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Dedicated to Audrey and the remembrance of Stelios.

"The elements of design are the elements"



Abstract

Concurrency of engineering activities requires a utility allowing desiguers,
working at all phases of design to: communicate the design requirements to
specialists and external technologists, elicit responses and integrate the resulting
actions with the design solution; acquire resources which are functionally and
geographically distributed; communicate a formally agreed product description to
the collaborating agents. The creation of such a utility is presented here which
employs techniques of knowledge engineering to represent the entities and
methods used in design. The utility manages representations within existing
standards and methods, including communication at interfaces, resolves constraint
conflict during design by referring dependency relationships, is unitary and can be
made recursive in its operation.

The Glasgow Utility for the Integration of Design (GUIDE) employs the mcthods
of knowledge engineering to secure 2 basis for design by a multidisciplinary team,
the membership of which may be distributed and will vary as the product emerges
through successive design phascs. GUIDE offers designers a range of design
functions which may be applied to the task performed through a single interface
and without operational prescription. GUIDE maintains a single product
description, which includes integrally a record of the entire design activity. It also
provides distributed data base access and communications facilitics.

GUIDE employs a representation scheme which involves structures, atoms and
methods as its clements. Additional characteristics have been invested in these
clements to provide for their manipulation and control. With GUIDE and the tools
it provides designers can create graphical, data and information related working
entities and involve active processcs. Process entities may invoke proprietary
tools, provide translation at their interfaces and sustain the required
communication with wvarious engineering and product centred data bases.
Operations on design entities and information generation processes are managed
by control functions which can aiso cause data transformations. GUIDE has the
capacity to aggregate generic, modularly defined knowledge representations to
create higher level, formally constructed unique design solutions or part solutions
and to manage associations between design entities and the constraints affecting
them.
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GUIDE's design record - the route taken and that structured information generated
during design - provides a mechanism for the accumulation of expertise which can
be used in [uture designs. In addition Lo the actual outputs of a design, such as the
part description in its various forms, a designer could obtain information
concerning the design tasks undertaken and their sequence. The design record
enables design traceability and audit of the design process, sustains status
evaluations and provides for regression.

The concepts, design and implementation of GUIDE are described. Three
examples are used to illustrate GUIDE's capacity to support the operations of
design teams, the constant availability of a multidimensional product model which
exposes tasks more quickly and precisely and the ability logically to collocate
design teams through product model coincidence.

GUIDE provides an exlension to knowledge representation using frames through
the characteristics of the eclements it employs and by the way its control
mechanism manages operations upon and communication between them. Links
formed between elementis and between elements and methods can be described in
a structured way. Constraints are represented as methods which can evolve over
time and may influence the use of other GUIDE elements. Relational data bases
are used to hold the knowledge representations employed and GUIDI exploits the
relational architecture to physically distribute the representations and maintain
their integrity. The design record contains comprehensive meta-knowledge and

supports the abstraction of formal generic representations from specific instances.
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1.1 Introduction

The following quotations, taken from reports by captains of international
engineering bodies, provide a clear statement on the issues which influence
operations within their organisations:

At first sight, the idea of any rules or principles being superimposed on the creative mind seems more

iikely to hinder than ro help, but this Is quite untrue in practice. Disciplined thinking focuses inspiration
rather than blinkers it” |Glegg, 1969]

"The project was large enough and communication poor enough to prompr many members of the team fo
see themselves as contestants, rather than as builders making producets; this breakdown in orientation
and communication is a major hazard in large projects” [Brooks, 1975]

"..the management oftcn lacks understanding of the field (of information management), whick leads to a
lack of results and thus to a situation where the field remains a hobhy for the interested designer, rather
than a tactical management rool” [Brooks, 1975]

"We must exchange information freely so that mistakes are not made twice and the best ideas can be
retained and built upon' |iMechE, 1988]

"..our (company's) wealth of expertise, know-how and experience with products and markets lies no
Jurther than the Corporate database; we must employ new waps fo manage and communicate this
informatrion amongst our engineers and designers if we are to retain a competitive edge” [Arnold, 1993]

“..the (software) tools are becoming increasingly sophisticated, able to generate vast amounts aof
accurate, vital product development information...” [Anonymous)

“Engineering data banks must be created for access 1o all functions and stages of plant life. Computer

atded designicomputer aided engineering can then drew on vast, proven experience in creating new
products” [IMechE, 1988]

The force of these statements is clear. The information stored by companies
comprises more than merely data: it is a reflection of the expertise which the
company posscsscs; it represents the results of the processes engaged in the
development of products; it describes the technologies employed in records of the
constraints or enabling functions which were introduced; il includes models of
products and of company operations which generate them. Mechanisms must be
employed to secure the information's structure, communication, management and
maintenance, whilst ensuring its timely delivery, appropriately to the requesting
authorily without prescription.

Design data and niethods 2




1.2 Engineering information

Engineering information is generated whenever the agents of an enterprise engage
a task. Manifestations of it are encountered in paper-based and electronic forms.
The elecironic collection comprises data which are slored as operating system
files, proprietary-access indexed file systems and, sometimes, in relational data
bases as sets of tuples in one or more tables.

The last form has been employed! by engineering companies to structure their
peculiar information base by exploiting the capacity of database management
systems (o represent relationships between items of data. Relationships link
business functions such as marketing, finance, design, the technology base and
manufacturing. Emphasis has been placed on structuring data for the purposes of
its storage and on the delinition of schemata for its efficient retrieval and, in some
instances, simultaneous access by a group of agents or applications. These efforts
have culminated in, inter alia, the application to Computer Integrated Manufacture
(CIM).

1.2.1 Constitution and structure

Stored information frequently remains as a polymorphous collection of diverse?
data sets. Several faclors contribute and stem from the ‘historical baggage'
associated with the operations of a company and the external or internal
constraints imposed. Figure 1 provides an example of information structuring in
a multi-national, multi-product company.

Data collection is necessary whenever specific tools are exercised. The data
formal depends upon either the facilities provided by the tools themselves, in
which case their structure and content is beyond the control of the company, or
consiraining guidelines introduced by the company to adapt the data structure to
its peculiar requirements. The latter usually involves transformation of data during
its storage and retrieval. Each 'system' may handle its respective functions and
data forms with its own management facilities efficiently, but due to

LA recent report indicates that, in terms of world-wide corporate data, a mere 20% is stored in some form
of either relationut or object-oriented databases. The remaining data are in either flat or indexed files
which require, respectively, operating system specific or proprietary access mechanisms.[Arnold, 1993]

Diverse in charactor; composed of diverse elements; heterogensous,
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incompatibilitics in the individual data models, only a limited flow occurs
between them. [Sharad, 1991]

Procedures

2

Exercise of Software Tools

2 = » = = s a2 af>s slr 1o v s & = a4 e a sk oas el LR I T R A

Transform

......................................

Analysis

+
Testing
Data

*  proprietary title systems indaxed relational data base systems tablas
' data sets |

Set of stored mformatlon

Figure 1 : Heterogenous nature of an enterprise’s information base

Data is frequently duplicated in heterogeneous environments. The information is
stored in a 'raw' form which docs not lend itself to communication in a standard
format; communication between and comprehension of the information by the
collaborating centres is, therefore, inhibited. The consistency of the shared
information cannot be maintained in the presence of change.

The engineering information base includes data which describe the physical
product. Additionally, a record of the constraints which were applied during the
product design is keplt which may include records of the inputs to each of the
design steps or pointers to alternative product data, This record identifies the
contributors of product related technologies and of the metheds associated with
them; furthcrmore, it contains knowledge of past and current practices and

information on standards and public-domain data employed.
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1.2.2 Information stereotypes

The utility of information to the enterprise for the purposes of design and
manufacture, including communication with external contractors, depends upon
the effectiveness with which it is represented by formal structures and
descriptions. In most cases, a company's data collection predates modelling
activities it might cngage. Frequently, the data are held in autonomous
information islands.

Stereotypes® - siructured pieces of knowledge about entities, processes! and
functions - which are widely recognised and understood can be a powerful aid in
creating order and for modelling. They can be used to sort and classify the
knowledge that can be found in data by providing a description of information
generation processes defining their input and ouiput data flows.

Manifestations of stereotypes implicit to the information base of enterprises may
not be recognised by the company or be made explicit by the methods they use to
aggregate data. Descriptions of entities and processes must be constructed from
the instantiated data and their expression through stereotlypes is a powerful option
capable of relating processes and entities they use by identifying common data
values, following data transformation. These relationships provide a basis for

modelling any consiraints alfecting processes,

Stereotypes which can describe a hole in a2 component are shown in figure 2 by

way of illustration,

Apggregations of mutually constraining or otherwise related processes and entities
can, when they are expressed as stereotypes, form higher level structures. Such
aggregations can represent cnabling technologies incorporating the expertise® of
the company. They may serve as templates for the generation of new descriptions

3he Oxford Concise Dictionary defines stercotypes as: “printing plate cast from a papier-méiché or
other mould of a piece of printing composed in movable type” aud the term to stereotype as: "fo make
unchangeable; to impart monotonous regularity to; 1o fix in all details; to formalise”.

s process is the course of actions to be taken in any particular stage of product development. A
procedure is a process ‘cross-section' and denates the series of actions to be conducted in a specific
order or manner. A method is a formalisation or implementation of a procedure.

5The company's 'know-how'; ‘beaten tracks' in prosecuting a task; copincering practice; an appropriate
method for combining and using a set of processes and managing the information which they generare,

(%21
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and allow for retrospective analysis by a company of its operations, practices and
products.

| Stereotype: Componenll references  Stereotype: Material
referances_ via_parent
o partof  otoreeee AR
has g;?:neﬁgﬁocess has fList:
Steraotype: Hole of processes
l refarances
has
has Steraotype:
4! Value: diameter
Stereotype: I Process Plan
Geometry of hole has
Valus: depth hes | LISt
refarences - of tools to
h Stereotype: make it
Steraotype: 22 SoLype.
Cylinder Position
Sterectype:
Transformalion Matrix
Figure 2: Stereotypes used io describe a hole in a component

Stereotypes can be used to structure the company information base and describe
operations upon it because they are modular and can be made semantically
contiguous. Stereotypes can be made available to agents of the company for use
without additional prescription or knowledge of the processes involved. The
challenge lies in the abstraction of accurate, generic definitions from instances of
data and the data generating tools,

1.2.3 Product descriptions

Products are represented as structured collections of physical entities related
through interfaces defining, for example, component/assembly combinations.
[requently product descriptions are expressions of the enterprise’s nceds
determined by practice or reflect the structure of a family of products. In many
instances the peculiar facilities offered by the software tools employed in design
provide the data base for product descriptions by defautt.
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These internal classifications are structured in an ad hoc® fashion. The resulting
models are weak because they:

*

do not allow for a retrospective evaluation of the products or of the
technologies used to generate them’ and do not support design iterations well;

» are structurally rigid and an inadequate basis for product descriptions;

» cannot readily be communicated within the organisation or between the
company and its external contractors because of the disparate data structures
employed;

« adapt to change in the product composition poorly because they rely upon
customised interfaces being maintained with the data.

Fundamental weaknesses of these ad hoc methods are the static nature of
representations and the dependency of data models on the peculiar tools or
facilities which generate them. The implicit assumption that the
representations/tools will neither be changed nor extended results in outdated
product descriptions, inaccessibility of information and product models having
historical rather than active design relevance$.

Stercotypes, through their capacity to model entities, their relationships and the
processes which gencrate them, are robust representations which accommodate
change readily. Comprehensive and unambiguous product descriptions can be
constituted which include knowledge of the technologies contribuling to their
development. Product descriptions so enriched can be used, in whole or in part, in

5The term ad hoc here refers to the origin of the product information classification method: this can be
historical, product specific, tool specific, or 4 combination of these, 1'he term is used to emphasise the
shart term representational stability which, it is the author's opinion, is enjoyed by a company before &
reorganisation is required.

Tfhe product data are seen as being derivatives of the generating technologies: product data
maodifications can be easily performed only when the technology is retained; use of a different
technology implies a consequent data iransformation. This is in contrast to the idea where a
technological method is chosen our of a set of possible options which were compiled out of the
requirement ta generate or modify product information: the technological set of options can be
recompiled by direct reference to the need to generate information; the data are thereby made lechnology
independent.

Bphe representational difficulties encountered by enterprises are exemplified in the frequency with which

they change their product model and the associated 'data transfer' activities and the frequency with which
past solutions or techniques are employed in the design of new products,
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the composition of modified cr new products. High level descriptions of varying
complexity and which are capable of representing the whole or a part of a product
can be constructed from combinations of stereotypes with great economy. The
resulting descriptions constitute a Product Model? capable of sustaining multiple
views of the product needed by the enterprise. The capacity of stereotypes to
change in time without loss of earlier definitions ensures that product models are
dynamic. In communication, it is necessary only to devise a transfer medium
suitable for the stercotypes rather than for the data from which they are
instantiated. The communication mechanisms can thereby be decoupled from the
form of the product description, Product descriptions buill upon stereotypical
definitions are more likely to be rich in content and easily transmitted.

1.3 Design process

The essence of design is the specification and analysis of a complex problem into
a number of simpler ones which individuals or teams can tackle. This involves the
transformation of an ill defined requirement into a set of tasks which add detail
and raise the finesse of the product description.

Figure 3 depicts this concept. The design requirement is expressed as a sct of
objectives which the solution must meet. These initial objectives may be in
conflict and incompletely or inconsistently expressed. As a result, a large part of
the design process is devoted to discovering the naturc and scope of the task set
by the initial specification. Particular elements of the specification may suggest
certain features of solutions, but these solutions in turn create new problems. This
leads to the process becoming a sct of decomposed problem solving activities. As
a result, design problems are full of uncertaintics about objectives and their
relative priorities; objectives and priorities are likely to change as solutions to the
individual problems cmerge.

It is rare for any part of the design solulion lo serve a single purposc; it is
[requently necessary to devise a solution which satisfies a range of different
requirements and the designer cannot optimise around one requirement without
constraining the span of the solution [Lawson, 1980]. The fundamental objective is
to understand the structure of the problem and analyse the relationships between
the design decisions which define the solution [Logan ¢t al, 19911.

*The Product Medel is considered 10 be an accurate description of a setr of interacting components with
relatinnships between them directly referencing physical entities or systems.
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Solution 1
N Soaaed = Resolution
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Requirement » Sub-Spec.
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Solution 2
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Sneaed »! Resolution]
' / Solution 3
Sotaled ™ Resolution
Transformed Set of Set of Set of
requiremants detailed rasolutians solution
neading further speclfications  {may be inter- options
spacification dependent)
Figure 3 : Specification and analysis for problem solving

The formulation of the design problem at any stage is not final; rather, it reflects
the designer's current understanding of the problem [Inui et al, 1991]. The analysis
of problems and the synthesis of solutions are seen as merging together rather than
as being distinct, one following from the other. The design is explored through a
series of attempts to create solutions and to understand their implications in terms
of the design [Simons, 1973). The major effort in design is directed towards the
understanding and structuring of problems. Only a fraction of it is devoted to
solving problems, once they have been structured [Simoms, 1970], The design
process involves the discovery of a framework to underpin information about
problem structures which will ultimately be valuable in developing possible
solutions.

1.3.1 A framework for design
The division of a large task into smaller tasks is a fundamental problem solving
paradigm. The performance of this division requires an insightful model

[Eppinger, 1921] of the design process. Several descriptions of the design process
have been proposed which are not easily comparable, except in the widest sense.
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Analyses of the design operations, the knowledge employed and the data
generation methods can however be used to formulate frameworks for desiga.

Traditionally, operations carried out within the process of design have been
prosecuted in a sequential fashion. A series of discrete steps, inter-related via
constraints for process control is followed. Simple feedback mechanisms provide
for control and cause iterations which increase the detail of the solution [Hayes-
Roth, 1983]). This mecthod creates a serial 'checklist' for design operations and
while uselul for routinel® or parametric!' design, it does not lend itself to
situations where a design plan for the solution of the problem does not exist!? ¢
priori or where the design comprises a unique combination!® of existing
components.

A more flexible view of design activity is to be found in the framework [Scott,
1988] shown in figure 4. This is adapted here as a reference model to describe
processes and identify their characteristics. In this model design is initiated by the
communication of the 'intent' by the designer to engage a particular task through
the Design Engine module.

The chief designer exercises all of the primary imanagement functions, including
team construction, during the process of addressing the design requirement. The
process of problem solving is engaged in the central feedback control loop and is
achieved by contributions, including evaluation and auditing functions, made by
the elements {blocks) on this loop. These blocks contain people and physical
resources exercising peculiar software and computer facilities concurrently and,
possibly, not at the same physical location.

The ability to control, organise and manage distributed data bases and knowledge
representations, manifested in the process models as global engineering and
manufacturing standards, integrated technology descriptions, sourced component
descriptions and past design product models is a vital component of the
framework.

105 plan for the solution exists @ priori, The subparts and alternatives are known in advance, perhaps as
the result of an carlier creative or innovative design process.

“lmplying, somctimes, redesign; an cxisting design plan is used with modified parameters to reflect
changes in the original requirements.

2Creative design

Bnnovative design.
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Figure 4 : Framework for design

Implicit in the framework is the belief that the problem spccification and analysis
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is not retained exclusively by the design authority. Contributions are made by
several agents. Some of these are teams of technological champions, tasked with
the acquisition of knowledge about meihods and formalisation of solutions to
specific problems. In 'Extended Enterprises'¥ the contributions may be made by
organisations which specialise in the generation of complete product solutions,
offered externally as components. The contributions made will usually lead to task
segmentation and, thercfore, the framework will be used in an essentially
recursive manner, leading to its simultaneous exercise by several authorities
having different functions and objectives and occupying diffcrent levels in the
company.

1.3.2 Distributed problem solving

Explicit in the framework is the idea of distributed problem solving. This is the
cooperative solution of problems by a decentralised collection of knowledgeable
agents situated in a number of distinct locations [Smith et al, 1981). The agents
cooperate in the sense that no one of them has sufficient information or the
capacity to solve the entire problem; mutual sharing of information is necessary to
allow the group as a whole to produce an answer. Cooperation'® of the individual
agents in a substantive manner requires:

+ that the knowledgeable agents must employ uniform!$ representations of the
information which is being gencrated; if common descriptions of the processes
are employed, the information which is gencrated can be communicated
without the need for expensive transformations;

» the conversion of the processes engaged to an clemental or, unitary, form.
Figure 5 shows a schematic of such a process. Unitary processes perform a

completely contained function, under external controt, and have the ability to

becotne process controtlers in their own right.

14The term Extended Enterprise refers co the company and its external contractors sharing product
design and development responsibility.

Y5This interaction is the basis of concurrent operations.

1"’Thmugh the provision of a framework and a discipline to the agents so thal teams collaborate in a
natural way rather than by forcing the agents to create their own discipline and methods.
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Figure § : Unitary process operation

= the situation when multiple agents compete for the same resource in order to
achieve similar goals must be identified and controlled by an overall authority,
perhaps the agent initiating the process in the first instance;

« result sharing; this situalion arises when sub-problems cannot be solved by
independent experts working alone; the agents should be able o report to each
other the partial results they have obtained during execution of individual
tasks.

In the framework, problem partitioning and, consequently, task sharing is
determined by reference to the design data being generated and records of
previous design activity. The constant availability of a multi-dimensional product
model exposes tasks more quickly and precisely. Stereotypes may be employed to
hold information and process descriptions. These last two items require a
mechanism for process control and management, including the communication of
data and active filtering which might be required, between the processes. These

functions are provided by the ‘Design Engine' in the framework.

1.3.3 Design engine

The Design Engine is responsible for the communication of the intent to act to
designers and the company more generally and carries the results of actions to the
requesting authority. Its primary function is to aid designers by providing
communication and the facilities which will enable the analysis of a problem inta
component parts and the synthesis of contributing sclutions into a sct of design
options. The former includes the ability to create sets of sub-tasks and

communicate them to other engineering or design authorities for resolution.
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Figure 6 presents the Design Engine function as a unitary process. To enable its

exercise the issues of:

« control,

+ constraint representation,

» information sourcing and communication, and

+ method selection and invocation,

must be resclved and managed appropriately.

Input: Design intent
as specification or
technological reguit

Control: By the exercising
authority via the requests
made for information and as
dictated by the constraining
mechanisms

Design Engine Functlon:

Output: Set of solutlon
options and record of
actions. (Design Record)

To enable the specification
and analysis of problems
and assist in the definition

-

Recurslve Control:
For example to service

of problem rasolution

Methods: Appropriate to the
specliied task and based upon
e.g. technological expertise or
past product descriptions

Feedback: Paossibly causing changes
to the initial specification or conditions

Figure 6 : Design Engine as a unitary process

» requests for technology
or product information
acquisition

1.3.3.1 Constraints

Constraints in design limit the range of variables which may be attached

to

processes associaled with design. Constraints may be expressed qualitatively or

quantitatively and may be continuous or discrete., Furthermore, constraints are
employed in design to ascertain the set of methods which might be used in the

Design data and methods
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prosecution of a task or to determine the approprialeness of processcs cngaged by
designers at different stages of the design.

Designers employ constraints to help them generate concepts and to refine these
concepts into a completely defined, detailed solution. The primary role of
constraints in design is to provide control over the process and facilitate the
generation of valid solutions.

Constraints should not be considered as being exclusively restraining or, limiting,
Their evaluation does not always lead to a logically ‘true' or 'false' situation.
Frequently they can identify the options available and guide subsequent actions to
be taken consiructively. Table 1 provides one taxonomy for constraints as they
can be employed in design.

Type Funetion Applics To Causcs Dcpends Upon
parameter validation value(s) true or false specification or design
analysis or technological
limit or availability or
conecept
default suggestion or value(s) valid result(s) current design state or
sourcing of technology or availability
information of particular resource or
prescribed value or set
process control tools, methods valid or invalid design process stage or
or tasks solution state
technelogical evaluate and tools, suggestion of a set of understood concepts, past
suggest methodologics technologies suitable solutions and beaten tracks
techinclogy to or concepts 1o the task in hand;
be used allows development
of simultancous or
sequential
methodologies
compatibility evaluation of design entities relationships, cntily state if in the contexl
combinatorial | and methods dependencies, of the design solution or
possibilities associations entity type if in the
and {properties) technological domain
compilation
of a set of
options

Table 1: A taxonomy for constraints in design

The establishment and representation of constraints constitute a definitive
mechanism for encapsulating expertise, whether in the form of standards or past

practice. Knowledge representation in design concentrates therefore upon the
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definition of constraints, their association with design entities and the mechanisms
controlling their use, application and interaction with the designer.

Constraints can be either local or global. T.ocal constraints are associated with the
design task at hand. Global constraints are associated with genericl? classes of
problems in design. The designer's repertoire of global constraints increases with
experience. This is manifested in the application of a particular technique
(sometimes perceived as a beaten track) ta a variety of different problems.
Mechanisms supporting design environments ought, therefore, to be able to
incorporate new, practice-oriented constraints and make them available
appropriately to designers in all arcas and at all levels of design.

Constraints may originate from [Stauffer et al, 1990] the initial statement of intent
or be derived during analysis of the design specification. The former frequently
describe the desirable performance criteria; they represent the design functions
and sometimes depend upon the designer's initiative and expertise. They may be
listed as standards or derived from the designer's past cxpericnce. The rate of
occurrence of constraints derived during design increases as the design evolves:
they constitute the majority of constraints affecting the designer [McGinnis ¢t al,
1990]. In the Design Engine, [acilities must be provided to enable the introduction
of constraints by designers at any stage of design.

Constraints may be in conflict. A possible means of resolving these conflicts is by
further classifying them as being fixed, rclaxable!® or according to their relative
importance [Stauffer ot al, 1990]. Fixed constraints typically represent
performance criteria, boundarics on values or arise {rom consideralions of
compalibilily. The integrity of the design solution is at risk when these constraints
are not satisfied. Reluxable constraints are susceptible to control by the designers
and are an aid in the resolution of conflicts. Control over constraints can influence
the flow of design operations and aid the management of activilies within the
Design Engine.

Constraints may be applied in several ways. Bounding values may be
implemented within the storage mechanisms of databases. In knowledge

17ggr example, the determination of the material type tor a component which is to be assembled with
another componeni made out of a given material relies upon the provision of a compatibility check
which can be cnabled via a global constraint.

