
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


UNIVERSITY
of

GLASGOW

Genetic analysis of virulence of Streptococcus 

pneumoniae

Nuno Alexandre Silva 

B.Sc.

A thesis submitted to the University of Glasgow for the degree of

Doctor of Philosophy

Faculty of Biomedical and Life Sciences 

Division of Infection and Immunity 

University of Glasgow 

Glasgow G12 8QQ, Scotland, UK

April 2006

© Nuno Alexandre Silva 2006



ProQuest N um ber: 10390596

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te  manuscript 
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te  will ind icate the deletion .

uest
ProQuest 10390596

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 8 1 0 6 -  1346



GLASGOW  
UNIVERSITY 
LIBRARY:



Author’s Declaration

This thesis embodies the original work of the author unless otherwise stated.

Nuno Alexandre Silva



Acknowledgements

It is a pleasure to thank the many people who made this thesis possible. It is difficult to 

overstate my gratitude to my PhD supervisor Prof. Tim Mitchell, for his enthusiasm, his 

inspiration, and his great efforts to explain things clearly and simply. Throughout my 

thesis-writing period, he provided encouragement, sound advice, good teaching and lots of 

good ideas. I would have been lost without him.

My sincere thanks to my assessor Dr. Rob Aitken for her support and also to Dr. John 

Coote, the postgraduate coordinator.

I am indebted to all members of the South lab, for the wonderful environment to work in. 

Special thanks to Dr. Jackie McCluskey for helping in the first year of my project, Dr. 

Yasser Ibrahim for helping in the construction of pneumococcal mutants, Dr. Alison Ken’ 

for helping in the animal experiments, Dr. Gavin Paterson, and Dr. Johanna Jefferies for 

helping in the comparative genomic hybridization. I am also thankful to Ms June Irvine 

who helped me whenever I needed.

hi particular I would like to acknowledge the help of Dr. Giorgia Riboldi-Tunnicliffe, for 

numerous stimulating discussions during these tliree years and assistance with microanay 

and qRT-PCR analysis, for her friendship that meant a lot to my motivation in my PhD 

project and life in Glasgow. Also, I want to thank all the members of the MB SU, for 

supporting in the microarray and qRT-PCR analysis.

I gi’atefully acknowledge the Portuguese government, and the Foundation for the Science 

and Technology for the financial support. Deep thanks to Prof. Maria de Sousa and 

colleagues for my admission in the Graduate Program in Areas of Basic and Applied 

Biology. My sincere thanks go as well to my co-supei’visor Rui Appelberg from University 

of Porto.

I also want to thanks Dr. Luisa Mota-Vieira, for having been the main person to motivate 

me to carry through to do my PliD in foreigner country.

Finally, I am forever indebted to my parents, brothers and my wife Catia for their 

understanding, endless patience and encouragement when it was most required. To them I 

dedicate this thesis.



Abstract

Streptococcus pneumoniae (the pneumococcus) is known to be a genetically diverse 

species, and this important pathogen is amongst the most significant causes of bacterial 

disease in humans (such as pneumonia, bacteraemia, meningitis and otitis media). The 

infection process exposes the pneumococcus to numerous stress conditions, including 

temperature shift between the upper respiratory tract and deeper tissues, pH changes, 

exposure to reactive oxygen generated by host phagocytes, and nutritional deprivation. In 

order to survive, bacteria must have the ability to sense and respond to their environment in 

the host. A central role in this enviromnent response is played by the two-component 

systems (TCS). The S. pneumoniae genome sequence contains 13 putative complete TCS 

and one orphan response regulator.

The project described in this thesis is aimed at the investigation of the regulation of 

expression of pneumococcal genes by TCS06 and TCS09 including those which are 

important to the virulence of this pathogenic bacteria. Furthermore, the putative virulence 

factor dit operon regulated or potentially regulated by CiaR/H system was studied to 

investigate its contribution to the role of CiaR/H virulence. In addition, comparative 

genomic hybridization (CGH) was performed to investigate the genetic diversity in a 

collection of clinical isolates including several capsule serotype 14 and evaluate the 

diversity in virulence genes of the bacteria.

TCS06 was found to be important for the ability of the pneumococcus to invade the lungs 

and blood in a murine model of disease but it does not affect the overall outcome of 

pneumococcal disease. The phenotype associated with deficiency of rr06 shows that the 

TCS06 is important for the bacteria when grown at higher temperatures. The 

transcriptional profile o f a pneumococcal mutant lacking the response regulator of TCS06 

found by micro array analysis allowed us to determine which transcriptional changes were 

occurring. The TCS09 was found to be attenuated in TIGR4 strain after intranasal infection 

in a murine model o f infection. Microarray comparison of the transcriptional profiles of the 

wild-type strains with the rr09 mutants showed that TCS09 appeared to (directly or 

indirectly) regulate different genes in D39 and TIGR4 strains. The dit operon was found to 

be essential for bacterial growth at higher temperatures. Furtheimore, this operon was 

shown to be involved in the acid tolerance response and sensitivity to antimicrobial 

peptides. However, no attenuation was found in murine model of disease using TIGR4 

strain lacking the dltA gene. CGH of thirteen pneumococcal isolates showed that reference



strain TIGR4 contains twenty-five regions of diversity not shared in at least one of the 

strains tested, and three of these regions were identified for the first time in this study. In 

this study we provide a clear demonstration of genetic differences between strains of the 

same capsule serotype and ST. Furthermore, we show that clonal strains with the same 

serotype and ST behave differently in an animal model.

Keywords

Streptococcus pneumoniae^ two-component systems; virulence factors; comparative 

genome hybridization; regions of diversity; microarrays.
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Introduction

1.1 Pneumococcus: general description

Infectious disease is the main cause of mortality in the world even with development of 

antibacterial agents over the last half century. Bacterial strains have developed, during this 

time, resistance to om- best efforts to destroy them, and they have begun to compromise the 

treatment of infectious disease particularly in the hospital setting (Barrett et a l, 1998).

S. pneumoniae (the pneumococcus) is an important human pathogen, which was isolated 

for the first time over 124 years ago, in 1881 simultaneously by Pasteur in France and 

Sternberg in the USA (Pasteur, 1881; Sternberg, 1881). Pneumococcal diseases, especially 

pneumonia, were the most common causes of death before the “era of antibiotics”. 

Nowadays the pneumococcus remains a major cause of morbidity and mortality in 

undeveloped and developed parts of the world, and resistance to common antibiotics is 

widespread (Hava et a l,  2003a). The pneumococcus has been the object of many 

investigations during the past century that resulted in important scientific discoveries 

(Watson et a l, 1993), including the transfoimation of live strains to a new serotype from 

DNA of dead pneumococci (Avery et a l, 1944), the therapeutic efficacy of penicillin in 

the 1940s (Abraham et a l,  1992), the elucidation of the role o f the bacterial capsule in 

resistance to phagocytosis by cells of the host's immune systems (Issaef, 1893), and the 

ability of bacterial polysaccharides to induce protective antibodies (Baker, 1990; Felton et 

a l, 1955). However, with all this intensive investigation, many questions about the 

mechanisms of pathogenesis remain without answer.

S. pneumoniae is a component of the noimal flora of the nasopharynges of approximately 

50% of all adults, where it coexists with micro flora in non-pathogenic state (Gray et a l, 

1980). The pneumococcus is a Gram positive coccus and a member of the lactic acid 

bacteria, so named for their primary metabolic by product. The lactic acid bacteria include 

the lactococci, a group important in food and dairy industries, and the genera Enterococcus 

and Streptococcus. The bacteria belonging to the genus Streptococcus live in association 

with animal hosts, as either pathogenic or commensal organisms. Human pathogens 

include the beta-hemolytic species, such as Streptococcus pyogenes (Lancefield group A) 

and Streptococcus agalactiae (group B), as well as the human cariogenic species 

Streptococcus mutans. A number of commensal species of streptococci can occasionally 

cause opportunistic infections (Hoskins et a l, 2001).

The organism is an oval spherical coccus of 0.5-1.25 pm in diameter, occurring in pairs or 

short chains (Figure 1.1) and is usually surrounded by a polysaccharide capsule. Two
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phenotypes of the pneumococcus have been identified, opaque and transparent, named 

after their colony appearance on transparent medium. This variation appears in all strains 

and there is spontaneous variation between colony phenotypes known as phase variation 

(Weiser, 1998).

On the basis of difference in capsular structure, pneumococci can be divided into about 40 

serogroups and more that 90 serotypes (Henrichsen, 1995). The distribution o f serotypes 

isolated from adults differs substantially from those isolated from children. Geographic and 

age-related differences in the incidence of certain S. pneumoniae serogroups have led to 

the proposal that, from an epidemiologic standpoint, each should be considered as a 

separate pathogen (Scott et a l, 1996). Two nomenclature systems have been used to 

classify the serotypes, the American nomenclature, introduced in 1944 by Eddy et ah, and 

reviewed by Henrichsen, 1999 (Henrichsen, 1999), where the serogroups and serotypes are 

nominated in the order of their discovery, and the Danish nomenclature, that classifies 

serotypes according to structural and antigenic characteristics, first published by Kaufmann 

et at. in 1940 and reviewed by Lund & Henrichsen 1978, Henrichsen 1999 (Henrichsen, 

1999; Lund and Henrichsen, 1978), but has later been extended (Henrichsen, 1995). At 

present the Danish nomenclature is more widely accepted and is used throughout this 

study.

Figure 1.1- Morphology of S. pneumoniae.

Electron micrographs of S. pneumoniae ME19 (serotype 19F). Bar indicates 1 pm. Adapted from 
(Kobayashi et al., 2005).
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Some serotypes are more associated with invasive disease than others. Penicillin-resistance 

and multiple resistance are restricted world-wide to a few serogroups. These dominate also 

in the intermediate strains, but usually a much wider range of serogroups is represented in 

a smaller proportion (McGee et a l, 2001). Serogroups 6, 9, 14, 19 and 23 are most often 

associated with serious infection in children, these are also often associated with antibiotic 

resistance and carnage (Butler, 1997; Dagan et a l, 1994; McGee et a l, 2001; Scott et a l, 

1996).

In recent years, there has been an increase in the understanding o f interactions between the 

pneumococcus and its host, both in terms of how virulence factors of the organism 

contribute to pathogenesis and how the host’s response to infection can be harmful as well 

as protective (Tuomanen and Masure, 1997). Despite the growing significance of such 

infections, little is known about the factors that govern the physiological responses of this 

organism, or the genetic repertoire that the pneumococcus employs to create disease. In 

spite o f the advent o f antibiotics, mortality from pneumococcal disease has remained 

unacceptahly high (Gillespie, 1989).

1.2 Identification of pneumococcus

The pneumococcus is an aerobic or facultative anaerobic organism, and in laboratory 

cultures requires multiple nutritional factors, carbon dioxide and an ideal pH of 7.2-7.4. 

Methods of identification of S. pneumoniae include: Gram stain morphology; colony 

morphology and hemolysis on sheep blood agar; pyiTolidonyl arylamidase reactivity; 

optochin susceptibility; solubility in deoxycholate (bile); carbohydrate utilization; reaction 

with specific antisera (Quellung reaction); miniaturized manual systems such as the API 20 

Strep system, the automated Gram Positive Identification Card and DNA probes (Kellogg 

et a l, 2001).

When grown on solid media the pneumococcus forms flat round colonies with depressed 

centers and when containing blood partial a-hemolysis of sunounding eiythrocytes is 

detected. Sensitivity to optochin (ethylhydrocupreine, a derivative of quinine) is the most 

important identification criterion for pneumococcus (Lund and Hemichsen, 1978). A disc 

contain ethylhydrocupreine is placed on the surface of the plate inoculated with 

pneumococci and a zone of inhibition appears around the optochin disk after overnight 

incubation at 37”C in 5% C02. This test is the most frequently used method to identify 

pneumococci in clinical laboratories (Kaijalainen et a l, 2002). In the bile solubility test, 

addition of bile salts, such as sodium deoxycholate, to a broth culture of pneumo cocci
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results in prompt dissolution of the bacteria due to the activation of peptidoglycan 

degrading autolysin enzyme (Hawn and Beebe, 1965; Munay, 1979). The capsular 

swelling reaction (Quellung reaction) is an old-time method, but is still an useful method to 

identify pneumococcus isolates rapidly and with high certainty. The procedure is to mix 

loopfuls of bacteria in suspension, and equal volumes of methylene blue and antiserum to 

pneumococcal capsule on the surface of a glass slide and examine under a light 

microscope. If positive, a large capsule will sunound the organism and agglutination of 

bacteria will be form. The capsular appearance is probably due both to capsular swelling 

and gi'eater refraction (Roberts, 1979).

More recently, new possibilities for the identification of pneumococcus were introduced by 

the development of novel gene amplification methods for detection of pneumococci, such 

as identification of the virulence genes for pneumolysin (Kearns et a l,  2000; Salo et a l, 

1999) and surface protein A (Scott et a l, 2003) by polymerase chain reaction. However, 

the pneumolysin gene proved to be unspecific for S. pneumoniae. The presence of the 

pneumolysin in other streptococci, in particular Streptococcus mitis, suggests that the 

applicability of pneumolysin in confirmation of the identification of S. pneumoniae is 

inappropriate (Neeleman et al., 2004). Furthermore, DNA hyhridization methods have also 

been used for the identification of pneumococcus (Denys and Carey, 1992; Fenoll et a l, 

1990; Pozzi et a l,  1989). Multilocus sequence typing (MLST) is now widely used for 

deteimining the relatedness of pneumococcal strains, through which allelic profile of the 

housekeeping genes are directly assessed by nucleotide sequencing (Enright and Spratt, 

1998; Jefferies et a l, 2003; Sa-Leao et a l, 2001).

1.3 Pneumococcal infections

S. pneumoniae is a common bacterial agent in the upper respiratory tract of healthy 

children and adults (Gray et a l,  1980) and most infections do not occur after prolonged 

caniage but follow the acquisition of new serotypes. Mortality due to pneumococcal 

infections is high, especially in developing countries and particularly among the young, 

elderly and immunocompromised (Feldman and Klugman, 1997). World-wide, 

pneumococcal infections have been estimated to cause 1.2 million pneumonia deaths per 

year, nearly 40% of all pneumonia deaths in children fewer than 5 years. The 

pneumococcus also causes 70, 000 deaths from meningitis and a similar number of deaths 

from sepsis and others infections in young children in developing countries each year 

(Mulholland, 1997). In industiialized countries, the pneumococcus is the major cause of

24



Introduction

pneumonia in old age. The impact of pneumococcal disease is also significant in tenns of 

morbidity (Obaro and Adegbola, 2002).

From the perspective of pathogen fitness, successful infections are marked by colonization, 

multiplication and ultimately transmission to a new host (Hava et a l,  2003b). The process 

of pathogenesis o f the pneumococcal disease involves the translocation of the 

pneumococcus from the nasopharynx to other places, including the lung, blood and central 

nervous system. However these processes are poorly understood (Obaro et a l, 1996). The 

symptoms of all pneumococcal diseases are primarily due to the ability of the bacteria to 

promote an intense inflammatory response, either locally or systemically. In 

immunocompromised people, the elderly and young children, S. pneumoniae bacteria that 

initially colonize the nasopharynx may spread to distal sites, such as the middle ear, lower 

respiratoiy tract, or bloodstream (Hava et a l, 2003a) and cause several infections as 

sinusitis, otitis media (Mitchell, 2000; Tuomanen, 2000) pneumonia, arthiitis, pericarditis, 

peritonitis (Musher, 1992; Novak et a l, 1998; Tuomanen et a l,  1995), and severe invasive 

infections such as meningitis and septicemia (Cundell et a l,  1995a; Sande and Tauber, 

1999).

Pneumococci have tlrree distinguishable colonial morphologies, opaque, semi-transparent 

and transparent (Weiser et a l, 1994). These distinct phenotypes have different abilities to 

colonize the nasopharynx, while the transparent phenotype has an enhanced capacity to 

adhere and colonize the nasopharynx, the more phagocytosis-resistant opaque phenotype 

predominates in blood (Oharo and Adegbola, 2002). Differences in colony morphology 

correlate with differences in virulence. Transparent variants demonstrate an increased 

ability to adhere to human lung epithelial cells and are selected for during nasopharyngeal 

colonization in an infant-rat model but are unable to induce sepsis (Cundell et a l, 1995c). 

This may relate to the enhanced binding of transparent pneumococci to epithelial cells and 

their glycoconjugate receptors when compared to opaque pneumococci (Cundell et a l, 

1995b). While, the opaque variant is more vimlent in an animal model of systemic 

infection following intraperitoneal inoculation of adult mice (Kim and Weiser, 1998). The 

higher vimlence of the opaque variant in bacteraemia model may correlate with decreased 

opsonophagocytic killing of opaque pneumococci (Kim et a l,  1999). Phase variation 

appears to play a role in the adaptation of pneumococcus to changes in the receptors 

presented on activated host cells (Cundell et a l, 1995c). Strains with more adhesive 

capacity cause localized infections and the less adhesive bacterium causes invasive disease 

such as bacteraemia and meningitis. Translocation of the organism either by aspiration or 

penetration of the mucosa results in bacteraemia or sepsis, or both, and seeding in different
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body systems may cause recognized disease syndromes such as meningitis and arthritis 

(Obaro and Adegbola, 2002).

1.3.1 Pneum onia

Pneumococcal pneumonia accounts for about one-sixth to two-thirds of all cases of 

community-acquired pneumonia (Mufson, 1999). The infection and case fatality rates of 

pneumococcal pneumonia are highest in elderly patients (Feldman, 2001; Sullivan et a l, 

1972). Pneumonia causes about tln*ee million deaths in young children, nearly all of which 

are in developing countries. The Pneumococcus is the most important bacterial cause of 

pneumonia in young children and so is likely to he responsible for a high proportion of 

these deaths (Greenwood, 1999).

In most cases pneumococcal pneumonia results from the aspiration of pneumococci from 

the nasopharynx (Boulnois, 1992). The nasopharynx is protected by several specific and 

nonspecific defence mechanisms (Busse, 1991). Failure o f these defences may facilitate 

access of pneumococci to the bronchi and the lungs (Boulnois, 1992; Musher, 1992). Viral 

upper respiratoi-y tract infections may play a particularly important role, facilitating 

pneumococcal invasion by compromising the nonspecific defence mechanisms of the lung 

and causing epithelial cell damage. In vitro and in vivo adherence assays demonstrated that 

the influenza virus neuraminidase potentiates the pneumococcal adherence and the 

development of pneumonia (Hakansson et a l, 1996; McCullers and Bartmess, 2003; 

Peltola et a l, 2005). On the other hand, the pneumococcal neuraminidases, described in 

more detail in section 1.4.6.2, seems to be important in promoting adhesion of the 

bacterium to host epithelial cells (Giebink, 1999; Tong et a l, 1999). However 

pneumococcus itself can contribute to its spread to the lungs by causing impairment of the 

ciliary activity and pneumolysin-dependent disruption o f the epithelial tight junctions 

(Rayner et a l,  1995). The characteristic symptoms of pneumococcal pneumonia are cough 

and sputum production, which reflect the proliferation o f bacteria and the inflammatory 

response in the alveoli, and fever, which results fi'om the release of cytokines and other 

pyrogenic substances both locally and systemically (Musher, 1992).

Bacteria that colonize the lungs may gain access to the bloodstream. Bloodstream 

infections are a common complication of bacterial pneumonia; bacteria invade the alveolar 

spaces and cause enough tissue damage to disrupt the barriers between alveoli and blood 

vessels. Blood cultures are positive in 15-30% of cases of pneumococcal pneumonia,
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depending upon the population under study and, to a lesser extent, the serotype of | 

pneumococcus (Musher, 1992).

1.3.2 Otitis m edia I

The pneumococcus is the leading cause of otitis media wich is extremely common disease 

during childhood (Eskola and Kilpi, 2000). Nasopharyngeal caniage of middle ear 

pathogens is considered to be the prerequisite for otitis media (Sytjanen et a l, 2005). The 

carriage o f these pathogens is common particularly in young children, which may be one 

explanation for the high incidence of otitis media among young individuals (Stenfors and 

Raisanen, 1990). To gain access to the middle ear, pneumococci must progress up the 

Eustachian tube from the nasopharynx. Once in the ear, bacterial replication leads to an 

influx of neutrophilis driven by release of IL-6, IL-1 and TNF (Carlsen et a l, 1992). It is 

the most common reason for the prescription of antibiotics to children. Bacterial lysis 

induced by antibiotics releases large amounts of bacterial cell wall fragments and 

pneumolysin, characterizing this infection hy profound inflammation (Carlsen et a l, 1992; 

Ripley-Petzoldt et a l, 1988; Tuomanen et a l, 1985a; Tuomanen et a l, 1987a). Animal 

models have shown that cell wall fragments are sufficient to induce the entire 

inflammatory cascade of otitis media (Bhatt et a l, 1991; Bhatt et a l, 1993; Bhatt et a l, 

1995; Carlsen et a l,  1992; Ripley-Petzoldt et a l, 1988).

Most cases of otitis media are preceded by a viral upper respiratory tract infection. The 

viral infection predisposes the child to the development of otitis media by causing 

Eustachian tube dysfunction and enhancing nasopharyngeal carriage of the middle ear 

pathogens (Bluestone, 1996; Faden et a l, 1991; S any al et a l, 1980). The most evident way 

to prevent viral or bacterial otitis is immunization. The only respiratory viral vaccine 

cuiTently available is the influenza virus vaccine. Its use has been associated with a 

reduction of otitis media episodes (Stenfors and Raisanen, 1990). The ability of the 

bacterial vaccines to prevent otitis media has not heen promising. For example, 

immunization of infants with a 7-valent pneumococcal conjugate vaccine (Prevnar®, 

Wyeth®) has been shown to be only modestly beneficial against otitis media (Black et a l, 

2000; Eskola et a l, 2001; Kilpi et a l, 2003). An increase in otitis media caused by non­

vaccine serotypes has been detected.
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1.3.3 M eningitis

Meningitis is an inflammation of the meninges, the membranes that cover the brain and 

spinal cord protecting them from harmful substances in blood. The main causes of 

meningitis are Neisseria meningitidis, S. pneumoniae and Haemophilus influenzae. 

Incidence of disease due to H. influenzae has heen reduced since the introduction of a 

conjugate vaccine. Bacterial meningitis remains a major problem with 10% of survivors 

suffering from neurological sequelae such as neurological deficits, neuropsychological 

imp ailment and most commonly, hearing loss (Arditi et a l,  1998; Grimwood et a l,  1995; 

van de Beek et a l, 2002; Woolley et a l,  1999). Meningitis is the most severe form of 

pneumococcal disease. Meningitis caused by S. pneumoniae is rapidly fatal, if it is not 

treated early and effectively, and it is associated with a higher mortality than meningitis 

caused by other common meningeal pathogens (Baraff et a l,  1993; Goetghehuer et a l,

2000). The morbidity and mortality of pneumococcal meningitis in children of 

industrialized coimtries are approximately 30% and 10%, respectively (Arditi et a l, 1998; 

Komelisse et a l,  1995). In developing countries the statistics are dramatically higher: 

about 50% of children with pneumococcal meningitis die while in hospital (Goetghehuer et 

a l,  2000; Muhe and Klugman, 1999). The pneumococcal serogroups most often isolated 

from cerebrospinal fluid (CSF) include groups 6, 10 and 23 at all ages (Hausdorff et a l,

2000).

Pneumococcal meningitis usually occurs in relatively few individuals as a result of seeding 

of the meninges during high-grade bacteraemia or a head trauma (Musher, 1992). In order 

to cause meningitis, bacteria need to cross the blood-brain barrier. It has been suggested, in 

an in vitro blood-brain banier model, that pneumococci cause rounding and detachment of 

brain micro vascular endothelial cells and decrease the transendothelial electrical resistance, 

indicating an opening of tight junctions (Zysk et a l,  2001). Intra-cerebral inoculation of 

pneumococci also causes an opening of tight junctions between brain endothelial cells 

(Quagliarello e ta l ,  1986).

The actual mechanisms and route used by pneumococci to migrate to the meninges are not 

clear. It is widely believed that pneumococcal meningitis is acquired via colonization of 

the nasopharynx, followed by bacteraemia and invasion of the central nervous system 

(CNS) (Ring et a l,  1998). However the spread to the CNS can occur in the absence of 

blood infection (Marra et a l, 2002a). It has been suggested that local inflammation caused 

by pneumococci breaches the blood-hrain harrier and admits entry of bacteria and 

phagocytes to this fragile area. The inflammatory reaction, rather than the pathogen itself,
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is largely responsible for the damage that results from bacterial meningitis (Pfister and 

Scheld, 1997). Several animal models have been developed to study the course and 

treatment of meningitis. The two most widely used are the infant rat model and the adult 

rabbit model (Moxon et a l, 1974; Tauber and Zwahlen, 1994). Neither replicates the 

human course of the disease, but they have been very valuable research tools nonetheless. 

In the infant rat model, infection is initiated either via intranasal instillation or 

intraperitoneal injection, resulting in bacteraemia and entry of the bacteria into the CNS 

(Rodriguez et a l, 1991; Tauber and Zwahlen, 1994). Some reports indicated that the 

blood-brain barrier damage is caused by pneumolysin produced by S. pneumoniae (Braun 

et a l,  2002; Hirst et a l,  2004; Zysk et a l, 2001). The adult rabbit model relies on direct 

injection of bacteria into the CSF (Tauber and Zwahlen, 1994). The ease with which 

multiple CSF samples may be drawn is a major benefit of this model; however, its main 

drawback is the nonphysiological route of infection. Other models involve intracerebral 

injection of rats for examining the efficacy of therapies to clear the infection (Strake et a l, 

1996).

1.3.4 Septicaem ia

Septicaemia is a systemic disease in which microorganisms multiply in the blood or are 

continuously seeded into the bloodstream. Pneumococcal septicemia occurs frequently as a 

complication of pnemnococcal pneumonia. Septicemia may occur also as a primaiy 

bacteraemia (bacteria present in bloodstream) in the absence of a clinically evident focus 

of infection (Balakrishnan et a l,  2000).

Epithelial damage caused hy previous viral upper respiratory tract infections can increase 

the opportunity o f pneumococci to reach the bloodstream. Previous reports suggest that S. 

pneumoniae is responsible for 1-11% of neonatal sepsis cases (Dawson et a l, 1999; 

Gladstone et a l, 1990; Greenberg et a l,  1997; Kaplan et a l,  1993) and the incidence of 

pneumococcal bacteraemia is high in infants up to two years of age (Jacobs et a l,  1979; 

Kaplan et a l,  1998). The incidence is low among teenagers and young adults, increases in 

patients of middle age, and reaches a high level among population over 65 years (Breiman 

et a l,  1990). Pneumococcal septicaemia in children seems to be associated with low risk of 

death, while increasing age, an extra pulmonary site of infection, the presence of chronic 

disease, or infection with certain serotypes (particularly type 3) contribute to a higher risk 

of death (Mufson et a l, 1974).
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1.4 Pneumococcus virulence factors

The production of disease due to hacterial infection requires temporal and coordinated 

expression of a series o f genes that allow the prospective pathogen to adapt to the hostile 

environment in the host. The expression of these genes contributes to the virulence of these 

pathogens, and such genes encode products frequently termed “virulence factors,” Such 

products could include enzymes required to metabolize complex proteins and 

glycoproteins found in comiective tissues or blood, bacterial toxins, cell surface proteins 

that mediate bacterial attachment, cell surface carbohydrates and proteins that protect a 

bacterium, and hydrolytic enzymes that may contribute to the pathogenicity of the 

bacterium (Barrett and Hoch, 1998). From the standpoint of the bacterium, virulence 

factors contribute to the ability of the microorganism to survive and grow at the site of 

infection and to its pathogenicity, and thus, in an ecological sense, virulence factors 

contribute to how well a microorganism propagates in a mammalian host (Barrett and 

Hoch, 1998).

S. pneumoniae is a member of the commensal microflora present on the mucosal surfaces 

in a non-pathogenic state, but can also cause a range of serious infections. To cause 

disease, the pneumococcus must be able to adhere to a tissue surface, and compete with the 

normal flora present on that surface. Nonnally the bacteria are found attached to the 

mucous membranes of the nasopharynx, hut cause disease when aspirated into the lower 

respiratory tract (Mitchell, 2003).

The pneumococci interact with the host and its tissues through the polysaccharide capsule 

and a variety of usually surface-exposed protein molecules. These interactions are essential 

for the full pathogenicity of these bacteria and are likely involved in the disease causing 

processes (Jedrzejas et a l, 2002). In the past, the polysaccharide capsule was considered 

the primary virulence factor of S. pneumoniae because nonencapsulated bacteria are almost 

completely harmless compared with the isogenic encapsulated strain. Recent studies, 

however, have suggested that certain pneumococcal proteins significantly contribute to 

pathogenesis of the bacteria. In many cases, these proteins are involved in direct 

interactions with host tissues or in concealing the bacterial surface from the host defense 

mechanisms (Jedrzejas, 2001). The main pneumococcal virulence factors are illustrated in 

Figure 1.2 and listed in Table 1.1.

30



Introduction

PspÂ Dlmer

coü ço'heli*
pfolin#Hrf«h 

c}nollft«»biiid3ng\

Dimer

Celt

PsaA

Neuraminidase 

F-antigen

IgAI protease

Pneumolysin
Autotvsin 

Membrane

Capsular 
Polysaccharide

C-poiysaccharlde 
Cell Wall

Figure 1.2- Schematic structure of the surface of S. pneumoniae.

Hypothetical representation of the pneumococcal surface showing several noncapsular antigens. 
C-polysaccharide (teichoic acid) attached to the cell wall is thought to be similar in structure to F- 
antigen (lipoteichoic acid), except that the latter contains lipids allowing it to insert in the cell 
membrane. Pneumolysin is depicted in the cytoplasm of the cell shown here, since its release is 
dependent on the autolytic activity of autolysin. Neuraminidase has been depicted both in the 
cytoplasm and beyond the capsule, since it is thought to be secreted by pneumococci. For PspA, 
an effort has been made to draw its extension from the surface to scale with respect to the 
thickness of the cell wall and capsule. It has been hypothesized that the lysines of the PspA a-helix 
interact with the capsular polysaccharides to stabilize the coverage of the surface by the capsule. 
PspC, as PspA, is attached to the surface through the choline of both lipoteichoic and teichoic 
acids. Since the location of PsaA with respect to other cell surface structures is unknown, its 
depiction here is completely hypothetical. Adapted from (Briles et al., 1998).
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Table 1.1- Summary of the main virulence factors of S. pneumoniae.

Virulence factor Role ill virulence Reference

Capsule

Cell wall and cell wall 
polysaccharide

Lacks intrinsic ability to activate the 
alternate complement pathway.
Resistance to phagocytosis.
No or low hnmmiogenicity of some 
serotypes.
Colonization

Inflammatory effects:
Activation of the alternative 

complement pathway, resulting in 
anaphylatoxin production.

Enhancement of vascular permeability, 
mast cell degranulation, PMN activation.

IL-1 production increased, cytopathic 
for endothelium.
Mediator of attachment to endothelial 
cells.

(Fine, 1975; Giebink ef a/., 1977) 
(Braconier and Odeberg, 1982; 
Matthay etal, 1981)
(Kamboj et al, 2003; van Dam et 
al, 1990)
(Magee and Yother, 2001)

(Winkelstein and Tomasz, 1977, 
1978)

(Johnston, 1991)

(Geelen et al, 1993; Riesenfeld-Orn 
etal, 1989)
(Geelen er a/., 1993)

Pneumolysin Cytotoxic effect 

Cytolytic activity
Overexpression of ICAM-1 
monocytes.
Increased concentrations of (IL)-6. 
Nitric oxide production 
macrophages.

Pneumococcal surface 
protein A

Pneumococcal surface 
protein C

Autolysin

in

from

Inhibits complement deposition.

Binding of lactofenin.

Binds tire secretory component of SIgA.

Binds human factor H.
Inhibits complement activation.

Generating mflammatory cell wall 
degradation products.
Releasmg the pneumococcal virulence 
factors.

(Feldman et al, 1990; Rubins et al, 
1993)
(Cockeran et a l, 2002a)
(Thornton and McDaniel, 2005) 
(Rijneveld et al, 2002)
(Braime?fl/., 1999)

(Ren et al, 2003a; Ren et al, 2004; 
Tu et al, 1999)
(Shaper et al, 2004)

(Dave et a l, 2004; Hammerschmidt 
et al, 1997; Zhang et al, 2000) 
(Dave et al, 2001)
(Duthy et al, 2002; Smith and 
Hostetter, 2000)
(Mitchell et al, 1997)

Pneumococcal surface 
antigen A

Hyaluronidase

Neuraminidase

IgAI Protease

Putative adhesin.
Resistance to oxidative stress

Degrades hyaluronan and certain 
chondroitin sulfates.

Cleaves terminal sialic acid from cell 
surface glycans.

Facilitate adherence by modification of 
the IgAI antibody.

(Berry and Paton, 1996)
(Tseng et al, 2002)

(Boulnois, 1992; Menzel and Farr, 
1998)

(Shakhnovich et al, 2002; Tong et 
al, 2001)

(Weiser et al, 2003)
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1.4.1 Capsule

For many years the capsule has been recognized as the major virulence factor of S. 

pneumoniae based on its capacity to confer resistance to complement-mediated 

opsonophagocytosis (Austrian, 1981; Bruyn et a l, 1992; Watson et a l, 1995; Wood and 

Smith, 1949). Experimental proof for this was provided by the difference in 50% lethal 

dose between encapsulated and unencapsulated strains. The encapsulated pneumococcus 

strains have been found to be at least 10  ̂ times more virulent in mice than the strains 

lacking the capsule (Avery and Dubos, 1931; Watson et a l, 1995). The capsule consists of 

high-molecular weight polymers made up of units of repeating oligosaccharides, which can 

contain 2 to 8 monosaccharides (AlonsoDeVelasco et a l, 1995). More than 90 

polysaccharide capsular types have been described on the surface of the pneumococcus 

(Swiatlo and Ware, 2003), synthesis of the serotype-specific capsular polysaccharide is 

encoded by distinct clusters of up to 20 tightly linked genes transcribed as single opérons 

(Paton and Morona, 2000).

The major mechanism by which the capsule promotes pneumococcal vimlence is the 

protection of the bacteria against phagocytosis by resident pulmonaiy macrophages or 

recmited polymorphonuclear neutrophils (Tuomanen et a l,  1985b; Tuomanen et a l,  

1987b). The capsule forms a physical barrier that separates bound, fixed complement 

components from complement receptors on host phagocytes (Brown et a l, 1982; 

Winkelstein, 1984). It may also function in the electrostatic repulsion of phagocytes from 

bacteria (Kasper, 1986). The association between capsular type and disease is well 

documented. Pneumococcal virulence and invasiveness depend on both the composition 

and quantity of the capsule produced. The thickness of the capsule may influence the 

degree of exposure of other important pneumococcal surface stmctures, such as the 

adhesins that are required during this initial colonization phase (Morona et a l, 2004).

Antibodies to the capsular components are highly protective (Austrian et a l, 1976; 

MacLeod et a l, 1945), and the global impact of pneumococcal disease has led to the 

development of polyvalent polysaccharide and polysaccharide -protein conjugate vaccine 

formulations (Ogumiiyi et a l, 2002).

1.4.2 Cell wall and cell wall polysaccharide

The pneumococcal wall, located just under the capsular polysaccharide, consists of two 

major components, a peptidoglycan polymer, common to all bacterial cells, and teichoic
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acid, a polysaccharide covalently linked to peptidoglycan. While teichoic acid is found in 

many Gram positive cell walls, pneumococcal teichoic acid is unique in that it contains 

phosphorylcholine (Mosser and Tomasz, 1970; Sorensen and Henrichsen, 1987; Tomasz, 

1967). This phosphorus-containing teichoic acid is designated as a cell wall polysaccharide 

(C-polysaccharide) and functions as a recognition site for activation of the alternative 

complement pathway (Hummell et a l, 1981; Winkelstein and Tomasz, 1977, 1978) as well 

as for the o f C-reactive proteins (Mold et a l,  1981), certain myeloma proteins (Szu et a l, 

1983; Winkelstein and Tomasz, 1978), and pneumococcal autolysin (Giudicelli and 

Tomasz, 1984; Mosser and Tomasz, 1970). Cell wall polysaccharide is covalently linked to 

the peptidoglycan layer of the cell wall (Tomasz, 1981) and is unifonnly distributed in 

both sides (Skov Sorensen et a l, 1988).

Since C-polysaccharide is common to all pneumococci (Sorensen and Henrichsen, 1987), 

it has been suggested that antibodies against this antigen might confer species-specific 

protection against pneumococcal infections (Gray et a l,  1983; Szu et a l, 1986). In 

addition to the cell-wall linked C-polysaccharide, pneumococci possess another common 

polysaccharide antigen called lipoteichoic acid (Briles and Tomasz, 1973). This antigen 

inhibits the function o f LytA, the major enzyme responsible for the degradation of the 

peptidoglycan backbone o f pneumococcus, which leads to cell lysis. During the stationary 

phase of growth pneumo coccus cells release the lipoteichoic acid enabling the unrestrained 

autolytic activity of LytA and the destruction of the cell wall (Horne and Tomasz, 1985). 

The activity of the autolysin releases the components of the pneumococcus cell wall as 

fragments. The cell wall fragments induce release o f proinflammatoiy cytokines from 

mononuclear macrophages (TNF-a, IL-1 and lL-6) (Tuomanen et a l, 1987b). Typical 

pneumococcal diseases such as otitis media, meningitis, and pneumonia can be mimicked 

in animals that have received injection of purified cell wall or its degiadation products 

(Carlsen et a l, 1992; Tuomanen et a l, 1985a; Tuomanen et a l, 1987b). Also, purified cell 

wall is a powerful stimulus for the production of lL-1 by human monocytes (Riesenfeld- 

Om et a l, 1989). Cell wall also was shown to be involved in the attachment of 

unencapsulated pneumococcus to human endothelial cells and to have cytopathic effects on 

these cells (Geelen et a l, 1993). Anti-cell wall polysaccharide or anti- phosphorylcholine 

antibodies have been demonstrated to protect animals against pneumococcal challenge 

(Briles et a l, 1981; Briles et a l, 1989; Briles et a l, 1992), however the protective activity 

of anti- phosphorylcholine antibodies is substantially weaker than that of anti-capsular 

polysaccharides antibodies (Briles et a l, 1981; Briles et a l, 1989).
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1.4.3 Pneum olysin

Pneumolysin is an intracellular protein that belongs to the family of cholesterol-dependent 

cytolysin (CDC) (Boulnois, 1992). It is a 53 kDa protein produced by all clinical isolates 

of the pathogen (Paton et a l, 1983; Paton et a l, 1986; Paton et a l, 1993). It is a 

cytoplasmic enzyme and is released upon lysis of the pneumococcus under the action of 

the cell-bound autolysin (LytA) and has been shown to fiinction in pathogenesis in several 

animal models of disease (Alcantara et a l, 1999; Benton et a l,  1995; Beiry et a l, 1989b; 

Canvin et a l, 1995; Comis et a l, 1993). However, few pneumococcal strains express 

extracellular pneumolysin prior to stationary phase (Benton et a l,  1997). This finding 

raised the possibility that pneumolysin might be able to be released by a nonlytic 

mechanism. A mutant lacking autolysin in strain WU2 (type 3) showed the same pattern of 

pneumolysin as the wild-type strain demonstrating that pneumolysin is not dependent upon 

autolytic activity but it might occur via active secretion of the pneumolysin protein by an 

unidentified mechanism (Balachandran et a l, 2001).

Pneumolysin belongs to the family of thiol-activated cytolysins, which are produced by 

several Gram-positive bacteria and inactivated by cholesterol (Johnson et a l, 1980; Paton,

1996). The thiol-activated toxins presumably act by binding to the target cell membrane 

via interaction with cholesterol, which results in the insertion o f the monomeric toxin into 

the lipid bilayer. Subsequently, the monomers oligomerize and form transmembrane pores, 

which cause cell lysis. (Boulnois et a l, 1991b). hi addition to its cytolytic properties, 

pneumolysin has several effects at lower concentrations: it has a cytotoxic effect on 

ciliated bronchial epithelial cells, slows ciliary beating in organ culture, disrupts tight 

junctions and the integrity of the bronchial epithelial monolayer (Rayner et a l, 1995; 

Steinfort et a l, 1989), has a role in evasion of the immune system as decreases the 

bactericidal activity and migration of neutrophils (Paton and Ferrante, 1983), inhibits 

lymphocyte proliferation and antibodies synthesis (Ferrante et a l,  1984) and interferes 

with the complement pathway (Paton et a l,  1984). This toxin also stimulates the 

production of inflammatory mediators, such as TNF-a, IL-1 (3 (Houldsworth et a l,  1994), 

nitric oxide (Braun et a l,  1999), IL-8 (Cockeran et a l, 2002b), and prostaglandins and 

leukotrienes (Cockeran et a l,  2001), activates phospholipases in endothelial cells (Rubins 

et a l,  1994) and is toxic to pulmonary endothelial and epithelial cells (Rubins et a l,  1992; 

Rubins et a l,  1993).

Although native pneumolysin has strong toxic effects, several derivatives which are 

nontoxic but retain the immunogenicity and protective activity of the native protein have
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been engineered (Paton et a l, 1991). These constructs therefore seem to meet many criteria 

for inclusion in a pneumococcal conjugate vaccine (Alexander et a l,  1994; Kirkham et a l, 

2006; Paton et a l,  1993).

1.4.4 Surface proteins

1.4.4.1 Choline-binding proteins

Pneumococci display an unusual surface molecule, phosphocholine, on the cell wall 

teichoic acid and the membrane bound lipoteichoic acid (Tomasz et a l, 1975). Studies 

have shown that choline-biding proteins (CBPs) noncovalently bind to the choline of both 

lipoteichoic and teichoic acids via its C-terminal end, consisting of the repeat region, also 

called the choline binding region (Cundell et a l, 1995b; McDaniel et a l, 1991; Yother and 

Briles, 1992; Yother and White, 1994). The pneumococcal surface protein (PspA) is a 

protein present on the surface of all clinically important pneumococcal serotypes and is 

required for full virulence (Crain et a l, 1990; McDaniel et a l,  1987). Other CBPs are 

present on the surface of this pathogen such as the autolysin (LytA) (Garcia et a l, 1986b) 

and pneumococcal surface protein C (PspC) (Brooks-Walter et a l,  1999). LytA is an 

amidase functioning in the separation of daughter cells during cell division (Ronda et a l, 

1987) and is required for cell lysis (Tomasz et a l, 1971), whereas PspC appears to be the 

first known protein adhesin on the pneumococcal surface (Rosenow et a l, 1997). The 

pneumococcal family of vimlence factors, CBPs, will be described below in more detail.

1.4.4.1.1 Pneumococcal surface protein A

PspA is a surface protein with variable molecular size ranging from 67 to 99 kDa in 

different pneumococcal strains (Waltman et a l, 1990). It is expressed by all pneumococci 

and is important for vimlence (Crain et a l, 1990; McDaniel et a l,  1987). Bacteria unable 

to produce PspA are less vimlent in models of systemic disease because they are more 

easily cleared from the bloodstream (McDaniel et a l, 1987). PspA is immunogenic and 

elicits protective antibody response in mice (McDaniel et a l, 1994).

Based on sequence analyses, the protein has four distinct domains: an amino-terminal, 

highly charged a-helical coiled-coil stmcture (288 amino acids in strain Rxl); a pro line- 

rich domain (83 amino acids); a stretch of 10 highly conserved repeats of 20 amino acids 

comprising the choline-binding component and a slightly hydrophobic tail of 17 amino 

acids at the carboxy-terminus (Yother and Briles, 1992). The choline-binding component
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of PspA is homologous with other pneumococcal CBPs, and is responsible for the 

attachment o f PspA to the pneumoeoccal surface (Yother et a l, 1992). This orientation 

results in the amino-terminal a-helical domain of the molecule being exposed on the 

surface and thus available to interact with the human host (Gray, 1996). PspA is a 

serologically highly variable molecule and on the basis on the relatedness of the nucleotide 

and amino acid sequences, the different PspA molecules are grouped into two major allelic 

types (families), and further subdivided intro clades (Hollingshead et a l, 2000).

The importance of PspA in virulence has been well established in murine infection models 

with pneumococcal mutants that no longer express cell surface PspA (Briles et a l, 1988; 

McDaniel et a l,  1987). Although the mechanism of action of PspA is not fully understood 

it appears to be in protection against the host complement system (Cundell et a l, 1995b; 

Yother and White, 1994). The interference of PspA with complement activation it suggests 

facilitates pneumococcal survival and host invasion. PspA blocks the C3 convertase of the 

alternative complement pathway and/or accelerates its dissociation. This leads to an 

inhibition of the downstream events of the complement pathway, which would result in 

opsonization of pneumococcus and chemotaxis (Tu et a l,  1999). In addition PspA 

functions as a specific receptor for lactoferrin, the amino-terminal part being responsible 

for lactoferrin binding (Hammerschmidt et a l,  1999). Lactoferrin is an iron-sequestering 

glycoprotein, which predominates in mucosal secretions. It has been suggested that by 

binding lactoferrin pneumococci are able to interfere with the host’s immune functions 

(Hakansson et a l, 2001).

PspA is considered as a pneumococcal protein vaccine candidate. This protein has been 

shown to bring protective immunity against pneumococcal infection in mice (Briles et a l, 

1996; McDaniel et a l,  1991; Talkington et a l, 1991; Tart et a l, 1996). Both oral and 

intranasal immunization of mice with PspA elicited protective immunity against 

pneumococcal carriage and systemic infection (Wu et a l, 1997; Yamamoto et a l, 1997). 

Intranasal immunization of mice with a mixture of PsaA and PspA proved to be highly 

protective against pneumococcal carriage (Briles et a l,  2000), the mixture of these two 

proteins elicited better protection than either alone (Siniell et a l,  2001).

1.4.4.1.2 Pneumococcal surface protein C

PspC is also known as CbpA (Rosenow et a l, 1997), SpsA (Hammerschmidt et a l, 1997), 

PbcA (Cheng et a l, 2000) and Hic (Janulczyk et a l, 2000) based on its ability to bind 

choline, secretory component of immunoglobulin A (IgA), complement component C3 and
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factor H, respectively. This pneumococcal surface protein belongs to the family of 

pneumococcal choline-binding proteins that bind to the phosphocholine (Rosenow et a l,

1997) present in the teichoic acid and the lipoteichoic acid of the cell membrane and the 

cell wall (Tomasz, 1967). This protein specifically bind to secretory component o f human 

secretory immunoglobulin A (Hammerschmidt et a l, 1997), human factor H (Dave et a l,

2001), and complement component C3 (Janulczyk et a l, 2000; Smith and Hostetter, 2000). 

PspC has been shown to interact with the human polymeric immunoglobulin receptor 

(pIgR), which is expressed by cells in the respiratoiy epithelium, thereby facilitating 

invasion of the mucosa (Zhang et a l, 2000).

PspC is a 110-kDa protein with eight choline-biding repeats similar to PspA. The 

consensus sequences of these domains of PspC and PspA are from 90 to 95% identical 

(Brooks-Walter et a l, 1999; McDaniel et a l, 1998). It consists of an N-terminal a-helical 

domain followed by a proline-rich domain. The C-tenninal half of PspC contains the 

choline-binding domain. A variant of PspC, Hie, contains the LPXTG motif that anchors 

the protein covalently to the bacterial surface (Janulczyk et a l,  2000). Analysis of the 

deduced amino acid sequence of different PspC variants has revealed 11 major groups of 

PspC proteins (PspCl-11). Single proteins within a group display only minor variations in 

the amino acid sequence (lamielli et a l, 2002).

PspC plays an important role in pneumococcal pathogenesis by functioning as an adhesin 

(Rosenow et a l,  1997) and was the first known protein adhesin identified on the 

pneumococcal surface (Weiser et a l, 1996). The importance of PspC in adherence and 

colonization of S. pneumoniae to epithelial cells of nasal passages and lungs in mice is well 

established (Balachandran et a l,  2002; Rosenow et a l,  1997). In the absence of PspC, 

pneumococci fail to enter and cross an in vitro blood-brain barrier, indicating a critical role 

for this protein in invasion (Ring et a l, 1998). Pneumococcal strains with mutations in 

PspC are also unable to colonize the mucosal surface or infect the lungs. The adherence 

properties of PspC may be due to its ability to bind glycoconjugates such as sialic acid and 

lactotetraoses, as well as C3 on activated epithelial cells o f the host (Rosenow et a l, 1997; 

Smith and Hostetter, 2000). Zhang and co-workers by PspC-affinity chromatography had 

shown that the pneumococcus PspC biddings to human pIgR, and consequent expression 

of pIgR in human nasophaiyngeal cells facilitates the pneumococcal adherence and 

invasion. Furthermore, PspC deletion or antibodies against human pIgR or PspC abolished 

the adherence and invasion. These results suggest that the PspC-pIgR interaction mediates 

the translocation of the pneumococcus across the mucosal barrier by transcytosis through 

epithelial cells (Zhang et a l, 2000).
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1.4.4.1.3 Autolysin

LytA is a 36-kDa N-acetylmuramoyl-L-alanine amidase (Holtje and Tomasz, 197,6; 

Mosser and Tomasz, 1970) which is located in the cell envelope (Diaz et ah, 1989). LytA 

is the major enzyme responsible for the pneumococcal cell wall turnover. It is a cell wall- 

associated protein that belongs to the family of pneumococcal CBPs. LytA is responsible 

for the degradation of the peptidoglycan backbone of the pneumococcus, which leads to 

cell lysis (Garcia-Bustos and Tomasz, 1987; Giudicelli and Tomasz, 1984). Therefore, the 

activity of LytA allows the release of intracellular toxins, such as the pneumolysin, and 

highly inflammatory cell wall fragments. The enzyme is activated under conditions in 

which biosynthesis stops, such as nutrient starvation, the end o f logarithmic phase of 

growth or penicillin treatment (Mitchell, 2000; Tuomanen and Tomasz, 1990).

Autolysin-deficient mutants of S. pneumoniae, resulting from chemical mutagenesis, have 

been described (Garcia et a l,  1986a; Lopez et a l, 1986; Sanchez-Puelles et a l, 1986). All 

of these failed to undergo autolysis during the stationary phase of growth and were 

resistant to the lytic consequences of treatment with penicillin or deoxycholate. The 

mutants grew normally, except for the tendency to form short chains of cells rather than 

discrete diplococci suggesting that autolysin might play a role in daughter-cell separation. 

The noimal phenotype is reestablished when the mutants are transformed with a 

recombinant plasmid carrying the wild-type gene (Ronda et a l, 1987). Previous studies 

using autolysin-negative mutants showed a marked reduction in virulence for mice; 

intranasal and intraperitoneal median lethal dose were 10^-10^ fold greater, respectively, 

than those of wild-type.These mutants did not spontaneously autolyse and did not release 

pneumolysin into the culture medium, even after the addition of sodium deoxycholate, 

suggesting a role for autolysin and possibly for the inflammation that follows autolysis in 

pneumococcal virulence and pathogenesis (Berry et a l, 1989a; Berry et a l,  1992; Canvin 

et a l, 1995). However, recent studies have shown that the extracellular release of 

pneumolysin was not dependent on autolysin action. The WU2 strain that has an autolysin 

defective mutation showed the same pattern of pneumolysin release as the wild-type strain. 

Furtheimore, although the autolysin-deficient strain in BALB/cByJ mice showed similar 

effects on virulence to the pneumolysin mutant, using highly susceptible CBA/N mice, the 

loss of autolysin had no effect in infection in opposition of pneumolysin mutants. This 

suggest that autolysin and pneumolysin have different effects on virulence and that 

autolysin is not a required for the effect on virulence by pneumolysin (Balachandran et a l,

2001)
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Iminunization o f mice with LytA confers limited protection against intranasal challenge 

with wild-type pneumococci (Berry et a l, 1989a). Subsequent studies demonstrated that

immunity to autolysin and pneumolysin provide similar degrees of protection against
- 'S

intraperitoneal challenge (Berry et a l, 1992; Canvin et a l, 1995). Immunity to both factors 

did not result in greater protection than immunity to either one alone (Lock et a l, 1992).
îlFurthermore, autolysin was shown to be triggered by human lysozyme, a defence factor 

released upon infection and inflammation (Bruyn et a l , 1992).

1.4.5 C ytoplasm ic lipid bilayer attached m acrom olecules:

1.4.5.1 P neum ococcal surface antigen A

Pneumococcal surface adhesin A (PsaA) is a 37-kDa surface lipoprotein essential for :l; 

pneumococcal vimlence (Tharpe and Russell, 1996). Although PsaA was assigned as being 

a pneumococcal adhesin (Berry and Paton, 1996) due to the sequence analyses o f th.Q psaA 

gene revealing a strong degree o f homology with the streptococcal putative lipoprotein 

adhesins AdcA from S. pneumoniae (Dintilhac and Claverys, 1997), Sea A from 

Streptococcus gordonii (Kolenbrander et a l, 1998), SsaB from Streptococcus sanguis 

(Ganeshkumar et a l, 1991) and FimA from Streptococcusparasanguis (Bumette-Curley et 

a l,  1995), and by the fact the PsaA mutants of X pneumoniae exhibited a reduced ability

to adhere to A549 pneumocytes (Berry and Paton, 1996), studies on the genomic sequence 1
'

comparison (Berry and Paton, 1996) and stmcture of PsaA (Lawrence et a l, 1998) 

revealed that it is a component of an ATP-binding cassette-type (ABC-type) permease

Si

membrane transport system and by the fact PsaA is not exposed on the surface of the vg

bacterial cell (Johnston et a l,  2004) demonstrate that the function as an adhesin is not L

consistent. However, some data related with inhibition of pneumococcal adherence to 

human nasopharyngeal epithelial cells by anti-PsaA Antibodies, continue supporting the 

argument that PsaA is an adhesin (Romero-Steiner et a l,  2003). This peiinease membrane 

transport system is composed of the products of three genes, psaB  (ATP-binding protein), 

psaC  (integral membrane protein), and psaA (solute- binding lipoprotein), which are 1

organized in an operon with a gene encoding PsaD, a thiol peroxidase (Novak et a l,

1998). I

It is supposed that PsaA is responsible for the uptake of Mn̂ "̂  and probably Zn̂ "̂  into the
7 +  • 'bacterium (Dintilhac et a l,  1997). Mn is known to be a cofactor of streptococcal '

pymvate kinase and lactate dehydrogenase. These enzymes are critical for glycolysis and

homolactic fermentation, respectively (Crow and Pritchard, 1977). In S. pneumoniae, Mn̂ "̂
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has been shown to be required for the activity of CpsB, a tyrosine phosphatase involved in 

the regulation of capsule production (Bender and Yother, 2001; Morona et a l, 2002). 

Pneumococcal pspA mutants were shown to be more sensitive to the products of 

superoxide dismutase activity, while Mn̂ "*" supplementation provided more protection 

against killing by H2O2 (Tseng et a l, 2002). In some streptococcal species, lectin-mediated 

adherence requires Mn̂ "̂  (Drake et a l, 1988; Lu et a l,  1992).

PsaA is considered a pneumococcal protein vaccine candidate. Initially, immunization of 

mice with PsaA was obseiwed to increase protection against invasive pneumococcal 

disease (De et a l, 1999; Ogunniyi et a l, 2000; Talkington et a l,  1996). Protection against 

carriage was more effective when combinations of PsaA with PspA was administered to a 

greater degree than immunization with PsaA alone (Briles et a l,  2000). Despite the 

protective effects against caniage, immunization with PsaA consistently failed to protect 

against systemic infection (Ogunniyi et a l, 2000). Mutations in the psa operon result in an 

almost complete attenuation of virulence for all tested models of animal infection, 

including respiratory tract, systemic, intraperitoneal chamber, and otitis media models 

(Berry et a l,  1996; Marra et a l, 2002b). These mutations cause a requirement for added 

manganese for growth (Dintilhac et a l, 1997). The pneumococcus produces a significant 

amount of H2O2 during growth, mainly due to the presence of pyruvate oxidase 

(Spellerberg et a l, 1996). The production of H2O2 is believed to be important in the 

virulence of pneumococci and as a mechanism to eliminate competition by other pathogens 

(Duane et a l, 1993; Pericone et a l, 2000). The virulence attenuation may be a result of an 

inability to regulate oxidative stress and intracellular redox homeostasis on the part of psaA 

mutant strains (Tseng et a l, 2002).

1.4.6 LPXTG-anchored proteins

A group of pneumococcal surface proteins are covalently anchored to the cell wall through 

a carboxy-terminal motif-LPXTG. These proteins include hyaluronidase, neuraminidase 

and IgAI protease.

