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Summary

Introduction: Neuroblastoma has a long-term survival rate of only 15%. While 

patients with early stage disease can be treated with surgical excision of the 

tumour, those with inoperable disease require intensive treatment. However, little 

progress has been made in the survival rates of patients with advanced 

neuroblastoma. Targeted radiotherapy using [^^^l]meta-iodobenzylguanidine 

([^^^l]MIBG has induced favourable remissions in some neuroblastoma patients 

when used as a single agent. However, uptake of the radiopharmaceutical in 

malignant sites is heterogeneous and approximately 15% of neuroblastoma 

patients are MIBG negative by scintigraphy and therefore do not progress to 

[̂ '̂‘IJMIBG therapy. Therefore, the full potential of this therapy may only be realised 

by improving the drug accumulation capacity of neuroblastoma cells. One way to 

achieve this is by the introduction of cDNA of the noradrenaline transporter (NAT) 

into neuroblastoma cells. NAT is responsible for the intracellular accumulation of 

[^^^l]MIBG. In this strategy, the NAT transgene will be under the control of tumour 

specific promoter sequences such as the telomerase promoters or the radiation- 

inducible WAF1 promoter. Furthermore, this gene therapy approach could be 

improved by the use of immunoliposomes as a non-viral DNA delivery system.

Aims: The aims of this study were to determine the potency of the telomerase 

promoters with respect to the NAT transgene expression, and to assess whether 

the radiopharmaceuticals [ ‘̂̂ ^IjMIBG and [^^^At]MABG could induce the activity of 

the WAF1 promoter. Finally, the capacity of GD2 -targeted coated cationic 

immunoliposomes to transfer plasmid DNA specifically to GD2 -positive 

neuroblastoma cells was evaluated.

Results: Both telomerase promoters (hTR and hTERT) were able to drive the 

expression of the NAT transgene in neuroblastoma cells. Furthermore, this 

resulted in enhanced toxicity of the [^^^IJMIBG and At]MABG to the transfected 

cells, compared to that of untransfected cells. The hTERT promoter displayed the 

greatest activity for both [^^^l]MIBG and [^^^AtjMABG treatments.

The WAF1 promoter activity was inducible not only by external beam y-rays but 

also by the /^-emitter radionuclide ^̂ 1̂ in the form of [’'^^IjMIBG or by the «-emitter 

radionuclide ^^^At conjugated to benzylguanidine ( f  ̂ ^AtjMABG). In vitro estimation

15



of the equivalent radiation dose of both radiopharmaceuticals was performed. This 

demonstrated that levels of WAF1 promoter activation caused by [^^^l]MIBG or 

p^^At]MABG were comparable to that by y-radiation.

Preliminary toxicity experiments showed that, after irradiation, toxicity of [^^^l]MIBG 

improved in neuroblastoma cells transfected with the construct containing the NAT 

cDNA downstream of the WAF1 promoter sequence.

The preparation of GD2-targeted coated cationic immunoliposomes, used in this 

study, successfully encapsulated plasmid DNA, and were specifically bound to and 

internalised by GD2-positive neuroblastoma cells. Unfortunately, low transfection 

efficiency indicated limited usefulness of this methodology.

Conclusion: Increase in ['’ '̂‘IJMIBG or f^^At]MABG toxicity was achieved in 

neuroblastoma cells transfected with the NAT transgene under the control of the 

hTR or hTERT promoter. If the overexpression of the NAT transgene and the 

improved toxicity of radiolabelled drugs are confirmed in pre-clinical models, there 

is potential for therapeutic gain.

The WAF1 promoter was activated by both radiopharmaceuticals, and preliminary 

experiments suggest that pre-exposure to ionising radiation could increase the 

cytotoxicity of [^^''IJMIBG, via WAF1 promoter-controlled overexpression of the 

NAT transgene. These results together indicate potential for immediate 

applications in neuroblastoma patients, such as bone marrow purging.

The technology of GD2 -targeted, coated cationic immunoliposomes has great 

potential for its target-specificity and internalisation capacity. The low transfection 

effectiveness observed in this study may be improved with advances in the current 

methodology.

These results suggest that further advances in promoter control and 

immunoliposomal technology could enable the application of NAT gene transfer in 

combination with [^^^1]MIBG targeted radiotherapy.

16



Chapter 1

Introduction:

[^̂ l̂]MIBG and gene therapy: A rationale for 
amalgamation of targeted radiotherapy with gene therapy 

for neuroblastoma treatment
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i.1  Targeted Radiotherapy
After surgery, radiotherapy is the most commonly used type of cancer treatment. 

Approximately 50% of all patients will require radiotherapy at some stage in their 

treatment regimen [1]. Conventional external beam irradiation is a very effective 

treatment for tumours which are confined to their site of origin. However, normal 

tissue intolerance is the main restriction to the use of radiotherapy. In addition, 

many tumours do not present well-defined margins or are spread to sites distant 

from the primary tumour, and cannot be treated in this manner [2].

Targeted radiotherapy, where cytotoxic radionuclides are conjugated to tumour- 

seeking drugs, may overcome these problems [3]. The peculiar property of this 

alternative form of radiotherapy is the selective irradiation of malignant areas while 

sparing normal tissues [3]. The use of monoclonal antibodies raised against 

tumour-specific antigens has been successful in lymphoma therapy [4, 5], but 

clinical applications of these radiolabelled macromolecules have generally been 

poor due to limited tumour penetration, low tumour specificity and induction of anti

mouse immunoglobulin responses [6, 7].

Therefore, the use of low-molecular-weight compounds with tumour specific 

properties as targeting vehicles is an alternative to antibody-based techniques. 

These molecules are less likely to generate an immune response and have better 

penetration [3, 7].

1.1.1 Radiological bystander effect
A further benefit of targeted radiotherapy is that the cytotoxic effects of

radionuclides are enhanced by the radiological bystander effect.

Only a fraction of tumour cells can be successfully targeted as a result of 

heterogeneous uptake of the radiopharmaceutical. However, energy released by 

decay of the radioisotope emanates from the targeted sites of the tumour in three 

dimensions (cross-fire), causing damage to neighbouring cells that have not 

accumulated the radiopharmaceutical [2]. Thus, even if the efficacy of radio

targeting of tumour cells has a success rate less than 100%, underdosing of the 

tumour is circumvented by the radiological bystander effect.

Targeting strategies such as antibody-directed enzyme prodrug therapy (ADEPT) 

or gene-directed enzyme prodrug therapy (GDEPT) also make use of bystander 

effects. However, these methodologies depend on the transport of activated
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cytotoxic drug through gap junctions, which frequently decreases with tumour 

progression [8-10]. However, toxicity due to radiation cross-fire is not dependent 

on biological cellular functions. Energy emissions from a wide range of 

radionuclides have been quantified and their path lengths are well known. It is 

therefore possible to use different radionuclides with different decay properties to 

treat tumour masses of widely varying size [11].

The contribution of radiological bystander effect to kill neighbouring, non-targeted 

cells is relatively well understood [11]. Recently, it has emerged that the physical 

radiation insult can be translated into biological signals or toxins by cellular 

response to the radiation damage. This phenomenon is known as the radiation- 

induced biological bystander effect (RIBBE) [12-14]. Although analysis of RIBBE 

induced toxicity is not the purpose of this present study, these effects may have an 

important role on the course of future research, which will be discussed in greater 

detail in section 5.4.
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1.2 Neuroblastoma: introduction
Neuroblastoma, one of the most common solid tumours in children [15], derives 

from the precursor cells of the sympathetic nervous system (neural crest). It 

accounts for about 7% of all paediatric cancer [16], 96% of cases are diagnosed 

by the age of 10 years [17] and the median age at diagnosis for neuroblastoma 

patients is about 18 months [18].

1.2.1 Molecular biology
Analysis of the molecular biology of neuroblastoma began with the cytogenetic

characterisation of tumour-derived cell lines. The majority of neuroblastoma cell 

lines show double minute chromatin bodies (DMs) or homogeneously staining 

regions (HSRs), both representing DNA amplification, and deletions of the short 

arm of chromosome 1 [19, 20]. These early studies clearly demonstrated that both 

gain and loss of genetic material are common in neuroblastoma cells.

1.2.1.1 Gain and loss of genetic material
MYCN gene amplification is seen in 25-33% of neuroblastoma patients [21], and is

a powerful prognostic indicator independent of anatomic stage, age, and multiple 

other biologic measures [22, 23]. The MYCN gene was originally cloned in 1983 

by Isolating an amplified DNA portion with partial homology to the MYC proto

oncogene (c-myc) in neuroblastoma cell lines with DMs and/or HSRs [24, 25]. The 

MYCN gene is located on the distal short arm of chromosome 2 (2p24). Gain of 

17q genetic material is the most common genetic abnormality in primary 

neuroblastomas and is strongly associated with adverse outcome [15, 26]. 

Deletions of the short arm of chromosome 1 (Ip) are a common feature of 

advanced disease [27, 28]. Loss of heterozygosity (LOH) for the chromosome Ip  

is documented in 19% to 36% of primary tumours [29-36]. Chromosome 11q 

deletions have also been recorded in approximately 15% to 20% of neuroblastoma 

karyotypes [37]. Evidence indicates that a neuroblastoma suppressor gene could 

be located on 11q [38].

Deletion of the long arm of chromosome 14 is seen in 22% of primary tumours 

[39]. Other regions of the genome that have alterations, LOH and/or allelic 

imbalance are 3p [39], 4p [40], 5q [41], 9p [42, 43] and 18q [44].
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1.2.1.2 Alterations in gene expression
Neuroblastoma tumours also show alterations in gene expression. mRNA

expression of three members of the family of tyrosine kinase receptors for nerve 

growth factor and other neurotrophic factors trk-A, trk-B, and trk-C are correlated 

with neuroblastoma outcome [45-47]. Trk-A and trk-C expression is more common 

in infants and low-stage patients, and is related to a favourable outcome [48, 49]. 

In contrast, trk-B expression is associated with N-myc amplification, and related to 

a poor outcome [50, 51].

Multidrug resistance gene 1 (MDR1), the gene for multidrug resistance-related 

protein (MRP) and other members of these families are expressed and have 

potential clinical significance in neuroblastomas [52-54].

Alterations in telomerase expression have also been documented in 

neuroblastomas. In a study analysing neuroblastomas from untreated patients for 

telomerase activity, an inverse correlation is seen between telomerase activity and 

outcome of neuroblastoma patients, and a direct correlation between high 

expression and MYCN amplification [55]. In most stage 4S neuroblastomas 

telomerase activity is absent [55, 56].

1.2.2 Clinical features and conventional therapies
At presentation, approximately a third of patients have localised disease and two-

thirds have metastatic disease [21]. Neuroblastomas are extremely heterogeneous 

[18], and progression of the disease varies widely according to anatomic stage 

and age at diagnosis [15].

The clinical factors of age and stage are the most important prognostic indicators 

for neuroblastoma. In infants, localised and widespread diseases are highly 

curable [57-61]; children from 2 to 5 years old with localised forms can be cured 

[22, 58, 59] but metastatic disease is an indication of lethal outcome [62, 63]; and 

in older patients the prognosis with both localised and metastatic forms is poor [64, 

65].

The International Neuroblastoma Staging System (INSS) (Table 1) is the currently 

used classification for clinical staging of the disease [66].

Patients with stage 1 and stage 2A disease have localized tumours and can be 

treated surgically, without radiotherapy or chemotherapy [67, 68]. Treatment of 

patients with stage 2B and stage 3, which include lymph node involvement, is
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mainly surgical [69], together with chemotherapy [70]. The efficacy of radiotherapy 

to patients with stage 2B and 3 tumours is still uncertain [22, 71]. Patients with 

advanced disease (inoperable stage 3 and stage 4) are usually treated with 

intensive treatments or “megatherapies”, including myeloablative chemotherapy, 

total body irradiation followed by bone marrow rescue [63, 72, 73]. A distinct 

subset of patients present spontaneous disease regression without intensive 

intervention (stage 4S) [21, 74].

However, regardless of such aggressive therapies, the survival rates of patients 

with advanced disease has not substantially improved [75].
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stage 1: Localized tumour* with complete gross excision, with or without microscopic residual
disease; representative Ipsilateral lymph nodes negative for tumour microscopically (nodes 
attached to and removed with the primary tumour may be positive).

stage 2A: Localized tumour with incomplete gross excision; representative ipsilateral nonadherent
lymph nodes negative for tumour microscopically.

stage 2B: Localized tumour with or without complete gross excision, with ipsilateral nonadherent
lymph nodes positive for tumour. Enlarged contralateral lymph nodes must be negative 
microscopically.

stage 3: Unresectable unilateral tumour infiltrating across the midline**, with or without regional
lymph node involvement; or localized unilateral tumour with contralateral regional lymph 
node involvement; or midline tumour with bilateral extension by infiltration (unresectable) or 
by lymph node involvement.

stage 4: Any primary tumour with dissemination to distant lymph nodes, bone, bone marrow, liver,
skin, and/or other organs, except as defined for stage 4S.

stage 48: Localized primary tumour, as defined for stage 1, 2A, or 2B, with dissemination limited to
skin, liver, and/or bone marrow*** (limited to infants younger than 1 year).

Multifocal primary tumours (e.g., bilateral adrenal primary tumours) should be staged 
according to the greatest extent of disease, as defined above, and followed by a subscript 
"M" (e.g., 3m).

The midline is defined as the vertebral column. Tumours originating on one side and 
"crossing the midline” must infiltrate to or beyond the opposite side of the vertebral column.

Marrow Involvement in stage 4S should be minimal, i.e., less than 10% of total nucleated 
cells identified as malignant on bone marrow biopsy or on marrow aspirate. More extensive 
marrow involvement would be considered to be stage 4. The MIBG scan (if done) should be 
negative In the marrow.

Table 1. International Neuroblastoma Staging System [66].
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1.2.3 Innovative therapies
Mechanisms involved in neuroblastoma tumorigenesis and drug resistance have

been the main focus of recent studies. Such investigations have introduced new 

potential drugs that can target the tumour more selectively than existing agents.

For example, induction of differentiation is a promising approach for treatment of
!

neuroblastoma. Natural retinoic-acid dérivâtes have been shown to induce 

differentiation in vitro [76-78] and a significant survival advantage in a randomised
;

clinical trial [63]. A novel synthetic retinoid - N-(4-hydroxypheny!)retinamide 

(fenretinide) - induces apoptosis rather than differentiation [79-81]. A phase I 

clinical trial, recently published, showed stable disease in 41 of 64 patients and 

manageable toxicity [82].

Inhibition of angiogenesis is another interesting approach for the treatment of this 

disease [83]. The agent TNP-470 has been used effectively in animal
! 
,

neuroblastoma models [84-87]. However, due to Its high toxicity, the use of TNP-

470 as a therapeutic drug in neuroblastoma patients is still uncertain. Recently, a 

new compound, A-357300, with target properties similar to TNP-470, has been 

proven effective in pre-clinical models with manageable toxicity [88]. 

Immunotherapy of neuroblastoma is a novel approach that is gaining popularity. 

Several antibodies have been raised against a surface antigen disialoganglioside 

GD2 , that is expressed at high density in the majority of human neuroblastoma 

tumours [89]. These antibodies have been used as therapeutic drugs alone [90-92] 

and might also provide a means of targeting selectively to neuroblastoma cells 

other anticancer agents such as radionuclides [93, 94] or liposomal encapsulated 

fenretinide [95], c-myc antisense oligodeoxynucleotides [96] or doxorubicin [97].

To date, the most promising novel treatment of neuroblastoma is targeted 

radiotherapy with the use of radioiodinated meta-iodobenzylguanidine ( f  ̂ ''l]MIBG - 

Figure 1). About 85% of neuroblastoma cells express the noradrenaline 

transporter (NAT - Figure 2) a 12-spanning membrane protein responsible for the 

re-uptake of the biogenic amines into presynaptic terminals [98-101]. 

Meta-iodobenzylguanidine (MIBG) is a structural analogue of noradrenaline, is a 

derivative of the adrenergic neurone-blocking drugs bretylium and guanethidine, 

and is selectively concentrated in neuroadrenergic tissue by noradrenaline 

transporter cellular uptake [99, 100]. Tracer doses of radioiodinated MIBG have



been used successfully for diagnostic scintigraphy of tumours derived from the 

neural crest [102, 103] such as neuroblastoma. It is expected that the ability of 

neural crest-derived tumours to accumulate and retain high concentration of 

[^^^IjMlBG will lead to more extensive therapeutic application of this drug [104, 

105].

Targeted therapy using [^^^l]MIBG has induced favourable remissions in some 

neuroblastoma patients when used as a single agent [106-110], However, uptake 

of the radiopharmaceutical in malignant sites is heterogeneous [111] and 

approximately 15% of neuroblastoma patients are MIBG negative by scintigraphy 

and therefore do not progress to [^^^l]MIBG therapy. These factors clearly suggest 

that the use of MIBG alone is unlikely to cure advanced stage disease. Therefore 

the full potential of this therapy may only be realised when it is combined with 

other agents [112] and/or by improving the drug accumulation capacity of 

neuroblastoma cells [98].
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Figure 1. [ I] meta-iodobenzylguanidine ( f  I]M1BG). f  l]MIBG is a structural analogue of 
noradrenergic neurone blockers bretylium and guanethidine. It is selectively concentrated in
neuroadrenergic tissue by the noradrenaline transporter (NAT), 
remissions in neuroblastoma patients when used as a single agent.

131l]MIBG causes favourable
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Figure 2. The noradrenaline transporter (NAT) is responsible for the active intracellular 
accumulation of catecholamine neurotransmitters in neuroadrenergic tissue by a process known as 
Uptake-1. It is expressed in 85% of neuroblastoma tumours. The NAT protein consists of 617 
amino acids and has 12 transmembrane domains. This conformation is similar to that of other 
membrane-associated proteins that are responsible for ion and solute transport. Note that the 
number of circles is not an accurate representation of the number of amino acids residues.
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1.2.4 Enhancement of MIBG uptake in neuroblastoma cells
Several studies have shown increase of MIBG uptake in neuroblastoma cells after

treatment with anticancer agents.

For example, Smets et al. (1991) reported an enhancement factor of 1.8 in the 

capacity of MIBG uptake in SK-N-SH cells after exposure to 5Gy y-rays [113]. 

Montaldo and his group showed an uptake-enhancement factor of 3 in SK-N-SH 

and SK-N-BE(2)c celis co-treated with iPN-gamma and all-trans retinoic acid [114]. 

In the same study, uptake enhancement was registered in all the neuroblastoma 

cells tested after exposure to a combination of IFN-gamma and IFN-alpha [114]. 

Two studies showed that the use of cisplatin increases the cell capacity to 

accumulate MIBG by a factor of 2.8 [115] or 1.5 [116]. In the latter study, exposure 

to doxorubicin caused an uptake-enhancement factor of 3 in neuroblastoma cells 

[116].

A novel approach to increase MIBG accumulation in maiignant ceiis has 

considered means of enhancing NAT gene transcription.

The sequencing of the NAT cDNA [101] and the recent development of systems of 

transfer and expression of the NAT gene indicate that higher levels of tumour 

MIBG accumulation could be attained by gene therapy. Recentiy, it was shown 

that transfection of the NAT gene into neuroblastoma cells induced the expression 

of a functional transporter which improved the active uptake of [^^^l]MIBG [98]. 

Particuiarly, this study showed a dose-dependent toxicity to the host cells and, for 

the first time, the potential benefits of combining gene transfer with targeted 

radiotherapy in neuroblastoma.

Targeting gene expression specifically to tumour cells is one of the most important 

goals of research in cancer gene therapy. Taking into consideration the clinical 

strategy, it must be ensured that the NAT transgene will operate exclusively In 

tumour and not in normal tissues of the body. The present study will focus on two 

approaches in order to address this issue: tumour-specific or radiation-inducible 

promoter elements for the transgene expression, and immunoliposomes as 

tumour-targeted gene-delivery system.
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1.2.5 Promoter elements for the control of transgene 
expression

1.2.5.1 Telomerase promoters
As cells proliferate, DNA sequences are lost from telomeres (the cap of the ends

of eukaryotic chromosomes) due to the so-called end-replication problem [117]. 

This progressive teiomere loss can be prevented if cells have sufficiently high 

levels of telomerase, a cellular reverse transcriptase that adds nucleotide repeats 

onto pre-existing telomeres. Most normal somatic celis do not have sufficient 

telomerase activity and suffer shortening of chromosomes resulting in senescence 

[118, 119]. Approximately 90% of human cancers have active telomerase whereas 

normal somatic tissues have no detectable activity [120], with the exception of 

renewing tissues such as bone marrow and gastrointestinal tissues [121-123]. The 

active telomerase is formed by two components: the RNA subunit hTR and the 

catalytic protein component encoded by the hTERT gene [124]. There is evidence 

that the regulation of both telomerase genes occurs partially at the transcriptional 

level [125-127]. These studies indicate that hTR gene is upregulated in cancer 

cells, but its activity is barely detectable in some normal tissues [128, 129]. The 

expression of the hTERT gene is low in cancers cells and is generally 

undetectable in normal cells [130, 131]. There is a clear differential in the 

transcriptional regulation levels for both genes between malignant and normal 

tissue, therefore both promoters may be useful for targeting therapeutic genes to 

tumours [125, 132].

In a recent study, it was shown that efficient tumour cell kill was achieved by 

administration of [^^^l]MIBG, following the expression of exogenous NAT cDNA 

under the control of the hTR or hTERT promoters [133]. In this report, it was 

demonstrated that, unlike most mammalian promoters, both telomerase promoters 

were strong inducers of NAT gene expression [133].

This result is very encouraging for the development of tumour-directed gene 

therapy and the treatment of neuroblastoma. In the present study, the levels of 

noradrenaline transporter transgene overexpression driven by telomerase 

promoters will be assessed in two neuroblastoma cell lines. Furthermore, 

[^^^IjMIBG toxicity will be evaluated in neuroblastoma cells containing the NAT
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transgene under the control of either the hTR or hTERT promoter, and will be 

compared with the [^^^l]MIBG toxicity to untransfected cells.
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1.2.5.2 WAF1 promoter
One of the benefits of ionising radiation in gene therapy is that as well as cell

killing effect, radiation can also activate therapeutic transgenes which are driven 

by a radiation-inducibie promoter. Transcriptional regulation specific to the 

radiation field may be achievable by using either conformai or brachytherapy or by 

targeted delivery of radioisotopes.

The radiation-inducible gene called “wild-type p53-activated fragment 1” (WAF1) is 

a potential component of the p53 tumour growth suppression pathway [134]. In a 

recent study, a construct containing the WAF1 promoter driving the nitric oxide 

synthase (iNOS) gene expression was transfected into endothelial cells. After 

exposure to a dose of 4Gy external beam radiation, an impressive 9.5-fold 

induction of the iNOS protein expression was registered. Furthermore, this system 

was shown to generate significant relaxation of arterial segments, indicating the 

potential to induce physiological effects using an X-ray-inducible promoter in 

combination with ionising radiation [135].

A similar transgenic construct (containing the WAF1 promoter driving the 

expression of the NAT gene: pWAFI/NAT) is proposed in this study to upregulate 

the synthesis of the NAT in neuroblastoma cells. This strategy is discussed in 

details in section 3.2 (see Figure 3-1 in section 3.2).

In the present study, the WAF1 promoter activation will be evaluated in 

neuroblastoma celis treated with external beam radiation, f^^l]MIBG or meta- 

[^^^At]astatobenzylguanidine ([^^^At]MABG), an astatinated analogue of MIBG(see 

section 1.2.6 for details).
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1.2.6 an alternative to ^̂ 1̂ as conjugate for MIBG
In cancer treatment, radionuclides other than ^̂ 1̂ prove to be more effective in

some situations. The choice of the radionuclide should consider maximisation of 

the effectiveness of the radiopharmaceutical in tumours, minimising toxicity to 

normal tissue. Because of the relatively long path length of the ^g-particles of ^̂ 1̂ 

(800pm), the tumour-absorbed dose fraction becomes progressively smaller as the 

tumour volume decreases, and more of the energy is deposited outside the target, 

oc-particies, which exhibit high linear energy transfer (LET -  the measure of energy 

transferred per unit length of track), have a range of 4 to 5 cell diameters [136]. 

For this reason a-emitting radionuclides might be ideal for the treatment of 

micrometastatic disease. ^^^At, an a-emitting isotope of Astatine (At), is a 

radiohalogen that has potential as an alternative to radio-iodine in the treatment of 

neuroblastoma by noradrenaline analogues [11].

Astatine is the heaviest of the halogens found underneath iodine in group 7A of 

the periodic table, and has similar chemical properties to iodine. Astatine is one of 

the rarest naturally occurring elements, with the total amount in earth's crust 

estimated to be iess than 29 grams. Astatine can be generated in a cyclotron by 

bombarding natural bismuth metal with a-particles [136].

^^^At has a shorter particle range than ^̂ ’'l (50pm for ^ '̂'At, compared to 800pm for 

’’^̂ 1). This means that [^^^At]MABG therapy will affect fewer untargeted cells by the 

radiological bystander effect than [̂ '̂‘l]MIBG therapy.

However, ^ ’̂’At has very high LET (99keV/pm) compared to ^ '̂'i (0.24keV/pm) 

[137]. Therefore, [^‘'^AtjMABG treatment is more likely to cause irreparable 

damage than [̂ '̂‘ l]MIBG therapy, resulting in superior toxicity in micrometastases 

[11, 137].

In this study, comparison of [^^^At]MABG toxicity with that of [^^^l]MiBG is 

performed in neuroblastoma cells transfected with the noradrenaline transporter 

gene, controlled by either the hTR or hTERT promoters. Furthermore, the 

[^^^At]MABG capacity to induce the WAF1 promoter is compared with that of 

p^l]MIBG.
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1.2.7 Immunoliposomes as tumour-targeted gene-delivery 
system

One of the crucial aspects for a successful gene therapy strategy is the use of an 

effective gene-delivery system.

The delivery of therapeutic transgenes by liposomal encapsulation is a means of 

overcoming hazards associated with use of viral vectors such as infectivity, 

oncogenicity and immunogenicity. Two recent investigations by our collaborators 

[138, 139] and others [140] have shown the efficacy of liposome-based delivery 

systems in releasing antisense oligonucleotides (asODNs), specific for oncogenic 

sequences, into human cancer ceils, including neuroblastoma. This liposomal 

preparation involved neutralisation of negative charges on asODNs by a primary 

positive-charged lipidic coat followed by neutral lipid encapsulation. The resulting 

structures, called coated cationic liposomes (CCLs), have a prolonged in vivo 

circulation time [141]. This is due to stabilisation against adsorption by plasma 

proteins and subsequent clearance by the mononuclear phagocyte system. 

Several lines of evidence indicate that liposomes tend to accumulate and, 

consequently, release their content to regions in the body where capillary 

endothelium allows their extravasation, such as newly forming, immature blood 

vessels within primary tumours and developing métastasés [142-144].

The targeting property of CCLs can be improved by coupling to their external 

surface a monoclonal antibody (mAb) or its Fab fragment, directed to tumour- 

specific antigens (see section 4.1.3.5). The mAb is generally coupled to a 

maleimide-derivatised polyethyleneglycol-lipid integrated in the liposomal 

structure. Our collaborators have successfully applied this strategy using a mAb 

directed against the neuroblastoma-specific antigen GD2 [95, 97, 138, 139]. They 

have shown a high level of tumour-specificity of the targeting system and the 

improvement of the antineoplastic compounds (encapsulated in immunoliposomal 

complex) in terms of stability, minimal toxicity to normal tissue and selective 

concentration in tumour.
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1.2.8 General strategy
In order to control the NAT transgene expression within neuroblastoma, we intend

to transfect human neuroblastoma cells with a plasmid construct which contains 

the NAT gene cDNA transcriptionally controlled by specific promoter sequences 

(telomerase or WAF1). Once inside the cell, the promoter will facilitate the 

expression of the transgene, thereby causing enhanced [^^^l]MIBG or [^^^AtjMBAG 

uptake and toxicity.

In order to ensure the transfection of the transgene specifically in neuroblastoma 

cells a novel delivery system based on anti-GDz CCLs (coated cationic liposomes) 

will be employed. This is expected to overcome the hazards associated with viral 

vector-based delivery systems, while maintaining target specificity and enabling 

prolonged circulation time in the body.
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1.3 Aims of this study
Experimental evidence has shown that the introduction of the NAT transgene into 

neuroblastoma cells enhances active intracellular accumulation of [''^^l]MIBG 

leading to a dose-dependent toxicity [98]. However, to date, no attempt has been 

made to control the transgene expression in neuroblastoma cells, avoiding non

specific and potentially harmful NAT activity in normal tissue.

In a clinical scenario, the effectiveness of gene therapy intervention can be 

improved if the transgenic and therapeutic construct is delivered via a vector 

specifically designed to target tumour cells and to protect the DNA content from 

the host defence mechanisms. Coated cationic immunoliposomes have the 

potential to accomplish these goals, bypassing the hazards associated with viral 

vector-based delivery systems.