180 rotractable, when infinitely relaxable.
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engineering, constraints are often implemented as ranges of default values and
condition-action rules. Adding constraints to the rule base of a knowledge based
system (KBS)'? has the advantage of integrating them into the overall conceptual
schema [MacKellar et al, 1991]). However, the domain of application of the KBS
may be narrow and restricted and, therefore, the utility of the constraints may not
be maximised or exercised in associated domains. If constraints evolve in time,
then rule base maintenance must be accommodated®. Several researchers have
proposed that data integrity constraints be applied in databases to specify
restrictions on possible designs [Cammarata ct al, 1986; Dittrich et al, 1986; Dayal
et al, 1986]. This is particularly suitable for decision aids.

In the Design Engine, management functions controlling the operation of the
engine can be provided by:

+ data model constraints,

+ procedural constraints,

» domain constraints,

» specification constraints.

Designers will be able to use these management functions to:

« evaluate the relevance of given technologies to the design task in hand;

» determine the applicability or suitability of tools, methods and techniques
available at a particular design phase;

« asceriain the conformity of solutions to particular design specificalions
currently in effect;

+ impose compatibility restrictions which determine the possible relationships
between entities;

» introduce limits on values.

194 Knowledge Based System is a computer systemn that embodies ap explicit representation of
knowledge on an application domain. The Knowledge Base is a separate component of the system, the
other parts of which are domain independent, In essence, they are computer systems that can lend
assistance with technical and professional tasks.

2070 allow the KBS (o function effeetively, the presence of conflicting rules, within its Knowledge Base,
must be avoided; the introduction of new rules or meodifications to existing ones musl be preceded by
checks on how existing rules and, subsequently, the operation of the KBS might be affccied. In design
situations, where the number of interrelated parameters and rules is large, this rule integrity check
becomes & significant task.

Design data and methods 17




Table 2 provides the outline of a scheme to incorporate design constraints into the

function of the Enginc.

Nature Incorporation Verification
data model ab initio, associated with data values, check performed on the result
entities or output from specific methods
and tools
procedural ab initio, associated with tasks, processes check pecformed prior to
or specific tools invocation and also following from
it to cause possible concornitant
actions
domain ab initio, associated with data, entities, checks as above but final
procedures, tasks and specific technologies; acceptance by the designing
modified and/or enriched, retrospectively, authority; validation override used
based on practice and technological to medify current domain issues if
chaunges appropriate
specification inlroduced during the process of design; enitirely under designer control
incorporated inta the system [ollowing
retrospective analysis by the designing
authority, thereby causing transformation
of 'beaten tracks' into domain, procedural
or data model assertions

Table 2: Constraint incorporation in the Design Engine

Specification constraints are highly diverse and complex and forimulation of a

flexible representation may not be possible. Consequently, they should be left

open to the designers to control, interpret and, if appropriate, introduce,

[.3.3.2 Information sourcing and communication

Data manipulation during design requires of the designers the ability to:

« deal with pecuiiar interfaces and languages,

+ be aware of any data associations and, therefore, of the repercussions of their

actions,

» anticipate information transformations as part of the task which they engage,

« have detailed knowledge about the processes and the information which is

generated, including the differences in data generated by different versions of

the sollware tools engaged.
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One funclion of the Design Engine is to make dala available to (he designer.
These will, in most instances, be part of the company's information base and be
referred to by a number of past products. If siercotypes were to be used to
structure the product descriptions which refer to the data, then use of the latter
would allow for complete combinations of data and products, including references
to their generating technologies, to be imported into the current problem domuain.
These could then be used by the designer to alter the input state and,
consequently, influence the process of problem solving.

Information systems have been developed [Eastman, 1992] to manage access (o
the data by designers. Advanced implementations have employed knowledge-
based tools to link distributed data sources: figure 7 depicts a representative
example. A number of communicating KBS's are brought together and managed
by a supervisory KBS which is responsible for external communication [Eastman
ct al, 1991; Dilis et al, 1991]. The necessity for user-driven data transformations is
eliminated by incorporating the necessary meihods [Baral et al, 1991} in the
individual KBS's rule bases.

]

I Users 1 Applications
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Yy ) A

Knowlecdge-hased system for Supervisory Cantrol
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A 4 Y Y ¢
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: i X X EE
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Figure 7 : A Knowledge Based System for data retrieval
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One disadvantage of employing information systems for data retrieval and
communication is that the flexibility in structuring and storing the data is lost
through the exercise of strict control over the individual data bases to maintain the
logical integrity of the whole system. An additional complication is that such
schemes require detailed knowledge by the system administrator of the processes
engaged by the designers and the data which are generated: this knowledge may
not always be either available or easily expressible.

Stereotypes could be used for data manipulation without invalidating the pre-
existing information systems, should they exist. Information system functions
could be attached to stereotypes for the purpose of data acquisition, thereby
causing them (o be driven by design rather than as simple retrieval operations.

1.3.3.3 Method sclection and invocation

In a unitary process {figure 5), input is transformed into output by a method
exercised under external control. In the Design Engine the span of problems is
such that several methods might be applied. This set of methods is constituted in
the software tools and facilities employed by the enterprise and its agents. It
includes routine softwarec tools - e.g. a solid modeller or a manufacturing
simulation package - or company-specific facilities, such as an internally
developed structural analysis system.

These methods are, iraditionally, invoked intuitively?! under the control of
designers. Designers match a need to generate data with their particular
knowledge of the methods which are capable of providing them. Familiarity with
the methods usually exlends to knowledge of and adherence {o the constiraints
applying to them. Furthermore, the designers are aware of relationships and
mutual dependencies of methods and are capable of communicating their
requirements (o other experts.

Intuitive invocation of methods is acceptable in situations where problems are
engaged exclusively by agents who possess peculiar expertise. Design

concurrency? requires the experts in one field to generate information in

2lThe term refers to the familiarity of the designers with particular techniques, through past experience,
training or, simply, availability; it is, in this instance, taken as synonymous to: 'performed as routine'.

2211 is the author's opinion that design is by nature concucrent and this is evident in the analysis of a task

and the synthesis of a set of possible solutions. However, rigid practices within engineering enterprises
can prevent operations from taking place concurrently.
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associated areas, where their knowledge is small. For example, a designer wishing
to determine the optimum (or safe) position for a hole in a component may nced
to invoke a method to perform a structural analysis; furthermore, the designer

must provide the requisite inputs and be able (o interpret the results.

Another challenge is the identification of which method out of a set of possible
methods should most appropriately be applied. This selection can be
accomplished by employing a representation which closely associaies input and
output data with methods and includes multiple references to the data, if these
exist, as options. Designers must be informed of the characteristics of the methods
they use??

An advantage of employing stereotypes to describe methods is that the design
record can be made directly to refer to data generated by the methods. Whenever a
design activity is undertaken, a track is recorded which relates it to the activity
and the methods employed. The methods used in performing a task, together with
their input and output data as well as the constrainis applying is the basic output
of the Dcsign Engine. This collection of information is the record of the design
activity and forms the basis for the company's product descriptions. Product
descriptions can be used to define models of the design praclices ol the company.

Product descriptions may be employed under the designing authority's control to
synthesise further solutions® and provide a basis for concurrent operations.
Incomplete descriptions - those activities which did not culminate in the
development of a product - are also of utility. They may contain 'dead-end'
solutions not appropriate to the current design, but which might be made
appropriate by a relaxation of constraints or by changes in the technologies
employed.

23Knowledge in a particular domain of interest consists of descriptions, relationships, procedures and
methods. Descriptions consist of rules and procedurcs far applying and interpreting information in a
specific context, Relationships express dependencies and associations between jitems. Procedures specify
operations to be performed when attempting to solve a problem. Methods are engaged to carry out the
aperations specified in the procedures.

24These take the form of composite methed and relationship deseriptions and are usually referred to as:
technological models.
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1.4 Product models

A product model comprises a sel of entities and a structure relating them. Use of
product information by designers through the Design Engine suggests that the
product model should embrace:

» information on the methods (software tools) employed in its generation,
together with a record of the information which was referenced in the
application of these methods;

+ data as inputs to and outputs {rom the engaged methods;

» an account of all the consiraints which were in force at the time of data
generation together with a description of any assumptions made by the
generating authority;

» references to technology models or e¢xpertise.

Scveral definitions of the nature of a product model exist among the‘engineering
disciplines and are often domain dependent. Two representative definitions are
given below:

"The term product model denotes the totality of data elements which complerely define the product for afl
applicarions over its expected life cycle. Product data includes the geometry, topology, relationships,
tolerances and features necessary to completely a component part or an assembly of parts for the

purposes of design, analysis, manufacture, test and inspection. "[Smith, 1986]

"A product model contains ‘complete’ and non-ambiguous information about a product. Complere in the
sense that all information required for a specific application, if available, will be specified as an integral

part of the product model or can be derived from it. "[Gielingh, 1990|

These definitions are stringent on the requiremenis for completeness. They are
mosl easily applied to established products or 'closed systems'. Such products are
rigidly defined and the records are rarely amenable to change without loss of
information. Furthermore, it is difficult, in most instances, to incorporate into the
product model information which relates to products made by the company's
subcontractors if this is differently structured. The product information structure
cannot be modified easily and its primary perceived function is to service requests
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for data rather than be used to abstract definitions relating to practices which
would be appropriate to its future use by multiple agents.

The emphasis in the product model definition for environments sustaining
concurrent operations is on the incorporation, in addition to the routine data, of
manifestations of a product's evolution. Ideally, this should be based upon the
record of design of the product and comprise inlormation which represents
information and associated actions. This record should allow for an evaluation of
the product and provide the opportunity for 'beaten tracks' to be deduced from it
under the influence and explicit control of the designer or engineering authority
for general use, leading to the multiple use of product descriptions in product
design.

The use of stereotypes in product descriptions is appropriate and bears the
advantage that the definitions derived can be organically related to the methods
and data models employed by the organisation and its external subcontractors.
Furthermore, a product model based upon stereotypes inherits the dynamic aspects
of them and evolves over time while also being insensitive to changes in company

practices,
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2.1 Architecture of the Design Engine

‘I'he Design Engine aids designers who must specify and analyse the design tasks.
To sustain concurrent operations the engine must enable the communication of
intermediate results to other designers as well as the need for other tasks. Past
practice provides the basis for the analysis of tasks and the opecration of the engine
must respect what has been done before. This involves the abstraction from past
records of the design process, which include instances of designed entities and
their relationships, of generic structures and their presentation to the designer as
available options in the analysis of the design.

The Design Engine operation and function is dependent upon a sct of internal
elements which enable it to interact with associated external facilities®. Figure 8
depicts a possible architecture for a Design Engine and indicates its internal
elements and their connections. The engine comprises four elements: the Activity,
Record, Execution and Acquisition Monitors.

The primary element is the Activity Monitor which manages and controls
interactions of the engine and external facilities as well as thosc occurring
between elements of the engine. Its operation is similar to that of a 'blackboard": it
provides the designer with a communication surface; it has tools which assist the
designer to segmeni the design task by formulating requests for information
acquisition or the concurreni execution of associated sub tasks; it displays the
responses to requests and cnables the designer to manipulate them. It is the
primary mecchanism for building a model of the solution and managing any
options which this includes.

Requests for data and information are managed by the Acquisition Menitor. It
attempts to service a rcquest by engaging a ‘consultation' process which may
involve: searching the available methods to determine possible matches;
communicating requests to knowledge sources to elicit suggestions for possible
solutions; invoking the product model navigator?¢ facility to match the data
request to values relating to existing products and subsequently, by abstraction,

determining the methods or technologies which had been employed in the preduct

2330ftware tools, company methods, exiernal standards and daia base systems are representative
examples,

20This is a sub-clement of the Acquisition Monitor which is used to trace links between data items in the

product model and, subsequently, cnable the designer to navigale across related data items by following
the links.
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data generation: this allows multiple use to be made of models and of formal
product descriptions. By incorporating a product description into the current
design solution, the associated technologies are also imported. These can be used
by the designer, through the facilities available in the Activity Monitor, to cause
the concurrent exercise of several methods and to involve the appropriate
disciplines in the synthesis of possible design solutions.

__________ Spawned sub-process

[}
[}
L b

Activity Monitor Acquisition Monitor
transformed intent leadi
Feadvack | Task |iirccoesvecumian for data i este
Processing | | Analysis |, » methods and
1 f information available
Product Model
2 Navigator

Record Monitor

y
Execution Manitar

Records:

+ method invocation
+ data gensrated
+ relationships

+ Invokes methods

+ Checks constraints
+ Validates data

+ Verifios relationships

h

Design Engine Boundary

'...'—-i
Design
Record

Knowledge
Standards
Method
Definitions

l

Methods !

Figure 8 : Design Engine architecture

The results of data and technology requests are communicated buack to the
Activity Monitor as one or more options. Methods are invoked exclusively by the
Execution Monitor which, in addition to executing the methods, is responsible for
determining their approprisleness to the current design state. This it achieves by
executing the constraints, if any, which relate to method control and by
determining the input data to the methods and verifying their existence or their
availability. Constraint failures or further requests for data are communicated to
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the designer via the activity monitor for resolution. Upon successful completion of
the requisitc method, the Execution Monitor validates the data (values) produced
and any relationships gencrated before returning control to the Activity Monitor.

The Activity Monitor records actions taken by the designer and the state of the
current design solution using the facilities provided in the Record Monitor. This
element is responsible for recording the methods, data and data relationships
associated with the current task. Information stored by the record monitor
complements the record produced by the Activity Monitor. The two sets taken
together constitute the complete product description and provide the principal
output of the Design Engine,

2.2 Implementation approach

The operational characteristics of the Design Engine elements being well defined,
their communication requirements are easily predicted and interfaces between
them easily constructed. Constraints in the consiruction of the engine stem from a
consideration of the nature of the external facilities with which the engine
interacts during design: these are a collection of diverse methods and disparate
data forms operating over a variety of distributed computational platforms.

The order by which external facilities will be accessed or invoked by the engine is
very hard to predict as it depends upon the way in which the design task develops.
It would be possible to predict the communication requirements if a single facility
was o be engaged at any given time. However, the nced to operale concurrenily
raises the requirement to plan {or the exercise of several facilities simultaneously
and introduces complex interactions and dependencies which cannot be predicted

ab inifio. In the proposed system this is not a presumption.

Communication interfaces which deal with specific data sets or methods could be
combined to form composite linkage mechanisms. To deal with all possible
interactions would require that a large number of specialist interfaces be built.
Furthermore, since the data and the tools which generate them evolve constantly,
high levels of maintenance would be required. An alternative is to generate
descriptions of the data, the methods employed and their associations which are
independent of the tools and applications used. Generic interfaces might then be
built corresponding to the data descriptions and a control system employed to
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manage communications appropriately and construct the required interfaces using
combinations of the generic ones.

These issues of representation and control constrain the implementation of the
Design Engine architecture and the construction of its elements. The development
of extensions to existing facilities by attaching knowledge-based systems to CAD

software as shown in figure 9, have resulted in some possible implementations
[Held et al, 1991].

inference component L
base model
- 1
object- constraint-
network  network

special models

O

object

rule bases

rule interpreter constraint interpreter

Figure 9 : A CAD - AI system combination

However, these combinations do not escape the problems of information
description independence and interface maintenance; rather they compound them
by introducing additional, proprietary interfaces related to the internal structures
of the software involved. Generic descriptions employing stereotypes to represent
knowledge associated with design entities can produce a solution. The Design
Engine could then be built upon the facilities available within this generic
framework and be unaffected by removal or replacement of the software facilities
which it employs.

2.3 Representations
The incremental nature of the design process involves the integration of existing

parts and the design of new components that will eventually form the required
objects. New artefacts may be derived by modifying previous designs. Evolution,
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modification, adaptation and rcusc of carlier designs is common practice and
designs may share sub-parts. Design entities arc the basic building block for the
description of complex objects and designs [Nguyen et al, 1991].

Design entities are structurally and semantically complex. Structural complexity
arises from the need to represent hierarchies of entities (e.g. parts and assemblies)
describing designs and products. Semantic complexity arises from the need to
represent dependencies between entities. These dependencics arise from design
rules or constraint verification procedures and frequently cannot be adequately

described using routine semantic relationships?? or predicate logic constructions.

Dependencies between objects arise in various forms during the process of design.
The deletion of a parent object could, for instance, imply the deletion of all of its
componenis. However, the deletion of the parent object could allow its dependants
to be associated with several different objects. In some cases dependency arises
from the acquisition of properties by association. Dcletion of one side of a
relationship (e.g. when a material type is associated with a component) may have
no repercussions or resuit in design inconsistencies, cspecially if the related
information is being used by other dependants®® of the parent object.

Relationships during design are constrained by:

» the type of objects associated,
» the nature of the designed entitics involved in the objects' description, and
« the requirements of the design task.

During the process of design it is likely that the designer will:

« introduce new constraints between design  entities which define new
relationships;

« relax the consiraints between ohjects to achieve a required goal in a design
task and change the exisling relationships.

7For example: belongs to. is_a.

Ba typical cxample ariscs when an entity deseribing the properties of a given material is associated with
2 component: the material properties thus associated with the component can be used to constraint the
assignment of a4 manufacturing process and, consequently, the nccessary tools to form a feature
associated with the component such as a hole. Deletion of the material to component association would
invalidate the choice of manufacturing technique and cause a chain of inconsistencies subsequent to the
process.
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The accommodation of relationship definitions within object descriptions requires
a very sophisticated control mechanism o manage, maintain and distinguish
between all versions of objects. Furthermore, the differences in object descriptions
would require a large number of object types to be delined and prevent the
abstraction of generic object classifications. Dependency relationships ocught,
therefore, to be decoupled from object hierarchies. This suggests that a
mechanism must be provided to reprcsent dependencies as entities in their own

right.
To satisfy the requirements for hierarchical representation it is necessary to:

» create entities to describe objects;

« pgenerate definitions of relationships which allow for the imposition of
constrainis appropriate to the particular design contexts as well as for the type
and number of entitics which can be aitached to either side of the relationship;

» provide a mechanism which allows aggregations of entities to be built, using
the relationships defined as the linking elements.

Existing designs can be altered to produce new objects or more satisfactory
results, New customised components might be designed by trial and error. This
suggests that object descriptions are nol stalic but may undergo several
modifications during the design process. Design entities which describe objects
must, therefore, be easily modified and combined with others to aid Lhe
evolutionary process. It is implicit that design entities may be left inconsistent or
incomplete until all the information has been generated. The naturc of the design
process requires a more sophisticated consistency control on the design entities
[Borning, 1987] to accommodate change.

The use of sterecotypes to describe design entities and their rclationships does not
necessarily require that traditional definitions must be superseded or replaced to
the detriment of existing product descriptions. Rather, the representation should

incorporate existing definitions for the purposes of:

+ building apposite combinations of them, the better 1o describe a design entity

or activity; e.g. the imposition of constraints on the attributes of a composite
definition which were unconstrained;
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- communication of a set of entities and related information to various

disciplines in forms which can be understood in the discipline;

+ enhancing the function of tools, methods and software which operate upon
data or relationships: e.g. to manage data storage or generate requisite
geometric represeniations in a CAD system, by invoking these facilities
organically within the design process.

Examples of stereotypical definitions are shown in figures 10, 11 and 12 taking a
simple countersunk hole as the subject.

Figure 10 illustrates the combination of two entities used in solid modelling in a
CAD system: the stereotype defining the hole employs?? the atlributes of the solid
primitives sometimes in a transformed [orm; additional constraints can be
imposed on the hole stereotype without the necd to change the application
software. The mecthods employed by the software to create and display the
individual entities arc retained, but they are invoked subserviently to the design
task.

Entity T oane

Type : geometry pointer to staractype
Attributes : base_diameter
: top_diameter

tlength
: erientation Entity  : countersunk_ shapes
Method : GCWSCO Type : geometry
Attributes : sink
l Function: - I_ refarences .gg:?‘)ath
unction: sum_of [T— ° : sink angle
é?? : orientation
L . . Q n
Entity - oylinder Constraints: 115° < sink_angle < 135

Type : geometry

Attributes : diameter
: length pointsr to starectype
: orientation I

Methad : GCWSCO

Figure 10 : Countersunk hole shape definition using stereotypes

29This is often referred Lo as: attribide propagation,
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Figure 11 demonstrates the use of a set of information in the communication of a
design concept to two engincering disciplines: the design of a countersunk hole
places different requirements on manufacturing and structural engineers. The
dimensions of it dictate the set of tools and forming processes required for its
manufacture and the shape of the finite element mesh to analyse its structural

integrity.
Entity : countersunk_hole
Type : feature intar o staroat
Attributes : countersunk_shaps oA s
: countarsunk_analysis
- ¢ gountersunk_manuf.
al&
It
8l8 2
- Enlity : countersunk_shape
Entity  :countersunk_manut, g Type : geometry
TYP_B : procedura palnter to Attributes : sink
Attributes : process plang -—-f-—- > 2 : hole
§ : depth stersotype g | :depth o—
o :sink_angle 2 : sink_angle ©
: surface_finish : orientation
Constraints: 115° < sink_angle « 135°
3 3
Entity : countersunk_analysis 8 8
Type : procedure B g
relarances Attributes : FE analysis — ——P polnter to sleractype 2
° : gink_angle ©
efEnences o tdepth o
: load_type
: {oad_direction

Figure 11 : Using stereotypes to define design entities and for discipline
communication

Otherwise, the disciplines will view the hole information differently accounting
for surface finish on the one hand and the magnitude ol loads on the other. The
description of the hole must satisfy all such needs cohcrently and consistently.

As an illustrative example, figure 11 depicts a structure for defining a hole: this
collection of design entities shares common information. A designer generating a
hole accounts for its entire definition including the appropriate technologies.
Communications and intcractions are determined by the description of the

designed entity.

Designers often refer to data associated with products designed in the past. These
data are, usually, accessible only via mechanisms designed to operate on
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particular models implemented by the company. These models serve the purposes
of information storage and retrieval (section 1.2.3) and may be structured for CIM
or be part of a proprietary data schema. Any representation employed by the
Design Engine must respect the structure and maintain the integrity of past
product descriptions but without constraining the designer by these structures. The
design entity representation should provide access to the data and observe
integrity restrictions, or invoke the proprietary mechanisms employed to maintain
them. The advantage of using an entity definition is that several data manipulation
operations can be combined into a single functional unit. In addition, the
responsibility for any transformations of data, including data management, can be
removed from the designer.

Stereotypical attributes can be defined to correspond Lo disparate data forms
which may be physically distributed. This redefinition of the data allows them to
be collated into alternative descriptions. Figure 12 depicts this concept using the
countersunk hole example,

Entity: : countersunk_hole

Type :feature
. f to| i
Afttributes : countersunk_manuf, €«-3.---.-- Loy bty xoy B

: countersunk_analysis 4««3.---«---.---.-- \
: countersunk_shape €---s--we~~s

;
t
Constralnts ¢ 115° < sink_angle < 135°4; ) o
: el i
i
-
g. | Machine &
- Tooling
: | Relational
;| data base
1
1

D
CAE
data base

Figure 12 : Mapping stereotype attributes to disparate data forms

Knowledge of the location of the data and thce appropriate methods [or their
retrieval is required o lacilitate mapping of data values and stercotype attributes.
Once the map is defined, a generic control mechanism can be provided to invoke
storage/retricval methods and transform the data. With this approach, the original
data access methods and models can be maintained independently of definitions
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which the designer chooses to employ. The integrity of procedures and designs
built upon the stereotypes is secured while the underlying data models continue to
evolve. Additional control can be imposed upon the data by the association of
constraints, cxternal to the dala maodel, with the stereotypical allributes which
refer to them,

2.4 Employment of external representations

A salient feature of any engineering enterprise is the large number of calculations
made, constraints imposed and technigues employed during design. The
technological solutions are taken from the public domain or may be peculiar to the
company. The availability of such solutions as external representations in the
Design Engine safeguards the company's product development ethos and makes
past and future designs contiguous.

A technological solution used widely in design employs features’ to represent
geometric characteristics of parts. Features represent stercotypical situations
which can be applied to the generation of instructions for their manufacture, for
assembly purposes or [or stress analysis of a part. Figure 13 shows an example of
the use of features to describe a gear shaft [Ehrlenspiel et al, 1991} The shaft is
represenled as an aggregation of basic shapes (e.g. chamfers, fillets, keyways)
linked by specific relationships: in the feature tree of the gear shaft, shown in
figure 13, solid arrows indicate inheritance, dotted arrows indicate adjacencies
and dashed arrows indicate explicit constraints.

