
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


The immunomodulatory and 
cytotoxic effects of different forms of 
recombinant adenylate cyclase toxin

• f - f i
kf ' ,

Yiu Chong Gordon Cheung 
B.Sc. Hons

Division of Infection and Immunity, 
Institute of Biomedical and Life Sciences, 

University of Glasgow

August 2006

A thesis submitted for the degree of 
Doctor o f Philosophy



ProQuest Number: 10390598

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10390598

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



^GLaSGÔ^ ,



Declaration
I hereby declaie that the work presented in this thesis is my own, except where otherwise 

cited or acknowledged. No part of this thesis has been presented for any other degree.

Yiu Chong Gordon Cheung

2006



In loving memory of Allan Cheng (1979 -  2005)



Yiu Chong Gordon Cheung, 2006

Acknowledgements

The completion of this PhD would not have been possible without the help of 

my two supervisors at the University of Glasgow, Drs John Coote and Roger Parton, 

and my third supervisor at NIBSC, Dr. Dorothy Xing. I would also like to say that my 

experience worldng with you was truly rewarding and that I learned a lot; I will make 

sure I put it all to good use in the future. You have been great listeners and encouraged 

me during difficult times. I could not ask for any better.

1 would also like to acknowledge Dr. Mike Corbel, who allowed me to conduct a 

major part of my research at NIBSC. During my 7 months at NIBSC, I met an eclectic 

mix of wonderful people, all of whom hold a special place in my heart. A true star has 

been Dr. Sandra Prior. You were tremendously helpful and a great friend right from the 

beginning. I would also like to say ‘thank you’ to my three angels; Alex Douglas- 

Bardsley, Cathy Asokanathan and Penny Newland, for being there every step of the 

way.

My thanks extend to Prof. Peter Ghazal and his team, in particular Drs Garwin 

Sing and Paul Dickinson at the Scottish Centre for Genomic Technology and 

Informatics, University of Edinburgh. You have taught me so much and I am grateful 

for your time and patience. My thanks also go to Mrs Susan Baillie and Dr. Barbara Orr, 

who provided so much help in getting this project off the ground as well as Dr. Sharon 

Kelly, M r Thomas Jess, Dr. Olwyn Byron, Dr. Alan Riboldi-Tunnicliffe and Prof. Nick 

Price who contributed to the biophysical parts of the project. I also thank Dr. Alastair 

G rade for his assistance with the cytoldne analyses.

Je souhaiterais faire part de toute mon amitié à Noëla « the pink princess », 

Marisa, Rachel et Sheena, qui sont les personnes les plus adorables que l ’on puisse 

rencontrer. Chacune d ’entre vous tient une place particulière dans mon coeur. Je garde 

avec moi beaucoup de très bons moments de mon séjour à Ridge et vous en êtes toutes 

directement responsables! Bisioux!

I cannot forget my ‘adopted’ family, Colin, Tessie and Fi who have been so 

supportive and loving. I will always remember the great paities, the food and wine and 

of course, ‘Magic M ike’ I

I would also like to acknowledge the Biotechnology and Biological Sciences 

Research Council, UK, who supported my studentship and the Society for Applied 

Microbiology and the Society of General Microbiology for additional funding which 

enabled me to cany  out this research.



Yiu Chong Gordon Cheung, 2006

Finally, this acknowledgement section would not be complete if I did not 

include my mom, dad, June, Gordon, James and the newest addition to our family, Lio. 

I love you all, always and forever and I will never forget you wherever I am.



Yiu Chong Gordon Cheung, 2006 VI

M 0# #8 m #
# 9Ê # M /L
? 0 i : m cp

Ip $0 f t m fc8
# m m M
# 89 # — .

g # 89 f i

O

m
o

m M: :k ?

T 5 %
:^P tb M *
m f% it. &
zp ill fM A

? 89 m M
ira o m Sir
fÊ 9

#
# # a
# #
_h 89

m c±:
;LL\

m 13

i l L

fÈ

I

5Ü
IT

VJs

m  iffl 
fF1 ^

g m_L£.
Pf

89
m

yV-A-*

Ür*
9
I 9c

m 
#

&  f i

Ü
h0

I
o

89
m
f i

f ( j

% 
m m
m  ffi

m s f
i :  89
-k±l 2"^

#  8̂  
f% ’ 

89 — 
-  f i

VQlN

R hI



Yiu Chong Gordon Cheung, 2006 vii

Abstract

This thesis describes the small- and large-scale purification of four different 

recombinant forms of CyaA, namely: fully functional enzymically-active, acylated and 

invasive CyaA; an acylated and invasive CyaA form lacking adenylate cyclase (AC) 

enzymic activity (CyaA*); and the non-acylated, poorly-invasive forms of these toxins, 

proCyaA and proCyaA*, respectively. Only proCyaA and CyaA showed AC enzymic 

activity. Only CyaA and CyaA* were haemolytic towards sheep erythrocytes and 

cytotoxic towards mouse J774.2 macrophage-like cells. Both haemolysis and 

cytotoxicity by CyaA and CyaA* only occuiTed in the presence of calcium. CyaA was 

cytotoxic towards J774.2 cells at low concentrations (50% trilling at 0.1 pg protein/ml) 

and this paralleled low levels of caspase 3/7 activity, a measure of apoptotic activity. At 

higher toxin concentrations of CyaA (> 0.5 pg protein/ml), caspase 3/7 activity declined 

despite high levels of cell killing measured by the cytotoxicity assay. This may have 

been due to the onset of necrotic killing at higher concentrations. CyaA* could only kill 

J774.2 cells at a toxin concentration greater than 0.5 pg protein/ml and the effect was 

more calcium-dependent than that of CyaA. Cell killing by CyaA* also occuiTcd in the 

absence of apoptosis. These data suggested that CyaA killed J774.2 cells by two 

different mechanisms, involving apoptosis at low concentrations (which was cAMP- 

dependent) and necrosis by pore-formation at higher concentrations. ProCyaA and 

proCyaA* showed no apoptotic, cytotoxic or haemolytic activities. CyaA inhibited the 

zymosan-stimulated oxidative burst of J774.2 cells. ProCyaA and CyaA* were -500- 

fold less active at inhibiting the zymosan-stimulated oxidative burst of J774.2 cells 

compared with native CyaA. Thus, inhibition of the zymosan-stimulated oxidative burst 

by CyaA was a result of both invasive and AC enzymic activities. This also indicated 

that proCyaA was able to invade cells, albeit at a very low level, but that any increase in 

intracellular cAMP levels created by intracellular proCyaA was unable to induce 

apoptosis.

Circular dichroism (CD) was used to assess any differences in the secondary 

structure of the four CyaA forms. There were similai* changes in tertiary structure of all 

the CyaA forms as shown by intrinsic tryptophan fluorescence and near UV CD studies 

in the absence and presence of 1 mM CaC^. Similar conformational changes in protein 

secondary structure of all four CyaA forms, at 0.5 mg protein/ml, were observed by far 

UV CD in the absence and presence of 1 mM CaCB. However, at 0.05 mg protein/ml, 

the spectral amplitude of CyaA was decreased by 2-fold suggesting that CyaA was able 

to adopt two stochiometric forms. Preliminary analytical ultracentrifugation (AUC)
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studies indicated that CyaA did not exist as a single molecular species in solution. At 3 

mg protein/ml, different oligomeric forms of CyaA (monomers, dimers and trimers) as 

well as the presence of degradation products (20 -  80 kDa) were present. Further 

optimisation of AUC studies is required to overcome the problem of non-ideality 

(caused by either a repulsion between charged molecules (proteins) that is not shielded 

by solvent counter-ions or by size-exclusion effects arising from extended/elongated 

conformations) which may have interfered with the analyses.

None of the CyaA forms alone confened significant (P > 0.05) protection 

against B. pertussis in a murine intranasal challenge model. Mice immunised with ACV 

alone showed significantly (P < 0.05) reduced bacterial numbers in the lungs at 7 days 

after intranasal challenge, compared with control mice. Further reduction in bacterial 

numbers was observed when mice were immunised with ACV + CyaA or ACV + 

CyaA*, but the enhanced protection was only significant (P < 0.05) with CyaA*. Co­

administration of CyaA* with ACV caused a significant (P < 0.05) increase in IgG2a 

antibody levels against pertactin, compared with mice immunised with ACV alone. 

Spleen cells from mice immunised with ACV + CyaA* secreted higher amounts of IL- 

5, IL-6, IFNy and GM-CSF than cells from mice immunised with ACV + CyaA or ACV 

alone, after stimulation in vitro with a mixture of B. pertussis antigens. Spleen cells 

from mice immunised with ACV + CyaA* also secreted higher amounts of IFNy and 

GM-CSF than cells from mice immunised with CyaA* alone, after stimulation in vitro 

with CyaA*. Macrophages from mice immunised with ACV + CyaA* produced 

significantly (P < 0.05) higher levels of nitric oxide than macrophages from mice 

immunised with CyaA* alone, ACV alone or ACV + CyaA after stimulation in vitro 

with a mixture of B. pertussis antigens or heat-killed P. pertussis cells. These data 

suggested that the enhancement of protection provided by CyaA* was due to an 

augmentation of both T h l and Th2 immune responses to P. pertussis antigens. Mice 

immunised intraperitoneally with the different CyaA forms alone were protected against 

P. pertussis challenge in an aerosol model. This may have been due to a lower challenge 

dose compared to that used in the intranasal challenge model. Further experiments aie 

required to understand the nature of protection afforded by the different CyaA forms 

alone.

Microarray analysis was used to investigate the effects on gene expression in 

mouse bone marrow-derived macrophages (BMMs) after treatment with three different 

CyaA forms (CyaA, CyaA* and proCyaA*). Preliminary experiments showed greater 

changes of transcription in BMMs after treatment with 20 ng protein/ml of CyaA for 24 

h compared with 2 h. This toxin concentration induced low levels of cell killing (5%
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killing after incubation for 2 h, 20% killing after incubation for 24 h). In a further 

experiment, BMM gene responses to the same concentration of CyaA, CyaA* and 

proCyaA* were assessed after 24 h treatment of BMMs. Over 1,600 genes were up- or 

down-regulated greater than 2-fold (P < 0.05) by CyaA and -1,000 genes were up- or 

down-regulated greater than 3-fold (P < 0.01). A majority (32.5%) of the latter up- 

regulated genes were associated with inflammation. In addition, genes which coded for 

proteins found associated with several cell-signalling cascades were found to be up- 

regulated, as well as several pro-apoptotic genes. No anti-apoptotic gene expression was 

detected. Approximately 40% of genes down-regulated greater than 3-fold were 

associated with cell growth, division and differentiation, compared with only -3%  of 

the up-regulated genes. CyaA* altered the transcription of only two genes greater than 

2-fold (P < 0.05) whereas no genes were altered to this extent by proCyaA*. These 

results indicate that the great majority of gene changes induced by CyaA, at 20 ng 

protein/ml, were mediated by increases in intracellular cAMP and not by binding of 

CyaA to cell receptors.
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C hapter 1 

Introduction

1.1 The genus Bordetella
Bordetella spp. are small Gram-negative, non-sporing coccobacilli and are 

approximately 0.35 x 1.5 pm in size. Bordet and Gengou (1906) first described Bordetella 

pertussis as the aetiological agent of pertussis or whooping cough and, since then, there 

have been nine named species assigned to the genus Bordetella. The other species are B. 

parapertussis (human and ovine strains), B. bronchiseptica, B. avium, B. holmesii, B. 

hinzii, B. trematum, B. petrii and B. ansorpii. Originally, B. pertussis was classified as 

Haemophilus pertussis but in 1952, Moreno-Lopez created a new genus Bordetella in 

honour of the work performed by Jules Bordet (Moreno-Lopez, 1990). B. bronchiseptica 

and B. parapertussis were described by Ferry (1910) and Bradford and Slavin (1937), 

respectively. B. bronchisceptica is recognised as a respiratory tract pathogen in pigs, dogs, 

cats, rodents and, occasionally, humans whereas B. parapertussis can also cause a mild 

form of pertussis in humans but strains have also been isolated from sheep (Cullinane et 

a l,  1987). B. avium  causes coryza and rhinotracheitis in poultry (Kersters et a l ,  1984). B. 

hinzii can be found in the respiratory tracts of chickens and turkeys but has been associated 

with rare cases of fatal human septicaemia (Kattar et a l , 2000) and cholangitis of the liver 

in humans (Arvand et a l ,  2004). B. holmesii was first described in human blood cultures 

(Weyant et a l ,  1995). It has also been detected from the sputum of patients with pertussis­

like symptoms (Tang et a l ,  1998) and from asplenic patients (Shepard et a l ,  2004). B. 

trematum  has been isolated from wounds and ear infections in humans and from leg ulcers 

in diabetics (Daxboeck et a l ,  2004). B. petrii was isolated from a mixed anaerobic 

bioreactor (von Wintzingerode et a l,  2001) and, since then, only one clinical isolate has 

been detected from a human patient with mandibular osteomyelitis (Fry et a l,  2005). B. 

ansorpii is the newest described member of the Bordetellae and was isolated from the 

purulent exudate of an epideiTnal cyst (Ko et a l ,  2005). Sequences of the 16S rRNA genes 

and analyses of cellular fatty acid composition and differences in biochemical tests 

revealed that B. ansorpii belongs to the genus Bordetella but is phylogenetically distinct 

from previously-described Bordetella species.

1.1.1 Genetic relationship between the Bordetella species

The genus Bordetella forms a distinct cluster separated from members of the genera 

Achromobacter and Alcaligenes within the p2 subdivision of Proteobacteria as deduced by 

comparison of their 16S rRNA sequences (von Wintzingerode et a l ,  2001). The genomes
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of three of the most studied species within the Bordetellae, B. pertussis, B. parapertussis 

and B. bronchiseptica, were sequenced to gain new insights into the genetic differences 

that could account for host specificities and pathogeneses (Parkhill et a l ,  2003). Sequence 

comparisons of the three genomes suggest that B, pertussis and B. parapertussis recently 

and independently evolved from B. bronchiseptica-\ik& ancestors. However, both B. 

bronchiseptica and B. parapertussis encode significantly more functional genes (5007 and
'

4404 predicted ORFs, respectively) than B. pertussis (3816 predicted ORFs). B. pertussis 

has 114 ORFs found only in its genome but not in B. parapertussis or B. bronchiseptica. 

Interestingly, a large portion of the DNA found within the B. bronchiseptica genome, but 

not in B. pertussis or B. parapertussis, is attributed to prophages. The loss of genes by B. 

pertussis and B. parapertussis include loci involved with metabolism, membrane transport 

and the biosynthesis of membrane structures. In addition to the lower number of genes, B.

pertussis and B. parapertussis contain 358 and 200 pseudogenes, respectively. 

Pseudogenes (non-functional genes) are formed when the gene has been inactivated by in­

frame stop codons, frameshift mutations or if an insertion sequence (IS) element has been 

introduced into the gene. IS elements are simple mobile genetic elements that do not cairy 

any information other than that required for their mobility and are involved in large-scale 

re-ordering of genomes. B. pertussis contains 261 copies of three IS elements and B. 

parapertussis has 112 copies of two IS elements. Interestingly, none of the IS elements 

found in the B. pertussis or B. parapertussis genomes were found in the B. bronchiseptica 

genome used for sequencing, although, IS elements have been found in other B. 

bronchiseptica isolates (Gerlach et a l ,  2001). The loss of so many functional genes in the 

genome of B. pertussis may explain the restricted host range of B. pertussis compared with 

B. bronchiseptica and B. parapertussis.

1.2 The disease pertussis
The transmission of whooping cough is thought to be mediated through the 

inhalation of droplets produced from infected patients, principally through coughing. B. 

pertussis adheres to ciliated epithelial cells of the bronchial tree and then proliferates and 

colonises the upper respiratory tract whilst producing several types of virulence factors 

(Section 1.5) including toxins that damage suri'ounding ciliated cells. Generally, there is a 

7 - 1 4  day incubation period before clinical manifestations appear. The symptoms of 

whooping cough can be separated into three stages: the catarrhal, paroxysmal and 

convalescent stages. The cataiThal stage is characterised by mildly elevated coughing and 

the production of mucus which can be accompanied by a mild fever. The paroxysmal stage 

occurs roughly 7 - 10 days after the catarrhal stage and is characterised by increased 

severity in coughing. Typically, 5 - 10 or more forceful coughs are made during a single
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expiration (a paroxysm) followed by a massive inspiratory effort during which the classic 

whoop occurs. Uncontrollable bouts of coughing can occur for up to 20 h or more. 

Vomiting, bulging eyes, protrusion of the tongue and hypoxia may follow. The 

pai'axysomal stage can last between 1 - 6  weeks or sometimes longer. The continual bouts 

of coughing can cause complications such as subconjunctival haemorrhage, pneumothorax, 

rupturing of the diaphragm, rectal prolapse, tetanic seizures and dehydration. The 

convalescent stage is when the bouts of coughing become less common and viable B. 

pertussis organisms cannot be detected from the respiratory tract. In spite of well- 

implemented infant vaccination programmes, pertussis has remained endemic in many 

parts of the world, especially amongst young infants (de Melker et ah, 2000; Crowcroft 

and Britto, 2002; Skowronski et a l ,  2002; Crowcroft et a l,  2003b). Unfortunately, most 

cases of pertussis are in developing countries. A recent estimate by Crowcroft et a l  

(2003b) suggested that there could be up to 48 million cases annually of pertussis 

worldwide, with -300,000 deaths. Figure 1 shows the number of cases in the England and 

Wales from 1940 -  1998. There was a dramatic decline of deaths caused by pertussis from 

the late 1940s to the early 1960s due to the increase in vaccine coverage. However, due to 

a controversy over the safety of whole-cell pertussis vaccines in the mid 1970s (Section 

1.7.2), there was a drop in vaccine uptake and the increase in notifications of disease in 

England and Wales (Fig. 1), until the early 1980s when vaccine uptake recovered. Over the 

past 2 decades, the numbers of cases have slowly increased (Fig. 1), but this could be due 

to increased surveillance or greater awareness of the disease.

i

1.3 Diagnosis and treatment
There are several ways to detect pertussis. Traditionally, specimens ai'e collected 

from the upper respiratory tract by nasopharyngeal aspiration or by using nasophai’yngeal 

swabs for the positive identification of B. pertussis. Specimens are cultured on freshly 

prepared (< 8 weeks old) Bordet Gengou (BG) agar or charcoal agar supplemented with

10% horse blood and 40 mg/L cephalexin and incubated at 37 °C in a humidified

atmosphere for 5 - 7 days (Muller et a l ,  1997). Serological detection tests, such as 

agglutination, complement fixation and ELISA can be used. Alternatively, the polymerase 

chain reaction (PCR) has made the detection of B. pertussis and diagnosis of infectious 

disease faster compared with the more conventional methods of detection (Cloud et a l ,  

2003). The use of specific primers also makes it possible to distinguish between species of 

BordeteUa.

Generally, erythromycin is used to treat pertussis infection (Hoppe, 1992). In most 

cases, erythromycin administered during the catarrhal stage of illness is sufficient to
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Figure 1 Cases of pertussis in England and Wales, UK

Whooping cough notifications and mortality—England and Wales, 1940 -  1998.

200 r 3000

100

■ - 2500

160

140

Routine
immunization
recom m ended
nationally
(1957)

"4 — Notifications 
**’—A—  DOQthS

‘ 2000

S 120

Decline in 
immunization 
Rate (1974)

100 - -  1500  9

1000

Immunization 
Rate R ecovers

40

500

/ I t

1980 19901940 1950 1960 1970

Years

Adapted from Baker (2003).



Yiu Chong Gordon Cheung, 2006 5

shorten the duration of illness (Bergquist et a l ,  1987). For patients who are allergic to 

erythromycin, trimethoprim-sulphamethoxazole, azithromycin and claithromycin, are also 

suitable alternatives for the effective treatment of pertussis (Hoppe et a l ,  1996; Lebel et 

a l,  2001; Langley et a l ,  2004).

1.4 BordeteUa virulence regulon
The regulation of virulence by B. pertussis, B. parapertussis, B. bronchiseptica and 

B. avium  is controlled for the most part by a two-component signal transduction system 

encoded by the bvgAS locus. BvgA is a 23 kDa cytoplasmic protein which has a N- 

terminus receiver domain and a helix-tum-helix motif at the C-terminus (Boucher and

Stibitz, 1995) whereas BvgS is a 135 kDa protein composed of a transmembrane receptor
'

linked to a periplasmic domain, a transmitter, a receiver and a histidine phosphotransfer 

domain (HPD) (Stibitz and Yang, 1991). When BordeteUa are grown at 37 °C, the BvgAS
■

phosphorelay system is activated and induces the transcription of vags [vir-activated 

genes] (BvgAS was originally called vir (Weiss and Falkow, 1984) to create the Bvg'^ 

phase). The periplasmic domain of BvgS autophosphorylates at His729 in the transmitter 

domain. A phosphate group is then transfeiTed from His729 to Asp 1023 of the receiver 

domain and subsequently onto H is ll7 2  of the HPD. Finally, the phosphate can then be 

transfen’ed to Asp54 on BvgA (Uhl and Miller, 1994; 1996). Phosphorylated homodimers 

of BvgA bind to regions of DNA containing direct or inverted heptameric consensus 

repeats, TTTC[C/G]TA, located upstream of the RNA polymerase binding site of Bvg- 

regulated genes (Boucher et a l ,  2003). The Bvg^ phase of B. pertussis is characterised by 

the expression of adhesins such as filamentous haemaggluutinin, fimbriae and pertactin 

and toxins including pertussis toxin and adenylate cyclase toxin. The genes encoding the 

virulence factors are temporally regulated with filamentous haemagglutinin being the first 

to appear upon positive environmental cues in Bvg^ phenotypes.

In the laboratory, the BvgAS system can be deactivated by changing the incubation 

temperature from 37 to 25 °C or by growing cells in the presence of millimolar 

concentrations of M gS0 4  or nicotinic acid (Melton and Weiss, 1993) which causes the 

BordeteUa species to become avirulent (the Bvg' phase). The Bvg" phase is characterised 

by the absence of vag expression but a number of vrgs (vir-repressed genes) are expressed.

The BvgAS phosphorelay system also induces the transcription of a gene, bvgR, located 

downstream of the bvgAS operon. BvgR, a 32 kDa protein, negatively regulates the 

virulence repressed genes (vrgs) (Merkel et a l,  1998a). Under Bvg conditions, bvgR 

transcription ceases, relieving the inhibition of vrg transcription.

For B. bronchiseptica, the Bvg" phase is characterised by the expression of several 

proteins associated with metabolism and a a  transport and flagella, responsible for
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motility. In contrast, B. pertussis and B. parapertussis are always non-motile, due to 

inactivation by multiple insertions of IS elements within the flagellar opérons (Parkhill et 

a l,  2003). The Bvg' phase of 5. pertussis is characterised by the expression of several 

outer-membrane proteins of unknown function (Graeff-Wohlleben et a l ,  1995), although a 

role for the Bvg' phase in B. pertussis has yet to be identified. A third phase, the Bvg 

inteiTnediate (Bvg‘) phase, has been identified when B. bronchiseptica is grown in sub- 

modulating conditions, such as growth in the presence of 0.4 - 0.2 mM nicotinic acid. The 

Bvg* phase is characterised by the absence of the Bvg-repressed phenotype, the presence of 

a subset of Bvg-activated virulence factors and the expression of several proteins that are 

expressed maximally or exelusively in this phase, such as BipA (Deora et a l ,  2001), a 

1576 a a  transmembrane protein (Stockbauer et a l ,  2001). The Evg”*" phase of B. pertussis 

is necessary for respiratory infection (Merkel et a l ,  1998b) whereas the Bvg' phase of 

bronchiseptica is better adapted to survive under conditions of extreme nutrient 

deprivation (Cotter and Miller, 1994; Martinez de Tejada et a l ,  1998) suggesting that the 

Bvg* phase of B. bronchiseptica is important for transmission between hosts. The Bvg* 

phase of B. pertussis appears to be similar to that of B. bronchiseptica suggesting that B. 

pertussis may also use this phase for transmission by the aerosol route (Fuchslocher et a l,

2003).

In addition to BvgAS, a second two-component regulatory system called RisAS has 

been described for B. pertussis (Stenson and Peppier, 1995) and B. bronchiseptica (Jungitz 

et a l ,  1998). This consists of a response regulator (RisA) and a sensor kinase (RisS). It 

appears that only RisA is functionally important in B. pertussis as RisA was responsible 

for the expression of vrgs, such as surface-exposed proteins Vra-a and Vra-b, whereas no 

effect on gene expression was observed in a B. pertussis risS mutant (Stenson et a l ,  2005). 

In addition, B. pertussis risA mutants were less able to invade HeLa cells. In B. 

bronchiseptica, the ris locus is essential for bacterial resistance to oxidative stress and the 

production of acid phosphatase, as well as in vivo persistence (Jungitz et a l,  1998).

1.5 The virulence factors of B. pertussis
B. pertussis secretes a range of adhesins and toxins which are required for 

adherence and evasion of the immune system, respectively. Filamentous haemagglutinin, 

pertactin and fimbriae (adhesins), and pertussis toxin and the adenylate cyclase toxin 

(toxins) are the most studied virulence factors involved in the pathogenicity of B. pertussis.

1.5,1 Filamentous haemagglutinin (FHA)

FHA is expressed as a 367 kDa precursor, FhaB, which has a N-teiminal signal 

sequence and a C-terminal region which are both proteolytically-processed to form the
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mature 220 kDa FHA fom i (Jacob-Dubuisson et a l,  1996; Renauld-Mongenie et a l,

1996). FhaB is transported through the bacterial inner membrane (IM) by the sec- 

dependent pathway and then channelled through a P-banel porin structure located on the 

outer membrane consisting of FhaC, during which 8 - 9  IcDa of the N-terminus is cleaved. 

A subtilisin-like autotransporter/protease, SphB l, has been shown to cleave -130 kDa of 

the C-terminus of FhaB (Goutte et a l , 2003) which is thought to occur on the cell surface. 

Mature FHA is monomeric and shaped like a hairpin with head, shaft and tail regions and 

is roughly 2 nm x 45 nm (Aral and Sato, 1976; Makhov et a l ,  1994). Along the shaft 

region and on the hairpin end of FHA are Arg-Gly-Asp (RGD) sequence motifs. In vitro 

studies have shown that these motifs can facilitate adherence to monocytes/macrophages 

and other leukocytes expressing the GDI lb/CD 18 (GR3) receptor or via the leukocyte 

response integrin/integrin-associated protein complex (Ishibashi et a l ,  1994). Bronchial 

epithelial cells expressing the very late antigen 5 receptor are also susceptible to B. 

pertussis invasion which is dependent on the presence of RGD motifs on FHA (Ishibashi et 

a l ,  2001). A carbohydrate recognition domain and a heparin-binding site have also been 

identified in FHA (Menozzi et a l ,  1991; Prasad et a l ,  1993). Biological effects of FHA 

include facilitating the attachment B. pertussis to the ciliated epithelium of the respiratory 

tract of host cells (Tuomanen and Weiss, 1985) and induction of phagocytosis of B. 

pertussis by engaging with GR3 (Reiman et a l,  1990). Interestingly, FHA also increases 

the surface expression of GR3 on human neutrophil PMNLs in vitro (Mobberley-Schuman 

and Weiss, 2005). However, FHA can inhibit T cell proliferation as a response to antigen 

stimulation in vitro (Boschwitz et a l ,  1997). It can also stimulate production of cytokines, 

such as IL-1 0  in murine macrophages and induce apoptosis of human monocyte-like cells 

and bronchial epithelial eells (McGuirk and Mills, 2000a; Abramson et a l ,  2001). In 

summary, FHA has an important role in adhesion but has an ability to manipulate the 

immune system which in turn may create more favourable conditions for B, pertussis 

proliferation. An immune response to this antigen could prevent the efficient colonisation 

of B. pertussis. For this reason, FHA is included as part of commereially-available 

acellular pertussis vaccines (Section 1.7.3).

1.5.2 Pertactin (PRN)

PRN is synthesised as a 95.5 kDa protein encoded by the p m  gene. PRN consists of 

a N-terminal signal peptide, a 69 kDa outer-membrane protein segment and a 30 IdDa 

transmembrane G-terminal domain. The N-terminal sequence is recognised by the sec- 

dependent pathway for passage through the IM and the immature PRN form is navigated to 

the outer cell membrane where the P30 region acts as an autotransporter by spanning the 

bacterial membrane to allow the passage of the 69 kDa domain. PRN may remain
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membrane bound, extending into the environment or it may be released, by either 

autoproteolytic activity or cleaved by another outer membrane protease (Henderson et a l ,

1998). PRN contains a number of RGD motifs as well as several proline-rich regions and 

leucine-rich repeats indicating that PRN has a role in adhesion (Emsley et a l ,  1996). PRN, 

used in subunit vaccines, can enhance protection of mice against respiratory challenge with 

virulent B. pertussis (Novotny et a l,  1991; Romanos et a l ,  1991; Roberts et a l ,  1993).

Thus, PRN is a protective antigen and is now included in many commonly-used acellular 

pertussis vaccines (Section 1.7.3).

1.5.3 Pertussis toxin (PT)
::

Of the BordeteUa species, only B. pertussis expresses PT. B. parapertussis and B. 

bronchiseptica contain the genes to express PT but due to mutations in the promoter 

regions, they are transcriptionally silent (Arico et a l ,  1987). PT, at 106 kDa, is composed 

of 6  polypeptides, named SI to S5, encoded by the ptxA  to ptxE  genes, respectively. SI is 

the A (enzymic) part of the toxin whereas S2 -  S5 make up the pentameric B (binding) part 

of the toxin. The S2, S3, S4 and S5 polypeptides are assembled in a 1:1:2:1 ratio and held 

together by non-covalent interactions. The combined structure of PT categorises it into the

AB5 family of toxins, like that of cholera toxin of Vibrio cholerae. Each polypeptide has a 

N-terminal signal sequence, suggesting that they are all transported into the periplasmic

space by the general export pathway. In the periplasm, the PT subunits are assembled and 

the holotoxin is then secreted in an active and assembled foim (Pizza et a l ,  1990; Nencioni 

et a l,  1991). The SI subunit of PT, in its reduced form, can catalyse the transfer of ADP- 

ribose from nicotinamide adenine dinucleotide (NAD) to the a  subunit of guanine 

nucleotide-binding proteins (G proteins) in eukai'yotic cells (Tamura et a l,  1982; Katada et 

a l,  1983). When G proteins, such as Gi (inhibitory), Gt (transducing), and Go, are ADP- 

ribosylated by PT, they become inactive. Gi normally inhibits adenylyl cyclase and 

activates K"** channels, Gt activates cGMP phosphodiesterase and Go activates channels, 

inactivates Câ '*' channels and activates phospholipase C-(3 (Ui, 1990). Disruption of G 

protein activity by PT leads to increased activity of adenylyl cyclase resulting in increased 

cAMP levels and to several biological effects in vivo, including histamine sensitisation and 

enhancement of insulin secretion (Munoz, 1981; Pittman, 1984). In addition, PT has been 

shown to inhibit immune cell functions such as chemotaxis and migration of neutrophil 

PMNLs, macrophages and lymphocytes (Meade et a l ,  1984; Brito et a l ,  1997; Lyons,

1997). PT is also mitogenic and has immunosuppressive (Carbonetti et a l,  2004) and 

adjuvant properties (Section 1.9.3). Chemically-treated or genetically-detoxified PT (dPT) 

derivatives now foim part of all commereially-available acellular pertussis vaccines 

(Section 1.7.3) as it has been shown that dPT is protective in mice against intracerebral and
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aerosol B, pertussis challenges (Sato et a l ,  1984; Sato and Sato, 1988, 1990), Moreover, i

monocomponent ACVs containing dPT alone have been shown to be efficacious in human ;

field trials (Sato et a l ,  1984; Trollfors et a l ,  1997, 1998). ;
i

1.5.4 Lipopolysaccharide (LPS)

LPS or endotoxin of B. pertussis is structurally and chemically different from well- 

documented smooth-types of LPS expressed by members of the Enterohacteriaceae family i

or other members of the genus BordeteUa. Smooth LPS consists of three regions: lipid A, 

core oligosaccharide and a long polysaccharide O-antigen chain. B. pertussis expresses two 

types of LPS, LPS-A and LPS-B, which are structurally distinct (Peppier, 1984). LPS-B is i

smaller than LPS-A and consists of lipid A linked via a single ketodeoxyoctulosonic acid 

(KDO) residue to a branched oligosaccharide core structure containing various sugars 

including heptose and glucose. By contrast, LPS-A consists of LPS-B plus three different 

sugar moieties; A-aeetyl-A-methylfucosamine, 2,3-deoxy-di-A-actylmannuronic acid and 

A-acetylglucosamine (Caroff et a l ,  1990; Lasfargues et a l ,  1993). The structure of B. 

pertussis LPS is different from that of B. parapertussis and B. bronchiseptica in that it 

lacks a repetitive O-antigenic structure, a feature similar to that of rough LPS or 

lipooligosaccharide (LOS) of Enterohacteriaceae (Martin et a l ,  1992; Preston et a l,

1996). The O-antigen biosynthesis locus in B. pertussis has been disrupted by an IS 

element (Preston et a l ,  1999, Parkhill et a l,  2003). The genes which code for LPS are 

found in the wlb locus of BordeteUa species (Allen and Masked, 1996; Preston et a l ,

2002).

LPS S from BordeteUa species are pyrogenic, mitogenic and toxic (Ayme et a l,

1980; Watanabe et a l ,  1990). The role of LPS in pathogenicity has been investigated using 

B. pertussis, B. bronchiseptica and B. parapertussis LPS mutants (Harvill et a l ,  2000). In 

a mouse model of respiratory infection, B. pertussis, B. bronchiseptica and human B. 

parapertussis strains expressing only LPS-B showed decreased colonisation. The 

importance of O-antigen was also investigated, as the O-antigen chains are thought to 

prevent complement binding to the surface of the bacterial cell. Moreover, of these three 

species, only B. pertussis does not express it. Most B. pertussis strains, when grown in 

vitro, are somewhat sensitive to killing by naïve serum but serum sensitive strains 

recovered from mice showed increased resistance to serum killing (Pishko et a l,  2003).

This is possibly mediated by BrkA, a virulence factor which has serum resistance 

properties (Fernandez and Weiss, 1994) or it may be due to changes in B. pertussis LPS 

itself (Schaeffer et a l,  2004).
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1.5.5 Adenylate cydase toxin (CyaA) i

CyaA (also known as: ACT [adenylate cyclase toxin]/AC-hly [adenylate cyclase 

haemolysin]) of B. pertussis belongs to the Repeats in ToXin (RTX) family. RTX toxins i

have a series of C-terminal nonapeptide Gly/Asp rich repeats which vary from six to 40 t

repeats between members. The RTX family includes the prototype a-haemolysin of 

pathogenic E. coli (HlyA) and the leukotoxins of Pasteurella haemolytica (LtxA) and 

Actinobacillus spp. (Welch, 1991; Coote, 1992; Stanley et a l ,  1998). As with all RTX 

members, the pro-toxin is post-translationally modified by an acyl transferase in order to 

facilitate interaction with cells to exert their toxic effects (Welch, 1991; Coote, 1992).

CyaA was first described as a constituent of B. pertussis commercial WCVs in the 

early 1970s (Wolff and Cook, 1973) and was later found associated with the cell surface of 

B. pertussis (Hewlett and Wolff, 1976). Subsequently, two sizes of CyaA, at 45 kDa and 

220 kDa, were described (Rogel et a l ,  1988; Hewlett et a l ,  1989; Masure and Storm, 

1989). However, it was shown that the toxic form of CyaA was approximately 220 kDa 

(Hewlett et a l ,  1989; Rogel et a l ,  1989) which could be cleaved proteolytically to produce 

a smaller protein with a Mw between 45 -  47 IcDa (Ladant et a l ,  1986; Rogel et a l ,  1988; 

Bellalou et a l ,  1990a). This smaller fragment was shown to have adenylate cyclase (AC) 

enzymic activity (Gilboa-Ron et a l ,  1989). The 220 IcDa protein was later cloned and 

expressed from E. coli (Brownlie et a l ,  1988; Glaser et a l,  1988b).