1.4.6.1 Hyaluronidase

Hyaluronate lyase (Hyaluronidase) (Hynes et a l, 2000) is another major surface protein of 

S. pneumoniae with potentially antigenically variable properties that might be essential for 

full pneumococcal vimlence (Boulnois et a l, 1991a). Hyaluronidase primarily degrades 

hyalui'onan (Laurent and Fraser, 1992), the predominant polysaccharide component of
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animal and human connective tissues and the nervous system, into unsaturated 

disaccharide units as the end products (Li et a l, 2000), and certain chondroitin sulfates 

(Pritchard et a l, 1994). This activity facilitates the host tissue invasion by the pneumo cocci 

and causes an increased level of tissue permeability, which plays an essential role in 

wound infections, pneumonia and in other sepsis (Pomiuraj and Jedrzejas, 2000). Because 

of this reason hyaluronate lyase is also know as a “spreading factor” (Akhtar and Bhakuni, 

2003). Strains with higher hyaluronidase activity could breach the blood-brain barrier and 

disseminate more effectively (Kostyukova et a l, 1995).

hi fresh S. pneumoniae cultures, most of the hyaluronidase activity is cell associated (Li et 

a l, 2000), which is consistent with the presence of the Gram positive cell surface 

anchorage domain (LPXTG) near its C terminus. The protein sequence of four bacterial 

hyaluronate lyases from S. pneumoniae (Berry et a l,  1994), S. agalactiae (Lin et a l,

1994), Staphylococcus aureus (Farrell et a l, 1995), and Propionibacterium acnes (Steiner 

et a l, 1997) have been reported so far. Their sequence homologies range from 28 to 68% 

suggesting their structural, functional, and evolutionary similarities (Akhtar and Bhakuni, 

2003).

Deletion of the hyaluronidase gene does not affect virulence in a mouse model of infection. 

However, hyaluronidase deletion mutants in pneumolysin-negative backgrounds were 

significantly less virulent than derivatives with single mutations. These may represent 

another alternative for a pneumococcal vaccine or drug target, especially when combined 

with pneumolysin (Beriy and Paton, 2000).

1.4.6.2 Neuram inidase

Neuraminidase cleaves terminal sialic acid residues from a wide variety of glycolipids, 

glycoproteins, and oligosaccharides on cell surfaces or in body fluids, and such activity has 

the potential to cause great damage to the host. Neuraminidase might also unmask potential 

cell surface receptors for putative pneumococcal adhesins (Kiivan et a l, 1988).

Pneumococcal neuraminidase, like hyaluronidase, belongs to another family of 

pneumococcal surface proteins that are anchored to the pneumococcal cell wall by covalent 

linkage to peptidoglycan through a carboxy-terminal motif LPXTG (Mitchell, 2003). 

Pneumo cocci have at least two enzymes with neuraminidase activity, NanA and NanB 

(Berry et a l, 1996; Camara et a l, 1991; Camara et a l, 1994). NanB, unlike NanA, does 

not contain a LPXTG motif in their C-terminal. In some strains, there is also a NanB
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homolog, NanC. NanA has a molecular mass of -108 kDa (Camara et al., 1994) and NanB 

has a mass of 74.5 kDa (Berry et a l,  1996). They possess very little amino acid homology. 

It has been suggested that neuraminidase activity promotes colonization by exposing host 

cell receptors otherwise covered by sialic acid (Tong et a l,  2001). Both enzymes seem to 

have a propensity for degradation to smaller fragments during in vitro gi'owth and protein 

purification, and some of these fragments preserve neuraminidase activity. For NanA, 

active fragments as small as 85 kDa were isolated (Lock et a l,  1988). NanA has been 

located on the surface of pneumo cocci through antibody studies (Camara et a l, 1994). The 

activity of NanB is approximately 100 times lower than that o f NanA (Berry et a l, 1996; 

Lock et a l, 1988). Both proteins are exported proteins with typical signal peptides, but 

NanB lacks the typical surface anchorage domain (LPXTG) present in NanA, which 

probably reflects the covalent binding of NanA to peptidoglycan structures of S. 

pneumoniae (Camara et a l,  1994; Schneewind et a l, 1995).

The exact role of pneumococcal neuraminidase in pathogenesis has not been cleaiiy 

established, however, it has been proposed that neuraminidase could enhance colonization 

by decreasing viscosity of mucus or by exposing cell surface receptors for S. pneumoniae 

(Linder et a l,  1992; Linder et a l,  1994; Rosenfeld et a l, 1992). Histochemical studies of 

organs from mice dying after intraperitoneal administration of partially purified 

pneumococcal neuraminidase have indicated marked decreases in the sialic acid contents 

of the kidneys and liver compared with those of controls (Kelly and Greiff, 1970). It has 

also been shown that both coma and bacteraemia occur significantly more often among 

patients with pneumococcal meningitis when the concentration o f N-acetylneuraminic acid 

in the cerebrospinal fluid is elevated (O'Toole et a l,  1971). S. pneumoniae neuraminidase 

has been implicated as a virulence factor in the pathogenesis of pneumococcal otitis media. 

Dismption of nanA diminishes the ability of pneumococci to colonize and persist in 

nasophaiynx and middle ear in the chinchilla model (Tong et a l,  2000). Furthermore, 

immunization with neuraminidase resulted in a significant reduction in nasopharyngeal 

colonization as well as in the incidence of otitis media with effusion (Long et a l,  2004; 

Tong et a l, 2005).

1.4.6.3 Other LPXTG-anchored proteins

In addition, other LPXTG-anchored proteins, such as IgAI protease, cell wall-associated 

protease PrtA and p-galactosidase (BgaA), are present on the surface of pneumococci.
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IgA is the most abundant class of Igs on mucosal surfaces and its contribution to host 

defence results from its ability to block colonization-initiating adhesive interactions of 

microorganisms with host tissues (Russell et a l, 1999). S. pneumoniae, H. influenzae 

(Mulks et a l, 1980), N. meningitides (Vidarsson et a l, 2005) and oral streptococci (Kilian 

and Holmgren, 1981) produce a variety of enzymes called IgAI proteases that specifically 

cleave the hinge region of IgAI into Fab and Fc fragments (Collin and Olsen, 2001; Male, 

1979; Plant, 1983). These proteases may be important virulence factors because they are 

produced in vivo (Blake et a l, 1979; Insel et a l,  1982). This Zn-metalloproteinase with 

1927 amino acids is characterized by the absence of C-terminal motif-LPXTG and is 

associated with the bacterial cell surface via an N-terminal motif-LPXTG (Poulsen et a l, 

1996), and is highly homologous to the IgAI protease from Streptococcus sanguis (Gilbert 

et a l, 1991). Wani and co-workers identified, cloned and characterized the IgAI in S. 

pneumoniae (Wani et a l,  1996). IgAI protease was identified as a virulence factor in both 

pneumonia and septicemia models by the STM screen (Polissi et a l, 1998). Further 

functions of IgAI protease include impairment of host defences at the mucosal suifaces 

and support of colonization o f the nasopharynx (Kilian et a l,  1996; Weiser et a l, 2003).

Protease activity of two distinct serine type proteases has been demonstrated in 

pneumococcal culture supernatant (Courtney, 1991). One o f these two proteins, PrtA, was 

identified by computational analysis of the pneumococcal genome to be a surface located 

protein (Wizemann et a l, 2001). The protease PrtA has been identified as a serine protease 

belonging to the family of subtilisin-like proteases, also called subtilases. PrtA was 

identified as a virulence factor in an animal model of infection after intraperitoneal 

challenge. Survival of mice infected with the PrtA-deficient mutant strain was significantly 

longer than the survival during infection with the wild-type strain (Bethe et a l, 2001). This 

protease was identified by an immmiological screening of an expression library of the 

pneumococcal genome using human convalescent-phase serum (Zulty and Barcak, 1995). 

Two parts of this protein, including the N-terminal and the C-terminal third, were 

demonstrated to be protective in mice (Wizemann et a l,  2001). The part of the protective 

N-terminal third is highly conserved in clinical pneumococcal isolates (Bethe et a l, 2001) 

and may display a promising candidate for vaccine development to protect humans from 

invasive pneumococcal infection.

The bgaA gene of S. pneumoniae encodes a putative 2235-amino-acid protein with the two 

amino acid motifs characteristic of the glycosyl hydrolase family of proteins. The LPXTG- 

anchored surface proteins described previously have been described as vimlence factors, 

and it is conceivable that P-galactosidase is a vimlence factor as well (Zahner and
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Hakenbeck, 2000). The presence of antibodies against p-galactosidase in convalescent- 

phase serum from a patient with a history of pneumococcal infection is in agreement with 

this hypothesis (Zysk et a l,  2000).

1.5 Pneumococcal antibiotic resistance

The increase of antibiotic resistance in bacteria has accompanied the therapeutic use of 

antimicrobial agents, with a steady erosion of antimicrobial activity against Gram positive 

cocci (Moellering, 1998). Since the 1980s the development and dissemination of strains of 

S. pneumoniae with resistance to penicillin has become an important problem in the 

treatment of infections caused by this bacterium (Munoz et a l,  1991). There is a pandemic 

o f resistance among clinical isolates of S. pneumoniae (Dagan et a l, 2001; Felmingham 

and Gruneberg, 2000), and pneumococcal disease is among the leading causes of infective 

mortality in children and the elderly (Ball et a l, 2002; Breiman et a l,  1994). Because 80% 

of antibiotic consumption is in the treatment of respiratory tract infections (Huovinen and 

Cars, 1998), this can explain the emergence of resistance in S. pneumoniae (Arason et a l, 

1996; Perez-Trallero et a l, 2001) by selective pressure (Doem, 2001).

Over the past two decades, antibiotic use has led to increased resistance to the so-called 

“antibiotic group markers”, specifically penicillin, erytluomycin and ciprofloxacin for p~ 

lactams, macrolides and quinolones respectively (Prieto et a l, 2002). The problem of 

resistance is heightened by the difficulty in choice among commonly used groups of 

antibiotics, since resistance to erythromycin is more prevalent among penicillin-resistant 

strains (Perez-Trallero et a l, 2001), and resistance to ciprofloxacin is more prevalent 

among penicillin-non-susceptible and erythromycin-resistant strains. (Garcia-Rey et a l, 

2000; Perez-Trallero et a l, 2001).

Mathematical models predict that rates of resistance decay more slowly than they emerge 

(Austin et a l, 1999). A pharmacological strategy in the use o f antibiotics including further 

widespread interventions to reduce global antibiotic consumption, protection of the 

effectiveness of antibiotic classes to which little resistance has emerged, and active 

surveillance o f the serotypes and antimicrobial susceptibilities of nasopharyngeal isolates 

following the introduction of the pneumococcal conjugate vaccines appear to offer the 

most promise for limiting the spread of drug resistance among the pneumococci 

(Nuermberger and Bishai, 2004).

45



Introduction

1.6 Pneumococcal vaccines

It has been many years, since the beginning of the 20 century (early as 1911), that 

pneumococcal vaccines were used (Wright et a l,  1914). In thel930s, the immunogenicity 

of purified capsular polysacchaiides was demonstrated and the first pneumococcal capsular 

polysaccharide vaccine was developed. However, after the World War II the interest in 

these vaccines declined due to the demonstration of the therapeutic efficacy of antibiotics 

and the pneumococcal vaccine was withdrawn from the market (Austrian, 1985). Even 

with the use of antibiotics, the mortality rate of systemic pneumococcal diseases remained 

high (Gillespie, 1989), and the emergence of the first penicillin-resistant pneumococcus in 

the mid-1960s (Hansman and Bullen, 1967) induced renewed efforts to develop improved 

pneumococcal vaccines.

At the moment there are two main vaccines available for the prevention of pneumococcal 

disease, the polysaccharide and conjugate vaccines. The polysaccharide vaccine contains 

per dose 25 pg of purified capsular polysaccharide from each of the 23 serotypes of S. 

pneumoniae (Fedson and Musher, 2004). The effectiveness o f the polysaccharide vaccine 

is difficult to know with accuracy, but overall efficacy in preventing pneumococcal 

bacteraemia is probably 50-70% (Butler et a l,  1993; Fedson, 1999; Fine et a l, 1994; 

Mangtani et a l,  2003; Melegaro and Edmunds, 2004). This vaccine is immunogenic and 

protective in most adults and in children over 5 years of age but fails in certain high risk 

groups, and children under 2 years old (O'Brien et a l, 1996). Furthermore, polysaccharide 

vaccines do not induce immimological memory, which is required for subsequent booster 

responses (Girard et a l, 2005) and current evidence suggests that the polysaccharide 

vaccine is not effective in protecting against non-bacteraemic pneumococcal pneumonia 

(Jackson et a l,  2003).

In order to develop vaccines for infant use, pneumococcal capsular polysaccharide of the 

epidemiologically most important pneumococcal serotypes have been covalently coupled 

with various carrier proteins. The conjugate vaccines have been shown to be safe and 

effective in children under 2 years (Dagan et a l, 1996; Kayhty et a l,  1995; Mbelle et a l, 

1999; Fuumalainen et a l,  2002; Shinefield et a l,  1999). These vaccines induce high 

concentrations of serum antibodies (Eskola et a l, 2001; Remaels et a l,  1998) and reduce 

nasopharyngeal carriage of vaccine serotypes (Dagan et a l,  1996; Dagan et a l,  2002; 

Obaro et a l,  1996). The seven-valent pneumococcal conjugate vaccine Pnc-CRM7 has 

been shown to be highly efficacious in preventing vaccine-serotype invasive disease in
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young children and to be modestly beneficial against acute otitis media (Black et a l, 

2000).

The problem of the conjugate vaccines is that only a limited number of serotypes may be 

included in the conjugated formulation due to logistic difficulties in the manufactivring 

process, and the attendant high cost (Shinefield et a l,  1999; Zimmerman, 2001).

The disadvantages of capsular polysaccharide and conjugate vaccines have stimulated an 

interest in alternative pneumococcal vaccination strategies. A promising complementary or 

alternative approach for prevention of pneumococcal infections is to develop vaccines 

directed against an antigenic moiety common to all pneumococcal serotypes. The use of 

pneumococcal proteins has been reported as a potential vaccine candidate. The proteins 

pneumolysin, PspA, PspC, and the pneumococcal adhesin A (PsaA) are currently the 

leading vaccine candidates (Briles, 2004; Paton, 1998).

1.7 Two-component signal transduction

All living cells must sense changes in their environment and respond appropriately 

(Appleby et a l, 1996). In their environment bacteria are continually bombarded by a large 

number of chemicals, some of which may serve as potential sources of carbon, nitrogen, 

and energy, while others may be harmful for their metabolic and regulatory processes 

(Barrett and Hoch, 1998). It is now clear that bacterial virulence is an adaptive genetic 

response requiring the induction of genes coding for virulence factors. This response 

implies that the infectious agent must be able to sense when it is in position to invade 

(Barnett et a l, 1998). Microorganisms must modulate the expression of specific genes in 

response to a large number of environmental signals and process much of this information 

using two-component signal transduction or two-component systems (TCS) (Barrett and 

Hoch, 1998; Hoch, 2000; Perego and Hoch, 1996; Stock et a l,  1989), also known as 

histidine-aspartate phosphorelay systems (Throup et a l, 2000).

Such systems also are found in plants and some lower eukaiyotes (fungi, protozoa) and 

archaea (Barrett et a l,  1998; Chang and Stewart, 1998; Koretke et a l, 2000). Studies 

indicate that two-component elements are involved in plant hormone, stress, and light 

signaling (Hwang et a l,  2002). A number of TCS in some prokaryotic and eukaryotic 

organisms and their regulatory functions are shown in Table 1.2.
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Table 1.2- Summary 
organisms.

of two-component systems in some prokaryotic and eukaryotic

Organism TCS Characteristics Functions References

Halobacterium
salinarum

ChA/Y Chemotaxis, phototaxis. (Rudolph and 
Oesterhelt, 1995)

Bacillus subtilis YycG/YycF Cell wall homeostasis regulation. (Szuraiant et al, 2005)

Escherichia coli UhpB/UhpA Hexose phosphateuptake. (Verhamme et al, 2002)

BasS/BasR Iron response. (Hagiwara et a l , 2004)

BarA/UvrY Oxidative stress response. (Pemestig et al, 2003)

CheA/CheY,B Chemotaxis. (Stock and Surette, 
1996)

Helicobacter pylori HP 166/HP 165 Host colonization. (Panthel et al, 2003)

Staphylococcus aureus AiiS/AiiR Regulation of dmg efflux 
components.

(Foumier et al, 2000)

SrrB/SrrA Response to oxygen modifies 
levels.

(Pragman et al, 2004)

Listeria
monocytogenes

LisK/R Response to heat, acid, and 
penicillin sh'ess.

(Kallipolitis and Ingmer, 
2001; Stacker a/., 2005)

CesK/R Response to ethanol, resistance to 
antibiotics.

(Kallipolitis et al, 2003)

Mycobacterium
tuberculosis

DevS/DevR Response to hypoxia. (Sainier a/., 2004)

Salmonella
typhimurium

PhoQ/PhoP Acid tolerance response. (Bearson et al, 1998)

Streptococcus gordonii BfrB/ BfrA Biofilm formation. (Zhang et al, 2004)

Rhizobiwn meliloti FixL/FixJ Nitrogen fixation. (Miyatake et al, 1999; 
Monson et al, 1995; 
Weinstein et al, 1992)

ExoS/ChvI Regulation of succinoglycan 
production.

(Cheng and Walker, 
1998)

Saccharomyces
cerevisiae

Slnlp-Ssklp Response to oxidative stress. (Singh, 2000)

Chklp Quorum Sensing regulation. (Kruppa et a l, 2004)

Arabidopsis thaliana AtHKl Putative osmosensor (Urao et al, 1999)

AtRRl Cytokinin signalling (Osakabe et al, 2002)

These systems have been shown to regulate a wide variety of cellular responses, including 

osmoregulation, competence, photosynthesis, expression of adhesions, chemotaxis, 

sporulation, antibiotic production and pathogenicity in a number of different bacteria 

(Appleby et a l, 1996; Hoch and Silhavy, 1995). Perhaps more importantly, evidence is
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now accumulating that links phosphorelay signalling with the cell cycle and bacterial 

viability. This mechanism of genetic control had been adopted to regulate vital functions in 

the cell (Fabret and Hoch, 1998; Quon et a l, 1996).

TCS consist of a sensor histidine kinase (HK), often located in the cytoplasmic membrane, 

and a cytoplasmic response regulator (RR) (Figure 1.3) (Stock et a l, 1995). The mode of 

molecular communication between the sensor kinase and cognate response regulator is 

principally based on histidine-to-aspartate (His-Asp) phosphotransfer (Stock et a l, 1995). 

Upon receipt of a specific stimulus, the kinase domain of the sensor kinase protein is 

activated, resulting in the autophosphorylation of a conserved histidine residue. Once 

phosphorylated, the histidine kinase donates the high-energy phosphate group to a cognate 

response regulator. Phosphoiylation of a conseiwed aspartate residue that lies within the 

receiver domain of the regulator is thought to lead to structural changes in the protein, 

allowing the response regulator to mediate changes in gene expression or protein function 

(Egger et a l, 1997). At this point, it is important to realize that response regulators are 

subject to regulation from a variety of sources and the phosphorylated (active) state of 

these proteins may be subject to dephosphorylation reactions that return it to an inactive 

state (BaiTett and Hoch, 1998).
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Figure 1.3- Two-component signal transduction mechanisms.

A Typical TCS consists of membrane sensor histidine kinase (HK) and a cytoplasmic response 
regulator (RR). The HK interacts directly with a signal ligand or with a receptor that binds to the 
signal ligand and Induces an autophosphorylation. Subsequently, this phospho-group is transferred 
to the response regulator, which can then fulfil its regulatory function. Adapted from (Barrett et al., 
1998).

1.7.1 S en sor histidine kinase

In several respects, HKs are similar to the well-defined family of receptor Tyr kinases 

(Stock et at., 1991): HKs operate as dimers and autophosphorylate; they are associated 

with the cytoplasmic membrane, usually via one or two membrane-spanning sequences; 

and they typically contain extracellular sensory input modules fused to the protein kinase 

catalytic module (BouiTet et a l, 1991). This arrangement makes it easy to envision 

environmental stimuli impinging on the HK in a manner that regulates its kinase activity 

(Chang and Stewart, 1998).

There are also operational features that distinguish HKs from other protein kinases. First, 

HKs do not catalyze direct transfer of a phosphate from ATP to their “substrate” RR; 

rather, each HK must first autophosphorylate, and then the phosphoryl group from HK-P is 

passed to the RR. A second difference is that the site of HK autophosphorylation is a His 

residue, and the site of RR phosphorylation is an Asp residue (Bourret et a l, 1991).

50



Introduction

Several hundred HKs (some well characterized, some surmised based on sequence 

analysis) have been found in bacteria, and amino acid sequence comparisons have 

identified a common 250-amino acid “transmitter module” in each of these. This module is 

thought to encompass the autokinase active site and, in most cases, the hisphosphorylation 

site (Chang and Stewart, 1998; Parkinson and Kofoid, 1992; Stock et a l, 1995).

Some HKs also have phosphatase activities, i.e. they can catalyze dephosphorylation of 

their cognate RRs (Igo et a l, 1989; Makino et a l, 1989). This dephosphorylation appears 

to involve a mechanism that is distinct from simple reversal of the HK-RR phosphotransfer 

reaction (Hsing and Silhavy, 1997).

1.7.2 R esp o n se  regulator

The sensor HK regulates the activity of a cytoplasmic RR by directing its phosphorylation 

as depicted in Figure 1.3. Analysis of the amino acid sequences o f known and suspected 

RRs has established two general themes: (i) RRs have an approximately 110-amino acid 

domain referred to as a “receiver module” that contains the Asp phosphorylation site; and 

(ii) most RRs are two-domain proteins in which the receiver module is fused to a second 

domain having some kind of output or effector activity (Parkinson and Kofoid, 1992). In 

many cases, the output domain is a DNA-binding module whereby the RR functions as a 

transcription factor, and Asp phosphorylation serves to control its ability to either bind its 

target DNA sequence or interact with other components of the transcription machinery 

(Hakenbeck and Stock, 1996). However, in B. subtilis the response regulator Che Y does 

not interact with DNA, but interacts with the flagellai" motor switch complex to induce 

counterclockwise rotation of the flagella, resulting in smooth swimming behavior 

(Bischoff a/., 1993).

1.7.3 Control points

Different TCS appear to control RR phosphorylation levels via somewhat distinct 

mechanisms. For example, in response to a stimulus some systems alter RR- 

phosphoi-ylation levels by controlling the rate of HK autophosphorylation (Borkovich and 

Simon, 1990), whereas in other systems it is the phosphatase activity of the HK or an 

additional component that is regulated in response to a stimulus (Atkinson et a l, 1994; 

Perego and Hoch, 1996). This diversity underscores the impressive flexibility of two- 

component circuitry; it can be modified to operate in a variety of different contexts using 

different aspects of the basic protein structures of receiver and transmitter modules and the
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basic biochemistry of the phosphorylation/ dephosphorylation chemistry (Chang and 

Stewart, 1998).

1.7.4 Virulence regulation by tw o-com ponent sy stem s

It is now clear that bacterial pathogens are very adept at resolving host-environment- 

pathogen interactions by evolving virulence factors and regulation systems that allow them 

to survive in many hostile environments. TCS are the only common regulatoiy elements 

shared by a wide range of virulence systems, raising the possibility that a broad-spectmm 

inlribitor of such elements may suppress vimlence in a variety of microorganisms (Barrett 

and Hoch, 1998; Novick et a l, 1995).

TCS are recognized for their role in the regulation of many of the virulence factors and 

other important genes required for bacteria to survive in the foreign host (Hecht et a l,

1995). One of the more interesting aspects of TCS control is the role of these systems in 

resistance to certain antibacterial agents (Barrett and Hoch, 1998).

Certain reviews (Bliska et a l, 1993; Dziejman and Mekalanos, 1995; Galan, 1994; 

Salmond et a l,  1995; Schneewind et a l, 1993; Stock et a l, 1995) have described the 

importance to bacteria o f networks of intracellular signaling in the bacterium in response to 

its environment. The interruption of these signals may lead to the interruption of virulence 

and/or a decrease in the levels of bacterial virulence factors. Such targets may offer the 

opportunity for a totally new class of antibacterial agents (Highlander and Weinstock, 

1992).

Four features in particular make the two-component family attractive as a potential target 

for antimicrobials:

Significant homology is shared among kinase and response regulator proteins of 

different genera of bacteria, particularly in those amino acid residues located near 

active sites (Parkinson and Kofoid, 1992);

Pathogenic bacteria use TCS transduction to regulate expression of essential 

virulence factors that are required for suiwival inside the host (Dziejman and 

Mekalanos, 1995);
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Bacteria contain many TCS, and some of them are essential for viability (Hecht et 

a l, 1995; Quon et a l, 1996);

Signal transduction in mammals occurs by a different mechanism (Banett et a l,

1998).

hi pathogenic bacteria, the TCS often regulate the expression of virulence factors that are 

required for survival inside the host. TCSs are not found in higher eukaryotic organisms, 

making this an important new tai'get that could lead to a novel class of antibacterial drugs. 

Compounds that inhibit TCSs could be expected to block important bacterial signaling 

pathways that may lead to bacterial cell death (Hlasta et a l, 1998).

1.7.5 Tw o-com ponent sy stem s in Streptococcus pneumoniae

Many important functions of bacteria, such as expression of adhesins, competence, 

osmoregulation, and chemotaxis, are regulated by TCS (Hoch and Silhavy, 1995).

Only four TCS had been identified previously to genome sequencing in S. pneumoniae 

(Guenzi et a l, 1994; Novak et a l, 1999a; Pestova et a l,  1996), Subsequently, genomic 

analysis of the pneumococcus revealed the full repertoire of the TCS. Screening for 

pneumococcal TCS identified thirteen hk:rr pairs and one unpaired response regulator 

(Table 1.3) (Lange et a l,  1999; Throup et a l, 2000). Although the number of TCS found 

in S. pneumoniae is less than in either Bacillus subtilis (34/35 hkirr genes) or Escherichia 

coli (29/34 hkIrr genes), their presence suggests that His-Asp phosphorelay signal 

transduction is an important mechanism for regulating gene expression even in highly 

adapted pathogens such as S. pneumoniae. Previous contradictory reports about the role of 

these systems in virulence were described (Lange et a l, 1999; Throup et a l, 2000), While 

analysis of rr mutants in pneumococcal serotypes 3 and 22 by Lange and co-workers 

(Lange et a l, 1999) yielded no attenuation in interperitoneal infection of mice compared 

with wild-type, Throup and co-workers (Throup et a l, 2000) demonstrated an important 

role in pneumococcal virulence for most tested TCS in a mouse pneumonia model using 

serotype 3 strain 0100993. These opposing results show the complexity of the 

pneumococcal TCS in virulence and likely reflect experimental differences in bacterial and 

mouse strains and site of infections. Subsequent analysis confirmed the importance of 

bacterial strain and infection type in the TCS studies.
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Table 1.3- Gene organization of the TCS, G+C content and their contribution to virulence.
Adapted from (Lange etal., 1999).

TCS Alternative
name

Gene
organisation

G+C
content

Demonstrated 
role in virulence

References for role in 
virulence

TCSOl 480 -41% Yes (Hava and Camilli, 2002; 
Thi'oup et al, 2000)

TCS02 Vic, MicAB, 
YycFG, 492

-40% Yes (Kadioglu et al, 2003; 
Wagner et al, 2002)

TCS03 474 -45% No

TCS04 PnpR/S,481 -41% Yes (McCluskey et at., 2004; 
Tliroup et al, 2000)

TCS05 CiaR/H, 494 -38% Yes (Ibrahim et al, 2004b; 
Marra et al, 2002a; Throup 
et a l, 2000)

TCS06 478 tSSd̂ f̂ ÊÊÊÊÊÊÊ̂ -35% Yes (Throup et al, 2000)

TCS07 539 -41% Yes (Hava and Camilli, 2002; 
Thi'oup et al, 2000)

TCS08 484 -42% Yes (Throup et al, 2000)

TCS09 488 -41% Yes (Blue and Mitchell, 2003; 
Hava and Camilli, 2002; 
Lau et al, 2001; Throup et 
a/., 2000)

TCS 10 VncR/S, 491 -44% No

TCSOll 479 -44% No

TCS 12 ComD/E, 498 -31% Yes (Bartilson et al, 2001; Hava 
and Camilli, 2002)

TCSOl 3 BlpR/H, 486 -40% Yes (Throup et al, 2000)

Orphan
RR

RitR, 489 -42% Yes (Throup et al, 2000; Ulijasz 
et a l, 2004)

numbers annotations as published in TIGR4 genome (http://www.tigr.org).
Black arrows histidine kinase; gray arrows response regulator.

The functions of most of the TCS in S. pneumoniae are largely unknown. Some of the TCS 

have been examined for functionality including TCS02, 04, 05, 09, 12, 13 and the oiphan 

RR14.

1.7.6,1 TCS02

TCS02, also known as Vic (Wagner et a l, 2002), MicAB (Echenique and Trombe, 2001), 

YycFG (Mohedano et a l,  2005) and 492 (Throup et a l,  2000) is the only TCS essential for 

pneumococcal viability, while the response regulator and histidine kinase shows homology
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to the essential YycFG TCS in B. subtilis and S. Aureus (Fabret and Hoch, 1998; Lange et 

a l, 1999; Tliroup et ah, 2000). However, in pneumococci only rr02 appears to be 

essential, while both rr and hk are essential in B. subtilis and S. Aureus. Presumably, this 

shows that rr02 is phosphorylation-independent or is phosphorylated by other donor. The 

receiver domain of the response regulator of the TCS02 has recently been crystallized and 

its structure characterized (Bent et a l,  2003, 2004; Riboldi-Tunnicliffe et a l, 2004). The 

role of the TCS02 remains uncertain. However, recent reports indicate that TCS02 

modulates expression of fatty acid biosynthesis genes and determines the fatty acid chain 

lengths in membrane lipids (Mohedano et a l, 2005). Also, TCS02 whose HK carries a 

PAS domain used as a signal sensor domain, is involved in competence repression under 

oxygen limitation (Echenique and Trombe, 2001). Furthermore, microamay analysis of 

rr02 of a deletion mutant suggest that this TCS regulated positively the transcription of a 

set of genes encoding important surface proteins, including PspA (Ng et a l, 2005).

Overexpression and deletions of the TCS02 components, including the downstream gene 

vicX  caused attenuated vimlence in inteiperitoneal infections (Wagner et a l, 2002). 

Furthermore, mutation of hM)2 in two different strains (serotypes 2 and 6 B) decreased 

vimlence in a pneumonia model (Kadioglu et a l , 2003). However no vimlence attenuation 

was found by Thi'oup and co-workers in hkk)2 knock-out in 0100993 strain (Throup et a l, 

2000). These last results may be related to the use of different experimental methods and 

strains.

1.7.5.2 TCS04

TCS04, also know as PnpR/S was first identified by Novak and co-workers (Novak et a l, 

1999a). Throup and co-workers referred to TCS04 as 481 and identified it as a 

pneumococcal vimlence factor (Throup et a l, 2000). The TCS04 is similar to PhoP/R of B. 

subtilis (Hulett, 1996), and presents considerable similarity to PhoP/Q systems of different 

bacteria such as E. coli (Kato et a l, 1999) Mycobacterium tuberculosis (Perez et a l,  2001), 

Salmonella typhimurium (Miller et a l, 1989), and N. meningitides (Johnson et a l, 2001). 

The role of TCS04 in pneumococcal vimlence remains unclear. No attenuation was found 

in pneumococcal infection in serotype 22 and serotype 3 strains using a systemic model of 

infection (Lange et a l,  1999). On the other hand, Throup and co-workers reported a high 

level of attenuation of a serotype 3 strain (0100993) (Tliroup et a l, 2000), while 

McCluskey and co-workers using a comparison of rr04 mutants in three strains (TIGR4, 

D39 and 0100993), in a similar pneumonia model, only observed attenuation in the TIGR4 

strain (McCluskey et a l, 2004), demonstrating a serotype-specific variation of vimlence of
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rr04 mutants of S. pneumoniae. The discrepancy between the attenuation in the 0100993 

rr04 mutant strain in both studies may be caused by the use of different infection models, 

and by the complexity of studying o f these systems. Microarray analysis of the 

transcriptome profile of these mutants demonstrated a considerable variation of the genes 

regulated by rr04 (McCluskey et a l, 2004). Of interest, the three genes which encode a 

manganese transport system (Dintilhac et a l, 1997) were down regulated in TIGR4 rr04 

mutant but not in D39 and 0100993 mutants. This psa  operon, consisting of psaB, psaC  

and psaA is known to contribute to pneumococcal virulence and resistance to oxidative 

stress (McAllister et a l,  2004). The down-regulation of the psa operon in TIGR4 rr04 

mutant may contribute to the specific attenuation on this strain.

1.7.5.3 TCS05

The TCS05 (CiaR/H) was the first pneumococcal TCS identified (Guenzi et a l, 1994). 

CiaR/H, appears to operate upstream of the ComDE pathway and has been shown to 

modulate competence expression. Pleotropic effects caused by cia mutations in the 

pneumococcus include sensitivity to cefotaxime, ability to form protoplasts, susceptibility 

to lysis by deoxycholate (Giammarinaro et a l,  1999). Other phenotypes in cia mutants 

have since been described, such as growth defects associated with the tendency for early 

lysis (Giammarinaro et a l,  1999; Hakenbeck et a l, 1999a; Lange et a l, 1999). hi addition, 

the CiaR/H system is required to protect cells from the stress during differentiation to 

competence (Dagkessamanskaia et a l,  2004). ciaH mutants are also deficient in 

transformation deficiency (Echenique et a l,  2000; Giammarinaro et a l,  1999; Hakenbeck 

et a l, 1999a). The role of the CiaR/H system in virulence using knockout mutants has been 

demonstrated including the contribution to colonization of the mouse lung (Tlmoup et a l,

2000) and the nasopharynx of infant rats (Sebert et a l, 2002), and involvement in systemic 

infection in mice (Marra et a l, 2002a). Furthermore, mutation in ciaR reduces virulence in 

both pneumonia and bacteraernia models of infection (Ibrahim et a l , 2004b).

Studies of the CiaR/H regulon identified the high-temperature requirement A gene QitrA),
‘

as being down-regulated in ciaR/H mutants (Ibrahim et a l,  2004b; Mascher et a l, 2003; 

Sebert et a l,  2002). Ibrahim and co-workers demonstrated that htrA is the key component
.

in the contribution of ciaR/H to virulence (Ibrahim et a l, 2004b). However, several other

known and putative virulence factors were regulated or potentially regulated by ciaR/H
.

system than may contribute to the role of ciaRIH in virulence, including the dit, and pit2 

opérons (Mascher et a l , 2003 ; Sebert et a l , 2002).
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1.7.5.4 TCS09

TCS09, also described as 488 (Throup et a l, 2000) was identified as having a significant 

contribution to pneumococcal virulence, hi \n vivo studies, an rr09 mutant in strain D39 

was essentially avirulent in pneumonia and bacteraemia models. In contrast to wild-type, 

all rr09 infected mice suiwived infection with bacteria being rapidly cleared (Blue and 

Mitchell, 2003). However, the same mutation in 0100993 strain did not show the same 

pattern of attenuation (Blue and Mitchell, 2003; Throup et a l,  2000). These results 

demonstrate that the role of TCS09 in virulence appears to be dependent on the genetic 

background and the infection model used. In strain 0100993, RR09 was suggested to be 

involved in the dissemination from the lung to the systemic circulation, since the 

attenuation in a pneumonia model seems to relate to the reduction of 0100993 rrQ9 mutant 

in blood in contrast with no significant reduction of bacterial count in the lung. 

Furthermore no attenuation was observed in bacteraemia model o f infection, showing the 

0100993 rr09 mutant was able to suiwive in blood as the wild-type. (Blue and Mitchell,

2003).

TCS09 has the potential to contribute significantly to pneumococcal virulence but this 

contribution varies between pneumococcal strains and infection sites. So far, no gene 

targets of RR09 have been identified that could account for the observed in vivo 

phenotypes of rr09 mutants, although preliminary studies suggested involvement of 

TCS09 in nutrient perception (Blue and Mitchell, 2003; Lange et a l,  1999).

1.7.5.5 TCS12

The pneumococcus is naturally competent for genetic transfoimation. Genetic 

transformation is likely to play a significant role in the lifestyle of this bacterium by 

favouring genetic diversity (Claverys and Havarstein, 2002). TCS 12 (ComD/E) was 

described as being responsible for induction of competence for DNA transformation 

(Cheng et a l,  1997; Havarstein et a l,  1996; Pestova et a l ,  1996). The quorum-sensing 

signal responsible for competence induction is a heptadecapeptide, named CSP 

(competence-stimulating peptide) (Havarstein et a l, 1995), which derives from its 

precursor ComC by cleavage and transport into the medium by an ATP-biding cassette 

(ABC) transporter, ComAB (Hui et al., 1995). comC is the first gene of an operon, com, 

consisting of two other downstream elements, comDIE system. Null mutants with defects 

in either comC or comD were transformation deficient and failed to respond to exogenous 

CSP (Cheng et a l, 1997). The association between the competence and virulence in the
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pneumococcus was shown in models of both pneumonia and bacteraemia using a comD 

mutant in D39 strain (Baifilson et a l, 2001). Additionally, comD was demonstrated to 

contribute to pneumonia and bacteraemia models in competitive infections with wild-type 

(Lau et a l, 2001). Furthermore, comD was identified as a virulence factor in pneumonia by 

the TIGR4 signatui'e-tagged mutagenesis screen (STM) (Hava and Camilli, 2002). The link 

between the competence and virulence is not fully understood. However, 18 of the 124 up- 

regulated genes induced by CSP observed by Peterson and co-workers were identified in 

the TIGR4 STM screen as virulence factors, thereby providing a mechanistic explanation 

for the role of competence in virulence (Hava and Camilli, 2002). These up-regulated 

virulence factors included the autolysin lytA, htrA, a stress response protein and a choline- 

binding protein gene icbpD).

The relationship between the TCS and competence is not restricted to the TCS 12. 

Expression of comC is part of a complex regulatory network involving the ComD/E system 

for induction and the TCS02 and the CiaR/H system, which inhibits expression of the 

comCDE operon (Echenique et a l, 2000; Echenique and Trombe, 2001).

Ï
1.7.5.6 TCS13

TCS 13 was identified by Throup and co-workers as contributing to pneumococcal

virulence (Throup et a l, 2000). rr l3  mutation in 0100993 strain was found to be |

significantly attenuated in their respiratory tract infection model. The TCS 13 subsequently
.named BlpR/H for bacteriocin-like peptide controls a regulon including genes encoding 

Bips (de Saizieu et a l, 2000). The BlpR/H system is similar to the competence system 

ComD/E, with the peptide BlpC signalling via BlpR/H to up-regulate target genes 

including blpC itself. Microarray analysis revealed than 16 genes are significantly up-
I

regulated when stimulated by BlpC. The relationship with virulence of BlpR/H system is
. ' I f

shown in TIGR4 STM screen were blpA, apparently involved in BlpC export, was -
.

identified as a vimlence factor (Hava and Camilli, 2002). Bacteriocins are commonly 

defined as compounds produced by bacteria that selectively inhibit or kill closely related 

species. Although poorly characterised, the pneumococcal bacteriocins activity presumably 

provides a growth advantage in microbial competition (Mindich, 1966). However, lungs 

are usually sterile and thus no microbial competitors for S. pneumoniae should be present, 

raising the question of the biological role of a bacteriocin regulon in the lung. So, it is 

proposed bip bacteriocins may be acting via a cytotoxic affect on host cells (de Saizieu et 

a l, 2 0 0 0 ).
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1.7.5.7 Orphan resp on se  regulator

Unlike the other pnenmococcal TCS the rr489, designated RitR (Ulijasz et a l, 2004), is not 

adjacent to a kinase gene like the other thirteen TCS, and this response regulator is not 

known to be phosphoiylated by any of the thirteen known histidine kinases. However, 

inactivation of ritR by antibiotic cassette mutagenesis in 0100993 strain demonstrates a 

significant reduction in pulmonary bacterial coimts in a murine pneumonia model (Tliroup 

et a l, 2000). The importance of ritR in virulence was confirmed by Ulijasz and co-workers 

(Ulijasz et a l, 2004). In a cyclophosphamide-treated mouse lung infection model and thigh 

infection model (Andes and Craig, 2002), the inactivation o f ritR reduced the ability of the 

pneumococcus to proliferate in the mouse lung but did not reduce its ability to infect the 

thigh. Microan'ay analysis revealed that RitR was associated with the transcription of 

genes involved in iron uptake and the oxidative stress response. In DNA footprinting 

experiments, RitR was shown to bind directly to three sites in the promoter region of the 

pin  operon, thereby providing a direct link between RitR and iron uptake regulation 

(Ulijasz et a l,  2004). The mechanism for attenuation of virulence appears to be due, at 

least in part, to repression by RitR of the piu  iron uptake system by negative regulation. 

While iron is essential for the growth of most bacteria it can also be deleterious through the 

Fenton reaction which catalyses the synthesis of reactive oxygen intermediates from H2 O2 

(Andrews et a l,  2003; hnlay, 2003). The way that RitR is activated in the absence of a 

cognate HK and the mechanisms by which the pneumococcus senses iron are unknown. 

Even though RitR contains the conserved aspartate residue which is phosphoiylated in 

other response regulators, various phosphate donors did not alter RitR binding to the piu  

operon as expected in phosphoiylation-dependent regulation (Ulijasz et a l, 2004).

1.7.5.8 Other TCS

The remaining seven TCS are poorly characterised. No contribution to virulence of 

pneumococcus has been reported for the TCS03, 10 and 11. TCS 10 (VncR/S) has been 

suggested to play a key role in the regulation of cell death and autolysis in response to 

vancomycin challenge (Novak et a l, 1999b), although using distinct mutations in vncS, 

(Robertson et a l , 2002) demonstrated that the loss of VncS function alone does not result 

in tolerance to vancomycin challenge or to other autolysis-inducing antibiotics in vitro and 

in vivo. TCS06 is reported to be involved in regulation of pneumococcal virulence factor 

cbpA, also known aspspC  (Standish et a l,  2005).
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1.8 Regulation of dit operon by TCS

The wall of the Gram positive bacterium constitutes a multifaceted fabric that is essential 

for survival, shape, and integrity. Macromolecular assemblies of cross-linked 

peptidoglycan (murein), polyanionic teichoic acids (TAs), and surface proteins function 

within this envelope. TAs are composed of wall teichoic acid (WTA) and lipoteichoic acid 

(LTA). WTA is covalently linked to the peptidoglycan, whereas LTA is a 

macroamphiphile with its glycolipid anchored in the membrane and its 

poly(glycerophosphate) (Gro-P) chain extending into the wall. Protonated D-alanyl ester 

residues, one of the principal substituents of TAs in many low G+C Gram positive 

bacteria, are covalently linked to these chains and provide counter ions for determining the 

net anionic charge of the TA. Together with peptidoglycan, WTA and LTA make up a 

polyanionic network or matrix that provides functions relating to the elasticity, porosity, 

and tensile strength (Neuhaus and Baddiley, 2003),

The D-alanylation o f LTA allows Gram positive bacteria to modulate their surface charge, 

regulate ligand binding and control the electromechanical properties of the cell wall. 

Genetic studies of the biosynthesis of LTA in various Gram positive bacteria have shovm 

that the incoiporation o f D-Ala residues requires the activity o f foui" gene products (DltA- 

D) (Figure 1.4), which are encoded by the dit operon (Abachin et a l,  2002; Poyart et a l, 

2001; Poyart et a l, 2003).

Although numerous dit opérons from Gram positive bacteria have been characterized, little 

is known about the regulation of their expression, hi S. agalactiae, (group B streptococcus) 

a two-component transduction system was identified that was encoded by dltR and dltS 

located upstream of the dit operon that directs incorporation of D-alanine residues into 

lipoteichoic acid (Poyart et a l, 2001), suggesting that DltR/DltS functions to control 

expression of the dit operon, thereby regulating the level of D-alanine esters in S. 

agalactiae lipoteichoic acid. S. pneumoniae contains phosphorylcholine esters instead of 

D-alanyl esters in both LTA and WTA (Fischer, 1997). However, the dit operon is 

activated in the end o f exponential phase when bacteria grown in Todd-Hewitt broth 

(THB) (Mascher et a l, 2003) and pneumococci enhanced expression of the dit operon 

during epithelial cell contact (ECC) (Orihuela et a l , 2004), indicating that addition of D- 

alanine to teichoic acids in pneumococci can occur. DNA binding assays for CiaR 

demonstrate that CiaR binding at the region immediately located upstream of the dit 

operon and R6  ciaR defective strain mutant shown down-regulation of dit genes compared
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with wild-type, suggest that the CiaR/H system potentially regulated directly or indirectly 

this operon (Mascher et a i ,  2003).

Cell wall

C>toplasm

► D-Ala—

ATP AMP 

PP

Figure 1.4- Schematic representation of the putative pathway of D-alanine transfer into 
teichoic acids.

A teichoic acid molecule is depicted as a chain of alternating alditol (Ato) and phosphate (P) 
residues. D-Alanine (D-Ala) is activated in the cytoplasm by DItA (A) via ATP hydrolysis and the 
release of pyrophosphate and is coupled to the phosphopantetheine prosthetic group of the D- 
alanine carrier protein DItC (C). The hydrophobic protein DItB (B) is likely to be involved in the 
transfer of D-alanine across the cytoplasmic membrane, and DltD (D), which bears a putative N- 
terminal signal peptide, is assumed to catalyze the estérification of teichoic acid alditol groups with 
D-alanine resulting in the introduction of positive charges into the otherwise negatively charged 
teichoic acids. Adapted from (Peschel et al., 1999).
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1.9 Genetic variability of S. pneumoniae

S. pneumoniae as the classical transformable organism is certainly prone to genetic 

variation, and the mosaic genes in antibiotic-resistant strains are a paradigm for intra- and 

interspecies gene transfer events (Hakenbeck et a l, 1999b). The pneumococcus can be 

divided into more than 90 serotypes based on capsular diversity but ~15 of these serotypes 

are the cause of the majority of invasive disease. Due to the clinical importance of this 

organism and the lack o f a good coiTclation of the capsular serotypes to epidemiological 

spread of the species (Coffey et a l, 1998) much effort has been put into characterizing the 

population structure at the molecular level. The pneumococci are a naturally transformable 

species and the population structure is characterized by frequent horizontal gene transfers 

and recombination-mediated gene plasticity (Enright et a l,  1998). Multi-locus sequence 

typing (MLST) of housekeeping genes has been suggested as a solution to inteiTogating the 

population structure of pneumococci and has shown that individual serotypes may consist 

of a number of genetically diverse clonal complexes or ST types (Brueggemann et a l, 

2003; Gertz et a l,  2003). Importantly, a recent study has shown that certain ST types are 

more commonly associated with disease than others (Brueggemann et a l , 2003).

The draft genome sequence of strain G54, a type 19F clinical isolate (Dopazo et a l, 2001), 

and the complete genome sequences of strain TIGR4, a type 4 virulent isolate (Tettelin et 

a l, 2001), and the avirulent laboratory strain R6  (Hoskins et a l,  2001) were published 

recently. Several studies have already taken advantage of DNA Microarrays to aid in the 

understanding of complex regulatory pathways in S. pneumoniae. One of the first high- 

density microarray studies in bacteria was done using pneumococcal DNA arrays (de 

Saizieu et a l, 1998). The use of an oligonucleotide Affymetrix array was employed to 

examine genetic diversity within a gi'oup of 20 S. pneumoniae isolates (Hakenbeck et a l,

2001). These isolates represented major antibiotic resistant clones isolated from tlirougliout 

Europe, United States, South Africa and Papua New Guinea, PCR-based microarrays have 

also been used to compare the genomic composition of a smaller number of pneumococcal 

strains (Bruckner et a l,  2004; Hakenbeck et a l, 2001; Tettelin and Hollingshead, 2004). 

Comparison of complete S. pneumoniae genomes between TIGR4, R6  and G54 strains has 

shown that approximately 1802 genes (-80%) were shared by all o f these three genomes 

(Tettelin and Hollingshead, 2004). Comparative genome hybridization using DNA 

microarrays allows the identification of regions of diversity. Analysis of genome 

hybridization of R 6  and parental encapsulated strain D39 shown nine regions in TIGR4 

that did not hybridize with the other two strains. Comparative genome hybridization of 13
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additional strains, including clones that carry multiple drug resistance, show 13 regions of 

diversity involving multiple genes absent or divergent compared with TIGR4 (Tettelin and 

Hollingshead, 2004). Similar results were observed in a previous study of the R6  strain 

(Hakenbeck et a l, 2001). Also, in this comparative genome study 13 extra regions of 

diversity were identified for 17 additional strains belonging to 12 clonal groups. On the 

other hand, six clusters o f genes were identified in R6  that were not present in TIGR4 

(Hakenbeck et a l,  2001). These studies confirmed the genetic diversity that was previously 

thought to exist in populations of these naturally transformable bacteria.

1.10 Microarrays

The first report about DNA microarrays appeared in 1995 (Schena et a l,  1995) and since 

than microarray applications have been reported in many organisms including plants 

(Schena, 1996), yeast (DeRisi et a l, 1997; Laslrkari et a l,  1997; Shalon et a l, 1996), 

filamentous fungus (Allen et a l, 2003), virus (Li et a l,  2001; Striebel et a l, 2004), 

protozoa (Bozdech et a l, 2003) and humans (DeRisi et a l, 1996; Schena et a l, 1996). 

DNA micro array technology has become an important research tool for biotechnology and 

microbiology (Polen and Wendisch, 2004). This technology is the result of automation and 

miniaturization of differential genes and permits a parallel analysis of gene expression and 

DNA homology for thousands of genes in a single experiment. Over the past several years, 

this unique technology has been used to explore hundreds o f transcriptional patterns and 

genome differences for a variety of microbial species. Applications of microarrays extend 

beyond the boundaries of basic biology into diagnostics, environmental monitoring, 

pharmacology, toxicology and biotechnology (Majtan et a l,  2004).

1.11 Applications of DNA microarrays to bacterial systems

The two common applications of DNA micro array technology in microbiology are the 

exploration of genome-wide transcriptional profiles and the measurement of the 

similarities or differences in genetic contents among different microbes. However, other 

applications have been reported such as determination of virulence factors of microbial 

pathogens (Chizhikov et a l,  2001), host responses to microbial infection (McCaffrey et a l, 

2004; Ren et a l,  2003b), gene profiling in response to drugs (Kato-Maeda et a l, 2001), 

analysis of microbial evolution and epidemiology (Leonard et a l,  2003; Saunders et at.,

2004), diagnostic applications (Bae et a l, 2005; Korczak et a l,  2005; Yu et a l, 2004) and 

predicting biochemical pathways (Doran et a l,  2003; Phue et a l,  2005). DNA microan'ay
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technology is being used to study many bacterial species ranging from standard laboratory 

strains and pathogens to environmental isolates (Table 1.4).

Table 1.4- Use of DNA microarray technology in the study of different bacterlai species.

Bacteria species Application study Reference
E. coli 

B. subtilis 

M. tuberculosis 

H. pylori

N. meningitidis 

Pseudomonas aeruginosa

S. pneumoniae

Genome-wide transcriptional profiles.

Genome-wide transcriptional profiles.

Genome-wide transcriptional profiles; 
gene profiling and drugs.

Comparative genomics; genome-wide 
transcriptional profiles.

Comparative genomics; genome-wide 
transcriptional profiles.
Comparative genomics; genome-wide 
tr anscriptional profiles;

Comparative genomics; genome-wide 
tianscriptional profiles.

(Oh and Liao, 2000; Wendisch et 
al, 2001; Winterberg et al, 2005)

(Caldwell et al, 2001; Guedon et 
al, 2003; Stanley et al, 2003)

(Butcher, 2004; Gryadunov et al, 
2005; Stewart et al, 2002)

(Bjorkholm et al, 2001;
Thompson et al, 2003; Wen et
al, 2003)

(Grifantini et al, 2003; Grifantini 
et al, 2004; Swiderek et al, 2005) 
(Ernst et al, 2003; Wagner et al, 
2003; Whiteley et al, 2001)

(Hakenbeck et al, 2001;
McCluskey et al, 2004;
Mohedano et al, 2005; Sung and 
Monison, 2005)
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Two major types of DNA microarray have been developed, one is the oligonucleotide- 

based array and the other is the PCR product-based array (Ye et a l, 2001). The DNA 

micro array is a powerful tool that allows the development of our investigation of genome- 

wide flmctions.

1.11.1 Transcriptome

Measuring thousands of transcript levels in parallel is one of the most widespread 

applications of DNA microarray technology. Microaixays allow the production of a gene 

expression profile for a particular organism grown under different environmental 

conditions (Majtan et a l,  2004). DNA microarrays can also detect the presence of an 

inRNA transcript, and can estimate its abundance relative to other mRNA species within 

the same sample (Majtan et a l, 2004). Furthermore, DNA micro arrays can be used to 

study regulatory systems controlling gene expression such as sigma factors, global 

transcriptional regulators, and TCS (Dhaimadi and Gonzalez, 2004). DNA microarray has 

been used to investigate the regulation of virulence genes by the TCS in S. pneumoniae 

(McCluskey et a l, 2004; Sebert et a l, 2002).

1.11.2 Comparative gen om ics and genom otyping

Genomic hybridization of a whole genome arxay detects the presence or absence of similar 

DNA regions in other microorganisms. It is an effective way to conduct a comparative 

genomic study in the absence of complete genome sequences. Strain comparison by 

hybridizing genomic DNA to microarrays (genomotyping) is a more realistic approach 

than the whole-genome sequencing of dozens of strains (Majtan et a l, 2004). DNA 

microarrays can facilitate a better understanding of the genetic differences between closely 

related organisms, providing useful information for the identification of virulence factors, 

exploration of molecular phylogeny, improvement of diagnostics and development of 

vaccines (Dhiman et a l, 2001). DNA micro array technology is also an excellent way to 

identify changes in the genetic contents of the same strain after long-term adaptation or 

strain optimization (Riehle et a l, 2001). Regions of diversity in S. pneumoniae were found 

in studies of strain comparison using DNA microarrays (Bruckner et a l,  2004; Hakenbeck 

et a l, 2001; Tettelin and Hollingshead, 2004).
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strains that represent 6  major multi-locus sequence types found in the UK, and 

evaluation of the importance of the genetic variation in virulence of the bacteria. To 

analyze the differences in the gene regulation by the TCSs in strains TIGR4, R6 , 

D39 and 0100993.
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1.11.3 Determination of virulence factors
a

Many genes associated with virulence are regulated by specific conditions. Virulence gene 

expression ca be monitored by growing the pathogens in the appropriate in vivo models 

(cell cultures or animals) and, after recovering the bacteria for RNA preparation, compared 

with the expression of the genes under in vitro conditions (Grandi, 2001). Micro array 

analysis of pneumococcal gene expression during invasive disease showed dramatic 

changes in a variety of genes (Orihuela et a l , 2004).

S
The second approach relates to genome comparison studies, by identification of candidate g

the presence of specific markers in bacterial genomes associated with pathogenesis

virulence genes in different strains. Also microarray technology has been used to identify 

the presence of spe 

(Majtan et a l, 2004).

1.12 Aims of this project
N:

The aims of this project were focused on the study of:

1. Pneumococcal two-component systems. To analyze the transcriptional profiles and 

identify the genes regulated by RR06 and RR09 in different strains: TIGR4, D39,

R 6 , and 0100993. To examine how mutation of these genes affects the virulence of 

the bacterium. To determine the role of putative virulence factor dit operon in the 

phenotype o f the ciaRIH mutants;

2. Analysis of genetic variation within S. pneumoniae. Use of comparative genome 

hybridizations using DNA microarray of a selected group of 10 pneumococcal
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Material and Methods

2.1 Bacterial strains and growth conditions

S. pneumoniae strains used for this study are described in Table 2.1. The bacteria were 

grown on blood agar N" 2 (Oxoid, Basingstoke, UK) supplemented with 5% (vol/vol) 

defibrinated horse blood (E&O Laboratories, Bonnybridge, United Kingdom) overnight at 

37 ”C in the presence or absence of oxygen (candle extinction jar) or in Brain Heart 

Infusion (Oxoid, Basingstoke, UK) at 37 “C. E. coli strains were grown in Luria-Bertani 

broth at 37 overnight with agitation at 200 rpm or on Luria Bertani (LB) agar plates. 

Wlien necessary appropriate antibiotics were added to the growth media cultures: S. 

pneumoniae, Ipg/ml of Erythromycin and 100 pg/ml of spectinomycin; E. coli 200 pg/ml 

of spectinomycin and 1 0 0  pg/ml of ampicillin.

2.2 Glycerol stock and culture check

One individual colony of blood agar culture was inoculated in to 20 ml of Brain Heart 

hifusion (BHI) and grown at 37 °C overnight. 100 pi of overnight culture was inoculated in 

to 10 ml of BHI, and grown at 37 until mid-log phase (ODeoonm -0.6). Glycerol stocks 

were prepared by adding sterile glycerol, to the mid-log phase BHI cultures, to a final 

concentration of 2 0 % (vol/vol) and 1 ml aliquots of the cultures were frozen immediately 

at -80 °C in 2  ml cryotubes. All pneumococcal cultures were checked by plating out and 

examining morphology, production of a-haemolysis on blood agar plates and sensitivity to 

diffusion of optochin disk (5pg of ethyIhydrocupreine). Serotypes were confirmed by the 

Quellung reaction using specific antisera (Statens Seruminstitut, Copenhagen, Denmark) 

against capsular polysaccharide.
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Table 2.1- List of strains used in this study.