Several implementations of features exist: in their vast majority, the feature
definitions are incorporated within existing CAD systems [Giacometti et al, 1990]
to provide facilities for the generalion of geometry which can be used by mulliple
applications.

Dixon [Dixon ct al, 1983] proposed a knowledge based design system which is not
solely dependent upon a geometric modeller, The system consists of two parts: the
first part consists of a user interface, a design with features library, an operations
library and a monitor, which allows the user to create primary representations of

features and in turn a primary representation of objects; the second part of the

30geveral definitions for the term feature exist; the most representative one defines them thus: features
are sets of information related to part descriprions; they are entities which describe o characieristic of a
local area of a part.
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system is used for converting the primary representations of the objects into the
secondary representations necded by respective activities such as manufacturing
and assembly. This conversion may involve some feature extraction to obtain
more abstract features.

In a prototype system, proposed by Mantyfa [Mantyla et al, 1987] the definition of
basic features are based upon a classification of machine tool types. Hence, in
principle, each basic feature can be manufactured with a single tool or with tools
of the same type. In contrast, compound features must be processed with tools of
several types. A pocket with fillets on the bottom is a compound feature, for
instance, because its production will require several kinds of milling tools.

Gear Shaft

- -

o — -

¥
Fillat Key Seat [~ | Chamfer

Chamter

¥

Figure 13 : Feature description of a gear shaft

Faux [Faux, 1986] summarises the design by [eatures methodologies with an
emphasis on the dimensions and tolerance modecls associated with feature models.
He states that all features belong to some generic feature class in the sense that
they obey the rules of the class, so that application software operations can always
and only be applied to features whose classes lie in the domain of the operation
concerned. At the highest level, features are defined as implicit 'specific features'
of a particular generic class. A ‘'generic feature' is held in implicit form as a

specific feature with default parameter values and a set of generic features from
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the feature library. A fcaturc is a set of faces of a component, structured into one
or more primitives and sub-features and whose faces, primitives and sub-fcatures
obey the rules of its declared generic fcature class. A primitive is a set of one or
more faces which are treated as a single indivisible unit for the purposes of
defining tolerances on its shape and location. Four standard primitives are
defined: plane, cylindrical, plane pair and swept profile primitives. A generic
feature class is characterised by a number of siructuring, selection, combination
and sizing rules. A gencric feature can be created by a gencric modeller, the
purpose of which is to allow companies to design their own generic features in a
uscr-fricndly way.

Features offer levels of abstraction from the low-level enlities which the CAD,
CAM or analysis software operate upon. They provide representation structures
which are sufficiently open to access from other applications or agents without the
need for claborate interfaces, facilitate better data generation and allow for
validation of their attributes using constraints. The emphasis in their definition is
in the communication of information across engineering disciplines.

The design by features approach allows the designer to model a part in terms of
generic shapes whilst maintaining freedom of design [Buttertield ct al, 1985].
However, the available sysiems impose limitations on designers: the design by
features library is {inite and the feature operations, such as add, delete, edit, etc.
are frequently limited. The flexibility and freedom of designing the geometry of
an arbitrary part in conventional CAD systems have been lost to some degree in
the design by fealure systems [Sackett et al, 1992].

A strength in the design by fealures method is its ability to incorporate the
semantics of fcatures. Parameters or properlies of the parent feature can be
inherited by the dependent feature. The definition of features can be cmployed to
check the validity of other {eatures.

Features provide an initial framewaork for the representation of design entities and
objects which can be used to build descriptions of parts and products. However, in
their present form, features are more appropriate to the generation of detailed part
geometry rather than to the process of generic problem solving which is
cncountered In the initial stages of the design process. Furthermore, the
peculiarities of feature implementations narrow the scope of application to

specific areas of engineering design. The scope of application of features can be
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expanded by making them accessible to the Design Engine as external
representations.

The availability of technological solutions, such as features, through the Design
Engine provides the opportunity to associate them with methods and constraints
making them available as generic or specific enabling technologies. The Design
Engine must employ rigorous management methods based upon generic
knowledge representation techniques (o combine the internal end external
representations used.

2.5 Control

The representation of entities, processes, methods and constraints is central to the
implementation of the Design Engine. The pre-existence of design entities
appropriate 1o a task must be communicated to the designer. The applicability of
methods must be determined from their definition and the data they produce or by
abstraction from past rccords of design or product descriptions. These methods
and associated constraints and definitions must be invoked transparently whenever
the designer needs them. Design agents or specialist {eams must be called
appropriately.

In essence, a controlling mechanism is required which enables combinations of
the representations to operate and interact together. Control must be flexibly
imposed and lcave the designer as free as possible. This may require that methods
be invoked recursively by the representations. Control should provide options to
designers requesting data or acquiring techunologies, facilitate the flow of
information and secure distributed operation.

The evolution of methodologies for performing design tasks and the associated
abstraction of technological models from specific solutions are dependent upon
the combination of & record ol the designer's decisions and interactions and the
capacity [or retrospective analysis. The Design Engine, must manage and analyse
the design trail unobtrusively: this should make the designer's decisions traceable
and provide a basis for auditing the process of design.
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2.6 Design Engine support: Requirements

Concurrency in design requires linked, generic representations and control
elements, In particular, the Design Engine must contain knowledge
representations manifested as:

» descriptions of generic design entities and their attribules and the methods
suitable to invest them with values;

+ descriptions of technology including formal methods and software packages
and procedures;

« rules and constraints applicable at different Jevels of abstraction,;

» propertics, rclationships and inheritances;

+ aggregations of entities and processes (product descriptions) and their
relationships;

« diverse data forms, e.g.: graphical and geometric elements, alphanumeric and

textual information and documents or multiply-indexed®! information sets.

Assimilation of design methods used by enterprises, at different levels of
abstraction, should be facilitated. The ability to define and support highly
structured (sequential) methodologies as well as more open (simultaneous or
concurrent) application is essential. The Design Engine must ensure that tasks are
performed by individuals at appropriate times, control the sequence of operations
within a project or task and, thereby, reduce the risk involved in product
development. The Design Engine must also support distributed operations:

+ by controlling its own communication needs and
« through its capacity to store and retrieve instances of the enlities it operates
upon using standard data bases and proprietary file systems.

Design traceability and audit of the design process require that the process route
and the structured information which were generated during design should be
recorded. During the conduct of a particular project the record would sustain
status evaluations and provide for regression. From the record of experience,
preferred methodologies could be abstracted to aid and service future product

designs.

31Such as those used by hyper-text and hyper-graphics facilities.
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More generally, the provision of a method which possesses the above
characteristics will facilitate the building of a framework for managing
Engineering.

A methed to support concurrency in design 39




The I'ramework For Concurrency




3.1 Concurrency: Issues

Concurrency in design depends upon the communication ol the design
requirements to and between specialists, the elicitation of responses from
specialists, a harmony of actions with the emerging design solution and the
acquisition of resources which may be functionally and geographically distributed.
These dependencies arc the focus for the development of the system for

concurrent design presented herein.

Yeh [Ych, 1992] has suggested that a concurrent design support system should
provide for the scheduling of design activities and contain a model of the design
process. A prescription of the design model not accounting for the product domain
could inhibit designers by constraining their application of a design support
system. Andreasen [Andreasen, 1991} suggests that concurrent engineering and
'design for' approaches demand general procedures and specific methods. The
methodology employed must not be limited, but should be expanded to involve
management of design and recognise areas which might be adversely affected by
design decisions. Facilities to model design technologies, company methods and
procedures and to incorporate them [Trousse, 1993] into a design support system
should avoid prescription if they are to contribute towards the provision of a
generic design environment. This approach is adopted here and is an implicit
quality of the proposed framework for concurrency.

Central to concurrency in design is the maintenance of multi-dimensional product
descriptions. Design specialists should be free to create descriptions appropriate to
their needs; and disparities in this set of descriptions must be managed within the
framework. There are proposals that the product description must be standardised
and validated for use and be communicable in a fixed form [Bond, 1992]. Erens
[Erens et al, 1993] recognises the difficulty of maintaining different but consistent
views of a product as a major shortcoming of curreni frameworks and identifies
the designer's need to work with an arbitrary number of levels of abstraction.
Product descriptions which employ represeniations of design entities, processes
and their interrelationships are deemed appropriate to design concurrency [Bauert
et al, 1993]. Thus, the description of products, the management of the design
contributions and the development of design solutions are interdependent; they
cannot be examined in isolation.
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'The issues considercd here in the development of the framework for concurrency
concern:

« the management of the design contributions made by engineering specialists
and knowlcdgeable sources;

« the creation of the evolving design solution, including the recording and
maintenance of the design decisions;

» the creation and communication of a formally agreed product description to

the designers and associated engineering teams.
3.2 Managing the design contributions

Concurrent design can be regarded as being a distributed problem solving activity.
A generic problem solving method discussed in |Hayes-Roth, 1983] employs a
blackboard model. The blackboard sustains a number of independent knowledge
sources and provides for communication between the sources through a common
data structure. A knowledge source may be a human expert, an expert system or
an application program. Blackboards have been used in a variety of fields where
decision making is based on contributions from several specialist sources; its
relevance for design applications is highlighted in [Raczkowsky et al, 1990] and
[Reddy et al, 1991] who suggest that the blackboard model is particularly
appropriate for the support of 'opportunistic design'.

Blackboards have been used by researchers for the development of frameworks
for concurrent design. Myers [Myers et al, 1992], describes a distributed system
for architectural design. It employs several knowledge sources and a blackboard
coordination expert to support design aspects spanning the entire life cycle of
buildings. An important conclusion is that the provision of a common language to
describe design issues is essential to the successful operation of the system. The
language is defined primarily through prototype databases and is the basis for
communicalion between human participants and components of the system.

A prototype system specilically for designing electrical power transformers is
described in [Finger ct al, 93]. It comprises a blackboard, a number of dependency
reasoning algorithms and a nctwork of conceptual dependencies which are
representational ol a transformer configuration. The system allows the designers

to use prior designs, offers several perspectives to reflect the types of concerns
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involved in the design of a power transformer and enables ‘how-to' and 'what-if'
questions to be asked. The criticality of information integration for accumulation
and distribution of the product knowledge from different sources is highlighted.
The suggestion is made that the development of design support tools must be
based upon the requirements of practice.

The need to apply rigorous control strategies in distributed problem solving to
produce results to ill-defined problems [Chandrasckaran, 1981] has also
influcnced the development of blackboard systems for design. Constraint neiwork
and truth maintenance techniques have been used in conjunction with blackboards
to manage communication between the knowledge sources and the constrainls
which are imposed by particular solutions within the design context. The
combination of these facilities provides for design task sequencing by identifying
the most suitable picce of knowledge to apply at any given time (usually
depending on the state of the design and messages on the blackboard) and creation
of a strategy for application of the knowledge (usually expressed in the form of an
agenda).

DESTINY, a blackboard system described in |Sriram, 1986], employs different
knowledge based systems at different stages of the design process. It uses a high
level strategy knowledge source to establish the scquence and execution of tasks
(and the choice of which knowledge source to use). DESTINY relics upon an
agenda and uses an inference mechanism to execute the knowledge source with
the highest priority (the first on the agenda).

Vujosevic [Vujosevic et al, 1991] presents a framework for concurrent design
which employs an assumption-based truth maintenance system (ATMS) in
conjunction with a blackboard problem solver. Here, the ATMS is used to create
and maintain relationships between different types of information wuvsed
concurrently. It operates upon specific classes of information (product
descriptions) for design which are manifested as objects representing complex
entities.

A software architecture (HOBS) based on the blackboard model constructs a
hierarchy of knowledge sources [Carter et al, 1991] to coordinate design. The
blackboard mechanism - "Executive" in the architecture - formulates the strategy
to control the knowledge sources and their communication by soliciting bids from
the knowledge sources and selecting which one should next operate. Once a
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knowledge source has contributed, the control mechanism solicits bids from its
children, thereby decomposing the problem. Once the children have appropriately
operated (themselves causing decomposilion), control reverts to higher levels in
the structure and rebidding can commence to identify the next most suitable
knowledge source.

The implemcntations examined above demonstrate the utility of the blackboard
model for communication within frameworks for concurrent design. Complex
control mechanisms are employed to manage the content of the communication
and the coordination of design tasks. Task coordination, particularly, is shown to
be successful in well-understood, specific design domains, but there exists still the
need [Bradley ct al, 1993] to support the decision making process in a way which
is inherently ncutral to the lechnologies employed. This view is supported by
Kroll [Kroll et al, 1991] who suggest that the solution of a configurative design
problem requires a high-level method to represent the design subject in terms
similar to those used to formulate the knowledge. Eppinger [Eppinger, 1991}
suggests that the concurrency of operations at the generic level of design creates
tremendously large and unstructured problems that defy rigorous analysis. To
sustain the concurrent approach, a framework which suppor(s the analysis of
alternative methods and enables the design team to decide which methods are
appropriate is recommended.

Instrumental in coordinating the design activity within a framework for design
Concurrency are:

« a communication surface, e.g. drawn {rom the blackboard model;

= a representation scheme to describe entitics and the design contributors as
methods to invest the entities with values,

The classification of the contributing methods, in terms of their inputs and
outputs, transforms a request, made during the manipulation of a design entity,
inio a search over the whole design space for contributors which can match the
request. The responsibility for choosing a particular contributor lies, principally,
with the manipulator of the design entity. Conirol over the validity (which might
be in relation to the design context) and the sequencing of contributions can be
provided by means of constraints over methods. The representation of constraints
as methods enables the extension of their scope and applicability and would allow
them to intervene - a desirable characteristic according 1o Visser [Visser, 1993] - in
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the direction the design develops. Furthermore, the availability of a product data
searching method provides the opportunity to link the current design with past
designs thus addressing the problem [Beitz ct al, 1991] of integrating different
design solutions.

One advantage of this approach is that the complexity inherent in coordinating the
design activity is transferred into the description of the conlribuling methods and
the specification of the constraints on them. The control mechanism is made
simple and generic: it is required only to perform searches and execute methods.
Iis operation does not depend upon knowledge of the design context, which is
otherwise a difficult issue to resolve |Logan et al, 1991], generically, using
constraint based or truth maintenance approaches. Another advantage of
separating the control of the design's evolution from the framework supporting
concurrency, is that a trace of unresolved problems, solution proposals and their
evaluations can be recorded in a 'neutral' format. This would be useful [Visser,
1993; Gareia et al, 1992} to future problem solving organisation and can provide
some of the necessary constraints for maintaining [Nagy et al, 1992] the design
solulion.

The delegation of conirol, within the Design Engine, to the design methods and
constraints provides the opportunity to develop highly structured (sequential) as
well as more open (concurrent) methodologies for design. As a consequence, the
descriptions of the entities, methods and, particularly, the constraints operating
upon the methods require careful construction.

3.3 Creation and maintenance of the design solution

The generation of a design solution is based upon the synthesis of an initial model
of the artefact and the refinement of this model to achieve the satisfaction of the
initial specifications as well as intermediate constraints arising from the specific
direction the design has taken. To support the design solution the basic
requirements are:

= a set of entities and methods {rom which to build aggregations suitable to
represent the design;

« a mechanism to manage the aggregation of entities and methods by validating
refationships created by the designers;
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« methods (0 maintain the integrity of the emerging solution when existing
parameters are changed, design constraints are modified (relaxed or enforced)

or new entities, parameters and constraints are introduced.

Essential to the creation of the design solution is the choice made of an initial
product description. The 'domain thcory' presented by Andreasen [Andreasen,
1992] emphasises the designers' need to work with many objects of different
types, cach representing different views of the product and utilising models of past
solutions. These can be employed in a 'checklist' like manner and, typically, may
be illustrated with sketches to drive the genecration of an outline solution. Bauert
[Bauert, 93] suggests that the indication of 'why' to usc, or not to use, a particular
solution in the sketches of the designers' notebooks, provides an indication of the
design rationale and can be useful in formulating future design solutions. Brown
{Brown, 19891 and Ullman [Ullman, 1991] consider design history as a good basis
for building an outline initial solution: old designs developed within the company
are an important source ol knowledge for designers.

Some approaches to creating an initial design solution are based upon prescriptive
product models, The formulation of these models relies upon analyses of
components which may be used in design and to which taxonometric
considerations have been applied. Several examples exist: Brandenburg
[Brandenburg, 1992] proposes object-oriented mechanisms to define part structure
and behaviour models; Zhu [Zhu et al, 1993] proposes the employment of a
knowledge-integrated, object-oriented, featurc-bascd product definition model to
support design concurrency. Thornton [Thornton et al, 1993] suggests that the
product model can be divided into components, interfaces and constraints; the
structure of each category is predefined and remains fixed. The same work
recognises that in order to create a commercially viable system, generic interfaces,
generic features and the functionality to allow generic components to be inciuded
as extensions must also be provided.

Prescriptive product models are limited in that the span of available solutions is
constrained by the extent of the paradigms considered in their development.
Models having genecric ulility must be based upon a consideration of all of the
clements which might be encountered in every aspect of design and product
development, or clse a mechanism must be provided which employs a small set of
generic elements to create product descriptions of relevance to the design area
being tackled. A generic product description generation mechanism could be
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applied to the evolution of product descriptions from records of past designs by
providing for the integration of the design history with existing representations. In
the development of gencric design methods presented here, the product
description is based upon generic descriptions of entities and methods and
facilities to aggregate these elements and, appropriately, to incorporate past

designs from a record compiled of designers' actions.

The creation and maintenance of the design solution has been regarded as being
equivalent to a constraint satisfaction problem [Simons, 1970]. In several examples
an initial model of the design is constructed which contains a specification of all
the parameters, the constrainis applying to them and the relationships between
them. Design proceeds through an attempt to satisfy all the constraints set out in
the initial design specification and any additional constraints discovered during
the search for solutions. The classes of design constraints which are examined are:
rule oriented {of type if.. then..), relations oriented (applying to design parameters
and expressed as equations employing equality or incquality operators) or discrete
(for example to restrict a design parameter to a set of values).

The management of constraint satisfaction uses Al tools, of which examples are
truth maintenance systems, non-lincar optimisation algorithms or graph-based
approaches. Banares-Alcantara [Banares-Alcantara, 1991] presents a system which
cmploys an ATMS to identify and examine alternatives and maintain the
dependencies of cquipment and alternative plants during explorations of the
design space. Akagi [Akagi, 1991] prcsents a general design system for ship
preliminary design and power plant selection which is built as an expert system
shell. The system determines the design parameters by following an 'intelligent’
searching procedure of the productions. Pham [Pham et al, 1991] has examined the
utility of ATMS's and suggests that they can support the generation of a design
solution and its variants and the resolution of design constraints by temporarily
changing the design assumptions. ATMS's perform well if the design requirement
is structured as an existing design which is to be maodificd or developed to meet an
extension ol the specification: the efficacy of the method depends heavily upon
the completeness and detail of the initial design and how closely it can be made to
conform with the modified specification.

Young [Young et al, 1991] proposes a system (SPARK) which employs constraint

networks to detect incompatibilities in the design parameters and advises the

designer on improvements which can be made to the design from the perspective
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of the product's life cycle. The SPARK system is shown to be flexible enough to
allow the designer to approach a problem (the design of a printed wiring board)
from a varicty of viewpoints and with incomplete information. A system
described in |[McMahon et al, 1993] employs Petri nets, with dependencies
modelled as constraints along the links between nodes, to propagate changes in
the representation of one part of a design property set to dependent models.

Facilities imbedded in CAD systems (e.g. ICAD, Concept Modeller, STONE Rule)
attempt to satisfy design constraints by firing sequences of productions which
propagate constraints through a network of components. Creation of the sequence
of rules and the ordering of them so that they can be taken in sequence is time
consuming and reduces the range of design problems which may be tackled. Other
systems, e.g. CADET [Thornton ct al, 1993], employ prescriptive product models
to assemble a model of the constraints applying to the design parameters of a
particular solution and employ genetic algorithm techniques [Dasgupta ct al, 1991}
to reduce and optimise the number of effective constraints and enable their
satisfaction,

Logan [Logan et al, 1991} regards ATMS based constraint maintenance as being
restricted Lo the maintenance of dependencies between data items. ATMS's do not
contain knowledge of the context of the design parameters or of the assumptions
made in their derivation. A design problem has no inhcrent structure; rather, it
acquires structure through analysis and solution building. The consistency of the
solution expressed in terms of constraints does not determine contexi: a design
proposal will be inconsistent with its constituents for much of its history as the
designer attempts, with varying success, to reconcile conflicting requirements.
Furthermore, Medland {Medland, 1993] suggests that for ill-structured, incomplete
and evolving problems, the constraint rules and their dependent relationships are
difficult to determine ab initio and may only emerge during problem investigation.
The conclusion offered is that learning processes arc required in order to establish

the relationships of parameters.

Design systems which maintain constraints on parameters and seek to satisfy them
by constraint propagation or through optimisation, depend upon the pre-exisience
ol constraint models of the design solution which encompass all facets of the
solution. Such systems can be applied to routine concurrent design |Moynihan,
1993], but they have little utility in generic design. It would be more appropriate to
iry Lo constrain the design solution by evaluating constraints at two levels: firstly,
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at the design parameter level, via value-oriented consiraints on the methods
determining parameters and on method execution; sccondly, by controlling the
aggregations of design entities through constraints imposed on the relationships
formed between them. Controlling the validity of the design solulion when design
parameters or constraints arc modified, while respecting the design context, can
be achieved only by retracing the designer's actions and determining the
dependencies of constraints through the record of the design history. This method
will be adopted in the framework for concurrency presented here.

3.4 The framework for concurrency: concept to delivery

The following chapters describe a software utility - GUIDE - which provides the
enabling technologies required for the development of the Design Engine
described in section 2.1. GUIDE's development is based upon the concepts
identified above as being [undamental to a framework for concurrency in design.
The aim is to demonstrate the validity of the concepts outlined by delivering the
software utility GUIDE and testing it through application to industrial design and
the business needs of engineering companies.
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4.1 Concepts

A primary function of the Design Enginc is to aid the analysis by designers of a
product requirement to a set of manageable tasks. GUIDE supports the Design
Engine to analyse the design representation requirements to lower levels of
resolution and to match3? them to stereotypical situations for which solutions
exist. GUIDE achieves this through:

» the adoption of a uniform representation structure and

« Dby providing a control mechanism to match solutions to objectives.

A further requirement, stemming from the nature of the design process, is to
conduct this analysis in a unitary manner, provide for regression and facilitate the
co-operation of different levels within an enterprise.

Design rarely starls with well-defined goals [Dixon et al, 1983]. In most cases, a
unique solution may not exist. Different designers may satisfy the requirement in
different ways. The designer's decisions ought to be respected by any
computational tool supplied to aid in the decision making process: the method to
support the design operations must propose resolutions as available options, where
these exist, and allow the designer to decide the best way to tackle a problem.
Furthermore, it should enable the designer to modify constraints and record these
interactions for future reference,

GUIDE must provide a non-prescriptive presentation of options and have the
capacity to manage associations between entities and constraints affecting them.
GUIDE must also incorporate a recording [unction in ils control mechanism so
that the design record can be a part of the product description. Through this
function GUIDE can acquire and contribute design knowledge.

4.2 Knowledge and entity representation in the Design Engine

Design solutions often depend upon the aggregation of well-defined, formal
entities into unique formations. The solutions are not informal; they are
unpredicted, may be upusual and are, at intermediate stages, incomplete. For
design, knowlcdge representation using productions has several drawbacks: the

knowledge has to be very detailed, specific and modular because every possible

320r the designer can design stereotypes which maich the requirement.

The Glasgow Utility for the Integration of Design (GUIDE) il




combination of situations has to be considered; it is difficult to organise heuristic
rules in practice, even though the basic theory of a particular domain may be well
structured; extraction of knowledge from an cxisting design problem for use in
another is not straightforward [Pham et al, 1991] and conflict is managed only
with difficulty and at a cost in production systems.

Design requires deep knowledge representations. 'Ihese provide:

+ explanations of the context of the object domain so that the properties of
stereotypes and their relationships are explicitly defined;

+ separation of the structure of stereotypes from their function;

+ detailed representation of all cause and effect relationships;

« symbolic rather than numerical representations.

IFrame based and semantic network representations generally satisfy these criteria
but, in the design application, have shortcomings in their ability to:

« secure the integrity of the stereotypes they describe in the presence of change;

« safeguard against redundancy of the data which depend upon evolving
definitions;

» preserve the operational integrity of constraints on data, properties or
definitions which depend upon (hierarchically) lower level, entitics which
evolve;

+ operate in a distributed and dynamic environment;

« Interact with conventional information systems such as relational databases.