The aims of this study were:

i. To investigate the feasibility of gene therapy for neuroblastoma using the NAT 

transgene under the control of either of the two telomerase promoters. The 

study will assess the potency of the hTERT and hTR promoters with respect to 

the NAT transgene expression and wiii assess potential enhancements of 

[''^^IjMIBG or p^''At]MABG treatment In neuroblastoma cells.

ii. To assess whether targeted radiopharmaceuticals in the form of MIBG 

(radiolabelled with ^̂ 1̂ or ^ ’̂’At) can induce the activity of the WAF1 promoter 

and, if so, to compare this effect with that generated by external beam 

radiation.

iii. To evaluate the capacity of GD2 -targeted immuliposomes to transfer genetic 

material selectively to GD2-positive neuroblastoma cells, thereby increasing 

their susceptibility to treatment with [''^''ijMIBG or f  ̂ ^AtjMABG.
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Chapter 2

Evaluation of telomerase promoters as controllers of NAT
transgene transcription
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2.1 Introduction
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2.1.1 Tumour-specific promoters
Ideally, tumour-specific promoters controlling therapeutic transgenes, should have 

high activity in tumour cells and be silent in normal cells. Promoter elements such 

as the a-fetoprotein promoter (AFP) which, under non-pathological conditions, is 

active specifically in the foetal liver but becomes reactivated in hepatoma cells and 

the promoter for the gene encoding carcinoembryonal antigen (CEA) which is 

reactivated in several types of adenocarcinoma, have high potential and have 

been utilized for tumour specific expression of transgenes [145, 146].

Other promoters active in tumours have been employed for transcriptional 

regulation of therapeutic genes. For example, the ErbB2/HER2 gene is 

overexpressed at the transcriptional level in about 30% of breast and pancreatic 

tumours [147]. A retroviral vector containing this promoter driving the cytosine 

deaminase (CD) gene has been successfully used for expression of CD with 

subsequent 5-fluorocytosine (5-FC)-mediated cell death exclusively in ErbB2- 

positive ceils [148, 149].

Similarly, the MUC1/DF3 gene, encoding a mucin-like glycoprotein, is 

transcriptionally upregulated in breast and cholangiocarcinomas. Inhibition of 

tumour growth was observed when a replication-defective adenovirus containing 

the HSV-fk (Herpes simplex virus thymidine kinase) gene driven by the MUC1/DF3 

enhancer region was used in a metastatic breast cancer model [150].

Another interesting tumour-specific control element is the promoter of the 

osteocalcin gene, highly expressed in osteogenic sarcomas. A phase I trials now 

in progress using an adenoviral vector expressing HSV-f/c under the control of this 

promoter [151] in order to target androgen-independent prostate cancer.

A recent study utilised the L-plastin promoter which is active in malignant epithelial 

cells, but not in normal tissue (except haemopoetic cells). The use of a replication 

incompetent adenovirus containing the CD gene under the control of the human L- 

plastin promoter caused significant size reduction of human ovarian tumour 

xenografts [152].

Finally, recent interest has been focused on the Midkine gene which encodes for a 

heparin binding growth factor highly expressed in many tumours [153] but not in 

liver tissue [154]. The promoter region of the Midkine gene has been inserted in an 

adenoviral vector to drive the expression of the HSV-fk gene targeting the Wilm’s
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tumour and neuroblastoma cell lines [154]. Similar applications have been 

successful for targeting ovarian cancer cells and pancreatic cells [155, 156].
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2.1.2 Telomerase promoters
An attractive alternative to promoters which are active in few tumour types, are 

promoter elements of genes such as the human telomerase that are expressed in 

a wider variety of tumour cells. This is probably the only gene that can be strictly 

qualified as cancer specific and whose promoter is being used to control the 

expression of transgenes in many different tumour cell lines.

Human telomeres contain long stretches of the repetitive sequence TTAGGG 

[157, 158] which are bound by specific proteins. With each cell division, telomeres 

shorten by ~50-200bp [159], primarily because the lagging strand of DNA 

synthesis is unable to replicate the extreme 3' end of the chromosome (known as 

the end replication problem) [160]. When telomeres become sufficiently short, cells 

enter an irreversible growth arrest called cellular senescence. In most instances 

cells become senescent before they can accumulate enough mutations to become 

cancerous, thus the growth arrest induced by short telomeres may be a potent 

anti-cancer mechanism.

Telomerase [161-167] helps to stabilize telomere length in human stem cells, 

reproductive cells [168] and cancer cells [120, 169] by adding TTAGGG repeats 

onto the telomeres using its intrinsic RNA (hTR) as a template for reverse 

transcription (Figure 3) [170]. Telomerase is active in approximately 90% of human 

cancers, whereas in normal somatic tissues the activity levels are either low or 

undetectable [120, 121, 123]. Human telomerase activity depends on the presence 

of both the RNA subunit (hTR) and the catalytic protein component (hTERT). The 

regulation of both telomerase genes occurs partially at the transcriptional level 

[125-127]. There is a clear differential between tumour and normal tissue with 

respect to the activity of the telomerase promoters [171].

A number of studies have used these two promoters to drive therapeutic genes. 

The first study using a retroviral system containing the hTERT promoter in 

combination with a Cre//oxP site-specific recombination technology was described 

in a system to kill specifically p53-negative tumour cells while sparing normal wild- 

type cells.

Either hTR or hTERT promoters were inserted in expression vectors upstream the 

diphtheria toxin A chain gene in order to target bladder and liver tumour cell lines 

[125].
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Glioma cells were also targeted with the hTERT promoter driving the expression of 

either Fas-associated protein with death domain (FADD) or rev-caspase-6. 

Subcutaneous human glioma xenografts treated with this construct were 

significantly reduced in volume compared to control tumours [172-174].

In human tumour xenograft and syngeneic mouse UV-2237m fibrosarcomas, an 

adenoviral vector containing a hTERT promoter-driven Bax transgene expression 

system, successfully targeted the apoptotic pathway [175, 176].

Intratumoural injection of a construct containing the HSV-f/c gene driven by the 

hTERT promoter avoided the liver toxicity of the CMV promoter following GCV 

administration [132].

A recent study [177] analysed hTR and hTERT activity in a panel of 10 cell lines 

and showed cancer specificity of these promoters. The hTR promoter, showing a 

superior activity in telomerase-positive cell lines, was used to drive the 

nitroreductase gene to sensitize cells to the pro-drug CB1954. In two xenograft 

tumour models, the hTR-driven vector produced up to 97% reduction in tumour 

volume, a higher antitumour effect than a CMV-driven construct [177].

Finally in the last few years, our research group reported several works in which 

targeted radiotherapy was improved by gene therapy. In particular, it was shown 

that the expression of the NAT gene (responsible for the intracellular accumulation 

of MIBG), driven by either hTR or hTERT promoters, resulted in enhanced toxicity 

of [^^^l]MIBG in cells derived from glioma [133, 178], bladder cancer [179] and 

adenocarcinoma of prostate [180]. These studies have demonstrated that NAT 

gene can be transcriptionally controlled by the telomerase promoters. These 

findings have also shown the potential of [^^^l]MIBG treatment of such tumours, 

which normally do not express the NAT gene and therefore not eligible for this 

type of therapy.

In this study, we show for the first time improved uptake and kill by [^^^l]MIBG or 

[^^^At]MABG of neuroblastoma cells transfected with the NAT gene under the 

control of either the hTR or hTERT promoter. This strategy may be useful for the 

treatment of those neuroblastomas that have little or negligible MIBG uptake 

capacity (15% of neuroblastomas) [2].

Interestingly, targeted radiotherapy can improve a limitation of gene therapy. Gene 

transfer is a highly inefficient process in vivo. Therefore, gene therapy must 

include a significant bystander effect to enable the sterilisation of untargeted
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malignant cells which do not accumulate the radiopharmaceutical. A benefit of 

radionuclide treatment is the contribution to cell-kill conferred by the cross-fire of 

radioactive decay particles, bombarding adjacent non-targeted cells.
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Figure 3. Schematic representation of the telomerase enzyme complex. The protein component's 
catalytic subunit (hTERT) acts as a reverse transcriptase, using telomerase RNA (hTR) (red) as a 
template for the addition of telomeric repeat sequences to the telomere DNA strand (blue).
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2.2 Materials and Methods
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2.2.1 Synthesis of the radiopharmaceuticals [^̂ l̂]MIBG and 
r ^ A t ]M A B G

No-carrier-added [^^^l]MIBG was prepared using a solid-phase system where the 

precursor of [^^''IJMIBG was attached to an insoluble polymer via the tin-Aryl bond 

[181]. The reaction conditions, HPLC purification procedure, and radiochemical 

yield were as described previously [182].

P^^At] was produced on the Duke University Medical Center cyclotron by 27-28 

MeV a-particle-beam bombardment of a natural bismuth target. The activity was 

distilled and trapped into chloroform (or in some cases 0.1N NaOH), as previously 

described [183]. For the synthesis of [^^^At]MABG a one-step procedure from 1-[3- 

(trimethylsilyl)benzyl]-guanidine was used. The reaction conditions, HPLC 

purification procedure, and radiochemical yield were as described previously [184].

2.2.2 Cell culture
The neuroblastoma cell line SK-N-MC was obtained from ECACC (Salisbury, 

Wiltshire, UK). SK-N-BE(2c) cells [185] were a gift from Dr. Montaldo (Genoa, 

Italy). Both neuroblastoma cell lines have the capacity for active uptake of MIBG 

[100, 186]. Cells were maintained in the logarithmic phase of growth at 37®C in 

75cm^ plastic culture flasks (Corning inc.. Corning, NY) in a 5% C02-95% air 

humidified incubator. They were subcuitured in RPMI-1640 medium supplemented 

with 10% heat inactivated foetai bovine serum, 50IU/ml sodium penicillin G, 

50mg/mL streptomycin sulphate, and 2mM L-glutamine. Medium and supplements 

were obtained from Invitrogen (Paisley, UK).

2.2.3 Plasmids
The bovine NAT cDNA inserted into the EcoRI site of the eukaryotic expression 

vector pSG-5 (Stratagene, Cambridge, UK), was kindly provided by Dr Michael 

Bruss and Professor Heinz Bonisch (University of Bonn, Germany). Owing to the 

lack of selection markers in this plasmid and the presence of a SV40 promoter, 

which expresses genes optimally in cells expressing the large T antigen, the 3.2kb 

bovine NAT cDNA (bNAT) was initially subcloned into the EcoRI site of the pIND 

vector (Invitrogen, Paisley, UK). As only one restriction enzyme was used for 

subcloning into the pIND plasmid, the bNAT cDNA was present in different clones, 

in both sense and antisense orientations. Restriction mapping was used to identify
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the clones of pIND/bNAT recombinant plasmids with the insert in the correct 

orientation (results not shown). The latter plasmid has suitable restriction enzyme 

sites for subcloning the bNAT cDNA into the Kpnl / Xho sites of the promoterless 

pEGFP-1 (BD Biosciences Clontech, Palo Alto, CA), from which the EGFP gene 

had been removed. This new construct was referred to as promoterless/bNAT. 

The bNAT cDNA was also subcloned into the pcDNAS episomal expression vector 

(Invitrogen, Paisley, UK). This vector, referred to as pCMV/NAT, was utilized as a 

positive control, because of the presence of the cytomegalovirus (CMV) enhancer- 

promoter for high level of protein expression. By virtue of the presence In the 

promoterless/NAT construct of a multiple cloning site region upstream of the bNAT 

coding sequence, the assessment of a particular promoter was possible. The 

872bp hTR promoter fragment [189] or the 536bp hTERT promoter fragment [190] 

were then subcloned into the multiple cloning site of the promoterless plasmid 

containing the bNAT cDNA.

In this study, the construct containing the hTR promoter inserted upstream of the 

bNAT cDNA was referred to as phTR/NAT, and the vector with the bNAT 

transgene controlled by the hTERT promoter was referred to as phTERT/NAT.
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2.2.4 Transfections
Cells were plated at a density of 1 x 10® cells per well on 6-well plates and 

incubated in full medium at standard culture conditions, 2 days to 80% confluency. 

For each transfection, 2pg DNA in 250pL of Opti-MEM medium and 10pl 

Lipofectamine™ 2000 In 250pl of Opti-MEM medium were prepared and incubated 

for 5 minutes at room temperature. Opti-MEM medium and Lipofectamine™ 2000 

were obtained from Invitrogen (Paisley, UK). Then, the diluted DNA and the diluted 

LipofectamineTM 2000 were mixed gently and incubated for another 20 minutes at 

room temperature. The mixture was then added to each well and incubated with 

the cells at 37*C and 5% CO2 incubator for 24 hours. Subsequently, stable 

transfectants were selected by growing cells in 500pg/ml G418, obtained from 

Invitrogen (Paisley, UK).

For both SK-N-BE(2c) and SK-N-MG cells, 6 different transfections of each 

plasmid (pCMV/NAT, phTR/NAT or phTERT/NAT) were attempted. The 

transfections that produced cells exhibiting the highest capacity for ['’^^IjMIBG 

uptake were chosen for subsequent analyses.
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2.2.5 Générai consideration about quantitative real-time 
Polymerase Chain Reaction (PGR)

Quantitative real-time PCR is based on detection of a fluorescent signal produced

proportionally during the amplification of a PCR product. This allows visualization 

directly of the exponential part of the PCR reaction.

In brief, the detection system consisted of a thermal cycler connected to a laser 

and charge-coupled device (CCD) optics system. An optical fibre inserted through 

a lens is positioned over each well, and laser light is directed through the fibre to 

excite the fluorochrome in the PCR solution. Emissions are sent through the fibre 

to the CCD camera, where they are analyzed by the software's algorithms. 

Collected data are subsequently sent to the computer.

The software calculates the threshold cycle (Ct) for each reaction with which there 

is a linear relationship to the amount of starting DNA. Ct is the cycle number at 

which the reporter dye emission intensities rises above background noise. The Ct 

is determined at the most exponential phase of the reaction and is more reliable 

than end-point measurements of accumulated PCR products used by traditional 

PCR methods. The Ct is inversely proportional to the copy number of the target 

template; the higher the template concentration, the lower the Ct measured.

2.2.6 TaqMan real-time PCR for hNAT and bNAT transcripts
Isolation of total RNA was performed using RNeasy Mini Kit (Qiagen, USA),

according to the manufacturer’s instructions.

2.2.6.1 Primers and probes
Primer and probe sequences were designed from the published sequence for the

human noradrenaline transporter (hNAT) (accession No. M65105) using the ABI 

prism PrImerExpressTM v1.0 software. Both primers and probe were custom 

synthesised (MWG-Biotech, Milton Keynes, UK). The sense primer corresponded 

to bases 241-260 of the hNAT sequence (5’-CGCTTCCCCTACCTCTGCTA-3’). 

The antisense primer was complementary to bases 372-391 of the hNAT 

sequence (5’-AGATTTTCCAAACGGTGGCA-3’). These primers generated a PCR 

product of 151 base pairs. The internal probe corresponded to bases 273-299 of 

the hNAT sequence (5’-CGGTGCCTTCTTGATCCCGTACACAC T-3'). The probe 

was labelled with the fluorescent reporter dye 6-carboxyfluoroscein (FAM) at the 5’
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end, and the quencher molecule 6-carboxytetramethylrhodamine (TAMRA) at the 

3’ end.

Similarly, the primer and probe sequences were designed from the published 

sequence for the bovine noradrenaline transporter (bNAT) (accession No.

U09198), and custom synthesised as above (MWG-Biotech). The sense primer 

corresponded to bases 1583-1602 of the bNAT sequence (5’-

TCAGCAACGACATCCAGCAG-3'). The antisense primer was complementary to 

bases 1637-1657 of the bNAT sequence (5’-GGCTGACAAACTTCCAGCAGA-3’). 

These primers generated a PCR product of 75 base pairs. The internal probe

corresponded to bases 1612-1635 of the bNAT sequence (5'-

TTCAAGCCCGGCCTGTACTGGAGA-3'). This probe was also labelled with the 

fluorescent reporter dye FAM at the 5’ end, and the quencher molecule TAMRA at 

the 3’ end.

The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

was used as an internal standard for all real-time PCR reactions. GAPDH PCR 

was carried out using the commercially available TaqMan® GAPDH control 

reagents (Perkin-Elmer Applied Biosystems, Cheshire, UK, P/N 402869).
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2.2.G.2 Quantitative real-time RT-PCR reaction conditions
Quantitative real-time RT-PCR was carried out using the commercially available 

TaqMan® Reverse Transcription reagents and TaqMan® Universal PCR Master 

Mix (Perkin-Elmer Applied Biosystems, Warrington UK: P/N N808-0234 and 

4304437 respectively).

Briefly, 1pg of total RNA was reverse transcribed in a 50pl reaction volume, 

containing 5.5mM MgCb, 5pl 10x TaqMan® RT buffer, 2mM dNTP mix (500pM 

each nucleotide), 20 units of RNAse inhibitor, 2.5pM oligo d(T)16 and 62.5 units of 

MultiScribe Reverse Transcriptase.

Next, 2.5pl of the resulting solution, containing cDNA template, was added to an 

amplification reaction mixture of total volume 25pl consisting of 12.5pl TaqMan® 

Universal PCR Master Mix and lOOnM each of both primers and probe.

The thermal cycling conditions consisted of an initial incubation for 2 minutes at 

bO'̂ C, followed by 10 minutes at 95®C. Thermal cycling was then carried out at 

95°C for 15 seconds, followed by 60°C for 1 minute, for 40 cycles.

Each assay included standard curves of hNAT, bNAT and GAPDH (10^ to 10® 

copies) and a no-template control, along with the unknown cDNA templates 

obtained from the reverse-transcription step. PCR reactions were performed using 

a Chromo4 Real Time PCR Instrument (MJ Research, Inc.), which measured the 

fluorescent signal generated by the PCR reaction.

2.2.6.S Analysis
A range of quantities of hNAT-, bNAT- and GAPDH-specific PCR products were

amplified using the real-time PCR method to establish corresponding Ct values 

(Figure 4A). These were plotted against the initial quantity of substrate to produce 

standard curves (Figure 4B).

Relative quantification determined by the ratio between the quantity of the target 

cDNA and the reference cDNA (GAPDH) within the same sample was performed.

2.2.7 SYBR Green real-time PCR for hTR and hlERT transcripts 
quantification

The methodology for quantification of hTR and hTERT RNA employs a fluorescent 

dye, called SYBR Green I that binds to the minor groove of the DNA double helix. 

In solution, the unbound dye exhibits very little fluorescence, however,
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fluorescence is greatly enhanced upon double helix DNA-binding. The principle is 

outlined in Figure 5.

At the beginning of amplification (Figure 5A), the reaction mixture contains the 

denatured DNA, the primers, and the dye. The unbound dye molecules weakly 

fluoresce, producing a minimal background fluorescence signal which is 

subtracted during computer analysis. After annealing of the primers (Figure 5B), a 

few dye molecules can bind to the double strand. DNA binding results in a 

dramatic increase of the SYBR Green I molecules to emit light upon excitation. 

During elongation (Figure 5C), increasingly more dye molecules bind to the newly 

synthesised DNA. When the reaction is monitored continuously, an increase in 

fluorescence is recorded in real-time. At DNA dénaturation for the next heating 

cycle, the dye molecules are released and the fluorescence signal drops. 

Fluorescence measurement at the end of the elongation step of every PCR cycle 

is performed to monitor the increasing amount of amplified DNA.

2.2.7.1 Reverse transcription reaction
In a volume of 20pl, a reverse transcription reaction with 1pg total RNA was 

performed using the Gene Amp RNA PCR KIT (Applied Biosystems, Roche, New 

Jersey USA), adding 2.5pM Oligo d(T)16 primer for hTERT quantification or 2.5pM 

Random Hexamers for hTR quantification, according to manufacturer’s 

instructions.

2.2 7.2 Real-time PCR reaction conditions and primers
The qPCR reaction was carried out with 1pl of the RT reaction solution (containing 

cDNA) in a 20pl volume using the DyNAmo SYBR® Green qPCR kit (Finnzymes 

Gy, Finland).

Primers for hTERT cDNA amplification [191] were added to final concentrations of 

0.2pM. The enzyme was activated at 94“C for 10 minutes, followed by 40 cycles of 

95‘'C for 5 seconds, 62®C for 15 seconds and 72°C for 15 seconds.

Primers for hTR cDNA amplification were added to a final concentrations of 0.2pM. 

Primer sequences were designed from the published sequence for the hTR 

(accession No. U86046).The sense primer corresponded to bases 140-163 of the 

hTR sequence (5’-CTAACCCTAACTGAGAAGGGCGTA-3’). The antisense primer 

was complementary to bases 293-269 of the hTR sequence (5’- 

GGCGAACGGGCCAGCAGCTGACATT-3’).The enzyme was activated at 94"C for
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10 minutes, followed by 32 cycles of 95°C for 30 seconds, 59.5°C for 45 seconds 

and 72°C for 30 seconds.

The housekeeping gene GAPDH was used as an internal standard for all real-time 

PCR reactions. GAPDH PCR was carried out using specific primers (Cat. N. 5405- 

1, BD Biosciences Clontech, Palo Alto, CA) at a final concentration of 0.3pM. The 

enzyme was activated at 94®C for 10 minutes, followed by 30 cycles of 95°C for 30 

seconds, GÔ’C for 45 seconds and 72°C for 1 minute.

Each assay included standard curves of hTR, hTERT and GAPDH (0.1 to lOOng 

of DNA) a no-template control, along with the unknown cDNA templates obtained 

from the reverse-transcription step. PCR reactions were performed using a 

Chromo4 Real Time PCR Instrument (MJ Research, Inc.), which measured the 

fluorescent signal generated by the PCR reaction.

2.2.7 3 Melting curve analysis
Melting Curve analysis (Figure 6) was automatically performed by 

OpticonMONITOR™ 3.1 software for each PCR reaction. It was used to check the 

specificity of an amplified product, In order to eliminate artefacts (such as primer- 

dimers) from the process of quantification. The melting point of the product 

depends mostly on base composition and length. When the temperature is 

gradually increased, a sharp decrease in SYBR green fluorescence is registered 

as the product undergoes dénaturation. When plotted as a negative first derivative, 

the temperature of the peak is defined as the Tm, or melting temperature of the 

product.

2.2.7.4 Data analysis
Dilution series of cDNA of known concentration from SK-N-MC cells was used to 

generate standard curves for each reaction. The standard curve was a plot of the 

threshold cycle (Ct) against the log of the amount of DNA added. A linear 

regression analysis of the standard plot was used to calculate the amount of DNA 

in unknown samples (Figure 4).
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Figure 4. Amplification plot and standard curve of the NAT sequence. Human NAT standards were 
obtained by PCR amplification of cDNA from the cell line SK-N-BE(2c). The human NAT-specific 
PCR product was then quantified spectrophotometrically, serially diluted and amplified using the 
real-time PCR method. A: The plot, from left to right, correspond to 10° to 10  ̂ NAT sequence 
copies. B: The Ct values obtained were plotted against the initial quantity of substrate to produce a 
standard curve. The same procedure was used to quantify bovine NAT-, hTERT-, hTR-specific and 
the reference GAPDH sequences.
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Figure 5. Schematic illustration of a quantitative PCR system using the SYBR Green dye.
At high temperatures, during the DNA dénaturation step, the SYBR Green dye molecules are 
unbound and exhibit little fluorescence (A).
During the annealing step, as the temperature drops to allow the primers to bind, a few dye 
molecules begin to bind, resulting in a low fluorescence signal (B).
As the complementary strands are synthesized (elongation), SYBR Green molecules are rapidly 
incorporated into the new DNA and the increase in fluorescence can be measured in real time (C). 
When the cycle returns to the high temperature dénaturation step, the dye molecules are released 
and the signal returns to background levels. As the target sequence is amplified, SYBR Green 
binds to each new copy of double strand DNA. The fluorescent intensity measured is proportionate 
to the amount of PCR products produced.
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Figure 6. Melting curve analysis of fluorescence intensity vs. temperature for 10Obp, 500bp, and 
lOOObp PCR products. The maximum -dl/dT value for a peak corresponds to the melting 
temperature of the product. The approximate melting temperature is 79.6"C for the 100bp PCR 
products, 83.8°C for the 500bp PCR products, and 86.6®C for the lOOObp PCR products. As 
expected, the melting temperature increases as the length of the product increases.
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2.2.8 and ['"At]MABG uptake studies In SK-N-MC and
SK-N-BE(2c) cells

Monolayers were prepared by seeding the appropriate numbers of cells in six-well

plates at an initial density of 0.5 x 1 0 ® cells per well and culturing for 48 hours. 

MIBG and MABG incorporation was measured by incubating the cells for 2 hours 

with 7kBq of [^^^l]MIBG or f^^AtJMABG. Non-specific uptake was measured in the 

presence of 1.5mM desmethylimipramine (DMI; Sigma-Aldrich, Dorset, UK), a 

powerful inhibitor of the active uptake mediated by the NAT. After incubation, 

medium was removed, the cells were washed with phosphate-buffered saline 

(PBS) and radioactivity was extracted using two aliquots of 10% (w/v) 

trichloroacetic acid. The activities of the extracts were then measured In a gamma- 

well counter. Uptake was expressed as counts per minute (cpm) per 10® cells.

2.2.9 Spheroid clonogenic assays
SK-N-MC and SK-N-BE(2c) cells, stably transfected with plasmids containing the 

NAT gene under the control of the CMV, hTR or hTERT promoters (pCMV/NAT, 

phTR/NAT and phTERT/NAT), were grown as tumour spheroids as described 

previously [187, 192]. Spheroids of 200 - 300pm diameter were incubated with 

various activity concentrations of [^®^I]MIBG or f^^AtjMABG. After incubation for 2 

hours at 37°G, the medium was removed and the spheroids washed twice with 

PBS to remove any free [^®^I]MIBG or At]MABG.

Fresh culture medium was added to the washed spheroids which were then 

incubated with agitation at 37'*C for 48 hours to allow bystander effects to 

accumulate [178]. They were then incubated for 10 minutes at 37°C with PBS 

containing 0.25% (v/v) trypsin and 1mM ethylenediaminetetraacetic acid (EDTA) 

and mechanically disaggregated to a single cells suspension using a syringe 

(gauge 18). Microscopic examination confirmed that the cell preparations were 

free from clumps. The resulting single cell suspensions contained more than 98% 

viable cells according to trypan blue exclusion. Cells were counted and seeded in 

triplicate into 25cm^ vented flasks for clonogenic assay at 1 x 10® cells / flask. The 

cultures were incubated at 37°C until discrete colonies had formed. The cells were 

then fixed and stained with Carbol Fuchin (RA Lamb, Middlesex, UK), before 

counting and calculation of surviving fractions. Results were expressed as a 

percentage of the initial concentration of cells plated, known as the plating
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efficiency. The cytotoxic potency of the radiopharmaceutical was determined by 

comparing the number of colonies formed by treated cells to the number of 

colonies formed by untreated control (the surviving fraction, or SF). For each 

transfectant, experiments were performed three times, in triplicate.
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2.2.10 Statistical analysis
Results are expressed as mean ± standard deviation (s.d.). All data are from at 

least three independent experiments. Data were analysed by Student’s t-test using 

SPSS software, version 13 (IL). A p value of less than 0.05 was considered 

statistically significant.
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2.3 Results
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2.3.1 Real-time PCR for determination of the expression of hTR, 
hTERT, endogenous and transgenic NAT transcripts

2.3.1.1 Quantification of hTR and hTERT transcripts
Transcriptional activity of the two telomerase components was assessed in

neuroblastoma cells. The hTR and hTERT RNA levels were analysed by 

quantitative PCR in SK-N-BE(2c) and SK-N-MC cells (Figure 7 and Figure 8). 

Results are presented as nanograms (ng) of hTR or hTERT RNA per 1ng of 

GAPDH RNA. In both SK-N-BE(2c) and SK-N-MC cell lines, hTR and hTERT RNA 

is detectable, indicating expression of both transcripts. Further, In SK-N-BE(2c) 

cells no significant difference (p > 0.1) in transcript levels was observed between 

the two telomerase components (approx. 0.8ng / ng of GAPDH). However, in SK- 

N-MC cells, RNA levels of hTERT (0.8ng / ng of GAPDH) were higher than that of 

hTR (0.3ng / ng of GAPDH) (p < 0.05).

60



Ü

I
X
0

1
g

CLI
E
o

f

g

1.6 r

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
hTERT hTR

Figure 7. hTR and hTERT RNA quantification by qPCR in SK-N-BE(2c) ceils. Results are 
expressed as a ratio of ng of either hTR or hTERT RNA transcript to ng of GAPDH transcript. Data 
are means and s.d. of three measurements performed in triplicate. Results were analysed by 
Student’s t-test. The levels of hTERT RNA transcript were not significantiy higher than that of hTR 
RNA transcript (p > 0.1).
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Figure 8. hTR and hTERT RNA quantification by qPCR in SK-N-MC celis.
Results are expressed as a ratio of ng of either hTR or hTERT RNA transcript to ng of GAPDH 
transcript. Data are means and s.d. of three measurements performed in tripiicate. Results were 
analysed by Student’s t-test. The hTERT RNA transcript levels were significantly higher than that of 
hTR (p <  0.05).
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2.3.1.2 Quantification of hNAT and bNAT mRNAs
Quantitative PCR assays specific for mRNA of the endogenous or the transgenic 

NAT (hNAT and bNAT respectively) were conducted using SK-N-BE(2c) and SK- 

N-MC cells both stably transfected with the pCMV/NAT, phTR/NAT or 

phTERT/NAT plasmid.

In the SK-N-BE(2c) cells the transcript copy number of the hNAT was 4 per copy 

of GAPDH and did not change significantly in any of the transfectants (Figure 9). 

The bNAT mRNA was undetectable in parental cells and pCMV/NAT transfected 

cells, whereas in cells transfected with phTR/NAT or phTERT/NAT plasmids, the 

bNAT mRNA was present; 0.2 copies or 1.64 copies per 1 copy of GAPDH in 

phTR/NAT or phTERT/NAT transfectants respectively (Figure 9). This result 

suggests that no transgenic NAT gene, when under control of the CMV promoter, 

was expressed in SK-N-BE(2c) cells. However, the transgenic NAT gene was 

transcribed when this cell line was transfected with phTR/NAT or phTERT/NAT 

plasmid. Further, it is shown that the hTERT promoter was more active than the 

hTR promoter with respect to driving the expression of the transgenic NAT gene.

