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Abstract

RNA polymerase III transcription has been found to be abnormally elevated in 

many types of transformed and tumour cells. These rapidly growing cells 

demonstrate an increase in pol III transcripts and hence, an accumulation of 

protein above normal levels. The accretion of protein may lead to uncontrolled 

cell growth, a hallmark of cancer. Thus, the ability of pol III to increase a 

cell’s biosynthetic capacity links it with malignant growth. Therefore, 

experiments were conducted to assess whether pol III transcription could be 

regulated by decreasing transcription in mammalian cells.

Homo sapien and Mus musculus cell lines were investigated to consider three 

different methods for decreasing pol III transcription; targeting a subunit of 

the transcription machinery, Brfl, by small interfering RNA, targeting the 

polymerase with the specific drug tagetitoxin, and inducing a negative effector 

of pol III transcription, Mafl. Levels of pol III transcripts were decreased in 

response to transfection of Brfl siRNA, which also had a decreased effect on 

proliferation rates. When cells were treated with tagetitoxin during 

electroporation, pol III transcription also decreased. Induction of the pol III 

suppressor Mafl decreased pol III transcripts to varying degrees, although 

faults were found within this system. More significant data was obtained by 

the application of siRNA against Mafl, as well from the analysis of samples 

acquired from heterozygous Mafl cells. These results showed that decreasing 

Mafl allows for the deregulation of pol III and an increase in pol III 

transcription.
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1 Introduction

1.1 Transcription

Gene expression is determined by which genes are transcribed. Transcription 

serves as the first step in gene expression, decoding a genome. During this 

essential process, DNA is copied into complementary RNA sequence by RNA 

polymerase. Because transcription is the first step in gene expression, it serves 

as the most common and important level of regulatory control. Transcriptional 

regulation is involved in biochemical processes such as a cell’s growth and 

development, serving to assist the cell in adapting to its changing environment. 

Deficient transcription can result in abundant defects in biological processes 

resulting in a multitude of disease states such as diabetes, cardiovascular 

hypertension, developmental abnormalities, and cancer.

1.2 Four nuclear eukaryotic RNA polymerases

Eukaryotes have four nuclear RNA polymerases (pols) which transcribe the 

nuclear genes, namely RNA polymerases I, II, III and a recently found single­

polypeptide nuclear RNA polymerase of mitochondrial origin, spRNAP-IV 

(pol IV) (Kravchenko et a l, 2005; Sentenac, 1985). The identities of pol I, pol 

II and pol III were found by their different elution from DEAE- Sephadex 

columns, as well as differing sensitivities to the toxin a-amanitin (Kedinger et 

al, 1970; Roeder and Rutter, 1969). Recently, it was revealed that pol IV 

expression originates from an alternative transcript of the mitochondrial RNA 

polymerase gene (POLMT) (KTavchenko et al, 2005). RNA polymerase I (pol 

I) synthesizes most of the ribosomal (r)RNA, comprising 28S, 18S and 5.8S 

ribosomal RNAs which are processed from the large 45 S RNA precursor 

molecule (pre-RNA). Pol I may be responsible for 70 to 80% of nuclear
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transcription in proliferating cells (White, 2001a). RNA polymerase II (pol II) 

produces the protein-encoding messenger (m)RNAs and most of the small 

nuclear (sn)RNAs which are involved in mRNA processing. RNA polymerase 

III (pol III) is responsible for 10 to 20% of all nuclear transcription and 

produces small, stable, untranslated RNAs. These genes are less than 400 

nucleotides in length and encode structural or catalytic RNAs (Schramm and 

Hernandez, 2002; White, 2001a) with important roles in cellular metabolism, 

including; transfer (t)RNAs, 5S rRNA, and VA RNAs which are encoded by 

adenovirus and used to direct translational machinery of an infected cell 

towards increased viral load (White, 2001a). 7SL RNA is also synthesized by 

pol III and is involved in intracellular protein transport as part of the signal 

recognition particle. Lesser characterised pol III products include U6 snRNA, 

HI and MRP RNAs involved in RNA transcript processing, 7SK, and RNAs 

encoded by the short interspersed repeat (SINE) gene families.

1.3 Class III genes

Genes transcribed by the nuclear eukaryotic RNA polymerases are grouped 

into classes, determined by which polymerase transcribes that particular set of 

genes. Therefore, templates transcribed by pols I, II, III are referred to as class 

I, II and III genes, respectively. A table of class III gene products is located 

below.
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Table 1.1 Summary stating gene products and function of class III genes.’

Product Function

tRNA Translational adaptor

5SrRNA Ribosomal component

U6 snRNA mRNA splicing

HI RNA RNase P component (tRNA processing)

MRP RNA rRNA splicing and mitochondrial DNA replication

7SLRNA Signal recognition particle component

7SKRNA Control of P-Tef-b and mRNA elongation

SINE transcripts Unknown, might perform a role in cellular stress responses

VARNA Translation control (adenovirus)

vault RNAs Component of cytoplasmic vault nucleoproteins

EBER RNAs Epstein-Barr virus translational control

* Adapted from White, 2001b.

1,3.1 tRNA

Apart from mitochondrial tRNA, a high level of structural conservation exists 

between tRNAs from prokaryotes and eukaryotes (Sharp et a t, 1984). In 

Saccharomyces cerevisiae and other eukaryotes, early tRNA processing 

components have been found in the nucleolus, suggesting that transcription of 

the tRNA genes might also be nucleolar (Thompson et a l , 2003). tRNA genes 

have transcripts that are processed to between 70 and 90 nucleotides, which 

serve as translational adaptors and enable amino acids to align according to the 

sequence of nucleotides in the mRNA (Alberts et a l, 2002). Accurate
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translation of mRNA into a polypeptide chain rests on the ability of a tRNA to 

read the three residue anti-codon sequence. Eukaryotic cells possess 50 to 100 

distinct tRNAs (Sharp et a l, 1984), however, the proportions of each tRNA 

species vary between cell type (Garel, 1976). Because each of the tRNA 

species has a similar structure, their individual nucleotide sequence creates a 

specificity that allows one tRNA to recognize only one amino acid. This 

amino acid is brought to the lengthening peptide chain only if it matches a 

complementary codon in the mRNA. Errors in this process occur at a 

surprisingly low rate of one mistake in 40,000 couplings, revealing the 

importance of this process and its control on protein synthesis (Alberts et a l , 

2002).

1.3.2 SSrRNA

The 120 nucleotide 5S rRNA is the smallest of the ribosomal RNAs, yet it is 

essential for all eukaryotic organisms, playing a critical role in translation 

(Wool, 1979). Although there are exceptions, the 5S rRNA gene is generally 

present in the common rRNA precursor in bacteria and archaea, but is 

independently transcribed by pol III in eukaryotes (Lafontaine and Tollervey, 

2001). Pre-ribosomal RNA is processed into mature rRNA species which are 

then transported into the nucleolus, both forms undergoing covalent 

modifications. After further transport to the cytoplasm, 5S rRNA is 

incorporated into the large ribosomal subunit which begins the formation of 

peptide bonds (Wool, 1979). In humans, cells contain 200- 300 5S rRNA 

genes, while Saccharomyces cerevisiae and Xenopus laevis contain 140 and 

over 200,000 copies, respectively (Consortium, 2001; Elion and Warner, 1984; 

Wolffe and Brown, 1988). InX. laevis, most 5S genes are only expressed in

5
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the oocyte to sustain rapid growth during development (Wolffe and Brown,

1988).

1.3.3 U6snRNA

U6, along with five other small nuclear ribonucleoproteins (snRNPs) and non­

small nuclear ribonucleoproteins, functions to remove pre-mRNA introns 

within the formed spliceosome (Hastings and Krainer, 2001). Through this 

process, pre-mRNA genes transcribed by pol II are extensively modified and a 

coding sequence compatible with translation is created. In yeast, U6 snRNA 

uses a metal ion that is required for the catalytic activity of this process (Yean 

et al, 2000). U6 is the smallest of the five snRNPs (106 nucleotides) and is 

the only component of the spliceosome that is not transcribed by pol II (Brow 

and Guthrie, 1988; Kunkel et a l, 1986).

1.3.4 HI and MRP RNAs

The gene coding for human HI RNA is only present in one to three copies per 

cell (Bartkiewicz et a l, 1989). This 369 nucleotide long molecule was first 

isolated from HeLa (human cervical carcinoma) cells (Bartkiewicz et al,

1989), and found to resemble the structure for the RNA subunit of RNase P

(Bartkiewicz et a l, 1989; Lee and Engelke, 1989). RNase P has endonuclease

activity and is involved in processing pre-tRNA (Lee and Engelke, 1989). HI

RNA exhibits some sequence homology to MRP RNA (Gold et a l, 1989), hoth

RNA subunits of these two enzymes sharing a highly conserved helical region,

P4 (Piccinelli et a l, 2005). While hoth components are involved in RNA

processing, RNase P is found in all phylogenetic domains and cleaves a pre-

tRNA to produce a mature 5’ end of the tRNA, while MRP is only found in

6
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eukaryotes and is important for rRNA processing, cleaving pre-rRNA to 5.8S 

rRNA.

1.3.5 7SL

7SL is a component of the signal recognition particle (SRP) that mediates co- 

translational insertion of secretory proteins into the endoplasmic reticulum. 

Only a few copies of the full length 7SL gene exist within the human nuclear 

genome, encoding for a highly conserved 300 nucleotide transcript (Ullu and 

Tschudi, 1984; Ullu and Weiner, 1984). 7SL serves as a scaffold protein in the 

SRP, which undergoes structural changes during the assembly of the signal 

recognition complex (Kuglstatter et al,, 2002).

1.3.6 7SK

7SK, a 330 nucleotide snRNA, was found to interact with the transcription 

elongation factor P-TEFb in a reversible manner which is transcription- 

dependent (Nguyen et a l, 2001). The 7SK-P-TEFh interaction contributes to 

an important feedback loop modulating the activity of pol II in which P-TEFb 

stimulates transcription of cellular and viral genes by phosphorylating the 

polymerase (Chen et a l, 2004). Phosphorylation of CDK9, a kinase 

comprising part of P-TEFb, is crucial for the 7SK-P-TEFb interaction.

1.3.7 SINEs

SINEs (short interspersed elements) include the mammalian Alu gene family, 

as well as the rodent B1 and B2 families, and range from 50 to 500 

nucleotides. It is estimated that 5% of the human genome consists of Alu
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repeats (-one million copies in the haploid genome), while B1 genes are 

present at 100,000 copies per haploid mouse genome (Bennett et a l, 1984; 

Consortium, 2001; Rudin and Thompson, 2001). Alu genes are most common 

in humans, while B1 and B2 families are most prevalent in rodents, B2 being 

rodent-specific. Alu genes are homologous to B1 genes (-80%) (Bennett et a l, 

1984), which are thought to be derived from 7SL RNA (Ullu and Tschudi, 

1984). B2 genes are believed to have evolved from tRNA (Schmid, 1998).

SINE sequences are retroelements, retroposons that are replicated through an 

RNA intermediate which is reverse transcribed, amplified and then integrated 

throughout the genome, accounting for their high prevalence (Williams et a l , 

2004). SINE functions are largely unknown; however, certain SINE transcripts 

have been found to be upregulated in a variety of stress conditions such as; 

heat shock (Allen et a l, 2004; Liu et a l, 1995), cisplatin treatment, etoposide 

and gamma radiation (Rudin and Thompson, 2001), cyclohexamide treatment 

(Liu et a l, 1995), and cells infected with various types of virus (Jang and 

Latchman, 1989; Panning and Smiley, 1993).

1.3.8 Viral RNAs

There are many viruses that contain short segments of coding region that signal 

pol III transcription of viral genomes. Pol III viral product VA RNA, which 

are encoded by adenovirus, divert the translational machinery of a virus 

infected cell towards efficient production of viral transcripts (White, 2001b). 

Pol III is essential in its role in adenovirus transcription as this allows the virus 

to rapidly multiply, producing high levels of transcripts at late stages of 

infection (Soderlund et a l, 1976). The Epstein-Barr virus (EBV) genome
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contains EBER-1 and EBER-2 genes that are also transcribed by the pol III 

transcription machinery. These small nuclear RNAs have regions of homology 

to VA genes and are 166 and 172 nucleotides long, respectively (Clarke et a l, 

1992; Rosa et a l, 1981). The EBV genome contains these genes, and EBERs 

have been found to play an oncogenic role in Burkitt’s lymphoma cells, 

showing an ability to repress the cell’s antiviral response as well as inducing 

growth in soft agar and the formation of tumours in mice (Romano et a l, 

1999).

1.3.9 Vault RNAs

Vault (v)RNAs ar e components of large cytoplasmic vault nucleoproteins with 

largely unknown functions and transcribed by pol III (Rome et a l, 1991). In 

humans there are four separate genes (hvgl-4) that encode similar vRNAs and 

vary in length from 86 to 142 nucleotides long (Kickhoefer et a l, 1998; Van 

Zon et ai., 2001). Recently, evidence of involvement in drug resistance has 

been discussed, but is under controversy (Mossink et a l, 2003). It was 

hypothesized that vaults could possibly contribute to drug resistance by 

transporting or sequestering drugs away from their intracellular targets.

1.4 Class III gene promoters

There are three types of promoter arrangements that are utilized by pol III 

(White, 2001b). The unusual feature of most class III promoters is the location 

of the sequence elements downstream of the transcription start site, lying 

within the transcribed region. These types of promoters are deemed type 1 and 

2. Class I and class II genes, transcribed by pols I and II, respectively, mostly
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consist of sequence elements upstream of the start site. Pol Ill’s type III 

promoter structure is more like that of class I and II genes, the sequence 

elements found upstream of the start site. A schematic of the three promoter 

types is depicted in Figure 1.1 and described in detail below.

1.4.1 Type I promoters

5S rRNA genes are the only pol III genes to utilize type I promoters. This 

promoter requires three internal elements: a highly conserved A-block (located 

between +50 and +64) an intermediate element (IE) (between +67 and +72) 

and a C-block (between +80 to +97) (Figure 1.1). Studies in % laevis have 

shown that spacing of the internal elements is important for efficient 

transcription, as alternations in the spacing of these elements has been found to 

reduce transcription activity and prevent formation of a stable initiation 

complex (Pieler et a l, 1987).

The region between the A-block and transcriptional start site is an important 

determinant of 5S rRNA expression, particularly when conditions are 

unfavourable for transcription (Keller et a l, 1990). Mutations within the A- 

and C- blocks abolish transcription, while the flanking sequences are more 

resilient to mutations (Keller et al, 1990; White, 2001a).
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Type I promoter
5S rRNA genes

t .
+ 1

Type II promoter
e.g. tRNA genes

+ 1

Type III promoter
e.g. vertebrate U6 genes

PSE

In

ft
+ 1

Figure 1.1 Three types of promoter structure that are 
utilized by pol III * The coloured boxes represent the promoter 
elements.

Abbreviations: IE, intermediate element; Tn, termination site; 
DSE, distal sequence element; PSE, proximal sequence element; 
TATA, TATA box. * Adapted from White, 2001b.
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The region between the A-block and transcriptional start site is an important 

determinant of 5S rRNA expression, particularly when conditions are 

unfavourable for transcription (Keller et al, 1990). Mutations within the A- 

and C- blocks abolish transcription, while the flanking sequences are more 

resilient to mutations (Keller et a l, 1990; White, 2001a).

1.4.2 Type II promoters

The most common promoter employed by pol III is the type II promoter, 

utilized by tRNA genes, the adenovirus VA genes, and many SINE gene 

families. Type II promoters are constructed of two lObp sequence blocks A- 

and B-, separated by 30 to 40bp (Galli et al, 1981). The A- block is 

homologous to the A- block sequence of type I promoters, functionally 

interchangeable in some species (Ciliberto et al, 1983). The location of A- 

blocks in type I and type II is different, however; in type I promoters the A- 

block lies ~50bp from the start site, while the type II promoter A- block lies at 

+10 to +20, much closer to the start site (Galli et a l, 1981). The location of 

the B- block can be extremely variable, a possible reason for this lying in the 

presence of small introns within the coding regions of some tRNA genes. 

Optimal binding of the A- and B- blocks occurs with genes that have an A- 

block and B- block at a distance of 30 to 60 base pairs, however a span of 365 

base pairs remains transcriptionally functional (Baker et a l, 1987; Fabrizio et 

al, 1987).

1.4.3 Type III promoters

Vertebrate type III promoters utilized by U6 snRNA, 7SK and MRP genes lack

any requirement for intragenic promoter elements (Das et a l, 1988; Kunkel

12
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and Pederson, 1989; Murphy et a l, 1987; Paule and White, 2000; Yuan and 

Reddy, 1991). This is unusual, as this type of promoter structure is more 

similar to that found in genes transcribed by pol I and II. The best 

characterised type III promoter is that of the U6 gene. Transcription of this 

gene requires a TATA box (located between -30 and -25), a proximal sequence 

element (PSE) (between -66 and -47) and a distal sequence element (DSE) 

(between -244 and -214) (Carbon et a l, 1987; Das et a l, 1988; Kunkel and 

Pederson, 1988; Kunkel and Pederson, 1989; Lobo and Hernandez, 1989). The 

pol Il-transcribed U2 snRNA gene and the U6 snRNA genes share 

commonality in that the U6 PSE and DSE are homologous and interchangeable 

(Kunkel and Pederson, 1988). An unusual anomaly lies in the ability of the U2 

gene (usually lacking a TATA box) to be transcribed by pol III when a TATA 

box is inserted and, inversely, crippling the U6 TATA box allows U6 to be 

transcribed by pol II (Lobo and Hernandez, 1989).

1.5 Transcription of class III genes

Before transcription can be initiated, the polymerase and many accessory 

factors, namely transcription factors, must be assembled onto the promoter. 

The process of transcription begins when a pre-initiation complex containing 

all the necessary factors is complete, proceeds with an elongation step, and 

terminates with the polymerase being recycled for further rounds of 

transcription.

13
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1.5.1 Assembly of transcription machinery on type II 

promoters

Due to the three different types of promoters utilized by pol III, there is a 

different requirement of transcription factors and the order in which they are 

brought to the promoter. Pol III has little specificity for the above promoter 

elements and therefore must employ specific transcription factor complexes to 

create a functional transcription initiation apparatus. Assembly on type II 

promoters will be discussed first (Figure 1.2), as it is the most commonly 

utilized promoter type, followed by the remaining promoters.

1.5.1.1 Transcription Factor IIIC (TFIIIC)

TFIIIC is one of the largest and most complicated transcription factors being 

studied (Geiduschek and Kassavetis, 2001; Paule and White, 2000). TFIIIC, a 

multi-subunit complex, recognizes the A- and B- blocks of both type I and type 

III promoters, binding simultaneously. In Saccharomyces, TFIIIC has been 

found to consist of two globular domains, each ~300kDa and composed of six 

subunits (Schultz et a l, 1989). In human cells, two major subunits have been 

separated chromatographically into two sub-complexes, TFIIIC 1 and TFIIIC2 

(Yoshinaga et al., 1987). Little is known concerning TFIIIC 1, although 

sedimentation analysis suggests a possible mass of 200kDa and is required for 

transcription activity (Kovelman and Boeder, 1992). TFIIIC2 is the best 

characterized of the TFIIIC subunits, with a total of five subunits, binding to 

the B- block promoter through its 220 kDa subunit (Geiduschek and 

Kassavetis, 2001). TFIIIC2 initially recognizes the type II promoter, and then 

recruits TFIIIC 1 and transcription factor IIIB (TFIIIB) (Figure 1.2).

14
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tDNA TFIIIC

TFIIIB

4 -
Tn

t -

Tn

Tn

Figure 1.2 Step-by-step assembly of pol III basal 
transcription machinery on a type 2 promoter.

TFIIIC is recruited first and binds to the A- and B- blocks 

simultaneously. TFIIIB is then bound to TFIIIC through 

protein-protein interactions, followed by the binding o f the 

polymerase. The transcription start site is noted as +1 and the 

termination site as Tn.

15



1 Introduction

TFIIIC subunits 63, 90 and 102 bind to Brfl (a subunit of TFIIIB), while 

TFIIIC63 and 102 binds to TATA-binding protein (TBP) (another TFIIIB 

subunit) (Hsieh et a l, 1999b; Hsieh et a l, 1999a). Binding of TFIIIC 1 and 

TFIIIB enhances and extends the protein footprint produced by TFIIIC2 to 

include the A- block (Wang and Boeder, 1998; Yoshinaga et a l, 1987). 

Photocrosslinking experiments have shown that the various subunits of TFIIIC 

span across the length of the entire gene, creating the appearance of a dumbbell 

when bound (Bartholomew et a l, 1990). Both TFIIIC 1 and TFIIIC2 are 

required for expression of 5S rRNA, VA and tRNA genes, while U6 and 7SK 

genes require TFIIIC 1 but not TFIIIC2 for transcription.

1.5.1.2 Transcription factor IIIB (TFIIIB)

TFIIIC serves to recruit TFIIIB to the promoter, TFIIIB being regarded as an 

extremely important factor in the pol III transcription system. TFIIIB is 

composed of at least three proteins in both Saccharomyces cerevisaie and 

humans: TBP, and two TBP-associated factors, currently known as TFIIB- 

related factor (Brfl) and B double prime (Bdpl). TFIIIB has heen shown to be 

an important target for cell cycle regulation in actively proliferating cells, 

functioning as a point of control by both tumour suppressors and transforming 

proteins, helping to determine a cell’s biosynthetic capacity (White, 1998). In 

yeast, TFIIIB alone assembled upstream of the transcription start site can direct 

multiple rounds of transcription on the tRNA and U6 snRNA genes (Dieci and 

Sentenac, 2004).

TBP is a 34kDa general transcription factor utilized by the transcription 

machineries of pol I, II and III (Cormack and Struhl, 1992; White and Jackson,
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1992). In the case of pol III, the involvement of TBP was unexpected because 

most class III genes lack TATA boxes. The first indication that TBP 

functioned with TFIIIB in an active transcription complex was uncovered 

when a population of TBP molecules copurified with TFIIIB activity in yeast 

(Margottin et a l, 1991), later found to be bound to Brf, which can be bound in 

the absence of DNA through a conserved region of TBP (Colbert et a l, 1998; 

Shen et a l, 1998).

The 160kDa subunit Bdpl was first found to copurify with Brfl (Kassavetis et 

a l, 1991b). Bpdl is required for transcription from all pol III promoter types 

and in contrast to Brfl, Bdpl fonns a weak association with TBP when there is 

no DNA template present (Schramm et a l, 2000). As with Brfl, Bdpl makes 

direct contacts with TFIIIC, allowing TFIIIC to bring TFIIIB to the promoter 

(Geiduschek and Kassavetis, 2001). Recently, HsBdpl activity has been 

shown to be an essential component in TFIIIC 1 and TFIIIC 1-like activity when 

the addition of this protein alone was able to reconstitute transcription from a 

VAl gene (Weser et a l, 2004).

