rotating reference frame with angular velocity O).

Representing the relative position to the Sun in the rotating reference frame as r , the 

velocity in the inertial frame can be evaluated as r  = r  + m x r . The acceleration in the 

inertial frame can be converted to the rotating frame using

r  = r-t-d>xr + 2(joxr + a ) x o x r (1.22)

Substituting into Eq (1.20) and assuming the angular velocity is constant, cb = 0, the two 

body equations can be expressed as

r  + 2 o ) X r + VU(r) = a (1.23)

where the pseudo-potential is formed by combining the centripetal term with the 

gravitational acceleration as follows

C /( r )= - i |(» x rP - /^
2 ’ ' r

VU(r ) -  ( 0  X  CO X  r - f - r

(1.24.1)

(1.24.2)

Sun-line

Sun >x

Figure 1-13 Sun-centred displaced orbits [Mclnnes, 1992a]
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The p- and z- axis directions are represented by the unit vectors ep and respectively. The 

position of the solar sail relative to the Sun can be expressed as r  = pQ  ̂+ ze  ̂ using 

cylindrical polar* coordinates. The angular velocity is directed normal to the plane such 

that CO = . The pseudo-potential from Eqn (1.23) can be expressed as

U (p,z)  = -]^{p(oJ

VU(A 2) = -  paP' + ̂
V M y

Gp +

r \  
pz

(1.25.1)

(1.25.2)

To achieve a circular orbit displaced a constant distance from the Sun, the velocity and 

acceleration components r  = r = 0 .  The required sail acceleration a = VU(/?,z) and the 

sail normal direction is defined by n = VU/|VU|. The pitch angle required to generate a 

circular orbit displaced above the ecliptic is expressed as

l E ï I ï M
 ̂  ̂ r - VU( A^ )

(1.26)

The angular velocity of a circular orbit, with radial distance r  from the central body can 

be expressed as co^ = . Substituting this term into Eq (1.25) obtains

tan(a) = pzQ)
CO. k+y)-p'^co^

(1.27)

Mclnnes [1992a] extracts a factor of from the denominator, which after some

reduction leads to the following expression for pitch angle

tan(a) = [z! p){col co^y 
1 + (z/ p')—[col (O^f

(1.28)

Similarly, the sail lightness number required to generate a circular displaced orbit can be 

determined by re-aiTanging Eq (1.10) to obtain
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= (1.29)
P  (r-n)

After some reduction this yields the scalar foim

P{p^z) =
2

1 +
z

These expressions will be used to determine the solar sail pitch angle and lightness number 

required to generate a displaced Sun-centred circular orbit. These values can then be used 

to determine the required sail acceleration and loading.

It is possible to generate an orbit displaced above the ecliptic plane which has the same 

orbit period as a Keplerian body. Assuming the planet has a circular orbit around the Sun,

the angular momentum can be defined as 69 = , where Rp represents the length of the

semi-major axis. Figure 1-14 to Figure 1-17 represent sail loading contours for a range of 

orbit radius and displacement distances for each of the inner planets -  Mercury, Venus, 

Earth and Mars. The left hand figures, (a), assume the ideal solar sail case where the thrust 

vector is directed normal to the sail surface. The right hand figures, (b), represent a non­

perfect solar sail with reflectivity /%=0.9.

For the ideal sail case, the sail lightness number and pitch angle are calculated for each p  

and z value using Eq (1.28) and Eq (1.30). The sail loading parameter is then calculated by 

rearranging Eq (1.11) and substituting the lightness number value. The S surface 

represents the constraint for acceleration directed in the anti-Sun direction. The sail pitch 

angle is constrained by - n  ! 2 < a < n  12, where S defines the surface r  • n = 0 . Using Eq 

(1.29), it can be shown that the constraining surface S = p ! Ÿ -  p^ûP .

It is clear in the case of a non-perfect solai* sail, the maximum levitation altitude achieved 

for any loading parameter is less than the ideal sail case. This reduction becomes more 

pronounced the greater the levitation above the ecliptic. Also, the S contour, which 

represents the constraint on the orbit pai*ameters, is more acute in the case of a non-perfect 

solar sail indicating that achievable orbit radius is reduced as levitation height is increased.
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Figure 1-14 Sail loading parameter contoui's for Mercury synchronous orbits

{1 -  6gm"^, 2 -  5gm’̂ , 3 -  4gm'^, 4 -  3gm‘̂ , 5 -  2gm'^, 6 -  Igm'^}
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Figure 1-15 Sail loading parameter contours for Venus synchronous orbits

{1 -  6gm'^, 2 -  5gm'^, 3 -  4gm“̂ , 4 -  3gm '\ 5 -  2gm'^, 6 -  Igm'^}
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Figure 1-16 Sail loading parameter contom s for Earth synchronous orbits
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Figure 1-17 Sail loading parameter contours for Mars synchronous orbits
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It has been demonstrated that a non-perfect flat solar sail results in deviation of the sail 

thrust vector from the sail surface normal due to transverse acceleration components. The 

deviation angle is significant when the sail is pitched at large angles relative to the Sun- 

line. For small pitch angles, the ideal and non-ideal cases closely agree. As this thesis will 

mainly consider on-axis artificial libration points, the ideal sail model will be assumed 

when calculating sail acceleration requirements.
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1.6 Objectives of thesis

The objectives of this thesis aie to:

Develop appropriate dynamical models representing the motion of a solar sail 

in the vicinity of a planet. These models should include both the gravitational 

influence of the relevant bodies and the acceleration due to solar radiation 

pressure.

Identify artificial libration points using these dynamical models including the 

acceleration due to solar radiation pressure. The stability of these libration 

points can be determined using eigenvalue analysis methods.

Generate non-Keplerian orbits around artificial libration points. This will 

include both Lissajous and halo orbits demonstrated around the L/ and L2 

Lagrange points of the three-body problem. The stability of these orbits will 

be evaluated using eigenvalue and energy analysis methods.

Identify manifolds associated with the non-Keplerian orbits which can be 

utilised for orbit insertion from a point near to the central body.

Investigate solar sail station-keeping techniques to prevent escape from the 

desired orbits after insertion. Two possible methods to control the solar sail 

acceleration include variation of the solar sail area and variation of the solar 

sail attitude.
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1.7 Outline of thesis

The problem of highly non-Keplerian orbits will be investigated in Chapter 2 using a two- 

body context by modeling the dynamics of a solar sail in the vicinity of planet. The 

assumption is made that the solar sail is orientated such that the sail normal vector is 

parallel to the Sun-planet axis. It will be demonstrated that a constant axial force due to 

solar radiation pressure can produce a circular planet displaced orbit in the anti-Sun 

direction. The stability of these orbits will be analysed using both a linear approximation 

of the equations of motion and a non-linear analysis.

New families of highly perturbed periodic orbits are then generated by perturbing the 

constant acceleration. This new family of orbits provides a set of homoclinic manifolds 

which can be used for orbit insertion to a circular displaced orbit from a point near the 

Earth. It is demonstrated that these manifolds are constrained to a paraboloid surface 

which enables the closest approach distance to the Earth to be determined explicitly. Solar 

sail station-keeping techniques will be investigated, which include sail surface area 

variation or sail pitch angle variation, to prevent escape after insertion to an unstable 

displaced circular orbit.

In Chapter 3, the problem will be further developed in a three-body context using Hill’s 

approximation to the three-body problem, including the acceleration due to solar radiation 

pressure. Hill’s approximation includes the coriolis and centripetal terms due to the planet 

orbiting the Sun and also includes solar tide terms due to the gravitational influence of the 

Sun on the sail. Similar analysis is performed, identifying circular displaced orbits in the 

Sun-Earth-sail problem. As expected, it is found that when the displaced orbits are 

relatively close to the Earth, the two-body analysis provides a good approximation of the 

dynamics of the problem. When the solar sail is displaced far from the Earth, perturbations 

due to the solar tide terms result in orbit instability.

The previously developed two-body control methods will be applied to provide orbit 

control at circular displaced orbits generated using Hill’s equations. The perturbed 

homoclinic manifolds will also be generated, again enabling insertion from a point near to 

the Earth.
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Quasi-periodic Lissajous orbits around artificial libration points will then be explored in 

the context of Hill’s approximation. These trajectories are generated by linearising Hill’s 

equations about the libration point. By suppressing real eigenvalues, which lead to escape, 

an oscillatory solution can be derived. This yields initial conditions which converge to a 

Lissajous orbit. During numerical integration including the nonlinear terms, the solar sail 

eventually escapes the nominal Lissajous orbit. Solar sail control techniques will be 

applied to prevent escape from the nominal Lissajous orbit after insertion.

In Chapter 4, the problem will be further extended to include the barycentric motion of the 

Sun and Earth using the circular restricted three body problem. In the circular restricted 

problem the Li and L2 Lagrange points are not symmetrically located either side of the 

Earth, unlike the case of Hill’s approximation. For comparison, the elliptical restricted 

problem will also be derived using a power series to represent the variation of the 

sepai’ation between the primaries due to the eccentric motion of the planet. Artificial 

libration points will be identified in both dynamical models using the solar sail 

acceleration.

In the elliptical problem, there is an oscillation of the libration point position due to the 

varying sepai’ation distance between the primaries. This oscillation perturbs the behaviour 

of a spacecraft orbiting a libration point. The solar sail controller must be able to dampen 

these perturbations to provide complete orbit control.

Richardson’s method is applied to develop a third order approximation of the equations of 

motion. A third order solution is derived using the Lindstedt-Poincaré perturbation method 

to remove secular' terms which lead to unbounded solutions. The third order solution 

yields initial conditions which converge to a periodic halo orbit about the libration point. 

A differential coiTection method is applied to generate a periodic halo orbit by numei*ical 

integration of the non-linear circulai' restricted three-body equations.

The precision of the halo orbits generated is reasonable to assume they are periodic for one 

orbit period. However, inaccuracies during numerical integration due to neglected higher 

order terms lead to gradual escape from the nominal orbit. A three-axis solar sail control 

method is developed which provides full controllability at the nominal orbit. This 

controller combines the solar sail area variation and attitude variation methods which were 

applied to demonstrate control of the circular displaced orbits and Lissajous trajectories. A 

combination of these control techniques enables the solar sail thrust magnitude and
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direction to be controlled to drive the sail towards the nominal orbit. The control technique 

is demonstrated at halo orbits in the circular restricted case sunwards of the L2 and L] 

Lagrange points. Control of halo orbits in the elliptical restricted problem is also 

demonstrated.

The two-centre problem, a special case of the restricted three-body problem investigated 

by Euler, is considered in Chapter 5 as a possible method to examine libration points 

between stars. This problem assumes the two primaries are fixed in the inertial frame, thus 

the libration points exist where the gravitational acceleration due to the primary bodies 

cancel. This investigation considers the stability of these libration points and the 

possibility of interstellar dust becoming temporarily trapped between stars.

The two-centre approximation is valid provided the relative stellar motion is negligible 

during the period of particle trapping. To validate this approximation, several cases will be 

examined including the effects of stellar radiation pressure, the gravitational perturbation 

due to the presence of a third star and the perturbations due to relative stellar motion. Halo 

orbits around these libration points will be investigated in both the gravitational and photo- 

gravitational cases. The stability of these orbits is investigated to determine the likelihood 

of interstellar particles becoming trapped at these orbits.

Homoclinic manifolds are investigated which wind off and onto the unstable halo orbit. 

These manifolds could represent transfer trajectories for particles ejected by one star 

system and transfeiTed to another. An explicit solution is derived by converting the 

problem to confocal elliptical coordinates. It is demonstrated that the homoclinic 

manifolds are bound to ellipsoid surfaces.

Finally, in Chapter 6 the solar sail dynamical models are used to investigate some feasible 

missions which could be enabled by solar sail technology. These missions include 

delivering a science payload to a circular displaced orbit 30 Re (Earth Radii) from the 

Earth using a high performance solar sail. The objective of this mission would be to 

provide continuous observation of the magnetic and electrodynamics in the magnetotail 

and examine the processes of magnetic reconnection. The next mission considers a 

trajectory which could deliver a solar sail to a halo orbit sunward of Lj. This mission 

outlines an initial delivery of an undeployed solar sail to a Lissajous orbit at L;. Upon 

anival, the solar sail is then gradually deployed and slowly spirals sunwards to a new halo 

orbit. Positioning a science payload nearer to the Sun enables advance warning of coronal
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mass ejections which lead to magnetic storms. Both missions will be designed starting 

from a low Earth orbit using a Hohmann transfer to deliver the craft to the selected transfer 

trajectory. The Av and sail performance requirements will be discussed. It will be 

demonstrated that the sail requirements for these missions are achievable with near-teim 

technology.
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Chapter 2 Two-body Non-Keplerian Orbits

2,1 Two-body problem

The two-body problem mathematically models the gravitational forces between two 

masses. In Chapter 1 it was demonstrated that the two-body problem can be used to model 

the gravitational influence of the Sun acting on a solar sail. Using the constant acceleration 

provided by the sail, a planet synchronous orbit can be displaced above the ecliptic plane. 

Similar analysis can be performed using the two-body problem to model the dynamics of a 

solar sail in the vicinity of a planet or small body including the acceleration due to solar 

radiation pressure.

Using the constant thrust provided by a solar sail, a continuum of artificial libration points 

can be generated. Displaced non-Keplerian orbits can be generated around artificial 

libration points where the central body is not located on the orbit plane [Mclnnes, 1998b; 

1994; Forward, 1991]. The stability of non-Keplerian orbits will be investigated in a two- 

body context and possible station-keeping techniques will be examined.

The ideal sail model, derived in Chapter 1, will be assumed with the acceleration due to 

solar radiation pressure, a, defined as

a = -^ ^ c o s ^ tm  (2.1)

where P  is the sail lightness number, jUs is the solar gravitational parameter, R̂ - is the radial 

distance between the solar sail and the Sun. The pitch angle a  is defined as the angle 

between the Sun-line and the sail normal unit vector n.
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Solar sail

Sun

Planet

0=0 \

Figure 2-1 Schematic of two-body displaced non-Keplerian orbit

To generate a displaced non-Keplerian orbit, the solar sail is orientated so the force due to 

solar radiation pressure is directed in the anti-Sun direction with the sail pitch angle 

A constant acceleration displaces the orbit in the anti-Sun direction leading to a highly 

non-Keplerian orbit.

A schematic of a displaced non-Keplerian orbit in a two-body context is provided in 

Fig 2-1. As the orbit radius is much smaller than the separation distance between the Sun 

and sail, the Sun-line is assumed to be parallel to the z-axis. The />axis represents the 

radial distance from the z-axis with unit vector Cp and the z-axis represents the 

displacement distance from the central body with unit vector e%. The distance between the 

solar sail and the central body is represented by the vector r  = ze^ + P®p > with magnitude

|r| = ^jz + p  . The direction of angular motion orientated around the z-axis is represented 

by the unit vector Cq where the angular position 0 = .

In the two-body problem, the solar tide gravitational terms and the centripetal effects of the 

Earth orbiting the Sun are ignored. Only the gravitational acceleration of the Earth acting 

on the solar sail is considered in this model. The total force, F, acting on the sail is 

composed of the gravitational attraction of the central body and the acceleration due to 

solar radiation pressure directed along the Sun-line

GMm
F = — — r + mae.^ (2.2)

r
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where G represents the universal gravitational constant, M  is the mass of the central body, 

m is the mass of the solar sail and the constant acceleration due to solar radiation pressure

directed along the z axis, a = .

The two-body equations of motion for the problem can be derived using the Hamiltonian 

method. The kinetic energy, T, can be written in cylindrical polar coordinates and the

potential energy can be derived using Eq (2.2) as V = -  jF.dr which obtains

where the transverse velocity component of the solar sail is defined in cylindrical polar 

coordinates as p O .

The two-body Hamiltonian, H, is analogous to the total orbit energy defined as H = T + F . 

The Hamiltonian can be represented by the cylindrical polar coordinate momenta terms 

= m i , P = mp  and Pq = m p ^ 6  such that

2 m

^ p 2 ^
p " + p > - ^

V P
^ - m a z  ( 2 . 4 )

r

where p  = GM is the gravitational parameter of the central body.

The equations of motion can now be obtained from the Hamiltonian using dH IdP ^-q  and 

dHjdq = -Pç , where q=(p, P,z). This results in the following equations of motion

p  = p 0 ^ - ^  ( 2 . 5 . 1 )

ë  = ( 2 . 5 . 2 )
P

pz + ct (2,5.3)
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These equations can be non-dimensionalised selecting the radius of the central body, L, as 

the characteristic length. The resulting characteristic time is defined as T = which

has the same effect as setting the gravitational parameter ju=l.

The angular momentum of the problem can be derived by re-aiTanging Eq (2.5.2) as

p ë  + 2 pÔ = - — (p^é) = 0  (2.6)
p d t

which demonstrates that p^Ô is constant. This constant is the component of angular 

momentum directed along the z-axis and is denoted by The non-dimensionalised 

equations can then be re-written in terms of the constant angular momentum as

P = ^ - A  ( 2 . 7 . 1 )
P |rf

0 = ( 2 . 7 . 2 )
P

z  =  - ^ + K -  ( 2 . 7 . 3 )
r

where /r represents the non-dimensionalised acceleration due to solar radiation pressure.

For a circular, planet displaced non-Keplerian orbit, the initial conditions require constant 

displacement distance z = 0 and constant radial distance p  = 0, Re-aiTanging Eq (2.7.1)

to obtain and substituting h ^ - p ^ 6 , the required angular velocity for a

circular orbit can be derived as

The required acceleration can be derived by re-aiTanging Eq (2.7.3) to obtain

« • = r | -  ( 2 . 9 )
r
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A series of contours representing the required acceleration and angular velocity for a range 

of nominal orbit displacement and radius are provided in Fig 2 -2  and Fig 2-3 respectively.

100

Q. 50

4 0

80 100
z

Figure 2-2 hip,z) acceleration contours for range of orbit displacement and radius 

Contoui's: 1) k = 0 . 0 1 ,  2) k = 0 . 0 0 5 ,  3) K = 0 .0 0 1 ,  4) k = 0 . 0 0 0 5 ,  5) k = 0 . 0 0 0 2 ,  6) K = 0 .0 0 0 1

100

=>■ 50

4 0

20

40 100
z

Figure 2-3 0  {p,z) angular velocity contours for range of orbit displacements and radii 

Contours: 1) (9=0.02,2) (9=0.009,3) (9=0.006,4) (9=0.004,5) (9=0.002,6) (9=0.001
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2.2 Stability analysis

2.2.1 Linear stability condition

Consider a displaced non-Keplerian orbit with nominal displacement distance Zo and radius 

po. The stability of such orbits can be investigated by applying a small perturbation to the 

nominal orbit conditions and observing the resulting trajectory. If the solar sail remains 

within the vicinity of the nominal orbit after the conditions are perturbed the orbit can be 

described as stable; escape indicates the orbit is unstable.

The resulting trajectory vaiiation due to small perturbations Ôp and Sz applied to the p -  

and z-axis respectively can be determined using Taylor’s theorem [Mclnnes, 1998a]. The 

functions /  (p, z) = p  and (/?, z) ~ z are related to Eq (2,7.1) and Eq (2.7.3) as

P r
(2.10.1) 

(2.10.2)

The equations can be expanded to first order about p  = p^^+Ôp and z=- z„+Sz  with the 

form

fp{po+SP’^o+Sl)= fp {p„ , Z J  +
^ 4 0p + a / .

dz

' d f A
dP^

8 p ^ ■9/C
dz _

Si
o

ÔI

(2.11.1)

(2.11.2)

A variational equation can then be obtained by noting that /(p ,,, = 0 which gives

d'^iôp) ^ 
dt^

dt^

%
dp

K
dp

Sp-\-
0

S p ^

%
dz

K '
dz

ÔZ

dz

(2.12.1)

(2.12.2)
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Treating the non-dimensionalised acceleration, at, and the orbit angular momentum, ĥ , as 

constants the partial derivatives can be evaluated as

9/ / 1 3 / 7/
9/7 _ Po*

3

9/ r i _  3/?„z„ _ \dfz]
dz _

9/ J -  J  +
dz J

3

(2.13.1)

(2.13.2)

(2.13.3)

The perturbations can be represented as a column vector 8Q = [(ÿ) enabling

Eq (2.12.1) and Eq (2.12.2) to be written in matrix form as

1 0 
0 1

Ô Q -
A i A 2 

A i A 2

Ô Q  = (2.14)

where the notation An, An,  A 2 1 , A 22 represents the partial derivatives df^ j d p   ̂ d fp jdz^  

d f j d p  and df^ jdz  respectively, evaluated on the nominal displaced circulai' orbit.

For a constant coefficient problem it can be assumed that ô Q  = Q „  exp(Àt) , where À is a 

constant. The two matrices on the left hand side of Eq (2.14) can be merged into one 2x2 

nonsingular matrix by substituting to obtain

^ ^ " A i  “ A 2

-  A21 -  A 2
= 0 (2.15)

The characteristic equation of Eq (2.15) has the form 

À ‘̂  -  ( A ^  +  A 2 2 )  +  ( A 1 A 2  ~ (2.16)

where X represents the eigenvalues of the matrix. For a stable orbit, the trajectory must 

exhibit oscillatory motion with no positive real eigenvalues. This is achieved when < 0
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resulting in eigenvalues which lie along the imaginary axis. Using this condition, and 

solving Eq (2.16) for with a simple quadratic solution

^2 _ (A l A 2 ) — Vc^ll T A 2 ) ^(A iA2 A 2 ) ^  Q ^2 YI)
2

Equation (2.17) can be simplified with some re-aixanging to obtain the discriminant 

A 1 A 2  -  A i ^  > 0 for a stable orbit. Substituting the partial derivatives provided in Eq 

(2.13), the discriminant can be expressed as

P o  r ;
>0 (2.18)

Simplifying the expression further by using r f  = z j ‘ , the resulting inequality can be 

written as

' > 0  (2.19)
P o d  P o d  d

Combining the expression for constant angular momentum ~ P^d  and the angular 

velocity of a displaced circular orbit 0 ^  = |r| \  the resulting expression =  P o  h o  can

be used to simplify Eq (2.19) which obtains the constraint

> i d i z o  (2.20)

This is the linear stability condition for a displaced non-Keplerian orbit derived from the 

linearised two-body equations of motion. Provided the nominal conditions agree with 

Eq (2.20), a small perturbation will not excite any divergent modes and the solar sail will 

remain in the vicinity of the nominal orbit.

Figure 2-4 shows a stable orbit displaced Zo= 15 L (radius of central body) along the Sun- 

line with a radius of Po — 50 L. The nominal orbit conditions coirespond to a stable orbit. 

Applying a small perturbation to the initial conditions it is found that the solar sail remains 

in the vicinity of the nominal orbit.
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Figure 2-5 shows an unstable orbit produced by initial conditions Zo = 20 L  and Po = 50 L. 

After applying a small perturbation, the solar sail is found to escape in the anti-Sun 

direction. Although this is a necessary condition for linear stability it is not sufficient for 

non-linear stability which must be derived using other methods.

Planet

-50

-50  -50

50

Figure 2-4 Stable non-Keplerian orbit with perturbation applied

A =50L , Zo=15 L, «=1.0545x10 ^  <ÿ)=&=0.01L

-20
lànet

■40

-60
80

80

-20
-40

-20-60

Figure 2-5 Unstable non-Keplerian orbit with perturbation applied

p„=50 L, z„=20 L, «=1.2807x10 \  ôp=ôz=O.OVL
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2.2.2 Nonlinear stability condition

A nonlinear method to determine orbit stability can be derived by considering the effective 

potential energy of the orbit. A pseudo-potential can be derived in the p-z plane which 

includes the terms due to constant angular momentum, hz- The pseudo-potential analyses 

the potential energy in a reference frame rotating around the Sun-line.

The nominal conditions of a stable orbit will be located at a local minimum of the pseudo­

potential energy. A small perturbation to these conditions will result in a restoring force 

that drives the sail back towards the nominal orbit. For solar sail escape to occur, the 

perturbation to the initial conditions must be large enough that the solar sail potential 

energy rises out of the of the local minima. Unstable orbit initial conditions will be located 

at a saddle point or local maxima of the pseudo-potential function.

The non-dimensionalised pseudo-potential function, U{p, z ) , can be derived using the 

partial derivatives dU/dp = - p  and dU!dz = -~z . These expressions can be solved for

U{p, z) by integrating Eq (2.7.1) and Eq (2.7.3) to obtain

1
U { p , z ) ~ — (2. 21) 

2p^  r

A local minimum of this function is identified when > 0 , and

where Uij denotes the derivative d'^Ujdidj. The derivatives are

evaluated as

+ (2.22.1)
P  |r| |r|

1 (2.22.2)
|r| |r|

= (2.22.3)
r
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It can be demonstrated that U > 0 for all real values of p  and z by rearranging Eq

(2.22.1) to show that this condition is met while p^  > -4 z ^ . As p^  and are always 

positive, this condition is always true. By deduction, if U > 0  and U ^  > 0

then U > 0.

The condition which must be met for a local minimum of the potential energy function, 

U p p U -  Up^ > 0 can be expressed as

3ft/ 1 3 / , " '

p" |rf \rf J |3 1 |5

H IH j [ 14 J
>0 (2.23)

It is deal' that this expression is equivalent to Eq (2.18). As before, expanding the brackets 

and substituting Irl  ̂ = z^ + p^  obtains

P^\yŸ Irl^
(2.24)

Non-dimensionalised angular velocity is equivalent to <9̂  = |r |  ̂ and angular momentum 

\  = p ^ 9.  This can be substituted into Eq (2.24) to obtain

9^ 99z-
I |3  I |5r  r

>0 (2.25)

Multiplying by | r | \ n d  dividing by <9̂ , the expression can be re-arranged to demonstrate 

that the condition for stability is met provided p  > l-y/lz . Conversely, a local saddle point

exists in the potential energy function if yO< l4 2 z  with < 0  which indicates unstable 

initial conditions. This proves that the non-linear condition for stability agrees with the 

condition derived using a linear approximation, provided in Eq (2.20).

The derived stability condition agrees with a study by Dankowicz [1996] which regularizes 

the two body problem using KS (Kustannheimo-Stiefel) variables [Stiefel and Scheifele, 

1971] and investigated the stability of orbits displaced by a constant axial force. In order
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to illustrate the stability condition, the nominal angular momentum and nominal sail 

acceleration are evaluated at initial orbit conditions Po and Zo. The potential energy 

function is then evaluated to generate a contour surface. Figure 2-6 shows a contour plot 

of the potential energy function for an orbit with stable initial conditions. It is clear that a 

local minimum of the function exists at the nominal orbit conditions in this case. The 

potential energy function for a set of unstable initial conditions is shown in Figure 2-7. In 

this case, a saddle point is found to exist about the initial orbit conditions.

Figure 2-8 demonstrates that the resulting two-body stability using iterative methods 

agrees with the derived stability condition. The darker region represents unstable orbit 

conditions and the lighter region represents stable orbit conditions. The stability condition

is represented by the line with gradient 2 V2  which dissects the stable and unstable orbit 

region. These results were obtained over a range of nominal orbit displacement and radius. 

A small perturbation of ôp=ôi=Q.OYL was applied to the initial conditions and each orbit 

was numerically integrated over a timescale of 4T, where the orbit period

/ , I 13/2
(9 = 2;/r|r| . An orbit was considered to be stable if the calculated trajectory

remained within 2zo of the central body, where Zo is the nominal displacement distance. 

Unstable orbits result in an escape in the anti-Sun direction after the integration time.
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Figure 2-6 Potential energy function for stable initial orbit conditions 

/J„=50 L, z„=15 L, «=1.0545x10“*
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Figure 2-7 Potential energy function for unstable initial orbit conditions

Po=50  L , Zo=20 L , ^ 1 .2 8 0 7 x 1 0
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Figure 2-8 Stability of orbits investigated using an iterative method
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2.2.3 Jacobi-type energy surfaces

A method to visualize regions of bound orbital motion in the p-z plane can be obtained by 

multiplying Eq (2.7.1) and Eq (2.7.3) by their respective velocity terms p  and z then 

summing the resulting expressions together as

p p  + zz =
. dU , .3/7p — t- —

dp dz
(2.26)

The partial derivatives of the pseudo-potential, in the right hand side of the expression, can 

be reduced to dU/dt  as a consequence of the simple chain-rule of differentiation. An 

integral can now be formed by factorizing the time derivative to obtain

d
dt

(2.27)

It can be seen that {p^ + z^)/2 + /7 = E  where the constant of integration, E, is equivalent 

to the total energy of the system. Substituting the pseudo-potential energy, Eq (2.21), 

gives the total energy in the form

2
rr ~ xz (2.28)

As the total energy is conserved, the initial energy E ^ = E ,  Given the initial orbit 

conditions (/%, z ,̂ p ^ , z,,), a value for Eo can be calculated from Eq (2.28). For a nominal 

orbit with constant displacement distance and constant radius z„= p „ - 0 .

Regions of bound motion can be identified by considering the solar sail velocity, 

|vp = + z^ . Imaginary velocity, |v|^ < 0 , conesponds to a region of forbidden motion.

The condition for allowed motion is therefore |v|^ > 0 . The surface representing the zero- 

velocity boundary can be calculated from Eq (2.28) as

E „ - U [ p , z ) > 0  (2.29)
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Figure 2-9 represents the zero-velocity surface for a stable orbit. The lighter region 

indicates forbidden motion and the darker region represents allowed motion. The white 

line represents the resulting trajectory in the p-z plane. A small initial kinetic energy is 

applied to perturb the solar sail from the nominal orbit. It is clear that the solar sail motion 

is bound within a confined region of allowed motion which prevents the solar sail leaving 

the vicinity of the nominal orbit.

Figure 2-10 represents the zero-velocity surface for an unstable orbit. As before, a small 

initial kinetic energy is applied to perturb the solar sail from the nominal orbit. In this case, 

there is no region which confines the solar sail motion near to the vicinity of the nominal 

orbit. Instead, the solar sail is free to escape.

1 0  1 5  2 0  2 5  3 0  3 5  4 0  4 5  5 0

Figure 2-9 Zero velocity surface of a stable non-Keplerian orbit

Po=50 L, Zo=15 L, /ci=1.0545xl0 '̂ , = =0.003
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1 0  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0

Figure 2-10 Zero velocity surface of an unstable non-Keplerian orbit

A,=50 L ,  z„=20 L ,  «=1.2807x10“', f)^=z„=0.003

2.3 Closed form solution of two-body problem

2 . 3 . 1  C l o s e d  f o r m  s o l u t i o n  u s i n g  p a r a b o l i c  c o o r d i n a t e s

The gravitational two-body problem with a uniform force due to solar radiation pressure is 

analogous to electron motion in the presence of a Coulomb field (hydrogen atom) with an 

external homogeneous electric field, the so called Stark effect. It has been demonstrated 

by several authors [Bom, 1927; Bums, 1968; Howard, 1995a; Bookless, 2005] that the 

Hamiltonian of such a problem is separable by transforming the problem using parabolic 

coordinates

Parabolic coordinates represent constant paraboloid surfaces in Euclidean space which are 

generated by rotating a parabola about its axis of symmetry. For a paraboloid surface 

symmetric around the z-axis (Sun-line), the conversion between parabolic coordinates and 

polar coordinates (p,z) is define by p  = and z = (^  ̂-  r f ) H  with time derivatives

53



p  = ^ri^f}^ (2.30.1)

(2.30.2)

The radial distance of the solar sail from the central body is given by |r| = + 77^) / 2 .

The two-body Hamiltonian, provided in Eq (2.4), can be non-dimensionalised and 

rewritten using parabolic coordinates. The polar coordinate momenta terms {Pp,Pz,Pè can 

be rewritten as

Pj- = m + [ v è f  ) (2.31.1)

P̂ '̂  =m^z^ = m ^ ) (2.31.2)

Pq Ip'  ̂ = rn̂ p'̂ Q'̂  = m^i^rjŸÔ^ (2.31.3)

Substituting these terms into Eq (2.4) yields

+ { i ^ J - i v n S + i m f  + { ^ 4 }

2um ma/f,2 i \
- ,  I

(2.32)

As before, this equation can be non-dimensionalised with characteristic length L and 

characteristic time r  = ■yjplls' . The resulting gravitational parameter p  = l  and 

acceleration due to solar radiation pressure, <3 , is represented using the non- 

dimensionalised nomenclature k  = a p j ü  . The Hamiltonian can be expressed in terms of 

the parabolic momenta P^, and Pg which are equivalent to

= (2.33.1)

P v = ^  = v{S^+ri^) (2.33.2)

P , = ^  = {^rjfÔ = p^0 (2.33.3)
o9
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The following expression is obtained for the non-dimensionalised Hamiltonian

\ \

JJ 2
(2.34)

Equation (2.34) is variable separable using the Hamilton-Jacobi method [Landau, 1976; 

Goldstein, 1959]. A transforming function S(ri^F) is required with the form

(2.35)

where E  represents the conserved total energy of the system, and Srj<rf) are variable 

separated functions, t is the time and 6 is the angular position. The transforming function 

is defined such that it satisfies the Hamilton-Jacobi equation + i7(f,?7) = 0.