Strain Details Reference

TIGR4 Serotype 4, clinical isolate (Aaberge et al, 1995)

D39 Serotype 2, NCTC 7466 (Avery e/a/., 1944)

R6 Subclone of R36A, derivative of D39 (Smith and Guild, 1979)

0100993 Serotype 3, clinical isolate (Throup et al, 2000)

TIGR4 Arr06 TIGR4 with replacement of rr06 with ermAM cassette This work

D39 Arr06 D39 with replacement of rr06 with ermAM cassette This work

R6 Arr06 R6 with replacement of tr06 with emiAM cassette This work

0100993 ArrOô 0100993 with replacement of rr06 with ermAM cassette (Tlnoup et al, 2000)

TIGR4 AdltA TIGR4 with replacement of dltA with spec cassette This work

TIGR4 ArrOP TIGR4 with replacement of rr09 with ermAM cassette This work

D39 Arr09 D39 with replacement of rr09 with ermAM cassette (Blue and Mitchell, 2003)

0100993 Arr09 0100993 with replacement of rr09 with ermAM cassette (Throup at al, 2000)

D39 AciaR D39 with replacement of ciaR with spec cassette (Ibrahim et al, 2004b)

D39 AhtrA D39 with replacement of htrA with spec cassette (Ibrahim et al., 2004b)

TIGR4 ApspC TIGR4 with replacement of pspC with ermAM cassette (Tuomanen, 1999)

D39 ApspC D39 with replacement ofpspC with ermAM cassette (Tuomanen, 1999)

P ll Serotype 14, ST9 (Jefferies et al, 2004)

N16 Serotype 14, ST9 (Jefferies et a l, 2004)

P33 Serotype 14, ST9 (Jefferies et a l, 2004)

10 Serotype 14, ST 124 (Jefferies et al, 2004)

48 Serotype 14, ST 124 (Jefferies et al, 2004)

50 Serotype 14, ST 124 (Jefferies et al, 2004)

P49 Serotype 3, ST180 (Jefferies et al, 2004)

PMEN7 Serotype 19A, ST75 (Smith and Klugman, 1997)

PMEN13 Serotype, 19A ST41 (Smith and Klugman, 1997)

PMEN23 Serotype 6A, ST37 (Richter et al, 2002)
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2.3 Primers and plasmids

The oligonucleotide primers used in this study are listed in Table 2.2. The primers were 

designed with Vector NTI 9.1,0 (Invitrogen Corporation) and provided by Sigma-Genosys. 

Concentrations of 100 pM were prepared as main stock and 20 pM as work stock in 

nuclease free water (Ambion®). The primers used in PCR for the genomic microarrays 

confirmation were designed and provided by Bacterial Microarray Group at St. George’s 

Hospital (BpG@S). The primers used in Real-Time quantitative PCR (Table 2.3) were 

designed in Vector NTI 9.1.0 or by Sigma-Genosys, and were designed to give a product 

length between 50 to 200 bp, and similar Tm to minimize difference in the amplification 

efficiency. Specific conditions were kept to ensure quality of the primers to avoid primer 

dimers, hairpin loops formation. Also a BLAST of the primer sequence, using BLAST tool 

of TIGR web site (http://tigrblast.tigr.org/cmr-blast), against the whole genome of 

pneumococcus TIGR4 and R 6  strains was performed to avoid cross-reaction with non­

specific sequences. PCR-Script™ plasmid (Stratagene) was used for cloning the dltA gene 

and pCR® 4-TOPO® plasmid (Invitrogen^^^) was used for cloning the spr0062 gene 

(annotated as sp0063 in TIGR4 strain sequence).
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Table 2.2- List of primers used in this study.

Primer Sequence Used for

TCS06-For CTTTAGTGGCAAGTTTGGCTG Amplification ir06 fi'agment 
with erythromycm cassette

TCS06-Rev TTGCATTTTACTAGTCACTTC Amplification rr06 fragment 
with erythromycin cassette

TCS09-For CCTGTCATTGATGCCAGCAAATATCC Amplification rr09 fragment 
with erythromycin cassette

TCS09-RCV CCACAAGAGCTGACTCCGAACCGG Amplification rr09 fragment 
with erythromycm cassette

dltA Amp For GTGTCAAATAAACCAATAGC Amplification of dltA

dltA Amp Rev TCTCTTATTCACCTCGTT Amplification of dltA

dltA Amp invl GGCGCGCCGTCAATGACTGCAGC Knockout of dltA

dltA Amp inv2 GGCGCGCCCGATATTACCAAGGC Knockout of dltA

dltA For GCTCAGGTTCAAGAAGCCTTT dltA internal fragment 
amplification

dltA Rev TGATTCCAGGCATTTTCTCAC dltA internal fragment 
amplification

ErmAM-For CATGAACAAAAATATAAAATATTCTC Amplification of erytliromycin 
cassette

EnnAM-Rev CTCATAGAATTATTTCCTCCCG Amplification of erythromycin 
cassette

Spec up GGCGCGCCATCGATTTTCGTTCGTGAATA Amplification of spectinomycin 
cassette

Spec dll GGCGCGCTATGCAAGGGTTTATTGTT Amplification of spectinomycin 
cassette

gyrA For TACGCCATGAGTGTTATCGTAGC RT-PCR of gyrA

gyrA Rev ACTATCTCCATCCATGGAACC RT-PCR of gyrA

010-up4-c6p^ ATGTTTGCATCAAAAAGCGAAAGAAAAGTACA
TTATTCAATTCG

RT-PCR of cbpA

cbpA-^YAll CATACCGTTTTCTTGTTTCCAGCC RT-PCR of cbpA

spr0062 P-1 TCTATGATTGGTATTTCTATCGTAGG Knockout spr0062

spr0062 P-2 GGCGCGCCTGAGGTAAGATCATGTAAAGGTAA
CC

Knockout spr0062

spr0062 P-3 TCTTACCTCAGGCGCGCCACTGCCTTTATCTTC
TGGTTGCTTGG

Knockout spr0062

spr0062 P-4 CAAATTTAGCAGTAAATTCTTCTGGG Knockout spr0062
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Table 2.3- List of primers for quantitative Real-Time PCR used in this study.

Gene Sense primer Anti-sense primer Product 
length (bp)

gyrA GCGCGAGCTCTTCCTGATGT TATGGGGTTTGTCTGGGGTC 100

ddl AGTTCCTTATGTGGCTATCGTTG CGGAGTTCTTCTTGGTTTTCAG 150

sp0060 ACGGTAGAGACTTATGTTGCTTG
GA

AGATAAATGGAGACGGACGC 145

sp0061 TGGTTGTAGACGACGAAGTTG CGAGCCACGATAAAGAGACG 160

sp0062 CTACCTTCTTCGCTCACCGT GTACAAAGGCACCACCAAAA 150

sp0063 GGGATCTTCCTTTGGATTGC AAGACACCAAGTACAGATGC 152

sp0064 ATGGTCGCTTCTGTGAGGAG GTGTAAATGTTGTCTTGTGGGC 71

sp0065 TCTATGACGAACGCAAATGG GAGCAAAAGACACAAGGACAGT 111

sp0066 TGGCTTGACTCTCTACACAG CATAGGCACCAGTTTCTTCC 101

PspÂ ^ GGTAGCACTAGCGAAGAAAG ACTTGATGTTGAGCAGTAGC 108

PspÂ ~̂ TATCTTAGGGGCTGGTTTTGT CGCTGCATCATAGTCTTTCTCA 103

sp0090 GTGGTTGCCTTCAAAGACTAC TCCGACCCATTTACTATTTATGAT
AC

75

sp0091 GCAACCATCACGCTCTTAAC GCCATACGACCTGTTTCTTTC 197

sp0092 GGTCTTGTTTACGGTCCAG TGTTACCAGTGTTCCATCC 121

sp2141 AGTCTGACCAAGCATCTATCTC TGTAAGCCAAATCTTCGTAAGC 168

sp2l42 CAGTCTGGGTGGCTCTATC GTGCGACCGTGTATTCTTC 101

sp2143 CTACATTGACGAGGGCAAAC CGGACATTGGCTTCACTGG 84

sp2144 CGACAGCCCAACTCAGAC CCAGATCCAGCCGTTAAGG 191

sp0461 CCATCGCAACAGGCTACC TGTGACCCAATCCATACTTCC 185

sp0462 AACCAGTCCAGCGATAGG CTTCTGTCAAGGTGTATGTCC 185

sp0463 ATACACCTGTGAACCACCAAG CATTCTATCGCTCCAGTTTGC 104

sp0464 GTATCTTCTTTGTTATGGCTCTG ATCATCATAGGAATACGAATCAT 185

sp0466 GGTGTCTCGCTTGTATTATCG TGTCAGCCTCATCCAACG 86

sp0467 GTGTCTCGTTATTATTATCGTAT
TG

CCTCAAGTTCTGCCTTATCC 91

sp0468 TCTCGCCTACAATCAACGC ATAATCTGCTCCCAAATAAACCG 169

sp0304 AGTTAAGACAAAGGACACAGG ATACGAATACCATGAGCAAGC 93

sp0305 GTCTTCATCACTTATGGCACAG GCACTAATAGCATCAACTACAAT
ATC

81

sp0306 TGATTTCAGAAAGATACGAGTG
ATG

TGAGACATAAACTCCTTTATTCG
C

82

sp0310 ATGTGTGTTAAACATAATTGGG CCATTGCTACAAGAAGACC
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Table 2.3- Continuation.

Gene Sense primer Anti-sense primer Product 
length (bp)

sp2173 TCTTTGGCTCTAGTGAATGGC ATAAGGACGGTAGGAACGATTG 86

sp2174 GAAGTTATTGAAATTATTGATGA
GTTG

CCATACTATCCAAGACACCTG 94

sp2175 GGAATCCGTAGCCCTATCAAC GGAACCAGAAGGACAGACTC 97

sp2176 GCTATCCTGTCTATAATGTTTTG GCAGCCAAACTATCCGAATC 76

sp2190̂ ^ TTAACGAGTTGAACAACATTAA
GAAC

CATCAGTATCTGTAGTTGGCTTT
C

83

sprl995^^ GCGACAGAGAACGAGGGAAGTA GTTTAAGGCGACATTTTGGG 162

sp2240 AATGGCGCCAGCAAAGTAGA GCAATATCAGAGAAAGTGTCAG 89

htrA TCCCTATCAACCCCGAAAAG CGATAGCGTCTCTCTCCTGC 147

ciaR GACATGGATTTGAACTGGGAGC
GGA

TGAACGTTTGAGAAGGGCCTGAA 95

ciaH CGTGTGATTTTGATGGAGACC GACAAAATCCAGAAACTAGCCA
TC

142

TIGR4 sequence annotation 
R6 sequence annotation

2.4 Preparation of pneumococcal chromosomal DNA

S. pneumoniae chromosomal DNA was prepared by a phenol extraction method (Salto and 

Miura, 1963). 10  ̂ CFU/ml from a glycerol stock was inoculated in to 20 ml of BHI, and 

incubated at 37 ”C until mid-log phase (ODeoonm -0.6). The bacterial cells were harvested 

by centrifugation at 5,000 x g  at room temperature for 15 min (Sigma laboratory centrifuge 

4K15). In the case of serotypes 3 strains the centrifugation had to be increased to 12,000 x 

g  for 20 min. The pellet was resuspended in 1 ml of extraction buffer (10 mM Tiis pH 8.0, 

100 mM EDTA pH 8.0, 0.5% SDS) and incubated for 1 h at 37 °C. Proteinase K (Sigma- 

Aldrich) was added to a final concentration of 100 pg/ml and the mixture was further 

incubated for 3 h at 50°C. RNase (Sigma-Aldrich) was added to a final concentration of 20 

pg/ml, and the mixture was incubated at 37°C for 30 min. An equal volume of 

phenol/chloroform/isoamylalcohol (25:24:1 vol/vol, Fisher Scientific UK, Ltd.) was then 

added and the mixture was well mixed by inverting the tube several times. Following 

centrifugation at 18,000 x g  (Eppendorf centrifuge 5417C, Germany) for 5 min, the 

aqueous layer was carefully removed to a new 1.5 ml tube and DNA was precipitated by 

adding 0.2 volume of 10 M ammonium acetate (Sigma-Aldrich) and 1 volume of 100%
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ethanol (Fisher Scientific UK, Ltd). The mixture was then centrifuge at 18,000 x g for 15 

min and the DNA pellet was left to air dry for 10-15min and them resuspended in TE 

buffer (Qiagen) pH 7.4 and store at -20 ®C.

The DNA used in microarray experiments was isolated from Genomic-tip 100/G (Qiagen) 

columns and with DNA buffer set (Qiagen) to avoid any phenol contamination. The strains 

were grown as described above and the extraction was made as detailed in the 

manufacturer’s instructions. The DNA was precipitated by adding 0.5 volume of isopropyl 

alcohol (Fisher Scientific UK, Ltd) and the mixture was then centrifuge at 5,000 x g  at 4°C 

for 15 min. The pellet was washed with cool 70% ethanol and then centrifuge at 5,000 x g  

at 4"C for 10 min. The pellet was left to air dry for 10-15min and resuspended in TE buffer 

(Qiagen) pH 7.4 by incubation overnight at room temperature and stored at -20 "C.

2.5 Analysis and measurement of DNA

DNA sample concentrations were measured with NanoDrop® ND-1000 UV-Vis 

Spectrophotometer (NanoDrop® Technologies, USA). The sample concentration is given 

in ng/ul calculated using the Beer’s Law based on absorbance at 260 nm against a blank of 

TE buffer. The ratio o f absorbance at 260 and 280 nm is used to assess the purity of DNA. 

A ratio of -1.8 is generally accepted as “pure” for DNA. Also the DNA was analysed by 

running 1% (w/vol) agarose gel (Gibco BRL Life Technologies, UK) containing 0.5 pg/ml 

ethidium bromide (Sigma-Aldrich) in TAE buffer. The DNA gel was visualized under UV 

transilluminator (Spectroline, TVC-312A) and images were captured using an UVF 

GelDoc system (UVF Laboratories).

2.6 DNA techniques and E. co/i transformation

2.6.1 Polym erase chain reaction

Folymerase chain reaction (FOR) was processed in reactions o f 50 [il consisting of: -  500 

ng of genomic DNA, 5 pi of thermophilic DNA polymerase Buffer (pH 9.0), 2.5 mM 

magnesium, 0.5 mM each dNTF, 0.8 pM each primer (table 2.2.) and 2.5 U of Taq 

polymerase (all purchased from Invitrogen™). The reaction volume was made up to 50 pi 

with nuclease free H2 O. The FCR conditions were: 95”C for 5 min followed by 30-35 

cycles of 95 ‘’C for 30 s, 50-65 ”C for 30 seconds and 72“C for 30-120 s. A final extension 

of 72°C for 10 min was performed. The FCR products were analysed in 1-2% agarose gel
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simultaneously with 100 bp or 1 kb ladder (Promega) to confirm the molecular weight of 

dsDNA bands.

2.6.2 Cloning and transformation of E. coli with plasmid  
constructs

E. coli strain Top 10 electrocompetent cells were used for transfoimation, carrying the 

plasmid constructs to use in later transformation of pneumococcus strains. The whole gene 

to be mutated was amplified from the pneumococcal chromosomal DNA, and FCR 

products were run in 1% agarose gels. DNA bands were excised from the gel and purified 

using the Qiaquick Gel Extraction Kit (Qiagen) according to the manufacturer’s protocol. 

FCR-Script'^^ Amp SK (+) plasmid (Statagene appendix A2) and pCR® 4-TOFO® 

(Invitrogen'’̂’̂ ) were used for cloning according to the manufacturer’s recommendations. 

The orientation of genes was confirmed by digestion with restriction endonuclease 

enzymes. The plasmid construct was used to transform the E. coli strain Top 10 

electrocompetent cells and amplified. 1 0 0  pi aliquots of competent cells were left in ice 

and 5 pi of plasmid DNA was added. The cells were incubated on ice for 20 min. The 

mixture was then transfen'ed to pre-chilled 1 mm gap electroporation cuvettes (Molecular 

BioFroducts) and electroporated using Gene FulserTM (Bio-Rad) with the following 

settings: voltage of 1.5 kV; capacitance of 25 pF and resistance of 200 Olim. The usual 

time constant with these settings was -  4.6. The cuvettes were placed back on ice and 200 

pi of SOC medium (Invitrogen™) was added and transfeiTed to 1.5 ml microcentrifuge 

tubes and incubated at 3TC  for 1 hour. The E. coli cells were plated onto LB agar plates 

with the appropriate antibiotic and with IFTG and X-gal to facilitate the identification of 

transformed cells by the blue/white selection. Cells containing the vector with the insert 

form white colonies while the cells that do not contain the vector with the insert form blue 

colonies. Individual white colonies were picked up and inoculated in 10 ml of LB broth 

and incubated at 2TC  overnight,

2.6.3 Plasm id preparation and purification

The transformed E. coli cells were collected, after the overnight incubation, by 

centrifugation at 5,000 x g  at room temperature for 5 min. The plasmids were isolated from 

the cells using the Qiaprep Spin Miniprep Kit (Qiagen) according to the manufacturer’s 

instructions. Flasmid DNA concentration and quality was confinned as described in 

section 2.5.
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2.6.4 DNA seq u en cin g

The plasmid carrying the insert was sequenced to confirm the correct inserts. The samples 

were sequenced in MBSU (Molecular Biology Support Unit, University o f Glasgow, UK) 

using the appropriate primers with concentration at 3.2 pM. The sequences were performed 

with MegaBACE™ 1000 DNA sequencer (Amersham Biosciences) and a protocol based 

on the dideoxy method (Sanger et a l, 1977). Sequence alignment was confirmed with 

AlignX® (Invitrogen Corporation).

2.7 Construction of pneumococcai mutants

The S. pneumoniae mutants were constructed to study the role o f TCSs 06 and 09 in 

expression of genes and virulence o f the bacteria. The dltA gene, supposedly regulated by 

the TCS ciaRIH, was mutated to study the importance of the dit operon in the phenotype of 

the ciaH  mutant. The gene spr0062 (annotated as sp0063 in TIGR4 strain sequence) also 

was mutated to study its importance in the phenotype of rr09 mutant.

For transformation, the whole of the gene to be mutated was amplified from the 

pneumococcal cliromosomal DNA (strain TIGR4 and D39) using forward and reverse 

specific primers for each gene (Table 2.2). The genes were cloned in PCR-Script™ Amp 

SK(+) plasmid (Stratagene) or pCR® 4-TOP 0®  (Invitrogen''^’̂ ). Inverse internal primers 

(Table 2.2) were designed to amplify the 5’ and 3’ ends o f the gene together with plasmids 

and to create AscI sites in the resulting PCR product. This PCR product was self-ligated to 

produce a plasmid carrying the interrupted gene. The plasmids were purified as described 

in section 2.6.3 and sequenced, using primers T3 and T7 specific for PCR-Script™ and for 

pCR® 4-TOPO® plasmids to confirm the deletion of the segment. An AscI-gQnQmlQé 

antibiotic cassette (spectinomycin) (Ibrahim et a l, 2004a) was ligated into plasmid after 

digestion with AscL The fragment containing the gene to be modified with antibiotic 

resistance cassette was amplified by PCR and used to transform the pneumococcus. These 

strategies were used for making dltA and spr0062 null mutants in TIGR4 and D39 

respectively.

2.7.1 Transformation of S. pneumoniae strains

Transfoimation of S. pneumoniae strains TIGR4 (serotype 4), D39 and R 6  (both serotype 

2) was done using a modification method of Lacks and Hotchkiss (Lacks and Hotchkiss, 

1960). Competence-stimulating proteins (Havarstein et a l, 1995) (CSP-l for D39 and R 6
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and CSP-2 for TIGR4) were used for inducing competence in these different serotypes 

(Pozzi et a l, 1996). For preparation of competent cells, 10 ml of CAT medium (Porter and 

Guild, 1976) (see appendix A l) supplemented with 20% glucose and 0.5M K2HPO4 

(CAT/GP medium) were inoculated with 200 pi of glycerol stock of TIGR4, D39 or R6  

strains, and grown a 3TC  until they reached ODeoonm 0.3-0.4. The cells were harvested by 

centrifugation at 5,000 x g- for 10 min at 4®C (Sigma laboratory centrifuge 4K15). The cells 

were resuspended in CAT/GP medium containing 20% glycerol and were frozen at -80”C 

or used immediately for transformation.

For pneumococcus transformation, 900 pi of CAT/GP medium supplemented with 4%

BSA and O.IM CaCl2 (CTM medium) and 100 ng of CSPl or CSP2 was added to 100 pi of 

cells. The 1 ml competent cells were divided into 200 pi aliquots, different concentrations 

of transfonning DNA (0.5-2 pg) were then added as well positive control DNA (pVA 383 

erythromycin resistant plasmid) and a no DNA control. The cells were incubated 37°C for 

10 min followed by 30”C for 20 min. 500 pi of CTM was added and the cells were 

incubated 3TC  for 2 hours. Transformed cells were selected on blood agar plates with 

appropriate antibiotic selection.

2.7.2 Moving mutation from existing mutants

Some of the mutant strains used in this study were made by PCR amplification of the 

mutated genes from existing mutants of different serotypes.

2.7.2.1 rr06 mutants

The original S. pneumoniae 0100993 rr06 mutant was generated previously (Throup et a l, 

2 0 0 0 ) by allelic replacement with a constitutively expressed erythiomycin resistance 

cassette. PCR amplification of the mutated region using the primers TCS06-F and TCS06- 

R (Table 2.2) was performed and the amplicon transformed into S. pneumoniae D39 

(serotype 2) and TIGR4 (serotype 4) strains using the method described in section 2.7.1.

2.7.2.2 rr09 mutants.

As the rr06 mutant, the 0100993 rr09 mutant was generated previously (Thioup et a l,  

2000). The mutation was moved by PCR amplification of the fragment containing the 

mutated rr09 gene and carrying the erythromycin resistance cassette using the primers 

TCS09-F and TCS09-R (Table 2.2) and using this PCR product to transformed the S.
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pneumoniae D39 (Blue and Mitchell, 2003) and TIGR4 (serotype 4) strains as described in 

section 2.7.1.

2.7.3 Confirmation of mutants

The successful replacement of the wild-type gene with the antibiotic resistance cassette in 

S. pneumoniae TIGR4, D39 and R6  was confirmed by PCR. Genomic DNA was prepared 

by phenol treatment as described in section 2.4 from cultures grown on blood agar 

supplemented with appropriate antibiotic. PCR of fragment containing the mutated gene 

and respective antibiotic resistance cassette was performed and the size of this fragment 

was compared in a 1% agarose gel. Homologous recombination of mutated gene resulted 

in an increase/decrease of the PCR product size for mutants when compared with wild- 

type. To confirm that the mutations occurred at the correct position in chromosome, PCR 

reactions with primers specific to genomic regions flanking the insertion region and 

antibiotic resistance cassettes gene primers were performed. Also, RNA of mutant strains 

and wild-type were prepared, as described in section 2 . 1 2  and reverse transcriptase PCRs 

of target genes were performed to ensure no transcription of mutant gene in transformed 

strains.

2.8 Phenotype study in vitro

2.8.1 Bacterial growth

2.8.1.1 Growth curve

For growth phenotype comparison, aliquots of glycerol stocks of pneumococcus strains 

were quickly thawed at 37*̂ C water bath and Ix 10  ̂ CFU/ml were inoculated in 20 ml of 

BHI and incubated at 37°C or 40®C (preheated BHI) for 12h. At intervals of 1 hour 1 ml 

aliquot were withdrawn for each strain sample and the ODeoonm were measured in 

spectrophotometer (Unicam UV2, UV/Vis) against BHI as a blank.

2.8.1.2 Viable count

To enumerate the number of colony foiming units (CFU) of pneumococcal strains stored 

as glycerol stocks, cells were pelleted by centrifugation at 13,000 x g (Eppendorf 

centrifuge 5417C, Germany) for 3 min and resuspended in equal volume of phosphate
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buffered saline (PBS). The viable count was performed with serial 10-fold dilutions in PBS 

in 96-well plates (Nunclon® surface, Nalge International™). 3 x 20 pi of each dilution 

were plated on blood agar plates (in triplicate) and incubated at 37®C overnight. The 

colonies were counted in dilutions that presented a number o f 30-200 colonies and the 

number of CFU/ml was calculated by the average o f the number of colonies x 50 x dilution 

factor.

In a growth phenotype comparison, at intervals of 2 hours aliquots of 20 pi were 

withdrawn from BHI cultures and viable count was made as described above.

2.8.2 Aerobic and anaerobic growth

For growth phenotype comparison in aerobic and anaerobic conditions, 10 pi of glycerol 

bacterial stocks were dropped in the middle of blood plates and uniformly spread over the 

plate and incubated at 37 and 40“C in an anaerobic environment (CO2 candle jar) or an 

aerobic environment (without CO2 candle jai) overnight.

2.8.3 Oxidative s tre ss

The sensitivity to H2O2 was tested by exposing aliquots of 1 ml of cultures giown to 

ODeoonm 0.3 to 40 mM of H2O2 (Sigma-Aldrich) for 5, 10 and 15 minutes at room 

temperature. A bacterial viable count, as described in section 2.8 .1.2 was made before and 

after the exposure to H2O2 .

2.8.4 A dherence a ssa y

The adherence assays were perfoimed as described previously by Kharat and Tomasz 

(Kharat and Tomasz, 2003). Human pharyngeal cell line Detroit 562 cells (Pancholi and 

Fischetti, 1997) were inoculated into 24-well tissue culture plates (Corning Incoiporated, 

Costar®). The plates were maintained at 37°C in 5% C0 2 -9 5 % air with RPMI 1640 

medium (Schuster, 2002) without phenol red (Gibco BRL, Life Technologies, UK) but 

supplied with 1 mM sodium pyruvate and 10% fetal bovine serum. Glycerol bacterial 

stocks were quickly thawed at 37"C and cells were harvested by centrifugation before 

resuspension in RPMI 1640 without phenol red supplemented with 1% fetal bovine serum 

to give a suspension of 10  ̂CFU/ml. Monolayers of Detroit 562 cells in 24 well plates were 

washed with 2 x 1 ml PBS and incubated with 1 ml of bacterial suspension for 2 h. After 

incubation at 37°C in 5% CO2 , the bacterial suspension was decanted from each well and
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the Detroit 562 cells gently washed with 3 x l rnl PBS to remove non-adherent bacteria. 

Human pharyngeal cells were detached by treatment with 200 pi of 0.25% trypsin-0.1% 

/EDTA prepai'ed in PBS and lysed by addition of 800 pi ice cold 0.025% Trition-X-100 in 

PBS. The number of bacteria adherent to and/or internalised by the pharyngeal cells were 

quantified by viable counts of the Detroit cell lysates, as described in section 2.8 .1.2. Wild- 

type and mutant strains grow comparably in media without Detroit 562 cells.

2.8.5 Low est pH for growth initiation

To study the pH tolerance of TIGR4 dltA mutant in comparison to wild-type, Ix 10  ̂

CFU/ml were inoculated in 20 ml o f BHI adjusted to pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5 and 

incubated at 37®C for 12 hours. The assay was done in triplicate and each hour, an aliquot 

of 1 ml was taken to measure the ODeoonm in a spectrophotometer and the lowest pH at 

which the bacteria survived was notated (Diaz-Torres and Russell, 2001).

2.8.6 Antimicrobial peptides

It is veiy important to use polypropylene and not polystyrene microtitre plates, since 

cationic peptides bind polystyrene. The antibacterial peptide activities were assayed in 

TIGR4 wild-type and dltA mutant strains, using the minimal inliibitory concentration 

(MIC). The MIC for cationic anitimicrobial peptides were determined using a broth 

microdilution assay modified from the method of Amsterdam (Amsterdam, 1996). Mueller 

Hinton agar plates (MHA) (Oxoid, Basingstoke, UK) were inoculated with pneumococcus 

strains from glycerol stock, and grown overnight at 37®C. 10 ml of Mueller Hinton Broth 

(MHB) (Oxoid, Basingstoke, UK) were inoculated with individual colonies of overnight 

culture and grown at 37“C until ODeoonm 0.3-0.6. The bacterial cultures were diluted in 

MHB to give Ix 10  ̂ CFU/ml. Serial dilutions o f Nisin, Gramidicin D, Indolicidin, 

Magainin II, Cecropin B and Defensin HNPl-2 (All from Sigma-Aldrich) were made in 

polypropylene 96-wells plates (Coming Incorporated, Costar®). The test peptides were 

dissolved in MilliQ water to obtain a concentration 1 mg/ml. An equal volume of 0.02% 

acetic acid, 0.4% BSA (Sigma-Aldrich) were added to give a concentration 500 gg/ml. 

Serial doubling dilutions in 0.01% acetic acid, 0.2% BSA were performed to get serial 

dilutions at 10 times the required test concentrations. A control with 0.01% acetic acid, 

0.2% BSA without peptide was made as a blank medium. 100 pi of bacterial suspension 

were added in each well of new polypropylene 96-well plates, except in blank medium that 

contained 100 pi of MHB for sterility control, and 11 pi o f 1 Ox test peptide dilutions. The 

microtiter plates were incubated at 37®C with slow agitation, to prevent cell precipitation,
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and measured after 8  hours of incubation at 630 nm in MRX revelation microplate reader 

(Dynex Technologies, Benkendorf, Germany). The MIC was taken as the lowest 

concentration o f antimicrobial peptide that reduced growth more than 50%.

2.8.7 M orphology of mutants

To observe morphological changes in the capsule of TIGR4 wild-type, rr06 and dltA 

mutants, a quellung reaction was done. The bacteria were grown in BHI at 37®C until 

medium log phase, and a loop of each culture was placed onto a slide, air dried for ~15 min 

and mixed with 10 pi of methylene blue and 10 pi of antiserum type 4 capsule (Statens 

Seruminstitut, Copenhagen, Denmark). A glass cover slip was placed over the slide and 

incubated at 37°C for 1 hour in humid box. The slides were observed using an optical 

microscope with magnification 400 and 1,000 x. The quellung reaction was used also to 

confirm the capsule type of the different strains.

2.9 Phenotype Study in vivo

The animal work was done in collaboration with Dr. Alison Kerr and Dr. Gavin Paterson. 

The studies were carried out under appropriate licensing fi*om the Home Office, UK, and 

obeyed local regulations of the University of Glasgow.

2.9.1 Mice and inocula preparation

Female outbred M Fl mice (Harlan Olac, Bicester, United Kingdom) aged 9 to 13 weeks 

and weighing 30 to 35 g were used as a standard model of pneumococcal pneumonia and 

bacteraemia. All mice were kept in appropriate cages and provided with sterile pelleted 

food (B&K Universal, North Humberside, United Kingdom) and water ad libitum.

All the strains analysed in vivo were prepared by passaging through the mice as described 

previously (Alexander et a l,  1994). S. pneumoniae from a glycerol stock of each strain 

were collected by centrifugation at 18,000 x g  (Eppendorf centrifuge 5417C, Germany) for 

3 min. Pellets were resuspended in 900 pi of sterile PBS and diluted to give approximately 

Ix 10  ̂CFU/ml. Mice were injected with 200 pi of bacterial suspension into the peritoneal 

cavity using 1-ml insulin syringe (Micro-fine, 12.7 mm, Becton Dickinson). 24-48 hours 

following injection, mice were sacrificed by ceivical dislocation and the chest cavity 

opened. Blood was collected from the right ventricle of the heart using 23-gauge needle. 10 

ml BHI (+/- antibiotic) were inoculated with four to five colonies o f S. pneumoniae taken
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from a fresh culture plate of mouse-passaged pneumococci and incubated overnight at 

37°C. Bacteria were harvested by centrifugation at 5,000 x g  at room temperature for 15 

min and resuspended in 1 ml of BHI. 100 pi of this suspension was used to inoculate 10 ml 

of BHI containing 20% (vol/vol) heat-inactivated FBS (Gibco BRL, Life Tecnologies, UK) 

and incubated at 37“C until ODeoonmOf 0.6-0.7 (~ 4 to 5 h). The cultures were aliquoted and 

stored at -80”C. Viable cell counts were determined in triplicate on blood agar plates. 

Pneumococci could be stored for at least 3 months at -80°C with no significant loss of 

viability. When required, the suspension was thawed rapidly at 37°C, and bacteria were 

haiwested by centrifugation before resuspension in sterile PBS.

2.9.2 Intranasal Infection

For intranasal challenge, mice were lightly anaesthetized with 2.5% (vol/vol) halothane 

(Zeneca Pharmaceuticals, Adlerley Edge, UK) over oxygen (1.5 L/min) using a calibrated 

vaporizer, and 1x10^  CFU resuspended in sterile PBS was administered into the nares of 

mice held vertically (Alexander et a l, 1994) in a total volume of 50 pi using a Proline® 

pipette (Biohit). At predetermined time points, a small volume of blood was removed from 

a tail vein by using a 1-ml insulin syringe (Micro-fine, 12.7 mm; Becton Dickinson), and 

bacteraemia was determined by viable count as described in section 2.8.1.2. To determine 

the bacterial load in the lung tissue, mice were challenged intranasally as described above. 

Subsequently, mice were sacrificed at predetermined time points by cervical dislocation.

Lungs were removed, weighed, and homogenized in 5 ml of sterile PBS by using an |  

electric tissue homogenizer. Viable counts of bacterial suspensions were determined.

3

For intravenous infection, mice were placed in a ventilated, heated Perspex box for 5 min 

in order to expose veins and were restrained in appropriate apparatus. l.Ox 10*̂  CFU, 

resuspended in sterile PBS, was administrated directly into a tail vein. At predetermined 

time points, a small volume of blood was removed from a tail vein by using a 1-ml insulin
''3

syringe (Micro-fine; 12.7 mm; Becton Dickinson), and bacteraemia was determined by
'■'è-

viable enumeration as described in section 2.8.1.2. Symptoms were monitored for 168 h 

post-infection, and mice were culled prior to reaching, or upon reaching, a moribund state. V

3

■3

82



Material and Methods

2.9.4 Intraperitoneal infection

For intraperitoneal infection, mice were each given 1.0 x CFU, resuspended in sterile 

PBS, administered intraperitoneally. Survival times was monitored for two weeks and a 

small volume of blood was removed from a tail vein, 24h post-infection, by using a 1-ml 

insulin syringe (Micro-fine, 12.7 mm; Becton Dickinson) to determined bacteraemia by 

viable-cell enumeration as described in section 2,8.1.2.

2.9.5 Mice survival and d isea se  sym ptom s

In order to determine experimental end points, mice were monitored frequently for 

symptoms of infection and were culled prior to reaching, or upon reaching, a moribund 

state. When animals showed signs of lethargy or upon becoming moribund, mice were 

humanely euthanized, the time was recorded and used as a measure of “mortality” for 

analysis of survival data (Toth, 1997). Mice that survived the course of infection (7 days, 

unless stated otherwise) were assigned an arbitrary survival time o f 168 h for statistical 

analysis.

2.9.6 Bacteriological investigation

At predetermined times following infection mice were sacrificed by cervical dislocation 

ensuring intact trachea and the skin and muscles surrounding the trachea were exposed and 

the thoracic cavity opened. For bronchoalveolar lavage, the trachea was clamped, and 2 ml 

of sterile PBS was passed through the nasopharynx via a 16-gauge nonpyrogenic 

Angiocath (F. Baker Scientific, Runcorn, UK). Bronchoalveolar lavage and lung tissue 

sampling were carried out as previously described. Lavaged lungs were homogenized in 5 

ml of sterile PBS with a glass handheld tissue homogenizer (Jencons, Leighton Buzzard, 

UK). Viable bacteria in lung samples were counted as described in section 2.8.1.2. To 

measure the levels o f bacteraemia, blood samples were collected from the right ventricle of 

the heart after the chest cavity was opened. Following intravenous infection, blood samples 

were taken from peripheral veins.

2.9.7 Statistical analysis

Survival times were analysed using Mann-Whitney U test. Bacteriology results are 

expressed as geometric mean ± standard en'ors of the mean (SEM). Comparison of
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bacterial loads in the time course experiment was performed using Student’s t tests. In all 

analyses,/? <0.05 was considered statistically significant.

2.10 Protein analysis

2.10.1 Protein preparation

Bacterial strains were grown in 20 ml of BHI at 37”C until the mid-log phase (ODeoonm 

0.6). The cells were collected by centrifugation at 5,000 x g  4°C for 15 min and the pellet 

resuspended in 1 ml of PBS. In case of choline binding proteins the pellets were 

resuspended in PBS containing 2% choline chloride (Sigma- Sigma-Aldrich) and incubated 

at 4®C for 15 min. The cells were disrupted by sonication for 4 times at 30 seconds each 

with 13 mm probe (Sonicator Vibra Cell, Sonics & Materials Inc.) using a power output of 

36W, keeping the tubes with samples on ice during sonication process. A centrifugation at

13,000 X g  for 10 min was perfoimed to remove cell debris in case of non-membrane 

associated proteins.

2.10.2 Protein quantification

The total proteins were quantified by Bradford assay (Bradford, 1976). Standards were 

prepared with BSA in MilliQ water at concentrations between 62.5-1500 pg/ml. The 

protein quantification was preformed in 96-well plate (Nunclon® surface, Nalge 

Internationa^^). 10 gl of each standard were added to the first column of the microlitre 

plate (in duplicate) and 10 pi of each protein sample, or PBS into triplicate wells. 200 pi of 

Bradford reagent were added to each well, and incubated on room temperature for 10 min. 

Bubbles were avoided to the maximum, and the absorbance at 570 nm was read in 

microplate reader (Dynex Tecluiologies, Denkendorf, Geimany) and analysed with Dynex 

revelation 4.22 sostware (Dynex Technologies, Denkendorf, Germany). A standard curve 

was created and the concentration for each protein sample was calculated automatically.

2.10.3 W estern immunoblot

To prepare a western immunoblot, sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used to separate the proteins under study according to a 

standard protocol (Sambrook 1989). Mini gels were prepared in electrophoresis apparatus 

(Bio-Rad) with 10% separating gel (see appendix A l) and 4% stacking gel (see appendix
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A l). Pre-cast gels (Bio-Rad) also were used in this study. Equal amounts of total proteins 

from each strain in loading buffer (see appendixAl) were heating at 95°C for 5 min and 

applied in the gels along with protein ladders (SeeBlue® Plus2 Pr-Staimed Standard, 

Invitrogen ™) to determine the size of protein bands. Gels were run at 120 V for -90-100 

min using a Biorad power pack 300 (Bio-Rad). When the bromophenol blue dye of the 

loading buffer reached the bottom of the gels, the electrophoresis was stopped, the gels 

were removed and placed into transfer buffer, cooled to 4®C, (see appendix A l) for 30 min 

with agitation to equilibrate. Hybond-C nitrocellulose membrane (Amersham Biosciences) 

and filter paper were cut to the size of the gels and soaked together with fibre pads in 

transfer buffer. The blotting apparatus (Bio-Rad) was assembled with grey side of holder, 

fibre pad, filter paper, gel, nitrocellulose membrane, filter paper and fibre pad, and ice pack 

were placed in the tank and the proteins were blotted at 100 V for 60 min. After proteins 

transfer, the membranes were blocked with 3% skimmed milk in Tris-NaCl (see appendix 

A l) overnight at 4"*C with shaking. The membranes were transferred to fresh blocking 

buffer containing 1:500 or 1:1000 of the primary antibody and incubated at 37°C for 3 

hours in a shaker. The membranes were washed 4 times, 5 minutes each with Tris-NaCl 

and then transfeiTed to 1:1000 of secondary antibody (anti-mouse or anti-rabbit, 

peroxidase-liked whole antibody, Amersham Biosciences) in Tris-NaCl buffer. Membranes 

were washed as described before and then transfen'ed to the developer solution (see 

appendix A l) in dark for until the bands developed. The membranes were washed with 

double distilled water to stop the previous reaction. The membranes with the blots were 

scanned.

2.11 Haemolytic assay of crude lysates

Pneumolysin activity of D39 rr09 was compared with wild-type using a haemolytic assay, 

based on the ability of pneumolysin to cause lysis of red blood cells. The bacteria were 

grown in 20 ml of BHI at 37”C until the mid-log phase (ODeoonm 0.6). The total protein 

samples were prepared as described in section 2.10.1. The haemolytic assay was performed 

in a 96-well plate (Nunclon® surface, Nalge International™) in duplicate. 50 pi of PBS 

was added to each well, and 50 pi of total protein sample or PBS (negative control) added 

to the first column). Two-fold dilutions were made across the plate, and 50 pi of 2% 

defibrinated sheep red blood cells (E&O Laboratories, Bonnybridge, UK) was added to 

each well. The plate was closed and incubated at 37”C for 30 min followed by 30 min at 

room temperature. Results were analysed by visual examination comparing with negative 

control, where the red cells formed a pellet while in positive wells the activity of
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pneumolysin caused the lysis of red cells preventing the pellet formation. The end point 

(50% lysis) was taken as the well in which half of the pellet is observed.

2.12 Pneumococcus RNA extraction

Bacteria grown in 10 ml of BHI to mid-log phase (ODeoonm of 0.6) at 3TC  were harvested 

by centrifugation at 5,000 x g  for 5 min at room temperature (Sigma laboratory centrifuge 

4K15). The bacterial pellet was snap-frozen in liquid nitrogen to preserve RNA as much as 

possible. RNA isolation was performed using Qiagen RNeasy-Midi Kit (Qiagen) with the 

following modifications. Bacteria were resuspended in the presence o f 200 pi of lysozyme 

(15mg/ml) prepared in TE buffer (lOmM Tris-Cl pH 8.0, 1 mM EDTA pH 8.0) and 

vortexed vigorously for approximately 30 seconds. Suspensions were incubated at room 

temperature for 10-15 min, mixed vigorously, for 10 seconds every 2 min in a vortex 

mixer. After incubation in lysis buffer, 700 pi of RET buffer (Qiagen) containing 10% 

(vol/vol) P-mercaptoethanol (Sigma-Aldrich) were added and mixed vigorously, for 10 

seconds in vortex mixer. The mixture was transferred to 2 ml centrifuge tube containing 

-50  mg of acid-washed glass beads, 100 pm (Sigma-Aldrich) and was submitted a 

mechanical disruption using a Hybaid Ribolyser (Hybaid™) at speed 4, 3 times for 20 

seconds to facilitate the disruption of the cells. A brief centrifuge at 14,000 x g  for 10 

seconds was performed to remove the glass beads and the supernatant was transferred to a 

15 ml centrifuge tube. 3.2 ml of RET buffer were added to the supernatant, mixed 

vigorously for 10 seconds and 4 ml of 70% ethanol (prepared with Nuclease-ffee water) 

were added and mixed gently. The samples were applied twice (4 ml each) to RNeasy 

columns, with centrifugation at 5,000 x g  at room temperature between each loading. The 

wash steps were subsequently processed according to the manufacturer’s protocol and the 

RNA eluted by adding 150 pi of RNase-free water, leaving 1-3 min in room temperature 

and centrifuged at 5,000 x g  at room temperature for 3 min. A second elution with the first 

elute was performed to increase the final RNA concentration. An on-column DNase 

digestion step was performed, using an RNase-ffee DNase set (Qiagen) according to the 

manufacturer’s instructions.

2.12.1 RNA analysis

The total RNA concentration was measured using the NanoDrop® ND-1000 

spectrophotometer (NanoDrop® Technologies, USA). The sample concentration is given 

in ng/ul calculate using the Beer’s Law based on absorbance at 260 nm against a blank of
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RNase-free water.. The ratio of absorbance at 260 and 280 nm is used to assess the purity 

of RNA. A ratio o f—2.0 is generally accepted as “pure” for RNA.

The integi'ity of total RNA samples were analysed using the RNA LabChip® kit with the 

Agilent 2100 bioanalyzer (Aligent Technologies, UK).l pi of total RNA samples, with a 

maximum concentration of 200 ng/pl were applied to a RNA 6000 Nano LabChip. For 

concentrations below 10 ng/pl 1 pi of RNA, a RNA 6000 Pico LabChip was used. The 

system automatically calculates the ratio of ribosomal bands in total RNA samples, shows 

the percentage of ribosomal impurities in RNA samples and provides enhanced 

concentration estimation and comparison of samples and it performs automated integiity 

control of total and messenger RNA (Wang et a l, 2003) (Figures 3.21-3.23).

2.13 Reverse transcriptase PCR

cDNA was synthesized from RNA of pneumococcus strains, obtained as described in 

section 2.12, with ThermoScript™ RT-PCR system (Invitrogen™). To 2-5 pg of total 

RNA were added 50 ng of random primer (Invitrogen"^^) or 10 pM of reverse specific 

prime, 2 pi of 10 mM dNTP mix (Invitrogen"^^) was added and the volume brought to 12 

pi with DEPC-treated water. The RNA and primer mixture were denatured by incubating 

at 65"C for 5 min and then placed on ice. Master mix containing 4 pi of 5 x cDNA 

synthesis buffer, previously vortexed, 1 pi of 0.1 DTT, 1 of pi RNaseOUT™ (40 U/pl), 1 

pi of DEPC-treated water and 1 pi of ThermoScript^'^ RT (15U/pl) were added to the 

reaction tubes and transfeiTed to a thermal cycler (DNA Engine Dyad® Peltier Theimal 

Cycler, MI Research) and incubated at 25'*C for 10 min then at 50-65”C for 50 min. In case 

of specific primers the reaction was performed at 50-65”C for 50 min. The reactions were 

terminated by incubating at 85‘*C for 5 min. A reaction without Thermo Script™ RT was 

performed as negative control. 1 pi of Rnase H was then added to each reaction and 

reactions were incubated at 37®C for 20 min to remove any residual RNA. The cDNA 

reactions were stored at -20*’C or used immediately as a DNA template in PCR reactions as 

described in section 2.6.1.

2.14 Microarray analysis

In this project two different types of pneumococcal genome microaiTay slides have been 

used. One array used for transcriptome analysis was designed at the Pathogen Functional 

Genomics Resource Centre at TIGR (http://pfgrc.tigr.org) v .l and v.2, and the second type
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of slides used in transcriptome and genomic comparison was designed at the Bacterial 

Microarray Group at St George's Hospital BpG@S (http://www.bugs.sghms.ac.uk). The 

slides were stored in plastic slide boxes at room temperature in a desiccator containing a 

bottom layer of anhydrous calcium sulphate. The slides were kept away from dust and 

were handled with extreme care to prevent scratching or rubbing that may damage the 

printed DNA.

2.14.1 TIGR arrays

For analyses of the genes regulated by rr06 and rr09, using TIGR slides for microarrays, 

two independent cultures of bacteria were grown in 10 ml of BHI on different days, to 

mid-log phase and the RNA extracted as described above. The method for using TIGR 

an*ay describes the production of labelled DNA from microbial RNA with aminoallyl- 

labeled nucleotides via first strand cDNA synthesis with aminoallyl-dUTP followed by 

coupling of the aminoallyl groups to either Cyanine-3 or Cyanine-5 (Cy3/Cy5) fluorescent 

molecules.

2.14.1.1 Array design

The full genome anny of S. pneumoniae microarray v. 1 consists o f amplicons representing 

segments of 2,131 open reading frames from S. pneumoniae reference strain TIGR4 

(Tettelin et a l, 2001) spotted in quadruplicate on glass slides. Also, the array contains an 

additional 118 open reading frames from strains R6 (37) (Hoskins et a l, 2001) and G54 

(81). Version 2 slides have an additional 164 and 399 open reading frames from strains R6 

and G54 respectively.

2.14.1.2 Amlnoallyl-labelled cDNA syn th esis

The reactions were prepared in 0.2 ml PCR tubes. For each sample (control and test) 10 pg 

of total RNA was mixed with 2 pi of 3 mg/ml random hexamers (Invitrogen™), 1 ul of 

RNaseOUT™ (40 U/pl) and the volume was brought to 18.5 pi with nuclease free water. 

After gently mixing, the mixture was incubated at IQRC for 10 min in a DNA Engine 

Dyad® Peltier Thermal Cycler (MI Research) to prevent any RNA loop formation. The 

mixture was cooled to 4"C on ice and a brief centrifugation (Eppendorf® Mini Spin 

centrifuge, Germany) was done to bring down any condensation. The remaining steps were 

done at room temperature. A master mix containing 6 pi of 5 x First Strand buffer 

(InvitrogenT^), 3 pi of 0.1 M DTT (Invitrogen^M)^ 1.2 pi of 12.5 mM dNTP/aa-UTP
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labelling mix (12.5 mM dATP, 12.5 mM dCTP, 12.5 mM dGTP, 7.5 dTTP all from 

Invitrogen™ and 10 mM aa-dUTP Ambion®), and 2 pi of 200U/pl Superscript II or III 

RT (Invitrogen"^^) was added to a final volume of 30.7 pi. After gently mixing the reaction 

was incubated overnight (-16 hours) at 42“C in a thermal cycler. The first strand synthesis 

reaction was stopped with addition of 10 pi of 0.5 M EDTA (Ambion®) and 10 pi of IM 

NaOH to hydrolyze the RNA in the cDNA/RNA mixture, and the mixture was incubated at 

65'^C for 15 min in a thermal cycler. 25 pi of 1 M Tris, pH 7.0 (Ambion®) was added to 

the mixture to neutralise the pH.

NucleoSpin® Extract II Kit (Macherey-Nagel) was used to remove unincorporated aa- 

dUTP and free amines. The wash and elution buffer from the kit was substituted by 

phosphate buffers to avoid contamination with free amines that compete with the aa-dUTP 

in the Cy-dye coupling reaction.400 pi (5 x reaction volume) of buffer NT2 (Macherey- 

Nagel) was added to the cDNA reaction, mixed, transferred to NucleoSpin column, 

centrifuged at 14,000 x g- for 1 min (Eppendorf® MiniSpin centrifuge, Germany) and the 

collection tubes were emptied. The columns were washed with 750 pi of phosphate wash 

buffer (see appendix A l), and centrifuged at 14,000 x g  for 1 min. The collection tubes 

were emptied and an additional centrifugation at 14,000 x g  for 1 min was performed to 

remove residual ethanol. The columns were transferred to a 1.5 ml centrifuge tube and the 

cDNA was eluted two times with 30 pi of phosphate elution buffer (see appendix A l) with 

incubation at room temperature for -1  min and following centrifugation at 14,000 x g  for 1 

min. The final eluate (60 pi) was transferred to open 0.2 ml PCR tubes and dried down in 

speed vac (Savant DNA 110 Speed Vac, Global Medical Instruments, USA) at medium 

temperature fo r-1  hour.

2.14.1.3 Cy3/Cy5 indirectly labelling of cDNA

To prevent photobleaching of the Cy-dyes, all reactions tubes were wrapped with foil and 

protected from light as much as possible. The dry aminoallyl-labelled cDNA samples was 

resuspend in 4.5 pi of freshly 0.1 M sodium carbonate buffer pH 9.3 (see appendix A l) by 

pipetting up and down for -4  min. One vial of each Cy3 and Cy5 (Cy'^’̂  reactive dye, 

Amersham Biosciences) was prepared by resuspending in 15 pi of DMSO. 4.5 pi of the 

appropriate Cy dye, Cy3 or Cy5, was added and mixed to the aminoallyl-labelled cDNA 

sample and incubated for 2 hours in room temperature in the dark. After coupling had 

finished, 35 pi of 100 mM NaOAc pH 5.2 (see appendix A l) was added to the mixture to 

stop the incorporation reaction. The free Cy3 or Cy5 were removed by using the 

NucleoSpin® Extract II Kit (Macherey-Nagel). The cDNA reaction was mixed with 250 pi
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(5 X reaction volume) of NT2 buffer (Macherey-Nagel), transferred to a NucleoSpin 

column, centrifuged at 14,000 x g  for 1 min (Eppendorf® MiniSpin centrifuge, Germany) 

and the collection tubes were emptied. The columns were washed and dried as above and 

the columns were transferred to a 1.5 ml centrifuge tube. The dye-labelled cDNA was 

eluted two times with 50 pi of phosphate elution buffer with incubation at room 

temperature for ~1 min and a following centrifugation at 14,000 x g  for Imin.

2.14.1.4 A nalysis of labelling reaction

For each sample the concentration of cDNA and the total picomoles of Cy3 or Cy5 dye 

incorporated were calculated using the NanoDrop® ND-1000 UV-Vis Spectrophotometer, 

Micro array application (NanoDrop® Technologies, USA). The total picomoles of cDNA 

samples were calculated tlnough of following formula:

cDNA (ng) * volume (pi) * 1000 pg/ng 
pmol nucleotides = ----------

324.5 pg/pmo3^

324.5 pg/pmol represent the average molecular weight of dNTP.

The incorporation ratio of cDNA to dye was calculated through of following formula:

pmol cDNA
nucleotide s/dye incorporated ^

pmol Cy dye

Dye incorporation per sample above 200 pmol and a nucleotides/dye incorporation ratio 

less than 50 were considered optimal for hybridisations (Hegde et a l,  2000).

The measurement of these pai'ameters permit calculation of the efficiency of the labelling 

reaction and eliminate potentially flawed samples to use in hybridization probes for gene 

expression.

2.14.1.6 Pre-hybridization

It is extremely important that slides be perfectly clean to avoid backgroimd problems and 

prevent any scratching between the slides in a Coplin jar. 60 ml pre-hybridization buffer 

(for a maximum of 5 slides) was prepared (15 ml of 20x SSC (Ambiom®), 600 pi of 10%
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SDS (Ambiom®), 0.6 gm of BSA fraction V powder (Sigma-Aldrich), MilliQ water to a 

volume of 60 ml. The pre-hybridization buffer was filtered with a 0.22 pm filter (Fisher 

Scientific) transferred to a clean Coplin jar and preheated at 42°C for at least 30 min. The 

printed slides were placed with their labels up and their printed side down in a Copling jar 

containing preheated prehybridization buffer and incubated at 42“C for -2  hours. The 

slides were removed from the Coplin jar and by carefully gripping them by the label using 

forceps and placed in the slide holder of glass staining dish filled with MilliQ water filtered 

with 0.22 pm filter (Millipore). The slides were washed in rotary shaker (Edmund Bühler 

KM-2 shaker) and the water was changed every 2 min until ~2 L of water had been used. 

The slides were then washed with isopropyl alcohol (Fisher Scientific) for 2 min on the 

rotary shaker. The slides were put in a clean slide plastic box lined with paper towels and 

centrifuged at 450 x g  for 10 min (Eppendorf Centrifuge 5804, Geimany) for drying. The 

slides were used immediately to ensure optimal hybridization efficiency.

2.14.1.6 Hybridization of cDNA probes to array

After analysis of the labelling reaction the two differentially labelled probes (Cy3 and Cy5) 

were mixed together (final volume of 200 pi) and were transferred to 0.2 ml PCR tubes 

and dried down in a speed vac (Savant DNA 110 Speed Vac, Global Medical Instruments, 

USA) at medium temperature for -2  hours. 1 ml of hybridization buffer (50% formamide 

(Sigma-Aldrich), 5 x SSC (Ambion®), 0.1% SDS (Ambion®), 300 pg Salmon Sperm 

DNA (Ambion®) was prepared and filtered with smTace-ffee cellulose acetate syringe 

filter 0.45 pm (Nalgene™). The labelled probes were resuspended in 30 pi of filter 

hybridization buffer, by finger flicking for about 1 min and heating at 95®C for 5 min 

following by an additional mix by finger flicking for about 1 min and heated again at 95®C 

for 5 min. 100 pi of unused hybridization buffer were added to the well of the 

hybridization chamber (HybChamber, GeneMachines), to prevent the drying of the 

hybridization solution under the cover slip. The entire labelled probe mixture was applied 

onto the printed area of the slides preventing any air bubbles. A glass cover slip 24mm x 

60mm, cleaned with compressed air was placed over the slide printed area and air bubbles 

were avoided. The hybridization chamber was well-sealed, wrapped in aluminium foil and 

incubated 42 °C for 18 hours in GeneChip® Hybridization oven 640 (Affymetrix).

2.14.1.7 Post-hybridization

After hybridization, the hybridization chamber was opened and the slides carefully 

removed, to avoid cover slip disturbance. The slide was submerged in 55°C preheated low

91



Material and Methods

stringency buffer (50 ml of 20x SSC, 5 ml of 10% SDS, 445 ml o f MilliQ water) and the 

cover slip was removed with smooth up and down movements and the slides were washed 

vigorously for an additional 1 min. The slides were transferred to a holder in a glass 

staining dish filled with new preheated low stringency buffer and an additional washing for 

5 min was performed in a rotaiy shaker, followed by a 5 min wash using medium 

stringency (2.5 ml of 20x SSC, 5 ml of 10% SDS, 492.5 ml o f MilliQ water) buffer and 

then to a final 5 min wash in higher stringency buffer (2.5 ml o f 20x SSC, 997.5 ml of 

MilliQ water). The slides were dried by centrifugation as mentioned in section 2.14.1.5, 

and kept in dark until ready for scanning.