Brfl shares N-terminal homology to the pol II transcription factor IIB (TFIIB) 

(Schramm and Hernandez, 2002). Brfl is a 90kDa protein that is initially 

contacted by DNA-bound TFIIIC, which then serves to recruit the pol III 

subunit C34 (RPC39 in human) (Brun et a l, 1997). Brfl is the only TFIIIB 

subunit to make direct contacts with pol III itself, localizing pol III to the 

transcription start site and facilitating transcription initiation. Dividing Brfl in 

half and using these two components in an in vitro transcription system still
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reconstitutes active transcription to the same degree as non-divided Brfl 

(Kassavetis et a l, 1998).

1.5.2 Assembly of transcription machinery on type I promoters

1.5.2.1 Transcription factor IIIA (TFIIIA)

Transcription initiation at a type I promoter requires the gene-specific 

transcription factor III-A (TFIIIA), a 40kDa single polypeptide. TFIIIA acts as 

a platform, allowing TFIIIC to be recruited onto type I promoters, although the 

manner in which TFIIIA promotes TFIIIC binding is uncertain (Schramm and 

Hernandez, 2002). This protein consists of nine tandem zinc fingers, the N- 

terminal three fingers recognizing the C- block, the middle fingers the 

intermediate element, and the C-terminal three fingers contacting the A- block 

(Nolte et a l, 1998; White, 2001b). C- block binding contributes to 95% of the 

total binding affinity of full length TFIIIA (Clemens et a l, 1992). After 

TFIIIC is bound to TFIIIA, the basal transcription machinery proceeds in the 

same order as in a type II promoter, TFIIIC bringing TFIIIB, and hence pol III, 

to the site of transcription initiation.

1.5.3 Assembly of transcription machinery on type III 

promoters

The TFIIIB that is recruited does not contain Brfl as in type I and II promoters, 

but instead Bdpl, TBP and Brf2, a Brfl-related factor. TFIIIB does not require 

TFIIIA or TFIIIIC for recruitment, but binds to the TATA box and FSE by the 

TBP subunit of TFIIIB and SNAPc (snRNA activator protein complex) (Lagna
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et a l, 1994; Murphy et a l, 1992). Recognition of the special promoter 

structure type III is complex. SNAPc and Oct-1 are recruited to the upstream 

sequence elements and bind cooperatively to their spatially separated PSE and 

DSE (Geiduschek and Kassavetis, 2001; Schramm and Hernandez, 2002). The 

affinity of SNAPc to its PSE is dependent on the DNA- bound Oct-1 and 

protein-protein interactions between SNAPc and Oct-1 increase TFIIIB- 

SNAPc recruitment (Murphy et a l, 1992). Once stabilized, PSE occupancy is 

stimulated, pol III is recruited and transcription is initiated.

1.5.4 Elongation and termination

Once pol III has been recruited to a promoter it separates the DNA helix 

around the initiation site, forming a transcription bubble (Geiduschek and 

Kassavetis, 2001). This process may require the active participation of TFIIIB, 

possibly through promoter opening, but the exact mechanism remains to be 

determined (Constanzo et a l, 2001; Kassavetis et a l, 1998). As pol III 

transcribes the gene, the DNA bubble moves with it, elongating RNA at an 

average of -20 nucleotides per second. Transcription by pol III is not uniform, 

however, as pol III moves along certain nucleotides more quickly than others 

(White, 2001a). Studies have shown that pol III severs its connection with 

TFIIIB at an early stage, after several ribonucleotides have been synthesized 

(Geiduschek and Kassavetis, 2001). Pol III does not require elongation factors, 

unlike pol I and pol II. The small size of class III genes may not make this 

necessary, or it is possible that one or more pol III subunits may carry out this 

function (White, 2001b).
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Transcription termination begins when pol III recognizes short runs of U 

(Geiduschek and Kassavetis, 2001). The efficiency of termination seems to be 

influenced by the flanking sequence and increases with greater lengths of U- 

run. In human VAl and tRNA genes (as well as yeast class III genes), pol III 

is recycled without being released from the template and, hence, the slow 

initiation step is avoided. This mechanism may occur by specific handing-off 

mechanisms or purely stoichiometric recycling. In yeast, pol III has been 

shown to be directly transferred from the tennination site to the promoter. A 

preferential termination pathway allows RNA release and transcription 

reinitiation, without the release of pol III (Dieci and Sentenac, 1996). The 

precise mechanism exploited by human pol III still remains to be determined, 

but it has been shown to be retained in the original transcription complex on 

VAl and tRNA genes without dissociating after each transcriptional round and 

may be assisted by TFIIIB and TFIIIC (Ferrari et a l, 2004; White, 2001b).

1.6 Proteins influencing pol III transcription

Various proteins have been found to influence pol III transcription, mainly 

through targeting transcription factor IIIB, including c-Myc, retinoblastoma 

protein (RB), p53, and protein kinases CK2 and ERK.

1.6.1 Influencing pol III transcription during proliferation

1.6.1.1 c-Myc

Overexpression of the cellular oncogene product c-Myc has been studied in a 

variety of human cancers including lymphomas and leukaemias (Spencer and 

Groudine, 1991). c-Myc is able to coordinate cell division and growth through 

pol II and pol III and enhances pol I transcription of rRNA genes leading to
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increased protein biosynthesis (Grandori et a l, 2005). c-Myc directly binds to 

TFIIIB through a protein-protein interaction between TFIIIB and the N- 

terminal transactivation domain of c-Myc. The interaction between c-Myc and 

TFIIIB is significant, considering TFIIIB’s ability to regulate pol III 

transcription. Activation of c-Myc has been found to increase translation and 

growth, which precedes DNA replication and cell division (Rosenwald, 1996; 

Schmidt, 1999). Loss of endogenous c-Myc depleted from HeLa cells using 

small interfering RNA caused a decrease in pol III products, namely tRNA and 

5S rRNA (Felton-Edkins et a l, 2003b). Overabundance of exogenous c-Myc 

rapidly increases transcription of the latter two gene types (Gomez-Roman et 

a l, 2003). These experiments in combination provide evidence that c-Myc 

directly regulates pol III transcription via TFIIIB.

1.6.1.2 Retinoblastoma protein (RB)

The discovery of RB was pivotal to the further understanding of the 

mechanisms that influence a cell’s transformation. It has been suggested that 

the pathway involving RB may be disrupted in all human malignancies 

(Weinberg, 1995). RB contains regions of homology to both TBP and Brfl, 

which may assist in its ability to mimic these molecules and therefore disrupt 

TFIIIB (Larminie et a l, 1997). Using extracts prepared from RB-knockout 

mice, Larminie et a l, demonstrated a specific increase in TFIIIB activity when 

the Rb gene was disrupted, as well as a higher rate of pol III transcription 

(1997). RB is thought to decrease the rate of transcription by disrupting the 

interaction between TFIIIB and TFIIIC and also disturbing the interaction 

between TFIIIB and pol III (Sutcliffe et al., 2000). This, in turn, inhibits the 

synthesis of tRNA and 5S rRNA. In non-proliferating cells, RB is primarily
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found in its underphosphorylated form, interacting with many proteins, 

including TFIIIB (Scott et a l, 2001). TFIIIB only associates with this 

underphosphorylated form of RB. The TFIIIB-RB complex inhibits further 

binding of TFIIIB to TFIIIC, which decreases class III gene expression 

(Sutcliffe et a l , 2000). Loss of class III gene expression (namely rRNA and 

tRNA) leads to decreased protein biosynthesis and may constitute an important 

role in tumour suppression (White, 1998). RB and TFIIIB together play an 

important role in cell cycle progression, which will be discussed below.

Two closely RB-related proteins, pl07 and pI30, also appear to play a role in 

repression of TFIIIB. Sutcliffe et a l, demonstrated that a subunit of TFIIIB 

interacts physically with p i07 and p i30. This TFIIIB subunit was Brfl, 

demonstrated by binding of both endogenous and recombinant p i07 and p i30 

to Brfl during immunoprécipitation assays (Sutcliffe et a l, 1999). When p i07 

and pl30 are not repressing TFIIIB, pol III transcription is deregulated and 

transcription increases, with a consequent increase in the cell’s biosynthetic 

capacity (reviewed in White, 1997). In contrast, pol I transcripts only appear 

to increase in fibroblasts lacking RB and p i30, with no increase in fibroblasts 

lacking p i30 and p i07 (Ciarmatori et a l, 2001).

1.6.1.3 ERK

Protein kinases ERK and CK2 have been shown to stimulate pol III 

transcription in mammalian cells, via TFIIIB (Felton-Edkins et a l, 2003b; 

Johnston et a l, 2002). ERK is associated with the promotion of growth 

through activation of translational capacity and ribosome biogenesis 

(Brandenburger et a l, 2001 ; Whitmarsh and Davis, 2000). Felton-Edkins et al
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revealed that activation of ERK is required for TFIIIB binding to pol III and 

TFIIIC, and that only the activated form of ERK binds TFIIIB (2003). More 

specifically, the interaction between TFIIIB and ERK was found to be between 

ERK and the subunit of TFIIIB, Brfl, which is phosphorylated by ERK in vitro 

and in vivo, Co-immunoprecipitation assays using cells incubated with serum 

or MEK inhibitor suggests that ERK activity may promote the interaction of 

TFIIIB, TFIIIC2, and pol III in proliferating cells, perhaps stimulating 

initiation complex assembly. However, because phosphorylation of Brfl is 

only partially hindered by blocking ERK activity in vivo, another protein 

kinase, such as CK2, may be required for maximal transcription (Felton-Edkins 

et a l, 2003b; Johnston et a l, 2002).

1.6.2 Pol III transcription during cellular stress

1.6.2.1 CK2

CK2 has many roles within a cell. One role includes stimulation of pol III

transcription in yeast and mammalian cells, via TFIIIB, directly linking it with

cellular growth and proliferation (Brown et a l, 2000; Carroll and Marsjak,

1989; Felton-Edkins et a l, 2003b; Johnston et a l, 2002; Munstermann et a l,

1990). In another role involving cellular stress in yeast, CK2 relays DNA

damage signals to the pol III machinery, releasing its catalytic subunits while

the remaining subunits stay bound to TFIIIB. In turn, TFIIIB cannot be

phosphorylated, and hence, activated, which results in the repression of pol III

transcription (Ghavidel and Schultz, 2001). Johnston et a l, demonstrated the

association between CK2 and TFIIIB, and CK2’s ability to stimulate pol III

transcription by binding and phosphorylating TFIIIB and assisting its

recruitment by TFIIIC2, More specifically, Brfl was found to require
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phosphorylation by CK2 in order to interact efficiently with TFIIIC2. 

Transcription by pol III requires phosphorylation by CK2, however, CK2 

phosphorylation of Bdpl, Brf2 and TBP together is inhibitory (Hu et a l, 

2003).

1.6.2.2 p53

p53 is an important tumour suppressor that is inactivated in many human 

cancers (Vousden, 2000). p53 may become activated in response to cellular 

stress such as; hypoxia, radiation and oncogenic stimuli, inducing cell death. 

In most of these cancers the mutation lies in the central core domain, a region 

fundamental in its ability to regulate TFIIIB (Stein et a l, 2002). The tumour 

suppressor protein p53 targets TFIIIB, blocking its function and therefore 

serving as a general repressor of pol III transcription (Cairns and White, 1998). 

p53’s N-terminal domain binds TFIIIB, through its direct interaction with TBP, 

and thereby prevents promoter occupancy by TFIIIB (Chesnokov et a l, 1996; 

Crighton et a l, 2003), When this occurs, TFIIIB disassociates from both 

TFIIIC2 and pol III (Crighton et a l, 2003). TFIIIB appears to be less 

susceptible to p53 once it has assembled into a preinitiation complex. 

Immunoprécipitation assays have shown that Brfl can assemble into specific 

complexes with cellular p53 (Cairns and White, 1998). Since TFIIIB has an 

important role in a cell’s biosynthetic capacity, p53’s ability to release TFIIIB 

from repression may add to the loss of growth control in many types of 

tumours.
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1.6.2.3 Mafl

Mafl, a novel and conserved protein, has recently been found to negatively 

regulate pol III transcription in Saccharomyces cerevisiae (Pluta et a l, 2001). 

Pol III repression by Mafl occurs in response to a variety of conditions, 

suggesting that this protein may be a convergence point in major nutritional 

and stress-signalling pathways. This protein will be discussed further in the 

results section.

1.7 Regulation of pol III during the cell cycle

TFIIIB has been shown to be an important target for cell cycle regulation of 

pol III transcription. Through this factor, pol III transcription may be 

deregulated, providing striking evidence that deregulation tlirough TFIIIB 

plays an essential role in driving mammalian cells towards tumour 

development.

There are four phases of the somatic cell cycle; S phase (for DNA Synthesis), 

where chromosomal replication occurs, M phase (for Mitosis), and G1 and G2, 

or Gap phases. Two thirds of the way through G1 the restriction point (R) 

occurs, where the cell is committed to replicate and divide irrespective of the 

presence of external growth factors. The cell cycle has a profound effect upon 

gene expression, especially during mitosis, when transcription is generally 

repressed. TFIIIB subunits TBP and Brfl have been shown to be 

hyperphosphorylated during this period, which inactivates TFIIIB and 

represses pol III transcription (Fairley et a l, 2003; White et a l, 1995). As 

TFIIIB leaves mitosis, hyperphosphorylation of TFIIIB is rapidly reversed.
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TFIIIB activity remains low in early G1 phase and increases gradually as cells 

move into S phase (White et a l, 1995). Because of this increase, pol III 

transcription is 2 to 3- fold higher in S and G2 than in early Gl. During early 

Gl, active TFIIIB is a limiting factor for pol III transcription, but by S and G2 

phases it increases to levels over that of TFIIIC. This increases the rate of pol 

III transcription at this time point.

This was further demonstrated by Scott et al using serum-starved cells and 

add-back experiments, where fractions containing TFIIIB stimulated 

transcription in serum-starved and growing cells (2001). No response was 

observed when a fraction containing TFIIIC and pol III was added. This 

suggests that TFIIIB is indeed limiting, while TFIIIC and pol III are in excess. 

The subunits Brfl and TBP did not decrease during serum deprivation, 

suggesting that the amount of TFIIIB is not responsible for its own loss of 

activity.

RB has proved to be an important factor in cell cycle regulation in its 

interaction with TFIIIB. RB and RB-related protein p i30 bind and repress 

TFIIIB during GO and early Gl phase, then dissociate from TFIIIB shortly 

before S phase, causing an increase in transcription (Brown et a l, 2000). RB 

and p i30 were shown to bind to the Brfl subunit of TFIIIB (Scott et a l, 2001). 

This dissociation is caused by the phosphorylation of RB in mid- to late Gl 

phase. Because TFIIIB is known to bind only the underphosphorylated form 

of RB, it suggests that TFIIIB is released from repression by RB at the Gl/S 

transition due to hyperphosphorylation of RB by the cyclin-dependent kinases 

D and E.
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TFIIIB and its ability to regulate pol III transcription in growth-arrested cells 

has been the source of conflicting experiments. Tower and Sollner-Webb 

concluded that a specific reduction in TFIIIB activity was responsible for down 

-regulating pol III transcription in growth-arrested ceils; however, it was not 

determined by what mechanism (1988). Another laboratory demonstrated that 

HeLa cells down-regulate pol III transcription when grown in low serum, due 

to a decrease in the activity of TFIIIC2 (Hoeffler et al, 1988). However, HeLa 

cells grow actively in these studies, despite low serum conditions, so these 

experiments may not provide a clear picture of the actions of pol III as it exits 

the cell cycle.

1.8 Cell growth and cell cycle progression

Although cell growth is necessary for sustaining eukaryotic organisms, the

mechanisms in which cell growth and cell cycle progression are coupled

together remains fairly elusive. Cell growth is necessary for cell cycle

progression, while cell cycle progression is not required for cell growth

(Johnston et a l, 1977). Further insight was achieved when studies showed that

cells must reach a critical mass before DNA replication and cell division occur

(Fingar et a l, 2002; Johnston et a l, 1977; Zetterberg and Killander, 1965).

This critical mass is the accumulation of protein that makes up 80 to 90% of a

cell’s dry mass (Zetterberg and Killander, 1965). The amount of critical mass

becomes important when linked to a cell’s biosynthetic capacity and how it is

controlled. In transformed and tumour cells, the pathways that control the

accumulation of mass and, hence, progression into the cell cycle is altered,

causing abnormal and uncontrolled cell division. Investigation into the
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common proteins and pathways that link cell cycle progression and cell growth 

may allow further insight into the events that must take place for cell 

transformation.
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1.9 Aims of Masters Thesis

TFIIIB has proved to be an essential molecule involved in pol III basal 

machinery and regulation and is an important target for cell cycle regulation in 

actively proliferating cells (White, 1998). TFIIIB is an important determinant 

of 5S rRNA and tRNA production, affecting a cell’s biosynthetic capacity. 

The importance of this transcription factor was further proven when many key 

proteins such as tumour suppressors p53 and RB, oncogene c-Myc, kinases 

CK2 and ERK, and negative pol III regulator Mafl were found to target this 

molecule. The mechanisms in which these proteins affect TFIIIB have been 

researched, hut the exact molecular mechanisms of regulation are not yet 

understood. This is vital when considering that the deregulation of TFIIIB 

may be a significant step towards tumour development.

My overall project aims were to use three different methods to decrease pol III 

transcription, and observe transcript expression, proteins levels, and 

proliferation rates. Brfl was found to be an important TFIIIB subunit affected 

by all of the key proteins listed above, therefore, this subunit seemed most 

likely to have an effect on transcription, and hence, proliferation rates, when 

targeted by small interfering RNA (siRNA) in mammalian cells (Crighton and 

Woiwode; Desai et a l, 2005; Felton-Edkins et a l, 2003b; Gomez-Roman et 

a l, 2003; Johnston et a l, 2002; Larminie et a l, 1997).

Although siRNA teclinology can be extremely effective, it can be time-

consuming and expensive, so other methods were sought to decrease pol III

transcription. In vitro, tagetitoxin has been found to specifically inhibit pol III

transcription, probably by inhibiting elongation and delaying the accumulation

29



1 Introduction

of full-length transcript (Steinberg and Burgess, 1992; Steinberg et a l, 1990). 

Tagetitoxin seemed an excellent candidate for decreasing pol III transcription 

in mammalian cells, and may prove to be a more straightforward method, 

bypassing complications such as siRNA design and transfection efficiencies.

Yet another way to decrease pol III transcription is to use a negative effector of 

RNA polymerase III, such as M afl. In Saccharomyces cerevisiae, Mafl was 

found to be a nuclear protein that interacts with pol III and serves to help 

regulate the level of cellular tRNA in response to external signals (Pluta et a l , 

2001). The last aim of this project was to create a Tet-On mammalian cell line 

that overexpresses Mafl when induced, to observe the levels of pol III 

transcripts and proliferation rates. Mafl siRNA was also used to examine 

opposing effects.

Thus, the main objective of this Masters is to gain insight into the effects of 

decreasing pol III transcription by various methods in mammalian cell lines, 

targeting either the polymerase itself, or proteins that interact with it.
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Materials and Methods
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2.0 Materials and Methods

2.1 Cell culture

2.1.1 Culture of HeLa, NIH 3T3, and MCF-7 cells

HeLa and NIH 3T3 cells were cultured in DMEM (Dulbecco’s Modified Eagle 

Medium), supplemented with 10% (v/v) foetal bovine serum (FBS), 2 nM L- 

glutamine, 100 U/ml penicillin and 100 pg/ml streptomycin. MCF-7 cells were 

grown in RPMI 1640 medium, supplemented with 10% FBS, 2 nM L- 

glutamine, 100 U/ml penicillin and 100 pg/ml streptomycin. All cell types 

were grown in a humidified atmosphere which contained 5% CO2  at 37°C. A 

class II hood was used for aseptic techniques, along with sterile equipment and 

reagents. Cells were passaged when subconfluent; approximately every 2 to 3 

days. After media was aspirated from the flask, 2 ml of buffered trypsin- 

EDTA (0.05% (w/v) trypsin, 0.02% (w/v) EDTA) was added to the cells, and 

then aspirated immediately. A further 2 ml was added and left at room 

temperature (~22°C) until cells appeared to begin to dislodge from the flask 

wall, approximately 1 -4 minutes, depending on the cell type. The remaining 

trypsin was then aspirated. The flask was gently tapped and fresh media was 

immediately added to the dissociated cells in order to neutralise the trypsin.

Cryo-freezing was used for storage of all cell lines. Cells were trypsinized as 

described above and, following pelleting by centrifugation, cells were 

resuspended in a solution of 70% FBS, 20% DMEM and 10% 

dimethylsulphoxide (DMSO) with no other supplements. Cells were aliquotted 

into cryo-tubes at density of 2x10^ cells/ml/tube and frozen in stages by 

initially being placed at -80°C overnight and subsequently being transferred to 

liquid nitrogen storage the next day. Thawing of cells was performed rapidly
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by placing cryo-tubes in a 37°C water bath until just thawed. Cells were then 

mixed with fresh media, centrifuged, and the supernatant aspirated off to 

ensure removal of DMSO prior to resuspension in normal culture media, 

containing 10% (v/v) FBS DMEM.

2.1.2 Culture of pTRE2.HA.HsMafl (Tet-on) HeLa cells

HeLa cells that express the tetracycline-controlled transactivator (tTA) were 

purchased from Clontech, BD Biosciences and routinely cultured in DMEM 

supplemented with 10% FBS (Tet-System Approved, Clonetech), 2 mM L- 

glutamine, 100 U/ml penicillin, 100 pg/ml streptomycin, 100 pg/ml G418 and 

100 pg/ml hygromycin B. All other culturing techniques were performed as in 

2.1.1, above.