Substituting Eq (2.34) and re-arranging yields

(2.36)

Equation (2.36) can be re-arranged so that all terms containing ^  are on the left and all 

terms containing 77 aie on the right hand side of the equation. The momenta terms 

- d S ^  j d ^  and P̂  ̂ = dS^ jdrj can also be substituted into Eq (2.36) as follows

- i e C ^
77 '

(2.37)

The coordinates f  and 77 are independent, but arbitrary values must always produce an 

agreement with the equality in Eq (2.37). A separation constant, can therefore be 

defined and the resulting variable separ ated expressions are

f-ds.
3^

3&.
-277"E + 7n 7 '^+ -^  = 0  

V377 y

(2.38.1)

(2.38.2)

55



As demonstrated by Mclnnes [1999a], these expressions can be solved for dS^ jd^  and 

dSjJdr] to obtain two bi-cubic polynomial solutions of the two-body equations

K
( 4 - 0 )  .2 P

K K

1/2

drf rj K K K

1/2

(2.39.1)

(2.39.2)

The constants E, P q and can be evaluated at the initial orbit conditions. The constant 

angular momentum Pq = p^O and the constant energy can be calculated using Eq (2.28). 

The separation constant, <P can be calculated using either Eq (2.38.1) or Eq (2.38.2) 

evaluated at the initial conditions. For initial conditions {pô  Zo, Po, z^), the coiresponding

parabolic coordinates can be evaluated by substituting 77 ,̂ = p d S o  - r j j ' ) ! 2

and re-ananging to obtain

C - 2 a / - A / = 0 (2.40)

This quadratic can be solved to obtain four solutions for ^  with corresponding values of 

rjo. To calculate the initial momenta terms, P^ and Pn, Eq (2.30.1) and Eq (2.30.2) can be 

treated as simultaneous equations and solved for using

ppTodiido (2.41)

where the resulting value can be substituted back into Eq (2.30.1) or Eq (2.30.2) to find the 

corresponding value for 77^. The momenta terms, P^ and Prj are then calculated using 

Eq (2.33.1) and Eq (2.33.2) respectively.

To identify paraboloid surfaces which bound the orbital motion, the parabolic coordinates 

are evaluated when the momenta terms, P  ̂ ~ d S j d ^  = 0 and P̂  ̂ = dS^jdi] ~ 0 using the

previously calculated constants E, P q and 0.  Equation (2.39.1) and Eq (2.39.2) can be
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solved for ^  and r) to identify paraboloid surfaces which bound the solar sail motion for a 

given set of initial conditions.

2.3.2 Paraboloid bounding surfaces

Consider a displaced non-Keplerian orbit with stable initial conditions, as defined by the

stability condition > 2-42Zo • Table 2-1 provides a set of parabolic coordinates which

bound the stable orbit after a small perturbation is applied. It was found that a stable orbit 

is bound between four paraboloid surfaces. This is demonstrated in Fig 2-11 where the 

perturbed orbit is clearly bound between the intersecting parabolae. An enlai'ged section of 

the orbit is provided in Fig 2-12.

The applied perturbation introduces a periodic oscillation to the solar sail orbit. From Fig 

2-13, it is clear that the smaller the magnitude of the applied perturbation, the smaller the 

amplitude of the resulting oscillation. Figure 2-14 demonstrates another bound orbit for an 

orbit of smaller radius, displaced nearer to the central body.

Similarly, if an initial velocity is applied to p^ and z^, a periodic oscillation is also

introduced to the solar sail orbit. Figure 2-15 demonstrates a bound orbit with initial 

conditions comparable to the stable orbit produced in Fig 2-4. This shows an agreement 

between the zero-velocity surfaces produced using the Jacobi-type integral and the 

paraboloid surfaces produced using the closed-form solution.

Initial Conditions Bounding Surface Parabolic Coordinates

Zo po Sp,Sz 6 Vi %
15 50 0.1 8.2113 8.7645 6.1311 6.1013
15 50 0.01 8.1990 8.2310 6.1025 6.0995
15 50 0.001 8.1978 8.2009 6.0996 6.0993
10 30 0.1 6.8282 7.2582 5.1770 5.1405
10 30 0.01 6.8134 6.8430 5.1420 5.1384
10 30 0.001 6.8120 6.8148 5.1385 5.1382

Table 2-1 Parabolic coordinate values for perturbed initial conditions
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Figure 2-11 Stable displaced non-Keplerian orbit bound between parabolae 

/%=50 L, Zo=l5 L, /?=1.0545x10"'^, âp=^=0.1L

58

57

56

55

jBound 
jOrblt :Q.

49

48
14 16 18 20 22

Figure 2-12 Enlarged view of bound orbit provided in Fig 2-11
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Figure 2-13 Stable displaced non-Keplerian orbit bound between parabolae 
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Figure 2-14 Stable displaced non-Keplerian orbit bound between parabolae

/0„=35 L, ?o=10 L, k?=2,0734x10'^, <?ct=&=0,lL
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Figure 2-15 Stable displaced non-Keplerian orbit with initial velocity applied

Po=50 L, Zo=15 L, /^=l,0545xl0'\ = =0.003

2.3.3 Periodic Looping Trajectory

Applying a small perturbation to the nominal acceleration, introduces a periodic 

oscillation to the solar sail trajectory. In the case of a stable orbit, applying a small

perturbation such that the acceleration A: = (l -  A) results in the parabolic surface

provided in Fig 2-16 where Zl=O.OL

Figure 2-17 shows the resulting /?and z displacement versus time due to the small

reduction in the acceleration value. Over this time period, the range of radial distance

p  = (49.097L —> 50.0677,) and displacement distance z = (13.750L —> 15L) . Figure 2-18 

represents this trajectory in a Cartesian plot and includes the bounding paraboloid surfaces.
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Figure 2-16 Stable orbit with small acceleration perturbation applied (A=0.01) 

p„=50 L, z„=15 L, K= 1.0439x10-^ /1=0.01
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Figure 2-17 Radial and z-displacment variation due to small acceleration perturbation

Po=50 L, Zo=15 L, tc= 1.0439x10’'̂  zl=0.01
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Bound

Figure 2-18 3D Cartesian plot of stable orbit with small acceleration perturbation

A,=50 L, z„=15 L, K= 1.0439x10'^ Zl=0.01

In the case of an unstable orbit, the application of a small reduction in acceleration, again 

zl=0.01, results in a highly perturbed trajectory. Two examples of the bounding parabolic 

curves are provided in Fig 2-19 and Fig 2-20. The parabolic coordinate values for both 

these surfaces are provided in Table 2-2.

Initial Conditions Bounding Surface Parabolic Coordinates (^=0.01)

Po 6 & Vi V2
50 15 8.0496 8.1977 6.1087 6.0993
50 20 7.3997 8.5937 5.8285 5.8182

20 30 1.1050 8.1275 2.4667 2.4608

Table 2-2 Parabolic coordinates representing surfaces bounding a periodic looping trajectory
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Figure 2-19 Unstable orbit with small acceleration perturbation

po=50 L, zo=20 L, fc=l. 2679x10 ^  /j=0.01

60

50

40

30

20
Bound
Orbit

10

Central
Body

-20 -10 0 10 20 30 40

Figure 2-20 Unstable orbit with small acceleration perturbation

/?o=20 L, Zo=30 L, a?=6.3364x10 '\ 21=0.01

63



It is evident that the further the initial conditions are from the p>2^l2z  stability 

boundary, the closer to the central body the solai’ sail trajectory passes. Figure 2-21 shows 

a Cartesian plot of the bound trajectory provided in Fig 2-20. In this case, the solar sail 

leaves the nominal orbit and performs a loop around the central body before returning to 

the nominal orbit. This trajectory is repeated periodically with a minimum approach 

distance to the central body of 3.64 L. Figure 2-22 shows the radial and z-displacement 

variation with time.
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Figure 2-21 Periodic looping trajectory generated by perturbing the nominal acceleration

/?o=20 L, Zo=30 L, &^6.3364x10"'^, zl=0.01
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Figure 2-22 Radial and z-displacement variation due to small acceleration perturbation 

Po=20 L, Zo=30 L, /^6.3364xlO '\ ri=0.01
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This periodic looping trajectory is shown in Fig 2-23 fixed within a set of four paraboloid 

surfaces. The trajectory is bound to the surfaces represented by parabolic coordinates rji 

and T]2 . The furthest distance of the solar sail from the central body is constrained by 

surface ^  and the closest approach distance to the central body is constrained by surface 

fi. Identifying where surface ^  and % intersect, the closest approach distance, can be 

calculated using

(2.42)

Using the values provided in Table 2.2, the closest approach distance calculated using 

Eq (2.42) for the orbit in Fig 2-23 is 3.6382 L. This value agrees with calculated for 

the same orbit conditions using numerical methods.

Figure 2-24 represents the closest approach distance calculated using Eq (2.42) for a range 

of initial orbit radius and z-displacement values. It is clear that the greater the instability of 

the initial orbit, the closer the solar sail approaches the central body. Identifying 

trajectories which pass near to the central body is important for manifold insertion to non- 

Keplerian orbits.
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Figure 2-23 3D Cartesian representation of looping orbit bound within paraboloid surfaces

p„=20 L, z„=30 L, k=6,3364x10'^, a = 0 ,0 1
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Figure 2-24 Closest approach distance to central body for range of initial orbit conditions (.4=0.01)

2 . 3 . 4  O r b i t  i n s e r t i o n  v i a  i n v a r i a n t  m a n i f o l d s

Periodic looping trajectories provide a set of invariant manifolds that wind onto and off of 

a limit cycle. Paths which approach the limit cycle as t ^  -<» are described as unstable 

manifolds, commonly denoted as Paths which approach the limit cycle as / —> «» are 

described as stable manifolds, commonly denoted as W' [Jordan and Smith, 1999].

Periodic looping trajectories can be described as homoclinic as the phase paths connect the 

nominal orbit back to itself after passing near to the central body. As the invariant 

manifolds are bound to the surface of a paraboloid, the manifold surface is of dimension 2 

when represented in 3 dimensional Cartesian space.

A set of initial conditions can be calculated from the intersecting parabolic coordinates 

(^,77). The total energy, Eo, can be determined using Eq (2.28), evaluated at the nominal 

orbit conditions ipo,Zo,Po^^o)- Initial conditions, denoted by the subscript %% which wind

onto a nominal orbit are calculated using p. = r̂j and z,. = - 77^). The z-component of

angular momentum, = p^O , can also be evaluated using the nominal orbit conditions.
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As the angular momentum is constant, the value of angular velocity required at the initial 

insertion point can be calculated using 6̂  = jp .  .

Table 2-3 provides a set of calculated initial conditions that wind onto a range of desired 

orbits. All these conditions were calculated with an acceleration perturbation 21=0.01. The 

value of p. is calculated by re-aiTanging Eq (2.28) and it is assumed that z,. = 0 , where

5 0 in comparison to the magnitude of the initial angular velocity 6 .̂ It should be

noted that the initial conditions for /%=10 L and Zo=30 L result in closest approach distance 

7'h»h=0.8553 L. These initial conditions are forbidden as r„„„<l L, which represents 

insertion conditions located below the surface of the central body, with radius L.

Figure 2-25 demonstrates orbit insertion from near the central body to a nominal orbit with 

conditions po~2Q L and Zo=30 L. The initial conditions which deliver the solar sail onto 

this orbit are provided in Table 2-3. Upon arrival at the nominal orbit, linear control 

techniques must be applied to prevent the solar sail from returning towards the central 

body via the unstable manifold.

Nominal Pai'abolic Coord Initial Conditions

Po Zo f] Pi Pi 4 Zi
50 30 5.1458 5.3207 27.3793 26x10^ 0.00749 -0.9149
40 30 3.6424 4.4721 16.2894 3.7x10'^ 0.01706 -3.3664
30 30 2.2658 3.5251 7.9871 5.3x10" 0.05105 -3.6463
20 30 1.1050 2.4608 2.7191 1.1x10'^ 0.02499 -2.4173
10 30 0.2962 1.2739 0.3774 3.7x10'“ 3.9488 -0.7675

Table 2-3 Initial conditions calculated using intersecting paraboloid surfaces
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Figure 2-25 Periodic looping orbit inserted at = 3.6382 L from the central body
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2.4 Linear control techniques

2.4.1 Feedback control theory

To prevent the solar sail escaping from the desired non-Keplerian orbit after insertion via 

the stable manifold, station-keeping techniques must be applied. Linear feedback control 

can be utilised by designing a closed-loop system to keep the solar sail within the vicinity 

of the desired trajectory. The basic principle is that a control signal u(t) is used to drive a 

system towards some desirable output value. Proportional feedback is the most basic 

method for calculating the control signal u{t) = G{x{t) -  x(t)) where G is the gain 

coefficient, x(t) is the desired output and x{t) is the actual output of the system. The 

expression in the brackets is equivalent to the system error e(t).

Other control methods which can be used to improve system response are outlined by BaiT 

[2002]. Derivative control uses the rate of change of the output signal to determine the 

size of the control signal u(t) -  G(x(t - T )  ~ x(t)) where T  is the feedback delay time [Li- 

Xiang, 2001]. Integral control uses the system errors summed over a period of time such 

that u{t) = G '^{x{ t )  -  x( t) ) . It is common to use a combination of proportional and
I

derivative methods (PD) or of all three (PED) to improve the system response and avoid 

large amplitude oscillations or overshoots from the desired output.

Desired
Control

Gain
System
Process Actual

output output

Figure 2-26 Closed-loop system with unity feedback
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A schematic of a basic closed loop system with unity feedback is included in Fig 2-26 

[Jacobs, 1993]. The system eiTor is defined as e = ( y - y )  where ÿ  represents the desired 

output and y represents the actual output. The forward loop transfer function is defined by 

GH which, in this case is equivalent to the loop transfer function with unity feedback. The 

proportional control technique is employed with control signal u ^ G e ,  where G represents 

the gain of the control system. The actual output of the system y = u H , where H  

represents the system process transfer function which defines the frequency response of the 

state-space equation.

The control system transfer function, Y, which is defined as the ratio of system output to 

input can be represented by the transform

F =  -  (2.43)
1 + GH

where the system objective is to ensure the actual system output tracks the desired output 

value. From Eq (2.43), it is clear this occurs if G H » l  resulting in a ratio approximately 

equal to unity. This is a very basic example and the transfer function becomes increasingly 

complex if noise and disturbance terms are modeled within the system.

The zeros of the system represented by Eq (2.43) occur when GH=0 and the poles occur 

when 1+GH=0 (when the transfer function tends to infinity). In order to obtain a stable 

system, the roots of the transfer function must not contain positive real values. Transfer 

functions are frequency domain representations of the dynamical equations. The 

conversion between the time-domain and frequency domain is achieved via the Laplace 

transform

L[;c(0] = dt = X(s)  (2.44)
0

where the resulting function X(s) is dependant on the complex operator 5 .

To design a proportional controller which demonstrates station-keeping at a desired non- 

Keplerian orbit, the linearised two-body equations of motion can be expressed in the form 

of state equations
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x{t) = Ax(t) + Bu(t) (2.45.1)

y(0 = Cx(t) + Du(t) (2.45.2)

The matrix A is a square matrix of size nxn and is referred to as the linear coefficient 

matrix. Matrix B is the control matrix which has same number of rows as A but has an 

independent number of columns with dimensions nxm. The input vector x(^), control 

vector u(0  and output vector y(0 are all column vectors of length n. The output matrix C 

must have the same number of columns as A with dimensions Ixn. The feed-forward 

matrix D has dimensions Ixm so has the same number of rows as C and the same number 

of columns as B.

The transfer function for this state equation can be expressed in the form

H(s) = C{sl -  A)"' B + D (2.46)

where I  is an identity matrix and H{s) = Y (s)/U(s) . The term in the brackets [si -  A)~' , 

arises from the Laplace transform L[dx/dt] = sX (s ) -x ^  used when converting Eq (2.45.1) 

into the frequency domain. This term is equivalent to the Laplace transform of L[e'^‘] 

where x(t) ~ is a solution to the state equation x(t) = Ax(t) [Friedland, 1986].

2.4.2 Controllability and observability

When designing a controller it is important to mathematically prove that the control matrix, 

B, is capable of providing stable control at the desired output value. A simple method 

exists to demonstrate controllability for the linear system represented by Eq (2.43). The 

controllability matrix, is defined as

M  ̂= [b  AB A^B XB.. .A'-'b ] (2.47.1)

For a system to be fully controllable the controllability matrix must be full-rank, 

coiTesponding to a non-singular matrix. A completely controllable system can transfer any 

initial state x{to) to any final state x(//) via the control signal u(f) for all state space.
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The observability of a system can be examined using the observability matrix, Mo, defined 

as

M „ = [ c  A 'C  { A ' f c  (A f  C '...(A 'y ‘C'] (2.47.2)

where C  and A' represent the transpose of matrix C and A respectively. A system can be 

described as fully observable if the observability matrix is full-rank. A fully observable 

system enables every initial state x{to) to be deteimined from the output y{t). Essentially 

this means y(f) is dependant on every state x(t) [D’azzo, 1995].

2.4.3 Root locus plot

To aid with the design of control systems, W.S. Evans devised the root-locus plot. As the 

values of s essentially corresponds to the eigenvalues of the linear coefficient matrix A, a 

stable orbit will have poles which lie in the left quadrants of the 5-plane [Mai'shall, 1978]. 

The performance of a control system can be accessed by selecting gains which move the 

poles to the left-quadrants. The root locus is based on a negative feedback controller shown 

in Figure 2-27.

Input

X(s)

System
Process

Control
Gain

Output 

>■ Y(s)

Figure 2-27 System H{s) with negative feedback control using gain G
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The resulting transfer function can be written as

( 2 . 4 8 )
X(s) l  + GH{s)

where H(s) is the system transfer function calculated from Eq (2.46) and G is the control 

gain. The zeros of the system are located when the transfer function F{s) = 0 and the 

poles are located when 7^(5 ) = oo. These can be located by examining the denominator of 

F{s) which is equivalent to 1-t- GH (5 ).

The system transfer function has the form H  (s) = N(s)/ D(s) where N(s) represents the 

transfer function numerator and D{s) the denominator. These can both be represented by 

polynomials where N{s) = and

D{s) -  . The number of branches of the root loci is deteimined

from the order of the polynomial D{s), denoted by m [Dougherty, 1995].

When drawing the root loci branches, the characteristic equation 1 + G H (5 ) = 0 can be re- 

aiTanged into the more useful form D{s) + GN{s) = 0. This represents a polynomial in 5  

with coefficients including the gain G. The open-loop pole can be evaluated when the gain 

G = 0. The open loop zeros can be located when H{s) = 0 ,  which is equivalent to 

numerator N{s) = 0.

The pole trajectories start on an open-loop pole and terminate either at an open-loop zero 

or tend to infinity with the direction defined by an asymptote. The trajectories are plotted 

by varying the gain, G, between 0 and infinity. It can be demonstrated the angle of the 

asymptotes, Z a , may be calculated using the angle condition

Za  = {l + 21)711 {m -  n) (2.49.1)

where the integer series /=0,l,..,(m-n-l). The symbol m represents the number of poles and 

n represents the number of zeros. The real axis intersection of the asymptotes can be 

calculated using
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CL,. = £ R e ( /7 ^ ) -2 ]R e (z ,)
_//=] c=l

\ m  — n) (2.49.2)

where pjj, represents the position of the poles and Zc represents the position of the zeros. 

Using these rules, a root locus plot can be generated for a control system to aid design 

[D’azzo, 1966].

2.4.4 Optimal control -  linear quadratic regulator

The root-locus diagram provides a useful method to select gains which produce a stable 

system. These gains may result in undesirable overshoots or may require control signals 

which are too large for the actuator to produce in the real system. Design limits may 

require a system that can maintain control to within a certain error of the desired output 

and be achieved with a limited control signal size. An optimal controller can be utilised to 

select gains which are optimised based on a performance criteria.

Consider the linear system represented by Eq (2.45). Optimal control theory provides a 

method for selecting a gain matrix which suppresses any unstable eigenvalues by 

minimizing the cost function V

V = ][x' + u' (2.50)
t

where t is the initial integration time, Q is the state-weighting matrix and N  is the control- 

weighting matrix. The first terai inside the square brackets represents the penalty on the 

deviation of state vector x from the desired state and the 2"  ̂ teiTu represents the cost of 

control which limits the control signal size.

The aim is to select a gain matrix G that minimises the performance function V. This can 

be achieved using the Ricatti Equation

~ M  =MA + A M +  Q (2.51)
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where M  is the performance matrix and is related to the performance function such that 

V = x 'M x.  Provided that M  converges to a limit as it can be assumed that

M  ~~>0. Equation (2.51) can be solved for M  which enables the optimal gain matrix to be 

calculated using G = N~^B'M [Friedland, 1986].

2.4.5 Solar sail area variation control

2.4.5.1 Design of state equations

An area variation controller can be designed using the linearised two-body equations and 

constructing them in the state-space form of Eq (2.45). The input vector has the form

x(r) = {p, z ,p ,  zF  and the linear coefficient matrix is defined as

A =

0
0

dp

dp

0 1 0
0 0 1

df.
dz

dz

0 0

0 0

(2.52)

where the partial derivatives are provided in Eq (2.13). The control matrix is dependant on 

the variation of acceleration with respect to solar sail area. The acceleration components 

and directed along the and Bp axes respectively are defined as

AT cos

-  Kcos a s i n C p

(2.53.1)

(2.53.2)

The control matrix can be constructed as B = [o 0 d a J d K  using the partial

derivatives of Eq (2.53) which are evaluated at the nominal pitch angle, cc=0, as

dap
dK

da^

= cos^ orsinGf = 0 (a  = 0)

= cos a - 1 (a  = 0)

(2.54.1)

(2.54.2)
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This yields the control matrix B = [0 0 0 l]^ for the sail area variation controller. 

Using Eq (2.47.1), it can be demonstrated that this control matrix produces a full-rank 

controllability matrix (in this case rank 4). This proves that the control method is capable 

of providing station-keeping at the desired non-Keplerian orbit.

The observability matrix, C = is simply a 4x4 identity matrix which produces a full-

rank observability matrix using Eq (2.47.2). The feed-forward matrix is null as it is not 

required within this system such that D = [0 0 0 0] ̂ . A suitable gain matrix is 

obtained using either root-locus methods or optimal control methods. Both these 

techniques will be demonstrated.

The control requirement to maintain station-keeping at the desired orbit can be modelled 

using a linear control law with the form

Ô K  =  G i  ( / ?  -  ) +  ( z  -  )  +  G 3  ( / ?  -  / ) ^  )  +  G 4  ( z  -  )  ( 2 . 55 )

where represents the acceleration variation directed along the sun-line, p, z, p, z are the 

integrated orbit conditions and , z^, , z  ̂ aie the desired orbit conditions. For a

circular orbit displaced a constant distance from the central body p̂  ̂ = 0 and z^ = 0.

2A.5.2 Root-locus method

Consider applying solar sail aiea variation control as a stationkeeping method. To make 

use of this technique would require the ability to slightly furl/unfurl the solar sail or 

employ reflective tip-vanes which can be used to vary the total reflecting area.

Gains are selected such that the pole positions lie in the left quadrant of the root-locus plot, 

suppressing the positive real eigenvalues which lead to system instability. For an orbit of 

radius 60 L displaced 20 L from the central body, the state equations result in the four 

transfer functions with a common denominator, provided in Table 2-4. The order of the 

denominator is 4, which results in 4 branches of the root locus plot for each transfer 

function. Transfer functions 1-4 respectively correspond to the state equations for p, z ,p  

and z .
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The root-locus method will be used with the aim of selecting a gain matrix which gives a 

good response time and dampens any unwanted oscillations. The root-locus plots for each 

transfer function are provided in Fig 2-28. The gains must also produce a reasonable 

control signal size which can be generated using modest sail area variations.

Each subplot corresponds to the pole variation for gains associated with the position and 

velocity components highlighted in Eq (2.55) where 'GainF  - p, ‘Gain2’ -  z, ‘Gain 3’ - />

and ‘Gain 4 ’ - z . The respective gains are represented by the notation (Gy, G2 , G3 , G4 ). 

Each transfer function produces four poles, where the ‘+’ symbol represents the case when 

G —> 0 , known as the open-loop pole and the ‘o’ symbol represents the case when G —> 0 0 , 

the open-loop zero.

Using the root locus diagram, suitable gains were selected as

G = [3.1x10”  ̂ 7.6x10"*’ 0.01 0.05]. Figure 2-29 demonstrates a controlled orbit after 

insertion 1.71 L from the central body. Figure 2-30 demonstrates the solar sail area 

variation and the corresponding solar sail acceleration required to provide stationkeeping 

in the vicinity of the nominal orbit. The sail area variation is normalized with respect to 

the nominal sail area, Ag.

s ' ■ ...........  s ' ............ '■ s ' ....... s ' s^

N (s )l 0 0 0 0 3.5576x10'"
N (s)2 0 0 1 0 1.4626x10"

N (s)3 0 0 0 3.5576x10'" 0

N(s)4 0 1 0 1.4626x10'" 0

D(s) 1 0 7.9057x10'^ 0 -1.1094x10''"

Table 2-4 Numerator/Denominator polynomials In terms of s

77



Gain 1 Gain 2

I
I

I
I

0.02

0.01

0

- 0.01

- 0.02 ^  
- 0.02 - 0.01 0 0.01 0.02

0.01

0.005

0

-0.005

- 0.01

)

-3
Real Axis 

Gain 3
0.02

0.01

0

- 0.01

-0 .0 2  L—  
-0 .0 2 -0.01 0 0.01 0.02

x10

-1 0 1 
Real Axis

Gain 4

2 3
xIO^

4

2

2

•4•6 -4 -2 0 2 4 6
Real Axis Real Axis

Figure 2-28 Root-locus plot for area variation control
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2.4,5.3 Optimal Control Method

Using the performance criterion provided in Eq (2.50), optimal gains can be selected which 

improve the controller response time and limits the size of the control signal. Suitable 

gains were obtained using a state cost function Q = 57̂ ^̂  and a control cost function 

77=1x10^^. The control cost function imposes a limit on the control signal size. The 

smaller the value of N, the larger the optimal gain values which can result in large control 

signals. Similarly, the state cost imposes a limit on the allowable error between the desired 

and the actual orbit conditions. Small values for the matrix Q reduce the overshoot during 

control.

Figure 2-31 shows an orbit insertion 1.71 L from the central body where optimal control is 

employed upon arrival of the solar sail at the nominal orbit. Figure 2-32 shows the 

acceleration variation throughout this trajectory and the required sail area variation 

normalized with respect to the nominal sail area, A .̂
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Figure 2-32 Solai' sail acceleration variation and area variation
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2.4.6 Solar sail pitch angle control

2.4.6.1 Design o f  state equations

In the case of a pitch-angle controller, the cos^ a  acceleration dependency is used to 

provide linear control at the nominal orbit. The partial derivatives of Eq (2.53) with 

respect to pitch angle crare evaluated as

= -3fCcos^ or sin a  (2.56.1)
da

da
 ̂ = ATcoŝ  a{i + tan̂  oc) (2.56.2)

d a

which reduce to d a ^ j d a - d  and d O p jd a ^  k  at the nominal pitch angle a=̂ 0. The

control matrix 5  = [O 0 fc o]^ again produces a full-rank controllability matrix. The 

linear coefficient matrix A, the output matrix C, and the feed-forwai'd matrix D are 

equivalent to those defined in Section 2.4,5.1.

The control signal required to maintain station-keeping at the desired orbit can be modelled 

using the linear control law

< 5 »  =  G , ( p  -  y o J + G , ( z  -  z „ )  +  G 3 ( p  -  p j  +  G , ( z  -  z „ )  ( 2 . 5 7 )

where represents the solar sail pitch angle variation, p , z , p , z  are the integrated orbit 

conditions and P o^z„,Pq,Zo are the desired orbit conditions. The angle variation 

produces a controlling acceleration calculated using Eq (2.53).
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2.4.6.2 Root locus method

Solar sail pitch angle variation could be achieved via two methods. Reflective tip-vanes at 

the corners of the sail could be used to generate a torque which rotates the solar sail about 

the centre of mass. Alternatively, a centre of mass/pressure offset could be generated to 

produce a torque using a gimballed boom to displace the position of the payload.

Figure 2-33 shows the root locus plots for a non-Keplerian orbit displaced 60 L from the 

central body with radius 20 L. Following the same procedure as the area controller in 

Section 2.4.5, gains are selected resulting in poles which lie in the left quadrants of the 

root-locus diagrams. Each of the subplots coiTespond to pole trajectories for the gains 

associated with the position and velocity components highlighted in Eq (2.57) where 

‘G ain l’ - p, ‘Gain2’ -  z, ‘Gain 3’ - /) and ‘Gain 4 ’ - z . The respective gains are 

represented by the notation (G;, G2 , Gj, G4 ).

Table 2-5 contains the four transfer function numerators and their common denominator. 

As the order of the denominator is 4, each root locus plot has 4 branches. The maximum 

acceleration is directed along the Cp axis when the sail pitch angle is 35.7°. The control 

signal should maintain a pitch angle below this critical value. Suitable values for the gain 

were selected as G = [0.2 0.15 49.1 100].

? ..  ? ■ ”.... ....

N (s ) l 0 0 0.2372 0 -1.5938x10'’
N (s)2 0 0 0 0 8.4375x10'^

N (s)3 0 0.2372 0 1.5938x10"'’ 0

N(s) 4 0 0 0 8.4375x10'^ 0

D(s) 1 0 7.9057x10''’ 0 1.1094x10'"'

Table 2-5 Numerator/Denominator Polynomials in terms of s
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Figure 2-33 Root-locus plot for pitch angle variation control 

Po~ 20L, Zo — 60L, a?=2.3480x10'^, zl=0.01

Identical insertion conditions aie used as those in Section 2.4.5 located 1.71 L from the 

central body. Figure 2-34 shows an orbit controlled using the pitch angle controller with 

the gains selected using root locus plots. The controlling pitch angle is shown in Fig 2-35 

with a variation between 0.13° and -15.21°. A negative angle means the sail normal vector 

is pointing downwards toward the sun-line. This example meets the requirement that the 

reflecting side of the sail always faces sunward. The resulting acceleration directed along 

the p-  and z- axes is provided in Fig 2-36. The acceleration components are normalized 

with respect to the nominal acceleration, Kq.

83



■20

Central
Body20

40
20

60

Figure 2-34 Orbit insertion with linear pitch angle control

Po~  6 0  L , Zo ~ 20  L , K -  2 .3717x10 ''^

Gi  =  0 .2  G2 =  0 .1 5  G i =  4 9 .1  G4 =  100

:sz

2

0

■2

■4

-6

-8

-10

•12

■14

•160 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
tim e X 10

Figure 2-35 Pitch angle variation required to control orbit
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2.4.63 Optimal control method

Using the performance criterion provided in Eq (2.50), optimal gains can be selected which 

improve the response time of the controller and limits the size of the control signal. 

Suitable gains were obtained using a state cost function Q = 100/^^^ and a control cost 

function Â = 1x10^.

The resulting trajectory is provided in Fig 2-37. The pitch angle variation required to 

control this orbit, shown in Fig 2-38, was between 0.14° and -2.25°. The controller quickly 

dampens the instabilities so as only minute angle variations are required to control the 

orbit. The con'esponding acceleration components are provided in Fig 2-39.
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Figure 2-38 Pitch angle variation achieved using an optimal controller
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Figure 2-39 Acceleration directed along ep and e% axes normalized with respect to Kq

In a two-body context, the most suitable control method is pitch-angle variation, as varying 

the sail pitch angle over a few degrees poses less risk to the sail structure than varying the 

reflecting surface area. Tip vanes could be used to produce unbalanced net forces at the 

sail edges thus generating small torques [Wie, 2002]. Alternatively steering can be 

achieved using a gimbaled boom which can be moved to alter the centre of mass relative to 

the centre of pressure producing a torque. It is clear from Fig 2-38, that control is possible 

using an angle variation of about 2 degrees using the linear quadratic regulator to select 

optimal gains.
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2.5 Conclusions

This chapter has considered circular displayed non-Keplerian orbits in a two-body context. 

The stability condition was derived using linear and non-lineai' approximation methods. 

Orbit bounding surfaces were identified using a conservation of energy method and an 

explicit solution identified using pai’abolic coordinates. A family of homoclinic manifolds 

were identified which provide a set of transfer trajectories to deliver the solar sail to a 

circular displaced orbit from near to the central body. It was demonstrated that the 

homoclinic manifolds are bound to a paraboloid energy surface enabling the closest 

approach distance to the central body to be determined explicitly.

Stable manifolds which pass near the central body were found to wind onto an unstable 

circular displaced orbit, defined using the stability condition. Solar sail control techniques 

were investigated to prevent escape after insertion to a nominal orbit. Applying trims to 

the solar sail surface area or pitch angle can be used to modulate the sail acceleration. The 

solar sail controllers were developed using both a root locus method and linear quadratic 

regulator to select gains. The optimal control method was found to identify gains which 

minimize the controller response time and control signal amplitude. In the two body case, 

applying the pitch angle control method seems to be the most suitable control method not 

requiring large modulation of the sail surface area which poses a risk of damaging the solar 

sail surface.