2.14.2 B(jG@S arrays

For analyses of the genomic comparison between TIGR4 reference strain and test strains 

using the BpG@S microarrays slides, bacteria were grown in 20 ml BHI to mid-log phase 

and the DNA extracted as described above. These arrays have also been used to analyse the 

genes regulated by the rr06. The method using for BpG@S arrays describe the production 

of labelled DNA by a direct labelling reaction with Cyanine-3 or Cyanine-5 (Cy3/Cy5) 

fluorescent molecules.

2.14.2.1 Array design

MicroaiTays were constructed by robotic spotting of PCR amplicons onto poly L-lysine 

coated glass microscope slides (MicroGrid II. BioRobotics, UK) (Hinds et a l, 2000a). 

Amplicons were designed to represent each of the annotated ORFs present in S. 

pneumoniae strains TIGR4 (Tettelin et a l,  2001) and R6 (Hoskins et a l,  2001) to create a 

composite, inclusive array for these two strains. The design process essentially designed 

multiple amplicons using Frimer3 for all TIGR4 ORFs plus strain-specific ORFS only 

present in R6, as determined by automated analysis o f BLAST comparisons (Hinds et a l, 

2000b). A single amplicon was selected to represent each ORF based on its lack of 

similarity to other ORFs on the array using BLAST analysis to ensure minimal cross­

hybridisation.

2.14.2.2 Cy3/Cy5 directly labelling of gen om ic DNA and cDNA

A direct labelling method was used to label cDNA and genomic DNA. Reverse 

transcription of RNA was done using the method described previously (Stewart et a l, 

2002). To prevent photobleaching of the Cy-dyes, all reactions tubes were wrapped with
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foil and kept sequestered from light as much as possible. 2 pg of total RNA (control and
,

test strains) was mixed with 2 pi of 3 mg/ml random hexamers (Invitrogen™) and the

93

volume was brought to 11 pi with nuclease free water. After gentle mixing the mixture was 

incubated at 70“C for 10 min in DNA Engine Dyad® Peltier Theimal Cycler (MJ 

Research) to prevent any RNA loop formation. The mixture was cooled to 4°C in ice and a 

briefly centrifuged (Eppendorf® MiniSpin centrifuge, Germany) to bring down any
:

condensation. A master mix containing 5 pi of 5 x First Strand buffer (Invitrogeirt^), 2.5 pi 

of 0.1 M DTT (Invitrogen™), 2,3 gl of dNTP mix (5mM dA/G/TTP, 2mM dCTP, 

Invitrogen™), and 2 pi of 200U/pl Superscript II RT (Invitrogen™) was added. 1.7 pi of 

Cy3 or Cy5 was added and after gently mixed the reaction was incubated at 2 5 for 10 

min followed 42®C for 90 min in Thermal Cycler.

For Cy3/Cy5 labelled DNA, 3.5 pg of genomic DNA (control and test strains) was mixed 

with 1 pi of 3 mg/ml random hexamers (Invitrogen'i’'^) and the volume was brought to 41.5 

pi with nuclease free water. After gentle mixing the mixture was incubated at 95"C for 5 

min in DNA. The mixture was cooled to 4**C on ice and a brief centrifugation was done to 

bring down any condensation. A master mix containing 5 pi of 10 x React 2 buffer 

(Invitrogen™), 1 pi of dNTP mix (5mM dA/G/TTP, 2mM dCTP, Invitrogen'^’̂ ), and 1 pi 

of 5U/pl Large Fragment DNA Polymerase I (Klenow) (Invitrogen'^^) was added. 1.5 pi of 

Cy3 or Cy5 (Amershan Biosciences) was added and after gently mixed the reaction was 

incubated at 37”C for 90 min in Thermal Cycler.

y
2,14.2.3 Pre-hybridization

50 ml pre-hybridization buffer (for a maximum of 5 slides) was prepared (8.75 ml of 20x 

SSC (Ambiom®), 500 pi of 10% SDS (Ambiom®), 5 ml of 100 mg/ml BSA (Sigma-
.Aldrich), MilliQ water to 50 ml). The pre-hybridization buffer was filtered with a 0.22 pm 3/

ï‘i
filter (Fisher Scientific) transfeiTed to a clean Coplin jar and preheated at 65^C for at least 

90 min. The printed slides were placed with their labels up and their printed side down in a 

Copling jar containing preheated prehybridization buffer and incubated at 65”C for at least 

20 min. The slides were removed fi'om the Coplin jar and by carefully gripping them by

the label using forceps and placed in the slide holder of glass staining dish filled with 

MilliQ water filtered with a 0.22 pm filter (Millipore). The slides were washed for 1 min 

and then washed with isopropyl alcohol (Fisher Scientific) for 1 mim. The slides were put 

in a clean slide plastic box lined with paper towels paper and centrifuged at 900 x g  for 5 

min (Eppendorf Centrifuge 5804, Germany) for drying. The slides were used immediately 

to ensure optimal hybridization efficiency.
9
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2.14.2.4 Hybridization of tem plate probes to array

MinElute PCR Purification kit (Qiagen) was used to purify the labelled cDNA or DNA. 

The Cy3 and Cy5 labelled sample were combined in a single 1.5 ml centrifuge tube and 

500 pi Bufffer PB (Qiagen) was added and mixed. The samples were transferred to 

MinElute columns and centrifuged at 14,000 x g  for 1 min (Eppendorf® MiniSpin 

centrifuge, Germany). The columns were washed with 500 pi of PE buffer (Qiagen), and 

centrifuged at 14,000 x g  for 1 min. The collection tubes were emptied and a second wash 

with 250 pi of PE buffer was performed. An additional centrifugation at 14,000 x g  for 1 

min was performed to remove residual ethanol. The columns were transferred to a 1.5 ml 

centrifuge tube and the labelled cDNA or DNA was eluted in 10.5 pi of nuclease-free 

water with incubation at room temperature for ~1 min and a following centrifugation at

14,000 X g  for 1 min.

The purified cDNA or DNA mixture was adjusted to 16 ml in with 3.2 pi of filtered (0.2 

pm filter) 20x SSC (Ambion ®) and 2.3 pi of filtered (0.2 pm filter) 2% SDS (Ambion®). 

The hybridization solution was heated to 95“C for 2 min and cooled at room temperature. 

The slides were carefully placed in hybridization chamber (Arraylt®) and the entire probe 

mixture was applied onto the printed area o f the slide preventing any air bubbles. A glass 

cover slip 22mm x 22mm was dusted with compressed air and placed over the slide printer 

area and air bubbles formation was avoided. 15 pi of MilliQ water was added to the small 

wells at each add of the hybridization chamber. The hybridization chamber was well- 

sealed and incubated in 65”C preheated water bath for 18 hours in dark.

2.14.2.5 Post-hybridization

After hybridization, the hybridization chamber was opened and the slides carefully 

removed, to avoid cover slip disturbance. The slide was submerged in 65°C preheated wash 

A buffer (20 ml of 20x SSC, 2 ml of 10% SDS, 378 ml o f MilliQ water) in a holder in a 

glass staining dish and the cover slip was removed with smooth up and down movements 

and the slides were washed vigorously for 2 min. The slides was transferred to a new 

holder in a glass staining dish filled containing the wash B buffer (1.2 ml of 20x SSC and 

398.8 ml of MilliQ water) and washed vigorously for 4 min. The slides were dried by 

centrifugation as mentioned in section 2.14.2.3, and kept in dark until ready for scanning.

Î
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2.14.3 Scanning array and quantification

Hybridized slides were scanned using a ScaiiArray Express microarray scanner 

(Packard Biosciences Biochip Technologies, Perkin Elmer). The two laser channels were 

switched on 15 min before the scamiing of the slides. When ready, the slides were 

submitted to an easy scan with low resolution to confîirn the hybridization of the labelled 

probe and to noiinalize the 2 channels (Cy3 and Cy5). In TIGR arrays the gyrA and ddl 

house keeping gene spots were used to normalize the Cy3 and Cy5 channels, while in the 

BpG@S an'ays the rRNA serial dilutions spots were used for normalization. After 

normalization the slides were finally scanned with a resolution of 10 pm. The dual channel 

aiTay images Cy3 and Cy5 spot intensities were saved as TIP image files prior to 

quantification analysis. The median pixel intensities values for each element of the array 

were quantified with the QuantArray (Packard BioScience, Perkin Elmer) or with 

BlueFuse for Microan*ay 3.1 (BlueGnome Ltd.).

2.14.4 Microarray analysis

2.14.4.1 Transcriptone

For each strain, two independent RNA preparation and 2 or 4 microarrays slides were used 

to analyse the genes regulated by rr06 and rrOP. The data was analysed with GeneSpring

7.0 (Silicon Genetics). LOWESS intensity-dependent normalization was used to perform 

per-spot and per-array normalization, and the cross-gene error model was based on the 

replicate measurements for each strain. Statistically significant differences were defined as 

those with a /-test P-value of less than 0.05 and a ratio change tlrreshold of at least 2 

standard deviations compared to the median ratio for each strain.

2.14.4.2 G enom ic Array

Our experimental design for whole genome scanning was to perform comparative 

hybridizations between a Cy5 labelled genomic DNA of the reference strain (TIGR4) in 

competition with Cy3 labelled genomic DNA of the strain being tested (Table 2.1). One- 

dye swap experiment was accomplished to minimize the differences in intensities and 

background generated by each fluorochrome. The data were further analysed using 

GeneSpring 7.0 (Silicon Genetics). LOWESS intensity-dependent normalization was used 

to perform per-spot and per-array normalization, and the cross-gene error model was based 

on the replicate measurements for each strain. A cut-off o f 2 for the noimalised intensity
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ratio was applied to discriminate the presence and absence of the gene in test strain 

compared with reference strain TIGR4. On the basis of PCR validations, the data was 

reanalysed using a cut-off for the mean ratio between TIGR4 and test strain>l .5 for the 

absence of a gene, unless the same gene its present in an intensity greater that 1500 in both 

channels (TIGR4 and test strain) and in this case we decided that the gene was present. For 

intensities of less than 600 for both channels the result was recorded as unclear. Since the 

genes with a ratio 1.4 gave an ambiguous result in PCR validations we decided to validate 

the data by doing a PCR for all the genes with this ratio. In Figure 2.1 a flowdiagram 

summarises the genomic array experiment and analysis.

mmm.
Genomic ArraI

DNA

DNA

PCR validation

Hybridization
TIGR4 Ref. Strain

Test Strain

Cy3 or Cy5 Labelling

Cy5 or Cy3 Labelling

Data Analysis

Identification of RDs using this Filter

2.0 ratio filter (TIGR4/Test) 
in Both Slides

Reanaiysis

1.5 ratio filter (TIGR4/Test) of 
2 slides average

Array scanner

Cy3 # Cy5 channels 
normalized with rRNA 

dilutions

Final Analysis

Ratio <1.3 Gene Present 

Ratio 2:1.5* Gene Absent 

Ratio limit was decided by PCR

GeneSpring 7.0

Per Spot and Per Chip; Intensity 
dependent (Lowess) normalization

Cross-gene error model was based on 
the replicate measurements.

Figure 2.1- Summary of genomic array comparison experiment between TIGR4 reference 
strain and test strain.

Genomic DNA of reference strain TIGR4 and test strain was labelled with CyS or Cy5 and 
hybridized in DNA microarray slides. The slides were scanned and the data was further analysed 
using GeneSpring 7.0. A cut-off of 2 for the normalised intensity ratio was applied to discriminate 
the presence and absence of the gene, and the RDs identified. A final analysis was done on the 
basis of the PCR validations and a cut-off of 1.5 was used to determinate the presence and 
absence of the gene.
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2.15 Real-Time quantitative PCR

2.15.1 cDNA sy n th esis

For each sample two micrograms of total RNA was added to 30.7 pi containing 6 pi cDNA 

synthesis buffer, 10 mM DTT, 40 U RNaseOUT, 0.5 mM dNTP/aa-UTP mix, 6 pg random 

hexamer, 400 U Superscript III (Invitrogen™) and the reverse transcription reaction was 

performed overnight at 42°C. Reverse transcription was terminated by incubating for 15 

min at 70 ‘’C and template RNA removed by incubating at 37°C for 20 min in presence of 2 

U RNase H.

2.15.2 A nalysis of exp ression  of the g en es  by qRT-PCR

The analysis of gene expression by qRT-PCR, were perfoimed using the SYBR Green 

method. The SYBR Green is a dye that intercalates into double-stranded DNA and 

produces a fluorescent signal. The intensity of the signal is proportional to the amount of 

dsDNA present in the reaction. Therefore, at each step o f the PCR reaction, the signal 

intensity increases as the amount of product increases, proving a reliable method to 

quantify PCR reactions in real time.

qRT-PCR were performed in quadmplicate in DNA Engine Opticon 2 (MJ research®, Bio- 

Rad) and carried out in white 96-well plates (MJ research®, Bio-Rad). 24 pi of master mix 

containing 12.5 pi of SYBR Green PCR master mix (DyNAmo™), 0.3 pi M of each 

specific oligonucleotide primer (Sigma-Genosys), and 9.5 pi of nuclease-free water were 

added with multistep electronic pipette in the 96-well plates. 1 pi of cDNA or of serial 

dilutions of the reverse transcriptase PCR product of the reference or target gene was 

added in each well and closed with transparent plastic caps. The 96-well plate was 

carefully agitated in vortex to mix the reaction and a brief centrifuged at 2,250 x g  for 20 

seconds was performed to keep away air bubbles. The 96-well plates with 25 pi of reaction 

were placed in DNA Engine Opticon 2 and the real time PCR reaction conditions were as 

follows: 15 min at 95°C for enzyme activation and 40 cycles of 30 seconds at 95°C, 30 

seconds at 60°C and 30 seconds at 72°C. Fluorescence due to the binding of the SYBR 

gi'een fluorochrome to double-stranded DNA was measured once per cycle, fri the final 

step a melting curve analysis, 70-95°C, was performed to confirm the presence of the 

specific product and development of primers dimers. The analysis was made with 

MJOpticon Monitor™ 3.1 (MJ research®, Bio-Rad). The increment in fluorescence versus
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reaction cycle was plotted, the baseline was subtracted using the global minimum method 

and the threshold cycle value (CT) was obtained by positioning of the threshold on the data 

graph above to the baseline on the begimiing of the exponential phase of the curve. The 

reaction efficiency was calculated on the basis of the slope of the plot between the Ct 

values for the dilutions against concentration. The comparative Ct method (AAC t) (Livak 

and Schmittgen, 2001) was used to measure the relative mRNA levels of the target gene 

between the wild-type and the mutant test strains and normalized against the housekeeping 

gene gyrA to control the cDNA loaded into the reaction. A second housekeeping gene, ddl 

was used in all reactions to double check the normalization between the control gene and 

the test gene.
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TCS06 Results

Two-component systems (TCS) play a central role in bacterial survival by regulating 

various cellular processes such as osmoregulation, genetic competence, and chemotaxis in 

response to environmental changes (Appleby et a i, 1996; Szurmant and Ordal, 2004). The 

S. pneumoniae genome sequence contains 13 putative TCSs, along with one orphan RR 

(Lange et al., 1999; Throup et al., 2000). The pneumococcal TCS HK/RR06 also referred 

as 478HK/RR (Throup et al., 2000) consists of a 51 kDa membrane-associated sensory 

protein called a histidine kinase (HK06), and 25 kDa cognate cytosolic DNA-binding 

response regulator protein, that presumably acts as a transcriptional regulator (RR06). The 

HK/RR06 system has been shown to regulate the pneumococcal virulence factor PspC 

(also known as CbpA) (Standish et a i, 2005). This study was completed during the course 

o f the project presented here. The importance of PspC in pneumococcal pathogenesis is 

well described (Balachandran et a l,  2002; Ring et a l, 1998; Rosenow et a l, 1997). The 

genomic organisation shows that rr06 has an upstream position relative to the virulence 

factor pspC  (Figure 3.1).

The study presented here investigates the role of RR06 in the virulence of S. pneumoniae 

and the genes regulated by this response regulator in TIGR4, D39, R6 and 0100993 strains 

that may contribute to the in vitro and in vivo phenotype in rr06 mutants (Arr06). These 

studies also investigated the involvement of the RR06 in the regulation o f the 

pneumococcal virulence factor PspC.

SP2194
4 "  ^SP2191 W2193 5P21W

)107 1̂101*7 2111107 1̂12107 1̂13107 1̂1141»7 21151*7 1̂16107 1̂17107 21131

•*1Icc

Figure 3 .1 -Genomic organization of TCS hklrrOS.

The TCS hklrr06 locus encodes a response regulator {sp2193) and a sensor histidine kinase 
{sp2192) and is located upstream of the gene encoding the virulence factor pspC {sp2190). The 
gene names use the TIGR4 gene annotation (http://www.tigr.org).
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3.1 Contribution of RR06 to pneumococcai virulence

3.1.1 Construction of pneum ococcal mutants

The rr06 gene of pneumococcal strains TIGR4, D39 and R6 were dismpted by 

introduction o f an erythromycin resistance cassette into the gene. The fragment containing 

the mutation was amplified by PCR from chromosomal DNA of the strain 0100993 

(Throup et a l, 2000) using the primers TCS06-For and TCS06-Rev (Table 2.2). Following 

purification the fragments were used to transform the S. pneumoniae strains and were 

integi'ated by homologous recombination (Figure 3.2) and the final mutants were selected 

by growth on eiythromycin.

2.4 Kb

Right flank ermAM  cassette Leftt flank Amplification of fragment 

of 0100993 strain by PCR

Transformation by 

homolugous recombination

S. pneumonie wild type

S. pneumonie mutant

Figure 3.2- Construction of S. pneumoniae rr06 mutants.

The fragment containing the mutant rr06 gene disrupted with erythromycin resistance cassette was 
amplified by PCR from strain 0100993. Following purification the fragments were used to transform 
S. pneumoniae strains and the final mutants were selected by grown on erythromycin.
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3.1.2 Confirmation of mutation

In order to construct the RR06 mutation in selected strains of the pneumococcus, the 

original strain constructed by Throup and co-workers (Throup et a i,  2000) was used as a 

source of the 2.4 kb fragment containing the rr06 gene disrupted with the erythromycin 

resistance cassette. This fragment was amplified as a single fragment of 2.4 kb from their 

strain and used to transform the pneumococcal strains. The successful replacement o f the 

wild-type rr06 gene with the erythromycin resistance cassette in S. pneumoniae T1GR4, 

D39 and R6, was confirmed by PCR using the primers TCS06-For and TCS-Rev (Table 

2.2) in chromosomal DNA of the mutants and wild-type strains and the size of the PCR 

product was confirmed by agarose gel electrophoresis (Figure 3.3). The size of the PCR 

product expected in wild-type strain was 2.073 kb while in the mutants strain 2.428 kb: a 

difference of 0.355 kb (difference between the erythromycin resistance cassette and rr06 

gene).

1 2 3 4 5 6 7 8
bp

3.000 -

2.000 -  

1,650-

1,000 -

500-

(A) (B) (C)

Figure 3.3 Confirmation of mutation in rr06 mutants of S. pneumoniae strains.

PCR products using primer pair TCS06-For and TCS06-Rev running in 1% of agarose gel.
Confirmation of R6 transformation, lane 2-7 putative rr06 mutants, lane 8 wild-type (A);
Confirmation of D39 transformation, lane 1-6 putative rr06 mutants, lane 7 wild-type (B);
Confirmation of TIGR4 transformation, lane 1-5 putative rr06 mutants, lane 6 wild-type (C). The
DNA ladder marker used was the 1 kb plus ladder (Invitrogen™).
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Reactions with erythromycin cassette specific primers (ErmAM-For and ErmAM-Rev) and 

primers specific to genomic regions lying outside the insertion region were carried out to 

confirm correct insertion of the erythromycin resistance cassette into the rr06 gene of 

mutants (Figure 3.4). As expected, no PCR amplicons were obtained for any of the wild- 

type strains (Figure 3.4 (A) and (B), lanes 2, 4, 7, and 9) while an amplicon of 

approximately 1.9 kb was obtained fi*om T1GR4, 0100993, D39 and R6 Arr06 mutants 

using primers TCS06-For and ErmAM-Rev (Figure 3.4 (A) and (B), lanes 3 and 5) and 

approximately 1.4 kb using primers ErmAM-For and TCS06-Rev (Figure 3.4 (A) and (B), 

lanes 8 and 10). These results confirmed successful allelic replacement of the rr06 gene by 

the erythromycin resistance cassette in all four mutants.

10,000
5,000-
3,000-
2,000-
1,500
1,000

750

10,000
5,000
3,000
2,000
1,500
1,000

Figure 3.4- Allelic replacement confirmation of rr06 with a constitutive erythromycin 
resistance cassette.

Correct replacement of rr06 by erythromycin resistance cassette, in TIGR4, D39 and R6 was 
confirmed using primers TCS06-For and ErmAM-Rev (lanes 2-5 A, B) and primers ErmAM-For and 
TCS06-Rev (lanes 7-10 A, B). Genomic DNA from the following strains were used as templates: 
TIGR4 wild-type (lanes 2 and 7), TIGR4 rr06 mutant (lanes 3 and 8), 0100993 wild-type (lanes 4 
and 9) and 0100993 rr06 mutant (lanes 5 and 10) (A); D39 wild-type (lanes 2 and 7), D39 rr06 
mutant (lanes 3 and 8), R6 wild-type (lanes 4 and 9) and R6 rr06 mutant (lanes 5 and 10). The 
DNA ladder marker used was the 1 kb plus ladder (Promega).
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3.2 In vitro analysis

3.2,1 Growth m easurem ents of rr06 mutants by optical density

104

The effect of the rr06 mutation on the gi'owth of S. pneumoniae at different temperatures 

was studied. Cultures of the rr06 mutant and the wild-type strains were grown in BHI 

broth at 37 and 40”C. Ix 10*̂  CFU/ml of each strain was used to inoculate 20 ml of BHI 

and incubated at the indicated temperatures. At 1-hour inteiwals, samples were withdrawn 

to measure the optical density at ODeoonm- When the growth of rr06 mutants of S. 

pneumoniae strains TIGR4, D39, R6 and 0100993 was compared with the respective wild- 

type strains, no significant difference was detected at 37°C (Figures 3.5-3.8). A slight | j  

difference in growth of the TIGR4, D39 wild-types and respective Arr06 mutant was I
reproducibly observed. However when the bacteria were grown at 40“C a great reduction 

was observed in TIGR4 Arr06 when compared with wild-type (Figure 3.5). In the D39

amutant a small reduction in growth was observed in 40°C, this observation was similar to 

that at 3TC  and the difference was in growth rate rather than total growth, both mutant and îJî 

wild-type strains reaching the same stationary phase. In serotype 3 (0100993) strain the 

result remained unclear because the wild-type bacteria had a little growth at 40®C (Figure 

3.8). However a longer growth for 0100993 strains should be done to investigate any 

difference in growth progress between the wild-type and Arr06 mutant.

i
I
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Figure 3.5- Comparison growth curves of TIGR4 wild-type and Arr06 strains at 37 and 40°C.

10® CFU/ml of each strain was inoculated in 20 ml of prewarmed BHI and Incubated at the 
indicated temperatures. 1 ml of samples was taken at 60 min-intervals to measure the optical 
density at 600nm. Each point on the graph represents the mean of 2-3 independent experiments.

i
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Figure 3.6- Comparison growth curve of D39 wild-type and ArrOS strains at 37 and 40°C.

10® CFU/ml of each strain was inoculated In 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. 1 ml of samples was taken at 60 min-intervals to measure the optical 
density at 600nm. Each point on the graph represents the mean of 2-3 independent experiments.
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Figure 3.7- Comparison growth curve of R6 wild-type and Arr06 strains at 37 and 40®C.

106 CFU/ml of each strain was Inoculated in 20 ml of prewarmed BHI and Incubated at the 
Indicated temperatures. 1 ml of samples was taken at 60 mln-lntervals to measure the optical 
density at 600nm. Each point on the graph represents the mean of 2-3 independent experiments.
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Figure 3.8- Comparison growth curve of 0100993 wild-type and Arr06 strains at 37 and 40°C.

10® CFU/ml of each strain was Inoculated In 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. 1 ml of samples was taken at 60 min-intervals to measure the optical 
density at 600nm. Each point on the graph represents the mean of 2-3 independent experiments.

3.2.2 Growth m easurem ents of rr06 mutants by viable counting

To confirm the growth trend as measured by optical density measurements and the 

beginning of autolysis, viable count of TIGR4, D39, R6 and 0100993 wild-types were 

compared to their Arr06 mutants each 2-hour inteiwals until 12 hours of growth in BHI 

broth. No significant differences are observed at both temperatures in D39, R6 and 

0100993 strains (Figures 3.10-3.12), while in the TIGR4 background the results reflected 

the optical density measurements (Figure 3.9). The autolysis in TIGR4 Arr06 strain at
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37°C occurs later than wild-type, due to the lower growth rate and at 40"C the mutant 

maintained the cell viability until 12 horns due the low gi'owth rate when compared with 

the wild-type. The effect o f rr06 deletion in gi*owth of S. pneumoniae is strain dependent. 

Mutation affected the growth rate of the TIGR4 strain at 40°C but not of two serotype 2 

strains.
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Figure 3.9- Comparison of the in vitro growth of TiGR4 wiid-type and Arr06 strains at 37 and 
40°C.

10® CFU/ml of each strain was inoculated in 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. Samples were taken at 2 hours-intervals to measure the viable bacterial 
count on blood plates. Each point on the graph represents the mean of 2-3 independent 
experiments.
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Figure 3.10- Comparison of the in vitro growth of D39 wild-type and Arr06 strains at 37 and 
40°C.

10® CFU/ml of each strain was inoculated in 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. Samples were taken at 2 hours-intervals to measured the viable bacterial 
count on blood plates. Each point on the graph represents the mean of 2-3 independent 
experiments.
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Figure 3 .1 1 -Comparison of the in vitro growth of R6 wild-type and Arr06 strains at 37 and 
40°C.

10® CFU/ml of each strain was inoculated in 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. Samples were taken at 2 hours-intervals to measured the viable bacterial 
count on blood plates. Each point on the graph represents the mean of 2-3 independent 
experiments.
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Figure 3.12- Comparison of the in vitro growth of 0100993 wild-type and Arr06 strains at 37 
and 40®C.

10® CFU/ml of each strain was inoculated in 20 ml of prewarmed BHI and incubated at the 
indicated temperatures. Samples were taken at 2 hours-intervals to measured the viable bacterial 
count on blood plates. Each point on the graph represents the mean of 2-3 independent 
experiments.

3.2.3 Growth in anaerobic and aerobic cond itions

To study the possible influence of oxygenation on growth of rr06 mutants at high 

temperature, the S. pneumoniae TIGR4 wild-type and rr06 mutant strains were inoculated 

on blood plates and incubated in CO2 candle jars or in aerobic conditions at 37 and 40”C. 

No difference was observed between the bacteria grown in anaerobic and aerobic
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conditions (Figure 3.13 and Figure 3.14). The rr06 mutation seems to have had a huge 

impact on the phenotype when grown at 40®C in presence or absence o f  O2 Figure 3.14.

A summary o f the influence o f  temperature on the growth o f S. pneumoniae rr06 mutants 

and wild-type strains are listed in Table 3.1.

37°C

CO,

TIGR4 wt TIGR4 ArrOe

Figure 3.13- Growth of TIGR4 wild-type and Arr06 strains at 37°C.

The pneumococcal strains were grown on blood plates at 37°C in anaerobic conditions (CO 2 

candle jar) or in aerobic conditions during overnight.
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40°C
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Figure 3.14- Grown of TIGR4 wild-type and Arrt)6 strains at 40°C

The pneumococcal strains were grown on blood plates at 40°C in anaerobic conditions (CO 2 

candle jar) or in aerobic conditions during overnight.

Table 3.1- Summary of growth of S. pneumoniae rr06 mutants and wild-type strains in broth 
and blood plates.

Strains Broth Plates
37°C 40“C 37°C/0z 37“C/C02 40°C/02 40°C/C02

T1GR4 wt ++++ +++ ++++ ++++ +++ +++
TIGR4 \rr06 +++ + ++++ ++++ - -

D39 wt ++++ +++ N/A N/A N/A N/A
D39 \rr06 +++ +++ N/A N/A N/A N/A
R6 wt ++++ +++ N/A N/A N/A N/A
R6 \rr06 ++-H- +++ N/A N/A N/A N/A
0100993 wt ++++ + N/A N/A N/A N/A
0100993 \rr06 ++++ + N/A N/A N/A N/A
(++++) Normal growth. 
(+++) Slow growth.
(+) Poor growth.
(-) No grow.
(N/A) Data not available.
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3.2.4 R esistan ce of mutants to oxidative s tr e ss

To study the role of RR06 in oxidative stress tolerance, the sensitivity of TIGR4 Arr06 to 

peroxide was compared to the TIGR4 wild-type using the hydrogen peroxide survival test 

(Tseng et a l, 2002). The bacteria were gi*own to ODeoonm 0.3 in BHI broth and subjected to 

40 mM of H2O2 to 5, 10 and 15 min and the survival rate was calculated from viable count 

on blood plates against a control for both strains without H2O2 . TIGR4 Arr06 seems more 

sensitive to peroxide than wild-type (Figure 3.15), but no statistically significant difference 

was observed in the 3 times of exposure to H2 O2 , due to the large statistical variation 

observed.
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Figure 3.15- H2 O2 survival test of S. pneumoniae TIGR4 wild-type and Arr06.

Bacteria were grown in BHI to ODeoonm 0.3 and 40 mM of H2 O 2 was added to 1 ml aliquot of the 
culture. Cells were incubated at room temperature for 5, 10 and 15 min with or without H2O2 and 
viable counts carried out in blood pates. Values are expressed as the survival percentage and 
represent the mean (SEM) of three independent experiments.
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3.2.5 A dherence a ssa y

The vimlence factor PspC is know to function as an adhesin, playing an important role in 

adherence and colonization of S. pneumoniae to epithelial cells (Rosenow et a l, 1997). As 

the HK/RR06 system has been shown to regulate the PspC, the effect o f the rr06 deletion 

on adherence of S. pneumoniae was studied using the human pharyngeal cell line Detroit 

562 cells. No significant difference was obsei*ved in adherence capacity of TIGR4 hrr06  

when compared with wild-type Figine 3.16.
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Figure 3.16- Adherence of TIGR4 wild-type and Arr06 mutant strains to human 
nasopharyngeal cells.

Bacteria were added to a confluent monolayer of washed Detroit 562 cells and the fraction 
remaining associated with the cells determined as described in 2.8.4. Data expressed as the 
percentage of cells adherent/ internalised from the initial inoculum. No significant difference was 
found between the two groups Data represent mean + SEM, pooled from two experiments (each n 
-  4, n = 8 in total). This experiment was done in collaboration with Dr. Gavin Paterson.
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3.3 In vivo analysis

The effect of RR06 on the growth of the bacteria at 40”C in TIGR4 strain and the 

possibility that it regulates the virulence factor PspC in S. pneumoniae suggests that RR06 

may play an important role in the virulence of the S. pneumoniae. Murine models of 

pneumonia and bacteraemia were used to study the presumable contribution of RR06 to the 

pathogenesis of pneumococcal disease.

3.3.1 Intranasal infection

TIGR4 is.rr06 and ApspC were analysed for their abilities to cause disease in a pneumonia 

model of infection. Mice were infected with 1x10^ CFU intranasally and the development 

of symptoms was monitored over a period of 2 weeks. No differences were obseiwed in 

TIGR4 Arr06 compared with wild-type. In both strains all mice succumbed to the infection 

at the same rate and had similar survival times. On the other hand, 80% of the mice 

survived to infection with ApspC^ presenting a significantly longer survival times than 

TIGR4 wild-type (Figure 3.17).
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Figure 3.17- Survival of mice following intranasal infection with TIGR4 wild-type, Arr06 and 
ApspC strains.

Mice were infected intranasaliy with 10® CPU/mouse. In survival data, no significant difference was 
observed between Arr06 (median 33h) and TIGR4 (median 30h). ApspC had significantly longer 
survival times than TIGR4 (P<0.01), presenting a median survival time 336 hours (ie they survived 
challenge). 4/5 mice infected with ApspC did survive, the other 1 died at 97.5h. This experiment 
was done in collaboration with Dr. Alison Kerr.
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3.3.2 Intravenous infections

To study the importance of RR06 in a bacteraemia model, TIGR4 wild-type, ArrOd and 

ApspC mutants were injected directly into the bloodstream by tail vein. Mice were given 

1.0 X 10  ̂ CFU/mouse and survival times was determined. There were no significant 

differences between the TIGR4 Arr06 and its parent strain to cause death in mice. All 

animals in both strains succumbed after 336 hours post-infection, presenting TIGR4 Arr06 

a median of 56 hours of survival against 33.5 hours in wild-type. As in the pneumonia 

model, a statistically significant difference was observed in TIGR4 ApspC compared with 

wild-type strain. 60% of the M Fl mice had survived following 336 hours of intravenous 

infection (Figme 3.18).
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Figure 3.18- Survival of mice following intravenous infection with TIGR4 wild-type, ArrOG 
and ApspC  strains.

Mice were infected intravenously with 10® CFU/mouse. in survival data, no significant difference 
was observed between Arr06 (median 56h) and TIGR4 wild-type (median 33.5h). ApspC had 
significantly longer survival times than TIGR4 (P<0.05), with a median survival time 336 hours (ie 
they survived challenge). 3/5 mice infected with ApspC did survive, the other 2 died at 49h and 
56h. This experiment was done in collaboration with Dr. Alison Kerr.
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3.3.3 Bacteriological investigation

The bacterial loads at 24h post-intranasal infection were studied in TIGR4 wild-type and in 

the mutants Arr06 and ApspC. Slight differences from the results in survival times were 

observed. The levels of bacteria in nasopharynx were similar in Arr06 compared with 

wild-type, however a statistically significant decrease in bacterial levels were observed in 

lung airways and lung tissue in rr06 mutants. pspC  mutants presented significant decrease 

in bacterial loads in all cases (Figure 3.19). In the bacteraemia model, 24h following 

intravenous infections (Figure 3.20) a decrease in bacterial counts was observed in TIGR4 

Arr06 and ApspC compared with wild-type however the lower levels of bacteria in Arr06 

was not statically significant. On the other hand, 24h after intranasal infection a significant 

decreased was observed in both mutants compared with wild-type.
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Figure 3.19- Bacterial loads of TIGR4 wiid-type, Arr06 and A pspC  after Intranasai infection.

Effect of RR06 and PspC in the TIGR4 background on nasopharyngeal, lung airway and lung 
tissue bacterial ioad in mice. Bacterial counts were performed on blood plates after 24h post­
intranasal infection. n=5 mice/group, * P<0.01 significantly different from TIGR4 results. This 
experiment was done in collaboration with Dr, Alison Kerr.
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Figure 3.20- Bacterial loads in blood of TIGR4 wiid-type, Arr06 and ApspC  after intranasai 
and intravenous infection.

Effect of RR06 and PspC in the TIGR4 background on bacteraemia In mice. Bacterial counts were 
performed on blood plates after 24h post-intranasal or intravenous infection. n=5 mice/group, * 
P<0.01 and + P<0.05 significantly different from TIGR4 results. This experiment was done in 
collaboration with Dr. Alison Kerr.

The RR06 seems to play an important role in the capacity of S. pneumoniae TIGR4 to 

invade the lungs and blood. Furthermore, the mutation in rr06 gene affected the ability of 

the bacteria grow at higher temperatures, however this phenotype seems to be strain- 

dependent. To investigate the genes regulated by the RR06 that can be involved in the 

Arr06 mutants phenotypes described above, a micro array analysis was perfoimed between 

the wild-types strain TIGR4, R6 and 0100993 and the rr06 deficient mutants.
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3.4 Microarray analysis

Microarray analysis was performed to compare the transcriptome of S. pneumoniae wild- 

type strain TIGR4 and the isogenic mutant Arr06. This study was intended to analyse the 

genes regulated by the RR06 in strain TIGR4 and also, identify putative genes that can be 

involved in vitro and in vivo phenotype of the Arr06 strain. During this analysis, two 

different amplicon-based micro arrays were used: TIGR arrays v .l, designed to represent 

2131 ORFs from S. pneumoniae TIGR4 in addition to 118 ORFs from R6 (37) and G54 

(81); BpG@S arrays, designed to represent each of the annotated ORFs present in S. 

pneumoniae strains TIGR4 and R6. The use of two distinct amplicon-based microarrays in 

this study is due to the availability of theses arrays in our laboratory, and also to compare 

the reproducibility between both arrays and methods. For each array type comparison, an 

independent RNA preparation was used. For each RNA preparation four aiTay slides were 

used and a dye swap was performed to minimize the variation between the Cy3 and Cy5 

incorporation and intensities, i.e., in two slides cDNA from TIGR4 wild-type was labelled 

with Cy3 and cDNA fromTIGR4 Arr06 with Cy5, while in the other two slides the cDNA 

from TIGR4 wild-type was labelled with Cy5 and cDNA from TIGR4 Arr06 with Cy3. 

Furthermore, due the differences of in vitro phenotype in TIGR4 Arr06 compared with the 

D39, R6 and 0100993 Arr06 strains, preliminary microarray analysis was performed to 

study the transcriptional profiles in one of the serotype 2 (R6) and 0100993 wild-type 

strains and their isogenic mutant Arr06.

3.4.1 RNA analysis

The RNA samples were prepared from TIGR4 wild-type and Arr06 strains grown in 10 ml 

of BHI to mid-log phase (ODeoonm of 0.6) at 3TC, Total RNA was isolated using Qiagen 

RNeasy-Midi Kit and the concentration calculated using the NanoDrop® ND-1000 

spectrophotometer. Concentrations of total RNA between 1.0 -2.0 pg/pl were obtained for 

the TIGR4 Arr06 and its parent strains. Because it is essential to use high-quality 

messenger RNA in the context o f gene expression analysis via microaiTay analysis, the 

integrity and purification of total RNA sample were tested using the Agilent Bioanalyser. 

The system calculates the ratio of ribosomal bands in total RNA samples and shows the 

percentage of ribosomal impurities in RNA samples (Wang et a l,  2003). Figure 3.21 and 

Figure 3.22 illustrate the quality of total RNA from the samples used in TIGR and BpG@S 

arrays respectively, indicating the puiity of the RNA (no genomic DNA contamination) as 

well no degradation of the RNA samples. RNase degradation o f total RNA is easily
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detected by a shift in the RNA size distribution towards smaller fragments and a decrease 

in fluorescence signal of ribosomal peaks, while genomic DNA contamination is 

characterized by larger molecular weight peak that is well separated from rRNA peaks 

(Figure 3.23).

TIGR4wt

16S 23S

Figure 3.21- Analysis of total RNA samples from TIGR4 wild-type and Arr06 strains used in 
TIGR microarrays.

Integrity and purity of total RNA prepared from 10 ml of BHI cultures grown to mid-log phase 
(ODeoonm of 0.6) at 37°C using Qiagen RNeasy-Midi Kit and checked with Agilent 2100 Bioanalyser.
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TIGR4wt

40

lO

-A -
16S 23S

Figure 3.22- Analysis of total RNA samples from TIGR4 wlld-type and Arr06 strains used In 
B//G@S arrays.

Integrity and purity of total RNA prepared from 10 ml of BHI cultures grown to mid-log phase 
(ODeoonm of 0 .6 )  at 37°C using Qiagen RNeasy-Midi Kit and checked with Agilent 2 1 0 0  Bioanalyser.
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Figure 3.23- Different types of low quality of RNA for microarray sample preparation.

Agilent 2100 bioanalyzer electropherograms of RNA. Degraded total RNA, the baseline 
fluorescence is elevated for both 16S and 23S making the rRNA peaks appear to be riding on top 
of the baseline (A); Contaminated total RNA with high molecular weight genomic DNA (B).
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3.4.2 TIGR arrays

The transcriptional profiles o f S. pneumoniae TIGR wild-type and à.rr06 strains were 

performed using TIGR microanay slides using an indirect labelling method. 10 pg of total 

RNA prepared from each strain was used in reverse transcriptase reactions to generate 

cDNA, which was labelled with Cy3 and Cy5 fluorochromes. Four slide replicates were 

used and a dye swap was performed.

Following the hybridization at 42”C overnight the slides were scanned using ScanArray 

Express microarray scanner and the signal intensities for each spot of both sample were 

measured using the Quantarray™. The microarray data is shown as a ratio of signal 

intensities for each spot getting a measm*e for fold changes in gene expression. 

Nevertheless, ratios computed from raw data typically have a skewed frequency 

distribution. For this reason a manual noimalization for the two dyes during the scanning 

was performed as well the LOWESS intensity-dependent nonnalization in Genespring™ 

software prior to analysis. The purpose of normalization is to adjust the effects in the 

variation of micro array technology such as the fluorescence intensities of the two colour 

channels (Cy3 and Cy5), differences between the RNA samples or the printed probes, 

efficiency of dye incorporation, experimental variability in probe coupling, scanner 

sensitivity and signal amplification (Smyth and Speed, 2003; Yang et a l, 2002).

After the noimalization, the data from the four arrays slides were analysed using 

Genespring'^*' .̂ Statistically significant differences in expression between the wild-type and 

Arr06 strains were defined as those with a Student’s t test /?-value < 0.05, Since this p- 

value is purely a statistical measure of differential gene expression an additional ratio- 

change threshold o f at least 2 standard deviations over the median ratio for each strain was 

applied.

3.4.2.1 TIGR microarray data

Microan'ay comparisons of the transcription profiles of the TIGR4 Arr06 and the 

respective wild-type were used to identify the genes controlled by RR06. The scatter plot 

in Figure 3.24 showed the relationship of the mean ratio of hybridization intensities 

between the TIGR4 wild-type (control strain), and the Arr06 mutant (test strain). This 

graphical representation shows an overview of the transcription profiles, characterized with 

a range of colours for the intensities of expression. The genes up-regulated in TIGR4 

Arr06 appear with red colour, down-regulated genes with blue colour and the genes
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w ithout significant variation, between the wild-type and the mutant strain, appear with 

yellow spots.
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Figure 3.24- Scatter plot comparing the gene expression between TIGR4 Arr06 and TIGR4 
wild-type in TIGR arrays slides.

cDNA labelled with Cy3 and Cy5 were hybridized in TIGR arrays slides and analysed in 
Genespring™. The scatter plot showed the gene expression intensities between the TIGR4 wild- 
type (control strain) and TIGR4 Arr06 (test strain). Blue spots (bellow the diagonal lines) mean the 
genes down- regulated in TIGR4 àrr06  and the red spots (above the diagonal lines) the genes up- 
regulated. The yellow spots (inside the diagonal lines) describe the genes without significant 
variation between theTIGR4 Arr06 and the wild-type strains.
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Whereas most of the pneumococcal genes remained unaltered, showing comparable 

expression levels between the wild-type and the tsrr06 strains. Approximately 3% of the 

genes were shown to have significant differences in expression levels between the wild- 

type and lSrr06 mutants. Eighteen genes were found to be up-regulated in TIGR4 ts.rr06 

and fifty three genes down regulated. The up and down-regulated genes were selected if 

they demonstrated a two-fold difference in signal intensity between TIGR4 wild-type and 

lSrr06 mutant and if  this intensity was found to be statistically significant {P< 0.05). The 

altered genes confirmed by hybridization of TIGR DNA microaiTay slides are listed in 

Table 3.2 (up-regulated genes) and Table 3.3 (down-regulated genes).

The up-regulated genes found in comparison of the expression profile of the TIGR4 ArrOb 

with wild-type, of particular interest were the genes that encodes the rlrA pathogenicity 

islet that include the cell wall surface proteins {sp0462-sp0464) and two sortases (sp0466 

and sp0467) (Paterson and Mitchell, 2005) (Figure 3.25). A recent study has shown that 

these genes regulate the formation of pneumococcal adbesin pili-like appendage, 

contributing to adherence, virulence and host inflammatory response (Barocchi et a l, 

2006). These up-regulated genes do not include the gene sp0465 that encodes a small ORE 

and consequently a low signal intensity is obtained in the micro array hybridization.

Table 3.2- Up-regulated genes in TIGR4 Arr06 compared with its parental strain using TIGR 
arrays.

Genes Gene
symbol

Mean Intensity 
ratio^^

p-value^^ Annotation^^

sp0220 2.1 1.45E-02 Ribosomal protein
sp0232 2.5 3.55E-03 Translation initiation factor
sp0234 2.1 4.57E-04 Ribosomal protein
sp0415 3.2 8.01E-04 Enoyl-Coa-hydratase/isomerase family
sp0462 rrgA 8.8 1.37E-05 Cell wall surface anchor family protein
sp0463 rrgB 8.9 2.69E-04 Cell wall surface anchor family protein
sp0464 rrgC 11.2 2.52E-05 Cell wall surface anchor family protein
sp0466 srtB 3.2 6.65E-04 Sortase putative
sp0467 srtC 2.2 1.95E-02 Sortase putative
spOSOl 3.8 3.54E-05 Transcriptional regulator, Merr family
sp0502 3.4 1.41E-04 Glutamine synthetase, type I
sp0742 3.9 5.52E-05 Conserved hypothetical protein
sp0783 4.7 2.55E-04 Conserved hypothetical protein
sp0875 4.5 2.72E-04 Lactose phosphoti’ansferase system repressor
sp0876 4.8 1.50E-03 l~Phosphofructokinase, putative
sp0877 4.9 6.46E-05 PTS System, Fructose specific II ABC components
sp0959 2.7 3.52E-04 Translation initiation factor IF
spl586 2.9 1.64E-03 ATP-Dependent RNA helicase, putative
^^Gene designation of microarray ORFs in agreement with TIG R (http://www.tigr.org).

Ratios intensities of TIGR4 wlld-type/Arr06 determined In microarray experiments. The value 
represents the mean intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P- value represents the mean P-value calculated from individual /-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.

Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 3.25- Genes up-regulated in TiGR4 Arr06 associated with expression of rlrA 
pathogenicity isiet.

Expression of rlrA pathogenicity islet up-regulated in TIGR4 Arr06 compared with wild-type strain. 
Vaiues are determined by microarray hybridization and are given as the geometric mean 
fluorescence intensity values from four replicate hybridizations. Error bars represent ± SEM.

As expected the gene rr06 was down-regulated. However, the mean ratio was not 

particularly high due to the individual low intensity spots in TIGR4 wild-type. The 

remaining signal fluorescence in Arr06 was similar to the background signal. Nevertheless 

RT-PCR and qRT-PCR analysis showed high levels of expression of rr06 in TIGR4 wild- 

type (section 3.6.1.2). Of interest were the down-regulated genes associate with: (i) stress 

response (Figure 3.26); (ii) surface wall metabolism proteins (Figure 3.27) with relevance 

of dit operon {sp2173^ sp2175, sp2176) that promotes the D-alanylation of lipoteichoic 

acid (LTA) in Gram positive bacteria (Abachin et a l, 2002; Poyart et a l, 2001; Poyart et 

a l, 2003); (iii) energy metabolism (Figure 3.28); (iv) protein degradation (Figure 3.29), 

with one gene encoding a stress response and known virulence factor, htrA (Ibrahim et a l , 

2004a, b; Sebert et a l,  2002). Furthermore the transcriptional levels in TIGR4 Arr06 

showed down-regulation of another pneumococcal TCS, sp0386 (hk03) sp0387 (rr03). 

Regarding the regulation o f the virulence factor PspC, no significant differences were 

observed in expression levels in TIGR4 Arr06 compared to its parental strain. The 

microarray analysis also showed that the expression of the hypothetical protein (sp2191), 

which is located immediately downstream hom TCS06, was found to be unaltered. 

Analysis of the data demonstrates an expression ratio for sp2191 of 1.0. This finding 

confiiTns that insertion of the erythromycin cassette into rr06 does not have a polar effect 

on downstream genes.
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Table 3.3- Down-regulated genes In TIGR4 ArrOO compared with its parental strain using TIGR 
arrays.

Genes Gene
symbol

Mean intensity 
ratio^^

jp-value^^ Annotation^^

sp0064 0.5 2.44E-03 PTS system, IIA component
sp0097 0.2 1.18E-05 Conserved domain protein
sp0098 0.3 1.15E-02 Hypothetical protein
sp0099 0.4 3.03E-03 Hypothetical protein
spOlOO 0.4 2.30E-04 Conserved hypothetical protein
sp0107 0.3 1.19E-03 LYSM domain protehi
sp0285 0.5 3.56E-03 Alcohol dehydrogenase, ZINC-containmg
sp0338 0.3 2.03E-02 ATP-dependent CLP protease, ATP-bindmg subunit
sp0386 hk03 0.4 1.57E-03 Sensor histidine kinase, putative
sp0387 rr03 0.4 6.71E-04 DNA-binding response regulator
sp0459 Pfl 0.4 3.40E-03 Formate acetyltransferase
sp0515 hrcA 0.2 4.51E-04 Heat-inducible transcription repressor HRCA
sp0516 grpE 0.2 7.83E-03 Heat shock protein GRPE
sp0517 dnaK 0.1 l.lOE-04 DnaK protein
sp0519 dnaJ 0.1 2.91E-04 DnaJ PROTEIN
sp0641 0.4 2.51E-03 Serine protease, subtilase family
sp0647 0.4 2.07E-03 PTS system, IIC component, putative
sp0715 IctO 0.4 1.61E-03 Lactate oxidase
sp0726 0.4 9.68E-03 Phosphomethylpyrimidine Kinase
sp0820 clpE 0.3 5.83E-04 ATP-dependent CLP protease, ATP-bindmg subunit CLPE
spl027 0.3 9.93E-04 Conserved hypothetical protein
spll90 0.4 2.14E-03 Tagatose 1,6-diphosphate aldolase
spll91 0.5 1.44E-04 Tagatose-6-phosphate kinase
spl340 0.3 5.22E-04 Hypothetical protein
spl465 0.4 6.90E-03 Hypothetical protein
spl466 0.4 3.80E-04 Hemolysin
spl686 0.3 2.23E-03 Oxidoreductase, GFO/IDH/MOCA Family
spl687 NanB 0.2 2.15E-03 Neui'aminidase B
spl689 0.3 4.85E-04 Transporter, permease protein
spl 793 0.1 1.71E-04 Hypothetical protein
spl852 galT 0.2 2.97E-04 Galactose-1-phosphate uridylyltransferase
spl860 pro WX 0.4 1.39E-04 Choline transporter
spl861 proV 0.4 4.57E-04 Choline tiansporter
spl862 0.4 2.19E-04 Hypothetical protein
spl895 msmG 0.3 2.34E-03 Sugar ABC tiansporter, permease protein
spl897 msmE 0.2 7.57E-04 Sugar ABC transporter, sugar-binding protein
spl906 groEL 0.3 5.07E-05 Chaperonin
sp2026 0.2 3.52E-05 Alcohol dehydrogenase, iron-containing
sp2106 0.3 2.18E-03 Glycogen phosphorylase family protein
sp2107 malQ 0.4 2.41E-04 4-Alpha-glucanotransferase
sp2148 0.06 4.37E-06 Arginine deiminase
sp2150 argF 0.1 4.87E-05 Ornithine carbamoyltiansferase
sp2151 0.08 2.14E-05 Carbamate kinase
sp2152 0.07 1.66E-04 Conserved hypothetical protein
sp2153 0.3 7.82E-04 Peptidase, M20/M25/M40 family
sp2173 dltD 0.5 3.46E-03 DltD protein
sp2175 dltB 0.4 2.12E-04 DltB protein
sp2176 dltA 0.5 6.20E-04 D-Alanine-activating enzyme
sp2193 rr06 0.5 2.39E-03 DNA-binding response regulator
sp2232 0.3 1.78E-04 Conserved hypothetical protein
sp2233 0.2 1.18E-04 Hypothetical protein
sp2239 htrA 0.4 7.31E-03 Serine protease
sp2240 0.3 1.13E-03 SPSPOJ protein

Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).
Ratios intensities of TIGR4 wild-type/ArrOd determined in microarray experiments. The value 

represents the mean intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P- value represents the mean P-value calculated from individual f-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.
'^^Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 3.26- Genes down-regulated in TIGR4 Arr06 associated with stress response.

Expression of heat shock associate proteins down-regulated in T1GR4 àrr06  compared with wild- 
type strain. Values are determined by microarray hybridization and are given as the geometric 
mean fluorescence intensity values from four replicate hybridizations. Error bars represent ± SEM.
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Figure 3.27- Genes down-regulated in TIGR4 ArrOS associated with surface wall metabolism.

Expression of surface wall metabolism associate proteins down-regulated in T1GR4 Arr06 
compared with wild-type strain. Values are determined by microarray hybridization and are given 
as the geometric mean fluorescence intensity values from four replicate hybridizations. Error bars 
represent ± SEM.
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Figure 3.28- Genes down-regulated in TIGR4 Arr06 associated with energy metabolism.

Expression of energy metabolism associate proteins down-regulated in TIGR4 Arr06 compared 
with wild-type strain. Values are determined by microarray hybridization and are given as the 
geometric mean fluorescence intensity values from four replicate hybridizations. Error bars 
represent ± SEM.
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Figure 3.29- Genes down-regulated in TIGR4 Arr06 associated with degradation of protein, 
peptides and glycopeptides.

Expression of genes associates with degradation of proteins, peptides, and giycopeptides down- 
regulated in TIGR4 ArrOe compared with wild-type strain. Values are determined by microarray 
hybridization and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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3.4.3 B//G@S arrays

The transcriptional profiles of S. pneumoniae TIGR wild-type and Arr06 strains was also 

performed using B/xG@S microarrays slides. cDNA prepared from 2 pg of total RNA by 

reverse transcriptase reactions was labelled with cy3 and cy5 fluorochromes. As in TIGR 

arrays study, four BpG@S arrays slides were used in this analysis as well a dye swap.

3.4.3.1 B//G@S microarray data

Microarray comparisons of the transcription profiles of the TIGR4 Arr06 and their 

respective wild-type was used to identify the genes controlled by RR06. The correlation of 

the mean ratio of hybridisation intensities between the TIGR4 wild-type (control strain), 

and the Arr06 mutant (test strain) are listed Figure 3.30. The scatter plot shows an 

overview of the transcription profiles, characterized with a range of colours for the 

intensities of expression.
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Figure 3.30- Scatter plot comparing the gene expression between TIGR4 Arr06 and TIGR4 
wild-type in BfjG@S arrays slides.

cDNA labelled with CyS and Cy5 were hybridized in B//G@S arrays slides and analysed in 
Genespring™. The scatter plot showed the gene expression intensities between the TIGR4 wild- 
type (control strain) and TIGR4 Arr06 (test strain). Blue spots (bellow the diagonal lines) mean the 
genes down- regulated in TIGR4 Arr06 and the red spots (above the diagonal lines) the genes up- 
regulated. The yellow spots (inside the diagonal lines) describe the genes without significant 
variation between theTIGR4 Arr06 and the wild-type strains.
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As in the previous analysis, using TIGR anays slides, most o f the pneumococcal genes 

remained unaltered. However, about 2% of the genes were shown to have significant 

differences in expression levels between the wild-type and Arr06 mutant using the 

BpG@S an*ays slides. Fifteen genes were found to be up-regulated in TIGR4 ArrO^.and 

twenty nine genes down-regulated. The up and down-regulated genes were selected for the 

spots with a two-fold difference in signal intensity between TIGR4 wild-type and Arr06 

mutant and statistically significant {P< 0.05). All genes with altered expression are listed in 

Table 3.4 (up-regulated genes) and Table 3.5 (down-regulated genes).

Table 3.4- Up-regulated genes In TIGR4 ArrOB compared with Its parental strain using 
BpG@S arrays.

Genes ^ Gene
symbol

Mean intensity 
ratio^^

p-value^^ Annotatioif^

sp0461 rlrA 3.7 3.41E-02 Transcriptional regulator, putative
sp0462 rrgA 4.9 1.75E-02 Cell wall surface anchor family protein
sp0463 rrgB 13.1 1.13E-02 Cell wall surface anchor family protein
sp0464 rrgC 7.6 2.13E-02 Cell wall surface anchor family protein
sp0645 2.2 2.00E-02 PTS system IIA component, putative
sp0742 4.6 3.67E-02 Conserved hypothetical protein
sp0783 2.9 4.87E-02 Conserved hypothetical protein
spl 898 aga 2.6 3.89E-02 Alpha-galactosidase
sp2000 rrll 3.5 3.15E-02 DNA-binding response regulator
sp2001 hkll 3.9 3.16E-02 Sensor histidine kinase, putative
sp2002 4.9 1.36E-02 Conserved hypothetical protein
sp2003 5.1 7.95E-03 ABC transporter, ATP-binding protein
sp2004 4.5 3.83E-02 Hypothetical protein
sp2005 4.0 1.73E-02 Hypothetical protein
sp2197 2.3 3.55E-02 ABC transporter, substrate-binding protein, putative

Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).
Ratios intensities of TIGR4 wild-type/Arr06 determined in microarray experiments. The value 

represents the mean intensities for the four replicate experiments. Genes up-regulated with > two- 
foid expression changes between the wiid-type and mutant were selected.

P- value represents the mean P-value calculated from individual f-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.