In the SK-N-MC parental cells and all the transfectants hNAT mRNA was 

undetectable (Figure 10). The bNAT mRNA was undetectable In parental cells. 

These findings agree with previous reports that showed poor MIBG specific uptake 

and undetectable mRNA levels of endogenous NAT in SK-N-MC cells [98]. In 

pCMV/NAT, phTR/NAT and phTERT/NAT transfectants 0.66, 0.04 and 0.13 

copies of bNAT per copy of GAPDH respectively were registered (Figure 10). 

Similarly to the SK-N-BE(2c) cells experiments, these data suggest that in the SK- 

N-MC cells the hTERT promoter displayed higher activity than the hTR promoter, 

resulting In higher transgenic NAT gene expression.
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Figure 9. Endogenous NAT (hNAT) and transgenic (bNAT) RNA quantification by qPCR in SK-N- 
BE(2c) celis and three different transfectants.
SK-N-BE(2c) cells were transfected with the bovine NAT gene, whose expression is driven by (i) 
the CMV promoter (SK-N-BE(2c)+pCMV/NAT), (ii) the promoter of the RNA component of 
telomerase (SK-N-BE(2c) + phTR/NAT) or (iii) the promoter of the protein component of telomerase 
(SK-N-BE(2c)+phTERT/NAT). Results are expressed as a ratio of number of copies of hNAT 
(empty bars) or bNAT (shaded bars) RNA transcript to number of copies of GAPDH transcript. Data 
are means and s.d. of three measurements performed in triplicate. Results were analysed by 
Student’s t-test. The hNAT RNA transcript levels in each transfectants were not significantiy higher 
than that in the parental ceils. The bNAT RNA transcript levels in ceils transfected with the 
phTERT/NAT plasmid (highlighted with * )  were significantly higher (p < 0.05) than that in ceils 
transfected with the phTR/NAT plasmid.
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Figure 10. Endogenous NAT (hNAT) and transgenic (bNAT) RNA quantification by q PCR in SK-N- 
MC cells and three different transfectants.
SK-N-MC cells were transfected with the bovine NAT gene, whose expression is driven by (I) the 
CMV promoter (SK-N-MC+pCMV/NAT), (ii) the promoter of the RNA component of telomerase 
(SK-N-MC+phTR/NAT) or (iii) the promoter of the protein component of telomerase (SK-N- 
MC+phTERT/NAT). Results are expressed as a ratio of number of copies of hNAT (empty bars) or 
bNAT (shaded bars) RNA transcript to number of copies of GAPDH transcript. Data are means and 
s.d. of three measurements performed in triplicate. Results were analysed by Student’s t-test. The 
bNAT RNA transcript levels in cells transfected with the phTERT/NAT piasmid (highlighted with * )  
were significantly higher than that in celis transfected with the phTR/NAT piasmid (p < 0.05). RNA 
transcript levels in cells transfected with the pCMV/NAT plasmid (highlighted with * * )  were 
significantiy higher than that in cells transfected either with the phTR/NAT or the phTERT/NAT 
piasmid (p < 0.01).
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2.3.2 Cellular uptake of [^̂ l̂]MIBG

2.3.2.1 [̂ ^̂ !]M1BG uptake in SK-N-BE(2c) cells
The activity of the noradrenaiine transporter was assessed by [^^^l]MIBG uptake 

assay in each transfectant and compared with that of SK-N-BE(2c) parentai cells 

(Figure 11). The relative uptake of MIBG in each transfectant reflected the RNA 

levels of NAT showed in Figure 9. In particular, the phTERT/NAT plasmid 

conferred to the host ceils a greater ability to accumulate f^^ilMIBG than the 

phTR/NAT construct. SK-N-BE(2c) cells transfected with the pCMV/NAT plasmid 

did not improve their capacity to uptake [̂ '̂’ iJMIBG compared to the untransfected 

ones, confirming the NAT RNA analysis, that bNAT gene was not expressed by 

the CMV promoter in these ceils. This could be due to the fact that, as several 

reports showed, In stable transfectants the CMV promoter may be silenced by 

méthylation [193-195]. However, a statistically significant increase in MIBG uptake 

was registered in cells transfected with the bNAT gene under the control of either 

the hTR or hTERT promoters. Furthermore, it should be noted that as SK-N- 

BE(2c) cells have endogenous NAT expression, increase in MIBG uptake was a 

combination of the hNAT and the bNAT activity contributions.

2.5.2.2 [" l̂]MIBG uptake in SK-N-MC cells
Whereas in untransfected SK-N-MC cells, negligible levels of ["'l]M IBG  active 

uptake were registered, SK-N-MC ceils transfected with the pCMV/NAT, 

phTR/NAT or phTERT/NAT plasmid were all able to actively concentrate 

[^ ‘̂'ijMIBG (Figure 12). In contrast to the SK-N-BE(2c) ceils, the highest levels of 

uptake were registered in celis transfected with the pCMV/NAT plasmid (189657 

cpm/10® cells). In cells transfected with the plasmid containing the hTERT 

promoter driving the expression of the NAT transgene the specific uptake was 

higher than that registered in cells transfected with the construct containing the 

hTR promoter (152728 and 54854 cpm/10® cells respectively). These results 

reflect the NAT mRNA analysis, indicating that the hTERT promoter displayed a 

higher activity than the hTR promoter.
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Figure 11. uptake in SK-N-BE(2c) parentai and transfectants.
Cells were transfected with the NAT gene, whose expression is driven by (i) the CMV promoter 
(SK-N-BE(2c)+pCMV/NAT), (ii) the hTR promoter (SK-N-BE(2c)+phTR/NAT) or (iii) the hTERT 
promoter (SK-N-BE(2c)+phTERT/NAT), Uptake assay was performed in the presence or absence 
of DMI (desmethylimipramine), a powerful Inhibitor of the active uptake mediated by the 
noradrenaline transporter. Results were expressed as counts per minute (cpm) per 10® cells. Data 
are means ± s.d. of three experiments. Results were analysed by Student’s t-test. Results showing 
significant enhancement of uptake (p < 0.05) compared to parentai 8K-N-BE(2c) ceils are 
highlighted ( * ) .
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Figure 12. [^®^I]MIBG uptake in SK-N-MC parental and transfectants.
Cells were transfected with the NAT gene, whose expression is driven by (I) the CMV promoter 
(SK-N-MC+pCMV/NAT), (ii) the hTR promoter (SK-N-MC+phTR/NAT) or (iii) the hTERT promoter 
(SK-N-MC+phTERT/NAT). Uptake assay was performed in the presence or absence of DMI 
(desmethylimipramine), a powerful inhibitor of the active uptake mediated by the noradrenaline 
transporter. Results were expressed as counts per minute (cpm) per 10® cells. Data are means ± 
s.d. of three experiments. Results were analysed by Student’s t-test. Results showing significant 
enhancement of uptake (p < 0.05) compared to SK-N-MC+phTR/NAT transfectants are highlighted
(* ) '
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2.3.3 Cellular uptake of [^^^At]MABG
A comparison of the uptake of with [ ‘̂' ‘'AtJMABG was performed in order

to assess the cytotoxicity of both and ^^^At. Specific uptake study was 

conducted using p^’'At]MABG in SK-N-BE(2c) (Figure 13). and SK-N-MC cells 

(Figure 14).

2.3.3.1 [̂ ^̂ At]MABG uptake in SK-N-BE(2c) cells
As shown in Figure 13, the capacity of intracellular concentration of [^^^AtjMABG 

was greater in SK-N-BE(2c) cells transfected with phTR/NAT (p < 0.05 ) or 

phTERT/NAT plasmid (p < 0.05) than that in SK-N-BE(2c) parental cells. Similarly 

to the [^^^l]MIBG uptake study (section 2.3.2.1), SK-N-BE(2c) cells transfected with 

the pCMV/NAT plasmid did not improve their capacity to uptake [^ ‘̂’AtJMABG 

compared to the untransfected ones. These findings show that, in accordance with 

the [''^^IjMIBG uptake study, the hTERT promoter activity was higher than that of 

the hTR promoter in SK-N-BE(2c) cells.

2.3.3.2 r^AqiVIABG uptake in SK-N-MC cells
Whereas in untransfected SK-N-MC cells, negligible levels of [^^^At]MABG active 

uptake were registered, SK-N-MC cells transfected with the pCMV/NAT, 

phTR/NAT or phTERT/NAT plasmid were all able to actively concentrate 

[2iiAt]MABG. In contrast to the SK-N-BE(2c) cells, the highest levels of uptake 

were registered in cells transfected with the pCMV/NAT plasmid (11196 cpm/10® 

cells). In cells transfected with the plasmid containing the hTERT promoter driving 

the expression of the NAT transgene, the specific uptake was higher (p < 0.05) 

than that registered in cells transfected with the construct containing the hTR 

promoter (5706 and 2745 cpm/10® cells respectively). These results reflect the 

NAT mRNA analysis, indicating that the hTERT promoter displayed a higher 

activity than the hTR promoter. These findings indicate that in the SK-N-MC cells, 

and transfectants, the [^^^AtJMABG uptake capacity was similar to the uptake of 

r^^l]MIBG (section 2.3.2.2).
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Figure 13. f^^At]MABG uptake in SK-N-BE(2c) parental and transfectants.
Cells were transfected with the NAT gene, whose expression Is driven by (I) the CMV promoter 
(SK-N-BE(2c)+pCMV/NAT), (ii) the hTR promoter (SK-N-BE(2c)+phTR/NAT) or (ill) the hTERT 
promoter (SK-N-BE(2c)+phTERT/NAT). Uptake assay was performed In the presence or absence 
of DMI (desmethylimipramine), a powerful Inhibitor of the active uptake mediated by the 
noradrenaline transporter. Results were expressed as counts per minute (cpm) per 10® cells. Data 
are means ± s.d. of three experiments. Results were analysed by Student’s t-test. Results showing 
significant enhancement of uptake (p < 0.05) compared to parental SK-N-BE(2c) cells are 
highlighted (*).
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Figure 14. [̂ ” At]MABG uptake in SK-N-MC parental and transfectants.
Cells were transfected with the NAT gene, whose expression is driven by (i) the CMV promoter 
(SK-N-MC+pCMV/NAT), (ii) the hTR promoter (SK-N-MC+phTR/NAT) or (Iii) the hTERT promoter 
(SK-N-MC+phTERT/NAT). Uptake assay was performed in the presence or absence of DMI 
(desmethylimipramine), a powerful inhibitor of the active uptake mediated by the noradrenaline 
transporter. Results were expressed as counts per minute (cpm) per 10® cells. Data are means ± 
s.d. of three experiments. Results showing significant enhancement of uptake (p < 0.05) compared 
to the SK-N-MC+phTR/NAT transfectants are highlighted ( * ) .

71



2.3.4 Cytotoxicity of [^^ l̂]MIBG
Clonogenic assays were performed to determine whether uptake of 

translated into dose-dependent cell kill in three-dimensional spheroids composed 

of parental cells or composed of cells transfected with the transgenic NAT gene 

driven by the CMV, h lR  or hTERT promoters.

2.3.4.1 [^^ l̂]MIBG toxicity in SK-N-BE(2c) ceils
As demonstrated in Figure 15, following administration of [^^^l]MIBG dose- 

dependent toxicity was observed in SK-N-BE(2c) cells derived from spheroids and 

all transfectants. Greater than 98% clonogenic cell kill after treatment with 

[^^^l]MIBG was achieved regardless of the promoter driving NAT expression. 

Therefore, for comparison of the potency of the promoters the activity 

concentration required to reduce clonogenic survival to 2% was chosen. The 

concentrations of [^^''l]MIBG required to reduce to 2% the survival of clonogens 

derived from the spheroids were 1.12 MBq/ml (untransfected ceils), 1.45 MBq/mi 

(cells transfected with the pCMV/NAT plasmid), 0.86 MBq/ml (cells transfected 

with the phTR/NAT plasmid) and 0.64. MBq/ml (cells transfected with the 

phTERT/NAT plasmid). These results indicated that in this cell line, the [^^^l]MIBG 

toxicity is enhanced by the NAT transgene under the control of the hTR or hTERT 

promoters, reflecting the ['‘^^IJMIBG uptake capacity (Figure 11). Furthermore, in 

accordance with the [^^^l]MIBG uptake experiments, the greatest cell kill was 

achieved in SK-N-BE(2c) cells transfected with the NAT transgene controlled by 

the hTERT promoter. Finally, transfection of SK-N-BE(2c) cells with the 

pCMV/NAT did not improve [^^^l]MIBG toxicity.

2.3.4 2 r^ ÎJMIBG toxicity in SK-N-MC ceiis
Untransfected SK-N-MC cells exhibited negligible capacity for active uptake of 

MIBG. This resulted in absence of toxicity of [^^^l]MIBG even at the maximum 

activity concentration administered. Dose-dependent toxicity was found in SK-N- 

MC cells transfected with the plasmids containing the NAT transgene under the 

control of the CMV, hTR or hTERT promoters (Figure 16).

Greater than 60% clonogenic cell kill after treatment with [^^^l]MIBG was achieved 

regardless of the promoter driving NAT expression. Therefore, for comparison of 

the potency of the promoters the activity concentration required to reduce
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clonogenic survival to 40% was chosen. The concentrations of ['’^^IJMIBG required 

to reduce to 40% the survival of clonogens derived from the spheroids were 0.5 

MBq/ml (cells transfected with the pGMV/NAT plasmid), 2 MBq/ml (cells 

transfected with the phTR/NAT plasmid) and 1.06 MBq/ml (cells transfected with 

the phTERT/NAT plasmid). These findings reflected the results generated from the 

[^^^l]MIBG uptake study, suggesting that in SK-N-MC cells the NAT transgene 

upregulation driven by the hTERT promoter was higher than the upregutation 

controlled by the hTR promoter.
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Figure 15. Clonogenic survival curves derived by colony formation for disaggregated spheroids
exposed to various doses of [^^^l]MIBG.
To establish the [̂ ®’‘|]M1BG dose-dependency of cell kill in spheroids derived from SK-N-BE{2c) 
parental cells ( • )  and cells transfected with pCMV/NAT (o), phTR/NAT (▼) or phTERT/NAT (V) 
plasmid, 3 x 1 0 ® cells were seeded into spinner flasks. After 4 days a range of concentrations of 
[^® Î]MIBG was added ( 0 - 2  MBq/ml). After 2 hours the cells were washed to remove free 
P ’'l]MIBG and after addition of fresh medium the cells were left for 48 hours before creation of 
single ceil suspensions and seeding in triplicate into 25 mm^ flasks at 5 x 10® cells/flask. The 
cultures were incubated at 37 °C until discrete colonies had formed. The cells were then fixed and 
stained with Carbol Fuchin (RA Lamb, Middlesex, UK), before counting and calculation of survival 
fractions. The values are mean surviving fractions with error bars showing standard deviations 
(n=6). Because a log scale is used on the abscissa, a surviving fraction of for example 0.1 
corresponds to 10% clonogenic survival.
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Figure 16. Clonogenic survival curves derived by colony formation for disaggregated spheroids 
exposed to various doses of f
To establish the [̂ ®’’l]MIBG dose-dependency of celi kill in spheroids derived from SK-N-MC  
parental cells ( • )  and cells transfected with CMV/NAT (o), hTR/NAT (▼) or hTERT/NAT (V ) 
plasmid, 3 x 1 0 ®  cells were seeded into spinner flasks. After 4 days a range of concentrations of 
[^® Î]MIBG was added ( 0 - 2  MBq/ml). After 2 hours the cells were washed to remove free 
P^I]MIBG and after addition of fresh medium the cells were left for 48 hours before creation of 
single cell suspensions and seeding in triplicate into 25 mm^ flasks at 5 x 10® cells/flask. The 
cultures were incubated at 37 °C until discrete colonies had formed. The ceils were then fixed and 
stained with Carbol Fuchin (RA Lamb, Middlesex, UK), before counting and calculation of survival 
fractions. The values are mean surviving fractions with error bars showing standard deviations 
(n=6). Because a log scale is used on the abscissa, a surviving fraction of for example 0.1 
corresponds to 10% clonogenic survival.
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2.3.5 Cytotoxicity of ['"At]MABG
Clonogenic assays were performed to determine whether uptake of f"A t]M ABG  

translated into dose-dependent cell kill in three-dimensional spheroids composed 

of parental cells or composed of cells transfected with the transgenic NAT gene 

driven by the CMV, hTR or hTERT promoters.

2.3.5.1 [̂ ^̂ At]MiBG toxicity in SK-N-BE(2c) ceiis
In order to compare cell kill efficacy using a different radionuclide, spheroids 

derived from SK-N-BE(2c) parental cells and transfectants were exposed to 

P^^AtJMABG. Dose-dependent toxicity was also observed after treating spheroids 

with this radiopharmaceutical (Figure 17). Greater than 99% clonogenic cell kill 

after treatment with f^^At]MABG was achieved regardless of the promoter driving 

NAT expression. Therefore, for comparison of the potency of the promoters the 

activity concentration required to reduce clonogenic survival to 1% was chosen. 

The concentrations of [^^^At]MABG required to reduce to 1% the survival of 

clonogens derived from the spheroids were 13.6 kBq/ml (untransfected cells), 15.4 

kBq/ml (cells transfected with the pCMV/NAT plasmid), 10.36 kBq/ml (cells 

transfected with the phTR/NAT plasmid) and 8.8 kBq/ml (cells transfected with the 

phTERT/NAT plasmid).

Therefore, as observed in cytotoxicity experiments using [^^^1]MIBG (Figure 15), 

the introduction into SK-N-BE(2c) cells of the NAT transgene under the control of 

the CMV promoter did not improve [^^^AtJMABG toxicity. Similarly, in SK-N-BE(2c) 

cells the hTERT promoter was once again more active than the hTR promoter.

2.3.5.2 r^At]MIBG toxicity in SK-N-MC ceils
Untransfected SK-N-MC cells exhibited negligible capacity for active uptake of 

MABG. This resulted in absence of toxicity of f  ̂ ^AtjMABG to parental cells (Figure 

18). Dose-dependent toxicity was found in SK-N-MC cells transfected with the 

plasmids containing the NAT transgene under the control of the CMV, hTR or 

hTERT promoters. Greater than 90% clonogenic cell kill was achieved after 

treatment with [^^^At]MABG, regardless of the promoter driving NAT expression. 

Therefore, for comparison of the potency of the promoters the activity 

concentration required to reduce clonogenic survival to 10% was chosen. The 

concentrations of f^^At]MABG required to reduce to 10% the survival of clonogens
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derived from the spheroids were 6.2 kBq/ml (cells transfected with the pCMV/NAT 

plasmid), 13.9 kBq/ml (cells transfected with the phTR/NAT plasmid) and 8 kBq/ml 

(cells transfected with the phTERT/NAT plasmid), respectively. Therefore, the 

At]MABG toxicity is improved when SK-N-MC cells are transfected with the 

NAT transgene controlled by either the hTR or hTERT promoter. As seen in 

[^^^IjMIBG toxicity studies (Figure 16), the most active of the two telomerase 

promoters investigated in this study was the hTERT promoter. Furthermore, unlike 

the findings from [’’^^IjMIBG toxicity experiments, cells transfected with the CMV 

promoter upstream the NAT transgene displayed sensitivity to [^^''AtjMABG 

comparable to that of cells with the plasmid containing the hTERT promoter driving 

the NAT transgene.
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Figure 17. Clonogenic survival curves derived by colony formation for disaggregated spheroids 
exposed to various doses of f^At]MABG.
To establish the [^^^At]MABG dose-dependency of cell kill in spheroids derived from SK-N-BE(2c) 
parental cells ( • )  and cells transfected with pCMV/NAT (o), phTR/NAT (T ) or phTERT/NAT (V ) 
plasmid, 3 x 1 0 ®  cells were seeded into spinner flasks. After 4 days a range of concentrations of 
[^^^At]MABG was added (0 -  14.8 kBq/ml). After 2 hours the cells were washed to remove free 
f^^At]MABG and after addition of fresh medium the cells were left for 48 hours before creation of 
single cell suspensions and seeding in triplicate Into 25 mm^ flasks at 5 x 1 0 ®  cells/flask. The 
cultures were incubated at 37 °C until discrete colonies had formed. The cells were then fixed and 
stained with Carbol Fuchin (RA Lamb, Middlesex, UK), before counting and calculation of survival 
fractions. The values are mean surviving fractions with error bars showing standard deviations 
{n-6). Because a log scale is used on the abscissa, a surviving fraction of for example 0.1 
corresponds to 10% clonogenic survival.
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Figure 18. Clonogenic survival curves derived by colony formation for disaggregated spheroids 
exposed to various doses of [^^^AtlMABG.
To establish the [^^^At]MABG dose-dependency of ceil kill in spheroids derived from SK-N-MC  
parental ceils ( • )  and ceiis transfected with CMV/NAT (o), hTR/NAT (T ) or hTERT/NAT (V ) 
plasmid, 3 x 1 0 ®  ceiis were seeded into spinner flasks. After 4 days a range of concentrations of 
[^^^At]MABG was added (0 -  14.8kBq/ml). After 2 hours the ceiis were washed to remove free 
f^^At]MABG and after addition of fresh medium the ceiis were left for 48 hours before creation of 
single ceil suspensions and seeding in triplicate into 25 mm^ flasks at 5 x 1 0 ®  ceiis/flask. The 
cultures were incubated at 37 °C until discrete colonies had formed. The ceiis were then fixed and 
stained with Carbol Fuchin (RA Lamb, Middlesex, UK), before counting and calculation of survival 
fractions. The values are mean surviving fractions with error bars showing standard deviations 
(n~6). Because a log scale is used on the abscissa, a surviving fraction of for example 0.1 
corresponds to 10% clonogenic survival.
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2.3.6 Summary of results
Both telomerase promoters (hTR and hTERT) had the capacity to drive the 

expression of the NAT transgene. Further, this resulted in increase of the 

[^^''l]MIBG and [^^^At]MABG toxicity to the transfected cells compared to that of 

untransfected cells, in both SK-N-BE(2c) and SK-N-MC cell lines. The hTERT 

promoter demonstrated the greatest activity in both cell lines, for both [^^^i]MIBG 

and p^^At]MABG treatments.

According to qPGR analysis, in SK-N-BE(2c) cells the ubiquitous CMV promoter 

did not drive the expression of the NAT transgene. These findings were reflected 

in the uptake assay (Figure 11 and Figure 13) and cell kill study (Figure 15 and 

Figure 17), where the SK-N-BE(2c) cells transfected with the pCMV/NAT plasmid 

did not display improved uptake capacity nor enhanced sensitivity to [^^^l]MIBG 

and f  ̂ "'AtlMABG treatments.
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2.4 Discussion
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These in vitro results show that the amalgamation of NAT gene transfer with 

[''^^IJMIBG therapy is a promising tumour-specific approach for neuroblastoma 

treatment. Recent experimental data, in accordance with this study, indicate 

promise for cancer treatment by [^^^l]MIBG therapy/gene therapy combinations 

[133, 187, 188, 192].

For this gene transfer/targeted radiotherapy combination, a tumour-specific 

promoter, such as telomerase [133, 177] was chosen to drive the NAT transgene 

expression exclusively into tumour cells. Telomerase, a ribonucleoprotein, belongs 

to the reverse transcriptase class of enzymes. It stabilises the length of the 3' 

(lagging) end of chromosomes. Up-regulation of telomerase activity is an important 

factor in the immortality of cancer cells [196, 197]. Whilst some non-cancerous 

tissue, such as male germ cells, lymphocytes and some stem cell populations 

express telomerase, there is a clear differential in expression levels between 

neuroblastomas and normal tissue [177, 196, 198].

The present study aimed to determine the optimal conditions for the NAT gene 

transfer [^^^l]MIBG or f  ̂ ^AtjMABG strategy with respect to promoter control of the 

transgene. For the first time, it was shown that the promoters of both hTR and 

hTERT genes are suitable for controlling the expression of the NAT transgene in 

neuroblastoma cells. Quantitative PGR, [^^^i]MIBG or [^^^At]MABG uptake and cell 

kill assays all demonstrated that telomerase promoters are able to drive the 

expression of the NAT transgene which is translated into active transporter and 

rendered the host cells more susceptible to [^^^l]MIBG or [^^^At]MABG treatment. 

This strategy was successful not only in SK-N-MC cells which normally do not 

present detectable level of NAT [98], but also in SK-N-BE(2c) cells which already 

express high level of endogenous NAT [98].

In the latter cell line, transfections performed with the pCMV/NAT plasmid did not 

produce cells expressing the transgenic bNAT (see Figure 9), probably due to the 

CMV promoter inactivation via DNA méthylation. As mentioned in section 2.3.2.1, 

several lines of evidence suggest that the CMV promoter can be silenced by DNA 

méthylation in human tumour cells [194, 195] and zebrafish embryos [193]. 

Interestingly, the CMV promoter can be reactivated in glioma cells U87 by 

administration of the 5'-aza-2'-deoxycytidine [194], a DNA methyltransferase 

inhibitor, shown to reverse méthylation and cause reexpression of silenced genes
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[199]. In order to optimise experimental settings, it would be important to further 

investigate this phenomenon in SK-N-BE(2) cells.

In this study it emerged that the hTERT promoter exhibited higher activity than the 

hTR promoter, suggesting that the hTERT promoter could be the control element 

of choice for the NAT expression in pre-clinical investigations.

Considering the findings regarding the SK-N-MC cell line, the introduction of the 

NAT transgene under the control of either the hTR or hTERT promoter 

dramatically improved [^^^l]MIBG and [^^^At]MABG toxicity. Based on these 

results, this approach could be applied to neuroblastomas that do not accumulate 

actively the radiopharmaceutical and therefore are not eligible for targeted 

radiotherapy. Further, it is likely that this approach is also beneficial to tumours 

that display heterogeneous MIBG uptake within the mass, where targeted 

radiotherapy alone is unlikely to cure disease [3],

In the present study, an alternative radionuclide, ^ '̂'At, was used in the 

benzylguanidine preparation (p^^At]MABG) and its toxicity was evaluated in 

comparison with the ^̂ l̂ preparation. For the MIBG targeted radiotherapy of 

neuroectodermal tumours, the radionuclide conventionally used is ^̂ 1̂. However, 

tumours of under millimetre dimensions are suboptimal targets for treatment with 

3̂̂1 p-particles whose mean range is about 800pm [200]. In addition to 

underdosing of small tumour deposits, long range p-emissions may damage 

surrounding normal tissues [11, 201, 202]. Due to their short path length, 

radionuclides that decay by the emission of «-particles, such as the heavy halogen 

^^^At, offer the possibility of combining cell-specific molecular targeting with 

radiation having a range in tissue of only 50 to 80 pm [203, 204]. Moreover, a- 

particies are much more radiotoxic than p-emitting radionuclides, as demonstrated 

in this study (Figure 13 and Figure 14), and their cytocidal efficiency is 

independent of cell cycle status and oxygen concentration. Recently, clinical trials 

involving anti-tumour antibodies labelled with «-particle-emitting radionuclides 

have commenced [204, 205].

The combination of p-and «-emitters, in the form of [^^^IjMIBG and [^^'"At]meta- 

astatobenzylguanidine ([^^^AtjMABG), could be an option for the treatment of 

neuroblastomas, further increasing the efficiency and specificity of this targeted 

radiotherapy strategy.
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Clonogenic assays were performed in three-dimensional spheroids rather than 

monolayers. Previously it has been shown that greater cell kill was achieved, for 

the same dose of [^ ’̂'l]MIBG, in three-dimensional spheroids compared to 

monolayers, demonstrating the existence of collateral cell kill [179, 187]. This is 

fundamental for the success of gene therapy, since gene transfer is an inefficient 

process. In particular, gene transfer cannot reach 100% efficiency using existing 

techniques [3, 188, 192]. Therefore the mechanism of induction of radiation- 

induced bystander effects must be delineated in order to maximise the efficacy of 

gene therapy combined with targeted radionuclide treatment [2, 192, 206]. Two 

types of bystander effect have been identified (see sections 1.1.1 and 5.4 for 

details): namely a physical effect in the form of decay particle, crossfire irradiation 

from targeted cells to neighbouring, untargeted cells, observed mainly in 

conjunction with low linear energy transfer (LET) jS- and /-emitters; and 

transmissible biological effects resulting from the radiation insult. The latter 

phenomenon is more pronounced following high LET radiation [13, 207, 208].

This new treatment strategy, using a novel gene therapy approach in combination 

with a well-established treatment option for neuroblastoma (targeted radiotherapy) 

might render radiation treatment more effective and more readily tolerated. The 

large differential in telomerase expression between normal tissue and tumour, and 

the radiosensitivity of neuroblastoma make this type of cancer an attractive 

candidate for the therapeutic scheme proposed in the present study.
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Chapter 3

Analysis of WAF1 promoter activation after exposing 

neurobiastoma ceils to [̂ ®̂ I]MIBG or [^^^At]MABG
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3.1 introduction
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The combination of targeted radiotherapy with gene therapy appears to be a 

promising approach to improve the therapeutic ratio of cancer therapy. However, 

the main limitation of gene therapy strategies is lack of target specificity. Novel 

approaches to circumvent this issue have been devised. In chapter 2, both 

telomerase promoters (hTR and hTERT) were studied as tumour-specific driving 

elements of the noradrenaline transporter gene expression in neuroblastoma cells. 

Alternatively, inducible promoters can be employed to control gene expression 

transcriptionally.