The next chapter will consider circular displaced orbits in a three-body context. Hill’s 

approximation of the three-body problem will be used to represent the dynamics of a solar 

sail including acceleration due to solar radiation pressure. As demonstrated in Chapter 1, 

including the gravitational influence of the Sun acting on the solar sail and the centripetal 

force of the Earth revolving around the Sun, limits the regions where artificial libration 

points can be generated. The two-body controller will be applied to demonstrate control of 

circular displaced orbits in the three-body problem.
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Chapter 3 Three Body Non-Keplerian Orbits -  

Hill’s approximation

3.1 Hill’s approximation of the three-body problem

The dynamics of a solar sail will be modelled using Hill’s approximation to the three-body 

problem. These equations represent a case where the smaller bodies, M 2 and M3 are 

relatively close to each other and orbit a larger mass M;, where the general hierarchy of the 

masses is M i » M 2>M3 . A  planet centred, rotating frame of reference is adopted. The 

circular restriction is also applied assuming the separation between the planet and the Sun, 

R, is constant. This problem models the dynamics of a solar sail non-Keplerian orbit in the 

vicinity of a planet where the system is revolving around the Sun with angular velocity X2 

[Hénon and Petit, 1986; Scheeres and Bellerose, 2005], as shown in 

Fig 3-1.

The solar sail is located at position r  = %: + yj + zk relative to the planet where (i, j, k) are 

unit vectors along the planet centred axes (%,y,z). The planet and Sun are located on the x- 

axis. The vector between the planet and Sun R - R i .  The approximation states that 

|R| »  |r|, thus it is convenient to envisage Hill’s problem as a perturbed two-body model 

including the effects of solar gravity.

Solar Sail

Sun

Planet

Figure 3-1 Schematic of Hill’s problem with displaced solar sail orbit
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The two body dynamics for a non-Keplerian orbit have been thoroughly investigated in 

Chapter 2. The solar sail equation of motion, with respect to the planet, has the form

f  = “ //r/|r|^ + a , where // is  the planet gravitational parameter and a represents the solar

sail acceleration. A rotating frame of reference is chosen to include the dynamics of the 

planet-sail system orbiting the Sun. The subscripts and ‘r ’ refer to the inertial and 

rotating frames respectively. The 1®* order derivative of r relative to the inertial frame 

produces

dr dr
_dt _I _dt _

+ (r + R) (3.1)
JR

The second order derivative can be obtained from Eq (3.1) after grouping like-terms as

^ d V ~dh + - ^ x r  + 2&lx
dr

dt^ I dt^ R dt dt ^
-f- H  X  H  X  (r + R) (3.2)

As the angular velocity is assumed constant, dQ,/dt = 0 which removes the 2"  ̂term on the 

right-hand side. The equation of motion representing the solar sail dynamics in the vicinity 

of the planet can then be extended to a frame of reference rotating with angular velocity 12 

as

f + 2 i îx f - f - i lx î îx r  = ~ ^  + an (3.3)

The final aspect to consider is the gravitational influence of the Sun on the solar sail. 

Consider the vector, R = R + r which represents the position of the solai' sail relative to

the Sun. The Sun exerts a gravitational acceleration of -//^R^./|rJ^, where 

//j= 1.334x10^*  ̂ m ŝ"  ̂ is the solar gravitational parameter. Substituting R =R  + r , the 

denominator can be expanded as

iR + rl"’ = [(R + r)(R + = [r" + 2r ■ R + (3.4)

where r = r • r and i? = R • R .
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Equation (3.4) can then be expressed as

- 3R + r = R1-3 1+
2R-r ^

■ + r

\ R j

- 3/2

(3.5)

which can be expanded using the binomial theorem to obtain

1-3/2
= 1 - 3R r 3ri

R^ 2R‘
(3.6)

Hill’s approximation assumes that |R| »  |r|, therefore the third term on the right-hand side 

of Eqn (3.6) can be ignored. Since R = Ri,  the dot product R.r = 7?x. Therefore 

|R + r| = i?“̂ (l-3 x /i^ ) ignoring higher order terms. As the angular velocity 

= Ms / ^nd (R + r) = (jR + %)i + yj + zk the solar tide components can be expressed as

-Ms
R + r

1 - 3 ^
R

((x + i?)i + yj + zk) (3.7)

The solar-tide terms are introduced to the right-hand side of Eq (3.3) to obtain the complete 

Hill’s equations of motion [Mori'ow, 2001]. The terms can be further simplified by noting 

that x y / R « l ,  x z l R « l  and x(x + R ) / R ~ x . Evaluating the coriolis and centripetal 

acceleration cross-products gives

x  — 2Q,y — — + +
r

z = - ^ - Q \  + a

(3.8.1)

(3.8.2)

(3.8.3)

The equations of motion can be non-dimensionalised with characteristic length L  and 

characteristic time z; where x = x ! L  ÿ = y /T  z = z / L , r = r / L a n d f  = ? / r .  Equations 

(3.8) can then be re-written as
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L d^ÿ 1 yjLi
Û  IrP

L d^z 
d p

1 Zju
p  IrP

(3.9.1)

(3.9.2)

(3.9.3)

Selecting Ù ^P = 1 and L = {pjuf^  the angular velocity and planet gravitational parameter 

can be removed from the equations to obtain

d^z
dtJ2

(3.10.1)

(3.10.2)

(3.10.3)

where (tQ, Ky, are the non-dimensionalised acceleration components such that 

K = AT̂ i + j  + AT̂ k . Table 3-1 provides the characteristic length and characteristic time 

parameters for a vaiiety of planets.

Name R, xlO^km //, xlO“W s " ^ Q, s“^ L, xlO^km T, days

Mercury 57.91 0.02203 8.788x10'^ 0.3177 13.97

Venus 108.21 0.3249 3.2447x10'^ 1.4559 35.67

Earth 149.60 0.3986 1.9961x10'^ 2.1547 57.98

Mars 227.92 0.04283 1.0615x10'^ 1.5607 109.04

Jupiter 778.57 126.686 1.6812x10'^ 76.5283 688.42

Table 3-1 Parameters for selection of planets [Williams, 2001]
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3.2 Libration points

3.2.1 On-axis libration points

Libration points can be identified by setting the acceleration and velocity components 

x = x = ÿ ~ ÿ  = z = z = 0. Hill’s approximation yields two libration points for the ballistic 

case (a?=0). These libration points are labeled L; and L2 , which are located symmetrically 

on the negative and positive side of the v-axis respectively. Setting the acceleration and 

velocity components equal to zero in Eqn (3.10) and applying the on Sun-line condition 

y = z = 0 yields

% + 3 x „ = 0  (3.11)

Solving for Xo gives the location of the two libration points = ±(3 ) = ±0.69336.

Table 3-2 provides the location of these libration points for various planets orbiting the

Sun.

For the non-ballistic case (x>0), a continuum of libration points can be generated 

planetward of L2 and sunward of L;. To generate a libration point at Xq, the required 

acceleration is determined as

r  = (3.12)
X  I

Figure 3-2 shows a plot of the non-dimensional acceleration required to generate an on- 

axis libration point. Assuming /c>0,  no solutions exist beyond L2 in the anti-Sun 

direction or between Lj and the central body.
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Name L i , km L2 , km

Mercury -2.2028x10^ 2.2028x10^

Venus -1.0095x10^ 1.0095x10"

Earth -1.4940x10" 1.4940x10"

Mars -1.0821 xlO" 1.0821 xlO"

Jupiter -5.3062 xlO' 5.3062 xlO '

Table 3-2 Location of L; and L2  for various planets in the solar system

10

9

8

7

6

r  5

4

3

2

1

planet
0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 3-2 Artificial libration points generated using solar sail acceleration
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3.2.2 Jacobi integral

The Jacobi Integral and Hill’s surfaces have been described in detail by many authors 

[Marchai, 1990; Szehebely, 1967; Wie, 1998]. The integral provides a useful method for 

investigating bound motion given a set of initial orbit conditions. One technique for 

deriving the integral involves multiplying the equations of motion by the respective 

velocity components and summing them together as follows

\
^ + ÿ ÿ  + Z Z - -

XX yy zz + +

vW H H y
+ 3xx -ZZ + K^x -\-Ky-y + K^z (3.13)

Re-arranging yields

A
dt

1 2 1 3 2 1 2—V -  — — X + ~ z  -K .r
i 2

(3.14)

As the time derivative is zero, the expression in the brackets is a constant. Integrating with 

respect to time yields the Jacobi integral

(3.15)

where ~x^  + y^ + z^ and the constant of integration, C, is known as the Jacobi constant.

The Jacobi constant can be evaluated at the Lagrange points by substituting 

and Zo=0 into Eqn (3.15) and setting v=0. The resulting Jacobi constant is

C = - ( 9 )̂ ^̂  = -4.3267 [Villac, 2001]. Figure 3-3 shows a zero-velocity surface evaluated 

for constant C. It is evident that the surface closes symmetrically at the Lagrange points.

Artificial libration points are generated using the solar sail acceleration at. Figure 3-3 also 

shows a set of zero-velocity surfaces produced at artificial libration points sunward of L2 . 

Figure 3-4 shows a set of zero-velocity surfaces produced at artificial libration points 

sunwards of Lj. The Jacobi constants, libration point position and required solar sail 

acceleration for each of the zero-velocity surfaces are provided in Table 3-3.

95



As in the case of the Lagrange points, the zero-velocity surface is closed when evaluated at 

the artificial libration point. Therefore the Jacobi constant evaluated at a libration point 

represents a criticial value, Cent, above which the surface will be open. As the acceleration 

is applied in the anti-Sun direction, the energy for libration points sunward of L2 is less 

than C=-4.3267. Artificial libration points sunward of Lj have greater critical energies. 

The curve is open on the anti-Sun side indicating unbound motion for trajectories 

coiTesponding to this energy.

As the Jacobi constant is analogous to the total energy, it is clear from Eq (3.15) that the 

pseudo-potential function, U{x,y,z), can be expressed as

rr( 1 , 3 2 1 2 ,C/(x, y, zj — j~r + —X —— Z + K .I (3.16)

The energy surfaces produced by evaluating the Jacobi integral at v=0 are equivalent to 

evaluating the pseudo-potential function at the libration point. Similar to the non-linear 

stability analysis performed in Chapter 2, it is clear from Fig 3-3 and Fig 3-4 that a local 

saddle point of the pseudo-potential function exists at each of the on-axis libration points. 

This graphically indicates that the on-axis libration points are likely to be unstable. An 

analysis of the eigenvalues of the linearised system will be performed to determine the 

libration point stability.

Surface Ccrit Xp K
1 -4.3267 0.6934 0
2 -4.8863 0.65 0.4169
3 -5.5867 0.6 0.9778
4 -6.3652 0.55 1.6558
5 -7.25 0.5 2.5
6 -4.2443 -0.7 0.0592
7 -3.0800 -0.8 0.8375
8 -2.0144 -0.9 1.4654

Table 3-3 Jacobi constants at the Lagrange point (1) and a series of artificial libration points (2-8)
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Figure 3-3 Constant energy surfaces corresponding to libration points sunward of Lg
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Figure 3-4 Constant energy surfaces corresponding to libration points sunward of Lj
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There are four regions of the zero-velocity surface. The region within the vicinity of the 

central body is refen’ed to as the capture region. A closed curve means that an orbit bound 

within the capture region is trapped. The exterior region is located on the anti-Sun side of 

the zero-velocity surface and the interior region exists sunward of the surface [Koon et al, 

2002]. These regions are highlighted in Fig 3-5.

Figure 3-5 represents a series of Hill’s surfaces in the ballistic case (/ig=0) for a range of 

Jacobi constant values 4 .2<C ^.45. If the energy for a set of initial conditions corresponds 

to C>Ccrih then the energy surface will be open enabling escape from the capture region. 

In the ballistic case, the zero-velocity surface is symmetric about the y-axis, opening 

around Lj  and L 2  simultaneously.

Figure 3-6 shows an orbit bound within a closed zero-velocity surface with initial 

conditions X o=0A 934 , y o = 0 ,  x ^ ~ 0  and = 0.5. These initial conditions correspond to

a Jacobi constant C=-4.5340. Figure 3-7 demonstrates a transfer between the exterior and 

interior region. These initial conditions coiTespond to a Jacobi constant C=-4.2375.
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Figure 3-5 Series of zero-velocity surfaces for the ballistic case ( k = 0 )
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Figure 3-6 Trajectory bound within zero-velocity surface
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Figure 3-7 Transfer from exterior region to interior region via gap in zero-velocity surface

99



Similarly, a gap opens in the zero-velocity surface around an artificial libration point. 

Figure 3-8 shows a series of surfaces for increasing energy where Cc/f-7.25. The Jacobi 

constants of the Hill’s surfaces range between -7.75<C<-6.75. There is no gap present on 

the sunward side of the surface for the applied acceleration, JC=2.S. As the acceleration is 

applied in the anti-Sun direction, the energy required to achieve an open surface on the 

anti-Sun side is reduced. As the acceleration is increased, the achievable libration point 

position moves closer to the planet and the value of Ccit decreases.

Figure 3-9 shows a series of surfaces for a libration point located sunward of Lj, Xo=-0.7. 

The critical energy, Ccrii= -4.2443 and the Jacobi constants range between -4.5<C<-4. As 

the energy is increased, a gap clearly opens around the libration point. Escape in the anti- 

Sun direction is possible via this opening in the Hill’s surface.

It will now be shown that it is possible to generate non-Keplerian orbits around these 

libration points. Two types of non-Keplerian orbits will be demonstrated, including the 

displaced circular orbits investigated in the two-body problem and quasi-periodic Lissajous 

trajectories. Stable manifolds will then be investigated which pass near to the central body 

and wind onto the desired orbits, particularly useful in the Sun-Earth system for near-Earth 

orbit insertions.
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Figure 3-8 Series of zero-velocity surfaces of increasing energy for k=2.5
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Figure 3-9 Series of zero-velocity surfaces of increasing energy for k=0.0592

3.3 Circular displaced non-Keplerian orbit

3.3.1 Planet dependant acceleration perturbation

In Chapter 2, it was demonstrated that by orientating the solar sail normal to the Sun-line, a 

circular orbit can be displaced in the anti-Sun direction, so that the orbit plane no longer 

intersects the central body. From the two-body problem discussed in Chapter 2, a circular 

displaced orbit can be produced by selecting an appropriate initial orbit radius po and

angular velocity co-^y \Y \  . Treating Hill’s approximation as a perturbed two-body 

model, a possible solution is assumed with = p„ cos 0  and = p̂  ̂sin 0 . Evaluating at 

^ 0  gives the initial position and velocity ,0) where the required

acceleration is given by Eq (3.12).

While the solar sail normal is directed in the anti-Sun direction, the acceleration due to 

solar radiation pressure is related to the lightness number, /?, as K ~  where Ps is
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the solar gravitational parameter and Rs is the separation between the solar sail and the 

Sun, From Fig 3-1, the separation between the solar sail and the Sun at the nominal orbit is 

defined as = |R + r |̂, where Fq represents the nominal distance between the sail and the 

planet. The acceleration can be evaluated at the nominal orbit conditions for any planet 

such that = j3p^ / rJ^ . For a solar sail with constant surface area, the sail acceleration

variation is dependant on time varying distance between the Sun and sail such that 

(0  = |R + r( t) |. The time dependant acceleration relative to the nominal acceleration

can be expressed as K{t) = {r  ̂/R^ {t)Y .

Including the acceleration variation due to relative distance from the Sun means the non- 

dimensionalised Hill’s equations can no longer be scaled to any planet, as the resulting 

trajectory is planet dependent. This section will focus on orbits where the Earth is the 

central body. The results will be scaled to use Earth radii ( R e )  as a suitable scale length.

3.3.2 Stability of circular displaced non-Keplerian orbit

The two-body stability criteria can be examined using Hill’s approximation and is valid 

provided the orbit is within a reasonable distance of the Earth. Figure 3-10 shows a non- 

Keplerian orbit with nominal radius 50 R b  displaced 15 R e  from the Earth, requiring an 

acceleration a;,=1.0238 mms'^. This orbit can be described as stable when compared to the 

two-body stability condition, > 2-^2%^,where Po represents the nominal radius. The

nominal orbit period is 7=22.1 days. The trajectory exhibits a large deviation from the 

nominal displacement distance, between 7.95 R e  and 24.76 R e ,  but clearly does not escape.

An orbit classed as unstable compared to the two-body stability condition is shown in 

Fig 3-11. This nominal orbit has a radius of 50 Re and is displaced 20 Re from the Earth, 

requiring an acceleration /^=1.242xI0'^ ms" .̂ The nominal orbit period is 23.15 days. 

Escape from the nominal orbit occurs within 20 days.
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The stability of circular displaced orbits was computed over a nominal displacement range 

of 2-^50 Re and radii range 2—>150 Re. Using an iterative process, Hill’s equations were 

numerically integrated for each set of initial conditions. An orbit was defined as stable 

provided after 10 orbit periods the maximum displacement distance remained within an 

arbitrary distance, 3xo, of the Earth. The results are shown in Fig 3-12, where the light and 

dark regions correspond to stable and unstable orbits respectively.

The line representing the two-body stability criteria, > 2>/2x^ is included for 

comparison. Hill’s problem shows agreement with the two-body stability criteria provided 

the radial distance is near to the central body. The orbit displaced furthest from the central 

body, which can still be classed as stable, has initial conditions jCo=32.06 Re and radius 

Po= 112.63 Re- This orbit was found to be highly perturbed and perform large excursions 

across the x-axis, frequently passing sunwards of the Earth (x<0).
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3.3.3 Periodic looping trajectories

The periodic looping trajectories identified in the two-body study can also be generated in 

Hill’s problem. This family of orbits is obtained by perturbing the required acceleration. 

Figure 3-13 shows a stable orbit with the acceleration perturbed by zl=0.05, where 

K = K^{ l - /S) ,  Comparing this to the unperturbed stable orbit provided in Fig 3-10, the

acceleration perturbation increases the x-axis oscillation amplitude with a x-displacement 

range spanning between x=23.28 Re andx=3.63 Re.

Figure 3-14 shows the effect of perturbing the acceleration with zl=0.05 for the same initial 

conditions as the unstable orbit shown in Fig 3-11. In this case, the trajectory does not 

escape from the nominal orbit in the anti-Sun direction. Instead the orbit oscillates along 

the x-axis with x-displacement range between x=26.48 Re and x=4.49 Re.

The periodic looping trajectories provide a series of manifolds which wind-off (unstable) 

and wind onto (stable) the nominal orbit. Figure 3-15 shows a looping trajectory which 

passes within 1.52 Re of the Earth before returning to the nominal orbit. Orbit insertion 

conditions can be determined by numerically integrating the trajectory to obtain the 

position and velocity coordinates at the minimum distance from the Earth. The unstable 

manifold eventually intersects a stable manifold near to the central body which winds back 

onto the nominal orbit. This enables the minimum x-displacement conditions to be applied 

directly to define a transfer trajectory between the Earth and the nominal orbit.
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Alternatively, the miiTor image theorem can be applied which takes advantage of the 

symmetry of trajectories in the three-body problem [Brouke, 1979; Miele, I960]. 

Symmetry about the x-z plane can be achieved by transforming the initial conditions using

(x y z X ÿ z, t ) - y { x  -  y z - x  y - z ,  -?) (3.17)

This can be verified by substituting the transformed conditions into Eqns (3.10) to yield

+ 2- -  “ 7ZT + 3(x) + x'

d{—tŸ  d{~t) jr|^

(3.18.1)

(3.18.2)
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d^z z 
d(~t) |r

“ 715— z  (3.18.3)

Comparing the resulting equations to Eqns (3.10) verifies that the y-axis direction has been 

reversed but the x~ and z-axis remain unaltered when the mirror image conditions are 

applied. This corresponds to a minor image of the trajectory reflected about the x-z plane, 

which means the conditions obtained by integrating forward along the unstable manifold 

will now wind onto the nominal orbit. Reversing the integration time transforms the 

unstable manifold into a stable manifold [Koon et al, 1999].

For Hill’s approximation, other symmetries exist as outlined by Scheeres and Villac 

[2003]. For the ballistic case (/c=0) several symmetries exist including reflections about all 

the axial planes x-z, x-y and y-z. The other symmetries are obtained by combining the 

transforms required for plane symmetric trajectories.

The transforms for symmetry about the y-z and x-y planes are

{x y z X ÿ z,  t ) - ^ { - x  y z x - ÿ  - z ,  - t )  (3.19)

{x y z X ÿ z, t )~ ^ (x  y ~ z  x  ÿ - z ,  ?) (3.20)

In the case of an artificial libration point, the acceleration term is always positive with the 

implication that the symmetry about the y-z axis does not exist as the x-axis direction is 

reversed. This can be verified when the transformed parameters from Eq (3.18.1) are 

substituted into Eq (3.10.1) to obtain

+  ( 3 . 2 1 . 1 )
d{—t^ d(—t) r

dx dy _  X— + 2—  
dt dt

2 + 2—  — — 3x + (3.21.2)

The direction represented by the x-axis equation has been reversed except for the 

acceleration. This symmetry is only valid when /t^O. In total there are three possible 

symmetries in the non-ballistic case. The third possible symmetry is obtained by 

combining the x-y and x-z transforms to yield
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{x y z X ÿ z,  t ) ^ { x  - y  ~ z  - x  ÿ z ,  - t )  (3.22)

Figure 3-16 (a) represents the initial conditions transformed using Eq (3.17). As the time 

is negative for this transform, the trajectory is reversed when forward integration is applied 

i.e. unstable manifolds become stable manifolds. The transformed conditions are identified 

by integrating the nominal orbit conditions forward for 3 orbit periods. The transformed 

conditions produce the time reversed orbit, which is inverted in the x-z plane.

Figure 3-16 (b) shows the resulting orbit when the initial conditions are transformed using 

Eq (3.22). Again, time is negative so the reverse of the original orbit is prodnced using the 

transformed conditions. These are obtained after three periodic loops of the original orbit 

conditions. It is clear that this transformed orbit is inverted in both the x-y and x~z plane.

Figure 3-16 (c) is computed using the transform provided in Eq (3.20). For this transform, 

the time t is positive so integration is forward. The initial conditions are determined by 

first integrating the nominal orbit conditions forwaid for 1 periodic loop and selecting 

conditions which coiTcspond to the minimum x-axis distance from the central body. The 

initial plot represents the trajectory obtained using these conditions. The transformed 

conditions produce an inverted trajectory in the x-y plane.

Orbit insertion can be achieved by identifying initial conditions near to the central body 

which wind onto the desired orbit. As the manifolds can be described as homoclinic, the 

solar sail will eventually return to the central body via the unstable manifold. Station- 

keeping strategies have to be employed to prevent the solar sail leaving the nominal orbit 

after insertion.

109



(a)
20

initial
mirror

15

10
5

0
-5

■10

■15
-20 100 20 30 40 SO 60

20
Initial
mirror

15

10
5

0
-5

-10
-15

0 10 20 30 40 SO GO
X, R X. %

(b)

20
Initial
mirror

15

10
5

-10
-15
-20 100 20 30 40 50 60

20 Initial

15

10
5

0
-5

■10
•15

-20 0 10 20 30 40 50 60
X, R-

(c)

Initial

0 10 30 40 50 60

initial

15

10

5

0

-5

■10

-15

0 10 20 30 40 50 60

Figure 3-16 Trajectories generated using mirror image theorem
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3.3.4 Optimal control of circular displaced orbits

The two solai- sail station-keeping techniques examined in Chapter 2, were sail pitch angle 

variation and sail surface area variation. The optimal controller developed in the two-body 

case can be used to control circular* displaced orbits generated using Hill’s equations, 

which can be considered as a perturbed two-body model provided the orbit is relatively 

near to the central body ( x o < 1 6 0  R e ) .

3.3.4.1 HilVs sail area controller

The two-body optimal sail area controller is outlined in Section 2.4. For a desired orbit, 

insertion trajectories are determined by perturbing the acceleration sufficiently to generate 

a set of periodic looping manifolds. The minimum %-axis turmng point is determined and 

the insertion conditions at this point may either be applied directly or by using the mirror 

image transforms, as discussed previously.

Area variation directly controls the acceleration of the solar sail. The gains (G;, G2 , Gj, 

G4) are obtained using the Ricatti equation, discussed in Section (2.4.4). The acceleration 

variation necessary to maintain station-keeping at the desired orbit with displacement 

and radius po can be modelled using the linear control law

ÔK = -(Gi (/? -  /?̂  ) + G2 (.X -  ) + G3 (yô -/>„) + G4 ( i  -  )) (3.23)

where represents the acceleration variation directed along the sun-line, { p , x , p , x )  are 

the integrated orbit conditions and ) are the desired orbit conditions. As the

.%-axi8 represents the Sun-line, the orbit radius p  -  . The radial velocity can be

determined using p  = {yÿ + zz) /p .
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For a circular orbit displaced a constant distance from the central body p „ = ^  and = 0,

which enables Sfc to be continuously calculated during trajectory integration to provide a 

control signal. Initially, the controller is inactive while the solai* sail traverses the stable 

manifold which winds onto the nominal orbit. Once the solar sail has amved at the 

nominal orbit displacement distance, the controller is activated to prevent the sail winding 

off the orbit via the unstable manifold.

Figure 3-17 shows an orbit controlled using sail area variation with insertion at a distance 

of 1.55 Re from the Eaith. This coiTesponds to an insertion starting point approximately 

3500 km above the Earth’s surface. The nominal acceleration %=2.2826 mms'^ with a 

reduction corresponding to zl=0.04. The solar sail winds onto the nominal orbit with radius 

20 Re displaced 60 Re from the Earth within 13.5 days.

Figure 3-18 shows the acceleration variation for a control period of 200 days. The 

acceleration varies between 2,4286 mms'^ and 2.1198 mms"^. The coiTesponding area 

variation for a 500 kg sail and payload mass is between 1.3332 xlO^ m^ and 1.1638x10^ 

m^. Using a sail assembly with loading (7=3gm"  ̂would require a total sail mass of 400 kg, 

enabling control of a 100 kg payload at this orbit.

As the sail acceleration is linearly dependant on sail mass, the gradient of payload mass 

against sail area is determined as 1.3328x10^ m^kg \  A small 10 kg payload could be 

controlled at the nominal orbit using a solar sail of area 13,328 m^, or a larger 500 kg 

payload could be controlled with a sail area of 6.6642x10^ m^.
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Figure 3-18 Solar sail acceleration and area variation required to control orbit
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3.3.4.2 Sail pitch and yaw controller

The two-body pitch angle controller uses the linearised two-body equations represented 

using cylindrical polar coordinates. The control angles must be transformed into a 

Cartesian pitch and yaw angles {^,y/) deteiTnined from the cylindrical polar roll and pitch 

angle, From Fig 3-19, the components for the unit vector n can be expressed using

cylindrical polar pitch and roll angles as

~ n cos a  (3.24.1)

Uy -  n sin a  sin (p (3.24.2)

Mg = n sin aco s  ç  (3.24.3)

and using Cartesian pitch and yaw angles as

n, =  n cos (j) cos yr (3.25.1)

iiy = n cos ̂  sin ip (3.25.2)

Mg = M sin (p (3.25.3)

From Eq (3.25.1) and Eq (3.25.2), riyjn^ = tany/ which can be compared to Eq (3.24.1) 

and Eq (3.24.2) to obtain the relationship for yaw angle as

y/ -  tan"* ( t a n s i n  (p) (3.26.1)

Similarly, comparing Eq (3.25.3) to Eq (3.24.3), the Cartesian pitch angle can be 

determined from

^  = sin"* (sin Circos <p) (3.26.2)

The acceleration can be expressed including the dependency on the sail pitch and yaw 

angle as k(0  = Ar„[/?^,/7?(0r cos^ (Zicoŝ  . Using the Cartesian representation of unit 

vector, n, from Eq (3.25), the resulting acceleration components can be expressed as
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^.v( 0  =  COŜ  (Z)C0 Ŝ  \ff

Ky {t) -  K̂  [/?̂ /̂ /? (0 r  cos^ <j)co^^y/ sin y/ 

K ^ { t )  =  K X R „ l R { t ) \  cos^ ( j )c o s^  y / s , \n ( j )

(3.27.1)

(3.27.2)

(3.27.3)

During numerical integration of Hill’s equations, the polar coordinate angular position can 

be determined as = tan“^(y/z). The pitch angle variation is determined using the linear 

control law

S a  -  -{G^[p - p^)-\- - + G^{p- G^{x -x^ ) )

which is converted to Cartesian pitch and yaw angle variations S(p and ôy/

(3.28)

Figure 3-20 shows an orbit controlled using pitch and yaw angle variation with radius 20 

R e , displaced 60 R e from the Earth. The same insertion conditions are employed as those 

used in the sail area variation case starting at a distance of 1.55 Re from the Earth. The 

controller is inactive until the solar sail arrives at the nominal orbit. The solar sail 

acceleration is boosted to 1.05/q, when the controller is activated to compensate for the 

reduction in the acceleration directed along the x-axis when the sail is pitched.

The pitch and yaw angle variation required to control this orbit is shown in Fig 3-21. 

Figure 3-22 shows the yaw and pitch angle which demonstrates the periodic nature of the 

control signal.

■►x

Figure 3-19 Converting cylindrical polar pitch and roll angles into corresponding Cartesian pitch and yaw 

angles
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Figure 3-21 Pitch and yaw angle variation required to control orbit
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Figure 3-22 Yaw against pitch angle representing motion of the solar sail normal

The solar sail requires a continuous acceleration of 2.3968 mms'^ during the control phase. 

The gradient of payload mass against sail area is 1.2528x10^. A payload mass of 10 kg 

could be controlled using a 12,528 m^ sail. This represents an 800 m^ sail area reduction 

compared to that required using the area variation controller. A larger 500 kg payload 

could be controlled using a 6.2641x10^ m^ sail, which represents an area reduction of 

40,000 m^. In this case, use of a pitch angle controller greatly reduces the required sail 

area for larger payloads.
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3.4 Non-Keplerian orbit dynamics far from the central-body

3.4.1 Linear solution to Hill’s approximation

Periodic orbits around the natural and artificial Lagrange points can be generated by 

selecting initial conditions which suppress divergent modes. In order to identify periodic 

solutions, Hill’s equations are linearised at the desired Lagrange point (x ,̂ yo> Zo) using new 

coordinates x -  y = and z = z„+âz . The ballistic Lagrange points lead to

initial conditions x„ =±(l/3)’̂ ,̂ yo=0 and Zo=0. Using Taylor’s theorem, the linearised 

Hill’s equations have the form

X -  2ÿ = 

ÿ + 2x =

È L
3x

9x

Sx +

Sx + '%L
dy

z = % Sx + p A l Sy +
9x

Sy + 

Sy +

K
dz

dz .

dz

Sz

Sz

Sz

(3.29.1)

(3.29.2)

(3.29.3)

where the partial derivatives are evaluated at the nominal conditions (indicated by the 

subscript‘o’). The functions = -x / |r |^  +3x,  f y = ~ y / \ ^ f  and f z = - z / \ r f ~ z  and the 

partial derivatives can be obtained as

r  r
f  = y

xy I |5 J  yx

f  = ^ = /J  yz  I |5 J  izy

r 3xz „
J  xz I |5 J z:r

f z z  -

3z ' 1
rl  ̂ Irl̂

1 (3.30)

Evaluating these at the classical Lagrange point yields = 9, fyy = -4  and

f x y  -  f y z  ~  f x z  ~  ^  '
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The eigenvalues of the lineaiised Hill’s equations can be determined by forming a state- 

space equation with the form x = A x , where A is the lineai' coefficient matrix and the state

vector X = [Sx Sy Sz Sx Sy ^  . The linear coefficient matrix A = 

contains four 3x3 sub-matrices

0 I
u  a

which

"0 0 0“ 1 0 o'
0 = 0 0 0 1  = 0 1 0

0 0 0 0 0 1

fxx fxy f z z ' 0 2 o'

U  — f y x f y y f y z Q, — - 2 0 0

J z x f z y f z z 0 0 0
(3.31)

The 6 eigenvalues, A„, and corresponding eigenvectors can be extracted from the matrix to 

obtain a set of solutions

x = '^ocJ„exp(Àj)
n - l

6

rt=l

6
z = 'Z,a„ç„e\p(À„t)

X = exp(A„0
/I=l
6

y  = ^ x p { \ t )
n=i

G

Z = Z % A G X P (A „0 (3.32)
«=1 /;=!

where ^  t] and Çrepresent the eigenvectors and a,i are constants determined from the initial 

conditions.

It is apparent from the linear coefficient matrix that z is linearly independent of x and y. 