2.2 Preparation of total cellular RNA

Total cellular RNA was isolated from cells when approximately 80% confluent 

using TRI reagent (Sigma), a solution of guanidine thiocyanate and phenol, in 

accordance with the manufacturer’s instructions. Media was aspirated off cells 

grown in 10 cm tissue culture dishes and residual media removed with two 

washes using 5 ml of ice-cold PBS. Cells from each dish were harvested by 

scraping in 1 ml of TRI reagent per dish and transferred to a sterile eppendorf 

tube. Cells were left to stand for 5 minutes at room temperature to ensure 

complete dissociation of nucleoprotein complexes. 0.2 ml of chloroform was 

then added to each tube and the samples vortexed for 15 seconds. The samples 

were then allowed to stand for a further 15 minutes at room temperature prior 

to being centrifuged at 13,000g for 15 minutes at 4°C. This resulted in 

separation of the samples into three phases: a lower red organic phase
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containing protein, a middle white interphase containing precipitated DNA and 

an upper colourless aqueous phase which contains the RNA. The upper phase 

was carefully removed by pipetting, ensuring no contamination from the 

remaining phases, and transferred to fresh eppendorf tubes. Isopropanol (500 

pi) was added to each of these tubes containing the aqueous RNA and 

thoroughly mixed by repeated inverting. Following 5-10 minutes incubation 

at room temperature to allow maximal precipitation of RNA, samples were 

centrifuged at 13,000g for 10 minutes at 4°C. The supernatant was then 

removed and the remaining RNA pellet was washed with 1 ml of 75% (v/v) 

ethanol made up with diethypyrocarbonate (DEPC)-treated dHzO. DEPC is 

0 .1 % (v/v) diethypyrocarbonate/sterile water which is mixed into solution, left 

overnight at room temperature and then autoclaved to inactivate the remaining 

DEPC. The samples were then vortexed briefly, subsequently 

microcentrifuged at 7,500g for 5 minutes at 4°C and the supernatant aspirated 

off. Residual supernatant was removed with a P20 pipette following pulse 

microcentrifugation. Appropriate volumes of DEPC-dHzO, in the range of 10- 

30 pi (depending on the size of the RNA pellet), were added to the RNA 

pellets and the samples were heated in a 65 °C water bath for 10 -  15 minutes 

to facilitate resuspension of the RNA. The samples were stored at -80°C.

2.3 Quantification of nucleic acids

Concentrations of nucleic acids were determined by spectrophotometry, where 

an OD of 1 at 260 nm correlates to 50 pg/ml of double-stranded DNA and 40 

pg/ml of single-stranded DNA and RNA. Readings were zeroed in the same 

solution in which the sample was diluted. RNA concentration was determined 

by A2 6 0 using the calculation:
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RNA concentration (pg/ml) = absorbance at 260 nm x 40 x dilution factor.

DNA concentration was determined by the equation:

DNA concentration (pg/ml) = absorbance at 260 mn x 50 x dilution factor.

A ratio of absorbance at 260 nm to 280 nm in the range of 1.8 to 2 indicated 

the RNA samples were relatively free from contamination with protein.

2.4 Reverse transcriptase-polymerase chain reaction 

(RT-PCR)

2.4.1 cDNA preparation

cDNAs were prepared from 3 pg of RNA (diluted to 1 pg/pl). 2 pi of random 

primers (hexanucleotide mix, (Roche)) diluted 1:10 with DEPC- dHaO) was 

mixed with 19 pi of DEPC-dHaO. Primer annealing was carried out at 80“C in 

a final volume of 24 pi and allowed to proceed for 10 minutes before 

transferral to ice, then microfuged briefly. 8  pi of 5 x First Strand Buffer 

(Invitrogen), 4 pi of 0.1 M dithiothreitol (DTT), 2 pi of 10 mM dNTP mix 

prepared in DEPC-dHaO) and 1 pi (200U) of Superscript II Reverse 

Transcriptase (Invitrogen) was added to initiate reverse transcription, which 

was performed for 1 hour at 37°C before the reaction was stopped by heating at 

70°C for 15 minutes. Resulting cDNA was stored at -20°C.

2.4.2 Polymerase chain reaction

PCRs were carried out using a Techne TC-312 PCR thermocycler. 2 pi of 

cDNA was amplified with 20 pml of the relevant primers under gene-specific 

denature, cycling and final extension cycling parameters (Table 2.1, below). In 

addition to the primers, reaction mixtures also contained 0.5 U of Taq
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polymerase (Promega), 1 X Taq DNA polymerase buffer (Promega), 1.5 mM 

MgCla, 0.2 mM of each dNTP and 1 pCi of [a^^P] dCTP (Amersham) made up 

with nuclease-free water to 2 0  pi final volume.

Table 2.1 Primers employed in RT-PCR reactions

Transcript Primers Product

Size

Cycle

Number

Program

Parameters

ARPP PO

5 ’-GCACTGGAAGTCCAACT 

ACTTC-3’

5 ’-TGAGGTCCTCCTTGGT 

G A AC AC-3’

265bp 18-22

95°C for 2 min 

95°C for 1 min 

58°Cfor30 s 

72°C for 1 min 

72°C for 3 min

B2

5 ’-GGGGCTGGAG AGATGG 

CT-3’

5’-CCATGTGGTTGCTGGG

AT-3’

120bp
15-18

95°C for 3 min 

95°C for 30 s 

58°Cfor30s 

72°C for 30 s 

72°C for 5 min

Brfl

5 ’-AAATTCTGTGAGCCTCT 

TCCGTAGTG-3’

5 ’ - AG ACCC ATGCTTGTAC A 

TTCCACG-3’

260bp 21-24

95 °C for 2 min 

95°C for 1 min 

60°C for 1 min 

72°C for 1 min 

72 °C for 5 min

Lamin A/C

5 ’-GCTGAAAGCGCGCA 

ATAC

5 ’ -C AGTCGGGTCTC ATG 

ACG-3’

333bp 30-35

94°C for 3 min 

94°Cfor30 s 

56° C for 30 s 

72°Cfor30 s 

72° for 4 min
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Mafl (mouse)

5’-GCAGTTCTGCCAGG

AGGGCCA-3’

5 ’ -CTCC ATGGTGCTGGTCTC 

CTC-3’

613bp 25-30

95°C for 2 min 

95°C for 30 s 

60°C for 30 s 

72°C for 1 min 

72°C for 5 min

Mafl (human)

5 ’ -CC ATG A ACTC AC AGCTG 

AC-3’

5 ’ -GGCTCTGCTG A AGTC AT 

AG-3’

307bp 25-30

95°C for 2 min 

95°Cfor30 s 

58°C for 30 s 

72°C for 1 min 

72°C for 5 min

5 ’ -GGCTCTGTGGCGC A ATG 

GATA-3’

5’-TTCGAACCCACAACCTT

TGAATTGCTC-3’

74bp 20-22

95° for 2 min 

95° for 30 8 

66° for 30 s 

72° for 15 s 

72° for 5 min

tRNA^'"

5 ’-GTC AGGATGGCCGAG 

TGGTGTAAGGCGCC-3 ’ 

5’CCACGCCTCCATACGGAG 

ACCAGACCC-3’

88bp 25-30

95°C for 3 min 

95°C for 30 s 

68°C for 30 s 

72°C for 30 s 

72°C for 5 min

tRNA^""

5 ’-GG ATGATCCTC AGTG 

GTC-3’

5’-GGTGGAATTGAACCA

CTC-3’

74bp 21-24

95°C for 3 min 

95°C for 30 s 

60°C for 30 s 

72°C for 30 s 

72°C for 5 min
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5S rRNA

5’-GGCATACCACCCTGAA

CGC-3’

5’-CAGCACCCGGTATTCCC

AGG-3’

107bp 19-22

95 °C for 3 min 

95° for 30 s 

58° for 1 min 

72° for 1 min 

72° for 10 min

7SK

5 ’ -CG ATCTGGTTGCG AC AT 

CTG-3’

5 ’-CGTTCTCCTACAAATG 

G AC-3’

247bp 25-30

95°C for 3 min 

95°C for 30 s 

57°C for 30 s 

72°Cfor30s 

72°C for 10 min

snRNA U6

5 ’-GCTCGCTTCGGCAGC A 

CATATAC-3’

5’-TATCGAACGCTTCACGA

ATTTGCG-3’

96bp 18-20

95°C for 3 min 

95°C for 1 min 

60°C for 30 s 

72°C for 1 min 

72°C for 5 min

Reaction products were resolved on 7% (v/v) polyacrylamide sequencing gels 

containing 7 M urea and 0.5 x TBE (45 mM Tris-HCl, 45 mM boric acid, 

0.625 mM EDTA pH 8.0). Gels were pre-run for 30 minutes at 40 W in 0.5 x 

TBE and 1.5 pi of each sample was loaded after being boiled at 100°C for 2 

minutes. Electrophoresis was carried out for a further 1 hour at 40 W and the 

gel subsequently vacuum-dried at 80°C for 1 hour before being exposed to 

autoradiography film in order to detect the radiolabelled products.

2.5 Preparation of whole cell extracts

All whole cell extracts were prepared from cells grown in 6 -well culture plates 

or 1 0  cm tissue cultme dishes to facilitate scraping, and were harvested at 

approximately 80% confluency. Preparation was performed on ice as rapidly
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as possible and all solutions and tubes were kept ice-cold to maintain cell 

activity. Cells were washed twice with 5 ml of PBS before being scraped with 

a plastic spatula into 5 ml of ice-cold PBS. Cells were collected in chilled 50 

ml Falcon tubes and pelleted by slow centrifugation at llOOg for 8  minutes at 

4°C. A small volume of fresh ice-cold PBS was used to resuspend the cell 

pellets and allow the cells to be transferred to eppendorf tubes. These were 

then microcentrifuged briefly at 4°C to re-pellet the cells and the PBS 

removed. The volumes of cell pellets were then measured by comparison with 

pre-measured volumes of water. Optimal micro extraction requires pellets to be 

between 50-150 pi, giving approximately 0.5-3 x 10̂  cells; larger pellets were 

subdivided. An equal volume of freshly made pre-cooled microextraction 

buffer (450 mM NaCl, 50 mM NaF, 20 mM Hepes pH 7.8, 25% glycerol, 1 

mM DTT, 0.5 mM PMSF, 0.2 mM EDTA, 40 pg/ml bestatin, 1 pg/ml trypsin 

inhibitor, 0.7 pg/ml pepstatin, 0.5 pg/ml aprotinin, 0.5 pg/ml leupeptin) was 

added to the cells and, following resuspension, the cells were immediately 

snap-frozen on dry ice. Cells were then placed in a 30°C water bath until just 

thawed before being immediately returned to diy-ice. This freeze-thaw 

procedure was performed a total of 3 times to ensure optimal cell lysis, with 

cells then being microcentrifuged at 7,000g for 7 minutes at 4°C after the third 

thaw. The supernatant was carefully decanted into a fresh tube, leaving behind 

the cell debris, and then promptly aliquotted and snap frozen. These extracts 

were then stored at -80°C.

2.6 Measuring protein concentration

The concentration of proteins in whole cell extracts was determined by using 

Bradford’s reagent (Biorad). Quantification of the colour reaction produced
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when 1 ml of diluted reagent (1:4 in distilled water) was mixed with a volume 

of sample containing protein in the range o f- 1 - 1 2  pg gave a precise indication 

of protein concentration. A Bradford assay standard curve was made by 

measuring the absorbance of bovine serum albumin (BSA) standards at 595 nm 

in a UV spectrophotometer, as increasing amounts of protein in Bradford’s 

reagent creates a linear curve. Once a standard curve was created within 

Microsoft E x c e l ™ ,  sample measurements of absorbance were plugged into the 

equation created by the standard curve, in this way obtaining the protein 

concentration. Three dilutions of each sample were measured and averaged to 

provide accurate concentrations.

2.7 SDS-polyacrylamide gel electrophoresis (PAGE) 

analysis

2.7.1 Separation of proteins by SDS-PAGE

Proteins were resolved on denaturing polyacrylamide gels according to 

molecular weight by electrophoresis. Typically, 7.8% polyacrylamide 

resolving mini-gels (375 mM Tris pH 8 .8 , 0.1% SDS) were used with a 

stacking layer comprised of 4% polyacrylamide gel (125 mM Tris pH 6 .8 , 

0,1% SDS) based on the discontinuous buffer system described by Laemmli 

(Laemmli, 1970). Samples were boiled for 2 minutes in 1 x protein sample 

buffer (62.5 mM Tris pH 6 .8 , 0.5% SDS, 5% |3-mercaptoethanol, 10% 

glycerol, 0.125% bromophenol blue) prior to loading. Electrophoresis was 

performed in 1 x SDS running buffer (0.1% SDS, 76.8 mM glycine, 10 mM 

Tris, pH 8.3) at an initial voltage of 100 V while the bromophenol dye front 

moved through the stacking gel and a subsequent voltage of 150 V after
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reaching the resolving gel. Electrophoresis was allowed to proceed until the 

dye front had reached the bottom of the gel, approximately 1 -1 .5  hours.

2.7.2 Western blotting

Electrophoretic transfer of proteins resolved by SDS-PAGE to PVDF 

membrane was achieved using the BioRad Mini Trans-Blot Electrophoretic 

Transfer Cell system. Transfer was carried out in 1 x transfer buffer (76.8 

mM glycine, 10 niM Tris, pH 8.3, 16.5% methanol) at 50 V for 1 hour. 

Transfer sandwich was placed in the transfer gel tank alongside an ice pack, or 

was performed at 4°C. Following transfer, the membrane was blocked in milk 

buffer (32.5 mM Tris, 150 mM NaCl, 0.2% Tween-20, 4% skimmed milk 

powder (Marvel)), for 1 hour at room temperature. Membranes were incubated 

with primary antibodies (typically a 1 : 1 0 0 0  dilution in milk buffer) overnight 

at 4°C, or for 2 hours at room temperature (-22°C). Excess primary antibody 

was removed by washing the blot 3 times for 2 minutes in fresh milk buffer 

before incubating for 1 hour at room temperature with the appropriate 

horseradish peroxidase-conjugated secondary antibody ( 1 : 1 0 0 0  dilution in milk 

buffer) (DAKO). To ensure removal of excess secondary antibody, the blot 

was sequentially washed in batches of fresh milk buffer, 3 times for 2 minutes, 

followed by 2 washes for 15 minutes. After one further 5 minute wash using 1 

X TBS (2.5 mM Tris-HCl pH 7.6, 15 mM NaCl), the blot was developed using 

the enhanced chemiluminescence method (ECL'^^, Amersham) as directed by 

the manufacturer.

2.7.3 Western signal detection

Horse radish peroxidase-conjugated secondary antibodies were used to detect 

signals on Western blots. Chemiluminescence detection (using ECL”̂^,
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above), was performed by adding a ratio of 1 part reagent 1 to 1 part reagent 2  

to the filter. The solution was applied to the filter for 1 minute at room 

temperature. The solution was then gently wiped away with blotting paper, 

covered in cling film, exposed to ECL film (Amersham Pharmacia) for varying 

lengths of time, and then developed using the X-OMAT film processor.

2.7.4 Primary antibodies

Table 2.2

Protein Antibody Type Company

Actin C ll Polyclonal Santa Cruz Biotechnology

Brfl SK-2839 Polyclonal In house

Mafl 1167 Polyclonal In house

Spl 420 Monoclonal Santa Cruz Biotechnology

2.8 Transformations

2.8.1 Storage of competent cells

1 ml of bacterial culture was added to 40% (v/v) glycerol solution (in sterile 

distilled water), before freezing in liquid nitrogen.

2.8.2 Transformation of competent cells

E.coli XL-1 Blue supercompetent cells (Stratagene) were transformed for 

plasmid storage and propagation. Cells, stored at -80°C and highly 

temperature sensitive, were thawed on ice to prevent loss of transformation
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ability. 0.4 jllI  of (3-mercaptoethanol, which enhances transformation 

efficiency, was added to the 50 pi of cells that were required per 

transformation reaction to give a final concentration of 25 mM. Typically 10 -  

20 ng of plasmid DNA was then gently mixed into the chilled cells. The 

contents were gently tapped occasionally during a 30 minute incubation on ice, 

before being heat shocked at 42°C for exactly 45 seconds and then transferred 

to ice for a further 2 minutes. Cells were incubated at 37°C for 1 hour on an 

orbital shaker (225 -  250 rpm) following the addition of 450 pi of preheated 

(42°C) SOC medium (LB broth, 0.04% (w/v) glucose, 10 mM MgS0 4 , 10 mM 

MgCL). Typically 1 0 0  pi and 250 pi of the transformation mixture was then 

plated on LB agar (2% (w/v) LB, 2% (w/v) agar) plates containing 50 pg/ml 

ampicillin (Amp) and the plates were incubated at 37°C overnight to allow 

growth and colony-formation of the transformed cells.

2.9 Techniques used in the creation of the plasmid 

pTRE2.hyg.Ha.HsMafl

2.9.1 Preparation of plasmid DNA

For large scale plasmid DNA preparation, a single isolated bacterial colony 

was selected from a freshly-streaked plate and used to inoculate 5ml of LB 

medium containing the selective antibiotic (100 pg/ml ampicillin). This was 

allowed to incubate with vigorous shaking at 37°C for ~7 hours to form a mini­

culture and was subsequently used to inoculate 250 ml of LB medium 

containing 100 pg/ml ampicillin. Following an overnight incubation at 37°C 

on an orbital shaker (-300 rpm), cells were harvested by centrifugation at
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6,000g for 15 minutes at 4°C and plasmid DNA retrieved using the Qiagen 

Plasmid Maxi Kit.

The bacterial pellet was resuspended in 10 ml of Buffer PI (50 mM Tris-HCl 

pH 8.0, 10 mM EDTA, 100 pg/ml RNase A) and then gently, but thoroughly 

mixed with 10 ml of Buffer P2 (200 mM NaOH, 1% (w/v) SDS) to initiate an 

alkaline lysis reaction. This reaction was allowed to proceed for 5 minutes at 

room temperature before neutralising the lysate by the addition of 1 0 ml of 

chilled Buffer P3 (3 M potassium acetate, pH 5.5), which subsequently resulted 

in formation of a precipitate of potassium dodecyl sulphate. The SDS- 

denatured proteins and chromosomal DNA were co-precipitated with the 

detergent, whilst the plasmid DNA remained in solution due to a lack of close 

protein associations. Precipitation was enhanced by a 20 minute incubation on 

ice and the precipitate pelleted by centrifugation at 20,000g for 30 minutes at 

4°C. The supernatant containing plasmid DNA was promptly removed and 

applied to a Qiagen-tip 500 column, pre-equilibrated with 10 ml of Buffer 

QBT (750 mM NaCl, 50 mM MOPS pH 7.0, 15% (v/v) isopropanol, 0.15% 

(v/v) Triton X-100). Gravity flow allowed the supernatant to pass through the 

anion-exchange resin to which plasmid DNA is able to bind tightly. The resin 

was then washed twice with 30 ml of Buffer QC (1 M NaCl, 50 mM MOPS pH 

7.0, 15% (v/v) isopropanol) and the purified plasmid DNA was subsequently 

eluted with 15 ml of Buffer QF (1.25 M NaCl, 50 mM Tris-HCl pH 8.5, 15% 

(v/v) isopropanol) and precipitated with 10.5 ml of room-temperature 

isopropanol. This was immediately followed with a 15,000g centrifugation at 

4°C for 30 minutes. The plasmid DNA pellet was then washed with 70% (v/v) 

ethanol, dried at room-temperature for 5 -  10 minutes and resuspended in an
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appropriate volume of sterile water. The DNA was then quantified using the 

spectrophotometer, as in section 2.3.

2.9.2 Restriction digests

Restriction digests were performed in 20 pi volume and contained; 1 pg DNA, 

1 pi enzyme (or 1 pi each, if using two enzymes), 2  pi enzyme buffer 

(appropriate to the restriction enzyme being used), and were made up to the 

final volume with sterile distilled water. All enzymes and buffers were 

supplied by Promega. DNAs were digested with enzymes for 2 hours at 37°C. 

Amounts of DNA in a restriction digest varied between 1-3 pg for plasmid 

DNA and 3 - 5 pg for genomic DNA.

Digests were mixed with 6  x Agarose Gel DNA Loading Buffer (0.25% (w/v) 

Bromophenol Blue, 0.25% (w/v) Xylene Cyanol, 30% (v/v) glycerol),

analysed on 1% (w/v) agarose gels containing ethidium bromide (Sigma) and 

visualised on an ultraviolet light box. The concentrations of nucleic acid 

solutions were determined spectrophotometrically using a quartz cuvette,

2.9.3 Agarose gel electrophoresis of DNA

DNAs were separated in 1 % (w/v) agarose in Ix TAB (40 mM Tris-acetate, 1 

mM EDTA pH 8.0) containing 0.1 pg/ml ethidium bromide, using Ix TAB as 

the electrophoresis buffer. Sizes were compared to a 1 kb ladder (Gibco-BRL). 

Prior to loading, 6  x loading dye (0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol, 30% (v/v) glycerol in water) was added to the samples to a final 

Ix concentration of loading dye in the sample.
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2.9.4 Purification of DNA from gels

DNA bands were excised from the gel using a sterile scalpel blade under a UV 

light, and the DNA extracted using the Qiagen Gel Extraction Kit according to 

the manufacturer’s instructions. DNA was typically eluted in 30 pi of pre­

warmed buffer EB (Qiagen) or H2 O.

2.9.5 DNA ligations

For cloning inserts into vectors, plasmid DNA containing the vector and the 

insert were digested with appropriate restriction enzymes, as described in 

sections 2.9.2 and 2.9.6. For directional cloning of inserts, two different 

enzymes were used to restrict the vector and the insert, which permits cloning 

of the insert into the vector in a predicted and directional manner. After the 

restriction digest, both vector and insert were electrophoresed on a 1 % (w/v) 

agarose gel and the DNA bands excised from the gel and gel-purified (see 

section 2.9.4).

For the ligation reaction, molecular ratios of 1:1, 3:1, and 6:1 (insert:vector) 

were used and typically 50-100 ng of vector. Ligation reactions were carried 

out with 2 pi 1 Ox T4 ligase buffer (Gibco BRL), with 1 pi (1 U) of T4 ligase 

(Gibco BRL) in a final volume of 20 pi with sterile water. The ligation was 

carried out overnight at 14°C. For transformation of XL 1-Blue, 5 pi of the 

ligase reaction was used.

2.9.6 Subcloning of M afl into pCDNA3.HA

In order to apply an HA- tag to Mafl, Mafl was first subcloned into the 

pCDNA3.HA vector, then digested out. The plasmid, pGEM-T.HsMafl was a
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gift from Olivier Lefebvre (CEA/Saclay, France). This plasmid was digested 

with BamYil and Sail. PCRs were then performed to insert a BamRl site onto 

the 5’ end of the gene (5’-GTAGCTGGATCCATGAAGCTATTGGA-3’ and 

5’-GGCGGCTCTAGAACGCGTCGACTCAAATAC-3’). The PCR product 

was then ran out on an agarose DNA gel, and the correct band excised. The 

excised product was then purified using the Qiagen Gel Extraction Kit. 

pCDNA3.HA and the HsMafl vector were then digested with BamRl and 

Xbal. The separate bands were cut from an agarose DNA gel and the products 

purified, as above. pCDNA3.HA and HsMafl were then ligated together. 