The structural gene, cyaA, was found to encode a 1706 residue bi-functional protein 

that contained a N-terminal AC domain ( a a  1 - 400) and a C-terminal haemolytic/pore- 

forming domain ( a a  401 - 1706) (Glaser et a l ,  1988a): no other member of the RTX toxin 

family has an enzymic domain. CyaA is also produced by B. bronchiseptica, B, 

parapertussis and B. hinzii (Endoh et a l ,  1980; Bets ou et a l ,  1995b; Donato et a l ,  2005). 

Moreover, the CyaAs of B, pertussis and B. bronchiseptica share 98% a a  homology and 

contain identical domains for AC activity, calmodulin binding, pore-forming activity and 

Câ '*' binding. The CyaAs of B. parapertussis and B. bronchiseptica have similar activities 

to that of CyaA of B. pertussis but the toxins are antigenically distinct (Gueirard and 

Guiso, 1993; Khelef et a l ,  1993) which is likely due to amino acid differences in the 

second and third group of Gly/Asp rich motifs (Betsou et a l ,  1995b). Interestingly, CyaA 

expressed from B. hinzii is non-haemolytic and cannot increase intracellular cAMP in 

mouse macrophages, despite the presence of AC activity as detennined by the conversion 

of radiolabelled ATP to cAMP in a cell-free system (Donato et a l ,  2005). This may be 

attributed by the lack of cyaC  expression (Donato et a l,  2005) which codes for an acyl 

transferase required to palmitoylate CyaA (Section 1.5.5.3.1).

1
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1.5.5.1 Gene organisation
The cyaA operon consists of an ‘A’ pro-toxin gene followed by the ‘B \  ‘D ' and ‘£” 

genes (Fig. 2) and has a common layout like that of other RTX members (Welch, 1991; 

Coote, 1992).

Figure 2 Schematic diagram of the cya gene operon in B. pertussis

cyaC cyaA cyaB cyaD cyaE

B . p e r t u s s i s  

c y a  gene regulon

An'ows indicate direction of transcription.

cyaC  is found upstream with an ORF on the opposite strand to the cyaA, cyaB, 

cyaD  and cyaE  genes and is transcribed in the opposite direction, under the control of its 

own promoter (Bairy et a l ,  1991). A Bvg promoter is located upstream of cyaA which 

means that, under suitable environmental conditions, CyaA production is switched on 

(Goyard and Ullman, 1993) by the BvgAS phosphorelay system (Karimova et a l ,  1996). 

The cyaB, cyaD and cyaE  genes encode a 712 a a  putative transmembrane protein (located 

on the inner bacterial envelope), a 440 a a  anchored cytoplasmic membrane protein, and a 

474 a a  outer membrane protein, respectively. The proteins all assemble across the

bacterial envelope and excrete CyaA directly into the external medium without a

periplasmic intermediate (Glaser et a l ,  1988b), analogous to the E. coli a-HlyA Type I 

secretion system (Hartlein et a l ,  1983). However, 90% of adenylate cyclase activity is 

located on the bacterial cell surface and it has been suggested that FHA has a role in 

retaining CyaA on the bacterial surface (Zaretzky et a l ,  2002). A recent study by Gray et 

a l  (2004) demonstrated that only newly secreted CyaA was responsible for intoxication of 

cells and not surface bound CyaA.

1.5.5.2 N-terminal adenylate cyclase domain

The AC domain is located on the N-terminus of the toxin comprising the first 400

a a  (Fig. 3).

Figure 3 Schematic diagram of the B. pertussis CyaA protein
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1.5.5.3.2 Gly/Asp rich nonapeptide repeats and calcium binding

CyaA has 42 Gly/Asp rich nonapeptide repeats located between a a  1007 - 1706 

(Glaser et ah, 1988a). Câ '*’ ions bind to these repeats which have a consensus sequence

Yiu Chong Gordon Cheung, 2006 12

Tryptic digestion of the 400 a a  AC domain generates two fragments; T25 ( a a  1 - 

224) and T18 ( a a  225 - 399) (Glaser et a l ,  1991). T25 possesses the catalytic domain and 

T18 contains the calmodulin binding site (Ladant, 1988; M unier et a l,  1991). Several 

helical structural elements of the AC domain interact with calmodulin (Guo et a l,  2005). A 

separate study of the AC domain described three important regions which have significant 

roles in catalysing the cAMP reaction (Gordon et a l ,  1989). These domains consist of 13 - 

24 a a  residues, with structural homology (66  - 80%) to the AC domain of the Bacillus 

anthracis oedema factor (Gordon et a l,  1989). Lysines 58 and 65, within the first domain 

( a a  54 - 77), foim the catalytic substrate-binding site (Glaser et a l ,  1991). Asp 188 and 

Asp 190, in between a a  184 - 196, aie thought to be involved in a putative stabilising 

complex with ATP-Mg^^ to allow efficient catalysis to occur (Oldenberg and Storm, 1993). 

a a  184 - 196 and a a  294 - 314, bracket a helical structure around Trp242, shown to 

interact with calmodulin (Glaser et a l ,  1989; Ladant et a l ,  1989; Glaser et a l ,  1991).

1.5.5.3 C"termiiial haemoiytic/pore-forming domain

Depicted as from a a  401 - 1706 (Glaser et a l ,  1988a) (Fig. 3), the 

haemol y tic/ pore-fonning domain consists of a post-translational modification site(s), 42 

Gly/Asp rich repeats, hydrophobic domains, an unprocessed secretion signal and a putative 

AC translocating domain.

1.5.5.3.1 Acylation for activation

The cyaC  gene product is an acyl transferase which covalently attaches fatty acyl 

chains onto the pro-toxin (Bany et a l ,  1991; Hackett et a l ,  1994) and this process is also 

required for the haemoiytic and cytotoxic activities of CyaA (Bairy et a l ,  1991; Hewlett et 

a l,  1993; Heveker et a l ,  1994). B. pertussis CyaA is solely palmitoylated by an 8-amide 

linkage at Lys983 (Hackett et a l ,  1994). However, with the advent of recombinant forms
'

of CyaA (rCyaA) expressed in E. coli, it was shown that rCyaA is acylated on both Lys983 Ï ÿ;
and Lys860 (Hackett et a l,  1995) by a mixture of fatty acids: 87% palmitoylation (Cis)

occurs at Lys983 but 67% of CyaA molecules are palmitoylated at Lys860 and the rest is 

myristoylated (C ^) (Hackett et a l ,  1995). Acylation on both Lys983 and Lys860 is 

thought to be the reason for the reduced haemoiytic activity of rCyaA compared with 

native CyaA expressed from B. pertussis which is only acylated on Lys983 (Sebo et a l .

1991; Hackett et a l ,  1994; Basar et a l ,  1999).

1
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GGXGXDXLX, arranged in 5 groups separated by 20 - 30 residue-long a-helix forming 

a a  (Rose et a l ,  1995). A small number of nonapeptide Gly/Asp rich repeats are also found 

in the alkaline protease of Pseudomonas aeruginosa, of which the 3D structure has been 

solved (Baumann et a l ,  1993). Data from this structure indicate that the repeats are 

organised in a P-roll consisting of 2  opposing sheets of parallel p-strands comprised of the 

last 5 a a  of each nonapeptide repeat (XDXLX) connected by loops derived from the first 4 

a a  of the repeated sequence (GGXG). Câ "*" is hexacoordinated between two adjacent loops 

of the P-roll, and as a whole, each repeat binds one Ca^^ ion (Rose et a l ,  1995). CyaA has 

3 - 5  high and -4 0  low affinity Câ "*" binding sites (Rose et a l ,  1995). In the presence of 

Câ '*', CyaA undergoes a confoimational change (Hewlett et a l ,  1991; Rose et a l ,  1995; 

Rhodes et a l,  2001; Bauche et a l ,  2006) perhaps by the formation of P-sheet helices 

within the repeat domain of CyaA (Rhodes et a l ,  2001) which enables interaction with 

target cells (Knapp et a l ,  2003). HlyA and CyaA both require calcium to cause haemolysis 

in erythrocytes, and this is inhibited in the presence of ion chelators, such as EGTA and 

EDTA (Hanski and Farfel, 1985; Gentile et a l ,  1988; Ludwig et a l ,  1988; Boehm et a l,  

1990a and b). Some studies have shown HlyA and CyaA to be haemoiytic in the presence 

of these ion chelators (Bhakdi et a l ,  1986; Rogel et a l ,  1991). However, it may be that 

Câ '*' ions, from growth media or through purification procedures, can bind tightly to the 

high affinity Câ '*' binding sites and cannot be removed by chelation, resulting in the 

changes in stmcture required for membrane interaction and haemolysis.

1.5.5.3.3 Secretion of CyaA

An unprocessed secretion signal is encoded at the 3’ end of cyaA (Sebo and Ladant, 

1993). In vitro complementation studies, with truncated CyaA forms, determined that 

residues contained within the last 217 residues of CyaA, were essential for toxin secretion 

(Iwaki et a l ,  1995; Bejerano et a l ,  1999).

1.5.5.4 Haemoiytic and cytotoxic functions of CyaA

Acylated CyaA preferentially interacts with and invades mammalian target cells 

that express the awPz integrin receptor CD 1 lb/CD  18 (Guermonprez et a l,  2001) which is 

found on granulocytes, neutrophil PMNLs, macrophages, dendritic cells (DCs), myeloid 

cells, natural killer (NK) cells, CD8  ̂ T-cells and on B-cells (Bell et a l ,  1999). Several 

authors (Szabo et a l ,  1994; Hackett et a l ,  1995; Gray et a l,  1998; Basler et a l ,  2006a; 

Hewlett et a l , 2006) suggest that, in the presence of calcium, CyaA acts in two parallel and 

distinct ways after membrane insertion. One results in the insertion of CyaA monomers 

into the target membrane followed by the formation of oligomeric channels or pores 

(Osickova et a l ,  1999; Knapp et a l ,  2003; Section 1.5.5.4.1). The second, after CyaA
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membrane insertion by toxin monomers, is the direct translocation of the AC domain into 

cells to cause a supraphysiological increase in cAMP after activation of the AC enzymic 

moiety by host calmodulin (a process referred to as intoxication) (Gray et a l ,  1998; Basler 

et a l,  2006a; Hewlett et a l,  2006). The consequences of increased cAMP levels within 

phagocytes are discussed in Section 1.5.5.4.2.

1.5.5.4.1 Haemolysis and pore-formation by CyaA

CyaA has also been shown to form small (0.6 - 0.8 nm diameter) transient, ion- 

permeable channels in target membranes (Bellalou et a l ,  1990b; Ehrmann et a l ,  1991; 

Rogel et a l ,  1991; Benz et a l ,  1994). No erythrocyte receptor has been found for CyaA 

although recent work by Vojtova et a l  (2006) suggested that clusters of -20  CyaA toxin 

molecules co-localise in erythrocyte membrane microdomains (rafts), that are typically 

enriched in gangliosides, sphingomyelin and cholesterol (Simons and Ikonen, 1997), 

further supporting the role of an oligomeric structure which produces small pores or 

channels. However, other authors suggest that CyaA oligomers consist of only 2 - 4  toxin 

monomers (Iwaki et a l ,  1995; Lee et a l ,  2005). Certainly, pores have not been visualised 

by electron microscopy.

Haemolysis of sheep erythrocytes requires greater concentrations of CyaA and

longer incubation periods compared with intoxication (Hewlett et a l ,  1989; Bellalou et a l ,

1990b; Ehrmann et a l ,  1991; Rogel et a l ,  1991; Szabo et a l,  1994; Gray et a l ,  1998).

Haemolysis occurs only very slowly at 0 -  2 °C and is significantly reduced compared with 
,

incubation at 37 °C (Gray et a l ,  1998). A hydrophobic segment, from a a  500 - 700, is 

suggested to play a critical role in the penetration of cells by the predicted formation of 

four membrane-spanning domains (Hanski and Coote, 1991). Mutant CyaAs that lack 

Gly/Asp rich repeats show a reduced haemoiytic capacity (Knapp et a l ,  2003). In addition 

to haemolysis, it was shown by scanning electron microscopy, that CyaA could induce 

moiphological changes of erythrocytes, such as shrinkage, formation of membrane 

projections, blebbing and swelling (Vojtova et a l ,  2006).

1.5.5.4.2 Intoxication

Once CyaA has bound onto the target cell, it is able to translocate the AC domain 

across the membrane. The translocation of the enzymic domain of B. anthracis oedema 

factor into target cells is calcium-dependent and happens after 10 min, suggesting receptor- 

mediated endocytosis (Gordon et a l ,  1989). However, CyaA is believed not to enter cells 

by this route (Donovan and Storm, 1990) since intracellular AC activity is detected within 

seconds (Gordon et a l,  1989). This implies that the AC domain is translocated directly 

across the plasma membrane (Otero et a l ,  1995; Khelef et a l ,  2001). Residues around and
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within a a  400 - 500 of CyaA are reported to play an important role in the translocation of 

the AC moiety into target cells (Gray et a l ,  2001). Point mutations at a a  509 and a a  516 

reduce the translocation capacity of the AC domain and monoclonal antibodies which bind 

to a a  373 - 399 of CyaA inhibit intoxication of target cells. Residues 373 - 489 are thought 

to undergo a conformational change, potentially forming an amphipathic a-helical 

segment, allowing the intracellulai' delivery of the AC domain (Osickova et a l ,  1999) 

which can be hindered by random insert!onal mutagenesis of CyaA (Osicka et a l ,  2000). 

Generally, such a dramatic increase of intracellulai" cAMP levels can impair and inhibit 

immune effector cell functions (Bourne et a l ,  1971; Bourne et a l ,  1974). Indeed, the 

increase of cAMP by CyaA in phagocytes impairs chemotaxis (Confer and Eaton, 1982), 

inhibits the oxidative burst (Pearson et a l ,  1987), inhibits phagocytosis (Bassinet et a l,

2000) and induces apoptosis (Khelef and Guiso, 1995; Gueirard et a l,  1998; Bachelet et 

a l,  2002) leading to cell death. Intracellular cAMP levels are proportional to the amount of 

CyaA being introduced into cells as CyaA is subject to intracellular degradation (Friedman 

et a l ,  1987; Gilboa-Ron et a l ,  1989). Furthermore, it was generally thought that acylation 

was mandatory for interaction with target cells for intoxication (Bairy et a l,  1991; Hewlett 

et a l ,  1993). However, recent studies have shown that high concentrations of non-acylated 

CyaA can intoxicate macrophages by delivery of the catalytic domain (Boyd et a l ,  2005; 

Hewlett et a l ,  2006) but such toxins have a reduced propensity to oligomerise and form 

pores (Lee et a l ,  2005). Intoxication by non-acylated CyaA may be explained by the 

ability of non-acylated CyaA to bind, with less affinity, to cells expressing the CR3 

receptor (El-Azami-El-Idrissi et a l ,  2003).

15.5.5 CyaA as a virulence factor

The generation of a B. pertussis Tn5 transposon mutant, defective in the production 

of CyaA, provided evidence that CyaA was an important virulence factor (Weiss et a l ,

1984). The B. pertussis CyaA' mutant was considerably less virulent than the wild-type B. 

pertussis parent strain following murine intranasal challenge because it was rapidly cleared 

from the lungs with no viable bacteria remaining at 10 days post challenge (Weiss and 

Goodwin, 1989; Goodwin and Weiss, 1990).

Other studies showed that B. pertussis CyaA mutants were severely compromised 

in their ability to adhere and to multiply in mouse lungs (Khelef et a l ,  1992; Carbonetti et 

a l,  2005). These data indicate that CyaA has an important role during B. pertussis 

infection. Mice infected with these CyaA mutants caused little cellular influx into
. ' ■■

bronchoalveolar lavage fluids compared with parental virulent strains (Khelef et a l ,  1994; 

Cai'bonetti et a t ,  2005). However, Carbonetti et al. (2005) suggested that CyaA may have 

a role later on during B, pertussis infection by intoxicating arriving phagocytes.
#
$
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1.5.6 Other virulence factors of B. pertussis
B. pertussis secretes a wide range of other virulence factors (Fig. 4). These include 

serotype-specific fimbriae 2 and 3 and tracheal colonisation factor (TCF) (involved in 

adhesion), dermonecrotic toxin (DNT) and tracheal cytotoxin (TCT) (toxins) and 

autotransporter proteins, such as BrkA and Vag8 . A study by Hot et a l  (2003) confirmed 

that these genes were up-regulated in B. pertussis in the Bvg^ phase using micro array 

technology. With the available data from the BordeteUa sequencing project, the 

identification of new vags and vrgs is likely in the near future.

1.6 Immunity to infection
The immune system is an organisation of cells and molecules with specialised roles 

in the defence against infection. An immune response involves recognition of the pathogen 

or foreign material (antigen), such as bacterial lipopolysaccharide (LPS), lipoteichoic 

acids, bacterial DNA and double-stranded RNA, and then a reaction to eliminate them. 

The immune system has evolved two types of responses to infection; innate (non-adaptive) 

and adaptive immunity. Innate immunity consists of physiological barriers and cellular 

defences which include phagocytic cells (neutrophil PMNLs, monocytes and 

macrophages), cells that release inflammatory mediators (basophils, mast cells and 

eosinophils) and natural killer cells. The innate immune responses also use molecular 

components such as chemokines, cytokines and complement. Cytokines have a direct role 

in defence by acting as messengers both within the immune system and other systems of 

the body, forming an integrated network that is highly involved in the regulation of 

immune responses (Roitt et a l ,  1998). Chemokines are a supeifamily of more than 40 

members and are important for cell activation, differentiation and trafficking (Nickel et a l,

1999). Chemokines are also involved in many biological processes which include cell 

proliferation, apoptosis and in host defences (Gerard and Rollins, 2001; Murakami et a l ,

2004). Complement is group of about 20 serum proteins which interact with each other or 

with cells of the immune system, such as phagocytes. Complement can activate 

phagocytes, induce pores in the surface of Gram-negative bacteria, enveloped viruses and 

other organisms non-specifically or by opsonising (coating) the surface of micro-organisms 

and immune complexes, so that they can be recognised by cells expressing complement 

receptors (Roitt et a l ,  1998). The effector mechanisms of innate immunity, are activated 

immediately after infection and rapidly control the replication of the infecting pathogen. 

Microorganisms coated with antibodies and/or complement are engulfed by phagocytes 

and then subjected to a wide range of toxic intracellular molecules, including superoxide 

anions, nitric oxide, antimicrobial proteins and lysozyme.
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Figure 4 The virulence factors of B, pertussis

B. pertussis is depicted as a Gram-negative organism with inner and outer membranes (IM 

and OM), a periplasm and a capsule. The adhesins, such as Fim, FhaB, pertactin, TCF 

(tracheal colonisation factor), BrkA (conveys resistance to killing by complement) and 

Vag8 (adhesin) are shown in blue; the toxins, such as PT, CyaA and DNT (dermonecrotic 

toxin) are in red; the accessory proteins, such as FhaC, FimB and FimC are in grey; the 

iron uptake systems are in green; and the regulatory systems BvgA, BvgS and BvgR are in 

beige. The large brown arrows represent the orientation of export and import of virulence 

factors and siderophores, respectively. The thinner brown arrows show the phosphorelay 

and the regulation circuit. The type III secretion system, resembling a needle-like 

projection, allows B. pertussis to translocate effector proteins directly into the plasma 

membrane or cytoplasm of eukaryotic cells.
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Most pathogens are encountered after they are inhaled or ingested. Responses to 

inhaled antigens occur in the lingual, palatine and pharyngeal adenoids. The respiratory 

mucosa contains dendritic cells (DCs) for uptake, processing and transport of antigens to 

the draining lymph nodes. T-lymphocyte receptors (TLRs), such as those expressed on 

phagocytes, recognise antigens and activate signal-transduction pathways that induce the 

expression of a variety of immune-response genes, including inflammatory cytokines. The 

signals induced on recognition of foreign antigens by the innate immune system, in turn, 

control the activation of adaptive immune responses. For this reason, containing the 

infection until the lymphocytes can begin to deal with it has long been considered the main 

function of innate immunity.

In adaptive immunity, the proliferation of naïve immune cells (e.g. T cells (or T 

lymphocytes) and B cells) during the first encounter with an antigen generates both 

effector immune cells and antibody-secreting plasma cells as well as ‘memory cells’. The 

memory cells enable a superior secondary immune response to be mounted after a 

subsequent encounter with the same antigen. Because memory cells are increased in 

number relative to naïve cells and also more readily triggered, the secondary response is 

more rapid than the primary immune response. It produces a larger number of T cells and, 

in the case of B cells, induces greater levels of antibody with an affinity for the antigen 

than the levels of antibody achieved by the primary response.

T cells forni an important pait of the adaptive immune response. Approximately 5 - 

10% of T cells express the y/ô T-cell receptor (TCR) but this receptor does not recognise 

antigen in the form of peptide-MHC complexes (discussed below), y/d T cells can be found 

in mucosal epithelia and may be important in protecting the mucosal surfaces of the body 

(Roitt et a l ,  1998). The remaining population of T cells express the 0(/(3 TCR which can 

recognise a complex that is formed by a peptide seated within the groove of a MUG 

molecule expressed by antigen-presenting cells (APCs). Mature 0(/p T cells express either 

CD4 or CD8 molecules and, together with CD3, they form an essential part of the TCR 

complex. CDS'*' T-cells are usually cytotoxic and recognise antigen-derived peptide 

presented by MHC class I molecules expressed by most somatic cells. By contrast, CD4^ T 

cells usually act as helper T-cells and recognise antigen presented by MHC class II 

molecules normally expressed by a subgroup of immune cells that includes B cells, 

macrophages and DCs. Activated DCs aie a key cellular component of the innate immunity 

and are particularly efficient at initiating (priming) naïve T cells because they express large 

amounts of co-stimulatory B7-1 and B7-2 (also known as CD80 and CD8 6 , respectively) 

and CD40 molecules. B7 and CD40 molecules bind with CD28 and CD 154, respectively 

and help to activate the cells.
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Cross-linking of the TCR, which occurs when it binds to peptide-MHC complexes 

on cell surfaces of an ARC, initiates phosphorylation of tyrosines in the cytoplasmic tails 

of the CD3 complex. The presence of other surface protein interactions between the T cell 

and ARC facilitate this process, e.g. B7 and CD40 interaction. The transduction of the 

downstream signal to the nucleus initiates the transcriptional activation of various genes.

Thus, ARCs can activate helper CD4^ T cells by presenting peptide-MHC class II 

complexes. CD4^ T cells can be divided into two major sub-populations characterised by 

their cytokine secretion profile. Generally, type 1 helper (T hl) T-cells secrete IL-2 and 

IFNy but not IL-4, IL-5, or IL-6 . Type 2 helper (Th2) T-cells secrete IL-4, IL-5, IL-6 , and 

IL-10 but not IL-2 or IFNy. Table 1 lists a few commonly described cytokines, their 

sources of production and their effects. Cytokines have a central role in influencing the 

type of immune response needed for optimal protection against particular types of 

infectious agents. For example, the release of IL-12 by ARCs stimulates the production of 

IFNy by T h l cells. IFNy also efficiently activates macrophages, enabling them to kill 

intracellular organisms. However, not all signals from cytokines and cell-surface molecules 

are stimulatory. For example, IL-10 often antagonises T h l responses. T cells expressing 

cytokines associated with both T h l and Th2 cells are termed ThO cells (Mosmann et a l,

1989).

The B cell also m inors this process of signal transduction. B cells can produce 

different subclasses of IgA and IgG, some of which have different roles in immunity. For 

example, IgG2a subclasses (in the mouse) are considered to be responsible for 

opsonisation and complement fixation whereas IgG l may be more important in 

neutralising toxins and inhibiting bacterial adherence. The production of cytokines by T hl 

cells facilitates cell-mediated immunity, including the activation of macrophages and T- 

cell-mediated cytotoxicity; on the other hand, Th2 cells help B cells produce antibodies. 

However, it is now no longer reasonable to consider cell-mediated and antibody-mediated 

responses separately, as no cell-mediated response is likely to occur in the total absence of 

antibodies.

1.7 Immunity to pertussis
In recent years, an increasing number of cases of pertussis have been reported in 

more mature age groups, specifically adolescents and adults (Hewlett and Edwards, 2005).
■ . I

Although vaccination has markedly reduced the incidence of pertussis in developed 

countries, vaccine-induced immunity to pertussis weakens considerably from young 

adulthood, about 5 years after vaccination (Fine and Clarkson, 1982).

■•'II
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Table 1

20

A limited sample of cytokines, listed with their principal activities, 

sources and targets

Cytokine Immune system 
source

Principal
targets

Principal effects

IL-ip

Macrophages and 
other antigen- 
presenting cells 
(APCs)

T cells, B cells, 
macrophages, 
endothelium, 
tissue cells

Enhancement of T cell activation in 
response to antigen, macrophage 
stimulation

IL-2

Activated T hl 
cells

T cells Proliferation of B cells and activated 
T cells, activation of cytotoxic T- 
lymphocytes (CTLs) and 
macrophages

IL-4

Th2 cells and 
mast cells

T cells, B cells B-cell growth factor, isotype 
selection, IgE, IgG l. Induction of 
MHC class II expression on B cells. 
Inhibition of chemokine production

IL-5 Th2 cells and 
mast cells

B cells B-cell growth and differentiation, 
IgA selection

IL-6

Activated Th2 
cells, APCs and 
other somatic 
cells

B cells B cell differentiation, synergistic 
with IL-1 and TNF on T cells

IL-8
Macrophages 
other somatic 
cells

Neutrophil 
PMNLs, T 
cells

Chemoattractant for neutrophil 
PMNLs and T cells, superoxide 
release

IL-10

Activated Th2 
cells, CD 8  ̂T and 
B cells, 
macrophages

T h l cells Inhibition of cytokine synthesis, 
promotes B cell proliferation and 
antibody production, suppresses 
cellular immunity

IL-12 Macrophages and 
B cells

T cells Induction of T h l cells, IFNy 
production

TNFa

Activated
macrophages

Macrophages, 
tissue cells

Activation of macrophages and 
CTLs, enhanced MHC class I 
production, induces signalling 
pathways that lead to proliferation

IFNy

Activated T h l 
and natural killer 
cells

Leukocytes, 
tissue cells, 
Th2 cells

MHC class I and II induction, 
neutrophils PMNLs and macrophage 
activation, macrophage cytokine 
synthesis, promotes T hl responses

GM-CSF
Activated T cells 
and macrophages

Macrophage
precursors

Proliferation of granulocyte and 
macrophage precursors and 
activators

I
l i

i

Adapted from Roitt et ah (1998) and from

http://www.biosource.com/content/literatureContent/methodPDFs/CvtoIdneMethods.pdf

■ist
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http://www.biosource.com/content/literatureContent/methodPDFs/CvtoIdneMethods.pdf
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These data support the conclusion that vaccination in infancy does not afford long­

term protection and indicates a need for booster immunisation in older age groups 

(Jenkinson, 1988; Ruuskanen et a l ,  1991; Tran Minh et a l ,  1998; Dagan et a l ,  1999; 

Miller et a l ,  2000; Edmunds et a l ,  2002; Greenberg, 2005). There is increasing 

recognition that infected adolescents and adults can transmit pertussis to infants too young 

to be vaccinated (He et a l ,  1994a; Gilberg et a l ,  2002; Crowcroft et a l,  2003a). In many 

developing countries, where vaccine coverage is low, whooping cough still remains a 

major problem, especially among young infants less than 6 months of age. Vaccines to 

pertussis have been in circulation since the 1940s. However, as will be discussed, a 

difference is seen in the immune response after natural infection and the types of vaccines 

used to immunise individuals.

1.7.1 Immune responses to pertussis infection

Several studies in humans infected with pertussis have shown high IgG and IgA 

antibody titres against several B. pertussis antigens, such as lipooligosaccharide (LOS), 

FHA, PRN, and fimbriae (Ashworth et a l ,  1983; He et a l,  1994b; Mink et a l ,  1994; 

Trollfors et a l ,  1999) suggesting a role of antibodies against pertussis infection. Indeed, 

Munoz et a l  (1981) showed that serum which contained antibodies to PT were able to 

passively protect mice against intracerebral challenge with B. pertussis. In contrast, serum 

containing only antibodies to FHA were unable to protect mice against intracerebral 

challenge with B. pertussis. Ig'^' mice, which are defective in B cells and antibody 

production, developed a chronic infection after aerosol challenge with B. pertussis (Mahon 

et a l ,  1997). Full protection in Ig'^' mice immunised intranasally three times with formalin 

fixed B. pertussis was only observed after transfer of B. pertussis-immune B cells (Leef et 

a l,  2 0 0 0 ).

B cells can act as APCs for T cells, facilitating immune responses to foreign 

antigens. Thus, it was not surprising to find that T cells also play a role in immunity 

against B. pertussis infection. T and B cell-deficient (scicl) mice succumbed to death at 3 

weeks post-aerosol infection with B. pertussis (Barbie et a l ,  1997). In addition, Mills et a l  

(1993) showed that adoptive transfer of B. pertussis specific CD4^ T cells, but not immune 

CDS'*" T cells, from mice primed by B. pertussis infection, were capable of confem ng 

protection to athymic mice. Another mouse model of infection demonstrated that Ig'^‘ mice 

could be partially protected by intranasal immunisation with formalin fixed B. pertussis in 

the absence of antibodies (Leef et a l ,  2000).

Several studies have investigated the type of immune response as a result of B. 

pertussis infection in humans. B. pertussis antigen-specific T-cell clones from human 

adults and children have been shown to produce IFNy and IL-2 (both Thl-associated
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cytokines) in response to antigen-stimulation in vitro (Pepploni et a l ,  1991; Hafler et a i ,  

1998; Mascart et a l ,  2003). Moreover, B. pertussis antigen-specific peripheral blood 

mononuclear cells from B. pertussis-mfected  or convalescent children also produced 

produce IFNy and IL-2, but undetectable IL-4 or IL-5 (Ryan et a l ,  1997b) following 

antigen-stimulation in vitro. IFNy (a Thl-inducing cytokine) has also been shown to 

enhance the ability of macrophages to Irill B. pertussis in vitro (Torre et a l ,  1994; Mahon 

et a l ,  1999). These studies provide evidence that strong cell-mediated responses are 

induced during and after natural infection with B. pertussis. In addition, strong cell- 

mediated responses are required to protect against natural infection with B. pertussis.

1.7.2 Immune responses to whole-cell pertussis vaccines

The high mortality rates due to pertussis infection prompted the production of 

preventative methods for pertussis. Soon after B. pertussis was first isolated, initial 

vaccines were made and consisted of killed whole B. pertussis cells. During the 1940s, 

whole-cell vaccines (WCVs), made from formaldehyde-treated B. pertussis cells, were 

introduced to reduce the global incidence of pertussis (Sato and Sato, 1999; Mattoo and 

Cherry, 2005). These vaccines were extremely effective in protection against B. pertussis 

infection. By the late 1940s, combined WCVs were introduced which included diphtheria 

and tetanus toxoids (DTP). Despite the high efficacy of these vaccines, numerous side- 

effects were reported after immunisation. These included redness, swelling and pain at the 

site of immunisation. Other types of symptoms such as drowsiness, fever, vomiting and 

persistent crying were observed after repeated immunisation doses. Finally, there has been 

much concern with the association of neurological disease and death with WCVs. For 

example, in the UK, extensive media coverage of the potential side effects attributed to 

WCVs led to a decline of vaccine uptake during the mid 1970s (Roberts and Parton, 2001). 

As a consequence, there were large pertussis epidemics until 1982 when vaccine uptake 

recovered (Section 1.2).

Mice immunised subcutaneously with WCVs showed pertussis-specific antibodies 

in serum samples which exceeded levels found in non-immunised mice (Willems et a l,

1998). In addition, mice immunised intranasally with WCVs showed high levels of 

pertussis-specific IgA antibodies in lung lavages compared with non-immunised mice 

(Berstad et a l ,  1997). WCVs also induce high levels of antibodies to PT, FHA, PRN and 

fimbriae in humans, although there was no direct evidence to link antibody levels and the 

levels of protection (Gustafsson et a l ,  1996; Greco et a l ,  1996; Simondon et a l ,  1997; 

Olin et a l ,  1997). It is becoming clear, however, from studies in mice (Redhead et a l,  

1993; Barnard et a l ,  1996; Mahon et a l ,  1996) and in humans (Peppoloni et a l ,  1991; 

Ausiello et a l,  1997; Ryan et a l ,  1998a), that effective immunisation against B. pertussis
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is also dependent on the induction of cell-mediated immunity which is similar to the type 

of immunity induced by natural infection with B. pertussis (Section 1.7.1). T cells from 

mice and from human infants immunised with WCVs, were shown to secrete high levels of 

IL-2 and IFNy; but not IL-4 or IL-5, after in vitro stimulation with B, pertussis antigens 

(Redhead et a l ,  1993; Barnard et a l,  1996; Ausiello et a l ,  1997; Ryan et a l ,  1998a; van

den Berg et a l,  2000). In addition, macrophages from mice immunised with a WCV 

secreted high levels of nitric oxide in response to in vitro stimulation with heat-killed B. 

pertussis cells (Xing et a l ,  1998). Naïve murine macrophages secreted high levels of IL-12 

in response to in vitro stimulation with heat-killed B. pertussis cells (Mahon et a l ,  1996).

It has been shown that IFNy can augment IL-12 production by macrophages in response to 

LPS (Skeen et a l ,  1996). Thus, the high LPS levels in WCVs (Robinson et a l ,  1985) may 

contribute to the documented detection of high levels of IL-12 (Mahon et a l ,  1996). 

Furthermore, high levels of anti-B. pertussis Ig2a antibodies (indicative of a cell-mediated 

response) were detected in mouse sera after two immunisations with WCV (van den Berg 

et a l ,  2000). In summary, these data indicate that WCVs induce cell-mediated responses in 

mice and in humans.

B. pertussis can invade and survive in many different types of cells, such as 

epithelial cells (Bassinet et a l ,  2000) and macrophages (Friedman et a l ,  1992; Hazenbos 

et a l ,  1994). However, intracellular survival of B. pertussis does not appeal' to be required 

for the induction of strong T h l cell-mediated immune responses as similar immune 

responses are induced by the subcutaneous administration of WCVs containing dead 

bacteria (Redhead et a l ,  1993; Barnard et a /.,1996; Mahon et a l ,  1996; Leef et a l ,  2000; 

van den Berg et a l ,  2000).

I

1.7.3 Immune responses to acellular pertussis vaccines

After the observations that WCVs could be severely reac to genic, new generation 

ACVs were developed and are steadily replacing WCVs. Numerous reports have
'

demonstrated that ACVs are less reactogenic than WCVs (Roberts and Parton, 2001; 

Mattoo and Cherny, 2005). However, there has been much debate as to whether all ACVs 

have the same efficacies as WCVs (Garcia-Sanz et a l ,  1985; Trollfors et a l ,  1995; 

Simondon et a l ,  1997). Many studies have shown that ACVs are highly effective at
■■

preventing the severe manifestation of pertussis in both humans and mice (Barnard et a l ,

1996; Olin et a l ,  1997; CheiTy et a l ,  1998; Storsaeter et a l ,  1998) although one study 

suggested that mice immunised with ACVs were poorer at inducing significant neutrophil 

PM NL infiltration in the lungs following aerosol challenge compared with WCVs 

(McGuirk and Mills, 2000b).
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ACVs contain a combination of purified immunogenic protein antigens from B. 

pertussis, such as genetically or chemically detoxified PT (dPT), PRN, FHA or serotype 2 

and 3 fimbriae. Studies have shown that ACVs which contain more purified B. pertussis 

antigens show increased efficacy against mild disease (Greco et a l ,  1996; Gustafsson et 

a l,  1996). In early clinical trials of ACVs, it was difficult to define quantitative 

coiTelations between specific anti-pertussis antibody levels and protection against disease 

(Blumberg et a l,  1992; Greco et a l ,  1996; Gustafsson et a l ,  1996). However, efficacy 

trials with ACVs completed later in Sweden and in Germany showed that high antibody 

titres against PRN and to a lesser extent against fimbriae and PT, in the sera of children, 

correlated with protection (Cherry et a l ,  1998; Storsaeter et a l ,  1998). ACVs invoke a 

strong Th2 cytokine profile (IL-4 and IL-5) in mice (Redhead et a l ,  1993; Barnard et a l ,  

1996; van den Berg et a l ,  2000) but, in humans, a mixed T h l and Th2 cytokine response is 

induced as T cells secrete IFNy in addition to IL-4 and IL-5 (Ausiello et a l,  1997; Ryan et 

a l,  1998a). Interestingly, Cassone et a l  (1997) concluded that ACVs were better inducers 

of T h l responses than the WCV but this conclusion could have been due to differences in 

efficacies of the particular vaccines used in that study (Canthaboo et a l ,  2001). Moreover, 

inclusion of IL-12 (a Thl-inducing cytokine) with an ACV, increased its efficacy to a level 

similar to that of a WCV in mice (Mahon et a l,  1996).