The current representation mechanisms are the fruits of mature thought and
considerable expertise has been invested in them. A solution which combines
elements of the existing schemata and employs additional facilities to overcome
the shortcomings identified is appropriate. Complex, focuscd representations
frequently require elaborate control mechanisms to mmanage them and lack the
capacity for futurc cxtension. Simple, generic representations on the other hand,
are more casily controlled but require discipline in their application. Design
entities and activities being of a disciplined nature, if kept modular, would be
better serviced by a unitary approach.

The Glasgow Utility for the lntegration of Design employs a knowledge
representation scheme based upon Minsky's [Minsky, 19751 {rame structures. The
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basic frame concept is implemented using a conventional relational database
system. Relationship management employs network techniques and
communicalion capacities, such as message passing, are included in the
representations. Operations on the knowledge?? are managed by control functions
which can also cause data transformations. The capacity to aggregate generic,
modularly delined knowledge representations to create higher level, formally
constructed unique selutions or part solutions is a salient feature of GUIDE.

4.2.1 Elements

The knowledge representation scheme adopted for GUIDE involves siructures,
atoms and methods as its elements. These elements can be loosely compared with
the traditional frame elements, namely frames, slots and deamons respectively.
Additional characteristics have been invested into the elements fo provide for their
manipulation and control. This is the main point of departure from the (raditional
frame based approach,

4.2.1,1 Structures and atoms

The basic clement available within GUIDE for entity representation is the
structure, which is similar to a frame. Structuies are the basic building blocks for
stereotypes relevant to design or other activities. Structures are organised into
families. This allows for different classifications of the structures to be built - e.g.
to group geomeiric stereotypes into one family - and enables GUIDE to filter their
usc by designers - e.g. to restrict the span of the available stereotypes at a
particular stage of design. In certain instances, GUIDE employs this classification
facility to adjust its behaviour: structures belonging to either the ACTIVITY or
RELATIONSHIP families are treated differently to all other types; this spceial
treatment is explained in section 4.2.1.5.

Structures contain atoms in the way that frames have slots. Atoms can be
associated with a value or sel of values relating (o physical quantities. Aloms may
serve as pointers to other stereotypes which can be GUIDE structures or other
external aggregations, such as those empioyed by geometric modellers to describe
graphical elements. The range of possible values, GUIDE structures or exlernal

aggregations which can be associated with atoms is shown in table 3.

$3stcuctured design entities and information generation processes.
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Atom T'ype Related Entity

value integer number

value double precision real number

value character string

valuc array ol intcper numbers

value arcay of double precision real numbers

value array of character strings

value array of 3 real numbers corresponding to the normalised components of a direclion
vector

value array of 9 real numbers corresponding to the definition of a planc

pointer geametric element

pointer penerd] GUIDE structure

pointer RELATIONSHIP GUIDE structure

pointer ACTIVITY GUIDE structure

value mairix of integer numbers

value matrix of doubie precision teal numbers

value matrix of character strings

Tabkle 3: Atom classification scheme

Figure 14 provides an illustrative example of a structure and its associated atoms.
In contrast with traditional object oriented representations, implying attributes,
atoms defined using GUIDE are attached to structures externally through the
specification of explicit relationships34. This technique allows atoms to be
associated with several structures simultancously and leads to economy in the
formulation of representations.

With this technique:

« atoms can be associated with structures more than once;

» atoms can be added to or abstracited from a structure so as 1o evolve a new
steucture representation;

« the association of atoms wilh several structures define relationships between
them.

3D etails of the relationships used in GUIDE to define associations between the clemenis it cemploys are
given in section 4.2.1.
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Figure 14 : Layout of a GUIDE structure
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4.2.1.2 Characteristics of atoms

The definition of an atom includes information about default values or methods to
supply them with initial values and the methods and constraints which may
influence their investment with particular values, i.e. their instantiation. Figure 15

summarises an atom's characteristics.

Has a value or an associated entity

Has a default value or associations

—» May have associated constraints

The value may be persistent (stored) or temporary {broadcast)

—» The atom instance value is determined using the atom scurce indicator
May be shared between structures and used to define links between them
Value integrity is safeguarded through "action on change' indicator

-~ ® Gan be used in distributed, concurrent environments

Record is kept of its instantiation and all the operations upon It

Has units, and the instance value automatically undergoes conversions to
the reference system of units

Figure 15 : Characteristics of afoms

Initial settings can be provided to atomns through:

e g default value,

« aset or list of default values,

» acalculation (part of « method) which yiclds values, or
« the value instantiating an atom within GUIDE.

The provision of initial secitings is not exclusive to atoms taking values; initial

associations can be defined for pointer atoms. The search for initial values is

performed consistently, irrespectively of the atom type.
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Constraints can be specified on the values instantiating atoms, but the assignment
of constraints to atoms is not mandatory. The association of constraints with
atoms is specified using a GUIDE rclationship (section 5.2.1) extcrnally to the
atom description. Constraints are GUIDE methods which are invoked every time a
change of the stated value of the atom takes place. They can be used to validate
the instantiation or cause concomitant actions defined within the constraint, Figure
16 provides two illustrative examples.

The structure in figure 16{a) provides the definition of a line segment. It has three
atoms: two relate to the line start and end points and are expressed as structures
and one which is the line length. The constraints on this line structure might be as
follows:

» a constraint on the points to ensure that they are not coincident and,
subsequently, to calculate the line length and set the appropriate atom value;

+ a constraint on the length value to check that the proposed value has been
calculated using the co-ordinates of the end points rather than been input by
the user?s.

The structure in figure 16(b) provides the definition of a move on a given curve. It
has atoms to define the move limit points?9, the curve to be followed, the location
of a point moving along the curve (current point). 1t is assumed that a number of
linear moves will be used to approximate the motion along the curve: a tolerance
value is included in the structure definition. The structure is initialised in the state
where the limit points and the intermediate location are all coincident. A move is
effected by a change in the co-ordinates of either of the limit points,

3s‘ikliternatively, the position of P2 could have been calculated using P1, L and a dircetion vector. In this
case the constraiuts should be used to check that L0 and that P2 has been calculated using P, L and a
vector,

36Labe]]ing of the limit points as 'start’ or 'end’ is intentionally avoided. Motion can Lake place in either
dircclion between the iwo limit points,
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Figure 16 : Use of atom constrainis lo cause concomitunt actions
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Constraints associated with the limit points and the intermediate location provide

the mechanism for the move. The constraints are defined as follows:

« a conslraini on the limit points to check that the new co-ordinate location (the
destination) lies on the curve and, subsequently, to set the co-ordinates of the
point moving along the curve to the destination co-ordinates 37;

« a constraint on the point moving along the curve 1o calculate the deviation of
the straight move from the curve and, if found to be greater than the specified
tolerance, calculate a valid position for the point on the curve by iteration®.

The instantiation of an atom is derived by the specification of the afom source. The
control mechanism of GUIDE seeks a value for a particular atom from the user or
a specified facilily. Table 4 provides a list of the possible atom source options
which can be specified in the atom definition.

Atom Source GUIDE Response

User Value must be directly input by the user of GUIDE,

System Ignore any user interaction and obtain the atom value using the mapping indicator
{described below) or any atom instances of matching type.

Method Calculate the value using one of the appropriate methods only.

Any Maltch the atom value definition fo any other atom value in the system or to the
output of any method of a similar specification.

Frequent .| Use the most popular past choice for determining the atom value.

Rare Use the least frequent past choice for deiermining the atom value.

Table 4: Atom source options

Atoms are characterised as being siored or broadcast. The value of broadcast atoms
is only maintained for a limited time and is eventually discarded. Stored atoms
become infinitely persistent once they have been committed and cannot be
deleted. Prior to their commitment, stored atoms behave as if broadcasi and can be
modified; after commitment, they can be updated by the generation of a new
version, but the old one is kept. Associated with every atom are its physical
mapping and a mapping method. These define the physical location where atom

37The constraint is designed to execute recursively until the point moving on the curve and the limit
point are coincident,

33The constrains calculates the mid-point between the curreni position and the destination, projects it

onto the curve and sets the destination point to this. The constraint check recurses until a suitable co-
ordinate location is established and this causes iteration.
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instances are stored and from which they can be reirieved and the method to
perform these operations®.

Atoms are allowed to share physical locations. In this way different atoms
associated with different structures may be implicitly linked through their
common value. The sharing of physical locations can be used to conflate data with
linked engineering significance. For example, the atom describing the diameter of
a hole in a2 component can share the same physical mapping location with the
atom describing the diameter of the tool required to form it. Instantiation of either
the tool choice or hole size will affect the hole and tool structures. This sharing of
physical mapping is an implicit constraint on the atom definitions.

Broadcast or stored but uncommitted atoms which have been invested with values
can be modified either by their creator or another user of GUIDE. The
modification of atom values depends upon the acfion on change indicator in the
atom definition. The options currently supported are described in table 5.

Action Response

Ignore The atom value can be changed provided that the
new value has been validated by execution of all
CONstraints upon it.

Warn The atom value can be changed provided it has
been validated and notification has been sent to
all the atoms and structures which reference it;
ihis irplies that the value change will depend
upon (he successful update of other atoms and
structures which depend upon it.

Refer The atom value cannot be changed automatically;
following its successful validation, the original
value creator is notified and asked to accept or
reject the update, If the modification requester is
the original creator the change is effected
immediately.

Reject The atomn value canaot be changed under any
circumstances.

Table 5: Actions relating to atom value change

The definition of an atom is madc complete when the units of its value are
specified. Systems of units can be defined independently of the atom definitions.
Definitions of units include information on:

39A detailed description of the atom instance mapping opcration is given in section 5.2.2,
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= the type of unit
+ the conversion algorithm to another type of unit {e.g. from millimetres to

inches).

This unit conversion mechanism is used by GUIDE to maintain consistency of

values across various systems of units.
4.2.1.3 Characteristics of structures

A structure's behaviour on instantiation depends upon the dynamics of the atoms it
references. Pointer atoms associate one structure with a variety of others, the
associations being controlled by constraints imposed upon the pointers.
Hierarchical knowledge representations can be formed by association of a parent
structure with a number of others, the children. Whilst structurcs can be freely
associated, the links between them are tightly conirolled. Figure 17 provides an
illustrative example of a structure's definition characieristics.

The structure illustrated represents a component within a physical assembly. It
references atoms which are attributes of the component such as ifs part number,
the engineering change level and associated documentation. The latter is a pointer
atom used to link various documents such as conformance standards or paper
drawings to the component. No restriction 1s placed on the number of documents
which can be attached to an atom. A constraint can be associated with a pointer
atom to ensure that links formed are with the correct type of structure e.g. with a
drawing or a specification document. The component structure has two more
structures associated with it in the illustration. One attaches the material to the
component; the other identifies the responsible engineer. These structures are
children of the component structure; furthermore, only structures of the required
type can be linked with the component siructure at any instance,

This convention provides for the use of children structures mainly as
representation of knowledge about the parent structure which is always true and
predictable: a part will always be made out of a given material and by a
responsible engineer. In contrast, the part may have some documentation such as
drawings or standards asscociated with it through pointer atoms. The convention is
flexible and extendible. It is flexible becausc it allows the designer to assess the
suitability of associations formed: it is extendible because the number and type of
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agsociations that might be formed are determined by means of constraints on the

pointer atoms which form them.
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Structures may be freely associated and GUIDE provides control mechanisms to
manage the associations. As an illustration, the structure describing a component
in figure 17 may be associated with any number of component structures: this
allows the component structure to serve also as a representation of the assembly
when so required. This characteristic of GUIDE structures allows them to be
employed cyelically and this facility is a departure f{rom ocbject oriented
methodologies. Associations of this nature may be described either by the use of
pointer atoms or, explicitly, through parent/child relationships. The former method
is easier to manage and manipulate; the latter requires additional controls and
restraints to be defined in addition to the rclationship® to safeguard the integrity
of the construction. The use of poorly constructed structures employing
parent/child rclationships can be dangerous; the employment of well constructed

and aptly constrained structures can be beneficial and, representationally,
succinct.

4,2.1.4 Derived structures and atoms

In designing, entities occur which are derived {rom others, but have a different
name or are relevant only under peculiar circumstances. They represent a
specialisation of existing knowledge. Their representation is derived from the
characteristics of existing entities# with some modifications (e.g. in their name)
or extensions such as the association of additional constraints.

The principle of specialisation or sub-typing is a salicnt characteristic of frame
based and object oriented methodologies. Specialised entity representations are
accommodated and managed by GUIDE as derived structures and atoms. Derived
structures possess the characteristics of the structure which provides them with
their definition, but may have a different name and belong to a separate family.
Derived forms inherit the contents and associations of their root®?: the atoms,

40Consider for cxample, the case when a structure can be an assembly as well as a componernt by having
a number of children of the same type as itsclf: the representation should have constraints associated with
it to cnable an evaluation of the capacity in which the representation is being used, i.e. whether it is a
component or an assembly, and disallow the association of children to it if the former is true. While it is
possible to define such a constraint, it is its provision which is mandatory to maiotain the structure's
integrity,

411 this conlext entitics are used to denote frames or slots in frame based representations and classes or
types in abject oriented methodologies.

25 roou structure is the representational parent of a derived structure. It is possible 1o have root
structures which are of derived form.
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children structures and constraints of the roet structure are inherited by the

derived (orm.

The derived forms can have additional elements associated with them. Table 6

provides a summary of the representational characteristics of derived structures.

Characteristic Behaviour

Name May be different to the name of the rool structure

Family May belong to a family different to the one of the root structure

Atoms Inherits all the atoms of the root structure; additional atoms can be associated
with the derived structure

Childcen [nherits all the children associated wilh the roat structure; additional ehijldren

structures structures can be associated with the detived form

Coupstraints Inherits ali the constraints of the root structure; additional constraints may be

specified for the derived form. Constraints are executed on the derived form first,
then on its roal. If the root structure is a derived form of another, then the
constraint execution is propapated upwards through the hierarchy.

Table 6: Characleristics of derived structures.

Derived atoms are deflined similarly (o derived struciures. They inherit all of the

characteristics of their root, including any knowledge for investing them with

values, Table 7 summarises their representational characteristics.

Characteristic Behaviour

Name May be different to that of the root atom

Disposition Same as the root alom

Source Same as the root atom

Initial value May be different to that of the roat atom; if nene specified for the derived atom
provider explicitly, the roat atom Source gets inherited

Mapping Same as the root atom

Sharing The derived atom is not linked to the structures which may be sharing its root

Action on change

Same as the root atom

Units

Same as the root atom

Constraints

Inherits any constraints associated with its root. Additional constraints may be
associated with the derived form. Constraints are executed for the derived atom
first, then for its root; constrainl execution is propagated upwards through the
atam delinition hicrarchy.

Table 7: Characteristics of derived atoms.

Derived structures and atoms provide economy in the construction of
representations.
Duplication is avoided while the integrity of the representations is maintained.
Root structures and atoms may

Derived forms are GUIDE elements in their own right.

The Glasgew Utility for the Integration of Design (GUIDE)

themselves be derived forms: the definition
hierarchies are automatically maintained and the ability is provided for the

ot —— bTe e

R Y




individual descriptions to evolve over time. The derivation of elements is
illustrated in figure 18,
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Figure 18 : Knowledge specialisation or entity sublyping

In feature based design representations, simple geometric definitions can be
combined to form relevant higher level constructions. The definition of a
counterbore shape using two simple cylindrical forms is shown in figure 18. The
counterbore is split into the bored part and the hole; additional constraints to
ensure contiguity and collinearity of the construction are associated either with the
counterbore siructure or with its components which are children structures. The
bore and hole definitions make reference to attributes derived from a canonical
cylinder. There arc several advantages: the derived attributes are entities in their
own right and inherit the characteristics of their parent definitions; furthermore,
higher level constructions are linked implicitly by lower level inter-dependencies.
The creation of a counterbore causes the concomitant instantiation of the
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geometric form used to describe il; any associations built into the geometrical
definitions are imparted to any of their derived forms.

4.2.1.5 Activity and rclationship structures

Activity structures in GUIDE arc defined as collections of evenis. Events are
associated with operations performed on structures, atoms and methods within
GUIDE such as, for example, the setting of defaults values, the association of
children structures with their parent, the modification of atom values and the
execution of constraints. Structures and atoms provide the knowledge associated
with a design or a particular aspect of it. The design record*? describes the route
followed in manipulating the knowledge and generating the design solution.
Taken together, they represent the product descriptions.

Activities are distinguished from other structures through their membership of a

particular family and the mandatory association of three atoms. Tablc 8 provides
the definition.

Name Atom Function Constraint
Value
Type

Requester String This is the person responsible for Must be persons empowered
raising the requirement for the to assign tasks to others or
particular activity. Upon compietion of themselves.
the relevant activity this is the person
which will be notified of the status of it
and will respond accordingly by
accepting or rejecting the final
autcomes,

Actor String This is the numed person chosen, by the Usually & subordinate of the
requester, to undertake the activity, A requester or a subcontractor
special case resulls when the requester empowered to accupt requests
is also the actor: the resulting activity is and will usually be chosen
considered as private and the GUIDE from a list compiled as the
control mechanism treats it separately result of the specification of
from the rest of the activities in the the requester,
system.

Reason String A description of what is required and Restrictions may apply to the

array what the goals, objectives or {unctional format but, usually, it will
constraints might be. resernble a specification
document.

Table 8: Description of mandatory atoms for activity structures.

e design record js constitated from activities and the relationships of them defermined during design.
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Any number or type of GUIDE structures and atoms can be associated with
activities. Activitics can be dcfined in terms of children activities defining, ab
Initio, the processes of a particular task: consiraints on the activities can be used to
assign priorities to the child activities and therefore, to dictate the timing and flow
of operations. Highly sequential or simultaneous methodologies can be developed

by these means. Figure 19 illustrates the concept of an activity within GUIDE,

Activity 1 Activity 2

.....................................................................

Event Sequence:

Instantiations

Child activity 1
. Events:
Executions Instantiations
Relationship
. Child activity 2
Validations l Everts: |

| Instantiations | S /
| o links 1

Sub-activities _——'—*—""T*'

Note: Activity 2 may ba engaged simultaneousty with activity 1 or its children,

Figure 19 : Concept of an activity within GUIDE

Activities can be children of other GUIDE structures. This [acilily enables tasks (o
be performed organically with the manipulation of design enlitics. One application
of this facility is the use made by GUIDE to pass requests between designers: for
cxample, an attempt by one designer to modify an atom value instantiated by
another designer generates an activity to manage the modification of the instance
as a child of the current activity. The child activity is assigned to the individual
responsible for creating the atom instance originally. All children activities must

be completed before the activity requesting them can itself be declared complete.
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Relationships are also special structures in GUIDE which define explicit links
between structures and atoms. Logically, relationships should reference at least
two GUIDE elements which provide the left and right sides of the relationship.
The elements can be other GUIDE structures or atoms. Structurcs are associated
with the relationship structure as children. Atoms can be pointers or take values.

Relationship structures define associations between the GUIDE clements they
reference. Constraints on the elements of a relationship may validate the proposed
associations or narrow the scope of the relationship. Relationships may take other
relationships as their children which enables the constructlion of a relationship tree.
The creation of a relationship can be validated by the association of a constraint
with the relationship structure. Relationships can be dissolved and the disposal of
the elements linked through the relationship structure is controlled by a constraint:
whether or not the elements in the relationship are deleted as well, depends upon
the definition of this constraint.

Relationship structures can represent one fo one, one (0 many, many to one and many
to many associations and link diverse data forms within GUIDE elements, The
advantage of employing structures to describe activities and relationships is that
the knowledge schema - the representational capabilities of structures and atoms -
is retained and this reduces demands on the control mechanism.

4,2.1.6 Methods and method data

GUIDE associates sets of calculations or constraints with design entities and their
attributes through the provision of mefhods or programmable procedures?4,
Associated with methods arc the values which are inputs to and outputs [rom the
algorithms involved. Method inputs and owtputs can be linked to atoms and, in
conjunction with the atom source definition, provide atoms with sets of possible
values during instantiation.

Any soitware tool can be the basis of a method provided that its inputs and
outpuls can be identified and defined unequivocally. A method may incorporate
any constraints which are incurred in its operation. T'or example, a finitc element
(FE) analyser can be described in terms of the clemeni geometry and

characteristics, boundary conditions and load cases it cmploys represented as

44ro draw a parallel with high-level programming languages, methods can be compared to subroutines
or functions: they arc invoked under certain conditions, have data passed to them ihrough specific
variables and return the results of the computations in another set of variables.
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inputs, and in terms of the stress and strain values calculated as outputs. The
representation may include the condition that the FE method can only be executed
as a consequence of a change effected either by the execution of a FE pre-
processor or an alteration in the material properties or to the loading conditions

uscd in a particular component analysis.

Methods are explicitly bound to atom definitions through their inputs and outputs.
For example, an atom may be associated with the ouiput of a method which
instantiates il. This concept is illustrated in figure 20.

Atom Atom Atom
h A 3
T I A
Method Method Method Method Method
Qutput Qutput Qutput Qutput Qutput
X A A 3 3
4
Method Method Method
A K A A
Method Method Method
input Input Input
1

Atom
Instance

Figure 20 : Association of atoms with method data

Associations may also be delined between method inputs and atoms. The

significance is twofold:

+ the method execution is made dependent and conditional upon the investment

of a particular atom with values;
+ an implicit relationship is formed between the atoms involved: the input atoms

which invoke the method are the parents of the calculated atoms.

The former is significant in terms of the {low of operations conducted using
GUIDE: the execution of a method may cause GUIDE to request the instantiation
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of atoms it requires as inputs in advance of the execution of the actual method.
The latter is significant in the presence of change: any change in the value of
parent atoms must be followed by a recalculation of their dependants or,
alternatively, the dissociation of dependants and parents and their resetting to
initial (possibly default) values.

Direct links can also be formed betwecen method inputs and outputs, as shown in
figure 20. This type of association can be used to link methods together to create
calculation cascades. A special case of this cascade occurs whenever a method
input is linked to one of the same method's outputs: method iteration is effected.

Data associated with methods and atoms must be similarly represented. However,
method data are value-oriented; their definition needs only to incorporale the
relevant information (table 9).

Characteristic Function

Type Integers, reals, strings and arrays of them. Pointer types are not supported.

Nature ‘This deniotes whether the data are inputs to or outpiuts from methods.

Mapping This provides initial values. It can be used to bind data Lo GUIDE atoms. In
certain instances, it can cause the execution of a method to retrieve possible
default valucs from specific locations (e.g. a database).

Table 9: Characteristics of method data

Methods may have several outputs which can, in turn, be associated with a
number of different atoms. The execution of a particular method to furnish a set of
values for a particular atom may, therefore, cause concomitant instantiations.
Figure 21 illustrates the concept.

The request to generate a value for the diameter of a hole causes the exccution of
a method to aid in the selection of a tool to form it: the method provides as output
a value for the hole diameter, sets the particular tool characteristics and defines
the manufacturing process to be employed. The method depends upon the
provision by anothier structure of the material name for the component in which
the hole is to be machined. The instantiation results in the material type atom
being the parent of the hole diameter which in turn is the parent of the tool
diameter, length and manufacturing process instances. The ability to associate
method inputs and outputs with atoms is a powerful mechanism which can be

used to generate and link several design paramecters in a single operation. It
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provides one of the fundamental mechanisms available within GUIDE for the

creation of interrelated values,

Structure| Blind hole Structure Dnill
Family Features Family Tools
Atoms |HD1 |Diameter i« Atoms |oDt | Diameter
HOP |Depth > ppL |Length
TYPE | Hole B
{output)
....................... {output)
' Requestto create
. instance for TYPE i

: drivas method :
: “ooling salection” Structure [Manuf, operation

* Input Tl is supplied : Family | Machining
. by the user.

Atoms |OPNA] Name
Y A

¥ -

[Method | Tooling selection |
1 T
{input} {input)

— Atom | Material type

..............................

Part of “Material" structure :
: (not shown for clarity) :

.............................