3.1.1 Radiation-inducible promoters
Genes that are activated in response to ionising radiation, have recently attracted 

interest in cancer gene therapy. This is because their promoter regions can be 

utilised to drive transcription of transgenes in response to radiation. This allows the 

regulation of the expression of the therapeutic gene spatially and temporally by 

ionising radiation [209]. The use of such a control element to drive the expression 

of noradrenaline transporter (NAT) transgene would be of great benefit for 

targeted radiotherapy of neuroblastoma. It would be possible to enhance NAT 

transgene expression specifically in cells targeted by radiopharmaceuticals, such 

as [^^ l̂]IVIIBG or AtjMABG. This would then lead to a higher capacity of targeted 

neuroblastoma cells to accumulate [^^^IjMIBG or [^^^At]MABG, resulting in a 

greater toxicity of the radiopharmaceuticals. Thanks to this radionuclide-inducible 

system, it would be possible to minimise expression of the NAT transgene in 

normal cells, which are not targeted by the drug.

Several studies have investigated the potential of radio-inducible promoters such 

as the early growth response gene 1 (Egr-1) [210]. The promoter region contains a 

consensus sequence GC(A/T)6GG, called “GArG” box, the radiation-inducible 

element [211], targeted by reactive oxygen intermediates [212]. The Egr-1 

promoter has been used successfully in several suicide gene therapy strategies 

[213-217]. However, all these studies were based on the use of external beam 

ionising radiation rather than radiopharmaceuticals. To date, only one report [218] 

showed Egr-1 promoter activation in rat intracerebral glioma, after treatment with 

the thymidine analogue 5-iodo-2'-deoxyuridine radiolabelled with the Auger 

electron emitter iodine-125 ([^^^IjldUrd). However, no further investigation
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concerning clinically relevant radioactivity concentrations or therapeutic effect of 

the radiopharmaceutical in this system has followed this study.

In this approach, the reporter gene expression was detectable in non-irradiated 

cells, which might limit the use of the Egr-1 promoter in combination with cytotoxic 

agents [219]. Non-controlled expression of the therapeutic gene could generate 

unwanted damage to non-target cells, therefore it is essential that the non-specific 

promoter activity is minimised.

An interesting gene therapy approach employed the radiation-induced promoter of 

the bacterial RecA gene. Significant increase in TNFalpha secretion was seen 

after a radiation dose of 2Gy in the anaerobic apathogenic bacterium, Clostridium, 

containing the RecA promoter upstream the TNFalpha gene [220].

Finally, significant cell kill resulted after 2Gy irradiation of A549 cells, transfected 

with four tandem repeats of the NF-xB binding site of the C-IAP2 gene driving the 

expression of the suicide gene BAX [221].

Although promising, the studies regarding the RecA and C-IAP2 promoters did not 

involve targeted radiotherapy.
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3.1.2 Radiation-inducible WAF1 promoter
Our study has focused on the evaluation of the promoter for the gene p21 or “wild- 

type p53-activated fragment 1" (WAF1). WAF1 is a well-characterised cyclin

dependent kinase (CDK) inhibitor that belongs to the Cip/Kip family of CDK 

inhibitors [222]. Its main activity is inhibition of the cyclin/cdk2 complexes and cell 

cycle progression [223]. The gene WAF1 was first cloned and characterised as an 

important mediator, acting as inhibitor of the cyclin-dependent kinase activity in 

p53-dependent cell cycle arrest induced by DNA damaging agents doxorubicin 

[224] and y-rays [134].

3.1.2.1 WAF1 promoter induction by external beam radiotherapy
Many studies show that the WAF1 promoter is radiation-inducible and its activation

is also increased in tumour cells [225-232]. In addition, activity appears to be 

independent of p53 status in a wide range of tumour types [230, 233, 234]. 

Furthermore, there is evidence indicating that the WAF1 promoter is activated in 

vitro in cells exposed to hypoxia [235]. This promoter therefore displays three 

potential levels of specificity: tumour, radiation and hypoxia specificity. These 

characteristics make the WAF1 promoter an attractive tool for radiation-controlled 

expression of transgenes such as the NAT gene.

In the attempt to combine gene therapy with radiotherapy, the potential of the use 

of the WAF1 promoter, as a radio-inducible control element of therapeutic 

transgenes, was recently investigated [135, 235, 236]. Worthington and colleagues 

[135] initially evaluated the induction of the WAF1 promoter activity by y-radiation 

treatment of endothelial cells or rat tail artery, transfected with the WAF1 promoter 

controlling the green fluorescent protein (GFP) expression. In endothelial cells 

exposed to 4Gy ionising radiation, the levels of the GFP protein were 9.6 times 

higher than that in unirradiated cells. Subsequently, in the rat-tail vein exposed to 

4 and 6Gy ionising radiation a 4.5- and 8-fold induction of the GFP protein was 

shown, respectively.

These findings indicate that y-rays application, via the radiation-inducible WAF1 

promoter, can control the expression of a transgene in endothelial cells. 

Furthermore, in the same report, a construct containing the nitric oxide synthase 

(INOS) gene downstream of the WAF1 promoter was transfected into endothelial 

cells. After exposure to a dose of 4Gy external beam radiation, an impressive 9.5-
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fold induction of the iNOS protein expression was achieved [135]. Interestingly, 

this system was shown to generate significant relaxation of arterial segments, 

indicating the potential to induce physiological effects using an y-ray-inducible 

promoter in combination with ionising radiation [135]. Additional studies showed 

that WAF1 promoter-controlled expression of iNOS resulted in an increase in 

sensitivity to subsequent radiation therapy in both a murine fibrosarcoma and the 

human colon HT29 xenograft [235, 236].

It is clear, from the aforementioned studies, that the induction of the WAF1 

promoter activity by conventional y-radiation is feasible and well documented in 

both endothelial cells and tumour cells.

3.1.2.2 WAF1 promoter induction by targeted radiotherapy
To date, there is no report regarding the use of targeted radiotherapy agents to

activate the WAF1 promoter in cancer cell lines. Furthermore, the use of such 

promoters to drive therapeutically relevant transgenes would be of great 

advantage in cancer treatment regimes, where the use of radiopharmaceuticals is 

an important tool of therapy and / or tumour imaging. It could then be possible to 

induce the expression of a therapeutic transgene, via WAF1 promoter control, 

exclusively in cells that are targeted by the radiopharmaceutical. In this way, the 

use of targeted radiotherapy agents could achieve activation of the WAF1 

promoter, and in turn overexpression of the transgene, exclusively in targeted 

cells, without affecting non-targeted cells. This level of specificity can not be 

achieved with conventional external beam radiotherapy.

Based on this hypothesis, the present study will investigate the feasibility of using 

the radiolabelled agents [^^^l]MIBG and p^'‘At]MABG in order to enhance the 

expression of GFP marker gene controlled by the radiation-inducible WAF1 

promoter.

Two radiation types, specifically )8-particle emissions (generated by [''^^IJMIBG) 

and cr-particles emissions (generated by [^^^At]MABG), will be assessed for their 

efficacy in WAF1 promoter activation, and they will be compared with external 

beam radiation, in the form of y-rays.

3.1.2.2.1 Estimation of radiation dose delivered by radiopharmaceuticals
Radiation dose estimation is required to determine the effectiveness of targeted

radionuclide therapy. Dosimetry is generally performed to establish a correlation
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between the quantity of radiation delivered to a target and the biological damage 

observed, or that can be reliably predicted [237]. This information is also needed 

to optimise the choice of treatment modalities and predict the resulting biological 

effect determining the degree of therapeutic efficacy. Moreover, an objective 

dosimetry is required in order to compare different radiotherapy regimes (i.e. 

targeted radiotherapy) and relate them to classical treatments (conventional 

external beam radiation), for which radiobiological knowledge is well-established 

and clinical experience extensive.

Therefore, estimation of the radiation dose of radioactivity delivered by a 

radiopharmaceutical that generates a quantifiable biological effect is necessary.

In this study, the radiation doses corresponding to the [^^^IjMIBG and [^^^At]MABG 

activity concentrations that activate the WAF1 promoter will be estimated in 

neuroblastoma cells. The levels of WAF1 promoter activation will be quantified by 

measuring the fluorescence intensity of the GFP, the DNA of which is inserted 

downstream of the WAF1 promoter.

3.1.2.2.2 WAF1 promoter driving the noradrenaiine transporter transgene 
expression

The use of a transgenic construct containing the WAF1 promoter upstream of the 

NAT transgene could upregulate the synthesis of NAT in neuroblastoma cells in 

response to ionising radiation. Based on previous reports [98, 187, 188], it is 

expected that this will lead to a greater capacity of cellular uptake of ['*^^I]MIBG or 

p ‘‘^At]MABG and therefore to a higher toxicity of the radiolabelled compounds. 

Assessment of the WAF1 promoter activation and dosimetry of each radiolabelled 

agent will produce valuable information. This could optimise experimental 

parameters and procedures that will be used to better investigate the NAT 

transgene overexpression controlled by the WAF1 promoter in neuroblastoma 

cells. This strategy involves introduction of the NAT transgene (driven by the 

WAF1 promoter) into neuroblastoma cells, followed by an initial dose of radiation 

in the form of [^^^l]MIBG or [^^^At]MABG (which is concentrated preferentially by 

neuroblastoma cells) (Figure 19). As mentioned above, this will facilitate the 

tumour-specific overexpression of transgenic NAT. A second administration of 

[^^^l]MIBG or [^^^At]MABG, should be more avidly concentrated by target tumour 

cells, leading to their sterilisation. The use of radioisotopes conjugated to a
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tumour-seeking agent such as benzylguanidine is an attractive option for the 

induction of the WAF1 promoter. If the WAF1 promoter activation via [^^*'I]M1BG or 

[^^^At]MABG radiation is confirmed in neuroblastoma cells, the application of this 

strategy in the clinic could circumvent the limitations of external beam radiotherapy 

minimising toxicity to normal tissue.
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Figure 19. Proposed radiation-induction scheme to increase the expression of the noradrenaline 
transporter (NAT) in neuroblastoma cells.
By placing the NAT transgene under the control of the radiation-inducible WAF1 promoter, 
administration of radioactivity in the form of f®^l]MIBG (priming dose) (concentrated preferentially 
by neuroblastoma cells) will potentially facilitate the tumour-specific overexpression of NAT, 
thereby enabling increased uptake of a second dose of f  ®^I]MIBG (therapeutic dose).
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3.2 Material and Methods
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3.2.1 Cell culture
The neuroblastoma cell line SH-SY5Y [185, 238] was obtained from ECACC 

(Salisbury, Wiltshire, UK). SK-N-BE(2c) cells were also employed (see section 

2.2.2). Both neuroblastoma cell lines have the capacity for uptake of MIBG [100, 

186]. The colon tumour cell line HCT116 were obtained from American Type 

Culture Collection (Rockville, MD) and HCT116 cells carrying a targeted knock out 

for the genes p53 (HCT116 p53 -/-) [239] were kindly donated by Dr. Jane Plumb 

(Centre of Oncology and Applied Pharmacology, Glasgow, UK). The non-NAT 

expressing human glioma cell line UVW [187, 188] was chosen for comparative 

studies. Cells were maintained in the logarithmic phase of growth at 37°C in 75cm^ 

plastic culture flasks (Corning Inc., Corning, NY) in a 5% CO2 - 95% air humidified 

incubator. Cells were subcultured in RPMI-1640 medium supplemented with 10% 

heat inactivated foetal bovine serum (FBS), SOIU/ml sodium penicillin G, 50mg/ml 

streptomycin sulphate, and 2mM L-glutamine. Medium and supplements were 

purchased from Gibco (Paisley, UK).

3.2.2 Synthesis of [^^^l]meta-iodcbenzylguanidine and 
[^^^At]meta-astatobenzylguanidine

No-carrier-added [^^^l]MIBG and [^^^At]MABGwere prepared as described in

section 2.2.1.

3.2.3 Plasmids
The WAF1 promoter, inserted into the Xhol site of the pEGFP-1 reporter vector 

(BD Biosciences Clontech, Palo Alto, CA), was kindly provided by J Worthington 

(School of Biomedical Sciences, University of Ulster, UK). For the present study, 

the plasmid containing the WAF1 promoter controlling the transcription of the GFP 

marker gene will be referred to as pWAF1/GFP plasmid.

In a second vector, based on pEGFP-1 (BD Biosciences Clontech, Palo Alto, CA), 

the GFP cDNA was removed, and bNAT cDNA inserted into Hind Ill/Not I sites. 

The WAF-1 promoter DNA fragment was then inserted into Eco47 III / Kpn I site. 

The construct containing the WAF1 promoter controlling the transcription of the 

NAT transgene will be referred to as pWAFI/NAT plasmid.

Plasmid purifications were carried out using Plasmid Maxi Kit (Qiagen, Germany), 

according to the manufacturer instructions.
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3.2.4 In vitro transfections
SH-SY5Y, SK-N-BE(2c), HCT116 and UVW cells were transfected with the 

pWAF1/GFP or the pWAF1 /NATplasmids using Lipofectamine™ 2000 (Invitrogen, 

Paisley, UK), as described in section 2.2.4.
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3.2.6 TaqMand) Real Time-Polymerase Chain Reaction (PGR) 
for hNAT and bNAT transcripts

Isolation of total RNA was performed using RNeasy Mini Kit (Qiagen, Germany)

according to manufacturer’s instructions. See Section 2.2.4 for details on real-time 

PGR conditions specific for hNAT and bNAT mRNAs.

3.2.6 FACs analysis of GFP expression in neuroblastoma cells
Cells stably transfected with the pWAF1/GFP plasmid were seeded at a

concentration of 1.5 x 10® cells / well in six-well plates. Two days later the cells 

received treatment (0 -  lOGy external beam, 0 -  2MBq/ml [^®^I]MIBG or 0 -  

29.6kBq/ml f ’'At]MABG). At each time point cells were washed twice with PBS, 

harvested and resuspended in 500pl of PBS-1%FBS. Each sample was thereafter 

analysed on a Becton Dickinson FACScan flow cytometer with an excitation 

wavelength of 488nm and FITC collection wavelength using a band-pass filter at 

530 ± 15nm, which registers the fluorescence intensity of the GFP protein in each 

event (cell). Dead cells were gated out of the analysed cohort by forward and side 

scatter. The level of GFP fluorescence in live cells was determined using the 

Becton Dickinson CellQuest program. Briefly, the distribution of GFP fluorescence 

in the cell population was plotted against the cell number on a 4-log linear scale. 

For each sample, 10.000 events (cells) were analysed. Data were expressed as 

the ratio of mean fluorescence intensity of treated cells compared to the basal 

level of control (untreated cells stably transfected with the pWAFI/GFP plasmid).

3.2.7 Western Blotting analysis
Cells stably transfected with the pWAFI/GFP plasmid were seeded at a 

concentration of 1.5 x 10® cells / well in six-well plates. Two days later the cells 

received treatment (0 -  lOGy external beam, 0 -  2MBq/ml [^®^I]MIBG or 0 -  

29.6kBq/ml f^^At]MABG). At each time point, samples for protein analysis were 

extracted by lysing cells with Laemmli buffer (Sigma). Protein concentration was 

quantified with the use of the BioRad protein assay (BioRad, Munich, Germany), 

according to the manufacturer instructions. A total protein quantity of 15pg of each 

sample was electrophoresed through a polyacrylamide gel (NuPAGE BIS-TRIS 

gel, Invitrogen, UK), and then transferred to polyvinylidene fluoride (PVDF) 

membrane at 125mA for 45min. (Immobilon-P, Millipore, UK). The PVDF
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membranes were incubated for 2 hours at room temperature in blocking solution 

(5% non-fat milk in TBS-Tween buffer (25mM Tris-HCI, pH 7.5, 0.8% NaCI, 0.02% 

KCl, 0.05% Tween-20). The nitrocellulose membranes were then probed in 

blocking solution for 2 hours with a mouse monoclonal anti-GFP antibody (diluted 

1:10000) (BD Biosciences Glontech, Palo Alto, GA) and a rabbit polyclonal anti- 

GAPDH (diluted 1:2000) (abeam, Cambridge, UK), for loading control. Peroxidase- 

conjugated goat anti-mouse (diluted 1:2000) and anti-rabbit (diluted 1:5000) 

antibodies (DAKO, Denmark) were used as secondary antibodies. Immune 

complexes (i.e., proteins of interest) were visualized with the use of an enhanced 

chemiluminescence system (EGL Detection Reagent Amersham Pharmacia 

Biotech, UK), following the instructions provided by the manufacturer. The relative 

amount of transferable GFP protein in a given sample was quantified by 

densitometry of X-ray films and normalised by the intensity of each band 

corresponding to the GAPDH protein. Results presented are from two independent 

experiments each performed in triplicate wells. The band intensity level 

determination was performed by Totallab software (Nonlinear Dynamics, 

Newcastle upon Tyne, UK).
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3.2.8 uptake studies
SK-N"BE(2c) parental and transfected cells (with the plasmid pWAF1/GFP), SH- 

SY5Y parental cells and transfectants (with the plasmids pWAF1/GFP or 

pWAF1/NAT) and UVW parental and transfected cells (with the plasmid 

pWAF1/NAT) were seeded in six-well plates at initial density of 5 x 10"* cells per 

well and cultured for 48 hours. MIBG incorporation was measured by incubating 

the cells for 2 hours with 7kBq/ml of [̂ ®’’ l]MIBG of specific activity 45-65MBq/mg, 

(Dupont Radiopharmaceuticals, Hertfordshire, UK). Non-specific uptake was 

measured in the presence of 1.5mM desmethylimipramine (DMI) (Sigma, UK). 

After incubation, medium was removed and the cells were washed with PBS. 

Radioactivity was extracted using two aliquots of 10% (w/v) trichloroacetic acid. 

The activities of the extracts were then the measured in a gamma-well counter 

(Cobra II, PerkinElmer, MA). Uptake was expressed as cpm (counts per minute) 

per 10® cells.

For experiments using the pWAFI/NAT plasmid, SH-SY5Y and UVW cells were 

pre-exposed to 0 - 8Gy from a ®®Co source. After 2 days (time necessary for 

optimal WAF1 promoter activation, determined in the experiments regarding 

pWAFI/GFP transfectants, see section 3.3.2), [^®'*I]MIBG uptake assay was 

performed as described above.

3.2.9 Clonogenic assay for neuroblastoma ceils treated with 
external beam ionising radiation, f^1l]IVIIBG or f^^At]IVIABG

SK-N-BE(2c) cells transfected with the plasmid pWAFI/GFP, SH-SY5Y

transfectants (with the plasmid pWAFI/GFP or pWAFI/NAT), and UVW cells 

transfected with the pWAFI/NAT construct were seeded in 25cnf flasks at 0.5 x 

10® per flask. After 2 days, when the cultures were 70% confluent, medium was 

removed and replaced with fresh medium.

Celts transfected with the pWAFI/GFP construct were exposed to 0 -  2MBq/ml 

r®^l]MIBG, 0 -  29.4kBq/ml p^At]MABG or to 0 -  lOGy external beam radiation 

from a ®°Co source.

For experiments using the pWAFI/NAT plasmid, SH-SY5Y cells were pre-exposed 

to 0 -  8Gy and UVW cells to 0 -  6Gy ionising radiation, from a ®®Co source. After 2 

days (time necessary for optimal WAF1 promoter activation, determined in the 

experiments regarding pWAFI/GFP transfectants, see section 3.3.2), cells were
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treated with 0 -  1MBq/ml (SH-SY5Y cells) or 0 -  8MBq/ml (UVW cells) [’ ^'|]M1BG. 

Cells were Incubated with ['®^I]MIBG for 2 hours, after which uptake is maximal 

[240]. After treatment, medium was removed and the cells were washed thrice with 

PBS, suspended by treatment with trypsin and counted using a haemocytometer. 

For every treatment, 1 x 10® cells were seeded, in triplicate, in 25cm^ flasks 

(Nunclon Plastics, Roskilde, Denmark) in 10ml fresh medium. The cultures were 

then incubated at 37°C in 5% CO2 . After 10 to 14 days, medium was removed and 

the colonies were fixed and stained with carbol fuchsin (R.A. Lamb, Middlesex, 

United Kingdom), before counting and calculation of surviving fractions. Results 

were expressed as a percentage of the initial concentration of cells plated, known 

as the plating efficiency. The cytotoxic potency of the radiopharmaceutical was 

determined by comparing the number of colonies formed by treated cells to the 

number of colonies formed by untreated control (the surviving fraction, or SF). For 

each transfectant, experiments were performed three times, in triplicate.

3.2.10 Statistical analysis
Results are expressed as mean ± standard deviation (s.d.). All data are from at 

least three independent experiments. Data were analysed by Student’s Mest or 

AN OVA test (with Bonferroni correction) using SPSS software, version 13 (IL). A p 

value of less than 0.05 was considered statistically significant.
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3.3 Results
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3.3.1 Cellular uptake of ^^l]IVIIBG and [̂ ^̂ AtJMABG
The activity of the noradrenaline transporter was assessed by [^®^I]MIBG (Figure

20) and [®̂ ’'At]MABG (Figure 21) uptake assay in SK-N-BE(2c) and SH-SY5Y cells 

transfected with the pWAFI/GFP plasmid, and was compared with that in parental 

SK-N“BE(2c) and SH-SY5Y cells. No difference in [̂ ®’*I]MIBG uptake capacity was 

detected between the parental and the transfected (with the pWAF1/GFP plasmid) 

SK-N-BE(2c) cells. Similarly, SH-SY5Y cells showed a capacity to accumulate 

[^®^I]M!BG comparable to that showed by SH-SY5Y cells transfected with the 

pWAFI/GFP plasmid.

These results indicates that the transfection of the pWAFI/GFP plasmid in SK-N- 

BE(2c) and SH-SY5Y cells did not alter the activity of the noradrenaline 

transporter.
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Figure 20. [ l]MIBG uptake in SK-N-BE(2c) and SH-SY5Y cells parental and transfected with the 
pW AFI/GFP plasmid.
Uptake assay was performed in the presence or absence of DMI (desmethylimipramine), a 
powerful inhibitor of the active uptake mediated by the noradrenaline transporter. Resuits were 
expressed as counts per minute (cpm) per 10® cells. Data are means ± s.d. of three experiments.
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Figure 21. [^^^At]MABG uptake in SK-N-BE(2c) and SH-SY5Y cells parental and transfected with 
the pW AFI/GFP plasmid.
Uptake assay was performed in the presence or absence of DMI (desmethylimipramine), a 
powerful inhibitor of the active uptake mediated by the noradrenaline transporter. Results were 
expressed as counts per minute (cpm) per 10® ceils. Data are means ± s.d. of three experiments.
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3.3.2 Assessment of the WAF1 promoter activation in
neurobiastoma ceils transfected with the pWAF1/GFP plasmid

3.3.2.1 WAF1 promoter activation in SH-SY5Y cells
The fluorescence intensity ratios increased in a time- and dose-dependent fashion

after exposing SH-SY5Y cells stably transfected with the pWAF1/GFP plasmid to 

y-rays (Figure 22). The maximum ratio of the fluorescence Intensity levels of 

irradiated cells to that of control cells (about 4.4) was registered 48 hours after 

10Gy radiation. After 72 and 96 hours there was no significant change in the 

fluorescence intensity.

There was also a time- and dose-dependent increase in fluorescence levels when 

SH-SY5Y cells (stably transfected with the pWAF1/GFP plasmid) were treated 

with 0.2 to 2MBq/ml of [^^^1]MIBG (Figure 23). At 72 hours after incubation with 

0.1, 0.2 or 0.5MBq/ml of radiopharmaceutical, no further increase in fluorescence 

intensity was observed. However, unlike activation by external beam ionising 

radiation, cells treated with the highest activity concentrations (1 or 2MBq/ml) 

exhibited no plateau with respect to fluorescence intensity to the final data point 

analysed, 96 hours after treatment (3.28 and 3.45 fold increase respectively).

In the case of SH-SY5Y cells (stably transfected with the pWAFI/GFP plasmid) 

treated with 1.85 to 29.6kBq/m! of [^^^AtjMABG, fluorescence intensity increased in 

a dose- and time-dependent manner (Figure 24). Treatment with 1.85, 3.7 or 

7.4kBq/ml of radiopharmaceutical resulted in maximal fluorescence after 96 hours. 

In contrast, no plateau in fluorescence was observed 96 hours after treatment with 

14.8 or 29.6kBq/ml of f''^AtJMABG, at which time fluorescence output was greater 

than that of the control by factors of 4.64 and 5.33 respectively.

The data generated from experiments involving SH-SY5Y cells transfected with 

the GFP gene controlled by the WAF1 promoter suggested that after the first 

radiation administration at least 48 hours were needed to cause more than 2-fold 

increase of the fluorescence levels, and therefore activation of the WAF1 

promoter. This was observed regardless of the radiation type used. These 

observations were more obvious when the fluorescence intensity data were re

plotted against dose of external beam radiation (Figure 25) or administered activity 

concentrations of [^ ’̂’ IJMIBG (Figure 26) and [̂ '’'’AtJMABG (Figure 27).
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In the case of external beam radiation treatment (Figure 25), 24 hours after each 

radiation dose the fluorescence intensity levels in cells were significantly lower (p < 

0.05) than that registered at 48, 72 or 96 hours after radiation.

Similarly, 24 hours after exposure to 0.5 to 2MBq/ml of [^ ‘̂'l]MIBG (Figure 26) cells 

were significantly less fluorescent (p < 0.05) than cells analysed 48, 72 or 96 hours 

after radiation.

The cellular fluorescence intensity 24 hours after treatment with 3.7 to 29.6kBq/ml 

of [^^'*At]MABG (Figure 27) was also significantly lower (p < 0.05) than that 

registered at 48, 72 or 96 hours after radiation. Notably, fluorescence intensity 

levels registered 96 hours after treatment with 14.8 or 29.6kBq/ml of p^^At]IVIABG 

were higher (p < 0.05) than that measured at 48 and 72 hours.

These findings suggest that perhaps, regardless of the radiation type used to 

activate the WAF1 promoter, the second administration of ionising radiation would 

be given 48 hours after the first activating administration. This is the time required 

for maximum activation levels of the WAF1 promoter.
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Figure 22. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
analysis of SH-SY5Y ceils (transfected with the pW AFI/GFP plasmid).
Cells were exposed to 0, 2, 4, 6, 8 or lOGy of y-rays. Cells were seeded 2 days before the 
treatment at a concentration of 2.5 x 10  ̂ cells/well in six-well plates. At 0, 24, 48 and 72h after 
irradiation samples were resuspended and analysed at a FACScan (Becton Dickinson UK Ltd). 
Data are presented as fluorescence intensity ratio of Irradiated cells to unirradiated cells (control), 
means ± s.d. of measurements from three Independent experiments.
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Figure 23. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
analysis in SH-SY5Y cells (transfected with the pW AFI/GFP plasmid).
Cells were exposed for 2 hours to 0.2, 0.5, 1, 1.5 or 2MBq/ml n.c.a. [ IjMIBG. Cells were seeded 
2 days before the treatment at a concentration of 2.5 x 10® cells/well in six-well plates. At 0, 24, 46, 
72 and 96h after irradiation samples were resuspended and analysed at a FACScan (Becton 
Dickinson UK Ltd). Data are presented as fluorescence Intensity ratio of irradiated to unirradiated 
ceils (control), means ± s.d. of measurements from three independent experiments.

108



i
1
S.

s
c

8

IO
2,
LL

6

0 kBq/ml 
1.85 kBq/ml 
3.7 kBq/ml 
7.4 kBq/ml 
14.8 kBq/ml 
29.6 kBq/ml

5

4

3

2

1

0
0 24 48 72 96

Time (hours)
Figure 24. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
analysis in SH-SY5Y cells (transfected with the pW AFI/GFP plasmid).
Cells were exposed for 2 hours to 1.85, 3.7, .7.4, 14.8 or 29.6kBq/ml [ At]MABG. Cells were 
seeded 2 days before the treatment at a concentration of 2.5 x 10® cells/well in six-well plates. At 0, 
24, 48, 72and 96h after irradiation sampies were resuspended and analysed at a FACScan 
(Becton Dickinson UK Ltd). Data are presented as fluorescence intensity ratio of irradiated to 
unirradiated cells (control), means ± s.d. of measurements from three independent experiments.
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Figure 25. Effect of external beam radiation on WAF1 promoter activity in SH-SY-5YSH-SY5Y  
cells (transfected with the pW AFI/G FP plasmid) Comparing the dose-response of cells 24, 48, 72 
or 96 hours after external beam Irradiation. Data are presented as fluorescence intensity ratio of 
irradiated to unirradiated cells (control), means ± s.d. of measurements from three independent 
experiments treatment (* significantly lower, AN OVA test performed for each radiation dose: p < 
0.05).
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Figure 26. Effect of [^^^l]M!BG on WAF1 promoter activity in SH-SY5Y cells (transfected with the 
pW AFI/GFP plasmid).
Comparing the dose-response of cells 24, 48, 72 or 96 hours after [ IJMIBG treatment. Data are 
presented as fluorescence Intensity ratio of irradiated to unirradiated cells (control), means ± s.d. of 
measurements from three Independent experiments (* significantly lower, ANOVA test performed 
for each activity concentration; p < 0.05).
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Figure 27. Effect of [^^^At]MABG on WAF1 promoter activity in SH-SY5Y cetis (transfected with the 
pW AFI/GFP piasmid).
Comparing the dose-response of celis 24, 48, 72 or 96 hours after [ At]MABG treatment. Data are 
presented as fluorescence intensity ratio of irradiated to unirradiated ceils (control), means ± s.d. of 
measurements from three Independent experiments (* significantly lower,+  significantly higher, 
ANOVA test performed for each activity concentration: p < 0.05).
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3.3.2 2 WAF1 promoter activation in SK-N-BE(2c) cells
In order to investigate the universality of the phenomenon, activation of the WAF1

promoter by external beam radiation, [^®^!]MIBG and [^^^AtJMABG was assessed in 

a second neuroblastoma cell line, SK-N-BE(2c).