After ligation, E.coli XL-1 Blue supercompetent cells (Stratagene) were 

transformed with the ligated pCDNA3 .HA.HsMaf 1. In order to produce a high 

plasmid yield, cells were cultured in 5 mis (mini prep), then 250 mis (maxi 

prep). The presence of the plasmid was checked by digestion in both mini and 

maxi prep stages. PCR was then performed to add an Nhel site onto the 5’ end 

of the gene (5 ’-GCACGCGCTAGCATGGAATTCT-3 ’and 5’- 

GTAGCTGGATCCATGAAG CTATTGGAGAAC-3’). The PCR product 

was then run on an agarose DNA gel and the proper band excised and purified. 

This procedure produced HA.HsMafl.

2.9,7 Subcloning of HA.HsMafl into pTRE2.hyg

HA.HsMafl was digested with Nhel and pTRE2.hyg with Nhel and Sail. A

PCR cleanup was performed using the QIAquick PCR Purification Kit

(Qiagen), as per the manufacturer’s instructions. HA.Mafl was then ligated

into pTRE2.hyg, to create pTRE2.hyg.HA.HsMafl. Using the same competent

cells as above, transformations were done with ligated plasmid. As above,

mini, and then maxi preps were cultured to increase DNA yields of the
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plasmid. At each culture volume the plasmid was checked by digestion with 

Nhel and Sail enzymes. The final plasmid, pTRE2.hyg.HA.Hs.Mafl was sent 

for sequencing and yielded - 6 . 1  kb plasmid.

2.9.8 Stable transfection

HeLa-derived Tet-On cells for stable transfection were plated out at 2 x 10̂  

cells/10 cm dish 24 hours prior to transfection, resulting in a confluency of -70 

-  80% at the time of transfection. Two 10 cm dishes were transfected with 5 

pg of pTRE2.HA.Mafl.hyg construct and 5 pg of the empty, pTRE2.hyg 

vector. Mastermixes for each set of 10 cm dishes were made up comprising 

the appropriate plasmid DNA and Opti-MEM I reduced serum medium (Gibco 

BRL) to give a volume of 100 pi per dish. Then, for each transfection, 25 pi of 

Lipofectamine reagent was diluted into 100 pi of serum-free medium. The two 

solutions were combined, mixed gently and incubated at room temperature for 

45 minutes in the dark to allow DNA-liposome complexes to form. While 

complexes were forming, cells were washed once with 3 mis of serum-free 

medium. For each transfection, 0.8 ml of serum-free medium was added to the 

tube containing the complexes. This was mixed gently and the diluted 

complex solution overlayed onto the rinsed cells. Cells were incubated with 

the complexes for 3 hours at 37°C in a CO2 incubator. Following incubation, 

10 mis of normal growth medium, plus G418 100 pg/ml, was added to each 

dish. Cells were allowed to grow for a further 24 hours before adding the 

selection agent hygromycin B (Melford Laboratories), at a concentration of 

600 pg/ml, to the culture medium. To ensure Tet-On gene expression system 

remained ‘switched off during the selection process, cells were cultured with 

Tet-approved FBS (BD Biosciences, Clonetech). Fresh complete selection
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medium, containing hygromycin, was replaced every four days. After about 

four days, cells began to die but were split if they reached confluency before 

massive cell death began. After two to four weeks, healthy hygromycin- 

resistant colonies were isolated and transferred to individual plates or wells. 

Potential clones were then screened using Mafl specific assays to identify the 

clones with the lowest background of Mafl gene expression and highest 

induction of Mafl gene expression. This was achieved by western blot using 

antibodies to both transfected Mafl (with the HA tag), and total Mafl, as well 

as RT-PCRs for Mafl.

2.10 Electroporation of HeLa and MCF-7 cells

For all electroporation experiments, an Amaxa Nucleofector (Amaxa GmbH) 

was used. HeLa cells were electroporated using the Cell Line Nucleofector'*'"^ 

Kit R (program 1-20), while MCF-7 cells were electroporated using the Cell 

Line Nucleofector™ Kit V (program P-20) following the procedures listed in 

the manufacturer’s instructions.

All siRNAs were designed and synthesised by Qiagen.

Lamin A/C [sense: r(CUGGACUUCCAGAAGAACA)dTdT; antisense: 

r(UGUUCUUCUGGAAGUCCAG)dTdT]

Brfl siRNA-1 [sense: r(GGAUGCAAUUGAGAUUGAA)dTdT; antisense: 

r(UUCAAUCUCAAUUGCAUCC)dTdG]

Brfl siRNA-2 [sense: r(GGAGG AGGUU G A AGGU G A A)dT dT ; antisense: 

r(UUCACCUUCAACCUCCUCC)dAdG]
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2.10.1 Electroporation of HeLa ceils in Brfl and Mafl siRNA 

experiments

HeLa cells were grown to -80% confluency before being used for 

electroporation. Cells were removed from flasks via trypinization (as above), 

and centrifuged at 1,1 OOg to produce a cell pellet. This pellet was resuspended 

in a specific volume of fresh media and cells were counted with a 

haemocytometer (Sigma). 1X10^ cells were used per nucleofection cuvette. 

The manufacturer’s instructions for nucleofection were followed, utilizing the 

HeLa-specific 1-13 program on the nucleofector machine. 3 pg of each siRNA 

(Lamin A/C, HsMafl pooled, Brfl siRNA-1, BrflsiRNA-2 or a pool of both 

Brfl siRNAs) was used per reaction cuvette. Each reaction was split evenly 

into a 6 -well plate, with the addition of fresh media. Cells were harvested 48 

hours later. siRNA sequences were as follows:

Lamin A/C [sense: r(CUGGACUUCCAGAAGAACA)dTdT; antisense:

r(UGUUCUUCUGGAAGUCCAG)dTdT]

Brfl siRNA-1 [sense: r(GGAUGCAAUUGAGAUUGAA)dTdT; antisense: 

r(UUCAAUCUCAAUUGCAUCC)dTdG]

Brfl siRNA-2 [sense: r(GGAGGAGGUUGAAGGUGAA)dTdT; antisense: 

r(UUCACCUUCAACCUCCUCC)dAdG]

HsMafl siRNAs (1 pg of each siRNA was used for a pool of 3 pg total):

Target 1 [sense: r(GAUGGCGGGAGAUGAUAAA)dTdT; antisense:

r(UUUAUCAUCUCCCGCCAUC)dTdT]; Target 2 [sense: r(GUCAUGAAU 

UCAGCCGAGA)dTdT]; antisense: r(UCUCGGCUGAAUUCAUGAC)dTdT] 

Target 3 [sense: r(AUGCAGUCAACUGCAGCCU)dTdT]; antisense:

r(AGGCUGCAGUUGACUGCAU)dTdT

50



Chapter 2

All siRNA sequences were designed and synthesised by Qiagen. “Scrambled 

siRNA” is a non-targeting negative control duplex known to have no limited 

sequence similarity to known, genes. The sequence is not provided when 

purchased.

2.10.2 HeLa and MCF-7 siRNA proliferation rate assays

Cells were grown in normal growth medium to -80% confluency before 

nucelofection. 1X10^ cells and 3 pg siRNA were used per reaction, following 

the manufacturer’s instructions for nucleofection, the correct solutions, and 

program, above. After electroporation, cells were pooled Into 45 mis fresh 

media, gently pipetted up and down, and aliquotted into four 1 0  cm culture 

dishes. This allowed for even distribution of the cells. Time 0 was coimted 

with a haemocytometer by immediately counting the cells placed within a 1 0  

cm plate. The cells were grown for a period of 72 hours, replacing medium 

after 2 days. Total numbers of dead cells were calculated by trypsinizing cells 

as discussed previously, and resuspending in DMEM and trypan blue (Sigma), 

although these counts averaged less than 1 cell per haemocytometer (Sigma), 

and therefore were dismissed. Counts were made in triplicate with at least two 

10 cm plates being used for each condition examined. Viable cell counts were 

plotted against day number to show proliferation rates of the cells, and the 

changes from time 0 to 72 hours plotted as a percentage change.

2.10.3 pTRE2.hyg.HA.HsMafl proliferation rate analysis

Cells were grown to -80% confluency before plating. 2.0 X 10̂  cells were 

plated per 10 cm plate. Cells counted at time point 0 were counted, via a 

haemocytometer, immediately after application to the 10 cm plate. 24 hours
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after plating, half the cells were induced by the addition of 1 mg/ml 

doxycyclin, and fresh media was applied to all cells. Cells were counted at 96 

and 120 hours after induction. Counts were made in triplicate, with at least 

two 10 cm plates being counted for each condition. Viable cell counts were 

plotted against day number to visualise proliferation rates graphically.

2.11 Tagetitoxin experiments

2.11.1 Direct application of tagetitoxin to NIH 3T3 cells

Commercially made tagetitoxin, Tagetin™, was purchased fi*om Epicentre®. 

NIH 3T3 cells were seeded at 1 X 10̂  per well of a 6 -well culture plate, and 

were left at normal culture conditions for 24 hours. 45 pM Tagetin™ was then 

applied to half of the wells, along with 500 pi of normal culture media. After 2 

hours incubation cells were harvested for RNA.

2.11.2 RNA pol HI in vitro transcription assay

In vitro transcription of class III genes was reconstituted using 20 pg of HeLa 

nuclear extract to provide the basal pol III transcription components. This was 

supplemented with the addition of 250 ng of plasmid DNA to supply a specific 

pol III template and reactions were carried out in a 25 pi volume with a final 

concentration of 12 mM HEPES pH 7.9, 60 mM KCl, 7.2 mM MgClz, 0.28 

mM EDTA, 1.2 mM DTT, 10% (v/v) glycerol, 1 mM creatine phosphate, 0.5 

mM each of rATP, rCTP and rOTP and 10 [a-^^P] UTP (400 mCi/mmol)

(Amersham). In one half of the reaction tubes, HeLa nuclear extract was 

incubated for 10 minutes at 30°C with 2.5 pi of 100 pM Tagetin'*’"̂  before the 

addition of the nucleotides, radioisotopes, etc, listed above. The other half of 

the reaction tubes (the control tubes) were supplemented with 2.5 pi sterile
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distilled water and incubated for 10 minutes at 30°C. After this 10 minute 

incubation, transcription components were assembled on ice and the reaction 

was performed at 30°C for 1 hour. Transcription was terminated by the 

addition of 250 pi of 1 M ammonium acetate/0.1% SDS containing 20 pg of 

yeast tRNA which acts as a carrier for the synthesised RNA. Phenol- 

chloroform extraction of the samples was performed to remove protein and 

DNA by adding 250 pi of a 25:24:1 ratio solution of PhOH/CHCls/IAA. The 

samples were vortexed, microcentrifuged at 13,000g for 5 minutes and 200 pi 

of the upper aqueous layer was then transferred to a fresh eppendorf tube 

containing 750 pi of 96% ethanol in order to precipitate the RNA. The 

samples were thoroughly mixed by repeated inversion, and left at - 2 0 °C 

overnight before being microcentrifuged at 13,000g for 2 0  minutes to pellet the 

precipitated RNA. The supernatant was carefully removed and 750 pi of 70% 

ethanol was added to each sample to wash the pellet. This was also carefully 

removed to avoid dislodging the pellet and the samples were heated at 37°C for 

5 - 1 0  minutes to dry. 4 pi of formamide loading buffer (98% formamide, 10 

mM EDTA pH 8.0, 0.025% bromophenol blue, 0.025% xylene cyanol FF) was 

added to each sample, which was then vortexed for 2 0  minutes to ensure the 

RNA was fully redissolved. 2 pi of each sample was loaded on a pre-run 7% 

polyacrylamide sequencing gel containing 7 M urea and 0.5 x TBE (45 mM 

Tris, 45 mM boric acid, 0.625 mM EDTA pH 8.0) after being boiled at 100°C 

for 2 minutes and quenched on ice. Electrophoresis was performed at 40 W for 

1 hour in 0.5 X  TBE before being dried and exposed to autoradiography film in 

order to detect the radiolabelled transcripts.
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2.11.3 Plasmid templates used in the in vitro transcription assay

The plasmid templates used for the in vitro transcription assay were as follows: 

pVAi is a 221 bp SaB-Bal\ fragment of adenovirus 2 DNA containing the VAi 

gene subcloned into pUC18 (Dean and Berk, 1988); pLeu is a 240 bp EcoBl- 

HindUl fragment of human genomic DNA carrying a tRNA*̂ ”̂ gene, subcloned 

into pAT153 (McLaren and Goddard, 1986); PHu5S3.1 is a 638 bp Bamïîl- 

Sacl fragment of human genomic DNA containing a 5S rRNA gene, subcloned 

into pBluescript SK+; and the pol I template was pHrP2 (Lescure et al., 1994), 

which has an 800 bp Sau3A fragment of the human rRNA promoter, from -411 

to +378, subcloned into RamHl-linearised pUC9.

2.11.4 Application of tagetitoxin to NIH 3T3 cells by heat shock

Cells were seeded at 1 X 10̂  per well of a 6 -well culture plate and left at 

normal culture conditions for 24 hours. Medium was aspirated off and 500 pi 

of fresh media was applied to cells. 45 pM Tagetin™ was then applied to half 

of the cells, and incubated for 60 minutes at 37°C. Cells were then heat- 

shocked for 25 minutes by placing them in an incubator at 45 °C. Cells were 

then allowed to recover for 40 minutes at 37°C before RNA extracts were 

made.

2.11.5 Nucleofection of HeLa cells with tagetitoxin

Electroporation of cells with Tagetin™ was performed in the same mamier as 

the siRNA experiments, per the manufacturer’s instructions, using Cell Line 

Nucleofector™ Kit R and program 1-13. 1 X 10  ̂cells were used per reaction 

cuvette, along with distilled sterile water as a control or 30 pi (22 pM) 

Tagetin™. The nucleofected cells were added drop wise to 2 mis media that

54



Chapter 2

had been pre-incubated in 6 -well culture plates. Cells were harvested 48 hours 

later for RNA extracts.
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Decreasing Brfl levels by small interfering 
RNA decreases RNA polymerase III 

transcription
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3.1 Introduction

3.1.1 Saccharomyces cerevisiae and Brfl discovery

Eai'ly research on Brfl -containing transcription factor -BIB was mostly done 

in S. cerevisiae. Klekamp and Weil and Kassavetis et al. purified TFIIIB and 

found that a fraction was capable of reconstituting tRNA transcription when 

incubated with TFIIIC and pol III (Kassavetis et ah, 1991a; Klekamp and 

Weil, 1986). Further chromatography split this fractionation into two 

constituents, designated B’ and B,” and both components proved essential for 

tRNA transcription when added to TFIIIC and pol III (Kassavetis et a l, 

1991a). To examine these fractions further, Bartholomew et a l, probed the 

polypeptide composition of TFIIIB by photocrosslinking and detected two 

polypeptides of 70 and 90 kDa (Bartholomew et a l, 1991). The 70 kDa 

component was found in the B’ fraction of TFIIIB, while the 90 kDa 

component was found in the B” fraction (Kassavetis et a l, 1991a).

These discoveries heralded the cloning of the Brfl gene by three groups, 

encoding a protein of 596 amino acids with a predicted molecular mass of 

67kDa (Buratowski and Zhou, 1992; Colbert and Hahn, 1992; Lopez-De-Leon, 

1992). Extracts deficient in Brfl are defective in pol III transcription but can 

be reconstituted by the addition of recombinant Brfl (Colbert and Hahn, 1992). 

Mutation of the Brfl gene showed a decrease in class III gene expression 

(namely tRNA and 5S rRNA), but had no effect on in vivo expression of class I 

or class II genes (Lopez-De-Leon, 1992). This discovery implied that Brfl may 

be needed for transcription complex assembly on class III genes, but is not 

necessary on class I or II genes.
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As stated in the introduction, Brfl was named to reflect its homology with 

TFIIB. Yeast Brfl displays 23% identity and 44% similarity to TFIIB in its 

320 N-terminus residues and two imperfect repeats of 76 amino acids in the 

amino region (Buratowski and Zhou, 1992; Colbert and Halm, 1992; Lopez- 

De-Leon, 1992). The C-terminal half is dissimilar, although three regions of 

conservation have been noted and designated as homology regions I, II and III 

(HI, HII, HIII) (Khoo et a l, 1994). These regions might later prove to be 

significant sequences, possibly determining the function of Brfl through 

mechanisms such as phosphorylation.

3.1.2 Brfl interactions within the pol III initiation complex

3.1.2.1 TBP

Because TFIIB and TBP were known to interact, it was postulated that Brfl 

might interact with TBP in a similar manner (Ha et a l, 1993). Indeed, further 

analysis by mutagenesis showed that Brfl contains two separate TBP-binding 

domains that interact with opposite faces of complexed TBP-DNA (Colbert et 

a l, 1998; Kassavetis et a l, 1998). While Brfl binds to the TFIIIC-tRNA gene 

complex weakly, the interaction is made stable by two binding sites on TBP, 

the TBP- Brfl complex being extremely stable (Kassavetis et a l, 1992). One 

binding site is assigned to the N-terminal half, in the conserved direct repeat 

region, while the C-terminal half of Brfl (namely the HII domain) arbitrates 

another interaction with TBP (Andrau et a l, 1999; Colbert et a l, 1998; Khoo 

et a l, 1994). This was proved further when in vitro experiments demonstrated 

that recombinant TBP and Brfl adequately reconstitute all known properties of 

the B’ fraction (Kassavetis et a l, 1992), mimicking the properties of the
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proteins isolated in the B’ complex from the same laboratory one year earlier 

(Kassavetis et a l, 1991a).

3.1.2.2 TFIIIC

Brfl contacts DNA-bound TFIIIC by protein-to-protein interactions, therefore 

recruiting TFIIIB to genes containing type I or II promoters. In mammalian 

cells, TFIIIC binds to Brfl through its 63, 90, and 102 kDa subunits (Hsieh et 

al, 1999b; Hsieh et a l, 1999a), while in yeast TFIIIC subunit Tfc4 binds to 

Brfl (Kassavetis et a l, 1992). Once recruited to a promoter through TFIIIC, 

TFIIIB locks to the promoter in an incredibly stable complex (Kassavetis et a l , 

1990). This binding is important as it allows TFIIIC to act as a “positioner,” 

dictating the optimal location for TFIIIB on the promoter (Joazeiro et a l, 

1996).

3.1.2.3 Pol III

Wemer et a l, used a two-hybrid system with expression monitored by the 

GALl-/acZ reporter to investigate protein-protein interactions between various 

pol III subunits and Brfl (1993). Pol III subunit C34 was found to interact 

with Brfl, but not subunits C82, C34, or C31. This discovery places even 

more importance on the TFIIIB subunit Brfl, as it shows that this interaction 

directs pol III to its associated genes, influencing transcription.

3.1.2.4 Bdpl

Brfl plays a critical role in holding TFIIIB together through its interactions 

with not only TBP, but also Bdpl. Binding of Brfl and Bdpl to the TBP- 

TFIIIC-DNA complex is extremely important, cementing the protein to protein
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interactions, helping to determine the physical properties of the TFIIIB-DNA 

complex, and actually bending the DNA (Colbert et a l, 1998; Kumar et al, 

1997; Shah et a l, 1999). Interactions of Brfl, held together by Bdpl, help to 

protect the DNA from DNase I (Shah et a l, 1999). Brfl and Bdpl have 

overlapping binding sites on Tfc4 (TFIIIC), competing for binding in TFIIIC- 

directed TFIIIB complex assembly (Liao et al, 2003).

By using Brfl fragments and photochemical protein-DNA cross-linking, 

Kassavetis et a l, established the sites of Brfl attachment to Bdpl (Kassavetis 

et a l, 1998). The TBP- and Bdpl- interacting domains of the C-terminal half 

of Brfl both reside within the amino acid 435- 45 segment, which contains Brf 

homology region 2. This region of Brfl is necessary and sufficient for Bdpl 

recruitment to a stable DNA complex (Kassavetis et a l, 1998). Although it 

was found to be a weaker interaction, the N- proximal half of Brfl also binds 

to Bdpl (Kassavetis et a l, 1998; Khoo et a l, 1994). Both halves of Brfl are 

able to recruit Bdpl to the TFIIIB-DNA complex (Kassavetis et a l, 1998). 

Further recent analysis from Kassavetis et al showed that the principal 

attachment site of Brfl for Bdpl is a 6 6 -amino acid segment of Brfl, serving 

as a two-sided adhesive surface, the side chains projecting away from its 

interface with TBP anchoring Bdpl binding (2006).

Brfl and Bdpl also have connected roles during mitosis through 

phosphorylation. Fairley et al observed that hyperphosphorylation of Brfl 

during mitosis may reduce its affinity for Bdpl, allowing the release of Brfl 

and thereby inhibiting transcription (2003). Therefore, even though the
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structures of Bdpl and Brfl are very different, their roles within the 

transcription apparatus seem to be closely connected.

3.1.3 Brfl is an influential binding sight for tumour 

suppressors, oncogenes, and kinases

(Summarized in Figure 3.1),

3.1.3.1 Tumour suppressors RB and p53

Brfl emanates further importance in its role as a influential binding protein by 

directly binding with knovm tumour suppressors RB and p53. Recombinant 

and endogenous RB was shown to bind to Brfl in pull-down and 

immunoprécipitation experiments (Chu et al, 1997; Larminie et a l, 1997). 

This binding disrupts the interaction between TFIIIB and TFIIIC, dissociating 

TFIIIB from its functional association with TFIIIC (Sutcliffe et a l, 2000). By 

RB binding to TFIIIB, RB is able to function and instil its tumour suppressor 

properties on pol III transcription, keeping levels of pol III transcription under 

check. This is vital, when considering that mutations in the Rb gene are found 

in many human cancers, while other proportions contain the wild type Rb but 

its function is disrupted (Grana et a l, 1998; Herwig and Strauss, 1997; 

Mulligan and Jacks, 1998; Weinberg, 1995).
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Figure 3.1. Brfl is an influential binding site for tumour suppressors, 
oncogenes and kinases.

Brfl binds to pol III subunit C34, while TFIIIC binds to Brfl through its 63, 

90, and 102 kDa subunits. TBP binds with both the C- and N-terminal halves 

of Brfl. Bdpl and Brfl compete for binding sites on TFIIIC. Residues 1-262 

of c-Myc, encompassing its transactivation domain, were found to bind to 

Brfl. When p53 is bound to TFIIIB, TFIIIB is unable to interact with TFIIIC 

or be recruited to pol III templates. Hyperphosphorylaton of RB causes 

dissociation from TFIIIB, therefore derepressing transcription. ERK and CK2 

both phosphorylate Brfl.
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As stated previously, when p53 is bound to TFIIIB, TFIIIB is unable to interact 

with TFIIIC or be recruited to pol III templates (Crighton et a l, 2003). p53 

was found to specifically bind Brfl during immunoprécipitations in both 

endogenous and in vitro experiments in amounts comparable to p53- TBP. 