The four in-plane (x-y plane) eigenvalues can be determined from the characteristic 

equation

=  2  ^ ̂  / v - v  + / j - J ±  ^(4 -  fxx  -  f y y  “  ^ [ f x x f y y  ~  f x y  )] (3*33)
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Substituting the values for fxx, f y y  and fxy  into Eq (3.33) leads to the expression 

=( l ±2Vv) .  This yields two real eigenvalues, = ±Vl + and two imaginary

eigenvalues A3 4  = ± - \ ] l - 2 ^  . The eigenvalues of the independent variable z, can be 

determined as A? = . Substituting the value of f z  obtains two imaginary eigenvalues,

Consider only the dependant variables, x  and y. The eigenvectors v = [v̂  ^

can be evaluated for each eigenvalue by forming the matrix (A/ -  A)v = 0, ignoring the z 

and z rows as

"A 0 -1 0 ■
0 A 0 -1 2̂

- 9 0 A - 2
0 3 2 A_ 44 _

= 0 (3.34)

(a  ̂+ 3 )Evaluating the rows for each eigenvalue obtains V3 = Av ,̂ = Av^, Vj = —̂ .
2A

The eigenvectors for the independant variable can be evaluated by foiming a 2x2 

determinant from the rows of matrix A  which contain z and z as

■ A - 1 “

4 2 .
= 0 (3.35)

where the eigenvectors here are represented as a = [ê  Evaluating the rows leads to

the expression = A<3j . It is convenient to select ej=l which yields ^ 2 ~ 4  6 •

Selecting an arbitrary value of V2= l, the values of vi= +0.31171711 coiTesponding to 

eigenvalues A3 ,4= ±3.33142637x104. For a periodic orbit, the positive real exponents 

must be suppressed to prevent asymptotic escape. This can be achieved by setting 

constants The solutions for x, y and z have the form
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X = -a^iv exp(/A^yO + exp(-/A^3,f) (3.36.1)

y  = a^ exp(/A^O + exp(-/A^O (3.36.2)

z - a ^  exp(/A^^) + exp(-/A^/) (3,36.3)

where v = Im|vi|}, =Im |A 3 4 |} and -  ImjAg ̂ lj. Setting the constants ar^a^~Ky and

a 5=Of6==Az these expressions can be re-written in trigonometric terms using 

exp(W) = cos Û + / sin Û as

X = -A^v(? cos(A^O -  sin( A^O )+ 4 ^ ( f  cos(A^^O + sin( A^O) (3.37.1)

y  = A^,{cos(X,/) + ism(X^t) )+A/cos(X^/ )- ism(X^/) )  (3.37.2)

z = A^ (cos(Xj) + / sin( A^/))+ A^ (cos(X/) -  i sin( A^O) (3.37.3)

The expressions can be reduced to x = sin(A^^O  ̂ y = cos(A^/) and 

z - A ^  cos(A/ + (p) where ç  represents the phase change o f z. For a circular orbit in the y~ 

z  plane, it is required that z is Till out o f phase with y. This leads to the following initial 

conditions x = 0, x = AÿvX^y, y  = Ay, ÿ = 0, z - 0  and z = A^X^ [Cielaszyk and Wie,

1996].

Figure 3-23 shows the quasi-periodic trajectory evaluated using the linear solution of Hill’s 

equations. This trajectory is a result o f the in-plane and out o f plane frequency ratio, 

X^yjX^ , being non-rational [Howell and Pernicka, 1993; Cobos and Masdemont, 2002;

Roberts, 2004].
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Figure 3-23 Quasi-periodic Lissajous trajectory 

3.4.2 Lissajous orbits using Hill’s equations

Due to the orbit instability, escape still occurs from the Lissajous orbit during numerical 

integration. Figure 3-24 shows a Lissajous orbit around the L2 point with y-axis amplitude 

Ay=5 Re. This orbit is generated by numerically integrating the linearised Hill’s equations, 

provided in Eq (3.29). Escape occurs in the anti-Sun direction after 4.5T, where the orbit 

period T= 175.87 days.

Figure 3-25 shows a series of Lissajous orbits around L2 computed using numerical 

integration of the nonlinear Hill’s equations, provided in Eqns (3.10). The initial 

conditions for each orbit are provided in Table 3-4.

The initial conditions in Table 3-4 are determined using the linear' solution, provided in 

Eq (3.37), evaluated at time r=0. Comparing the trajectory computed using the linearised 

Hill’s equations. Fig 3-24, to those computed using the non-linear Hill’s equations,
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Fig 3-25, it is clear that divergence from the nominal orbit occurs much sooner for the 

latter case. This is due to the presence of nonlinear terms which are ignored in the linear 

solution.
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Figure 3-24 Lissajous trajectory generated by integrating linearised Hills equations about L2

Orbit Ay Az K
1 1 Re IR e 1.0384625x10'* 3.2162924 xlO ''
2 2 Re 2 Re 2.0769250 xlO'“ 6.4325848 xlO '*
3 3 Re 3 Re 3.1153875x10'* 9.6488772 xlO'*
4 4 Re 4 Re 4.1538501 xlO" 1.2865170x10'^
5 5 Re 5 Re 5.1923126x10'* 1.6081462x10'^

Table 3-4 Lissajous trajectory initial conditions for contours 1-5
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Figure 3-25 Lissajous trajectories around L2 for Ay amplitude equal to orbit number

Using an iterative method, the component can be coiTected using -x^-\-Sx  to

improve the precision of the initial conditions which converges the trajectory towards the 

nominal Lissajous orbit. For an orbit around the L2 point with y-axis amplitude, A y-20  Re, 

the coiTection factor &=4.914954741x10"'^ is applied improving precision to order 1x10"^ .̂ 

The corrected initial conditions lead to the improved orbit shown in 

Fig 3-26. Escape occurs after 4 orbit periods where T=175 days. Increasing the 

convergence accuracy for the solar sail trajectory reduces the amount of station-keeping 

required to control the orbit.
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Figure 3-26 Lissajous trajectory around L2 computed using corrected initial conditions

3,4.3 Optimal controller for Lissajous orbits

3.4.3.1 Solar sail area control

An optimal controller can be developed using Hill’s equations linearised at the libration

point. As stated in Section 3.4.1, the linear coefficient matrix A =
0 I
U  Ü.

, where the

sub-matrices are defined in Eq (3.31). The control matrix is developed using the partial 

derivatives of Eqns (3.27) with respect to the acceleration ^ t)  where

— = cos aco s  ^ (3.38.1)
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3 s
dK{t)
dJC

cos^ <%cos  ̂<z>sin ^

— = cos^ fZcos^ (^sin a
dK{t)

For area variation control, the control matrix has the form

(3.38.2)

(3.38.3)

B = 0 0 0 0/r.. dK,
dK{t)  dK{t) dK{t)

(3.39)

Evaluating the partial derivatives at the nominal orbit conditions, O!=0 and ^ 0 ,  obtains the 

control matrix 5  = [O 0 0 1 0 O]^. The output matrix C is a 6x6 identity matrix /gxe-

Using the optimal control laws developed in Section 2.4, a gain matrix can derived using 

the state-weighting matrix Q and the control-weighting matrix, N. The solution leads to a 

6 element gain matrix which can be used to determined the required acceleration vaiiation

+ G^Svj + G-^ôç + G^S(^ + G^Ôfj + G^Sç (3.40)

where the difference between the desired and actual position is calculated using

S^ = <^-AyVsm{À^yT) 

Sr}^î]~A^,  cos(T^r) 

ôç= ^ç-Ay  sin(;i^'r) 

â i  = <^-AyVÂ^cos(Â^.yT) 

â?)=?) + AyÂ^ySin(Â^yT) 

âç  = ç - A y Â ^  COS(Â^T)

(3.41.1)

(3.41.2)

(3.41.3)

(3.41.4)

(3.41.5)

(3.41.6)

Selecting suitable values for the state and control weighting matrices minimizes the 

magnitude of
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3.43.2 Solar sail pitch and yaw control

A  similar design can be used to develop a pitch and yaw angle controller by linearising 

Hrll’s equations at the libration point. The linear coefficient matrix has the same form as 

the area variation case. The control matrix has the form

B =
0 0 0

0 0 0

d a  d a  
Oat. dfc^

d a
dfc.

d(j} d^  d(f>

(3.42)

where the partial derivatives of Eqns (3.27), with respect to sail pitch and yaw angle, are 

expressed as

da
dKy
da

d a

d(p

d(^

a s
d^

= -3k{î)  cos ̂  a  sin a  cos ̂  (j) (3 .43.1)

-  -dK(t) cos ̂  a  sin a  cos ̂  ^  sin (j) (3 .43.2)

-  K{t)cos^ orcos^ ^ ( l -  2tan^ a) (3 .43.3)

= -3ic(t)cos^ üfcos^ ^sin (3 .43.4)

= K(t) cos ̂  (p cos ̂  a (l -  2 tan ̂  (/f) (3 .43.5)

= -2k{î)  cos ̂  ÛT sin cos (J) sin (j) (3 .43.6)

Evaluating at the nominal orbit conditions /r(0) = , Of=0 and ^ 0 ,  obtains the control

matrix

B =
0 0 0 0 0 
0 0 0 0 0

- |T

(3.42)

This control matrix produces a 6x2 gain matrix. The pitch angle variation required to 

control the orbit is determined using
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See = + Gŷ Sï} + GyiSç + G-̂ Ŝ̂  + Ĝ Ŝf] + Ĝ Ŝç (3.43.1)

and the yaw angle variation using

SS = G2xŜ  + G2 2 ST} + G2 2 SÇ + G2̂ Ŝ  + G2̂ Sfj + G2̂ Sç (3.43.2)

where gain element Gy refers to value located at the column of the i‘̂  row in the gain 

matrix. The difference between the actual and desired position is provided in Eqns (3.41).

3.4.4 Lissajous orbit control near Li and L2

Both optimal controllers developed in the previous section will be demonstrated for control 

of a Lissajous orbit near the natural Lagrange points. This control method offers a near- 

term application for solai* sails as the required sail area is much smaller than cases 

examined for circular* displaced orbits. Current technology could provide the necessary 

acceleration to enable orbit control near the Lj and L2 points [Farquhar, 1970b; Bookless 

and Mclnnes, 2005].

3.4.4.1 Solar sail control near L2

Selecting appropriate gains, solar sail control techniques can be applied to control an orbit 

near L2 . An insertion manifold was selected with a closest Earth approach of 19.1 Re. The 

zero velocity surface which bounds the orbit is provided in Fig 3.27 with Jacobi constant 

C=-0.0131. After delivery to the insertion manifold, the solar sail is deployed and it winds 

onto the nominal orbit within 91 days. The nominal orbit is located at Xo~230 Re with y- 

axis amplitude A^=20 Re- The solar sail controller is activated upon approach to the 

nominal orbit at %> 0.99x^. The nominal acceleration required to generate this libration 

point is Ao=0.00831 mms'^.

Figure 3-28 shows the insertion to the orbit via the stable manifold and control for a period 

of 15 years. An enlarged view of the Lissajous orbit around the libration point at Xq=230 

Re is provided in Fig 3-29. The acceleration and coiTesponding area variation required to 

control this orbit for a 200 kg total payload and sail mass is provided in Fig 3-30.
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The acceleration varies between 0.00682 mms"^ and 0.0114 mms'^, which corresponds to 

an area variation between 152 and 254 for a 200 kg total mass. For solar sail 

loading parameter cp=12 gm" ,̂ the sail mass is approximately 3 kg enabling a 197 kg 

payload to be controlled at this Lissajous orbit.

The gradient of payload mass against sail surface area is 1.2917 for loading cr=12 gm“̂ . A 

relatively small payload of 100 kg could be controlled using a 129 m^ solar sail or a large 

2000 kg payload could be controlled with a 2583 m^ sail. Area variation could be achieved 

using four reflective tip-vanes attached to the payload.
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Figure 3-27 Hill’s surface bounding insertion conditions to Lissajous orbit near
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Figure 3-28 Insertion to Lissajous orbit around Xo=230 Rg controlled using sail area variation
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Figure 3-29 Enlarged view of Lissajous orbit around Xq=230 Rh

X 10
12

10

8

60 5 10 15

300

250
E

£«
200

1500 5 10 15
time, yea rs

Figure 3-30 Acceleration and area variation required to control Lissajous orbit 

Gains: G ,=4.839x10'^ Gz^-S.ôSOxlO'^ Gs=1.485x10-^^ 0 4 =8 .2 9 5 x 10 "̂ 0 5 =4 .3 9 4 x 10 "̂ 0^= -4.048x10'^^
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Solar sail pitch and yaw angle variation can also be used to control a Lissajous orbit around 

the libration point. Using the same insertion manifold, the optimal controller is activated 

upon arrival at the nominal orbit. When the controller is activated the sail is fully deployed 

to provide an acceleration of 1.05%. The increase in nominal acceleration is required to 

prevent the solar sail escaping towards the Earth as pitching the sail reduces the 

acceleration component directed along the x-axis. Figure 3-31 shows the orbit insertion 

and control for 15 years duration. An enlarged view of this orbit is provided in Fig 3-32.
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Figure 3-31 Insertion to Lissajous orbit around Xo=230Re controlled using pitch and yaw angle variation
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Figure 3-32 Enlarged view of Lissajous orbit around Xo=230Re
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Figure 3-33 Pitch and Yaw angle variation required to control Lissajous orbit 

Gain 157x10 ''’ 02=9.628x10 '̂  0^=1.568x10'^ O^=-8.788xl0'“ Oj=-4.631xlO " Og= 1.7564

Gain or. O,=0.9103 O2=-0 .1 6 1 8  0 3 =4 .0 3 2 x 10  ''’ 0^=1560.8995 Oj=818.3383 Gs= -4.631x10'"

Figure 3-33 shows the pitch and yaw angle variation required to control the orbit around 

the artificial libration point. The pitch angle varies between -42.9° and 2.9°. The yaw 

angle varies between -0.69° and 0.78°. For a 200 kg total sail and payload mass, the 

constant area of this sail is 222 m^. The required sail area is approximately 30 m^ less than 

that required for sail area variation control. The gradient of payload mass against sail area 

is 1.1268. An angle variation controller slightly reduces the required sail area by 13% 

compai’ed to the area variation controller.

3.4.4.2 Solar sail control near Lj

Insertion to an orbit sunward of L; can also be achieved. Direct insertion of a deployed sail 

is demonstrated which requires an increased Av compaied to a ballistic insertion to L;. A 

Lissajous orbit is generated around the aitificial libration point Xo=-240 Re with y-axis 

amplitude A^=20 Re. The nominal acceleration required to generate the artificial libration 

point %=0.0141mms'\

132



A stable manifold which winds onto the desired orbit is identified by perturbing the 

value slightly so the solar sail escapes from the nominal orbit in the anti-Sun direction. 

The zero-velocity surface bounding this orbit is shown in Fig 3-34, with Jacobi constant 

C=-0.01205. The FhlFs surface is open on the anti-Sun side of the Earth at this energy. As 

the libration point position is moved sunward, the energy required for insertion to a 

Lissajous orbit increases, resulting in a larger gap in the zero-velocity surface on the anti- 

Sun side of the Eaith. It becomes increasingly difficult to identify manifolds which pass 

near to the Earth as the larger gap in the zero-velocity surface allows escape from the 

capture region into the exterior region.

Using the stable manifold, the solar sail amves at the nominal orbit within 320 days. 

Figure 3-35 shows the insertion and control of a solar sail at the Lissajous orbit for 15 

years duration. An enlai'ged view of the Lissajous orbit is provided in Fig 3-36. Figure 3- 

37 shows the acceleration variation and corresponding area variation for a 200 kg total sail 

and payload mass.
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Figure 3-34 Hill’s surface bounding insertion conditions to Lissajous orbit near Lj
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Figure 3-36 Enlarged view of Lissajous orbit around Xo=-240Re
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Figure 3-37 Acceleration and area variation required to control Lissajous orbit 

Gains: Gi=4.655xl0‘'̂ G2=-8 .3 7 9 xlO'® Ga= 1.4x10'^  ̂G4=8.068xl0"^ G5=4 .3 5 5 xlQ-  ̂Ge= 2.345x10'’̂

The acceleration required to control the orbit varies between 0.0115 mms' and 0.0159
_-2 T?   „ 1__ —1          .1 _ j_____  _      t , ' ____ 1__ i ______   r\ A / T  2mms' . For a 200 kg total mass, this corresponds to an area variation between 246 m and 

340 m^. For sail loading CR=12 gn 

payload around this libration point.

340 m^. For sail loading CR=12 gm'^, the sail mass is 4 kg enabling control of a 196 kg

Spacecraft orbiting on-axis libration points sunwards of the Earth require suitable y- and z- 

axis amplitudes to avoid telemetry interference from the solar radio disk. Farquhar [1977] 

states that the angular radius of the radio interference disk is 3.5^ relative to the Earth. For 

a Lissajous orbit around the libration point, Xo=-240 R e, the solar radio disk has radius 

93,500 km. Throughout the 15 year control period, the solar sail spends approximately 

1/4̂ *̂  of the time within the telemetry interference zone.

Solar sail pitch and yaw angle control is also demonstrated using the same insertion 

conditions. Figure 3-38 shows insertion and control of a Lissajous orbit around the 

artificial libration point near Lj. An enlarged view of the Lissajous orbit is provided in Fig 

3-39. Upon arrival at the nominal orbit, the solar sail is fully deployed to provide 

acceleration x*o=0.0247 mms"^. A total sail and payload mass of 200 kg could be controlled
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using a 529 m sail. Figure 3-40 shows the sail pitch and yaw angle variations controlling 

this orbit.
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Figure 3-38 Insertion to Lissajous orbit around Xo=-240 Re controlled using pitch and yaw angle variation
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Figure 3-39 Enlarged view of Lissajous orbit around Xo=-240 Re
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Figure 3-40 Pitch and yaw angle variation required to control Lissajous orbit 

Gain (p: G;=1.872xlO'^^ G2=-3.405x10'^'’ Gj=1.283xlO ’̂  G^=-3.295xlO '° Gj=L836xlO ’° Gg= 3.19x10 '̂ 

Gain Gy^Q.916 G2=-0.0575 Gj=-5.666x10'^'’ G^=554.3190 Gj=309.7840 Gg= 1.836x10“*°

The pitch angle vanes between -52.3° and 8.3°. The yaw angle is extremely small varying 

between -1.8x10'^ ° and 1.9x10'^ °. Throughout the control period, the solar sail spends 

1/5̂ ** of the time within the radio exclusion zone. In this case, angle variation decreases the 

amount of time the payload spends within the solar exclusion zone compared to sail area 

variation. However, solar sail area variation control requires 64% the total sail surface area 

required by the pitch and yaw angle controller, in this case, due to the increase in nominal 

acceleration.
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3.5 Conclusions

Circular displaced orbits were investigated using Hill’s approximation of the three-body 

problem. At displacement distances relatively near to the Earth ( x o < 1 6 0  R e )  the two-body 

dynamics provide a reasonable approximation of the solar sail dynamics as the influence of 

the Earth’s gravity on the solar sail is significantly larger than the Sun. A quasi-periodic 

solution was also derived by linearising Hill’s equations at the artificial libration point. 

The linear solution yields initial conditions which converge toward a Lissajous trajectory. 

The solar sail area variation and pitch angle variation control techniques were shown to 

provide linear control for both types of orbit.

Sunward of the Earth, Lissajous orbits have the disadvantage that the trajectory spends part 

of the time within the telemetry exclusion zone. Richardson [1980a, 1980b] derived a 

method to obtain matching in-plane and out-of-plane frequencies, thus producing periodic 

halo orbits. This method will be investigated in Chapter 4 to generate halo orbits around 

artificial libration points.
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Chapter 4 Three hody non-Keplerian orbits 

Restricted Problem

4.1 Restricted three-body problem

The study of non-Keplerian orbits will now be taken further using the circular and the 

elliptical restricted three-body problems. The circular restricted model assumes that the 

distance between the planet and the Sun is fixed. The elliptic model improves the 

dynamics by including the orbit eccentricity of the planet which results in the position of 

the libration points continually oscillating between the planetary apoapsis and periapsis. 

Richai’dson’s third order approximation will be used to identify initial conditions which 

converge toward periodic halo orbits around artificial libration points in both restricted 

problems.

4.1.1 Circular restricted three-body problem

Complete derivations of the equations of motion are provided by Marchai [1990] and 

Szehebely [1967]. In this case, the relative motion of the two primary bodies is assumed 

circular. Figure 4-1 provides a schematic of the problem.

Sail

Planet

►X
Sun

Z,z

Figure 4-1 Schematic of circular restricted three-body problem
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The angle between the inertial (sidereal) coordinate system (X,T,Z) and the rotating 

(synodic) coordinate system (x,y,z) is defined as 0. The constant distance between the Sun 

and the planet is defined as R. The problem will first be considered in the inertial frame 

and then the coordinates will be transformed into the rotating frame relative to the 

barycentre O. In the inertial reference frame, the general foim of the gravitational 

attraction of each body is given by

m.r, |3 (4.1)
r. -r^

It is assumed that the mass of the solai* sail is negligible and therefore does not exert a 

gravitational influence on the two primary masses. The acceleration of the solar sail in the 

inertial frame can be written as

d t ‘
+ a (4.2)

'13 ■23

where =|rj - r^ |.  In the inertial frame, the solar sail is located at coordinates (X,7,Z),

the Sun at (Xj,Yi,Zj) and the Earth at (X2 ,Y2 ,Z2 ). The acceleration due to solar radiation 

pressure has components a=aJ+ajj+a2k. The masses co-rotate around the barycentre with 

constant angular velocity (1 = 0 .  The Sun-Planet and Sun-Sail separation distances are 

defined as

I = ((X -  X, f  + (7 -  y, f  + (Z -  Z, r i '

*■2 3! = ((x + (7 -7 2 ^  + (Z -Z j)^ )

i ' / 2

1/2

(4.3.1)

(4.3.2)

Equation (4.2) can be transformed into a rotating system about the z-axis using the 

following matrix. The motion of the primary masses is assumed to be in the X - Y plane.

~x~ cosQt -  sin Qt 0 " X
Y = sin Qt cos Or 0 y (4.4)
Z 0 0 1 z
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As jr̂ l = + 7^ + , the 2”  ̂order time derivatives of the transform can be calculated

as follows

X  = ( x - 2 0 ÿ -0 ^ x )c o s 0 r  “ ( ÿ + 2 0 i :-0 ^ y )s in 0 r  (4.5.1)

7  = (x -  20ÿ -  O^x) sin Or + (ÿ + 20x  -  O^y) cos Or (4.5.2)

From Keplers laws, it is assumed that the angular velocity is constant where 

O = • These components can be substituted into the Eq (4.2) to obtain

the following expressions [Escobal, 1968] after re-ari'anging and grouping the 

trigonometric terms

A co sO r-S sin O r = 0 (4.6.1)

AsinOr + ScosO r = 0 (4.6.2)

where

A = x - 2 £ i y - Q .^ x  + GM  ̂ +  g M^ ( f _ J ^ _ ( 4 . 7 . 1 )

k l3 1  |*'231

B = ÿ + 2 Q x - a ^ x  + GM,  "« y  ( 4 . 7 . 2 )
r,13 P  23

Equations (4.6) require that variables A=#=0 so these conditions are true for all r. In the 

rotating frame, the location of the Sun is defined by coordinates (xj,yj,z;) and of the planet 

(x2 ,y2 ,Z2 )- Equation (4.7) can be further simplified by re-writing the expression in non- 

dimensional coordinates. The characteristic mass of the planet can be expressed as 

where the total mass of the primaries M  = M^ The mass of the Sun is

therefore (1-//).

The coordinate system is chosen such that the Sun and planet are co-axial, located on the 

synodic x-axis. The barycentre is located at the centre of mass of the two primaries. The 

characteristic length is selected as the separation distance between the two primaries. It 

can be demonstrated that the Sun is located at (-//, 0, 0) and the planet at (1-//, 0, 0).

The angular- velocity and the gravitational constant terms can be removed from the 

equations using characteristic time, r. The non-dimensionalised time derivatives, denoted
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by are equivalent to d/dt - t   ̂d ^ / d t . The gravitational constant

G = Q.^R^ l(M^ + M ^)  where the non-dimensionalised total mass ( M ^ + M 2 ) / M = l .  

Substitution into Eq (4.7) results in the following equations of motion

T d t  T d t  r, 3  r, 3

r I Iv I43 2̂3
. +2(2  (2 7?y — —(2 R —-—   (2 R-— (4. 8. 2)

 ̂ d r  T dt r„ k  ' "

, , = -(2 " R \  - Q . ^ R - ^  + a (4.8.3)

The angular velocity can be removed by setting 7(2 = 1 which requires that the 

characteristic time r  =  - y j R  / g { M i  + M 2 ) .  Dropping the notation from the 

expressions, the final non-dimensionalised equations can be expressed as

d^x ^d y  _ (1 - /0 (+  + A) + _ /X n i \
|r,3p ■ |r,3f '  ( -

, 2d z ( l “ //)z juz
r .2  I ,3 I ,3 (4.9.3)

“  ki3 %

where (/Cv, /q,, /q) represent the non-dimensionalised acceleration components due to solar 

radiation pressure and the Sun-sail and Earth-Sail distances aie defined as

|r̂ g| = ■yj{x + juy + y^ + z^ and = ^ { x - l  + ju f  + y^ +z^ respectively.

The coordinate system is easily transformed to obtain planet centred equations by 

substituting x = (x - 1  + ju), where x  denotes the x-axis position relative to the planet.

Therefore, the Sun-sail distance j ^ |  = -J{x + 1)̂  + y^ + z^ and the planet-sail distance

^|x^ + + z^ relative to the planet. Equation (4.9) can finally be expressed in

planet centred coordinates as
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d^x ^dy  _ _ (1 - //)(% +1) jiix

ha I |hi3|

( « 0 2 )
| h 3 |  1^231

= + (4.10.3)

- 2 — - X -  — p-------- - ^  + { \ - / j )  + K̂  (4.10.1)
at at lr„l r,.

*  l%| |1)3

The resulting Lagrange points obtained will be compared to those of the planet centered 

Hill’s approximation.

4.1.2 Elliptical restricted three-body problem

An extension to the circular restricted problem is to include the elliptical nature of the 

planets orbit ai'ound the Sun. The derivation is similar to the circular restricted problem 

derived previously. However, the angular velocity © and separation distance R of the 

two primaries can no longer be assumed constant.

A suitable method to represent the variation of the angular velocity and separation distance 

is to define both as an eccentricity power series. This method is adopted by both Farquhar 

[1970a] and Wie [1998], and is valid provided the eccentricity is relatively small. The 

separation distance, R, between two masses is determined by

^ = 4 ^  (4.11)1 + g COS ©

where a is the length of the semi-major axis, e is the orbit eccentricity and <9 represents the 

true-anomaly. Figure 4.2 shows a schematic of an ellipse with each of these parameters 

outlined.
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Figure 4-2 Schematic of elliptical orbit where eccentricity e =0.6 

The eccentric anomaly, E, is related to the true anomaly by the equation

 ̂ © f l  + etan— = -----
2 [ l - e

sA/2

J
, E  tan— 

2
(4.12)

A thorough derivation is provided by Smart [1953] outlining how the true-anomaly and 

radial separation distance are expanded in terms of the eccentric anomaly using Bessel 

functions of the first kind.

The mean anomaly, M  =v{t~T) ,  where the orbit frequency v  = 2fi; /T, t is the current

time, T is time elapsed at periapsis and T  is the orbit peiiod. The mean anomaly is related 

to the eccentric anomaly by the equation

M  = E - e s i n E (4.13)

Using the methodology of Smart [1953], the relationship between true anomaly and 

eccentric anomaly provided in Eq (4.12) can be represented by the series
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0  = £  + a ÿ ^ s i n  nE (4.14)
„.i n

where contains powers of eccentricity and is equivalent to

P" + ^ ¥ - 1  1- (4.15)
I 2 J 6  m!(n + m)! \ 2 )  ^

where n and m are integers.

The eccentric anomaly can be expressed as a power series of mean anomaly

sin = (ke) + (W ]sin kM (4.16)
k=\ k

where /,,(x)is a Bessel function of the first kind. The Bessel function has the form

which has the property /_„(x) = (-!)" /„  (x ). The series representing true anomaly, Eq

(4.14), can be represented in terms of the mean anomaly by re-ananging Eq (4.13) to

obtain E = M  + e s i n E .

Using the series from Eq (4.16) the true anomaly can be expressed as

0  = M +2ÿ^ J ,X n e)sm n M  + 2 Ÿ ^ ÿ - [ j , ^ „ { k e )  + J,_,,{ke)]sinkM (4.18)
«=! n „=i n k

Similarly, the radial distance can also be expressed in terms of eccentricity and mean 

anomaly. The term cosE can be expressed as a series in terms of the mean anomaly 

where

cosE = e + V " — { / (ne)jcosnM (4.19)
2 "
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It can be shown that the radial distance R = a { l -  eCosE) which can be expressed as

R =1 + -  {ne)}cosnM
2 ^ i n  de

(4.20)

This is non-dimensionalised with respect to the semi-major axis length where R = R /  a.

The non-dimensionalised power series for true-anomaly and radial distance is outlined to 

the power of e in Wie [1998]. Both series can be expressed as follows

1 7
E = l - t -— - e  + — e^ H cosM  +

2 I 8 192 9216
e" lcos2Af

3 16

(  3 3 , 45 5 567 7 ' cos 3M + (  1 4 2+ — e + 6 --------- e —  e + - e
I 8 128 5120 ,1 I 3 5 J

+ f  125 , 4375e +
V 384 9216

cos 4M

27 6 16807 7cos5M  e co s6 M -----------e cos7M
80

0  = M +1 2 e - - e ^
4 96 4608 y

sinM +l
4 24 192 J

+ e ' g '  + — g' lsin3M  + 
12 64 512

^103 4 451----- £ ----------------- /y

96 480

46080

sin 2M 

cos 4M

(4 .21.1)

+ 1097 5 5957 7
960^  4608

e cos5M +

y
1223 6 47273 7e cos 6M H----------e cos7M
960 32256

(4.21.2)

The mean anomaly represents the non-dimensionalised time with units 1 / v . The 

expansions for R and 0  aie convergent provided g<0.6627.

The elliptical three-body problem including solar radiation pressure is represented by the 

same schematic as the circular restricted case, Fig 4-1. The equations of motion for the 

solar sail will be constructed relative to the planet where =rg - r^ .
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Relative to the barycentre

( ( \
GM, GM^

^ 3 = - 1 |3 * * 1 3 - 1 |3 **23

I K 3I ) J * '2 3 i  y

Gm
f  \

GM,
*̂2 = 1 |3 **2 3 -

VF23I y IF 12I
12

(4.22.1)

(4.22.2)

where Mj , M 2 and m are the mass of the Sun, planet and sail respectively. The motion of 

the solar sail relative to the planet can therefore be expressed as

**13 **12

'̂ 23 V 1
+ /ai (4.23)

b2| y

The mass of the solar sail m «  thus, can be neglected from the first teim. Using the 

non-dimensionalised mass and (1 -  //) -  Mj /  (Mj , the

expression can be re-written as

2̂3
3 3 ____^

|3 I |3
\ l * * 1 3 |  I**121 J

(4.24)

The vector representing motion of the solar sail relative to the planet = x i  -t- yj + zk and 

the motion of the planet relative to the Sun is described by the expansion provided in Eq

(4.21.1), such that = R i . The motion of the solar sail relative to the Sun

**13 = (-̂  +  ^  ) i  + yj + ^k .

The motion of the solar sail in the rotating frame is determined using the rotational matrix

X COS0 - s i n 0 O' X

Y = s in 0 COS0 0 (4.25)
Z 0 0 1

which has second order time derivatives
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X  = { x -  x©^ -  2ÿ© -  y0) cos 0  + ÿ + y©^ -  2x0  -  x©)sin 0  (4.26.1)

ÿ = ( ÿ - y©^ + 2x0 + x 0 )co s0  + (x — x©^ ~ 2 y 0 - y©)sin0  (4.26.2)

Z = z (4.26.3)

Substituting these expressions into Eq (4.24), the non-dimensionalised equations of motion 

can be expressed as

x - 2 y 0 - y 0  = 0 ^ x — ^ ^ ^ - ( ! - / / )  
Ir. '■23

r — \
x + R I

vFi3
+ Af.

ÿ - 0 ^ y  + x 0  = —2x0
■23 ■13

jUZ

'■23 '̂ 13

(4.27.1)

(4.27.2)

(4.27.3)

These equations are time dependant due to the variation of the separation distance R and 

the variation of the true-anomaly derivatives 0  and 0  . The elliptical three-body problem 

will be used to examine the perturbations due to orbit eccentricity of the primary masses.
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4.2 Ballistic and artificial Lagrange points

4.2.1 Classical Lagrange points

In the circular restricted three-body problem there exists five naturally occurring Lagrange 

points. Figure 4-3 provides a schematic indicating the location of the Lagrange points. 

The three co-linear points (L;, L2 , L3 ) were identified by Euler and the triangular points (Ly, 

Lj) by Lagrange [Lo, 2001].