In summary, investigations into the types of immune responses induced by WCV, 

ACVs or by natural infection have been truly informative. With these data, the potential to 

create more efficacious vaccines is possible now that key elements of the immune system 

have been identified for protection against B. pertussis.

1.8 CyaA as a candidate protective antigen
CyaA is cuiTently not included in any of the commercial ACV preparations, despite 

the observation of anti-CyaA antibodies in convalescent sera of human adults and in 

neonates after B. pertussis infection (Faifel et a l ,  1990; Arciniega et a l ,  1991; Arciniega 

et a l ,  1993; Betsou et a l ,  1993; Cheny et a l ,  2004). In addition, there have been several 

studies which have shown CyaA from B. bronchiseptica, B. pertussis and B. parapertussis 

to be protective in mice. Guiso et a l  (1991) showed that mice immunised subcutaneously 

with 2 X 25 pg of purified full length CyaA or 2 x 4 pg of AC fragments from B. pertussis 

protected mice against intranasal challenge with B. pertussis Tohama or 18.323. The 

protective efficacies of purified CyaA or AC fragments were lower than the protective 

efficacy of a WCV indicating that CyaA was not the only factor involved in bacterial 

colonisation in B, pertussis. Interestingly, purified CyaA or AC fragments from B. 

parapertussis protected against bacterial colonisation with B. parapertussis but did not 

protect against B. pertussis colonisation (Khelef et a l ,  1993a). In a separate study by
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Gueirard and Guiso (1993), mice immunised subcutaneously with 2 x 15 pg of purified 

CyaA from B. bronchiseptica were protected against colonisation of B. bronchiseptica by 

the intranasal route and had protective activity similar to that of a B. bronchiseptica WCV 

suggesting that B. bronchiseptica CyaA is a major protective antigen against B. 

bronchiseptica infection. Mice immunised subcutaneously with 2  x 15 pg of purified CyaA 

from B. pertussis were protected against B. pertussis infection but not against B. 

bronchiseptica indicating that the CyaAs expressed from these three BordeteUa species are 

immunologically distinct. It may also imply that if CyaA were included in an ACV, it 

would not make the vaccine cross protective.

The ability of recombinant CyaA expressed from E, coli to protect against B. 

pertussis has also been investigated. Mice immunised subcutaneously with 2 x 15 pg of 

purified recombinant CyaA from E. coli, in alum, were protected against B. pertussis 

intranasal challenge (Hormozi et a l ,  1999). In a separate study, mice immunised 

intraperitoneally with 1 x  25 pg of purified recombinant CyaA from, E. coli, without alum, 

were protected against B. pertussis aerosol challenge (MacDonald-Fyall, 2002). However, 

in both studies, protection was not observed with a recombinant non-acylated form of 

CyaA, indicating that acylation of CyaA by CyaC is important for protection in mice 

(Betsou et a l ,  1993; Hormozi et a l ,  1999). MacDonald-Fyall (2002) also showed that 

intraperitoneal immunisation with one dose of CyaA (25 pg) lacking AC enzymic activity 

(CyaA^, which has a di-peptide insertion in the AC domain between residues 188 and 189 

in the catalytic site of domain) protected mice against B. pertussis aerosol challenge but 

not against intranasal challenge. The level of protection afforded by CyaA*, in the aerosol 

challenge model, was similar to native CyaA, suggesting that the AC enzymic activity does

I

not contribute to protection. Therefore, if CyaA was included in any future ACVs, then an 

enzymically-inactivated form would be prefen*ed. However, Monneron et a l  (1988) 

showed that polyclonal antibodies raised against B. pertussis CyaA and mammalian AC 

were cross-reactive. Therefore, further investigations are needed if  CyaA were to be used 

in a vaccine.

1.9 Bacterial toxins as immunomodulatory agents
Most purified antigens aie poorly immunogenic when ingested or inhaled (McGhee 

et a l ,  1992). However, bacterial toxins, such as B. pertussis pertussis toxin (PT), V. 

cholerae cholera toxin (CT) and the heat-labile toxin (LT) of enterotoxigenic E. coli, have 

been shown to act as powerful mucosal adjuvants for nasal or oral delivery of protein 

antigens. CT, PT and LT have also been used as adjuvants by other routes (see below). CT, 

LT and PT are all AB5 toxins which consist of a pentameric binding ‘B ’ domain, and an
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ADP-ribosylating enzymic ‘A ’ moiety. Like PT, CT and LT bind NAD and transfer the 

ADP-ribose moiety to a target G protein which results in an intracellular accumulation of 

cAMP and cell intoxication (Spangler, 1992). CT and LT have high homology (80% 

identity) in their primary structure (Dallas and Falkow, 1980; Spicer et a l ,  1981) and bind 

to G M l mono-sialogangliosides receptors on the surface of eukaryotic cells. G M l 

receptors are found in abundance on the luminal surface of intestinal epithelial cells 

(Spangler, 1992). All 3 bacterial toxins are powerful mucosal adjuvants but are too toxic 

for general use (Levine et a l,  1983). Therefore, enzymically-inactive or partially I

enzymically-inactive toxin mutants have been generated to deal with the problem of 

toxicity and, as a result, the mechanisms of adjuvanticity to foreign antigens, as well as 

immunomodulatory properties of these toxins are slowly being uncovered.

1.9.1 Cholera toxin (CT) as an adjuvant

CT is a potent mucosal adjuvant that can induce mucosal antibody responses to co­

administered antigens through the nasal or oral routes (Elson and Balding, 1984; 

Yamamoto et a l ,  1997a; Imaoka et a l ,  1998). CT has also been shown to induce systemic 

adjuvanticity in mice immunised intraperitoneally with CT plus bovine serum albumin 

(BSA) (Park et a l ,  2003). This was demonstrated by 10-fold higher levels of serum anti- 

BSA total IgG and mucosal IgA antibodies compared with mice immunised with BSA 

alone. The disadvantage of using native CT as an adjuvant is its ability to induce oedema at 

the site of injection (Kay and Ferguson, 1989). The toxicity of CT has been overcome by 

site-directed mutageneses in the enzymic domain. Lomada et a l  (2004) showed that non­

toxic CT-2*, which has Arg7-Lys and G lu ll2 -G ln  substitutions and therefore lacks ADP- 

ribosylating activity, was very efficient at acting as a musocal adjuvant towards peptide 

antigens by inducing IFNy production from helper T cells and CTLs in mice. Another 

study showed that CT with a Glu29-His substitution, which showed no ADP-ribosylating 

activity but 1.2% of wild-type CT toxicity, acted as an adjuvant in mice towards a 

recombinant Norwalk virus-virus like particle vaccine when co-administered by the oral 

route, by inducing virus-specific IgG and IgA production as well as inducing a stronger 

Th2 response compared with control mice given vaccine only (Periwal et a l ,  2003). 

However, not all CT mutants, such as CTK63, which contains a Ser63-Lys substitution in 

the enzymic subunit and has negligible enzymic activity, are efficient adjuvants towards 

co-administered antigens (Douce et a l ,  1997). Similarly, the non-toxic CT B pentamer 

(CTB) is generally not regarded as an efficient adjuvant for co-administered antigens 

(Lycke et a l ,  1992; Holmgren et a l ,  1993) although mice immunised intranasally and 

subcutaneously with CTB non-conjugated to antigen have been shown to effectively at 

raise antigen-specific serum IgG antibody titres (Isaka et a l ,  1999). CTB but can be a

■
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highly efficient mucosal carrier molecule for antigens linked by chemical or genetic

although the full adjuvant activity requires an intact CT molecule covalently linked to the 

ADP-ribosylating enzymic protein unit (Lycke et a l,  1992). However, after intranasal 

administration, GM l-ganglioside binding CT or CTB and co-administered antigens have 

been shown to accumulate in the olfactory epithelium and bulb (Fujihashi et a l ,  2002). 

These sites allow access to the central nervous system which, may be a potential problem 

for the use of CT as a mucosal adjuvant.

1.9.2 Heat-labile toxin (LT) as an adjuvant

LT has been shown to have adjuvant properties. Mice immunised subcutaneously 

three times with LT (10 ng) and the Helicobacter pylori urease antigen showed enhanced 

protection against H, pylori challenge and increased serum anti-urease total IgG antibody 

levels compared with mice immunised subcutaneously with urease alone (Weltzin et a l,

2000). A parallel study with the LT binding domain (LTB) also showed that it could act as 

an adjuvant towards H. pylori urease antigen, although a greater toxin concentration (50 

pg) was required to see this effect compared with LT (10 ng) (Weltzin et a l ,  2000). Other 

studies have shown that LTB alone can act as an adjuvant towards other antigens (Elson, 

1984; Pizza et a l ,  2001). Like that of CT, enzymically-inactive mutants have been 

constructured and evaluated as adjuvants. These include LTK63, which contains a Ser63- 

Lys substitution, and LTR72, which has a Ala72-Arg substitution, are two of the most 

extensively studied LT mutants (Pizza et a l ,  1994; Guiliani et a l ,  1998). LTK63 has no 

ADP-ribosylating activity but LTR72 has 1% of wild-type ADP-ribosylating activity. Both 

LTK63 and LTR72 are better adjuvants than LTB (Douce et a l ,  1995; de Haan et a l ,  

1996) suggesting an important role for the enzymically inactive A subunit in the 

modulation of the immune response. LTK63 and LTR72 have no adjuvanticity at very low

conjugation by inducing mucosal antibody responses to the linked antigen in mice 

(Lipscombe et a l,  1991; Bergerot et a l,  1997). CTB conjugated with antigen has been 

shown to act as an adjuvant by other immunisation routes, such as intranasally and 

subcutaneously (Price et a l ,  2005). It has been suggested that coupling of protein to CTB 

promotes strong binding to G M l receptors and hence antigen uptake, enhancing the 

induction of antibody responses to the linked antigen (McKenzie and Halsey, 1984; 

Czerkinsky et a l ,  1989). When native CT is administered mucosally as an adjuvant with 

bystander antigens, in mice, mixed Thl-Th2 responses (Homquist and Lycke, 1993; 

KjeiTulf et a l,  1998) and MHC class I-restricted CTL responses (Bowen et a l,  1994;
'

Simmons et a l ,  1999) have been reported. The latter could be explained by the selective 

presentation of antigen by DCs to CD8^ cells (Porgador et a l ,  1998). Clearly, site-directed 

mutants of CT and the B subunits have great potential to be used as therapeutic agents
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doses but their adjuvanticities ai'e enhanced by increasing their doses (Pizza et a l ,  2001). 

The mucosal delivery of LTK63 and LTR72 with an acellular pertussis vaccine can confer 

protection against B. pertussis infection in mice (Ryan et a l,  1999). LTK63 and LTR72 

can also enhance immune responses to a wide variety of antigens after mucosal 

immunisation, including ovalbumin (Giuliani et a l ,  1998), keyhole limpet haemocyanin 

(KLH) (Douce et a l ,  1999), FHA, PRN and PT of B. pertussis (Ryan et a l ,  1999) and ricin 

(Kende et a l,  2006). A LT mutant LT192G (Argl92-Gly substitution), which has a 10-fold 

reduction in toxicity in vitro, has been shown to elicit a mixed T hl/Th2 response towards

KLH (Douce et a l ,  1999) whereas wild-type LT suppresses T h l responses but induces 

Th2 responses (Petrovska et a l ,  2003).

1.9.3 Pertussis toxin (PT) as an adjuvant

PT is a well known adjuvant which can enhance IL-4 and IgE production to co­

administered antigens in mice (Mu and Sewell, 1993; Samore and Siber, 1996). However, 

due to the toxic nature of PT, genetically-detoxified PT derivatives have been created by 

introducing mutations into the enzymic domain (Nencioni et a l ,  1990; Podda et a l ,  1990). 

Mice immunised intranasally with 3 jag of PT-9K/129G, which has Arg9-Lys and G lul29- 

Gly substitutions, and has no ADP-ribosylating activity, was shown to behave as a better 

adjuvant than native PT towards the 50 kDa non-toxic fragment C of tetanus toxin (FrgC), 

by enhancing anti-FrgC total IgG levels (Roberts et a l ,  1995). This suggested that the 

enzymic toxic activity might hinder the adjuvant activities of PT. Spleen cells from mice 

immunised intraperitoneally once with 5 pg of PT or with 5 pg of PT-9K/129G in 

combination with co-administered antigens were shown to produce high levels of IFNy and 

IL-5 after in vitro antigen-stimulation indicating the induction of a combined T h l and Th2 

response (Ryan et a l ,  1998b). It is thought that PT mediates its adjuvanticity by through a 

cAMP-dependent pathway (Bagley et a l ,  2002) or by inhibiting G; protein-signalling (He 

et a l,  2000; Hou et a l ,  2003). However, since PT-9K/129G has no enzymic activity, the 

mechanism of adjuvanticity may be mediated by the ability of PT to bind to cell receptors 

to induce cell-signalling cascades.

In summai'y, CT, LT and PT and their detoxified counterparts can behave as 

adjuvants towards co-administered antigens. These studies have shown the potential to use 

detoxified versions of the native toxins as potential candidates as adjuvants towards co­

administered antigens.

1.9.4 CyaA as an adjuvant

CyaA has been shown to behave as an adjuvant in mice by increasing total IgG 

levels to foreign antigens. Hormozi et a l  (1999) showed increased total IgG anti­
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ovalbumin antibody titres in mice immunised subcutaneously with 2 x 15 pg of 

recombinant CyaA plus ovalbumin. Ross et a l  (2004) showed enhanced antigen-specific 

IL-5 and IL-10 production and anti-KLH IgG l antibodies after subcutaneous immunisation 

with 2 x 1 pg of CyaA plus KLH. However, like CT, LT and PT, CyaA has toxic activity 

in vitro and its use in a vaccine may not be ideal. MacDonald-Fyall et a l  (2004) compared 

the ability of a recombinant enzymically-inactive mutant, CyaA*, and wild-type 

recombinant CyaA to act as adjuvants towards FHA, PT and PRN. Mice that were 

immunised intraperitoneally with FHA, native PT and PRN + 25 pg of CyaA* showed 

greater total IgG antibody levels to FHA and PRN, and to a lesser extent, PT, compared 

with mice immunised intraperitoneally once with FHA, native PT and PRN + 25 pg CyaA 

or with FHA, native PT and PRN alone. Moreover, peritoneal macrophages from mice 

immunised with FHA, native PT and PRN + CyaA* produced more nitric oxide after 

stimulation with B, pertussis antigens. These data indicated that the enzymic activity of 

CyaA was not required for the adjuvant effects mediated by CyaA. In fact, the absence of 

AC activity appeared to enhance the adjuvant effects of CyaA perhaps due to the reduced 

toxicity of the CyaA* protein towards APCs.

The role of the AC domain and acylation of CyaA were investigated for their 

adjuvant contributions towards KLH (Boyd et a l,  2005). Mice immunised twice in the 

hind footpads with KLH plus 1 pg of acylated (native) rCyaA or 1 pg of non-acylated 

rCyaA, but not non-enzymic, acylated rCyaA, showed increased total IgG antibody 

responses to KLH. Moreover, acylated rCyaA and non-acylated rCyaA predominantly 

induced anti-KLH IgG l antibodies. The cytokine profile of antigen-stimulated cells from 

the popliteal lymph nodes of immunised mice showed that rCyaA and non-acylated rCyaA 

in combination with KLH induced Th2- and IL-lO-secreting type 1 regulatory T (TiT) 

cells, as shown by increased IL-4, IL-5, IL-10 and IFNy, a phenomenon also noted 

previously for CyaA (Ross et a l,  2004). As IL-10 suppresses IL-12, which is an inducer of 

cell-mediated responses, it is thought that T rl cells help up-regulate Th2 responses. The 

conclusion by Boyd et a l  (2005) was that acylation was not required for the adjuvant 

effects of CyaA.

The differences in results between MacDonald-Fyall et a l  (2004) and Boyd et a l  

(2005) could be due to differences in the amount of non-enzymic CyaA used for 

immunisation in the two studies. Nevertheless, both these studies show the potential for 

detoxified forms of CyaA to be used as adjuvants towards co-administered antigens.

1.9.4.1 CyaA as a delivery molecule for foreign antigenic epitopes

CyaA is tolerant to insertional sequences within its catalytic domain. Therefore 

abolishing AC activity does not affect translocation of the AC moiety into target cells
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(Ladant et a l,  1992; Osicka et a l,  2000; Gmira et a l ,  2001). Non-enzymic rCyaA forms 

containing CD8  ̂T  cell viral epitopes inserted in the AC domain have been investigated for 

their ability to induce protective antiviral and therapeutic antitumour CD8 '*' CTLs in mice 

(Sebo et a l,  1995; Saron et a l ,  1997; Fayolle et a l,  1999; Guermonprez et a l ,  1999; 

Dadaglio et a l ,  2003; Mascarell et a l ,  2005). Foreign CD4^ T cell epitopes have also been 

introduced into CyaA and investigated (Loucka et a l,  2002). It is thought that CyaA can 

deliver the AC domain carrying the CD 8  ̂or CD4^ T cell epitopes into the cytosol of MHC 

class I or MHC class II APCs, which then are able to stimulate CD8  ̂ or CD4^ T cells, 

respectively (Schlecht et a l ,  2004; Wilkinson et a l,  2005). More impressively, Dadaglio et 

a l  (2000) and Fayolle et a l  (2001) both showed that CyaA could accommodate multiple 

epitopes, including MHC class I and class II epitopes from the nucleoprotein of the 

lymphocytic choriomeningitis virus, HIV peptides and chicken ovalbumin. In both studies, 

epitope-specific cytotoxic responses were induced in vivo. These findings represent a very 

versatile system where any desired synthetic peptide could be easily integrated into CyaA 

enabling the design of novel types of vaccines.

1.10 Microarrays
DNA microaiTay is an important technology for studying gene expression. The 

level of expression of thousands of genes, or even an entire genome, can be estimated from 

a sample of cells. M icroanays also allow the investigator to follow changes in the

expression of many genes simultaneously. Microarray analysis functions on the basis of

highly specific molecular recognition between cDNA strands or between cDNA and 

cRNA. Thus, a solution containing a complex mix of cRNA or cDNA (target) molecules 

can bind with high affinity to immobilised cDNA molecules (probes) on a solid sutface.

1.10.1 Types of microarrays

The generation of microarrays is generally done in one of two ways. cDNA 

microaiTays consist of cDNA gene probes that are robotically printed on glass by covalent 

attachment or by physisorption (Campbell and Ghazal, 2004). Covalent attachment 

involves the formation of a covalent bond between molecules on DNA with a surface and 

it results in a more stable attachment of DNA. Physisoiption pairs areas of complimentaiy 

charge on DNA with a charged surface, such as poly-lysine or poly-amine (Schena et a l , 

1995). Affymetrix GeneChips® have oligonucleotide probes lithographically synthesised in 

situ (Fodor et a l,  1991; Fig. 5). Firstly, amino groups (NH) on a glass slide are capped by 

photolabile protecting groups (X). The photolabile N-protecting group on the surface is 

site-specifically removed by the selective iiTadiation using a UV illuminator with a 

photomask. Thereafter, a nucleotide monomer (A) bearing the photolabile protecting group
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Figure 5 Generation of oligonucleotide microarrays on solid surfaces by 

photolithography

All the oligonucleotides are synthesised in parallel on the glass chip. NH(X) is the amino 

group (containing a photolabile protecting group). A, is the first nucleotide. B, is the 

second nucleotide etc. The creation of oligonucleotides on the surface is described in 

Section 1,10.1.
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is coupled to the exposed amino group (Fig. 5). Repetitive cycles of photodeprotection and 

coupling steps generate the desired microarray allowing up to 40,000 compounds to be 

synthesised in 1 cm^ (Shin et a l ,  2005). The frequency of sequence errors increase with the 

length of oligonucleotide probes which is why GeneChips® have settled with the 

production of 25-mers. Affymetrix probes are designed in pairs: one sequence is the exact 

complement of the target sequence (Perfect Match; PM), and the other differs from the 

exact complement by one mutation in the middle of the probe (MisMatch; MM). The MM 

probe acts as an internal control for the PM probe as it should not hybridise well to the 

target transcript but should hybridise non-specifically to many transcripts as well as the 

PM  oligonucleotides. For any gene, up to 20 paired probes can be printed on the array and 

heterogeneous transcripts that would all bind to the same cDNA probe will bind 

differentially to each oligonucleotide probe. Using the difference signal between these two 

probes approximately cancels non-specific binding and background contributions 

providing a better estimate of the intensity due to hybridisation to the true target transcript. 

Creating 25-mers on solid bases using photolithography is costly, as 100 photomasks are 

needed per chip. Singh-Gasson et a l  (1999) documented an alternative way of synthesising 

oligonucleotides on microaiTays, in situ, using digital micromirror technology which 

replace the need for photomasks. The system is composed of an optical and microfluidic

system. The optical system consists of an illuminator and a micromirror aiTay which is 

controlled electronically. By controlling the deflection of illuminated UV light on the

micromirror anays, the photolabile protecting group on the chip surface can be cleaved at 

the specified site. The microfluidic system bathes the chip surface with a solution of 

monomers, allowing oligonucleotides to be synthesised after many repetitions.

Since the early 1990s, there has been an explosion in the number of scientific 

groups using DNA microaiTay technology. Figure 6 shows the number of published 

manuscripts using Affymetrix GeneChips® from 1991 to 2005 and it is evident that most of 

these publications have been within the last 3 - 4  years. These publications vai-y widely in 

their fields of research; from investigating gene expression in different cell types and 

tissues to identifying transcription profiles characteristic of physiological and pathological 

states, e.g. diseased cells or cells infected by a pathogen or infectious agent. A few 

examples of microaiTay technology being used to investigate host responses to bacterial 

pathogens include in vitro analysis of B. pertussis interaction with human bronchial
,

epithelial cells (Belcher et a l ,  2000), invasive wild-type Salmonella strain, Salmonella 

clublin with human colon epithelial cells (Eckmann et a l , 2000) and P. aeruginosa with 

human epithelial cells (Ichikawa et a l,  2000). In all cases, the transcription of previously 

undescribed genes were altered. In the case of B. pertussis-tveated epithelial cells,
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Figure 6 Cited publications using Affymetrix GeneChip® microarrays
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microan-ay analysis showed that infected cells were in a pro-inflammatory state and 

evidence of NF-kB cell-signalling. DNA microaiTay technology enables new insights into 

disease mechanisms caused by infection.

Some vendors give customers the option of creating their own DNA chips. This is 

particularly useful for studying gene transcription in pathogens in response to different 

stimuli or after interaction with tai'get cells. For example, Hot et ah (2003) used 

microarrays to investigate the types of genes expressed by B. pertussis in Bvg" and Bvg"  ̂

conditions by creating molecular probes based on the data generated from the publication 

of the complete B. pertussis genome (Paikhill et al., 2003). Fifty genes, out of 184 genes 

used for microaiTay analysis, were found to be modulated by M gS0 4  or nicotinic acid 

(both of which cause B. pertussis to become a virulent; Bvg' phase). In addition to 

confiraiing many Bvg-regulated vags, such as cyaA and prn, new vags, such as genes 

encoding potential autotranspoiTers {auto A, B, D  and E), genes encoding potential 

regulatory proteins (sen5 and re g ll)  and genes encoding members of a type III secretion 

system {bscJ, bcrD) were discovered.

By screening for gene changes in bacteria in response to anti-microbials, it may be 

possible to identify new ways to combat anti-microbial resistance. This is particularly 

important for pathogens such as H. pylori because there are no efficacious vaccines against 

it (Aebischer et a l ,  2005). On the other hand, microarrays can be used to generate 

expression profiles of different strains of pathogenic bacteria e.g. E. coli 0157:H7 (Dowd 

and Ishizaki, 2006) or even identify unknown/uncatergorised genes which are expressed in 

antibiotic-resistant strains of bacteria. For example, the expression profile of a vancomycin 

(a glycopeptide class of antibiotics)-resistant Staphylococcus aureus strain (Cui et a l,

2005), showed increased expression of graF  and msrA2. The importance of these genes 

were confiiTned in a separate series of experiments; graF  and insrA2 were overexpressed in 

glycopeptide-susceptible S. aureus strains. This caused an increase in glycopeptide 

resistance as well as an increase in cell wall thickness compared with glycopeptide- 

susceptible S. aureus strains that did not express these genes. Moreover, Waddell et a l  

(2004) investigated the expression profiles of Mycobacterium tuberculosis to six anti-
=■

microbial compounds. In those studies, innate mechanisms which contributed to anti­

microbial resistance were identified. Up-regulated genes included those that were involved 

in the mycobacterial stress response and efflux proteins/transporters. Microarray studies 

give a preliminary insight into the possible ways to tackle antibiotic-resistant strains of 

bacteria.
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1.10.2 Labelling methods
A typical experiment using a cDNA microarray involves the preparation of two 

samples for hybridisation to the an-ay: a control sample and an experimental sample. 

mRNA is extracted from cells and reverse transcribed into cDNA. During the reverse 

transcription step, a green-fluorescing dye called Cy3 or a red-fluorescing dye called Cy5 

is incoiporated into the newly foimed cDNA so that samples can be differentially labelled. 

The samples can then be combined and hybridised to the microarray together. The two 

samples will competitively bind to the probes on the anay and the sample containing more 

cDNA for a particular probe will hybridise to a greater extent. That is, if there is more of a 

cDNA transcript in the control sample than in the experimental sample (i.e. the gene is 

down-regulated in the experiment) then more Cy3-labelled control cDNA will bind to the 

probe on the aiTay and the spot will fluoresce green. If there is more experimental 

transcript, the reverse will happen and the spot will fluoresce red. When the two samples 

have the same amount of transcript, the dyes will cancel each other out and the spot will 

fluoresce yellow. A scanner (laser scanning confocal microscope) or a charge-coupled 

device (CCD) camera is used to quantify the intensity of fluorescence at each pixel 

location on the microarray.

For Affymetrix GeneChip® arrays, the preparation of the sample is slightly 

different and the process is described in detail in Section 2.13. Briefly, mRNA is isolated 

then cDNA is synthesised. The cDNA is then used as a template for T7 RNA polymerase 

to create cRNA molecules labelled with biotin. The biotinylated cRNA molecules are then 

fragmented into smaller molecules which are between 80 -  100  nucleotides long to help 

improve their specificity for probes on the microaiTay. In addition, the structures of the 

fragmented tai'gets are less complex, unlike the larger transcripts which often contain 

secondary structure and can interfere with hybridisation and increase the opportunity for 

non-specific cross-hybridisation to the probes on the GeneChip®. The biotin-labelled 

cRNA fragments are then hybridised to the GeneChip®. After hybridisation, the bound 

cRNA fragments are treated with streptavidin-phycoerythrin and with a biotinylated anti- 

streptavidin antibody to amplify the fluorescence signals. The processing of images to 

generate data is described in Section 2.14.

Using a wide choice of software programme packages, it is now becoming easier to 

manipulate the lai'ge amounts of data generated from a single microarray experiment. An 

extensive list of these software programmes can be found on http://www.ifom-ieo- 

campus.it/MICROARRAY/data analvsis.htm with GeneSpring® widely regarded as the 

gold standard for expression data analysis. GeneSpring® provides visualisation tools 

including Venn diagrams, bar chaits, scatter plots, chromosome display and dendrograms.

http://www.ifom-ieo-


Yiu Chong Gordon Cheung, 2006 36

Genes can also be clustered and, for some genomes, the data can be displayed according to 

the functional class or subcellular location of the gene product.

In summary, the use of microaiTay technology is applicable for almost every 

avenue of research. Not only can the gene responses of target cells be investigated using 

pre-designed arrays containing whole genomes, but the gene transcription in the pathogen 

can be investigated through the production of custom aiTays containing probes for the 

whole genome of the pathogen. M icroarray technology has given and will continue to give 

us new insights into the pathogenic mechanisms of many pathogens so that improved 

counter-measures can be made to fight against disease.
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1.11 Aims and Objectives
The overall aim of this study was to compaie the properties and 

immunomodulatory behaviour of four different recombinant forms of CyaA. These were; 

fully functional enzymic ally-active, acylated and invasive CyaA; an acylated and invasive 

CyaA form lacldng adenylate cyclase enzymic activity (CyaA*); and the non-acylated, 

poorly-invasive forms of these toxins, proCyaA and proCyaA*, respectively. Specific 

objectives were:

1. To prepare large amounts of the purified CyaA forms which were low in LPS, so as 

to minimise the known immunomodulatory effects of this molecule.

2. To assess the relative contributions of the invasive and the enzymic activity of CyaA 

to cytotoxic activity against a mouse macrophage cell line using several in vitro 

assays which measured haemolysis, cell killing, apoptosis or inhibition of the 

zymosan-stimulated oxidative burst.

3. To use biophysical methods, such as circular dichroism and analytical 

ultracentrifugation, to investigate the moleculai' state of the different CyaA forms in 

solution. This was done to provide evidence that, at low concentrations, CyaA can 

invade cells in a monomeric foim  but, at higher concentrations, oligomers form in 

order to create pores in the target cell membrane.

4. To conduct an in vivo study in mice to investigate the protective effects of the 

different CyaA forms alone, and their ability to enhance the protective efficacy of a 

conventional acellular pertussis vaccine. The humoral and cell-mediated responses to 

these immunisations would be determined.

5. To examine the gene transcriptional responses induced in mouse bone m anow- 

derived macrophages (BMMs) by exposure to a concentration of proCyaA*, CyaA or 

CyaA* which induced only low-level cell killing. These forms were chosen to assess 

the importance of the invasive and AC enzymic activities for host cell responses. 

This was done by applying microaiTay analysis using Affymetrix^^ mouse aiTays to 

study global gene responses of the BMMs.

#
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Chapter 2

Materials and Methods

2.1 Bacterial strains and growth conditions
E. coli BL21/DE3 (F' ompT  rB" mB ) and E. coli BL21/DE3 IpxM  (F‘ ompT  rB ' 

mB") were used as expression hosts for the production of recombinant CyaA. The rB mB' 

genotype allows cloning of DNA without cleavage by endogenous restriction 

endonucleases. BL21 strains are deficient in the OmpT and Lon pro teases, which promotes 

recombinant protein stability. DE3 denotes the XDE3 lysogen that carries the gene for T7 

RNA polymerase, which is located chromosomally, under the control of the lacUVS 

promoter (inducible by isopropyl-l-thio-p-D-galactoside (IPTG)). The polymerase targets 

plasmids containing a T7 promoter, driving expression of genes found downstream of the 

T7 promoter sequence. E. coli BL21/DE3 IpxM  has a defective lipid A component of LPS 

due to a lack of myristoylation via the product of the IpxM  gene (Cognet et a l ,  2003). This 

strain was created by insertion of a chloramphenicol resistance gene within the IpxM  gene 

and was kindly supplied by Dr. Jean-François Gauchat (Centre d'Immunologie PieiTe- 

Fabre, Montreal).

2.1.1 E. coli

E. coli BL21/DE3 and E. coli BL21/DE3 IpxM  were grown, from 50% (v/v) 

glycerol stocks, on Luria agar (LA - Appendix A. 1.1) by incubating overnight (o/n) at 37 

°C. Subsequent growth of E. coli was perfoiTned by inoculating single colonies onto LA or 

into Luria-Bertani broth (LB - Appendix A .l) or Tem fic broth (TB) (Appendix A.2). Agar 

plates were incubated o/n at 37 °C. Broths were incubated at 37 °C with shaking after 

inoculation.
,

2.1.2 Extraction of LPS from E. coli

For isolation of LPS from E. coli BL21/DE3 (Promega, UK) and E. coli BL21/DE3 

IpxM, 5 ml of o/n culture was added to a 2 L baffled flask containing 500 ml LB and 

incubated at 37 °C with shaking at 200 rpm until an ODeoo nm of 0.4 - 0.6 was reached. The 

cells were then allowed to grow for a further 3 h. For each bacterial strain, a total of 6 

flasks of cultures were inoculated. For each strain, the cells were harvested and pooled 

together by centrifugation at 13,700 x g for 30 min (RC-5B, Sorvall), and then stored o/n 

at -2 0  "C. The cells were resuspended in 1,5 ml phosphate-buffered saline (PBS - 

Appendix A.4) and transfened to a 150 mm diameter spherical glass vial. Prior to freeze- 

drying, the cells were first frozen as a thin layer inside the glass container by briefly

I
............. ... .......... ................... L. . ............................................
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immersing the flask, with rotation, in liquid nitrogen. The vial was then freeze-dried 

(Alpha 1-4, Christ technologies) until complete dehydration was achieved (-16  h). For 

each gram of dry weight, 10 ml of PBS [containing 5 mM EDTA] was added. After 

incubation for 2 h at 37 °C, for each gram of dry weight, 0.02 g of lysozyme (Sigma) was 

added and the mixture was incubated at 4 °C for 16 h, with constant stirring. The solution 

was further incubated at 37 °C for 20 min and then an equal volume of 20 mM magnesium 

chloride was added. RNase (Sigma) and DNase (Sigma) were added to the mixture, both at 

final concentrations of 1 pg/ml, and incubated at 37 °C for 10 min then at 60 °C for a 

further 10 min. An equal volume of pre-heated (70 °C) phenol solution, equilibrated with 

10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 7.5-7.S) (Sigma), was added to the LPS 

solution and allowed to incubate for 20 min at 70 °C with constant stirring. The 

LPS/phenol mixture was placed on ice for 20 min with stirring, then o/n at 4 °C with no 

stirring. The upper aqueous phase (containing LPS) was removed and dialysed (M^ cut off 

was 12 -  14 l(Da) against 4 L  of distilled water for 3 days with 3 changes of distilled water 

per day. The dialysed LPS material was centrifuged at 4,220 x g (RC-5B, Sorvall) for 15 

min at 4 °C, The supernatant was collected and freeze-dried, as described above. The fine 

LPS powder was stored at 4 °C. Once reconstituted with endotoxin-free water (Sigma), the 

LPS was stored at -20 °C.

2.1.3 B, pertussis 18.323 and B. pertussis 338

B. pertussis strain 18.323 (NCTC 10739) and B. pertussis strain 338, harbouring 

plasmid pGBSPl (Weingart et a l,  1999), kindly supplied by Prof. Alison Weiss 

(University of Cincinnati), were grown on charcoal agar (CA) (Oxoid) containing 10% 

(v/v) defibrinated horse blood (Oxoid) from glycerol stocks. CA blood plates were 

incubated at 37 °C for 3 to 4 days in a humidified atmosphere. Plasmid pGB5Pl 

constitutively expresses green fluorescent protein (GFP) in B. pertussis 338 (Weingart et 

a l ,  1999).