Figure 21 : Multiple instantiations derived from a single method

Constraints receive values which they proceed to validate. In essence, they have a
single input variable and provide a single output which is used to determine
whether the validation was successful or not; they can be represented in GUIDE as
methods. Constraints are traditionally employed in a passive role, limiting a
paramcter to a range of possible values. In GUIDE, constraints arc represented as
active methods. The constraining method may be designed to incorporate a
consequential action part, similarly to a rule in a production. For example, a
passive constraint may be used during the process of selecting the set of possible
tools for a particular shape to determine whether or not a process planning option
has been chosen. An active constraint can detect that a process plan does not cxist,
cause its generation and subsequently allow the tooling sclection process to

continue. Constraints may invoke methods or instantiate atoms and structures as a
result of their application.
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The method definition in GUIDE maintains its validity irrespective of whether or
not the output values it provides instantiatc atoms. The function of methods is

specified in their association with other GUIDE clements. Table 10 provides a
description of the asseciations and their effects.

Type Associates Using
With
Method Atom An explicil relationship between the alom and the methed's inputs or

outputs as well as an implicit relationship beiween the method data
with (he mnethod itsell.

Consiraint Atom An explicit relationship between the atom and the method. The
method input definitions are used to match the value to be audited to
the appropriale data.

Metlied or Stracture An explicit relationship between the structure and the methed,
constraint
Meihod Method An explicil associalion of one method's input dala with the ouipui

values of another, or with itself to cause reearsion; the methods are
implicitly linkcd.

Constraint Method An explicit relationship between methods.

Table 10: Mechanism jfor association of methads with other GUIDE elements

The provision of an external relationship mechanism enables the definition of
non-exclusive and noun-prescriptive associations between GUIDE clements, For
example, it enables several methods to be associated with a particular atom;
furthermore, it allows several atoms to reference a particular methed, thereby
leading to more economical descriptions. The opportunity to define generic as
well as specific techniques for the determination of values for atoms® is also
provided. Table 11 provides a classification of methods within GUIDE according
to the type of operation which they support#.

The definition of methods is complemented by information on their physical tppe®
and physical location to enable GUIDE to invoke a method by the appropriate
mechanism and to facilitate distributed*® operation,

45'Phis is a substantial point of departure from the way methods or daemons are employed in frame based
or object oriented representations; in these, the methods are firmly bound to frames or classes
respectively. Pacticularly in the latier, the provision of a method within a class enables the definition of
objects 10 be constracd.

46The significance of the funciion of the particular methods and constraints within GUIDE is detailed in
the scction deseribing the control mechanisms (4.3).

47This is used to determine how they are to be invoked and is dependent upon ihie specific language of
the facilities which are linked to them; details arc given in scetion 5.2.1.

481n 1his sense, referring to an environment comprising multiple, distributed computational facilities.
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Method Type Operates Upon Function

Method Atom Supply one or more values during atom instantiation,

Constraint Atom Validate the set of values associaled with an instance of an
atom.,

Meihod Atom Supply cne or a set of initial values 10 an atom.

Conslraint Structure Determine if the structure selected is appropriate at the
patticular stage in the design.

Method Structure Supply initial values t¢ one or more atoms referenced by
the structure and create links between the structure and any
of its children structures.

Method Siructure Perform operations rejating to the structure as a whole; the
values of all the aloms and pointers to the children or
linked structures are made avallable to it. This method can
be applied as a constraint to validate the general struclure
by checking multiple clements of it simultanecusly.

Constraint Structure ‘I'est the structure instance for compleicness.

Melhod Structure Cause, upon structure completion, any additional actions fo
be performed.

Constraint Method Determine the appropriateness of the method selected for
execulion af the present stage in the desisn,

Database query Structure or atom Retrieve from & database sysiem values which can be used
in the instantiation of structures or atoms, or for the
specification of initial values.

Table 11: Classification of GUIDE methods according to their function

The specilication of methods and the uniform association of methods with
structures, atoms and other methods is the basis for GUIDE operations and its
overall conirol function.

4.3 Control mechanisms

The investment of siructures and atoms with valucs is the basic aim of GUIDE
operations. Values are socught {or atoms and this operation causes the execution of
methods and constraints appropriately to generate and validate these values. The
acceptance of a value can cause other values or atoms to be instantiated, possibly
by recursion.

Activity structures provide for the aggregation of operations which refer to
instantiations or have been caused as a consequence of them. The sequence of
events within an activity is associated with particular data: a record taken of these
can facilitate the retrospective analysis of the conslituent events and of
knowledge. This also facilitates the [ormalisation of generic mecthodologies for
dealing with the same or similar type of problem. The generation of a design
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record is fundamentally linked with the process of instantiation: events are thereby

made organic to the processes of instantiation and recording.

Activities may be initiated freely by designers and involve the seleclion of a
definition from a list of and its investment with values. Activities may be assigned
by an authorised individual, the requester, to another who is qualified to accept
the responsibility, the actor. The definition of the requester/actor combination can
be controlled through a constraint placed on the activity or by a method associated
with the responsible atom providing a list of options during instantialion. The
method can acquire the value assigned to the reguester atom and compile a list ol
actors which the requester can assign tasks. Figure 22 illustrates the initiation of
an activity. It is possible to assign group values to the actor atom: this enables the
association of a specified group or subcontractor with the activity. Individuals
within the group may then contribute to the activity.

Value : Sourced from system

Structure | Reqguest for engineering change
Family Activity « » y:;ggg:eﬁet
Atoms |REQ Requestor List of employees
RESP Responsible “*—individuals |
REASON | Reason Egpgzisfggrm
PARTAFF| Parts affected ‘I eq
= (polnter) (DOimef)-l
y
Structure Assembly Structure| EC Notice
Family Parts Family | Document
Atoms PN | Part number Atoms

EC | Change level

NOTE: These paris will belong to anather activily

Figure 22: Initiation of an activity

Initiation of the engineering change request involves the requester choosing the
structure and instantiating its atoms. The instantiation of the responsible atom
causes GUIDE to invoke a method which produces a list of company employees
capable of undertaking the task. The specification for the change is attached to the
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activity structure via a pointer atom. Finally, a structure representing the
component to be changed is attached to the activity structure as a child.
Completion of the instantiation cffects the activity and communicates the request
to the actor.

Generally, activity initiation involves:

» the allocation of an area to store the record of the events which constitute the
activity;

« the notification of the activity 1o a central register;

« the dispatch of the request to the actor.

The register contains information on the status of the activily and associated
data*?; the options for the status value are listed in table 12.

Status Description

Requested The activity has been initiated, bul no operations
have been conducted. The actor has been notified.

Open Operations are being conducted.

Suspended QOperations have been suspended.

Closed The individual responsible has completed the

activity and returned to the requester for
verification. The requester can accept that the
activity is completed or re-open it.

Committed The requester has verified the completeness of
the activity. The activity record is complete and
cannot be re-opened or changed,

Table 12: Activity states

Only activities which have the status of reguested or suspended may be sclected
and the responsible individual3® alone is allowed to engage the activity. Activities
cannot be opened by more than one individual simullaneously and ap individual

may only work on one activity al any instant.

Closed activities cannot be reopened except by the requester who must inform the

actor of the action. When an activity is suspended the work which has been

19This associated information periaing to the way the activity record is stored and is discussed in detail in
chapter 5.

500y ane individual in the responsible growp.
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completed is saved in tcmporary storage. Upon resumption of the activity, the
results of the work are re-loaded.

4.3.1 Instantiation

The instantiation of structures and atoms is performed in three, often contiguous,

stages: prepare, edit and commit. Figure 23 is a schematic of the process.

Prepare Edit Commit
Retrieve element Modiify instance Pemanently store
GUIDE definiti if i instance values and
element inition, periorm re-calculate them

requisite chacks and

invoke concomitant
establish initial values

and validate new actions

instance

Figure 23 : Stages of element instantiations in GUIDE

While the flow of the operations in the instantiation of aloms and structures is
specific to their definition, this scheme is applied to both cases. During the
preparation stage the element definition is retrieved® and invested with initial
values. Modifications to the value or content of the atoms and structures
respectively are performed during the editing stage. The instantiated elements are
written to permanent storage at the commit stage: this prevents any further
modification of the values referenced by the elements,

Instantiation may be initiated by a request to operate on a structure or implicitly
by an operation upon an atom referenced by a structure, Figure 24 illustrates this
process within GUIDE. The operation commences with the compilation of a list
consisting of all the structure instances within the current activity instance. The
user of GUIDE may choose to work with an existing structure® within the current

activity, or to create a new instance of it.

51 description of the repository storing GUIDE element definitions is detailed in section 5.2,

520111y structures which have been preparced but not yet committed are allowed.,
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Figure 24 : Initiating an instantiation

An indirect technique to cause the instantiation of a structure is to choose to
instantiate an atom associated with it. A list of atoms within the current activity is
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compiled and, upon a particular selection, the list of structures associated with the
given atom is generated. Alternatively, the choice to creatc a new atom instance
can be made; this generates a list of the structure definitions which reference the
given atom and, upon selection of an option, the structure is preparcd for

instantiation.

The conirol procedure for structure or atom instantiation permits the selection
either of element definitions or of prepared elements respectively to create new or
modify existing data. Elements which have been committed are excluded to
preserve the integrity of the referenced values and descriptions which depend
upon them.

GUIDE permits the creation of 4 new version of committed elements through the
provision of a copy function. This involves the generation of an exact replica of a
committed element or structure, the receiver, using values taken from a donor. The
receivers are added (o the current activity as editable entities. The copy operation
is not restricted to stored elements: duplicates of editable (uncommitted) struclures
and atoms can be made routinely. The copies are always editable irrespective of
the state of the source elements. The flow of the copying process is illustrated in
figure 25,

The search for commitled clement instances may be restricted to the current
activity or be expanded to all external activities which might be accessed by the
individual. The choice of an instance from an external activity requires that a link
be made between the activitics involved through the GUIDE control mechanism.
The record of the current activity contains the relationship between the atoms of
the copied instance with their source by default; a record to indicate the
dependency of a set of values (o elements within the external activity is appended
to it. The creation of the two links causes a bi-directional dependency: the
receiving elements are considered to be children of their donors and their
modification is subject to the appropriate restrictions; modification of the donating
elements causes either a concomitant change in the values of their copies or &
dissociation of the activities involved.,
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Figure 25 : Creation of a new version of a structure instance
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GUIDE secarches the definition of the element, including its associations, to
instantiate consistently and repeatably; its behaviour is determined by the
particular definitions employed including branching if necessary. For instance, a
completely unconstrained structure will always be prepared by GUIDE: any
constraints upon it must be defined externally. The performance of any associated
actions can be facilitated through the, predictable, constraint execution. The
constraint can be coded explicitly to request, for example, the instantiation of
another element or the execution of a particular method. Consequently, it is
difficult to predict the duration or extent of any of the thre¢ phases of instantiation
(figure 23).

The preparation phase can be used to generate a complete set of elements which
can be committed without interactive editing of atoms or structures by the user,
This mode of operation is appropriate for the instantiation of elements using black
box53 techniques. Alternatively, the editing phase can be used to instantiate the
atoms and structures, thereby requiring the minimum amount of work to be done
at the preparation stage.

The capacity to aiter the flow of operations during instantiation is facilitated
through the provision of suitable breakpoints within the prepare, edit and commit
phases. In order best to capitalise on this capacity a thorough understanding of the
conceptual flow of operations is essential. The following sections describe the

salient features of these operations.
4.3.2 Element preparation

Element preparation consists of the generation of a new instance which is invested
with initial values or dependent clements. The designer can cither accept or reject
the instantiated vulues. Structure and atom instances can be deleted provided that
the instances are in an editable state. Furthermore, this editing phase can be used
directly to ascertain the appropriateness of a given definition at the current stage
of the overali design process.

53These techniques cxpose only the inpuls and end resuits of a process; the process internal
characteristics are irrelevant and hidden away, as if a black box,
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3.3.2.1 Structure preparation

The emphasis during siructure preparation is in providing a framework for the
atoms and child structures associated with it. Atom preparation concentrates upon
the provision of valucs and their association with appropriate elements and is
elaborate by nature and takes place within the context of structure preparation.
Atlom preparation is a recursive sub-process controlled entirely by siructure
preparation and cannot be performed in isolation. Figure 26 provides an
illustration of the flow of operations during structure preparation.

Structure instantiation begins with a search for applicable constraints® on the
structure to verify its appropriateness in the current stage of design. The execution
of the constraint determines whether GUIDE will proceed with the preparation of
the structure. If the constraints succeed or are not defined, preparation proceeds to
the next step. The minimum output condition this constraint returns is true or
false. The pre-preparation constraint can be used to perform concomitant actions
cither by invoking one or more methods ilself or by having, associated with its
delinition, a number of inputs ta it,

Of particular importance are actions which can be requested of GUIDE at this
stage. I'or example, a constraint may explicitly request the instantiation of another
structure by invoking3 the relevant GUIDE utility. In this case, preparation of the
current structure is temporarily suspended and GUIDE performs the instantiation
of the one requested. Upon completion, GUIDE resumes with the operations
appropriale to the previous structure. There being no limits on the depth of
nesting, the execution of a single constraint can cause a considerable number of
associated instantiations.

Following the structure preparation constraint check, GUIDE retrieves the
structure and establishes the identity of atoms and children structures associated
with it. The dcfinition together with additional information generated, for
instance, for identification purposes ure saved in a temporary storage. This stored
informaltion constitutes the structure instance header. For every alom associated
with the structure the appropriate preparation process and consequent investment
with initial values is engaged.

Minisisa pre-preparation constraint . Is definition is described in section 5.2.1 and in table 21,

FDetails of the invocation of GUIDE utilities by metheds are given in section 5.1.1.
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Figure 26 : Structure preparation process flow
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4.3.2.2 Atom preparation

The preparation of atoms is always performed in the context of structure
instantiation. As a result, no check is performed as to the appropriateness of the
atom. Figure 27 illustrates the flow of the atom preparation process. The atom
definition is retrieved and, simtlarly to a structure, stored in a temporary area,
along wilh some instance identification information. This constitutes the aiom
instance header. The process of preparation proceeds with the establishment of the
mechanism to provide the atom default value; this information is provided in the
atom definition, either through the specification of the souwrce indicator or by
means of an association of the atom with a method within the system. The
possible options are described in table 13.

Source Process Flow

Syslem Based upon the mapping value, a list is compiled comprising appropriate atom instances
found either in the current or external activities, Upon an instance selection from the list,
the atom initial value is set equal to the donating atom instance value and a Jink is
established between them.

Any A static (default) value is read from lhe atom definition data. ‘Chis is specified at the
atorn definition time and is uscd as a sale fatlback option.
Method The definition of methods associated wilh the atom to provide it with initial values is

retrieved and executed; the method output definitions are matched with the atom data
type and the appropriate value iy assigned to it. Any additional method outputs are
discarded®®, If GUIDE fails to retrieve or oxecute the method to provide the atom with
mitial values, it completes the value setting using the default specified in the atem
definition data (same response as 'Any' above).

User The response is the same as if the source was 'Any'.

Table 13: Determination of the atom initial value

Once an initial value has been established for the atom instance, a status value is
sct in the atom instance header to indicate the current value condition. The status
is set as valid & parent if the initial valuc was copied from another atom instance,
valid if it was calculated by a method or from default in all other cases. Pointer
atoms do not have links defined by default in their definition and, consequently,
only donor atoms or methods can be used to invest them with initial links: their
status is sct to links defined accordingly. If no links have been defined, or an error
occurred during the process of determining the atom's initial value or links, the
atom status is set to undefined.

56The additional method outputs may bhe used to instantiate other atoms. However, muliiple
instantiations should be under the designer's countre) and would be appropriate to conduct only during the
edit phase. GUIDE therefore discards the values during atom preparation. The instantiation of multiple
atams during the preparation phase can be performed using the grouy initial valees method described in
scction 4.3.2.3.
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Figure 27 : Afom preparation process flow

Atoms whose status is undefined are treated as special cases. Prior to the
completion of the preparation process, GUIDE searches within the current activity
for alom instances of the same type as the atom for which an initial value is

soughl. If any instances arc found, GUIDE searches for any inheritance links or
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other types of association (e.g. via relationships) between the possible donors and
the receiver. If a relationship exists, the prepared atom instance value is copied
from the related atom. The search for rclationships is performed in the following

order:

1. other atoms within the current structure instance;

2. atoms within any structures pointed to by other atoms within the current
structure instance;

3. atoms within the parent of the current instance, if one such exists;

4. atoms within any structures pointed to by other atoms within the parent
structure of the current structure instance;

5. atoms within any other children structures of the parent structure of the current
structure instance;

6. atoms within any structures rclated to the parent struclure of the current parcnt

instance.

The search process continues upwards through the structure hierarchy until either
a match is found or the top level is reached. If a value is obtained by tracking
relalionships, the atom instance status is set to from parent. The process of atom
preparation is concluded by the crcation of a link between the atom and the
structure instance headers; this link cnables the instances to be managed as
aggregations.

4.3.2.3 Child structure preparation

Following the preparation of atoms in a structure, preparation (figure 26)
centinues by initiating the partial preparation of the structurc's children structures.
The child structure definitions are retrieved and used to creatc the structurc
instance headers, but none of their associated atoms. The consequences are
twofold: a single control process can be employed to facilitate the preparation of
structures, irrespective of their being parents or children and the option can be
given to the designer to associate an existing structure within the current activity
with the parent structure, instead of preparing a new child for it. Upon assembly
of the child siructure header a link is created with the parent structure instance
header.
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4.3.2.4 Completion of preparation

Structure preparation proceeds by the search for and, conditionally upon its
definition, the execution of a post-prepare method. In essence, this facility
provides an opportunity to adjust the atom initial values or children structure
associations in advance of the structure instance being presented to the uscr. This
group initial values method can be used to cffect a number of actions concomilant
with the operations on the current structure.

The preparation is concluded by the insertion of the status in the structure instance
header. Table 14 describes the possible values the status can take.

Status Meaning

Prepared The structure has been fully prepared and can be edited.

Defined The structure header has been bnijlt but no atom instances have been associated with
il; the structure must be prepared hefore it can be edited.

Committed The structure atom instances have been permanently stored; no madification is
allowed of these values and, consequently, of the siructure,

Table 14: Possible status values for a structure

Once the structure status has been set, the instance and all of its associations can
be edited by the user,

4.3.3 Editing phase: Atoms

The editing phase of structure instantiation facilitates the modification of valucs
assigned to the atoms. Values which have not been determined as a result of initial
value acquisition can be set interactively under the user's control. Furthermore,
associations can be defined between the structure pointer atoms and other
instantiated elements. The setting or modificalion of a atom value and the
assignment of links to a poinier are treated as equivalent operations: a single,
coniext sensitive, control procedurc is ecmployed in their management. Figure 28
illustrates the flow of the atom medification process.

The atom definition is retrieved from the atom instance header to determine the
calculation technique to be employed [or the atom value. A preliminary check is
made to establish that the atom value is in a modifiable state. If the atom status
value is set to stored no further modifications can be performed and the process is
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abandoned. Provided that the value can be modified, the atom source indicator is

used to establish the possible options to determine it.
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Figure 28 : Atom value sefting or modification
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A description of the possible flow of establishment or modification operations is
provided in table 15.

Option Flow of operations to establish atom value

User The atom instance header is consulted to provide information on the atom type. This is
uscd to differentiate, in the First instance, between pointer and value taking atoms and,
subscquently, between particular data types. The atom Lype is used to set up a filter
which determines the type of interaction 10 be requested of the user and the possible
number of values or elements expected: the possible interactions are described in table
3. Multivalued {array} or pointer atoms cause the invocation of a particular procedure;
during this, values can be added or subtracted from the parlicular array or elements can
be linked to or dissaciated from the pointers.

System The atom header is used to establish the mapping value for the particular atom. The
value is subsequently used by GUIDE to search through the headers of all the atom
instances contained in the current and externally accessible activities. For any matches
to this search the instance value is retrieved and added to a value option list, Upon
completion of the search the user is prompted to select one or more values, as indicated
hy the atom type. A liok is established between the donor and receiver atom instances
to indicate that a dependency relationship exisis.

Method The method data definitions are searchied in an attempl (o mnatch method oulput values
to the current atom definition. The method outputs are in turn used to retrieve the
methods which could supply the required atom jnstance value. Upon execution of the
methad the formatted outputs from it are matched with the appropriate atom,

Table 15: Atom value establishment aptions

Methods or constraints associaled with particular atoms are executed as a result of
requests to invest them with values. Figure 29 illustrates the flow of the process to
invoke a GUIDE. method.

The request for method execution causes GUIDE to search the definition of the
method's data to compile a list of the values which must be supplied before the
method can be executed. The interactions required to supply the method with
values are determined by a procedure similar to that which applies to atoms: the
method data source and type are consulted and used to define the appropriate
interactions. Similarly to atoms, the possible value source can be provided by the
user, from an existing atom instance, or from the output of another method. The
latter option causes execution of another method. GUIDE suspends the execution
of the current method, executes the new method and proceeds as above. The new
method inputs may in turn require the execution of yct another method, in which
case the process is repcated.
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'The ability to nest the execution of methods is a powerful mechanism for the
determination of atom instances. Furthermore, it cnables the factorisation of
cumbersome calculations into discrete units which are easy to manage and invoke,
The essence and applicability of individual methods or of their combinations is
safeguarded through the associations defined between method inputs and outputs
combined with constraints acting upon the methods. Constraints appropriate to a
method are executed before it is invoked, thus enabling the suitability of the
method to be validated in the context of the design task being engaged.

Mecthod execution in GUIDE provides the possibility to instantiate several atoms
through a single atom instantiation. The principle of multiple value mapping
consists of matching the set of outputs gencrated by one or more methods during
the instantiation of a particular atom with an equivalent number of atom instances
within the current or associated activity. Figure 30 illustrates the process of
multiple value mapping which is conditional upon the constraint affecting the
requested atom, i.c, the parent.

Atom definitions are searched for every method output in the attempt to establish
a possible match. Once a match has been found GUIDE searches the current and
associated activities for instances of the particular atoms. If a match is found, the
method output is proposed as a modification to the existing atom instance, If no
match is found, the option is given to prepare a suitable atom instance and the
structure which includes it. Upon completion of the preparation process, the
method output value is proposed as a modification to the atom instance. The usual
GUIDE mechanisms are invoked to validate the proposed values: the mapping of a
value to an atom instance is equivalent to the process of value modification or
setting.

The status of all the instances, the childrer, which have been generated as a result
of the instantiation of a given atom is set to valid & parent and their header is
linked to the appropriate parent atom instance header. The parent atom status is
set to valid & children to indicate that dependencies exist upon the parent
instance. Subsequent modifications to the values of either the parent or children
instances are subject to integrity conditions. The modification of a child atom
instance requires that any links from it to its atom parent instance are dropped.
Modification of the parent instance is much more severe: the changes effected by
its original setling musi be undone. A list of its dependent instances is compiled

and every item is dissociated from the parent instance and, subsequently, reset to a
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safe default value. Structures which have been prepared as a result of
method mapping process are deleted, provided that no modification o
atom instance has taken place in the interim period.
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4.3.4 Operations on structures

The preparation of a structure instance culminates in the defipition of an entity
which has editable elements in the forms of atoms or children structures. Figure
31 illustrates the operations which can be performed on a structure instance.
Associated with the three possible phases of structure instantiation are several
methods providing a constraining function and others producing actions expected
by nature of the structure invelved.

Constraints are executed at two different phases of the instantiation process:
before structure preparation and in advance of the structure commitment. The
former serves to establish the appropriateness of the structure instance creation
and enables the association of a structure with the overall task which the designer
is engaging. The latter serves to validate the instance definition in terms of the
values it references. This constraint tests the complctencss of the entity which the
structure describes prior to the permanent storage of the data which constitute it.
A structure is complete when the following criteria are satisfied:

« all the atoms in the structure have been instantiated to valid values;
= all the children structures have been committed.

The structure definition may be required to impose additional constraints on
combinations of some or all elements associated with the structure. Since this is
not predictable, the conirol mechanism of GUIDE cannot account for it. The
accommodation of context specific requirements is facilitated by means of the
completion constraint. This enables the specification of additional criteria and
their incorporation in the test for structurc completencss.

Methods may be exccuted during the editing phase of structure instantiation. A
group initial values method is executable at the end of structure preparation to
allow the modiflication of some or all of the initial values of the atom instances
associated with the structure. This method is not restricted to the provision of
initial values. Actions concomitant with the instantiation of the structure, such as
for example the preparation of other structures or the execution of methods, can

be caused by execution of the group initial values method.
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In the editing phase values referenced by a structure or by elements associated
with it can be changed. Editing is the most interactive phase of structure
instantiation and is often lengthy. Editing must sometimes be suspended while
other functions take place: e.g. the instantiation of other GUIDE structures. The
control mechanism allows suspension and resumption of editing at any time. A
method employable in the structure instance edit phase must be executable at any
stage of the edil process, as the user requires. This provision allows the structure
to serve procedurally. Careful construction of these structures can lead to the
description of powerful methods to be defined as structures®’.