The location of the co-linear points can be solved by forming a quintic equation and 

calculating the real roots [Farquhar, 1970a]. As the libration points lie on the x-axis, y=z=0 

and as they are stationary points x = x -  ÿ = ÿ = i: = z = 0  in the synodic coordinate 

system, the location of the Lj and L2 Lagrange points, relative to the planet, are 

determined by solving Eq (4.28.1) for x

x̂  +(3-y/)x'^ + (3 -2 //)x ^  ±jjx'^ ±2fMx±/li = 0 (4.28.1)

where the upper sign corresponds to Lj and the lower sign to L2 . The L3 Lagrange point, 

located on the opposite side of the Sun, can be determined by solving Eq (4.28.2) forx

x^ + (3 — //)x^ + (3 — 2fi)x^ + 2x^ + 2jiix — ju — 0 (4.28.2)

Given a system mass ratio for the primaries, j u ^ M ^  + M^) it is possible to locate 

the co-linear lagrange points of the system. In the case of the Sun-Earth-Sail system the 

mass ratio is defined as /^=3.00373xl0'^. The locations of the co-linear Lagrange points 

are provided in Table 4-1.

The triangular Lagrange points, L4  and L5 , are located at the apex of an equilateral triangle 

where |r/j|= l, |r2 3 |=l and |ri2 |= l. This can be verified by evaluating the x and y 

components of motion at the stationary point. Simultaneous equations can be found which

yield x = -1 /2  and y = ± V 3/2 . The positions of L4  and L5  relative to the Earth in the 

Sun-Earth system are also provided in Table 4-1.
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Sun Planet

L,■5

Figure 4-3 Schematic of Lagrange points in the circular restricted problem

Lagrange Point Position in x-y plane
L i x= -0.0099707 y= 0

L2 x=0.01003740 y= 0

L3 x=-2 . 0 y= 0

L4 x=-0.5 y=0.8660
Ls x=-0.5 y=-0.8660

Table 4-1 Location of Lagrange points in ballistic case (/r=0)

4.2.2 Artificial libration points

Artificial libration points can be generated using a solar sail to produce an additional 

uniform acceleration which yields artificial stationary points. A complete stability analysis 

of the on-axis case will be investigated in the circular restricted problem. The solar sail is 

orientated such that the thrust vector is directed along the x-axis which generates a constant 

axial acceleration with magnitude determined by

(x + 1)'
(4.29)

X

where the upper sign coixesponds to a libration point sunward of L2 and the lower sign 

corresponds to a libration point sunward of L7 .
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Figure 4-4 shows the acceleration required to generate such artificial libration points. The 

stability of these libration points can be determined from the eigenvalues of the linearised 

equations of motion. As the solar sail acceleration can only be directed in the anti-Sun 

direction ( > 0 ), there are no on-axis libration points beyond L2 or between the planet

and Li.
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-0 .0 5 -0 .0 4 -0 .0 3 0.01- 0.02 - 0.01 0 0.02

Figure 4-4 Artificial libration points generated using solar sail acceleration 

4.2.3 Libration points in the elliptical restricted problem

In the case of the elliptical restricted problem, the distance between the Sun and the planet 

pulsates. As a result, the libration point position also varies. The symbols, I2 and Ij denote 

the distance between the planet and the Lagrange points, L2 and Lj, respectively. The 

ratio, I J r  and I2 / R  remain constant as the separation distance between the two 

primaries varies due to the eccentricity of the orbit [Wie, 1998].

The variation of the L2 position can be determined by setting the velocity and acceleration 

components equal to zero in Eq (4.27). The resulting quintic expression can be solved to 

find the location of the on-axis libration point relative to the planet. For libration points 

Sunward of L2 , the expression has the form
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0"“/? V  +(20^R’ + l - / /  + x')x‘‘ +(©^R‘‘ +2(1-.«  + »:)« );ĉ
— — fc)R^ — 2juR^ X — juR‘̂ = 0

(4.30.1)

The quintic expression for libration points sunward of L; has the form

+(20^R^ +1-ju + k )x ‘'+ {0 ^ R ' '  +2{1-/u + k )r )x  ̂

+ (// + AT  ̂X ̂  -h 2jUR  ̂X + //i?  ̂ = 0
(4.30.2)

When the orbit eccentricity e=0, the angulai' velocity 0  = 1 and separation distance i? = 1, 

the quintic expressions representing libration points in the circular restricted case are 

recovered.

Table 4-2 contains the distance of the Lagrange points relative to a selection of planets at 

apoapsis and periapsis, evaluated at ïc=0. In the case of the Eaith, this motion coiTesponds 

to a displacement greater than 50,000 km throughout the year.

The acceleration required to generate an artificial libration point can be calculated using 

Eq (4.29). Figure 4-5 shows the position variation of artificial libration points generated 

using constant acceleration due to the eccentric motion of the planet around the Sun.

The further the libration point is located from the planet, the larger the position variation. 

Orbits near the L2 Lagrange points will be more noticeably affected by the elliptical motion 

than orbits located near to the planet. Similarly, the position fluctuation is larger for orbits 

around libration points displaced sunwards of L/ than for libration points near to L7 .

Planet Eccentricity

E (xlO“̂ )

semi-major 
axis 

a (xlO** km)

Li Location L 2 Location

Apoapsis Periapsis Apoapsis Periapsis

M ercury 0.2056 0.1660 57.91 -0.00466 -0.00299 0.004675 0.002993

Venus 0.0067 2.4476 108.21 -0.00938 -0.00925 0.009302 0.009442

E arth 0.0168 3.00373 149.60 -0.01016 -0.00979 0.010224 0.009852

M ars 0.0935 0.3227 227.92 -0.00524 -0.00427 0.005255 0.004283

Jup iter 0.0489 953.59 778.57 -0.07024 -0.06314 0.073590 0.066013

Table 4-2 Position of Lagrange points relative to planet at periapsis and apoapsis
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Figure 4-5 Variation of artificial libration point position for eccentric orbit

4.3 Jacobi integral

4.3.1 Jacobi integral of the circular restricted problem

The Jacobi Integral and Hill’s surfaces provide a useful method for investigating bound 

motion given the initial orbit conditions. From Eqns (4.10) it can be seen that

xx + yy-^zz = x x + y y ~ [ ( x  + l ) i  +yy + zz]- [xr + yÿ + zz] + (1 - ju)x + k • r
ki| k l

(4.31)

Factoring a time derivative from the above expression gives the integral

d
dt

—  V 
2

- { l~jU)x-K-r = 0 (4.32)

where v'  ̂ = x'  ̂+ + z ^ ,
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Integrating with respect to time gives the Jacobi integral for the circular restricted problem 

including the effects of solar radiation pressure as

v"-(x^ + = C (4.33)
K h

where C is a constant, known as the Jacobi constant which is analogous to the total orbit 

energy E {C ^ 2 E ) .  Zero velocity surfaces are calculated by first evaluating C at a set of 

initial conditions and then generating a surface for constant C in the x~y plane when 

velocity v=0.

4.3.2 Zero-velocity surfaces of the Lagrauge poluts

The Jacobi constants evaluated at the Li and L2 Lagrange points are =-2.00089675 and

=-2.00089275 respectively. Figure 4-6 shows the HilFs surfaces generated for these

energies. It is evident that the zero-velocity surfaces surrounding the Earth are closed 

when the Jacobi constant C < . As energy is increased, the zero-velocity surface opens

around the Lagrange points. In the case of the surface C = , there is a gap in the

surface around Lj. Unlike the Hill’s approximation, the surfaces aie not symmetric and 

open around L] at a slightly lower energy than at L2 .

As the Jacobi constant is analogous to the total energy, evaluating a zero-velocity surface 

at a libration point produces a surface equivalent to the pseudo-potential function. A local 

saddle point of the pseudo-potential function clearly exists at the libration points 

suggesting that the on-axis libration points are likely to be unstable. This will be 

confirmed using eigenvalue analysis as in the case of Hill’s approximation.
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Figure 4-6 Zero-velocity surfaces in vicinity of Earth for C=Cu  and C=Cl2  

4.3.3 Zero-velocity surfaces of artificial libration points

Including the affects of acceleration due to solar radiation pressure alters the shape of the 

zero-velocity surface. A series of zero-velocity surfaces generated at artificial libration 

points sunward of L; and L2 are provided in Fig 4-7. The accelerations required to 

generate these libration points aie calculated using Eq (4.29). The values of Jacobi constant 

for each surface is provided in Table 4-3.

In the case of artificial libration points between L2 and the Earth, there is no gap in the 

surface sunward of the Earth. However, for libration points generated sunward of L j  there 

is a gap in the zero-velocity surface around L2 . This can be attributed to the solar sail 

acceleration reducing the energy required for escape in the anti-Sun direction.

Time is explicitly present in the elliptical restricted problem thus no Jacobi integral can be 

derived [Brouke, 1969]. However, surfaces of zero-velocity exist instantaneously resulting 

in time dependant capture regions which pulsate periodically as the planet orbits the Sun 

[Astakhov and Farrelly, 2004].
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Figure 4-7 Zero-velocity surfaces for series of artificial libration points sunward of L; and L2

Surface Libration point

Xo, Re

Acceleration 

K, mms'^

Jacobi Constant 

C

1 220 0.0379 -2.001016
2 200 0.0957 -2.0011891

3 180 0.1685 -2.0013866

4 -260 0.0543 -2.0007055

5 -280 0.0900 -2.0005678

6 -300 0.1218 -2.0004359

Table 4-3 Parameters for zero-velocity surfaces evaluated at artificial libration
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4.4 Periodic halo orbits

4.4.1 R ichardson’s method

An approximation of the circular restricted three-body problem can be derived which 

enables initial conditions to be identified that lead to periodic solutions. A linear 

approximation of the equations provides a crude estimate of initial conditions which lead 

to halo or Lissajous trajectories but for more accurate solutions, which require less station- 

keeping after orbit insertion, several higher order non-linear terms must also be considered. 

The problem of identifying an analytical solution which yields accurate initial conditions 

has been studied extensively by Farquhar and Kamel [1973], and Richardson [1980a; 

1980b].

Richardson developed a method for representing the three-body equations as a series 

expansion using Legendre polynomials [Richai'dson, 1980a; 1980b]. This method involves 

expressing the Lagrangian in terms of gravitational disturbing functions representing the 

gravity of the two primaries. Figure 4-8 shows a schematic of the three-body problem.

Figure 4-8 Schematic of three-body system with motion of Mj derived relative to Li
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The vector position of mass M 3 relative to M2 , r, can be expressed as

r \
1̂3 *’12

|3 I |3

vi**i3l l%l y
(4.34)

where the expression is non-dimensionalised with mass ratio and

{ i -  JLi)- Ml /(Ml + M 2 ). The characteristic length is selected as the separation distance 

between the two primaries |ri2 | and the characteristic time is equivalent to r  = Q,t.

As r = -V y  , where V  is the potential function, the Lagrangian can be represented in terms 

of r as

1 r,^,r

Vl*’i2+r| T n y
(4.35)

where Tjg = rj2  +r and for the circular restricted case, |ri2 | is constant.

The third right-hand term represents the disturbing function, perturbing the motion of M3  

relative to My. By changing the coordinate system relative to the Lagrange points, it is 

possible to express the second right-hand term in a similar form. The vector, p, represents 

the position of M3  relative to Lj, such that r = p ~r 2 , which can be substituted into Eq 

(4.35) to obtain

p - f i  r.
+ r ^ . ( P ” r2)

■12

(4.36)

where rj2  + r = p -  Ti since -  f2 ~ **1 ■

To remove the teim r̂ 2 / \^nf  > Ihe motion of M2 relative to Lj is expressed as

r
1̂2

p  ' I |3 .1* I*Vl%| pi I j
(4.37)
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/. |3
Re-aiTanging the expression and substituting the two-body equation = 0 yields

a - / 4
Ir

(4.38)
121 P12| 1*11 |*2|

This can be substituted into Eq (4.36) to obtain the Lagrangian in the form

^  = ^ (p -p )  + r ^ - r 2 -P + M
■12

 IV P
/  \  

1 ^ I p
|p - r i |  k  ' '

+ r  (4.39)

where /"contains constant terms of rj, and ri%

The second and third terms in Eq (4.39) can be combined using the identity

r2 p d

12
dt

(4.40)

which allows a new Lagrangian, = L + (p • i*2 ), to be expressed as

^* = - ( p -p )  + /^

y \
1 2̂ P

| p - r j  k P

r \
_ J  El LP
|p “ *’il k p

(4.41)

ignoring the constant term, /7

The scalar products in the second and third terms can be expressed as r2 - p = |r2 ||p|cosf% 

and Fj ■ p = |rJp|cos /? , where a is  the angle between p and rz, and y^is the angle between p 

and Fi. The Lagrangian can be expressed as

L * 4 ( p . p ) + i ^
F2 p c o s a

j p -
+ (i - a )

ViK *2| 1*21 J
|*1 |

Ip - I 'll

cos
(4.42)

As demonstrated by Thurman and Worfolk [1996], the first terms in either brackets can be 

written as
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P “ ï*2

P-I*l

l-2-M-cosûf+

1 — 2 -j—7 COS f3 +

^ 'p '^  

Vi**2iy

vfiiv

2\ - 1/2

y
X-l/2

(4.43.1)

(4.43.2)

Equation (4.43.1) can be expressed as [r^l/jp-r^l = (l + q) , where q = -  2 j  cosa  and

j  = |p|/|ï*2 | . Expanding using Taylor’s formula yields the expression

(4.44)

Using a binomial expansion of q^ yields

(4.45)

Substituting Eq (4.45) into Eq (4.44) obtains

-/)! /!
(24^' c o s "  a f * ‘

k>0
(4.46)

As demonstrated by Barrabés [2004], the summation index can be replaced by n = k + / to 

obtain

( i + . r = E Î ( - i y T 7 7 r ^ ^„>o ;=o 2"(/r-/)!(n -2Z )!/!
cos" a f (4.47)

This represents a power series of j  = |p |/|r2 | with coefficients which are polynomials 

of cos A!. A similar expression can be derived for Eq (4.43.2) where y = |p|/|*'i| the 

coefficients aie polynomials of cos j3 .

Equation (4.47) can be re-written in terms of Legendre polynomials, Pn{z)  where
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(4.48)

Using binomial theorem to expand the brackets, the n‘‘̂ derivative can be represented as

p  / N ^  y  n! (2 n -2 /)! ,_2;
" h  n{n - l ) \  {n-2 l) \

(4.49)

From Eq (4.47), it is clear that z corresponds to cos a  (or cos j3 in the case of j  = |p |/|rj ) 

which yields

P - r J  ,;>0

K^2 J 

^ p V

(4.50.1)

(4.50.2)

These expressions can be substituted into Eq (4.42) to obtain

L* = | ( p - p ) + i ^ 1 + E
;i>2 V*-2 y

^(cosüf)
«>2

1+E — (cos/3)
v‘iy

(4.51)

It is convenient to normalize the distances so that the separation between the libration point 

and M 2 , jr̂ l = 1. This can be achieved using the dimensionless parameter, ?̂  = r2 /|**2i|»

where p - p l y  and p = ^ + ;/j + ^ . From Fig 4-8, cos a  = ^/|p| and cos /? = -  ̂ /|p| at

Li and using the relationship of Legendre polynomials, /Jj(-z) = ( - l)" /; ,(z ) , the 

Lagrangian can be expressed as

Z,* = y(p-p)+E e„|p |"2^,
n>2 vIp L

(4.52)

Since |r |̂ ± jrj] = 1, the constant c„ is equivalent to
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=  r
- 3

(1+r)
(4.53)

where the upper sign refers to Li and the lower sign to L2 .

The Lagrange equation can be applied to obtain the following equations of motion

viPly
(4.54.1)

(4.54.2)

(4.54.3)

The Legendre polynomials can be expressed via the recursion relation

P.S.z) =
2n 1

V n
z k,-. -

n - 1  
n J n -2 (4.55)

where P^(z) = 1 and P^{z) -  z [Thurman and Worfolk, 1996]. This enables Eqns (4.54) to

be evaluated as a series where by increasing the number of terms improves the accuracy of 

the approximation.

4.4.2 Approximate periodic solution

The Lindstedt-Poincaré perturbation technique can be applied to find an asymptotic 

approximation to the periodic solution of Eqns (4.54). This method uses a frequency 

variation represented by co{£) = û)̂  + £C0̂ + ê O)̂  to remove secular terms from the solution

where the linear system frequency <%=! [Nayfeh, 1973]. Secular terms are unbounded, 

growing over time resulting in eventual escape from the periodic orbit. These terms 

include those where the time variable appears as a coefficient or those which result in 

groups of trigonometric terms in the solution causing unbounded motion.
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Using a time variable t  = co{£)t, the time derivative can be represented as ( )'= co d ld f 

Equations (4.54) can be expanded to the third order as

dŷ ”̂-2^;7'-(U -2c2)^ = | c 3 ( 2 f -77^ - f ^ )  + 2c^ ^ (2f -37?" - 3 ^ )  (4.56.1)

A7̂ 77"+2A7̂ '+(C2 - %  = -3^3^77 -|c477(4^^ - 77  ̂-  C )  (4.56.2)

cd^C'-^?iC = -3c3^77 --^c^77(4^^ - 77  ̂-^ ^ )  + (4. 56. 3)

The conection teim, A, is assumed to have order of magnitude à{s^), where A = .

The conection term is required to ensure the ratio of in-plane and out-of-plane frequencies 

is rational, producing periodic orbits as opposed to the quasi-periodic trajectories 

demonstrated in Hill’s approximation.

The position coordinates can similarly be represented as f  ̂ 3 ,

q(e) = £-77i + e^rj^ + e^rj  ̂ and Ç{e) = . A general solution can be derived

by substituting the power series representing frequency and position into Eqns (4.56). This 

can be achieved by evaluating particular integrals at each of the powers of the perturbing 

parameter e. Richardson [1980a; 1980b] derived a solution up to order, using the 

frequency constants to remove secular terms leading to a periodic solution. The technique 

which results in Richardson’s solution is outlined below.

4.4,2.1 Linear solution

Grouping terms which contain a perturbing parameter of order £, yields the linear 

equations

f;'-2 7 ? ;-(l + 2c,)#, = 0  (4.57.1)

% "+ 2# ,'+ (c ,-l)% = 0  (4.57.2)

C"+àX i =0  (4.57.3)
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A solution to the linear equations can be obtained by forming a matrix and extracting the 

eigenvalues and corresponding eigenvectors. For the in-plane case, a 2x2 matrix is formed

using the vector Q = [^ rjY as

"1 0" 0 - 2

0 1 Q"+ 2 0 Q’+ (I + 2 C2 ) 0
0 K - 1 )

Q = 0 (4.58)

Assuming that Q = Q̂, e x p (/lr) , the resulting characteristic equation can be expressed as

^  + (2 — C2 )Â  — 2(?2 -H C2 +1 (4.59)

Equation (4.59) yields two real and two imaginary eigenvalues as demonstrated in previous 

examples. The eigenvalues have the form

4,4 -

(C2 — 2) + ■\j9c2 — 8̂ 2

(C2 -  2)--^9c2^ — 8̂ 2

(4.60.1)

(4.60.2)

where ^ 2  real eigenvalues and /I3 4  are imaginary eigenvalues. As the lineai"

equations contain both oscillatory and divergent modes, this confirms that the on-axis 

libration points are unstable.

The corresponding eigenvectors relating ^to  77 can be expressed as

— 2/1.
V„; = —;----- ‘---- Vt

4  + 2̂ “  1
(4.61)

where the index i={l,2,3,4). Eigenvectors and conespond to the and 7 7 - axis

respectively. The solution to the linear equations can be expressed in terms of the 

eigenvalues and eigenvectors as

(4.62.1)
/=i
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= X  ) (4.62.2)
(=1

where a represents a constant matrix. The real eigenvalues, Ay,2 , result in asymptotically 

increasing terms and can be suppressed by setting ay=«2=0, as demonstrated in Chapter 3. 

The oscillatory terms containing imaginary eigenvalues can be expressed as

^i(^) = - 4  cos(Af + <̂ ) (4.63.1)

?7i (?) = kA^ sin(A? + (j)) (4.63.2)

where Ax denotes the x-axis amplitude and (Z) represents the phase angle.

The imaginary part of eigenvalues À3^4 is represented by A where k represents the 

relationship between the f  - and 77 - axis evaluated at A. These terms can be expressed as

4  = (4.64.1)

^ —  (4.64.2)
A +1 — «2

To ensure the orbit is periodic, the solution for the out-of-plane motion is required to be 

(?) = A^ sin(A? + Ç) (4.65)

where A^ is the z-axis amplitude and (p represents the phase angle. These expressions 

represent the 1®̂ order solution which can be used to evaluate higher order expressions. 

Following the notation used by Thurman and Woifolk [1996], the frequency terms will be 

represented by = A? + ̂  and = A? + .
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4.4.2.2 Second order solution

The second order solution is evaluated by collecting perturbing parameter terms of order 

which yields the equations

^2"” 2772'“ (1 + 2c2)^2 -  - r j^  -  (4.66.1)

Vi ' '+2^2 '+(<̂ 2 “  1)% = (̂ 1 ' '+^1 ') “  3c3^77; (4.66.2)

(4.66.3)

The solution to the 1®̂ order terms ŷ, rj] and Çi have been obtained previously and can be 

substituted into these equations to obtain

^2"-2772-(l + 2c2)^2 = 2<z\A^.A(^-A)cosTi + -^«^(k^A /sin^T; + A^sin^Tj)

(4.67.1)

7/2 ' '+2^2 '+ ( ^ 2  “  1)% = 2û)^A^À(kÀ -  l)sin + 2cJ<A^ cos sin Tj (4.67.2)

^ 2  ' '+A^ ^ 2  = 2«7i Â Â  cos T2 + 3«3 Â Â  cos sin Tg (4.67.3)

The equations can be reduced by substituting the trigonometric relationships

2cos^ T; = cos 2 T3 +1 (4.68.1)

2 sin ̂  Tj = -  cos 2Tj +1 (4.68.2)

2cosTj sinTg = sin(r^ +t^) + s i n ) (4.68.3)

2 cos -Tj sin T*! = sin 2t  ̂ (4.68.4)

The secular teims present in Eq (4.67.1) and (4.67.2) contain cosTj and sin . The 

coefficients for these terms are 2«7^A^A(A:-A) and 2«7^A^A(kA - 1) respectively and can be 

easily removed by setting O)i-0. The equations can then be re-written in the form

4''-2772 -(1 + 2cg)4 = (%20 + <^21 cos 2Tj + (%22 COS 2^2 (4.69.1)

77g ' '+2^2 '+ ( ^ 2  -1)^2 = A i sin 2̂ 1 (4.69.2)

A "+ 4 fg  = X21 sin(^i + ^ 2 )+ L22 sin(Tg-Tj (4.69.3)
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where the coefficients are provided in Appendix 1. To solve these equations for % and 

Ç2  it can be assumed that the solutions have the form

^ 2  (?) = P 20 + A i cos 2r, + /? 2 2  cos 2^2 (4.70.1)

% (T) = (Tgi sin 2r, + (Tgz sin 2Tg (4.70.2)

^ 2  (?) = Ai sin(Ti + ^ 2 ) + Az sin (-Tg -  ) (4.70.3)

The coefficients are determined by substituting these solutions into Eqns (4.69) and 

grouping the trigonometric terms. The time derivatives are evaluated as

^ 2  ' (?) = -2A/?2i sin 2̂ 1 -  sin 2^2 (4.71.1)

^ 2  " (?) = cos 2Ti -  4A^ /? 2 2  cos 2^2 (4.71.2)

772' (?) = SAcTgi cos 2T, + 2Af722 cos 2^2 (4.71.3)

77g " (?) = -4A^<J2i sin -  4A Vgg sin 2t  ̂ (4.71.4)

fg' (?) = 2<̂ 2jAcos(Ti + Tg) (4.71.5)

^ 2  " (?) = -4f^2iA  ̂sin((Ti + Tg ) (4.71.6)

Firstly, the constant teims can be equated to obtain the coefficient

Grouping the corresponding trigonometric terms yields the following systems of equations 

which are used to identify the remaining coefficients for the dependant variables

(-4A^ + Cg -  1)ct2i — 4A/?2j = ^ 2 1  (4.73.1)

(—4A  ̂— 1 — 2cg ) /?23 — 4A(%2( = ^ 2 1  (4.73.2)

(—4/? +Cg — — 4 A/9g2 = 0 (4.73.3)

(—4A  ̂— 1 — 2cg ) P22 ~ 4 ÀCT22 — CC22 (4.73.4)

The coefficients CJ22, P21, P22 are evaluated in terms of A, cy, p2h and The 

resulting expression are provided in Appendix 1.
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A i  =
- ÏM .

3A

s  = Z 22
^22

A

In the case of the dependant variable, the derivatives represented by Eq (4.71.5) and Eq 

(4.71.6) are substituted into Eq (4.69.3) to obtain

-4(^g(A^ sin(Ti + + sin(Ti + ^2 ) + sin(T2 -Tg) = L21 sin(Ti +Tg)+ j/22 s i n k - T j

(4.74)

Again, grouping the sin(T  ̂+Tg) and sin(Tg - t J  teims and solving for Ô21 and Ô22 leads to 

the coefficients

(4.75.1)

(4.75.2)

Having obtained the expressions for the coefficients, Eqns (4.70) now represent particular 

solutions of the second order equations. This can be used to evaluate the coefficients in the 

third order approximation.

4.4.2.3 Third order solution

The third order solution is evaluated by collecting perturbing parameter teims of order ê  

and noting that cûy =0  from the second order solution, which yields the equations

f t" “ 2^3'“ (l + 2cg)^3 =-2«;2(fi"-77i')+—C3(2^3^2“ W 2 ~C iA )

V2 ' '+2^2 '+(Cg -  l)77g = -2ûig (t7j ' '+^j ') -  3cg (̂ i77g + ĝ77( )

?2 "+-^V2 = “ 2ty, "-Sc, + ^2 ^ 1  ) - —£4 ^,(4 ^ /  - f / ) + A f ,  (4.76.3)

The previously obtained solutions to the linear and second order teims can be substituted 

into these expressions which can be solved for third order terms ^3 , fjj and ^3 . Richardson 

noted that after substitution, the expressions can be reduced to the following form
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A ^ ^ 3  2 cg) ^ 3  — \ct21 2o)2A^A{k A)]cosT( + CU32 cos3Tj
+ (%33 COs(Tj + 2T2 ) + ^34 COs(2T2 “  Tj )

% ' '+2 I 3 ' - ( 1  -  Cg)% = [Ai + 2ft7gAjA(H -  l)]sin T̂ +/%g sin 3t^
+ y?33 sin(Ti + 2 ^ 2  )+ ŷ3 4  cos(2 Tg -  Ti )

A 4A ^ 3  — [7^31 + Ag ̂ 2«7gA + a)] sin Tg + 7^32 sin 3Tg
+ f 33 sin(2T( + Tg)+ j/34 sin(2Tg-T^ )

where the coefficients are provided in Appendix 1 [Kim and Hall, 2001; 

Thurman and Worfolk, 1996].

The secular terms in Eq (4.77.3) are sin(2Tj -  Tg) and sin Tg. These terms are removed by 

adjusting the phase angles such that <j) = (p->rn7t 12, where integer ;z=0,1,2,3. The term 

sin(2Ti -  Tg) = sinTg if the value of n=0,2 and sin(2Ti -Tg) = -sinTg if «=1,3. Combining 

the sinTg expressions, it is clear that removal of secular terms from Eq (4.77.3) is achieved 

provided

?3i + A  (2A7gÂ  + a )+  ( - 1)" ̂ 34 = 0 (4.78)

To remove secular terms from Eq (4.77.1) and Eq (4.77.2), the constraint derived by 

Richardson [1980a] is defined as

0 )2  = '5'iA/ + j'gÂ  ̂ (4.79)

where si and S2 are provided in Appendix 1. Substituting into the constraint defined in 

Eq (4.78) leads to the expression

This expression imposes a constraining relationship between the in-plane and out-of-plane 

amplitudes. Ax and Â , to ensure removal of secular teims from the solution. A complete 

third order solution after removal of the secular terms is provided by Thurman and 

Worfolk [1996].
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The final solution obtained by Richardson [1980a] is provided below

^(ti) = “  AcosTj +(a23A/ -«24A/)cos2Ti +(«3iA / -«324A /)cos3ri

(4.81.1)

riizy ) = M .̂ sin + ( A i “  A2 )sin 2 Tj + -  /?32A^A/ )sin 3Tj (4.81.2)

 ̂ 1+ A  cos Tj + / 2 iA(A (cos 2 ^ 3  -  3 ) + ( a 2A  A^ -  Ai A^ )cos 3Ti n -  0,2]

[ -  Â  cosT3 - d^^A^A^(cos2t  ̂- 3 ) - (cfggÂ Â  ̂-  AiA^)cos3Tj n = 1,3

(4.81.3)

This solution is achieved by adding the particular solutions calculated at each order of 

perturbing parameter, e. They are expressed in terms of the in-plane and out-of-plane 

amplitudes. Ax and A ,̂ which are constrained by Eq (4.80). As a consequence of the phase 

constraint ^ - ( p ^ n 7 t ! 2 ,  two equations are obtained for the out-of-plane solution, 

Farquhar and Kamel [1973] demonstrated that this constraint leads to two different classes 

of orbit, shown in Fig 4-9. Class I occurs for «=0,2 and Class II occurs when «=1,3.

These solutions define a nominal halo orbit in the three-body problem where the ratio of 

the in-plane and out-of-plane frequency is rational. Evaluating this expression at ?  = 0 

yields initial conditions which converge tow aid halo orbits around the libration points. 

Several authors have investigated halo orbits around the collinear Lagrange points of the 

three-body problem [Farquhar, 1970a; 1973; Breakwell and Brown, 1979; Richardson, 

1980a; 1980b; 1980c; Howell, 1984]. It will be demonstrated that similar methods can be 

applied to generate halo orbits around an artificial libration point using a solar sail.
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Figure 4-9 Class I and Class II halo orbits around L2  of Sun-Earth system (A^=280,000km)

4.4.3 Halo orbits around artificial libration points

4.4.3.1 Differential correction methods

The coefficients of the third order solution, provided in Appendix 1, are evaluated at the 

artificial libration point. For a required z-axis amplitude, A ,̂ Eq (4.80) can be solved to 

determine a value of x-axis amplitude, Ax, which suppresses divergent terms. The 

amplitudes and evaluated coefficients can then be substituted into Eq (4.81), and 

evaluating at time T/=0 yields a set of initial position conditions. The order derivatives, 

with respect to time, of Eq (4.81) can also be determined to yield a set of initial velocity 

conditions. These conditions do not immediately produce periodic halo-orbits within the 

non-linear three-body equations but do provide a solution which converges towai’d a 

periodic halo orbit after applying a differential coiTection method.

A numerical method is developed similai* to that used by Breakwell and Brown [1979], and 

Howell [1984]. This method uses the Matlab order Runge-Kutta integrator to 

numerically integrate a periodic orbit with period T  starting at the initial conditions

x„ = [x̂  0 0 o f  and integrating until time TI2. The integration time of 772 is
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indicated when |y| < 1x10 “ , at which point the time and orbit conditions are stored. To 

achieve this precision requires the integrator to step forward until y < 0. The step-size is 

then reduced and the integration is repeated starting at conditions near 772. In this way, 

precision is improved without greatly increasing the integration time.

The lineai'ised equations can be represented in the foim of a state equation x = A x, where 

the state vector x = [x y z x  ÿ zY  and the linear coefficient matrix is defined as

A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 I

Ux. 0 2 0
Uyy Uy. - 2 0 0

0 0 0

(4.82)

where the partial derivatives of the pseudo-potential

(4 .83)

are represented as 7/,̂  for i , j  = {x ,y ,z} . These derivatives are evaluated at the on-axis 

libration point where x^ = y , = 0 and z ^ - O .

The eigenvalues and eigenvectors of the linear coefficient matrix A can be used to form a 

fundamental solution matrix 0{t) with solution x{t) = ^{t)x^ . The solution of the linear

state equation can be expressed as x(f) = exp(/A)x„, which suggests <E>(r) = exp(rA) . The

eigenvalues and eigenvectors of the linear coefficient matrix are represented by matrices A  

and P respectively, where AP = A P . As demonstrated by Glendinning [1994], the 

transform x  = Py can be applied to form a fundamental matrix using the eigenvalues and 

eigenvectors A  and P.

It follows that y = P"^x which has time derivative ÿ = P~^x. Substituting the state 

equation gives ÿ = P~^Ax = P~^APy . The relationship between the eigenvalues and 

eigenvectors can be re-airanged as A = P~^AP which obtains the state equation ÿ = A y .
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This state equation has the solution y{t) -  exp(^A)y ,̂ and further substitution obtains the 

expression x(?) = Pexp(rA)P'^x^,. Comparing the solutions for x(?) proves that 

<!>(?) = exp(/A) = Pexp(?A)P“f  where A is a diagonal matrix of eigenvalues. The 

fundamental matrix evaluated at t=0 is equivalent to a 6x6 identity matrix, O(o) = f  .