Annotations as published in TIGR4 genome (http://www.tigr.org).
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The up-regulated genes found in the comparison of the expression profile of the TIGR4 

Arr06 with wild-type of interest included the transcriptional regulator rlrA, identified by 

signature-tagged mutagenesis (STM) (Hava and Camilli, 2002) and three cell wall surface 

proteins (sp0462-0464) (Figure 3.31). Furthermore the transcriptional levels in TIGR4 

Arr06 showed another up-regulation pneumococcal TCS, response regulator sp2000 (rr ll)  

and sensor histidine kinase sp2001 (hkll).

The transcriptome analysis showed an appreciable agreement between the two-microarray 

slides used in this study. Some of the divergence results between the slides TIGR and 

BpG@S apparently due to the different methods used for each slide (indirectly and directly 

labelling) and due to the differences of the probes printed in the slides.
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Figure 3.31- Genes up-regulated in TIGR4 ArrOB associated with expression of rlrA 
pathogenicity Islet using BpG@S arrays slides.

Expression of rlrA pathogenicity islet up-regulated in TIGR4 ArrOB compared with wild-type strain. 
Values are determined by microarray hybridization and are given as the geometric mean 
fluorescence intensity values from four replicate hybridizations. Error bars represent ± SEM.
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As in TIGR micro an ay analysis, the rr06 was down-regulated using Bjo,G@S anays slides. 

Of interest were the down-regulation of the response regulator ciaR (sp0798) and the 

CiaR/H-regulated genes htrA (sp2239) and sp2240 (Ibrahim et ah, 2004b; Sebert et a l, 

2002). In this microarray analysis the sensor histidine kinase cmTT had an expression ratio 

more that two-fold down-regulated in Arr06 mutant, however the difference was not 

statistical significant. Together with rr06 a set of additional sixteen genes were found 

down-regulated in both analyses, using the TIGR and BpG@S microarrays slides (Figure 

3.32).

Table 3.5- Down-regulated genes In TIGR4 ArrOB compared with Its parental strain using 
BpG@S arrays

Genes Gene
symbol

Mean intensity 
ratio^^

p-value ’ Annotation ^

sp0107 0.21 3.04E-02 LysM domain protein
sp0338 0.09 1.62E-02 ATP-dependent Clp protease, ATP-binding 

subunit, putative
sp0516 grpE 0.44 3.02E-02 heat shock protein GrpE
sp0517 DnaK 0.18 1.34E-02 DnaK protein
sp0519 DnaJ 0.26 2.79E-02 DnaJ protein
sp0702 pyrE 0.46 4.08E-02 Orotate phosphoribosyltransferase PyrE
sp0789 0.34 3.46E-02 Conserved hypothetical protein
sp0798 ciaR 0.44 3.66E-02 DNA-binding response regulator CiaR
sp0981 0.43 5.66E-03 Protease maturation protein, putative
spl 27 5 carB 0.43 2.11E-02 Carbamoyl-phosphate synthase, large subunit
spl 438 0.34 2.80E-02 ABC tiansporter, ATP-binding protein
spl465 0.34 1.35E-02 Hypothetical protein
spl466 0.38 1.22E-02 Hemolysin
spl 722 0.32 1.69E-02 PTS system llABC eomponents
spl 793 0.07 1.67E-02 Hypothetical protein
spl 794 0.13 1.30E-02 Hypothetical protein
spl 826 0.35 1.84E-02 ABC transporter, substrate-binding protein
spl953 0.35 4.47E-02 Toxin secretion ABC transporter, ATP- 

binding/peimease protein
spl975 0.40 3.74E-02 SpolllJ family protein
sp2063 0.24 1.86E-02 LysM domain protein, authentic frameshift
sp2106 0.16 3.21E-03 Glycogen phosphorylase family protein
sp2107 malQ 0.22 2.31E-02 4-aIpha-glucanotransferase
sp2l75 dltB 0.45 3.36E-02 DltB protein
sp2176 dkA 0.45 2.04E-02 D-alanine-activating enzyme
sp2193 Rr06 0.22 4.07E-02 DNA-binding response regulator
sp2232 0.10 1.41E-02 Consei-ved hypothetical protein
sp2233 0.15 2.64E-02 Hypothetical protein
sp2239 HtrA 0.38 1.16E-02 Serine protease
sp2240 0.33 3.85E-02 SpspoJ protein

Gene designation of microarray ORFs In agreement with TIGR (http://www.tlgr.org).
Ratios Intensities of TIGR4 wlld-type/ArrOd determined In microarray experiments. The value 

represents the mean Intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P- value represents the mean P-value calculated from individual f-tests of Intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.
'^^Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 3.32- Down-regulated genes in TIGR4 ArrOB using BpG@S microarrays siides 
common to TiGR microarray anaiysis.

Expression of down-regulated genes in TIGR4 ArrOB compared with wiid-type strain. Values are 
determined by microarray hybridization and are given as the geometric mean fluorescence intensity 
values from four replicate hybridizations. Error bars represent ± SEM.

3.4.4 Transcriptional profiles ofArrOG mutants.

Transcriptome study by microaiTay analysis was performed to compare the R6 and 

0100993 Arr06 mutants with respective wild-type, using BpG@S microarray slides. Two 

slide replicates were used and a dye swap was perfoiined to minimize the variation 

between the Cy3 and Cy5 incorporation and intensities. In the R6 strain, no significant 

differences of gene expression were observed in array analysis, except for the rr06 gene. 

On the other hand, a little difference in expression of Arr06, compared with the wild-type, 

was observed in 0100993 strain (Figure 3.33). In 0100993 strain, nine genes were found to 

be up-regulated in Arr06 mutant (Table 3.6) however, no genes were found to be 

significantly down-regulated. The rlrA islet that encodes the pneumococcal pilus (Barocchi 

et a l, 2006) was not found to be regulated by TCS06 in 0100993 strain. However, analysis 

o f genetic variation (chapter 6) showed that the pneumococcal rlrA islet is absent of the 

genome in 0100993 strain. The transeriptional profiles of R6, 0100993 and TIGR4 

indicated a strain-specifie role of RR06 in gene regulation.
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Figure 3.33- Scatter plot comparing the gene expression between R6 and 0100993 Arr06 and 
their parental wild-type.

cDNA labelled with Cy3 and Cy5 were hybridized in B//G@S arrays slides and analysed in 
Genespring™. The scatter plots showed the gene expression intensities between the R6 wild-type 
(control strain) and R6 Arr06 (test strain) (A), and between the 0100993 wild-type (control strain) 
and 0100993 Arr06 (test strain) (B). Blue spots (bellow the diagonal lines) mean the genes down- 
regulated in TIGR4 Arr06 and the red spots (above the diagonal lines) the genes up-regulated. The 
yellow spots (inside the diagonal lines) describe the genes without significant variation between the 
Arr06 mutants and the wild-type strains.
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Table 3.6- Up-regulated genes in 0100993 ArrOG compared with its parental strain using 
BpG@S arrays.

Genes’̂ Gene
symbol

Mean intensity 
ratio^^

p-value^) Annotation'*^

sp0717 thiM 2.8 1.130E-02 Hydioxyethyltliiazole kinase
sp0720 2.4 1.760E-02 ABC transporter. ATP-binding protein
sp0722 tenA 2.3 9.505E-03 Transcriptional activator TenA
sp0867 2.9 6.325E-03 ABC transporter. ATP-binding protein
sp0869 3.4 4.105E-03 Aminotransferase. class-V
sp0870 2.8 4.805E-03 NifU family protein
sp2196 2.4 1.561E-02 ABC transporter. ATP-binding protein
sp2l97 2.9 4.165E-03 ABC transporter, substrate-binding protein, putative
sp2199 2.2 1.339E-02 Conserved hypothetical protein

Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).
Ratios intensities of 0100993 wild-type/ArrOO determined in microarray experiments. The value 

represents the mean intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P- value represents the mean P-value calculated from individual f-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.

Annotations as published in TIGR4 genome (http://www.tigr.org).

The contribution o f the TCS06 in gene regulation in S. pneumoniae appears to be strain- 

dependent. To confirm that the strain-specific gene regulation by RR06 is dependent of 

their genomic backgiound, absence or presence of the genes, a comparative genomic 

hybridization (CGH) study was perfoimed using R6, D39 and 0100993 strains in 

comparison with reference strain TIGR4 (see chapter 6). Comparisons of the altered gene 

regulation of the rr06 mutants and the absence or presence of these genes are illustrated in 

the Table 3.7. The majority of the genes altered in expression profile in microanay analysis 

of the TIGR4 Arr06 strain are found to be present in the genome backgiound of R6 and 

0100993 strains. Interestingly the rlrA pathogenicity islet, up-regulated only in TIGR4 

Arr06 was found to be absent in the genome of R6 and 0100993 strains.
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Table 3.7- Genes regulated by RR06 and presence or absence of the gene by CGH in 
different strains.

Transcriptional profile CGH
Genes*^ TIGR4 R6 0100993 TIGR4 R6 0100993
sp0064 + - - 4- 4 4
sp0097 + - - 4- 4 4
sp0098 H- - - 4- 4 4

sp0099 + - - + 4 4

spOlOO + - - 4- 4 4

sp0107 + - 4- 4 4
sp0220 + - - 4- 4 4
sp0232 + - - 4- 4 4

sp0234 + - - 4- 4 4

sp0285 + - - 4- 4 4

sp0338 + - - 4- 4 4
sp0386 + - - 4- 4 4

sp0387 + - - + 4 4
sp0415 + - - 4- 4 4

sp0459 + - “ 4- 4 4

sp0461 + - - 4- 4 4
sp0462 + - - 4- - -

sp0463 + - - 4- - -

sp0464 + - + - -
sp0466 + - - 4- -

sp0467 + - - + - -

spOSOJ + “ - 4- 4 4
sp0502 + - - 4- 4 4
sp0515 + - “ 4- 4 4

sp0516 + - - 4- 4 4

sp0517 + - - 4- 4 4
sp0519 + - - 4- 4 4

sp0641 + - - + 4 -

sp0645 4- - - 4- 4 4

sp0647 4- - - + 4 4
sp0702 + - - 4- 4 4
sp0715 + - - 4 4 4
sp0717 - - 4- 4- 4 4
sp0720 - - 4- 4 4 4

sp0722 - - 4- 4 4 4

sp0726 4- - - 4 4 4
sp0742 4- - - 4 4 4
sp0789 + - - 4 4 4
sp0783 4- - - 4 4 4

sp0798 + - - 4 4 4

sp0820 4- - 4 4 4
sp0869 - - 4- 4 4 4
sp0870 - - + 4 4 4
sp0867 - - + 4 4 4

sp0875 + - - 4 4 4

sp0876 4- - - 4 4 4

sp0877 4- - - 4 4 4
sp0959 4- - - 4 4 4

sp0981 + - - 4 4 4

spl 027 4- - - 4 4 4

splI90 + - - 4 4 4

spl! 91 4- - - 4 4 4

spl275 4- - - 4 4 4

spl340 4- _ - 4 4 4

spl438 4- - - 4 4 4

spl465 4- - “ 4 4 4

spl466 4- - - 4 4 4

spl 586 4- - - 4 4 4

spl 686 4- - - 4 4 4

spl 687 4- - 4 4 4

spl 689 4- - - 4 4 4
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Table 3.7- Continuation.

Transeriptional profile CGH
Genes TIGR4 R6 0100993 TIGR4 R6 0100993
spl 7 22 + - - 4 4 -
spl 793 + - - 4 - 4

spl 794 + - - 4 - 4

spl 826 + - - 4 4 4

spl 852 + - - 4 4 4

spl860 + - - 4 4 4

spl861 + - - 4 4 4

spl862 + - - 4 4 4

spl895 + - - 4 4 4

spl897 + - - 4 4 4

spl898 + - - 4 4 4

spl 906 + - - 4 4 4

spl953 4 - - 4 4 -
spl975 4 - - 4 4 4

sp2000 4 - - 4 4 4

sp2001 4 - - 4 4 4

sp2002 4 - - 4 4 4

sp2003 4 - - 4 - 4

sp2004 4 - - 4 4 -
sp2005 4 - - 4 - 4

sp2026 4 - - 4 4 4

sp2063 4 - - 4 4 4

sp2106 4 - - 4 4 4

sp2107 4 - - 4 4 4

sp2148 4 - - 4 4 4

sp2150 4 - - 4 4 4

sp2151 4 - - 4 4 4

sp2152 4 - - 4 4 4

sp2153 4 - - 4 4 4

sp2173 4 - - 4 4 4

sp2175 4 - - 4 4 4
sp2176 4 - - 4 4 4

sp2193 4 - - 4 4 4

sp2197 - - 4 4 4 4

sp2196 - - 4 4 4 4

sp2199 - - 4 4 4 4

sp2232 4 - 4 4 4

sp2233 4 - - 4 4 4

sp2239 4 - - 4 4 4
sp2240 4 - - 4 4 4

Gene designation of microarray ORFs In agreement with TIGR (http://www.tigr.org). 
(+) Altered gene expression (transcriptional profile) or gene present (CGFI).
(-) Unaltered gene expression (transcriptional profile) or gene absent (CGH).
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3.5 Validation of microarray data

To validate the microarray data, relative transcript levels were determined by quantitative 

real-time PCR on a selection of genes up and down-regulated in b.rrOô compared to 

parental strain.

3.5.1 Quantitative Real-Time PCR

To confimi the microatTay data, 2 fig of the same RNA prepared from either TIGR4 wild- 

type and àrr06, used in microanay assays, was used in the reverse transcription reaction to 

synthesize cDNA.

3.5.1.1 Reaction efficiency

To calculate the efficiency of qRT-PCR for each pair primer reaction, serial 10-fold 

dilutions between 1000-0.001 pg (Figure 3.34) of reverse transcriptase PCR product of 

control gene and target genes were made. 1 fi\ o f each dilution were applied in qRT-PCR 

and the efficiency was calculated on basis of the slope of the plot between the cycle 

threshold (Ct) values for the dilutions against concentration (Figure 3.35).
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Figure 3.34- qRT-PCR data graph of 10-fold serial dilutions.

Plot between the Ct values and fluorescence signal of 10-fold serial dilutions (1000-0.001 pg) of 
reverse transcriptase PCR product of control or target gene.
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Figure 3.35- Efficiency of qRT-PCR reaction of control and target genes.

Efficiency was caiculated on basis in the slope of the plot between the Ct values for the 10-fold 
dilutions against concentration. Efficiency for pair primer of control gene gyrA = 96% (A); Efficiency 
for pair primer of target gene ddl = 99% (B). The efficiency of the reaction was caicuiated by the 
formula; -1.

3.5.1.2 Melting curve analysis

After the qRT-PCR reactions, a melting curve analysis between 70-95°C was performed to 

confirm the presence of the specific product and ensure no-development of primers dimers. 

A typical plot of the dissociation cui*ve is shown in Figure 3.36. The melting cuiwes are 

displayed as first negative derivative of the fluorescence versus the temperature (-dl/dT). 

Thus, a peak can be seen as the melting temperature (Figure 3.37) (Wilkening and Bader,

2004).
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Figure 3.36- Melting curve analysis of qRT-PCR reaction.

LightCycler melting curves analysis from the amplification of control gene gyrA (B) and target gene 
ddl (A). The Tm of the ampllcon starts at the point of inflection of the melting curve profile The qRT- 
PCR reactions were made in quadruplicate using SYBR Green method.
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Figure 3.37- Derivate melting curve analysis of qRT-PCR reaction.

LightCycler melting curves analysis from the amplification of control gene gyrA (B) and target gene 
ddl (A). The melting curves are displayed as first negative derivative of the fluorescence versus the 
temperature (-dl/dT). Thus the maxlmun -dl/dT value for a curve corresponds to the melting 
temperature of the product. The qRT-PCR reactions were made in quadruplicate using SYBR  
Green method.

3.5.1.3 Relative quantification m ethod (AACj)

To validate our microaiTay data, relative transcript levels were determined by quantitative 

real-time PCR on a selection of genes. An interesting target altered in expression profile in 

microarray analysis of the TIGR4 Arr06 compared with the wild-type, was the rlrA 

pathogenicity islet (Hava et a l, 2003a), up-regulated in TIGR4 b.rr06, composed of a
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putative transcriptional regulator rlrA (sp0461), three cell wall-anchored surface proteins 

(sp0462-0464) and three sortase enzymes (sp0466~0468). The up-regulation of the rlrA 

pathogenicity islet in TIGR4 ISrr06 was checked by quadruplicate reactions by qRT-PCR 

using cDNA of TIGR4 wild-type and ArrOd strains, from two independent RNA 

preparations, and tested using the SYBR Green method. The qRT-PCR analysis of the rlrA 

pathogenicity islet by relative quantification method (AAC t) (Livak and Sclimittgen, 2 0 0 1 )  

showed strong up-regulation of this locus in àrrOô strain and a positive correlation with 

the expression ratio obtained by microaiTay analysis Figure 3.38. Other interesting loci 

identified in microaiTay analysis was the dit operon, down-regulated in TIGR iSrr06 strain. 

qRT-PCR analysis showed agi'eement with microaiTay analysis in two genes o f this 

operon, dltA {sp2J76) and dltD {sp2172). The remaining genes, dltB (sp2175) and dltC 

{sp2174) were not observed to have a significant decrease (Figure 3.39).

qRT-PCR
MIcrorray

sp0461 sp0462 sp0463 sp0464 sp0466 sp0467 sp0468
(rlrA) (rrgA) (rrgB) (rrgC) (srtB) (srtC) (srtD)

ddl gyrA

Figure 3.38- Expression ratio of rlrA pathogenicity islet in TIGR4 Arr06 compared with Its 
parental strain.

The expression ratio of rlrA pathogenicity isiet in TIGR4 Arr06 compared with wild-type strain was 
determined by microarray and qRT-PCR. The dashed line indicates the two-fold change microarray 
cut-off value for differential expression. No microarray data was obtained for sp0468. Expression of 
two control house keeping genes D-alanine-D-alanine llgase {ddl) and DNA gyrase subunit A 
{gyrA) are shown.
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Figure 3.39- Expression ratio of d/t operon in TIGR4 ArrOg compared with its parental strain.

The expression ratio dit operon in TIGR4 Arr06 compared with wild-type strain was determined by 
microarray and qRT-PCR. The dashed line indicates the two-fold change microarray cut-off value 
for differential expression. No microarray data was obtained for sp2174. Expression of two control 
house keeping genes ddl and gyrA are shown.

3.6 Does RR06 regulate the virulence factor PspC?

The pneumococcal surface protein C (PspC), also know as CbpA, plays an important role 

in the pneumococcus pathogenesis by functioning as an adhesin (Rosenow et a i, 1997). It 

also binds soluble host factors such as the secretoiy component, the third component of 

complement (C3) and complement factor H (Cheng et a l ,  2000; Dave et a l,  2001; 

Hammerschmidt et a l,  1997; Janulczyk et a l,  2000). During the time of work on this 

project it was suggested that RR06 regulates the virulence factor pspC. Genomic 

organisation shows that rr06 has an upstream position to the virulence factor pspC. 

Furthermore, S. pneumoniae Arr06 mutants strains have in vivo a similar phenotype that 

the ApspC. Evidence o f this regulation have recently been published. Electrophoresis 

mobility shift assays shows that the RR06 binds to a region upstream of the pspC  gene and 

acts as a transcriptional activator for the pspC  promoter (Standish et a l, 2005). These 

Endings show than RR06 can presumably contribute to the regulation of pspC. To confirm 

if RR06 regulates the expression of this virulence factor, microaiTays, RT-PCR or qRT- 

PCR and western immunoblot analysis were done in TIGR4, D39, R6 and 0100993 strains.
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3.6.1 E xpression of pspC  on S. pneumoniae Arr06 mutants

3.6.1.1 Microarray analysis

To verify if  the virulence factor PspC is regulated by the TCS06, the expression levels of 

pspC  gene were analysed using microaiTay technology. The transcriptional levels of pspC  

were compared in S. pneumoniae wild-type strains TIGR4, D39, R6 and 0100993 and their 

isogenic mutant Arr06 growing at BHI up to mid-log phase (ODeoonm of 0.6) at 37®C. 

During this analysis, different amplicon-based microarrays were used, TIGR and BpG@S 

army s. Due to the variability in pspC  (Brooks-Walter et a l ,  1999), both amplicon-based 

micro arrays include t^o-pspC  sequence probes using TIGR4 annotation {sp2190) and R6 

annotation {sprl995).

No differences were observed in expression levels of pspC  in TIGR4 Arr06 compared to 

the parental strain (Figure 3.40). The mean signal of expression in the four replicate 

microaiTay hybridization slides in both TIGR and BpG@S microarrays slides were similar 

in the two strains. The regulation analysis o f pspC  by the Arr06 was also studied in the 

serotype 2 R6 strain and in 0100993 strain (serotype 3). No significant difference was 

observed in expression of the virulence factor pspC  in both Arr06 strains, presenting in 

Arr06 strain a small increase in transcription relative to the parental wild-type in BpG@S 

aiTays analysis (Figure 3.40).
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Figure 3.40- Microarray expression analysis of pspC  in Arr06 mutants.

The expression of pspC of Arr06 mutants compared with parental wiid-types strains were studies 
using TIGR and BpG@S microarrays. Values are determined by microarray hybridization and are 
given as the geometric mean fluorescence intensity values from four replicate hybridizations of 
each type of array slide in T1GR4 strain and two replicate hybridizations in R6 and 0100993 strains. 
Error bars represent ± SEM. The expression of control house keeping gene gyrA Is shown.

Standish and co-workers, obseiwed that the mutation of rr06 in D39 backgi'ound affects the 

transcription of pspC. Real-Time PCR analysis demonstrated 3-fold down-regulation 

compared with the wild-type parent (Standish et a l,  2005). However, the R6 

unencapsulated laboratoiy strain used in this study is derived from the D39 strain. For this 

reason in the present study, a microarray analysis was performed using the exact strains 

D39 wild-type and their isogenic rr06 mutant, kindly supplied by Standish and co-workers. 

The expression of pspC  was reduced in Arr06 strain compared with wild-type (Figure 

3.41). However, this reduction was not statistically significant. Expression of the pspC  

gene in the D39 Arr06 mutant was only down-regulated 1.6 fold compared with the wild- 

type parent.
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Figure 3.41- Microarray expression analysis of pspC  In D39 Arr06 mutant.

The expression of pspC  in D39 Arr06 compared with wild-type strain was study using TIGR  
microarrays. Values are determined by microarray hybridization and are given as the geometric 
mean fluorescence intensity values from two replicate hybridizations. Error bars represent ± SEM. 
The expression of control house keeping gene gyrA is shown.

3.6.1.2 RT-PCR and qRT-PCR analysis

The microan'ay data of pspC  expression on R6 Arr06 compared with the isogenic wild- 

type strain was confirmed by RT-PCR, while the expression on TIGR4 strain was 

confmned by real-time PCR (qRT-PCR).

In the S. pneumoniae R6 strain, cDNA was synthesized from 2 pg of RNA, prepared from 

10 ml of BHI cultures, using TheimoScript™ RT-PCR system (Invitrogen™). The RT- 

PCR reactions samples were preformed using the pair primers 010-up4-cZy?ri and cbpA- 

SKH2 (Table 2.2). No significant differences were obseiwed in expression of pspC  

between the Arr06 mutant and parental wild-type (Figure 3.42).
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Figure 3.42- RT-PCR of pspC on S. pneumoniae R6 strain.

cDNA was obtained from 2 pg of RNA using the ThermoScript™ RT-PCR system (Invitrogen'^'^). 
The RT-PCR reactions were prepared using the pair primers up4-cbpA and cbpA-SKH2 and run in 
1.5% agarose gei. Lane 2 R6 wild-type, lane 3 R6 wild-type negative control, lane 4 R6 Arr06, lane 
5 R6 Arr06 negative control, lane 6 R6 genomic DMA, lane 7 R6 genomic DMA negative control. 
The DMA ladder marker used was the 1 kb plus ladder (Promega).

Because o f  the limitations o f  RT-PCR to compare the levels o f  expression between control 

and test samples, the expression o f  the pspC  in TIGR4 Arr06 compared with parental wild- 

type was confirmed by q-RT-PCR. 2 pg  o f  RNA, prepared from 10 ml o f  BHI, were 

reverse-transcribed using Superscript II RT (Invitrogen'*'’̂ ). 1 pi o f  each cDNA sample was 

used to quantify the expression levels o f  pspC  using the Sybr green method. No significant 

differences were observed in expression o f the pspC  gene in TIGR4 Arr06 compared with 

wild-type. The qRT-PCR data confirm the previous microarray analysis, showing no direct 

regulation by RR06 in expression o f the virulence gene pspC, remaining at the ratio o f  the 

expression similar to the control genes gyrA and dll (Figure 3.43).
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Figure 3.43- Expression ratio of pspC  in TIGR4 Arr06 compared with its parental strain.

The expression ratio of pspC  in T1GR4 Arr06 compared with wild-type strain was determined by 
microarray and qRT-PCR. The dashed line indicates the two-fold change microarray cut-off value 
for differential expression. The comparative AACy method was used for qRT-PCR analysis and the 
test genes were normalized against the control gene gyrA. Expression of two control house 
keeping genes ddl and gyrA are shown.

3.6.1,3 W estern im m unoblot analysis

Western iminuboblot was used to examine the levels of virulence factor PspC expressed by 

S. pneumoniae TIGR4, D 3 9  and R6 strains. Expression of the PspC protein was studied in 

pneumococcal cultures growing in BHI until late-log phase (OD^oonm 10) (Figure 3.44). 

The expression o f the protein was shown to be similar in all Arr06 strains compared with 

wild-type. The western immunoblot analysis confirmed the previous microarrays, RT-PCR 

and qRT-PCR analysis using cultures in mid-log phase (ODeoonm 0.6), showing no 

regulation of PspC by RR06 in the previous conditions.
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Figure 3.44- Western immunobloot analysis of PspC in different pneumococcal strains.

Expression of PspC in T1GR4, D39 and R6 wild-types and ArrOG mutants strains. 15 jug of total 
protein for each sample were applied in 10% SDS-polyacrylamide gel following by western 
immunoblot using anti-PspC and anti-rabbit serum. Lane 1 and 9 PspC protein, Lanes 2, 6 and 10 
TIGR4, D39 and R6 wild-type strains, Lane 3 TIGR4 ApspC mutant strain, lanes 7 and 11 D39 
ApspC mutant strain. Lanes 4, 8 and 12 TIGR4, D39 and R6 Arr06 mutant strains. The proteins 
marker used (lane 5) was the Precision Plus Protein standards (Bio-Rad). The Western 
immunobloot analysis of PspC was done in two independent experiments.

Standish and co-workers had shown that the TCSQ6 regulated the virulence factor pspC  

(Standish et a l, 2005). However, our microarray analysis did not show significant changes 

in pspC  mRNA in TIGR4, R6, 0100993 and D39 Arr06 strain compared with parental 

wild-types. This result correlates with RT-PCR and qRT-PCR analysis, and also with 

Western immunoblotting analysis data, indicating that RR06 do not regulate, at least in 

these conditions, thepspC.
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Bacteria live in a constantly changing environment in which nutrients, temperature, 

osmolarity, acidity, humidity, and many other conditions are subject to abrapt and 

unexpected changes. In order to survive, bacteria must have the ability to sense and 

respond to their enviromnent. A recognised key mechanism tlirough which bacteria 

perceive and respond to their environment is played by the two-component systems (TCS) 

also referred to as the two-component signal transduction systems. These systems typically 

consist of two modular proteins; a sensor histidine kinase (HK) that auto-phosphorylates at 

a histidine residue in response to environmental stimuli creating a high-energy phosphoryl 

group and a cognate response regulator (RR) to which an activated phosphate is transferred 

and that then mediates a downstream response, often acting as a DNA-biding protein to 

cause changes in gene expression (Parkinson, 1993; Stock et a l, 2000).

Molecular advances in the form of genome sequencing, signature-tagged mutagenesis, 

differential fluorescence induction and microarray analysis have yielded considerable 

progi ess in the study of these systems in S. pneumoniae.

TCS06 system  and virulence

When S. pneumoniae causes disease it needs to adapt in a wide range of sites, including the 

lung, middle ear, sinuses, blood, and meninges. The continued existence of the 

pneumococcus to its enviromnents in the host requires adaptive response that involves 

several ways of regulating gene expression including the TCS. Thiiteen HK/RR pairs with 

an additional orphan unpaired RR were identified in the pneumococcal genome (Lange et 

a l, 1999; Thi'oup et a l, 2000). The TCS06, also know as system 478, is relatively poorly 

characterised, however this system has been shown to contribute to virulence. Deletion in 

the histidine kinase and response regulator genes, hk!rr06, in serotype 2 strain conferred 

attenuation in a mouse respiratory tract infection (RTI) model of infection (Throup et a l, 

2000). A Recent study, using strain D39 (serotype 2) has shown the importance of the 

TCS06 for the ability o f the pneumococcus to survive and proliferate an in vivo mouse 

model and to adhere to epithelial cells (Standish et a l,  2005). Furthermore, Standish and 

co-workers obseiwed that TCS06 regulates an important virulence factor cbpA, also know 

as pspC  (Standish et a l , 2005).

hi the present study, we investigated the imporiance of RR06 in the ability of the 

pneumococcus to colonize the nasopharynx and translocate to the lungs and blood in 

TIGR4 strain. After intranasal infection, the RR06 was not shown to have an important 

role in the capacity o f pneumococci to colonize the nasopharynx however, RR06 seems to
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be important for the ability of the pneumococcus to invade the lungs and blood. A large 

reduction in growth in the lung was observed by Throup and co-workers in strain 0100993, 

who detected a reduction of approximately 3.5 logs in growth in the lung due to disruption 

of the hk!rr06 system (Throup et a l, 2000). hi the experiments reported here, the same 

mutation used in TIGR4 strain, reduced significantly the amount of the bacteria in the 

lungs airways and in the blood after intranasal challenge. In the in vivo studies reported by 

Standish and co-workers, the results obseiwed were unclear. The hk06 mutant of strain D39 

was much reduced in lung tissue and in the blood 96 hours after intranasal infection while, 

no reduction is observed at early times. However, unexpectedly the numbers of rr06 

mutants in the lungs and in the blood increased significantly when compared with wild- 

type (Standish et a l,  2005). This obseiwation contradicts what was reported by Throup and 

co-workers where, in preliniinaiy experiments for strain 0100993, the inactivation of 

histidine kinase genes alone resulted in substantially less attenuation than that obtained 

with strains harbouring the corresponding response regulator deletion (Throup et a l, 

2000). These results perhaps reflect differences in pneumococcal strains. It was recently 

shown that the contribution of two-component system to vimlence could be strain- 

dependent (Blue and Mitchell, 2003). Furthermore, these different observations can be due 

to the method of generating mutants, or even the type of mice used.

Colonization of the nasophaiynx is an important step in pneumococcal pathogenesis. Using 

the M Fl mouse model to study the importance of the TCS06 in the pneumococcus 

nasopharynx colonization, no significant reductions were obseiwed in TIGR4 rr06 mutant. 

A similar effect was observed in a D39 backgi'ound using both hk06 and rr06 mutations. 

However in this study, the number of bacteria found after 48, 96 hours of infection 

increased significantly in D39 rr06 mutant when compared with wild-type (Standish et a l , 

2005). Therefore this two-component system seems to be important for colonization and 

growth of the bacteria in the lungs, and also for invasion of the bloodstream but not in 

colonization of the nasophaiynx.

Effect of RR06 on in vitro growth

Photogenic bacteria as well as other living organisms have evolved adaptational regulatory 

networks to maintain cell viability under stressful environmental conditions and to ensure 

persistence and re-growth in host tissues. When entering the host from the enviromnent, a 

microbial pathogen is confronted by several changes, including nutrient limitation, changes 

in temperature, humidity, and osmolarity. Furthermore, the bacteria are exposed to natural 

host resistance mechanisms such as phagocytosis by specialized phagocytes (Kaufinann,
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1998) and confronted by reactive oxygen and nitrogen intermediates. The TCS have been 

shown to regulate gene expression in response to a large changes in the environment 

(Barrett and Hoch, 1998; Hoch, 2000; Per ego and Hoch, 1996; Stock et a l, 1989).

In this study, we investigated the importance of TCS06 for S. pneumoniae to grow at 

higher temperatures and to resist to oxidative stress. We had shown that RR06 plays a role 

in resistance to elevated temperatures. The TIGR4 Arr06 mutant has a slow growth at 40”C 

and presents a slight decrease in the growth rate to 37°C, where the mutant reaches a final 

optical density thi*ee times less than wild-type. Furthermore, the influence of TCS06 on 

gi'owth or sui"vival of the pneumococcus at higher temperature was more evident when the 

bacterium was gi'own on blood agai'. The TIGR4 Arr06 did not gi'ow at 40*̂ C in either 

aerobic or anaerobic conditions. However, the effect of RR06 on temperature sensitivity 

appeared to be strain-dependent. In serotype 2 strains, R6 and D39 no significant changes 

in growth were observed between the Arr06 mutant and the wild-types, while in 0100993 

backgi'Ound, both strains did not grow at 40°C. Some reports have shown the importance of 

the TCS in different bacteria to mediate stress responses, for example adaptation to gi'owth 

and suiwival in higher temperature environments (Fabret and Hoch, 1998; Morel-Deville et 

ah, 1998). hr S. pneumoniae the CiaR/H system was been reported to regulated many 

genes in response to stress environment, included the high-temperature requirement A gene 

QitrA) implicated in the success of the bacteria grows at higher temperatures (Ibrahim et 

a l, 2004b).

Hydrogen peroxide is an example of reactive oxygen species that can cause damage to 

DNA and other cell component. The sensitivity to hydrogen peroxide o f TIGR4 Arr06 was 

increased after 5-10 min exposure to 40 mM of hydrogen peroxide (Figure 3.15). However, 

the sensitivity to oxidative stress of the rr06 mutant was not statistically significant due to 

the gi'eat differences between the three independent replicates used in this study. The effect 

of hydrogen peroxide treatment on TIGR4 Arr06 remains unclear due to the higher 

variability of this methodology obseiwed in our and other laboratories, making a statistical 

validation for this analysis difficult.

Gene regulation by TCS06

TCS probably plays an essential role in regulating genes necessaiy for successfully 

colonization and infection by human pathogens, such as S. pneumoniae (Hava and Camilli, 

2002; Kadioglu et a l, 2003; Lan et a l ,  2001; Tliroup et a l,  2000). Several studies have 

shown the regulation of key genes known to contribute to pneumococcal virulence. TCS04
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has been shown to regulate the psa  operon that encodes a manganese ABC transporter 

system in TIGR4 strain (McCluskey et a l, 2004). Investigation of the CiaR/H system 

regulon identified the major virulence factor htrA, as being down-regulated in ciaR/H 

mutants (Ibrahim et a l, 2004b; Mascher et a l, 2003; Sebert et a l, 2002). Recently, 

microanay analysis has shown that TCS02 regulated positively the transcription of a set of 

genes encoding important surface proteins, including the PspA virulence factor (Ng et a l , 

2005).

The expression of important pneumococcal virulence factors has been shown to be 

upregulated in vivo. However, such studies are limited by focusing on only a small number 

of genes (Ogunniyi et a l, 2002; Orihuela et a l, 2000; Orihuela et a l,  2001; Quin et a l,

2005). A large-scale identification of S. pneumoniae virulence deteiminants has been 

attempted, such as the studies of STM screens (Hava and Camilli, 2002; Lau et a l,  2001; 

Polissi et al., 1998), or by development of differential fluorescence induction (DPI) (Marra 

et a l, 2002a). Furthermore, more recently a full examination of pneumococcal 

transcription in vivo during bacteraemia, meningitis, and epithelial cell contact models was 

done through the use of whole-genome microarray (Orihuela et a l,  2004).

Genetic regulation by TCS reveals an important challenge to understand the role of these 

systems during infection. Unfortunately, analysis of in vivo bacterial gene expression is 

beset by the teclmical difficulties of recovering sufficient quantities of pure and intact 

bacterial RNA from infected host tissues. For these reasons, the genetic regulation by 

TCS06 report here was made by whole-genome microarray analysis using RNA extracted 

in vitro standard conditions. The microarray is a powerful tool for the analysis of 

transcriptional changes in gene expression. Recently, several pneumococcal microarray 

studies have been used to find the genes directly or indirectly regulated by the TCS, TCS02 

(Ng et a l, 2005), TCS04 (McCluskey et a l, 2004), CiaR/H (Sebert et a l, 2002), and T C I3 

(de Saizieu et a l, 2000).

hi this study, we investigated the genes regulated by the RR06 in TIGR4 strain, using two 

whole-genome microanays from independent sources, and two independent RNA samples. 

Due to time limitation, microarray analysis from strains R6 and 0100993 were preformed 

from only one RNA sample. Moreover, some of the transcriptional changes were 

confirmed by quantitative Real-Time PCR (qRT-PCR). The transcriptional changes 

occurring in TIGR4 Arr06 compared with wild-type varied between 3% in TIGR arrays 

and 2% in BpG@S arrays slides. The transcriptome analysis showed an appreciable 

agreement between the two-microarray slides. However, the divergences in transcriptome
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profile o f the two distinct amplicon-based microarrays probably reflect differences in the 

method or/and due to the differences of the probes printed in the slides. In TIGR4 strain, 

the set of RR06-regulated genes was found to be emiched for genes predicted to encode 

proteins associated with stress response, surface wall metabolism, energy metabolism, and 

degradation of protein, peptides and glycopeptides. Of the genes down-regulated in rr06 

mutant, the clpE have being reported to play a role in the thermo-tolerance of S. 

pneumoniae (Chastanet et a l, 2001). dnaK, dnaJ, grpE, and groEL are known to play a 

role in the protection o f proteins against stress (Choi et a l, 1999; Frydman, 2001; Linke et 

a l, 2003). Another down-regulated gene, hrcA, is known to regulate stress response genes 

in bacteria (Narberhaus, 1999). Furthermore, a major virulence factor, htrA was also found 

as being down-regulated in Arr06. This serine protease was described to being involved in 

the ability of the pneumococcus to grow at high temperatures (Ibrahim et a l, 2004a). 

These findings may be the reason of the role of RR06 on growth o f the pneumococcus at 

higher temperatures. Others genes of interest which transcriptional levels decreased 

significantly in TIGR4 Arr06 strain were: dit operon (discussed in more detail in chapter 

4); and nanB. The dit operon encodes four gene products DltA, DltB, DltC and DltD that 

promote the incorporation of D-alanine residues into the lipoteichoic acids LTAs in Gram 

positive bacteria (Abachin et a l,  2002; Poyart et a l, 2001; Poyart et a l, 2003). The nanB 

is one of at least two known pneumococcal enzymes with neuraminidase activity (Berry et 

a l,  1996; Camara e? a/., 1991; Camara eif a/., 1994).

Some of these genes, found in this study, directly or indirectly controlled by TCS06, such 

as the dit operon and htrA, may be the component key in the contribution of TCS06 to 

virulence. Some reports have demonstrated that the incorporation of D-Ala residues into 

the LTA is important for the virulence of two major Gram-positive pathogens L. 

monocytogenes and S. aureus (Abachin et a l, 2002; Collins et a l,  2002; Peschel et a l,

1999) while, htrA is known to be involved in the virulence of many Gram-negative 

bacteria such as S. typhimurium (Baumler et a l, 1994), Brucella abortus (Elzer et a l,  

1996), Yersinia enterocolitica (Li et a l, 1996), and Klebsiella pneumoniae (Cortes et a l,

2002), and is required for full virulence of the Gram-positive bacterium S. pyogenes (Jones 

et a l,  2001). The exact role of htrA in virulence of S. pneumoniae is unclear but well- 

established (Hava and Camilli, 2002; Ibrahim et a l, 2004a). However, htrA and the dit 

operon were reported as being regulated or potentially regulated by the CiaR/H system 

(Mascher et a l,  2003; Sebert et a l, 2002). The down-regulation of these genes in ciaRIH 

and rr06 mutants demonstrates that TCS06 may indirectly control de expression of htrA 

and the dit operon.
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The rlrA pathogenicity islet in TIGR4, showed a strong up-regulation in the rr06 mutant, 

suggesting an indirect regulation by TCS06. RlrA has been shown to positively regulate 

the expression of the seven genes on the pathogenicity islet. Of the six genes, three have 

homology to the LPXTG family of cell wall-anchored surface proteins {rrgA, rrgB, rrgC) 

and three encode putative sortase (srtB, srtC, and srtD) (Hava et a l,  2003a). In addition to 

rlrA, srtD was also identified as an essential virulence gene through an STM screen and 

was confirmed to be essential to the survival of S, pneumoniae during lung infection. RlrA 

was also found to be essential for colonization of the nasophaiynx but not bacteraemia 

while, StrD is dispensable in both of these models (Hava and Camilli, 2002). A recent 

study had shown evidence that rlrA pathogenicity islet encoded pilus-like structures on the 

surface of S. pneumoniae. This structure seems to influence the pneumococcal adherence 

and the development of pneumonia and bacteraemia in mice and also stimulate the host 

inflammatory response (Barocchi et a l,  2006).

Furtheimore, we investigated the transcriptional changes in pneumococcal mutants lacking 

the response regulator of TCS06 (Arr06) by microarray analysis of two additional strains, 

R6 and 0100993. A differential gene expression pattern between the TIGR4 Arr06 and R6 

and 0100993 strain was observed. While, a significant expression change, up or down- 

regulated, o f a large number of genes was obseiwed in the TIGR4 strain, in strain 0100993 

only 9 genes were identified to be up-regulated in 0100993 Arr06 strain. Curiously, no 

changes in gene expression were observed in R6 Arr06 when compared with wild-type. 

The genetic diversity between and within different strains is likely to have a significant 

impact on the repertoire of genes regulated by TCS06. In line with this, mutants of TCS04 

(McCluskey et a l,  2004) and TCS09 (Blue and Mitchell, 2003) were recently found to 

confer strain-dependent phenotypes in a mouse infection model, caused probably by 

differential transcription regulation. These findings come in agreement with observed on 

effect of RR06 in vitro gi'owth, where only the rr06 mutation in TIGR4 strain presents a 

dramatic impact on growth at 40°C.

S. pneumoniae undergoes spontaneous phase variation between a transparent phenotype 

and an opaque phenotype (Kim and Weiser, 1998); the transparent phenotype has an 

enhanced capacity to adhere and colonize the nasopharynx, whereas the more 

phagocytosis-resistant opaque phenotype predominates in blood. An increased capacity to 

adhere by the transparent phenotype corresponds to higher levels of PspC, 

phosphorylclioline, teichoic acid, and autolysin (LytA) than do opaque variants (Kim and 

Weiser, 1998; Rosenow et a l,  1997; Weiser et a l,  1994). In contrast, the opaque 

phenotype produces more capsular polysaccharide and PspA is expressed in gi'eater
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amounts in the opaque variant (Kim and Weiser, 1998). Because these numbers of proteins 

are reported to be differentially expressed in opaque and transparent phase pneumococci 

(Rosenow et a l,  1997), is important to confirm if all strains present the same phenotypic 

variation before the transcriptome analysis. However, due to the difficulty in distinguishing 

with accuracy between opaque and transparent colonies, a final confirmation of the phase 

variation of all strains was done by the analysis of the levels of these proteins, where no 

differences of PspA, PspC, LytA and capsular polysaccharide were observed.

Regulation of virulence factor PspC by TCS06

PspC, also known as CbpA and SpsA, is considered a major virulence factor and protective 

antigen, and belongs to the family of choline-binding proteins that are present on the 

surface of S. pneumoniae. These proteins noncovalently bind to the phosphorylcholine on 

the cell wall teichoic acid and the membrane-bound lipoteichoic acid (McDaniel et a l, 

1991). Several functions are attributed to PspC, including binding to the secretoiy 

component of human immunoglobulin A and to complement factors C3 and H (Cheng et 

a l, 2000; Dave et a l ,  2001; Hammersclimidt et a l, 1997; Hammerschmidt et a l, 2000; 

Janulczyk et a l,  2000). Binding to factor H is a defence strategy used by certain 

microorganisms for protection against complement attack and opsonophagocytosis. The 

importance o f PspC in adherence and colonization of S. pneumoniae to epithelial cells of 

nasal passages and lungs in mice is well established (Balachandran et a l, 2002; Rosenow 

et a l, 1997). It has been shown that PspC-deficient mutants have a reduced ability to 

colonize the nasopharynx and infect the lungs (Balachandran et a l, 2002). This study had 

as purpose to investigate the involvement of the RR06 in the regulation of the 

pneumococcal vimlence factor PspC. The genomic organisation shows that RR06 has an 

upstream position to a vimlence factor pspC, and a number of prokaryotic TCS regulate 

adjacent genes on the chromosome, including the TCS 13 from the pneumococcus (de 

Saizieu et a l, 2000). Also, the RR06 knockout has an in vivo phenotype similar to that of 

the />̂ 7?C-deficient mutants. Furthermore, electrophoresis mobility shift assays (previously 

shown in our laboratory) demonstrates that the RR06 binds to a region upstream of the 

pspC  gene. These findings suggesting that maybe the RR06 can regulate thepspC  gene.

Standish and co-workers (Standish et a l, 2005) reported that TCS06 regulated directly the 

major vimlence factor PspC. Western immunoblotting and qRT-PCR analysis shown 

down-regulation in rr06 deletion mutants relative to wild-type S. pneumoniae D39. 

However, unexpectedly up-regulation of pspC  was obseiwed in D39 hk06 mutant, 

suggesting that RR06 can be activated independently of HK06. Nevertheless, this finding

160



TC S 06 Discussion

does not explain why thepspC  is up-regulate ~5 fold relative to D39 wild-type. The results 

shown by our investigation demonstrated that RR06 does not regulate the virulence factor 

pspC, at least in the conditions presents in our study. Microaixay analysis of two 

independent RNA samples, and using two different whole-genome microaiTay did not 

shown any significant change in expression of pspC  in four different Arr06 mutants 

strains, TIGR4, D39, R6 and 0100993 compared with wild-type. The qRT-PCR analysis, 

for TIGR4 strains, confimied the previous microarray study. Furtheimore, western 

immunoblotting was implemented to study the level of PspC produced by these different 

strain. Again, the blots indicated no significant changes of the levels of PspC in Arr06 

mutants when compared with parental wild-type. A similar result was observed by 

Standish and co-workers (Standish et a l, 2005) for the strain TIGR4 Arr06 mutant, where 

no differences in pspC  expression were found for TIGR4 rr06 mutant by both Western 

immunoblotting and qRT-PCR.

These inconsistent observations between our studies and Standish and co-workers 

(Standish et a l, 2005) about the regulation of the expression of PspC in D39 strain, reflects 

perhaps differences in methodologies of quantification of pspC  expression, the use of 

different broth cultures (Todd Hewitt broth with 1% yeast extract instead of BHI used in 

this study) or by the fact the RNA was collected at different optical densities of growth of 

bacteria. However, the D39 strains (wild-type and rr06 mutant) using by Standish and co­

workers (Standish et a l , 2005) were kindly sent to our laboratory, and microanay analysis 

demonstrated again no significant changes in expression o f pspC. Nevertheless, PspC 

mRNA has recently been shown to upregulated a massive 870-fold in vivo compared to 

growth in vitro (Quin et al., 2005). This finding demonstrates that in vivo S. pneumoniae 

needs to adapt to a different environment, and some regulatoiy network is activated to 

increase the expression of PspC. Here, in vivo environment the TCS06 maybe has a key 

role in regulation of the pspC. To prove this theory, future work needs to be done as 

compared the transcript levels of PspC between the rr06 mutans and wild-type from 

bacterial RNA recovered from in vivo conditions.

Summary

Data presented in this chapter confirm that TCS06 is important for the ability of the 

pneumococcus to invade the lungs and blood but not for colonization of the nasophaiynx. 

The in vitro phenotype associated with deficiency of rr06 was shown that the TCS06 is 

important for the bacteria grown at higher temperatures and maybe to survive at oxidative 

stress. The transcriptional profile o f the pneumococcal mutant lacking the response
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regulator of TCS06 (ArrOô), as determined by microarray analysis, showed differences in 

expression levels of some genes in TIGR4 background when compared with its wild-type: 

about 1% of the genes were upregulated and 2-3% were down-regulated in the rr06 

mutant. On the other hand a different transcription profile was obtained for R6 and 

0100993 rr06 deficient mutants, revealing that the gene expression controlled by the 

TCS06 is strain dependent. It has also been shown by microarray analysis, qRT-PCR and 

Western immunoblotting that TCS06 does not regulate the major virulence factor pspC  in 

the in vitro conditions used in this study. This contrasts with the findings of Standish and 

co-workers (Standish et a l,  2005), who showed that pspC  was differentially expressed 

relative to D39 background. In conclusion, our results, in vitro and in vivo, suggest that 

TCS06 regulates genes that are important for the virulence of the pneumococcus and in the 

ability to cause disease.

I
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Chapter 4

Role of dit operon in pneumococcal virulence
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4.1 Characterization of dit operon

The cell wall of Gram-positive bacteria contains two types o f anionic polymers: the wall 

teichoic acids (WTA), which are covalently linked to the peptidoglycan; and the 

lipoteichoic acids (LTAs), which are polyphosphoglycerol substituted with a D-Ala ester 

or a glycosyl residue and are anchored in the membrane by their glycolipid moiety 

(Fischer, 1988; Fischer et al., 1990). Incorporation of D-alanine residues into the LTAs 

necessitates the activity of four gene products (DltA, DltB, DltC and DltD) (Figure 4.1) 

that are encoded by the dit operon (Poyart et a l, 2001). DltA is a cytoplasmic D-alanine- 

D-alanyl earner protein ligase that catalyses the D-alanylation of the D-alanyl carrier 

protein DltC; DltB is a transmembrane protein thought to be involved in the efflux of 

activated D-alanine to the site of acylation; and DltD is thought to be a membrane 

associated protein that may have multifunctional activities (hydrolysis of mischarged DltC, 

facilitation of D-alanine ligation to DltC and D-alanylation o f LTAs) (Debabov et a l, 

2000).

Inactivation of any genes within this operon results in the complete absence of D-ala ester 

in the LTA and these D-Ala-deficient LTA mutants were found to exhibit a variety of 

phenotypic changes that could be attributed to the resulting charge modification of their 

cell surface. In S. aureus, S. agalactiae and Staphylococcus xylosus, inactivation of dit 

operon results in increased sensitivity of these bacteria to defensins, protegrins, 

tachyplesins, magainin II, and other cationic peptides (Peschel et a l, 1999; Poyart et a l,

2003). hïsertional mutagenesis of dltA in S. gordonii resulted in a loss of intrageneric 

coaggregation and in the formation of pleomorphs (Clemans et a l,  1999). Defects in D - 

alanyl- LTA synthesis could also result in acid sensitivity, as shown in the case of S. 

mutans (Boyd et a l,  2000). Some reports have demonstiated that the incorporation of D- 

Ala residues into the LTA is important for the virulence of two major Gram-positive 

pathogens L. monocytogenes and S. aureus (Abachin et a l,  2002; Collins et a l, 2002; 

Peschel et a l,  1999).

Although the pneumococcus contains phosphorylcholine esters instead of D-alanyl esters 

in both LTA and WTA (Fischer, 1997) the dit operon was identified in the genomic 

sequences of S. pneumoniae R6 (Hoskins et a l, 2001) and TIGR4 (Tettelin et a l, 2001). In 

addition, the dit operon is expressed only in certain media and activated in certain points of 

growth (Mascher et a l,  2003), indicating that the dit operon maybe play an important role 

in virulence of the bacteria.
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SP2171 SP2173 W>2177

SP2174 SP217& SP2176

<P91T) W917K
088937 2089937 2090937 2091937 2092937 2093937 2094937 20989C
---------------1--------------- 1--------------- 1-------------- J---------------1__________ I__________ I_____

Figure 4.1- Genomic organization of dit operon.

The dit operon Is composed by the genes dltA {sp2176), dItB {sp2175), dItC (sp2174) and dltD 
(sp2173).

In the present study we have demonstrated by microarray and qRT-PCR analysis that the 

dit operon is down-regulated in TIGR4 RR06 defective mutant. On the other hand, 

Mascher and co-workers had shown that CiaR binding directly in dit promoter region and 

potentially regulated the dit operon (Mascher et a i ,  2003). In this study we investigated the 

role of the dltA gene in virulence of S. pneumoniae TIGR4 strain to determine if the DltA 

is responsible for the rr06 defective mutant phenotype.

4.2 DltA

DltA is an enzyme responsible for activation of the D-Alanine residues in the cytoplasm 

via ATP hydrolysis and the release of pyrophosphate and is coupled to the 

phosphopantetheine prosthetic group of the D-alanine carrier protein DltC. The enzyme is 

a member of a large protein family that both activates and transfers amino or fatty acids via 

a 4'-phosphopantetheine prosthetic group of a carrier protein or coenzyme A CoA 

(Kleinkauf and Von Dohren, 1996). DltA protein not only activates D-alanine but also 

ligates the activated ester to the 4’-phosphopantetheine prosthetic group of the carrier 

protein. Therefore, the activating enzyme is now designated D-alanine:DltA ligase (AMP 

forming) (Neuhaus and Baddiley, 2003).

Analysis of complete genome of S. pneumoniae strain TIGR4 in The Institute for Genomic 

Research (TIGR) at www.tigr.org revealed a single copy of the gene for dltA. The 1551 kb 

gene encodes for an 516 amino-acid protein with a molecular weight of 57 kDa and a pi of 

4.6. In Figure 4.2 are represented a multiple sequence alignment of DltA of S. pneumoniae 

with other Gram-positive bacteria. The pneumococcal DltA protein shares sequence 

similarity with DltA of B. subtilis (79% identity), S. aureus (36% identity), L. 

monocytogenes (44% identity), S. agalactiae and S. mutans (79% identity). There is one

165

http://www.tigr.org


dit Operon Results

motif, SGXTGXPKG, common to each strain that may represent the phosphate-binding 

loops (Saraste et a l, 1990). The enzymes also have two additional regions whose 

sequences are highly conserved with nonribosomal peptide synthetases (adénylation 

domain) (Heaton and Neuhaus, 1992). The two common motifs at the DltA proteins, in 

these six bacteria species, are GRXDFQIKXXGYRXE and PXKX9TXNGKIDXKXX.
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Figure 4.2- Multiple sequence alignment of DltA protein from some Gram-positive bacteria.

Alignment of the S. pneumoniae TIGR4 amino acid sequence with those of B. subtilis 168 strain, S. 
aureus N315 strain, L. monocytogenes EGD-e strain, S. agalactiae NEM316 strain and S. mutans 
UA159 strain. All sequences were obtained from TIGR (www.tigr.org). Genes were aligned using 
Align X, a component of the Vector NTl 9.1.0 (Invitrogen Corporation).

4.2.1 Construction of dltA mutant

The dltA gene of S. pneumoniae TIGR4 strain was disrupted by the introduction of 

spectinomycin resistance cassette into the gene. The whole dltA gene was amplified from 

the genomic DNA of pneumococcal TIGR4 strain using primers dltA Amp For and dltA 

Amp Rev (Table 2.2) and cloned into PCR-Script'^^ cloning vector (Stratagene). The 

primers dltA Amp invl and dltA Amp inv2 (Table 2.2) were used to removed the middle 

region of dltA gene creating AscI restriction site as a result of inverse PCR. Spectinomycin 

resistance cassette with AscI restriction sites was ligated to the inverse PCR product to use 

as selection marker.

4.2.1.1 Confirmation of inverse PCR product

The inverse PCR product was gel purified using Qiagen gel purification kit, self ligated 

and transformed into E. colt ToplO electrocompetent cells (Invitrogen™). The transformed 

cells were plated onto LB agar with 50 pg/ml of ampicillin and the plasmid isolated from 

overnight cultures on LB broth with ampicillin using Qiagen plasmid DNA isolation. The 

inverse PCR product was 3.3kb (Figure 4,3 A) and the deletion of the dltA gene was then 

continued by restriction digestion (Figure 4.3 B). Digestion of the plasmid with AscI and 

EcoRTresulted in a 200 bp and 3.1 kb bands.
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Figure 4.3- Inverse PCR and confirmation of product.

Inverse PCR product run in 1% agarose gel (lane 2 and 3) (A); confirmation of self-ligated inverse 
PCR product by restriction digestion with Asc I (lane 2) and AscI plus EcoRI (lane 3) (B). The DNA 
marker used is the 1 kb plus ladder (Invitrogen™).

4.2.1.2 Marker ligation

The spectinomycin resistance cassette was used as selectable marker to facilitate the 

selection of transformants. An Ascl-generated spectinomycin resistance cassette was then 

ligated to the inverse PCR described above and cloned into E. coli ToplO electrocompetent 

cells (Invitrogen'^’̂ ). The transformed cells were plated onto LB agar with 200 /^g/ml of 

spectinomycin and the plasmid isolated from overnight cultures on LB broth with 

spectinomycin using Qiagen plasmid DNA isolation. The ligation of the cassette was 

confirmed by restriction digestion. Digestion of the plasmid with EcoRI resulted in 4.4 kb 

band, with AscI in 3.3 and 1.1 kb bands and the digestion with EcoRI and AscI together 

resulted three bands with 3.1, 1.1 and 0.2 kb Figure 4.4.
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Figure 4.4- Confirmation of marker ligation in the plasmid with dltA mutation.