Operations which are a result of the completion of a structure are accommodated
through a completion action method. This is executed upon successful completion
of the structure commit operation. As an example, the closure of an aclivity
requires that it be checked for completeness. A concomitant action once
completeness is confirmed might be that the requester should send the actor a
notification that the task has been finished. The completion method can prevent
the actor from closing the activity without any check from the requester or be used
to close the activily transparently if the requester and the actor are the same
person.

The representation of activities as GUIDE structures means that activitics can be
controlled by GUIDE functions. Furthermore, representations can be built which
describe entities used in design tasks as well as the methods which are engaged in
the design task. In this way, structures can be used to describe a diverse range of
processes all within the control capacities of GUIDE.

4.3.5 Compilation and management of the design record

A record of the actions taken, the methods employed and the results generated
would enable the regeneration of past designs by following the track originally
laid out during product development. GUIDE keeps this record. The following
actions, taken by the user or caused by GUIDE, are recorded:

« siructure instantiation;
« atom instantiation;
« constraint and method execution;

« sourcing of atom initial values;

37This is analogous to action frames in frame based representations.
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» sourcing of atom values during their setting, medification or linking;

» sourcing of method input data;

« mapping of method output data to atoms;

» relations between atoms;

» resetting of atom values to defaults;

» relations between instances in different activities.

Included in the record are links to stored instances, incomplete information (such
as uncommitted structures and atoms) and particular values which relate to so far
unmapped method inputs and outputs. This mix of process information and of the
data produced requircs that the control mechanism can distinguish actions and

data derived from actions.

Instance

Abstraction

Activity instance

These are transformed into a single structure which references, by association,
all the top level structures which were defined within it as children, In future
invocations, the request to instantiate the generic structure which was
abstracted {rom the particular activily safeguards the instantiation ol all the
requisite structares within it.

Atom instance

Creation of a derived atom based upon thx definition of the original atom. All
of the characteristics are inherited from the definition of the original atom
except the initia) value and the source indicator. The source indicator is
pointed to the defining atom instance which provides the derived atom initial
value.

Atom default

The atom instance value js defined as the default value for the derived alom.

Atom source

The source (user interaction, other atom, particular method) used to provide
the ullimate valuc of the iustance is used to set the source indicator variable
and the mapping value. If a methiod was used, the methed is specificd as the
atom default method and will be executed upon a request to instantiate the
new atonw.

Atom constraint and
methods

These are inherited (rom the definition of the derived atom root.

Structure instance

Creation of a derived structure based upon the original structure which,
subseguently, becomes the root.

Pointer atoms

The elements associated with the pointer atoms within the structure are used
to provide the defaults for the derived pointer atom i the derived structure,
The defaults specified arc by type rather than by instance,

Constraints and
methods

The definition of these is inherited by the derived elements through their
respectlive 1oots.

Methad data

If the source for these was an atom, then their source indicator is modified to
point le the new mapping. This new specification does not prevent the user
from specifying an alternative source, In all other cases, the source mapping
gets modified to point to the particular activity which can supply tlie method
input vilue as 4 defauli.

Tahie 16: Transformation rules for design record manipulation.

The instantiation of a structure is considercd as an action; the action data
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associated with instantiation refer to the structure, the requester, the time of the
request and links to the action which first caused the instantiation to be engaged.

The instantiation of an atom is an action caused by the instantiation of its parent®:
the action data refer to the parent action. GUIDE cmploys the record of this
information to construct history trails which can be retraced to create new
instances by employing the same processes as were previously engaged.

Complete methodologies can be abstracted from the trail of a group of actions. To
achieve this, GUIDE employs the activity record and a set of transformation rules
described in table 16. GUIDE presents the user with the abstract in the form of a
Jowmal. After the journal is edited/modified any new struclures or element
definitions become available for future GUIDE operations.

4.4 Summary

GUIDE represents knowledge using a development of the frame concept which is
symbolically rich and appropriate to the representation of stereotypes. GUIDE's
elements - structures, atoms and methods - are employed to represent entities and
processes in design and facilitate the description of products, technologies and
generic or specific methodologies. The elements are implemented using a
conventional relational database system.

GUIDE methods impart interpretational simplicity to the methodologies which
employ them, provide flexibility in application and extensibility of function.
Because methods can be made unitary in their function, they can be implemented
readily through easily understood control mechanisms and may be applied
recursively. Methods can be effective in bounded and open operational
circumstances: they enable the representation of design constraints, company

methods and enabling technologics.

Design activities are represented as special GUIDE structures. Activities and the
relationships of them determined during design constitute the design record. The
knowledge associated with a design provided by structures and atoms and the
design record - the route followed in manipulating the knowledge and generating
the design solution - represent the product descriptions. The compilation of the
design record enables GUIDE to contribute and acquire design knowledge.

S8Parent in this instance denotes a structure or anothier atom.
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GUIDE represents relationships of physical entitics and processes as structures.
Relationships definc explicit links between structures and atoms, link diverse data
forms within GUIDE elements and decouple dependencies from the representation

of entities and proccsses.

The control mechanism of GUIDE adopts a unitary approach and is implicitly
recursive in its operation. It can invoke external applications to: establish default
data; create control rules; link its internal representations with external data;
manage user interfaces. As a consequence, GUIDE does not demand the formal
methods to be understood by the user and can support highly structured
(sequential) methodologies as well as more open application.
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5.1 Operational characteristics

GUIDE aims to enable the opcrations of engincering companies by supporting the
concurrent exercise of distributed expertise. GUIDE provides an operational ethos
and the knowledge engineering and control facilities to secure this; it depends

upon:

« stored definitions of the elements - structures, atoms and methods - which it
employs (o represent knowledge of entities, processes and their relationships;

» the dynamic consultation of the element definitions following a request to
operate upon them;

« standard mechanisms for the storage and retrieval of the element definitions
and the data or information generated as a result of their exercise;

+ the ability to interact with existing company resources.

GUIDE employs, as far as is possible, standard, commercially available facilities.
Routine data base mianagement systems provide for the manipulation of data
through standard interfaces used by engineering enterprises and bring instant
benefit from access to standards and product information they keep. The integrity
of the definitions employed by GUIDE is fundamental and data base management
systems provide the facilities to safeguard integrity. The speced of access to the
definitions is insignificant compared with the substantial length of the process
investing them with values. Overall, the use of standard data base management

systems has several consequences:

» GUIDE's element definitions can be shared by many individuals
simultaneously;

+ different levels of authority can be specified for the management of the
definitions;

» changes to the clement definitions or the data referenced by them are
conducted using standard facilities;

» changes to the clement definitions take immediate effect and, as a

consequence, the integrity of the data generated can be made sccure.
The benefit of employing this particular storage methodology is twafold: there is

no separate indexing facility and, therefore, no requirement to provide a specific
control mechanism (o manage it.
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GUIDE maintains a record of the information generated and the processes
responsible for its creation. This record constitutes meta-knowledges. Use of meta-
knowledge leads to the compilation of indices which refer to the actual knowledge
definitions. In GUIDE meta-knowledge is expressed in the creation of links
between data and knowledge or the generation of additional definitions. The
individual design records are an appropriate location for keeping links between
knowledge and data. The incorporation of new definitions within the existing
scheme further enhancces the dynamics of GUIDE.

5.1.1 Invoking GUIDE

The primary function of GUIDE is to contro} processes and it should be invoked
separately from other software (ools, but have the capacity to communicate with
them as a peer. GUIDE is a highly modular software environment which can be
invoked® by other software tools through an Application Programming Interface®!
(API). GUIDE's routine operation is independent of other software tools and, in
multi-tasking environments, it can cause and conirol the execution of other
software packages, such as for example a geomeiric modeller, using facilitics of
the operating system.

In more restrictive environments, GUIDE can be invoked as a sub-process; for
example, GUIDE can be engaged from a CAD package via a call to the GUIDE
API from a user exil; the user exil may request the instantiation of a particular
structure which can in turn cause the execution of a particular software tool to
assist the instantiation. GUIDE is invoked as a sub-process in the first instance, but
the nature of the request causes it subsequently to become a process controller.
Figure 32 is an illustration of the concept.

SS’I(nowledge about the manipulation of knowledge.

“OThis can be achieved via user exits - predefined external routine calls which most software tools make
during their operation. User cxits can be coded by the uscrs of software tools to achieve functions which
are not normally available within (he tool or Lo customise existing functions. For example, user cxits are
frequently cmployed by the users of finite clement solvers to facilitate the definition of models
describing characteristics of particular materials which are not formally provided in the solver.

S\An Appleation Programming Interface or Exteraally Callable Interface provides the ability far

software programs to acquire services which they require by communicating with the software tool
which can provide them via a programming interface,
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Figure 32 : Invoking GUIDE as a subprocess

The peculiar construction of GUIDE has two important consequences:

« the engagement of a particular GUIDE function can lead to its being called
recursively;

« methods invoked by GUIDE can take advantage of its unitary operation and,
subsequently, call the application programming interface to perform routine
functions {e.g. instantiation), thereby causing recursive invocation of GUIDE .

5.1.2 Distribution

In order to fulfil GUIDE's objective to aid the conduct of evolving engineering
operations, it must be able to invoke methods and manipulate knowledge and data
at [ocations other than the one where it is currently being exercised.

Recent advances in distributed computing - the development of the client/scrver
model - have led to the emergence of methodologies for the communication of
data across different locations and operating environments. The Remote Databasc
Access® (RDA) activity is an attempt to define a protocol for the cooperative inter
working of disparate, distributed database management systems. Vendors of

systems which will be affected by emerging standards are reluclant to conform

S2The RDA activity is conducted at an international siandards level. Documents ISQO/IEC 9579-1:1992,
ISO/IEC 9579-2:1992 and ANSI X3,217-1992 describe the underlying interfaces (formats, protocols,

function) to enable programs in a distributed compuling environment to access data using a remote
database manager.
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with the standards in their entirety but implement those parts of the standards
which are of direct relevance to their products, or else provide their own
interpretations of the standards. Using vendor implementations of data base
systems could, potentially, hinder GUIDE's ability to manipulate distributed data;
the development of an RDA compatible data access method in GUIDE provides a
‘safer' solution.

GUIDE adopts a practical approach to the communication of data between
application software and distributed data base management systems. It employs
methods which rely upon de facio {acilities currently provided by the client/server
computing model. The concept is illustrated in figure 33. The application software
communicates the data manipulation requests to a local server process - the request
server - which is responsible for locating the information and managing the
communication with the appropriale dala base management system. The request
server communicates with a remote process - the data server. The data server is
responsible for validating the request, communicating with the local data basc
management system (o service the data requirements and, upon completion of the

operation, the transmission of the data to the requester.

Application
y
Raquest
Server
Communication Protocol
Data Data Data
Server Server Server
y % 3 A
S A S A SR e
Figure 33 : Access of distributed data base systems

The request server and data scrver provide the linking functions between the

application and (he data base management systems, including appropriate
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transformations to the data exchanged. It is the responsibility of each server to
transmit information appropriate to the destination enviconment$, '['his extends 1o
the provision of request amendment facilities to eliminate syntactic

inconsistencies between the sender and receiver®,

The servers rely upon standard operating system utilities® to communicate with
each other and the functions provided are extrapolations of the ordinary facilitics
offered by any operating system within a particular platform. A benefit of this
implementation is that the opcration of the application and the data base
management system combination becomes independent of location.

The operation of the architecture is similar to that sought via the RDA initiative:
once the proposcd standard has come into effect, the data exchange and
transformation mechanism provided by the request and client servers can be
replaced by the standards. Relational data base management systems and the
Structured Query Language (SQL) are the only facilities covered by the current
standards proposal.

The request server/data server principle can be extended within the client/server
computing model to incorporate requesis which cause the execution of remote
programs. The only difference is at the destination server: rather than invoke the
data base management facilities to scrvice a particular request it would have to
request the operating system to load and cxecute a GUIDE method.

Three request servers - the definitions and data, execution and activities managers -
in GUIDE deal with distributed operations as illustrated in figure 34, Depending
upon the nature of a request, the appropriate server is invoked. Each server is
capable of identifying whether a request should be serviced locally or remotely. In
addition, due to the need to manipulate datla conlained in ordinary files, the
activity server has (he capacily to access operating system specific file
management facilities such as, for example, those provided as part of the Network
File System ( NFS) support.

63por example, consider the communication of data between {wo computing platforms one of which {call
it A) employs a 32 bit representation for integers while the other {call it B) a 64 bit one. Integer valucs
sent from machine A to B need to be converted to 64 bits before transmission: upon arrival at the
destination they are in the appropriate form. Responses sent from B to A must have any integer values
canverled Lo 32 bits conversely.

64The provision of this [unetiun will inevitably increase the complexity of the server software.

651n an open systems environment the communications would he managed using sackers or datagrams.,
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Figure 34 : Implementation of GUIDE for the support of distributed operations

The implementation of GUIDE can be sustained in either mainframe or
workstation environments and takes advantage of standards facilities developed
for physical computational distribution. Several of the concepts it employs
currently are the result of proprietary developmental decisions. The opportunity
exists to incorporate any standard techniques when these become available. The
implementation of GUIDE has been based upon commonly available technology
50 that it can benefit from future developments in the facilities which underpin ils
operation.

5.2 Conceptual schema to support GUIDE
In GUIDE, a set of attributes can be employed to specify the characteristics of a

particular atom; the specification of a structure which contains this atom requircs
a set of attributes to identify its characteristics (e.g. name or family) and an explicit
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relationship to link the particular atom to it. The storage of data instances requires,
in addition, the provision of attribute types comparable to the atom types
employed by GUIDE, Commercially available data basc management systems
(DBMS) capable of addressing these requircmnents fall into two main categories:
relational and object oriented. Table 17 provides a comparison of their

characteristics.

Relational DBMS's Object oriented DBMS's

Best suited or lypical or traditional business Best suited for applications dealing with complex

applications strucwres (CAD, CAM, CASE, etc.)

¢ Focus on datu valucs, not relationships ¢ Focus on relationships, not data values

*  Primarily simple structores and data (ypes e Primarily complex structures and user
defined types

Can be enbanced Lo provide some object support Generally not replacing relational data base

managenient systcms
s Userdefined data types, functions, referential
integrity constraints, etc.

Provide resilience and integrity safeguards Designied to handhe complex data and provide
required by industrial operations. navigational access (o thern

Support multiple programming languages and ad Tight integration with 1 or 2 programming

hoc queries languages {e.g. C++)

Support multiple application domains Focus on application specific domains
concurrently

Employ a standard data aceess and manipulation Employ proprietary mechanisms for data access
mechanism (SQL) and manipulation, frequently based upon the

facilities of specific programming languages

Table 17: Comparison of ohject oriented and relationul DBMS''s
Relational systems have a number of advantages over object orienied ones:

» they offer a standard interface to the data by means of the Structured Query
Language®® (SQL);

« they are supported by major software vendors and, as a consequence, have
inspired the confidence in large engineering organisations to adopt them for
product information storage;

+ operations within them are underpinned by a sound mathematical theory;

+ they will be supported in distributed environments under the RDA proposal.

GGSQLE’Z (also known as SQL2) is the current ANSI standard. Its successor, SQL3, provides facilities
which extend to encompass the capabilitics offered by current object oriented systems: user-defined data
types, complex structures and modifiable constraints upon them are included. The proposed standard is
currently at the committec discussion level and expected to be adopted carly in 1996.
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Object oriented and relational sysiems are regarded as highly complementary.
Either could be used to hold the element definitions of GUIDE. Relationship
management between entities is performed inherently with the definitions in
object oriented systems. In contrast, additional mechanisms have to be employed
in relational systems to allow them to manage relationships: in doing so, a diverse,
expandable range of relationships can be defined. Similarly, relational systems
can be made to handle complex data by defining relationships across simple types
which they support ab initio. In essence, relational systems can exhibit object
oriented behaviour if they are provided with additional facilities.

An implementation of GUIDE based upon the relational data base architecture
would benefit from the advantages of the architecture. The extensions required to
support diverse data types can be buili, initially, as part of GUIDE's control
mechanism. The major advantage is the ability to communicate with a varicty of
vendor data base implementations and perform operations upon existing data
without the need to migrate or transform them.

The employment of a standard language such as SQL brings an additional
advantage: SQL queries allow the specification of constraints on values and return
a list of possible results. This specification enables them to be considered as
special GUIDE methods: the query constraints and results correspond to the
method irputs and outputs respectively. As method inputs and outputs they can be
freely combined, either with other method data or atoms within the system. SQL
queries are recognised by GUIDE as special methods and they can be executed by
ils control mechanism.

5.2.1 Element representation

GUIDE employs a number of relational tables to represent structures, atoms and
methods and their combinations. Table 18 provides a description of the use of
these tablcs.

The tables holding the delinition of elements are complemented by another set
which store information pertaining to instances of elements. For cxample, the
declaration of the generic relationship to be used in associations of structure and
atom definitions is held in the relations table. The association of a particular
structure with an atom using the generic relationship to define a peculiar
construction is held, as a row, in the refate table. The other tables in this set are
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employed to hold information on committed instances of structures and atoms,
instances of activities and information denoting the time of opening or suspension
of specific activitics. A list of this set of relational tables is given in table 19.

Table Name Use

Structures Used to hold the structure element descriptions including the definitions of
derived structures.

Atoms 1Jsed to hold the part of the atems elements description including the definitions

of derived atoms. The parts of the atom definition which are common to root and
derived atoms are held, for data economy purposes, in another table.

Atomdef Holds the part of the atom description which is shared between derived atoms and
their root. This table complemenis the afoms 1able,
Methods Used to hold the definition of all the mathod types used by the system. In

addition, it provides support for the definition of SQL queries in association with
the gueries table,

Mdata Used to hold the method input and output data delinitions.

Units Used 1o hold the definitions of systems of units. It is used in conjunction with the
datz in the wconvert table to perform conversions across systems of unils.

Uconvert Holds the definitions of the transformation functions to be employed in the
conversion of values from one system of units to another,

Queries Holds the skeletons lur gueries against data base tables, It is used in conjunction

with the metfiods iable to pruvide the specialised SQL method with the setup
informution which will dictate the operational characteristics during its execution.

Relations Used to hold the definition of the possible relationships which can be applied to
pairs of GUIDE elements in the formation of constructions. Table 20 provides an
explanation of these.

Table 18; Tables used by GUIDE jfor element represeniation

Table name Use

Relate Used to hold  instances of relationships formed between particular pairs of GUIDE
elements.

Instances Used to hold & record of all the structure and atom instarnces which have been

comumitted to permanent storage. It is used for the management, storage and
relricval of particular values which refer to instances.

Register Used to hold data relating to activity instances and to provide information on the
status of the activity and the associated record of events.
Session Used to hold staristical dala rclating to specific activities engaged using GUIDE.

Tuble 19: Tubles used by GUIDE for instance information storage

Associations between structures, atoms, methods and method data are formed by
employing external links, described in table 20. Inferngl links enable the
association of GUIDT elements with data appropriate to their definition and rely
upon ordinary mechanisms provided by relational dala base syslems - they are
implemented as matched column names across different tables. For example, a

particular unit is associated with an atom value by matching the value contained in
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the integer column of the atom tablc to that of the integer column of the units
table.

Data base queries which involve internal links arc by nature very economical:
they enable the seamless joining of tables to reiricve in a single query data held in
several locations. For example, the atom header information, its definition and the
units applicable to iis instantiated value can be retrieved in a single operation.
Furthermore, internal links provide the ability to fauctorise the relational data modet
and, consequently, avoid unnecessary duplication. External links are suitable for
the definition of links which are of a non-exclusive nature: they are more
appropriate for the construction of hierarchical rclationships, such as those
required between structures and atoms, and arc easy (o create or delete without
affccting the integrity of the linked elements. The use of internal links beiween
elements of GUIDE could restrict its representational capacity: an exclusive
association beiween a structure and a sct of atoms, for example, would remove the
ability to relate any of these atoms with another strucilure, thereby eliminating the
opportunitly implicitly to link the structure definitions and, consequently, the
capacity adequately to represent sterectypical situations such as those encountered
in design.

Relationship | Associates With Meaning

STR2STR Structure Structure Enables the assoclation of children structures with a
parent structure.

STRZATM Structure Atomn Provides the struclure with its associated atoms.

STR2CST1 Structure Couvstraint FEnables the specification of a canstraint to validate the

appropriatencss of (he structure at the particular stage
of the activity. The method is executed hefore the
preparation of the structure. In the case of an activity
structure the method can be used to validate the
appropriatencss of initialing the activily in the present
context.

STR2DEF Structure Method Specifies a method which can supply the structure with
a group of initial values after preparation and before
the instance has been handed over to the user for
editing. In the context of an activity structure it
provides the default value of the requester atom to
safeguard apainst its improper specification,

STRZMTH Structure Method Provides the specificalion of a set of methods which
might be appropriale for cxecution during the editing
phasc of (lie structure instantiation. In the case of an
activity structure the relationship provides the
association of 4 method to be used to confirm the
initiation of the nctivity, register it and create the
record repository.

Talile continued on following pape
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Table continued from previous page

Relationship { Associates With Meaning

STR2CST2 Structure Constraint Enables the association with the stracture of a2 method
Lo validale ils completeness prior to commitment to
permanentl storage. In the case of an activity structure
il provides the mechanism to close the activity, change
its status in the register and notify the requester to
proceed with the approptiate checks upon it. The
constraint can be built to enable the activity requester
to declare it complete or reopen it for further work.

STR2MTH2 Structure Method Enables the association with the structure of & method
to cause actions following the successtul storage of the
instance values. In the context of an activily structuse it
can be used to dispasch naotification of the completion
of an activity.

ATM2DEF Atom Method Specifies a method 10 be used for supplying the
particular atom with one or more initial values.

ATM2CST Atom Constraint Assigns a method to validatc the alom instance value.

ATMZDAT Atom Method data Associates a method output with the atom thereby

implicitly linking the atom with a number of possible
methods ta supply it with a value, Alternatively, it
associates an atom with a method input therehy
allowing the provision of initial values to assist the
method execution.

MTHZDAT Mcthod Method data Associates input or output data with methods.

MTHZCST Methed Constraint Enables the validation of the appropriateness of & given
method in the particular eontext using a constraining
method upon it.

MTH25QL Method Query Provides an association betwecen a query name (the
method name) and the particular SQL statement Lo be
executed,

DATZDAT Method data | Method data Enables the association of vne nethod's inputs to the

outpuis of another and the converse.

Table 20: External relationships between GUIDE clements

Figure 35 illustrates the overall data base schema employed for the storage of the
GUIDE element definitions indicating the links (external or internal) across the
tables. One characteristic of the schema is the usc of an element identifier {(0id)
linking elements with instance information. The element identifier is an index
used to provide any element of GUIDE with a unique identification tag which
comprises iwo parts: the identifier of the computing platform where the element
was defined and a time stamp of the definition with a resolution of milliseconds to

guarantee its uniqueness.
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Figure 35

The data base physical schema, or particular table construction, is described in

tables 21 10 33.
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Attribute | Type Length | Deseription
in bytes
oid character 24 The structure clement identifier. The first 8 bytes are the Internet
address (4 decimal numbers in the range 0 to 255) of the
computing platform where the definition of the structure ook
Place, converted to 4 hexadecimal numbers in packed format.
The remaining 16 bytesare:  9to 12 Year
13to 15 Day of year
16to 20  Seconds in day
21te 23  Milliseconds
24 Zero
descr character 40 Name of the struciure.
family character 16 Family in which the structure belongs.
type integer 4 Indicator which defines if the structure is a root or derived, The
convention used is: +1 Root
-1 Derived
refstr character 24 When the structure is of derived form, this attribute is set 1o equal
the value of the element identifier of its root.
version integer 4 The version number of the structure, A new version will have a
different element identificr but the same name. The version
number is uscd to collate and sort all the versions of the same
structure.
creator character 8 The individual who created the structure and, lherelore, owns the

definition of it. Only the crealor ol a particular structure is
allowed to maodify its definition and ercatce a new instance of it.
Furthermare, it can be used to filter the structure definitions by

crcalor al ingtantintion time,

Table 21: Structures table definition

Atfribute | Type Length | Description
in bvtes

oid character 24 The atom element identifier.

descr chatacter 40 The atom name.

type integer 4 Indicator to denote whether the atom is a roat or derived. The
same convention as for structures is used.

refatm character 24 The element identifier of the atom root if it is of derived form.

ddata character 8} A safe default value 1o be applied to the atom if the search far
defaults using all the other facilities has failed. This value is also
used if the atom needs to be reset due to a change in the value of
its parent atam instance. Inteper, real and character string values
are stored it this icld. For arrays or pointer values the field
contains a pointer to them or an element. identifier respectively.
The value can be used to point to the element identifier of an
atom definition. GUIDE will maich this identifier with the
identificrs of instances either in the current or any associated
activities.

varsion integer 4 The atom version.

creator character 8 The creator of the atom definition.