2.2 Plasmid DNA

The two genes required for the production of active CyaA in E. coli BL21/DE3 

were expressed from separate compatible plasmids (Westrop et a l ,  1996). Plasmid pGW44 

expressed the gene encoding the enzymically-active CyaA protoxin, cyaA, and plasmid 

pGW54 expressed the gene, cyaC, which encodes the acyltransferase that post- 

translationally acylates the CyaA protoxin. In addition, plasmid pGW44/188 was used 

where a 1.1 kb NdeVBstBl fragment at the 5’ end of cyaA in pGW44 was replaced with 

another 1.1 kb NdeVBstBl fragment from pACM188 (Ladant et a l ,  1992) to create an 

enzymically-inactive CyaA protoxin mutant (MacDonald-Fyall et a l,  2004). As shown in
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Table 2, the bacterial strain and combination of plasmid(s) determined which antibiotics 

were used. Co-expression of plasmids pGW44 or pGW44/188 with pGW54, in E. coli 

BL21/DE3, generated fully-active acylated CyaA or an enzymically-inactive, acylated 

CyaA (CyaA*) caiTying a Leu-Gln di-peptide insertion between codons 188 and 189, 

respectively (Table 3). The same recombinant forms of CyaA were achieved in E. coli 

BL21/DE3 IpxM  with plasmids pGW44 or pGW44/188 with pGCK54 (Section 2,2.1). 

Expression of plasmids pGW44 or pGW44/188 alone, in both E. coli BL21/DE3 and E. 

coli BL21/DE3 IpxM, produced non-acylated CyaA protoxins with enzymic activity 

(proCyaA) or without enzymic activity (proCyaA*), respectively (Table 3).

Table 2 Summary of plasmids and E. coli hosts used for expression

Plasmid Antibiotic resistance 
(final concentration)

Use in E, coli 
BL21/DE3

Use in E. coli 
BL21/DE3 lpxM'<

pGW44
pGW44/188

pGW54

pGCK54

Ampicillin (50 pg/ml) 
Ampicillin (50 pg/ml) 

Chloramphenicol 
(12.5 pg/ml) 

Kanamycin (50 pg/ml)

Yes
Yes

Yes

No

Yes
Yes

No

Yes

 ̂Created by insertion of a chloramphenicol resistance cassette. 

Table 3 Characteristics of expressed CyaA preparations

CyaA form Invasive/pore-forming Adenylate cyclase activity
proCyaA No Yes
proCyaA* No No
CyaA Yes Yes
CyaA* Yes No

2.2.1 Construction of pGCK54

E. coli BL21/DE3 IpxM  carried a chloramphenicol-resistance cassette inserted into 

the IpxM  gene. Thus, in order to express fully functional CyaA in E. coli BL21/DE3 IpxM, 

a kanamycin resistance cassette was introduced into plasmid pGW54, which encodes 

chloramphenicol resistance, so that selection with kanamycin could be made for this 

plasmid in the IpxM  background. For this, a 1.3 kb Ncol restriction fragment containing a 

kanamycin resistance cassette was removed from plasmid pGEM-T-Kan (pGEM-T from 

Promega, pGEM-T-Kan created by P. Blackburn (2000)) and ligated into Acol-digested 

pGW54 to create pGCK54. Ligated DNA was electroporated (Section 2.4.2.1) into TOP 10 

competent E. coli cells (Invitrogen). Plasmid DNA was extracted (Section 2.2.2) from
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single colonies that were grown o/n in LB and digested with Ncol (Promega). Digested 

plasmid DNA was subjected to electrophoresis (Section 2.3).

2.2.2 Plasmid purification

Plasmids were extracted using QIAprep® miniprep kits (Qiagen) according to 

manufacturer’s instructions with the following modification: plasmid DNA, extracted from 

5 ml of o/n bacterial culture in LB with appropriate antibiotics, was eluted from the 

miniprep columns with 50 pi of distilled water and stored at -2 0  °C.

2.2.3 DNA sequencing

Plasmid pGW44/188 was subjected to DNA sequencing to confinm the presence of 

a 6 bp insertion sequence which abolishes the AC enzymic activity in CyaA. Primers 

CYAGWF2 (ATGCAGCAATCGCATCAGG - 5’ to 3 ’, nucleotides 981 - 999) and 

CYAGWR2 (CACCGTTTCCAGTACATCC - 5’ to 3’, nucleotides 2129 -  2111) 

(Invitrogen) were used to sequence the first 600 bases of the mutated cyaA gene in the 

plasmid. Plasmid pGW44, containing the cyaA gene, was also sequenced as a control. 

Sequencing was performed by Miss Julie Galbraith at the Sir Henry Wellcome Functional 

Genomics Facility (University of Glasgow). Samples were run on a MegaBACE 1000 (96 

capillary) sequencer (GE Healthcare) using DYEnamic™ ET-Terminator chemistry 

according to the manufacturer’s (GE Healthcare) instructions. The sequences generated 

were analysed using Chromas 2.3 software (http://www.technelvsium.com.au/l which 

creates coloured electropherograms. DNA homology against other related sequences was 

performed using ‘blastx’ and comparisons between two sequences were performed using 

‘bl2seq’ at http://www.ncbi.nlm.nih.gov/BLAST/.

2.3 Agarose gel electrophoresis
2.3.1 Sample preparation

DNA was mixed with 6 x DNA loading buffer (Appendix B .l)  prior to loading into 

the wells of an agarose gel (Section 2.3.2). A 1 kb molecular weight ladder (Invitrogen) 

was prepared and used according to manufacturer’s instructions.

2.3.2 Gel preparation

Agai'ose type II-A (Sigma) was dissolved in Ix  Tris-Borate EDTA (TBE) buffer 

(Appendix B.2) at 0.7% (w/v) or at 1% (w/v) for visualisation of large and small DNAs, 

respectively. The solutions were heated until the agaiose had completely dissolved. 

Ethidium bromide (BioRad) was added to the solution, to a final concentration of I pg/ml, 

once the agarose had cooled. The agarose was poured into a gel tray with comb and 

allowed to set. The set gel was placed into an electrophoresis tank, filled with Ix  TBE,

http://www.technelvsium.com.au/l
http://www.ncbi.nlm.nih.gov/BLAST/
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approximately 1 cm above the gel (Mini subcell GT™ electrophoresis system, BioRad). 

The comb was removed and samples were applied into each well. The gel was run at 90 

mA until the dye front migrated to a distance from the wells such that single DNA bands 

could be visualised clearly under a high performance UV transilluminator (Ultra Violet 

Products) coupled to an image acquisition and analysis software package (Labworks).

2.4 Expression and purification of recombinant CyaA
2.4.1 Preparation of competent cells for heat shock

A 1 ml o/n culture of the recipient strain, grown in LB, was inoculated into 100 ml 

of LB in a 500 ml baffled flask and shaken vigorously at 37 °C to an ODeoo nm of 0.4 - 0.5. 

From this point, all incubations and re-suspensions were perfonned on ice. Cells were 

chilled for 2 h before being harvested by centrifugation at 6,900 x g (RC-5B, Sorvall) for 

15 min at 4 "C. Cells were re-suspended with 45 ml of chilled competence solution 

(Appendix C .l). After 45 min, cells were recovered after centrifugation at 9,500 x g  (RC- 

5B, Sorvall) for 10 min, 4 "C. The cells were gently re-suspended with 2.5 ml of chilled 

competence solution containing 900 pi of 80% (v/v) chilled sterile glycerol solution. 

Aliquots of 100 pi cell suspensions were ‘snap-frozen’ in a dry ice/ethanol mixture and 

stored at -70  °C until required. These cells remained viable for 6  months.

2.4.2 Heat shock transformation

A frozen aliquot of competent cells was thawed on ice and 2 pi of each required 

plasmid DNA(s) were added and left to incubate on iced water for 30 min. Cells were then 

transferred to a 42 °C water bath for 45 sec. After incubation, 1 ml of LB was immediately

added to the cells and the transformed cell population was incubated at 37 °C for 1 h with 

shaking. The cells were then plated out onto LA with the appropriate antibiotics (Table 2, 

Appendix A.3) and incubated o/n at 37 °C.

2.4.2.1 Electroporation

An aliquot of competent TOPIO E. coli cells was removed from -80  °C and 

allowed to thaw on ice before 2 -  5 pi of plasmid DNA was added to the cell suspension. 

Electroporation was performed using a gene puiser with pulse controller (model 1652098, 

BioRad) under the following conditions: 2.5 kilovolts, 25 microfaradays, 200 Ohms in 0.2 

cm gap cuvettes (BioRad). Immediately after electroporation, 1 ml of LB was added to the 

cells and the mixture was incubated for 1 h at 37 °C with shaking before being plated onto 

LA with the appropriate antibiotics (Table 2, Appendix A.3). Plates were incubated o/n at 

37 °C.
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2.4.3 Expression of recombinant proteins

2.4.3.1 Expression of protein from E. coli BL21/DE3 transformed with one

I
I

" -'I'

plasmid

One colony of transformed E. coli BL21/DE3 was inoculated into 5 ml LB,

containing the appropriate antibiotic (Table 2, Appendix A.3), and allowed to grow o/n at 

37 °C with shaking. The o/n culture was added directly into a 2 L baffled flask containing 

500 ml of LB with the same antibiotic. Cells were incubated at 37 °C with shaking at 200 

rpm, until an OD^oo nm of approximately 0.4 was reached. IPTG (Melford) was added to a 

final concentration of 1 mM and the culture was allowed to grow at 37 °C for a further 3 -  

4 h, until an ODgoo nm of 1.8 -  2 was reached. Cells were harvested by centrifugation at 

13,700 X g (RC-5B, Sorvall) for 15 min and 4 °C and then stored at -20  °C until 

purification of CyaA (Section 2.4.4) could be performed.

A

2.4.3.2 Expression of protem from E. coli BL21/DE3 transformed with two

plasmids

The same protocol was followed as described in section 2.4.3.1 with the exception 

that a 20 ml o/n E. coli culture transformed with two plasmids was inoculated into a 2 L 

baffled flask containing 500 ml of LB and the appropriate antibiotics (Table 2, Appendix 

A.3). A greater volume of E. coli transformed with two plasmids was inoculated into LB 

because such a strain grew slower compared with E. coli transformed with one plasmid 

(Section 3.2.1).

2.4.3.3 Expression of CyaA from E. coli BL21/DE3 IpxM

E. coli BL21/DE3 IpxM, transformed with plasmid(s), required a richer medium for 

growth (Section 3.2.2). Therefore, TB was used. The same methods were used to express 

the different CyaA forms as described in Sections 2.4.3.1 and 2.4.3.2 with the exception 

that expression of acylated CyaA and CyaA* required plasmid pGCK54 (Section 2.2.1) 

instead of plasmid pGW54.

2.4.4 Small-scale purification of CyaA

2.4.4.1 Urea extraction of inclusion bodies containing CyaA

After the expression of the recombinant proteins, the pelleted cells from 500 ml 

culture were resuspended in 10 ml of Solution A (Appendix C.2.1) and sonicated at 10%

% 
s

I

amplitude for 2 min, on iced water using a V2” diameter probe (Jencons). The sonicate was 

centrifuged at 48,000 x g (RC-5B, Sorvall) for 10 min, 4 °C, and washed twice with 25 ml 

of Solution B containing CHAPS [3 [(3-cholamidopropyl) dimethylammonio]-!- 

propanesulphonate] (Appendix C.2.2), with centrifugation at 12,000 x g (RC-5B, Sorvall)
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for 10 min at 4°C, between washes. Washing with several detergents, other than CHAPS 

was also investigated (Section 2.4.4.1.1). The inclusion bodies were then washed three 

times with 25 ml of Solution C (Appendix C.2.3), with the first two centrifugation steps at 

17,200 X g (RC-5B, Sorvall), followed by a third at 27,000 x g (RC-5B, Sorvall), all for 10 

min at 4 ‘’C. The inclusion bodies were finally washed once with 25 ml of distilled water, 

followed by centrifugation at 48,000 x g (RC-5B, Sorvall) at 4 °C for 10 min, before being 

solubilised in 10 ml of Solution D (Appendix C.2.4) o/n at 4 °C (crude CyaA preparation). 

CyaA was collected after 30 min centrifugation at 48,000 x g (RC-5B, Sorvall) at 4 °C. 

The CyaA urea extract was stored at -2 0  °C prior to DEAE-Sepharose chromatography.

2.4.4.1.1 Endotoxin removal

Four different detergents; CHAPS, deoxycholic acid, n-octyl pyranoglucoside and 

Triton XlOO (all purchased from Sigma), were compared for their ability to remove soluble 

proteins and endotoxin from inclusion bodies.

2.4.4.2 DEAE-Sepharose chromatography

A 1.5 cm X 25 cm glass column, with tap (BioRad), containing 8 ml of DEAE- 

Sepharose (Sigma) was washed first with 1 column volume (CV) of distilled water to 

remove excess alcohol and then equilibrated with Solution 1 (Appendix C.3.1). The 

solubilised crude CyaA preparation (10 ml), was adjusted to approximately 50 mM NaCl, 

by the addition of 500 pi of 1 M NaCl (pH 8.0), and the preparation was applied to the 

glass column containing equilibrated DEAE-Sepharose. Several 5 ml portions of Solution 

1 were passed through the matrix. CyaA was then eluted using an increasing 50 mM NaCl 

step-gradient, up to 250 mM NaCl, of 5 ml portions (Appendix C.3.4) with caution to 

ensure that the matrix was not disturbed. Each fraction was analysed for protein and for 

LPS levels by Coomassie Blue and silver staining on 7.5% and 15% SDS-PAGE gels, 

respectively (Section 2.5).

2.4.4.3 Phenyl-Sepharose chromatography

Fractions containing CyaA, as determined by SDS-PAGE analysis, were pooled 

and adjusted to 2 M urea, 50 mM Tris-HCl, 800 mM NaCl (pH 8.0) by adding 3 parts of 

Buffer A (Appendix C.4.1) to 1 part of pooled CyaA. CyaA was then added to a 1.5 cm x 

25 cm column, with tap (BioRad), containing 8 ml phenyl-Sepharose (Sigma) that was first 

washed with 1 CV of distilled water and then equilibrated with Buffer B (Appendix C.4.2). 

Ten X 25 ml portions of Buffer B were passed through the matrix and then CyaA was 

eluted by the addition of 10 x 1.5 ml portions of Solution D (Appendix C.2.4). Each



Yiu Chong Gordon Cheung, 2006 45

fraction was subjected to SDS-PAGE for determination of the presence of CyaA as 

described in Section 2.5.

2.4.5 Large-scale purification of CyaA

2.4.5.1 Urea extraction of inclusion bodies containing CyaA

For large-scale purification of CyaA preparations, cells from 24 x 500 ml of 

induced E. coli cultures (Section 2.4.3) were pooled and resuspended in 240 ml of Solution 

A (Appendix C.2.1) and 10 ml portions were sonicated in turn (Section 2.4.4.1) and pooled 

once again. Pooled 10 ml volumes, containing the inclusion bodies, were subjected to the 

wash procedure described in Section 2.4.4.1 and the CyaA preparations were solubilised in 

240 ml of Solution D (Appendix C.2.4) and stored at -2 0  °C until DEAE-Sepharose 

purification.

2.4.5.2 DEAE-Sepharose chromatography

A 2.5 cm X 50 cm column with tap (BioRad), containing 80 ml of DEAE- 

Sephai'ose (Sigma), was first washed with 1 CV of distilled water and then equilibrated 

with Solution 1 (Appendix C.3.1). The column was stored o/n at 4°C, in the dark, so that

the purification of CyaA could be performed the following day. The column and fractions

containing CyaA were brought to RT. The crude solubilised CyaA material was adjusted to 

50 mM NaCl with 12 ml of 1 M NaCl (pH 8.0) and then the total volume (-250 ml) was 

applied to the equilibrated column. Several 50 ml volumes of Solution 1 (Appendix C.3.1) 

were passed through the matrix. CyaA was eluted using 50 ml volumes of an increasing 50 

mM NaCl step-gradient (Appendix C.3.4). Each fraction was analysed for protein and for 

LPS levels by Coomassie Blue and silver staining on 7.5% and 15% SDS-PAGE gels, 

respectively (Section 2.5).

2.4.5.3 Phenyl-Sepharose chromatography

A 2.5 cm X 50 cm column with tap (BioRad), containing 80 ml of phenyl- 

Sepharose (Sigma), was first washed with 1 CV of distilled water and then equilibrated 

with Buffer B (Appendix C.4.2). The column was stored o/n at 4 °C, in the dark, so that the 

last stage of CyaA purification could be performed the following day. The column and 

fractions containing CyaA were brought to RT. These fractions were pooled and adjusted 

to 2 M urea, 50 mM Tris-HCl, 800 mM NaCl (pH 8.0) by adding 3 parts of Buffer A 

(Appendix C.4.1) to 1 pait of pooled CyaA and the mixture was added to the equilibrated 

phenyl-Sepharose column. Ten 250 ml volumes of Buffer B were passed through the 

matrix and then CyaA was eluted with 10 x 15 ml volumes of Solution D (Appendix

C.2.4). Each fraction was subjected to SDS-PAGE for determining the presence of CyaA
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(Section 2.5). Such fractions were pooled together and formed the final preparation for 

subsequent in vitro and in vivo analysis. CyaA preparations were stored at -2 0  °C.

2.5 SDS-PAGE

Samples were first mixed with 5x loading buffer (Appendix D .l)  and boiled for 5 

min. SDS-PAGE was performed according to the method of Laemmli (1970) in a vertical 

gel electrophoresis tank using the Mini Protean 3™ electrophoresis system (BioRad). 

Resolving gels (Appendix D.2) were poured between the assembled plates with space (1.5 

cm) left on top for the later addition of the stacking gel. Immediately, 100% ethanol was 

added to eliminate bubble formation and form a horizontal interface for the addition of a 

stacking gel. Once set, the ethanol was removed and then a stacking gel (Appendix D.3) 

was poured onto the polymerised resolving gel and a comb (with 10 or 15 wells) was 

placed into the gel solution and was allowed to set. The wells were rinsed out with distilled 

water and any residual polymerised gel on the faces of the assembled glass plates was 

removed. The electrophoresis tank and gels were assembled according to the 

manufacturer’s instructions. The middle chamber was filled with Ix  electrode running 

buffer (Appendix D.4). Samples were loaded into each well and a protein ladder 

(Invitrogen) was included. The outside chamber was filled with Ix  running buffer. The 

gels were run at 100 volts for approximately 40 min or until the dye front ran off the gel.

2.5.1 Coomassie Blue staining for the detection of protein

Protein samples, run on 7.5% SDS-PAGE gels, were stained with Coomassie Blue 

(Appendix D.5) for a minimum of 30 min on a rotating platfoi*m. After incubation, the 

Coomassie Blue stain was decanted and the gel was destained (Appendix D.5) several 

times, for a minimum of 30 min in between changes, on a rotating platform until protein 

bands could be visualised. At this stage, the gel was immersed in water and subsequently 

photographed.

2.5.1.1 Protem quantification

The Bradford’s reagent (BioRad) was employed to provide a quantitative 

measurement of protein content in samples after purification using a microtitre plate 

protocol. When Coomassie dye binds protein in an acid medium, an immediate absorbance 

shift occurs from 465 nm to 595 nm with a simultaneous colour change of the reagent from 

green/blue to blue. The Bradford’s reagent was diluted 1 in 5 with distilled water and 

filtered (Millipore) before use. Buffer A (Appendix D.6 ), 250 pg/ml of bovine serum 

albumin (BSA) (Sigma) prepared in Buffer A, and CyaA stored in 8 M urea, diluted % in 

distilled water to give the same concentration of urea as in Buffer A, were diluted 2-fold
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2.5.2 Detection of LPS

The Limulus amoebocyte lysate (LAL) assay was used to quantify the levels of LPS in the 

purified CyaA samples. This was done by two methods: the Chromogenic method 

(BioWhittaker) and by the gel clot method (Cape Cod).

:adown a microtitre plate with distilled water. Buffer A alone served as a negative control 

and blank. To a new flat-bottomed 96-well microtitre plate, 25 pi of each dilution was 

mixed with 200 pi of diluted Bradford’s reagent. After incubation for 10 min at RT, the 

absorbancies were read at ODeaonm in a plate reader (Dynex technologies). Once the blank

OD values had been subtracted from all OD values, the protein concentrations of the 

samples were determined from the BSA standard curve.
:

I

Silver staining was used for visual identification of LPS contaminated fractions.

Î

2.5.2.1 Silver staining for LPS

A 20 pi sample from each column fraction was incubated with 1 pi of Proteinase K 

(50 units/ml, Sigma) for 1 h at 37 °C. The digested protein samples were subjected to SDS- . i

PAGE on 15% gels (Section 2.5). The procedure for silver staining for LPS was performed 

essentially as described by Fomsgaard et al. (1990). Briefly, gels were bathed in oxidising 

solution (Appendix E .l)  for 20 min at RT and then put into staining solution (Appendix 

E.2) for 10 min on an orbital shaker with three washes with distilled water in between 

solution incubations. The gels were bathed in developing solution (Appendix E.3) until 

LPS bands were visualised. The reaction was stopped (Appendix E.4) and the gels were 

transferred into distilled water.

2.5.2.2 LAL - Gel clot method

The LAL gel clot assay was performed according to the standard operations 

protocol at NIBSC. Briefly, 10 pi of Pyrotell® LAL reagent (0.03 endotoxin units (EU)/ml 

sensitivity. Cape Cod Inc.) was incubated with 10 pi of sample at different dilutions at 37 

‘’C for 1 h (no CO2). CO2 interferes with clot formation. All other materials used were 

endotoxin-free. A drop of 0.2% (w/v) methylene blue (George T. Gurr Ltd.) in 70% (v/v) 

ethanol was added to each mixture. Clot formation indicated the presence of LPS. An 

average between the last dilution of sample which caused gel formation and the first 

dilution which showed no gel formation were used to provide the level of LPS in that 

sample. The NIBSC 2"^ international endotoxin standard (94/580) (Poole et a l ,  1997) was 

used as a positive control and for calculation of LPS levels. 10 endotoxin units (EU) were 

taken as equivalent to 1 ng of endotoxin (Poole et a l ,  1997). The standard was vortexed 

for at least 10 min prior to making dilutions in endotoxin-free water (Baxter). The test was 

only valid if certain dilutions of the endotoxin standards (0.06 - 0.015 EU/ml) clotted.
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2.5.2.3 LAL - Chromogenic method

Matched lysates (0.005 EU/ml -  50.0 EU/ml sensitivity, Kinetic-QCL’̂ ^) and E. 

coli 055:B5 endotoxin standard were reconstituted according to the supplied certificates of 

analysis (LAL reagent, BioWhittaker, UK) using endotoxin-free water (BioWhittaker). All 

materials used were endotoxin-free. To each well of a 96-well plate (Costai*), 100 pi of 

diluted sample and dilutions of the standard were added. A negative control consisted of 

endotoxin-free water (Sigma). For samples requiring a spike, 10 pi of 50 EU/ml or 5 

EU/ml of standard were added if endotoxin values were expected to be greater or lower 

than 1 EU/ml, respectively. The inclusion of spikes was important to assess whether the 

samples inhibited the activity of the assay. 100 pi of reconstituted lysate was added to each 

well and the plate was read in a microplate reader (ELx 808, Fisher Scientific) at OD405 nm 

every 2.5 min up to 1 h 30 min at 37 °C. The programme produced endotoxin level data as 

EU/ml.

2.5.3 Western blotting

After running CyaA samples (150 pg per well) on 7.5% SDS-PAGE gels, proteins 

were transfeined onto nitrocellulose membrane (Hybond C, Amersham Pharmacia Biotech) 

using the Mini Protean 3™ electrophoresis tank containing the Mini Transblot™ apparatus 

according to manufacturer’s conditions (BioRad). The stacking gel was removed and the 

gel was placed in an electroblotting apparatus. This was placed into an electrophoresis 

tank, containing Ix  transfer buffer (Appendix F .l)  and an ice pack. After transfer for 1 h at 

100 volts, the nitrocellulose membrane was soaked in Ponceau S solution (Sigma) for 

several minutes and then rinsed with distilled water to confirm the transfer of proteins onto 

the membrane. The membranes were then bathed in blocking buffer (Appendix F.3) for 30 

min, followed by three washes with PBS-Tween (PBST) (Appendix F.2). The membranes 

were incubated for 2 h at RT with mouse anti-CyaA immune serum (Section 2.8) and then 

with goat anti-mouse horse-radish peroxidase conjugate secondary antibody (Sigma), both 

at 1:1000 dilutions in PBST diluent (Appendix F.4) with three washes with PBST between 

each step. The membranes were washed twice with PBS (Appendix A.4) before the 

addition of substrate solution (Appendix F.5). The reaction was stopped with excess water 

after the appearance of bands ( 5 - 1 0  min).

2.6 Characterisation of CyaA
2.6.1 Conductimetric assay of AC enzymic activity

2.6.1.1 Preparation and purification of calmodulin

100 g of frozen pigs testicle tissue was thawed in 300 ml of Buffer A (Appendix 

G.1.1). The testicle tissue, diced into 1 cm^ blocks, was homogenised for 2 min with an
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electric hand blender (HR 2810, Phillips) and was then heated for 5 min at 95 °C, mixing 

once every min. The sample was left to cool and was adjusted to pH 8.0 and to a final | 

concentration of -20  mM calcium chloride (Sigma). After most of the bulk precipitate 

settled, the supernatant was filtered through a 150 mm diameter GF/A glass fibre filter 

(Whatman) using a Buchner funnel. Calmodulin was purified from the filtrate using i 

phenyl-Sepharose (Sigma). A 100 ml volume of resuspended phenyl-Sepharose was added 

to a 4.5 cm x 60 cm column with tap (Chemistry Dept., University of Glasgow) and was 

washed with 2 CVs of distilled water followed by 2 CVs of Buffer B (Appendix G.1.2).

The filtered supernatant was added to the column and then several 20 ml volumes of 

Buffer B were added to remove contaminating proteins. Several 5 ml volumes of distilled 

water were added into the column and fractions were collected. Protein concentrations in 

each of the fractions were calculated from the UV absorbance at OD280 nm using a 

spectrophotometer (V550, Jasco), Fractions containing protein were pooled and added to a 

3.5 cm X 20 cm glass column with tap (Chemistry dept., University of Glasgow) 

containing 50 ml of resuspended phenyl-Sepharose (Sigma) which had been previously 

washed with 2 CVs of distilled water followed by 2 CVs of Buffer B. The calcium chloride 

concentration of the pooled sample was increased to 1 mM before being added to the 

equilibrated matrix. Distilled water was added slowly and 2 ml fractions were collected. 

Protein concentrations in each of the fractions were calculated from the UV absorbance at 

OD280 nm- Fractions containing protein were pooled and stored at -2 0  °C for the 

conductimetric assay (Section 2.6.1.2).

2.6.1.2 Conductimetric assay
%The conductimetric assay is a non-radioactive means of determining the specific 

activity of the adenylate cyclase toxin (Lawrence et a l ,  1998) based on the following 

reactions:

[CyaA]
1. (ATP Mgf- + Bicine' ^  cAMP' + (BicineH) + (PPiMgf'

[Pyrophosphatase]
2. (PPiMgf " -> 2P> + Mĝ +

The presence of CyaA (AC enzymic activity) will convert ATP into cAMP with the release

of an inorganic pyrophosphate-magnesium ion complex [(PPiMg) '̂]. The addition of

inorganic pyrophosphatase will cleave (PPiMg)^' into + Mg^^ions. The system predicts

little change in conductance unless the pyrophosphate complex is cleaved to release the 
2+Mg from chelation. Briefly, the apparatus consists of 8 conductivity cells, each

*
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containing platinum electrodes which have been fused into the walls of a glass tube. The 

cells are all linked to computer software that processes conductimetric readings and 

enables tangents to curves to be made in order to deteraiine slopes and reactions rates and 

to measure total displacement between the initial and final baselines. One unit of AC 

enzymic activity produces 1 pmol of cAMP in 1 min at 37 °C and pH 8.0. The 

conductimeter was switched on prior to perfonning the experiment so that it reached 37 

°C. Each cell was filled with 2 ml of degassed bicine buffer (appendix G.1.3) containing 

0.5 mM ATP (Sigma) using a Finn pipette, followed by the addition of 1 pi of 0.5 units/pl 

pyrophosphatase (Sigma) and 1 pi calmodulin (1.8 mg/ml, section 2.6.1.1). CyaA was 

diluted to 60 pg protein/ml with distilled water and the enzymometer computer programme 

was set to record the conductance change after the addition of 2 pi of diluted CyaA. The 

total conductance changes and tangents to curves were measured by an on-line screen 

drawing. Thus for a substrate concentration of 1 mM giving a total change of ‘x ’ units and 

an initial slope of ‘y’ units per min, the initial rate is;

Initial rate = (y/x) pmol/ml/min

2.6.2 Haemolysis assay

The haemolysis assay was performed essentially as described by Westrop et a l  

(1997) with minor modifications. For each microtitre plate, 10 ml of defibrinated sheep

. | l
7/

erythrocytes (E and O labs, UK) were centrifuged at 2,000 x g for 5 min (Heraeus 

Multifuge 3-SR). The supernate was discarded and erythrocytes were washed twice with 

20 ml Hanks HEPES (HH) buffer (Appendix G.2) and finally re-suspended to a final 

concentration of 0.7% (v/v) in HŒî buffer. CyaA, diluted in HH buffer, was mixed with an

equal volume of erythrocyte suspension to a final volume of 100 pi in each well of the U- 

bottomed 96-well microtitre plate (Costar). Cells incubated with HH buffer in the absence 

of presence of 1% (v/v) Triton-XlOO (Sigma) served as controls for basal (blank/negative) 

and 100% haemolytic activity, respectively. The plate was incubated at 37 in an 

atmosphere of 5% CO2 for 24 h unless otherwise stated. The supernate of each well was 

transfeiTed to a new flat-bottomed plate (Costar) and a reading at OD540 nm was made 

(Dynex technologies). Percentage haemolysis was calculated using the following equation: 

((sample OD -  blank OD)/(positive OD -  blank OD)) x 100.

2.6.3 Tissue culture

The murine J774.2 macrophage cell line (ECACC number 91051511) was grown in 

either RPMI (Gibco) or DMEM (Gibco) tissue culture media (Appendix G.3.1). The 

monomac-6  (MM6 ) human monocyte/macrophage cell line (Nakagawa et a l,  2002) (a 

kind gift from Prof. L. Ziegler-Heitbrock, University of Leicester) was maintained in

i
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RPMI (Gibco) containing a more complex mix of nutrients (Appendix G.3.2). An aliquot 

of 1 ml of frozen cells (maintained in liquid nitrogen) were immediately incubated at 37 

(in a water bath) and gently washed with 10 ml of pre-warmed media. This was repeated a 

further two times. All cells were grown in 25 cm^ tissue culture flasks at 37 °C in 5% CO2 

until about 85% confluent on the bottom of the flask. For J774.2 cells, this took 

approximately 1 - 2  days. For MM6  cells, this took up to 7 - 10 days. Cells were discarded 

after 10 passages.

2.6.4 Cytotoxicity assays

Cytotoxicity of CyaA against mouse macrophage-derived J774.2 cells was 

measured in three ways: using the CellTiter-Glo^'^ kit (Promega), CellTiter 96™ kit 

(Promega) and the CytoTox 96™ kit (Promega).

2.6.4.1 CellTiter-Glo^^ luminescent cell viability assay

The CellTiter-GloT'^ luminescent cell viability assay (Promega) measures cell 

viability by determining the amount of ATP present in the cells. Any ATP present will 

catalyse the conversion of luciferin into a luminescent signal by luciferase. The 

luminescent signal is proportional to the amount of ATP present. J774.2 cells were 

adjusted to 5 x  10^ cells/ml in RPMI (Gibco) or DMEM (Gibco) non-phenol red culture 

media. To each well of a 96-well black tissue culture plate with clear bottom (Labtech), 50 

pi of cells were added and allowed to adhere at 37 °C, in an atmosphere of 5% CO2 for a 

minimum of 30 min. Equal volumes (50 pi) of CyaA dilutions, made in the same media, 

were added to the cells and the plate was incubated at 37°C, in an atmosphere of 5% CO2 

for 2 h, followed by a further 30 min at RT (in the absence of 5% CO2). Then, 100 pi of 

reconstituted CellTiter-Glo™ substrate was added to each well and the plate was incubated 

for 2 min at RT (in the dark) with shaking. Luminescence was measured in a luminometcr 

(LUCY-1, Anthos) with an integration time of I sec per well over three cycles with an 

interval of 125 sec between each cycle. Cells incubated in medium in the absence or 

presence of 1% (v/v) Triton-XI00 (Sigma) served as controls for basal

(negative/background) and 100% cytotoxic (positive) activity, respectively. Cell killing 

was calculated using the following formula: ((sample OD -  positive OD)/(negative OD -  

positive OD)) x  100.

2.6.4.2 CellTiter 96™ (MTT) cell proliferation assay

The CellTiter 96'̂ '  ̂ assay (Promega) is based on the ability of active mitochondria 

in living cells to reduce a yellow (3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide) (MTT) dye into an insoluble MTT formazan purple product. Equal volumes of
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11142  cells, at 5 X 10^ cells/ml, were incubated with dilutions of CyaA in RPMI (Gibco) 

or DMEM (Gibco) non-phenol red culture media containing various concentrations of 

calcium chloride (Sigma) and 0.2 M  urea for 2 h and 24 h, or as otherwise stated, at 37 °C, 

in 5% CO2. Cells incubated with media in the absence or presence of 1% (v/v) Triton- 

XIOO (Sigma) served as controls for basal (negative) and 100% cytotoxic 

(positive/background) activity, respectively. For this assay, 0.2 M  urea was included in the 

assays to minimise any aggregation of the toxin. Cell viability was not affected by the 

presence of 0.2 M urea (negative controls). After the incubation period, 15 pi of MTT dye 

was added to each well and the plates were incubated at 37 '^C in 5% CO2 for 3 h. To each 

well, 100 pi of stop/solublisation solution was added and plates were incubated o/n at 37°C 

in 5% CO2 and a reading at OD570 nm was made (Dynex technologies). Cell killing was 

calculated using the following formula: 100 - (((sample OD -  background OD)/(negative 

OD -  background OD)) x 100). To investigate the rate at which CyaA and CyaA* killed 

cells, CyaA and CyaA* were diluted to 2.5 pg/ml and then 25 pi was added to the cells for 

different periods of time up to 120 min. Then 25 pi of a 1/100 dilution of anti-CyaA* 

reference serum (Section 2.8 .3.4) was added to the wells to stop any additional 

cytotoxicity. The plates were developed as described above.

2.6.4.3 CytoTox 96™ (LDH release) assay

The CytoTox 96’’''̂  assay (Promega) is based on the conversion of lactate to 

pyruvate by lactate dehydrogenase released from cells as a result of membrane damage. 

Equal volumes of J774.2 cells, at 2.5 x  10^ cells/ml, were incubated with dilutions of CyaA 

in RPMI or DMEM non-phenol red culture media supplemented with 5% (v/v) FBS, 

antibiotics/antimycotics, 2 mM L-glutamine and 0.2 M urea and varying concentrations of 

calcium chloride (Sigma) for 2 h and 24 h, or as otherwise stated, at 37 °C, 5% CO2. Cell 

viability was not affected in the presence of 0.2 M  urea (negative controls) which was 

included in the assays to minimise any aggregation of the toxin. To each well of a round- 

bottomed 96 well plate (Costar), 50 pi cell suspension was added and allowed to adhere at 

37 ‘’C, 5% CO2 for 30 min. After incubation, 50 pi of toxin dilutions, made in the same 

media, were added to the cells and incubated for 2 h or 24 h, or as otherwise stated. After 

the incubation, the plate was centrifuged at 250 x g (rotor 6455, Heraeus Multifuge 3-SR) 

for 5 min, then 50 pi of the supernates were transfeiTed to a new 96 well, flat-bottomed 

plate (Costar) and 50 pi of the LDH substrate, prepared according to manufacturers’ 

instructions, was added to the supernates and the plate was incubated at RT for 30 min in 

the dark. After incubation, 50 pi of stop solution was added to each well and the 

absorbance was read at OD490 nm (Dynex technologies). Cells incubated with media in the
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absence or presence of 1% (v/v) Triton-XlOO (Sigma) served as controls for 

basal/background and 100% cytotoxic activity, respectively. Cell killing was calculated 

using the following formula: ((sample OD -  background OD)/(positive OD -  background 

OD)) X 100. The rate at which CyaA and CyaA* killed cells in the LDH release assay was 

performed as described in Section 2.6.4.2.