The required variation of the initial conditions, ôx, is calculated using the relationship

ÔX » ® (r / 2,o)ôx„+^<y(T/2) (4.84)

where 0 ( r  / 2,0) is the fundamental matrix evaluated at time 772 [Breakwell and Brown, 

1979; Howell, 1984].

For a periodic orbit at time 772, = 0 and as the initial conditions Sx = ^ - 0  ,B q  (4.84)

leads to the expression

(4.85)

where represents elements of the fundamental matrix / 2,0). Re-aiTanging

Eq (4.85) enables the time variation 0(772) to be evaluated as

S{t  / 2) -  —r(<̂ 2 A o + )
y

(4.86)

The aim of this method is to alter the initial conditions to obtain Sc = âz = 0 at time 772. 

Varying two of the initial conditions is sufficient to provide orbit coiTection. Keeping the 

value of Xo fixed, such that Sc  ̂ = 0, leads to the expression

Sx > 4 3 A;
+

X

> o (*>65. A . _z_
^ ( r /2 ) (4.87)

Substituting the expression for S(T/2) derived in Eq (4.86), into Eq (4.87) gives the 

correction expression used by Breakwell and Brown [1979], and Howell [1984] as

173



Sk >43 A , 1 X

A . > 6 3 ^G5_ A o_ z_ [̂ 23 2̂5 -
'ÔZ,

A .
(4.88)

The required change in the initial conditions ôz  ̂ and ôÿ^ is calculated from the required

change to the velocities at T/2, -  Sk and -  ôz . Through an iterative process of numerical 

integration and coiTection, the initial conditions obtained from Richardson’s third order 

approximation converge toward a periodic halo orbit. This correction method will be 

demonstrated for periodic halo orbits around the Li and L2 Lagrange points.

Figure 4-10 demonstrates the effectiveness of the differential correction method. The 

trajectory produced by the initial conditions obtained by Richardson’s theorem winds off 

the nominal orbit escaping in the anti-Sun direction. The correction method gradually 

improves the resulting trajectory by varying the initial and conditions in order to

force the conditions at time T/2 towards that required for a periodic orbit. Trajectory 6 

represents the periodic halo orbit achieved after 6 iterations. At each stage of coiTection, 

the resulting trajectory converges comparably closer to the nominal orbit.

The initial conditions obtained using the differential correction method are provided in 

Table 4-4. The correction method required 6 iterations to obtain suitable values of 

i; = -3 .515x10“*’ and z = 5.792x10“̂  at time 7/2=90.7 days.. The in-plane and out-of­

plane amplitudes correspond to Ax = 40.26 Rb and A% = 20 Re. The initial conditions 

yielded from Richardson’s approximation are converted to a planet centred coordinate 

system for use in the non-linear equations derived in Section 4.1.

Figure 4-11 demonstrates the iterative correction process which converges toward a 

periodic halo orbit around the Lj Lagrange point after 12 iterations. The in-plane and out- 

of-plane amplitudes are defined as Az=20 Re and Ax=38.9 Re. Table 4-5 provides the 

coiTected initial conditions for each iteration of the correction method. After 12 iterations 

suitable values of x = -9.180x10'*’ and z =7.455x10'^ were obtained at time 7/2=89.5 

days.

It was found that the correction method can ‘overshoot’ the desired orbit if the calculated 

change in initial conditions, and are applied directly. To improve the accuracy of 

the convergence method, a coefficient n was introduced such that the initial conditions are
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altered by a factor andM&^. The value of n was selected arbitrarily between the 

limits 0.1 < 71 < 0.5 providing a trade-off between accuracy and efficiency.

150
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-100

-150
150 200 250 300 350 400

X, R g

Figure 4-10 Iterative method improving initial conditions towards a periodic halo orbit around Lj

y. 4
Initial 0.00799589840 0 0.00075906746 0 0.01237406764 0

1®' Iteration 0.00799589840 0 0.00072933473 0 0.01209224716 0

2“*̂ Iteration 0.00799589840 0 0.00070939306 0 0.01191541801 0

Iteration 0.00799589840 0 0.00069750983 0 0.01179636391 0

Iteration 0.00799589840 0 0.00069294029 0 0.01174034054 0

5‘̂  ̂Iteration 0.00799589840 0 0.00069282234 0 0.01173611718 0

CoiTected 0.00799589840 0 0.00069307255 0 0.01173670786 0

Table 4-4 Initial conditions yielded from the third order approximation and the corrected conditions of L2 

orbit
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Figure 4-11 Iterative method improving initial conditions towards a periodic halo orbit around L;

0̂ y.
Initial - 0 0.00095934221 0 0.01107461150 0

Iteration - 0 0.00107262323 0 0.01010643172 0

2"  ̂Iteration - 0 0.00106617368 0 0.01011405614 0

3̂ ’*̂ Iteration - 0 0.00106119927 0 0.01012023328 0

Iteration - 0 0.00105738480 0 0.01012507391 0

5̂  ̂Iteration - 0 0.00105446338 0 0.01012876494 0

6"̂  Iteration - 0 0.00105221807 0 0.01013151518 0

7"̂  Iteration - 0 0.00105047797 0 0.01013352251 0

8"̂  Iteration - 0 0.00104911165 0 0.01013495810 0

9"̂  Iteration - 0 0.00104801980 0 0.01013596183 0
10**̂  Iteration - 0 0.00104712841 0 0.01013664373 0

11̂  ̂Iteration - 0 0.00104638282 0 0.01013708815 0

CoiTected - 0 0.00104574299 0 0.01013735855 0

Table 4-5 Initial conditions yielded from the third order approximation and the corrected conditions of Li 

orbit

176



4.4.3.2 Halo orbits sunward ofL 2

A  solar sail can be used to generate an artificial libration point sunwards of L2 . 

Richardson’s third order approximation can be used to identify periodic halo orbits around 

an artificial libration point. Figure 4-12 shows a family of periodic orbits around an on- 

axis artificial libration point at Xo=150 Re. The constant acceleration required to generate

these orbits is 0.323 mms-2

The constraint imposed by Eq (4.80) on the Ax amplitude, to achieve periodic halo orbit, 

decreases as the orbit is displaced closer to the central body. Figure 4-13 shows the 

minimum Ax amplitude and eonesponding kAx calculated for A^=0 at a range of libration 

point distances sunward of L2 . The y-axis amplitude is approximately equivalent to kAx. It 

is clear that the minimum x-axis and y-axis amplitude decrease asymptotically toward y=0 

as the libration point is displaced towards the Earth.

  Â =15Rg
—
  A =5R^

-10
-15

-20

-60 135 140 145 150 155
X, R g

  A^= 15R,
  Â = 10R|

A =5R^

-10

-15
155135 140 145 150

X, Rc

A, = 16R, 
A = 10R_

\  = 15Rg 
A =10R ^

Figure 4-12 Family of periodic halo orbits around artificial libration sunward of L2 (150Rb from Earth)
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Figure 4-13 Minimum ))-axis and %-axis amplitude for periodic halo orbit sunward of L2  (A^=0)

4 ,4,33 Halo orbits sunward ofL i

Similarly, an artificial libration point can be generated sunward of L; and Richardson’s 

approximation applied to identify periodic halo orbits. Figure 4-14 shows a family of halo 

orbits around an artificial libration point generated sunward of L/ at x=-300 Re. The 

constant acceleration required to generate this libration point is 0.12 mms'^. Comparing 

these halo orbits to the example of a libration point sunward of L2 , the y-axis and x-axis 

amplitudes are much larger for the same out-of-plane amplitude, Â .

Figure 4-15 shows the minimum Ax and kAx values for libration points sunward of L; 

extending to 0.02 AU from the Earth. The values of Ax and kAx linearly increase becoming 

very large as the libration point is displaced further sunward of Lj.

Although the nominal orbit defines a periodic halo orbit, numerical integration of the non­

linear circular* three-body equations results in a gradual escape due to limited precision of 

the \x\ and \z\ values at 772. Including the effects of the Earth’s eccentricity and solar saiJ

acceleration variation leads to perturbations, which result in gradual escape from the 

nominal orbit. Solar sail control laws will be developed which damp these perturbations.
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Figure 4-14 Family of periodic halo orbits around artificial libration sunward of Lj (-300Re from Earth)
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Figure 4-15 Minimum y-axis and x-axis amplitude for periodic halo orbit sunward of Ly (Az=0)
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4.4.4 Control of periodic halo orbits using solar sail control laws

4.4,4.1 Three-axis controller design

The solar sail diverges rapidly from the nominal periodic halo orbit if the trajectory varies 

slightly from the nominal path. Control techniques were developed for the ISEE-3 

(International Sun Earth Explorer) mission launched into a halo orbit around Lj in 1978, 

To prevent escape from the nominal orbit after insertion, stationkeeping techniques were 

applied which used hydrazine thrusters to track a reference trajectory. The trajectory was 

optimised requiring an annual Av of 10-15 ms'^ for orbit control [Farquhar et al, 1980].

The SOHO mission, launched in 1995, also followed a periodic halo trajectory around Lj 

with a y-axis amplitude of 600,000 km. SOHO performs thrust maneuvers every 8 to 12 

weeks ensuring the spacecraft remains within the vicinity of the nominal orbit and with the 

correct attitude relative to the Sun [Beckman, 2002].

An orbit controller was developed which tracks the nominal trajectory produced by the 

differential conection method. The corrected initial conditions were used to numerically 

generate one complete orbit with a maximum time step of 1 0 '\ .  This resulted in 

approximately 1x10^ data points representing the desired position and velocity ai'ound the 

nominal orbit, = [x  ̂ y,, x^ ]. The angular position relative to the

libration point in the x-y plane was calculated using 6^ = tan(y^/x^ ).

The difference between the actual and desired position and velocity was determined as 

ÔX = X -  X j. The angle (9 = tan(y/x) was calculated for each point during numerical 

integration of the actual trajectory. Using a look-up table method, this angle was compared 

to the desired orbit angle, 6^ to identify the value closest to angle 6, The corresponding 

position and velocity values were used as the desired conditions. By storing the location in 

the table of the previous value, the next value could be found much quicker as the angle 0 

only changes gradually with each iteration. This technique was found to greatly improve 

the numerical integration rate during orbit control.
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The control gains were selected using optimal methods similar to those applied for the 

solar sail area and angle variation controller. Unlike these cases, 3-axis control was 

enabled providing full controllability in the three-body problem. The control matrix has 

the form

O.3x3 (4.89)

where Osxs and Isxs represent 3x3 zero and identity matrices respectively. As before, the 

state equation has the form

X = Ax + J5u 

y = Cx

(4.90.1)

(4.90.2)

where the linear coefficient A is provided in Eq (4.82), C represents the output matrix, u is 

the control vector and y is the output vector. The controllability matrix was found to be 

full-rank, indicating that this control method provides total three-axis control in the three- 

body problem.

As demonstrated in Section 3.4.4, the state weighting matrix, N, and the control weighting 

matrix Q can be used to construct a 3x6 optimal gain matrix, G. This gain matrix is used 

to calculate the required acceleration directed along each axis as

-  <̂1, A  + ^1,2^ + + G^^Sk -H Ĝ  s ^  + Gi,6^

ÔKy = G^^ôx + G ^2^  + G2 3 & + G2 4 &  +

-  <̂ 3, A  + ̂ 3,2^  + G3 3& + Gg^& + G3 gcÿ + G^^Sz

(4.91.1)

(4.91.2)

(4.91.3)

where N  and Q are selected so as to minimise the required acceleration. The state 

weighting matrix N  = where ü is a constant factor selected to minimise the deviation 

from the nominal orbit and the control weighting matrix, Q, has the form

Q

Qx 0 C
0 qy C
0 0 ^

(4.92)
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where [qx^Qy^qz) parameters selected to minimise the required control signals.

The solar sail could achieve three-axis control by combining valuation of the reflecting sail 

surface area with variation of the sail pitch and yaw angle to ensure the required thrust 

orientation and magnitude is achieved. The effective sail acceleration to control the orbit 

is determined as

Kn + + (4.93)

where K is the nominal acceleration required to generate an artificial libration point, 

K^-K-\r ÔK̂ , Ky = ÔKy and ~ ÔK̂ . The sail pitch and yaw angles can be calculated as

a  = sin”  ̂{ôkJ k ĵj ) and (j> = tan”̂  j kJ  respectively.

Pitching the sail reduces the effective acceleration, therefore the actual sail acceleration 

must be increased accordingly such that

cos^arcosV

The effective sail acceleration also varies as the solar sail distance relative to the Sun 

changes. The solar sail area can also be varied accordingly to achieve the required 

acceleration as

(4.95)

where c is the speed of light, is the solar luminosity, m is the solar sail mass and R(t) is 

the distance between the solai' sail and the Sun at time t. Orbit control in the circular and 

elliptical three-body problem will now be demonstrated using this control method.
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4.4.4.2 Control o f periodic halo orbit sunward ofL 2

A periodic halo orbit was generated around a libration point sunward of L2 using the 

developed control method. A libration point generated 200 Re from the Earth can be 

achieved with solar sail acceleration a?=0.0095 mms'^. The z-axis amplitude was selected 

as A;c=10 Re which requires in-plane amplitudes 23.83 Re and A^=90.42 Re. The 

controller gains were selected using state weighting factor v=l and control weighting 

elements qi~ l, ^2 = 1  and 5 3 =0 .5.

Figure 4-16 shows the resulting orbit controlled for a period of 2 years in the circular 

restricted problem. The orbit period is 148 days giving approximately five controlled 

periods. Figure 4-17 provides the acceleration and corresponding area variation required 

to control this orbit for a 100 kg sail and payload mass. The acceleration varies between

0.099 mms'^ and 0.094 mm'^ which con’esponds to an area vaiiation of between 1093 m^ 

and 1043 m^. Figure 4-18 shows the required solar sail pitch and yaw angle variation over 

the 2 year control period.
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Figure 4-16 Controlled periodic halo orbit around artificial libration point in the circular restricted problem
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Similarly, orbit control can be achieved in the elliptical three body problem using this solar 

sail control method. Figure 4-19 shows the controlled orbit around a libration point 200 

R e from the Earth with the same amplitudes as investigated in the circular restricted case. 

The eccentricity of the Earth’s orbit e=0.0167 means the actual position of the libration 

point fluctuates throughout the year between 196 Re and 204 Re.

The controller gains were selected using state weighting factor v=20 and control weighting 

elements ^;=0.01, ^2=0.1 and ^j=0.05. These differ from those selected in the circular 

restricted case as the control signal is required to be larger in order to dampen the 

perturbations introduced by the elliptical motion of the Earth. Figure 4-20 shows the 

acceleration and coiTesponding sail area variation for a 100 kg sail and payload mass. The 

acceleration varies between 0.177 mms'^ and 0.077 mms'^ resulting in sail area variation 

between 2026 m^ and 822 m^. This is over a wider range than exhibited in the circular 

restricted problem. Figure 4-21 shows the sail pitch and yaw angle variation required to 

control the solar sail at the nominal orbit.

-10

y, R,
-20

-40
-60

-80

N

-10

-15

210170 180 190 200
X, R ,

-bO *60 •40 -20 20 40 60 80
80 60 40 20 0 -20 -40 -60 -80

Figure 4-19 Controlled periodic halo orbit around artificial libration point in the elliptical restiicted problem
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4.4A.3 Control o f periodic halo orbit sunward ofLj

The orbit controller can also be used to control an orbit Sunward of Lu  see Figure 4-22. 

The nominal orbit was selected with z-axis amplitude Az=20 Re with corresponding in­

plane amplitudes Av=53 Re and Ay=151 Re. The artificial libration point is located 

270 Re sunwards of the Earth requiring a solar sail acceleration of a?=0.072 mms“̂ . The 

controller gains were selected using state weighting factor D=̂ l and control weighting 

elements qi-5 , q2=5 and ^5 =0 .0 1 .

The acceleration and corresponding sail area variation for a 100 kg sail and payload mass 

are provided in Fig 4-23. The acceleration varies between 0.073 mms'^ and 0.059 mms'^ 

which corresponds to an area variation 805 m^ and 695 m^. The pitch and yaw angle 

variation is provided in Fig 4-24. The ‘spikes’ in the plot occuning once every orbit 

period are a result of the deviation between the starting and end conditions of the reference 

orbit. By improving the precision of the differential conection method used to generate 

the reference orbit, these ‘spikes’ could be reduced.
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Orbit control is now demonstrated including the perturbations due to the elliptical motion 

of the Earth orbiting the Sun. Figure 4-25 shows a controlled orbit around an artificial 

libration 270 Re sunwards of the Earth with the same amplitudes as investigated in the 

circular restricted case. Due to the eccentric motion of the Earth, the libration point 

oscillates between -275 Re and -265 Re.

This example highlights a possible problem with the solar sail control method in the 

elliptical three-body problem when it is used to control an orbit around a libration point 

displaced far from the Earth. The oscillations in the libration point position combined with 

the large x- and y-axis amplitudes requires large control accelerations directed along the y- 

axis. When a small acceleration is required along the %-axis but large acceleration directed 

along the y-axis, the sail yaw angle tends toward %!2 and the required sail area becomes 

unbound.

Figure 4-26 shows the acceleration required to provide control at this orbit. It is apparent 

that the magnitude of Ky is comparable to the magnitude of k .̂ Occasionally, as —> 0

the value of which results in unrealistic sail area requirements of order 1x10^ m^.

For short intervals during control of this orbit, the acceleration directed along the .%-axis 

< 0 . A constraint imposed on the solar sail acceleration requires that it is always

directed in the anti-Sun direction. Applying the constraint > 0 , would result in the

solar sail escaping toward the Earth meaning the control method is not suitable for control 

of this orbit.

The annual Av requirement for control in the elliptical three-body problem was analysed at 

this orbit. The x-axis control requires a total annual Av of 2.73 kms'^ and control in the y-z 

plane requires an annual Av of 162 ms"\ Comparing these requirements to other 

conventional propulsion methods excludes the feasibility of using chemical propulsion, 

however, the Av could be achievable using solar electric propulsion with the longevity of 

stored reaction mass limiting the mission duration.
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Unrealistic sail aiea requirements occuning when the yaw angle tends toward ti/2 can be 

avoided by generating a periodic halo orbit around a libration point displaced further from 

Li. This requires a larger nominal acceleration, K, which prevents the acceleration, Kx, 

tending toward zero. Figure 4-27 shows a periodic halo orbit controlled around a libration 

point 350 Re sunward of the Earth. The dynamics are modeled using the elliptical 

restricted three-body problem and the resulting libration point oscillates between -343 Re 

and -357 Re- The nominal acceleration /t^O.189 mms'^, the orbit out of plane amplitude 

Az=30 Re and coiTesponding in-plane amplitudes Ax=89 Re and Ay~2l3 Re.

Figure 4-28 shows the required sail acceleration and area variation required to provide 

station-keeping at the nominal orbit for the duration of 2 years. The controller gains were 

selected using state weighting factor z;=20 and control weighting elements ^;=0.1, ^2=0.05

and ^3=0.05. During orbit control, the sail acceleration varies between 0.17 mms'^ and 0.3 

mms"^ with cones] 

and payload mass.

mms"^ with conesponding area variation between 1886 m^ and 3092 m^ for a 100 kg sail

The pitch and yaw angle variation is provided in Figure 4-29. The yaw angle varies 

between -40.7° and -0.6°, and the pitch angle varies between -1.3° and 3.2°. Although the 

nominal acceleration is larger than for artificial libration points near Lj, the yaw angle does 

not tend toward n/2 enabling full orbit controllability using a reasonable sail area.
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4.5 Conclusions

Periodic halo orbits have been investigated in the circular and elliptical restricted three- 

body problem. Initial conditions which lead to these orbits were identified using 

Richardson's approximation method. A differential correction method was applied and 

provided reasonable convergence toward a periodic halo orbit. Precision errors lead to 

eventual escape from the nominal orbit and optimal control techniques were employed to 

provide orbit control.

The orbit control method was demonstrated for periodic halo orbits around libration points 

sunwards of Li and L2 . A possible three-axis solar sail control method was investigated 

using a combination of sail area variation and sail pitch and yaw angle variation to control 

both the thrust direction and magnitude. This method was found to work well in the 

circular restricted case providing accurate orbit control for achievable sail surface areas. 

Perturbations due to the elliptical motion of the Earth required an increased acceleration 

directed along the y-axis to achieve control.

In the elliptical problem, the libration point position oscillates throughout the year where 

the size of oscillation is larger for libration points displaced further from the Earth. In the 

case of orbits sunwards of Lj, the perturbations were found to be more significant. Due to 

the dependency of sail acceleration on cos^ orcos^<2), as the pitch and yaw angle tend 

towards 7t/2, the required sail area becomes unbound in order to generate the necessary sail 

acceleration for orbit control. It was shown that selecting a libration point at a greater 

distance from Li increases the x-axis acceleration but reduces the sail yaw angle variation 

required to control the orbit.

The next chapter will investigate periodic orbits around possible interstellar libration 

points. The stability of such orbits will be examined in order to determine if interstellar 

matter can become temporarily trapped at these orbits. The two-centre approximation will 

be used to model the gravitational dynamics assuming, over a short timescale, the stars are 

fixed relative to each other.
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Chapter 5 Two-Centre Problem

5.1 Gravitational two-centre problem

5.1.1 Gravitational two-centre equations of motion

The problem of two fixed centres was first investigated by Euler as a restriction of the 

three-body equations of motion. It considers a non-rotating system where a particle of 

negligible mass is moving under the gravitational influence of two fixed masses (or 

electrostatic influence if fixed charges are considered) [Howard and Wilkerson, 1995b].

Figure 5-1 provides a schematic of the two-centre problem where the two fixed masses, Mj 

and M.2 , are positioned on the z-axis separated by a distance R. The centre of mass is 

located at position C. A point mass, m, is located a distance p  from the z-axis. The 

separation distance between the point mass and the primary bodies is ri and Vz

respectively, where \rj\ = ^p'^ + and \r̂ \ = yjp^ (R ~  z Ÿ  • The angular position Û is

orientated around the z-axis.

mj

Figure 5-1 Schematic of two-centre problem with fixed masses Mi and M2
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Similar to the derivation of the two-body problem, provided in Section 2.1, the equations 

of motion can be obtained from the Hamiltonian. The two-centre kinetic energy, T, can be 

defined using polar coordinates as

1 (.= ~-m[z (S.l)

and the two-centre potential energy, V, can be defined as

GM,in GMpn
V = ----- r4 — + ----- — (5.2)

where G is the gravitational constant. This gives the Hamiltonian, H -  T + V which can 

be expressed using the momenta terms P ^= m z , Pp= mp  and Pg = mp^O as

H  =
2m ■ + ~Gm

p  ) [ kil Kl J
(5.3)

The equations of motion can be obtained from the Hamiltonian using dHjdP^ ~ q and 

d n jd q  = -P^ where q = {p ,0 ,z ) . This obtains the following equations of motion

p  = pO'^ + G 

2pÙ

MyP M^P
I p  I p

V F i l  F 2I y

e  = -

z = -G

(5.4.1)

(5.4.2)

(5.4.3)

The two-centre equations of motion can be non-dimensionalised using the characteristic 

length R as the separation between the two primary masses and the characteristic time

T -  -̂ Jr ^/GM^ . From Eq (5.4.2), the z-component of angular momentum can be derived

as = p ^ 6 . This can be substituted into Eq (5.4.1) to obtain the non-dimensionalised 

equations as
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P = \ - A - ^  (5.5.1)
^  h i  h i

z = - n i  + ̂ ^ T ^  (5.5.2)
h h

where the constant, À, is equivalent to the mass ratio M 2IM]. For a circular orbit about the 

z-axis, the acceleration and velocity component p - p - 0 .  From Eq (5.5.1), the required

angular velocity for such a circular orbit is given hy 6 = ^ -3
21

5.1.2 On-axis libration points

Consider a libration point which lies on the z-axis {p=0) collinear with the two primaries. 

In this case, the respective distance of the point mass from Mj and M 2 is |rj = z and

Kl = { R -  z) . Equation (5.5.2) reduces to

A
z" (1 -z ) '

A libration point exists when z = 0 and the location depends on the mass ratio, À. The 

position of the libration point is given by

which has limits at T=l, where the solution no longer has a quadratic foim but instead 

represents a linear equation with solution z=0.5. As the libration point is formed by 

balancing the gravitational forces between the two masses, it is clear that the libration 

points can only exist for 0 < z < 1.

The stability of the on-axis libration point can be determined using a 1®̂ order Taylor 

expansion of Eq (5.6). This gives a state equation with the form z = W / ^ z \ z ,  where the 

function / ( z )  is equivalent to
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f ( z )  =
1

Z- ( l - z f

and the derivative evaluated at the nominal libration point has the foim

(5.8)

dz
2 2X (5.9)

The eigenvalues for the linear state equation can be determined using a change of variables 

Z i= z  and ẑ  = z^. This state equation can then be expressed in the form

0 r

_Z2_ W l ^ z \  0 _̂ 2_
(5.10)

Let the symbol, A  represent the square matrix in Eq (5.10). The eigenvalues, A  can be 

calculated using |A7 -  A| = 0. This leads to the characteristic equation

A "- ■ + 2X

\^o
= 0 (5.11)

For a stable orbit the eigenvalues must be imaginary. Therefore A  ̂< 0, which requires the 

expression in the brackets also to be less than zero. Figure 5-2 demonstrates that between 

the two masses located at z=0 and z=l, Â  > 0  for ,1^2.17. Analytical analysis of Eq 

(5.11) shows that for Â  > 0 , the inequality condition { l - z ^ f  > -Àz^ must be true. As the 

mass ratio À>0 and 0 < ẑ  < 1, this condition is true for all values of X. This demonstrates

that a saddle point always exists at the on-axis equilibrium point as there is one positive 

and one negative eigenvalue for all possible mass ratios.
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5.1.3 Halo orbits around Libration points

Halo orbits can be identified from Eq (5.5) when the acceleration and velocity components 

p  = p  = 0 and z = z - 0  . A pseudo-potential function, U {p,z)  can then be derived as

U {p,z)
2p^

A
k l

(5.12)

which includes the z-component of angular momentum, ĥ .

Figure 5-3 shows a contour plot of the potential energy function for a constant value of 

hz=OA and mass ratio /l=0.5. Figure 5-4 shows a contour plot for the same angular 

momentum value hz=OA but for mass ratio /^ 2 . It is clear that there exists three 

equilibrium points in this system corresponding to circulai' orbits about the z-axis. The two 

points (E],  E 2) nearest Mj and M 2 are stable, indicated by the local minima of the potential 

energy function. These are similar to the two-body problem with a uniform axial force 

displacing the orbit from the central body. The local saddle point indicates that the central 

libration point ( E3) is unstable.
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Figure 5-4 Potential energy function U{p,z)  for rotating frame around z-axis
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From Eq (5.5), the angular momentum parameter hz can be selected such that p  = 0 with 

the requirement that 0^>0. Halo orbit contours representing the initial conditions, Po and 

Zo in the rotating reference frame are provided in Fig 5-5. For any fixed value of Po<OA, it 

is clear that there exists three possible halo orbits, each with a different angular 

momentum. When po>OA, there exists only one possible halo orbit, which is located 

nearest to the body of larger mass.

An example of the three possible halo orbits at selected distances along the z-axis is 

provided in Fig 5-6. These halo orbits conespond to a system with mass ratio Jb=̂2. The 

initial conditions are calculated numerically from the contours provided in Fig 5-5. This is 

perfoimed by selecting a desired value of Zo and calculating the corresponding value of po 

which gives z = 0. An angular momentum is then calculated which obtains /) = 0 for the 

necessary value of po. Orbit 1 and orbit 3 are stable, and the central orbit 2 is unstable 

which agrees with the potential energy contours provided in Fig 5-4. The calculated initial 

conditions for each of these orbits are provided in Table 5-1.
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Orbit No. Po Zo K
1 0.3554 0.1 0.5935
2 0.2358 0.38 0.2362

3 0.5057 0.95 1.0243

Table 5-1 Numerically calculated initial conditions for two-centre halo orbits (y&=2)
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Figure 5-6 Two-centre halo orbits for system with mass ratio
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5.2 Photo-gravitational two-centre problem

5.2.1 Investigation of interstellar libration points

The two-centre problem could have a possible application for the study of libration points 

between stars. Investigation of the libration point stability could determine whether 

interstellar dust can become trapped, at least temporarily, in the vicinity of these libration 

points. If the relative motion of the stars is negligible compared to the instability timescale 

of the trapped dust, the two-centre problem could provide a reasonable approximation of 

the dynamics. A thorough study has been performed by Bookless and Mclnnes [2004] 

investigating the possible existence of libration points between the Sun and nearby stars.

The nearest star system to the Sun is a-Centauri separated by a distance of 4.36 ly (light 

year) where 1 ly is equivalent to 9.4605 x 10^  ̂m. Table 5-2 contains the spectral details of 

the Sun and the a-Centauri system taken from the Nstars database [1988]. Centauri is a 

triple star system with components A, B and C. A and B represent a binary system which 

orbit each other with a period of 80 years. Their separation varies between an apoapsis of 

35AU and periapsis of 11 AU [Soderblom, 1987]. The third component, a-Centauri C 

(also known as Proxima Centauri), is a much smaller red-dwarf possibly orbiting the two 

larger bodies from a much larger distance.

The influence of radiation pressure exerted on the small dust particles will be included in 

the equations of motion. Only the effects of direct radiation pressure will be considered in 

this model, ignoring Poynting-Robeitson drag [Krivov et al, 1996; Mignard, 1982]. 

Assuming the dust particles have an absorbing surface, the lightness number is defined as

P = -----   (5.13)
AmcGMa

where L is the stellar luminosity, M  is stellar mass and c is the velocity of light. The 

loading parameter is defined as a  - m l  A  where A is the illuminated surface area and m is 

the particle mass. The dominant force influencing the dust depends on the value of p. If 

;&>!, the force due to stellar radiation pressure is dominant and if >^1, the force due to 

stellar gravity is dominant.
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Name Spectral Class Absolute Mag Luminosity (W)

Sun G2-V +4.77 3.86x10^^
a-Centauri A G2-V +4.38 5.58x10"^

a-Centauri B K l-V +5.71 1.61x10'"^

Proxima M5.5-V +15.49 7.41x10'"

Table 5-2 Spectral properties of nearby stars from the NStars database

The luminosity of a star can be calculated from its spectral magnitude. The difference in 

magnitude of two stars can be determined using

-  -2.5 log10 (5.14)

where mi and m2 are the spectral magnitude of the stars, di and d2 are the stellar distances 

and Li and L2 are the stellar luminosities. The absolute magnitude is the magnitude of a 

star as would be observed from a distance of 10 pc (parsec), where 1 pc = 3.0857x10^^ m. 

Centauri A and B are of similar magnitude to the Sun and C is a very dim red dwarf. 

Neglecting C, the luminosities of A and B can be combined to give the overall system 

luminosity of 7.19x10^^ W. This is much larger than the Sun’s luminosity of 3.86x10^^ W.

5.2.2 Photo-gravitational two-centre equations of motion

Figure 5-7 represents a schematic of the Sun-Centauri system ignoring the relative stellar 

motion. The Centauri triple system is located approximately 4.36 ly from the Sun and has 

a combined mass of 2.17 (solar mass), where 1 = 1.989x10^^ kg. The force

exerted on the particles by stellar radiation pressure is equivalent to -  y%//|r|^, where r

is the distance from the star and ja is the stellar gravitational parameter. The two-centre 

kinetic energy corresponds to Eq (5.1) and the potential energy can be written as

(5.15)

where the lightness numbers Pi and P2 correspond to the Sun and Centauri system 

respectively.
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Centauri
System

R—4.36 ly

Figure 5-7 Schematic of Sun-Centauri system

The Hamiltonian method is applied to derive the equations of motion where H  = T + V 

The photo-gravitational Hamiltonian has the form

H
2m

(5.16)
y

The equations of motion are derived in polar coordinates using dHjdP^ ~ q  and

d H jd q -  -P^ , which yields components

_  A,' (1 -
k f  '  k p

e  = IpÔ

(5.17.1)

(5.17.2)

(5.17.3)

The equations are non-dimensionalised with the separation distance between the two stars 

selected as characteristic length /?=4.36 ly and characteristic time r  = -yjp? jCM^  . The 

system mass ratio is defined as /i=2.17Mo.
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The angular velocity required for a circular orbit (/? = 0 ) is defined using Eq (5.17.1) as

^ = ^ ( l - A ) |r , r + ; i ( l - A ) h r  (5.18)

with the condition <9̂  > 0 required for a real orbit. It is cleai' from these equations, if /?;=1 

or Ibe repulsion force due to stellar radiation pressure balances the gravitational force 

and the influence of that star on the dust particles is cancelled.