Table 22: Atoms table definition
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Attribute | Type Length { Description
in bytes

oid characicr 24 The atom clemens identifier.

dtype integer 4 The atom type. Table 3 provides a description of the possible

values.

dstype integer 4 The atom subtype. This value is used in connection with systems

which support selections of their own elements (e.g. a line within
a CAD system) to depote the element identifier within these.

dlength integer 4 The length, in bytes, of the atom vatue. If the atom is of array

type, the value denotes the length per row in the array. The value
has no meaning for atoms of pointer type.

varname character 6 An identifier for the atom value.

sourcev integer 4 The atom value source. Table 4 contains an explanation of the

[N N G PR R

possible values. The mapping employed is:

System
User
Any
Frequent
Rare
Method

dispaose character 2 Thie atom disposition value. The following are possible options:

B Broadcast

5

Stored

Section 3.2.1.1 provides an explanation of these terms.

mapping character 254 The atom physical mapping. In its simplest form it is the location

value,

where the instance value should be stored. The location is made
up by a combination of the address of the particular computer
platform which contains the storage location, and a block of
information which points to 4 file ar database table where the
values are to be lodged. The value could be set to point to another
atom element identifier, in which case the value will be stored at
the location pointed to by the mapping value of that atom. This
mechanism safeguards the referential consisiency of the atom

mapineth character 8 This is the name of the method to be executed to store or retrieve

the methods table,

the atom value. It is cross referenced with the ramte attribute of

changei character 2 The atom  action on change indicator. An explanation of the

specified:

1
W
A
R

possible values js given in table 5. The following options can be

Ignore
Warmn
Refer
Reject

nval inleger 4 Denotes the atom value multiplicity. Used for atoms of array type

it denotes the number of values in the atray.

units integer 4 An indicator for the atom value units. It is cross referenced with

the éd attribute of the units table.

Table 23: Atomdef tuble definition
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Attribute

Type

Length
in bytes

Description

oidl

characeer

24

Moethod clemenl identifier.

descr

character

40

Method description.

class

ititeger

Used to denote whether the method will need to interact with the
user of GUIDE or it will be executed in the background. Passive
constraints which have only one input are frequently non-
interactive: this would also cover the case of SQL queries which
are executed without any conditions upon them. The varjable is
#lso used to distinguish between normal methods and database
queries. The options for the value are:

+1 . Background method

-1  Interactive method

+2  Unconditional SQL query
-2 Conditional SQL query

type

integer

Used Lo denole the state of the code of the method to be executed.
Methods can be developed using any high level programming
language; these require compilation before execution: at
execution time GUIDE wili load them into memory, resolve all
their external references and run them. Alternarively, the methods
can he written in special languages which do not need
compilation bul require the services of an interpreter; GUIDE can
invoke the interpreters to execute these methods. Finally, GUIDE
can alse invoke operating system specific facilities to execute
particular methods written in a variety of proprietary languages
{e.g. bsty, kshi, csh, rexx, del, ete.). The possible options are:

1 Compiled object code.
2 Interpreted by application.

3 Interpreted by operating sysiem.

name

character

The method name. It is cross referenced with the mapmeth and
convineth atiributes of the aromdef and uconvert tables
raspectively, Frequently it corresponds to the name given to the
filz holding the method code within the operating system area,

location

character

254

indicates where on the system the method code is locaied, The
first 8 bytes are the Internet address of the computing platform
where the code is stored. The rest of the value is used to point to
the appropriate file system within that machine. The GUIDE
method execution server compares the method location machine
identifier to its own and executes it or directs the request to the
execution server of the remote machine.

version

iteoer

The method definition version.

creator

character

The method definifion creator.

Table 24: Mcthods table definifion
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Attribute | Type Length | Description
in bytes

oid character 24 The method data element identifier.
The string which will be used to prompt the user of GUIDE for

prompt character 32 .
the required value,

. . Used to denote if the value is going ta be used for input or

iotype integer 4 .
output. The possible values are:

¢  Method output.
1 Method input.

viype integer 4 Used to denote the type of the value. The same options as for the
atiributedsype of (e atomdef table apply except that the method
inputfoulputs cannot be pointers. The ellective options ace: 1, 2,
3,4,5,6,13, 14 and 15,

varray integer 4 Number of elements if the value is of array type,

yvlengih integer 4 Lenpth in byles of the value or per element of the array.

name character 6 A short name for the method value.

mapping character 254 This is used in connection with the process of establishing a
default value for the method input/output. Tt cun point Lo the
clement identifier of an atom within GUIDE, a particular siorage
location, or an instance of a method value within a given activily
record.

mapmeth character 8 Thoe method to retrieve the default value for the padicular
method input, It is cross referenced to the name atiribule of the
methods table. In connection with method outputs it can be used
to provide a default storage location for any instances gencrated
if no mapping to atoms can be found for them using the routine
mcechanisms of GUIDE,

version inteper 4 Thte method input/output definition version.

creator character 8 The method input/output definition creator,

Table 25: Mdata table definition

Attribute | Type Length | Description
in bytes
oid character 24 The units element identifier,
id integer 4 A secondary identifier used to link the particular unit to an atom
definition,
desk character 80 The units descriptor {c.g. m/fsec’)
version inleger 4 The unit definition version.
creator character 8 The unit definition creator.

Table 26: Units table definition
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Attribute | Type Length | Description
in bytes

oid character 24 The untls conversion identifier.

sid character 24 The source units identifier.

did character 24 The destination units ideniifier.

convmeth character 8 The method to be executed to perform the conversion from the
source system of units to the destination one, It is cross referenced
with the rame attribute of the methods table.

version inteper 4 The unit conversion definiiion version,

creator characler 3 The creator of the conversion definition.

Table 27;: Uconvert table definition

Attribute | Type Length | Description
in bytes

oid character 24 The SQL query element identifier.

nodeid character 8 The tdenlifier of the node where the database query should be
dirceted.

database character 8 The name of the database to connect to in order to execute the
query.

refobject character 18 The name of the particular object within the database so be
queried. SQL queries which span multiple tables should be
executed through a single view definition which spans one ar
more tables as appropriate. Consequently the value of this
attribute can be either 4 table or a view name.

qrydata character 1920 The SQL statemeni to be execuled. It can eilher be a query or
another operation {¢.g, insert, update, etc.)

version integer 4 The query definition version,

creator character 8 The query definition creator.

Tahle 28: Queries table definition.

Attribute | Type Lenpth | Description
in hytes
oid character 24 The refation element identifier,
name character 8 The relation name. Table 20 provides an explanation of the
currentlv implemented values,
descr character 40 A short description of the relation.
type integer 4 The relation type. 1t refers to the type of links enabled by a given
relation. The possible options are:
1 Onetoone.
2 Oneto many.
3 Many to ane,
4  Many o many.
version integer 4 The relation definition versian.
creator character 8 The relation definition creator,

Table 29: Relations table definition
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A management facility is provided in GUIDE which supports clement:

creation,
association®?,
analysis,
modification and

abstraction from specific instances.

Foils 1 to 5 in Appendix 1 provide illustrations of the management of GUIDE
elements. The methodology employed requires that element definition precedes
the creation of any associations between them. For example, to creale an atom
definition, the units, conversion and method definitions must exist. The elements
may be linked together once the atom definition is complete. Structures are built
similarly and new element associations can be defined at any time. The creation of
a new association with an element implies, in GUIDE, its modification which
creates & new version. If the clement is used in the construction of higher level
elements, its parents are also versioned appropriately to reflect the change in their
definition. The versioning of elements is the basis of representational integrity in
GUIDE: old versions of elements are kept due to the dependency of instances on

them.

Associations of elements, created using the relationships provided in the relations
table, are stored as instances in the relate table. For example, the association of an
atom with two structures is represented by two instances in the relate table. The
relate table structure is described in table 30.

Alttribute Type Lenpth | Description
in bytes

poid character 24 The element identifier of the first item in the assoaciation. For
example, it could be the identifier of a structure.

coid character 24 The element identifier of the second item in the associaled
pair. For example, it could be the ideatifier of a particular
aton.

roid character 24 The relation element identifier. This is cross referenced with
the o#d attribute of the relations table.

creator character 8 The individual responsible for the creation of the specific
association,

Table 30: Relate table definition

¢7TUsing the relationships detailed in table 20,
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5.2.2 Storage of instances

The editing phase of atoms and structures is finalised by the comunitment of the

instances to permanent storage. The storage location and the method to be used to

store and retrieve the instances are provided by the values of the mapping and

mapmeth attributes of the atomdef table. Information on instance commitment is

recorded in two places: an event is inserted in the design record and an index to

the particular value is inserted in the instances table. The construction of the

instances relational table is described in table 32.

Attribute Type Length | Description
in bytes

ts character 16 This is, usually, a time stamp taken at the time of commitment
of the particular instance. If the instance data was stored in a
relational databaso table which has a unique, indexed column,
then the £s value is made to correspond ta the value of the key
for the particular row which will be used to store the instance
value, Tigure 36 depicts this concept.

oid character 24 The element identifier of the stored instance.

wsid character 24 The instance idenlifier created when the element was prepared.
It is taken from the keader of the particular instance.

pts character 16 ‘The parent instance of the current one. During atom storage this

tield contains the time stamp value of the committed structure
instance which references the atom, For struciure instances, it
providus a pointer to the corpmnitment of their parent structure.
The index is used for evaluating dependencies between
instances.

Table 31: Instances table definition

of instances

Unique id Parameter 1 Parameter2 | ... Parameter n
— I } { ] A ——— 1
tsvalue vaiue of instance  vaiue of instance
of atom 1 In of atom 2 in
structure structure

Figure 36 : Use made of unigue key in data base table for the storage
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GUIDE can use consolidated or fragmented rclational data base tables to store
instances. Figures 37 and 38 provide two illustrations. The structure instance to be
stored represents a geometric line. Two alternative representations are presented
with the corresponding data base table constructions to storc the line instances.
The former represents the line in terms of a starting point and a direction veclor.
The latter represents the line in terms of its end points, represented as children
structures. In the latter case, a row of values will be stored for each end point of
the line. The pts field of the instances table for each of these instances will contain
the time stamp value of the line structure instance.

Structure Line
Family Gaometry

Atoms | spTX{ x coordinate of start point [
SPTY| vy coordinate of start point
sPT2| z coordinate of start point [«
direction vectorin i
direction vectorin |

direction vector in k

A A

N3

A

Relational table for the
storage of lines

id |SPTX [SPTY|SFTZ] WI vJ | VK

instance
time stamp

Figure 37 : Use of a single tahle for the storage of a structure's instances

The design record is linked with the instances table entries by cross referencing
the oid and wsid attributes of the instances table with ficlds in the design record
file.
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Structure Line
Family | Geometry
Children | PT1
PT2

[ o

k

Structure Point
Family | Geometry
Children { X D ——
Y <
z <

Relational table for the
atorage of pointa

ts X Y Z
ts1 [ |33 | =3
f Zl ts2 | e | ==
. ) ) 4 T
timestamps
of start and
end points

Figure 38 : Use of multiple tables for the storage of a structure's instances

5.2.3 Storage of activities

The storage of activities in GUIDE is based on two data base tables - the register
and session - and an operating system file. The register table stores information
about activity structure instances; the session table stores informalion of the work
done on activities over time. Activity initiation creates an entry in the register
table; the entry gets updated every time the activity status is changed. Entries are
made in the session table at activity opening, suspension and resumption. Details

of the particular construction of the register and session tables arc given in tables

32 and 33.
Attribute | Type Length | Description
in byles
poid character 24 The activity time stamp for which session data are kepl, It is
cross referenced by the oid autribute of the repister table.
sesstart character 16 The time of opening, by an individual of a specific activity.
sesend character 16 The time of suspension of a particular activity.

Table 32: Session table definition
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Attribute | Type Length | Description

in bytcs

oid character 24 This is the time stamp of the aclivity structure insfance.

doid character 24 Element identificr of the aclivity siructure definition. Itis a
pointer to the oid field of the structures definition table.

poid character 24 The time stamp of the activity instance parent activity instance.
This 15 used to find the common parent of 4 number of
activities and thereby allow the linkage of elements across
them.

status character 12 ‘The current activity status. "I'able 12 provides details of the
possible values for this attribute,

request character 8 The individual who has requested the aclivity. The valuc is

used during the activity completion slage Lo validate that the
user altempling it is the appropriate onc.

actor character 8 The activity actor. The value is used during activity opening
and closure to validate the authority and suitability of the
individual attempting the operation.

descr character 40 This provides a short descriprion for the particular activity. It is
the same as the descr atiribute of the structures table for the
_particular activity.

recnode character 8 The Internet identifier in packed hexadecimal of the particular
computer node where the record of the design is slored.
recname character 8 The nawe vf the design record file.

Table 33: Register table definition

The recnode attribute of the register table associates activities with operating
system files which store the design record. A design record configuration file,
described in table 34, provides the links.

Field Length | Description
in bytes
recaade 8 The node where the design record file is held given as an Internet address
in packed hexadecimal.
filesystem 254 The name of the file system or path of the directory where the design

record files are held, Multiple locations can be specified for a particular
node by means of additional ctitries of the recrode and filesystem
combination.

localname 254 The design record file directory or file system may be located in a remote
node, Under parlicular circumnstances and using operating system
dependent utilitics {c.g. NFS) 1his file system may be remotely mounted
and become accessible as a foca! file system; in this case the attribute is
used to indicate the local name of the remote file systeni. In locations
which possess automounter support this entry could be used to instruet the
aperating system to mount the remote file system and make it available

for use at the point of an individual apering a specific activity; the same
facility can be used to unmount the file system at activity suspensinn,

cominent 80 A shott string to provide addilional information about a design record file.

Table 34: Structure of the design record configuration file
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One design record configuration file is used for every node where GUIDE is
engaged. Figure 39 provides an illustration of the links betwcen the different

tables and files used.

pointer i
Dasign racord file
wsid ..data
Session Register
poid h 1 » oid
sestart doid
sesend » poid Instances
status ts -
requester » old
actor »  wsid
description pts -
recmode j)«-
recname
Pesign record canfiguration file
node 4_\
filesystem : > -
ﬁ' pointer
local-name
commaeant

Figure 39 : Associations of activities with stored instances

GUIDE follows the links to retrieve instances by:

using the activity oid to retricve the appropriate recnode;

+ using the recrnode to retrieve the design record file name;

» examining the design record file to locate the particular wsid for clements with
the required instance o0id,;

« refrieving the relevant fs values for particular wsid and oid combinations;

» using the oid value to obtain information on the mapping and mapmeth values

from the clement definition table:
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« using the #s, mapping and mapmeth combination to retrieve the instance from
the appropriate storage location.

A similar sequence is used to identify the activities and, subsequently, the creators
of instances held in pariicular storage locations. The former operation is used in
conneclion with the retracing and abstraction of the activity record. The latter is
used in the modification of values which depend upon instances in activitics other
than the one cngaged by the designer and to alert the responsible individuals of
links upon particular instances.

3.2.4 Data type extensions

GUIDE atom instances can be of array or matrix type which are not supported by
relational database systems at present. Extended data types®® are supported using a
combination of two relational tables managed by GUIDE's control mechanism.
One table is the long field register and holds information about the type (e.g.
integer, real, character), length (in bytes per row), construction (i.e, array or
matrix), cardinality (i.e. rows first or columns first}, and numbers of rows and
columns in the array or matrix. The other table is the repository and stores the data.
The repository is linked to the register table and has rows of the maximum®®
length the data base manager will allow. GUIDE packs the rows and columns of
data and inserts them into one or more of these long rows. The same mechanism is
employed for their retrieval.

5.3 Integration with company data

GUIDE struciures and atoms can be used to represent descriptions of existing
data in relational data base tables. Atoms can represent columns and struciures can
represent fables, or views. Linked structures can represent complete data base
schemata. Software used or developed by engineering companies to store and
retrieve data can be represented as GUIDE methods and associated with atoms:
particular requests to instantiate atoms would cause the execution of the linked
methods and the consequent storage or retrieval of values.

68gametimes referred o us: long fields.

%%In most relational data base systems the maximum row length described as a long varchar field is 32
kilobytes or 32768 bytes. Some systems impose a restriction of 2048 bytes per row, GUIDE's control

mechanism senses any restrictions and adjusts the storage and retrieval of valucs as nccessary.
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Benefits stemming from GUIDE's capacity to represent descriptions of existing
data are:

« structures and atoms can be used to overlay data bases, tables and their
attributes and, subsequently, impose constraints on the data;

+ existing data can be used to provide default values to or constrainis on atoms
during instantiation;

« past product descriptions can be used in the generation of new data with links
and dependencies formed and managed by GUIDE;

» the company's data are integrated organically with GUIDE clemients and this
safeguards their integrity in the presence of change;

+ the record of data access provided can be used to compile reference lists to the
data and, subsequently, be used either for the elimination of duplicates or
unreferenced data;

5.4 Summary

GUIDE is a modular softwarec environment which employs server processes (o
enable its operation in distributed computational environments. GUIDE uses

standard facilities to access dala and execute methods at locations other than the
one where it is being exercised.

GUIDE employs standard relational data base systems to storc representations of
the stereotypes it employs and, depending upon user specification, the instances
generated. Database access is considered a specialised method and is managed by
GUIDE's control mechanism. Instances can be stored on a variety of media using
GUIDE methods. GUIDE can be used as a data manager and can engage company
developed data storage and retricval software. Ixisting product data used through
GUIDE are enriched by the addition of links and dcpendencies to other data and
knowledge representations. Activity information is registered in data base tables
and the design record is stored in operating system files.

GUIDE provides the ability to manage the data descriptions and diverse data
forms which exist within an engineering enterprise using a single application. This
benefits the conduct of operations within the company and safeguards the integrity
of the product data which is generated.
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6.1 Use of GUIDE in design
Three examples given here illustrate GUIDE supporting designers.

In the first cxample, the design of a housing for the front crankshaft oil seal in an
engine illustrates GUIDE's capacity 1o: aid the designer's use of a solid modeller to
create and manipulate component representations; enable the retrieval of data
from other designs and data bases and incerporate them in the housing design as
constraints or to set design parameters; creatc scveral compatible entities as the
result of a single decision by the designer.

The second example concerns the management of engineering change atfecting a
computer monitor. It illustrates GUIDE's capacity to: represent a highly structured
(sequential} methodology and, by means of its control mechanisms, allow the
method to be conducted concurrently?; use cxisting product descriptions to
control the management processes; support bi-directional communication of
design decisions within the company and to external contractors. The example is
taken from work conducted in association with IBM's design and manufacturing
facility at Greenock, UK, to develop a methodology for the communication of
product information within an Extended Enterprise using PDES and STEP. Interim
results of this work are reported in [Tsiotsias et al, 1994].

The third iflustration is of the application of GUIDE to crcate a prototype design
system supporting a technological development. The focus was the design of
ceramic reinforced ceramic composite materials (SiC-SiC) for aerospace
propulsion applications and was taken from work conducted with Rolls Royce
I.td. between October 1990 and Scptember 1993, The results of this work are
reported in [Hopper ¢t al, 1993].

The representations used in GUIDE and the way its conirol mechanism manages them allow the
remodelling of the Engineering Change procedure from a strict sequence to one which is suitable for
concurrent operations.,
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6.2 Design of a crankshaft oil seal housing

The housing design is constrained, primarily?! by the physical characteristics of
the part it encloses - the dimensions, material, operating temperature - the loads
exerted at its interfaces with conterminous parts and the method to attach it te a
rigid support. Some design constraints are:

+ the housing hole diameter is supplied by the external oil seal diameter adjusted
to give a press fit between the two parts;

» the housing thickness is equal to or greater than the oil seal thickness;

» the number and dimensions of the {asieners needed to attach the housing to the
engine block determines the housing's overall shape and the dimensions of the
holes in it;

+ the engine block material may constrain the housing material type or dictate
the use of a gasket at the joint between them if an unresolvable incompatibility
of materials arises.

The finalised design of the oil seal housing with its associated components is

shown in plate 10.

Aggregations of geometric shapes, represented in solid modellers as features, can
be used to create geomeiric representations of engineering parts. The part shape is
manipulated through the specification ol particular values to a predetermined set
of parameters. Values can be specified explicitly or as the result of a calculation
based upon the value of other parameters; constraints can be imposed upon the
parameters to limit the acceptable values to a specific range. The use of

parametric modellers™ for design relies upon the designer's capacity to:
« interpret the significance of the values required;
» audit the engineering validity of the solution;

+ establish, record and manage the interdependencies of parts and control them
in the presence of change,

7ITo preserve clarity only a subset of the possible design constraints is cansidered in this example.
Additional constraints could easily be in force: for example, the housing dimensions could be restricted
to a range of possible values taken from a catalogue of standard parts supplied lo the company.

72The term is used 1o describe solid modellers which have the capacily Lo matipulate complex shapes via
the specification of a set of predefined paramcters.
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In its application, GUIDE manages company data and knowledge embedded in
software facilities and complements the use by the designer of the parametric
modeller. Specifically, GUIDE is used to:

« create a formal representation of a generic housing and its design parameters;

+ define methods investing the design parameters with values;

+ create relationships between parts by enabling the extraction of values [rom
existing part descriptions (e.g. the oil seal diamcter) and using them to set the
value of appropriate housing parameters;

+ impose constraints upon the parameter values;

» create, by invoking the f{acilities of a paramelric modeller, the geometric
representation of the part;

» compile an active record of the design activity as an integral part of the
product description or for the abstraction of a procedure for the design of
similar products in the future.

6.2.1 Representations used to support the design

The design of the oil seal housing depends upon representations of the seal,
housing and (astener parts. T'he housing stereotype includes, as associated
children structures, representations of the holes to accommodate the oil seal and
for fixing to the engine block. These and related stereotypes are defined in figure
40.

The CATIA™ solid modeller provides geometric representations of the oil seal,
housing and fasiener. The housing shape parameters are illustrated in plate 6. The
geomelry is stored in proprietary CATIA files and facilities are offered by the solid
modeller application programming interface (API) to:

retrieve the parameter delinitions for a shape;
» obtain the defaull values associaled with a given parameter;
+ sct or modify the value of 4 parameler instance;

+ create the solid geometry corresponding to a given sct of parameler values.

BCATIA is a commercial computer aided design system and offers facilities for parametric shape
definicion. 1t is a registered trademark of Dassault Systemes, the CATIA developers.
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Figure 40 : Structures used in the housing design example

The geometric representations are linked to their corresponding part stereotypes
(structures and atoms) using GUIDE methods; figure 41 illustrates these
consections.

GUIDE methods supporting the design’4 provide the following functions:

get_definition Used to retrieve the parametric geometry definitions from the
CATIA data base. The method is associated with the part
structures as a pre-instantiation constraint. If the parametric
delinition cannot be retrieved, the instantiation of the part
structure is inhibited thus guaranteeing the association of the

CATIA geometry with the corresponding GUIDE  structures.

749 he methods can be written by the designer or by programmers supporting the compaany's engincering
activities. The methods call API routines of the parametric modeller, are external to GUIDE and are
associated with GUIDE structures and atoms. During instantiation, GUIDE presents them to the designer
as value supplying options.
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Figure 41 : Correspondence of the GUIDE housing part structure with the
CATIA shape definition parametery

get_defaults Used to compile a list of parameters associated with the
geomelric  definitions, maich the parameters (o  their
corresponding part-structure atoms, retrieve the parameter
default values and set the atom instance values. The method is
associaled with the part structures to supply multiple atom
instance default values after their preparation. Subsequent 1o the
setting of the default parameter values the method invokes the

do_shapc method to create the initial geometry.

do_shape Used to ascertain that all of the geometric parameters have been
specified and subsequently to modify the part shape according
to these values. It is associated with the part structures as an edit
method and can be invoked any number of times during

instantiation of part structures.
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sct_parameler Used to validate the atom instance values proposed by the

lock_shape

get_fastener

press_fit

cale_fastencr

designer. The method checks for any geometry constraints
imposed by the solid modeller; subsequently it validates the
chosen value against any additional GUIDE constraints. If all
checks are successful, the geometric parameter and atom
instance values are set and the do_shape method is invoked to
modify the part geometry. This method is associated with every
atom of the part structures, as a constraint.