2.6.5 Measure of the oxidative burst by chemiluminescence

Phagocytes, such as neutrophil PMNLs and macrophages, kill microorganisms by 

the combined activity of anti-microbial proteins and reactive oxygen species (ROS). The 

enzyme NADPH oxidase generates ROS, such as superoxide anions (O2') from molecular 

oxygen and these can be detected by the use of lucigenin. Superoxide reacts with lucigenin
'

causing its excitation. The emission of light when excited lucigenin returns to the ground 

state can be measured and is known as chemiluminescence. Therefore, lucigenin-enhanced 

chemiluminescence was used to study the effect of the different CyaA preparations on the 

zymosan-induced oxidative burst response in J774.2 cells as described recently by Prior et 

a l  (2005). Briefly, an equal volume of non-phenol red DMEM (with 0.2 M urea) was 

mixed with 100 ul of 2 x 10 cells/ml in a series of luminometer tubes (DOP solutions 

Ltd). To these, 100 pi of dilutions of CyaA, made in the same medium, were added to the 

tubes and incubated at 37 °C and 5% CO2 for 1 h. After incubation, 100 pi of zymosan (1.2 

mg/ml) (Fluka, Buchs, Switzerland) was added and incubated for a further 30 min.
.1

Chemiluminescence was measured at RT immediately after the addition of 100 pi of 

lucigenin (0.2 mg/ml) (N,N’-dimethyl-9,9’-biacridinium dinitrate -  Fluka), using a TD 

20/20 luminometer (Turner Designs, CA, USA). Cells incubated with media in the absence 

or presence of zymosan, served as controls for basal and 100% cell oxidative burst activity, 

respectively. Cell viability was not affected in the presence of 0.2 M urea (negative 

controls) which was included in the assays to minimise any aggregation of the toxin. 

Results were expressed as percentage of chemiluminescence relative to the positive 

zymosan control after subtraction of basal activity.

2.6.6 Caspase 3/7 detection

Apoptosis of J774.2 macrophage cells was measured using the Apo-ONE™ 

homogeneous caspase 3/7 assay (Promega). Briefly, 50 pi of cells, at 5 x 10  ̂cells/ml, were 

transferred to wells of a clear bottomed, 96-well, flat-bottomed black tissue culture plate 

(Labtech) and incubated for a minimum of 30 min before 50 pi of CyaA dilutions were 

added to the cell suspension. Toxin incubation was for 2 h or 24 h at 37 °C in 5% CO2, 

unless stated otherwise. After incubation, 100 pi of reconstituted caspase 3/7 substrate was 

added to each well and allowed to incubate for 18 h at RT before fluorescence



2.6.8 Detection of phosphorylated ERK 1/2 in J774.2 cells

J774.2 cells were exposed to CyaA to elucidate if the extracellular response kinase 

(ERK) signalling pathway was activated in mammalian cells as a result of CyaA binding to 

CR3 receptors. J774.2 cells were adjusted to 5 x 10^ cells/ml in non-phenol red RPMI 

medium and 2  ml was distributed into each well of a 6  well plate and incubated at 37  ‘’C, 

5% CO2 for a minimum of 30 min. The medium was replaced with 3 ml of fresh medium 

each day until there was 80 - 90% confluency. On the day of the treatment, CyaA diluted
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measurements were made using a spectrofluorometer (LS-55, Perkin Elmer) configured to 

detect caspase 3/7 activity at an excitation wavelength range of 485 ± 20 nm and an 

emission wavelength range of 530 ± 25 nm. A positive control (supplied with kit) was used 

for maximal fluorescence. Values produced were in arbitrary relative fluorescent units 

(RLFU). CyaA-free media in the absence or presence of cells, served as controls for 

background and basal caspase activity, respectively. Incubations and dilutions were done 

in non-phenol red RPMI or DMEM media with different concentrations of CaNOs or 

CaCE, respectively, and without 0.2 M  urea, unless otherwise stated. Urea interfered with 

the Apo-ONE^"^ homogeneous caspase 3/7 assay. Another apoptosis kit (Caspase Glo 

3 /7TM̂ Promega) was used but the AC enzymic activity interfered with the assay (Section 

3.4.5.1).

2.6.7 IL-6 release assay

2.6.7.1 Treatment of MM6 cells

Prior to the day of experiment, MM 6  cells were adjusted to a concentration of 4 x 

10  ̂cells/ml in RPMI-assay medium (Appendix G.3.2) and then 50 ml have transferred into 

a 150 cm^ tissue culture flask and allowed to grow o/n at 37 °C in 5% CO2. The following 

day, samples to be tested and the NIBSC 2^^ international endotoxin standard (94/580)

(0.25 -  4 EU/ml) were diluted in PBS and added in 50 pi volumes to wells of 96-well U- 

bottomed tissue culture plate (Costar). Then 100 pi of RPMI-assay medium was added to 

all wells, followed by the addition of 100 pi of cells (at 2.5 x 10^ cells/ml). After an 

incubation period of 24 h at 37 °C in 5% CO2, the supernates were collected and stored at -  

20 °C until ready for the detection of IL -6  (Section 2.6.7.2), All mateiials used were 

endotoxin-free.

2.6.7.2 IL-6 detection

Detection of IL -6  from supernates was assessed using multiplex fluorescent bead 

technology (BioRad) using the human IL-6  antibody bead kit (BioSource) as described in 

Section 2.8.10.
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in RPMI medium was added to the each well to a final concentration of 20 ng/ml at 2 min 

intervals up to 10 min. E. coli BL21/DE3 EPS, at 1 EU/ml, (Section 2.1.2) and 8 M  urea 

buffer used for CyaA, both diluted in the same medium were used as positive and negative 

controls, respectively. After the last incubation, all media were aspirated from all the wells 

and each well was washed twice with 2 ml of sterile PBS before the addition of 150 pi of 

lysis buffer (Appendix G.4). Cells in each well were scraped off and the lysates were
'

collected, using a 1 ml Gilson pipette, and stored on ice. The samples were then subjected 

to electrophoresis (Section 2.5) on 12% SDS-PAGE gels and then the bands were 

transferred onto a nitrocellulose membrane (section 2.5.3). Otherwise, the samples were 

stored at -2 0  °C. Phosphorylated ERK 1/2 was detected by Western blotting (Section 

2.5.3) using mouse anti-phospho-ERK 1 and ERK 2 antibody (Cell-signalling) followed by 

sheep anti-mouse horseradish peroxidase conjugate (Amersham), both used at 1/1000 

dilution. The bands were detected by X-ray development using Western blotting detection 

reagents (ECL, Amersham). This was done with the help of Dr. George Baillie (Division 

of Biochemistry and M olecular Biology, University of Glasgow).

2.7 Biophysical analysis of CyaA
2.7.1 Dialysis of CyaA

CyaA preparations, in 8 M urea, 50 mM Tris-HCl (pH 8.0), were dialysed using 

dialysis tubing with a Mw cut off of 12 -  14 kDa (Medicell International Ltd.). The tubing

was boiled in 0.5 mM EDTA (pH 8.0) for 30 min and stored in 70% (v/v) ethanol at 4 °C 

until ready to be used. The tubing was rinsed thoroughly with distilled water before use. 

For each millilitre of CyaA, 500 ml of 10 mM Tris-HCl (pH 8.0) was used as the dialysis 

buffer. CyaA was dialysed twice for 1 h at 4 °C with constant stirring. All dialysed CyaA 

preparations were kept at 4 or -20  °C.

2.7.2 Urease assay

Urea, in the CyaA samples, was detected using an ammonia meter (HI 93715, 

Hanna Instruments). The CyaA samples were diluted with distilled water to a total volume 

of 9.5 ml and to this, 0.5 ml of 0.1 mg/ml urease (Fluka), in 0.1 M potassium phosphate 

buffer (pH 7.0), was added and incubated for 10 min at RT. Samples were diluted so that 

they contained a urea concentration which was within the detection limit of the ammonia 

meter (< 9.99 mg/1). The ammonia, produced by urease, is then converted into NFI3-N by 

addition of reagents containing sodium hydroxide and mercury (II) iodide (Hanna 

Instruments). NH3-N production was measured at OD480 nm according to manufacturer’s 

instructions. A urea standard curve was used to calculate the theoretical concentration of 

urea in the samples.
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A refractometer (ABBE 60/70, Bellingham and Stanley Ltd.) was also employed to 

measure the concentration of urea in the dialysed CyaA samples. As light passes through 

from one medium to another, it changes speed and bends (refraction). The measure of a 

material’s refractivity is known as its refractive index. A solution containing urea will have 

a higher refractive index than an aqueous solution containing no urea. The concentration of 

urea can be calculated from the table of values given by Nozaki and Tanford (1963).

2.7.3 Circular dichroism

Circular dichroism (CD) is based on the differential absorbance of the left and right 

circularly polarised components of polarised light by chiral chromophores such as the 

amide bonds in the regular secondary structural elements of proteins (a-helices, (3-sheets 

etc.). Protein concentrations were calculated from the UV absorbance at 280 nm using a 

spectrophotometer (V550, Jasco). For assessing the effects of calcium on CyaA structure, 

dialysed samples were diluted to 0.5 mg/ml in 10 mM Tris-HCl (pH 8.0) with or without 

different concentrations of CaCL and incubated at 4 °C for 24 h. The blanks were 10 mM 

Tris-HCl (pH 8.0) plus the conesponding concentration of CaClz. For assessing the effect 

of a reduced concentration on CyaA structure, dialysed CyaA, diluted to 0.05 mg/ml with 

10 mM Tris-HCl (pH 8.0), was incubated with or without 0.3 mM CaCE. The blank for 

these studies was 10 mM Tris-HCl ± 0.3 mM CaCh (pH 8.0). For urea titration 

experiments, non-dialysed CyaA was diluted to 0.5 mg protein/ml containing 

concentrations of urea between 8 and 1 M urea in the presence and absence of 1 mM CaCk 

and incubated at 4 °C for 24 h. The data for 0 M urea were obtained using samples of 

CyaA dialysed against buffer. Spectra were acquired using a spectropolarimeter (J810, 

Jasco) with 0.02 or 0.2 cm pathlength cells (Hellma) for CyaA at 0.5 or 0.05 mg/ml, 

respectively; each spectrum represented the average of 8 scans at a scan rate of 10 nm/min 

over the range 260 to 180 nm, with a time constant of 2 s. Structural analysis was 

performed using VARSELC, SELCON, CONTIN or CDSSTR in Dichroweb 

(http://www.crvst.bbk.ac.uk/cdweb/html/menu.html) (Lobley et a l ,  2002; Whitmore and 

Wallace, 2004). VARSELC, SELCON, CONTIN and CDSSTR are widely used algorithms 

which provide an estimation of secondary structure composition of proteins from far UV 

CD data. For studies of structural stability, CyaA samples were stored at 4 °C or -20  "C, as 

indicated, before spectra and further in vitro characterisation were recorded. For near UV 

CD measurements, dialysed samples were diluted to 1.5 mg protein/ml in 10 mM Tris-HCl 

(pH 8.0) in the presence and absence of 1 mM CaCL before being subjected to analysis in 

a 0.5 cm pathlength cell (Hellma) at a rate of 10 nm/min, at a 2 sec interval over the range 

of 320 to 260 nm. For fluorescence studies, dialysed samples were diluted to 0.1 mg/ml in 

10 mM Tris-HCl (pH 8.0) in the presence and absence of 1 mM CaCL. Samples were

http://www.crvst.bbk.ac.uk/cdweb/html/menu.html
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measured in a rectangular quartz cell of internal dimensions 1 cm x 0.4 cm (Hellma) over 

the range of 400 to 300 nm with excitation at 295 nm. Negative/blanks consisted of 10 mM 

Tris-HCl in the absence or presence of CaCli or urea as indicated. The CD spectra were 

measured in units of molar ellipticity, [0] (deg. cm dmoF ). Dr. Sharon Kelly and Mr, 

Thomas Jess (University of Glasgow) performed all measurements and analyses.

2.7.4 Crystallography

Dialysed CyaA (Section 2.7.1) was used in crystallisation trials. Trials were 

undertaken using the sitting drop vapour diffusion method at RT (20 °C) (Stura et a l ,  

1989). Crystallisation experiments were carried out using a number of commercially 

available crystal screens (Crystal screen 1 and Crystal Screen II (Hampton Research), Cryo 

I and W izard II (Emerald Biosystems)). Trials were also carried using the 'foot print' screen 

(Stura et a l ,  1992) in which precipitents of various concentrations were used at the same 

pH to discover the conditions at which the protein could precipitate. The vapour diffusion 

technique allows the slow loss of water (and other components) from the well solution to 

the reservoir solution, which effectively causes an increase in the concentration of the 

protein in solution (through water loss). Using a number of trials, it was hoped that 

conditions would be found that resulted in crystal growth (showers of micro crystals or 

small/lai'ge single crystals). Crystal trials were earned out using Cryschem 24-well sitting 

drop plates (Hampton Research). Each reservoir contained one of the conditions from the 

screens, whilst the well (sitting drop) contained equal volumes of protein and précipitent (2 

pi : 2 pi). Trays were sealed using crystal clear tape (Hampton Research). Crystallisation 

trials were also undertaken using CyaA in the presence of 1 mM CaCli. For this, each 

reservoir contained one of the conditions from the screens, whilst the well (sitting drop) 

contained 1 pi protein and 3 pi précipitent. This work was done with the help of Dr. Alan 

Riboldi-Tunnicliffe (Department of Chemistry, University of Glasgow).

2.7.5 Analytical ultracentrifugation

During ultracentrifugation, proteins in solution are spun at high speeds (typically 

3,000 -  60,000 rpm), resulting in movement of the particles through the solvent in the 

direction of the centrifugal force and sedimenting as a function of time. The sedimentation 

process is dependent on mass, shape and charge of a particle and causes depletion of the 

solute from the meniscus and the formation of distinct solute/solvent boundaries. In 

analytical ultracentrifugation (AUC) the movement of the boundaries can be observed by 

monitoring the solute concentration using absorbance or interference (Schachman et a l, 

1962; Giebeler, 1992). This technique does not require labelling, chemical modification or 

interaction with a surface or supporting matrix. CyaA was dialysed as described in Section
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2.7.1 with the exception that, for each ml of CyaA dialysed, a volume of 1000 ml of 10 

mM Tris-HCl (pH 8.0) buffer was used and three buffer changes were made.

2.7.5.1 Calculation of buffer densities and viscosities

Calculations of buffer viscosity (q), buffer density (p) and partial specific volume 

(v )  were done using the programme, SEDNTERP (Version 1.08) (Laue et a l,  1992). 

SEDNTERP was downloaded from http://www.iphilo.mailwav.com/download.htm.

2.1.5.2 Sedimentation equilibrium analytical ultracentrifugation

In sedimentation equilibrium (SE) AUC the opposing forces of sedimentation and 

diffusion lead to the establishment of a thermodynamic equilibrium with no net movement 

of molecules within the concentration gradient. SE experiments were performed at 4 °C in 

a Beckman Coulter Optima XL-1 analytical ultracentrifuge (Palo Alto, USA) using an An- 

50 Ti rotor and rotor speeds of 7,000 rpm, 11,000 ipm  and 15,000 rpm. Concentrations of 

dialysed CyaA between 0 . 1 8 - 3  mg/ml in 10 mM Tris-HCl ± Im M  CaCli (pH 8.0) were 

used. The samples (80 pi) were loaded into 12 mm pathlength charcoal-filled epon double 

sector centrepieces. Attainment of equilibrium was ascertained with WinMATCH 

(http://www.biotech.uconn.edu/auf/) until no net movement of protein was observed in 

scans recorded 3 h apart. SE data were analysed with the programme UltraScan 

(http://www.ultrascan.uthscsa.edu/) . All analyses were performed by Dr. Olwyn Byron 

(Division of Infection and Immunity, University of Glasgow).

2.7.5.3 Sedimentation velocity analytical ultracentrifugation

In sedimentation velocity (SV) experiments, proteins are separated as a result of 

their different rates of migration through the centrifugal field. Generally, greater rotor 

speeds are used for SV experiments compared with SE experiments. The sedimentation is 

monitored over time by a set of absorbance/interference profiles. At the start of the 

experiment, the solute is distributed homogeneously throughout the radial range recorded. 

At later times, sedimentation profiles show movement of the solute boundary towards the 

bottom of the cell. The sedimentation coefficient (s) of a macromolecule is obtained from 

its sedimentation profile and defined by the Svedberg equation (s = D M (1 -v p )/R T , where 

M  is the molecular mass (g mol'^), D is the diffusion coefficient (cm^ s'^), R is the gas 

constant (8.314 erg mol'^ K'^) and T the temperature (K)). SV experiments were performed 

at 4 °C in a Beckman Coulter Optima XL-1 analytical ultracentrifuge (Palo Alto, USA) 

using an An-50 Ti rotor and rotor speeds of 40,000 ipm to 48,000 rpm. Concentrations of 

dialysed CyaA between 0 . 1 8 - 3  mg/ml in 10 mM Tris-HCl ± Im M  CaCL (pH 8.0) were

used. Samples (360 pi) were loaded into 12 mm pathlength charcoal-filled epon double

http://www.iphilo.mailwav.com/download.htm
http://www.biotech.uconn.edu/auf/
http://www.ultrascan.uthscsa.edu/
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sector centrepieces. Approximately 220 scans were taken at an interval of 1 minute using 

interference optics. Data were analysed with the programme SEDFIT (version 9,1,
,v-

National Institute of Health, USA), with the help of Dr. Olwyn Byron (Division of 

Infection and Immunity, University of Glasgow).

2.8 In vivo experiments
2.8.1 Animals

Female NIH mice, aged 3 - 4  weeks were obtained from Harlan, UK and 

maintained in pathogen-free conditions.

Î

Î
2.8.2 Vaccines

A commercially-available Diphtheria Tetanus acellular Pertussis vaccine 

(DTaP/ACV, hereafter referred to as ACV) (Infanrix, Belgium) was used. Within 1 single
'

human dose (SHD), there are 25 pg of detoxified pertussis toxin (dPT), 25 pg of FHA, 8 

pg of PRN, 30 International Units (lU) of diphtheria toxoid, 40 lU  of tetanus toxoid, 0.5 

mg A1(0H)3, 2-phenoxyethanol (preservative), sodium chloride and water. PT in the 

vaccine had been toxoided with glutaraldehyde solution and then later with formalin. FHA 

and PRN were treated with formalin only.

2.8.3 Immunisation

2.8.3.1 Immunisation with different CyaA preparations alone

Groups of five mice were injected intraperitoneally with 0.5 ml of Dulbecco’s 

phosphate-buffered saline without calcium and magnesium (D-PBS, Gibco) containing 

different CyaA preparations (25 pg protein/dose) with or without 10% (v/v) alum [2%

(w/v) A1(0H)3, 1.3% (w/v) AI2O3] (IMF, Denmark) or with 0.5 ml of D-PBS with or 

without 10% (v/v) alum which served as a negative control. Mice were immunised on days 

0 and 28 and sampled or challenged intranasally on day 42. For the aerosol challenge, mice 

were immunised on days 0 and 38 and challenged on day 56.

2.8.3.2 Immunisation with CyaA*** with different doses of ACV

Groups of five mice were injected intraperitoneally with 0.5 ml of D-PBS 

containing a high (14 SHD) or low (% SHD) dose of ACV + 25 pg CyaA=^ without alum or 

with 0.5 ml high (14 SHD) or low (% SHD) dose of ACV alone or with 0.5 ml of D-PBS in 

10% (v/v) alum which served as a negative control. Mice were immunised on days 0 and 

28 and sampled or challenged intranasally on day 42. CyaA* was chosen because 

preliminary work showed that it provided better adjuvant activity than CyaA towards B. 

pertussis antigens (MacDonald-Fyall et a l,  2004).
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2.8.3.3 Immunisation with different CyaA preparations plus ACV

Groups of five mice were injected intraperitoneally with 0.5 ml of D-PBS 

containing % SHD of ACV + 25 pg protein of different CyaA preparations without alum. 

Control groups consisted of mice immunised with 0.5 ml of D-PBS in 10% (v/v) alum or 

with 0.5 ml of D-PBS containing % SHD of ACV. Mice were immunised on days 0 and 28 

and challenged intranasally on day 42.

2.5.3.4 Production of mouse anti-CyaA* reference serum

One hundred female NIH mice were injected intraperitoneally with 0.5 ml of D- 

PBS containing 25 pg protein of CyaA* adsorbed onto 10% (v/v) alum by incubation o/n 

at 4 °C. Mice were boosted twice with the same formulation on days 28 and 56 and 

sampled for blood on day 70. Sera, obtained from heart bleeds, were pooled and stored at -  

20 °C. An arbitrary value of 30,000 ELISA units/ml was attributed to this serum for the 

calculation of geometric means of serum anti-CyaA antibody levels.

2.8.4 Preparation of B. pertussis suspension for aerosol and intranasal 

challenge

For aerosol challenge, B. pertussis 18.323 was grown on blood CA plates for 2 

days and sub-cultured for 16 -  18 h twice at 37 °C. The bacterial cells were re-suspended 

in casamino acids solution (Appendix H I )  and adjusted to an OD625 um of 0.26 using a 

spectrophotometer (MSE, Fisons) to give 4.5 x 10^ colony forming units (CFU)/ml. For 

intranasal challenge, B. pertussis 18.323 was grown on blood CA plates for 18 h followed 

by two further sub-cultures for 16 -  18 h. The bacterial cells were re-suspended in 

casamino acids solution and adjusted to an OD625 nm of 0.2 using a spectrophotometer 

(MSE, Fisons) to give 4 x 10  ̂ CFU/ml. The bacterial suspensions were kept on ice until 

ready for challenge.

2.8.5 Aerosol infection of mice with B, pertussis

Aerosol challenge was performed as described previously by Xing et al. (1999). 

The aerosol apparatus was set up as shown in Figure 7. Briefly, two groups of five mice 

were placed in metal restraint boxes. Their noses were positioned through membranes of a 

metal nose port section of the apparatus and were exposed to aerosols produced by a 

nebuliser containing a B. pertussis suspension for 5 min. Lungs and trachea were removed 

from one PBS control group at 2 h post-challenge and from all groups at 7 days post­

challenge. The lungs and trachea from each mouse of each group were homogenised in 1 

ml of casamino acids solution. Viable counts were made by plating serial dilutions of the 

homogen ate on blood CA plates and the numbers expressed as CFU/lung.
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Figure 7 Schematic diagram of aerosol challenge apparatus

The bacterial suspension is added into a sterile glass nebuliser. Air is then pumped (pump 

1) through to the nebuliser creating an aerosol of bacteria. A valve is released which allows 

the aerosol suspension of bacteria to flow through to the metal rack containing nose ports 

into which the noses of mice are positioned. The aerosol suspension continues to flow 

beyond the rack and into a filter and finally into pump 2.
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performed as described in Section 2.8.5.
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2.8.6 Intranasal infection of mice with B. pertussis

Anaesthetised mice were inoculated with 10 pl/nostril of B. pertussis strain 18.323 

suspension. The lungs and tracheas of five mice from the PBS control group were sampled

2 h post-challenge and from all other immunised groups, and another group of five PBS 

control mice, 7 days post-challenge as described in Section 2.8.5. Viable counts were

2.8.7 Sampling for blood, spleen cells and peritoneal macrophages

Sera were obtained from heait bleeds for each mouse and stored at -2 0  °C.

Extraction of spleen cells and peritoneal macrophages were perfonned at the same time 

and described below.

2.8.7.1 Culture of mouse peritoneal macrophages and spleen cells

Each peritoneal cavity was lavaged with 5 ml of sterile PBS wash buffer (Appendix 

0 .3 .3) and the lavage fluids were pooled from one group of five mice and cells recovered 

by centrifugation at 800 rpm for 10 min (rotor 6455, Heraeus Multifuge 3-SR). The cell 

pellets were resuspended in RPMI (Appendix 0.3.1) to a concentration of 2 x 10^ cells/ml. 

To each well of a 24-well tissue culture plate (Costar), 1 ml of cell suspension was added 

and incubated at 37 °C in 5% CO2 for 2 h. The cells were washed three times with the PBS

wash buffer to remove non-adherent cells. Single-cell suspensions from spleens were 

prepared from pooled spleens by passing the tissue through a cell strainer (Falcon) with 

sterile PBS wash buffer. Erythrocytes were depleted by suspension in sterile distilled water 

followed by centrifugation at 1000 rpm for 20 min, at 4 °C (rotor 6455, Heraeus Multifuge 

3-SR, Fisher Scientific). The cells were then washed twice with PBS wash buffer and 

resuspended in RPMI medium to a concentration of 2 x  10*̂  cells/ml. To each well of a 24-
■

well tissue culture plate, 2  ml of cell suspension was added and cultured as above.

2.8.8 Treatment of macrophages and spleen cells

Macrophages and spleen cells were cultured with and without 5 x 1 0 ^  heat-killed B. 

pertussis cells/well as described by Xing et a l  (1998) or with combinations of CyaA*,

formalin treated-PT, -FHA and -PRN (supplied by GSK, Belgium) used at I, 2, 2 and 5 pg
'

protein/ml, respectively. Formalin treated-PT, -FHA and -PRN were the same individual 

components which were used in the ACV for vaccination studies (Section 2.8.3.3). 

Cultures were incubated at 37 °C, in an atmosphere of 5% CO2 for 24 h and for 48 h for 

macrophages and spleen cells, respectively. Cell viability was confirmed by trypan blue 

staining.

.1

-I
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2.8.9 Determination of nitrite production

Nitrite determinations were made in triplicate on 50 pi volumes of pooled 

macrophage cell culture supernates following stimulation with antigens in vitro from 

immunised mice. The sample was mixed with 50 pi of Greiss reagent (Appendix H.2) and 

the absorbance at OD540 nm was measured after incubation for 5 min at RT using an Anthos 

ELISA plate reader (Life Science International). The concentration of nitric oxide (NO) in 

the macrophage supernates was calculated by using a standard curve for sodium nitrite 

(Sigma).

2.8.10 Determination of cytokine production

Detection of cytokines in supernates of stimulated macrophage and spleen cells was

done by Multiplex fluorescence bead technology (BioRad). The mouse cytokine 10-plex

(BioSource) kit (which detects IL-1|3, IL-2, IL-4, IL-5, IL-6 , IL-10, IL-12, TN Fa, GM- 

CSF and IFNy), with the addition of murine IL-8 , was used according to the 

manufacturer’s recommended procedure. Briefly, this technology is similar to a sandwich 

ELISA. Each cytokine is captured by antibodies which are coupled to beads with specific 

fluorescence markers to allow identification. Cytokine-specific biotinylated detector 

antibodies are added which bind to the appropriate immobilised cytokines. Streptavidin 

conjugated to a fluorescent protein, R-phycoerythrin (Streptavidin-RPE), was then added 

and binds to the biotinylated detector antibodies associated with the immune complexes on 

the beads, forming a four-member solid-phase sandwich. The beads were analysed with a 

Luminex 100™ (BioRad) instrument. By monitoring the spectral properties of the beads 

and the amount of associated RPE fluorescence, the concentrations of the cytokines were 

determined by comparison with supplied standards which served as positive controls. Cell 

culture medium alone served as a negative control. The sensitivities for each cytokine were 

as follows; IL -ip  (10 pg/ml); IL-2 (20 pg/ml); IL-4 (5 pg/ml); IL-5 (10 pg/ml), IL-6  (10 

pg/ml); IL-10 (15 pg/ml); IL-12 (15 pg/ml); T N F-a (5 pg/ml); GM-CSF (10 pg/ml) and 

IFN-Y (1 pg/ml). This work was performed with the help of Dr. Alastair G rade (Division 

of Immunology, University of Glasgow).

2.8.11 Enzyme-linked immunosorbent assay (ELISA)

2.8.11.1 ELISA for IgG

ELISA plates (Maxisorp, Nunc) were coated o/n at RT with 100 pi of carbonate 

buffer (Appendix H.3.1) containing purified recombinant CyaA, PT, FHA or PRN, all at 2 

pg protein/ml. PT, FHA and PRN were purified native proteins (GSK, Belgium). Plates 

were washed with PBS-Tween (PBST - Appendix H.3.2.1) and blocked by incubation with 

200 pi of PBST blocking buffer (Appendix H.3.2.2) for 1 h at RT. After washing the plates
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with PBST, 100 pi of serial dilutions in PBST of test sera, mouse anti-CyaA reference 

serum (Section 2.8.34), or First International Reference m ii-Bordetella pertussis mouse 

serum (97/642, NIBSC) containing known levels of IgG antibodies to PT, FHA or PRN, 

were dispensed into the ELISA plate wells and incubated for 2 h at RT. For total IgG 

measurements, the plates were washed and then incubated with HRP-conjugated sheep 

anti-mouse IgG (Sigma) diluted 1 in 1000 in PBST (100 pi/well). Following incubation at 

RT for 2 h, 100 pi of peroxidase substrate solution was added (Appendix H.3.4) and 

incubated in the dark for 10 - 15 min. The reaction was stopped by addition of 50 pi per 

well of 1 M H2SO4 and the absorbance values at OD450 nm were measured in an Anthos 

ELISA plate reader (Life Science International, UK). Total IgG was calculated as the 

geometric mean of the antibody titres (see below).

I?

A

2.8.11.2 ELISA for IgGl and IgG2a subclasses

For determination of IgG l and IgG2a antibody levels to CyaA, PT, FHA and PRN, 

the same reagents and reference sera were used as described in Section 2,8.11.1 except 

that, for detection, 100 pi of biotin-conjugated rat anti-mouse IgG l or IgG2a (BD 

Pharmingen) followed by streptavidin-HRP conjugate (BD Pharmingen), all at 1 in 1000 

dilution, were added to each well and incubated for 90 min, in turn, in the dark with 

washing in PBST in between each step at RT. 100 pi of SigmaFast"'’’̂  substrate [tablets of 

o-phenylenediamine di-hydrochloride and urea/hydrogen peroxide dissolved in 2 0  ml of 

sterile distilled water (Sigma)] was added per well and incubated for 1 0 - 1 5  min, in the 

dark. The reaction was stopped with 50 pi of 3 M HCl to all wells and the absorbance 

values were read at OD493 nm- For determination of total IgG, IgG l and IgG2a antibody 

levels, potencies or antibody titres relative to a reference serum (which had been assigned 

an arbitrary value in ELISA units (EU)/ml), were obtained by parallel-line analysis of logio 

sample O D  against logio dilution.

2.8.11.3 Neutralisation assays

Samples of the pooled serum from each group of mice were heat-treated for 30 min 

at 56°C to remove complement activity in the serum. Equal volumes of sera dilutions were 

incubated with concentrations of CyaA for 30 min at RT as follows; 2.5 pg protein/ml for 

cytotoxicity, 20 pg protein/ml for haemolysis, 60 pg protein/ml for enzymic activity. All 

assays were performed as described in Section 2.6.

2.9 Phagocytosis
It was of interest to find out whether anti-CyaA sera increased the ability of 

phagocytes to phagocytose B, pertussis. Blood, from two female NIH, 5-6 week old mice,

  ' .. - -  .......
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was collected into heparin-coated (250 units/ml -  Sigma) syringes. Distilled water was 

added to the blood sample to lyse erythrocytes (Section 2.8.7.1) leaving a suspension of 

white blood cells (WBCs). The WBCs were washed twice with Hanks HEPES balanced 

salt solution (HESS - Invitrogen) and then resuspended in HBSA (HBSS containing 0.25% 

(w/v) BSA) to a concentration of 7.4 x 10"̂  cells/ml. B. pertussis 338 expressing (Section

2.1.3) were resuspended in HBSA to a concentration of 4 x 10^ cells/ml and kept on ice. 

Different volumes (30, 60 or 90 pi) of bacterial suspension were incubated with 30 pi of 

heat-inactivated anti-PBS, different anti-CyaA sera (at 1/30 dilution) or anti-CyaA* 

reference serum (at 1/100 dilution) (Sections 2.8 .3.4 and 3.6.3.1) in a total volume of 150 

pi in HBSA for 30 min at 37 °C in 5% CO2. Different volumes of bacteria gave different 

bacteria: leukocyte ratios or different multiplicities of infection (MOI). As a control, 30 pi 

of unopsonised bacteria were incubated with 120 pi of HBSA. Each assay was 

supplemented with 1 ml of WBC suspension and then the bacteriaAVBC mixture was 

added to a well of a 24-well plate and incubated for 1 h at 37 °C in 5% CO2 with shaking. 

After incubation, the cells were washed twice with HBSA and blocked with 15 pi of anti- 

CD 16/32 monoclonal antibody for 15 min at RT followed by incubation with 10 pi anti- 

CD 11b allophycocyanin (APC)- and 10 pi anti-CD45 R-phycoerythrin (RPE)-labelled 

monoclonal antibodies or with 10 pi of isotype-matched antibodies which served as 

negative controls (Caltag-MedS y stems) for 25 min in the dark. Cells were washed twice 

with PBS-flow (Appendix H.3.5.1) and were then fixed in FACS-Fix (Appendix H.3.5.2) 

and transferred to a Fluorescence-Activated Cell Sorter (FACS) tube. Acquisition of 

10,000 events was carried out in a FACS Calibur cytolm eter (Becton Dickinson) and 

analysis was perfoiTned using WinMDI v2.7 software. Control cells were incubated in the 

same medium in the absence of B. pertussis 338. The fluorescence associated with B, 

p>erto5i5-treated cells was compared with the fluorescence associated with control cells. 

The extent of B. pertussis associated with cells expressing CD 11b and CD45 was measured 

by the increased fluorescence caused by the GFP expressed by the bacteria. The results are 

expressed as percentage of median fluorescence intensity (MFI) associated with the cells

treated with B. pertussis relative to the maximal MFI associated to the controls cells in the

2.10 Statistical analyses
Several groups were compaied with one control group using one-way analysis of 

variance (ANDVA) -  D unnet’s test. For multiple comparisons between groups (where no 

defined control group was used), Tukey’s test (ANOVA) was used. For compaiison of two 

groups. Student’s t test was used. Statistical significance level was defined as P  < 0.05.
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2.11 Preparation of bone marrow-derived macrophages for

microarray analysis
2.11.1 Animals

Male, 1 0 - 1 2  week old, Balb/c mice were purchased from Charles River Labs and 

maintained in pathogen-free conditions,

2.11.1.1 Extraction and maintenance of mouse bone marrow macrophages

Dr. Garwin Sing (Scottish Centre for Genomic Technology and Informatics, 

University of Edinburgh) performed extractions of bone marrow-derived macrophages 

(BMMs) from mouse femurs. Briefly, a 21G needle fitted with a 3 ml syringe was filled 

with Dulbecco’s PBS (Sigma). The needle was then inserted into the cortex at one end of 

the dissected femur. The bone maiTOw was then flushed out into a 50 ml tube containing 5 

ml PBS and was repeated 3 times on the other side of the dissected femur. The bone 

marrow cell progenitors were resuspended in complete DMEM/F12 (Gibco) growth 

medium containing GlutaMAX'^'^ (Appendix I .l)  and 10% (v/v) L929 cell conditioned 

medium (Section 2.11.1.2). BMMs were seeded at a density 1.6 x  10*̂  cells/well in a 6 -well 

tissue culture dish (Costar) in 4 ml of complete medium and incubated at 37 °C in 5% CO2. 

After 3 days, non-adherent cells were washed off and the wells were replenished with 2 ml 

of fresh complete medium with additional medium changes every 48 h. Depending on 

confluency, the macrophages were used on day 6  or 7. Cells were either pooled to be used 

for the MTT assay (Section 2.11.2) or used for RNA extraction (Section 2.11.3).