Interestingly, many missense substitution mutations (75%) found to be 

expressed in human malignancies with mutant forms of p53 are located in the 

core domain- the very region that is required for p53 regulation of TFIIIB 

(Bullock et a l, 2000; Hollstein et a l, 1994; Stein et a l, 2002a; Stein et a l, 

2002b).

This fiirther substantiates Brfl as an important subunit in the transcription 

factor- IIIB complex, as it would argue that loss or mutation of p53 in the 

domain that binds Brfl will contribute to the derepression of TFIIIB, and 

hence the deregulation of pol III transcription in a substantial portion of human 

malignancies.

3.1.3.2 Proto-oncogene c-Myc

Investigations by Gomez-Roman et a l , showed that c-Myc is able to directly 

activate pol III transcription by binding to Brfl (2003). Residues 1-262 of c- 

Myc, encompassing its transactivation domain, were found to bind to Brfl 

through protein-protein interactions in vitro using gluthathione S- transferase 

(GST) fusion proteins. Endogenous experiments demonstrated that c-Myc also 

fractionates with TFIIIB activity on several columns, binding stably and 

specifically (Gomez-Roman et a l, 2003).
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The binding of c-Myc to Brfl gains considerable importance when the 

implications of this binding were discovered. c-Myc-TFIIIB binding potently 

stimulates transcription of pol III transcripts tRNA^®“, tRNÂ "̂̂  and 5S rRNA 

within cells (Gomez-Roman et a l, 2003; Hirst and Grandori, 2000). This 

increase in biosynthesis would be expected to impact strongly on cell growth, 

as c-Myc also targets genes transcribed by pol II that are involved in 

metabolism and translation (Boon et a l, 2001; Rosenwald, 1996). Indeed, 

deregulation of c-Myc was found to be a commonality in some Burkitt’s 

lymphomas, neuroblastomas and colon carcinomas (Dang, 1999; Nesbit et a l, 

1999). In summary, Brfl-c-Myc binding contributes to the deregulation of pol 

III transcription, which in turn may influence c-Myc’s role in growdh control.

3.1.3.3 Kinases ERK and CK2

ERK is connected to pol III transcription not only tlirough its binding with 

TFIIIB, but also through c-Myc activation, causing a rapid increase in 

translation and growth (Rosenwald, 1996; Schmidt, 1999). ERK is able to co- 

regulate both pol I and pol III, where the phosphorylation of UBF in the pol I 

system can regulate DNA-binding properties, while the phosphorylation of 

TFIIIB enhances its ability to bind to TFIIIC and pol III. This coordinates the 

production of pol I products 5.8S, 188 and 28S rRNA and pol III products 58 

rRNA and tRNA, which are required in equimolar quantities within the cell 

(Felton-Edkins et a l, 2003a; Schmidt, 1999; Stenfanovsky et a l, 2001).

The phosphorylation of TFIIIB by ERK is applied to the Brfl subunit and ERK 

must be activated in order for it to bind (Felton-Edkins et a l, 2003a). Once 

activated in the cytoplasm, ERK must translocate to the nucleus to interact
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with TFIIIB. Further analysis by Felton-Edkins et al. by mutations of Brfls 

ERK phosphorylation site or putative docking domain showed a significant 

reduction of pol III activation in fibroblasts (2003a). However, when ERK 

activity was blocked by a MEK inhibitor, Brfl phosphorylation was only 

partially reduced, making it likely that another kinase, such as CK2, is required 

for the uppermost levels of pol III transcription (Felton-Edkins et a l, 2003a; 

Ghavidel et a l, 1999; Ghavidel and Schultz, 1997; Johnston et a l, 2002).

The ubiquitous protein kinase CK2 was found to cofractionate and 

coimmunoprecipitate with TFIIIB, namely the Brfl subunit, in yeast and 

mammalian cells (Ghavidel and Schultz, 1997; Johnston et a l, 2002). As with 

ERK, CK2 promotes interactions between TFIIIB and TFIIIC and 

phosphorylation by CK2 may be required for Brfl to interact with TFIIIC 

(Johnston et a l, 2002). CK2 was also found to phosphorylate the HII region of 

Brfl (L.E. Mitchell and R.J. White, unpublished observations).

As abnormal CK2 activity is linked to a variety of human cancers (Faust et a l, 

1996; Munstermann et a l, 1990; Notterman et a l, 2001) and CK2 activation of 

pol III transcription through phosphorylation of Brfl stimulates the synthesis 

of pol III products (Johnston et a l, 2002), the relationship between Brfl and 

CK2 is clearly important.

3.1.4 Brfl and human papillomavirus 16 (HPV16)

The most prevalent cases of cervical cancers were found to correlate with 

infection by HPV 16 (zur Housen, 2000). The pathway a cervical cell follows 

to transformation includes the expression of oncogenes E6 and E7, which serve
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to inactivate tumour suppressors p53 and Rb (Dyson et al., 1989; Munger et 

a l, 1989). Futhermore, infection by HPV 16 was linked to elevated Brfl 

mRNA in cervical biopsies tested by Daly et al. which does not result from 

inactivation of RB or p53 (2004). In cervical cells Brfl levels are limiting for 

production of tRNA and 5S rRNA, making it a major player in a cell’s 

biosynthetic capacity. These results provided the first evidence that a virus 

may induce Brfl expression, although the mechanism still remains elusive.

3.1.5 Small interfering RNA (siRNA)

3.1.5.I siRNA and evolution

It is believed that RNA-triggered silencing arose from an organism’s need to 

survive without unwanted gene expression and to keep transposons and viruses 

at bay (reviewed in Fire, 2001). Global “policing” mechanisms include not 

only RNA interference (RNAi), but also encompass diverse pathways such as: 

preferential méthylation of transposon sequences, repeat-dependent silencing, 

and nonsense-mediated mRNA decay. These pathways all share a 

commonality in that in each case a nucleic acid conformation that is not 

associated with normal gene expression is used by the organism to detect 

potentially detrimental situations. One response to this situation may be to 

stop the production or expression of potentially detrimental RNAs.

Both plants and animals were found to express genes that encode short forms 

of fold-back dsRNA (Bartel, 2004). These dsRNAs are processed into 

microRNAs (miRNAs, discussed below), which are evoiutionarily conserved. 

In plants these miRNAs frmction to guide the cleavage of sequence- 

complementary mRNAs, but in animals these miRNAs take on a different role,
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inhibiting translation by targeting partially complementary sequences located 

within the 3 ’ untranslated region (UTR) of mRNAs (reviewed in Meister and 

Tuschl, 2004).

Observations of the underlying mechanisms involved in gene silencing in 

plants, fungi, and animals, reveal remarkable similarities that emphasize a 

common ancestor (Mello and Conte, 2004). Gene silencing was first 

discovered in plants, where it was known as post-transcriptional gene 

silencing, and many of the teclmiques used to reveal the components within 

this system have been used with similarity within the mammalian system 

(Baulcombe, 2004; Meister and Tuschl, 2004).

3.1.5.2 The discovery of RNAi in mammals

The importance of RNAi and its implications in research applications is 

emphasized by the reward of the 2006 Nobel Prize in Physiology or Medicine 

given to Andrew Z. Fire and Craig C. Mello for their work with the nematode 

Caenorhabditis elegans. The Mello research group found that double-stranded 

RNA (dsRNA) was a potent trigger for RNAi in C. elegans, and this 

interference could spread from tissue to tissue as well as be passed through the 

sperm or egg for up to several generations (Fire et a l, 1998). This discovery 

created a new type of research tool that could be used to decode gene function. 

RNAi is now used to manipulate gene expression experimentally as well as 

probing gene function on a genome-wide scale. After Fire et a l  discovered the 

RNAi trigger, Tuschl and colleagues showed that transfection of mammalian 

cells with host RNAs could induce the sequence-specific RNAi pathway.
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which surmounted the obstacle of using RNAi as a genetic tool in mammals 

(Elbashir et a l, 2001a).

3.1.5.3 The mechanism of gene silencing by siRNA

There are three types of naturally occurring small RNA that differ according to 

their origins: siRNAs, miRNAs and repeat-associated short interfering RNAs 

(rasiRNAs) (reviewed in Meister and Tuschl, 2004). dsRNA can be produced 

naturally from viruses by RNA-templated RNA polymerization, or by 

hybridization of overlapping transcripts which give rise to siRNAs or 

rasiRNAs. dsRNA hairpins that are formed from endogenous transcripts that 

contain inverted repeats are later processed into miRNAs. Both dsRNAs and 

siRNAs have been used as a tool for gene silencing in vivo.

The mechanism of silencing by siRNA was first found in plants, where short 

RNAs from 20-25 nucleotides long were produced from a RNAi-related 

process (Hamilton and Baulcombe, 1999). Deciphering this mechanism 

further, in the same year an RNAi reaction was reconstituted in vitro using 

fruitfly extracts. Elbashir et a l discovered that the long dsRNA were chopped 

up into short RNAs with two 21-nucleotide strands of RNA in a staggered 

duplex, with 19 nucleotides of dsRNA and two unpaired nucleotides at the 

ends (2001b). These experiments led to a wave of research uncovering the 

mechanism of RNAi, although there is still much to be revealed, especially 

within the mammalian system.

The first step in the RNA-interference pathway (designated the initiation 

phase) involves the ribonuclease-III enzyme Dicer (DCR), which processes
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long dsRNAs into 21-23-nt siRNAs that have 5’ phosphates and 2-nucleotide 

3’ overhangs during the initiation step of RNAi (Bernstein et a l, 2001) (see 

Figure 3.2).

In C elegans and mammals a Dicer-interacting dsRNA-binding domain 

(dsRBD) protein is thought to allow Dicer to recognize different sources of 

dsRNAs, however, this protein (or proteins) has yet to be identified. Many 

organisms contain more than one Dicer gene, each Dicer preferentially 

processing dsRNAs that come from a specific source, although in mammalian 

systems there is only one Dicer gene (Meister and Tuschl, 2004). Micro RNAs 

do not use Dicer, but instead use another endonuclease named Drosha.

DCR has been linked to the Argonaute (Ago) proteins, a family of proteins that 

are characterized by the presence of two homology domains, PAZ and PIWI. 

DCR binds directly to Ago proteins AG02 and PIWI through an RNase-III 

domain of DCR and the PIWI domain of the Ago proteins (Tahbaz et al, 

2004). The 21 to 23nt duplexes are then incorporated into a nuclease- 

containing multi-protein complex named RNA-induced silencing complex 

(RISC) (Hammond et a l, 2000). The exact components of this complex 

remain elusive, however it is hypothesized that AGOl and AG02 are involved 

in the 160 kDa minimal RISC mammalian complex, functioning to target-RNA 

binding and cleavage (Martinez and Tuschl, 2004; Meister et a l, 2004).
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Figure 3.2 Mechanism of RNAi in mammalian systems. (Adapted 
from Aigner, 2005).
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Every RISC complex (in a variety of species) has been found to contain at least 

one Argonaute protein. The PAZ domain of Ago is implicated in RNA 

binding, recognizing the terminus of the base-paired helix of the siRNA 

duplexes, while the PIWI domain provides RISC with effector-nuclease 

activity (Meister et a l, 2004; Song et a l, 2004). The PAZ domain also 

ensures that unrelated RNA is not processed into RISC, by only letting RNA 

with 2-nucleotide 3’ overhangs be incorporated (Lingel et a l, 2004). In 

addition to Ago proteins, fragile X mental retardation protein (FMRP) was 

found to incorporate with siRNAs into the RISC complex, although the 

function of this protein is still unknown. RISC assembly is ATP-dependent, 

which reflects the need for energy for the unwinding of siRNA duplexes and/or 

spatial changes within the RISC complex (Nykânen et a l, 2001).

Synthetic 21-nt long siRNAs are thought to bypass Dicer, as they still function 

as potent RNAi triggers and do not imdergo dsRNA processing (Elbashir et a l , 

2001a). Relative thermal stability dictates rules for RISC entry for non­

processed siRNAs (Khvorova et al., 2003). The RISC incoiporated “guide” 

strand becomes the strand that has its 5’ terminus at the end of the siRNA 

duplex, which is less stably base-paired than the other strand. The non­

incorporated strand is simply discarded.

Once RISC has unwound the siRNA, cleavage of the target mRNA in the 

middle of the complementary region, ten nucleotides upstream of the 

nucleotide paired with the 5’ end of the guide siRNA occurs (Elbashir et al, 

2001b). This process was found to be ATP-independent, however multiple 

rounds of cleavage functions more efficiently in the presence of ATP. This
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suggests that a RNA helicase yet unknown might be cleaving the siRNA and 

working as RISC’s endonuclease subunit (Hutvagner and Zamore, 2002). This 

cleavage is a hydrolysis reaction yielding 5’ phosphate and 3’ hydroxyl termini 

which requires magnesium ions and parallels the reaction in which Dicer 

generates siRNA duplexes from dsRNA precursors (Martinez and Tuschl, 

2004). It is hypothesized that Ago proteins may act as nucleases, performing 

the cleavage reactions of the target mRNA, however in humans only Ago2 but 

not Agol and Ago3 have been found to have nuclease activity (Ma et a l, 

2004). Although there have been many recent advancements in the research 

surrounding RNAi, it is clear that there is still much to be uncovered.

3.1.5.4 siRNA: an indispensable tool

siRNA has opened the doors for the testing of individual gene function. 

Indeed, in C  elegans at least 19,000 genes (nearly all) have been analysed, and 

now similar strategies are being used to ascertain gene function in various 

other organisms. Traditionally gene function is analysed by using a ‘forward 

genetic’ approach, identifying an organism with abnormal physical or 

behavioural traits, and then isolating the mutant gene(s). This technique is 

usually limited to organisms that reproduce rapidly. In the mammalian system, 

‘reverse genetic’ approaches allow researchers to knock out a specific gene and 

later identify its function (i.e. knockout mice), although these methods can be 

laborious and expensive. In contrast, RNAi allows the option of analyzing 

many silenced genes at once, can be less costly, and offers a higher- 

throughput.
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Upon initial use within the manmialian system, the drawback of siRNA 

seemed to be that the effects were only transient, as mammals lack the 

mechanisms that amplify silencing in worms and plants. This problem was 

soon solved, when 500-base-pair dsRNA expressed In cell lines was found to 

stably suppress targeted genes (Paddison et a l, 2002). However, a caveat to 

this approach is that it could only be performed in cell lines that lacked generic 

responses to dsRNA, such as the RNA-dependent protein kinase (PKR.) 

pathway. Fortunately, another technique in which short hairpin RNAs 

(shRNAs) can be expressed from pol III promoters to induce a stable 

suppression of target genes has been found (Brummelkamp et a l, 2002). 

Stable expression allows for the observation of induced phenotypes over longer 

time spans and stable cell lines can be assayed in vitro or in vivo. When 

looking from the therapeutic standpoint, shRNAs can be used to deliver gene 

silencing effects via gene delivery vehicles to target problem genes, such as an 

activated oncogene.

3,1.5.5 siRNA: potential pitfalls

Although there are many benefits in using siRNA as a research tool, there are 

also some potential problems, most of which can be avoided if experiments are 

performed diligently. RNAi has been found to target genes and proteins that it 

was not designed to target, and scientists are currently trying to determine how 

widespread the effects are, how they can be avoided, and why they occur 

(Couzin, 2004).

An example of this occurrence is found in laboratory experiments performed 

by Sledz et al. and many others working on RNAi (Bridge et al, 2003; Judge
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et a l, 2005; Sledz et al, 2003). Assays determined that when GAPDH siRNA 

(a commonly used control siRNA) was transfected into mammalian cells, 

responding GAPDH mRNA levels were decreased but there was an 

upregulation of Statl, a component of the Jak-Stat signalling pathway resulting 

in interferon mediated activation. The interferon system has been determined 

as an off-target effect of some siRNAs. The interferon system is an innate 

immune response that can be activated by dsRNA. This system is commonly 

the first line of defence against viral infection, where upon infection cytokines 

are stimulated to start a complex signalling cascade, culminating in the 

induction of interferon-stimulated genes within the nucleus. Sledz et al found 

that by transfecting various 21-bp dssiRNAs, interferon-mediated activation of 

the Jak-Stat signalling pathway occurred (2003). The side effects are not only 

cause for concern when using RNAi as a basic research tool, but also for use in 

therapeutics when an immune response by the interferon system would be 

detrimental to the target.

Although there seems to be many ways in which siRNAs can provoke off- 

target effects, many of these mechanisms remain elusive. The pertinent 

question is: how can laboratories avoid or minimize these off-target effects 

when possible? Currently, this question seems to have at least two possible 

answers, focusing on the specific design of the siRNA and the concentrations 

of siRNA introduced into the cell or organism.

Biotechnology companies can chemically synthesize siRNA against a target 

sequence after picking a sequence that has undergone a stringent algorithm of 

design rules based on current research. These design rules are also used in
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“self-made” siRNAs, in which a target gene is chosen and a target sequence is 

picked using similar recommendations, usually with the aid of an online design 

tool. The siRNAS are then made via in vitro transcription from 

oligonucleotide templates (Brown et a i, 2002). Below is a table depicting a 

number of current design criteria, and why each characteristic is important in 

siRNA design (Table 3.1). However, even though a siRNA may meet all 

current design criteria, the off-target effects still may occur, making further 

testing of the siRNA critical.

Researchers have found that the concentration of siRNA is an important 

determinant of its efficacy. Three independent labs determined that off-target 

effects are least likely to occur when concentrations between 1 and 30 nM are 

used (Chi et a l, 2003; Jackson et a l, 2003; Semizarov et a l, 2003). However, 

even when these concentrations are used, genome-wide studies show that off- 

target effects can still occur (Jackson and Linsley, 2004; Snove and Holen, 

2004).

Why o ff  target effects occur continues to remain a matter of debate. One 

possibility is that mammalian cells may be mistaking foreign siRNAs for 

microRNAs, because both siRNAs and microRNAs use many of the same 

enzymes within their pathway (Couzin, 2004). There may be a fine line 

between triggering one pathways versus another, and the microRNA pathway 

is considered much less specific, targeting sequences that only partly match 

their own.

75



Chapter 3

Table 3.1 Common techniques used in siRNA design

siRNA Characteristics Rationale

The sense strand of the siRNA is 
the same sequence as the target 
mRNA sequence, except lacking 
the 5’ AA sequence

Facilitates binding of the target 
sequence, as the antisense strand 
binds to the target gene

Sequence of 21nt dsRNA with 3’ 
overhanging dimers of thymidine 
uridine

May enhance nuclease resistance 
in the cell culture medium and 
transfected cells ̂

AA and dovmstream 19 
nucleotides are compared to an 
appropriate genome database

Decreases risk of off-targets as 
sequence is checked for 
homology to other genes

siRNA target sequences should be 
~80 nucleotides from the AUG 
start codon on the target RNA

This criterion is controversial. 
Elbashir et al. suggests that this 
may facilitate binding of the 
“Sheer” apparatus % while other 
groups have found that the 
location of the siRNA target site 
is not a predictable indicator of 
siRNA silencing activity^

Hign GC content at 5’ end 
Low GC content at 3’ end

Sense strand is preferentially 
loaded into RISC^

No long repeats at siRNA ends 
that are complimentary

May form inactive hairpins

^Elbashir et al. 2001a, ^Brown et a/.2003, ^Ambion, Inc.
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Scientists often use microarrays to look for off-target effects, but this technique 

could provide ineffective because microarrays only show gene expression 

levels and not protein levels. If the siRNA happens to be triggering the 

microRNA pathway, microRNAs may change how RNA is translated into 

protein.

Peter Linsley’s group found that the specific part of the siRNA that was 

contributing to weak sequence matching between siRNAs and genes is the 5’ 

end (Jackson et a l, 2003). If this 5’ end matches a sequence in another gene, 

there may be a risk of off-target binding. Strengthening this research, Schwarz 

et a l, reported that siRNAs with certain sequences and structures may unravel 

in different manners and the differences in this unwinding may determine how 

well they target the right gene (Schwarz et a l, 2003). Nevertheless, with 

stringent controls, data from siRNA research may be convincing and certainly 

influential.

In June of 2003 the editors of Nature Cell Biology published an editorial listing 

possible controls that could be utilized during siRNA experiments. This list is 

based on a May 2003 Horizon symposium on RNA and provides clear 

explanations on proper uses of RNAi controls and standards that must be in 

place for publications. Currently, the rescue control is regarded as the most 

pertinent control. This involves rescue by expression of the target-gene in a 

form unaffected by the siRNA, An example of this is a vector-based siRNA 

system, namely an inducible system. Expression of a target gene could be 

silenced by inducing production of siRNA, which could then be halted to 

reveal a return to a normal phenotypic state. This type of control may not
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always be possible, however, as some genes (if expressed in leaky induction 

systems) may cause death of the cell or organism. In the cases where rescue 

controls are impossible, basic controls including reduction of mRNA and 

protein levels are necessary and termed ‘classical’ RNAi. Quantitative 

controls are also highly desired, whereby titration to the lowest possible level 

reduces the chance of side effects and provides gradual data on the effect of the 

siRNA. This is important because the RISC complex has shovm to be 

saturable in some settings (Haley and Zamore, 2004). Other important controls 

include mismatch or scrambled siRNAs and testing multiple siRNAs designed 

against different sites on the same target gene.

3.1.5.6 siRNA used in therapeutics

The prospects of using RNAi for therapy are promising. Possible disease 

targets include conditions that arise from aberrant gene expression including; 

RNA viruses (such as HIV), cancer, and neurode generative disorders, 

although this list is not all-encompassing (Boden et a l , 2004; Brummelkamp et 

al, 2002; Kao et a l, 2004; Wilda et a l, 2002). Boden et a l  demonstrated the 

use of a retroviral vector to transfer shRNA expression cassettes genetically 

into human cells (Boden et a l, 2004). Using a specific shRNA to target the 

viral transactivator protein tat, the group reported HIV-1 replication decreased 

by greater than 95%. In addition to silencing pathogenic viral genes, siRNAs 

have been used to effectively knockdown expression of oncogenes such as 

BCR-ABL (Wilda et a l, 2002) and K-RAS (Brummelkamp et a l, 2002). 

Some studies on siRNA silencing of oncogenes include not only decreases in 

mRNA and protein levels, but also suppression of monolayer and anchorage- 

independent growth, and even a decrease in tumour size in mouse models

78



Chapter 3

(Calvo et al., 2006; Yoshinouchi et al., 2003). New research techniques 

include the sensitization of cancerous cell lines to chemotherapeutic drugs with 

the use of siRNA against a target oncogene. Silencing the BCR-ABL 

oncogene was reported to increase sensitivity of leukaemia cells to imatinib 

(Glivec) and radiation (Wohlbold et al., 2003), while RNAi against HPV 

oncogenes in cervical cancer cells resulted in increased sensitivity to cisplatin 

(Putral et al., 2005). Clearly the utilization of siRNA as a therapeutic tool has 

vast implications for the treatment of a wide range of diseases; however, the 

need for development of efficient delivery systems is essential.