5.2.3 Light extinction

Photons traversing between stars are subject to absorption and scattering by gaseous 

atoms/ions and dust grains collectively known as interstellar matter. Neutral hydrogen is 

abundant in the interstellar medium, detectable from Earth as it emits the 21 cm radio line, 

which can be used to probe the galactic structure. A plethora of molecules exist ranging 

from basic types such as H2O, CO, C H 4 and NH3 to complex carbon structures such as 

polycyclic aromatic hydrocarbons and spherical fullerenes [Ehrenfreund and Foing, 1996; 

Salma et al, 1996]. Estimates from the Goddard High Resolution Spectrograph of the 

Hubble space telescope indicate there are as few as 140±20 ppm (parts per million) carbon 

atoms present in the interstellar matter [Groth, 2003].

In the galactic plane, the estimated average light extinction value is I to 2 magnitudes per I 

kpc (kiloparsec) pathlength [Scheffler and Elsasser, 1988]. Shorter wavelength light 

intensity is greater reduced by scattering and absorption than longer wavelength light thus 

there is a reddening of starlight which increases systematically with distance [Bertin, 

2000]. For simplicity, the increased extinction at shorter wavelengths or extinction curve 

structures such as the 2175Â bump [Massa and Savage, 1998] will be neglected to provide 

a basic extinction model.

A suitable location to calculate the stellar luminosities is the gravitational on-axis libration 

point between the two primary masses. This libration point is located 1.763 ly from the 

Sun and 2.597 ly from a-Centauri evaluated using Eq (5.7). The apparent luminosity of 

the Sun at this distance is 3.8581x10^'' W and the combined luminosity of the Centauri 

system is 7.1848x10^^ W which represents a reduction of only 0.05% and 0.07% 

respectively due to light extinction.
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5.2.4 Halo orbits around libration points

Including the lightness number terms alters the apparent system mass ratio by a factor 

( I - A ) / ( l “  A ) • Figure 5-8 shows a set of contours representing possible halo orbit initial 

conditions for a selection of particle loading parameters. These contours are generated in 

the rotating p-z plane where the angular velocity is calculated using Eq (5.18).

The particle loading parameters and corresponding lightness numbers are provided in 

Table 5-3. The lightness numbers are calculated using Eq (5.13) with the respective 

luminosities of the Sun and the Centauri system. Consider three cases

p2</3i<V. In this case stellar gravity is the dominant potential field. For particles with 

o>3 gm'^, the lightness number values are small and possible orbit conditions, 

Po and Zo, ai'e not displaced significantly from the values calculated when 

radiation pressure forces are ignored. As (7 decreases, the on-axis libration 

point position moves towards the Sun and the nominal radius at which the three 

halo orbits bifuricate to just one possible halo orbit decreases until o<0.7673 

gm‘̂ .

/?2<1<A' Between loading values of 0.6584«j<0.7673 gm"  ̂there exists a scenario where 

there are no possible halo orbits to trap particles between the two stars. In this 

case the dominant force from the Sun is solar radiation pressure and the 

dominant force from a-Centauri is gravity.

Contour 2, in Fig 5-8 provides an example of this case. The required angular 

velocity for a circular halo orbit is imaginary neai* the Sun thus no possible halo 

orbits exist. Near a-Centauri, the angular velocity is real, resulting in a contour 

of possible halo orbit conditions on the opposite side of the Centauri system,

Iî  this case, the dominant force is radiation pressure and halo-orbits can no 

longer exist as the combined radiation pressure will push any particles out of 

the system. Contour 1, in Fig 5-8 provides an example of this case. The on- 

axis libration point is unstable and any motion off-axis will cause the paiticle to 

be swept from the system due to radiation pressure.
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3.5

2.5

Cl

0.5

Sun

Figure 5-8 Possible halo orbit p-z values for different particle loading values

Values of cr(gm'^) contours: 1=0.5 2=0.7 3=0.9 4=1 5=3 

*dotted-line corresponds to imaginary vaiues of 6 therefore orbit can not exist

cr^(kgm'^) A A
3x10'^ 0.2558 0.2195
1x10'^ 0.7673 0.6584

9x10'^ 0.8525 0.7315

7x10'^ 1.0961 0.9405

5x10’̂ 1.5346 1.3167

Table 5-3 Sail loading a corresponding lightness numbers for Sun-Centauri system

Orbit <j(gm'^) Po (ly) Zo (ly) ^0 (^s‘̂ ) T (Myr)

1
1

1.2757 0.4360 4.0775x10'^^ 48.863
2 1.2349 1.0900 3.3075x10'^^ 60.239
3 1.8742 4.2728 4.2480x10'^^ 46.901

4 0.7 1.9832 4.5780 1.5615x10'^^ 127.594

Table 5-4 Halo orbit initial conditions including orbit period

207



Figure 5-9 shows a set of possible halo orbits for different particle loading parameters 

corresponding to the first lightness number case where p 2<Pi<^ gm'^) and second

case where (cp=0.7 gm'^). The initial conditions for each orbit are provided in

Table 5-4.

Orbits 1, 3 and 4 can be described as stable as they are observed to remain within the 

vicinity of the nominal orbit after applying a small perturbation. This agrees with the 

potential energy analysis which indicates that local minima exist around the orbit 

conditions for 1,3 and 4. The orbit period is extremely long, in the order of 10 Myrs 

(million years). Orbit 2 is unstable with escape occuring rapidly exhibiting homoclinic 

behaviour [Jordan and Smith, 1999], see Fig 5-10. Escape from the nominal orbit occurs 

after roughly 60 Myrs and the trajectory performs a loop around the Centauri system 75 

Myrs later. The trajectory returns to the nominal orbit 150 Myrs after escape.

The two-centre problem provides a basic model of the dynamics between two stars, 

ignoring the photo-gravitational influence of other nearby stars and the relative stellar 

motion. The two-centre equations can be adapted to investigate how these perturbations 

affect the system dynamics.

2

1

a-Cen

■1
Sun

-2
2

y(iy)
z(ly )

Figure 5-9 Possible halo orbits for particles with loading 3 gm'^ (1,2,3) and 0.7 gm'^ (4)
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Figure 5-10 ‘Homoclinic-like’ trajectory of unstable halo orbit

5.3 Closed-form solution of the two-centre problem

5.3.1 Derivation using confocal elliptical coordinates

In Chapter 2, it was demonstrated that an explicit solution exists for the two-body problem 

using parabolic coordinates. The stable and unstable manifolds winding onto/off the 

circular displaced orbit were shown to be bound within a paraboloid surface. Similarly, a 

closed-form solution can be derived for the photo-gravitational two-centre problem by 

transforming Eq (5.5.1) and Eq (5.5.2) into confocal elliptical coordinates [Waalkens et al, 

2003].

These equations are represented in a rotating frame with angular momentum Elliptical 

coordinates (^  rf) can be used to express the radial distance from Mi and M 2 as 

|r j  = (^ + /;) and jcgl = ( ^ - ;y ) . The polar coordinates can be transformed into elliptical

coordinates using |ri| = and = + (1 -  z)^ then solving |r^|-|r2 | for z to

obtain
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2 = 2 # ; ;+ - (5.19.1)

(5.19.2)

The time derivatives of p  and z are obtained as

P P

(5.20.1)

(5.20.2)

The non-dimensionalised photo-gravitational Hamiltonian can then be written as

(5.21)

The first term on the right hand side corresponds to the kinetic energy. The /> and z- 

velocity terms can be expanded as

fP-=

= 4 # V +  8##;;;; + 4#^;;

(5.22.1)

(5.22.2)

Substitution of these expressions into Eq (5.21) gives the Hamiltonian in terms of elliptical 

coordinates

4#ï2 (1 - 4 7 7

4 f -1

2 \ y 
+ 77^ + 477'

(1 -  A  ) ~ P%)
(f+77)  (#-77)

(5.23)
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The momenta terms can be identified using = d H /d ^ , P = dHjdr} and Fg = dH/dÔ

as

V

2 yl -  4 7 7 ' j , _2

1 - 4 7 7 ^

VV -1

4 # ' - l

- 1 X1 - 4 7 7 ') ^

(5.24.1)

(5.24.2)

(5.24.3)

These terms can be substituted into the Hamiltonian to obtain

H = , ^ 7 (1 - v )  Pj
(4 ^^ (1 -  4 7 7 ^)+ 4 7 7 (̂4 ^^ - 1 )) (4 ^^ (1 -  4 7 7  ̂)+ 4 7 7 (̂4 ^^ - 1))

(i ~ A ) A )
(f+y?) (f-y?)

(5.25)

A common factor of l/(4^^ - 4 7 7 ^) can be extracted from the Hamiltonian as follows

8 ( ^ 7 )
f / ( 4 ^ ' - l ) + f / ( l - 4 7 7 ') + 4 f ,

^ [ ( 1  -  A  )~ '^(i "  Pi )]”  f  [(1  -Pi)+>^{i~ P 2 )]

A 1 ^  1 y

(4 ^ " - 1 )'*'(1 - 4 7 7 ^)
(5.26)

+ ■

The Hamilton-Jacobi method can now be applied to separate the Hamiltonian using the 

transforming function [Landau and Lifschitz, 1976; Goldstein, 1959], which is

defined as

s { t , t v A = - E t + P o 0 + s (#)+s  (n) (5.27)

where E represents the total energy. The transforming function is selected to meet the 

Hamiton-Jacobi condition dS/dt + H  = 0 . Equation (5.26) can be substituted into this 

condition to obtain
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E +
(5.28)

This expression can be re-arranged to group the separable variables as

(5.29)

The expression on the left-hand side is dependant only on rj and the left-hand side 

dependant on The expression can be split using the separation constant 0  to obtain

- 1 )- 1) ~  A  )] = (5.30.1)

/^ ; ( l -4 ; ;" )+ 8 £ ;7 ^ + T ^ i^  + 8 ;7 [( l- ,g ,) -A (l-A )]  = <t' (5.30.2)

Elliptical bounding surfaces can then be determined from the initial conditions by 

evaluating the constants E, 0  and Pe. The expressions are then solved for ^  and rj, with 

the momenta terms P ^-P ,^= 0 .  The constants A = [(l -  ) + /l(l -  7^2 )] and

B = aie used to obtain the following quartic equations

8 £ # “ + 8 A f  -  (2E + O)#" -  2 A # -  P /  + j  = 0 

SE!j  ̂+ SB?]^-{2E + 0)?j'‘ - 2 B } ] - P / + ^  = O

(5.31.1)

(5.31.2)

Each set of constants gives 4 values of rj and of Each value coiTesponds to an ellipsoid 

surface in Cartesian space which bounds the orbit. The initial conditions (/%, Zo) are used 

to deteimine the elliptical coordinate from

4 1 / -(4(z„ - l / 2 f  +4/3< + (z„ - l / 2 f  = 0
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which can be substituted into |r j = (^ + 7/) or = to determine the coiTesponding

value of r}o. The velocity components can be calculated by treating Eq (5.20) as a 

simultaneous equation problem and solving for ^  and 77 at the initial conditions. Once the 

parameters ( ^ 77, ^ , 7 7  ) are evaluated, the momenta terms can then be calculated using 

Eq (5.24). These terms are required to calculate the separation constant 0  from Eq (5.30). 

After evaluating the three constants E, Pe and 0 , the zero-velocity ellipsoid surfaces are 

identified by solving Eq (5.31) for ^and 77.

5.3.2 Stable halo orbits bound by elliptical surfaces

In the case of stable halo orbits, 4 bounding surfaces trap the orbit represented by 

coordinates ({^, 6 , Vh %). Figure 5-11 shows the bounding surfaces for a stable orbit, 

/9o=0.3367 and Zo=0.1, with particle loading <7=3x10'  ̂ kgm'^ where the initial conditions 

are perturbed slightly by setting /?^=-0.1. A closer view of the bounding surfaces is 

provided in Fig 5-12. Redundant surfaces have been removed to make the figure easier to 

view.

The elliptical bounding surfaces for a stable halo orbit near the Centauri system is provided 

in Fig 5-13. The initial conditions are again perturbed slightly by setting yâ^=-0.1. A 

closer view of the bound orbit is provided in Fig 5-14.

Figure 5-15 shows a stable halo orbit for a particle of loading o^0.7 gm'^. In this case the 

dominant force from the Sun is solar radiation pressure which produces a displaced orbit in 

the anti-Sun direction at Centauri. The initial conditions are again slightly perturbed by 

setting /)^=-0.1. The elliptic coordinates representing the bounding surfaces for each of 

these examples are provided in Table 5-5.
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Figure 5-11 Pertui'bed stable orbit bounded by elliptical surfaces
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Figure 5-12 Closer view of bounded perturbed stable orbit
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Figure 5-13 Stable Orbit near Centauri bound by elliptical surfaces
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Figure 5-14 Closer view of stable orbit near Centauri
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Figure 5-15 Stable orbit for particle with loading 0.7 gm'

0 P o Zo P o 0̂ 6 6 ni
1.8018 0.3367 0.1 -0.1 0 0.6678 0.6455 -0.3181 -0.2851

0.6138 0.4385 0.97 -0.1 0 0.7671 0.7384 0.3914 0.3050

-0.2524 0.4548 1.05 -0.1 0 0.9018 0.7431 0.3640 0.3172

Table 5-5 Elliptical coordinates representing surfaces bounding stable orbit 

5.3.3 Elliptical bounding surfaces for unstable initial conditions

It has been demonstrated that four elliptical surfaces bound the motion of a stable orbit. 

Consider the elliptical surfaces bounding an unstable orbit. In the unstable case, the 

resulting trajectory can be described as homoclinic, winding off the nominal orbit and 

passing near to the Sun or Centauri system. Figure 5-16 shows a set of elliptical surfaces 

bounding a ‘homoclinic-like’ trajectory which loops around the Centauri system. The 

reflection of the î]i surface is declared redundant as it evidently does not play a role in 

bounding the trajectory. A Cartesian plot of this trajectory is provided in Fig 5-17.

A homoclinic trajectory which loops around the Sun is produced by slightly perturbing the 

Zo condition sunward. A cylindrical polar coordinate plot of this orbit is provided in
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Fig 5-18, including the elliptical surfaces which bound the orbit. A Cartesian plot of this 

trajectory is provided in Fig 5-19. The initial conditions and the elliptical coordinates of 

the bounding surfaces in the case of both trajectories are provided in Table 5-6.

  Trajectory
  Bounding S urface

R edundant S urface0.9

0.8

0.7

0.6

0.5
a .

0.4

0.3

0.2

0.1

. S u n a - C e n

0.80.4 0.6- 0.2 0.2
Z ( R )

Figure 5-16 Elliptical surfaces bounding homoclinic trajectory between unstable limit cycle and the Centauri 

system

0.5

X

-0.5
S u n

0.5
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0

Figure 5-17 Homoclinic trajectory between unstable limit cycle and the Centauri system
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Figure 5-18 Elliptical surfaces bounding homoclinic trajectory between unstable limit cycle and the Sun
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Figure 5-19 Homoclinic trajectory between unstable limit cycle and the Sun

0 Po Zo Po Zo 6 & Vi r]2

1.1664 0.3251 0.3 0 0 0.6071 0.6071 -0.1647 0.4874
1.1666 0.3251 0.2999 0 0 0.6071 0.6071 -0.4521 -0.1647

Table 5-6 Elliptic coordinates representing surfaces bounding unstable orbit
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5.3.4 Stellar transfer trajectories

Similar to the weak-stability boundary of the three-body problem, trajectories which 

asymptotically wind on and off a halo orbit produce a surface of manifolds. Depending on 

the energy, a particle can remain trapped on a manifold surface between the two stars. The 

invariant manifolds are bound by an ellipsoid surface determined using the explicit 

solution obtained with confocal elliptical coordinates. Using the manifold surfaces, it is 

possible to identify trajectories which could enable dust particles to be transferred between 

passing star systems.

The starting location can be determined from the bounding surface intersection. From 

Section 5,3.3, the closest approach to the Sun of the homoclinic trajectory occurs when 

surfaces r]i and ^  intersect. The values of Zi and pi can be calculated by substituting the 

elliptic coordinate values of the intersecting surfaces into Eq (5.19.1) and Eq (5.19.2). 

The ^-component of angular momentum, hz, evaluated at the nominal halo orbit is used to

calculate the angulai* velocity at the intersection point as ^  = \ / P,-̂  • The calculated 

insertion conditions are Pi=0.1471, z,=-0.0490 and 61=17.1284. In order to complete the 

transfer and break through the boundary set by surface %, a small velocity perturbation is 

applied, z . The resulting transfer trajectory is provided in Fig 5-20 including the 

bounding surfaces.

The elliptic coordinates representing the bounding surfaces are provided in Table 5-7. The 

^ , 2  surfaces are slightly further separated due to the increased energy resulting from the 

applied z velocity. The % 2  surfaces are identical to those obtained in the Sun and 

Centauri ‘homoclinic-like’ trajectories investigated in Section 5.3.3. The state-space 

representation of this transfer trajectory is provided in Figure 5-21. The transfer time 

between the Sun and the Centauri system is approximately 65 Myrs.

0 Po Zo Po 6 6 Vi
1.1675 0.1471 -0.0490 0 0.05 0.6098 0.6045 -0.4521 0.4874

Table 5-7 Elliptic coordinates representing surfaces bounding transfer trajectory
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Figure 5-20 Elliptical surfaces bounding transfer trajectory between the Sun and Centauri
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Figure 5-21 Transfer trajectory between the Sun and Centauri

2 2 0



5.4 Effect of additional body on two-centre dynamics

5.4.1 Local stellar neighbourhood

The perturbation caused by introducing the photo-gravitational potential of a third star will 

now be included in the two-centre equations of motion. The local stellar neighbourhood 

within 3pc (parsec) of our Sun is included in Fig 5-22. There are 11 stars in total including 

two binary systems (Sirius and Luyten 726-8A) and one ternary system, a-Centauri. The 

relative distances from the Sun, equatorial spherical coordinates and spectral class are 

provided in Table 5-8.

Right ascension is provided in the form (hours minutes seconds) where the 360° celestial 

sky is divided into 24 hours; 1 hour corresponds to 15°. Declination is provided in the 

form (degrees minutes seconds) which defines the angular location accurate to 1 arc 

second (l/3600th degree). Combined with the separation distance from the Sun, this 

provides a spherical coordinate system representing a fixed reference frame with the Sun 

located at the origin.

^alande 21185 

^uhWolf.359

t-Çentauri

154-10
10

x(ly)

Figure 5-22 Local stellar neighbourhood within 3pc
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Star name Distance from Sun
(ly)

Right
Ascension

Declination 
(dm  s)

Spectral Type

Proxima 4.22 14 29 43.0 -60 50 13.8 M5.5V

a-Centauri A 4.36 14 39 36.5 +04 41 36.2 G2.0 V

a-Centauri B 4.36 14 39 36.5 +04 41 36.2 Kl.O V

Barnard’s Star 5.96 17 57 48.5 +04 41 36.2 M3.8V

Wolf 359 7.78 10 56 29.2 +35 58 11.6 M6.0V

Lalande 21185 8.29 11 03 20.2 +35 58 11.6 M2.0V

Sirius A 8.58 06 45 08.9 -16 42 58.0 ALOV

Sirius B 8.58 06 45 08.9 -16 42 58.0 DA2

Luyten 726-8A 8.72 01 39 01.3 -17 57 01.0 M5.5V

Luyten 726-8B 8.72 01 39 01.3 -17 57 01.0 M5.5V

Ross 154 9.68 18 49 49.4 -23 50 10.5 M3.5V

Table 5-8 Position and spectral data of all stars within 3pc of the Sun

Spectral Type Colour Surface Temperature (°K)

O Blue >30,000
B Blue/White 11,000-30,000

A White 7500-11,000

F Yellow/White 5900-7500

G Yellow 5200-5900

K Yellow/Orange 3900-5200

M Red 2500-3900

Table 5-9 Spectral classification of stars

A common method for categorising stars is to use the MK spectral scale devised by 

Morgan, Keenan and Kellman [1943]. The stars are classed according to their spectral and 

luminosity properties. The different spectral classes are represented by the letters O, B, A, 

F, G, K and M which categorise star surface temperature range and subsequently colour, 

see Table 5-9. The temperature range represented by each letter is sub-divided depending 

on the value following the letter i.e A 9—>A0. The sequence is ordered such that the spectral 

type B9 is immediately followed by AO.

The stellar luminosity is defined using roman numerals TV. Type I corresponds to a 

super-giant, type II to a bright giant star, type III to a giant star, type IV to a sub-giant and 

type V to a main sequence dwarf stai'.
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It is clear from Table 5-8 that most stars within 3pc of the Sun fall into the category of red- 

dwarf. These stars have a long lifespan due to the slow bum rate. They have a relatively 

small mass compared to the Sun so the gravitational influence exerted on the ideal two- 

centre model will be neglected. The largest star within 3pc of the Sun is Sirius. The 

gravitational potential of this star will be included in the two-centre model.

Sirius is actually a binary system located 8.58 ly from the Sun. The larger star, Sirius A is 

one of the brightest stars in the night sky. The size is roughly 2 and it has a luminosity 

of 8.0647x10^^ W. Sirius B is a much smaller, but extremely heavy white dwarf, defined as 

spectral type DA2, with a mass similar to the Sun’s compressed into a volume 90% that of 

the Earth. The total mass of the Sirius system is 3.2 giving mass ratio ,^3 .2 . The 

extinction corrected luminosity of Sirius relative to the on-axis equilibrium point, located 

9.55 ly from Sirius, is 8.0430x10^^ W; a luminosity reduction of 0.27%.

5.4.2 Derivation of gravity perturbed two-centre equations

Figure 5-23 shows the Sun-Centauri-Siiius system, assuming all stars are fixed relative to 

each other. The coordinate system is selected such that the Sun and a-Centauri are 

positioned along the %-axis. Also, the three stars are coplanai* with the x-y plane. The 

photo-gravitational potential energy can be expressed as

V = ~Gm  1—i------- 1-------1—i------ 1-------s—:----- (5.33)

where j8 j, P2  and P3  are the respective lightness numbers of the Sun, Centauri and Sirius for 

a given particle size. Using Cartesian coordinates, the respective distances between the 

Sun, Centauri, Sirius and the point mass m, located at postion (%,y,z), are

|**i| — , jfjl — -\/(jR — x)^ + and jr̂ l — (X  — x Ÿ  + (F — yŸ  + (Z — zŸ  •

The mass of the Sun M;=1M , mass of Centauri M2=2.17M and the mass of Sirius

Ma=3.2M^.
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Figure 5-23 Schematic of thiee fixed stars Sun-Centauri-Sirius

The kinetic energy T  = + + P /) /2 m  where Py and P^ are the components of

momentum. The Hamiltonian function H  = T + V is equivalent to

H  = — If,* +P.^ + P.^)-Gm
2m

(5.34)

As before, the equations of motion can be obtained using partial derivatives dHIdP^ = q 

and d u jd q  = -P^ where q={x,y,z). The non-dimensionalised equations have the form

x ( i - A ) , A ( i - A ) ( i - ; ^ ) ,
ri3  t p  t prJ rJ rJ

yO--  A )  A i ) y   ̂^2 (i~ A )(^~ y)

z ( i - A )  A ( i - A ) z  , 4 ( i - A ) ( z - z )

(5.35.1)

(5.35.2)

(5.35.3)

where the characteristic length P=4.361y and characteristic time r  = -^Jr^/GM^ . The mass 

ratio between Mi and M2 , Ài=2.ll and the mass ratio between Mj and M 3 , Â2=3.2. The
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right ascension and declination angle of a-Centauri are rotated to position the stellar 

system at (1,0,0). Applying the same rotation to the right ascension and declination angles 

of Sirius, the co-planar position coordinates can be calculated as (-0.9425, -1.7275, 0). 

These equations can now be used to investigate the existence and stability of interstellar 

libration points.

5.4.3 Gravity perturbed two-centre libration points

Consider libration points between the three stars. The coordinate system is selected so that 

the three stars are eo-planar with the x-y plane, thus libration points must also lie in this 

plane. The non-dimensionalised potential energy U(x,y,z) is equivalent to

u (x ,y , z )  = -  ^  ) (5.36)

Figure 5-24 shows the potential energy contours for the case excluding the

solar radiation pressure terms. As expected, Sirius produces the largest potential-well 

followed by Centauri and then the Sun. A potential energy saddle point, Ej, exists between 

the Sun and Centauri, whieh coiTesponds to the two-centre on-axis libration point. 

Another saddle point, E2 , exists between Sirius and the combined system of the Sun and 

Centauri.
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Figure 5-24 Potential energy contours of Sun-Centauri-Sirius system ignoring solar radiation pressure 

The potential energy contours will be investigated for a number of particle loading cases:

Az<Pi<P3<̂ '- Figure 5-25 shows the potential energy contours for a particle with loading 

parameter a= l gm' .̂ Particles of this mass/area ratio would have lightness 

numbers /?/ = 0.1096, >^2 = 0.0941 and = 0.7140. The dominant force 

acting on these particles would be gravity from all three stars. There are two 

libration points which lie in this plane, one between a-Centauri and the Sun 

and one between both these stars and Sirius. Both of these points are unstable 

as determined from the saddle point in the potential energy function.

Æ<y^/<1<Æ' Figure 5-26 shows the case when particle loading 0^3 gm' .̂ The 

corresponding lightness number values are y^/= 0.2558, y%= 0.2195 and 

1.6659. In this case the dominant force exerted by Sirius is stellar 

radiation pressure; the other stars both have dominant gravitational forces. 

Particles corresponding to these lightness numbers are pushed away from 

Sirius and those which don’t exceed the escape velocity of the Sun or a- 

Centauri, can become trapped within the potential-well of these stars.
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P2<Pi<^'~A3'‘ Figure 5-27 shows the case for particles with loading parameter cr=5 gm' .̂

The lightness values would be y^/= 0.1535, >̂2 = 0.1317 and 0.9996. As 

the lightness number due to Sirius, is approximately unity, the stellar 

radiation pressure cancels the gravitational force. There remains a saddle 

point in the potential function between the Sun and a-Centauri, but the 

potential well due to Sirius has vanished as it no longer influences the particle 

motion.

Interestingly, this indicates that the possible transfer of materials between star systems is 

dependant on the material mass and reflective surface area. If a particle has lightness 

number >^/>l, it will be ejected by the star system and cannot be recaptured by Mj as 

radiation pressure is the dominant force. The particle can only be captured by a star where 

corresponding lightness number /?2<1- This leads to a selection process of the possible 

material properties which may become trapped in the vicinity of a star.

/ i i l i

////./%%:

Figure 5-25 Potential energy contours for particle loading (7=7 gm'
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Figure 5-27 Potential energy contours for particle loading (7=5 gm'
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5.5 Two-centre problem with relative stellar motion

5.5.1 Relative stellar motion

The relative motion of the stars was first noticed by Edmund Hailey during 1718 while 

comparing the positions of Sirius, Arcturus and Aldebaran with the measurements 

performed by the Greek astronomer, Hipparchus. It was noticed that the star positions 

were greater than half a degree from the positions measured 1850 years earlier.

Angular variation of the position of the stars is known as the proper motion and can be 

calculated by measuring parallax changes over a long period of time. Stellar motion along 

the line of site can be calculated using Doppler shift techniques, although effects such as 

gravitational red-shift, stellar atmospheric convection and stellar rotation can lead to 

inaccuracies of order 1 kms“* [Lindegren and Dravins, 2003].

Barnai'd’s star is found to move at high velocity relative to the Sun. First estimated by 

Edward Barnard [1916], Barnard’s star has proper-motion of 10.31 arcsec/yr. Table 5-10 

contains the radial and proper motion, taken from the Gliese Catalogue [1991], of some 

nearby stars. The velocity components (v ,̂ Vy) are provided which are co-planar to the Sun 

and the respective star.

Star Dist (ly) Radial vel 

(kms'^)

Proper Motion 

(arcsec/yr)

Vx (kms" ) v^(kms'^)

a-Centauri A 4.36 -26.2 3.689 -26.2 23.39

a-Centauri B 4.36 -18.1 3.689 -18.1 23.39

Proxima 4.22 -16.0 3.809 -16.0 23.38

Sirius 8.58 -9.4 1.328 -9.4 16.57

Barnards Star 5.96 -111.0 10.31 -111.0 89.37

Table 5-10 Proper and radial motion of stars relative to the Sun
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It is clear that the stars move at high velocities relative to the Sun. Barnard’s star has a 

velocity magnitude of 142.51 kms'^ relative to the Sun. The two-centre problem 

approximates that the stars are fixed in position relative to each other, which from these 

velocities it is evident that they ai'e not. However, due to the immense distances between 

the stars, the model may still be valid if the period of trapping is relatively short. Despite 

the high relative stellar velocities, it is clear that the stellar positions vary only a few arc 

seconds per year. The stellar motion can be included in the two-centre equations of motion 

to examine the validity of the two-centre approximation.

5.5.2 Derivation of two-centre equations including relative stellar motion

Consider the relative motion of the Centauri system in the x-y plane, approximating that 

the velocity of all three stais is identical and the velocity remains constant throughout 

integration time. The radial motion is directed along the x-axis, V;t=-26.2 kms'^ and the 

proper motion is directed along the y-axis, Vy=23.39 km s'\ using the velocity components 

of a-Centauri A from the Gliese Catalogue. Due to the changing position of Centauri, the 

separation distances from point m to the Sun and Centauri respectively are

|ri| = ^x^ + and [r^(0| = y (1 + + (v^t -  y Ÿ  + which is dependant on

time t.

The potential energy is now time dependant due to the changing position of the Centauri 

system

V{t)
h i  ̂ h ( o |  ^

(5.37)

and the kinetic energy T  = + -f-P^^)/2m where Px, Py and P% are the components of

momentum. The Hamiltonian function 7/ = T + y  can be expressed as

B  + p m  P ] - G m
2m ' '  " '

(5 .38)
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The equations of motion can be obtained using partial derivatives dHjdP^=q  and 

d u j d q  = -P^ where ^=(x,y,z). The non-dimensionalised equations have the form

m z M + -^0 - A X 1 -  X) (5.39.1)
kl k(f)|

ÿ = (5.39.2)
kl kz(0|

z = (5.39.3)
rJ r

where the characteristic length i?=4.36 ly and the characteristic time T = . The

mass ratio Ax^l.ll for the Sun-Centauri system. These equations will now be used to 

examine the motion and stability of the on-axis libration points.

5.5.3 Motion of on-axis libration point

The non-dimensionalised potential energy can be expressed in the form

V { x , y , z , t ) - = - m ^ - ^ f  (5.40)
k  k id )

Figure 5-28 shows the potential energy contours evaluated at time r=0. The potential 

energy contours after a period of 100,000 years are provided in Fig 5-29, showing a 

translation of the Centauri system and subsequently, the on-axis libration point. The 

libration point remains unstable, indicated by the saddle point.

The translation of the Centauri system relative to the Sun is demonstrated in Fig 5-30 over 

a period of 1x10^ years. The on-axis libration point between the stars, moves with 

horizontal velocity -10.44 kms"  ̂ and vertical velocity 9.32 km s'\ Due to the high velocity 

and instability of the on-axis libration point dust particles would not be temporarily 

trapped. An investigation into the possibility of particles becoming trapped on a stable 

halo orbit will be considered.
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Figure 5-28 Potential energy contours of the Sun-Centauri system when time r=0

Figure 5-29 Potential energy contours o f the Sun-Centauri system when time t=lxIO^ years

232



Centauri 
Libration Point
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Figure 5-30 Motion of the Centauri system relative to the Sun

5.5.4 Halo orbits including the effects of stellar motion

When the motion of the Centauri system is considered, halo orbits around the libration 

points are not possible. Figure 5-31 shows a homoclinic trajectory when the motion of 

Centauri is not included. The nominal orbit is an unstable limit cycle with radius 0.34 ly 

located 0.3 ly from the Sun with a period of 36.81 Myrs. The lightness numbers 

correspond to a particle loading of (7=3 gm'^. When the motion of Centauri is included, the 

resulting orbit is provided in Fig 5-32. It is clear that the initial conditions produce an 

elliptical heliocentric orbit.

Halo orbits which are stable while the motion of the Centauri system is ignored are shown 

in Fig 5-33. In the case of a halo orbit near the Centauri system, particles with these initial 

conditions escape from the Sun when stellar motion is included, as shown in Fig 5-34. The 

stable halo-orbit near the Sun results in a heliocentric elliptical orbit when stellar motion is 

included, as demonstrated in Fig 5-35.
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Figure 5-31 Unstable halo orbit excluding stellar motion
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Figure 5-32 Unstable halo orbit including stellar motion
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Figure 5-34 Stable halo orbit including stellar motion
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Figure 5-35 Stable halo orbit including stellar motion

The velocity of the Centauri system relative to the Sun is too large for particle trapping to 

be observed around the libration points. Searching through the Gliese catalogue for 

relative stellar velocities, it was found that all stars move with velocities of order several 

kms"^ relative to the Sun. For particle trapping to occur at the libration points between 

stars, the relative motion of the stars must be of order 1 ms"\

Figure 5-36 demonstrates a stable orbit near a star Mi, which is located at the origin. Star 

M 2 is moving relative to Mi with a velocity of 1.01 m s '\ The effective mass ratio of this 

system corresponds to /^2.2759. Figure 5-37 shows this trajectory viewed in the z-y 

plane. The orbit processes as star M 2 moves such that the halo orbit is always centred on 

the star-line. The orbit has a period of 33 Myrs and the motion is computed for 1000 Myrs.