Similarly to SH-SY5Y cells, SK-N-BE(2c) transfectants exposed to y-rays (Figure 

28) showed a dose-dependent increase in fluorescence intensity with the highest 

ratio value of 2.05 in fluorescence levels 96 hours after the highest dose (10Gy) 

was administered.

The use of the radiopharmaceutical [''^^l]MIBG (Figure 29) also caused a dose- 

and time-dependent increase in fluorescence levels. The maximum fluorescence 

intensity ratio (2.40) was recorded at 72 hours, reaching a plateau at 96 hours.

After exposure to p ‘‘^At]MABG (Figure 30), a pattern similar to that observed in 

transfectants treated with [^^^l]MIBG (Figure 29) was observed. The maximum 

fluorescence intensity ratio (2.14) was recorded at 72 hours. At 96 hours the 

fluorescence intensity ratio levels dropped not significantly in cells treated with 3.7, 

7.4, 14.8 and 29.6kBq/ml f ’'^AtJMABG, and significantly (p < 0.05) in cells exposed 

to 1.85kBq/mi [^^^At]IVIABG).

The data generated from experiments involving SH-SY5Y ceils transfected with 

the GFP gene controlled by the WAF1 promoter suggested that after the first 

radiation administration at least 48 hours were needed to cause a substantial 

increase of the fluorescence levels, and therefore activation of the WAF1 

promoter. These observations were clearer when the fluorescence intensity data 

were re-plotted against radiation doses of external beam radiation (Figure 31) or 

administered activity concentrations of [^^^l]MIBG (Figure 32) and p^‘'At]MABG 

(Figure 33).

In the case of external beam radiation treatment (Figure 31), 24 hours after each 

radiation dose the fluorescence intensity levels in cells were significantly lower (p < 

0.05) than that registered at 48, 72 or 96 hours after radiation.

Similarly, 24 hours after exposure to 1 to 2MBq/mi of [̂ '̂‘ l]MIBG (Figure 32) cells 

were significantly less fluorescent (p < 0.05) than ceils analysed 48, 72 or 96 hours 

after radiation.
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The cellular fluorescence Intensity 24 hours after treatment with 3.7 to 29.6kBq/ml 

of f^^At]MABG (Figure 33) was also significantly lower (p < 0.05) than that 

registered at 48, 72 or 96 hours after radiation.

As seen in SH-SY5Y cells, these results suggests that the second administration 

of ionising radiation should be given 48 hours after the first activating 

administration, time required for maximum activation levels of the WAF1 promoter.
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Figure 28. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
anaiysis of SK-N-BE(2c) ceils (transfected with the pW AFI/GFP piasmid).
Ceiis were exposed to 0, 2, 4, 6, 8 10Gy of y-rays. Celis were seeded 2 days before the treatment 
at a concentration of 2.5 x 10® ceiis/weil in six-weii piates. At 0, 24, 48 and 72h after irradiation 
samples were resuspended and analysed at a FACScan (Becton Dickinson UK Ltd). Data are 
presented as fluorescence Intensity ratio of irradiated ceiis to unirradiated ceils (control), means ± 
s.d. of measurements from three independent experiments.
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Figure 29. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
analysis In SK-N-BE(2c) cells (transfected with the pW AFI/GFP plasmid).
Cells were exposed for 2 hours to 0.2, 0.5, 1, 1.5 and 2 MBq/ml n.c.a. [^^l]MIBG. Cells were 
seeded 2 days before the treatment at a concentration of 2.5 x 10® cells/well In six-well plates. At 0, 
24, 48, 72 and 96h after irradiation samples were resuspended and analysed at a FACScan 
(Becton Dickinson UK Ltd). Data are presented as fluorescence Intensity ratio of Irradiated to 
unirradiated cells (control), means ± s.d. of measurements from three Independent experiments.
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Figure 30. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
analysis in SK-N-BE(2c) cells (transfected with the pW AFI/GFP plasmid).
Cells were exposed for 2 hours to 1.85, 3.7, .7.4, 14.8 or 29.6 kBq/ml [^^^AtlMABG. Cells were 
seeded 2 days before the treatment at a concentration of 2.5 x 10® cells/well in six-well plates. At 0, 
24, 48, 72and 96h after irradiation samples were resuspended and analysed at a FACScan 
(Becton Dickinson UK Ltd). Data are presented as fluorescence intensity ratio of irradiated to 
unirradiated cells (control), means ± s.d. of measurements from three independent experiments.
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Figure 31* Effect of external beam radiation on WAF1 promoter activity in SK-N-BE(2c) ceiis 
(transfected with the pW AFI/GFP piasmid).
Comparing the dose-response of ceils 24, 48, 72 or 96 hours after external beam irradiation. Data 
are presented as fluorescence intensity ratio of irradiated to unirradiated ceiis (control), means ± 
s.d. of measurements from three independent experiments (* significantly lower, ANOVA test: p < 
0.05)
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Figure 32. Effect of IJMIBG on WAF1 promoter activity in SK-N-BE(2c) cells (transfected with 
the pW AFI/GFP plasmid).
Comparing the dose-response of cells 24. 48, 72 or 96 hours after IJMIBG treatment. Data are 
presented as fluorescence intensity ratio of irradiated to unirradiated cells (control), means ± s.d. of 
measurements from three independent experiments (* significantly lower, ANOVA test: p < 0.05).
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Figure 33. Effect of [^^^At]MABG on WAF1 promoter activity in SK-N-BE(2c) cells (transfected with 
the pWAF1/GFP plasmid).
Comparing the dose-response of cells 24, 48, 72 or 96 hours after [^^^At]MABG treatment. Data are 
presented as fluorescence intensity ratio of irradiated to unirradiated cells (control), means ± s.d. of 
measurements from three independent experiments (* significantly lower, ANOVA test: p < 0.05).
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3.3.2.S Western blot analysis of GFP protein for evaiuation of WAF1 
promoter activation in SH-SY5Y cells

Western blot analysis of GFP and GAPDH proteins was performed for comparison

with the FACs analysis findings. The evaluation of GFP levels was performed 

using SH-SY5Y cells transfected with the pWAF1/GFP plasmid and then 

incubated with [^^^l]MIBG (Figure 34). This set of experiments was performed 

following the same conditions used in the FACs analysis experiments.

The intensity of the GFP band of each sample was quantified by densitometry and 

normalised to the intensity of the corresponding GAPDH loading control band. The 

ratios of the normalised GFP band intensity of the treated cells to that of the 

untreated cells were then calculated for each sample (Figure 34B).

The pattern of GFP protein expression reflected the fluorescence levels recorded 

by FACS analysis. In particular, the increase in GFP ratio levels was time- 

dependent up to 72 hours after treatment, with a plateau at 96 hours. At this time 

point, no significant difference between protein levels following treatment with the 

various activity concentrations was detected between 72 and 96 hours (p >0.1).
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Figure 34. [^^^I]MIBG effect on GFP protein expression in SH-SY5Y cells stably transfected with 
the pWAF1/GFP plasmid.
A) Western blot analysis of GFP expression in SH-SY5Y cells.
B) WAF1 activity measured by the GFP expression levels determined by Western blot analysis in 
SH-SY5Y cells (transfected with the pW AFI/GFP plasmid).
Cells were exposed for 2 hours to 0.1, 0.2, 0.5, 1 or 2MBq/ml [^^^IJMIBG. Cells were seeded 2 days 
before the treatment at a concentration of 2.5 x 10® cells/well in six-well plates. At 0, 24, 48, 72 and 
96 hours after irradiation protein were extracted and Western blot analysis was performed as 
described in material and methods section. Data are presented as GFP expression (normalised by 
the GAPDH) ratio of irradiated to unirradiated cells (control), means ± s.d. of measurements from 
three independent experiments.
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3.3.2.4 WAF1 promoter activation in p53-wild type or p53-null 
HCT116cells

It was noticeable that overall the SH-SY5Y transfectants (Figure 22 to Figure 24) 

were more “responsive” to all radiation types than the SK-N-BE(2c) transfectants 

(Figure 28 to Figure 30) with respect to fluorescence intensity increase. This 

suggests that WAF1 promoter activation is greater in SH-SY5Y cell. It has been 

reported that SH-SY5Y cells express the wild type form of p53 [241], whereas in 

SK-N-BE(2c) cells p53 is mutated [242]. As a possible explanation, the role of p53 

status for the lower responsiveness of SK-N-BE(2c) cells with respect to WAF1 

promoter activation was investigated. Therefore, isogenic p53-null (p53 -/-) and 

wild-type (p53 +/+) cells of the colorectal tumour cell line HCT116 were stably 

transfected with the pWAF1/GFP plasmid, treated with external beam radiation 

and their fluorescence intensity ratios were compared. In both p53 -/- and p53 +/+ 

cells the fluorescence levels increased in a dose- and time-dependent manner 

(Figure 35). Interestingly, the ratio values of fluorescence intensity in cells with p53 

knockout were higher than that in cells expressing wild type p53 48 hours after 4 

or 8Gy radiation (p = 0.0397 and 0.0173 respectively), and 72 hours after 8Gy 

radiation (p = 0.0476). This phenomenon should be further investigated in order to 

elucidate potential mechanisms involved in the regulation of the WAF1 promoter. 

However, it is unlikely that expression of p53 could negatively affect the WAF1 

promoter activation in tumour cells, as the inducing effect that p53 has on the 

WAF1 gene expression in response to DMA damage is well established [243]. 

These findings suggest, in accordance with a previous report [235], that the 

absence of p53 expression in HGT116 cells did not affect the WAF1 promoter 

activity following external beam ionising irradiation.
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Figure 35. WAF1 activity measured by the GFP fluorescence intensity determined by FACS 
anaiysis of HOT 116 ceils.
HCT116 p53 -/- cells (A) and HCT116 p53 +/+ cells (B) stably transfected with the pWAF1/GFP 
piasmid were anaiysed. Celis were seeded 2 days before the treatment at a concentration of 2.5 x 
10® ceils/well In six-weii plates. Cells were then exposed to 0, 4 or 8Gy of y-ray. At 0, 24, 48 and 72 
hours after irradiation sampies were resuspended and anaiysed at a FACScan (Becton Dickinson 
UK Ltd). Data are presented as fluorescence intensity ratio of irradiated celis to unirradiated celis 
(control), means ± s.d. of measurements from three independent experiments.
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3.3.2 5 Estimation of the radiation dose of radiopharmaceuticais 
required for the WAF1 promoter activation in neuroblastoma cells

3.3.2.5.1 Curve-fitting to ceii kill plots and equivalent 
radiation dose estimation

To determine the influence of radiation dose and quality on the activation of the

WAF1 promoter, we compared in both cell lines (SH-SY5Y cells in Figure 36; SK- 

N-BE(2c) cells in Figure 37) the toxicity of external beam radiation (Figure 36A and 

Figure 37A) with that of ['^'llMIBG (Figure 36B and Figure 37B) and [^"AtjiVtABG 

(Figure 36C and Figure 37C).

Curves were fitted to each cell kill plot. In the case of cell kill generated by low-LET 

(linear energy transfer) radiation (external beam radiation and f^^llMIBG), the

linear-quadratic model with the expression S = was used. S was the

fraction of cells surviving a dose D and a was a constant describing the initial slope 

of the cell survival curve and p was a constant describing the quadratic component 

of cell killing. The linear-quadratic model was applied as it is generally assumed 

that low-LET radiation can kill a cell in two ways; single lethal event or two

sublethal events [244]. In the expression S = the single event killing is

represented by and the two event killing by .

The linear model was used for the cell kill generated by high-LET radiation 

([^^^AtjMABG) with the relationship S = e '“^. It is assumed that high-LET radiation 

can kill a cell in a single lethal event [244].

In this way, it was possible to calculate the activity concentration (of r^^l]IVllBG or 

[^ ’̂’At]MABG) or the dose (of external beam radiation) expected to generate a 

given survival fraction. For example, 0.45MBq/ml f^^l]l\/ilBG was expected to 

generate a survival fraction of 0.4 in SH-SY5Y transfectants.

In accordance with previous studies [245], the SH-SY5Y transfectants were more 

radiosensitive than the SK-N-BE(2c) transfectants (SF2 = 0.20 and 0.66 

respectively).

The equivalent radiation dose value (eGy) was subsequently estimated for any 

activity concentration of [^® Î]M1BG or [^^^AtjMABG expected to cause a given level 

of toxicity, measured as survival fraction. For example, in order to generate a 

survival fraction of 0.4 in SH-SY5Y transfectants, 1.28Gy of external beam 

radiation (Figure 36A), 0.45MBq/ml [^^^IjMIBG (Figure 36B) or 1.56kBq/ml
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f^'^AtlMABG (Figure 36C) was required. Therefore with respect to radiotoxicity, we 

can assume that 0.45MBq/ml ['‘^^l]MIBG or 1.56kBq/ml [ '̂’^AtJMABG is equivalent 

to 1.28Gy of external beam radiation.

The equivalent radiation doses were calculated from the radioactivity 

concentrations expected to generate survival fractions ranging from 1 to 0.05. As a 

result, an equivalent radiation dose was estimated for any expected actitvity 

concentration of radiopharmaceutical.

3.3.2 5.2 Calculation of fluorescence intensity ratios by any 
given radiation activity concentration

Curve-fitting was then performed in the plots corresponding to Figure 25, Figure 

26 and Figure 27 (for SH-SY5Y cells), and Figure 31, Figure 32 and Figure 33 (for 

SK~N“BE(2c) cells). These plots reported the fluorescence intensity ratios as a 

function of dose or activity concentration of each radiation type. The linear 

quadratic relationship FIR = y^+ax  + bx^ was used, because it best reflected the

dose-response (with respect to fluorescence intensity ratio) of both SH-SY5Y and 

SK-N-BE(2c) transfectants to the three radiation types (correlation coefficient > 

0.9). FIR was the fluorescence intensity ratio that resulted after treatment with a 

radiation dose or activity concentration of x; was the fluorescence intensity ratio 

after no treatment, a and b were equation constants. By doing so, it was possible 

to calculate the fluorescence intensity ratio expected by any dose (of external 

beam radiation) or activity concentration (of [^^''IJMIBG or p^^AtJMABG). For 

example, a fluorescence intensity ratio of 1.23 was expected in SH-SY5Y 

transfectants exposed to 0.45MBq/ml [’’^^IjMIBG.

Consequently, the fluorescence intensity ratios, expected in cells exposed to 

specific radiation doses or radioactivity concentrations, were plotted against the 

equivalent radiation doses (eGy) calculated. For example, in the case of SH-SY5Y 

transfectants, a fluorescence intensity ratio of 1.23 (expected to be found in SH- 

SY5Y transfectants exposed to 0.45MBq/ml [^ ‘̂'|]M1BG) was plotted against 

1.28eGy, which was estimated to be equivalent to 0.45MBq/ml (section 3.3.2.5.1). 

This analysis was conducted for both cell lines (SH-SY5Y cells in Figure 38 and 

SK-N-BE(2c) cells in Figure 39) at each time point.

In this way, it was possible to estimate the radiation dose needed to generate a 

specific increase of fluorescence, thus WAF1 promoter activation. In addition, it
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allowed us to compare the WAF1 promoter activation by three radiation types. 

This comparison was conducted throughout the dose range using the AN OVA test. 

In SH-SY5Y transfectants, 24 hours after treatment, [^^''l]MIBG and p^^At]IVIABG 

were significantly superior (p < 0.01, AN OVA test with Bonferroni correction) to 

external beam irradiation with respect to WAF1 activation (Figure 38A). For 

example, at 24 hours after 3.32eGy of external beam radiation, [^®^I]MIBG or 

[ ’̂'^AtjMABG treatments the fluorescence intensity ratio were 1.16, 1.45 or 1.35 

respectively.

No significant difference of WAF1 promoter activation was found in cells 48 

(Figure 38B), 72 (Figure 380) or 96 (Figure 38D) hours after exposure to external 

beam radiation, [^^^IJMIBG or f ^ ’'At]MABG (p > 0.1 for each time point). These 

findings indicate that the WAF1 promoter activation occurs primarily during the first 

48 hours after treatment.

In the case of SK-N-BE(2c) transfectants, a survival fraction of 0.4 was registered 

when cells were exposed to 0.52MBq/mi [''^^l]MIBG, 1.33KBq/ml f^^AtJMABG or 

3.71 Gy of external beam radiation. The same analysis of the dose-dependency 

(eGy) of expression of the marker gene used for the SH-SY5Y transfectants data, 

was applied to the SK-N-BE(2c) transfectants data.

The most efficient means to activate the WAF1 promoter at 24 hours after 

treatment was external beam radiation (p < 0.01, Figure 39A).

At 48 (Figure 39B), 72 (Figure 390) or 96 (Figure 39D) hours after radiation 

exposure, both external beam and [^^ Î]IV1IBG treatments were superior to that of 

p^''At]MABG with respect to WAF1 promoter activation (p < 0.01). For example the 

fluorescence intensity ratio at 48 hours after 3.52eGy of external beam radiation, 

[^^^1]M1BG or [^^^At]MABG treatment were 1.31, 1.28 or 1.14 respectively.

These data suggest that for optimal WAF1 promoter activation in the SH-SY5Y or 

SK-N-BE(2c) transfectants [^^^l]MIBG is a suitable radiopharmaceutical. It was 

shown that in both cell lines, [^^^IjlVIIBG was as effective in inducing the WAF1 

promoter activity as external beam radiation (Figure 38 and Figure 39).

The p^^At]IVIABG treatment was as effective as that of external beam radiation or 

[^^^IjMIBG in SH-SY5Y but not in SK-N-BE(2c) transfectants, in which the WAF1 

promoter activation levels following f ' ‘’*At]MABG treatment were significantly lower 

(p < 0.01) than that following either external beam radiation or [^^^l]MIBG (Figure 

39).
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The most opportune time for the administration of the second (therapeutic) dose of 

radiopharmaceutical is 48 hours after the first dose for the SH-SY5Y and SK-N- 

BE(2c) transfectants.
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Figure 36. Cytotoxicity of y-rays (A), [’ ’̂ ip iB G  (B) or f^AtlM A BG  (0 ) to SH-SY5Y cells 
(transfected with the pWAF1/GFP plasmid) determined by clonogenic assay.
Cells were treated as described in Material and methods. Means ± s.d. of measurements from 
three independent experiments.
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Figure 37. Cytotoxicity of y-rays (A), [^^^l]MiBG (B) or [^^^At]MABG (C) to SK-N-BE(2c) cells 
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Ceiis were treated as described in Material and methods. Means ± s.d. of measurements from 
three independent experiments.
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Figure 38. Comparison of the effect of external beam radiation, [^^^l]MIBG or [^^^At]MABG on 
WAF1 promoter activity in SH-SY5Y cells.
Cells were stably transfected with the pW AFI/G FP plasmid and fluorescence intensity ratio levels 
were calculated 24 (A), 48 (B), 72 (C) or 96 (D) hours after treatment {* significantly lower, ANOVA  
test with Bonferroni correction: p < 0.01).
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3.3.3 Assessment of noradrenaline transporter (NAT) 
expression under the control of the WAF1 promoter in 
neuroblastoma cells: a preliminary study

The human neuroblastoma SH-SY5Y cells already express the noradrenaline

transporter [246]. The transcription and activity levels of the endogenous (human) 

NAT (hNAT) were examined in SH-SY5Y cells in order to compare these levels 

with that of the cells transfected with a plasmid containing the NAT cDNA of 

bovine origin (bNAT), under the control of the WAF1 promoter. This comparison 

allowed us to assess whether the transfection process affected the expression of 

the endogenous NAT (hNAT).

In addition, a plasmid containing the NAT cDNA of bovine origin (bNAT), under the 

control of the WAF1 promoter (plasmid named pWAF1/NAT), was stably 

transfected in SH-SY5Y cells. In these transfectants, [^^^IjMIBG uptake assay and 

real-time PGR assay specific for mRNA of both endogenous (hNAT) and 

transgenic NAT (bNAT) gene were also performed.

3.3.3.1 Comparison of ['‘̂ ÎJMIBG uptake capacity and NAT mRNA 
levels in untransfected SH-SY5Y cells with that in cells transfected 
with the pWAF1/NAT plasmid

As shown In Figure 40A, unirradiated SH-SY5Y cells transfected with the

pWAF1/NAT plasmid displayed a higher capacity to accumulate [''^^IjMIBG than 

untransfected SH-SY5Y cells (p = 0.003). This suggests that the increase in 

[^^^IjMIBG accumulation capacity of SH-SY5Y cells, transfected with the 

pWAF1/NAT plasmid, is due to the transgenic NAT (bNAT) expression promoted 

by the WAF1 promoter activity in absence of radiation.

In order to further investigate this possibility, quantitative PGR specific for 

messenger RNA (mRNA) of both endogenous and transgenic NAT (hNAT and 

bNAT respectively) was performed.

Results were expressed as number of mRNA copies of NAT (either hNAT or 

bNAT) per one copy of GAPDH (Figure 40B). The mRNA levels of endogenous 

NAT (hNAT) did not change after the transfection of the pWAF1/NAT plasmid in 

SH-SY5Y cells. Furthermore, in transfected cells mRNA levels of the NAT 

transgene (bNAT) were detectable, indicating that the WAF1 promoter is already 

active in unirradiated tumour cells, in accordance with previous studies [135, 235, 

236].
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These findings indicate that the transfection of the transgenic NAT gene (bNAT) 

under the control of the WAF1 promoter rendered unirradiated SH-SY5Y cells able 

to accumulate the radiopharmaceutical more efficiently. Furthermore, results 

generated from quantitative PCR assay suggest that the increase in uptake 

capacity of SH-SY5Y cells was due to the expression and the activity of the 

transgenic NAT gene (bNAT) controlled by the WAF1 promoter and that 

transfection had no effect on the expression of the endogenous NAT gene (hNAT).
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Figure 40. uptake capacity and NAT gene expression in SH-SY5Y parental cells and
SH-SY5Y celis transfected with the plasmid pWAF1/NAT.
A) [̂ ®'’ l]MIBG specific uptake in SH-SY5Y parental cells and cells stably transfected with the 
pWAF1/NAT piasmid. Ceils were treated as described in Material and methods. Uptake was 
expressed as counts per minute (cpm) per 10® ceils. Means ± s.d. of measurements from three 
independent experiments (* significantly higher than parental celis, f-test: < 0.05).
B) Levels of mRNA of endogenous NAT (hNAT) in SH-SY5Y ceils parental (1) or stably transfected 
with the pW AFI/NAT plasmid (2). Levels of mRNA of transgenic NAT (bNAT) (3). Using the RNA 
obtained from the neuroblastoma cell line, endogenous NAT (hNAT), transgenic NAT (bNAT) and 
GAPDH expression was assessed by reverse transcription and real-time PCR amplification. The 
results are means ± s.d. of three separate determinations in triplicate.
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3.3.3.2 Changes in uptake capacity in SH-SY5Y cells
transfected with pWAF1/NAT plasmid after exposure to external 
beam radiation

Uptake assay was performed 48 hours after external beam radiation treatment to 

allow activation of the WAF1 promoter (see section 3.3.2.1). However, the 

uptake capacity changes with variations in cell density [114, 115]. 

Therefore, uptake assay was conducted taking into consideration cell death 

occurring after ionising radiation treatment, in particular, a range of cell densities 

was used for each dose of external beam radiation. [^^''ijMIBG uptake assay was 

performed only with cells with a density comparable to that of unirradiated cells. 

SH-SY5Y cells stably transfected with pWAFI/NAT plasmid concentrated 

[^^^IjMlBG more efficiently than the unirradiated cells 48 hours after exposure to 4 

(p = 0.004) or 8Gy (p = 0.023) of y-rays (Figure 41). In particular, SH-SY5Y cells 

stably transfected with pWAFI/NAT plasmid and treated with 4 and 8Gy of y-rays 

were able to accumulate the radiopharmaceutical 1.5 and 1.65 times more 

efficiently than unirradiated transfectants respectively. However, there was no 

significant difference in uptake capacity between SH-SY5Y transfectants that 

received 4Gy of y-rays and those that were exposed to 8Gy (p > 0.1). These 

findings indicate that irradiating SH-SY5Y cells transfected with the pWAF1/NAT 

plasmid, results in [^^^IjMIBG uptake enhancement.
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S.3.3.3 Changes in NAT mRNA levels in SH-SY5Y cells transfected 
with the pWAF1/NAT plasmid after exposure to external beam 
radiation

As shown in Figure 40A, the untransfected SH-SY5Y cells already possess a 

capacity for accumulating [^^^IjMIBG. In order to determine the contribution of both 

hNAT and bNAT to concentration of radiopharmaceutical, real-time PCR specific 

for both mRNAs was performed.

Untransfected SH-SY5Y cells irradiated with 4 or 8Gy of y-rays expressed higher 

mRNA levels of NAT gene than unirradiated cells (p < 0.05, Figure 42). However, 

there was no significant difference in transcription levels of endogenous NAT 

between SH-SY5Y cells irradiated with 4Gy and cells exposed to 8Gy of y-rays (p 

> 0.1).

Transcript levels of both variants of the NAT gene (hNAT and bNAT) significantly 

increased (p < 0.05) in cells transfected with the pWAFI/NAT plasmid and 

exposed to y-rays (Figure 43). The transcript levels of the endogenous NAT gene 

(hNAT) in transfected cells were not significantly different from that found in 

untransfected cells (p > 0.1, Figure 40B).

Interestingly, mRNA levels of the endogenous NAT (hNAT) were 2.7 (after 8Gy- 

radiation), 4.1 (after 4Gy-radiation) and 7.8 (no radiation) times higher than the 

transgenic NAT (bNAT) levels (Figure 43). However, the radiation-induced 

enhancement of expression relative to the unstimulated level was greater for the 

transgene NAT (bNAT) than for the endogenous NAT (hNAT) gene. In particular, 

the transgene (bNAT) mRNA levels increased 3-fold or 6-fold when cells were 

exposed to 4 or 8Gy respectively, whereas the mRNA levels of the endogenous 

NAT (hNAT) increased 1.7-fold or 2.1-fold in cells exposed to 4 or 8Gy radiation 

respectively.
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Figure 42. Effect of external beam radiation on endogenous NAT (hNAT) gene expression in SH- 
SY5Y cells.
Using the RNA obtained from the neuroblastoma cell line, hNAT and GAPDH expression was 
assessed by reverse transcription and real-time PCR amplification. The results are means ± s.d. of 
three separate determinations in triplicate (* significantly higher than unirradiated control, f-test; p < 
0.05).
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Figure 43, Effect of external beam radiation on endogenous NAT (hNAT) and transgenic NAT 
(bNAT) gene expression in SH-SY5Y cells stably transfected with the pWAF1/GFP plasmid.
Using the RNA obtained from the neuroblastoma cell line, endogenous NAT (hNAT), transgenic 
NAT (bNAT) and GAPDH expression was assessed by reverse transcription and real-time PCR 
amplification. The results are means ± s.d. of three separate determinations in triplicate (* [for 
hNAT] or * *  [for bNAT] significantly higher than unirradiated control, Mest: p < 0.05).
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3.3 3.4 ['‘̂ ÎJMIBG toxicity assay in SH-SY5Y cells transfected with the 
pWAF1/NAT piasmid

An assessment of the effect of y-radiation on [''^^l]MIBG toxicity was conducted in

SH-SY5Y cells stably transfected with the pWAF1/NAT plasmid. Cells were 

exposed to 0-8Gy of y-rays and 48 hours later (time required for an optimal WAF1 

promoter activation) were incubated for two hours with 0.2-1 MBq/ml [^^^IJMIBG. 

Clonogenic assay was performed 24 hours after radiopharmaceutical incubation. 

[^^^I]MIBG toxicity to the cells was dependent on the activity concentration used. 

Exposure to y-rays resulted in a higher [^^^IjMIBG toxicity to the cells in a dose- 

dependent manner (Figure 44). For example, 1 MBq/ml radiopharmaceutical 

caused a survival fraction of 0.09 in cells that did not receive any external beam 

radiation, whereas the same activity concentration generated a survival fraction of 

0.0005 in cells exposed to 8Gy 48 hours earlier.

Curve fitting was performed using the clonogenic data shown in Figure 44 in order 

to quantify the effect of y-radiation on the increase of NAT expression controlled by

the WAF1 promoter. The linear-quadratic model with the expression s  = 

was used to fit cell kill data generated by the low-LET radiation of [^^^l]MIBG. S 

was the fraction of cells surviving a dose D and a and /3 were constants (for details 

see section 3,3.2.5).

Greater than 90% clonogenic cell kill after treatment with ['*^^I]MIBG was achieved 

regardless of the pre-exposure dose of external beam radiation. Therefore, for 

comparison of the effect of external beam radiation on [^^^l]MIBG toxicity the 

activity concentration required to reduce clonogenic survival to 10% was chosen. 

The inhibitory concentration (10%) (lCio) values (which represent the [^ ’̂’ IJMIBG 

activity concentration required to generate 10% surviving fraction) of the 

radiopharmaceutical were then calculated (Table 2). The [^^^l]MIBG toxicity 

Increased in cells that received at least 2Gy pre-irradiation compare to non pre

irradiated cells. Specifically, the [^^^l]MIBG ICio at OGy was 1.3, 2.3, 3.4 and 5.4 

times the ICio at 2, 4, 6 and 8Gy respectively. Considering the cells that have 

received a radiation dose (2 to 8Gy) of y-rays, the [^^^l]MIBG ICio decreased in a 

dose-dependent manner.
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These findings show that in SH-SY5Y cells stably transfected with the 

pWAF1/NAT plasmid, the effectiveness of treatment increased when

cells were pre-exposed to y-radiation.