Although using siRNA in mammalian systems is of great use in studying the 

functions of genes and for understanding the genetic basis of cellular 

physiology, the molecular make-up of siRNA can make the conveyance 

difficult in vivo. There are two main factors that cause siRNA to be difficult to 

deliver in vivo. First, the physicochemical properties of siRNA, such as the 

large polar surface area and molecular size, make for poor intrinsic membrane 

permeability. Pre-clinical methods which have somewhat enhanced delivery 

involves the hydrodynamic intravenous injection of naked siRNA or shRNA 

(McCaffrey et a l, 2002). This technique involves injecting a large volume of 

siRNA solution over a short period of time. While this method had been 

successful in mouse models, delivery is still a problem in clinical applications 

as hydrodynamic intra venous infusion cannot be applied to humans in a safe 

manner.

The second factor in efficient RNAi delivery is that siRNA is rapidly degraded 

by both extracellular and intracellular nucleases. Chemical modifications can
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often increase stability, which increases the overall cellular uptake of siRNA 

(Soutschek et a l, 2004). Other vehicles, such as chemically unmodified 

siRNAs bound to polymers or liposomes have shown promise (Urban-Klein et 

a l, 2005; Yano et a l, 2004). One effective partnership is the complex formed 

by the binding of siRNA with polyethylenimines (PEIs), synthetic linear or 

branched polymers which contain characteristics that allow them to form non- 

covalent complexes with DNA and siRNA (Boussif et a l, 1995; Urban-Klein 

et a l, 2005). The formation of complexes with PEI leads to stable and 

uniformly sized particles that completely cover the siRNA, protecting the 

siRNA from the presence of RNAse {in vitro) and serum nucleases {in vivo) 

(Grezelinski et a l, 2006). Injection of PEI/siRNA into peritoneal or 

subcutaneous tissue of mice delivered intact radiolabled siRNAs into several 

organs, but not the blood (Urban-Klein et a l, 2005). The complexation of 

siRNAs with other molecules is a potentially powerful tool to achieve maximal 

function in vivo.

3.1.6 Summary

As Brfl (through TFIIIB) has been shown to be a target for many significant 

proteins involved in regulating levels of pol III transcription, and pol III 

transcription is linked to a cells biosynthetic capacity, one could expect that 

decreasing the levels of Brfl by siRNA might have an impact on a celTs 

phenotype. By using siRNA as a tool to decrease levels of Brfl, and hence pol 

III transcription, effects on intracellular characteristics such as mRNA and 

protein expression were observed, as well as phenotypic traits, including 

proliferation.
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3.2 Results

3.2.1 siRNA designed to target Brfl decreases pol III 

transcription in mammalian cells

siRNA designed to target Brfl was applied to cervical cancer cells by 

electroporation in order to assess the consequences of decreasing TFIIIB- 

subunit Brfl on pol III transcription. An effect on pol III transcription was 

observed after 48 hours, as seen by a decrease in pol III transcripts tRNA^^" 

and 5SrRNA, when compared to Lamin A/C control siRNA (Figure 3.3A). 

Decreases in pol III transcripts that use a type III promoter (i.e. U6 snRNA, 

7SK, tRNA^ '̂ )̂ are not seen, as this type of promoter does not utilize Brfl 

during transcription (see Introduction 1.5.3). Although Brfl siRNA 1 appears 

to decrease Brfl mRNA more efficiently than Brfl siRNA2, levels of tRNA^^“ 

do not reflect this as it would be expected that tRNA^®“ levels in cells treated 

with Brfl siRNA 1 would be more decreased than tRNA^^" levels in siRNA2. 

The reasons for this are unidentified and considered an anomaly.

Translational effects were observed as a decrease in Brfl protein levels was 

recorded after Western blotting when normalized to actin, a protein found in 

the cell cytoskeleton (Figure 3.3B). Brfl protein levels in lane 4 (siRNA-1) 

appear lower than those of lane 5 (siRNA-2), reflecting Brfl mRNA levels. As 

Brfl serves to recruit TFIIIB through interactions with pol III and TFIIIC, 

reducing Brfl levels probably hinders the binding of TFIIIB to the promoter, 

disrupting transcription.
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Figure 3.3 Small interfering RNA targeting Brfl reduces pol III 
transcription in vivo
A. Exponentially growing HeLa cells were electroporated with scrambled 

control siRNA (lane 1), Lamin A/C siRNA (lane 2), Brfl siRNA-1 (lane 3) and 

another Brfl siRNA-2 (lane 4) targeting a different region to Brfl siRNA-1. 

All siRNAs were transfected using 3 ug siRNA into each electroporation. Cells 

were harvested for RNA extracts 48 hours after transfection. RT-PCR analysis 

was then performed. Brfl (panel one), tRNA^" (panel two), 58 rRNA (panel 

three), U6 snRNA (panel four), tRNA ^ (panel 5), 7SK (panel 6), Lamin A/C 

(panel 7) and ARPP PO (panel 8) primers were used. Results are representative 

of three independent experiments. B. Protein extracts were harvested at 48 

hours after transfection, as above. Whole cell extracts were made and subjected 

to SDS-PAGE analysis and were immunoblotted with antibodies against Brfl 

(SK-2839, upper panel), or actin (lower panel). PC-B (panel 1) is a fraction 

containing TFIIIB and pol III, used as a marker.
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Daley et al. found Brfl to be a limiting factor for pol III transcription in 

cervical cells when increased concentrations of Brfl were found to stimulate 

tRNA^^“ and 5S rRNA transcription (2005).

Clearly, decreasing levels of Brfl by using siRNA would have an opposite 

effect. Because siRNA targeting Brfl decreased pol III transcription, we 

thought it would be interesting to see if this had any effects on the proliferation 

rate. Deregulation of pol III is a general characteristic of transformed cells 

(reviwed in White, 2004), so discovering if decreasing pol III transcription 

through Brfl siRNA in transformed cells would be sufficient to decrease 

proliferation would be beneficial.

3.2.2 Brfl siRNA decreases the proliferation rates of two types 

of transformed mammalian cells

To access the proliferation rates of both cervical carcinoma cells (HeLa) and a 

breast adenocarcinoma cell line (MCF-7), cells were electroporated with Brfl 

siRNA, harvested and counted at 0 and 72 hours. Proliferation rates of HeLa 

cells treated with two different Brfl siRNAs, as well as a pool of these two 

siRNAs showed a ~2 fold decrease in proliferation rates at 72 hours when 

compared to cells treated with control siRNA at 72 hours (Figure 3.4).
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Figure 3.4 Transfection of HeLa cells with Brfl siRNA decreases the 
proliferation rate in HeLa cells

Cells were electroporated with either 3 ug siRNA targeting Lamin A/C (blue 

bars), Brfl (green and purple bars) or a pool of siRNA targeting Brfl (light 

blue bars). siRNA-1 and siRNA-2 reflect two separate siRNAs targeting 

different regions of mRNA within Brfl. The Brfl siRNA pool represents a 

mixture o f siRNA-1 and siRNA-2 to equal 3 ug total. Cells were counted at 

0 and 72 hours. Results are representative of three separate experiments. 

Mean percentage change of all Brfl siRNAs is 59.8%. Standard deviations 

(in percentages) are as follows; Lamin A/C time 0, 10.3; Lamin A/C time 

72, 66.0; Brfl siRNA-1 time 0, 6.8; Brfl siRNA-2 time 72, 51.8; Brfl 

siRNA-2 time 0, 3.3; Brfl siRNA-2 time 72, 46.4; Brfl siRNA pool time 0, 

11.1; Brfl siRNA pool time 72, 18.5./?= 0.0014
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To verify the siRNA v^as functioning, pol III transcripts, as well as Brfl 

mRNA and proteins levels were checked. Indeed, at 72 hours cells treated 

with Brfl siRNA were found to have decreased levels of Brfl mRNA and 

protein, and levels of pol III transcripts tRNA^^" and 5S rRNA were also 

decreased when compared to control Lamin A/C mRNA (Figure 3.5A, 3.5B). 

Levels of Lamin A/C mRNA increased slightly from 0 to 72 hours, possibly 

due to non-specific effects. However, because mRNA levels are normalized to 

the pol II transcript ARPP PO, comparisons between mRNA levels from Brfl 

siRNA and Lamin A/C siRNA treated cells can still occur.

Brfl siRNA-2 decreased Brfl mRNA levels less efficiently than Brfl siRNA- 

1 ; however, these two siRNAs, as well as the Brfl siRNA pool, give equally 

potent anti-proliferative effects. Perhaps this can be explained by the idea that 

the siRNA system may be saturable. Even though the same concentration of 

Brfl siRNA was used, the system may be saturated by the least effective 

siRNA used (Brfl siRNA-2). Therefore, any siRNA that decreases Brfl levels 

beyond this point may not affect proliferation rates if proliferation is not 

affected by the further decrease in Brfl mRNA levels. If this saturable amount 

of Brfl is achieved by Brfl siRNA-2, than all other Brfl siRNAs would have 

the same affect on proliferation.

Cell death was eounted by staining with trypan blue to check that the decrease 

in proliferation rate was not due an increase in cell death, but rates were too 

low to be significant and the same in all samples.
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Figure 3.5 RT-PCR and Western blotting results correlate with 

decreases in proliferation rates in Brfl siRNA transfected HeLa 

cells

A. Cells were electroporated with siRNA as above, in Figure 3.4. 

After cells were counted RNA extracts and whole cell extracts (B, 

below) were made. PCR was carried out using primers for Brfl (panel 

one), tRNA^^" (panel 2), 5S rRNA (panel 3) and ARPP PO (panel 4). 

These results are indicative of two independent experiments.

B. Cell extracts were subjected to SDS-PAGE analysis and Western 

blotting was applied. An antibody against Brfl (SK-2839, upper panel), 

or actin (lower panel) was used for immunoblotting. These results 

represent two separate experiments.
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The proliferation rates of MCF-7 eells after treatment with Brfl siRNA were 

also assessed. MCF-7 cells treated with two different Brfl siRNAs, as well as 

a pool of these two siRNAs, showed a -1.5 fold decrease in proliferation rates 

at 72 hours when compared to cells treated with control siRNA at 72 hours 

(Figure 3.6).

Error was higher in the MCF-7 proliferation chart as cells were more difficult 

to work with, as they needed to be plated at a high density for growth. By the 

end of 72 hours these cells grew out of a monolayer, making them hard to 

remove from the culture dish. mRNA and protein levels were not assessed as 

the RNA and protein extracted from these cells was insufficient to perform 

adequate analysis. Trypan blue staining and subsequent counting for cell death 

was also performed, results paralleling that of the HeLa cell line.

The coinciding results of these two experiments show the parallel affects of 

decreasing Brfl levels in two different transformed cell lines. The question 

remains as to how decreasing Brfl directly affects the proliferation rate of a 

cell, which will be discussed below.
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Figure 3.6 Brfl siRNA decreases proliferation rates in MCF-7 cells

Cells were harvested at 72 hours after electrporation with 3 pg Lamin A/C 

siRNA (purple), Brfl siRNA-1 (ivory), Brfl siRNA-2 (dark purple) or Brfl 

siRNA pool (light blue). Brfl siRNA-1 and Brfl siRNA-2 represent two 

different siRNAs targeting different regions of Brfl. Brfl siRNA pool 

represents a pool of these two siRNAs, totaling 3 pg. These results are from 

two independent experiments.
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3.3 Discussion

The untranslated RNAs produced by pols I and III are primarily involved in

cellular biosynthesis, the major determinant in the rate of cell growth and

division. If a cell increases its rate of protein synthesis, proteins accumulate to

a point of sufficient protein mass, and a cell divides (Baxter and Stanners,

1978). In this way, cell growth is rate-limiting for cell division (Johnston et

a l, 1977). As the availability of pol III transcripts tRNA and 5S rRNA are a

major factor of protein synthetic capacity, high rates of pol III transcription are

essential for rapid growth. This rapid growth is a characteristic of transformed

cells. Thus, pol III products are generally found to be overexpressed in

transformed and tumour cells, and these results show that both HeLa and

MCF-7 cells have increased amounts of pol III products compared with normal

cells (Chen et a l, 1997; Felton-Edkins and White, 2002). When Brfl siRNA

decreases the amount of Brfl bound into TFIIIB complexes, less TFIIIB is

available to recruit pol III and position it at the start site. Hence, there is a

decrease in transcription from type I and II promoters, the products of which

are extremely influential upon cellular growth and proliferation. This

characteristic becomes significant when increased levels of pol III transcripts

in transformed cells can be decreased by techniques such as siRNA, bringing

the cells back to a more “normal” physiological state. This research provides

evidence of a direct link between the levels of Brfl in a cell and its ability to

influence cell division. Further research might include an experiment such as

measuring protein synthesis, and FACS analysis. Cells treated with siRNA

targeting Brfl would probably decrease their protein turnover rate. This could

be tested by monitoring incorporation of [^^S]-Met in a pulse-chase

experiment. FACS analysis would provide an insight into the progression of
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these cells through the cell cycle, and how cells treated with control siRNA 

differed from those treated with Brfl siRNA.

A more extensive panel of controls could also be applied. Mismatched or 

scrambled Brfl siRNA could be used, although a rescue experiment would be 

the most conclusive. A siRNA vector-based inducible system could be made 

and used to decrease expression of the Brfl gene. The inducible system could 

then be shut off, and proliferation rates could be analyzed to discover if they 

returned to higher levels once Brfl levels increased. Titrations of siRNA could 

also be carried out, to observe the optimal siRNA concentration and to 

minimize non-specific effects.

Although using Brfl siRNA to decrease pol III transcription was successful, 

we decided to use other techniques to directly target pol III transcription. 

Using siRNA is effective once the system is optimized, but this technique can 

be laborious and therefore other systems might provide added benefits. The 

following chapters discuss the targeting of pol III transcription through two 

different techniques; one through direct application of the drug tagetitoxin, and 

the other through a recently discovered pol III negative effector Maf 1.
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Targeting RNA polymerase III with tagetitoxin 

decreases transcription in mammalian cells
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4.1 Introduction

4.1.1 Tagetitoxin: the discovery of a RNA polymerase III 

inhibitor

Tagetitoxin, a bacterial phytotoxin, is produced in liquid cultures of the plant 

pathogenic bacterium Pseudomonas syringae pv. tagetis (Mitchell and Durbin, 

1981). This substance was found to causes chlorosis, a condition in which 

plant foliage produces insufficient chlorophyll in developing, but not mature, 

plant leaves (Trimboli et a l, 1978). The levels of chloroplast ribosomal RNA, 

as well as mRNAs, are severely reduced in the leaves of tagetitoxin-treated 

seedlings (Lukens et a l, 1987). This led researchers to investigate the 

mechanism of action of tagetitoxin on chloroplast metabolism. Indeed, 

tagetitoxin turned out to be a selective inhibitor of chloroplast RNA 

polymerase, providing an explanation for the reduced chloroplast ribosomal 

levels, the decreased mRNA levels, and chlorosis all observed in tagetitoxin- 

treated plants (Mathews and Durbin, 1990). Further studies still included 

tagetitoxin research in plants, but also broadened to encompass other species.

In 1990, Mathews and Durbin provided the first evidence that in vitro RNA 

synthesis directed by the RNA polymerase from Escherichia coU is inhibited 

by tagetitoxin (Mathews and Durbin, 1990). In vitro transcription by RNA 

polymerase II, isolated from wheat germ, had an extremely decreased 

sensitivity to the toxin and SP6  and T7 RNA polymerases from bacteriophages 

were unaffected by tagetitoxin at high concentrations. In the same year, a 

partnership with a another research group demonstrated the ability of 

tagetitoxin to preferentially inhibit eukaryotic pol III (Steinberg et a l, 1990).
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The results in this study further characterised the action of tagetitoxin, as pol 

III transcription directed from HeLa, Xenopus laevis (African clawed frog), 

Bombyx mori (silkwoim). Drosophila melanogaster (fruitfly) and 

Saccharomyces cerevisaie extracts was inhibited. Tagetitoxin did not inhibit 

transcription from calf thymus pol II, reinforcing this group’s previous findings 

and establishing a control for tagetitoxin testing (Mathews and Durbin, 1990; 

Steinberg et a l, 1990). Understanding the mechanism of action of tagetitoxin 

began with this research. The inhibition of silkworm pol III seemed to act 

directly on the polymerase, rather than by binding a transcription factor 

(Steinberg et a l, 1990).

4.1.2 The mechanism of tagetitoxin: enhanced pausing at 

discrete sites

Studies were performed in yeast extracts to further determine the mechanism 

of action of tagetitoxin. Due to the lengthy purification procedures necessary 

to obtain tagetitoxin from P. syringae pv. tagetis, the following studies 

switched to a commercially available partially purified form of tagetitoxin, 

with the trade name Tagetin'’’!̂  (Epicentre® Technologies). Tagetin^M was 

found to contain the same activity as the previously used tagetitoxin (Steinberg 

etal ,  1990).

Steinburg and Burgess treated yeast extracts with tagetitoxin and performed in-

vitro transcription experiments on a tRNA gene, adding varying concentrations

of nucleotides (1992). Tagetitoxin inhibition of transcription was more

pronounced at low nucleotide levels and ereated tagetitoxin-enhanced small

RNAs, in addition to primary unprocessed pre-tRNA transcripts. These small
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and lower molecular weight RNAs result from transcription complex pausing, 

premature termination, or processing of the full-length transcript. These data 

showed that the inhibitory effeet of tagetitoxin depends, to some degree, on 

total nucleotide concentration.

To further elucidate the way in which tagetitoxin inhibits pol III transcription, 

for example, if the short RNAs mentioned above were formed because of the 

accumulation of stalled complexes or RNA release, multiple round 

transcription of the tRNA^®“ gene in yeast extract was done at a high 

concentration of tagetitoxin (Steinberg and Burgess, 1992). After 5 minutes 

the transcription reaction was stopped, fractions collected, and then portions of 

these fractions were added to nucleotides and MgCb. Small RNAs created by 

tagetitoxin treatment and corresponding to the low molecular weight RNAs in 

the previous experiment are contained in the ternary complex which contains 

DNA, pol III, and growing RNA chains that migrate distinctly from and ahead 

of the full-length precursor tRNA. These small RNAs also migrated separately 

from other small RNAs that result from premature termination and release or 

processing of the mature transcript. Therefore, these low molecular weight 

RNAs created from tagetitoxin treatment are created by pausing of the 

transcription complex, not from RNA release. Further experiments implicated 

the interference of tagetitoxin with nascent RNA chain elongation (Steinberg 

and Burgess, 1992). Together, this research suggests that the primary effect of 

tagetitoxin is increased stability of intrinsic pausing, depending on the 

frequency and stability of pausing by pol III.
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4.1.3 The structure of tagetitoxin

Work focusing on revealing the structure of tagetitoxin began soon after it was 

reported to be a specific inhibitor of pol III. Early work suggested that 

tagetitoxin has a molecular weight (MW) of 435, held the molecular formula of 

CiiHisOiaSNP, and was a highly unusual and novel molecule (Mitchell and 

Hart, 1983). Later, more intricate studies deduced the inhibitor to consist of 

two fused 6 -membered heterocyclin rings with the molecular formula revised 

to C11H 17N2 O11PS with a MW of 417 (Mitchell et a l, 1989) (Figure 4.1).

Most of the work done to further characterize the structure has been done in 

order to chemically modify the inhibitor for use as a plant growth regulator and 

as an herbicide (Dent et a l, 1999). Recent work on the structural basis for 

transcription inhibition by tagetitoxin found that tagetitoxin inhibited all 

catalytic activities of Thermus theromophilus RNA polymerase (RNAP) by 

“freezing” the RNAP catalytic centre in an inactive state (Vassylyev et a l, 

2005). Mg^  ̂may have a role in the stabilization of an inactive transcription 

intermediate, remodelling the site of active transcription. Additional analysis 

of the structure of tagetitoxin, along with mechanistic investigations, are 

needed to clarify the function of this inhibitor on pol III.

As tagetitoxin was found to be a specific inhibitor of pol III transcription in 

vitro, the aim of my experiments with the commercially available compound, 

Tagetin™, was to analyse the effectiveness of tagetitoxin when applied to 

mammalian cells in vivo.
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tagetitoxin

Figure 4.1 The structure of tagetitoxin (Mitchell et al., 1989)
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4.2 Results

4.2.1 Tagetitoxin does not serve as a specific pol III inhibitor in 

vivo when directly applied to mammalian cells

To test whether Tagetin^M could inhibit pol III transcription in a mammalian 

system by transfection, 45 micromoles (pM) of tagetitoxin was added per well 

to NIH 3T3 cells for 2 hours. Cells were then harvested for RNA and cDNAs 

were created for RT-PCR analysis. Only the B2 pol III transcript appeared 

decreased, and all other transcripts, tRNA^™, 5S rRNA, and 7SK increased 

when compared to the pol II control ARPP PO (Figure 4.2A). This experiment 

was performed three times to verify these results. Tagetin™ was active, as in 

vitro transcription reactions showed a decrease in pol III transcripts when the 

drug was added (Figure 4.2B). Perhaps B2, found only in mouse cell lines, is 

more sensitive to tagetitoxin than the other pol III transcripts or this could be 

some sort of artefact from the treatment of cells with a drug. Allen et al. used 

tagetitoxin to do studies on SINE-encoded mouse B2 RNA and heat shock, and 

one RT-PCR analysis shows a decrease in B2 RNA levels without heat shock, 

and no effect on 7SK RNA (2004). tRNA^^" and 5S rRNA were not analysed. 

The results of my studies seem to mimic those of this experiment, although the 

reason for the increases in tRNA’̂®“ and 5S rRNA still remains unexplained. 

Contact was made via e-mail to this laboratory, but they reported that there 

were no attempts at analysing other pol III transcripts. Whatever the case, no 

previous research has reported the use of tagetitoxin in vivo by direct 

application into culture medium, but the ease of use and specific activity on pol 

III prompted us to attempt it.
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Figure 4.2 Tagetitoxin does not decrease pol III transcription (in 

NIH 3T3 cells) when applied to culture medium

A. After cells were seeded in 6 -well culture plates they were left at 

normal culture conditions for 24 hours before no treatment with (lane 1) 

or treatment with 45 \xM Tagetin'*’’̂  (lane 2). After 2 hours incubation 

cells were harvested for RNA. RT-PCR analysis was then performed 

using primers for B2 (panel 1), tRNA^^" (panel 2), 5S rRNA (panel 3), U 6  

snRNA (panel 4), 7SK (panel 5) and ARPP PO (panel 6 ). These results 

are representative of three separate experiments.