Digestion of knockout plasmid with spectinomycin resistance cassette running in 1% agarose gel. 
Lane 2 digestion with EcoRI, lane 3 digestion with Ascl and lane 4 disgestion with EcoRI plus Ascl. 
The DNA marker used is the 1 kb plus ladder (Invitrogen™).

4.2.1.3 Transformation of S. pneumoniae TIGR4 strain

The modified fragment containing the deletion o f dltA gene with spectinomycin resistance 

cassette was amplified by PCR out o f the plasm id using the primer pair dltA Amp For and 

dltA Amp Rev (Table 2.2). Following purification, the fragments were used to transform 

the S. pneumoniae TIGR4 strain by homologous recombination (Figure 4.5). The mutants 

were selected by growing on blood plates w ith 100 /xg/ml o f spectinomycin. The successful 

replacement o f dltA gene with the spectinomycin resistance cassette in S. pneumoniae 

TIGR4, was confirmed by PCR (Figure 4.6). In one reaction the amplification o f dltA gene 

was done using the primers dltA Amp For and dltA Amp Rev (Table 2.2) which amplified 

a 1.6 kb fragment in the TIGR4 wild-type and 1.5 kb in TIGR4 M ltA  strain, a second 

reaction using the internal primers dltA For and dltA Rev (Table 2.2) for amplification o f 

the region modified which amplified a 430 bp fragment in wild-type strain o f dltA gene, 

and a third reaction, using the primers Spec up and Spec dn (Table 2.2) to amplify the 

spectinomycin resistance cassette in TIGR4 M ltA  strain. The mutation was also confirmed 

by nucleotide sequencing.
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\d l lA

Figure 4.5- Organization of dit genes in S. pneumoniae and disruption by spectinomycin 
resistance gene insertion.

The dit operon of S. pneumoniae was disrupted by replacing the dltA gene with the spectinomycin 
resistance gene spec as shown. The spec gene and PCR fragments of dltA gene were cloned to 
produce the integration vector pPCR-ScriptAd/M and used to transform S. pneumoniae TIGR4  
strain.

12,000

1.5 kb3,000
1.1 kb

2,000
1,650

0.5 kb1,000

Figure 4.6- Confirmation of dltA deletion in S. pneumoniae TIGR4 strain.

PCR reactions for confirmation of dltA knockout running in 1% agarose gel. Amplification of dltA 
gene lane 2 TIGR4 wild-type and lanes 3 and 4 TIGR4 àdItA (A); amplification of internal segment 
of dltA gene, lane 2 TIGR4 wild-type and lanes 3 and 4 TIGR4 AdltA (B); amplification of 
spectinomycin cassette, lane 2 TIGR4 wild-type and lanes 3 and 4 TIGR4 AdltA (C). The DNA 
marker used is the 1 kb plus ladder (Invitrogen™).
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4.3 In vitro analysis

4.3.1 Growth m easurem ents of dltA mutants by optical density

The effect of the dltA mutation on the growth of S. pneumoniae at different temperatures 

was studied. Cultures of the àdltA mutants and the wild-types grown in BHI broth at 37 ‘’C 

were monitored. Ix 10*̂  CFU/ml of each strain was used to inoculate BHI and incubated at 

the indicated temperatures. At 1-hour intervals, samples were withdrawn to measure the 

optical density at ODeoonm- The growth of ùŝ dltA at ?>TC was reduced compared to that of 

the wild-type. This difference was in growth rate and in total growth measured by optical 

density. The TIGR4 M ltA  in comparison to the wild-type undergoes autolysis immediately 

after reaching stationary phase (Figure 4.7). At 40°C the mutant did not grow, revealing 

this high temperature has a great effect in TIGR4 M ltA  strain (Figure 4.9).

4.3.2 Growth m easurem ents of dltA mutants by viable counting

To confirm the growth trend in optical measurement and the begimiing of autolysis, viable 

count of TIGR4 wild-type were compared to their respective M ltA  mutants at 2-hour 

intervals up to 12 hours during growth in BHI broth. No significant differences were 

observed at 37®C, both strains tended to undergo autolysis after the 8 hours, suggesting that 

the mutation does not interfere in the growth of the bacteria (Figure 4.8). However, in 

microscopy analysis (section 4.3.3) we observed a variation in moiphology between the 

wild-type and M ltA  mutant as the emergence of long chains of bacteria cells in the mutant. 

Because the viable count is measured as colony forming unit (CFU) the formation of these 

long chains makes a direct comparison with the gi'owth curve difficult. At 40®C the results 

reflected the optical density measurements. A significant reduction of the cell viability was 

observed in the TIGR4 M ltA  strain, indicating that the mutant does not survive at higher 

temperatures (Figure 4.10).
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Figure 4.7- Comparison growth curves of TIGR4 wi id-type and AdltA strains at 37 ®C.

10® CFU/ml of each strain were inoculated in 20 mi of prewarmed BHI and incubated at 37 °C. 1 ml 
of sample were taken at 60 min-intervals to measured the optical density at 600nm.
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Figure 4.8- Comparison of the in vitro growth of TIGR4 wild-type and AdltA strains at 37°C.

10® CFU/ml of each strain were inoculated In 20 mi of prewarmed BHI and incubated 37°C. 
Samples were taken at 2 hours-intervals to measured the viable bacterial count on blood plates.
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Figure 4.9- Comparison growth curves of TIGR4 wild-type and AdltA strains at 40 “C.

10® CFU/ml of each strain were Inoculated in 20 ml of prewarmed BHI and incubated at 40 °C. 1 ml 
of sample were taken at 60 min-intervals to measured the optical density at BOOnm.
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Figure 4.10- Comparison of the in vitro growth of TIGR4 wild-type and AdltA strains at 40®C.

10® CFU/ml of each strain were inoculated In 20 ml of prewarmed BHI and incubated 40°C. 
Samples were taken at 2 hours-lntervals to measured the viable bacterial count on blood plates.

4.3.3 Effect of dItA deletion in m orphoiogy

The difference observed in optical density after stationary phase between the TIGR4 wild- 

type and AdltA strains, apparently not related with autolysis, suggests that differences in 

morphology o f the cell may have interfered with optical density measurements. Therefore, 

the TIGR4 wild-type and the AdltA mutant were examined by light microscopy in early- 

stationary phase BHI broth and overnight blood plate cultures. The Quellung reaction also
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was used to observe differences in strains layer surface (Figure 4.11). This reaction creates 

a swelling of the capsule surrounding a bacterium as a result of interaction with 

anticapsular antibody, consequently the capsule becomes more refractile and conspicuous. 

No changes were observed in surface of AdltA mutants compared with wild-type, however 

there was visible emergence of long chains of bacterial cells in AdltA mutant in both types 

of cultures while no chains more that 6 organisms were observed in the wild-type cultures.

Figure 4.11- Effect of dItA deletion on the morphology of the S. pneumoniae.

TIGR4 AdltA and wild-type strains were grown to early-stationary phase on BHI or on blood plates 
and morphology observed in light microscopic. TIGR4 wild-type grown in BHI culture and examined 
through quellung reaction with antiserum type 4 (A); TIGR4 AdltA grown in BHI culture and 
examined through quellung reaction with antiserum type 4 (B); TIGR4 wild-type grown on blood 
plates (C); TIGR4 AdltA grown on blood plates (D). Magnification x1000.
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4,3.4 Effect of pH on growth initiation

The effect of the dltA deletion on the ability to grow at different pHs were studied. In vitro 

growth of TIGR4 wild-type and their LdltA mutant was performed in BHI at 2>TC in an pH 

range between 6.0-7.5. The TIGR4 iŜ dltA strain was less acid tolerant than the wild-type 

strain. The data in Figure 4.12 showed that the mutant was unable to initiate growth with 

pH of 6.0. hi cultures at pH6.5 the growth is highly reduced in M it A mutant, initiating the 

process of growing after 8 houis of incubation and with lower gi'owth rate. At pH below

6.0 both strains did not grown.
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Figure 4.12- Comparison of acid sensitive in vitro growth of TIGR4 wild-type and AdltA 
strains.

10® CFU/ml of TIGR4 wild-type and their AdltA mutant was inoculated in 20 ml of BHI at different 
values of pH, at 37°C. Optical density was measured at 600nm in intervals of 1 hour.
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4.3.5 Effect of antimicrobial peptides

The minimal inhibitory concentrations (MIC) of antimicrobial peptides, that cause 

membrane-damage, were determined for the S. pneumoniae wild-type and AdltA mutant. 

The MIC for cationic anitimicrobial peptides were determined using a broth microdilution 

assay modified from the method of Amsterdam (Amsterdam, 1996), and the was taken as 

the lowest concentration o f antimicrobial peptide that reduced growth more than 50%.

The mutant was more sensitive to nisin and Magainin II, positive net charge peptides, than 

the wild-type. The inhibitory concentration of these antimicrobial peptides was 8 and 2- 

fold higher in wild-type than in AdltA strain respectively. No difference was observed 

using gramicidin D, peptide with a neutral net charge (Table 4.1), The increased sensitivity 

of dit mutants seems related to cationic peptides, since no considerable change were 

observed in the inhibitory concentrations of the neutral peptide gramicidin D, however no 

changes were observed in other cationic peptides, as indolicidin, cecropin, defensin HNPl- 

2 and colistin, indicating that cationic properties are not sufficient for activity of a peptide 

against the TIGR4 AdltA mutant.

Table 4.1- Activity of antimicrobial peptides against TIGR4 wild-type and AdltA mutant.

Minimal inhibitory concentration against (p g/ml)

Antimicrobial peptide Net charge TIGR4 wt AdltA

Nisin +3 12.5 1.56

Gramicidin D 0 25 25

Indolicidin +4 1,56 1,56

Magainin II +4 12,5 6,25

Cecropin B +5 > 100 > 100

Defensin HNP1 -2 +2/4-3 >50 >50

Colistin +5 >200 >200
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4.4 In vivo analysis

4.4.1 Intranasal infection

DltA plays an import role in virulence of some Gram-positive bacteria. Significant 

attenuation in vimlence of dltA mutants was observed in S. agalactiae (Poyart et a l,  2003), 

in S. aureus (Kristian et a l,  2003), and L. monocytogenes (Abachin et a l, 2002). In this 

study the role of DltA in virulence of S, pneumoniae TIGR4 strain was studied. In the 

pneumonia model, mice were infected with 1 x 1 0 ^  CFU intranasally with TIGR4 wild- 

type and IsdltA strains and the development of symptoms was monitored. No statistical 

significant difference was observed in survival of mice between wild-type and their 

isogenic mutant /\dltA (Figure 4.13). However, mice infected with TIGR4 M ltA  mutant 

did not show symptoms of disease, suggesting than the mutation in S. pneumoniae TIGR4 

induces less inflammation during infection.
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Figure 4.13- Survival of mice following intranasal infection with TIGR4 wild-type and LdîtA 
strains.

Numbers of 5 mice were infected intranasally with 10® CPU/mouse. In survival data, no significant 
difference was observed between M ltA  and TIGR4. Done in collaboration with Dr. Alison Kerr.
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4.4.2 Bacteriological investigation

The bacterial loads of TIGR4 AdltA mutant compared to the wild-type in the lung airways, 

lung tissue and blood were studied following 24h post-intranasal infection. No difference 

in bacterial counts was observed in bronchio-alveolar lavage fluid in both strains. Slight 

differences in the bacterial counts recovered from homogenized lungs were observed. The 

number of bacteria recovered from the blood was also reduced in the A^/M-infected mice 

however in both, the reduction did not reveal statistically significant differences (Figure 

4.14).
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Figure 4.14- Bacterial loads of TIGR4 wild-type and AdltA strains after intranasal infection.

Bacterial loads In bronchio-alveolar lavage fluid (BALF), homogenized lungs (lungs), and blood 
after 24 hours upon intranasal infection with 10® CFU. Done in collaboration with Dr. Alison Kerr.
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The cell wall of the Gram-positive bacterium is characterized by macromolecular 

assemblies, of cross-linked peptidoglycan, polyanionic teichoic acids, and surface proteins 

that function within this envelope. It is essential for survival, shape, and integrity 

(Baddiley, 1972, 1989; Weidel and Pelzer, 1964). Teichoic acids include the wall teichoic 

acids (WTA), which are covalently linked to the peptidoglycan; and the lipoteichoic acids 

(LTAs), which are polyphosphoglycerol substituted with a D-alanyl (D-Ala) ester or a 

glycosyl residue and anchored in the membrane by a terminal glycolipid moiety (Fischer, 

1988; Fischer et a l,  1990). The highly charged teichoic acids are essential for viability of 

Gram-positive bacteria and seem to be involved in the control of cell shape, autolytic 

enzymes, and magnesium ion concentration within the cell envelope (Bierbaum and Sahl, 

1987; Pooley and Karamata, 1994). The D-alanylation of LTA allows Gram-positive 

bacteria to modulate their surface chai'ge, regulate ligand binding and control the 

electromechanical properties of the cell wall. Genetic studies of the biosynthesis of LTA in 

various Gram-positive bacteria demonstrated that the incorporation of D-Ala residues 

requires the activity of four gene products (DltA, DltB, DltC and DltD), whose products 

are highly homologous to those encoded by the dit opérons of various Gram-positive 

bacteria characterized so far (Abachin et a l,  2002; Boyd et a l,  2000; Clemans et a l,  1999; 

Debabov et a l, 2000; Neuhaus et a l,  1996; Perego et a l,  1995; Peschel et a l, 1999; 

Poyart et a l,  2001).

dit operon  and virulence

The dit operon plays an import role in virulence of some Gram-positive bacteria. 

Significant attenuation in vimlence of dltA mutants was observed in S. agalactiae in 

several animal experiment models, showing that the incorporation of D-Ala residues into 

the LTA is important for the vimlence of this bacterium (Poyart et a l, 2003). The 

importance of incorporation of D-Ala residues into the LTAs in vimlence also was 

observed in L, monocytogenes, where a dltA mutant was eliminated more rapidly from the 

blood, liver and spleen than the wild-type strain (Abachin et a l,  2002). Furthennore, 

Kristian and co-workers (Kristian et a l, 2003) showed the importance of D-alanylation of 

teichoic acids for survival of S. aureus in vivo in a mouse tissue cage infection model.

Very little is known about the characterization and the role of dit operon in S. pneumoniae. 

Although no D-alanylation of teichoic acids has been observed in S. pneumoniae (Fischer, 

1997), it is curious that the both genome sequences of S. pneumoniae R6 (Hoskins et a l, 

2001) and TIGR4 (Tettelin et a l, 2001) contain the dit operon that, in other Gram-positive 

bacteria encodes enzymes involved in teichoic acid modification. Furthermore, the dit
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operon is expressed in certain media and activated in certain points of growth (Mascher et 

a l, 2003). Here, we showed by microarray and qRT-PCR analysis that the dit operon is 

activated in BHI broth during mid-log phase. The regulation of the level of transcription of 

the dit operon was also observed to be growth-phase dependent in many others Gram- 

positive bacteria. In L. monocytogenes and B. subtilis the dit operon is activated during 

late-log phase of growth (Abachin et a l,  2002; Perego et a l,  1995). hi S, mutans the 

maximal expression of the dit genes occurs during the mid-log phase of growth when the 

medium contains carbohydrates internalized via the phosphoenolpyruvate 

phosphotransferase system (PTS) whereas it is constitutively expressed during all stages of 

growth in medium containing non-PTS sugars (Spatafora et a l, 1999) while, in S. 

agalactiae, the dit operon is maximal activated during the exponential phase of growth and 

is regulated by a two-component regulatory system when the amount of D-Ala 

incorporated into the LTAs decreases (Poyart et a l, 2001). Furthermore, Orihuela an co­

workers (Orihuela et a l, 2004) observed enhanced expression of the dit operon dming 

epithelial cell contact, indicating enhanced addition of and D-alanine to teichoic acids. 

These findings indieates that is possible that the failure to detect D-alanylation of teichoic 

acids by Fischer (Fischer, 1997) is related to analyzing cells grown under conditions where 

the dit operon is not active, and presumably the dit operon can play an important role in 

virulence of S. pneumoniae.

Poyart and co-workers discovered two regulatory genes, dltR and dltS, upstream of the dit 

operon in S. agalactiae (Poyart et a l, 2001). These genes encode putative regulatoiy and 

sensor proteins of a two-component regulatory system. This TCS modulates expression of 

the operon and would appear to sense an environmental or external signal related to the 

absence of D-alanyl esters in LTA. In S. pneumoniae R6 strain, Mascher an co-workers 

had identified the dit operon as a putative CiaR target region (Mascher et a l, 2003), on the 

other hand, in this present study we had shown that the dit operon is down-regulated in 

TIGR4 strain canydng a deletion of the response regulator o f the TCS06. These findings 

suggest that both TCS potentially regulated directly or indirectly the dit operon. In the 

present study, we investigated the role of the DltA in the phenotype of the TIGR4 Arr06 

mutant.

The role of DltA on virulence of S. pneumoniae in TIGR4 strain, using the pneumonia 

model of infection was studied. Previous studies identified the dltA and dltB genes as 

virulence factors of the pneumococcus in an STM screen (Hava and Camilli, 2002). Here, 

we shown that mice infected with AdltA mutant survived longer than the mice infect with 

wild-type. However, the survival rates between both strains was not statistically
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significant. Here, we have shown that RR06 seems important for the ability of bacteria 

translocate to the lungs and blood. However, in vivo bacteriological investigation using the 

TIGR4 AdltA mutant strain does not show statically significant reduction of the bacteria in 

the lungs and blood. These preliminaries experiments indicate that dit operon is not 

particularly important for the vimlence of S, pneumoniae using a small number of animals. 

The use of a large number of mice per experiment would possibly show a significant 

difference in attenuation of dltA mutant.

Effect of dit operon on in vitro grow th

The dltA genes of S. pneumoniae, B. subtilis, S. aureus, L. monocytogenes, S. agalactiae 

and S, mutans are similar in sequence and organization. Studies in L. casei have 

demonstrated a role of DltA as a D-alanine-D-alanyl canier protein ligase, which activates 

D-alanine by hydrolysis of ATP and transfers it to the phosphopantetheine cofactor of a 

specific D-alanine carrier protein, which is encoded by dltC (Debabov et ah, 1996; Heaton 

and Neuhaus, 1992). hi this study, we investigated the importance of dltA on the growth of 

S. pneumoniae TIGR4 strain at standard and higher temperatures, the sensitivity to 

antimicrobial peptides and to acid tolerance. Furthermore, the effect of a dltA deletion in 

morphology of the bacteria was observed.

The growth rate of TIGR4 AdltA mutant compared with wild-type was reduced at 3TC  and 

the mutant undeiwent autolysis immediately after reaching the stationary phase. However, 

in viable counting measurement no differences were observed after stationary phase 

between both strains. However, due to the differences in morphology namely, the 

emergence of long chains of bacteria of cells in the TIGR4 AdltA, it is difficult to compare 

directly the growth rate with the viable counting measurement. Furthennore, the mutation 

revealed has a great effect in growth at higher temperatures, the TIGR4 AdltA did not grow 

at 40®C, a similar effect in growth was found in TIGR4 Arr06 mutant.

The AdltA mutant, derived from the wild-type strain TIGR4 displayed an increased 

susceptibility to antimicrobial peptides nisin and magainin II (positive net charge peptides), 

while no difference was observed using gramicidin D, a neutral net charge, indicating an 

increased sensitivity of TIGR4 AdltA to cationic peptides. Susceptibility of other Gram- 

positive dit mutans to antimicrobial peptides is clear related with positive net charge 

(Peschel et a l, 1999; Poyart et a l, 2003). However, in the present study, no changes in 

susceptibility of AdltA mutant was observed in positive peptides indolicidin, cecropin B, 

colistin and the human defensins HNP 1-2, not allowing confirmation that the increased
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sensitivity is directly related to altered electrostatic interaction of the peptides with the 

mutant cells.

The study of the acid-sensitive phenotype of TIGR4 AdltA was based on the importance of 

D-alanylation of LTAs in the growth and physiology of Gram-positive bacteria (Archibald 

et a i, 1973; Boyd et a l, 2000; Fischer et a l, 1981; Koch et a l,  1982; Perego et a l, 1995; 

Wecke et a l, 1996). The link between the theoretical D-alanylation of teichoic acids in S. 

pneumoniae and acid sensitivity was done by inactivation of dltA of the dit operon in strain 

TIGR4. The mutant was shown to be acid-sensitive displaying a defective acid tolerance 

response, possibly due to an increased permeability protons compared to wild-type. The 

TIGR4 AdltA was unable to initiate growth below pH 6.5 and presented a dramatic 

reduction in growth at pH 7.0-6.5 compared with wild-type. Unexpectedly, transcriptional 

analysis of the short and long-term acid tolerance response (pH 6.0) did not show any 

significant changes in all four genes of dit operon (Martin-Galiano et a l, 2005). These 

findings again, can be related by the fact dit operon is expressed only in certain media 

cultures and activated in certain points of growth.

Inactivation of genes in the dit operon in various Gram-positive bacteria shows an anay of 

phenotypic changes in moiphology of bacteria. Inactivation of the dltA gene of S. gordonii 

(Clemans et a l,  1999) and dltC gene in S. mutans (Boyd et a l,  2000) resulted in a mutant 

with multiple septation sites and exhibited a smooth and unstructured surface with a 

thickened, cap-like cell wall, while, in S. agalactiae dltA mutants formed visible clumps 

and a significant number of the cells possessed an aberrant morphology (Poyart et a l, 

2001; Poyait et a l,  2003). hi this study, no differences in morphology was observed in 

TIGR4 AdltA mutants compared with wild-type, however, by optical microscopy long 

chains of bacterial cells were observed in the AdltA mutant that were not apparent in the 

wild-type.

Summary

The dit operon of Gram-positive bacteria comprises four genes {dltA, dltB, dltC, and dltD) 

that catalyze the incorporation of D-alanine residues into the LTAs. In this work, we 

demonstrated that DltA is important for growth of S. pneumoniae and is essential when the 

bacterium is subjected to higher temperatures. The DltA mutant was shown to be defective 

in mounting an effective acid tolerance response and sensitive to antimicrobial peptides 

nisin and magainin H. The mutation seems to have influence in morphology of S. 

pneumoniae, resulting in the occurrence of long chains of bacterial cells in AdltA. The
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DltA seems not to be responsible for the TIGR4 Arr06 mutant in vivo phenotype, however 

like the Arr06 mutant the TIGR4 AdltA mutant had a reduction in the growth rate at 37”C 

compared with wild-type, and the mutation has a large effect when the bacterium was 

cultured at 40”C.
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5.1 Contribution of RR09 in pneumococcal virulence

The pneumococcal genome contains 13 putative complete TCS and one orphan response 

regulator (Lange et a l, 1999). Eight of the pneumococcal TCS have been shown to be 

important for virulence (Paterson et a l,  2006; Throup et a l, 2000). Recent studies in a 

murine model of infection have demonstrated that TCS09 of S. pneumoniae is virulence- 

associated. However the contribution of this TCS to the vimlence in the pneumococcus is 

strain dependent. While, in a D39 background an rr06 mutant is avimlent via 

intraperitoneal, intranasal, and intravenous routes of infection, the mutation of the response 

regulator in a 0100993 background results in a strain that is fully virulent intraperitoneally 

and intravenously (Blue and Mitchell, 2003). The genomic organisation of pneumococcal 

TCS HK/RR09 also referred as 488 HK/RR (Throup et a l,  2000) is shown in Figure 5.1. 

The sp0662 gene (TIGR4 annotation) encodes a 63 kDa membrane-associated sensory 

protein called a histidine kinase (HK09), and the sp0661 (TIGR4 annotation) encodes a 28 

kDa cognate cytosolic DNA-binding response regulator protein, which acts as a 

transcriptional regulator (RR09). Amino acid sequence homology suggests that the sensory 

domain is related to the extra-cellular part of McpA and McpB of B. subtilis (Lange et a l,

1999). These proteins are believed to be involved in the control o f chemotaxis through 

sensing of environmental nutrient concentrations The extra-cellular stimulus of TCS09, 

however, is as yet unknown.

The present study evaluated the role of RR09 in the vimlence of S. pneumoniae TIGR4 

strain using a murine model of infection. This study investigated the transcriptional 

changes in pneumococcal mutants lacking the response regulator of TCS09 {Arr09) by 

microarray and qRT-PCR analysis of three strains, D39, TIGR4 and 0100993, that may 

contribute to the in vivo phenotype. Furthermore, the gene sp0063, encoding a putative HC 

component of an PTS system, was investigated in the pneumococcus D39 strain to evaluate 

the role in phenotype of Arr09 mutant. This transmembrane protein together with the 

functional domains DA, DB catalyzes simultaneous the translocation and phosphorylation 

of a particular carbohydrate (Kotrba et a l,  2001).
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Figure 5.1- Genomic organization of TCS hklrr09.

The TCS hklrrOQ genes is composed by a response regulator (sp2193) and a sensor histidine 
kinase {sp2192). The genes names use the TIGR4 gene annotation (http://www.tigr.org).

5.1.1 C onstructions of pneum ococcal mutants

The rr09 gene of pneumococcal strains TIGR4 and D39 were disrupted by introduction of 

an erythromycin resistance cassette into the gene. The fragment containing the mutation 

was amplified by PCR from chromosomal DNA of the strain 0100993 (Throup et a i,

2000) using the primers TCS09-For and TC09S-Rev (Table 2.2). Following purification 

the fragments were used to transform the S. pneumoniae strains by homologous 

recombination (Figure 3.2) and the final mutants were selected by grown on erythromycin.

5.1.2 Confirmation of mutation

The allelic replacement of rr09 with a constitutive erythromycin resistance cassette was 

originally carried out in strain 0100993 by Throup et al. (Throup et a i, 2000). The 

erythromycin resistance cassette, ~1 kb, was inserted in the target gene {rr09) -0.73 kb. 

This was amplified by PCR and used to transform the pneumococcal strains. The 

successful replacement of the wild-type rr09 gene with the erythromycin resistance 

cassette in S. pneumoniae TIGR4 and D39 was confirmed by PCR. Reactions with 

erythromycin cassette specific primers (ErmAM-For and ErmAM-Rev) and primers 

specific to genomic regions lying outside the insertion region (TCS09-For and TCS09- 

Rev) (Table 2.2) were carried out to confirm correct insertion of the erythromycin 

resistance cassette into the rr09 gene of both mutants (Figure 5.2). As expected, no PCR 

amplicons were obtained for any of the wild-type strains, lanes 2, 4, 8, and 10) while an 

amplicon of approximately 1.5 kb was obtained from TIGR4 and D39 Arr09 mutants using 

primers TCS09-For and ErmAM-Rev, lanes 3 and 5 and approximately 1.5 kb using 

primers ErmAM-For and TCS06-Rev lanes 9 and 11). These results confirmed successful 

allelic replacement of the rr09 gene by the erythromycin resistance cassette in the two 

mutants. The mutation also was confirmed by sequencing.
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Figure 5.2- Alleiic replacement confirmation of rr09 with a constitutive erythromycin 
resistance cassette.

Correct replacement of rr09 by erythromycin resistance cassette, in TIGR4 and D39 was confirmed 
using primers TCS06-For and ErmAM-Rev (lanes 2-6) and primers ErmAM-For and TCS06-Rev 
(lanes 8-12). Genomic DNA from the following strains were used as templates; TIGR4 wild-type 
(lanes 2 and 8), TIGR4 Arr09 mutant (lanes 3 and 9), D39 wild-type (lanes 4 and 10), D39 rr09 
mutant (lanes 5 and 11). Negative controls are shown in lanes 6 and 12 The DNA ladder marker 
used was the 1 kb plus ladder (Promega).

5.2 In vivo analysis

5.2.1 Intranasal infection

Previous studies indicated a strain-specific role for TCS09 in pneumococcal virulence 

(Blue and Mitchell, 2003). To extend these studies, rr09 was deleted in S. pneumoniae 

strain TIGR4 by allelic replacement, and the resulting TIGR Arr09 mutant was compared 

to its wild-type in a murine pneumonia model. Mice were infected with 1 x 10  ̂ CFU 

intranasally with TIGR4 wild-type and Arr09 strains and the development of symptoms 

was monitored. Mice infected with TIGR4 Arr09 were found to have significantly longer 

survival times than mice infected with the parental strain (Figure 5.3). The mice infected 

with wild-type did not survive more than 30 hours after inoculation while, 80% of the mice 

infect with Arr09 succumbed after 48 hours and the remained after 96 hours.
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Figure 5.3- Survival of mice following intranasai infection with TIGR4 wiid-type and Arr09 
strains.

Numbers of 5 mice were infected intranasally with 10® CPU/mouse. * P  < 0.01 for longer survival of 
TIGR4 ArrOQ compared to TIGR4 wild-type. Done in collaboration with Dr. Alison Kerr.

5.2.2 Bacteriological investigation

The bacteria loads of TIGR4 Arr09 mutant were compared to the wild-type in the lung 

airways, lung tissue and blood 24h post-intranasal infection. A significant reduction in 

bacterial load was observed in bronchio-alveolar lavage fluid compared to the wild-type 

strain (p < 0.01), while a similar reduction was observed for bacteria recovered from 

homogenized lungs (Figure 5.4). The number of bacteria recovered fiom the blood was 

also significantly reduced in the ArrOP-infected mice (p < 0.01; Figure 5.4).
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Figure 5.4- Bacterial loads of TIGR4 wild-type and Arr09 strains after intranasal infection.

Bacterial loads in bronchio-alveolar lavage fluid (BALF), homogenized lungs (lungs), and blood 
after 24 hours upon Intranasal Infection with 10® CFU. Done in collaboration with Dr. Alison Kerr.

5.3 Microarray analysis

To identify genes controlled by RR09, microarray analysis was performed to compare the 

transcriptome of S. pneumoniae wild-type strains TIGR4 and D39 and their isogenic 

mutant. Furthermore, the microaiTay analyses allowed identification of putative genes 

regulated by RR09 and possibly involved in the strain dependent vimlence.

The second version of the pneumococcal genome m icroanay slides designed by TIGR 

(http://www.tigi'.org) was used in this analysis. The full genome array consists of 

amplicons representing 2131 ORFs from S. pneumoniae TIGR4 strain in addition to 563 

ORFs from R6 (164) and G54 (399) strains. For each strain, two independent RNA 

preparations and a total of four array slide replicates with dyes swapped were used.

5.3.1 RNA analysis

The RNA samples were prepared from TIGR4 and D39 wild-type strains and their isogenic 

Arr09 mutants, grown in 10 ml of BHI to mid-log phase (ODeoonm of 0.6) at 37”C. Total 

RNA was isolated using Qiagen RNeasy-Midi Kit and the concentration calculated using 

the NanoDrop® ND-1000 spectrophotometer. Concentrations of total RNA between 1.0-

2.0 pg/pl were obtained for the TIGR4 Arr09 and its parent strains. The integrity and 

purification of total RNA sample were tested using the Agilent Bioanalizer. Figure 5.5 and 

Figure 5.6 illustrate the quality of total RNA from the samples used in microarrays and 

qRT-PCR analysis.
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Figure 5.5- Analysis of total RNA samples from TIGR4 wild-type and Arr09 strains used in 
TIGR microarrays.

Integrity and purity of two independent total RNA samples prepared from 10 ml of BHI cultures 
grown to mid-log phase (ODeoonm of 0.6) at 37°C using Qiagen RNeasy-Midi Kit and checked with 
Agilent 2100 Bioanalyser.
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Figure 5.6- Analysis of total RNA samples from D39 wild-type and Arr09 strains used in 
TIGR microarrays.

Integrity and purity of two independent total RNA samples prepared from 10 ml of BHI cultures 
grown to mid-log phase (ODeoonm of 0.6) at 37°C using Qiagen RNeasy-Midi Kit and checked with 
Agilent 2100 Bioanalyser.

192



TC S 09 Results

5.3.2 Comparison of TIGR4 and D39

Microarray comparisons of the transcription profiles of the TIGR4 and D39 ^rr09  and 

their respective wild-type was used to identify the genes controlled by RR09. The 

relationships of the mean ratio of hybridizations intensities between the wild-types 

(control), and the [Srr09 mutant strains (test) are shown in scatter plots (Figure 5.7).
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Figure 5.7- Scatter plot comparing the gene expression between Arr09 and wild-type strains.

cDNA labelled with Cy3 and Cy5 were hybridized in TIGR arrays slides and analysed in 
Genespring™. The scatter plot shows the gene expression intensities between the wild-type 
(control strain) and Arr09 (test strain). Hybridization intensities in TIGR4 strains (A), and D39 
strains (B). Blue spots (bellow the diagonal lines) indicate the genes are down-regulated and the 
red spots (above the diagonal lines) indicates the genes up-regulated in Arr09 compared to wild- 
type. The yellow spots (inside the diagonal lines) describe the genes without significant variation 
between theTIGR4 àrr09 and the wild-type.
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Whereas most of the pneumococcal genes remained unaltered, showing comparable 

expression levels between the wild-type and the ArrOP strains, approximately 3.7% of the 

genes were shown to have significant differences in expression levels between the wild- 

types and ArrOP mutants. Twenty-three genes were found to be up-regulated in TIGR4 

ArrPP and fifteen genes down regulated, while in D39 àrr09 ten genes were found to be 

up-regulated and thirty-six genes down regulated. The up and down-regulated genes were

selected if they demonstrated a two-fold difference in signal intensity between wild-types ^
;

and ArrPP mutants and if this intensity was found to be statistically significant (P< 0.05). * J

Little overlap was observed in the set of genes controlled by RR09 in D39 and TIGR, with 

a few notable exceptions. Two genes, encoding a putative lactose phosphotransferase I
system repressor (sp0875) and a l-phosphofinrctokinase (sp0876) showed an increased 

transcription level in both D39 and TIGR4 Arr09. Furthermore, the gene encoding the 

virulence factor PspA (sp0117, TIGR annotation; spr0121 R6 annotation) was found to be | |  

down-regulated in both Arr09 mutants.

5.3.2.1 Strain-specific regulation by RR09: TIGR4

The altered genes from the DNA microarray experiments, regulated by RR09 in TIGR4 

strain, are listed in Table 5.1 (up-regulated genes) and Table 5.2 (down-regulated genes).

38 genes showed a significant difference in expression, twenty-three genes were up-

regulated in TIGR4 ArrPP, such as the genes located on the rlrA pathogenicity islet (Figure

5.8). This 12-kb islet, which is not present on the D39 genome (Tettelin et a l, 2001), codes 

for the transcriptional activator RlrA, three siuface proteins, and three putative sortases and 

is required for colonization and lung infection, but dispensable for systemic infection 

(Hava et a l, 2003a). The rlrA pathogenicity islet was recently reported to encode a pilus- 

like structure on the cell surface of the pneumococcus, influencing the virulence and host 

inflammatory responses (Barocchi et a l, 2006). Increased expression of a cluster of genes v 

predicted to be involved in purine metabolism {sp0044-sp0056) was also observed (Figure

5.9). ' I
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Table 5.1 - Up-regulated genes in TIGR4 Arr09 compared with its parental strain.

Genes Gene
symbol

Mean
intensity
ratio^^

/>-value^^ AnnotatioiP^

sp0044 purC 4.0 2.31E-04 Phosphoribosylaminoimidazole-succinocarboxamide
synthase

sp0045 4.4 l.OlE-04 Phosphoribosylfonnylglycinamidine synthase, putative
sp0046 purF 10.7 1.30E-04 Amidophcsphoribosyltransferase
sp0047 purM 4.4 2.21E-04 Phosphoribosylfonnylglycinamide cyclo-ligase
sp0048 purN 5.6 1.44E-04 Phosphoribosylglycmamide formyltransferase
spOOSO purH 6.0 5.00E-05 Phosphonbosylaminoimidazolecarboxainide 

formyltiansferase/IMP cyclohydiolase
spOOSl purD 7.4 1.07E-05 Phosphoribosylamine—glycine ligase
spOOSS purE 5.9 2.03E-05 Phosphoribosylaminoimidazole carboxylase, catalytic 

subunit
sp0054 purK 9.6 2.81E-05 Phosphoribosylaminoimidazole carboxylase, atpase 

subunit
sp0056 purB 2.9 3.59E-05 Adenylosuccinate lyase
sp0287 6.1 7.24E-05 Xanthine/uracil permease family protein
sp0461 rlrA 2.5 3.81E-02 Transcriptional regulator, putative
sp0462 rrgA 4.9 3.16E-04 Cell Avail surface anchor family protein
sp0463 rrgB 4.0 2.29E-04 Cell Avail surface anchor family protein
sp0464 rrgC 5.0 3.70E-04 Cell Avail surface anchor family protein
sp0466 srtB 2.8 4.60E-04 Sortase, putative
sp0845 2.1 1.95E-04 Lipoprotein
sp0875 lacL 2.6 8.12E-05 Lactose phosphotransferase system repressor
sp0876 2.1 2.61E-04 1-phosphofhictokinase, putative
spl229 fhs 2.0 6.23E-04 Formate—tetrahydi'ofblate ligase
spl249 2.5 5.77E-04 Conserved hypothetical protein
spl587 5.4 3.33E-05 Oxalate formate antiporter
^^Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).

Ratios intensities of TIGR4 wild-type/Arr09 determined in microarray experiments. The value 
represents the mean intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P-value represents the mean P-value calculated from individual Wests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.

Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 5.8- Genes located on the rlrA pathogenicity islet up-regulated in TIGR4 Arr09.

Expression of rlrA pathogenicity islet associate genes up-regulated in TIGR4 Arr09 compared with 
wild-type strain. Values are determined by microarray hybridization of two independent RNA 
samples and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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Figure 5.9- Genes up-regulated in TIGR4 Arr09 associated with purine metabolism.

Expression of purines metabolism associate proteins up-regulated in TIGR4 àrrOQ compared with 
wild-type strain. Values are determined by microarray hybridization of two independent RNA 
samples and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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As expected the rr09 gene was down-regulated, the signal fluorescence in (\rr09 remained 

similar to the background signal. Of interest was the spO ll?  down-regulated in Arr09 

mutant, than encodes the virulence factor PspA. This pneumococcal virulence factor 

interferes with the complement system and functions as a specific receptor for lactoferrin 

(Hammerschmidt et al., 1999; Tu et al., 1999). A recent study showed that pspA is also 

regulated by the VicRK two-component system (TCS 02) (Ng et al., 2005). Other 

interesting genes were associate with a sugar ABC transporter (spl895-spl997) (Figure

5.10) as well as various stress-response genes (hrcA, grpE, dnaK, and dnaJ) (Figure 5.11).

Table 5.2- Down-regulated genes In T1GR4 Arr09 compared with its parental strain.

Genes’̂ Gene
symbol

Mean
intensity
ratio^^

p~\aluê ^ Annotation'*^

spOllV pspA 0.40 5.26E-04 Pneumococcal surface protein A
sp0338 0.37 1.31E-02 ATP-dependent CLP protease, ATP-binding subunit, 

putative
sp0424 fabZ 0.46 1.50E-03 Hydroxymyristoyl- dehydratase
sp05I5 hrcA 0.41 4.41E-04 Heat-inducible transcription repressor HRCA
sp05I6 grpE 0.32 8.72E-04 Heat shock protein GRPE
sp0517 dnaK 0.40 1.21E-03 DnaK protein
sp0519 dnaJ 0.49 5.98E-04 DnaJ protein
sp0661 rr09 0.5 5.41E-03 DNA-binding response regulator
sp0647 0.46 4.36E-03 PTS system, IIC component, putative
sp0648 bgaA 0.29 4.48E-04 Beta-galactosidase
sp0724 0.47 1.12E-04 Hydroxyethyltliiazole kinase, putative
spl804 0.49 1.55E-02 General stress protein
spl883 0.37 1.46E-02 Dextran glucosidase DEXS, putative
spl884 0.27 2.07E-03 PTS system, IIABC components
spl895 msmG 0.41 2.30E-03 Sugar ABC transporter, permease protein
spl896 msmF 0.45 1.48E-03 Sugar ABC transporter, permease
spl897 mstnE 0.37 1.35E-03 Sugar ABC transporter, sugar-binding protein
^^Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).

Ratios intensities of TIGR4 wild-type/Arr09 determined in microarray experiments. The value 
represents the mean intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P-value represents the mean P-value calculated from individual /-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.
'^^Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 5.10- Genes down-regulated in TIGR4 ArrOP associated with sugar ABC transporter.

Expression of sugar ABC transporter proteins down-regulated in TIGR4 Arr09 compared with wild- 
type strain. Vaiues are determined by microarray hybridization of two independent RNA samples 
and are given as the geometric mean fiuorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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Figure 5.11- Genes down-regulated in TIGR4 Arr09 associated with stress-response.

Expression of stress-response associated proteins down-regulated in TIGR4 ArrOQ compared with 
wild-type strain. Values are determined by microarray hybridization of two Independent RNA 
samples and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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5.3.2 2 Strain-specific regulation by RR09: D39

The altered genes from the DNA microarrays experiments, regulated by RR09 in D39 

strain, are listed in Table 5.3 (up-regulated genes) and Table 5.4 (down-regulated genes). A 

total of 48 genes appeared to be differentially expressed between the D39 wild-type and 

Arr09 mutant strains. O f these, 10 genes were up-regulated in the D39 Arr09, included 

glnAR, encoding glutamate synthetase and its repressor, genes encoding a putative lactose 

phosphotransferase system repressor (sp0875), a 1-phosphofmctokinase (sp0876) and a 

fructose-specific phosphotransferase system (PTS IIABC) (sp0877). Furthermore, the 

expression of a gene cluster containing the pneumolysin gene (spl923) as well as several 

hypothetical ORFs {spl922~spl926) was found to be up-regulated in D39 Arr09 (Figure 

5.12).

Table 5.3- Up-regulated genes in D39 ArrOO compared with its parental strain.

Genes Gene
symbol

Mean
intensity
ratio^^

/)-valne^‘ Annotation'^^

spOSOl glnR 2.8 6.21E-03 Transcriptional regulator
sp0502 glnA 3.0 6.64E-04 Glutamine synthetase, type I
sp0875 lacR 15.1 6.71E-05 Lactose phosphotransferase system repressor
sp0876 13.4 2.28E-05 1-phosphofi.uctokinase, putative
sp0877 8.3 6.97E-04 PTS system, fructose specific IIABC components
spl922 3.4 8.15E-05 Conserved hypothetical protein
spl923 ply 4.6 2.28E-03 Pneumolysin
spl924 2.9 4.49E-04 Hypothetical protein
spl925 3.1 1.36E-02 Hypothetical protein
spl926 2.9 1.75E-04 Hypothetical protein
^^Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).

Ratios intensities of D39 wild-type/Arr09 determined in microarray experiments. The value 
represents the mean Intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P-value represents the mean P-value calculated from individual /-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.
'‘^Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 5.12- Gene cluster up-regulated in D39 Arr09.

Expression of a gene cluster containing the pneumolysin gene {sp1923) up-regulated in D39 Arr09 
compared with wild-type strain. Values are determined by microarray hybridization of two 
independent RNA samples and are given as the geometric mean fluorescence intensity values 
from four replicate hybridizations. Error bars represent ± SEM.

A total of 38 genes, including rr09, showed significantly decreased transcriptional levels in 

D39 Arr09, indicating that they are directly or indirectly activated by RR09. These 

included two putative opérons, sp0060-sp0066 (Figure 5.13) and sp0303~sp0310 (Figure 

5.14). These clusters include several genes encoding putative FTSs. These PTSs are 

involved in metabolism of sugars such as mannose, and glucose. Other putative opérons, 

sp2141-sp2144 (Figure 5.15) predicted to be involved in N-glycan degradation, and 

sp0090-sp0092 (Figure 5.16) encoding an ABC transporter were down-regulated in Arr09 

mutant. Furthermore, two genes encoding known or proposed virulence factors, PspA, and 

HtrA (Ibrahim et a l,  2004a; Sebert et a l,  2002), were down-regulated.
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Table 5.4- Down-regulated genes in D39 Arr09 compared with Its parental strain.

Genes’̂ Gene
symbol

Mean
intensity
ratio^^

p-vaiue ’ Annotation'*’

sp0057 strH 0.16 3.97E-04 Beta-N-acetylhexosaminidase
sp0060 bga 0.03 6.00E-05 Beta-galactosidase
sp0061 0.07 3.43E-04 PTS system, IIB component
sp0062 0.03 3.30E-05 PTS system, IIC component
sp0063 0.03 3.75E-05 PTS system, IID component
sp0064 0.04 S.85E-05 PTS system, IIA component
sp0065 agaS 0.19 1.83E-02 Sugar isomerase domain protein AgaS
sp0066 galM 0.12 6.80E-04 Aldose 1-epimerase
sp0090 0.25 6.69E-03 ABC transppermease protein
sp009J 0.31 1.58E-03 ABC tr ansporter, permease protein
sp0092 0.24 4.46E-02 ABC transporter, substrate-binding protein
sp0285 0,36 6.18E-03 Alcohol dehydrogenase, zinc-containing
sp0303 bglA 0,04 5.17E-03 6-phospho-beta-glucosidase
sp0305 0.09 3.59E-03 PTS system, IIB component
sp0306 0.22 9.44E-03 Transcriptional regulator putative
sp0307 0.30 4.97E-03 PTS system, IIA component
sp0308 0.21 5.40E-03 PTS system, IIA component
sp0310 0.15 1.64E-04 PTS system, IIC component
sp0368 0.22 6.46E-04 Cell Wall Surface Anchor family protein, authentic 

frameshift
sp0386 0.42 4.39E-03 Sensor histidine Kinase, Putative
sp0498 0.19 1.06E-04 Endo-beta-N-acetylglucosaminidase, putative
sp0577 0.27 3.85E-03 PTS system, beta-glucosides-specifrc IIABC 

components
sp0661 rr09 0.43 9.21E-03 DNA-binding response regulator
spI027 0.26 4.13E-03 Conserved hypothetical protein
spl695 0.22 2.13E-03 Acetyl xylan esterase, putative
spI802 0.18 6.58E-04 Hypothetical protein
sp2026 0.24 2.66E-03 Alcohol dehydrogenase, non-containing
sp2055 0.34 2.13E-04 Alcohol dehydrogenase, zinc-containing
sp2056 nagA 0.34 7.82E-04 N-acetylglucosamine-6“phosphate deacetylase 1
sp2107 malQ 0.27 2.74E-03 4-alpha-Glucanotransferase
sp2141 0.08 7.01 E-04 Glycosyl hydrolase-related protein
sp2142 0.08 2.14E-04 ROK family protein
sp2143 0.16 1.57E-02 Consei-ved hypothetical protein
sp2144 0.09 1.46E-04 Conserved hypothetical protein
sp2146 0.20 2.71E-03 Consei-ved hypothetical protehi
sp2239 htrA 0.21 1.51E-02 Serine protease
sp2240 0.21 5.45E-03 spspoJ protein
sprOI2I pspA 0.22 8.66E-04 R6 surface protein PspA precursor
^^Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).

Ratios intensities of D39 wild-type/A/r09 determined in microarray experiments. The value 
represents the mean Intensities for the four replicate experiments. Genes up-regulated with > two­
fold expression changes between the wild-type and mutant were selected.

P-value represents the mean P-value calculated from individual /-tests of intensity changes 
between the wild-type and mutant. Genes with P-value <0.05 were selected.
'’^Annotations as published in TIGR4 genome (http://www.tigr.org).
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Figure 5.13- Mannose-specific PTS IIABCD system down-regulated in D39 ArrOQ.

Expression of Mannose-specific PTS IIABC system down-regulated in D39 Arr09 compared with 
wild-type strain. Values are determined by microarray hybridization of two independent RNA 
samples and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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Figure 5.14- Glucose-specific PTS IIABC system down-regulated in D39 ArrOQ.

Expression of Mannose-specific PTS IIABC system down-regulated in D39 ArrOQ compared with 
wild-type strain. Values are determined by microarray hybridization of two independent RNA 
samples and are given as the geometric mean fluorescence Intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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Figure 5.15- Putative operon involve in N-glycan degradation down-regulated in D39 ArrOQ.

Expression of putative operon sp2141-sp2144 down-regulated in D39 ArrOQ compared with wild- 
type strain. Values are determined by microarray hybridization of two independent RNA samples 
and are given as the geometric mean fluorescence intensity values from four replicate 
hybridizations. Error bars represent ± SEM.
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Figure 5 .16-ABC transporter down-regulated in D39 ArrOQ.

Expression of ABC transporter down-regulated in D39 ArrOQ compared with wild-type strain. Values 
are determined by microarray hybridization of two independent RNA samples and are given as the 
geometric mean fluorescence intensity values from four replicate hybridizations. Error bars 
represent ± SEM.
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As for TCS06, the gene regulation of TCS09 appears to be strain-dependent. A 

comparative genomic hybridization (CGH) (see chapter 6) was done to verify the presence 

or absence of these genes regulated by rr09 in one strain background but not in the other. 

Once more, the majority of the genes altered in expression profile in microaiTay analysis of 

the TIGR4 or Arr09 strains is present in the genome background of D39 strain. The rlrA 

pathogenicity islet, up-regulated in TIGR4 Arr09, but not in D39 Arr09 strain, is absent in 

D39 genome.

Table 5.5- Genes regulated by RR09 and presence or absence of the gene by CGH in 
different strains.

Transcriptional profile  CGH
Genes’’ TIGR4 D39 TIGR4 D39
sp0044 + - + 4-

sp0045 + - + 4-

sp0046 + - + 4-

sp0047 + - + +
sp0048 + - + 4-

spOOSO + - + -
spOOSl + - + 4-

sp0053 + - + 4-

sp0054 + - + +
sp0056 + - + 4-

sp0057 - + 4- 4-

sp0060 - + 4- 4-

sp0061 - + 4 - 4-

sp0062 - + 4- 4-

sp0063 - + 4- 4-

sp0064 _ + 4 - 4-

sp0065 - 4- 4- 4-

sp0066 - + 4- +

sp0090 - + 4- 4-

sp0091 - + 4- 4-

sp0092 - + 4- 4 -

spOin + + + 4-

sp0285 - + 4- 4-

sp0287 + - 4- 4-

sp0303 - + 4- 4-

sp0305 - + 4- 4-

sp0306 - + + 4-

sp0307 - H- 4- 4-

sp0308 - + 4- 4 -

sp0310 - + 4- 4-

sp0338 + - 4- 4-

sp0368 - + 4- 4-

sp0386 - + 4- 4-

sp0424 + - 4- +
sp0461 + - 4- -
sp0462 + - 4- -
sp0463 + - 4- -
sp0464 + “ 4- -
sp0466 + - 4- -
sp0498 - + 4- 4-

sp0501 - + 4- 4-

sp0502 - + + 4-

sp0515 + - 4- 4-

sp0516 + - 4- 4-

sp0517 + - 4- 4-

sp0519 + - 4- 4-
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Table 5.5- Continuation.

Genes’’
Transcriptional profile CGH
TIGR4 D39 TIGR4 D39

sp0577 - + 4 - 4-

sp0647 + - 4- +
sp0661 + + + 4-

sp0648 + - 4- +
sp0724 + - 4- 4-

sp0845 + - 4- 4-

sp0875 + + + 4-

sp0876 + + 4- 4-

sp0877 “ + 4- 4-

spl027 - + 4- 4-

spl229 + - 4- 4-

spl249 + - 4- 4-

spI587 + - 4- 4-

spl695 - + 4- 4-

spl802 - + + 4-

spl804 + - 4- 4-

spI883 + - 4 - 4-

spl884 + - 4- +
spl895 + - 4- 4-

spl896 + - 4- 4-

spl897 + “ 4- 4-

spl922 - + 4- 4-

spl923 - + 4- 4-

spl924 - + 4- +
spl925 - 4- 4- +
spl926 - + + 4-

sp2026 - 4- 4- 4-

sp2055 - 4- + 4-

sp2056 - 4 - 4- 4-

sp2J07 - + 4- 4-

sp2141 - + 4 - 4-

sp2142 - + 4- +
sp2143 - 4 - 4- 4 -

sp2144 - 4- 4- 4-

sp2I46 - 4- 4- +
sp2239 - 4- 4- 4-

sp2240 - 4- 4- 4-

Gene designation of microarray ORFs in agreement with TIGR (http://www.tigr.org).
(+) Altered gene expression (transcriptional profile) or gene present (CGH).
{-) Unaltered gene expression (transcriptional profile) or gene absent (CGH).

5.4 Validation of microarray data

5.4.1 Quantitative Reai-Time PCR

Selected genes from microarray experiments were validated by quantitative Real-Time 

PCR (qRT-PCR) analysis performed using the relative quantification method (AACx) 

(Livak and Schmittgen, 2001). The reactions were carried out in quadruplicate reactions 

using cDNA of different strains, from two independent RNA preparations and tested with 

SYBR green. The microarray and qRT-PCR analysis strongly correlated in TIGR4 and 

D39 strains. An interesting target altered in expression profile in microaiTay analysis of the
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TIGR4 Arr09 compared with the wild-type, was the rlrA pathogenicity islet (Hava et a t,  

2003a), up-regulated in TIGR4 Arr09, Comprising a putative transeriptional regulator rlrA, 

three cell wall-anchored surface proteins {sp0462-0464) and three sortase enzymes 

[sp0466-0468). The rlrA islet was recently shown to encode the pneumococcal pilus 

(Barocchi et a t, 2006). The qRT-PCR analysis of all genes of this locus confirmed the 

strong up-regulation in Arr09 strain Figure 5.17. In this present project we also identified 

the rlrA pathogenicity islet to be up-regulated in TIGR4 Arr06 mutant compared to the 

wild-type (Figure 3.38). Both, TCS06 and TCS09 seems regulate the rlrA pathogenicity 

islet.
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Figure 5.17- Expression ratio of rlrA pathogenicity islet in TIGR4 ArrOQ compared with Its 
parental strain.

The expression ratio of rlrA pathogenicity islet in TIGR4 ArrOQ compared with wild-type strain was 
determined by microarray and qRT-PCR. The dashed line indicates the two-fold change microarray 
cut-off value for differential expression. No microarray data was obtained for sp0467 and sp0468 
genes. Expression of two control house keeping genes ddl and gyrA are shown.
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Of interest genes in qRT-PCR analysis for D39 strains were the putative opérons sp0060~ 

sp0066 encoding a putative (3-galactosidase, a mannose-specific PTS, a sugar isomerase, 

and an aldose 1-epimerase (Figure 5.19), and the sp2141-sp2142 involved in N-glycan 

degradation (Figure 5.18). The putative operon sp0060-sp0066 was identified to be down- 

regulated in strain D39 Arr09 for the first time in preliminary micro array studies done in 

our laboratory using array slides designed and provided by BpG@S (Blue, 2002). In both 

putative opérons the expression of all genes were highly reduced in D39 Arr09 mutant, 

confirming the previous microarray analysis.

qRT-PCR
Microarray

^2141 sp2142 sp2143 sp2144 ddl gyrA

Figure 5.18- Expression ratio sp2141-sp2142 In D39 ArrOQ compared to parental strain.

The expression ratio of putative operon sp2141-sp2144 in D39 ArrOQ compared with wild-type 
strain was determined by microarray and qRT-PCR. The dashed line indicates the two-fold change 
microarray cut-off value for differential expression. Expression of two control house keeping genes 
ddl and gyrA are shown.
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The contribution of a RR09 to the virulence of S. pneumoniae is strain dependent. The 

microarray analysis showed an expression reduction in the putative operon sp0060-sp0066 

as well as the gene that encodes the virulence factor HtrA only in the D39 Arr09 stiain. 

Furthermore, the vimlence factor PspA, was found to be down-regulated in D39 as well in 

TIGR4 but not in 0100993 strain (Figure 5.20). Although the virulence factor pspA is 

down-regulated in both D39 and TIGR4 Arr09 mutant strains, its contribution in virulence 

of the rr09 mutants seems to be strain-dependent. The high attenuation in the virulence of 

the D39 Arr09 mutant in a murine model of infection compared to TIGR4 can be explained 

by the fact that pspA  is down-regulated approximately four times more in D39 than in 

TIGR4 Arr09 mutant strains. Furthermore, the down-regulation o f the virulence factor htrA 

and others genes in D39 Arr09 may also contribute for this difference in virulence.

To confirm that the expression regulation of these genes by RR09 is strain dependent, a 

qRT-PCR analysis was done in all strains. The putative operon sp0060sp0066 appeared to 

be differentially regulated between D39 and the TIGR4 and 0100993 strains. While strong 

down-regulation of sp0060~sp0066 was observed in D39Arr09, no significant RR09- 

dependent regulation was obseiwed in either TIGR4 or 0100993 (Figure 5.19). The 

expression levels of theses genes are a clear example of strain-specific regulation by RR09. 