On the basis of the [^^^l]MIBG uptake results (shown in section 3.3.3.2) and mRNA 

levels of both endogenous and transgenic NAT genes (shown In section 3.3.3.3) 

collected in SH-SY5Y cells (stably transfected with the pWAF1/NAT plasmid), it is 

likely that the enhanced [^^''IJMIBG toxicity, achieved by y-rays exposure, could be 

the result of upregulation of both endogenous and transgenic NAT genes.
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Figure 44. Effect of external beam radiation pre-exposure on [^®^I]MIBG toxicity in SH-SY5Y cells 
stabiy transfected with the pWAF1/NAT plasmid.
Cells were treated as described in Material and methods. In particular, cells were exposed to 0, 2, 
4, 6 or BGy external beam radiation. After 48 hours cells were treated with 0-1 MBq/ml [^^^IjMIBG. 
Means ± s.d. of measurements from three independent experiments.
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E.B. dose
(Gy)

["^l]MIBG ICio 
activity 
concentration  
(MBq/ml)

0 1.13
2 0.85
4 0.49
6 0.33
8 0.21

Table 2. Effect of external beam radiation pre-exposure on 
stably transfected with the pWAF1/NAT plasmid.

r131 l]MIBG toxicity in SH-SY5Y cells

The [^^^l]MIBG activity concentrations needed to generate ICioS for each external beam dose were

calculated after applying the linear-quadratic model with the expression S = . S was the
fraction of cells surviving a dose D, a and jS were constants, and e is the mathematical constant 
equal to approximately 2.71828183.
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3.3.4 Evaluation of the WAF1 prom oter in UVW  glioma cells
UVW glioma cells, which normally do not express the NAT gene, were also

transfected with the pWAF1/NAT plasmid. This ceil line was chosen because it 

does not express endogenous NAT (hNAT) and does not possess any capacity of 

active accumulation of [^^^l]MIBG. Therefore, this characteristic simplifies the 

analysis of the transgenic NAT (bNAT) expression controlled by the WAF1 

promoter. Therefore, any change in [^^^1]MIBG uptake capacity of UVW glioma 

cells is attributable exclusively to the transgenic NAT (bNAT) activity.

External beam pre-irradiation effects on [^^^l]MIBG uptake (Figure 45) and toxicity 

(Figure 46) were performed as described above.

3.3.4.1 f  ̂ ÎJMIBQ uptake assay in UVW cells containing the plasmid
pWAFI/NAT

Untransfected UVW cells (filled circle. Figure 45) had a negligible capacity to 

actively uptake [^^^l]MIBG. This condition did not change after exposing 

untransfected UVW cells to 4 or 8Gy-radiation (open circle and filled triangle 

respectively, Figure 45).

After transfection with the pWAF1/NAT construct, the cells acquired a significant 

uptake capacity (about 20000 cpm /10® cells; open triangle, Figure 45), displaying 

20-fold increase. This indicates that in tumour ceils the WAF1 promoter is active 

(“leaky”) also in absence of ionising radiation, confirming experimental data 

discussed in section 3.3.2.1 and previous reports [135, 235, 236].

After y-irradiation, UVW ceils, stably transfected with the pWAFI/NAT construct, 

exhibited greater ability to accumulate the radiopharmaceutical in a dose- 

dependent manner (Figure 45). The highest uptake value in transfected cells 

treated with 4Gy radiation (filled square) was registered at 48 hours (33-foid 

increase) and with 8Gy (open square) it was recorded at 24 hours (39-fold 

increase). A decline in uptake ability was observed 72 hours after the irradiation. It 

is likely that this decrease seen 3 days after the radiation treatment depended on 

cellular mechanisms responding to the radiation insult. This in turn could have 

resulted in a progressive decrease of any transcription activity of genes that are 

not essential for survival.

These results indicate that also in UVW glioma celis, transfected with the 

pWAFI/NAT construct, the WAF1 promoter is Inducible by ionising radiation. Its
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induction led to upregulation of the transgenic NAT (bNAT) gene, and in turn in 

enhanced capacity for cellular [^®^I]MIBG accumulation.

3 3.4.2 Toxicity assay in UVW cells containing the plasmid
pWAF1/NAT

In cell kill experiments, exposure to increasing y-ray doses enhanced the toxicity 

of [^®^I]MIBG to the transfected cells in a dose-dependent manner (Figure 46). 

Greater than 50% clonogenic cell kill after treatment with [^®^I]MIBG was achieved 

regardless of the pre-exposure dose of external beam radiation. Therefore, for 

comparison of the effect of external beam radiation on [̂ ®’'l]MIBG toxicity the 

activity concentration required to reduce clonogenic survival to 50% was chosen. 

The IC5 0  values of the radiopharmaceutical were calculated as described in the 

experiments regarding the SH-SY5Y cells (section 3.3.S.4). The [^®^I]MIBG IC5 0  

values decreased in a dose-dependent manner (Table 3). For example, in order to 

kill 50% of the unirradiated cell population 6.55MBq/ml f®^l]MlBG was needed. 

Slightly more than a half of this radiopharmaceutical concentration (3.55MBq/ml) 

was sufficient to cause the same toxic effect in cells exposed to 6Gy y-rays.

These findings indicate that in UVW glioma celis, stably transfected with the 

pWAF1/NAT plasmid, the effectiveness of f®^l]MIBG treatment increased when 

cells were pre-exposed to y-rays. In this case, the WAF1 promoter-driven 

upregulation of the transgenic NAT (bNAT) gene is responsible for this effect.
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Figure 45. Effect of external beam radiation pre-exposure on [^^''ijMlBG specific capacity of UVW  
parental and transfected cells with the pW AFI/NAT plasmid.
Cells were treated as described in Material and methods. Uptake was expressed as counts per 
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External Beam. 
Dose
(Gy)

r  IJMIBG iCfio 
activity concentration  
(MBq/ml)

0 6.55
2 5.20
4 4.45
6 3.55

Table 3, Effect of external beam radiation pre-exposure on IjMIBG toxicity in UVW cells 
transfected with the pWAF1/NAT plasmid.
The IjMIBG activity concentrations needed to generate ICsoS for each external beam dose were 
calculated after applying the linear-quadratic model with the expression s  = . S was the
fraction of cells surviving a dose D, a and p were constants, and e is the mathematical constant 
equal to approximately 2.71828183.

149



3.3.5 Summary of results
In the present study, it was shown that in two neuroblastoma cell lines (SH-SY5Y 

and SK-N-BE(2c), stably transfected with a plasmid containing the WAF1 promoter 

upstream of the GFP cDNA), the WAF1 promoter activity was inducible not only by 

external beam y-rays but also by the ^5-emitter radionuclide ^̂ 1̂, in the form of 

IjMIBG, or by the «-emitter radionuclide ^^^At, conjugated to benzylguanidine 

([^^^AtjMABG). Furthermore, the minimum amount of time required for a 

substantial WAF1 promoter activation was observed to be 48 hours after 

treatment.

In vitro estimation of the equivalent radiation dose, corresponding to the 

administered activity of both radiopharmaceuticals, was performed. This 

demonstrated that, in SK-N-BE(2c) transfectants, the levels of WAF1 promoter 

activation caused by IjMIBG or p^^AtjMABG were comparable to that by y -  

radiation. In SH-SY5Y transfectants, the levels of WAF1 promoter activation 

caused by [^^^IjMIBG (but not by [̂ '̂‘AtjMABG) were comparable to that by y- 

radiatlon.

Finally, preliminary toxicity experiments showed that, after pre-exposure to y- 

radiation, toxicity of f  ̂ ''IjMIBG improved not only in neuroblastoma ceils, but also 

in glioma cells (which normally do not express the NAT gene). In these 

experiments, both cell lines were transfected with the construct containing the NAT 

cDNA downstream of the WAF1 promoter sequence.
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3A Discussion
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Our results suggest that the radio-inducible WAF1 promoter is a promising tool for 

therapeutic gene expression controlled by targeted radiotherapy agents. In 

particular, we showed that the WAF1 promoter is inducible not only by y-radiation 

as previously reported [135] but also by the y^-particle emitter ^̂ ’'l, in the form of 

IjMIBG, and the «-particle emitter [^^^Atj, in the form of f'^AtjMABG. We also 

found that the WAF1 promoter is active in malignant cells that were not exposed to 

radiation. Moreover, recent studies showed that the “leakiness” of this promoter is 

not present in normal cells [235j.

The use of the radiopharmaceutical [^^^IjMIBG has achieved favourable 

remissions and manageable toxicity in neuroblastoma treatment [107-110, 247]. 

However, improvement is needed to achieve long-term cure. The combination of 

gene therapy with targeted radiotherapy is a promising approach to address this 

issue [2j. Recently, it has been shown that improvement of MIBG accumulation In 

neuroblastoma cells was possible after transfection with cDNA of the bovine NAT 

gene [98, 187]. In our strategy, the WAF1 promoter was chosen as a driving 

eiement of transgene expression. Recent studies showed that this promoter is 

inducible by X-rays in tumour cells in vitro [135, 236] and in vivo [235]. The latter 

article indicated also that the WAF1 promoter is “leaky” only in malignant cells not 

in normal tissue, introducing a second level of specificity. Furthermore, hypoxic 

conditions induce WAF1 promoter activity [235], adding a further layer of 

regulation specificity. Hypoxic conditions are often present in areas of solid tumour 

where blood circulation is compromised because of disorganised blood vessels 

and tumour cells that grow at a rate higher than the developing capillary network of 

the mass [248]. Therefore, WAF1 promoter activation enhanced by hypoxic 

conditions, together with ionising radiation, could be highly beneficial to achieve 

overexpression of the NAT transgene specifically in neuroblastoma tumours.
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3.4.1 The WAF1 promoter is inducible by both r^^llMiBG and 
[^"At]MABG

Our data using the WAF1 promoter driving the reporter gene GFP suggest that 

both benzylguanidine preparations ([^ ‘̂'I]MIBG and f^^At]MABG) are suitable for 

WAF1 promoter activation. The optimal time interval between the first (priming) 

and the second (therapeutic) radiopharmaceutical administration is 48 hours.

In terms of radiation dose (determined by clonogenic survival), [^ '̂“IJMIBG is a 

more potent activator of the WAF1 promoter than [^^^AtjMABG. The optimal 

combination of the analogues of the radiopharmaceutical, with respect to priming 

and therapy, must now be investigated in vivo. In this way it will be possible to 

determine tumour versus normal tissue damage.

In particular, IJMIBG treatment generated a better compromise between 

radiotoxicity and WAF1 promoter activation than [^^^AtJMABG treatment in 

neuroblastoma cells. It is important to spare the tumour cel is receiving the 

activating administration because in an in vivo scenario, where transfection 

efficiency is very low, the cells successfully transfected and targeted by IJMIBG 

will overexpress the NAT gene. This will enhance the effects of the therapeutic 

administration in at least two ways. First, the greater accumulation of 

radiopharmaceutical will result in a greater toxicity to the targeted cells. Second, 

the greater radiation crossfire to neighbouring untargeted cells will be more 

efficacious. Very low concentrations of radioactivity (1.86 -  29.6kBq/ml) given in 

the form of [ ’̂’^AtJMABG (Figure 24 for SH-SY5Y cells and Figure 30 for SK-N- 

BE(2c) cells) caused a greater increase of fluorescence intensity levels compare 

to that generated by higher concentrations (0.2 -  2MBq/ml) of [^^^IJMIBG (Figure 

23 for SH-SY5Y cells and Figure 29 for SK-N-BE(2c) cells). However, in 

accordance with previous findings [178], In our experiments the radiotoxicity of 

[^^^AtJMABG to the cells (Figure 36C and Figure 37C) is approximately three 

orders of magnitude greater than that of the iodinated version of the 

radiopharmaceutical (Figure 36B and Figure 37B). Therefore, at low equivalent 

radiation doses (reflecting the toxicity of the radiopharmaceutical), [^ '̂*IJMIBG 

treatment activates the WAF1 promoter to a level higher than [^^^AtJMABG. Based 

on this observation, the use of beta-particle emitter ''̂ 1̂, in the form of ['‘^^IJMIBG, is 

more suitable for the first activating administration.
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3.4.2 and [^^^At]MABG dose estimation
In this study, radiation dose estimation was performed by comparison of toxicity of

externai beam radiation with that of IjMIBG or f^^AtjMABG to neuroblastoma 

cells. Curve fitting was applied at the cell kill data of each radiation type and 

subsequently dose estimation was performed (for more details see section 3.3.2). 

This estimation allowed the comparison of the three radiation types in inducing the 

WAF1 promoter. In our experiments, the most effective way to induce the 

activation of this promoter resulted from the use of IjMIBG with 48 hours 

required for significant WAF1 promoter activation (p < 0.01).

These findings will be used for future investigations on the use of a plasmid 

containing the NAT transgene (bNAT) under the control of the WAF1 promoter to 

enhance IjMIBG toxicity in neuroblastoma cells.

The methodology applied wili serve as a foundation for future studies of the 

activating properties of aiternative radiopharmaceuticals which are capabie of 

targeting malignant cells. Examples include analogues of DNA precursors (e.g. 

radlolabelied lUdR) and tumour-specific radiolabelled antibodies.

Therefore, the dosimetry could be used as a reference to predict specific activation 

levels of the WAF1 promoter in response to specific radiation doses.
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3.4.3 Possible applications of the radio-inducibie WAF1 
promoter for neuroblastoma treatment

it is possible to envisage a therapeutic strategy in which IjMIBG is used to

trigger the WAF1 promoter, which controls the NAT transgene expression in 

transfected neuroblastoma cells. At least 48 hours after the first 

radiopharmaceutical administration (time necessary for an optimal noradrenaline 

transporter overexpression), treatment would be performed with a specific 

benzylguanidine preparation. The choice of the radiopharmaceutical would be 

based upon the size of the tumour. For instance, short-range emitters such as 

[^^^IjMIBG or [^^®ljMIBG would be suited to the treatment of circulating tumour 

cells, whereas mid-range «-emitters as p^^AtjMABG would be more effective for 

treating smail dumps of tumour cells. Finally, long-range ^-emitters such as 

IjMIBG would be superior in the treatment of subclinical métastasés or 

macroscopic tumours (see section 5.3 for more details).

Rescue of autologous haemopoietic stem cell after the use of high-dose 

chemotherapy or radiotherapy is central in improving outcome of patients older 

than 1 year who have metastatic disease [63, 249, 250j. Effective purging of 

tumour cells from haematopoietic cells may help minimize treatment-associated 

causes of reiapse. Current bone marrow purging techniques for neuroblastoma 

use monoclonal antibodies directed against cell surface markers to isolate either 

tumour cells [251j or haematopoietic stem cells [252, 253j. These methods appear 

to be effective only if the tumour burden is less than 1%, and contaminating 

tumour cells have been detected after purging [249, 251-256j. Bone marrow 

purging in neuroblastoma patients couid be the most practical application of the 

present gene therapy strategy. The harvested bone marrow tissue (containing 

neuroblastoma cells) would be transfected with the pWAF1/NAT construct. The 

targeted radiolabelled agent IjMIBG then would be administered and actively 

accumulated specifically by neuroblastoma ceils. This should enhance the 

expression of the NAT transgene via WAF1 promoter activation and, therefore, 

generate a greater toxicity of a second administration of [^^^IjMIBG to 

neuroblastoma cells, resulting In sterilisation of contaminating tumour cells, with 

minimal toxicity to the bone marrow cells. However, a recent study reported that 

peripheral blood lymphocytes express the NAT gene [257j. With this in mind, it

155



would be interesting to investigate haemopoietic cells contained in normal bone 

marrow for NAT gene expression. This information is necessary prior to pursuing 

the envisaged system for bone marrow purging motioned above.

It would be also interesting to investigate the capability of using [^^^IJMIBG or 

[^^®I]MIBG to induce WAF1 promoter activation. In particular, [^^^l]MIBG is 

currently employed as an imaging tool for neuroblastoma patients [103, 258]. If the 

use of this radiolabelled agent would activate the WAF1 promoter, this gene 

therapy strategy couid be therefore applied to neuroblastoma patients undergoing 

a [''^^IjMIBG scintigraphy. For instance, after inoculating into patients the 

pWAFI/NAT construct followed by [^^^IjMIBG scintigraphy, the neuroblastoma 

cells should overexpress the NAT transgene, as controlled by the WAF1 promoter, 

and the patients therefore should be more sensitive to the targeted radiotherapy in 

the form [^^^IjlVIIBG. It would therefore allow the use of [''^^IjMlBG for a twofold 

aim: scintigraphy and sensitisation to [’’^"'IjMIBG.
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3.4.4 The endogenous NAT is overexpressed by ionising 
radiation, but the enhancement of the expression levels of 
transgenic NAT under the control of the WAF1 promoter is 
greater

We have shown that cell transfection with the pWAF1/NAT construct increased 

toxicity of f^^l]MIBG treatment to neuroblastoma ceils following prior exposure to 

y-rays (Figure 44), because of NAT overexpression driven by the WAF1 promoter 

(Figure 43). The cells used in those toxicity experiments already expressed the 

endogenous noradrenaline transporter. The results from quantitative PCR specific 

for either the endogenous or the transgenic NAT mRNA, showed that the cellular 

expression levels of both transporters increased after exposure to y-rays. 

Furthermore, the endogenous transporter levels were much higher than the 

transgenic transporter expression regardless of the pre-irradiation dose. However, 

the enhancement of expression levels compared to that of unirradiated cells was 

greater for exogenous NAT. This indicates the potential of pWAF1/NAT construct 

transfer to facilitate radiation-specific expression.

Interestingly, our results suggest that ionising radiation enhances the expression 

of the endogenous noradrenaline transporter. By comparing mRNA levels, it is 

apparent that the human transporter plays a bigger role than the transgenic 

transporter in both [^^^l]MIBG uptake-capacity and toxicity increase after pre

irradiation. Our findings are in line with a previous study, which showed that 

treatment with ionising radiation enhanced uptake of MIBG by neuroblastoma cells 

in culture [113]. Considering our real-time PCR results, it is possible to state that 

the previously reported enhancement of the cellular accumulation of MIBG could 

result from transcriptional activation of the noradrenaline transporter gene. Other 

molecules, such as cisplatin, doxorubicin, interferon-y and phorbol esters, can also 

induce MIBG uptake in neuroblastoma cells [114,115, 259]. In common with these 

agents, ionising radiation causes damage to the DNA, which enhances p53 

expression. Ionising radiation can induce the expression of p53-dependent genes, 

such as the Cl PI gene, which encodes the cell cycle kinase inhibitor p21 [260]. It 

is possible that ionising radiation up-regulates the transcription of the 

noradrenaline transporter gene via a putative p53 consensus sequence in the 

promoter. Unfortunately, little is known about the promoter region upstream the 

NAT gene. A recent study characterized potential bindings sites for transcription
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factors within 4 kb of the 5’ untranslated region of the human NAT gene, including 

Sp1, AP-2, MRE-BP, SDR_RS, UCE.2, IRF-2, TFE-S and a cAMP response 

element (CRE) [261].

Additionally, several lines of evidence indicate that phosphorylation is involved in 

the regulation of NAT activity. In particular, Protein Kinase C (PKC) can 

downregulate NAT function by transporter phosphorylation, inducing the 

sequestration of the transporters from the plasma membrane [262-265]. Protein 

phosphatase also plays a significant role in the modulation of the NAT activity 

[265, 266]. Inhibition of phosphatase activity results in limited recycling of the 

transporter to the plasma membrane by increasing phosphorylation status of NAT 

[265].

In order to improve strategies that aim to induce the expression and function of 

NAT, elucidation of the mechanisms and cellular pathways of NAT regulation will 

be essential.

It is clear from our findings that ionising radiation up-regulates the transgenic NAT 

gene in neuroblastoma ceils in culture. In order to determine the potential for the 

enhancement of MIBG uptake of the transgenic construct in the absence of 

endogenous NAT expression, we transfected a glioblastoma cell line (UVW) which 

normally does not express the NAT gene with the pWAFI/NAT vector. We then 

performed a cell kill study after administering [^^^l]MIBG to pre-irradlated 

transfected cells. Pre-incubation with radiopharmaceuticai resulted in an increase 

in MIBG uptake and toxicity. These findings suggest that the transgenic NAT is 

upregulated through WAF1 promoter activation in glioma cells that normally do not 

express the noradrenaline transporter.

In vivo studies demonstrated that the WAF1 promoter is specifically active in the 

tumour mass that did not receive any dose of radiation, whereas it remains silent 

in normal tissue [235]. Moreover, it was reported that hypoxic conditions enhanced 

the promoter activation in malignant cells in absence of radiation. Thus, the WAF1 

promoter may display several levels of specificity, such as radiation, hypoxia and 

tumour. These features render the WAF1 promoter a strong candidate for control 

of transgene expression in a tumour- and radiation-specific manner.

Bearing in mind these observations, with our novel approach it will also be 

possible to treat with [^^^l]MIBG therapy tumours, such as glioma, which normally 

are not eligible for targeted radiotherapy. In our laboratory it was observed that
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after transfection of the NAT gene into a human glioma cell line, [^ '̂'IJMIBG was 

actively concentrated, resulting in increased toxicity [187, 188]. This demonstrated 

the potential of gene therapy in combination with MIBG-targeted radiotherapy for 

the treatment of tumours of non-neuroectodermal origin [187].
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4 Chapter 4 

Immunoliposomes: a novel gene delivery system
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4.1 Introduction
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For an effective gene therapy strategy the delivery of DNA to the target-cells must 

be efficient and at the same time safe for the patient.

4.1.1 Naked DNA
The simplest approach to gene delivery is direct gene transfer with naked piasmid 

DNA. Since the demonstration of the possibility of gene expression by naked 

plasmid injected intramuscularly [267], there has been increasing interest in this 

form of gene delivery. Recent studies have shown that other tissues such as skin, 

liver, kidney and some tumours are also amenable to naked DNA-mediated gene 

transfer [268, 269]. However, because of clearance by the mononuclear 

phagocyte system and degradation by serum nucleases, the expression level and 

extension of injected naked DNA are generally limited. Thus, systemic 

administration of naked plasmid DNA generally results in little and localised gene 

expression in major organs for short periods of time.

Systemic targeted gene delivery therefore requires the use of vector technology. A 

vector which will deliver more efficiently and safely the therapeutic DNA to the 

target-cells, with a limited toxicity sparing surrounding tissue, is necessary for a 

successful gene therapy strategy. The ideal vector must have a high specificity for 

target-celis, low toxicity, and long systemic circulation. It also must provide 

protection for the transgenes working as a shield reducing the DNA degradation.

In the field of gene delivery, two main types of vector system are currently 

investigated: viral and non-virai vectors.
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4.1.2 Viral vectors
In general, vectors derived from viruses are more efficient gene-delivery systems

in vivo, but are associated with a few limitations such as toxicity and strong 

antiviral host immune responses [270, 271].

4.1.2.1 Retrovirus
The first class of vector to be developed for gene therapy was based on retrovirus

[272], specifically on the simple Moloney murine leukaemia virus (MLV) - a C-type 

oncoretrovirus. To date, retroviral vectors are the second most utilised system in 

gene therapy clinical trials after adenoviruses [273], A limitation to the efficacy of 

C-type retrovirus vectors is that they can only access the cell nucleus in the case 

of nuclear membrane breakage. Therefore, they can only transduce proliferating 

cells.

4.1.2.2 Lentivirus
Great interest has focused on the development of lentivirus vectors mostly based

on human immunodeficiency virus (HIV), which can naturally penetrate an intact 

nuclear membrane and transduce non-dividing cells. Therapeutic efficacy has 

been shown in animal models of Parkinson disease [274], sickle cell disease [275] 

and haemophilia A [276].

4.1.2.3 Adenovirus
Adenoviral vectors are currently the most popular technology used in gene therapy

clinical trials [273].They are efficient vectors with respect to delivery of their 

genetic pool to the cell nucleus [277]. Further, adenoviral vectors have been 

employed in several clinical trials in cancer patients with encouraging results [278- 

288].

4.1.2.4 Adeno-associated virus
Adeno-associated virus (AAV)-based vectors have recently gained popularity as

potential vectors for gene therapy. The major advantages of using AAV are non

pathogenicity [289], long-term expression of transgenes [290], relatively low 

immunogenicity [291-293] and high infectivity of both dividing and non-dividing 

cells [293-295]. A clinical trial involving haemophilia B patients reported successful 

transfection and expression of human blood coagulation factor IX after muscle-
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directed gene transfer of an AAV vector [296]. Other trials for cystic fibrosis, 

prostate cancer and several CNS disorders are also ongoing [273].

4.1.2.5 Herpes simplex virus
Herpes simplex virus-1 is the iargest of all viruses that are being deveioped for

gene therapy and replication-defective HSV-1 vectors can accommodate up to 40 

kb of foreign DNA [297], allowing the delivery of several separate expression 

cassettes, or large single genes [298]. HSV-1 vectors have been used in gene 

delivery approaches to central nervous system diseases [299-301], cancer [302, 

303], peripheral neuropathy [304, 305] and chronic pain [306, 307]. An alternative 

approach to cancer gene therapy has been to exploit the natural ability of viruses 

to replicate and lyse cells [308]. In cancer gene therapy HSV-1 thymidine kinase- 

depleted vector had promising oncolytic properties in glioma animal models [309], 

but the thymidine kinase mutation rendered the virus insensitive to antlherpetic 

drugs. A safer generation of vectors with a mutation at the y-34.5 gene (encoding 

the ICP34.5 product, which inhibits apoptosis by infected cells) are currently used 

in a phase II trial for head and neck cancer and a phase I for high grade glioma

[273] (trial ID UK-66 and UK-50).
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4.1.3 Non-viral systems
Viral vectors are highly efficient at transducing ceils. However, safety issues such 

as immunogenicity, integration into the host chromosome and toxicity make non- 

viral delivery systems an attractive alternative. Lipid-based delivery systems bring 

several advantages: in vivo safety, lack of immunogenicity, protection against 

degradation, ease of preparation and up-scaling, and relatively unlimited size of 

nucleic acids that can be encapsulated.

The first studies involving DNA or RNA encapsulation into large, mostly negatively 

charged liposomes were conducted more than two decades ago [310-312]. DNA 

cellular uptake and transfection were reported using these liposomes [313-316], 

however the nucleic acid encapsulation efficiency was very limited. Furthermore, 

the presence of negative charges also induces opsonisation (interaction with 

plasma proteins) causing them to be rapidly cleared from the blood stream and to 

accumulate in the mononuclear phagocyte system (MRS). In vivo transfection 

efficiency of targeted tissues other than liver or spleen is therefore limited [317, 
318].

4.1.3.1 Gene delivery via cationic iiposomes
A significant improvement to DNA transfection efficiency was made when Feigner 

published for the first time a study showing that complexes of plasmid DNA and 

the cationic lipid dioleyl-trimethylammonium chloride (DOTMA) with dioleoyl- 

phosphatidylethanolamine (DOPE), were avidly internalised by cells resulting in 

high expression of the plasmid DNA [319, 320]. Subsequently many applications 

of aiternative cationic lipids and helper lipids were reported by others, bringing to 

the development of generations of lipid-based vectors with increasing in vitro 

transfection efficiencies [321-324]. Improved variants including fusogenic [325], 

pH- [326, 327] or thermo-sensitive [328, 329] liposomes have been successfuliy 
employed.

4.1.3.2 Drug delivery via pegylated liposomes
High serum concentrations, scavenging mechanisms like the mononuclear

phagocyte system (MRS) and biological target-ceil accessibility are some of the 

main obstacles that effective in vivo delivery systems have to overcome. The first 

generation of cationic liposomes tended to form aggregates in vivo resulting in
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rapid clearance by macrophages, most likely because of their positive surface 

charge [330, 331]. The introduction of a Polyethylene glycol (PEG) to liposome 

formulations dramaticaliy decreased the uptake of liposomes by the MPS and 

proionged the circulation time in blood [332-334]. Even though the functional 

mechanism of PEG in the MPS recognition process is uncertain, Papahadjopoulos 

et ai. (1991) proposed a model where stabilization results from local surface 

concentration of highly hydrated groups of PEG that sterically inhibit both 

electrostatic and hydrophobic interactions of a variety of blood components at the 

liposome surface [333]. The use of this type of liposome formulation (stealth 

liposomes) has led to a significant improvement in liposomal drug delivery to solid 

tumours via the systemic route. There has been strong evidence suggesting that 

given a long circulation time, liposomes encapsulating anticancer drugs 

accumulate preferentially in the tumour site due to the leaky immature vasculature 

in the tumour, exhibiting enhanced therapeutic efficacy [333, 335, 336]. This can 

be considered as a passive tumour-targeting and has produced a clinical- 

approved anticancer drug called Doxil [337].

4.1.3.3 Immunoliposomes
Many studies have tried to develop ways to enhance the specificity of liposomal

delivery systems, generally by conjugating ligands to the liposome surface that will 

initiate a specific interaction with the target cells. Ligands include vitamins [338], 

glycoproteins [339], peptides [340], oligonucleotides aptamers [341] and the most 

widely used ligands in the form of antibodies or antibody fragments. The first study 

using monoclonal antibodies (mAbs) conjugated to liposomes was reported by 

Torchilin et al. [342], who showed that anti-myosin immunoliposomes maintained 

their capacity to specifically bind to the receptor on the target cells. Subsequently, 

other groups also reported covalent coupling of mAbs to liposomes for successful 

specific cell targeting in vitro [343-348]. However, the in vivo application of 

immunoliposomes has been restrained by poor stability in the circulation [349-351] 

and rapid clearance by the MPS [352-356].