B. An in vitro transcription assay was done to confirm the activity of the 

drug Tagetin'T^. HeLa nuclear extracts were incubated with no Tagetin^^ï 

(lane 1) or treatment with Tagetin™ (lane 2) for 10 minutes prior to 

incubation with a reaction mixture including [a-^^P] UTP, etc. and DNA 

templates 5S rRNA (panel 1), tRNA^®” (panel 2), or VAl (panel 3). A pol 

I rRNA primer is used as a control. After a reaction time of 60 minutes 

the reaction was stopped, protein and DNA was removed and the RNA 

was extracted. Formamide loading buffer was added, vortexed and then 

run on a polyacrylamide sequencing gel. These results are representative 

of two independent experiments.
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4.2.2 Treating NIH 3T3 cells after heat shock with tagetitoxin 

decreases pol III transcription

As experiments demonstrated by Kugel’s group with tagetitoxin and heat 

shock were successful at inhibiting pol III transcription (in select transcripts), 

in vivo attempts were made to duplicate these experiments within our 

laboratory (Allen et a l, 2004). NIH 3T3 cells were treated with tagetitoxin for 

60 minutes, heat-shocked for 25 minutes at 45°C, and allowed to recover for 

25 minutes before RNA extracts were made. RNA levels were evaluated by 

RT-PCR. tRNA^^" and 5S rRNA were detected when cells were heat shocked 

without tagetitoxin treatment, but after application levels of tRNA^®“ were not 

detectable and 5S rRNA levels were decreased when compared to the control 

(Figure 4.3). Levels of B2 appear to be increased (lane 2), which may reflect 

B2’s response to heat shock and the combined non-specific effect drug 

treatment. This will be discussed further, below.
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Figure 4.3 Treating NIH 3T3 cells after heat shock with 
tagetitoxin decreases pol III transcription

NIH 3T3 cells were seeded into a 6-well culture plate. After 

24 hours of normal culture conditions cells were either given 

no treatment (lane 1) or treated with 45 pM Tagetin™ (lane 

2) and incubated for 60 minutes at 37°C. Cells were then 

heat shocked for 25 minutes at 45°C, and then allowed to 

recover for 25 minutes at 37°C before harvested for RNA. 

RT-PCR analysis was carried out with primers for B2 (panel 

1), tRNA^®“ (panel 2), 58 rRNA (panel 3), 7SK (panel 4) and 

ARPP PO (panel 5). These results are representative of two 

independent experiments.
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4.2.3 Electroporation of HeLa cells with tagetitoxin decreases 

pol HI transcription

Electroporation is a significant increase in the electrical conductivity and 

permeability of the cell plasma membrane caused by an externally applied 

electrical field. In molecular biology it is used as a way of introducing a 

substance into a cell, such as DNA or a drug. When voltage is applied, pores 

are formed across a plasma membrane, the substance enters the membrane, and 

when electroporation ceases the pores reseal, allowing the substance to move 

across the membrane into the cell.

One additional method was attempted to introduce Tagetin™ into mammalian

cells. HeLa cells were used in this experiment as it was demonstrated in Wang

et ah that tagetitoxin decreased pol III transcription after microinjection in

HeLa cells (2003). In addition, greater quantities of RNA are able to be

harvested from HeLa cells compared to NIH 3T3, and this trait was

advantageous when harvesting these cells after nucleofection. HeLa cells were

electroporated with an Amaxa (Amaxa Biosystems) nucleofector during

simultaneous treatment with 45 pM tagetitoxin. After 48 hours, cells were

harvested for RNA and cDNAs were created for RT-PCR analysis. Pol III

transcripts tRNA^^" and SSrRNA were greatly reduced, while 7SK was slightly

reduced, but not the pol II control, indicating specific targeting of pol III

(Figure 4.4). The reason for a slightly decreased level of 7SK is debatable, as

previous data differed, showing no change in 7SK mRNA levels in NIH 3T3

cells when treated with tagetitoxin (Allen et a l, 2004). However, tagetitoxin

inhibition of pol III transcription can be template- dependent, and 7SK uses the

unusual pol III type III promoter structure, unlike those of tRNA and 5s rRNA
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genes. Studies on the yeast U6 snRNA gene found that about 3-fold more 

tagetitoxin was required to give half-maximal inhibition of transcription when 

compared to the tRNA gene, suggesting that the gene template might change 

the effectiveness of tagetitoxin (Steinberg and Burgess, 1992). 7SK uses the 

same promoter type as U6 snRNA, and therefore perhaps 7SK RNA levels are 

influenced differently than those genes transcribed from type I (5S rRNA) and 

type II (tRNA) promoters.
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Figure 4.4 Electroporation of HeLa cells with 
tagetitoxin decreases pol III transcription

HeLa cells were transfected by electroporation 

(Nucleofector, Amaxa) with either dHjO or 45 pM 

TagetinTM and harvested for RNA 48 hours later. RT- 

PCR analysis was carried out using primers for pol III 

templates tRNA^®“ (panel 1), 5S rRNA (panel 2), 7SK 

(panel 3) and pol II control template ARPP PO (panel 4). 

These results are representative of three independent 

experiments.
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4.3 Discussion

It is apparent that the direct application of tagetitoxin to cells via culture 

medium does not decrease pol III transcription (Figure 4.2). This follows the 

current unpublished research on the inability of tagetitoxin to cross the cell 

membrane without assistance. When contact was made with Epicentre® 

personnel via telephone they could not report a successful attempt at inhibiting 

pol III transcription by the direct application of Tagetin™ to mammalian cells 

in vivo, and they did not recommend it. Introduction of tagetitoxin into HeLa 

cells by microinjection has been successful, although this technique is not 

feasible within our laboratory (Wang et a l, 2003). This impelled us to find 

other ways to introduce tagetitoxin into mammalian cells.

The significance of the heat shock results, however, is undetermined. Time 

permiting, another control would have been beneficial; such as no treatment 

and no heat shock. Without this control it is hard to conclude if the decrease in 

the treated and heat-shocked cells are firom the tagetitoxin or merely appear to 

be decreased compared to increased transcripts from heat shock treatment 

(such as in Figure 2, Allen et a l, 2004). A no heat shock, no Tagetin'^^ control 

would control for effects from heat shock, allowing for comparisons between 

this control and the heat shock and Tagetin™- treated cells. If levels of pol III 

transcripts compared to this control were decreased, compared to the non­

treated control, then perhaps deductions could be made as to the performance 

of tagetitoxin. Indeed, it might suggest that the tagetitoxin was able to gain 

entry into the cell via a mechanism induced by heat shock. Human heat shock 

proteins (hsps) have been found to induce ion conducting pores across lipid

bilayers, however there are no reports of drugs being introduced into a cell
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through heat shock (Alder et a l, 1990). This method was not used for further 

studies as the widespread effects of heat shock on mRNA transcription are not 

currently known.

Another way to perceive the heat shock results is that the application of 

tagetitoxin by heat shock did not allow the drug to cross the membrane, but 

that this was a non-specific response to the drug treatment. Allen et al 

published that transcription of B2 mRNA increases rapidly after heat shock 

treatment, but this increase is blocked when cells are treated with both heat 

shock and tagetitoxin (2004). The experiment shown in Figure 4.3, above, 

does not parallel this result. Perhaps the effects of both heat shock and 

tagetitoxin on B2 mRNA levels causes a heightened heat shock response, and 

the decreases in the remaining pol III transcripts is an anomaly. Allen et al. 

also demonstrated the inhibition of B2 RNA on pol II transcription. mRNA 

levels in Figure 4.3 were normalized to levels of the pol II transcript, ARPP 

PO, and normalizing to this transcript may have affected the results.

Treating cells with tagetitoxin during electroporation seems to provide a new 

tool for the introduction of drugs into HeLa cells, although the effects of 

electroporation itself have not been taken into consideration. It would be 

interesting to discover if other drugs could be introduced this way into cells, 

and if the cells are affected by nucleofection. Another method would be to try 

transfection of tagetitoxin by the addition of calcium phosphate, a method 

widely used in the transfer of genetic material and viruses into cells; however, I 

was unable to find any reports stating the useage of calcium phosphate in the 

application of drugs in cell culture condition. In any case, electroporation,
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above all others mentioned within this chapter, could be fine-tuned and utilized 

for further studies on the effects of decreasing pol III transcription in 

mammalian cells.
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Induction, silencing and deletion o f  M afl 
affects RNA polym erase III transcription in

mammalian cells
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5.1 Introduction

5.1.1 Discovery of M afl, a new pol III repressor

In 1997 a new gene, MAPI, was Identified in a yeast screen for mutations 

affecting the efficiency of action of a nonsense suppressor tRNA (Boguta et 

al, 1997). Mutations in this 395 amino acid nuclear protein showed two 

phenotypic effects: antisuppression and temperature sensitivity in respiratory 

growth (Boguta et a l, 1997; Pluta et al, 2001). These links to both tRNA 

suppression and growth lead researchers to screen a multicopy gene library for 

complementation of the temperature sensitive mutant phenotype mafl-l. 

Overexpression of RPC 160, a gene which encodes the largest subunit of RNA 

polymerase III, suppressed the above phenotypes, demonstrating a genetic link 

between pol III and Mafl. It is this research that spawned additional 

biochemical analysis to identify the primary function of the MAPI gene 

product.

Further studies continued to define Mafl as a negative effector of pol III. 

Mutations in RPC 160 were shown to mimic the above-mentioned phenotypes, 

providing more evidence linking pol III and Mafl physically (Pluta et a l,

2001). Co-immunoprecipitations between HA-tagged RPC 160 and myc- 

tagged Mafl suggested a direct interaction between Mafl and pol III. 

Additional evidence suggested a role for Mafl in the tRNA biosynthetic 

pathway, Mafl potentially regulating the level of cellular tRNA in response to 

external signals (Pluta et a l, 2001). After these initial experiments, studies 

began to focus on the role of Mafl in pol Ill’s response to nutrient limitation 

and the mechanism in which Mafl represses pol III transcription.
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5.1.2 M afl, a common component of multiple signalling 

pathways

The transcription of pol I and III genes is tightly coupled with nutrient 

availability and is affected by a wide variety of treatments and conditions 

including; drugs, secretory pathway defects and DNA damage that disturb the 

cellular environment (Ghavidel and Schultz, 2001; Stenfanovsky et a l, 2001). 

The disruptions caused by nutrient limitation and treatments/conditions are 

detected by unique signalling pathways that converge on the transcription 

apparatus, affecting regulation. Recently, it was shown that Mafl is a common 

component of these signalling pathways, providing a critical link between 

these diverse pathways and the pol III transcription machinery (Upadhya et a l,

2002) (summarised in Figure 5.1).

5.1.2.1 The secretory pathway

Initial experiments on yeast were performed to determine the manner in which 

Mafl was affecting pol III transcription. By deleting MAPI in a ypt6-l S. 

cerevesiae strain and subjecting the yeast to nonpermissive temperatures to 

inactivate the secretory pathway, researchers found that the control strain 

repressed tRNA transcription, while in the ypt6-l mafl A strain repression of 

tRNA transcription was blocked (Li et a l, 2000; Upadhya et a l, 2002). These 

results were an indication that Mafl is essential for the repression on pol III 

transcription following inactivation of the secretoiy pathway.
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Secretory Nutrient DNA damage

pathway defect limitation e.g. UV/MMS

Wsc proteins TOR kinases
CD

V

Mafl

M ed /T e ll

Pol III transcription

Figure 5.1 M afl is a convergent point for regulation of pol III by 

multiple signaling pathways (adapted from Upadhya et a i ,  2002).

Conditions that repress pol III transcription are shown in boxes, near 

top. Proceeding each arrow is the upstream sensor or transducers that 

distinguish each signaling pathway. The dashed effect o f the blue 

arrows indicate that there are still unknown elements o f these pathways, 

the point(s) o f convergence not yet known. Arrows symbolize 

activation o f signaling and bars indicate repression.
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To ascertain which proteins within the secretory pathway might be influencing 

Mafl repression of pol III, cells were treated with tunicamycin, a drug which 

inhibits protein N-glycosylation in the endoplasmic reticulum and which 

requires proteins within the Wsc family (LI et a l, 2000). Wsc proteins are 

found along the secretory pathway and in the plasma membrane, initiating 

signaling by sensing stressful conditions within the cell. Treatment of cells 

with tunicamycin reduced transcription of pol III genes in the wild-type strain, 

however, this repression was abolished in the mafl à. (as above) strain 

(Upadhya et a l, 2002). This provided more definitive evidence that Mafl is a 

mediator in the secretory pathway.

5.1.2.2 Nutrient limitation

Another characteristic of Mafl is its ability to respond to nutrient limitation 

with repression of pol III transcription (Upadhya et a l , 2002). Rapamycin, a 

macrolide antibiotic which inhibits the conserved target of rapamycin (TOR) 

kinases, can be used to induce the effect of nutrient limitation on transcription, 

mimicking the nutrient starvation phenotype (Barbet et a l, 1996; Rohde et a l, 

2001). TOR kinases are a very important set of proteins within the cell, 

beginning a signaling cascade that starts when decreases in nutrients are 

sensed, and ending with changes in cell growth and proliferation (Schmelzle 

and Hall, 2000). Inhibition of TOR results in the rapid repression of tRNAs 

and rRNA genes transcribed by pol I and pol III (as well as some pol II genes), 

altering ribosome biogenesis (Cardenas et a l, 1999). Temperature studies 

using yeast with a mutation in the TOR pathway provide further evidence of a 

direct connection between the TOR pathway and pol III transcription 

(Zaragoza et a l, 1998). Experiments performed by Upadya et al
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demonstrated that it was Mafl which was receiving a signal from the TOR 

kinase pathway, in turn repressing pol III transcription (2002).

5.1.2.3 DNA damage

Mafl has a role in yet another signaling pathway- the DNA damage pathway, 

probably through checkpoint protein kinases M ed and Tell (ATM and ATR, 

respectively, in humans) (reviewed in Nyberg et al, 2002). The DNA damage 

surveillance system has a series of checkpoints that are responsible for genome 

integrity through proper detection and repair of DNA damage caused by 

environmental stresses or irregularities during DNA metabolism. M ed and 

Tell function by regulating an important group of proteins that detect, signal 

and repair DNA damage (Rouse and Jackson, 2002). Not all components of 

this pathway have been identified, and the precise manner in which M ed and 

Tell signal pol III repression through Mafl remains elusive.

Although the exact mechanisms by which Mafl is signalled by the multiple 

pathways above are currently not known, research regarding how Mafl affects 

the pol III transcription apparatus has provided enlightenment to the 

downstream effects of these various pathways.

5.1.3 M ars mechanism of action

Initial work on the way in which Mafl functions to repress pol III transcription 

was performed in yeast, although recent research in mammalian systems has 

provided analogous information. Studies involving the complex mechanism of 

action of Mafl on the pol III transcription apparatus have made headway
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recently, although some mysteries remain. Even so, M afl’s activity seems to 

be based around three main characteristics; nuclear localization, 

phosphoregulation, and direct targeting of TFIIIB subunit B rfl.

5.1.3.1 Mafl is a nuclear protein

Mafl was initially found within the nucleus when HA-tagged Mafl was 

detected by indirect immunofluorescence microscopy (Pluta et a l, 2001). 

Further studies in S. cerevisiae showed that Mafl is found in both the 

cytoplasm and the nucleus, although localization to the nucleus only occurs 

during nutrient starvation, growth to stationary phase, or with treatment by 

rapamycin (Roberts et a l, 2006). Under active growth conditions, Mafl is 

largely excluded from the nucleus, although residual amounts remain (Moir et 

al, 2006). This localization is required for transcriptional repression (Roberts 

et a l, 2006). Nuclear accumulation is regulated by a two nuclear localization 

sequences (NLSs) within the protein, one of these sequences (an N-terminal 

NTS, NtNLS) being functionally tied to the regulation of pol III by protein 

kinase A (FKA).

5.1.3.2 Mafl repression of pol III: a balance between PKA and protein 

phosphatase 2A (PP2A)

Mafl contains six consensus PKA phosphorylation sites, in addition to the two 

localization sites mentioned above. One of these sites, the NtNLS, overlaps 

two PKA sites. Recent studies by Moir et a l have shown that Mafl is 

phosphorylated by PKA at the NtNLS, and high phosphorylation activity 

blocks repression of pol III transcription (2006). Both NLS motifs were found

116



Chapter 5

to independently direct Mafl to the nucleus under normal conditions, however, 

the NtNLS activity is required for efficient relocation under repressing 

conditions and is regulated by PKA. Therefore, under conditions of active 

growth, Mafl is phosphorylated by PKA and mostly excluded from the 

nucleus. When growth-limiting conditions occur, Mafl is localized to the 

nucleus, suggesting that Mafl activity may require a PKA-independent 

activation step in order for nuclear Mafl to repress pol III transcription. This 

activation step was found to be performed by PP2A, functioning to 

dephosphorylate Mafl, Mafl then undergoing import to the nucleus 

(Oficjalska et a l, 2006). After Mafl is dephosphorylated by PP2A, Mafl can 

interact with pol IITs largest subunit. C l60, within the nucleus. Thus, the 

phosphorylation states of Mafl are kept in balance by PKA and PP2A, 

functioning to communicate the cells nutrient state to Mafl, which can then 

interact with the pol III apparatus to regulate transcription (see Figure 5.2).

There is one caveat to this, however. Recently, experiments with a mutant 

form of Mafl lacking all PKA sites has revealed an interesting discovery. The 

Mafl mutant protein is nuclear under all growth conditions, yet pol III 

transcriptional activity was not diminished (Moir et a l, 2006). Pol III 

transcription was only decreased after treatment with rapamycin. This 

suggests that there must be an additional factor/step involved in transforming 

Mafl to its repressive state, as dephosphorylation and nuclear accumulation 

alone are not sufficient for Mafl-mediated repression.
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Figure 5.2 Model of the functions of Mafl as negative regulator 

of RNA polymerase III (adapted from Geiduschek and Kassavetis, 

2006).

During normal growth in nutrient-rich media, Mafl is phosphorylated 

on consensus PKA sites and is found mostly within the cytoplasm. 

The NtNLS (triangle) and CtNLS (oval) direct the nuclear import of 

Mafl. Phosphoryation at consensus PKA sites represses nuclear 

import by the NtNLS. Many conditions lead to the dephosphorylation 

of Mafl which results in nuclear accumulation. The opposing actions 

of PKA and PP2 A in response to nutrients determines the regulation 

of Mafl localization. PKA is regulated by the RAS/cAMP pathway 

and PP2A by the TOR pathway. Because nuclear accumulation is not 

sufficient to repress pol III transcription, an additional unknown 

activation step (orange circle) might allow nuclear Mafl to effect 

inhibit pol III transcription. Mafl represses two separate steps of 

transcription: V) de novo assembly of TFIIIB by TFIIIC; and 2) the 

disruption of transcription from pre-assembled TFIIIB-DNA 

complexes. Two alternative mechanisms are proposed for inhibition 

of step two. Arrows symbolize activation of signaling, and bars 

indicate repression.
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5.1.4 Mafl associates with pol III and TFIIIB

5.1.4.1 Pol III

Studies in Saccharomyces cerevisiae were first to identify the interaction 

between both pol III and TFIIIB with Mafl (Desai et a l, 2005; Murawski et 

a l, 1994; Pluta et a l, 2001; Upadhya et a l, 2002). Genetic studies suggested 

an interaction between Mafl and pol III when elevated levels of tRNA, caused 

by decreased Mafl, was suppressed by alterations of pol III subunit C l60 

(Murawski et a l, 1994; Pluta et a l, 2001). Coimmunoprecipitation 

experiments proved this supposition when C l60 was found to bind to Mafl in 

vitro. Pluta et a l also reported a slight increase of TFIIIB (Brfl) signal in 

their Western blot above background, hinting at the possibility of a Brfl-Mafl 

interaction, although the data were not shown (2001). The least 

phosphorylated form of Mafl preferentially binds to pol III in both pol Ill- 

active and pol Ill-repressed cells. However, the interaction between Mafl and 

pol III in repressed-cell extracts is greater, which reinforces the hypothesis that 

Mafl is dephosphorylated and transferred to the nucleus upon repression 

(Oficjalska et a l, 2006; Roberts et a l, 2006).

5.1.4.2 TFIIIB

Research stemming from Ian Willis’s laboratory proved that Mafl interacts 

with TFIIIB, namely Brfl, and shortly thereafter provided evidence of direct 

binding using recombinant proteins (Desai et a l, 2005; Upadhya et a l, 2002). 

The discovery of TFIIIB-Mafl binding was significant, as TFIIIB is a major 

regulatory target for transcription by pol III, and this discovery provided 

insight into possible mechanisms in which Mafl could apply its transcriptional 

control.
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5.1.5 The mechanism of action of Mafl on the pol III 

transcription apparatus

5.1.5.1 Mafl inhibits two distinct steps in transcription

Mafl repression of pol III transcription occui's in two separate steps; one 

focusing on the inhibition of TFIIIB recruitment and the other on the inhibition 

of pol III function.

Inhibition of TFIIIB recruitment

Once Mafl was established as a common component of multiple signalling

pathways that repress pol III transcription, research turned towards discovering

the mechanism by which Mafl asserts its repressive activity on pol III.

Upadhya et a l, used treatment of yeast cells with chlorpromazine (CFZ) to

repress pol III transcription and established that this effect was absolutely

dependent on Mafl (2002). To examine the possibility that CPZ-repression of

pol III transcription through Mafl could be due to CPZ-targeting of a

component of the pol III transcriptional machinery, extracts of cells treated

with CPZ were supplemented with partially purified yeast TFIIIB, TFIIIC, or

pol III. Only the addition of TFIIIB, and not TFIIIC or pol III, restored

transcription levels to that of the control extract. These experiments implicated

TFIIIB as the target for repression of pol III transcription by CPZ. Further

biochemical data suggest that CPZ-induced repression of TFIIIB activity

results from a defect in its recruitment to DNA (Desai et a l, 2005). This

established a link between Mafl-dependent transcriptional repression and de

novo assembly of TFIIIB onto DNA (Desai et a l, 2005; Upadhya et a l, 2002).
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More recent experiments performed by Desai et al. further clarified the 

manner in which Mafl acts through TFIIIB to repress pol III transcription 

(2005). By executing supplementation experiments with all three subunits of 

TFIIIB (TBP, Brfl and Bdpl) to CPZ-treated cells, Brfl was found to be the 

target for repression. However, the differential between the control and CPZ- 

treated extracts was lessened, but not eliminated, following the addition of 

Brfl, suggesting that there may be another factor/step affected under 

repressing conditions.