In addition the virulence factor pspA  and the serine protease htrA as well the gene sp2240, 

which was found to be expressed on the same transcript as htrA, and the TCS CiaR/H, 

which were reported to regulate htrA (Ibrahim et a l,  2004b; Sebert et a l, 2002) was found 

to be differently expressed in the three strains (Figure 5.20). The expression o fpspA was 

reduced in both TIGR4 and D39 Arr09 mutants, while in 0100993 no significant different 

was found in Arr09 strain compared it wild-type. On the other hand, the expression of htrA 

and sp2240 was significantly down-regulated in D39 Arr09 strain, not showing significant 

variation in expression in the other two strains. Both genes encoding the TCS CiaR/H also 

were down-regulated in D39 Arr09 strain. The down-regulation of this TCS in the D39 

Arr09 mutant may be related to the observed reduction in expression of htrA in this mutant 

compared it parental strain (Ibrahim et a l, 2004b; Sebert et a l,  2002).
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Figure 5.19- Expression ratios of sp0060~sp0066 in D39, TIGR4 and 0100993.

The expression ratios of putative operon sp0060-sp0066 in D39, TIGR4 and 0100993 ArrOQ 
mutants compared with wild-type was determined by microarray and qRT-PCR. The dashed line 
indicates the two-fold change microarray cut-off value for differential expression. No microarray 
data was obtained for the TIGR4 and 0100993 strains. Expression of two control house keeping 
genes ddl and gyrA are shown
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Figure 5.20- Expression ratios of virulence factors htrA and pspA  in D39, TIGR4 and 
0100993 strains.

The expression ratios of hfrA and pspA in D39, TIGR4 and 0100993 ArrOQ mutants compared with 
wild-type was determined by microarray and qRT-PCR. The dashed line indicates the two-fold 
change microarray cut-off value for differential expression. No microarray data was obtained for 
0100993 as well for the ciaRIH  in the D39 and TIGR4 strains and htrA, sp2240 In 
TIGR4Expression of two control house keeping genes ddl and gyrA are shown.
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5.4.2 W estern Immunoblot

Microarray and qRT-PCR analysis showed a significant down-regulation of the virulence 

factors pspA and htrA in D39 JS.rr09. The amount of protein of both virulence factors, 

expressed in wild-type and the D39 àrr09 was checked by western immunoblot. A positive 

control, using primary antibody against the protein PspC was also used. The western 

immunoblot confirmed the microarray and qRT-PCR expression analysis for both proteins. 

Expression of protein PspA was shown to be higher in D39 wild-type than D39 Arr09 

(Figure 5.21 A). No difference in expression of PspC was observed in both strains (Figure 

5.2IB), also this protein control did shown significant variation in previous mieroarray 

analysis. As with PspA, the expression of protein HtrA was shown to be higher in D39 

wild-type than D39 Arr09 (Figure 5.22). Furthermore, the levels of HtrA in rr09 mutant 

demonstrated a similar expression of this protein with D39 AciaR strain (Ibrahim et al., 

2004b).

(A) (B)

PspA

MW

k  « - 9 8 -

- 64 -

■ ■ ■ - 5 0 -

- 36 -

- 2 2 -

PspC

Figure 5.21- Western Immunoblot analysis of PspA and PspC levels In D39 ArrOQ compared 
to wild-type.

15 ywg of total protein was run in 10% SDS PAGE, the protein transferred to nitrocellulose 
membrane and the levels of PspA and PspC expression in D39 wild-type were compared with D39 
ArrOQ mutant. Levels of PspA in strain D39 wild-type (lane 1) and D39 ArrOQ (Iane2) (A). Levels of 
PspC in strain D39 wild-type (lane 1) and D39 ArrOQ (Iane2) (B). The proteins marker used (lane 3) 
was the SeeBlue® Plus2 Pr-Staimed Standard (Invitrogen™).
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HtrA

Figure 5.22- Western Immunoblot analysis of HtrA levels In D39 ArrOQ compared to wlld- 
type.

15 yug of total protein was run in 10% SDS PAGE, the protein transferred to nitrocellulose 
membrane and the levels of HtrA expression in D39 wild-type were compared with D39 ArrOQ 
mutant. D39 wild-type (lane 2), D39 ArrOQ (lane 3) D39 AciaR (lane 4) and D39 AhtrA (Iane5). The 
proteins marker used (lane 1) was the SeeBlue® Plus2 Pr-Staimed Standard (Invitrogen™).

5.5 In vitro analysis

5.5.1 Haemolytic a ssa y

Pneumolysin is the major cytoxin of the pneumococcus and plays an important role in the 

early pathogenesis of invasive pneumococcal pneumonia. Microarray analysis showed a 

significant increase in expression of pneumolysin in D39 Arr09 compared with wild-type 

strain. To confirm the microarray results, the amounts of the toxin pneumolysin expressed 

by both strains was studied used a haemolytic assay using a method described previously 

(Johnson et a i, 1980). Interestingly the haemolytic activity did not show any difference 

between the wild-type and the Arr09 mutant (Figure 5.23).
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Figure 5.23- Crude haemolytic assay of pneumolysin toxin.

2-fold dilutions of crude lysate, grown to mid-log phase, of D39 wild-type and ArrOQ mutant were 
added to sheep RBC. The relative amount of pneumolysin was estimate by eye. Haemolysis 
activity was performed in duplicate and PBS was used as a negative control.

5.6 Role of gene sp0063 in phenotype of RR09 mutation

The transcriptional profiles of S. pneumoniae wild-type strain D39 and the isogenic mutant 

Arr09 showed significantly decreased transcriptional levels in rr09 knockout mutant of 

mannose-specific PTS system IIABC {sp0061-sp0064). One of these genes, sp0063 (IID 

component) was identified as a virulence factor in the signature-tagged mutagenesis screen 

of TIGR4 (Hava and Camilli, 2002). To verify the contribution of sp0063 in the phenotype 

of D39 Arr09 strain in vivo analysis, a mutation of the gene was made in D39 wild-type 

strain by the replacement of nucleotides 176-676 of sp0063 (according to the R6 

annotation) with a spectinomycin resistance cassette.

5.6.1 In vivo analysis

Previous studies demonstrated that the TCS09 is crucial in pneumococcal virulence of D39 

strain (Blue and Mitchell, 2003). As demonstrated in this chapter, the sp0063 is down 

regulated in D39 rr06 mutant. This study was intended to investigate how much of the 

phenotype resulting from deletion of rr09 is attributed to sp0063.

The effect of the D39 Asp0063 mutant on virulence was compared to its wild-type and 

Arr09 mutant (Figure 5.24). Mice were infected by interperitoneal injection with 10  ̂CFU 

and the survival of animals monitored for 336 hours. The bacterial loads in the blood were 

studied following 24h post-interperitoneal infection. No significant difference was seen in 

survival rates between wild-type D39 and the sp0063 mutant. All five wild-type infected
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mice died while a single sp0063 infected mouse sui'vived. Likewise, blood counts at 24h 

post-infection were similar. In contrast the rr09 mutant was essentially avirulent. In 

agreement with previous studies (Blue and Mitchell, 2003) all infected mice survived and 

blood counts at 24h were below the detection limit (-83 CFU/ml).
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Figure 5.24- in vivo analysis of D39 Asp0063 strain.

Effect of sp0063 on virulence of strain D39. Survival times were monitored for 336 hours after 
interperitoneal infection with 10® CFU of wild-type, ArrOQ and Asp0063 strains, n=5 (A). Bacterial 
blood counts measured at 24h post-infection via tail bleeds. Each point indicates the data from an 
individual mouse; the horizontal bar indicates the mean (n=5). Dashed line indicates detection limit. 
Mice with bacterial counts below the detection limit (logio 1.92) were assigned a value of 1.90. 
Done in collaboration with (B). Dr. Gavin Paterson.
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TCS09 system  and virulence

The pneumococcus needs to adapt and orchestrate its gene expression to persist in different 

environments. A central role in this environment response is played by TCS by regulating 

various cellular processes such as osmoregulation, genetic competence, and chemotaxis in 

response to environmental changes (Appleby et a l, 1996; Hoch and Silhavy, 1995). 

Relatively little is known about TCS09. Together with HK09, the RR09 fonns the TCS09 

and its gene names are sp0661-sp0662 (TIGR4 sequence) or spr0578~spr0579 (R6 

sequence) (http://www.tigr.org). Amino acid sequence homology suggests that the sensory 

domain is related to the extra-cellular part of McpA and McpB of Bacillus subtilis. These 

two proteins are believed to be involved in the control o f chemotaxis through sensing of 

environmental nutrient concentrations (Lange et a l, 1999). The extra-cellular stimulus of 

TCS 09, however, is as yet unknown. In vivo studies in a murine model of infection suggest 

that TCS09 plays a role in virulence although this appeared to be dependent on the genetic 

background and the infection model used (Blue and Mitchell, 2003). In strain D39 

(serotype 2) the lack o f RR09 led to an avirulent phenotype upon intranasal, intravenous, 

and intraperitoneal infection, while in strain 0100993 (serotype 3) RR09 was suggested to 

be involved in the dissemination of the bacteria from the lung tissue into the bloodstream 

(Blue and Mitchell, 2003),

In the present study, we extended the investigation of the strain-specific role of TCS09 in 

pneumococcal virulence using TIGR4 (serotype 4) rr09 mutant in a murine pneumonia 

model of infection. Similar to 0100993 Arr09, the TIGR4 Arr09 mutant was found to be 

attenuated, with prolonged murine survival after intranasal infection with this mutant. 

Furthermore, significantly fewer bacteria were recovered from in bronchio-alveolar lavage 

fluid, lung tissue and from blood of mice infected with TIGR Arr09 when compared to 

wild-type infected mice. In contrast to TIGR4 Arr09, mice intranasally infected with 

0100993 Arr09 had no reduction of recovered bacteria from the lungs when comparable 

with wild-type infected mice (Blue and Mitchell, 2003).

Gene regulation by TCS09

No gene targets of RR09 have yet been identified that could relate to the in vivo 

phenotypes obseiwed in rr09 mutants although preliminary studies suggested involvement 

of TCS09 in nutrient perception (Blue and Mitchell, 2003; Lange et a l, 1999). In this 

study, we investigated the strain-specific regulation by RR09 by comparing transcriptional 

profiles of mutants in two different genetic backgrounds, namely S. pneumoniae strains
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D39 and TIGR4 using whole-genome micro an ay analysis and two independent RNA 

samples analysed in vitro during mid-log phase of each strains. Moreover, some of the 

transcriptional changes were confiimed by quantitative Real-Time PCR (qRT-PCR).

The transcriptional changes occurring in TIGR4 Arr09 were -1%  of the genome for up- 

regulated and -0.8%  for down-regulated genes. An interesting pattern of regulation was 

observed for genes located on the rlrA pathogenicity islet, absent in strain D39, which is 

strongly up-regulated in the TIGR4 rr09 mutant strain. Curiously, the same pattern was 

observed during the study of the transcriptional profile of the rr06 mutant (chapter 3), 

indicating that, more that one TCS can be involved in regulation of a particular or cluster 

of genes. Hendriksen (Hendriksen, personal communication), observed that this islet is 

strongly down-regulated in early phases when the bacteria are grown in Todd Hewitt broth 

supplemented with 5 g/1 Yeast extract (THY-broth). These findings suggest an indirect 

regulation of the rlrA pathogenicity islet by the TCS09. RlrA has been shown to positively 

regulate the expression of the seven genes on the pathogenicity islet. O f the six genes, 

three have homology to the LPXTG family of cell wall-anchored surface proteins {rrgA, 

rrgB, rrgC) and thiee encode putative sortases {srtB, srtC, and srtD) (Hava et a l,  2003a). 

A recent study showed that the rlrA pathogenicity islet encodes a pilus-like structure 

previously unknown to exist in the pneumococcus. The pneumococcal pilus seems to be 

essential for bacterial adhesion and subsequent ability to cause invasive disease as well as 

in stimulation o f the host inflammatory response (Barocchi et a l ,  2006). Repression of the 

pathogenicity islet by MgrA has been suggested (Hemsley et a l ,  2003), but no differential 

expression of mgrA was observed in this study. The genes, rlrA, and srtD were found in 

the STM screen and have been described to be essential for efficient colonization (Hava 

and Camilli, 2002). Furthermore in this present study, the virulence factor pspA was 

observed to be down-regulated in the rr09 mutant, suggesting that the regulation of these 

genes {rlrA, srtD and pspA) by RR09 may be the cause of the attenuation in a murine 

model of TIGR4 Arr09.

In total, 48 genes were found to be differentially expressed between wild-type and D39 

Arr09 mutant strains. 10 genes were found to be up-regulated in rr09 mutant, and include 

pneumolysin, the major pneumococcal cytoxin. However, a haemolytic assay did not show 

differences between the wild-type and the Arr09 mutant. This suggests that the difference 

in the pneumolysin expression does not reflect the amount of protein. Additional 

experiments need to be done, such as qRT-PCR and western immunoblot to determine at 

what level pneumolysin is up-regulated in D39 Arr09. Of genes differentially expressed, 

38 were found to be down-regulated in the D39 rr09 mutant. Some of these genes were
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predicted to encode proteins involved in carbohydrate metabolism, in particular genes 

eneoding enzyme II (EH) of a sugar-specific phosphotransferase systems (PTS). These 

membrane-associated proteins facilitate uptake of carbohydrates, such as mannose and 

fructose, by PTSs. The genes sp0061-sp0064, encoding a putative mannose-specific PTS, 

were strongly down-regulated in D39 Arr09, but not regulated in TIGR4 Arr09 and 

0100993 Arr09. Genes adjacent to this PTS are also involved in N-glycan degradation, 

with putative roles in hydrolysis of aminosugar side chains of glycan. Several other genes 

involved in this process were co-regulated with these genes in D39 Arr09. Another down- 

regulated putative PTS is encoded by the genes sp0307sp0310 and sp0577 (glucose- 

specific PTS). As for the previous PTS, no changes in regulation were observed in TIGR4 

Arr09 strain. Although the exact function of TCS09 in S. pneumoniae remains unclear, the 

regulation of different PTS by the RR09 is in agreement with Lange and co-workers, that 

predicted a putative role in nutrient perception based on homology with chemotaxis- 

associated sensors found in B. subtilis (Lange et a l, 1999). Furthermore, genes encoding 

other components of these systems, namely HPr, and Cep A, (global regulator of carbon 

metabolism) (Kotrba et a l,  2001; Titgemeyer and Hillen, 2002), are involved in repression 

of the P-galactosidase in S. pneumoniae D39 strain (Giammarinaro and Paton, 2002). In 

contrast with the TIGR4 strain (Iyer et a l,  2005), this repression is not mediated by 

glucose. However, none of these genes appear to be altered or upregulated in our studies in 

D39 strain, indicating that Cep A is not responsible for the down-regulation of the putative 

mannose-specific PTS encoding by the sp0061-sp0064 genes.

As well as the down-regulation of PTS, the differences observed between the avirulent 

phenotype of D39 Arr09, and TIGR4 and 0100993 in mouse model of infection, could be 

the result of the down-regulation of two virulence factors, htrA and pspA in D39 Arr09. 

The htrA gene, down-regulated only in D39 Arr09, is thought to be regulated by CiaR/H 

(Ibrahim et a l,  2004b; Sebert et a l, 2002; Sebert et a l, 2005). Wlrile, no significant 

change in expression of ciaWH  was detected by microarray analysis, qRT-PCR analysis 

had shown 3-fold decrease of ciaRIH expression in Arr09, This small change in CiaR/H 

system may explain the down-regulation of htrA in Arr09, confiiming probably an indirect 

regulation of this virulence factor by the RR09. The down-regulation of HtrA in D39 

Arr09 was also confirmed by western immunoblotting, and this change could contribute to 

the D39 Arr09 in vivo phenotype, because virulence of D39 htrA mutants is completely 

abolished (Ibrahim et a l, 2004a, b). ThepspA gene was also found to be down-regulated in 

TIGR4 Arr09 but not in 0100993 Arr09. However, the change in transcriptional levels of 

pspA in D39 Arr09 was approximately double that observed in TIGR4 Arr09. 

Furthermore, western immunoblotting was implemented to study the level of PspA
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produced D39 Arr09 against wild-type. As with the transcription analysis, the blot 

indicated significant changes of the level of PspA in rr09 mutant. Microarray analysis has 

shown that TCS02 positively regulates the PspA (Ng et al., 2005). Band shift and 

footprinting experiments using purified unphosphorylated RR02 and phosphorylated RR02 

demonstrate that the RR02 biding to regions upstream of pspA, demonstrating a direct 

regulation of PspA by TCS02. As with htrA, these results suggest that TCS09 may 

indirectly regulated the virulence factor PspA.

The study of transcriptional profiles of D39 Arr09 in early phases of growth sampled 

(Hendriksen, personal communication) demonstrated an increased of the expression of 

competence-related genes like comAB, comDE, cinA and the cg/HRCD-operon compared 

with wild-type. This regulation appears to be strain-specific, since no change of expression 

was observed in TIGR4 Arr09, and confined to early phases of growth of the 

pneumococcus, because no changes in this genes were observed in mid-log phase of 

growth in the present study. Upregulation of comDE leads to induction of competence, 

which in turn induces transcription of comX. Genes induced by competence stimulating 

peptide (CSP) were described by Peterson and co-workers as well three gioups of 

responding genes: early, late and delayed genes (Peterson et a l, 2004). The early genes are 

believed to be directly regulated by ComE. The upregulation of the early CSP-induced 

genes found by Hendriksen study (Hendriksen, personal communication) may be the 

consequence of premature development of competence by the lack of RR09. On the other 

hand, some of the late genes were found to be upregulated {cglABCD and cinA) probably 

due to downstream regulation of competence development. The delayed CSP-induced gene 

htrA was shown here to be down-regulated at the ODeoo of 0 6 in BHI-broth but 

upregulated at an ODeoo of 0.2 in THY-broth (Hendriksen, personal communication).

Some genes were found to be controlled by RR09 in om* microarray analysis, as well in the 

early phases of growth sampled report by Hendriksen (Hendriksen, personal 

communication), while others appeared to be regulated in a growth-phase-dependent 

manner. Although this differential expression could be the consequence of the different 

growth conditions used, BHI-broth for ODeoo of 0.6 and THY-broth for ODôoo of 0.1 and 

0.2 (Hendriksen, personal communication) and/or the use of two different microarrays 

slides, the considerable overlap between the set of genes regulated at the different growth 

phases (e.g., sp0060-sp0066, htrA, sp0647-sp0648, and the rlrA pathogenicity island), 

makes this explanation less likely. Although expression of genes has been shown to differ 

substantially between different broths (Ogunniyi et ah, 2002), our results indicate that 

apparent putative targets can be identified with different experimental set-ups.
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Role of gene sp0063  in phenotype of RR09 mutation

Phosphotrasferase systems (PTS) are responsible for the transport of specific sugars into 

the cell. The PTS transporters consist of three subunits, HA, HB, and HC. One exception is 

the mannose family transporters, which also contains the subunit, HD (Kotrba et a l, 2001). 

The genes sp0061~sp0064, encoding a putative mannose-specific PTS. This system was 

strongly down-regulated in D39 Arr09, but not regulated in TIGR4 Arr09 and 0100993 

Arr09. Lowered sugar uptake caused by the down-regulation of this locus could result in a 

reduced supply of sugar building blocks for the polysaccharide capsule, which in turn 

might explain the avirulent phenotype of D39 Arr09 in a sepsis model o f infection. In 

contrast, Arr09 derivatives of TIGR4 and 0100993 showed a less severe in vivo phenotype, 

consistent with the unaltered expression of sp0061-sp0064. Furthermore, the sp0063 was 

identified as a vimlence factor in a STM screen (Hava and Camilli, 2002). To test the role 

of this putative mannose-specific PTS in the rr09 mutant phenotype, the gene encoding the 

putative HC component of this PTS {sp0063) in D39 was deleted by allelic replacement, 

and its experimental virulence was assessed. No significant difference was obseiwed in 

sui*vival rates of mice infected with wild-type D39 and the sp0063 mutant. Likewise, blood 

counts at 24h post-infection were similar. In contrast, the D39 Arr09 mutant was 

essentially avimlent. The gene product of sp0063 alone does not significantly contribute to 

vimlence in D39 in this model and alone does not explain the dramatic phenotype observed 

following deletion of rr09 in D39. Moreover, our preliminary data indicate that the rr09 

and sp0063 mutants are still able to ferment mannose (data not shown), which could be a 

consequence of the apparent redundancy of PTSs in the pneumococcal genome, 

complementing the lower expression of this particular PTS.

Summary

Recent murine studies have demonstrated that TCS09 of S. pneumoniae is vimlence- 

associated, and moreover, is strain-specific (Blue and Mitchell, 2003). In the present study, 

we used a murine model of infection to assess the vimlence of a TIGR4 rrOP-mutant, and 

found that TIGR4 Arr09 was attenuated after intranasal infection and mice infected with 

rrOP-mutant had significantly longer survival times than the wild-type infected mice. 

Furthemiore, we investigated the transcriptional changes in pneumococcal mutants lacking 

the response regulator of TCS09 {Arr09) by microan'ay analysis of two strains, D39 and 

TIGR4. The transcriptional pattern of D39 Arr09 and TIGR4 Arr09 displayed clear 

differences compared to their parental wild-type strains. Moreover, TCS09 appeared to 

(directly or indirectly) regulate different genes in D39 and TIGR4. Our microairay and

220



TC S 09 Discussion

qRT-PCR analysis showed that in TIGR4 Arr09 the rlrA pathogenicity islet is strongly up­

regulated, while the virulence factor pspA is down-regulated. In D39 Arr09 genes involved 

in sugar uptake (e.g. PTS systems) sp0061-sp0064 were drastically down-regulated. 

Furthermore, we found that the putative operon sp2141-sp2144, and genes encoding a P~ 

galactosidase, a putative sugar isomerase and putative aldose epimerase were strongly 

down-regulated in D39, and not regulated in TIGR4. qRT-PCR was extended to strain 

0100993 in which these genes were not regulated by RR09 in strain 0100993. In addition, 

the down-regulation of pneumoeoccal virulence factors PspA and HtrA, found in previous 

analysis was continued by western immunoblot. The gene sp0063, found in STM screen 

(Hava and Camilli, 2002) was drastically down-regulated in D39 Arr09. D39 sp0063 

deficient mutant did not show significant attenuation in an animal model, excluding the 

possibility that the control of virulence by TCS09 is directly mediated via sp0063. hi 

conclusion, our results indicate that TCS09 regulated several genes that are important for 

the virulence of the pneumococcus, and the regulation of pneumococcal genes by TCS 09 is 

strain-specific.
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Genetic Variation Results

6.1 Comparative genomic hybridization

S. pneumoniae can be divided into more than 90 serotypes based on capsular diversity. The 

pneumococci are a naturally transfoimable species and the population structure is 

characterised by frequent horizontal gene transfers and recombination-mediated gene 

plasticity (Enright et a l,  1998). Genome comparison studies have provided a new basis to 

understand differences in virulence (presence or absence of regions containing virulence 

genes and antibiotics resistance determinants) as well to understand the gene transfer 

events by the analysis of transposable elements, insertion sequences, prophages and phage 

like elements. Two complete genome sequences for S. pneumoniae TIGR4 and R6 strains 

(Hoskins et a l,  2001; Tettelin et a l, 2001) and a draft genome sequence of strain G54, a 

type 19F clinical isolate (Dopazo et a l, 2001) were published. The genome sequence of 

serotype 23F strain as well as another 3 strains are currently being sequenced by Sanger 

institute (http://www.sanger.ac.uk/). Furthermore, an additional genome sequence of strain 

670-6B is in progress by TIGR institute (http://www.tigr.org). One remarkable feature of 

the pneumococcal genomes is the presence of a high number of repeated sequences 

classified as insertion sequence, BOX and RUP elements.

Previous studies of transcriptome profile between rr06 and rr09 mutants and the respective 

wild-types showed that the gene regulation by TCS06 and TCS09 is strain-dependent. An 

example was found for the rlrA pathogenicity islet. This pathogenicity islet was shown to 

be up-regulated in both TIGR4 mutants but not in R6, D39 and 0100993 strains. Recent 

studies from our laboratory have also demonstrated strain-specific effects in gene 

regulation by the TCS04 (McCluskey et a l, 2004). The different transcriptional profiles 

observed for the rr mutants suggest that the TCS may have different gene regulation in the 

different strain backgi’ounds. To address the question of the different transcriptional profile 

occuiTing due to the variation in their respective genomes, i.e. as a result of absence of the 

genes found in the transcriptome analysis, a comparative genomic hybridization (CGH) 

study was performed using R6, D39 and 0100993 strains in comparison with reference 

strain TIGR4. W ith the exception of a small number of genes, only the genes that compose 

the rlrA pathogenicity islet, differentially expressed in TIGR4 rr06 and rr09 mutants but 

not in other strains, were found to be absent in R6, D39 and 0100993 strains. To 

characterize the genetic diversity of S. pneumoniae an additional group of 10 S. 

pneumoniae strains was selected to represent 6 major multi-locus sequence types found in 

the UK associated with disease or carriage and compared with reference strain TIGR4 by 

DNA microarray analysis.
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6.2 Overall genomic diversity in S. pneumoniae

The genomic content of a collection of 13 5'. pneumoniae strains was examined using PCR- 

based microarray chips designed to represent all genes of the 2 cuiTently available 

complete pneumococcal genome sequences Rom TIGR4 (serotype 4) and R6 

(unencapsulated laboratory strain derived from the type 2 strain D39). Our collection of 

isolates was chosen to represent diverse serotypes (x7) and multi-locus sequence types 

(x8). These include the reference strain TIGR4 and 3 other strains used in our laboratory, 

D39 (Avery et a l,  1944), R6 (Smith and Guild, 1979) and 0100993 (Tliroup et a l, 2000). 

The remaining isolates include six serotype 14, cuiTently a prominent serotype among 

disease isolates in the UK and elsewhere (Brueggemann et a l,  2003; Denham and Clarke, 

2005; Manage et a l, 2005b; Kalin, 1998). hnportantly, strains of the same serotype and 

multi-locus sequence type were included to investigate the levels of diversity among these 

apparently closely related strains. All strains together with relevant strain information are 

listed in Table 6.1. Genomic DNA Rom each isolate was tested against DNA Rom the 

reference strain, TIGR4 and the presence or absence of individual genes was predicted 

based on the relative hybridisation levels observed for each gene. Since the PCR products 

used in microarray analysis did not necessarily cover variable regions, the “absence” of the 

gene in this study means the gene is missing or is highly variable. The PCR-based 

microarray was designed to include all TIGR4 genes and additional genes present in the R6 

genome sequence, this m icroanay comparison identified the absence of genes in the test 

isolate compared to TIGR4 and identify genes which were common to the test isolate and 

R6 but absent in TIGR4. In the analysis these genes appeared as insertions. This cuiTent 

study will focus on genes which were absent in the test isolates in comparison with 

reference strain TIGR4 and illusRate the R6 genes present in test strains but absent in 

TIGR4. A diagrammatic representation of these comparisons is also shown in Figure 6.1.
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Table 6.1- S. pneumoniae strains used in genomic comparison study.

Strain Specimen Serotype 
/ST type

Year of 
isolation

Location Reference

TIGR4 Blood 4/205 N/A Norway (Aaberge et al., 1995; 
Tettelin et a/., 2001)

0100993 N/A 3/180 N/A N/A (Throup et al., 2000)

R6 Laboratory strain 
derived from in 
vitro passage

2/128 1950s N/A (Ravin, 1959)

D39 N/A 2/128 Deposited 
NCTC 1948

N/A (Avery et ai, 1979)

P ll Blood 14/9 2003 Aberdeen, Scotland (Jefferies et al, 2004)

N16 Blood 14/9 2000 Dundee, Scotland (Jefferies et al., 2004)

P33 Eye 14/9 2001 Dumfries, Scotland (Jefferies et a l, 2004)

10 Blood 14/124 2000 Aberdeen, Scotland (Jefferies et al, 2004)

48 Blood 14/124 2000 Glasgow, Scotland (Jefferies et al, 2004)

50 Blood 14/124 2001 Glasgow, Scotland (Jefferies et al, 2004)

P49 Blood 3/180 2002 Glasgow, Scotland (Jefferies et al, 2004)

PMEN7 N/A 19A/75 <1997 South Africa (Smith and Klugman, 
1997)

PMEN13 N/A 19 A/41 <1997 South Afr ica (Smith and Klugman, 
1997)

PMEN23 N/A 6 A/3 7 1994-2000 North Carolina, 
USA

(Richter et al, 2002)

(N/A) Data not available or not known.
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Strain number

RD 7

RD 10
RD

RD 12

RD 13

RD 14

RD 15

RD 16

RD 17

RD 18

RD 19

R D 20
RD21
R D 22
R D 23
R D 24

R D 25

R6 genes

Figure 6.1- Genome wide distribution of ORFs among the S. pneumoniae strains studied.

The genes are arranged according to the annotated genome. Low hybridizations signals compared 
with reference strain TIGR4 are indicated by blue lines. The 25 regions of diversity (RD) that 
represent three or more contiguous genes not conserved in at least one of the strains are marked 
on the right side. The low hybridizations signals in TIGR4 compared with the test strains (R6 genes 
annotation) are indicated by yellow lines.
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From the 2236 genes analysed (reference strain), 1903 genes were common to all strains, 

in contrast, 333 genes (-15%) were missing from at least one strain. Only 29 of the genes 

were missing in all strains. This noncore fraction of 15% is less than has been reported in 

similar studies with Helicobacter pylori (22%) (Salama et a l,  2000). With the exception of 

IgA l protease gene {iga) (Adiian et a l, 2004), none of the genes implicated in vimlence 

including those for hyaluronidase, neuraminidase A and B, autolysin, pneumolysin, pspA, 

and other surface antigens PsaA and PavA, are present in this core set (Paton et a l, 1997).

The thirteen-pneumococcal two-component systems and the oiphan rr 14 {ritR) were also 

found to be present in all strains examined. The numbers of deleted genes from each test 

isolate is given in Table 6.2 together with the percentage, which falls into the different 

functional categories described on the TIGR website (http://www.tigr.org). The most 

common category of absent genes in all strains was genes that encode hypothetical proteins 

or proteins with unknown functions. A substantial number of other genes could be 

categorised as encoding cell surface-associated proteins (including all genes classified as 

cell envelope, transport and binding or protein fate). Between 33% (strain D39) and 24.1% 

(strain N16) of the absent genes were of this type. Genes encoding proteins involved in 

cellular processes, energy metabolism, regulatory function, mobile and extrachromosomal 

element functions and signal transduction were also found to be absent in all strains tested.
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Genetic Variation Results

6.3 Examination of variabiiity at a seiect locus

The S. pneumoniae choline binding proteins (CBPs) have been implicated in adhesion; 12 

CBPs have been identified (Novak and Tuomanen, 1999). They are surface-exposed 

proteins associated with the pneumococcal choline-containing wall teichoic acid via C- 

term inal repeats. Four o f the 10 cbp genes included on the m icroarray indicated sequence 

variation (encoded by cpbJ, pspC, pcpA and cbpi), in agreement w ith reported variability 

in pspC  (Brooks-Walter et a i, 1999).

Because of the known heterogenous characteristics of the PspC protein we had included a 

PspC probe designed to the non-heterogeneous part o f this protein {spR6-1995) in the 

initial design o f the microarray. Analysis o f the hybridisation patterns for this probe (data 

not shown), demonstrated the presence of the pspC  gene only in the strains R6, TIGR4, 

D39, 0100993, PMEN 7, PMEN13 and PMEN 23. A PCR validation confirms the 

presence or absence o f the spR6-1995 in the different strains when we use the R6 pspC  

probe (Figure 6.2). The PCR analysis through the variable size or absence o f PCR product 

demonstrates, even with the probe designed for the conserved region o f pspC, variability in 

this part of pspC  sequence between the different strains.

10,000-
5,000-
3,000-
1,500-
1,000-

Figure 6.2- PCR of test strains and reference TIGR4 for the pspC gene of spR6-1995 probe.

Validation of microarray analysis of pspC using non-heterogeneous probe spR6-1995. R6 (lane 2), 
TIGR4 (lane 3), 0100993 (lane 4), D39 (lane 5), P11 (lane 6), N16 (lane 7), 10 (lane 8), 50 (lane 9), 
P33 (lane 10) P49 (lane 11) PMEN7 (lane 12), PMEN13 (lane 13), PMEN23 (lane 14), 48 (lane 
15). The DNA ladder marker used was the 1 kb plus ladder (Promega).
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In addition to choline-biding proteins described previously as having a highly variable 

sequence in different strains, S. pneumoniae has others surface proteins that are anchored 

to the cell wall via a structure close to the C terminus consisting of an LPXTG sequence 

motif followed by a membrane spanning hydrophobic region and a charged sequence. 

Several of these cell surface proteins are highly variable when analyzed in different S. 

pneumoniae strains such as the PrtA protease and the IgA protease (associated with the 

bacterial cell surface via an N-terminal motif-LPXTG) (Bethe et a l, 2001; Lomholt, 1995; 

Poulsen et a l,  1996). The Table 6.3 shows the percentage of sequence similarity between 

these variable genes and known genome sequences of three different strains, TIGR4, R6 

and G54. Thus the apparent deletion of these genomic regions in all strains is more likely 

due to the considerable heterogeneity between the TIGR4 pspC, iga, zmpB, prtA and pcpA 

and those of the test strains.

Table 6.3- Homology of selected variable genes of know genome sequences.

Genes
TIGR4^) R6̂ ^ G54̂ ^

% of honiology^^
pspC (sp2190y^ 100 81.2 61.7

pspC {sprl995Ÿ^ 81.2 100 58.1

iga 100 86.5 69

zmpB 100 61.4 63.7

prtA 100 97.2 96.4

pcpA 100 86.9 96.4

^^TIGR4 sequence annotation 
R6 sequence annotation
Genome sequences published in TIGR institute (http://www.tigr.org).

Percentage of homology of select genes with sequence heterogeneity. Percentage was 
calculated on alignment program AlignX (Vector NTI 9.1.0, Invitrogen Corporation).
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6.4 Genomic distribution and characteristics of 
chromosomal deletions

The comparative genome hybridization of the 13 strains compared to the reference strain 

showed at least twenty-five regions of diversity (RD), where three or more contiguous 

genes (according to the TIGR4 annotation) where not conserved in all strains (Figure 6.1 

and Table 6.4). Previous studies in other organisms have referred these clusters as regions 

of difference (Broekhuijsen et a l,  2003; Fitzgerald et a l, 2001). Importantly, there was 

strong agreement between the an*ay results and the sequenced R6 genome sequence. O f the 

248 RD genes identified, the array agreed with the result expected based on the R6 genome 

sequence for 242 of these genes (97.5%). In addition the distribution of 200 genes from the 

other test strains was investigated by PCR. Of these 200, 189 (94.5%) showed agreement 

between the microarray and PCR. Together these data confirm the microaiTay analysis to 

be a good predictor of the presence/absence of genes/probe sequences. The RDs were 

numbered the pneumococcal regions RDI to RD25 accordingly and ranging considerably 

in size from 1.7 kb to 36.9 kb. These twenty-five RDs represent approximately 242 kb 

corresponding to -11%  of the total genome of TIGR4. As will become evident, these 

regions are often not completely deleted and sometimes only a fraction of the genes are 

deleted in certain strains (Figui'e 6.3). Fourteen of these regions in TIGR4 do not hybridize 

with the serotype 2 strain R6, twelve of these nonconserved regions were identified by 

Bruckner and co-workers and the remaining two RDs were also identified but not as 

clusters (Bruckner et a l , 2004).

I / .
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Table 6.4- Regions of diversity identified in 13 test strain.

Region of diversity 5’ coordinate 3’ coordinate Size Variable Sp'  ̂n"

RD 1 72141 81204 9.0 kb sp0067-0074

RD2 110794 116973 6.2 kb sp0l09-01l5

RD3 159192 164810 5.6 kb spO 163-0168

RD4 320076 336443 16.4 kb sp0346-0360

RD5 356986 359377 3.3 kb sp0378-0380

RD6 372309 377694 5.4 kb sp0394-0397

RD7 436037 447414 12.6 kb sp0460-0468

RD 8 451961 459021 7.1 kb sp0473-0478

RD9 511718 517349 5.6 kb sp0531~0544

RD 10 611196 622142 11.0 kb sp0643-0648

RD 11 634854 642899 8.0 kb sp0664-0666

RD 12 663182 667616 4.4 kb sp0692-0700

RD 13 837760 839434 1.7 kb sp0888-0891

RD 14 897939 902629 4.6 kb sp0949-0954

RD 15 988049 1000382 12.6 kb spl050-1065

RD 16 1064391 1073637 9.2 kb spll29-1147

RD 17 1239143 1272833 33.7 kb spl315-1352

RD 18 1352438 1364506 12.1 kb spl433-1444

RD 19 1512872 1523192 10.3 kb spl612-1622

RD 20 1656781 1692953 36.9 kb sp1756-1773

RD21 1709981 1715310 5.3 kb spl 793-1799

RD22 1740005 1741506 3.2 kb sp1828-1830

RD23 1824670 1827823 3.2 kb spl911-1918

RD24 1850362 1859718 9.4 kb spl948-1955

RD25 2077252 2082547 5.3 kb sp2159-2166

TIGR4 annotation (http://www.tigr.org)
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Strain number
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s0k

■ 1sp0067
sp0068
sp0069
sp0070
sp0071
sp0072
sp0073
sp0074
sp0109 
spOI 10 
spOl 11 
spOl 12 
sp0113 
spOl 14 
spOl 15
sp0163 
sp0164 
sp0165 
spOl 66 
sp0167 
sp0168
sp0346
sp0347
sp0348
sp0349
sp0350
sp0351
sp0352
sp0353
sp0354
sp0355
sp0356
sp0357
sp0358
sp0359
sp0360
sp0378
sp0379
sp0380
sp0394
sp0395
sp0396
sp0397

Present Absent
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Strain number

RD

10

11

12

I
fS

Z Z Z
w w W
g S

0. Qm cu cu

H  m  m  m  h  h  m  
H  H  H  B i  

I B  H  1^0
sp0464 H  H i  IH ! I H  H i  IHI 
sp0465 H i  H i  H i  H i  H I  
sp0466 H  H I  ^ H  H i  i H  ^ H  ^ 1  
sp0467 ^ H  H I  i H  H I  H i  H i  H  
sp0468 ^ H  ^ H  H I  H i  H I  H i  H i

sp0473 1^1 i H  ^ H  ^ H  I H l i H  ^ 1  
H H  H i  ^ H  ^ H  ^ H  ^ H  i l

sp0475 i H  l^ i l  H i  1^1 ^ H  H i  NH 
H  i ^ i  i H  1^1 ^ H  ^ H  ^ 1  

sp0477 H i  ^ H  ^ H  ^ H  ^ H  ^ H  ^ 1  
sp0478 H I  H I  H i  ^ H  ^ H  ^ H  H I

^ H  H I  i H  H  H I  H i  H i  
sp0532 H i  H I  ^ H  ^ H  ^ H  H I  H i
sp0533 ■ ■ ■ ■ ■ ■ H
sp0534 H I  ^ H  ^ H  H I  H i  H I  ^ 1  
sp0535 H i  H i  H i  H i  H I  H i  H i  
sp0536 ^ H  H i  H i  H I  H I  H I  H  

7 ^ H  ^ H  IH I H i  H i  H I  H  
sp0538 [ j^ i  ^ H  H I  ^ H  H  i H  H i 
sp0539 1 ^ 1 1 ^ 1  H i  H i  H i  ^ H  H  
sp0540 H I  H I  ^ H  ^ H  H i  i H  H  

H i  H i  i H  H i  1^1 H i  H  
sp0542 IH I H i  i H  1^1 H i  H I  H  

H i  H I  H i  H i  H i  H I  H  
sp0544 H i  H i  H I  H i  H I  H i  H

sp0643 H i  H I  H i  H i  H i  H i  H  
sp0644 ^ H  H i  H i  H i l  H i  H i  H  

I^H ^ H  H I  H I  H I  I H  H  
sp0646 ^ H  ^ H  IH I H i l  H I  1^1 H  
sp0647 ^ H  i ^ i  ^ H  ^ H  ^ H  ^ H  H  

H i  H i  ^ H  H  ^ H  H i  H  
sp0664 H  H i  H i  H i  I^H H I  H  
sp0665 i H  H i  ^ H  H  ^ H  i H  H  
sp0666 1^1 H i  H  ^ H  H I  H i  H

sp0692 H i  i H  1^1 ^ H  H i  H i  H  
^ H  ^ H  ^ H  ^ H  ^ H  ^ H  H  

sp0694 ^ H  ^ H  ^ H  ^ H  1^1 H i l  H  
sp0695 H I  H i  H I  IH I H i  ^ H  H  
sp0696 I H  I H  i H  H  H i  ^ H  H
sp0697 ■ ■ ■ ■ ■ ■  H
sp0698 IH I ^ H  H i  1^1 ^ H  H  H  
sp0699 H I  ^ H  ^ H  ^ H  ^ H  H I  H

^H Present H I Absent
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Strain number
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Strain number

I
RD s i s i s s s g s l

spi3i6  IH IH ii^ m H H iH iH H H i
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spl318 H i  H i  H i  ^ H  H i  H i  H i  H i  H i
spi3i9  H H I H I H H i H i H I H H j H  
spl320 j^H ^ H  H i  H i  i H  H i  ^ H  ^ H  H i  H i
spl 321 ■ ■ ■ ■ I  ■ ■ ■ ■ ■ ■

i H  i H  ^ H  ^ H  ^ H  ^ H  H i l H I  H i l H  
spl323 ^ H ^ H H I H I ^ H H i ^ H ^ H ^ H ^ i  
spl324 i H  ^ H  ^ H  ^ H  ^ H  ^ H  H i  H i  H i  H i  
spl325 H i  ^ H  l ^ i  ^ H  ^ H  1^1 H  i H  H i  H i  

^ H  I^H ^ H  H i  H i  H i  i H  ^ H  I^H ^ i  
spl327 H i  ■ ■ ■ ■ ! ■ ■  H i  H i  H  
spl328 ■ ■ ■ ■ ■ H l H i H H H H  
spl 329 jj^ i H i  H i  iH !  H i l H i i H i  ^ H  ^ H  ^ i  
spl330 i H  ^ H I I  i H  H i  i H  H i  H i  H i  H I  
spl 331 H H i H i H I H i H i H j H H H  
spl332 ^ H  ^ H  ^ H  i H  ^ H  ^ H  i H  H i  H i  H  

H i  H i  H i  H i  H i  H  1 ^ 1 1 ^ 1  H i  IH  
spl334 ^ H  ^ H  H i  ^ H  i H  H i  i H  ^ H  1^1 H I  
spl335 ^ H  ^ H  H i  H i  i H  ^ H  IH I ^ H  H i  H  
spl336 H i  ^ H  ^ H  H i  H i  I I  i H  ^ H  ^ H  H
spl337 ■ ■ ■ ■ ! ■ ■  ■ ■ ■ H

^ H  H I  H i  H I  i H  H i  I H  ^ H  I^H H
spi339 H i  H i  H i  g  H I  H i  H i  H i  g  H  
spl340 H i  H I  ^ H I I  H i  H i  H I  H i  H i  H  

H i  i H  H i  i H  H i  H i  H i  i H  ^ H  H  
spl342 ^ H  ^ H  H i  i ^ i  H i  1^1 ^ H  ^ H  H i  H  
spl343 H H H H H H H H H H  

H I  I^H i H  ^ H  ^ H  ^ H  ^ H  iH I  H i  HI 
spl345 H i  H I  H i  H I  H I  H i  H i  H I  H I  H  
spl346 H i  H i  ^ H  ^ H  ^ H  H i  ^ H  H  H i  H
spl347 ■ ■ ■ ■ ■ ■ ■ ■ ■ H
spl348 IH I H I  ^ H  ^ H  H I  H I  1^ 1 i H  ^ H  H  
spl349 ^ H  ^ H  H i  H i  H i  H I  ^ H  ^ H  ^ H  H  
spl350 H I  1^ 1 I H  I H  ^ H  I^H iH !  H i  I H  H  
spl 351 H H I H i H I H I H i H I H H H  

352 1^ 1  ^ H  H I  i H  i H  H i  ^ H  i H  I H  H

spi433 H H i H H I H I H i H H H H  
H i  i H  I H  H i  i H  ^ H  H I  ^ H  I H i H
1^ 1 j^H ^ H  H i  i H  ^ H  H i l  H I  H i  H  

spl436 1^ 1  ^ H  ^ H  ^ H  1^ 1 ^ H  H I  H I  H I  H  
spl437 1^ 1  H I  H I  H i  i H ^ H  H i  H i  H i  H
spl438 H i  H i  H I  H i  H  ■  H i  H i  H I  H
spl439 H i  H i  H i  H I  H I  H i  ^ H  H i  H i  H  
spi440 H I  ^ H  ^ H  ^ H  H i  H i  ^ H  ^ H  H I  H  

^ H  l ^ i  H I  H I  ^ H  i H  ^ H  i H  H i  H  
H i  H i  ^ H  i H  H I  H I I H I  H i  ^ H  H  

spl443 H I  H I  H i  H i  H I  ^ H  H i  H i  ^ H  H  
^ H  ^ H  I H i H I  H i  H I  i ^ i  H I  ^ H  H
H i  Present H i  Absent
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Strain number
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Figure 6.3- Regions of diversity.

Presence and absence of the gene was determined by comparative genomic hybridization. Red 
positive, blue negative. Gene number and annotation taken from TIGR4 genome at 
http://www.tigr.org.

The first region RDI is a 9 kb chromosomal region encoding 8 ORFs, sp0067  to sp0074. 

Six of the eight ORFs encode hypothetical or proteins with unknown functions and the 

remaining 2 ORFs {sp0069 and sp0071) encode the pneumococcal cbpi and the zmpC  

(zinc-metalloprotease) proteins. The cbpI is characterized by terminal repeats responsible 

for the attachment to the choline-containing teichoic acids of S. pneumoniae (Garcia et a l ,  

1998). The zinc-metalloprotease appears to have a role in invasion. Oggioni and co­

workers demonstrate that human matrix metalloproteinase 9 (MMP-9) as the substrate the 

zinc metalloproteinase (ZmpC) located on the surface of S. pneumoniae (Oggioni et a l ,  

2003). The other 2 metalloprotease, ZmpB (sp0664) and the IgA {sp ll5 4 )  are missing in 

some of the test strains (Figure 6.3 and Figure 6.4). The zmpB is absent in strains PMEN7, 

PMEN23, R6, D39, P49, 0100993 and the three strains of ST 124 group, and the iga is 

absent in PMEN 13, PMEN23, R6, D39, P49, 0100993 and in the ST 9 strains group. IgAl 

protease and ZmpB significantly contribute to the virulence of the pneumococcus, while 

the impact of ZmpC is less profound (Chiavolini et a l ,  2003),

RD2 is a 6.2 kb chromosomal region encoding 7 ORFs {sp0109 to sp01I5). The sp0109, 

bacteriocin locus is missing only in strain P49. This region also encodes an ABC
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transporter. The other 3 ORFs are hypothetical proteins and one disrupted reading frame. 

This RD is present in majority of test strains, but almost totally absent in 0100993 and P49.

The RD3 (5.6 kb) encoding 6 ORFs (sp0163 to sp0168) and contains a putative macrolide 

efflux system. sp0163 encodes the protein PlcR a transcriptional regulator. The other ORFs 

encode hypothetical proteins or unknown function. Analysis of the microairay data 

demonstrates the absence of this cluster in majority of the test strains, except in PMEN13. 

The regulatory protein is only present in 0100993, P l l  and PMEN13.

RD4 is the capsule encoding region of the pneumococcal chromosome and not surprisingly 

was shown in this analysis to have genetic variation between the different strains tested. 

This RD was identified as 16.4 kb in length encoding 15 ORFs, most of which encode 

proteins involved in capsule biosynthesis. BLAST searches of the sequences from 

microarrays of the capsule genes of the S. pneumoniae capsular loci 

(http://www.sanger.ac.uk) for each different serotype strain, showed that the micro array 

analysis and BLAST searches for these ORFs coincide (Table 6.5). The cpsB (sp0347), 

cpsC (sp0348), or the cpsD (sp0349), genes that are more often conserved diverge in some 

strains. The microarray analysis did not show variation in the conserved gene cspA 

(sp0346) in any strain, except in unencapsulated strain R6. Variation in different capsule 

genes between different pneumococcal strains has been well documented (Claverys et a l, 

2000; Garcia and Lopez, 1997).
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Table 6.5- Homology of capsular genes In 13 S. pneumoniae test strains.

R6 D39 P l l N16 P33 10 48 50 0100993 P49 PM7') PM13^) PM23^^
Genes % of homology'^^
sp0346 97 97 97 97 97 97 97 97 97 97 88 88 83
sp0347 97 97 83 83 83 83 83 83 97 97 88 95 98
sp0348 69 69 96 96 96 96 96 96 69 69 69 69 69
sp0349 77 77 97 97 97 97 97 97 77 77 75 75 76
sp0350 - - - - - - - - - - - - "
sp0351 - - - - - - - - - - - - -
sp0352 - - - - - - - - - - - - -
sp0353 - - - - - - - - - - - - -
sp0354 - - - - - - - - - - - - -
sp0355 - - - - - - - - - - - “ -
sp0356 - - - - - - ” - - - - - 55
sp0357 57 57 - _ - - - - 57 57 71 71 -
sp0358 - - - - - - - - - - - - -
sp0359 - - - - - - - - - - - - -
sp0360 - - - - - - - - - - - - -

^̂ PMEN7
PMEN13

^^PMEN23
Percentage of homology of capsular genes shared between the sequences spotted in 

microarrays and the sequences of the different serotypes of S, pneumoniae 
{http://www.sanger.ac.uk).

RD5 contains only 3 genes {sp0378-sp0380). This small region (3.3 kb) is totally missing 

in both serotype 2 strains, and present in all remaining strains. The sp0378 encodes the 

choline-biding protein CbpJ, while the other two genes encodes hypothetical proteins.

RD6 is a small cluster, 5.4 kb, composed of 4 ORFs {sp0394sp0397) and contain a PTS 

system, a transcriptional regulator {sp0395) and an energy metabolism protein (sp0397). 

This cluster is totally absent in 0100993, 10, 48, 50, P49 and PMEN7 but present in other 

test strains.

The next region of variation, RD7 is particularly interesting and consists of 12.6 kb of 

DNA encoding 9 ORFs (sp0460-sp0468). This cluster encodes the rlrA pathogenicity islet 

and consists of seven genes of which sp0462-sp0464 genes are predicted to encode 

LPXTG-containing microbial surface components recognizing adhesive matrix molecules 

that bind to components of the extracellular matrix of the host, and thi'ee sortase enzymes 

sp0466-sp0468, as well sp0461 {rlrA) a positive regulator of these cluster, A recent study 

had shown evidence that rlrA pathogenicity islet encoded pilus-like structures on their 

surface, influencing pneumococcal adherence and the development of pneumonia and 

bacteraemia in mice and also host inflammatory response stimulation (Barocchi et a l,  

2006). This region of cell wall surface protein genes is preceded by a transposase encoding
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gene {sp0460). Our microarray studies demonstrated deletion of this complete region in all 

the strains except for PMEN 13 and PMEN23. In PMEN 13 the gene sp0465 is present and 

in the PMEN23 only two of the tliree genes that encode the cell wall proteins are absent. A 

PCR for the PMEN23 was made and it confirmed the absence of these two cell wall 

proteins and the presence of the others ORFs.

RD8 is a 7.1 kb region encoding 6 ORFs {sp0473-sp0478). Included in this region are three 

genes {sp0474, sp0476 and sp0478), which encode phosphotransferase systems, one 

specific for cellobiose transport and two for lactose transport. This cluster is present in R6, 

D39 and PMEN23, in other strains it is completely absent. The gene product of sp0477 is 

6-phospho-beta-galactosidase and was absent h'om all strains except for the two above. 

The other ORF encodes a hypothetical protein.

RD9 is a cluster of 5.6 kb {sp0531-sp0544) that contains 14 ORFs. Tliis region encodes 5 

bacteriocins (BlpI, BlpJ, BlpK, BlpM and BlpO) and all the five are missing only in R6 

strain. Bruckner and co-workers also identified these bacteriocins absent in R6 (Bruckner 

et a l, 2004). These bacteriocins have been described in detail (de Saizieu et a l,  2000; 

Reichmann and Hakenbeck, 2000). The other ORFs encode other cellular processes 

proteins, hypothetical or unknown function proteins and two transposases.

The next region, RDIO, has 11.0 kb and encodes 6 ORFs. Included in this region are 3 PTS 

systems. Two of these systems are missing in PMEN13, the other one {sp0646) it is present 

in all strains. This region was complete in R6, D39 and 10 and only the disrupted reading 

frame sp0644, except the three strains listed above, is missing in all strains. The last ORF 

encodes a beta-galactosidase and is absent only in PMEN13.

R D ll is an 8.0 kb region encoding 3 ORFs (sp0664-sp0666). All tliree genes are missing 

in PMEN23 and in the two serotypes 2 strains. On the other hand, this cluster is totally 

present in ST 9 strains and in the remaining strains only the first gene is absent. The 

sp0664 encodes the zinc metalloprotease ZmpB (referred to in the description of RDI). 

The others ORF encodes hypothetical or unknown function proteins.

R D I2 is a 4.4 kb region and encodes 9 ORFs {sp0692-sp0700). This cluster was complete 

in R6, D39, P l l ,  N16, P33, PMEN 13 and PMEN23. In all other strains examined the 

pattern of gene deletions was more complex. The sp0697 gene encodes an ABC transporter 

and is missing in 0100993, 10, 48, 50, P49 and PMEN7. The other ORFs are hypothetical 

or proteins of unknown function.
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R D I3 was the small 1.7 kb region of diversity found in this analysis (sp0888~sp0891). This 

region is missing in serotype 2 strains. The sp0888 gene is absent only in R6, while the 

other three genes are absent in both strains.

Most of the genes in R D I6 are missing in all strains (Figure 6.3). R D I6 is 9.2 kb in length 

and encodes 19 ORFs {spl 129-sp 1147). The majority of the ORFs of this non-conserved 

region {spl 132-sp 1147) encode hypothetical proteins, sp l 129 encodes the xerC4 integrase-

R D I4 covers 4.6 kb and six genes in TIGR4 {sp0949-sp0954). This region is completely 

absent in P l l  and in other ST9 strains only one gene is present. The sp0949 encodes a J |

transposase (IS 1515) and is missing in R6, D39, P l l ,  N16, P33, 10, 48, 50 and 0100993 

strains. Although predicted to be inactive in TIGR4, due to a frameshift mutation 

introducing a premature stop codon, this element may be responsible for the unequal strain %

distribution of this region. sp0950 encodes a predicted GNAT family acetyltransforase ;|

(GCN5-related N-acetyltransferase) as does sp0953, although they share only limited 

homology. sp0951 encodes a conserved hypotetical protein, which contains a putative 

TfoX N-terminal domain. Identified in H. influenza, the TfoX/Sxy protein is essential for 

transformation in that species (Williams et a l,  1994; Zulty and Barcak, 1995). No data 

exists as yet for a role for sp0951 in pneumococcal transformation and micro array analysis 

of the global response to competence stimulating peptide (CSP) in TIGR4 did not identify 

sp0951 as being a CSP responsive gene (Peterson et a l, 2004). The sp0952 is absent in 

PMEN7 and the ST9 strains and is annotated as encoding an alanine dehydrogenase 

carrying an authentic frameshift resulting in a premature stop codon. sp0953 missing in

P l l  and N16 encodes a protein of unknown function. The last ORF of this cluster encodes
‘I -

a competence protein, CelA, one of the competence-specific genes involved in the natural 

transformation o f S. pneumoniae (Luo and Morrison, 2003) and is absent in PI 1 and N16.
■M

None of the genes in this region were identified as virulence factors in the signature-tagged

mutagenesis screen of TIGR4 and so their role in virulence is unclear as yet. |
y

The next region of diversity, RD15, is 12.6 kb and encodes 16 ORFs {spl050-spl065). The 

first 3 OFRs are missing only in PMEN7 and encode hypothetical or proteins of unknown 

function, sp l 054 to sp l 056 encode transposon-associated proteins, and is absent in the 

majority of the strains except the PMEN7. s p l057 encodes another protein PlcR a I

transcriptional regulator and the sp l 061 encodes a protein kinase. The protein PlcR is

missing in all strains except in PMEN7 and the kinase is present in the ST 124 strain group 

and PMEN7. This cluster encodes an ABC transporter {spl062 and s p l063) and as the 

transposase protein (jpl064) is present in ST 124 strains group and PMEN7.
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recombinase, involve in DNA metabolism (Reichmann and Hakenbeck, 2002) and sp l 130 

and sp l 131 encode two transcriptional regulators that are absent in all the thirteen test 

strains.

The large RD17 is a 33.7 kb and contain 38 OFRs (spl315 to spl352), the highest number 

found in this analysis. The first fraction of this region (sp l315 to s p l337) was missing in 

its majority in the strains 0100993, P49, R6, D39 and two sti'ains of the ST 124 group (48 

and 50). The sp l 326 encode one of the three neuraminidases (NanC) and it was absent in 

the same strains mentioned above. The neuraminidases A and B as others pneumococcal 

proteins have been characterized as putative virulence factors (Wellmer et a l, 2002). The 

NanC encodes a polypeptide with the structural features of a neuraminidase exhibiting 

approximately 50% deduced amino acid sequence identity to NanB (Berry and Paton, 

2000). Examination of S. pneumoniae R6 (http://www.tigr.org/) genome sequence 

indicates the presence only of the NaiiA and NanB and the absence of the NanC, in 

agreement with the microarray analysis. spl315  to spl322  encode proteins involved in 

sodium transport and release. 17 of the ORFs encode hypothetical proteins, sp l341 to 

sp l343 absent, in the strains ST 9 group appear to encode an ABC transporter involved in 

toxin secretion (Tettelin et a l, 2001). The s p l336 encodes a protein involved in DNA 

metabolism and is missing in the majority of the strains. The presence or absence of these 

individual genes in the various strains is shown in Figure 6.3.