Based on the numerous reports of the advantages of PEG-coated liposomes in 

reducing uptake by organs of the MPS, as mentioned earlier, attempts have aiso 

been made to use PEG to form sterically stabilised immunoliposomes. For the 

attachment of antibodies to the surface of PEG-liposomes, two main strategies
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have been employed: coupling of the antibody directly to the liposome bilayer 

(type A, Figure 47) and attachment of the antibody to the terminal end of PEG 

molecule (type B, Figure 47) [357-359]. The latter strategy seems to be preferred, 

as it should minimise interference of the PEG with the antibody-antigen interaction 

(steric hindrance) and with coupling of the antibody to the liposome [359].

4.1.3.4 Coated Cationic Liposomes (CCLs)
Pegylated lipids and covalently bound mAbs to the terminal end of the PEG 

molecule have also been employed for the formulation of liposomes for DNA 

delivery. In the present study a novel method of preparation of DNA encapsulating 

liposomes, first introduced by Allen and co-workers [360], was assessed. Briefly, 

these particles consist of a core made up of DNA in the form of oligonucleotides 

complexed to cationic lipid, which is coated by a layer of neutral lipids, including a 

lipid-anchored PEG polymer. This type of liposome formulation, called coated 

cationic liposomes (CCLs), presents high stability in serum and long circulation 

properties in mice and rats [141]. Successful applications in vitro and in vivo have 

been reported. Pagnan et al. [138] and Brignole et al [361], using CCLs targeted 

by antibodies directed against the disialoganglioside GD2 , showed inhibition of the 

proto-oncogene c-myb expression and growth inhibition of the GD2 -positive human 

neuroblastoma cell lines GI-LI-N and HTLA-230. Further, antitumour activity in 

mice bearing metastatic neuroblastoma xenografts was reported by Brignole et al. 

[96] using c-myb oligonucleotide encapsulated in CCLs directed against GD2 - 

positive cells. In a xenograft melanoma model, Pastorino et al. [362] showed 

significant tumour growth delay and increased average life span in mice treated 

with c-myc oligonucleotide encapsulated in anti-GD2 CCLs compared with that of 

the control mice.
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4.1.3.5 Anti-GD2 Coated Cationic Liposomes as gene deiivery
vectors in neuroblastoma

Based on these promising findings, we decided to take advantage of the anti-GD2 -

CCLs technique to deliver plasmid DNA to the tumour site (Figure 48). In this 

study, for the first time, the anti-GD2 -CCLs technology wili be used to encapsulate 

and deliver plasmid DNA (rather than oligonucleotides) to neuroblastoma cells, 

comparing transfection efficiency with that of conventional transfection reagents, 

such as Lipofectamine 2000 (Invitrogen, Paisley, UK).

Considering the properties of this delivery system such as long blood circulation 

and stability, low toxicity and preferential targeting of tumour sites, anti-GD2 CCLs 

encapsulating plasmid DNA is a promising approach for gene therapy in 

neuroblastoma.
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Type A Type B

Lipidic bllayerPEG chain,

Mab.

Figure 47. Schematic illustration of two types of antibody coupling on iiposomes.
Type A: PEG-immunoliposomes with antibody (mAb) directly attached to the lipidic bilayer; Type B: 
new type of PEG-immunoliposomes with antibody covalently linked to the distal terminal of DSPE- 
PEG-COOH.
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Figure 48. Schematic representation of anti-GD2-CCL encapsulating pEFGP-N1 plasmid DNA
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4.2 Materials and Methods
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4.2.1 Reagents and monoclonal antibody
Hydrogenated soy phosphatidylcholine (HSPC), cholesterol, 1,2-distearoylglycero-

3-phosphatidylethanolamine-N-polyethylene glycol-2000 (DSPE-PEG), a 

derivative of DSPE-PEG with a maleimide group at the distal terminus of the 

polyethylene glycol chain (DSPE-PEG-MAL), 1,2-dioleoyl-3-trimethylammonium 

propane (DOTAP) and rhodamine phosphatidylethanolamine (rhoda-PE) were 

purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). [^HJCholesterol 

hexadecylether ([^H]GHE) was purchased from PerkinElmer LAS (UK) 

(Beaconsfield, Bucks, UK).

All the other reagents of biochemical and molecular biology grade were obtained 

from Sigma-Aldrich Go. (Gillingham, Dorset, UK).

The monoclonal antibody (mAb), an immunoglobulin (Ig) G2a isotype subclass, 

directed against disialoganglioside GD2 (anti-GD2 ) was purified from the 

supernatant of the 14.G2a murine hybridoma provided by R. A. Reisfeld (The 

Scripps Institute, La Jolla, GA) [363].

4.2.2 Cell lines and culture conditions
The neuroblastoma cell lines IMR-32 [364, 365] and Gl-Ll-N [365] were obtained

from EGAGG (Salisbury, Wiltshire, UK). SK-N-BE(2c) cells [185] were a gift from 

Dr. Montaldo (Genoa, Italy). Gells were maintained in the logarithmic phase of 

growth at 37"G in 75cm^ plastic culture flasks (Gorning Inc., Gorning, NY) in a 5% 

G0 2 “9 5 % air humidified incubator. They were subcultured in RPMI-1640 medium 

supplemented with 10% heat inactivated foetal bovine serum, 50IU/ml sodium 

penicillin G, 50mg/ml streptomycin sulphate, and 2mM L-glutamine. Medium and 

supplements were obtained from Gibco (Paisley, UK).
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4.2.3 FACS analysis of GD2 -postive and -negative 
neuroblastoma cells

The level of GD2 expression was measured by fluorescence intensity detected by

FACScan analysis. The GD2-positive IMR-32 and GI-LI-N cells, and GD2 -negative 

SK-N-BE(2c) cells were seeded in 25mm^ flasks at 37°C in a 5% 002-96% air 

humidified incubator. 48 hours later, 5x10® cells were counted and resuspended 

for 30 minutes at 4°G in lOOpI of purified anti-GD2 14G2a antibody (gift of Dr. M. 

Ponzoni, Gaslini Hospital, Genoa, Italy), diluted in PBS-1%FBS or in lOOpl of 

PBS-1%FBS alone. After two washes in PBS-1%FBS, cells were incubated for 30 

minutes at 4 X  with lOOpI of secondary fluorescent antibody FlTG-anti-Mouse 

(IgG) (DAKO, Denmark). After two washes in PBS-FBS 1%, cell were 

resuspended in 500pl of PBS-1%FBS and analysed by the FAGScan (BD 

Biosciences, Oxford, UK). The fluorescence intensity is proportional to the amount 

of the secondary antibody molecules (bound on the surface of each cell) specific 

for the Fc of the anti-GD2 antibodies. Therefore the intensity of the fluorescence 

signal registered by the FAGScan is proportional to the amount of anti-GD2  

antibody molecules bound to the antigen GD2 expressed on the surface of the 

cells.

4.2.4 Plasmid DNA preparation and radiolabeiling
The 7.164 kb pGMV-^gal plasmid contained the y^-galactosidase reporter gene

sequence under the control of the cytomegalovirus promoter (pGMV) (Glontech, 

Palo Alto, GA). The plasmid coding for enhanced green fluorescent protein 

(pEGFP-N1) was purchased from Glontech (Palo Alto, GA). Plasmids were purified 

from Escherichia coli DH5« with the maxiprep procedure by using the Qiagen 

Endofree Plasmid Giga Kit (Qiagen Ltd., West Sussex, UK), according to the 

manufacturer instructions. The size of the DNA was confirmed by 1% agarose gel 

electrophoresis. DNA was radio-labelled with p^P]dGTP (370 MBq/ml) (GE 

Healthcare UK Ltd, Buckinghamshire, UK) using Rediprime™ II Random Prime 

Labelling System (GE Healthcare UK Ltd), according to the manufacturer 

instructions.
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4.2.5 Liposome preparation and plasmid encapsulation
Coated cationic liposomes (CCLs) were synthesized as previously described [138,

360] with some modifications. lOOpg of pEGFP-N1 plasmid with a trace of ®̂ P- 

labelled plasmid (to allow us to estimate the percentage of plasmid present at 

various stages of the procedure) was dissolved in 0.25ml distilled deionised water. 

Next, 0.51ml methanol and 0.25ml CHCb containing 400nmol DOTAP 

(approximately 40 nanomoles of DOTAP /1 0  micrograms of plasmid) were added, 

and the mixture was gently vortex mixed to form a monophase. After 30-minute 

incubation at room temperature, 0.25ml distilled deionised water and 0.25ml CHCI3 

were added. After mixing and centrifugation (BOOg for 7 minutes at room 

temperature), the aqueous methanol layer was removed. Under these conditions, 

which were developed in pilot studies using lOpg plasmid and various amounts of 

DOTAP, 90%-95% of the plasmid DNA was recovered in the organic phase. The 

resulting plasmid-to-lipid molar ratio was 1 ; 1227, and a positive-to-negative 

charge ratio of 1 ; 1.32 was obtained. Following this extraction, neutral lipids were 

added at the following molar ratios with respect to the amount of DOTAP used 

above: HSPC 15x, Cholesterol 3x, DSPE-PEG 0.24x or DSPE-PEG-MAL 0.06x. In 

some experiments, trace amounts of [®H]CHE and/or rhodamine 

phosphatidylethanolamine (rhoda-PE) were added as lipid labels. Next, 0.9ml 

distilled deionised water was added, and the mixture was vortex mixed and then 

emulsified by sonication in water bath 8  times for 1 minute. The organic phase was 

evaporated with the use of a rotary evaporator under a gentle stream of nitrogen 

(Buchi, Flawil, Switzerland). During this procedure the sample appeared first as a 

gel, then, upon complete CHCI3 evaporation, as a clear aqueous solution. The 

liposomes were then reduced in size to approximately lOOnm by extrusion six 

times through 400-nm, six times through 200-nm and six times through 100-nm 

polycarbonate membranes (Avestin, Inc., Ottawa, ON, Canada) in a Liposofast 

extruder (Avestin, Inc.).

External buffer exchange of the liposomes was performed by passing them 

through a G-50 column, equilibrated and eluted with 25mM HEPES buffered 

saline, pH 7.4.
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4.2.6 Coupling of antl-GD2 MAb to liposomes
A previously described method [366], slightly modified by Pagnan et al. [367], was

used to covalently link mAbs to the maleimide terminus of DSPE-PEG-MAL 

(Figure 49). To activate the anti-GD2S for reactivity toward the maleimide, we 

utilized 2 -iminothiolane (Traut’s reagent) to convert exposed amino groups on the 

antibody into free sulfhydryl groups. A 20 ; 1 mole ratio of 2-iminothiolane to mAb 

and 1 hour of incubation at room temperature with occasional mixing gave optimal 

mAb activation. After separation of thiolated mAb from iminothiolane, with the use 

of Sephadex G-25 column chromatography, the mAb was slowly added to a 5-ml 

test tube containing the liposomes (with encapsulated plasmid DNA) and a small 

magnetic stirring bar. Optimal coupling was obtained with the use of a 

phospholipid-to-MAb mole ratio of 1500-2000 ; 1. Oxygen was displaced by 

running a slow stream of nitrogen over the reaction mixture. The tube was capped 

and sealed with Teflon tape, and the reaction mixture was incubated overnight at 

room temperature with continuous slow stirring. The resulting immunoliposomes 

were separated from un-reacted mAb by chromatography with the use of 

Sepharose CL-4B, sterilised by filtration through 0.2-mm pore cellulose 

membranes (Millipore Corp., Bedford, MA), and stored at 4 X .  Coupling of MAbs 

to liposomes was quantified by adding trace amounts of ^^®l-labelled MAb to the 

coupling reaction with liposomes, followed by y-counting (Cobra 5002; Canberra 

Packard, Meriden, CT). The amount of mAb coupled to the liposomes was 45- 

60pg/pmole of phospholipid. Coated cationic liposomes with covalently attached 

anti-GD2 MAb and encapsulated pEGFP-N1 are referred to as GD2-targeted 

liposomes and abbreviated anti-GD2-CCL-pEGFP-N1 throughout this section 

(Figure 48).
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DSPE-PEG +  HS-mAb

pH 8
maleimide

S—mAb

DSPE-PEG

o
Figure 49. Reaction of the covalent coupling of activated monoclonal antibody (mAb) to the 
maleimide terminus of DSPE-PEG-MAL lipid.

176



4.2.7 CCLs size measurements
The sizes (in PBS, pH 7.4) were measured using a Malvern Zetasizer 4 (Malvern

Instruments, UK). All measurements were performed at 25°C. Before the start of 

each measurement, standards (polystyrene latex beads, 300 nm, Sigma Co., UK, 

and Malvern Zetasizer standard, Maivern Instruments) were analyzed.

4.2.8 Gel retardation and DNase I protection assay
In order to assess the charge status of the liposome/DNA complex, gel retardation

assay was performed. Briefly, an aliquot of the anti-GD2 -CCLs-pEGFP-N1 

preparation was electrophoresed on 1 % agarose gel containing ethidium bromide 

(0.5 pg/ml) in 1x TBE. DNA was visualised by UV illumination.

DNase I protection assay was employed to assess whether the plasmid DNA was 

encapsulated and therefore protected by the lipid layers from DNase I digestion. 

Briefly, 400nmoles of phospholipids of anti-GD2-GGLs-pEGFP-N1 containing 2pg 

of DNA were incubated with 5 units of DNase I (Sigma) at 37‘’G for 1 hour and 30 

minutes in 50mM Tris-HGI (pH 8.0), 0.1 mM MgS0 4 , and 0.1 mM dithiothreitol in a 

final volume of 120 pi. To stop the enzymatic reaction, 7mM EDTA (pH 8.0) was 

added. Subsequently for some samples, 40mM of sodium deoxycholate was 

added for 1 hour at room temperature to dissociate the lipid/DNA complexes, and 

the DNA was purified with QIAquick PGR Purification Kit (Qiagen Ltd., West 

Sussex, UK).
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4.2.9 Binding and uptake of liposomes
Neuroblastoma IMR-32 cells or control GD2 -negative SK-N-BE(2c) cells were

incubated in complete medium for 2 hours at 37"’C with 400nmoles of 

phospholipids of pH]CHE-labeiled liposomes with encapsulated pEGFP-Nl Cells 

were washed twice in PBS, treated with trypsin for 1 minute, and lysed with 1N 

NaOH prior to measurement of radioactivity. In competition experiments, a 50-fold 

excess of free MAb was added 30 minutes before addition of the liposomes. The 

non-specific isotype-matched antibody, code X 0943 (Dako Corp., Glostrup, 

Denmark), was used in competition experiments.

In internalisation experiments, GD2-positive IMR-32 cells were incubated in 

complete medium 2  hours at 4°C or at 37®C with 400nmoles of phospholipids of 

[^H]CHE-labelled liposomes with encapsulated pEGFPN-1 plasmid. Sample 

preparation for radioactivity measurement was performed as described above. 

Similar experiments were conducted with liposomes as described above with the 

addition of rhodamine phosphatidylethanolamine (rhoda-PE) at 1 mol% of total 

phospholipids. Cells were washed twice in PBS, treated with trypsin for 1 minute, 

resuspended in PBS-1%FBS. Cells were thereafter analysed on a Becton 

Dickinson FACScan flow cytometer with an excitation wavelength of 488 nm and a 

collection wavelength of 585 ± 21 nm, which registers the fluorescence intensity of 

the rhodamine in each event (cell). Dead cells were gated out of the analysed 

cohort by forward and side scatter. The level of rhodamine fluorescence in live 

cells was determined using the Becton Dickinson CeilQuest program. Briefly, the 

distribution of rhodamine fluorescence in the ceil population was plotted against 

the cell number on a 4-log linear scale. For each sample, 10000 events (cells) 

were analysed.

4.2.10 Transfection experiments using anti-GD2-CCLs- 
pEGFP.N1

For transfection of cells in adhesion, IMR-32 and GI-LI-N cells were plated at 5 x 

10"̂  cells/well in 6 -weil plates containing complete medium and incubated for 48 

hours at 37“C in standard conditions.

At the time of transfection, IMR-32, GI-LI-N and SK-N-BE(2c) cells in suspension 

or in adhesion were incubated for 2  hours at 37"’C with a range of concentrations 

(0 -  3pg/ml) of pEGFP-N1 or pCMV-yîgal plasmid encapsulated in anti-GÜ2"CCLs.
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Cells were then washed with PBS and left for 12, 24, 48 or 72 hours at 37“C with 

fresh medium. Cells in suspension were plated into small flasks first and incubated 

24 hours at 37°C. At the same time a control set of cells were transfected with 

pEGPF-N1 or pCMV-|3gal plasmid using Lipofectamine 2000 in accordance with 

the manufacturer’s instructions (Invitrogen, Paisley, UK). For the cells transfected 

with pEGFP-N1, fluorescence intensity levels were analysed microscopically and 

by FACScan. For the cells transfected with pCMV-y^gal, X-gal staining of p- 

galactosidase activity in fixed cells was performed using a lacZ reporter cell 

staining kit (InvivoGen, CA, USA), according to manufacturer’s instructions.

4.2.11 Uptake of plasmid by neuroblastoma cells and cell 
fractionation assay

IMR-32 and GI-LI-N cells were Incubated for 2 hours with 3pg of ^^P-labelled 

pEGFPN-1 plasmid encapsulated in ^H-labelled liposomes. Cells were washed 

twice with PBS and were incubated in fresh complete medium at 37°C in standard 

condition for 0, 24 or 48 hours. At each time point, cells were washed twice with 

ice-cold PBS. After adding PBS-1mM EDTA cells were harvested and centrifuged 

at 3000 revolutions per minute (rpm) for 5 minutes. The cell pellet was suspended 

in 0.5M NaCI in 0.2M acetic acid (pH 2.5) and held at 4°C for 10 minutes to elute 

surface-bound plasmid DNA. Samples were centrifuged at 300g for 5 minutes at 

4°C. Cells were then resuspended and incubated for 5 minutes on ice with the 

harvest buffer containing lOmM Hepes (pH 7.9), 50mM NaCi, 0.5M Sucrose, 

0.1 mM EDTA, 0.5% Triton-x-100, ImM DTT, 10 mM tetrasodium, lOOmM NaF, 

17.5mM ^^-glycerophosphate and ImM PMSF (Sigma-Aldrich Co., Gillingham, 

Dorset, UK). The suspension was then centrifuged at 1000 rpm for 10 minutes and 

the supernatant, containing the cytosol/membrane fraction, was separated from 

the precipitated nuclei fraction. Both fractions were lysed with 1N NaOH prior to 

measurement of radioactivity.
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4.3 Results
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4.3.1 Characterisation of anti-GD2 CCLs

4.3.1.1 Determination of particle size of CCLs
The CCLs measured diameter was consistent in ail of the preparations, 120±20nm 

(mean ± standard deviation).

4.3.1.2 Gel retardation
DNA encapsulation in CCLs and overall charge of the complexes were monitored 

by gel retardation electrophoresis (Figure 50A, lane 1). Migration of pEGFP-N1 

was completely abolished by DNA encapsulation in the cationic lipids (upper band 

in lane 1, Figure 50A). Non-encapsulated plasmid migrated accordingly to its size 

and charge (arrow in lane 1, Figure 50A). Therefore, this result clearly indicated 

that DNA-CCL complex was formed, and maintained close to neutrality when the 

pEGFP-N1 plasmid was complexed with the DOTAP iipid at the DNA/DOTAP 

molar ratio used (1 : 1227).

4.3.1.3 DNase I protection
To assess the role of our complexes in protecting the DNA from attack by

degrading enzymes in vivo, an in vitro DNase 1 protection assay was performed 

with anti-GDz-CCLs encapsulating pEGFP-N1 plasmid. The gel electrophoresis 

data are shown in Figure 50A (lane 2) and Figure 50B. In lane 2 (Figure 50A), and 

in lanes 4 and 6  (Figure 50B) the complexes lipid/DNA were present and did not 

migrate, showing DNase I protection. The samples loaded in lanes 3 and 5 were 

obtained from purified plasmid DNA after DNase I exposure followed by lipid/DNA 

dissociation (lane 3) or after lipid/DNA dissociation only (lane 5). The presence of 

a migrated band in lane 3 (arrow) comparable to that in lane 5 indicated protection 

of the p-EGFP-NI plasmid from the degrading enzyme.
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Figure 50. Gel retardation electrophoresis and DNase I protection assays of plasmid DNA 
complexed with the coated cationic liposomes (CCLs).
A) Gel retardation electrophoresis assay of DNA complexed with CCLs before (1) and after (2) 
incubation with DNase I. B) DNase I protection assay (3 - 6): DNA complexed with 
immunoliposomes incubated with DNase I before 40mM deoxycholate (3), with 40mM 
deoxycholate only (5) or liposomes incubated with DNase I only (4 and 6). Electrophoresis 
conditions: 1% agarose gel, 80 Volts.
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4.3.2 Binding of GD2>targeted immunoliposomes to GD2- 
positive and GD2-negative cells

In order to establish the capacity of the anti-GD2 -CCLs to bind to GD2 -positlve

ceils a binding assay was performed. Phospholipid uptake by the GD2 -positive 

IMR-32 cell line was significantly higher than that by GD2 -negative SK-N-BE(2c) 

cells (p < 0.001, Figure 51). Phospholipid (i.e., liposome) concentration of 400 

nmoles phospholipid/ml was shown to generate uptake of 28.4 nmoles of 

phospholipids per 10® cells, this was 4.5 times the uptake levels recorded in G 02- 

negative ceils (1.37 nmoles of phospholipids per 10® cells) (Figure 51).

Similarly, binding experiments conducted with liposomes labelled with rhoda-PE 

and analysed at FACScan, showed that liposomes labelled with rhoda-PE were 

able to bind to G 02-positive IMR-32 cells resulting in increase of the fluorescence 

levels compared to that of SK-N-BE(2c) cells, which are GD2 -negative (Figure 52). 

Preincubation of cells for 30 minutes with soluble anti-GD2 MAb significantly 

inhibited phospholipid uptake by IMR-32 cells (p < 0.01, Figure 53). Preincubation 

of cells for 30 minutes with soluble non-specific isotype-matched antibody did not 

inhibited phospholipid uptake by IMR-32 cells (p > 0.1, Figure 53). These results 

indicated that anti-GD2-CCLs binding occurred through specific antigen-antibody 

recognition.
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Figure 51. Anti-GD2 -coated cationic liposomes (anti-GD2 -CCLs) binding to neuroblastoma cells. 
Cells used: disialoganglioside GD 2-positive IMR-32 cells (black bar) and GD 2-negative SK-N- 
BE(2c) cells (grey bar). Cells were incubated for 2 hours with 400 nmoles phospholipids/ml of ^H- 
labelled anti-GD2 -liposomes with encapsulated pEGFP-N1 plasmid. Values are shown as the mean 
± standard deviation (s.d.) of three repeats from two independent experiments (* significantly 
lower, t-test: p < 0.01).
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Figure 52. Fluorescence intensity distribution histogram of SK-N-BE(2c) cells (black line) or IMR- 
32 cells (red line) incubated for 2 hours at 37°C with anti-GDg-CCLs labelled with rhoda-PE (red 
line), obtained by flow cytometry.
The Y-axis represents the number of fluorescent events (cell counts), and the X-axis represents the 
mean channel fluorescence intensity. Experiments were independently performed two times.
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Figure 53. Competition assay of immunoliposomes binding to disialoganglioside GDg-positive 
(IMR-32) tumour cells.
Cells were pre-incubated for 30 minutes with 50-times excess of free anti-GD2  MAb (black bar), 
with non-specific isotype-matched antibody (light grey bar) or with PBS (dark bar). After PBS 
washes cells were incubated for 2 hours at 37®C with 400 nmoles phospholipids/ml of ^H-labelled 
anti-GD2-liposomes with encapsulated pEGFP-N1 plasmid. Values are shown as the mean ± 
standard deviation (s.d.) of three repeats form two independent experiments (* significant 
difference, t-test: p < 0.01).
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4.3.3 Transfection of neuroblastoma cells with anti-GDa-CCLs 
encapsulating plasmid DNA

In order to asses whether these immunoliposomes were capable of gene delivery,

transfection experiments were carried out. GD2 -positive cell lines IMR-32 and GI- 

LI-N, and GD2 -negative cell line SK-N-BE(2c) were incubated with anti-GD2-CCLs 

encapsulating the pEGFP-N1 plasmid or pGMV-yffgal plasmid. However, neither 

microscopic nor FACScan analysis registered detectable levels of fluorescence in 

cells incubated with anti-GDa-CCLs encapsulating pEGFP-N1 plasmid. Further, no 

staining of fixed cells treated with anti-GD2-CCLs encapsulating pCMV-/?gal 

plasmid was observed.

As positive control, GFP or LacZ expression in IMR-32 and SK-N-BE(2c) cells was 

monitored 24 hours after transfection with Lipofectamine 2000 complexed to the 

pEGFP-N1 or pOMV- ŷ gal plasmid.
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4.3.4 Cellular internalisation of the anti-GD2 -CCLs
With the intent to explain the reasons for the absence of gene expression in

neuroblastoma cells via antl-GDz-CCLs, we attempted to examine whether the 

immunoliposomes were internalised and if so, in which cellular compartment they 

resided. Internalisation (Figure 54 and Figure 55) and fractionation (Figure 56) 

studies were performed. FACS analysis and radioactive counts indicated that 

phospholipid uptake by IMR-32 cells when incubated with liposomes at 37"’C was 

higher than that resulting from incubation at 4°C (temperature at which 

internalisation is inhibited [368], Figure 54 and Figure 55). These findings indicate 

that the uptake process is temperature dependent and that temperature- 

dependent mechanisms such endocytosis could be involved in immunoliposome 

uptake [318].

IMR-32 cells were incubated with anti-GD2 -CCLs containing the plasmid pEGFP- 

N1 traced with [^^PjdCTP. After incubation, separation of the cytoplasm/membrane 

fraction from the nuclear fraction was performed. Undetectable levels of plasmid 

were registered In the nuclei fraction 0, 24 and 48 hours after incubation (Figure 

56). In the cytoplasm/membrane fraction the quantity of plasmid (expressed as 

percentage of ng of DNA administered per mg of protein) present was 3.88, 1.53 

and 0.69, at 0, 24 and 48 hours after incubation respectively (Figure 56). The 

results indicate that plasmid DNA does not reach the nucleus, suggesting a 

possible cause for the lack of EGFP (and LacZ) gene expression.
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Figure 54. Internalisation assay of immunoliposomes binding to disialoganglioside GDg-positive 
(IMR-32) tumour cells.
Cells were incubated for 2 hours at 4®C (black bar) or at 37“C (grey bar) with 400 nmoles 
phospholipids/ml of ^H-labelled anti-GD2-liposomes with encapsulated pEGFP-N1 plasmid. Values 
are shown as the mean ± standard deviation (s.d.) of three repeats from two independent 
experiments.

189



m

c3
ü

eo

o

Rhodamine Fluorescence

Figure 55. Fluorescence intensity distribution histogram of IMR-32 cells incubated for 2 hours at 
37°C with PBS (black line), at 4 “C (blue line) or at 37°C (red line) with anti-GDz-CCLs labelled with 
rhoda-PE, obtained by flow cytometry.
The Y-axis represents the number of fluorescent events (cell counts), and the X-axis represents the 
mean channel fluorescence intensity.
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Figure 56. Cellular localisation of immunoliposomes binding to disialoganglioside GD2-positive 
(IMR-32) tumour cells.
Cells were incubated for 2 hours at 37“C with 400 nmoles phospholipids/ml of ^H-labelled anti-GDz- 
liposomes with encapsulated ^^P-labeiled pEGFP-N1 plasmid (2-3pg/ml). Cells were washed 
immediately, 24 or 48 hours after the incubation. The nuclei were then separated from the 
cytosol/membrane fraction (black bars). Both fractions were lysed with 1N NaOH prior to 
radioactivity measurement. Levels of the pEGFP-N1 plasmid in the nuclei fraction were 
undetectable. Values are shown as the mean ± standard deviation (s.d.) of three repeats from two 
independent experiments.
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4.3.6 Summary of results
In this study, the feasibility of producing antl-GD2 coated cationic liposomes (anti-

GDa-CCLs), which encapsulate plasmid DNA, was shown. The resulting 

liposomal/plasmid complex protected the plasmid from the deoxyribonuclease I 

activity. This liposomal preparation displayed binding specific to GDz-positive 

neuroblastoma cells. Furthermore, the binding was shown to be based on specific 

antibody-antigen recognition. In addition, binding experiments conducted at 4"C 

showed a substantial decrease in phospholipid uptake, compared to that observed 

in experiments performed at 37°C. These findings suggest that cellular 

internalisation of immunolipomes occurred at 37°C, but not at 4°C, a temperature 

at which endocytosis does not occur. However, in transfection experiments, using 

anti-GDz-CCLs encapsulating the pEGFP-N1 or the pCMV-/?gal plasmid, it was not 

possible to detect GD2 -positive neuroblastoma cells expressing the EGFP gene or 

the LacZ gene.

In order to investigate this, GD2-positive neuroblastoma cells were incubated with 

anti-GD2-CCLs encapsulating the radiolabelled pEGFP-N1 plasmid. After 

performing cellular fractionation, detectable levels of pEGFP-N1 plasmid were 

registered in the cytoplasm/membrane fraction, but not in the nuclear fraction. The 

results indicate that plasmid DNA does not reach the nuclear compartment, 

suggesting a possible cause for the lack of EGFP and LacZ gene expression.
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4.4 Discussion
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In this study a novel tumour-targeting gene delivery system was investigated. The 

coated cationic liposomes (CCLs) have been successfully used for encapsulation 

and in vivo tumour delivery of DNA in the form of oligonucleotides directed against 

oncogenes c-myb (in neuroblastoma) and c-myc (in melanoma). Long systemic 

circulation and tumour targeting made the CCLs an attractive technology for 

plasmid DNA delivery.