2.11.1.2 Preparation of L929 conditioned medium

Conditioned medium from murine L929 connective tissue cells (ECACC #: 

87031904) as a source of macrophage colony-stimulating factor (M-CSF) (Maitinat et a l,  

2002) was prepared as follows; A seed stock of L929 cells was grown to confluency in a 

165 cm^ tissue culture flask (Coming) in DMEM/F-12 growth medium (Gibco) 

supplemented with 10% (v/v) heat-inactivated PBS and 100 U/ml of penicillin and of 

streptomycin (Gibco). The monolayer was trypsinised and the cell pellet resuspended in 30 

ml growth medium. One ml cell aliquots were then used to seed a number of 165 cm^ 

flasks, each containing 49 ml of growth medium. Cultures were incubated at 37 ‘’C in 5% 

CO2 for 2  weeks, after which the conditioned medium was decanted, filtered and stored at 

- 2 0  ®C until use.

2.11.2 MTT assay

In order to determine a concentration of CyaA, CyaA* and proCyaA* suitable for 

BMM treatment without significant killing, a MTT assay was performed. Briefly, 50 pi of
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BMMs in DMEM/F12 growth medium (Section 2.11.1.1), at 4 x 10  ̂ cells/ml, were 

dispensed into wells of a 96-well tissue culture plate (Costar) and incubated at 37 °C in 5% 

CO2 until 70% confluency. The cells were treated with toxin for 2 h or 24 h and the assay 

was continued as described previously in Section 2.6.4.2.

2.11.3 Treatment and harvesting of cells for RNA extraction

The medium in each well of the 6-well plate, was replaced with 1 ml of 

DMEM/F12 serum-free medium with no other additives except for antibiotics and L- 

glutamine plus either 20 ng protein/ml of CyaA, CyaA* or proCyaA* and incubated for 2 h 

or 24 h at 37 "C in 5% CO2. Urea was used at the same concentration as in the CyaA 

treatments and served as a negative control. Three or nine incubations of each treatment 

were performed. After incubation, the supernates were collected and stored at -2 0  °C for 

detection of cytokines (2.8.10).

2.12 RNA extraction
0.33 ml of Trizol (Invitrogen) was added into all wells and left for 5 min at RT. The 

cells in each well were manipulated with a cell scraper in order to ensure complete lysis. 

Trizol lysates were pooled from three wells of the same treatment generating three pooled 

total RNA samples for each treatment. The total RNA was then transferred into eppendorf 

tubes. To each tube, 200 pi of chloroform was added and shaken vigorously for 15 sec. 

The RNA mixture was incubated at RT for 2 - 3  min and then centrifuged at 12,000 x g for 

15 min at 4 (model 5417c, Eppendorf). Using a pipette, the aqueous phase was removed 

and transferred into a new eppendorf tube. To each tube, 0.5 ml of isopropyl alcohol was 

added and tubes were inverted several times and left at RT for 10 min to precipitate the 

RNA. The tubes were centrifuged at 12,000 x g for 10 min at 4 °C (5417c, Eppendorf). 

The isopropyl alcohol was decanted and the RNA pellet was washed with 1 ml of 75% 

(v/v) ethanol. The tubes were vortexed briefly and then centrifuged at 7,500 x g for 5 min 

at 4 °C. The ethanol was decanted and the tubes were inverted to air dry for approximately 

10 min. The RNA was dissolved in 10 pi of water and stored at -80  °C. The RNA was 

subjected to spectrophotometric determination of concentration by measurements at OD260 

nm- The quality of RNA was also checked by electrophoresis on the Agilent Bioanalyser 

system (Agilent technologies) according to manufacturer’s instructions by Dr. Paul 

Dickinson (Scottish Centre for Genomic Technology and Informatics, University of 

Edinburgh). All materials were RNAse free.
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2.13 Synthesis of cRNA and hybridisation with Affymetrix chips
Synthesis of cRNA and hybridisation was performed by Ms Marie Craigon 

(Scottish Centre for Genomic Technology and Informatics, University of Edinburgh) and 

the procedure is shown diagrammatically in Figure 8. For the hybridisation of RNA onto 

Affymetrix chips for micro array analysis, double stranded cDNA was first synthesised 

from total RNA. T7-(dT)24 primers and Superscript II reverse transcriptase were used for 

this process to generate single stranded cDNA, followed by incubation with DNA 

polymerase I to generate double stranded cDNA. The cDNA was subjected to a

and dap, from Bacillus subtilis, are poly-A-tailed sense RNA which are spiked into the 

isolated RNA samples as controls for the labelling and hybridisation process. The spikes

!
!

phenol/chloroform extraction and ethanol precipitation procedures. Biotinylated cRNA 

was generated from double stranded cDNA by using T7 RNA polymerase. Affymetrix use 

labelled cRNA because the process produces a linear amplification of the target material. 

The cRNA was purified using RNeasy (Qiagen) and checked for quantity by measurements 

at OD260 nm and quality by running the samples in RNA 6000 Nano LabChips (Agilent 

Technologies) analysed in an Agilent 2100 Bioanalyser (Agilent Technologies). Agilent 

LabChips use microfluidics technology for the analysis of biological samples, such as 

RNA. The Agilent 2100 Bioanalyser produces gel-like images, electropherograms (peaks) 

and integrities of the RNA samples. Heating the sample to 94 “C for 35 min in the 

presence of Mg "̂  ̂ ions was used to fragment the labelled cRNA. The fragmented cRNA 

was incubated with various controls and heated to 99 °C for 5 min. For example, a 

synthetic control, oligo (B2), was added to the mix to provide grid alignment signals used 

by the analysis software. bioB, bioC  and bioD, from E. coli, and ere, from PI 

bacteriophage, are antisense biotinylated cRNA used as hybridisation controls, lys, phe, thr

■il
J '

were also used to estimate assay sensitivity. The sample was centrifuged to remove any 

particulate material and was then hybridised with a Test-3 array to check the integrity of 

the source RNA before proceeding onto the actual hybridisation; degraded RNA will not
■ ■

label evenly. Probes for the 5’, middle and 3 ’ end of genes for (3-actin and GAPDH was 

assessed on the Test-3 array as a measure of RNA integrity. The cRNA was hybridised 

with MG-U74Av2 or with MOE430_2 GeneChips® for 16 h. After the incubation, the 

chips were subjected to an incubation/wash procedure to amplify the fluorescence signal 

according to manufacturer’s instructions (Affymetrix). This involved the addition of 

streptavidin-phycoerythrin (SAPE) which binds to biotinylated cRNA target molecules 

hybridised to the aiTay. Goat anti-SAPE IgG is then added followed by biotinylated anti­

goat IgG antibody.
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Figure 8 Eukaryotic target labelling for expression analysis

The preparation of cRNA from mRNA is described in Section 2.13.
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Finally, more SAPE is added which will bind to the biotinylated antibody complex 

thereby amplifying the original fluorescence signal. Hybridised and washed microanays 

were scanned using the Affymetrix GeneChip Scanner 2500 or 3000 to visualise 

phycoerythrin fluorescence by laser excitation at 532 nm and signal detection at 570nm. 

Fluorescence images were analysed using Microarray Suite 5.0 (MASS) or Gene Chip 

Operating System 1.2 software (GCOS1.2, Affymetrix, USA) as detailed below.

2.14 Microarray analysis
MASS and G C0S1.2 were used to control analysis of Affymetrix GeneChip® microarrays 

from experimental set up to data output. GCOS1.2 provides control of GeneChip® Fluidics 

Stations and Scanners. In addition, GCOS1.2 acquires data, manages sample and 

experimental information, performs gene expression data analysis and supports other 

packages for resequencing, mapping data analysis and report generation. A number of data 

types are captured during analysis which can be distinguished by their file extensions 

(.EXP, .DAT, .CEL, .CHP. and .RPT). These file types correspond to different stages 

along the analysis path such that .EXP files contain experimental details, .DAT files 

contain raw image data, .CEL files are processed image data, RPT files contain a report of 

particular image parameters and .CHP files are normalised image data to the urea control. 

The .CHP files are normalised to the global signal from the entire array for each individual 

chip i.e. the average brightness of each image is adjusted to the same brightness allowing 

comparisons of differential expression between chips to be made. Additionally to using 

this software, much of the analysis of Affymetrix arrays was performed using the 

Bioconductorl .4 package (http://www.bioconductor.org/! running under the R1.9 

environment (http://www.r-proiect.org/!. Bioconductor allows normalisation with the 

M AS5 algorithm as well as other normalisations such as rma, gcrma, d-chip etc. Empirical 

based statistical testing using Benjamini/Hochberg false discovery rate correction was used 

to determine significances between replicates and treatments (P < 0.05). GeneSpiing 7.2 

(Silicon genetics) was used to analyse the microarxay data by enabling visual and 

analytical comparisons between different data sets.

One website which is particularly useful is the Database for Annotation, 

Visualisation and Integrated Discovery (DAVID) 2.1 (http://david.abcc.ncifcrf.gov/!. 

DAVID 2.1 provides a comprehensive set of tools for investigators to visually summarise 

annotation from a large list of genes. One example is the Functional Classification Tool 

(FTC). FTC provides summaries for each gene entered into the database, enabling the user 

to discover the function of the proteins encoded by the genes in question.

http://www.bioconductor.org/
http://www.r-proiect.org/
http://david.abcc.ncifcrf.gov/


pGW44/188 compared with that of pGW44 as confirmed in the chromatogram files. The 

changes, from CGC (Arginine) to TGC (Cysteine), corresponded to codons 206 and 246 in 

the amino acid sequence of CyaA (Appendix J).

3.2 Expression of recombinant CyaA from E, coli
In addition to E. coli BL21/DE3, E. coli BL21/DE3 IpxM  was also used to express 

CyaA. EPS from E. coli BL21/DE3 IpxM  has a defect in the lipid A moiety (see section

2.1) and has reduced inflammatory properties compared with EPS from the wild-type 

strain (Cognet et a l ,  2003). Any contaminating EPS in the final CyaA preparations 

expressed from E. coli BL21/DE3 IpxM  should therefore have minimal 

immunomodulatory effects on the in vitro and bioassays.

3.2.1 Growth of transformed E, coli BL21/DE3 or E, coli BL21/DE3 IpxM

E. coli BL21/DE3 transformed with either one or two plasmids grew at different 

rates in LB with a starting inoculum of 5 ml (Fig. 10). Therefore, to reach an ODeoonm of
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Chapter 3 

Results

3.1 DNA
A kanamycin-resistance cassette was introduced into plasmid pGW54 so that it 

could be used for the expression of CyaA in E. coli BL21/DE3 IpxM  as both E. coli 

BL21/DE3 IpxM  and pGW54 possessed genes for chloramphenicol resistance. Plasmid 

pGW44/188 was sequenced to confirm the presence of a 6 base pair sequence in the AC 

region of the cyaA gene.

3.1.1 Construction of a kanamydn resistant form of plasmid pGW54

The 1,3 kb kanamycin cassette was removed from plasmid pGEM-T-Kan by 

digestion with Ncol (Fig. 9, Lane 7) and was ligated into Acol-cut plasmid pGW54 (Fig. 9, 

lane 3) to produce pGCK54 (Fig. 9, lane 4 and 5). Plasmid pGCK54 was transformed into 

E. coli BL21/DE3 IpxM, with plasmid pGW44, for the expression of CyaA (Section

2,43,3).

3.1.2 Sequencing of plasmids pGW44 and pGW44/188

DNA sequencing confirmed the presence of a 6 base pair sequence [CTGCAG] in 

the cyaA gene in pGW44/188 which was absent in the cyaA gene in pGW44. This 

sequence coded for Leu and Gin in between codons Asp 188 and He 189 (Appendix J).
■'.r

However, there were also two cytosine to thymine transitions in the cyaA gene sequence in
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Figure 9 1 % agarose gel of plasmid DNAs digested with restriction enzyme Ncol

Volumes of 1 -  5 pi of uncut and plasmid DNAs digested with the restriction enzyme were 

separated on a 1% agarose gel and stained with ethidium bromide. Arrows indicate the 

position of the DNA standards.

pGW54

pGEM-T

Kanamycin
cassette

5 .0  kb

3 .0  kb

1.6 kb

1.0 kb

Lane Sample Restriction 
digest with:

1 1 kb ladder (Invitrogen) -

2 pGW54 -

3 pGW54 Ncol
4 pGCK54 -

5 pGCK54 Ncol
6 PGEM-T-Kan -

7 PGEM-T-Kan Ncol
8 1 kb ladder -

-, no restriction enzyme added.
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Figure 10 Growth rates of E. coli BL21/DE3 transformed with one or two 

plasmids

A 5 ml o/n culture of E, coli BL21/DE3, transformed with plasmid pGW44 (solid squares) 

or with plasmids pGW44 and pGW54 (open squares), was inoculated into 500 ml of LB, 

with appropriate antibiotics, and then grown at 37 °C with shaking. Growth was monitored 

at ODeoo nm- Arrows indicate the point at which IPTG (at 1 mM) was added.

2.0

§ IPTG0.8
0.6
0.4
0.2
0.0

□  □

60 120
Time (min)
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-2 .0 , E. coli BL21/DE3 cells transfoiTned with one and with two plasmid(s) had to be

harvested at approximately 150 and 225 min, respectively, after IPTG induction at ODôoo 

nm of 0.3 - 0.4.

3.2.2 Expression of recombinant CyaA from E, coli BL21/DE3 IpxM

E. coli BL21/DE3 IpxM  transformed with plasmids pGW44 and pGCK54 failed to 

grow after the addition of 1 mM IPTG when cultured in LB as determined by optical 

density (data not shown). However, when the strains were grown in Terrific broth (TB), 

the transformed E. coli BL21/DE3 IpxM  grew at a rate comparable to transformed E. coli 

BL21/DE3 even after IPTG induction (data not shown). Therefore, LB was substituted

Î
t

with TB for growth of E. coli BL2I/DE3 IpxM

3.3 Purification of recombinant CyaA

CyaA, expressed from E. coli BL21/DE3, was purified on a small- and large-scale 

using a modified purification procedure designed to reduce protein and LPS contamination. 

Different detergents were tested for their ability to remove contaminating proteins and LPS 

from the inclusion bodies. Two types of Limulus amoebocyte assays were used to compare 

LPS levels in the final CyaA prepaiations. In addition, the IL-6 release assay was used to 

investigate the inflammatory properties of CyaA expressed from E. coli BL21/DE3 and E. 

coli BL21/DE3 IpxM.

3.3.1 Removal of endotoxin from inclusion bodies

Inclusion bodies were washed once with either CHAPS, deoxycholic acid, n-

octylpyranoglucoside or Triton-XlOO. All were washed with 2 M urea (solution C; 

Appendix C.2.3) then distilled water before being finally solubilised in 8 M urea, 50 mM 

Tris-HCl (pH 8.0). To each well of a 7.5 or 15% SDS-PAGE gel, 10 pi of 150 pg protein 

/ml of each crude CyaA sample was added for the detection of protein and LPS, 

respectively (Fig. 11). There were different levels of LPS in each sample. The order of the 

ability at which the detergents removed LPS, from high to low, was as follows: n- 

octylpyranoglucoside > CHAPS > Triton X-100 > deoxycholic acid. Although n- 

octylpyranoglucoside was the best at removing LPS during the washing procedure, it was 

also the most expensive. Therefore, CHAPS was used as the second best and cheaper 

alternative. Two washes with CHAPS removed substantially more LPS from inclusion 

bodies compared with one wash with CHAPS as indicated by the lack of precipitate on 

LPS silver stain gels after DEAE- and phenyl-Sepharose purification (data not shown). 

Thus, the potential for a third wash with CHAPS was not considered necessary and two 

washes were therefore incoiporated into the routine purification procedure. In addition, a
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Figure 11 SDS-PAGE analysis of CyaA solubilised from inclusion bodies after 

washing with different detergents

Cells from four flasks of 500 ml IPTG-induced E. coli BL21/DE3 were harvested, 

sonicated and pooled. The inclusion bodies, released from the cells, were separated into 4 

equal volumes and each volume was washed with a different detergent. A 10 pi sample of 

each CyaA preparation, solubilised from the inclusion bodies, was subjected to SDS- 

PAGE electrophoresis on 7.5% and 15% gels for the visualisation of (A) protein and (B) 

LPS, respectively. For silver staining, samples were first digested with 1 pi of 50 units/ml 

of proteinase K prior to SDS-PAGE. Arrows indicate the position of the molecular weight 

standards, CyaA or LPS.
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1 2 4 5

250 kDa 
148 kDa

98 kDa 

64 kDa

50 kDa 

36 kDa

I * - - M M
t s s .

CyaA

B
64 kDa —►

50 kDa

36 kDa

22 kDa
16 kDa

6 kDa
K - Endotoxin

Lane CyaA sample washed with:
1 CHAPS
2 deoxycholic acid
3 SeeBlue2 plus ladder (Invitrogen)
4 n-octyl pyranoglucoside
5 Triton XI00
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further 2 washes with solution C (Appendix C.2.3) were included into the purification 

procedure as LPS and soluble proteins were still present in large quantities after 1 wash 

with solution C (data not shown).

3.3.2 Small-scale purification of recombinant CyaA forms from E. coU 

BL21/DE3

The induction of recombinant CyaA expression from E. coli BL21/DE3 is shown in 

Figure 12. The solubilised CyaA material from inclusion bodies (as described in section

3.3.1) was then passed through a DEAE-Sepharose column (Fig. 13). All CyaA forms were 

eluted consistently by 100 -  200 mM NaCl as a 200 kDa band on a 7.5% SDS-PAGE gel 

(Fig. 13). Fractions containing CyaA were pooled and then loaded onto a phenyl- 

Sepharose column. Again, all CyaA forms migrated as a 200 kDa band on SDS-PAGE 

(Fig. 14). However, low molecular weight bands were always present (Fig. 14, lanes 15 - 

16). These were confirmed as breakdown products of CyaA by Western blotting using 

mouse anti-CyaA serum (Fig. 15).

3.3.3 Large-scale purification of recombinant CyaA from E. coli BL21/DE3

CyaA was purified successfully (Fig. 16A and Fig. 17A) under the same conditions 

as with small-scale purification (Fig. 13 and 14). However, it was evident that a small 

amount of LPS co-eluted with CyaA as shown by silver stain during the large-scale 

purification procedures (Fig. 16B and 17B). Comparative yields of CyaA forms from small 

and lai’ge-scale purification procedures are shown in Table 4. Protein concentrations 

purified from a large-scale were more concentrated compared with small-scale 

purification. Concentrations ranged from 2 - 5  mg/ml. Moreover, large-scale purification 

produced yields from 30x - 130x more than small-scale purification (Table 4).

3.3.3.1 Endotoxin quantification by the LAL assay

Endotoxin was quantified using two different types of LAL assay and the results 

were compared. Both assays showed the endotoxin concentration in the final preparations 

from small- and large-scale to be similar. The chromogenic assay values were in a naiTow 

range (0.039 -  0.099 EU/pg protein) whereas the values from the gel clot assay ranged 

from 0.4 -  2.27 EU/pg protein such that there was a > 10-fold difference in LPS levels 

determined by the two assays (Table 5).

3.3.4 Purification of recombinant CyaA from E. coli BL21/DE3 IpxM

When E. coli BL21/DE3 IpxM, transformed with plasmids pGW44 and pGCK54, 

was cultured in TB, CyaA was successfully expressed and purified on a small-scale. For 

comparative analysis, CyaA was also expressed from E. coli BL21/DE3 transfoimed with
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Figure 12 SDS-PAGE analysis of crude CyaA preparations from IPTG-induced 

and non-induced E. coli BL21/DE3

A 1 ml aliquot of cells was sampled from a growing culture of E. coli BL21/DE3, 

transformed with plasmid(s), before the addition of IPTG and then another aliquot was 

sampled 4 hours later, after the addition of IPTG. The cells were harvested and lysed in 

SDS-PAGE buffer and subjected to SDS-PAGE electrophoresis on a 7.5% gel and stained 

with 1% (w/v) Coomassie Blue. Arrows indicate the positions of the molecular weight 

standards or CyaA.

3 4 5 6 7 8

250 kDa 

148 kDa

I CyaA

Lane Sample
1 proCyaA before IPTG induction
2 proCyaA after IPTG induction
3 proCyaA* before IPTG induction
4 proCyaA* after IPTG induction
5 SeeBlue2 plus ladder (Invitrogen)
6 CyaA before IPTG induction
7 CyaA after IPTG induction
8 CyaA* before IPTG induction
9 CyaA* after IPTG induction
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Figure 13

80

SDS-PAGE analysis of CyaA fractions from DEAE-Sepharose 

chromatography of CyaA from crude preparations (small-scale 

method)

A volume of 10 pi from each fraction of DEAE-Sepharose purification was subjected to 

SDS-PAGE analysis on a 7.5% gel and stained with 1% (w/v) Coomassie Blue to visualise 

proteins. The figure is a representative example, showing CyaA being separated in the 

NaCl gradient from other proteins in the crude CyaA preparation. Arrows indicate the 

position of the molecular weight standards or CyaA.

1 2 3 4 5 6 7 8 9 10 11 12 13

250 kDa 

148 kDa
CyaA

Lane Sample
1 Crude CyaA fraction
2 Flow through
3 Wash 1
4 Wash 2
5 100 mM NaCl fraction
6 100 mM NaCl fraction
7 150 mM NaCl fraction
8 150 mM NaCl fraction
9 200 mM NaCl fraction
10 200 mM NaCl fraction
11 250 mM NaCl fraction
12 250 mM NaCl fraction
13 SeeBlue2 plus ladder (Invitrogen)
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Figure 14

81

SDS-PAGE analysis of CyaA fractions after phenyl-Sepharose 

purification (small-scale method)

A volume of 10 pi from each fraction from phenyl-Sepharose purification was subjected to 

SDS-PAGE analysis on a 7.5% gel and stained with 1% (w/v) Coomassie Blue to visualise 

proteins. The figure is a representative example, showing CyaA eluting in the presence of 8 

M urea, 50 mM Tris-HCl (pH 8.0). Arrows indicate the position of the molecular weight 

standards or CyaA. F, fraction. 8 M, 8 M urea. ^Markl2 ladder (Invitrogen).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CyaA—► M 200 kDa 

116 kDa

15 16 17 18 19 20 21 22 23 24

200 kDa 

116 kDa

Lane Sample
1 DEAE pooled
2 Flow through
3 Wash -  FI
4 Wash -  F2
5 Wash -  F3
6 Wash -  F4
7 Wash -  F5
8 Wash -  F6
9 Wash -  F7
10 Wash -  F8
11 Wash -  F9
12 W ash -F I 0
13 8 M - F 1
14 ladderf

Lane Sample
15 8 M - F 2
16 8 M - F 3
17 8 M - F 4
18 8 M - F 5
19 8 M - F 6
20 8 M - F 7
21 8 M - F 8
22 8 M - F 9
23 8 M - F I O
24 ladder^
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Figure 15 SDS-PAGE and Western blot analysis of purified CyaA preparations 

(small-scale method)

Different forms of CyaA purified by the small-scale method from phenyl-Sepharose 

chromatography were subjected to electrophoresis on a 7.5% polyacrylamide gel (A). 

Bands were then transfened to a Hybond-C nitrocellulose membrane (Section 2.5.3) which 

was then probed with mouse anti-CyaA* reference serum (Section 2.8.3.4) (B). Arrows 

indicate the position of the molecular weight standards or CyaA.
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A

250 kDa 

148 kDa
CyaA

B

250 kDa 

148 kDa CyaA

Lane Sample
1 M ark 12 ladder (Invitrogen)
2 proCyaA
3 proCyaA *
4 CyaA
5 CyaA*



Yiu Chong Gordon Cheung, 2006

Figure 16 SDS-PAGE analysis of fractions from large-scale DEAE-Sepharose 

purification of CyaA (large-scale method)

A volume of 10 pi from each fraction of DEAE-Sepharose purifieation was subjected to 

SDS-PAGE analysis on 7.5% and 15% gels for visualisation of proteins (A) and LPS (B), 

respectively, as described in Figure 11. Arrows indicate the position of the molecular 

weight standards, CyaA or LPS.
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A 1 2 3 4 5 6 7 8 9 10 11 12

CyaA'
:i^S"’?<-200kDa

116 kDa

#1  k - M I

B

Endotoxin

1 2 3 4 5 6 7 8 9 10 11 12 :

Lane Sample
1 Caide CyaA fraction
2 Flow through
3 Flow through
4 Wash 1
5 Wash 2
6 100 mM NaCl fraction
7 100 niM NaCl fraction
8 150 mM NaCl fraction
9 150 mM NaCl fraction
10 200 mM NaCl fraction
11 200 mM NaCl fraction
12 Mark 12 ladder (Invitrogen)
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Figure 17 SDS-PAGE analysis of fractions from phenyl-Sepharose 

chromatography of CyaA (large-scale method)

A volume of 10 pi from each fraction of phenyl-Sepharose purification was subjected to 

SDS-PAGE analysis on 7.5% and 15% gels for visualisation of proteins (A) and LPS (B), 

respectively, as described in Figure 11. Arrows indicate the position of the molecular 

weight standards, CyaA or LPS. 8 M, 8 M urea.
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A

CyaA
200 kDa 

116 kDa

B

Endotoxin 6 kDa

Lane Sample
1 8M -  fraction 1
2 8M -  fraction 2
3 8M -  fraction 3
4 8M -  fraction 4
5 8M -  fraction 5
6 8M -  fraction 6
7 Mark 12 ladder (Invitrogen)
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Table 4 Summary of yields of representative CyaA preparations purified on two 

scales

Protein concentrations were determined using the Bradford assay.

Protein concentration (pg/ml) Total yield (mg)

Sample small large small large
scale scale scale scale

proCyaA 258 5232 1.5 197
proCyaA* 541 2020 3.2 102
CyaA 407 4000 2.4 152
CyaA* 395 2551 2.3 96
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Table 5 Comparison of LPS values in CyaA preparations by two types of LAL 

assays

EPS content 
(Endotoxin units/pg protein)

Gel clot^ Chromogenic^

Sample small large small large
scale scale scale scale

proCyaA 1.74 + 0.8 0.86 ±0 .4 0.047 0.059
proCyaA* 1.65 ±0.8 0.44 ± 0.2 0.039 0.099
CyaA 1.10 ±0.5 0.68 ±0.1 0.064 0.074
CyaA* 2.27 ± 0.5 1.76 ±0.8 0.054 0.069

Gel clot assay was performed in triplicate with SEM.

^Chromogenic assay was performed once with three dilutions of the sample. Values 

represent the averages of three dilutions.

:ï
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the plasmids pGW44 and pGW54 and grown in TB. E. coli BL21/DE3 grown in TB 

produced CyaA yields 5-fold greater than E. coli BL21/DE3 grown in LB (Tables 4, 6). 

Slightly lower yields of CyaA expressed from E. coli BL21/DE3 IpxM  (~T2 mg) were 

obtained compared with CyaA expressed from E. coli BL21/DE3 (> 15 mg). The enzymic 

and haemolytic activities of CyaA expressed from both host strains in TB were similar, 

although CyaA expressed from E. coli BL21/DE3 IpxM  was -20%  less haemolytic than 

CyaA expressed from E. coli BL21/DE3 (Table 6). The cytotoxic activities of CyaA were 

not greatly affected by the choice of media or by the host for protein expression (Table 6). 

CyaA expressed from both E. coli strains contained low levels of LPS as measured by the 

gel clot LAL assay (Table 6). However, there appeared to be a 2-fold greater amount of 

LPS in the CyaA sample expressed from E, coli BL21/DE3 IpxM  compared with CyaA 

expressed from E, coli BL21/DE3 (Table 6).

3.3.4.1 IL-6 release from MM6 cells

CyaA purified from the E. coli BL21/DE3 parent strain and from the IpxM  strain 

were tested for their ability to induce IL-6 release from MM6 cells. This assay is another 

method used to measure the immunomodulatory activity of LPS. The EU content of the 

samples was standardised by the LAL gel clot assay (Table 6). Purified LPS from E, coli 

BL21/DE3 induced > 8Ox more IL-6 release (P < 0.05), calculated as pg of IL-6/EU, from 

MM6 cells than LPS purified from E. coli BL21/DE3 IpxM  (Fig. 18). Similarly, CyaA 

expressed from BL21/DE3 stimulated > 6x more IL-6 release (P < 0.05) from MM6 cells 

than CyaA expressed from the IpxM  strain when both samples contained the same LPS 

levels as determined by the LAL gel clot assay (Fig. 18). It was noteworthy that IL-6 

production was reduced by 5.9-fold (P < 0.05) in MM6 cells after incubation with CyaA 

expressed from E. coli BL21/DE3 compared with LPS from E. coli BL21/DE3 containing 

the same amount of LPS as deteimined by the LAL gel clot assay.

3.4 In vitro characterisation of different CyaA forms
Several types of in vitro assays were employed to characterise the different forms 

of CyaA from the two scales of purification. These included in vitro and cell-based assays 

which measured adenylate cyclase, haemolytic, cytotoxic and apoptotic activities and 

inhibition of the oxidative burst. The effects of calcium on the cytotoxicity and structure of 

the different CyaA forms were also investigated using biophysical techniques such as 

circular dichroism and analytical ultracentrifugation. Co-transfoimation of E, coli 

BL21/DE3 with plasmids pGW44 or pGW44/188 with pGW54, generated fully-active and 

invasive CyaA or an enzymic ally-inactive, invasive CyaA (CyaA*), respectively. 

Expression of pGW44 or pGW44/188 alone in E. coli BL21/DE3 produced non-acylated



^  CO

S  3
o  o  
o  o

CO '̂ }- <N oo oo  
o  o
O O

(N  00 (N M
O MD 
CO CO

-

3  g
O  CD

y  -g

TJ

CO

<N
X )

CO CO

CO

CO
4=;

Ofl \o

3
■1

I
■ '■ V'

's:

'2

:eêîi:ù



Yiu Chong Gordon Cheung, 2006

Figure 18

92

IL-6 release from MM6 cells after incubation for 24 h with CyaA

expressed from E. coli BL21/DE3 or from E. coli BL21/DE3 lpxM<> or

with LPS purified from each E. coli strain

Purified LPS from both E. coli strains was diluted to the same concentration (-0.2

endotoxin units) as found in the CyaA samples. Results are the average of triplicate

measurements with SEM (bars). Statistics:  ̂ (all groups vs E. coli BL21/DE3 purified LPS: 

ANOVA) and ^^Student’s f-test (linked brackets) were performed, P < 0.05.
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CyaA protoxins with enzymic activity (proCyaA) or without enzymic activity (proCyaA'’̂ ), 

respectively (Table 3).

3.4.1 Adenylate cyclase enzymic activity

Only proCyaA and CyaA showed enzymic activity (Table 7). There was 

approximately a 20 -  32% reduction in specific activity of CyaA and proCyaA purified on 

a large-scale compared with the same preparations purified on a small-scale.

3.4.2 Haemolytic activity of different CyaA forms towards sheep 

erythrocytes

At 1 mM CaCli, the activities of CyaA and CyaA* were similar and no haemolytic 

activity was detected in the proCyaA or proCyaA* preparations (Table 7). CyaA and 

CyaA* were assayed for their ability to induce haemolysis of sheep erythrocytes in 

increasing levels of CaCL above 1 mM in HH buffer, after incubation for 24 h at 37 °C 

(Fig, 19). With increasing CaCF, the concentrations of CyaA and CyaA* required for 50% 

haemolytic activities diverged such that CyaA showed reduced haemolytic activity 

whereas CyaA* became more haemolytic (Fig. 19). When CyaA and CyaA* were assayed 

in the absence of CaCF, haemolytic activity was not detected (data not shown).

3.4.2.1 Kinetics of haemolytic activity over 24 h

The kinetics of haemolysis of sheep erythrocytes by CyaA and CyaA* were also 

monitored in HH buffer containing 1 or 3 mM CaCF. As shown in Figure 20, the 

haemolytic activities of CyaA and CyaA* (both at 7.5 p.g/ml) became evident between 6 

and 12 h and the toxins behaved in a similar manner, eventually lysing -70%  of sheep 

erythrocytes at 24 h when incubated in 1 mM CaCF. In contrast, CyaA lost approximately 

half of its haemolytic capacity when incubated in 3 mM CaCF but CyaA* caused 100% 

haemolysis and at a rate which exceeded that of both CyaA and CyaA* in 1 mM CaCF-

3.4.3 Cytotoxicity of different CyaA forms on J774.2 macrophages

To determine the relative importance of the enzymic and invasive activities for the 

overall toxin function, the four different CyaA forms were assessed in three cytotoxicity 

assays that measure cell killing in different ways. Neither of the proCyaA forms had 

detectable activity in any of these assays. Cell killing by CyaA and CyaA* was compared 

after growth of J774.2 cells in either RPMI or DMEM because these media had different 

calcium contents (0.423 mM calcium nitrate (CaNOg) and 1.27 mM calcium chloride 

(CaCF), respectively).
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Figure 19 Effect of different concentrations of CaCE on the haemolytic activity of 

CyaA and CyaA^ toward sheep erythrocytes

Haemolytic activity of CyaA (squares) and CyaA* (triangles) towards sheep erythrocytes 

was assessed after 24 h with different concentrations of calcium chloride in HH medium. 

Results represent the means of assays peifom ied in duplicate with SEM (bars).
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Figure 20

96

Kinetics of CyaA and CyaA"̂  haemolysis of sheep erythrocytes in Till 

buffer with different concentrations of CaC^

CyaA and CyaA* were used at 7.5 pg/ml in the presence of 1 mM or 3 mM CaCli. Results 

represent the means of assays performed in duplicate with SEM (bars).

“■— CyaA 1 mM CaCl, 
(:)ra/L 3 rndvi (ZaCI, 

- CyaA''' 3 mM CaCl
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3.4.3.1 Comparison of assays for cytotoxicity

After incubation for 2 h of J774.2 cells with CyaA, the concentration required for 

50% killing was 0.02 pg/ml in the ATP release assay (CellTiter-Glo®, data not shown). 

Compared with the MTT and LDH release assays, this concentration was very low (Table 

7). This value was likely to be caused by a mixture of cell Idlling and the ability of CyaA 

to convert intracellular ATP into cAMP. This made the CellTiter-Glo® assay an unsuitable 

choice for measuring J774.2 viability. Therefore, cytotoxicity was measured using only the 

LDH and MTT assays as the AC activity of CyaA did not interfere with those assays. It 

can be seen in Table 6 that CyaA purified from small and large-scale purification showed 

similar levels of cytotoxicity. CyaA* was severely impaired in its ability to kill J774.2 cells 

when assayed in RPMI as shown by both the MTT and LDH assays. The concentration of 

CyaA required to Idll 50% of 1774.2 cells in 2 h as judged by the LDH assay was 10-fold 

greater compared with the results obtained for the MTT assay (Table 7).

3.4.3.2 Effect of calcium on the cytotoxicities of different CyaA forms in the 

MTT assay

When assayed in RPMI, CyaA was more cytotoxic than CyaA* (Table 7, Fig. 

21A). CyaA* required a concentration of > 10 pg/ml to kill 50% of cells. There was a 

small increase in cell killing when the cytotoxicity of CyaA was assessed in DMEM 

compared with RPMI (Fig. 2IA ). However, when CyaA* was assayed in DMEM, there 

was a marked increase in cell killing compared with that seen in RPMI. This increase 

brought the dose of CyaA* required for 50% Idlling (0.37 pg/ml) very close to that of 

CyaA (0.12 pg/ml) (Fig. 21 A). Therefore, to determine if calcium concentration was the 

factor responsible for the enhanced activities of CyaA*, cytotoxicity was monitored in 

RPMI and DMEM with 1 mM increments of CaNOg or CaCE, respectively. As shown in 

Figure 22, the addition of calcium increased the cytotoxicities exhibited by both CyaA and 

CyaA*. CyaA was most cytotoxic in RPMI supplemented with 2 mM CaNO] but appeared 

to be marginally less active in DMEM supplemented with CaCE (Fig. 22). When CyaA* 

was assayed in RPMI with increasing concentrations of CaNOs, there was about a > 20- 

fold increase in cytotoxicity over the range of calcium concentrations used ( 1 - 4  mM). 

ProCyaA and proCyaA* were not cytotoxic towards J774.2 cells in RPMI or DMEM in the 

MTT assay (data not shown).