This method is invoked after the part structure instance has been
committed. It prevents any modification of the geometry taking
place externally to GUIDE and thereby maintains the part
geometry congruently with the part definition.

The method is used to retrieve a valid set of fastener dimensions
from a company database. The fastener dimensions arc stored in
a relational table and the method (which is an SQL query) is
used to sel, in a single operation, all atoms associated with the
fastener structure,

Used to calculate the diameter of the hole, given the shaft
diameter, to producc a press fit between them. The method is
associated with the atom rcpresenting the housing hole
diameter.

Used to calculate the minimum fastener diameter required to
withstand a given load.

6.2.2 Housing design activity

The oil seal part stereotype has associated with it, as a child structure, the design
activity of the component to house it. The housing design activity is initiated by

the request to instantiate the child structure prior to completing? the oil seal

design.

7SIt is assumed threaghouc this example that the oil seal design is complele and, thercfore, the seal's
parameters have been set and validated.
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The housing design progresses as follows:

1.

Start Housing Design

The responsible designer opens the housing design activity, reads the
specification (reason), retrieves the oil seal structure description from the
parent activity (shown in plate 7) and initiates the housing preparation.

Create Outline Ilousing

From a list of GUIDE structures available for instantiation, the designer selects
a housing which can accommodate six7 holes: the pre-preparation constraint
locates the CATIA parametric shape definition and loads it into memory; the
group defaults method retrieves the housing default geometric parameters and
the slructure prepared is presented to the designer, as shown in plate 8, for
further manipulation.

Madify Housing

The designer decides to adjust the housing hole dimensions to suit the oil seal
diameter. From a list of available methods to provide a suitable value, press fit
is selected. This method requires as an input the shaft diameter. The designer
may decide to obtain this from a list of atom instances in the oil seal design
activity which includes the oil seal exlernal diameter. GUIDE retrieves the
instance valuc, executes the press fit method, validaies the oulput of the
method, sets the housing hole diameter to the calculated value and records the
dependency of the new instance in housing and seul design activities.

Create Fixing Holes

The designer requests the preparation of the child structure corresponding to a
fixing hole in the housing. Following the structure preparation, the hole
diameter requires modification: the ability to set the hole diameter to
accommodate the dimcensions of the fastener is provided by the get fastener
method. One of the mcthod inputs (equivalent to a database query search
constraint) refers to the fastener diameter. From a list of methods available in

76T maintain simplicity in the example, it has been assumed that six metric socket head cap screws,
arranged on a hexagonal pattern, will be used to secure the housing onto the engine block.

GUIDE in practice 131




GUIDE the designer selects the cale fastener method to calculate the
appropriate fastener diameter and, hence, to constrain the database search. The
results of the search arc prescnted and the designer decides to assign all the
fastener data returned (shown in plate 9). GUIDE sets the value of the hole
structure atoms appropriately and offers the option fo creale the structure
whose atoms correspond to any unassigned values. Acceptance by the designer
causes the instantiation of a fastener structure. The remaining five {ixing holes

arc created using instance values taken from the first hole structure.
Complete Housing Design

The designer commits the finalised housing structure (shown in plate 10) and,
using the management facilities of GUIDE, completes the housing design
activity, causing a notification to be sent to the requesting authority. The
requesier checks the housing design by examining the GUIDE activity rccord
(shown in plate 5}, accepts the solution provided and completes the oil seal
design aclivity.

GUIDE in practice 132




6.3 The management of a computer display monitor design change

Engineering operations within International Business Machines (IBM) are
conducted in accordance with company-wide documented procedures? defining
the role of the company's engincering teams and external contractors in product
development. Changes in IBM's business practice are transforming the product
development process into a distributed activity in which responsibility for
engincering functions is shared with the company's vendors?. This change in
product development methodology has significant implications for the
composition of the company's product model and the procedures used to manage
product development. For example, the company's contractors must be able to
initiate and manage engineering changes to products. A product model which
contains knowledge of the development procedure (the product description) as
well as data is required to support this operation and secure product integrity.

GUIDE's capacity to create and manage representations of procedures and product
descriptions provides the opportunity to establish a prototype product
development facility appropriate to an extended enterprise and to exercise it for
engineering operations upon company's products. The example described involves
the management of an engineering change made to IBM's 9507 flat screen display
monitor, illustrated in plate 11, GUIDE :

« creates the monitor product description;

= links the product description fo existing company data;

» employs representations of company procedures appropriate to the
management of engineering change.

6.3.1 A description of the engineering change procedure in IBM

Engineering change management within IBM is described in several documents
and softwarce packages (c.g. REALM, ECMS, GTS) developed to aid engineers to
conduct the company procedure. A request for an engineering change raised as a
result of a problem reported by one of IBM's manufacturing contractors is
managed as illustrated in figure 42.

T?Enginccring practices is the term used within IBM to describe them.

78The product development is, essentially, conducted by an extended enterprise
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The conduct of the engineering change involves the following actions:

A vendor contracted to manufacture a part in a given product and encountering

a problem sends notification to the IBM buyer or Vendor Engineer (VE).

The IBM vendor engineer tracks down the product Responsible Engineer (RE)
and passes on the problem information as received from the vendor. If the
product is developed at a different company location (plant of control) the
vendor engincer passes the problem information (o that location's Product
Documentation Analyst (PDA) to communicate it to the appropriate
responsible engineer.

The responsible engineer performs a 'sanity' check: this helps to establish if a
change is appropriate and whether a solution can be effected by a change of
manufacturing procedure or by redesign of the part. If a design change is
required, the problem notification and the responsible engineer's comments are
forwarded to the product Chief Designer (CD) as a Request for Engineering
Action (REA). '

The chief designer determines the required corrective actions, creates an
Engineering Change (EC) package and tasks individual designers with
particular changc responsibilities, using the Engineering Change Management
System { ECMS).

The designers perform the required changes and log notifications on ECMS
which arc made visible to the chief designer.

The chief designer establishes the cffect of the changes on the product:
functional”™ changes require the issuc of the modified part with a new parl
number; non-functional changes require the issue of a new engineering change
number. The new part and engincering change numbers are used to define the
new product structure and bill of material; completion of the engineering
change is logged on ECMS,

The ECMS notification triggers the responsible engineer to approve the
engincering change and, via the PDA, to create the Development/Production

27 change in specilicalion, form, fi. or function qualifies as a functional change; a new part number is
issued to avoid confsion during production.

GUIDE in practice 135




Record System (DPRS) transaction which will propagate the changed data to
the rest of the company's sites.

8. The Producl Design Analyst effects the DPRS transaction and this notifics the
vendor engineer.

9. The vendor engineer dispatches the product release data to the vendor.

IBM's product model in its current form is appropriate for the cornmunication of
data within the corporation. It depends upon specific software tools and
procedures implemented within the tools. Electronic data inlerchange between
IBM and its subcontractors is constrained by the softwarc capabilities and the
product model is assumed to be fixed in structure and content. A dynamic product
model based upon evolving and emerging product descriptions is more
appropriate to an organisation consisting of multiple interconnected agents but
requires additional mechanisms to manage and communicate it. GUIDE can
provide:

» arecord of the product development;

+ access to existing sources of data which may be in different formats during
product design and attachment of the data to product descriptions;

» linked implementations of engineering and business procedures;

+ data transiation and communication methods (e.g. based on the PDES/STEP
standard) internal to the stereotypes describing products.

Ulitmately, the design record exposes the parts of the product model which must
be communicated to support operations, such as an engineering change, across the
extended enterprise.

6.3.2 Representations used to support the engineering change operation

GUIDE represents the procedure employed by the company as a set of activity
structures. Activity initiation is controlled by constraints to ascertain the
suitability of the requesters which can be IBM cngineers or subcontractors.
GUIDE creates links between activities to identify sequences of operations and
product dependencies. Figure 43 provides an illustration of how an engineering
change might progress.
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Figure 43 : GUIDE activities used 1o represent IBM's engineering
change procedure

‘T'he operation could be concluded earlier if a change in manufacturing process
alone would have been sufficient. Formal associations are employed in two

instances to sceure specific elements of company practice:

GUIDE in practice 137




» a product engineering change will involve the change of at least one part and
cannot be concluded unti! the part change is complete;

+ a new product releasc must be cntered in the enterprise register followed by
notification of the change to any party involved in the development of the
produet.

Central to (he representation is the definition of the part®® description structures:
these provide the part identification (by specification of its part number and
engineering change level) and a pointer to the specific activity, represented as a
GUIDE structure, which describes the part design. Figure 44 is an illustration o(
the GUIDE structures employed. The overall product structure becomes an index
to the part generation activitics and cnables:

» atrack to be followed from the product to the design of the parts;

« scveral product configurations to be established using diflerent combinations
of parts;

+ the design of the individual parts to become distributed and, possibly, be
conducted outside the company.

Component relationships are represented as links across activities®! and this
enables product dependencics to be established. A Bill of Materials, represented
as a child structure of the product description, is generated {rom a trace of the part
design activity links. The bill of material for a specific release of the 9507 monitor
is illustrated in plate 12.

The GUIDE methods supporting the engineering change provide the following
functions:

» creation of the structure representing the product bill of material;

« generation of part and engineering change numbers according to the
company's convention;

» evaluation of the capacity or authority of the engineering change initiator to
conduct the change operation;

« retrieval of standard parts from a central company register;

» product data translation and communication {using PDES/STEP facilities if

required).

80Denoted in figure 44 as assembly or component descriptions.

811y the design records of the activities involved.
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part design activities

6.3.3 Conduct of the engineering change on the 9507 display monitor

An IBM vendor coniracted to manulacture the monitor bezel is cxperiencing
problems with the flow of the plastic material during injection: the diameter of the
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injection point, corresponding in the bezel to the diameter of a fixing hole, needs
to be increased by at least 15 percent. The procedure lo rectify the problem

progresses as follows:
1. Design change investigation

The vendor's engineer examines the design record of the part and establishes
the dependencies of the hole diameter value. GUIDE indicates that the hole
diameter was obtained from the diameter of the fixing screw in a different
design activity which refers to a company standard part and is, therefore, not
amenable to design modification.

2. Replace standard part

The vendor's engincer raises a problem notificalion using GUIDE (shown in
plate 13), initiates a change activity and sclects an alternative fastener from a
list of company standard parts, retrieved by GUIDE, to replace the existing
part. GUIDE warns that the replacement affects instances of other parts - the
monitor back cover and the metal frame inside the monitor used to support the
electronic components shown in plate 11- suspends the replacement, initiates
two design change activilies as children of the fastener change activity, assigns
them to the engineers responsible for the affected parts and notifies the product

engineer of the proposed changes.
3. Product Release

Upon completion of the part changes and the fastener substitution, the product
engineer retrieves the new part descriptions and executes a GUIDE method
which assigns new part numbers to the bezel, back cover and frame and a new
engineering change number to the assembly which references them. The
product engineer creates a copy of the product siructure, replaces the changed
parts and commits the new structure. GUIDE executes the method appropriate
to the product structure commitment, which generates new activities to place
an entry for the product in the corporate register and transmit the change

information to the company's other locations and external contraclors.

‘The provision of accurate product data translation services the conduct of

functions such as engineering change but is not a goal in its own right. In
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GUJIDE's design record the inllucnces and dependencies of the company's
engineering function on the product model employed identify which parts of the
product model need to be exchanged - the content of the communication - across
the parties of an extended enterprise.

The conduct of the engincering change demonstrates GUIDE's provision of an
operational environment where the extended enterprise behaves as a single
company and site, with data communication taking place organically with the
tasks engaged and transparently to the designers.
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6.4 Design of a facility for design with ceramic composites

The field of design with ceramic composite materials is immature; little expertise
cxists for most of the design problems engaged. Component manufacture is based
on a pre-form of fibres often constructed from several elements which might be
made by knitting, weaving or braiding of the fibres. Component design and
material design are, consequently, coincident activities and the manufacluring
constraints are severe. Furthermore, components suffer micro-cracking under
service conditions, which must be accounted for in the design [Hopper et al, 1993].

It is not possible to prescribe, in terms of specific designer actions, an overall
procedure which should be followed to reach a successful component design. The
specific path followed will vary from design to design depending on, amongst
others, the degree of similarity of the problem to others previously tackled, the
experience of the designer and the availability of related expertise to the team
undertaking the design. The facilities offered by GUIDE can be employed to
develop a Ceramics Design Syslem {(CDS) which exploits distributed design
resources and elicits expertise to aid designers in the design of ceramic
components, within the operational context of a large engineering organisation.

6.4.1 The process of design with ceramic composites

Figure 45 provides one illustration of the design process which could take place.
The component design evolves through series of iteraticns in which geometry and
internal architecture are proposed and assessed. Physical performance,
manufacturability and costs provide the basis for the assessment. The geometry
and architecture proposals arc made on the basis of information from these
assessments and {rom other sources such as, for example, imposed specifications

and constraints, component function, related previous designs and standards. The
iterations may:

+ vary considerably in terms of scope and time scales;
« involve the designer's effort alone;

» incorporate actions from clher company or external functions.
The variability of the design process suggests that the system to support the design

ought not attempt to prescribe a detailed procedure but, instead, to provide

functions o support the generation, representation, communication and analysis of
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component designs which may be invoked by the designer throughout the process

as seen fit.
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GUIDE's ability to support working entities which can be graphical, alphanumeric
or process related allows modelling functions to be implemented alongside
functions for data description, data communication and to invoke propricilary tools
and applications. GUIDE can manage a diverse range of functions and mahe them
available to the designer through a single interface.

Specifically, GUIDE is used to develop and maintain facilities to support the
designers in:

= the modelling of composite components;

« the conduct of finite element analyscs;

« accessing, updating and expanding a data base of material properties;
« the recording and rcuse of design paths;

» providing context specific information to the users of the facility.

Composite modelling involves the subdivision of a complex geometric model into
sub elements and the definition of cartesian points within each sub element to
associate material fibre directions and property data with the model. The
component is analysed into architectural regions ~ elementary volumes - which are
formally represented as geometrical solids. The orientaiions of fibres or of
principal directions of material properties in these regions are described by
architectural tags. GUIDE provides the capacity to attach textual information and
numerical data to the architectural regions related, for example, to materials
properiies and manufacturing technology using the architectural tags [Hopper et
al, 1993].

Finite element analyses require the support of modelling and meshing functions
and access to applications and data communication. Particularly important is the
communication of data which defines the composite componenis’ internal
structure from the design 1o the finile element solver. Data communicalion
provides the ability te support:

« standard analyses from which component stress patterns and principal stress
directions can be derived to guide the component internal architecture design;

» stress/displacement and thermal analyses in which the internal structure of the
composite component is accommodated in terms of propertics and material

directions;
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« micro-damage analyses in which the directions of the finite element model
reinforcements used in the analysis may be derived from the architectural

model.

The communication facilities are built upon combinations of process-criented
stercotypes supported by GUIDE methods.

The design record provides a mechanism for the accumulation of expertise which
can be used in the future design of ceramic components. In addition to the actual
outputs of a design, such as the componcut description in its various forms, a
designer could obtain information concerning the design tasks undertaken and
their sequence. The GUIDE design record is employed, with filtering to reduce its
granularity, to provide a representation of the composite components design
description.

6.4.2 The design of a T-Beam sub-element

The design system facilities provided by GUIDE are iltustrated in the design of a
T-beam composile sub clement as shown in plate 14, The sub clement design,
using the developed Ceramics Design System, progresses as shown in figure 46

and invelves the following stages:
1. Pre-analysis

The T-beam sub clement is modelled as a single architectural region. The
geometry is meshed and a standard analysis using ABAQUS# is conducted to
establish the principal stress directions (illustrated in plate 15) needed to guide
the choice of fibre layout. GUIDE methods are used to communicate the
information between CATIA, the geometric modeller used, and ABAQUS.

2. First Design Proposal

The T-beam sub element is modelled as 3 architecture regions to simulate its
anticipaled construction (illustrated in plate 16). Architectural tags, defined
using GUIDE, arc associated with the individual regions to hold the particular
material data and f{ibre directions. An ABAQUS analysis initiated to obtain

82ABAQUS is a finite element solver for non-linear analyses. It is a trademark of Hibbitt, Karlsonn and
Sorensen (HKS), the ABAQUS developers.
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values for inter-laminar direct stresses, as shown in plate 17, relies on GUIDE

funclions to access fibre dircctions and material properties.
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3. Second Design Proposal

Based upon the results of the 3 region T-beam sub clement, the component is
remodelled as 5 regions (illustrated in plate 18). The inter-laminar stresses
(shown in plate 19) are calculated and the results are used to refine the regions
to reduce internal stresses in the component. The process is iterated and lcads
to the sub-segmentation of the original regions until an acceptable solution has

heen reached.

The overall design record of the sub-clement design activity is shown in plate 20.
Plate 21 provides a detail of a T-beam sub-element design sub-activity.

The customised tools and processes yielded by the Ceramics Design System
impress a discipline - the implicit design method - on the designer, but the CDS
does not prescribe the design path. GUIDE provides [Hopper ¢t al, 1993], through
the CDS, a method to: represent components manufactured from composites;
fracture mechanics models and the analytical service and data requirements of
these models; data base facilities including, for example, access to malterials dala
bases; a record of the design path which has been followed in a form which
permits its re-use and editing; on-line information to aid the designer.

A design team pursuing several design issues can construct a consistent set of
models of a component or of an element of composite material, with the
characteristics of its members being chosen to meet the needs of the various
design tasks being engaged.
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7.1 Conclusions

Design in engineering companies is turning to the use by the design authority of
integrated, multi discipline teams and product analysis in terms of component
technologies. The focus of company resources is on products rather than on
specialist functions. Operationally the need is to: acquire resources which are
functionally and geographically separated in the business routine of the company;
provide designers with formal methods presented as integrated technologies;
communicate data and deliver methods and procedures to design teams, the
members of which may be distributed; maintain access to and sustain the integrity
of existing product data. For this model to evolve effectively companies should
employ:

+ a formally agreed and structured product model which includes, explicitly,
manifestations of the products’ evolution - i.e. knowledge of the data generation
processes and of the design constraints which were applied, as well as of the
data - and which can remain active throughout the products’ lifetime, providing
facilitics for product development, configuration control, etc. and essential
communications,

GUIDE, the utility described in this work, supports the development, evelution
and communication and maintains the integrity of a single product description, It
employs structured representations of design entities and processes and the links
between them, using combinations of siructures, atoms and methods and a control
mechanism which disciplines design. Thus:

+ GUIDE establishes a framework for the operation of distributed tcams and the
analysis of design into tasks which can be addressed by team elements working
concurrently.

GUIDE provides for:

« the construction of structures containing atoms which point to other structures

and mecthods to create aggregations of complex design entities and to form
representations of the contributing technologics;

» the ordered representation of relationships as structures te describe links
formed between its clements;
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+ the separation of relationships from the entities they link.

«+ the linking of pre-existing data, methods and facilitics which designers have
employcd routinely with the GUIDE supported representations employed.

Constraints are represented as methods which can cvolve in time and may
influence the application of GUIDE clements generally. The associated control
mechanism manages conflict: the constraints upon an instance and ils dependants
must be satisfied before the sctting or modification of a parameter can be
finalised. Unsetting of an instance causes its dependants to be resel consistently
with constraints affecting them. Relaxation of a design constraint is equivalent, in
GUIDE, to a medification of the instance(s) to which the constraint applies and is
made subject to the satisfaction of checks on any instances affected. This feature:

« localises conflict and guards against the generation of design solutions in which
constraints remain unsatisfied.

GUIDE employs, as far as is possible, standard, commercially available software
and applications. The elements it defines are implemented using a relational
database and attributes characieristics to elements through reclational links.
Elements are linked using external relationships held within the relational schema.
The GUIDE control mechanism thereby causes the relational schema to exhibit
object oriented characteristics which facilitate the storage of knowledge
representations but within the context of a distributed database. This facility:

« secures the integrity of the representations and their availability for sharing
aecross the organisation and its external contractors.

GUIDE will benefit {rom advances made in the relational database architecture as

these become available in international standards.

Data access is represented by GUIDE methods which supply atoms with values
and cause data transformations. This [acility sustains the communication with
distributed engineering and product centred data bases and provides for the
integration of design with company and cxternal resources. This management of
data access by GUIDE :
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+ enables the association of disparate data forms within the knowledge

representations.

GUIDE maintains a design record - the roule followed and the actions taken during
design - which constitutes an accumulation of knowledge and the generation of
expertise. The design record provides the actual outputs of a design and
information concerning the design tasks undertaken and their sequence. In

CSSencce:

= the design record contains comprehensive meta-knowledge and enables GUIDE

to contribuic to and acquire design knowledge.

GUIDE facilitates the construction and testing of design solutions and can be used
to cxamine design methods and processes by allowing rapid prototyping. Becausc
of its internal discipline, GUIDE allows representations of design entitics and
procedures to be managed centrally and communicated to the designers without
loss of operational {lexibility (the independence of designers).

7.2 Future prospects

Design functions and the contribulion of designers are poorly defined and
evaluated. Lacking good measures of efficiency and productivily company
investments of resources in design are uncertain and often inadequate. The design
record is a basis for independent audit of designer actions in real time, because it
exposes tasks more quickly and precisely. The disciplined construction of the
design record coupled with a method 1o analyse its content as design proceeds
could provide a facility to measure design efficiecney and productivity and define

the metric required for auditing the design process in general. Hence:

« the design record could enable design traceability, provide for audit during the
design process, sustain status evaluations and provide for design regression,

In inter-company communications, the provision of accurate product data
translation services the conduct of engineering functions (c.g. manufacture)
remotely, but does not scourc a basis for design by a multidisciplinary team which
may be geographically distributed. In GUIDE's design record, the influences and
dependencies of ihe company's cngineering functions on the product model

identify which paris of the model need to be shared with the collaborating agents.
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The design record is a basis for inter-company communication, provided it can be
expressed in a standard form. The facilities available in the PDES/STEP standard
suggest that this is possible.

The introduction of a product into service necessitates the development of
procedures to guide non-experts in performing product maintenance or to cause
the modifications required to suit particular markets, Maintenance procedures
must change when products evolve, Companies adopt new techniques - e.g.
facilities munagement - to resolve maintenance and related problems. The design
record contains information on the constraints and concepts which influence the
operation of mechanisms and products. With suilable advances in modular
computing, an engine capable of interpreting the record while a product is in
service might be developed which would make products sell-referencing and self-
monitoring,

GUIDE offers designers with a range of design functions through a single interface
and without prescription on operations. It provides access to distributed data,
communication facilities and generates a record of the entire design activity.
Some of the applications to which GUIDE can be put have been illustrated in this

work.
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Plate I: Creation of an atom definition
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Plate 4: Analysis of an atom associated with a structure
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Plate 5: View of a design record incorporating instance details

Plates




g ‘
-
;
:
%

Plate 6: Parametrised crankshaft oil seal housing
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Plate 7: GUIDE structure describing the oil seal
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Plate 8: GUIDE structure describing the oil seal housing
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Plate 9: Creation of housing fixing holes by instantiation of fastener structure with
data retrieved from a data base search
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Plate 10: Finalised design of oil seal housing and associated components
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Plate 11: IBM 9507 Display monitor assembly
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Plate 12:

IBM 9507 Display monitor Bill of Material
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Plate 13: Manufacturing problem notification sent by a vendor to the product engineer




Plate 14: Architectural model of single region T-Beam sub-element
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Plate 15: Principal stress directions imported JSrom finite element analysis using a
GUIDE method
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Plate 16: Architectural model of a 3 region T-Beam sub-element
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Plate 17: Contour plot of inter-laminar direct stresses for 3 region T-Beam
sub-element
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Plate 18: Architectural model of a 5 region T-Beam sub-element
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Plate 19: Contour plot of inter-laminar direct stresses for 5 region T-Beam
sub-element
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Plate 20: Design record (post processed) of T-Beam sub-element design activity
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Plate 21: Detail of T-Beam sub-element design sub-activity
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