To determine at which assembly point Mafl asserts its repressional activity, 

Desai et a l added Mafl to pre-assembled TFIIIB-TFIIIC-DNA complexes 

(2005). Addition of Mafl did not have an effect on the amount of the TFIIIB- 

TFIIIC-DNA complex. This suggests that the inhibitory effect of Mafl on 

transcription from preassembled complexes involved a post-TFIIIB 

recruitment step. By adding Brfl to mixtures containing Mafl proteins and 

TFIIIC-DNA, it was found that Mafl inhibits B rfl’s recruitment onto TFIIIC- 

DNA complexes. The associations between Mafl, pol III and Brfl did not 

change quantitatively in repressed cell extracts, suggesting that the effect on 

pol III transcription by Mafl is non-stiochiometric. Mafl is not simply 

sequestering away Brfl or pol III from the transcription complex. The data 

above implicate Mafl in a biochemical process that inhibits TFIIIB-DNA 

complex assembly and transcription. Brfl is a likely target of repression in 

yeast, as the activity of Brfl decreased significantly in the TFIIIB fraction 

treated with CPZ (Desai et a l, 2005).
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Inhibition o f pol IIIfunction

Chromatin immunoprécipitation experiments conducted by Oficjalska-Pham et 

al and Roberts et a l discovered a weak association of Mafl with pol III genes 

in exponentially growing cells (2006). Under repressing conditions, the 

association of Mafl and pol III increased with the nuclear concentration of 

Mafl (Oficjalska et a l, 2006; Roberts et a l, 2006). However, levels of the 

polymerase at pol III promoters decreases in a Mafl-dependent manner (Desai 

et a l, 2005; Oficjalska et a l, 2006; Roberts et a l, 2006). These results 

combined are interesting as they lead to two distinct models of the inhibition of 

pol III function. In one model, Mafl is only associated with pol III genes 

ephemerally and its action causes the dissociation of the polymerase. In the 

alternative model, Mafl is stably bound to pol III genes, where its capacity to 

disengage (but not necessarily separate) DNA from the polymerase inhibits 

transcription (Roberts et a l, 2006). Clearly, more efforts are needed to further 

resolve these models.

In summary, Mafl inhibits two distinct steps in transcription: de novo 

assembly of the initiation factor TFIIIB by promoter-bound TFIIIC, and 

transcription from pre-assembled TFIIIB-DNA complexes (Desai et a l, 2005; 

Upadhya et a l, 2002) (these conclusions and those above are summarized in 

Figure 5.2).

5.1.6 Mammalian cells

Mafl was found to be a conserved protein from yeast to humans in early 

studies and it was recently demonstrated that Mafl plays a central role in pol 

III repression of mammalian cells (Pluta et al, 2001; Reina et a l, 2006).
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Paralleling yeast studies, human Mafl was found to bind to Brfl and the 

largest subunit of pol III (RPCl in humans), but was also shown to bind to 

another pol III subunit, RPAC2 (Reina et a l, 2006). Experiments using 

extracts from rapamycin or methanemethylsulfonate (MMS) -treated cells 

incubated with phosphatase inhibitors determined that human Mafl is 

phosphorylated and becomes largely dephosphorylated after stress, the 

dephosphorylated form associating with pol III (Reina et a l, 2006). Therefore, 

yMafl acts similarly to hMafl when taking into account the above binding 

properties and phosphorylation. However, there are a few differences between 

species. Further advancements have also been made, allowing a deeper 

understanding of M afl’s role in mammalian cells.

In human cells, Mafl represses transcription not only from type 1 and type 2 

promoters, but also type III promoters, which are absent in yeast (Reina et a l, 

2006). Mafl did not affect assembly of any of the transcription components 

(i.e. SNAPc, TBP, Brf2 or Bdpl) onto the type III human U6 promoter. Only 

associations with pol III were noted. These results suggest that in mammalian 

type III promoters M afl’s function occurs when it is bound to pol III and does 

not act on the formation of the promoter-bound pol Ill-recruiting complex. 

M afl’s actions on human type I and type II promoters probably parallel that of 

yeast, as human Mafl has been shown to bind to Brfl and it is these two 

promoter types that utilize B rfl.

Reina et a l also examined the regions in which Mafl associates with pol III 

and Brfl (2006). Mafl contains three regions of highly conserved sequences, 

deemed A-, B- and C- boxes, followed by an acidic tail. By generating
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truncated versions of the protein, both pol III subunits (RPCl and RPC2) 

associated with the A box, whereas Brfl only associated with the A- and B- 

boxes of M afl. Thus, pol III and Brfl both need the Mafl A- box to bind, but 

Brfl also needs the additional B- box. This indicates that Mafl interacts with 

pol III and Brfl at overlapping binding domains.

As Mafl was found to be involved in at least two repression pathways in 

humans (DNA damage and mTOR) which directly affect pol III transcription, 

this chapter focuses on the ability of Mafl to repress pol III transcription in 

mammalian cells as another technique to decrease pol III transcription. When 

these experiments were performed, the information contained within this 

chapter was yet unpublished; however, similar work Is now published within 

Reina et ah, although this chapter does contain select novel results (2006).

5.2 Results

5.2.1 Induction of M afl represses pol III transcription in 

human cells

To study the effect of overexpressing Mafl in cervical carcinoma (HeLa) cells, 

I created a Mafl-inducible HeLa cell line using the BD™ Clontech Tet-On 

system (hMafl cDNA acquired from Olivier Lefebvre, Saclay, France). Mafl 

was tagged with hemagglutin (HA) by sub-cloning hMafl into pCDNA3HA 

for better visualization by Western blot. Experimental (pTRE2.HA.Mafl .hyg) 

and control cells (pTRE2.hyg) were induced with 1 mg/ml doxycycline and 

harvested after 48 hours for both RNA and protein extracts. cDNAs were 

prepared from the RNA to utilize in PCR analysis, while the protein extracts
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were analysed in SDS-PAGE gels followed by Western blotting. RT-PCR 

results showed decreases in pol III transcripts tRNA'̂ ®“ (although very slight in 

II and 12) and 5S rRNA , although the decreases in 5S rRNA levels were not 

as significant and also varied (discussed below) (Figure 5.3A, panels 2 and 3). 

As expected, Mafl mRNA was increased in the pTRE2.HA.Mafl.hyg cells 

when compared with the control cells (Figure 5.3A, panel 1). The effect of 

Mafl in these cells is specific for pol III, as there was no change in the level of 

the class II gene product ARPP PO mRNA (Figure 5.3A, panel 4). To 

determine if induction of Mafl mRNA was also influencing the level of Mafl 

protein, and therefore translation, protein extracts were run on SDS-PAGE gels 

and immunoblotted with an antibody against Mafl (FB-1167), as well as an 

anti-HA antibody. Indeed, both the exogenous (detected by the anti-HA 

antibody) and endogenous levels (detected by the FB-1167 Mafl antibody) of 

the Mafl protein increased in concordance with the RT-PCR results (Figure 

5.3, B and C). An anti-Spl antibody (Figure 5.3 B and C, lower panels) is 

used as a loading control. Within the cell, Spl functions as a transcription 

factor, the protein running at approximately 95 kDa on an SDS-PAGE gel. 

This experiment demonstrates that the induction of Mafl in a stable human cell 

line represses pol III transcription.
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Figure 5.3 Induction of Mafl represses pol III transcription in 

human cells

A. HeLa pTRE2.hyg and pTRE2.HA.Mafl.hyg. cells were plated in 10 

cm culture dishes and grown under normal conditions for 24 hours. Half 

the cells were then induced with 1 mg/ml doxycycline and incubated for 

a further 48 hours, while the other half received fresh media only. At 

this point cells were harvested for RNA extracts and RT-PCR was 

applied. Mafl, tRNA^^", 5s rRNA, and ARPP PO were analyzed. “C” 

stands for the control cell line pTRE2.hyg, while “I” stands for the 

inducible cell line pTRE2.HA.Mafl .hyg. symbolizes uninduced and

induced. These results are representative of three separate 

experiments.

B. Cell extracts were also made from uninduced and induced cells, 

above. Lysates were subjected to SDS-PAGE analysis and then 

immunoblotted with either antibody against endogenous Mafl (FB- 

1167) or loading control Spl. These results are representative of two 

separate experiments.

C. The same cell lysate from (B) was ran on a separate SDS-PAGE gel 

and immunoblotted with either HA antibody, to detect the HA-tagged 

Mafl, or Spl, used as a loading control. These results are representative 

of tliree independent experiments.
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As previously shown, decreasing pol III transcription by using siRNA targeting 

of Brfl in mammalian cells decreases proliferation rates {Chapter 3, Figures 

3.4 and 3.6). Therefore, one might postulate that decreasing pol III 

transcription by inducing Mafl might have the same affect. The same clones 

(as above) were induced for 96 and 120 hours, and cell numbers were counted. 

When compared to the empty vector cells, the inducible cells overexpressing 

Mafl ended at 120 hours with fewer cells (Figure 5.4, bar set C+, compared 

with bar sets II+, 12+ and I3+).

The inducible cells all have a proliferation rate that is ~ 2 fold less than that of 

the empty vector cells. However, when inducible clones are compared as non­

induced and induced (such as II- compared with I1+), only the II clone seems 

to have a reduced proliferation rate at 120 hours. The other clones, 12 and 13 

have almost equal proliferation rates as each time point, non-induced and 

induced. The proliferation data does not correlate with the RT-PCR and 

Western blotting analysis, as one would expect the clones with higher 

expression levels, 12 and 13, to produce the largest decreases in proliferation 

rates.

These results maybe at least partially explained by the fact that these inducible 

cell lines have leaky expression (i.e. a high background). This is apparent 

when non-induced cells are compared with induced cells in all clones, as non­

induced cells still have a relatively high level of expression (Figure 5.3A, B 

and C, lanes 3, 5 and 7).
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Figure 5.4 Expression of M afl in HeLa cells leads to variable proliferation 
rates

Cells were induced and counted at 0 hours, 96 hours and 120 hours after equal 

plating on 10 cm dishes and induction by 1 mg/ml doxycyclin. Results are 

representative of two separate inductions.
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The only exception to this may be clone II, as the signal of the non-induced 

clone is not apparent and there is a signal for the induced clone (Figure 5.3C, 

lane 3, compared to lane 4). However, increased exposures time of this film 

showed a slight background level as well, demonstrating that this clone also 

lacks tight regulation. This also explains why the levels of pol III transcripts 

were not as decreased as expected. In a system such as this with high 

background, levels of pol III transcripts of induced cells will not appear as 

decreased as they would if the system was under tighter control. The loose 

control of this Mafl-inducible system was not due to the presence of 

doxycycline in the media, as Tet system approved FBS (BD Biosciences 

Clontech) was used. Levels of the tRNA^®“ transcript appear to be affected 

more than 5S rRNA as the primers for tRNA^®“ are designed to monitor 

actively produced transcripts, while the 5S rRNA primers show steady state 

levels. Further screening experiments were performed to try and discover 

clones which had lower background, but to no avail. Therefore, more direct 

and less laborious approaches were commenced to look at the effects of Mafl 

on pol III transcription.

5.2.2 Endogenous M afl inhibits pol III transcription in human 

and mouse cells

As discussed in Chapter 3, siRNA can be a useful tool for gene knockdown, 

and it is this technique that was employed to decrease pol III transcription by 

targeting Mafl in HeLa cells. Cells were nucleofected with 3 pg of siRNA 

duplex, plated, and harvested 48 hours later for RNA. cDNAs were made from 

the RNA and PGR analysis was completed to determine mRNA levels.
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As expected, Mafl mRNA levels were decreased in the cells treated with Mafl 

siRNA when compared to Mafl mRNA levels in cells treated with control 

siRNA (Lamin A/C) (Figure 5.5, top panel). Levels of pol III transcript 

tRNA^®“ were increased, reflecting the function of Mafl as a repressor, as 

decreases in Mafl would relieve pol III of repression by Mafl, increasing 

transcription and therefore pol III transcripts. Paralleling that of the above 

experiment (Figure 5.3), levels of 5S rRNA showed an increase of a lesser 

degree, reflecting the fact that these PCR primers are recognising a stable 

transcript. These results are specific, as there is no change in the pol II gene 

product ARPP PO (Figure 5.5, last panel).

By knocking down Mafl with specific siRNA, pol III repression by Mafl is 

released, increasing pol III transcription. This method directly targeted and 

reduced Mafl levels within the cell, providing a “pseudo-Mafl knockout.” To 

extend these results, extracts were harvested from a mouse embryonic stem 

(ES) cell line which had one mafl allele deleted (obtained from Olivier 

Lefebvre, Saclay, France). cDNAs were made from RNA and RT-PCRs were 

performed to detect pol III transcription. Increased expression of pol III 

transcripts tRNA^^ and 5S rRNA was demonstrated, although there was little 

change in tRNA^^" (Figure 5.6). The reason why tRNA^^" did not change is 

unclear. Mafl mRNA expression is diminished in the heterozygous cells 

compared with the homozygous cells, consistent with the expression of only 

one allele. Figures 5.5 and 5.6 combined show that by depleting Mafl by 

using siRNA or by deleting one Mafl allele, pol III transcriptional output is 

increased.
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Figure 5.5 siRNA targeting Mafl inhibits pol III 
transcription in HeLa cells

HeLa cells were transfected by electroporation with 3 pg 

siRNA targeting either Lamin A/C (control) or Mafl 

mRNAs. 48 hours post transfection, RNA was extracted 

and analysed by RT-PCR using the gene-specific primers 

Mafl (panel 1), tRNA^®“ (panel 2), 5S rRNA (panel 3), and 

ARPP PO (panel 4). Results are representative of three 

independent experiments.

133



Chapter 5

Mafl

B2

tRNA^g

tRNALeu

SSrRNA

ARPP PO

Figure 5.6 Endogenous Mafl inhibits pol III 
transcription in mouse cells.

RNA was analysed from matched Mafl^ or 

Mafl ES cells by RT-PCR using primers for Mafl 

(panel I), B2 (panel 2), tRNA' '̂^8(panel 3), tRNA^®“ 

(panel 4), 5S rRNA (panel 5) and ARPP PO (panel 

6). Results are representative of three independent 

experiments.
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5.3 Discussion

The methods described above were ail successful in affecting pol III 

transcription by either increasing Mafl levels within the cell using an 

inducible cell line or by decreasing Mafl levels by utilizing siRNA or by 

deleting one allele. Depending on the information that one is looking for, 

different techniques might be used for different experiments to optimize 

results. For example, using an inducible cell line is clearly more beneficial 

than using siRNA when proliferation rates are the aim of the study. Inducible 

cell lines often allow long-term phenotypes to be observed, which may not be 

possible when adding synthetic siRNAs, as turnover rates may vary and 

therefore repeated transfections may be necessary. Inducible cell lines have 

problems as well, when long-term expression of an essential protein kills the 

cell, or when expression systems are loosely regulated (as above). The 

production of knockout mice is labour extensive and not always possible, but if 

achieved, the knowledge from knockout or even heterozygous cells is 

invaluable. Recently, experiments conducted by Johnson et a l showed a 

correlation between the overexpression of Mafl and the suppression of 

anchorage-independent growth (a hallmark of transformed cells) (2007). 

Ideally, it would have been interesting to perform anchorage-independent 

growth assays on the Mafl Tet-On inducible cells, but again, these cells would 

need to be selected again for minimal background expression levels.

Taken together, the results in this chapter have shown that induction, 

suppression and deletion of Mafl affects pol III transcription in mammalian 

cells. Mafl was proved to be a potent general repressor of pol III transcription 

in mammalian cells by three different techniques.
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Summary
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6.1 Small interfering RNA targeting Brfl decreases RNA 

polymerase III transcription

In Chapter 3, pol III transcription was decreased by transfecting HeLa cells 

with siRNA targeting TFIIIB subunit B rfl. Brfl was previously shovm to bind 

directly to TBP, TFIIIC and pol III, making it an instrumental component of 

the basal pol III transcription apparatus (Hsieh et a l, 1999b; Hsieh et a l, 

1999a; Kassavetis et a l, 1992; Kassavetis et a l, 1998). Brfl was also found to 

be an influential binding site for tumour suppressors, oncogenes and kinases, 

further stressing the significance of Brfl as a hub for influencing pol III 

regulation within the cell (Crighton et a l, 2003; Felton-Edkins et a l, 2003a; 

Gomez-Roman et al., 2003; Johnston et a l, 2002; Larminie et a l, 1997; 

Schmidt, 1999).

siRNA technology has been an innovative and invaluable research tool since 

its discovery and applications within mammalian systems have made it more 

applicable in the study of human disease. The proper controls when using 

siRNA are of the utmost importance; the level of significance of the results 

relies heavily upon this and control standards within the field must be 

monitored and updated regularly. Although the mechanism behind siRNAs 

effectiveness lacks some understanding, future experiments might clarify 

present knowledge, and perhaps even change the types of controls used. With 

proper controls in place, siRNA proves to be a powerful research tool in 

mammalian systems.
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Using Brfl siRNA to decrease pol III transcription in vivo proved to be 

successful within the experiments contained in Chapter 3. Although controls 

could have been more stringent (discussed on pages 48-51, 62), sufficient 

controls were in place to deduce that the Brfl siRNA was depleting the cells 

production of Brfl mRNA and protein (Figures 3.3A and 3.3B). Further 

analysis showed that the reduction of pol III transcripts in response to this 

silencing affected the cell’s ability to proliferate at a normal rate (Figures 3.4 

and 3.6). This result is substantial, as one of the classifications of cancer 

involves unchecked proliferation and therefore decreasing proliferation rates 

may provide insight into growth controls. An increase in pol III transcription 

has been linked to many types of cancers, therefore the reduction of B rfl, and 

hence pol III transcription, may provide not only a valuable research tool, but 

also a glimpse into possible therapeutics.

6.2 Tagetitoxin decreases RNA polymerase III 

transcription in mammalian cells

Past studies found tagetitoxin to be a potent and specific inhibitor of pol III 

transcription and that this inhibition was due to enhanced pausing at isolated 

sites and was template-dependent (Steinberg and Burgess, 1992; Steinberg et 

a l, 1990). Tagetin'^’̂ , the commercially available form of tagetitoxin, was 

used in the experiments contained in Chapter 4, to attempt inhibition of pol III 

transcription in mammalian cells by in vivo application. When applied to 

mouse cells by direct application, pol III transcripts did not decrease (Figures 

4.2A, or decreases were unexplained when compared to other transcripts which 

did not decrease (Figure 4.2A). Using heat shock to induce membrane pores
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possibly allowed tagetitoxin to repress pol III transcription, but the unknown 

effects of heat shock would make this technique unreliable (Figure 4.3). 

Treatment of human cervical cells with tagetitoxin by electroporation was the 

most successful attempt at decreasing pol III transcription in vivo.

There is not a great quantity of research that has been published to date of the 

successful introduction of a drug in mammalian systems via electroporation, 

although the research seems promising (Bleomycin, 2004; Hui, 2002; Kambe 

et a l, 2006). Electroporation has been used to introduce anti-cancer drugs 

across the skin, although further research needs to occur to perfect this 

technique as the optimal conditions such as voltage, along with problems 

caused by the size of the drug, are difficult to discern (Hui, 2002). 

Electroporation holds the most promise for further research with tageitoxin in 

the laboratory, although the method of application will limit its uses. For 

example, long-term studies of cells treated with the inhibitor would be difficult 

as the amount of cells used during transfection with the nucleofector is quite 

high and therefore confluency is reached by 48 hours. If the cells were split 

into a larger vessel they would possibly need to be treated again, with both 

tagetitoxin and nucleofection, and this treatment might prove toxic. 

Nevertheless, if a technique was found to successfully apply tagetitoxin 

directly to culture media, then long-term effects on targeting pol III 

transcription could be observed. It would be interesting to perform 

proliferation curves with tagetitoxin in transformed cells, to see if the effect 

mimicked that of the proliferation curves in Chapter 3. If the proliferation 

rates were also decreased by tagetitoxin it would hint at possible therapeutic 

options for cancers that show an increase in pol III transcription.
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6,3 Targeting Mafl by silencing, deletion and induction 

influences pol III transcription

Mafl is a common component of multiple signalling pathways that affect pol 

III transcription (Upadhya et a l , 2002). Research has recently uncovered some 

of the mechanisms behind these pathways, and the manner in which Mafl 

represses pol III transcription. Nuclear localization, phosphoregulation, and 

direct targeting of TFIIIB subunit Brfl are characteristics that apply to M afl’s 

repressive influence over pol III transcription (Murawski et a l, 1994; Moir et 

al, 2006; Pluta et a l, 2001; Roberts et a l, 2006; Upadhya et a l, 2002). 

Although most of the knowledge of M afl’s repressive nature was acquired in 

experiments performed in yeast, current work also includes at least a partial 

understanding of the mechanism of Mafl in mammalian systems.

The induction of Mafl in a stable cell line decreased pol III transcription, but 

to varying degrees {Chapter 5, Figure 5.3A). This was probably due to the 

leaky nature of the stable cell line. Perhaps some of the cells were not killed 

off by selection and therefore created a high background Mafl signal. 

However, this seems unlikely as the drug used for selection was used at a high 

concentration and therefore the cells would have to adapt to these high levels. 

The control for resistance to the selection drug (hygromycin), and the induction 

drug (deoxycyclin), were located on the same plasmid within the cell, making 

it improbable that the leakiness was do to the loss of one plasmid. The results 

of the proliferation curve reflect the loose control of Mafl expression by these
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cells (Figure 5.4). In order for any deductions to be made with confidence, 

cells with a tighter control of Mafl expression would have to be created.

The experiments focusing on the silencing and deletion of Mafl were more 

successful. siRNA targeting Mafl in HeLa increased pol III transcription, 

releasing the transcription apparatus from repression (Figure 5.5), while the 

deletion of one mafl allele from ES cells also positively affected transcription 

(Figure 5.6). Combined, these data provide further evidence that Mafl 

represses pol III transcription in two different mammalian cell types.

6.4 Final synopsis

Three different methods were attempted to decrease pol III transcription in 

mammalian cells; small interfering RNA against Brfl, treatment with the 

specific pol III inhibitor tagetitoxin, and the induction of a negative effector of 

pol III transcription, Mafl. These techniques vary considerably, and even the 

matter in which each individual technique was applied differed (i.e. the direct 

application of tagetitoxin versus nucleofection, etc.). Whatever the case, each 

technique has both desirable and disadvantageous qualities.

Finding techniques for decreasing pol III transcription has importance as pol 

III transcription has been found to be increased in a variety of cancers. Even a 

subunit within the transcription apparatus, Brfl, has been found to have 

increased levels in cervical cancer tissue. Pol III is also able to influence a 

cell’s biosynthetic capacity, which must be increased for cell growth and 

proliferation. Clearly, transcription by pol III has an important role in the 

outcome of a cell toward normal or transformed growth. Therefore,
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discovering techniques which decrease pol III transcription in mammalian cells 

is beneficial not only for further knowledge in mechanistic purposes but could 

also be a useful tool as therapeutics for the future.
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