3.4.3.3 Effect of calcium on the cytotoxicities of different CyaA forms in the 

LDH assay

Of the two acylated toxin forms, CyaA was the most active in RPMI (Table 7). Again, 

CyaA* required a concentration of > 10 pg/ml to kill 50% of cells (Table 7, Fig.
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Figure 21 Cytotoxicity of CyaA and CyaA* on J774.2 cells in different media

Cytotoxicity was measured using (A) MTT or (B) LDH release assays. CyaA and CyaA* 

assayed in RPMI or in DMEM with cells for 2 h. Results represent the means of assays 

performed in duplicate with SEM (bars).
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Figure 22 Effect of calcium on killing of J774.2 cells by CyaA and CyaA=̂  as 

assessed in the MTT assay

The cytotoxicities of CyaA and CyaA* were assayed in RPMI or in DMEM supplemented 

with CaNOs or CaCh, respectively, after incubation for 2 h with J774.2 cells. Results 

represent the means of assays performed in duplicate with SEM (bars).
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RPMI
-A—  CyaA

6 0

O

Concentration o f  CaNO  
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* indicates that the concentration required for 50% killing was greater than 10 ng/ml.
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2 IB). It was interesting to note that the LDH release assay did not appear to be as sensitive 

as the MTT assay after incubation for 2 h with CyaA as > 10-fold higher concentration of 

toxin was required for 50% killing (Table 7). There was a small increase in cell killing 

when the cytotoxicity of CyaA was assessed in DMEM compared with RPMI (Fig. 21B). 

However, when CyaA* was assayed in DMEM, there was a marked increase in cell killing 

compared with that seen in RPMI. Moreover, CyaA* induced noticeably more release of 

LDH from J774.2 cells in DMEM than CyaA when used at 1 pg/ml (Fig. 21B). These data 

showed that RPMI did not provide the optimal conditions for CyaA* activity, and that this 

was probably due to the lower calcium content in this medium. The non-acylated proCyaA 

and proCyaA* forms were not cytotoxic (Table 6).

3.4.3.4 Kinetics of the cytotoxicities of CyaA and CyaA* towards J774.2 cells 

over 2 h

The Idnetics of the cytotoxic activities of CyaA and CyaA* towards J774.2 cells 

were investigated over a 2 h period using 1.25 pg/ml of CyaA or CyaA*. The kinetics of 

CyaA cytotoxicity in both the MTT and LDH assays was similar in RPMI and DMEM 

media (Fig. 23A) with a slightly better activity achieved in DMEM, as noted previously 

(Fig. 21). There was a lag period of 1 h in the LDH release assay before CyaA showed an 

effect on the cells (Fig. 23B), compared with virtually no lag period in the MTT assay (Fig. 

23A). This would explain the apparent greater sensitivity of the MTT assay after 

incubation with the toxin for 2 h (Table 7). In DMEM, CyaA* acted more rapidly than 

CyaA, reaching maximum activity within approximately 60 min of exposure of the cells to 

the toxin, in both cytotoxicity assays. Again, CyaA* had poor activity in RPMI medium in 

both assays.

3.4.3.5 The cytotoxicities of CyaA and CyaA* towards J774.2 cells after 24 h

The cytotoxicities of CyaA and CyaA* were assayed after incubation for 24 h with 

J774.2 cells. CyaA induced -30%  cell killing in DMEM at a concentration between 0.01 -  

0.05 pg/ml in the M TT assay and this was somewhat reduced in RPMI (Fig. 24A). These 

killing trends were paralleled in the LDH release assay (Fig. 24B). This indicates that the 

toxic effect of CyaA, at low toxin concentrations, is accumulative over time and suggests 

that the intracellular concentration of CyaA is dependent on the extracellular concentration 

and does increase progressively over time. As expected, greater concentrations of CyaA* 

in RPMI were required to induce 50% killing in both the MTT and LDH release assays 

(Figs. 24A, B). However, in DMEM, the killing activity of CyaA* was as potent as CyaA 

at concentrations above 0.5 pg/ml but below 0.5 pg/ml, CyaA* was not cytotoxic (Fig. 

24A, B). It was of interest to note how similar the dose-response activities of CyaA* were



Yiu Chong Gordon Cheung, 2006 102

Figure 23 Kinetics of cell killing of J774.2 cells by CyaA and CyaA'’̂ over 2 h

The cytotoxicities of CyaA and CyaA*^ (both at 1.25 jig/ml) were assayed in RPMI or in 

DMEM and measured using the (A) MTT and (B) LDH release assays after incubation 

with 1774.2 cells over 2 h. Results represent the means of assays performed in duplicate 

with SEM (bars).
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Figure 24 Cell killing by CyaA and CyaA^ after incubation for 24 h with J774.2 

cells in different media

Cytotoxicity was measured by (A) MTT and (B) LDH release. CyaA and CyaA* assayed 

in RPMI or in DMEM. Results represent the means of assays performed in duplicate with 

SEM (bars).
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to those achieved after incubation for 2 h (Fig. 21).

3.4.3.6 CyaA and CyaA* cytotoxicity towards J774.2 cells in the presence of

DTT

The presence of two cysteine residues in the proCyaA* and CyaA* forms that are 

not present in proCyaA or CyaA may allow a di-sulphide bridge to form either intra or 

intermolecularly which might, in turn, influence the behaviour of CyaA* in the various 

assays (Section 3.1.2). Therefore, to investigate this possibility a MTT experiment was 

performed with different concentrations of CyaA or CyaA* incubated with 0.5 mM 

dithiothreitol (DTT), a chemical which reduces di-sulphide bonds to sulphydryl groups 

within a protein. The cytotoxicities of CyaA and CyaA* towards J774.2 cells after 

treatment for 2 h in DMEM were similar in the presence and absence of 0.5 mM DTT, 

suggesting that the cysteine residues did not contribute to the enhanced CyaA* cytotoxicity 

in the presence of calcium (data not shown).

3.4.4 Inhibition of zymosan-stimulated oxidative burst in J774.2 cells by 

different CyaA forms

CyaA caused 50% inhibition of the zymosan-stimulated oxidative burst at a dose of 

3 ng/ml (Table 7) whereas proCyaA and CyaA*, which are non-acylated and non enzymic, 

respectively, both required a -500-fold greater concentration to have this effect. This assay 

was clearly very sensitive compared to the MTT and LDH release assays, which may have 

been the reason why some activity was detected with proCyaA. CyaA* was poorly active 

in this assay, even in DMEM, indicating that unlike the MTT and LDH release assays, 

inhibition of the oxidative burst required AC activity. ProCyaA* was inactive at the 

highest concentration used (10 pg/ml) in this assay.

3.4.5 Apoptosis

3.4.5.1 Measurement of apoptosis in J774.2 cells using Caspase Glo^^ 3/7
luminescent assay

This assay relied on ATP to catalyse the production of luciferase as with the 

CellTiter-Glo® luminescent assay (Section 3.4.3.1). Therefore, this assay was not suitable 

to assay CyaA-induced apoptosis because of the AC activity which would deplete ATP. 

Interestingly, both CyaA and proCyaA at 10 pg/ml inhibited the assay (as shown by low 

luminescence compared with the control). The lack of luminescence after treatment 

suggests that, at this concentration of CyaA and proCyaA, the cells would be dead (Fig. 

21). Flowever, proCyaA does not kill cells at this concentration (Fig. 21) suggesting that 

proCyaA had the ability to penetrate cells and raise cAMP levels (data not shown). It was
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only at a concentration of 0.1 pg/ml of proCyaA and below that levels of luminescence 

were similar to those of the urea control.

3.4.S.2 Measurement of apoptosis in J774.2 cells using Apo-ONE^^ caspase 3/7

assay

0.2 M urea was not used at any stage in this assay, unlike the MTT and LDH assays 

(Section 3.4.3), because there were signs of increased caspase 3/7 activation from control 

cells (data not shown). The small traces of urea (-0.02 M urea) in the CyaA samples 

diluted from the stock sample (in 8M urea, 50 mM Tris-HCl (pH 8.0) did not interfere with 

the assay. This was confirmed using a negative control with cells in the presence of 0.02 M 

urea. All four CyaA forms were tested for their ability to induce caspase 3/7 activity in 

J774.2 cells in RPMI and DMEM. CyaA was able to induce apoptosis of J774.2 cells after 

2 h incubation, with a peak of caspase 3/7 activity at toxin concentrations between 0.3 -

1.1 pg/ml (Table 7, Fig. 25A). It was interesting to note that increasing the CyaA 

concentration above 1.1 pg protein/ml did not lead to increased caspase 3/7 activity in 

either medium. In fact, the induction of caspase 3/7 activity was adversely affected by 

increasing CyaA concentrations above 1.1 pg protein/ml. The data in Fig. 21A indicates 

that, at this level of toxin, > 50% of the cells are non-viable after incubation for 2 h in 

RPMI or DMEM. The progressive lack of induction of caspase 3/7 activity as toxin levels 

are increased is presumably due to increased cell death by means other than apoptosis. This 

interpretation is borne out by the kinetic data in Fig. 25C which shows that maximum 

induction is achieved after incubation for 90 min with 0.5 pg protein/ml CyaA, but 

thereafter declines on further incubation. As shown in Fig. 25B, the peak of caspase 3/7 

activity induced by CyaA shifted from 0.3 -  1.1 pg protein/ml after incubation for 2 h to 

0.01 - 0.1 pg protein/ml after incubation for 24 h with J774.2 cells. In addition, there was 

increased caspase 3/7 activity below 0.01 pg protein/ml after incubation for 24 h which 

was not observed after incubation for 2 h. CyaA* failed to induce any signs of caspase 3/7 

activity (Fig. 25A, B) even after incubation for 24 h in DMEM, demonstrating that this 

form of CyaA was able to kill cells without causing apoptosis. Moreover, the results 

showed that apoptosis induction depended on AC activity and also on acylation of the 

toxin as proCyaA was inactive in this assay (Table 7) although it had slight activity in the 

Caspase Glo™ 3/7 luminescent assay (Section 3.4.5.1). ProCyaA* was inactive in both 

assays (Table 7 and Section 3.4.5.1).

3.4.6 Detection of phosphorylated ERKl/2

There was no phosphorylated ER K l/2 detected from J774.2 cells after incubation 

for 10 min with 20 ng/ml of CyaA or after incubation with a purified EPS preparation from
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E, coli BL21/DE3 at 1 EU/ml.

3.4.7 Urease assay

The urease assay was used to quantify the levels of urea in the CyaA samples after 

dialysis. Dialysed CyaA samples were only used for fluorescence (Section 3.4.8), circular 

dichroism (Section 3.4.9), AUC (3.4.10) and crystallography (3.4.11). It was important to 

assess if there was any residual levels of urea in the CyaA samples as the urea may have

interfered with these biophysical studies. The concentration of urea in the dialysed samples

was lower than the detection limits of the assay (9.99 mg/L or 0.00058 M), which indicated 

a minimal amount of urea in the samples (data not shown). In addition, the dialysed CyaA 

samples did not significantly refract light in the refractometer again confirming the lack of 

a significant amount of urea in the samples. Buffer, containing 8 M urea, was used as a 

positive control.

3.4.8 Fluorescence of CyaA

The results of fluorescence studies (Fig. 26) indicated that a conformational change 

had occurred in CyaA in the presence of I mM CaCl2, with a blue shift of 2 nm and a 30% 

increase in emission intensity, consistent with a more pronounced burial of one or more 

tryptophan side chains in the interior of the protein. CyaA*, proCyaA and proCyaA* 

showed similar fluorescence spectra compared with CyaA in the presence of 1 mM CaClz 

(data not shown). This suggests that CyaA*, proCyaA and proCyaA* adopted similar 

changes in structure upon exposure to calcium compared with CyaA

3.4.9 Circular dichroism

3.4.9.1 Near UV CD of CyaA

In the presence of I mM  CaClz, there were increased spectral intensities at 293 nm 

and in the 265 to 285 nm region observed for CyaA compared to the spectrum obtained in 

the absence of 1 mM CaCb (Fig. 27). Again, the proCyaA, proCyaA* and CyaA* forms 

produced similar shifts in spectra to those of CyaA in the presence of 1 mM CaClz (data 

not shown) suggesting that all the CyaA forms showed similar changes in structure.

3.4.9.2 Far UV CD of different CyaA forms

The far UV CD spectra of dialysed CyaA and CyaA*, at 0,5 mg/ml, in different 

CaClz concentrations are shown in Figures 28 A and B, respectively. Both CyaA and 

CyaA* show a marked change in the spectrum from 0 mM CaCU to 0.5 mM CaCl2 

whereby a negative peak at 207 nm with a shoulder around 222 nm changes to one in 

which there is a negative peak at 220 nm with a shoulder around 208 nm (Fig. 28C). The 

spectra of CyaA showed slightly more variation in between 0.5 -  3 mM CaCla (Fig. 28A)
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Figure 26 Fluorescence spectra of CyaA

108

Fluorescence spectra of dialysed CyaA (0.1 mg/ml in 10 mM Tris-HCl (pH 8.0)) in the 

absence (thin solid line) and presence (thick solid line) of 1 mM CaClz. Samples were 

scanned over the range of 300 to 400 nm with excitation at 295 nm at 20 °C.
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Figure 27 Near UV CD spectra of CyaA

Neai- UV CD spectra of dialysed CyaA (at 1.5 mg/ml in 10 mM Tris-HCl (pH 8.0)) in the 

absence (thin solid line) and presence (thick solid line) of 1 mM CaClz. Each scan 

represents the average of 8 scans, carried out at 20 °C between 320 and 260 nm, using 0.2- 

nm steps with a time constant of 2 s.

0
B

1
(D

CD

10

0

10

260 270 280 290 300 310 320

W avelen gth  (nm )



Yiu Chong Gordon Cheung, 2006

Figure 28 Far UV CD spectra of different CyaA forms

Far UV CD spectra of (A) CyaA and (B) CyaA* at 0.5 mg/ml in the absence (open 

squares) or presence of increasing concentrations of CaCE. (C) CyaA at 0.5 mg/ml in the 

absence (solid line) or in the presence (thick solid line) of 1 mM CaCE or CyaA, at 0.05 

mg/ml in the absence (dotted line) or in the presence (dashed line) of 0.3 mM CaCE. Far 

UV CD spectra of Results represent the means of titrations performed in duplicate with 

SEM (bars). Each spectrum represents the average of 8 scans, carried out at 20 °C between 

190 and 260 nm, using 0.1-nm steps and a time constant of 2 s.
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compared with CyaA* (Fig. 28B) although the CD spectra of CyaA and CyaA* at 1 ,2  and 3 

mM CaCli were essentially superimposable (Figs. 28A, B) suggesting that the 

conformational changes in CyaA and CyaA* were already complete on incubation in 1 mM 

CaCF. It was noticeable, however, that with increasing concentrations of CaCli, the spectra 

of CyaA and CyaA* altered. This was particularly evident with CyaA at 7.5 mM CaCl2 (Fig. 

28A) and this spectrum is indicative of high (3-sheet content. Interestingly, the spectral 

intensity of CyaA* (Fig. 28B) was -10%  less than that of CyaA (Fig. 28A). These small 

changes (up to 10% variation in the amplitudes and minor variations in shape) were observed 

consistently and did not appear to reflect en’ors in the determination of protein concentration. 

ProCyaA and proCyaA* showed similar spectral trends as observed for CyaA in the absence 

(Fig. 28D) and presence (Fig. 28E) of 1 mM CaCE. The far UV spectra of CyaA, at 0.5 

mg/ml and 0.05 mg/ml, in the presence and absence of CaCE are shown in Figure 28C.

i

There was a marked dependence of the far UV CD spectrum of CyaA on protein

concentration. As shown in Fig. 28C, the spectrum of CyaA at 0.05 mg/ml was of a similar 

(but not identical) shape to that observed at 0.5 mg/ml, but the molar ellipticity values were 

reduced by a factor of approximately 2. In addition, the response to addition of calcium was 

markedly different at the lower concentration (Fig. 28C). Similar effects of concentration on 

the far UV CD spectra were observed using proCyaA, proCyaA* and CyaA* (data not 

shown). This dependence of spectral changes on protein concentration implied an interaction 

between individual molecules that was promoted at higher protein concentrations. Because 

of the high level of noise below 195 nm in the spectra of CyaA at 0.05 mg/ml, it was not 

possible to undertake any reliable analysis of the spectra in tenns of secondai'y structural 

content.

The CDSSTR program in Dichroweb was used to analyse the CD spectra of CyaA 

at 0.5 mg/ml over the wavelength range from 240 nm to 185 nm in teims of the secondary 

structure content. It was found that each of the other procedures such as VARSELC, 

SELCON and CONTIN in Dichroweb did not give satisfactory analyses for spectra in both 

the absence and presence of CaCli. For each sample, CDSSTR fitted both spectra 

satisfactorily as judged by 2 criteria:- (i) the Normalised Root Mean Square Deviation 

(NRMSD) values were low, in the range of 0.015-0.064 for all samples, and (ii) the 

reconstructed spectra using CDSSTR were essentially superimposable on the experimental 

data over the wavelength range 240 nm to 185 nm. The results of the CDSSTR analysis for 

the various forms of CyaA in the presence and absence of 1 mM CaCh are shown in Table 

8. The secondary structure contents of CyaA and CyaA* in the presence and absence of 1 

mM CaCl2 were similai* with only relatively small (up to 4%) differences in the total 

content of a-helices, P-strands and turns (Table 8). Similarly, the secondary structure

■I

!■
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Table 8 Secondary structure compositions of the different CyaA forms in the 

presence or absence of CaCh

CyaA form

CyaA CyaA* proCyaA proCyaA*

CaCE (1 mM) - + - + - + " +

Helix total {%) 22 22 20 24 32 32 25 28
Strand total (%) 24 23 26 25 17 20 23 22
Turns (%) 21 24 21 21 25 20 21 20
Unordered (%) 32 31 32 30 27 29 32 30
NRMSD 0.03 0.028 0.029 0.026 0.033 0.026 0.064 0.015

Deconvolution of spectra shown in Figs. 28 D and E was performed using CDSSTR, in 

Dichroweb (Section 2.7.3). Numbers represent percentage of predicted structural motifs 

within the protein in the absence or presence of 1 mM CaClg. ^Normalised Root Mean 

Squared Deviation.
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contents of proCyaA and proCyaA* were similar in the presence of 1 mM CaCE with up 

to 4% differences in the content of a-helices, p-strands and turns, respectively. However, 

in the absence of calcium, the secondary structure contents of proCyaA appeared to be 

significantly different to the other forms (Table 8), with an increase in a-helices and a 

decrease in P-strands. However, given the overall similaiity in spectral shape, it would 

appear unlikely that proCyaA has a markedly different secondary structure from CyaA or 

CyaA*. It is clear that the results of the analysis (especially in terms of the balance 

between a-helices and P-strands) aie very sensitive to the amplitudes and shapes of the 

positive peak at 193 nm and of the negative peak and shoulder in the region 208 nm to 222 

nm, with the positive peak being very sensitive to the level of noise due to residual traces 

of urea in the preparations. In general, not withstanding the slight differences detected in 

proCyaA in the absence of calcium, the data in Table 8 suggest that all the forms of CyaA 

have similar overall structures and show similar responses on the addition of CaCE-

Figure 29 shows the changes in ellipticity at 220 nm of CyaA as the urea

concentration was varied between 0 M  and 8 M urea (designated as 0% and 100%,

respectively) in the presence and absence of 1 mM CaCE. In the absence of CaCE, the 

changes in structure occurred in a gradual fashion over the range of concentrations from 0 - 

4 M  urea. However, in the presence of CaCE, CyaA shows greater structural stability over 

the range of urea concentrations up to 4 M, with the changes occum ng sharply over the 

range of 2 - 4 M urea. There was no immediate aggregation of dialysed CyaA samples 

upon addition of CaCE even at toxin concentrations up to 3 mg/ml. However, white 

aggregates appeared after storage at 4 "C or -20  °C for periods longer than a month.

3.4.10 Analytical ultracentrifugation

3.4.10.1 Density and viscosity of buffers used

The computer programme SEDNTERP was used to calculate the densities and 

viscosities of the buffers used for analytical ultracentrifugation (Table 9).

Table 9 Density, viscosity and partial specific volume values of buffers used

Buffer Temperature
CC)

Density
(g/ml)

Viscosity
(Poise)

Partial specific 
volume

10 mM Tris HCl, 
pH 8.0

4 1.00028 0.01504 0.7169
20 0.99851 0.010042 0.7237

10 mM Tris HCl,
1 mM CaCE, pH 8.0

4 1.00035 0.01504 0.7169
20 0.99858 0.010042 0.7237
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Figure 29 Change in ellipticity at 222 nm from far UV CD spectra of CyaA in 

different urea concentrations

CyaA in different concentrations of urea in the absence (solid squares) or in the presence 

(open squares) of 1 mM CaClz. The data show the urea dependence of the mean residue 

ellipticity at 222 nm in the absence and presence of CaCh. Results represent the means of 

titrations performed in duplicate with SEM (bars). Each spectrum represents the average of 

8 scans, carried out at 20 °C between 190 and 260 nm, using 0.1-nm steps and a time 

constant of 2 s.

:::'k

c
(N 100 
<N 
<N

^  80
o
+3
Q h

' o

60 

40  

20 

0

.-s-

0 8

Concentration o f  urea (M olar)



Yiu Chong Gordon Cheung, 2006 116

3.4.10.2 Sedimentation equilibrium analytical ultracentrifugation

SE data showed that CyaA, in the absence of 1 mM CaC^, was a heterogeneous 

mixture of different molecular weight (Mw) species in solution. A histogram resulting from 

fitting the SE data with a molecular weight distribution model (using UltraScan) is shown 

in Fig. 30A. This model was used because the data were too complex to model with a self­

association model or with a discrete multi-association model. The molecular weights in the 

distribution ranged from < 40 kDa to > 500 kDa. A species of 140 kDa was identified but 

there was no evidence of a 177.5 kDa (the Mw of a CyaA monomer) species. This may 

have been the result of a phenomenon known as non-ideality (Chapter 4) which depresses 

the observed molecular weight of highly charged and/or elongated particles. Accordingly, 

oligomers of 2 or 3 CyaA (apparent mass 140 kDa) monomers could be hypothesised to 

form in solution as indicated by the presence of 400 -  430 and 535 l<Da Mw species, 

respectively (Fig. 30 Table).

In the presence of 1 mM CaCl2, the SE data showed that CyaA, again, did not occur 

as a single homogeneous species in solution (Fig. 30B): low and high Mw species of CyaA 

were detected (Fig. 30B). Some of the species identified in the presence of CaCE were not 

identified in the absence of CaCE. This included the observation of a 170 kDa species. 

Based on a Mw of 170 kDa, oligermeric states of 2 or 3 CyaA monomers could be 

modelled as indicated by the presence of 360 and 510 -  560 kDa species, respectively (Fig. 

30 Table). Moreover, in both the absence and presence of calcium, there were many 

species that could not be assigned to a specific oligomeric state (Fig. 30 Table).

3.4.10.3 Sedimentation velocity analytical ultracentrifugation

In the absence of 1 mM CaCE, the SV data (Fig. 31 A) showed that CyaA in 

solution, consisted of 4 main peaks (species) at concentrations of 3 and 2.25 mg/ml. At 

concentrations lower than 2.25 mg/ml, the fourth peak could not be observed (Fig. 31 A; 

Fig. 31 Table). In addition, as the concentration of CyaA was decreased, the sedimentation 

coefficient for each peak increased and this was indirectly proportional to the concentration 

of each species (c(^')) (Fig. 31 A; Fig. 31 Table). This feature is characteristic of non­

ideality (Chapter 4), The sedimentation coefficients for peaks ranged from 2.5 S to ~5 S 

(Fig. 31 Table). Dialysed CyaA at 3 mg/ml, in the presence of 1 mM CaCE, produced 3 

more peaks than dialysed CyaA in the absence of CaCE in solution (Fig. 3 IB). These 

peaks were greater in their sedimentation coefficient values, ranging from 5 - 18 S, which 

is in contrast to the smaller sedimentation coefficients obtained by CyaA in the absence of 

calcium (Fig. 31 A). In addition, there was little or no shift of sedimentation coefficients for 

each of the main peaks as the concentration of CyaA was reduced. Instead, the c(.y) of each 

peak was reduced (Fig. 31 Table). There was a small peak (between peaks 1 and 2) for
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Figure 30 Sedimentation equilibrium analysis of purified CyaA in the absence and 

presence of CaCE

Data from each cell containing different concentrations of purified CyaA in the (A) 

absence or (B) presence of CaCE were recorded at different rotor speeds (7, 11 and 15 k 

rpm) and analysed simultaneously using the programme, UltraScan, which allows the data 

to be fitted with a molecular weight distribution that assumes no model at all. UltraScan 

produced histograms showing the distribution of molecular species vs their abundances in 

solution. Red bars are histograms of the main species. The green line is a different 

treatment of the same data that lies outwith the scope of this analysis.

(A) CyaA without CaCE (B) CyaA with CaCE
Species Mw (kDa) Comment Mw (kDa) Comment

1 0 - 3 0 Cleavage product? 20 Cleavage product?

2 40 Cleavage product -  AC 
domain? 40 Cleavage product -  AC 

domain?
3 80 Cleavage product? 60 Cleavage product?

Monomer (Mw of 177550
4 140 kDa depressed by non­

ideality)
70 Cleavage product?

Monomer (Mw of 177550

5 365 - 380 - 170 kDa may no longer be 
depressed by non-ideality 
due to presence of CaCE)

6 400 - 430 3-mer of 140kDa? 210 -

7 450 - 225
8 460 - 475 - 280 -

9 500 - 360 2-mer of 177 kDa?
10 535 4-mer of 140kDa? 510 3-mer of 177 kDa?
11 n/d 550 - 560 3-mer of 177 kDa?
12 n/d 580 -

13 n/d 625 -

-, no comment, n/d, not determined.
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Figure 31 Sedimentation velocity analysis of purified CyaA in the absence and 

presence of CaCE

c(6-) distribution derived from SV interference data collected for various concentrations of 

CyaA in the (A) absence or (B) presence of 1 mM CaCE. The sediment coefficients (s) and 

concentrations for 4 main peaks (assigned 1 -  4 in the figure) in the absence and 

presence of 1 mM CaCE have been documented in the table below. Due to leakage of 

sample from cells, data for 0.35 mg/ml CyaA (no CaCE) could not be obtained. This also 

occuixed for 0.75 mg/ml CyaA (+ 1 mM CaCE).

Peak
Sample Concentration 1 2 3 4

3 mg/ml s 2.51 3.05 3.59 4.36
c(s) 3.27 32.46 4.15 0.87

2.25 mg/ml s 2.54 3.34 3.89 4.41

CyaA no CaCE
c{s) 1.79 12.94 2.31 1.044

1.5 mg/ml s 2.61 3.85 4.811
c{s) 1.77 7.108 1.117

0.75 mg/ml s
c(s)

2.63
0.46

4.32
1.37

4.97
0.605

-

3 mg/ml s 5.15 7.34 8.83 10.43
c(s) 0.57 1.66 1.73 0.99

2,25 mg/ml s 5.01 6.12 7.37 8.901
CyaA + c(s) 0.6 0.347 1.49 1.68

I mM CaCE
1.5 mg/ml s 5.16 7.306 8.97 10.82

c(s) 0.4 0.62 0.939 0.61

0.35 mg/ml s 5.31 7.57 9.57 11.06
c{s) 0,09 0.105 0.12 0.102

-, no peak.
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CyaA at 2.25 mg/ml (Fig. 3 IB). At the lowest toxin concentration used (0.289 mg/ml, data 

not shown), the spectrum was essentially superimposable on the spectrum produced by 

CyaA at 0.35 mg/ml in the presence of CaClg. These changes in peak patterns may be due 

to the phenomenon of non-ideality being overcome in the presence of CaCh (Chapter 4).

In summai'y, the SV data correlate with the SE data in that CyaA, in solution, is not 

a single species. Furthermore, the addition of CaCl2 to CyaA in solution causes a 

significant change in the pattern of peak intensities.

3.4.11 Crystallography

No protein crystals were grown during the period of these trials.

3.5 In vivo experiments: mouse protection against B. pertussis

challenge
The ability of the different CyaA foims alone, and their ability to enhance the 

protective efficacy of a conventional acellular pertussis vaccine in mice against B. 

pertussis intranasal challenge was investigated. The ability of the different CyaA forms to 

protect mice against aerosol challenge was also tested.

3.5.1 Selection of vaccine dose for sub-protection of mice against intranasal

challenge with B, pertussis

single human dose (SHD) of ACV with or without 25 pg CyaA*. Mice were challenged 

intranasally with B. pertussis 18,323 on day 42 (two weeks post-boosting). Lungs and 

tracheas were sampled on day 7 post-challenge and for the PBS group, an additional

Groups of 10 mice were immunised intraperitoneally on days 0 and 28 with 14 or %

•If

sampling was carried out at 2 h post-challenge to confirm the inoculation. A comparison of 

the bacterial counts from the lungs and tracheas of two PBS control mouse groups, 

sampled at 2 h and 7 days post-challenge, showed a 0.7 logio increase in bacteria after 7 

days, confirming the growth and persistence of the challenge strain (Fig. 32). There was 

significant (P < 0.05) protection in all ACV-immunised groups of mice at 7 days post-P. 

pertussis challenge compaied with the PBS control group, with the 14 SHD of ACV 

providing greater protection than the % SHD, as expected (Fig. 32). There was a further 

significant (P < 0.05) reduction of bacteria in mice that were immunised with either 14 or 

Yb SHD of ACV + 25 pg of CyaA* compared with mice immunised with 14 or Yb SHD of 

ACV alone, respectively (Fig. 32). These data indicated that 14 and Ya doses provided 

partial protection against challenge and that this protection was enhanced by inclusion of 

CyaA*. A SHD of Ya of ACV was chosen to be used in further experiments because it gave

I
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Figure 32 Protection of mice against intranasal challenge with B, pertussis after 

immunisation with 14 or V& of SHD of ACV with or without 25 pg of

CyaA*

Groups of mice were immunised intraperitoneally on days 0 and 28 with 14 or % of a SHD 

of ACV alone or these doses of ACV + 25 pg of CyaA* and challenged intranasally on day 

42 with B. pertussis 18.323, Mice injected with PBS served as controls. Five mice from a 

PBS control group were sampled at 2 h post-challenge for enumeration of bacteria in lungs 

and tracheas ( 01). All remaining mice were sampled at 7 days post-challenge ( Q). Results 

represent the means of five mice per group with SEM (bars). Symbol: \  P < 0.05 (groups 

vs PBS group at day 7: ANOVA) or P < 0.05 (as linked by brackets).
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less protection than 14 SHD of ACV against B, pertussis intranasal challenge. Any 

additional protective effects due to inclusion of CyaA would therefore be apparent. i

3.5.2 Protection of mice against intranasal challenge with B, pertussis after

immunisation with ACV plus different forms of CyaA

Groups of 10 mice were immunised intraperitoneally on days 0 and 28 with Va SHD 

of ACV with or without the four different CyaA fomis (25 pg/dose). On day 42, five mice 

from each group were challenged intranasally with B. pertussis 18,323 and the remaining 

five mice were sampled for serum, spleens and peritoneal macrophages at the same time to 

measure humoral and cellular responses (Sections 3.6.1, 3.7 and 3.8). A comparison of the 

bacterial numbers from the lungs and tracheas of two PBS control mouse groups, sampled

I

at 2 h and 7 days post-challenge, showed a 0.5 logio increase after 7 days (Fig. 33). Mice 

immunised with the four CyaA forms alone were not protected against B. pertussis 

intranasal challenge (Section 3.5.4.1). Mice immunised with ACV alone showed 

significant (P < 0.05) protection, as indicated by a ~3 logio reduction in bacterial numbers 

compared with mice from the PBS control group (Fig. 33). Although mice immunised with 

ACV + CyaA showed a further -1  logic reduction in bacterial numbers compared with 

ACV alone, there were no significant differences in bacterial numbers in the lungs of mice 

immunised with ACV+ CyaA, + proCyaA or + proCyaA* compared with ACV alone. 

However, mice immunised with ACV + CyaA* were significantly more protected (P < 

0.05) than mice immunised with ACV alone as shown by a reduction of -1 .6  logic in 

bacterial numbers compared with the ACV alone group (Fig. 33). Protection by CyaA 

alone is discussed in Section 3.5.4.

3.5.3 Protection of mice against intranasal challenge with B. pertussis after

immunisation with ACV plus graded doses of CyaA*

Since CyaA* showed the best adjuvant activity, a further study was performed to 

examine if the enhanced protection of CyaA* towards ACV was dose-dependent. Mice 

were immunised with Ya SHD of ACV plus graded doses of CyaA* on days 0 and 28 and 

challenged intranasally at day 42 with B. pertussis 18.323. A comparison of the bacterial 

numbers from the lungs and tracheas of two PBS control mouse groups, sampled at 2 h and 

7 days post-challenge, showed a 0.5 logio increase after 7 days (Fig. 34). Mice immunised 

with ACV alone gave significant (P < 0.05) protection 7 days post-challenge, as indicated 

by a -2  logic reduction in lung counts compaied with control mice (PBS group) (Fig. 34). 

However, mice that had received ACV + 25 pg or 12.5 pg of CyaA* showed significantly 

(P < 0.05) greater protection compared with the ACV alone group. This enhanced 

protection was dose-dependent and ACV + 25 pg CyaA gave a further 2.49 logio reduction

■

i :



Yiu Chong Gordon Cheung, 2006 124

Figure 33 Protection of mice against intranasal challenge with B. pertussis after 

immunisation with ACV plus different CyaA forms

Mice were immunised intraperitoneally on days 0 and 28 with PBS, ACV (% SHD) or 

ACV plus CyaA forms at 25 pg. Mice were challenged intranasally with B. pertussis

18.323 on day 42. Five mice from the PBS control group were sampled at 2 h post­

challenge for enumeration of bacteria in lungs and tracheas ( [ ]  ). All remaining mice were 

sampled at 7 days post-challenge ( □  ). Results represent means of five mice per group 

with SEM (bars). Symbol: ^  P  < 0.05 (groups vs ACV: ANOVA) or P  < 0.05 (groups 

vs PBS: ANOVA) or P  < 0.05 (as linked by brackets).
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Figure 34 Protection of mice against intranasal challenge with B. pertussis after 

immunisation with ACV plus graded doses of CyaA*

Mice were immunised intraperitoneal with % SHD of ACV plus graded doses of CyaA* on 

days 0 and 28 and challenged intranasally at day 42 with B. pertussis 18.323. Mice 

immunised with ACV or PBS alone served as controls. Five mice from the PBS control 

group were sampled at 2 h post-challenge for enumeration of bacteria in lungs and tracheas 

( Q). All remaining mice were sampled at 7 days post-challenge ( □  ). Results represent 

means of five mice per group with the SEM (bars). Symbol; P  < 0.05 (groups vs ACV: 

ANOVA) or P  < 0.05 (groups vs PBS: ANOVA). Î
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in lung counts compared with the ACV alone (Fig. 34). There was no significant (P > 0.05) 

protection in mice immunised with any dose of CyaA* alone (data not shown).

3.5.4 Protection with CyaA alone

Groups of mice were immunised intraperitoneally twice with the four different 

CyaA forms alone (25 pg/dose) and then either challenged intranasally or by aerosol with 

B. pertussis 18.323.

3.5.4.1 Intranasal challenge

Groups of 10 mice were immunised intraperitoneally on days 0 and 28 with the 

four different CyaA forms in 10% (v/v) alum or injected with PBS in 10% (v/v) alum. On 

day 42, five mice from each group were challenged intranasally with P. pertussis 18.323 

and the remaining five mice were sampled for serum, spleens and peritoneal macrophages 

to measure humoral and cell-mediated responses (Sections 3.6.3, 3.7 and 3.8). A 

comparison of the bacterial numbers from the lungs and tracheas of two PBS control 

groups, sampled at 2 h and 7 days post-challenge, showed that there was a 0.8 logio 

increase (P > 0.05) in bacterial numbers after 7 days. This confirmed the growth and 

persistence of the challenge strain (Fig. 35A). Mice given two doses of the CyaA forms 

alone showed bacterial numbers at day 7 that were not significantly different (P > 0.05)

from the PBS control mouse group (Fig. 35A) infem ng that these mice were not protected

to any significant extent against intranasal challenge with B. pertussis.