In this case, it would be envisioned that dust particles moving with a velocity of order 10 

ms'^ relative to Mi could become trapped temporarily in periodic halo orbits which process 

as the stars move relative to each other. Heavier particles would become trapped in orbits 

with larger radius than lighter particles due to the effects of radiation pressure. Also, due 

to differing reflective properties, there would be a grouping of interstellar dust particles 

with similar material properties. Transfer of materials between passing stars, via the stable 

and unstable manifolds which wind onto the unstable halo orbit could also occur, as shown 

in Fig 5-38.
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Figure 5-36 Bound orbit for case where relative star velocity is of order 1 ms'^
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Figure 5-37 View of x-y plane for case where relative star velocity is of order 1 ms'̂
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Figure 5-38 Transfer of particle between stars for relative stellar velocity of order 10 ms'̂

The precession of a stable orbit is still observed for stellar velocities of order 100 ms’ . In 

the case of relative stellar velocities greater than 100 m s '\ the stai' position changes rapidly 

with respect to the orbit period of order several million years. Initial conditions which 

produce a stable halo orbit near Mi in the two-centre problem will result in a Keplerian 

orbit around M/ when relative stellar motion is included. This can be explained by 

considering the relative velocity of the particle compared to Mi and M2 . Due to the inverse 

square dependency on distance, at interstellar distances the acceleration due to gravity 

acting on a particle is extremely small. For a relative stellar velocity of order 1 km s'\ star 

M2 does not remain in the vicinity of the particle long enough to noticeably perturb the 

particle velocity. In this case, the two-centre approximation is not accurate and results in 

trajectories similar to the two-body problem with My as the central body. For slower 

relative stellar velocities, the particle motion is noticeably influenced by both stars and the 

two-centre problem represents a valid approximation of the dynamics.
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5.6 Conclusions

The two-centre problem was investigated as a possible model to represent the gravitational 

dynamics of two nearby stars. An on-axis libration point was identified between the 

masses and potential energy analysis demonstrated that the point is unstable. Two stable 

and one unstable limit cycle were also shown to exist between the stars. The stable limit 

cycles represent possible halo orbits which could trap interstellar dust particles temporarily 

as they pass between the stars. The unstable limit cycle leads to a set of ‘homoclinic-like’ 

manifolds which represent a set of possible transfer trajectories between the two star 

systems. By converting the problem into confocal elliptical coordinates, it was shown that 

the manifolds are bound to an ellipsoidal energy surface.

The problem was thoroughly investigated in the case of the Sun and its nearest star system, 

a-Centauri. The photo-gravitational problem was studied including the accelerations due 

to stellar radiation pressure exerted on the interstellar dust particles by each star. It was 

demonstrated that including the influence of light pressure leads to families of halo orbits 

dependant on particle areal density. In the case of particles where lightness number 

parameters are greater than unity with respect to both stars, there exists no possible halo 

orbits between the stars.

To validate this model, the gravitational perturbation introduced by the presence of a third 

stai' and the effects of relative stellar motion were included. It was shown that particle 

trapping is unlikely in the Sun-Centauii system due to the large relative stellar motion. 

However, the model could be applied in the case of star systems with relative stellar 

velocities in the order 100 ms’\
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Chapter 6 Mission Analysis

6.1 Geomagnetic tail mission

6.1.1 Mission outline

The reconnection point within the geomagnetic tail is located less than 30 Re (Earth Radii) 

from the Earth [Dungey, 1961; Russsel, 1974]. Positioning a science payload within the 

tail to observe the electric and magnetic field variation would enable an accurate model of 

the dynamics to be constructed.

Several missions have gathered data on tail dynamics using satellites in highly elliptical 

orbits such as ISEEa and ISEEb [Richardson, 1980c]. As the orbit plane is co-planar with 

the Earth’s centre, the payload is continually passing through the inner geomagnetic tail. 

Obtaining good temporal resolution of the changing dynamics within the geomagnetic tail 

is difficult as the charge density varies continuously throughout the tail. Also, the 

precession of the orbit around the Earth means the orbit only passes through the tail for a 

few months per year. A non-Keplerian orbit would be an improvement as the payload can 

be positioned at a constant displacement distance from the Earth. The data collected would 

represent the changing electrodynamics of the magnetic tail over a period of time.

Solar sail technology may be used to position a 100 kg science payload in a highly non- 

Keplerian orbit displaced 30 Rg from the Earth with radius 20 Re. Orbit insertion from a 

200 km altitude, parking orbit will be performed using a kick-stage to perform a Hohmann 

transfer manoeuvre. The inclination of the orbit is chosen such that the resulting elliptical 

orbit intersects the insertion manifold. A second kick-stage supplies the required Av to 

deliver the payload onto the stable manifold, which winds onto the desired non-Keplerian 

orbit. The solar sail is deployed immediately after the insertion kick-stage. Upon arrival at 

the nominal orbit, the solai' sail controller is activated to prevent escape. Both sail area 

variation and sail angle variation control methods will be demonstrated [Bookless and 

Mclnnes, 2006].
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6.1.2 Hohmann transfer manoeuvre

A Hohmann transfer ellipse can be used to insert the solar sail onto the correct manifold 

from a 200 km altitude circular parking orbit. The tangential velocity of the circular orbit 

is determined as v -  where Vp represents the radius of the circular orbit and fi  is the

Earth’s gravitational parameter. The tangential velocity of the ellipse is defined as

V = ^ju{2/r^ - l / a ) , where a is the semi-major axis and represents the apogee of the

transfer ellipse. As the equations of motion are non-dimensionalised, the gravitational 

parameter jLù=1 [Wie, 1998].

The change in velocity required to insert a transfer vehicle onto an elliptical orbit from an 

initial circular orbit is calculated using

Av = (6.1)

The inclination of the circular orbit and the burn time is determined using three rotational 

transforms. The rotation is performed about the z-axis for the angle 0̂  -  ,

where the manifold insertion conditions are (xo,x^ yo, y^ Zo, z^). The ^-rotation transform, 

Tj, can be expressed as

T,=

sin 6^1 0cos^i 
- s in ^ i cos^i 0 

0 0 1
(6.2)

Column vectors P = [x  ̂ y„ z„J and V = [x̂  , which represent the position

and velocity coordinates, can be transformed using Ty to obtain F=T^P  and 7 '=  T jF . 

The transformed coordinates can be used to determine the angle 0^ ~ tan '). The

second transform is performed about the y-axis using

7̂ 2 =

COS 02 0 sin 02

0  1 0

-  sin 02 0  cos 02

(6.3)
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where the transformed column vectors are f ' = and y " =  . These

transformations are required to position the insertion point on the new x-axis. A rotation 

can now be performed about the x-axis to align the y-z plane velocity vector with the 

Hohmann transfer maneuver. The velocity vector angle is determined as 

03 = ta n -‘a „

These three angles can be used to select a Hohmann ellipse which intersects the manifold 

insertion point with matching velocity direction for the 2 *̂  ̂ kick-stage to be applied. 

Initially, the circular and elliptical orbits are co-planar with the x-y plane. The initial 

position and velocity conditions which produce the circular orbit are represented as

^ c f  ^rtd 1/ -  [x̂  ZcY. The initial conditions which produce the 

elliptical orbit are represented as -  [x̂  ŷ  f  and = [x̂  ŷ  z  ̂f  .

The velocity conditions are transformed using the reverse angle rotations about the x-axis, 

y-axis and z-axis as follows

COS(-0J ) sin(“ 6'3 ) o' C0S(-6'2 ) 0 sin(-6>2 ) 1 0 0

-s in (“ ^3 ) cos(-^i ) 0 0 1 0 0 cos(~<93 ) sin(-6>3 )
0 0 1 -  sin(-6'2 ) 0 C0 S( - ^ 2  ) 0 -s in (“ 6 '3 ) cos(-6>3 )

which can be expressed as

cos 02 C O S 0̂
C O S 02 sin 0̂  cos 0^ cos 0̂  -  sin 02 

sin ^ 2  ^

cos 0̂  sin 0 2  sin 0^ -  cos 0^
0 2  sin 0̂

0 2  sin 0̂  
0 2  sin f/3

(6.4)

-  cos 02 COS 0̂  sin 02 + sin 6^3 sin 0̂
-  cos 0 2  sin 0 2  -  cos 0 2  sin 0 2  sin 0̂

cos 0 2  sin 6*3 cos 0 2  cos 0 2

(6.5)

The velocity coordinates are transformed using V^'=T^V^ and V^'=T^V^. The initial 

position coordinates are also transformed by applying a reverse rotation about the y-axis 

and z-axis using the transform

c o s  02 COS #1

COS l̂
’^2
3 0 2  sin 0 )COSU2

sin ^ 2

sin <93 

)Sl 
0

' cos 0̂  sin 0 2

-s in ^ 2  s in 03  

cos ^ 2

(6.6)
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The position coordinates for the circular orbit and the ellipse are transformed using 

P^'=T^P^ and PJ-T^P^. The transformed position and velocity coordinates produce a

circular and elliptical orbit with the required orientation to intersect the manifold insertion 

point.

The period of the transfer ellipse is obtained using T  = , The second kick-stage is

initiated at the apoapsis of the transfer ellipse. The time ellapsed between the two bums is

therefore T 12 = 7ü4ô^ . Evaluating the velocity magnitude at the transfer ellipse apoapsis 

enables the insertion Av to be determined.

6.1.3 Trajectory analysis

For a nominal orbit with displacement distance Xo=30 Re and radius Pcf=2Q Re the nominal 

sail acceleration is %=6.26 mms'^. A periodic looping trajectory was identified with 

acceleration reduction A=0.04, such that îc=6.0l mms'^. The closest approach distance to 

the Earth is 3.39 Re where the initial conditions are provided in Table 6-1.

Figure 6-1 shows the Hohmann ellipse necessary to insert the solar sail onto the conect 

manifold from a 200 km altitude parking orbit. The 1®*̂ kick stage requires Av=1.857 kms"  ̂

and the 2"̂  ̂kick stage requires Av=2.680 kms’\  The time elapsed between the two bums is 

2 hours 18 minutes.

Figure 6-2 shows the non-Keplerian orbit produced by the initial conditions provided in 

Table 6-1. A sail area variation controller is activated upon arrival at the nominal orbit. 

The control period is over 100 days and the nominal orbit has a period of 12.7 days. The 

acceleration and corresponding area variation required to control this orbit is provided in 

Fig 6-3.

The solar sail acceleration varies between 6.636 mms'^ and 5.438 mms"^. For a total sail 

mass and payload of 500 kg, this corresponds to an area variation between 3.6336x10^ m  ̂

and 2.9776 xlO^ m^. For the sail to transport a 100 kg payload, the total sail mass is 400 

kg requiring a sail loading of 1.1 gm'^.
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Figure 6-4 shows a non-Keplerian orbit controlled using sail pitch and yaw angle variation. 

The sail orientation over 100 days is provided in Figure 6-5. The controller is activated 

when the solar sail x-displacement distance x>0.99xo. The solar sail acceleration is also 

increased to A^l.05%, which is equivalent to 6.57 mms"^. This is to prevent the solar sail 

escaping Earthwards, as increasing the pitch or yaw angle reduces the component of 

acceleration directed along the x-axis.

The pitch angle varies between 7.2° and -15,4°, and the yaw angle varies between 7.9° and 

-11.8°. Figure 6-6 represents the yaw against pitch angle variation which represents the 

attitude of the sail surface normal vector. For a total sail mass and payload of 500 kg, the 

required sail area is 3.5994x10^ m^ which corresponds to a sail loading of 1.111 gm" .̂

Figure 6-7 shows the required sail area and Fig 6-8 sail loading parameter for a total mass 

ranging between 200 kg and 5000 kg. For 3 cases of payload mass -  100 kg, 50 kg and 20 

kg, the varying sail loading parameter is demonstrated to exponentially increase towards 

1.389 gm'^. It is clear that achieving smaller loading parameters will increase the possible 

payload mass.

Xo (Re) (kms’ )̂ YoCRe) (kms'^) Zo (Re) 4  (kms'^)
-2.2652 2.5952x10" 2.1185 3.3506 1.3728 -4.4995

Table 6-1 Insertion conditions for Geomagnetic tail mission
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Figure 6-1 Insertion to non-Keplerian orbit with two kick stages
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Figure 6-3 Required sail area and acceleration variation to prevent escape from a non-Keplerian orbit
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Figure 6-5 Required sail pitch and yaw angle variation to prevent escape from a non-Keplerian orbit
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Figure 6-7 Required solar sail surface area for increasing total mass
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Figure 6-8 Required solar sail loading parameter for increasing total mass 

Payload mass contours (1 -1 0 0  kg,, 2 -  50 kg, 3 ~ 20 kg)

6.1.4 Conclusions

This mission would require an extremely high performance solar sail. A sail loading 

parameter of 0^=1.Igm'^ results in a solar sail lightness number y ^ l.4 . Improved substrate 

technology could achieve lower sail loading parameters [Murphy et al, 2004]. Novel 

fabrication techniques such as sublimation of the substrate from the reflective aluminium 

layer [Enea and Telespazio, 1999; Genta and Brusa, 1999], or micro-pore perforation of 

the sail surface could be employed to increase the performance of large area solar sails 

[Forward, 1985].
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6.2 Geostorm mission

6.2.1 Mission outline

Positioning a science payload sunward of the Li point would enable continuous monitoring 

of the solar wind charge density upstream of the magnetosphere. Currently, the spacecraft 

SOHO (Solar and Heliospheric Observatory) and ACE (Advanced Composition Explorer) 

follow a halo orbit trajectory around L;. These spacecraft can detect interplanetary shock 

fronts prior to encounter with the Earth’s magnetosphere [Huttunen et al, 2002].

Delivering a solar sail to an initial Lissa]ous trajectory around Lj can be achieved by 

identifying a stable manifold which passes near to the Earth. Initial conditions are 

provided using the linear solution of Hill’s approximation of the three-body problem. 

Small variations to the x-axis velocity are applied to converge the resulting trajectory 

toward an improved Lissajous orbit. The closest approach distance to the Earth is 

calculated and the mirror image theorem is then applied to find conditions starting from 

near to the Earth which wind onto a Lissajous trajectory. The necessary kick-stages to 

intercept the insertion manifold with the correct velocity are investigated starting from a 

200 km altitude parking orbit.

After insertion to the Lissajous trajectory at L;, the solar sail is slowly deployed using a 

linear controller to select optimal gains. These gains are used to track the nominal 

Lissajous trajectory while the x-displacement distance is steadily increased sunward. Once 

the desired displacement distance is reached, the sail deployment stops and area control 

techniques are employed to prevent the solar sail escaping the final orbit [Bookless and 

Mclnnes, 2005].
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6.2.2 Trajectory analysis

The corrected initial conditions, which lead to the desired Lissajous orbit around Lj with 

amplitude Ay=50 Re, are provided in Table 6-2. The manifold insertion conditions are 

located 11.15 Re from the Earth and the transfer vehicle initially travels in the anti-Sun 

direction eventually arriving at an orbit around Lj after 186.5 days. Figure 6-9 shows the 

insertion trajectory contained within a zero-velocity surface with Jacobi constant C = - 

0.01226.

The insertion from a 200 km parking orbit is achieved using a Hohmann transfer, shown in 

Fig 6-10. The parking orbit is inclined 4.86° relative to the equator. The kick-stage 

requires Av=2.749 kms'^ to inserts the transfer vehicle onto an elliptical path which 

intercepts the manifold insertion coordinates. The 2"  ̂kick-stage requires Av=2.259 kms'^ 

with the bum directed at a 12° angle sunward of the direction of motion.

The solar sail is deployed after 373 days, having spent 186.5 days following the Lissajous 

trajectory around Lj. During deployment, the optimal gains are recalculated every 5 days 

for a new libration point, 1 Rb further sunward than the previous. The desired orbit 

conditions are also displaced 1 Re further thus increasing the nominal acceleration 

gradually. As the solar sail acceleration can only be directed in the anti-Sun direction, the 

condition K(t) > 0 must be met. After 1 year of gradually shifting the nominal libration 

point, the position is 73 Re sunward of L;.

As the solar sail spirals sunwards from the Lissajous orbit, the area variation controller 

generates a larger control signal to drive the solar sail towards the desired orbit. 

Eventually, the control signal is large enough that the trajectory arrives at a Lissajous orbit 

ai'ound an artificial libration point on the Sun-line. This libration point is sunward of the 

nominal orbit, as the sail acceleration is the result of the difference between the nominal 

orbit and the actual orbit. The solar sail arrives at an orbit around an artificial libration 

point displaced 390 Re sunward of the Earth, 2.56 years after launch and 561 days after 

initial deployment.

Figure 6-11 shows the complete ballistic insertion from near the Earth to the Lissajous 

trajectory around Lj followed by sail deployment and the gradual spiral to a Lissajous orbit
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around an artificial libration point. A section of the final orbit is provided in Fig 6-12, 

which represents the trajectory between 2.56 years and 5.1 years.

A 3.5° angular radius exclusion zone is required to prevent excessive interference from the 

solar radio disc with the telemetry system [Farquhar et al, 1977]. This corresponds to an 

exclusion radius of about 90,000 km centered on the y-z plane at L;. At the area controlled 

orbit around the artificial libration point, the required exclusion zone has a radius of 

150,000 km. It is clear from Fig 6-12, that the solar sail does not cross the radio exclusion 

zone during the control period.

The acceleration and area variation required to produce the final trajectory is shown in 

Fig 6-13. The maximum acceleration is 0.27 mms'^ and the corresponding area for a total 

sail and payload mass of 100 kg is 2864 m^. For a generous solar sail loading of <7=12 

gm'^, the total sail mass is 34.4 kg. The remaining possible payload mass is 65.6 kg.

Xo(R e) (kms'^) yo (R e) ÿo (k m s'b Zo (R e) (kms *)

-10.8281 -0.7225 1.7271 -2.7658 -2.0226 1.5108

Table 6-2 Insertion conditions to uncontrolled Lissajous orbit around L\

251



300

200

100

LUn: Earth

■100

•200

■300
■300 -100 100 200 300-200

X, R E

Figure 6-9 Uncontrolled insertion to a Lissajous orbit from near the Earth with Jacobi Constant C=-0.01226

7 /2 = 1 0 .5  h ou rs

1_ Kick-stage 
• aV =2.749kmà"'’2"'* Kick-stage 

aV =2.259kms.'T

y, RE 0

insertion

X, RE

Figure 6-10 Insertion from LEO to stable manifold using Hohmann ellipse

252



N

-50

200
100100

■100 X, RE
■200

■300100
-400

200

150

100

■50

100

0 100^00 ■300 ■200 ■100

X, RE

50

N

■50
100■200 100 0■400 ■300

X, RE

Figure 6-11 Insertion to Lissajous trajectory at L/ followed by slow solar sail deployment

253



40

-40

-60

50

-380 

X, R E
■50 -400

20

-20

-40

-400 -380

X. RE

-370

-380

-390

•400

-30 -4010 0 -10 -20 ■50SO 40 30 20

y, RE

40

Exclusion Zone':...

-20

-40

-50050
y. RE

Figure 6-12 Lissajous trajectory around libration point sunward of Lj

254



X 10
3

2

1

0
4.5 52.5 3.5 40.5 1 1.5 2 30

3000

2000E

gre
1000

4.52.5 
time, years

3.50.5

Figure 6-13 Solar sail area variation for Geostorm mission

6.2.3 Conclusions

This study demonstrates a possible near-term mission for solar tail technology. The sail 

loading of 12 gm'^ is comparable to the Cosmos 1 solar sail which has sail loading of 

11 gm“̂  [Freidman, 2005]. The total sail area of 2864 m^ is achievable using near-term 

gossamer structure fabrication techniques.

As the transfer vehicle is initially inserted onto a Lissajous trajectory orbiting Lj, the 

option exists for transfer to be achieved as a ‘piggy-back’ on a mission destined for orbit at 

Li. The sail could be deployed gradually spiralling sunwards while the transfer vehicle is 

left in a controlled orbit about the Lagrange point. For a new propulsion technology, it is 

important to lower the mission risks to improve feasibility. If an error occurs during sail 

deployment, the primary mission at Li could still achieve some useful science goals.
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Chapter 7 Conclusions and Further Work

Five key work objectives to be investigated for this thesis were listed in Section 1.6. These 

objectives are reproduced below along with the relevant findings and conclusions. 

Suggestions for further study are also outlined.

1. Develop appropriate dyna?nical models representing the motion o f a solar sail in 

the vicinity o f a planet. These models should include both the gravitational 

influence o f the relevant bodies and the acceleration due to solar radiation 

pressure.

The dynamics of an ideal solar sail in the vicinity of a planet were initially 

investigated in a two-body context. The two-body equations of motion, including a 

constant axial force to represent the acceleration due to solar radiation pressure, 

were derived using cylindrical polar coordinates in Section 2.1. It was 

demonstrated in Section 1.5 that the ideal sail acceleration model provides a good 

approximation of the force exerted on the sail provided the sail surface normal 

vector does not deviate greatly from the Sun-line.

The problem was further investigated in a three-body context including the solar 

gravitational influence and the rotational effects of the planet orbiting the Sun. 

Three models were investigated including Hill’s approximation of the three-body 

problem, the circular restricted and elliptical restricted three-body problems with 

complete derivations provided in Section 3.1, Section 4.1.1 and Section 4.1.2 

respectively. The sail acceleration model was improved to include the 

perturbations due to the time varying distance between the Sun and the solar sail.

In addition, the photo-gravitational two-centre problem was also derived to 

investigate temporary trapping of interstellar matter at libration points between 

nearby stars. This model represents a special case of the three-body problem which 

assumes a scenario where the two primary bodies are fixed relative to each other. 

The two-centre problem was shown to represent a reasonable approximation of the 

interstellar dynamics provided the relative stellar motion is less than 100ms'\
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2. Identify artificial libration points using these dynamical models including the 

acceleration due to solar radiation pressure. The stability o f these libration points 

can be determined using eigenvalue analysis methods.

Artificial libration points were investigated in each of the derived dynamics 

models. In the two-body case, the solar sail acceleration can be used to produce a 

continuum of libration points in the anti-Sun direction by cancelling a component 

of gravity. In the three-body cases, as the solar sail acceleration is constrained to 

the anti-Sun direction, artificial libration points are restricted to a region sunwards 

of L] or between the central body and L2 . As demonstrated in Section 1.5, if the 

non-perfect sail acceleration model is applied, the distance above the ecliptic plane 

which a libration point can be generated is reduced due to the restriction on the 

achievable sail pitch angle relative to the Sun-line.

A Jacobi integral was derived in the three-body cases and a series of Hill’s surfaces 

were generated using Jacobi constants calculated at the artificial libration points. 

Jacobi constants evaluated at an on-axis libration point were shown to represent 

critical values which define a closed zero-velocity surface. For energies greater 

than the critical energy, a gap in the Hill’s surface opens around the libration point. 

Hill’s surfaces are a useful tool for investigating bound motion as gaps in the 

surfaee can facilitate escape. The acceleration due to solar radiation pressure 

reduces the energy required for escape in the anti-Sun direction therefore, the 

surface is closed sunward of the central body in the case of libration points between 

the central body and L2 .

It was apparent that the Jacobi integral evaluated at a libration point with zero- 

velocity is analogous to generating a pseudo-potential energy surface in the vicinity 

of the libration point. A local saddle point exists in the vicinity of the on-axis 

libration points which suggests that these points are likely to be unstable. This was 

verified using eigenvalue analysis of the linearised equations which yields two 

oscillatory and two divergent modes of the in-plane motion.

In the two-centre model, an on-axis libration point was identified at the centre of 

mass of the two primary bodies. Including the acceleration due to solar radiation 

pressure was found to reduce the effective mass of the primary bodies displacing 

the centre of mass depending on the stellar luminosity.
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Halo orbits were also investigated in the two-centre problem. It was demonstrated 

that for constant angular velocity, an unstable orbit exists in the vicinity of the 

centre of mass and two stable orbits near each of the fixed masses. The stable 

orbits correspond to the two-body circular orbits displaced from the respective star 

due to the uniform axial gravity exerted by the distant star. In the photo- 

gravitational problem, the effective stellar mass is reduced due to the repelling 

stellar radiation pressure, which leads to a range of possible orbit radius depending 

on the particle areal density.
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3. Generate non-Keplerian orbits around artificial libration points. This will include 

both Lissajous and halo orbits demonstrated around the Li and L2 Lagrange points 

o f the three-body problem. The stability o f these orbits will be evaluated using 

eigenvalue and energy analysis methods.

Circular displaced orbits were investigated in both a two- and three-body context.

A stability condition was derived for these orbits as using a linear

approximation of the two-body equations and a nonlinear analysis. Further analysis 

of the orbit stability was performed using a Jacobi-type integral where by it was 

demonstrated that the motion of a stable orbit is bound within a closed zero- 

velocity surface. As expected, the two-body stability condition agrees closely with 

the observed three-body stability in cases where the orbit is near to the central 

body.

Further from the Earth, the solar sail experiences a comparable gravitational 

influence from the Sun therefore the circular displaced orbit no longer represents an 

accurate solution of the dynamical equations. A more accurate solution was 

developed using a linear approximation of Hill’s equations, which yields initial 

conditions that converge toward a quasi-petiodic Lissajous orbit.

Periodic halo orbits were also investigated around artificial libration points in the 

circular and elliptical three-body problem. Richardson’s third order approximation 

was applied to obtain initial conditions which converge toward a halo orbit. These 

large amplitude trajectories have the advantage that the solar sail avoids the 

telemetry exclusion zone sunwards of the Earth, unlike the smaller amplitude quasi- 

periodic Lissajous orbits.
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4. Identify manifolds associated with the non-Keplerian orbits which can be utilised 

fo r orbit insertion from a point near to the central body.

Manifold surfaces were investigated for the two-body circular displaced orbits and 

three-body Lissajous trajectories. A closed-form solution was obtained by 

transforming the two-body problem into parabolic coordinates and applying the 

Hamilton-Jacobi method. It was demonstrated that manifolds which wind-off and 

onto a circular displaced orbit are bound between a set of paraboloid surfaces. A 

new family of highly perturbed orbits were identified by slightly perturbing the 

nominal acceleration. In the case of unstable circular displaced orbits, the resulting 

trajectories were shown to provide transfer trajectories which pass near to the 

Earth. These new manifold families were used in Section 6.1 to identify a set of 

initial conditions to insert a solar sail onto a circular displaced orbit for a novel 

Geomagnetic tail mission.

Manifolds were also investigated which wind-off and onto a Lissajous trajectory 

around artificial libration points near Li and L2 . Hill’s surfaces were generated in 

order to identify the closest approach distances to the Earth. It was apparent that, in 

some cases, the closest approach distance occurred after several encounters with the 

Earth. This results in a trade-off between the time duration for insertion and the 

mission Av requirements. In the case of orbits around libration points sunwards of 

L;, the Hill’s surface is open around L2 which indicates that escape is likely in the 

anti-Sun direction. In this case, the first encounter of the solar sail with the Earth is 

selected as the closest approach distance for orbit insertion. An example of 

insertion to a Lissajous orbit around Lj was investigated in Section 6.2 for the 

proposed Geostorm mission.

Manifolds were also investigated in the photo-gravitational two-centre problem. A 

closed-form solution, similar to the two-body case, was derived by transforming the 

problem into confocal elliptical coordinates. It was demonstrated that the 

manifolds are bound between ellipsoid surfaces. These surfaces represent possible 

transfer trajectories for particle transits between passing star systems. An

implication of stellar radiation pressure is that particles can only be captured by star 

systems where the areal density corresponds to lightness number less than unity. 

This implies there would be a natural selection of the particle surface areas which 

can be captured by a star depending on the stellar luminosity.
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5. Investigate solar sail station-keeping techniques to prevent escape from the desired 

orbits after insertion. Two possible methods to control the solar sail acceleration 

include variation o f the solar sail area and variation o f the solar sail attitude.

Solar sail control techniques were investigated to provide orbit control after 

insertion to circulai* displaced orbits, Lissajous trajectories and periodic halo orbits 

generated ai*ound artificial libration points. A two-body controller was developed 

which applies trims to the sail area or sail pitch angle based on an error between the 

actual trajectory and a reference trajectory. Optimal gains were calculated using a 

linear quadratic regulator. Both techniques were demonstrated for control of 

circular displaced orbits generated in a two- and three-body context. Due to the 

close proximity to the Earth, circular displaced orbits require solar sail 

accelerations of order 1 mms"^, which corresponds to a sail area of order 1x10^ m^ 

for a 100 kg payload. Due to the large sail area, the sail pitch angle variation 

technique is the more appropriate of the two control methods to avoid damaging the 

thin solar sail. For the Geomagentic tail mission, investigated in Section 6.1, the 

required sail acceleration is approximately 6 mms'^ which corresponds to a 3x10^ 

m^ solar sail with total payload mass of 100 kg. This mission clearly requires an 

extremely high performance solar sail which is not achievable in the foreseeable 

future.

Similar control methods were developed to provide station-keeping at a nominal 

Lissajous orbit. Again, optimal gains were selected using a linear quadratic 

regulator. Both techniques were demonstrated to provide control after near Earth 

insertion to Lissajous orbits sunwards of L; and L2 . Near to the Lagrange points, 

the required sail acceleration is of order 0.01 mms'^ which requires sail areas of 

order 100 m^ for a 100 kg payload. These small sail accelerations could be 

achieved using four reflective tip-vanes attached to a central payload. The sail area 

variation technique is the more appropriate method in this case as control can be 

achieved with small variations to the reflecting sail surface area. The sail area 

variation controller was applied in Section 6.2 to produce a trajectory which 

gradually spirals sunwaids from Ly to a controlled Lissajous orbit 390 Re from the 

Earth. This mission would require a sail acceleration of 0.3 mms'^, which can be 

achieved using a 3000m^ solar sail with a total mass of 100 kg. This reasonable 

sail performance could be achieved with near-term solar sail technology.
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By combining the sail area and sail pitch angle variation control methods, a three- 

axis control method was developed which provides full controllability in a three- 

body context. This method was demonstrated to provide control at periodic halo 

orbits in both the circular and elliptical restricted three-body problems. In the case 

of an artificial libration point generated near to Li in the elliptical three-body 

problem, the required y-axis acceleration is comparable to the %-axis acceleration. 

The resulting sail yaw angle tends toward tt/2 which produces an unbound sail area 

due to the cos^ (p acceleration dependency. It was found that generating an 

artificial libration point displaced further sunward of Ly requires a larger x-axis 

acceleration which subsequently reduces the required yaw-angle for orbit control.

The dynamics of a solar sail in the vicinity of a planet have been thoroughly investigated in 

a two- and three-body context. Recommended further work includes extending the problem 

to include the gravitational influence of the moon forming a Sun-Earth-Moon-sail four 

body problem. The lunar gravity would have a significant influence on the two-body 

circular orbits displaced 60 Re from the Earth. It would be interesting to examine how the 

insertion manifolds are mutated by the inclusion of the lunar tide terms.

Solar sail area and pitch angle variation has been demonstrated to provide control at a 

nominal reference orbit. The three-axis solar sail control method could also be applied to 

prevent escape from the transfer trajectory during orbit insertion. This would enable the 

solar sail to perform correction maneuvers during transit to the orbit and prevent gradual 

divergence from the manifold.

The investigation of circular displaced orbits could be extended to near-Earth asteroids. 

Due to the reduced gravity of these comparatively smaller bodies, artificial libration points 

could be generated using lower performance solar sails than in the case of the Earth. This 

would offer a possible near-term application of circular displaced orbits generated using 

solat sail propulsion. However, the non-uniform gravitational field due to the often 

irregular shape of the asteroids would require complicated dynamics models to be 

developed to accurately represent the solar sail motion. Alternatively, circular displaced 

orbits could be investigated at planets nearer to the Sun, such as Mercury. The increased 

solar radiation pressure would enable displaced orbits to be generated using smaller solar 

sails.
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Other possible applications of solar sails could be considered to increase mission lifetimes 

by enabling improved orbit control. This may include pitching the solar sail to 

increase/reduce the orbit angular velocity to alter the radius of a circular displaced orbit. 

Also, a process of furling/unfurling the solar sail could be adopted to enable patching of 

heteroclinic and homoclinic manifolds. This would enable transfer of the solar sail 

between Lissajous trajectories or halo orbits around artificial libration points near L; and 

L2 . Similarly, the displacement distance of circular displaced orbits could be altered by 

identifying intersecting manifolds which wind onto alternative orbits requiring negligible 

Av.

Finally, it would be useful to determine the limitations of the sail area and sail pitch angle 

variation controllers. The optimal gain method determines the required sail surface area or 

sail orientation to prevent escape from a reference orbit. The rate at which the solar sail 

can be furled/unfurled, to modulate the sail surface ai*ea, or the sail orientation controlled, 

using reflective tip-vanes or centre-of-mass/centre-of-pressure offset, will restrict the 

accuracy of the actual control signal compared to the required control signal.
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Final solution coefficients [Richardson, 1980a]
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