In this study, for the first time, anti-GDg-CCLs were employed for delivery of 

plasmid DNA. Encapsulation and DNase I protection of plasmid DNA were shown 

(section 4.3.1), indicating that the majority of the DNA extracted in the organic 

phase was inside the liposomes. The size of the anti-GD2 -CCLs containing 

plasmid DNA (120nm in diameter) was within the range (100 to 200nm) critical for 

a prolonged blood circulation and optimal extravasation into the tumour tissue 

[142, 369].

The binding capacity of the anti-GD2 -CCLs used in this study (section 4.3.2) was 

comparable with that of the liposomal formulation (on which our liposome 

technology is based), successfully used for encapsulation and cellular delivery of 

antisense oligodeoxynucleotides by Pagnan et al, 2003 [138]. In particular, in our 

study the liposome uptake in IMR-32 cells was 3 times higher than that observed 

in the report, in which neuroblastoma GI-LI-N cells were used. This difference 

could be due to variation in expression levels of the antigen GD2 on the cellular 

surface between the two cell lines [370] and / or to differences in the structure and 

conformation between liposomes encapsulating plasmid DNA and liposomes 

containing oligodeoxynucleotides.

Binding studies demonstrated the capacity of anti-GD2 -CCLs to specifically bind to 

GD2 -positive cells. Furthermore, the binding was the result of a specific recognition 

between the anti-GD2 antibody and the antigen. This is particularly important 

because one of the major issues of a safe and efficient strategy for cancer gene 

therapy is the targeting of tumour cells avoiding non specific transfection of normal 

cells. Cellular internalisation of the immunoliposomes was suggested by FACS 

analysis and radioactive counts of cells incubated with anti-GD2 -CCLs, whose 

lipidic proportion was radiolabelled with pHJCholesterol. The incubation 

temperature of 4°C dramatically reduced phospholipid uptake, indicating inhibition 

of immunoliposomes internalisation. In accordance with previous reports, these 

findings suggest that immunoliposomes are internalised through a temperature
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dependent process such as endocytosis [371]. Moreover, since it has been shown 

that 14.G2a MAb was internalised by melanoma cells [372], the findings of the 

present study suggest that liposomes bind to the cell surface and are then 

internalised via a receptor-dependent endocytic pathway.

The fractionation study showed that 3.88% of the administered dose of plasmid 

pEGFP-N1 per mg of protein (corresponding to 7.77 x 10® copies of plasmid per 

cell) was found in the cytoplasm/membrane fraction of IMR-32 cells after 2 hours 

of incubation, using anti-GDg-CCLs as vector (section 4.3.4). This percentage is 

comparable to that observed by a recent study [368], showing a plasmid DNA 

uptake of 10% of the administered dose, using an adenoviral vector. In another 

report where different poly(ethylenimine) (PEI) formulations were compared for 

intracellular delivery properties [373], 7x10® copies of plasmid DNA per cell were 

detected in C3A hepatocarcinoma cells after 2 hours incubation with Spg of 

plasmid complexed with 25kDa (PEI). This value is similar to that registered in our 

study using anti-GDz-CCLs as vector (7.77 x 10® copies of plasmid per cell). Both 

published studies showed successful plasmid transfection with detectable 

expression levels of the luciferase [368] and ^-Galactosidase [373] transgenes. 

Taking into consideration these reports, from our findings it is therefore possible to 

assume that levels of cellular uptake of the pEGFP-N1 plasmid encapsulated in 

anti-GDz-CCLs are sufficient for a successful transfection.

However, despite these encouraging results demonstrating specific DNA 

protection, cellular binding and internalisation, the delivery of plasmid DNA did not 

translate to expression of the transgene. This could be because, after endocytosis, 

the encapsulated DNA does not reach the nucleus. Once inside the cell before the 

ultimate localisation into the nucleus, the plasmid DNA has to be released from the 

endosomal-lysosomal pathway. Next it has to reach the nuclear target and, 

ultimately, cross the nuclear envelope. Although cells can internalise effectively 

lipid-based vehicles, plasmid DNA translocation to the nucleus is an inefficient 

process [371]. Therefore, improvements are needed in the field of lipid-based DNA 

vectors in order to increase the efficiency of nuclear translocation of plasmid DNA. 

To date, intracellular trafficking studies of lipid-based DNA carriers have not led to 

the design of vehicles that have high transfection efficiency with target-specificity, 

suitable for systemic administrations for in vivo applications. Nevertheless, in the
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recent years interesting strategies have been developed with the intention to 

overcome the endosomal and nuclear barriers.
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4.4.1 Enhancements of endosomal escape
One reason for the lack of gene expression showed in this chapter could be the

presence of an intracellular barrier, to be passed by the plasmid DNA in the 

endocytosis pathway, the endosomal membrane. In order to enhance transfection 

efficiency and avoid intra-lysosomal degradation, it could be useful to facilitate the 

endosomal escape of DNA encapsulating CCLs before the late endosomes fuse 

with lysosomal compartments [374].

A possible future direction to asses this, regards the fusion of lipidic carrier with 

endosomal membrane [375]. From previous studies it appears that successful 

transfection by liposomal formulations requires membrane destabilisation in the 

endosomal compartment, leading to membrane fusion and release of DNA from 

the endosome. This process can be achieved by cationic lipids [375], acid-labile 

lipids [376, 377] or exchangeable or acid-labile PEG-lipids [378, 379].

Another improvement for the delivery system investigated in the present study, 

employs osmotic disruption of the endosome by proton capturing polycations 

(proton sponge mechanism) [380, 381]. The amino groups of the polycation 

become protonated as the proton pump in the endosomal membrane carries 

protons inside the endosome compartment. For the maintenance of electro

neutrality, proton binding is followed by passive influx of chloride ions. 

Consequently the endosome swells due to osmosis and disruption of its 

membrane occurs. The transfection efficiency of lipid-based DNA carriers is 

enhanced by polycations [382] and it could be a potential improvement for the 

CCLs.

Incorporation into immunoliposomes of fusogenic peptides that facilitate fusion 

between the liposomal and endosomal membranes could generate a further 

improvement of this technique. In general, the peptides are based on viral proteins 

which induce membrane destabilisation promoting fusion with endosomal 

membranes of host cells [383-385]. A well documented fusogenic protein is 

haemagglutinin (HA) from the influenza virus. A 23 amino acid fusogenic peptide 

resembling the N-terminal domain of HA has been shown to be a promising 

peptide in promoting the endosomal escape of liposomal contents including DNA 

[386, 387]. Another peptide with promising fusogenic properties is the 30 amino 

acid synthetic peptide GALA [388-390]. Two peptides of non-vira! origin with
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fusogenic capacities are the chemically modified a-melanocyte-stimulating 

hormone (a-MSH) [391] and the lactoferricin (a 25 amino acid peptide derived form 

N-terminal side of lactoferrin) [392, 393]. It will be therefore interesting in future 

studies to investigate the potential of fusogenic peptides for the enhancement 

DNA delivery via CCLs.

4.4.2 Nuclear translocation
Another problem in the compiete transfection process is the presence of the

nuclear envelope. It has been documented that nuclear translocation of plasmid 

DNA is an inefficient process [371]. Further, injection of plasmid DNA into the 

nuclei of mouse fibroblasts leads to gene expression in 50-100% of cells, but 

when the same amount of plasmid is injected into the cytoplasm, no expression is 

detected in any of the injected cells [394]. Several other similar experiments have 

confirmed these findings [371, 395-398]. However in all of these experiments the 

cells studied were non-dividing and in recent studies it has been reported that 

transfection is more successful in actively proliferating cells than in quiescent cells 

[399, 400]. But regardless of whether the cells undergo mitosis or not, the nuclear 

import of DNA is a relatively inefficient process, even when the nuclear envelope is 

broken [398, 401]. DNA degradation by cytosolic nucleases is another issue that 

hampers the nuclear translocation efficiency of plasmid DNA [402, 403].

Almost all of the effort to enhance nuclear translocation of exogenous DNA has 

been focused on the use of proteins or peptides containing nuclear localisation 

signals (NLS) as the means to guide the DNA into the nucleus. Several of these 

peptides have been associated to plasmid DNA by electrostatic interactions [404- 

409], non-specific covalent binding [410-412] or by site-specific attachment to the 

DNA [413-417]. The majority of these studies have reported improvements of 

nuclear translocation using NLS-peptides and therefore it could be worthwhile to 

evaluate their potential in the anti-GDa CCLs system.
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4.4.3 Conclusions
In conclusion, the present study demonstrated the feasibility of encapsulating

plasmid DNA into anti-GDz-CCLs, so far used as vectors for oiigodeoxynucleotides 

[96, 138, 361]. Furthermore, it was shown that GDa-specific cellular binding, 

internalisation and plasmid DNA uptake were achieved by the use of this 

immunoliposome technology.

It is likely that transfection efficiency of the lipid-based DNA delivery system used 

in the present study so far is limited by all or part of the factors such as limited 

endosomal escape, and the low nuclear translocation. Studies on the development 

of plasmid DNA encapsulating immunoliposomes with improved endosomal 

escape properties, better protection from DNA degradation by cytosolic nucleases 

and enhanced nuclear transport are necessary and will be the main focus of future 

studies. However, lipid-based gene delivery systems are one of the most attractive 

and promising non-viral vector approaches in gene therapy. It is possible to 

envisage that the non-viral vector field of research will benefit from the studies 

conducted on virus-mediated gene delivery which thus could pose as model for 

the engineering of effective lipid-based DNA vectors.
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Chapter 5

Further avenues of research arising from this study, and
final conclusions
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5.1 T e lo m e r a s e  p r o m o t e r s :  e n h a n c e m e n t  o f  t u m o u r  
s p e c i f i c  g e n e  t h e r a p y

The results of this study Indicate that both telomerase promoters are suitable

control elements of tumour-specific expression of the NAT transgene in 

neuroblastoma cells. Furthermore, the over-expression of the NAT transgene (via 

telomerase promoters) resulted in a higher capacity of neuroblastoma cells to 

accumulate ['*^^I]MIBG or [^^^AtjMABG, and enhanced sensitivity to both 

radiopharmaceuticals.

This section will describe the possibility of improving the expression of the NAT 

transgene by control elements other than hTR or hTERT promoters. The use of 

strategies such as the Cre/Lox system for enhancing the efficiency of telomerase 

promoters will also be discussed.

5.1.1 Alternative tumour-specific transcriptional regulators
Midkine (MK) is a newly identified heparin-binding growth factor that is transiently

expressed in the early stages of retinoic acid-induced differentiation of embryonal 

carcinoma cells and is implicated in neuronal survival and differentiation [418]. It 

has been reported that advanced neuroblastomas express high levels of MK 

mRNA or protein [419]. However, no MK expression is detected in human or 

mouse liver [418, 420]. An adenoviral vector has been constructed to express the 

herpes simplex virus thymidine kinase (HSV-f/c) under the control of the MK 

promoter to target Wilm’s tumour and neuroblastoma cell lines [154, 421].

A recent report identified a modified ornithine decarboxylase (ODC) promoter that 

up-regulates the expression of carboxyl esterase (CE) which in turn activates the 

prodrug Irinotecan in neuroblastoma cells [422, 423].

A 1.7-kbp fragment upstream of the NCX gene shows preferential promoter 

activity in neuroblastoma cells and when linked to the HSV-f/c gene causes 

increased sensitivity to gancyclovir [424].

Tyrosine hydroxylase promoter (pTH) [425] is an interesting neuroblastoma- 

specific control element successfully used for HSV-f/c mediated suicide gene 

therapy in vitro [426]. This study showed a 1.5-fold difference in ganciclovir pTH- 

mediated toxicity between neuroblastoma cells and tumour cells of not 

neuroectodermic origin.
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6.1.2 Enhancement of telomerase promoters' efficiency: the 
Cre/Lox system

The telomerase promoters show relatively weak activity (compared to that of the 

CMV promoter) in the neuroblastoma cell line SK-N-MC and in some other target 

cells [177, 427, 428]. In a clinical scenario, this could limit therapeutic targeting in 

applications such as [^^^l]MIBG / NAT transgene strategy, where there is good 

correlation between NAT gene expression levels and capacity of active cellular 

accumulation of [^^^l]MIBG [100]. Therefore, strategies to improve the efficacy of 

telomerase gene therapy are of interest [428, 429]. One approach to enhance the 

expression levels of therapeutic transgenes uses the Cre/Lox switch. Ore 

recombinase, derived from the PI bacteriophage [430], catalyzes site-specific 

recombination of DNA between LoxP site [431]. The LoxP recognition element is a 

34 base pair sequence comprised of two 13 base pair inverted repeats flanking an 

8 base pair spacer region which confers directionality [431]. Thus, Cre/Lox 

technology is a valuable tool for gene function studies [432, 433]. The therapeutic 

transgene (NAT gene) will be separated from a strong constitutive promoter (for 

example CMV promoter) by a LoxP flanked transcriptional termination signal. A 

weak tissues/cancer-specific promoter of interest (hTR or hTERT promoters) will 

drive the expression of Cre from a second vector, resulting in deletion of the stuffer 

and derepression of transgene expression (Figure 57). Therefore, specificity is 

selectively associated with a constitutively high transcription rate. This strategy 

has been applied in several studies of cancer gene therapy [434-438]. Because 

the hTR and hTERT promoters show weak activity in some cancer cells, it is 

reasoned that the Cre/Lox switch could be adapted not only to extend the effective 

target cell range, but also to enhance the transgene expression levels for 

telomerase-specific NAT gene therapy.
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Figure 57. Regulation of NAT gene expression by the Cre/Lox switch.
Transcription of the NAT gene in vector A is repressed by the presence of a LoxP-flanked stuffer 
fragment harbouring the SV40 late polyadenylation signal upstream of the NAT gene. In the 
presence of Cre protein expression, in this case directed by the telomerase or WAF-1 promoter 
(vector B), the stuffer and polyadenylation signal are excised, leading to the derepression of CMV  
dependent NAT gene expression (vector C).
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5-2 R a d îa t io n ~ in d u c ib !e  g e n e  t h e r a p y
This study showed that radioactivity can activate the WAF1 promoter, which could 

be a control element for therapeutic gene expression in neuroblastoma cells. 

Furthermore, it was also demonstrated that the promoter is inducible not only by 

external beam radiation (such as X-rays or y-rays) but also by radionuclides (̂ ^̂ 1 or 

^^^At) bound to a tumour seeking drug, benzylguanidine. However, evidence from 

a previous study [135] indicates that the WAF1 promoter is a weak promoter, 

providing no Induction at the most clinicaliy relevant radiation dose of 2Gy. 

However, in our study, we observed WAF1 promoter activation in neuroblastoma 

cells at this radiation dose. Furthermore, an estimated radiation dose of 2eGy 

[^^^IjMIBG or [^^^AtjMABG, generated a level of WAF1 promoter activation 

comparable to that induced by 2Gy y-radiation in neuroblastoma cells, transfected 

with a plasmid containing the WAF1 promoter upstream of the GFP cDNA 

(pWAFI/GFP) (values of the fluorescence fold increase 48 hours after treatment 

are summarised in Table 4). As shown in Table 4, in SK-N-BE(2c) transfectants, 

the level of WAF1 promoter activation at 2eGy was modest. These findings 

suggest that the use of the WAF1 promoter could be limited by its low activation at 

the clinically relevant radiation dose of 2Gy. Therefore, a stronger promoter or an 

enhancement system would be desirable for pre-clinical application. In this section 

the use of alternative promoters as weli as enhancement strategies for WAF1 

promoter activation, will be discussed.
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y-radiation [^^ l̂]MIBG p” At]MABG

SH-SYSY+pWAFI/GFP 1.68 1.90 1.74

SK-N-BE(2c)+pWAF1/GFP 1.26 1.17 1.11

Table 4. WAF1 promoter activation in neuroblastoma transfectants 48 hours after exposition to 
2eGy /-radiation, f®”'l]MiBG and f ' ’At]MABG.
The equivalent radiation dose, referred to as eGy, was estimated as explained in section 3.3.2.5. 
The values are expressed as fluorescence fold increase (fluorescence increase is caiculated with 
respect to unirradiated control).
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5.2.1 Alternative radîatlon-inducible transcriptional regulators
The native Egr1 gene promoter [212] in combination with the herpes simplex virus

thymidine kinase gene has been used to sensitise glioma cells to gancyclovir after 

exposure to [®^Ga]citrate [439] and to demonstrate a dose-dependent expression 

of reporter gene activity of up to 28 fold following radiation exposure (0 -  20Gy) 

[214].

Radiation-inducible bacterial promoters have also been used such as RecA, using 

the anaerobic apathogenic clostridia as a gene transfer system. Significant 

increases in ^-galactosidase activity and TNF-a secretion was seen after a single 

dose of 2Gy [220, 440].

The use of a plasmid with four tandem repeats of the HFkB binding site (from the 

radio-inducibie C-IAP2 gene) driving the expression of the apoptotic suicide gene 

BAX, resulted in significant cell kill following a therapeutically relevant dose of 2- 

Gy X-rays [221].

A synthetic construct E9, incorporating nine radiosensitive CArG elements from 

the Egri promoter, has recently been developed [441]. Transfection of tumour 

cells with plasmids containing a reporter gene downstream of the synthetic 

construct resulted in improvement of the induction response to low doses of 

radiation and reduction of "leakiness" under non-irradiated conditions compared to 

that of the native Egri enhancer [441].

5.2.2 Enhancement of WAF1 promoter efficiency: the Cre/Lox 
system

The use of the Cre/Lox switch system could also be useful for the enhancement of 

the transcription efficiency of the WAF1 promoter (Figure 57). A recent study has 

applied the Cre/Lox switch to the Egri promoter / HSV-f/c gene system [442]. The 

switch system generated a three-fold increase in cell growth inhibition compare to 

that using the Egri promoter aione to drive HSV-tk expression.

The radiation responsive promoter controis the expression of Cre recombinase. 

After radiation exposure, this then activates the transcriptionally silenced HSV-f/c 

gene via the CMV promoter, by LoxP site mediated recombination. This approach 

could be particularly beneficial in our strategy where specific, but relatively weak 

radiation-responsive WAF1 promoter is employed to target NAT gene expression 

to neuroblastomas.
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5 .3  C h o ic e  o f  r a d io n u c l id e :  A lte rn a t iv e s  to  o r  ^^^At a s  a  
c o n ju g a te  f o r  M IB G

Radionuclides other than ^̂ 1̂ may be more efficacious in some circumstances. The

aim of targeted radiotherapy is delivery of radiation to tumour sites, minimising 

normal tissue toxicity. Nevertheless, choosing the appropriate radionuclide is 

pivotal to maximise the therapeutic efficacy of the radiopharmaceutical, controlling 

normal cellular toxicity. The path length of the emitted particles, the linear energy 

transfer (LET), size of tumour mass and subcellular localisation of the targeting 

agent are all factors that should be taken into consideration [443].

The focus of this study has been the /3-emitter [^^^l]MIBG and the «-emitter 

p^^At]MABG. While ^̂ 1̂ has a long path length and relatively low LET, ^''^At has a 

shorter path length and a much higher LET than ^̂ 1̂. In the case of ^̂ 1̂, in very 

small tumours (such as micrometastases) with diameter shorter than particle path 

length, absorption of radiation energy is ineffective, since a proportion of the 

energy is deposited outside the target [443]. In the case of ^^^At, as tumour 

diameter is greater than the particle range, the absorption efficiency progressively 

reaches a plateau, whereas increasing cell number decreases therapeutic efficacy 

[443].

For these reasons, ^̂ ""l or ^^^At may not be the most advantageous choice of 

radionuclide in all therapeutic scenarios. The determination of the most suitable 

radionuclides with different particie range and LET could improve the therapeutic 

effectiveness of MIBG (Table 5 and Figure 58).

5.3.1 and ['^'l]MIBG
The efficacy of Auger electron emitters such as ’ ^̂ 1 and ^̂ 1̂ would be confined to

molecules within the nucieus [444, 445].These radioisotopes decay by electron 

capture and internal conversion, which generate emission of extremely densely 

ionising radiation of very short range (1-1 Onm). Thus, Auger electron emitters 

would not be as effective as A-emitters when bound to targeting agents which 

remain in the cytoplasm or in the membrane compartment [444, 445].

However, a recent report showed that [^^^!]MIBG and [^^®i]MIBG were more toxic 

to neuroblastoma cells than expected by cytoplasmic MIBG localisation [11]. 

These findings suggest that short range emitters would be suitable for the 

treatment of circulating tumour cells (Table 5 and Figure 58). The “extra” toxicity of
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and labelled MIBG could be explained by the recently identified radiation- 

induced biological bystander effects [446-453]. It is expected that tumour-seeking 

drugs radiolabelled to short-range Auger emitters may be more therapeutically 

beneficial than was previously believed.
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Radionuclide Decay particle Particle range Half life Current use
131| P 0.8 mm 8 days therapy

2 1 lA t a 0.05 mm 7 hours therapy
123j Auger electron ~1-10 nm 13.2 hours imaging
125| Auger electron ~1-10 nm 60.1 days imaging

Table 5. Alternatives to I and At as conjugate for MIBG.
Different radionuclides have different properties which may be more beneficial than '‘ ’̂'l and ”̂ At in 
certain circumstances. See Figure 58.
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131|

211 At 

123|,
125|

O  Tum our cell #  Successfully targeted
tumour cell

O  Untargeted tum our cell: sub- #  Untargeted tum our cell:
lethallv damaged by radiological irreoarablv damaaed by
bystander effect radiological bystander effect

^̂ 1̂ has longer particle length than ”̂ At, ^̂ ®l or ^̂ ®l, the radiological

Figure 58. Relationship between particle range, radiological bystander effect and linear energy 
transfer.
A) Large tumour masses: As 
bystander effect will cause damage to a greater number of cells. B) Micrometastases: In smaller 
tumours, ^̂ 1̂ will be less effective as the majority of the energy will deposited outside the tumour 
mass. ^̂ ^At has far greater LET, therefore, damage caused by At to adjacent cells is more likely 
to be irreparable, leading to far greater toxicity in micrometastases. C) Circulating tumour cells: I
and ^̂ ®l have very short range, but very high LET, and therefore only toxic to individual cells. They 
will be most effective against circulating tumour cells. The longer path lengths of ^̂ 1̂ and ^̂ ^At are 
more likely to cause damage to normal tissue.
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5 .4  R a d ia t io n - in d u c e d  b io lo g ic a l  b y s t a n d e r  e f f e c t s  
( R IB B E s )

Although the implications of radiological bystander effects (toxicity to non-targeted 

cells by radioactive decay particle emanating from targeted cells) are relatively 

well defined [182, 192], the importance of radiation-induced biological bystander 

effects (RIBBEs) has only recently been indicated [450]. RIBBEs derive from 

cellular processing of the radiation insult into biological factors or toxins that cause 

damage to unirradiated neighbouring cells. High and low LET radiations, delivered 

by focused microbeam or by transfer of media from irradiated to unirradiated cells, 

are capable of Inducing RIBBEs [446-449, 451-453] (Figure 59).

RIBBEs contribute significantly to the overall effect in celis exposed to low dose 

and low dose rate irradiation [12, 446], characteristic of targeted radiotherapy of 

cancer. Thus, the importance of these bystander effects could have a strong 

impact on therapeutic efficacy of targeted radionuclide treatments and it should be 

considered in the design of radiotherapy protocols. The potency and the 

mechanisms of RIBBEs remain, as yet, unclear.
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B D

A  Radiolabelled agent O  Untargeted tum our cell damaged
by radiological bystander effect

O  Tum our cell

#  Successfully O  Untargeted tum our cell
targeted tum our damaged by release of adverse
cell signals from neighbouring ceils

Figure 59. Radiation-induced biological bystander effect (RIBBE).
RIBBE involves the cellular processing of the radiation insult into toxic metabolites; A) Tumour cells 
are targeted by a radiopharmaceutical. B) Only a fraction of the tumour is successfully targeted. 
The majority of cells remain unaffected. C) Radiological bystander effect: energy released by decay 
of the radioisotope emanates from the targeted sites of the mass in three dimensions, damaging 
untargeted neighbouring cells. D) Radiation-damaged cells release biological signals which 
damage neighbouring cells.
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5.5 A l t e r n a t i v e  g e n e  d e l iv e r y  s y s t e m s :  a d e n o v i r a l  
v e c t o r s

In the present study, we demonstrated that the anti-GD2 coated cationic 

immunoliposomes (previously used for the delivery of antisense 

oiigodeoxynucleotides [96, 361]) successfully encapsulated the pEGFP-N1 

plasmid and specifically targeted neuroblastoma cells expressing the antigen GDa. 

However, the transfection efficiency of this type of immunoliposome preparation 

was limited. For this reason, as well as taking into consideration improvements 

aimed to facilitate endosomal escape or nuclear translocation (discussed in 

sections 4.4.1 and 4.4.2), the usefulness of virus-based gene delivery systems 

should be investigated. Furthermore, the problem of low transfection efficiency and 

short term transgene expression in vivo are issues that can be circumvented with 

the use of viral vectors [318]. In 25% of all clinical trials, adenoviruses are the first 

utilised viral vector [273]. This type of vector is an attractive candidate for gene 

delivery mainly because of its capacity for carrying large DNA loads together with 

high transduction efficiency [454]. Engineering of recombinant adenoviral vectors 

could allow delivery of telomerase promoter- or WAF1 promoter-NAT transgene 

constructs.
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5.6 T h e  u s e  o f  m u l t i c e l lu la r  m o s a ic  s p h e r o id s  to  
d e te r m in e  t r a n s f e c t io n  e f f i c ie n c ie s

In ['’®^I]MIBG and f^ ’'At]MABG toxicity assays performed for the evaluation of the 

potency of the hTR and hTERT promoters (see sections 2.3.4 and 2.3.5), we used 

cellular spheroids derived from neuroblastoma cells transfected with the 

phTR/NAT, phTERT/NAT or pCMV/NAT plasmids. In this way, 100% of the cells 

composing a single spheroid were transfected with the plasmids. This level of 

transfection efficiency would be highly unlikely to achieve in vivo. Therefore, it was 

not possible to evaluate the potency of the telomerase promoters in a model closer 

to the in vivo scenario, where the transfection efficiency is iess than 100%.

The use of muiticellular mosaic spheroids could circumvent this limitation. 

Multicellular mosaic spheroids are composed of variable percentages of two cells 

populations with different characteristics [192]. In this case, one of the ceil 

populations does not contain any plasmid and displays no expression of the NAT 

gene, while the other posses the plasmid containing the NAT transgene and is 

positive for NAT transgene expression.

This model could be adopted using SK-N-MC cells (which normally do not express 

detectable levels of NAT) and the plasmids containing the NAT transgene 

downstream of the hTR or the hTERT promoter (phTR/NAT and phTERT/NAT 

respectively). The use of mosaic spheroids generated, for example, from a mixed 

population, of parental cells and ceils transfected with the phTERT/NAT plasmid, 

could be used to predict the minimum requirement for NAT transgene transfection 

to allow tumour sterilisation by the administration of targeted radiotherapy (for 

example [^^^l]MIBG and [^^^At]MABG, used in the present study, or [^^^IjMIBG and 

f^^IjMIBG, described in section 5.3 (See Figure 60).



Percentage of NAT expressing

0% 10% 25% 50% 75% 100%

0  Tumour cell with no NAT transgene expression 0  Tumour cell expressing NAT transgene

Figure 60. Schematic representation of mosaic spheroids.
Multicellular mosaic spheroids are composed of variable percentage of two cell types. In this figure, 
one of the cell types display no expression of the NAT transgene, while the other is positive for 
NAT transgene expression. A mosaic spheroid model would allow estimation of minimum 
requirement for NAT transgene transfection to allow sterilisation by targeted radiotherapy.
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5.7 C o n c lu s io n s

5.7.1 Telomerase promoter elements driving the expression of 
the NAT transgene

The results of this study indicate that NAT transgene overexpression by control of

the telomerase promoters may be achieved in neuroblastoma cells. Furthermore, 

the toxicity of radiopharmaceuticals [̂ '̂‘IJMIBG and [^ '̂’AtJMABG to cells 

transfected with the NAT transgene under the control of either hTR or hTERT 

promoter is improved. If the overexpression of the NAT transgene and the 

improved toxicity of radiolabelled drugs are confirmed in pre-clinical models, there 

is potential for therapeutic gain.

5.7.2 WAF1 promoter as a radio-inducible switch of the NAT 
transgene

It was shown that WAF1 activity was inducible not only by external beam y-rays 

but also by the A-emitter radionuclide ^̂ 1̂ in the form of [^^^l]MIBG or by the a- 

emitter radionuclide ^''^At conjugated to benzylguanidine (p^^AtjMABG). 

Additionally, preliminary toxicity experiments showed that, after irradiation, toxicity 

of [^^^i]MIBG improved in neuroblastoma cells transfected with the construct 

containing the NAT cDNA downstream of the WAF1 promoter sequence. These 

results together indicate potential for immediate applications in neuroblastoma 

patients such as bone marrow purging discussed in section 3.4.3.

5.7.3 Coated Cationic Immunoliposomes: a promising non- 
viral gene delivery system

The present study has introduced the method of coated cationic immunoliposomes

as a non-virus based gene delivery system in neuroblastoma. This technology has 

great potential for its target-specificity and internalisation efficiency described in 

this study, and has attractive features for gene therapy strategy, for example long 

circulation and negligible toxicity in pre-clinical models [139, 361, 455]. 

Unfortunately, low transfection efficiency indicated limited usefulness of this 

methodology.

However, technology advances, such as introduction of nuclear localisation 

signals or utilisation of pH sensitive lipids to facilitate endosomal escape,
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discussed in section 4.4.1, could be taken into consideration in order to overcome 

transfection problems.
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