Another ABC transport system is encoded by the ORFs in R D I8. This 12.1 kh region has 

12 genes, 5 of which encode putative transposon proteins (sp l439, spl44Hspl444), 2 

encode hypothetical proteins (spl436-spl437), one encodes a transcriptional regulator 

(spl433) and the remaining 4 ORFs encode the ABC transporter. All of the ABC 

transporter genes are missing in strain PMEN23 and three of then in PMEN7, PMEN 13 as 

well the transcriptional regulator. This entire region is present in the thi'ee strains of ST 124 

group, and in the R6, D39 and ST9 sti'ain group only the s p l439 (transposase) is absent.

RD19 is a 10.3 kb region (spl612-spl622) with 11 ORFs. This region encodes a PTS 

system with nitrogen metabolism (sp l617 to s p l621), 3 transposon proteins (sp l613, 

spl614  and spl622), 2 proteins involved in energy metabolism (spl615 and spl616), and 

one hypothetical protein (sp l612). This RD is totally absent in strain 48, present in 

PMEN7 as the majority of the genes in the two serotype 3 strains. The PTS system is 

missing in all strains except in PMEN7, 0100993 and P49.
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RD20, a region of 36.9 kb, is the largest region of diversity found in this genomic 

comparison, and encodes 18 ORFs (spl756-spl773). Most of the genes encode proteins 

with the LPXTG cell wall anchor motif which are important for the interaction with host 

cells and appear to be highly variable, similar to cell wall-associated choline-binding 

proteins (Bruckner et al., 2004). The comparatively small number o f ORFs for the size of 

this RD is due to the large size of one of the ORFs: sp l 772. This ORF is 14.3 kb in length 

and encodes a large 4776-amino-acid serine-rich protein that is homologous to a 

glycoprotein in S. gordonii that has been shown to mediate platelet binding of this 

organism, and is therefore being considered to be important in the pathogenesis of infective 

endocarditis (Takamatsu et a l, 2004). Other genes in this locus encode accessory proteins 

that may play a role in export, expression and modification of the glycoprotein, sp l 759 and 

sp l 763 encode homologues of secretory proteins Sec A and Sec Y (SecA2 and SecY2), 

respectively. Sec A has a central and multifaceted role in pre-protein export. It can interact 

directly with the signal sequence of pre-secretory proteins (Akita et a l, 1990; Kimura et 

a l, 1991) and with the cytoplasmic chaperone SecB (Fekkes et a l, 1997; Hartl et a l, 

1990). The organization of genes in the secY2-A2 loci suggests that SecA2 and SecY2 are 

not essential for viability in S. pneumoniae, but may rather be required specifically for 

export of the serine-rich repeat proteins encoded upstream (Bensing and Sullam, 2002). 

The SecA-encoding gene was present in all strains except PMEN7, PMEN 13 and the tliree 

ST 9 strains and the SecY-encoding gene is present only in PMEN7, PMEN13. A PCR for 

all genes of this region in strains PMEN7 and PMEN13 confirmed the microarray analysis 

for this locus. The presence or absence of the surface protein {spl 772) and the other ORFs 

can be seen clearly in Figure 6.3.

RD21 is a region with 5.3 kb {spl 793 and spl799). This region encode an ABC transporter 

{spl 796 to sp l 798), one gene {spl 795) involved in sucrose metabolism and a 

transcriptional regulator {spl 799), the two remaining genes encode hypothetical proteins. 

The majority of the ORFs (Figure 6.3) were missing in R6 and D39 strains. The strains 

0100993, P49, PMEN7 and PMEN 13 possessed all the genes found in TIGR4, the 

remaining strains had missing the 2 hypothetical proteins {spl 793 and sp l 794),

RD22 comprises 3 ORFs, spl828-spl830  in a 3.2 kb region of the TIGR4 genome. All 

three genes were present in R6, D39, PMEN13 and PMEN23. In contrast, all were absent 

in N16, 10, 48, 50, 0100993, P49 and PMEN7. In the case of P l l  and P33, only sp l830 

was found to be present. The genes are annotated, in numerical order as, UDP-glucose 4- 

epimerase {galE), galactose-1-phosphate uridylyltransferase {galT) and phosphate transport 

system regulatory protein {phoU). This latter gene was identified in the TIGR4 STM
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screen and when the mutant was analysed further in competitive infections with wild-type 

it was attenuated in models of pneumonia, bacteraemia and nasal colonization (Hava and 

Camilli, 2002), The pneiunococcus galE and galT  genes revealed strong degree of 

homology with others bacteria, and these genes seem to be involved in galactose 

metabolism. Inactivation of galE and galT  in Lactococcus lactis and B. subtilis 

respectively, results in the inability of bacteria grow on galactose (Krispin and 

Allmansberger, 1998; Vaughan et a l, 1998). Although these pneumococcal genes are 

uncharacterised, the STM data does show a potential for the selected distribution of these 

genes to influence the behaviour of strains.

The eight genes, spl911-spl918  make up RD23 and cover a small region with 3.2 kb of 

the TIGR4 genome. This region is fully present in 12 strains. One other strain, PMEN7, 

lacks only a single gene, spl914. However, in strain 50 this entire region is missing. This 

region is poorly characterised, with four of the genes annotated as encoding hypothetical 

proteins, the significance of the absence of this region in strain 50 is therefore unclear. A 

function for one of these hypothetical proteins, sp l 915, is suggested by the presence of a 

LytTr DNA-binding domain found in various bacterial transcriptional factors. The 

remaining genes are annotated as a putative thioredoxin (spl 911) involved in energy 

metabolism, cspC (cold shock protein)-related protein with an authentic point mutation 

resulting in a premature stop codon (sp l913), PAP2 family protein (spl916), a family of 

mainly phosphatase enzymes (PF-01569), and an ATP-binding protein (spl 918). None of 

the genes in this region were identified in the STM screen of TIGR4 (Hava and Camilli, 

2002).

RD24 is a 9.4 kb region and contains 8 ORFs (spl948 to spl955), which encode a 

bacteriocin formation protein (spl950), a toxin secretion ABC transporter (spl953), serine 

protease (spl954) and five hypothetical proteins. The majority of the genes were missing 

in all strains, including the three proteins described above, except for PMEN23 and the two 

serotype 2 strains that possess all the genes (Figure 6.3).

The last region, RD25 is 5.3 kb with 8 ORFs (sp2159 to sp2166). This region encodes a 

PTS system (sp2161 to sp2164) and two genes involved in fucose metabolism (sp2165 and 

sp2166). The remaining ORFs in this region encode hypothetical and unknown functions 

proteins. The two serotype 3 strains (1009933 and P49) were shown to be missing the 8 

ORFs, the other strains were shown to possess the entire region found in TIGR4 (Figure 

6.3).
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The genome sequences of two strains, INV200 (ST 9, serotype 14) and 0XC141 (ST 180, 

serotype 3) are almost complete (www.sanger.ac.uk). To validate the presence or absence 

of selected genes of ST9 (P ll, N16 and P33) and ST180 strains (0100993 and P49) from 

four random RDs, the TIGR4 (reference strain) sequences of these genes were compared 

with known sequence of the INV200 and OXC141 strains. The majority of the BLAST 

searches for these genes showed a strong agreement with the m icroanay analysis. The 

differences between our analysis and the BLAST searches may be related to the diversity 

between strains of the same ST (see section 6.5).

Table 6,6- Comparison between microarray analysis of ST9 and ST180 strains and known 
sequences of INV200 and 0X0141 strains.

Gene’̂

RD ST9 strains INV200
BLAST^^

ST180 OXC141
BLAST^)

P l l N16 F33 0100993 P49
sp0460 7 - - - - - - ~
sp046l 7 - - - - - - -
sp0462 7 “ - - - - - -
sp0463 7 - - - - - - -
sp0464 7 - - - - - - -
sp0465 7 - - - - - _ -
sp0466 7 “ - - - - - -
sp0467 7 - - - - - - -
sp0468 7 - - - - - - -
sp0949 14 - - - - - + -
sp0950 14 - - - - + + +
sp0951 14 - - - + + +
sp0952 14 - - - - + + +
sp0953 14 - + - + + + +
sp0954 14 - - + + + + +
spl315 17 + + + + - - -
spl316 17 + + + + - - -
spl 317 17 + + + + - - -
spl318 17 + + + + - - -
spl319 17 + + + - ~ -
spl320 17 + + + + - - -
spl321 17 + + + + - - -
spl322 17 + + + + - -
spl 911 23 + + + + + +
spl912 23 + + + + + + +
spl913 23 + + + + + + +
spl914 23 + + + + + + +
spl915 23 + + - + + +
spl 916 23 + + + + + + -
spl 917 23 + + + + + + -
spl 918 23 + + + + + + +

TIGR4 sequence annotation {http://www.tigr.org).
S. pneumoniae ST 9, serotype 14 (www.sanger.ac.uk). 
S. pneumoniae ST 180, serotype 3 (www.sanger.ac.uk). 

{+) Gene present.
(-) Gene absent.
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Outside of the RDs we identified in total 85 genes that are of variable presence in one or 

more strains comparing with TIGR4 (Figure 6.4). Nevertheless some of these absent genes 

can have a diverse sequence in the different strains and appear absent in analysis, as we 

showed previously for the CBPs. O f these non-RD absent genes found in comparative 

genome hybridization thirteen were identified as virulence factors in the signature-tagged 

mutagenesis screen of TIGR4 (Hava and Camilli, 2002). Four of these genes encode cell 

surface proteins prtA (sp0641) iga (spl 154), pcpA (sp2136) and pspC (sp2190) described 

previously as having a highly variable sequence when analyzed in different S. pneumoniae 

strains. The remaining nine genes, encode a phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase (sp0050) and is missing in both serotype 2 strains, 

sp0246, missing only in D39, encodes a transcriptional regulator, sp0274 encodes a DNA 

polymerase III, alpha subunit and is absent in PMEN7, sp0571, absent only in PMEN23 

encodes a cell filamentation protein Fic-related protein, s p l869 encodes an iron-compound 

ABC transporter and is missing in PMEN23 and the sp l939 (dinF), missing in PMEN13, 

encodes a MATE efflux family protein DinF. While the genes sp0332 and sp l292 absent 

in R6, and sp0939 absent in PMEN7 and PMEN 13 encodes hypothetical and unknown 

function proteins.

The role of majority of these genes in S. pneumoniae genes remains unclear. The sp0050 

seems to be involved in purine biosynthetic pathways. The spl869  gene belongs to the pia  

operon, which encodes an ABC transporter involved in iron uptake. In vitro and in vivo 

phenotypes of strains containing mutation in this iron uptake ABC transporter demonstrate 

that the pia operon is probably the dominant S. pneumoniae iron transporter (Brown et a l, 

2002). Of the iron transporter genes, the piaA (sp l869) mutant strains had the highest 

degree of attenuation in virulence in mouse models of nasal and systemic infection (Brown 

et a l, 2001). The dinF gene (spl939), together with cinA, recA, and lytA constitutes the cin 

operon. Although the role of dinF remains unknown, it has been suggested that may play a 

role in competence and repairing DNA damage (Mortier-Barriéré et a l, 1998).
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Strain number
—  ^  ^m ^  r4

.  s  -  2  ^  i ^  H i
SP0034 ■■■■■■■■■■■■■

Hi H u m n iH  Hi ̂ H m n
spooso HI H i iH Hi iH  ̂ H Hi HI IH ̂ HIHI HI HI 
sp0246 HI ̂ H ̂ H Hi HI Hi HI HI ̂ H ̂ H HI HI Hi 
sp0255 Hi ̂ H Hi Hi HI Hi Hi ̂ H ̂ H ̂ H i^i HI ̂ 1 
sp0256 IH Î H Hi HI Hi Hi iH Hi iH Hi ̂ H Hi IH 
sp0274 Hi Hi H  Hi H  ̂ H ̂ H Hi Hi ̂ 1
sp0304 HI Hi IH! ̂ H ̂ H ̂ H ̂ H ̂ H HI Hi ̂ H IH iH 

^H Hil iH HI H  HI Hi 1̂ 1 HI H  ̂ H iH HI 
1̂ 1 ̂ H Hi H  HI Hi Hil IH H i ̂ H H  H  HI 
^H 1̂ 1 ̂ H ̂ H Hil H i H  ̂ H H  ̂ H HI Hi ̂ 1 
HI m  HI HI H i Hi Hi IHI ̂ H ̂ H HI HI H  
H  ̂ H Hi HI IH iH Hi iH ̂ H ̂ H iH HI IH 
^H Hi ̂ H ̂ H HI Hil H i Hi iH i^l HI IH ̂ 1 

sp0527 IHi Hi Hi Hi 1̂ 1 iH iH iHliH H  H  
iH ̂ H iH Hi Hi Hi Hi iH HI ̂ H IH HI IH 
^H Hi Hi HI Hi Hi HI iH H  Hi Hil HI ̂ 1 
^H H i Hi iH iH iH iH Hi ̂ H Hi iH Hi ̂ i 

sp0574 HH^I^H ̂ H ̂ HiHim Hil ̂ H H i Hi ̂ H H 
HI 1̂ 0 ̂ H ̂ H ̂ H ̂ H ̂ H HI Hi ̂ H ̂ H HI Ni 
^H 1̂ 1 Î H ̂ H Î H IH IH HI HI iH ̂ H HI i l  

sp0627 ^H ̂ H H i Hi Hi iH ̂ H ̂ H Hil H i ̂ H H  H 
Hil ̂ H ̂ H 1̂ 1 ̂ H ̂ H HI IH Î H ̂ H ̂ H H  H 

sp07i4 H i ̂ H iH liH HI Hi iH ̂ H HI Hi 1̂ 1 ̂ H H 
sp0739 Hi Hi Hi Hi Hil H i Hi IH HI Hi Hi ̂ H H 

IH HI Hil iHI HI HI IH ̂ H HI HI ̂ H i^i H 
^H ̂ H iH Hi HI ̂ H Hi HI ̂ H ̂ H ̂ H Hi i l  

sp0827 iH IH IHI ̂ H Hi ̂ H ̂ H Hil HI 1̂ 1 ̂ H Hil H 
sp0836 HI HI HI H i HH Hi ̂ H ̂ H HI Hi ̂ H HI H 

HI Hi ̂ H HI HI iH ̂ H HI HI ̂ H iH HI H 
i^i ̂ H ̂ H ̂ H ̂ H Hil H i ̂ H ̂ H Hi HI ̂ H H 

sp0880 Hil iH Hil iH HI Hi ̂ H ̂ H HI Hi ̂ H iH H
sp0939 ■ ■ ■ ■ ■ ■ ■ ■ ■ H H H H H
sp0957 HH ^H HI Hi iH ̂ H HI HI Hi iH H 

Hi ̂ H Î H liH HI Hi Hil H i HI Hi ̂ H i^l H 
H  H i H ll^l ̂ H ̂ H HI ̂ H ̂ H H  ̂ H HI H 
^H ̂ H ̂ H H i HI ̂ H HI ̂ H HI ̂ H ̂ H ÜH H 
jjĵ HH HI iH HI HI H ii^l HH H i HI ̂ H H 

sp ii87  HI Hi Hil HI iH Hi Hi ̂ H HI Hi HI Hi H 
sp ii89  ■ ■ ■ ■ ■ H iH iH I H iH I H iH I H  

Hi Hi Hi iH ̂ H Hi iH ̂ H Hi ̂ H Hi i^l H 
HI HI ̂ H ̂ H Hi ̂ H IH HI HI i^i ̂ H Hi H 

spi292 H H i H H H H i H H i H I H H I H H  
HI ̂ H Hi H  Hi HI IHI HI iHI iH IH HI H 

spi308 Hi ̂ H ̂ H ̂ H iH HI iH HI Hi HI Hi IH H 
^H ̂ H Hi Hi ̂ H ̂ H HI ̂ H H ll^l iH HI H
^ H  Present ^ H  Absent
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Figure 6.4- Isolated divergent genes.

Presence and absence of the gene was determined by comparative genomic hybridization. Red 
positive blue negative. Gene number and annotation taken from TIGR4 genome at 
http://www.tigr.org.
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6.5 Diversity between S. pneumoniae strains

MLST is now widely used to type the pneumococcus and other pathogens providing high- 

resolution discrimination of a large number of clones (Enright and Spratt, 1998, 1999; 

Williams et a l,  1994). Strains of the same ST are assumed to be clonal and to have 

descended from a recent common ancestor. Strains of the same ST can be of different 

capsular serotypes showing that such strains are not necessarily identical despite being of 

the same ST. However, genetic differences in addition to the capsule locus have not been 

extensively characterised for strains of the same ST. Based on the genomic profile of each 

strain a cluster analysis was performed to define the relationship of the strains to each other 

using Genespring 7.0. A phylogenetic tree of these data is shown in Figure 6.5. In this 

comparison we included ST groups to represent different clonal groups of disease- 

associated, ST9 (P ll ,  N16 and P33) and ST124 (10, 48 and 50), and also individual strains 

representing diverse serotypes and multi-locus sequence types. In phylogenetic tree it is 

evident that all the three ST9 and the three ST 124 isolates are clustered. These results show 

that within these two clonal groups the strains are genetically very similar. Between these 

two ST types (serotype 14) there is more genetic diversity, forming two independent sub 

clusters. However, in this study the comparative genomic hybridization provides a first 

example of the phenomenon of differences between strains of the same ST extending to 

non-capsular genes. The Venn diagi'ams in Figure 6.6 and Figure 6.7 relates the number of 

common and singular absent genes between the strains for each these ST groups, hr a total 

o f 173 different genes in ST124 group 117 (-68%) are common in the three strains, and in 

ST9 group 120 (-74%) genes are common in total of 159 absent genes. The other ST types 

were clustering in agreement with the same capsular* type, the two isolates serotypes 19A 

(PMEN7 and PMEN13) and ST3 (0100993 and P49) are clustered together. The strain R6 

(unencapsulated strain derived from the type 2 strain D39) are clustered with D39 as 

expected. On the other hand, the ST strain 6A (PMEN23) formed an independent cluster.
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Figure 6.5- Comparative phylogenetic tree.

The phylogenetic tree was based on the genomic profile of each strain. Distances were calculated 
using the condition tree of Genepring 7,0.
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V .

Figure 6.6- Genetic differences between pneumococcal ST124 strains.

Distribution of missing genes in strains 48, 10 and 50. Absence of the genes were determined by 
microarray analysis.

Pll N16

P33

Figure 6.7- Genetic differences between pneumococcal ST9 strains.

Distribution of missing genes in strains P l l ,  N16 and P33. Absence of the genes were determined 
by microarray analysis.
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Relative to the distribution of the genes in RDs a diversity is shown in RJD17 and 23 

involving the three ST 124 serotype 14 stiains: 10, 48 and 50 (Figure 6.8). In the case of 

R D I7, it is present in its entirely in strain 10 but the first half o f this region is absent in 

strain 48 and 50. RD23, which is a new region of diversity, is absent in strain 50 but 

present in strains 10 and 48. Importantly, validation by PCR showed a strong agreement 

with the microarray results with (97%) genes agreeing between the two methods.

The biological significance of these differences is uncertain however, both RD I7 and 23 

are poorly characterised. Within these regions, the TIGR4 STM screen identified two 

genes, spl321  and spl328, with unequal strain distributions, as pneumococcal virulence 

factors (Hava and Camilli, 2002). There is therefore the potential for these genetic 

differences to effect phenotypic differences between these clonal strains. The distribution 

of the absence genes in ST9 strains was more uniform. Excluding singular genes, all of the 

missing RDs in ST9 group were common in the three strains.
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( A ) Array PCR
Strain number s  $ g O 90

spI3I5 v-type sodium ATP synthase, subunit D

spI3I6 v-type sodium ATP synthase, subunit B

sp l 317 v-type sodium ATP synthase, subunit A

sp l 318 v-type sodium ATP synthase, subunit G

spI3I9 v-type sodium ATP synthase, subunit C

spl320 v-type sodium ATP synthase, subunit E

spI321 v-type sodium ATP synthase, subunit K

spI322 v-type sodium ATP synthase, subunit 1

sp l 323 Hypothetical protein

spl324 ROK family protein

sp l 325 Oxidoreductase, Gfo/Idh/MocA family

spl326 Neuraminidase, putative (nanC)

sp l327 Conserved hypothetical protein

sp l 328 Sodium:solute symporter family protein

spl329 N-acetylneuraminate lyase

sp l 330 N-acetylmannosamine-6-P epimerase, putative

spl331 Phosphosugar-binding transcriptional regulator, putative

sp l 332 Conserved domain protein

sp l 333 Hypothetical protein

sp l 334 Conserved hypothetical protein

spl335 Hypothetical protein

spl336 Type II DNA modification methyltransferase spn5252IP

sp l 337 S 1380-spn 1, transposase

spl338 Hypothetical protein
spl339 Hypothetical protein

spl340 Hypothetical protein

spl341 ABC transporter, ATP-binding protein

spl342 Toxin secretion ABC transporter, ATP-binding/permease protein

spl343 Prolyl oligopeptidase family protein
spl344 Conserved hypothetical protein

sp l 345 Hypothetical protein

spl346 Membrane protein, putative

sp l347 Hypothetical protein

sp l 348 Conserved hypothetical protein

spl349 Hypothetical protein

sp l 350 Conserved domain protein

spl351 Hypothetical protein
sp l 352 IS 1380-spn 1, transposase

Present H  Abs€
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(B ) Array
S tra in  n u m b e r  S *  ® o

sp l9 II Thioredoxin, putative ■ ■ ■
sp l 912 Hypothetical protein ■ ■ ■ I
sp l 913 cspC-related protein, authentic point mutation

spl914 Hypothetical Protein ■ ■ ■
spl915 Hypothetical Protein

spl916 PAP2 family protein

sp l 917 Hypothetical Proteins

spl918 ABC transporter, ATP-binding protein

1 ^ 0  Presen t
■

PCR

Absent

Figure 6.8- Genetic differences between pneumococcal strains of the same ST and serotype.

Strain distribution of RD17 {sp1315-sp1352) (A) and 23 {sp1911-sp1918) (B). Presence and 
absence of the gene was determined by microarray and PCR analysis. Red positive, blue negative. 
Gene number and annotation taken from TIGR4 genome at http://www.tigr.org.

6.5.1 Analysis of virulence of strains of the sam e ST and 
serotype

To test if the genetic differences between strains with the same ST and serotype could have 

biological significance the three strains: 10, 48 and 50 were tested for virulence in a mouse 

intraperitoneal infection model. Young (5 week old) female C57/B16 mice were infected 

by the intraperitoneal route with 10  ̂ CFU and survival and blood counts monitored. All 

mice survived the infection and none showed clinical signs (n=7-8). However, at 6 h post­

infection a transient bacteraemia was noted that was cleared by 24 h. Comparison of the 

blood bacterial counts at 6hr. shows a significant difference between the strains, Figure 

6.9. The blood counts for mice infected with strain 48 were significantly lower than those 

infected with strain 10 (P<0.0001) or strain 50 (P=0.0441). The mean bacterial count for 

strain 48 was approximately 24-fold lower than strain 10 and 5-fold lower than strain 50. 

In line with this, strain 48 had the lowest proportion of bacteraemic animals, Figure 6.9. 

Although there was a trend towards higher bacterial blood counts in mice infected with 

strain 10 compared to strain 50, the difference was not statistically significant (P=0.0882).
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Figure 6.9- Blood bacterial counts 6 hours post-infection.

Three pneumococcai strains of the same ST and serotype (ST 124 serotype 14) were injected by 
the intraperitoneal route into C57/Bi6 mice and the biood bacterial viable count taken at 6h post­
infection. Each point indicates the data from an individual mouse; the horizontal bar indicates the 
mean (n=11-12). Dashed line indicates detection limit. Proportions indicate the number of mice that 
had bacteraemia above the detection limit (log 1.92 CFU/ml). P values (Student’s T  test) relate to 
bacterial counts with <0.05 considered significant (*). Done in collaboration with Dr. Gavin 
Paterson.

Ï

256



Chapter 6 discussion



Genetic Variation Discussion

Genomic diversity among multiple strains within a pathogenic bacterial species has been 

proposed to play a key role in virulence by the continual evolution of new strains via 

horizontal gene transfer (Elirlich et a l,  2005; Kreth et a l, 2005; Lomholt, 1995; Post et a l, 

2004; Shen et a l,  2005). Naturally transformable, pneumococcal genetic diversity and 

plasticity is evidenced by the presence of over 90 distinct capsular serotypes and the 

emergence of antibiotic resistance. Furthermore, comparative genomic studies using DNA 

microanays analysis (Bruckner et a l, 2004; Hakenbeck et a l,  2001; Shen et a l, 2006; 

Tettelin and Hollingshead, 2004), sequencing of genomic libraries from eight 

pneumococcal clinical isolates (Shen et a l, 2006), genome sequences of S. pneumoniae 

strains TIGR4 (Tettelin et a l,  2001) and R6 (Hoskins et a l,  2001) and with information 

from the pneumococcal diversity project, in which multiple strains have been sequenced at 

multiple sites (Hollingshead and Briles, 2001), have established that within the 

pneumococcus there exists a substantial genetic heterogeneity as well as genomic 

plasticity. Indeed, pneumococcal genetic diversity and genetic exchange with related 

organisms makes it hard to clearly define the pneumococcus as a species (Arbique et a l, 

2004; Hanage et a l, 2005a; Suzuki et a l, 2005). Along with this genetic diversity comes 

important phenotypic differences with regards to the propensity of strains and serotypes to 

cause disease. For example, approximately ~85% of disease is caused by only 20 different 

serotypes (Kalin, 1998). In addition, certain multilocus sequence types (ST) are more 

associated with disease than others (Brueggemann et a l,  2003). Although, capsular 

serotype is recognised as a cmcial contributing factor in these differences (Brueggemann et 

a l, 2003), other, as yet uncharacterised genetic factors also contribute (Mizrachi 

Nebenzahl et a l,  2004; Sandgren et a l, 2004; Sandgren et a l, 2005). The advent of 

genome sequencing and microarray technology has allowed this genetic diversity to be 

probed more fully, offering the potential to better understand pneumococcal strain and 

serotype differences. In addition to helping to understand caniage and disease processes, 

such data may also contribute to antimicrobial and vaccine development through the 

identification of conserved targets found in all strains/serotypes. Furthermore, 

understanding the pneumococcal population structure may help predict and interpret its 

response to inteiwentions such as antibiotics or vaccines, especially when these may be 

effective against only a subset of strains/serotypes.

Regions of genetic diversity among clinical isolates

Genome-to-genome comparisons through comparative genome hybridization (CGH) using 

DNA microarray reveal the footprints of genetic plasticity in the pneumococcal genomes.
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One characteristic footprint is the presence of a number of regions of diversity that have 

different complements of genes in different isolates.

O f the twenty-five regions of diversity found in the 13 test strains compared to the 

reference strain TIGR4, by CGH, fourteen of these regions were found not to hybridize 

with the serotype 2 strain R6 representing approximately 155 kb coiTesponding to over 7% 

of the total genome. A previous study of CGH between these two fully sequenced 

pneumococcal strains also demonstrated these nonconserved regions in R6, however two 

of these RDs were not identified as cluster (Bruckner et a l, 2004). The ancestral strain 

D39 showed an almost identical differential pattern as the R6 strain when compared to the 

TIGR4 strain. The remaining eleven RDs, were identified as absent at least in one of the 

other pneumococcal isolate strains, and the majority of the genes belonging to these RDs 

are totally present in R6 strain. The limits of these RDs or clusters vary a little between the 

studies and likely reflect the use of different clinical strains or array probes. Three novel 

RDs identified in the present pneumococcal CGH analysis were not recognised in 

Bruckner and co-workers study (Bruckner et a l, 2004). One of the genes found in these 

novel RDs, s p l830 (phoU), encoding a phosphate transport system regulator, was 

identified in the TIGR4 STM. Furthermore, attenuation in models of pneumonia, 

bacteraemia and nasal colonization was observed in competitive infections between S. 

pneumoniae wild-type and phoU  mutants (Hava and Camilli, 2002), Moreover, Bruckner 

and co-workers identified five clusters that we have not observed (Bruckner et a l , 2004). 

Presumably, this is due to the use of different strains while the analysis of further strains 

would allow discovery of other RDs. These twenty-five RDs represent approximately 242 

kb corresponding to -11%  of the total genome of TIGR4. As will become evident, these 

regions are often not completely deleted and sometimes only a fraction of the genes are 

deleted in certain strains.

Diversity between S. pneum oniae  stra ins

In this CGH study, of the total of TIGR4 strain genes analysed 85% were common to all 

thirteen test strains, 15% were missing from at least one strain and 1.5% of the genes were 

missing in all test strains. With the exception of IgA l, none of the genes implicated in 

virulence, such as the pneumolysin, hyaluronidase, neuraminidase A and B, autolysin, 

pspA  and other surface antigens PsaA and PavA were found to be missing in any strain. 

(Paton et a l,  1997). However, four of the 10 choline binding proteins genes incorporated 

in the microarray analysis, including the virulence factor pspC, are present in this set of 

missing genes, indicated sequence variation. This finding is in agreement with reported
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variability in pspC  (Brooks-Walter et a l, 1999). Interestingly, the thirteen- pneumococcal 

two-component systems and the orphan r r l4  (Lange et a l,  1999; Tliroup et a l, 2000) were 

also found to be present in all strains examined, showing high levels of sequence 

conservation among of different strains. Many of the missing genes identified here and in 

similar array analysis are annotated as encoding hypothetical or conserved hypothetical 

proteins with little/no data available on their fimction(s). Furthermore, about 24.1-33% of 

missing genes encode a particular' type of proteins, such as: transport and binding protein, 

cell envelope and protein fate. These findings may be related to the association of these 

proteins with the cell surface, and more directly relate with the environment and 

consequently subject to natural transformation.

This CGH study allowed us to demonstrate that: (i) within strains of the same serotype, 

great genetic diversity may still occur; (ii) individual strains of disease-associated ST9 and 

ST 124 clustered tightly; (iii) and the ST180 strains (more associated with carriage) 

possessed gr'eater genetic diversity and did not cluster with disease-associated groups. 

However, strains of the same ST and serotype have significant genetic differences. 

Although perhaps not a surpr-ising finding, strains of the same ST can be of different 

capsular serotypes showing that such strains are not necessarily identical despite being of 

the same ST, this study was the first clear demonstration of genetic diversity, in addition to 

the capsule locus, for strains of the same ST. Microarray analysis may therefore be of 

utility in complementing current MLST and serotyping schemes by providing a higher 

resolution typing (Garaizar et a l, 2006).

Analysis of virulence of stra ins of the sam e ST and sero type

hi the present study, we show differences in the virulence of strains 10, 48 and 50 in a 

mouse infection model. These strains have the same ST (124) and serotype (14). All mice 

survived the infection and none showed clinical signs. This observation can be due to the 

type of animal used, although the serotype 14 strains is associated with disease in humans, 

these strains are known to have low vimlence in mice. However, comparison of the blood 

bacterial counts at 6 h shows a significant difference between the strains. The blood counts 

for mice infected with strain 48 were significantly lower than those infected with strain 10 

or strain 50. The mean bacterial count for strain 48 was approximately 24-fold lower than 

sti'ain 10 and 5-fold lower than strain 50. Therefore, these strains, despite being of the same 

serotype and ST show differences in virulence in this mouse model. Interestingly, a 

diversity is shown in CGH analysis in R D I7 and 23 involving these three ST 124 serotype 

14 strains. The RD17 is entirely present in strain 10 but the first half of this region is
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absent in strain 48 and 50, while RD23 is absent in strain 50 but present in strains 10 and 

48. Furthermore, TIGR4 STM screen identified two genes, sp l321 and s p l328 (Hava and 

Camilli, 2002), with unequal strain distributions, as pneumococcal virulence factors. 

However, the biological significance of these differences is uncertain, since both RD I7 and 

23 are poorly characterised. A causal relationship between genotypic differences and 

phenotype remains however, to be confirmed empirically. A trend for differences in the 

behaviour of strains of the same ST and serotype during mouse infections was recently 

shown, but not examined further (Sandgren et a l, 2005). For example, two ST162 serotype 

19F strains showed different propensities to cause pneumonia following intranasal 

infection. One strain caused pneumonia in 80% of infected C57BL/6 and BALB/c mice 

while the proportions for a second strain where 53% and 40% respectively.

Summary

The important human pathogen S, pneumoniae is known to be a genetically diverse 

species, hi this present study we have used CGH micro array analysis to investigate this 

diversity in a collection of clinical isolates including several capsule serotype 14 

pneumococci, a dominant serotype among disease isolates. The reference strain TIGR4 

contains twenty-five regions with contiguous genes that are not shared in at least one of the 

strains tested. Three of these regions of diversity among pneumococcal isolates were 

identified for the first time in this study. Of the 2,236 TIGR4 genes analysed 85% genes 

were common to all strains, in contrast, 15% were missing from at least one strain and 

1.3% were missing in all strains. Importantly, we provide a clear demonstration of genetic 

differences between strains of the same capsule serotype and ST. Thus, even though strains 

may appear identical based on current typing methods they may boast potentially important 

genetic and phenotypic differences. CGH may therefore, in certain circumstances, prove to 

be a valuable tool to supplement current typing methods. This will especially be valuable 

when particular virulence associated genes and genotypes are identified for example as 

done recently for otitis media (Pettigrew and Fennie, 2005). Finally, we show that these 

clonal strains with the same serotype and ST behave differently in an animal model. 

Strains of the same ST and serotype therefore have important genetic and phenotypic 

differences.
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Streptococcus pneumoniae (the pneiimococcus) is a causative agent of several important 

diseases involving the respiratory tract (pneumonia, sinusitis and otitis media) as well as 

invasive infection (meningitis and septicemia) and remains a major cause of morbidity and 

mortality in undeveloped and developed parts of the world. S. pneumoniae has become a 

worldwide problem which limits the choice of antimicrobial agents. The limited efficacy of 

the current vaccines and resistance to common antibiotics encourage continued interest in 

developing of new and alternative strategies to treat and prevent pneumococcal diseases. 

Although the pneumococcus has been studied for over a century, an understanding of the 

mechanisms that underlie the course of disease remains fragmented. In order to identify 

new points of intervention it is helpful to have an understanding o f the pathogenesis of the 

infection and the bacterial factors that play a role in this process. The project aimed to 

contribute to our understanding of such mechanisms.

When the pneumococcus causes disease it needs to adapt to different environments such as 

the lower respiratory tract, the meninges and the blood. Bacteria have several ways of 

regulating gene expression in response to changes in the environment including the use of 

so-called two-component systems (TCS). These systems are recognised as a key 

mechanism thi'ough which bacteria perceive and respond to their environment. These 

systems have been shown to regulate a wide variety of cellular responses, including 

osmoregulation, competence, photosynthesis, expression of adhesions, chemotaxis, 

antibiotic production, and pathogenicity, in a number of different bacteria.

This project was concerned with the evaluation of the role of pneumococcal TCS06 and 

TCS09 in perception and response to their environment and understanding how these TCS 

contribute to pneumococcal virulence. Furthermore, the putative virulence factor dit 

operon regulated or potentially regulated by the ClaR/H system was studied to investigate 

its contribution to the role of CiaR/H to virulence. To study the contribution of these TCS 

and dit operon in vimlence of bacteria, this project has made use of the available complete 

pneumococcal genome sequence and the cuiTent molecular biology techniques used for 

introducing mutations in individual genes to constmct isogenic mutants in one of the RR of 

these TCS and in the first gene of the dit operon {dltA), In addition, comparative genomic 

hybridization (CGH) was perfomied to investigate whether the apparent differential gene 

regulation in different S. pneumoniae strains by TCS06 and TSC09 was due to the absence 

of the genes identified to be differentially expressed. Furthermore, the CGH was also used 

to study the genetic diversity in a collection o f clinical isolates and evaluate the importance 

of this diversity in vimlence of the bacteria.
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The functions of most of the TCS in S, pneumoniae are largely unknown. Some of the TCS 

have been examined for functionality for the sensing of phosphate, for development of 

competence for DNA transfonnation, penicillin susceptibility, maintenance of nasal 

carriage, regulation of genes that are involved in the biochemical makeup of the cell 

envelope, and maintenance of iron homeostasis. In this project the role of the TCS06 and 

TCS09 in the expression regulation and vimlence of S, pneumoniae was investigated. 

TCS06 has been previously shown to be attenuated in animal models. Analysis of TIGR4 

Arr06 mutant in vivo using pneumonia and bacteraemia models of disease revealed that 

RR06 has no effect on the overall outcome of pneumococcal disease. Although the current 

study did not show clear evidence of the importance of TCS06 in our animal model of 

infection, the RR06 seems to be important for the ability of the pneumococcus to invade 

the lungs and blood, causing a significant reduction of the amount of the TIGR4 Arr06 in 

the lungs airways and in the blood after intranasal challenge, compared with wild-type. 

Bacterial loads in the bloodstream 24 hours after intravenous challenge was similar for 

wild-type and Arr06 mutant. Although the event triggered by the pneumococcus that 

results in death of mice in the ArrOd-infected group mice is not known, the effect of rr06 

deletion on in vivo bacteriology seems to be significant.

This study confirms the contribution of RR06 in resistance to elevated temperatures. The 

TIGR4 Arr06 mutant has a dramatic decrease in the growth rate at 40 "C, and this effect 

was more evident when the bacterium was grown on blood agar. However, the effect of 

RR06 on temperature sensitivity appeared to be strain-dependent, hi serotype 2 strains, R6 

and D39 no significant changes in growth were observed between the Arr06 mutant and 

the wild-types, while in 0100993 background both strains did not grow at 40°C.

Transcriptome analysis between TIGR4 Arr06 mutant and wild-type revealed an important 

change in the genetic regulation by this TCS. The set of RR06-regulated genes was found 

to be enriched for genes predicted to encode proteins associated with the stress response, 

and this could explain the effect of RR06 on growth of the pneumococcus at higher 

temperatures. The work described in this thesis has also shown that the genetic regulation 

by this TCS06 is strain-dependent. Although a significant expression change of a large 

number of genes was observed in TIGR4 strain, only a few genes was observed to be up- 

regulated in strain 0100993, and no changes were observed in R6. The genes regulated by 

TCS06 seem to have a significant impact in phenotype of the different genetic background 

Arr06 mutants.
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Previous studies have indicated that TCS06 regulated the virulence factor PspC. Here, we 

demonstrated by transcriptome and western immunoblot analysis in four different strains 

that TCS06 does not regulate this important virulence factor. Although the work described 

in this thesis did not resolve the controversy about the regulation of PspC, we show that in 

vitro regulation of pspC  by TCS06 is not evident. However, we believed that during 

pneumococcal infection the regulation of PspC could occur, due to the massive increase in 

expression of this virulence factor in vivo compared to growth in vitro. To prove this 

theory, transcript levels of PspC between the rr06 mutants and wild-type from bacterial 

RNA recovering after pneumococcal infection in animal models need to be done.

The role of TCS09 in pneumococcal virulence has been reported to be strain-specific. 

While D39 carrying a deletion of the response regulator RR09 was found to be avimlent in 

all murine models tested 0100993 Arr09 was found to be attenuated upon intranasal 

infection only. Here, we extended these observations by analysis of a TIGR4 Arr09 mutant 

in a murine pneumonia model of infection. Similar to 0100993 strain, the mutant was 

found to be attenuated, with prolonged murine smwival after intranasal infection when 

compared with wild-type. A significant reduction was observed in the number of bacteria 

recovered from bronchio-alveolar lavage fluid, lungs, and the systemic circulation of mice 

infected with TIGR4 Arr09. To assess the genetic basis of these phenotypic differences 

between D39 and TIGR4 rr09 mutants, a transcriptome analysis was performed to identify 

the complement of genes regulated by TCS09 in vitro.

This study allows us to identify several targets of RR09 in D39 and TIGR4 that could 

account for the phenotypes conferred by their respective mutants. While, in total 39 genes 

were found to be differentially expressed between wild-type and TIGR4 Arr09, in D39 the 

number of expression genes altered was 48. Furthermore, only 4 of these genes were 

common in both strains. In D39, the set of RR09-regulated genes was found to be emiched 

for genes predicted to encode proteins involved in carbohydrate metabolism. Pneumococci 

are likely to have different nutritional needs during the various stages of infection. 

Possibly, TCS09 plays a role in this process by regulating genes required for nutrient 

uptake in response to various conditions characteristic of different sites of the host. The 

signal that triggers TCS09 might be present at one site and not another, and particular 

strains might be more adept at responding to these signals, potentially explaining the 

phenotypical differences observed in animal studies.

One of these genes, sp0063 encoding the IIC component of a putative mannose-specific 

PTS, was identified in the STM screen as virulence factor. However, the gene product of
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sp0063 alone does not significantly contribute to virulence in D39 in our animal model of 

infection and alone does not explain the dramatic phenotype obsei*ved following deletion 

of rr09 in D39.

Furthermore in this present study, the virulence factor pspA was observed, be down- 

regulated in both rr09 mutants. The major virulence factor htrA was also found to be 

down-regulated in D39 Arr09 mutant, suggesting that the regulation of these virulence 

factors can be related with the attenuation of rr09 mutants in animal models of infection. 

However, previous studies have reported that pspA and htrA are directly regulated by the 

TCS02 and CiaR/H systems respectively. These suggest that the TCS09 maybe regulate 

these important virulence factors indirectly. However, both HK and RR of the TCS02 were 

not found to be altered or down-regulated in our studies, therefore is unclear the mode of 

regulation of the PspA by the TCS09. Our studies show a lower, but significant, down- 

regulation in CiaR and CiaH in D39 Arr09 mutant. This finding can clarify the down- 

regulation of HtrA in our rr09 mutant.

The gene regulation studies by microarray analysis of TCS, also shown a strong up- 

regulation of the rlrA pathogenicity islet in TIGR4 Arr06 and Arr09 strains. Both TCS 

seems to be indirectly related with the regulation of this pathogenicity islet, and therefore 

associated with the development of pilus-like structures on surface of S. pneumoniae.

Although, our transcriptome analysis in TCS06 and TCS09 allows us to understand the 

role of these TCS in virulence of S. pneumoniae, the exact role in pneumococcal virulence 

for most of these has still to be investigated. Additional studies will be required to obtain a 

complete understanding of how these TCS regulate the expression of the whole 

pneumococcal transcriptome in response to different enviromnental stimuli. Also, the 

signals to which the TCSs are sensitive need to be elucidated. Furthermore, predicted 

function of many of the novel targets identified in this study is still based on sequence 

homology only which makes it more difficult to identify their exact role in these regulatory 

systems.

The dit operon of Gram-positive bacteria comprises four genes {ditA, dltB, dltC, and dltD) 

that catalyze the incorporation of D-alanine residues into the LTAs. Our previous studies 

of transcriptome analysis hy TCS06 demonstrated that the dit operon is regulated by the 

RR06. However, the mechanisms of control of expression of dit operon by TCS06 are still 

unclear. Furthermore, this putative virulence factor has shown to be potentially regulated 

by the CiaR/H system.
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In this work, we demonstrated that Dit A is important for growth of S. pneumoniae and is 

essential when the bacterium is subjected to higher temperatures. Furthermore, this operon 

was shown to be defective in its acid tolerance response and sensitive to antimicrobial 

peptides nisin and magainin II. Mutations in dltA seem to have influence in morphology of

S. pneumoniae occurring the presence of long chains of bacterial cells. Although previous 

studies identified the dltA and dltB as virulence factors of the pneumococcus in STM 

screen, no significant attenuation was found in murine model of disease using TIGR4 

strain lacking the dltA gene. However, because in this work was used a single strain 

infection, attenuation in dltA mutant in our animal model o f disease may be observed using 

a competitive model of infection, i.e. using the TIGR4 wild-type and AdltA strains 

simultaneously.

Although this preliminary study provides the first evidence of the importance of the dit 

operon in S. pneumoniae, additional experiments need to be done to ensure the role of the 

dit operon in D-alanylation of teichoic acids and consequent role in virulence of bacteria. 

Extending the mutation in other S. pneumoniae serotypes; using different model of 

infection; and increasing the number of mice in individual experiments. In vitro 

experiment; for example, investigating the maximal expression of the dit genes in different 

types of media cultures and in the points of growth of the pneumococcus in prospective to 

optimize the effect of dit operon in susceptibility of antimicrobial peptides.

The human pathogen S. pneumoniae is known to be a genetically diverse species. In this 

present study we have used CGH microarray analysis to investigate whether the 

differential gene regulation in different strains by TCS is related to the different genomic 

backgrounds. The rlrA pathogenicity islet is differential expressed in TIGR4 rr06 and rr09 

mutants but not in R6, D39 and 0100993. However, this can be explained due to the 

absence of this pathogenicity islet in the genomic background of these later strains. 

Furthermore, the CGH analysis was also used to investigate the S. pneumoniae genome 

diversity in a collection of clinical isolates including several capsule serotype 14 

pneumococci, a dominant serotype among disease isolates.

Although microarray analysis allows the whole genome to be interrogated easily there are 

several caveats to be acknowledged. Firstly, the true degree of population diversity is 

underestimated because test strain specific genes are not included. How many genes do the 

test strains carry that are absent in TIGR4? Indeed, sequencing of genomic libraries from 

eight pneumococcal clinical isolates revealed a number o f putative ORFs distinct from 

TIGR4 with many also um-elated to known streptococcal sequences (Shen et a l, 2006).
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Importantly, a major shortcoming of investigations like this is the inability to determine if 

the absence of an aivay signal represents absence of a particular gene or divergence in the 

probe sequence between strains. In addition, array analysis provides no details on gene 

location or number. For example, a gene may be present in multiple copies or in a 

difference location compared to other strains but this is overlooked in this analysis. Also, 

subtle but functionally significant differences will be missed such as promoter and coding 

sequence mutations that may alter the production and activity of gene products. Likewise 

the basis for genetic differences are unclear, i.e. is presence/absence due to acquisition by 

one strain and not another or loss from one strain and not another? Finally, many of the 

genes identified here and in similar array analysis are annotated as encoding hypothetical 

or conserved hypothetical proteins with little/no data available on their fimction(s). 

Furthermore, even those with annotations lack functional confirmation. The potential 

significance of the absence or presence of these genes is therefore hard to inteipret until 

they have been characterised more fully.

However, acknowledging these drawbacks we have employed CGH to identify large 

genomic regions of diversity between pneumococcal strains. We confirm the previous 

identification of several variable regions and identify tliree addition regions that are not 

conseiwed among strains. We provide a clear demonstration of genetic differences between 

strains of the same serotype and ST. In addition we show differences in the vimlence of 

these strains in a mouse infection model. Thus, although strains may appear identical based 

on current typing methods they may boast potentially important genetic and phenotypic 

differences. CGH may therefore be useful in providing higher resolution typing. This will 

be especially valuable when particular vimlence associated genes and genotypes are 

identified for example as done recently for otitis media.

Future work:

1. Study in more detail the expression of the genes regulated by the TCS06 and 

TCS09, at different time points of in vitro growth.

2. Study the control of gene expression by TCS06 and TCS09 in vivo to complete 

understanding of the role of these systems during infection, and confirm or not the 

regulation of vimlence factor PspC by the TCS06. Also, study the effect on the 

expression of rr09 and other genes when the bacteria are subjected to broth cultures 

of different composition during in vitro growth.
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3. Fmther evaluate temperature sensitivity of Arr06 mutants.

4. Study the virulence of the dltA in different genetic background, and using 

competitive infections models.

5. Determine whether pneumococcal LTA or WTA is D-alanylated using techniques 

such as nuclear magnetic resonance and capillaiy electrophoresis mass 

spectroscopy.

6. Study the mechanisms of regulation: (i) Most response regulators act as 

transcriptional activators that recognize specific DNA binding sites in their target 

promoters. Electrophoretic gel mobility shift assay may allow us to ensure that 

some important genes identified here are directly or indirectly controlled by this 

TCS; (ii) the regulation mechanism of the TCS system presumes the activation of 

the response regulator by the histidine kinase. Investigate if  the RR06 and the RR09 

is phosphorylated by the respective HK06 and HK09 or by another kinase or 

sensitive mechanism.

7. Extend the CGH to other pneumococci in our collection of isolates, which can 

allow us to create a genetic distribution of the genes between disease and carriage- 

associated strains. Use of improve array based on new genome sequences.
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A1. Solutions and buffers

Genomic DNA extraction buffer

10 mM Tris, pH 8.0

100 mM EDTA (Fischer Scientific, UK), pH 8.0 

0.5% SDS (w/vol) 8 Fischer Scientific, UK)

Agarose (1 %)

Ig agarose (GibcoBRL)

100 ml o f TAE buffer

D issolve and add 0.5 pg/ml ethidium brom ide (Sigma-Aldrich, UK)

BHI medium contents, g/1 (Oxoid)

Calf brain infusion solids (12.5), beef heart infusion solids (5.0), protease peptone (10), 

glucose (2.0), NaCl (5.0), disodium phosphate (2.5)

CAT medium

10 g o f bacto-casam ino acid 

1 g o f yeast extract 

5 g o f tryptone 

5 g o f NaCl 

Make to IL  w ith dH20

CAT/GP medium

100 ml CAT

1 ml glucose 20%

3 ml K2HPO4 0.5 M

CTM medium

100 ml CAT

2 ml glucose 20%

3 ml K2HPO4 0.5 M

4 ml BSA 4%

1 ml CaCl2 1%
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PBS, pH 7.4

Dissolve one tablet of phosphate buffered saline (Dulbecco A, Oxoid Ltd, Basingstoke) in 

100 ml of dHzO and autoclave

DNA loading buffer (6X)

0.25% bromophenol blue (Sigma-Aldrich, UK)

0.25% xylene cyanol FF 

40% (w/vol) sucrose in dHzO

Protein gel running buffer (Ix)

25 mM Tris base (Sigma-Aldrich, UK)

192 mM glyvine 

0.1% SDS

Make to IL with dHzO

Protein separating gel (for two gels)

4.05 ml dHzO

2.05 ml of 1.5 M Tris-HCl, pH 8.8 

100 pi of 10% SDS

3.30 ml of 30% acrylamide bis 

50 pi of APS 

5 ul of TEMED

Protein stacking gel (for two gels)

3.05 mldHzO

1.25 ml of 1.5 M Tris-HCl, pH 6.8

50 pi of 10% SDS

665 pi of 30% acrylamide bis

25 pi of APS

5 pi of TEMED

Protein gel loading (sample) buffer

60 mM Tris-HCl, pH 6.8 

25% glycerol 

2% SDS

14.4 mM 2-mercaptoethanol 

0.1% bromophenol blue
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Transfer buffer (western blot)

25 mM Tris base 

192 mM glycine 

2 0 % vol/vol methanol

Tris NaCI, pH 7.4 (western blot)

1.2 g Tris base 

8.7 gNaCl 

800 pi of HCl 37%

Make to IL with dHzO

Blocking buffer (western blot)

3 g of skimmed milk 

100 ml Tris NaCl, pH 7,4

Developer (western blot)

Dissolve 30 mg of 4-cloro-1 -naphthol (Sigma-Aldrich, UK) in 10 ml methanol. Add to 50 

ml Tris NaCl, pH 7.4, Add 30 pi of 30% (vol/vol) H2O2 just prior use

1 M KPO4, pH 8.5

16.547 g K 2H P O 4 

0.680gKH2P04

Make to 100 ml with MilliQ water

Phosphate wash buffer

0.25 ml of 1 M KPO4 , pH 8.5 

7.625 ml of MilliQ water

Make to 50 ml with 95% ethanol (Sigma-Aldrich)

Phosphate elution buffer

0 . 2  ml of 1 M KPO 4 , pH 8.5 

Make to 50 ml with MilliQ water

100 mM NaOAc pH 5.2

1 ml 3M NaOAc, pH 5.2 (Ambiom®)

Make to 30 ml with MilliQ water
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IMNaoH

2 g NaOH pellets

Make to 50 ml with MilliQ water

;
0.1 M sodium carbonate buffer pH 9.3

O.SSgNajCOa

50 ml MilliQ water

Add HCl 37% to lower pH to 9.3
:S

Filter with 0.22 pm filter #

Pre-hybridization solution

15 ml of 20x SSC (Ambiom®)

600 pi of 10% SDS (Ambiom®)

0.6 gm of BSA fraction V powder (Sigma-Aldrich)

Make to 60 ml with MilliQ water 

Filter with 0.22 pm filter

Hybridization solution

500 pi of formamide (Sigma-Aldrich)

250 pi of 20x SSC (Ambiom®)

10 pi of 10% SDS (Ambiom®)

Salmon Sperm DNA (Ambion®)

Make to 1 ml with MilliQ water 

Filter with 0.45 pm filter

Low stringency buffer

50 ml of 20x SSC (Ambiom®)

5 ml of 10% SDS (Ambiom®)

Make to 500 ml with MilliQ water 

Filter with 0.22 pm filter

Medium stringency buffer

2.5 ml of 20x SSC (Ambiom®)

5 ml of 10% SDS (Ambiom®)

Make to 500 ml with MilliQ water 

Filter with 0.22 pm filter
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High stringency buffer

2.5 ml of 20x SSC (Ambiom®)

Make to 500 ml with MilliQ water 

Filter with 0.22 fxm filter

A2. PCR-Script™ plasmid

pPCR-Scripf Amp SK( + ) Vector Map

a m p i c i i l i n |

pPCR-Script Amp SK(+)
3.0 kb

\
— -  Sac I

pUC orî

pPCR-Script A m p SK{+) Mu ltip le C lon ing Site Region
(sequence shown 598-826) Apa )

EcoÔ CCI
II _____̂ Z-Eî2CI2Î£I—  ̂ 3'o II

TTGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACCGQGCCCCCC. . .
Ml 3 —20 orî «r b«nd no &te T7 pnme- b ndmg sdc

Eiol 06 I
Xho I A=c I'Hinc ll/Col I C ol Hmo II Ecoft V Eeoî I I 3r-a EomH I I Sr-o
I I  I I I I I I I I I I

. . .CTCGAGGTCGAGGGTATCGATAAGCTTGATATCQAATTCCTGCAGCCCGGGGGATCCGCCCpGGCTAGA..
KZ pT-f binding

S o c  II
r i o f l t o g l  B r t X I j  S a c  I ^  T3_Prom o te r_ _ _ _ _ _ _ _ _ _ _ 5 » H  II

. . . GCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGC. . .
T3 binding si's

^  S-qol tt-fro q m en t

. . . TTGGCGTAATCATGGTCATAGCTGTTTCC
M l  3 P c  « l i e  p n m « r  b in d in g  :  +*
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A3. pCR® 4-TOPO ® plasmid

201 CACACAGpm ACAGCl'̂ gGA CCAl'QATTAC <aœAAGCim QAATTAADCC Î OACTAAAŒ 
Ù%mîX)CTl' Tm%dAtj0f î STACl'AATta CGXdTWmGT CTTAAITOm AGTGATrrCC
—-|»fw  I FMI Fm@ I £w R I

261 eAci%GrccT GCAkrWrn AOsLmwc ccn:i 
CTgWCAGGA PGTCeMATf TGCTTAAGCa G8?

Fm@l

TypeWMg#:*#

e%R I Nsf I
PlA€CIGC JkATrCG&G 
NTTCCCG CfTAAGCGCC
y IS Foward fâSIprMr̂  «%*

311 (XXl'TAAAir CAArjX'nnt: TATACniAUT Gm'A1̂ ';%2AA Tl'CÆVl' GTCmTI'tAC
llUVAXhVl'l'PA QTViV-.'T.UC'J A'î'A'l'CACl'CA ^ÎÇM’M T G IT  AACfüAUXlJ CAQCAAAATG

pCR®4-TOPO® ^
3956 bp

Comments for pGRNTOPO^
3956 nucleotides

tac promoter region; bases 2-21©
CAP binding site: bases 95-132 
ANA pD^merase binding site: bases 133-176 
Lac repressor binding site: bases 179-199 

Start of transcription: base 179 
Ml 3 Reverse priming site: bases 205-221 
LacZct-ccdSgene fusion: bases 217-810 

LacZa portion of fusion: bases 217-497 
ccdB portion of fusion: bases 508-810 

T3 priming site: bases 243-262 
TOPO* Cloning site: bases 294-295 
T7 priming site: bases 328-347 
M13 Forward (-20) priming site: bases 355-370 
Kanamycin promoter: bases 1021-1070 
Kanamycln resistance gene: bases 1159-1953 
Ampictiiin (pia) resistance gene: bases 2203-3063 (c) 
Ampiclllin (b?a| promoter: bases 3064-3160 (c) 
pUC origin: bases 3161-3834 
(c) sf complementary strand
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