3.5.4.2 Aerosol challenge

To assess whether the high challenge dose in the intranasal model was the factor 

responsible for the lack of protection seen in the immunised mice, an aerosol challenge 

was performed. Here, the bacterial suspension for aerosol challenge was identical (4 x  10  ̂

CFU/ml) to that used in the intranasal challenge but the nature of the aerosol challenge 

procedure is such that fewer bacteria are introduced into the lungs (Xing 'gf a l,  1999). 

Groups of 5 mice were immunised intraperitoneally on days 0 and 38 with the four 

different CyaA forms in 10% (v/v) alum or injected with PBS in 10% (v/v) alum. On day 

56, each mouse from each group were challenged intranasally with B. pertussis 18.323 and 

sampled for lungs and tracheas at 7 days post-challenge. Another group of PBS control 

mice were also included in the study but were sampled at 2 h post-challenge. Indeed, there 

were 4.65 logio CFU/ml in mice at 2 h post-aerosol challenge (Fig. 35B) compared with 

7.54 logic CFU/ml in mice at 2 h post- intranasal challenge (Fig. 35A). There was also a 

2.44 logic increase in bacterial numbers after 7 days, demonstrating bacterial virulence in 

the aerosol challenge model. With this alternative challenge procedure, intraperitoneal 

immunisation with all CyaA forms at 25 pg/dose reduced the bacterial numbers in lung
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Figure 35 Protection of mice against intranasal or aerosol challenge with B, 

pertussis after immunisation with different CyaA forms alone

For intranasal challenge (A) mice were immunised on days 0 and 28 with different CyaA 

preparations (25 pg per mouse) or PBS and challenged at day 42 with B. pertussis 18.323. 

For aerosol challenge (B) mice were immunised on days 0 and 38 and then challenged at 

day 56. Five mice from the PBS control group were sampled at 2 h post-challenge for 

enumeration of bacteria in lungs and tracheas ( □ ) .  All remaining mice were sampled at 7 

days post-challenge ( □ ) .  Results represent means of five mice per group with SEM (bars). 

Symbol: P  < 0.05 (groups vs PBS group: ANOVA) or P  < 0.05 (as linked by

brackets).
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tissue compared with the PBS control group (Fig. 35B). However, only mice immunised 

with the CyaA, proCyaA and proCyaA* preparations were significantly (P < 0.05) 

protected compared with the PBS control group (Fig. 35B).

3.6 In vivo experiments: murine humoral responses to

immunisation
To examine further the ability of CyaA and CyaA* to enhance the protective 

efficacy of an ACV, total IgG, IgG l and IgG2a antibody levels to FHA, PRN, PT and 

CyaA were measured. The sera from the different immunisation groups were also tested 

for their ability to neutralise CyaA adenylate cyclase, haemolytic and cytotoxic activities.

3.6.1 Mice immunised with ACV plus different forms of CyaA

3.6.1.1 Total IgG responses to PT, FHA, PRN and CyaA

Groups of 10 mice were immunised intraperitoneally on days 0 and 28 with the 

four different CyaA forms (25 pg/dose) with ACV. On day 42, five mice from each group 

were sampled for serum, spleens and peritoneal macrophages and the remaining five mice 

were challenged intranasally with B. pertussis 18.323 (Section 3.5.2) at the same time. 

Intraperitoneal immunisation of mice with ACV plus the different CyaA forms did not 

greatly influence the total IgG antibody responses to PT, FHA or PRN compared with mice 

immunised with ACV alone (Table 10). In fact, the total IgG levels for each antigen were 

similar across all groups. In addition, there were no significant differences in the total IgG 

antibody responses to CyaA in any of the immunised mice that received a CyaA form 

(Table 10).

I

3.6.1.2 IgGl and IgG2a antibody responses to PT, FHA, PRN and CyaA

The IgG l antibody levels to FHA, PT and PRN in sera were similar to those in 

mice immunised intraperitoneally with ACV plus the different CyaA forms compared with 

the ACV control group (Fig. 36A - C). By contrast, mice immunised with ACV + CyaA* 

produced significantly (P < 0.05) more anti-CyaA IgG l antibodies than the ACV + 

proCyaA* group but not with the ACV + CyaA or proCyaA groups (Fig. 36D). Although 

there appeared to be an increase in IgG2a antibody levels to FHA, PT and PRN in mice 

immunised with ACV + CyaA or ACV + CyaA* compared with the ACV-immunised 

group, only mice that were immunised with ACV + CyaA* produced significantly (P < 

0.05) greater levels of IgG2a to PRN than mice immunised with ACV alone (Fig. 36C). 

There were no significant differences in the anti-CyaA IgG2a antibody levels between any 

of the immunised groups (Fig. 36).
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Figure 36 IgGl and Ig02a antibody responses to PT, FHA, PRN and CyaA in 

mice after immunisation with ACV with and without different CyaA 

forms

Sera were collected on day 42, after intraperitoneal immunisation with % SHD of ACV 

with and without different CyaA forms at 25 pg per dose on days 0 and 28. The sera were 

then assessed for IgG l ( H  ) and Ig02a ( □  ) antibody levels, expressed as ELISA units 

(EU)/ml. Results represent means of from five mice per group with the SEM (bars). 

Symbol: P  < 0.05 (IgG2a ACV + CyaA* vs IgG2a ACV; Student’s t test). P < 0.05

(IgGl ACV + CyaA* vs IgG l ACV + proCyaA*; Student’s f test).
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3.6.1.2.1 Neutralisation of CyaA functions

The capacity of the above sera to neutralise CyaA functions was tested using 

various m vitro assays (Table 11). Only semm from ACV + CyaA*-immunised mice was 

capable of neutralising CyaA enzymic activity. However, sera from mice immunised with 

ACV plus the different CyaA forms neutralised the haemolytic and cytotoxic activities of 

CyaA. Again, serum from ACV + CyaA*-immunised miee was best, followed by serum 

from ACV + CyaA- and ACV + proCyaA-immunised mice. Serum from ACV + 

proCyaA*-immunised mice was poorest at neutralising CyaA functions. These results 

reflected the anti-CyaA total IgG antibody titres found in the sera of each immunised group 

(Table 11). Sera from mice immunised with ACV alone and the PBS control group failed 

to neutralise any of the CyaA activities tested (Table 11).

3.6.2 Mice Immunised with ACV plus graded doses of CyaA*

3.6.2.1 Total IgG responses to PT, FHA, PRN and CyaA

Sera were collected from mice on day 42, after intraperitoneal immunisation on 

days 0 and 28 with % SHD of ACV with and without different doses of CyaA* at 25, 12.5 

and 6.25 pg per dose. Sera were assessed for antibody levels to PT, FHA, PRN and CyaA. 

There were no signifieant differences in IgG antibody levels to PT, FHA or PRN in mice 

co-immunised with ACV plus graded doses of CyaA* compared with mice immunised 

with ACV alone (Table 12). However, as more CyaA* was used in the presence of ACV, 

there appeared to be an increase in anti-CyaA total IgG antibodies (Table 12) but this was 

not significant (P > 0.05) between the highest (25 pg) and lowest (6,25 pg) doses of 

CyaA* used.

3 6.2.2 IgGl and IgG2a antibody responses to PT, FHA, PRN and CyaA

The levels of IgG l antibodies to PT, FHA, PRN or CyaA were similar in all mice 

immunised with ACV with or without different doses of CyaA* (Fig. 37). Again, mice 

immunised with the highest dose (25 pg) of CyaA* in combination with ACV produced 

significantly (P < 0.05) greater levels of IgG2a towards PRN (Fig. 37) than mice 

immunised with ACV plus lower doses of CyaA* or with ACV alone. There was also 

significantly greater (P < 0.05) anti-CyaA IgG2a antibodies produced by mice immunised 

with ACV plus the highest dose (25 pg) of CyaA* compared with ACV plus the lowest 

dose (6.25 pg) of CyaA*. Although the absolute anti-PRN IgG2a antibodies in the dose- 

response experiment (Fig. 37) was lower compared with the first experiment (Fig. 36), 

both experiments showed a similar trend of greater anti-PRN IgG2a antibody production 

(Figs 36, 37). There were no significant differences in the anti-PT or anti-FHA IgG2a 

antibody levels between any of the immunised groups (Fig. 37).
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Table 11 Neutralisation of enzymic, haemolytic and cytotoxic activities of CyaA 

by different immune sera

Sera were collected from mice on day 42, after intraperitoneal immunisation with Ya SHD 

of ACV with and without different CyaA foims at 25 pg per dose on days 0 and 28. The 

serum from mice injected intraperitoneally on days 0 and 28 with PBS served as a negative 

control. These sera were assessed for the capacity to neutralise the activities of CyaA used 

at ^60 pg/ml for adenylate cyclase activity, ^20 pg/ml for haemolysis, ^2.5 pg/ml for 

cytotoxicity. CyaA was pre-incubated with dilutions of sera for 30 min prior to performing 

conductimetry, haemolysis and MTT cytotoxicity assays (Section 2.6). Values represent 

the mean of two independent assays which produced similar results for each assay. A 

column containing the geometric means of the anti-CyaA total IgG antibody titre for each 

immunisation group, expressed as ELISA units (EU/ml), are also included.

I

Immunisation groups

Geometric 
mean anti-

Reciprocal of serum dilution 
giving 50% neutralisation

CyaA IgG 
antibody 

titre (EU/ml)

Adenylate
cyclase

activity^
Haemolysis^ Cytotoxicity^

ACV + proCyaA 1903 < 2 35 46
ACV + proCyaA* 938 < 2 8 8
ACV + CyaA I860 < 2 33 24
ACV + CyaA* 2832 4 66 74
ACV < 1 < 2 < 2 < 2
PBS < 1 < 2 < 2 < 2
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Table 12 Antibody responses to PT, FHA, PRN and CyaA from mice immunised 

with ACV plus graded doses of CyaA*

Sera were collected on day 42, after intraperitoneal immunisation on days 0 and 28 with Vs 

SHD of ACV with and without different doses of CyaA* at 25, 12.5 and 6.25 pg per dose, 

and then assessed for total IgG levels against PT, FHA, PRN and CyaA. Total IgG levels 

are the geometric means of five mice per group with upper and lower 95% Cl. n/d, not 

determined.

Immunisation Total IgG levels (ELISA units/ml)
groups anti-PT anti-FHA anti-PRN anti-CyaA

ACV
alone 867 (590, 1275) 3530 (2859,4358) 589 (315, 1101) n/d

ACV + 6.25ug 
CyaA*

604 (421, 866) 2853 (1878,4335) 686 (368,1280) 665 (308,1435)

ACV + 12.5ug 
CyaA*

721 (476, 1093) 2272(719,7176) 445 (111, 1786) 536 (81,3533)

ACV + 25ug 
CyaA* 667 (497, 895) 3488 (2706, 4392) 830 (447,1541) 1104 (492, 2474)

PBS n/d n/d n/d n/d
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Figure 37 IgGl and IgG2a antibody responses to PT, FHA, PRN and CyaA from 

mice immunised with ACV plus graded doses of CyaA*

Sera were collected on day 42, after immunisation on days 0 and 28 with % SHD of ACV 

with and without different doses of CyaA* at 25, 12.5 and 6.25 pg per dose, and then 

assessed for IgG l ( H  ) and IgG2a ( O  ) antibody levels. Results represent the means of 

five mice per group with the SEM (bars). Symbol: \  P < 0.05 (IgG2a ACV + 25 pg CyaA* 

vs IgG2a ACV; Student’s t test). P < 0.05 (IgG2a ACV + 25 pg CyaA* vs IgG2a ACV 

+ 6.25 pg CyaA*; Student’s t test).
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3.6.3 Mice immunised with different forms of CyaA

3.6.3.1 Total IgG responses to CyaA
Sera were collected from mice on day 42, after intraperitoneal immunisation on 

days 0 and 28 with different forms of CyaA at 25 pg per dose in the presence of absence of 

10% (v/v) alum. These sera were assessed for total IgG anti-CyaA antibody levels. Mice 

immunised with proCyaA, proCyaA* and CyaA* with alum, but not CyaA with alum, ..
produced significantly (P < 0.05) greater total anti-CyaA IgG antibodies than mice 

immunised with the CyaA forms alone (without alum) (Table 13). However, there were no

significant differences (P > 0.05) in the total IgG anti-CyaA antibody responses between 

the groups of mice that received the different CyaA forms with alum (Table 13).

It is noteworthy that mice immunised with ACV plus different CyaA forms 

produced significantly (P < 0.05) less anti-CyaA IgG antibodies compared with mice 

immunised with different CyaA foims alone plus alum (P < 0.05) (Tables 10, 13). There 

was no significant difference in antibody levels for mice immunised with CyaA with or 

without alum. In addition, there were no significant differences in the antibody levels 

between mice that were immunised with ACV plus different CyaA forms compared with 

the different CyaA foims alone (without alum) (Tables 10, 13), even though the ACV itself 

contained adjuvant. Mice immunised with proCyaA*, regardless of presence of alum 

adjuvant, produced the lowest levels of total anti-CyaA IgG antibodies compaied with the 

other groups (Table 10).

3.6.3.2 IgGl and IgG2a antibody responses to CyaA (plus alum)

Sera were collected at day 42 after intraperitoneal immunisation on days 0 and 28 

with different CyaA preparations (25 pg/dose) with alum and the anti-CyaA IgG l and 

IgG2a antibody levels were measured. Mice immunised with different forms of CyaA (plus 

alum) did not show significant differences in the anti-CyaA IgG l or IgG2a antibody levels 

(Fig. 38) except that sera from mice immunised with CyaA* produced significantly (P < 

0.05) greater anti-CyaA IgG l and IgG2a antibodies than sera from mice immunised with 

proCyaA* alone (Fig. 38). The IgGa and IgG2a levels were not measured for sera from 

mice immunised intraperitoneally with the different CyaA forms without alum.

3.6.3 3 Neutralisation of CyaA functions by sera from mice immunised with

different CyaA forms alone (plus alum)

Both sera from CyaA*- and CyaA-immunised mice neutralised CyaA AC enzymic 

activity, although serum from CyaA*-immunised mice was more effective, even taking 

into account the slightly higher antibody titre (Table 14). Although serum from the CyaA*- i

immunised group more efficiently neutralised AC enzymic activity compared with that
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Table 13

139

Antibody responses to CyaA in mice after immunisation with different 

CyaA preparations with or without alum

Sera were collected at day 42 after intraperitoneal immunisation on days 0 and 28 with 

different CyaA preparations (25 pg/dose) with or without alum. Sera were assessed for 

total IgG anti-CyaA levels. Total IgG anti-CyaA levels are the geometric means of five 

mice with 95% Cl in braekets. Symbol: P < 0.05 (proCyaA vs proCyaA + alum;

Student’s t test), P < 0.05 (proCyaA* vs proCyaA* + alum; Student’s t test), P  < 

0.05 (CyaA* vs CyaA* + alum; Student’s t test).

ttt

Immunisation Total IgG levels (ELISA units/ml)

groups anti-CyaA (no alum) anti-CyaA (plus alum)

proCyaA 1581 (1160,4361)^ 6893 (4087, 11627)

proCyaA* 872(610,2035)** 3933 (2033, 5661)

CyaA 2500 (2074, 12177) 6965 (3756, 12915)

CyaA* 1233 (950,4141)*** 10326 (4280, 22124)
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Figure 38 IgGl and IgG2a antibody levels to CyaA

Sera were collected on day 42, after intraperitoneal immunisation on days 0 and 28 with

different CyaA forms at 25 pg/dose with or without alum, and then assessed for IgG l ( B  ) 

and IgG2a (O  ) antibodies against CyaA. IgG l and IgG2a antibody levels represent the 

means of 5 mice per group with SEM (bai's). A one-way ANOVA (Tukey’s test) was 

performed to determine significance (P < 0.05) between groups as linked by brackets.

Symbol: P < 0.05 (IgG l proCyaA* vs IgG l CyaA"^; Student’s t test); P  < 0.05 (IgG2a

proCyaA* vs IgG2a CyaA*; Student’s t test).
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Table 14 Neutralisation of enzymic, haemolytic and cytotoxic activities of CyaA 

by different immune sera

Sera were collected on day 42, after intraperitoneal immunisation on days 0 and 28 with 

different CyaA forms at 25 pg/dose with alum, and then assessed for the capacity to 

neutralise the activities of CyaA used at ^60 pg/ml for AC, ^20 pg/ml for haemolysis, ^2.5 

pg/ml for cytotoxicity. CyaA was pre-incubated with dilutions of sera (Sections 2,8.3,4, 

3.6.3.1) for 30 min prior to performing conductimetry, haemolysis and MTT cytotoxicity 

assays (Section 2.6). Values represent the means of two independent assays which 

produced similar results for each assay.

Geometric Reciprocal of serum dilution
mean anti- required for 50% neutralisation

Immunisation groups CyaA IgG 
antibody titre 

(EU/ml)

Adenylate 
cyclase activity* Haemolysis^ Cytotoxicity^

ProCyaA 6893 < 2 174 169
ProCyaA* 3393 < 2 78 80
CyaA 6965 2 345 410
CyaA* 10326 32 118 196
PBS < 1 < 2 < 2  < 2
Positive control 
serum^ 30000 48 123 568

The positive control serum used con-esponds to the anti-CyaA* reference serum produced 

in Section 2.8.3.4.
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from the CyaA group, the latter serum was more potent at neutralising CyaA haemolytic 

and cytotoxic activities, despite having a lower anti-CyaA antibody titre. Sera from the 

proCyaA- and proCyaA*-immunised groups were unable to neutralise AC enzymic 

activity, but effectively neutralised haemolytic and cytotoxic activities with serum from the 

proCyaA-immunised group showing the greater potency. As expected, due to its higher 

antibody titre, the positive control serum (the anti-CyaA* reference serum) was best at 

neutralising AC enzymic and cytotoxic activities, but was suiprisingly poor at neutralising 

haemolysis. All the immune sera also neutralised haemolysis and cytotoxicity caused by 

CyaA* to a similar degree as recorded for CyaA in Table 14 (data not shown).

3.6.3.4 Phagocytosis assays

3.6.3.4.1 Identification of CDllb^ cell populations from mouse blood

Leukocytes were labelled with anti-mouse CD 11b antibodies conjugated with 

allophycocyanin (APC) to identify a CD 1 lb-positive population of cells within in the 

leukocyte suspension isolated from normal mouse blood and subjected to FACS analysis. 

Treated cells were scanned for APC fluorescence and the amount of light diffracted from 

the surface of the cells (forward light scattering). Forward light scattering is a measurement 

of cell size. Thus, the greater the value scatter, the greater the size. Figure 39 shows 

increased APC fluorescence, from a group of cells with large forward scatter values, 

arising from a CD lib-specific antibody compared with the control antibody. This indicates 

the presence of C D llb ^  cells (e.g. macrophages) in the mouse leukocyte cell suspension.

3.6.3.4.2 Opsonisation of B. pertussis with different anti-CyaA mouse sera

Serum from CyaA-immunised mice (Section 3.6.3.1) and positive control serum 

(Section 2.8.3.4) were incubated with different multiplicities of infection (MOI) of B. 

pertussis cells expressing GFP prior to incubation with mouse leukocytes labelled with 

anti-mouse CD l i b  antibody conjugated with APC or with an APC-conjugated matched 

isotype control. MOI represents the bacteriadeukocyte ratio. In addition, B. pertussis cells 

treated with anti-PBS serum or no serum were used as negative controls.

Figure 40 gives an example of FACS analysis showing increased GFP fluorescence 

of CDllb"^ cells incubated with a high MOI (48) compared C D llb^  cells incubated with a 

MOI of 0. Even in the absence of opsonising serum, the fluorescence increases as a result 

of greater numbers of GFP-expressing B. pertussis with C D llb^  cells. Thus, an efficient 

opsonising serum should increase the levels of fluorescence. As shown in Table 15 there 

was a slight increase in association of C D llb^  cells with B. pertussis expressing GFP,
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Figure 39 Scatterplot showing the presence of C D llh cell populations in mouse 

hlood

FACS analysis showing allophycocyanin (APC) fluorescence against forward scatter of 

mouse leukocytes labelled with (A) a rat IgG2b-APC-conjugated monoclonal antibody 

(isotype control) or with (B) rat APC-conjugated anti-mouse CD l i b  monoclonal antibody. 

Each dot represents an event (or antibody-labelled cell). The horizontal and vertical lines in 

(A) indicate arbitrarily selected baselines used for (B).
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Figure 40 Example of increased association of GFP B. pertussis with CDllh^ cell 

populations

Histogram obtained by FACS analysis displaying an increased of GFP fluorescence (of B. 

pertussis) against the number of events (C D llb^  cells). C D llb ^  cells (gated from Fig. 39) 

incubated with a multiplicity of infection (MOI) of 0 (dark shaded area) compared with an 

MOI of 48 bacteria associated with one leukocyte (non-shaded area). Arrows indicate the 

median fluorescence intensity (MFI) for each cell population.

GFP fluorescence
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Median fluorescence intensity

MOI No serum Anti-PBS Positive control 
serum

Anti-CyaA

0 19.17 14.89 - -

6 35.57 37.26 50.14 38.48
12 52.13 54.29 64.87 53.39
48 67.33 69.17 85.63 73.74

not tested.

■ f

Table 15 Mean fluorescence intensity values of B. pertussis expressing GFP 

incubated with CDllh^ cells after pre-incuhation with different mouse 

anti-CyaA sera

Mouse leukocytes were incubated for 1 h at 37 °C with B. pertussis 338 expressing GFP 

that had been pre-incubated (30 min at 37 ^C) with mouse serum from CyaA-immunised 

mice, positive control serum (anti-CyaA* reference serum) or serum from the PBS group 

(negative control) (Sections 2.8.3.4, 3.6.3). B. pertussis incubated in the absence of serum 

served as an additional negative control. In addition, different B. pertussis to leukocyte 

ratios (or multiplicity of infections -  MOI) were used. Leukocytes were then washed and 

stained with antibodies specific for CD l i b  and CD45 (a general leukocyte marker) or with
v:-,

isotype-matched controls (Section 2.9). The values represent the median fluorescent 

intensity (MFI), as determined by the WinMDI software, of the treated cells for GFP

fluorescence. Values are representative, and data shown are from 1 experiment with the

■
average of 2 replicates.
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indicated by an increase in the MFI of GFP fluorescence, when the positive control serum 

was used at I/lOO dilution compared with the serum from the PBS control group (Table 

15). This suggests that the positive control serum has some opsonising activity. However, 

there was little increase in the MFI of GFP fluorescence when mouse leukocytes were 

incubated with serum from CyaA-immunised mice compared with serum from the PBS 

control group, both used at 1/30 dilution (Table 15). Mouse leukocytes incubated in the 

absence of serum showed no differences in MFI values compared with serum from the 

PBS control group. As serum from CyaA-immunised mice did not provide any evidence 

for anti-phagocytic activity, other sera from other mice immunised with the other three 

CyaA forms were not tested.

3.7 In vivo experiments: cytokine production from spleen cells
The cytokine responses from antigen-stimulated spleen cells and peritoneal 

macrophages from mice immunised with the different CyaA forms plus ACV were 

investigated to see if cytokine production could provide evidence of the type of immune 

response responsible for enahnced protection. Figure 41 shows the results for five 

cytokines released from spleen cells obtained from mice at day 42 after intraperitoneal 

immunisation on days 0 and 28 with % SHD of ACV or % SHD of CV plus different 

forms of CyaA (at 25 pg dose). Cells were stimulated in vitro with heat-killed 5. pertussis

18.323 cells (HKC) or with a mixture of B, pertussis antigens (PAgs, consisting of 

detoxified-PT, FHA, PRN) with or without CyaA*, or with CyaA* alone for 48 h. 

Antigen-stimulated spleen cells from mice immunised with CyaA* alone or PBS served as 

controls. CyaA* was the form of CyaA chosen as the stimulant because it was less toxic 

than the native toxin and non-toxic for spleen cells at 1 pg/ml. Cytokine secretion was 

influenced by the nature of the antigens used for immunisation and by the antigens used for 

stimulation.

3.7.1 Stimulation by HKCs

No IL-5 was produced from any of the groups with HKCs as stimulant (Fig. 41 A). 

HKCs stimulated high levels of IL-6 (40 - 120 pg/ml), IL-12 (180 - 250 pg/ml) and IFNy 

(150 - 600 pg/ml) from spleen cells from all mice, including the PBS control group (Fig. 

41B - D). However, for GM-CSF, only cells from mice immunised with ACV + proCyaA* 

(36 ± 1 3  pg/ml), ACV + CyaA* (58 ± 3 pg/ml) or CyaA* alone (27 ± 7 pg/ml) produced 

GM-CSF in response to HKC stimulation (Fig. 41E).
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Figure 41 Cytokine production by spleen cells from immunised mice after 

stimulation in vitro with B. pertussis antigens

Groups of mice were immunised intraperitoneally on days 0 and 28 with % SHD of ACV 

alone, CyaA* alone or % SHD of ACV plus different CyaA forms (25 pg per mouse) or 

were given PBS only. Spleen cells were obtained on day 42. Production of (A) IL-5, (B) 

IL-6, (C) IL-12, (D) IFNy and (E) GM-CSF was assessed from spleen cells of immunised 

mice stimulated in vitro with different B. pertussis antigens for 48 h. HKCs ( □  ), PAgs 

( □  ), PAgs + CyaA* ( ®  ), CyaA* alone ( B  ) were used as stimuli. Other cells were not 

stimulated, and served as controls ( 0  ). PAgs consisted of a mixture of formalin-treated- 

PT, -FHA and -PRN used at a final concentration of 2, 2 and 5 pg/ml, respectively. CyaA* 

and HKCs were used at a final concentration of 1 pg/ml and 5x10^ cells/ml, respectively. 

Results represent the means of duplicate assays with SEM (bars). #, stimulation with PAgs 

or PAgs + CyaA* not tested.
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3.7.2 Mice immunised with ACV

Greater levels of IL-5 and IL-6 were produced by spleen cells from this group 

compared with the PBS control group using PAgs + CyaA* as stimulant (Fig. 41A, B). As 

expected, the spleen cells from mice immunised with ACV alone did not responded to 

CyaA* as a stimulant. Spleen cells from the ACV alone group did not produce any more 

IFNy or GM-CSF than cells from PBS control mice (Fig. 41D, E). IL-12 production from 

unstimulated cells from the ACV-immunised group exceeded that of cells stimulated with 

specific antigens (Fig. 41C). This effect was not observed in the PBS control group.

3.7.3 Mice immunised with ACV + CyaA or ACV + proCyaA

The cytokine profiles of spleen cells from these two groups were generally similar 

to the ACV control group upon antigen stimulation (Fig. 41A-E), although they responded

well to CyaA* as a stimulant (Fig. 41A, B, D, E). Again, IL-12 production from

unstimulated cells exceeded that of antigen-stimulated cells (Fig. 41C).

3.7.4 Mice immunised with ACV + CyaA*, ACV + proCyaA* or CyaA*

alone

Spleen cells from mice immunised with ACV + CyaA* produced higher levels of 

IL-5 (-130 pg/ml), IL-6 (-20  pg/ml), IFNy (-60  pg/ml) and GM-CSF (-50  pg/ml) than 

spleen cells from mice immunised with ACV (-45 pg/ml for IL-5, < 5 pg/ml for IL-6, 

IFNy and GM-CSF) when stimulated with PAgs + CyaA*. Spleen cells from the ACV + 

proCyaA* group also responded better with regard to IL-5, IFNy and GM-CSF production, 

than cells from the ACV alone group after stimulation by PAgs + CyaA* (Fig. 41A, D, E). 

Spleen cells from mice immunised with CyaA* alone produced lower levels of IFNy (<4 

pg/ml) and GM-CSF (-10  pg/ml) than cells from mice immunised with ACV + CyaA* 

when stimulated with CyaA*, although similar levels of IL-5 (-70 pg/ml) and IL-6 (-15 

pg/ml) were recorded. It was noteworthy that only spleen cells from mice immunised with 

ACV + CyaA*, ACV + proCyaA* or CyaA* alone produced higher amounts of GM-CSF 

than cells from the PBS control group (Fig. 4 IE) in response to antigen stimulation. In 

addition, only spleen cells from mice immunised with ACV + CyaA* or ACV + proCyaA* 

produced high amounts of IFNy in response to specific antigen stimulation.

As expected, the spleen cells from mice immunised with ACV + CyaA*, ACV + 

proCyaA* or CyaA* alone generally responded well to CyaA* as a stimulant (Fig. 41 A, B, 

D, E). This was not true, however, for IL-12 where again production by spleen cells from 

these groups was lower after PAgs + CyaA* or CyaA* stimulation compared with 

unstimulated cells (Fig. 41C).
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3.7.5 Other cytokines

None of the antigens stimulated spleen cells to produce detectable IL -ip , IL-2, IL-4 

and IL-10 (data not shown). However, HKC-stimulated spleen cells from all the 

immunised groups, and the PBS control group, produced T N F a at high levels (180 - 270 

pg/ml), but only low-level responses (10 - 20 pg/ml) were seen upon stimulation with the 

other antigens.

Overall, the cytokine responses of spleen cells from mice immunised with ACV + 

CyaA, ACV + proCyaA or ACV alone were similai' in most cases, whereas spleen cells 

from mice immunised with ACV + CyaA*, ACV + proCyaA* or CyaA* alone, 

particularly the former, secreted higher levels of cytokines in response to antigen 

stimulation (Fig. 41A -  E). For IFNy and GM-CSF production, spleen cells from ACV + 

CyaA* immunised mice were more responsive to CyaA* stimulation than the CyaA* alone 

group.

3.8 In vivo experiments: cytokine production from peritoneal

macrophages
Figure 42 shows the results for six cytokines released from peritoneal macrophages 

isolated on day 42 from mice immunised intraperitoneally on days 0 and 28 with % SHD 

of ACV or % SHD of ACV plus different forms of CyaA at 25 pg/dose. Macrophages 

were then stimulated in vitro with HKCs or PAgs with or without CyaA*, or with CyaA* 

alone. Antigen-stimulated peritoneal macrophages from mice immunised with CyaA* 

alone or PBS served as controls.

3.8.1 Stimulation by HKCs

Peritoneal macrophages from all antigen-immunised groups secreted high levels of 

IL-6 and IL-8 compared with the PBS control group after stimulation with HKC (Fig. 42C, 

D), but HKCs were the best stimulant for GM-CSF production by macrophages from mice 

immunised with ACV, ACV + CyaA or ACV + CyaA*. For T N Fa secretion, the levels 

were similar for all immunised groups after HKC stimulation, although they were 

marginally higher in macrophages from mice co-immunised with ACV + CyaA or ACV + 

CyaA* compared with the other immunised groups (Fig. 42F).

3.8.2 Stimulation by specific antigens

The levels of GM-CSF secreted by PAgs + CyaA*-stimulated macrophages from 

mice immunised with ACV plus a CyaA form were only marginally higher than those from 

the ACV alone group (Fig. 42E). The exception to this was stimulation with CyaA* where.



Yiu Chong Gordon Cheung, 2006

Figure 42 Cytokine production by peritoneal macrophages from immunised mice 

after stimulation in vitro with B. pertussis antigens

Groups of mice were immunised intraperitoneally on days 0 and 28 with CyaA*, % SHD 

of ACV alone or % SHD of ACV plus different CyaA preparations (25 pg/dose) or were 

given PBS only. Peritoneal macrophages were collected on day 42 and stimulated with 

HKCs ( O), PAgs ( □  ), PAgs + CyaA* ( H ) and CyaA* ( B  ) for 24 h. Other cells were 

untreated and served as negative controls ( 0  ). See Fig. 41 legend for details on the final 

concentration of antigens used. Results represent the means of duplicate assays with SEM 

(bars). #, stimulation with PAgs or PAgs + CyaA* not tested.
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as expected, only the macrophages from mice immunised with ACV plus a CyaA form 

responded. Macrophages from mice immunised with CyaA"^ alone did not respond well to 

CyaA* stimulation. Suiprisingly, unstimulated cells from the groups vaccinated with ACV 

plus all the 4 types of CyaA produced GM-CSF, but unstimulated cells from the ACV 

alone group only produced a marginal level similar to that of PBS control group (Fig. 

42E). There was variable production of GM-CSF from stimulated macrophages of all 

immunised groups compared with the PBS control and no clear trend was observed. IL -lp  

was detected, albeit at a low level, from macrophages of mice immunised with ACV plus a 

CyaA form or CyaA* alone after PAgs + CyaA* or CyaA* stimulation, respectively, but 

was not detected from cells from ACV-immunised mice or from PBS control mice. Higher 

levels of IL-5 were secreted by antigen-stimulated macrophages from immunised mice 

compared with stimulated macrophages from the PBS control group. IL-5 is principally 

produced by T cells and the fact that it was detected suggests that there was some T cell 

contamination from the peritoneal lavage cell suspension (Fig. 42B). Thus, although most 

of the cell population consisted of peritoneal macrophages, there appeared to be residual 

numbers of T cells present. No IL-2, IL-4, IL-10, IL-12 or IFNy were detected.

3.9 In vivo experiments: nitric oxide production from peritoneal

macrophages
Nitric oxide production by peritoneal macrophages from immunised mice was 

measured as an indication of their activated state and the induction of cell-mediated 

immunity.

3.9.1 Nitric oxide production from peritoneal macrophages from mice

immunised with ACV plus different CyaA forms after stimulation in 

vitro with B, pertussis antigens

Groups of mice were immunised intraperitoneally on days 0 and 28 with CyaA*, Ya 

SHD of ACV alone or % SHD of ACV plus different CyaA preparations (25 pg/dose) or 

were given PBS only. Peritoneal macrophages were isolated from mice on day 42. After 

antigen stimulation for 24 h, the supemates were collected and assessed for NO production 

by the macrophages. The levels of NO from antigen-stimulated peritoneal macrophages 

from the ACV control group were similar to the PBS control group (Fig. 43). Stimulation 

of peritoneal macrophages with PAgs + CyaA* induced significantly greater (P < 0.05) 

production of NO from mice immunised with ACV + proCyaA* or ACV + CyaA* 

compared with the ACV or PBS control groups (Fig. 43). In addition, only macrophages 

from mice immunised with ACV + proCyaA* or ACV + CyaA* produced significantly {P 

< 0.05) greater levels of NO compared with the CyaA* immunised group in response to
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Figure 43 Nitric oxide production by peritoneal macrophages from immunised 

mice after stimulation in vitro with B, pertussis antigens

Groups of mice were immunised intraperitoneally on days 0 and 28 with % SHD of ACV 

alone or Ya SHD of ACV plus different CyaA forms (25 pg per mouse) or were given PBS 

only. Peritoneal macrophages were isolated from immunised mice on day 42 and then 

stimulated with antigen. HKCs ( □  ), PAgs (EU ), PAgs + CyaA* ( H) and CyaA* ( □  ) 

were used as stimuli. Other cells were untreated and served as negative controls ( g |) . 

Nitric oxide production was assessed from peritoneal macrophages of immunised mice 

stimulated with different B. pertussis antigens for 24 h. See Fig. 41 legend for details on 

the final concentration of antigens used. For NO release, results represent the means of 

triplicate assays with SEM (bars). Symbol: \ P <  0.05 (HKC stimulated groups vs HKC 

stimulated ACV group: ANOVA); P < 0.05 (PAgs + CyaA* stimulated groups vs PAgs 

+ CyaA* stimulated ACV group: ANOVA); P < 0.05 (CyaA* stimulated groups vs 

CyaA* stimulated ACV group: ANOVA).
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CyaA* stimulation (Fig. 43). Macrophages from the ACV + CyaA group were the 

least responsive to antigen stimulation. HKCs stimulated greater NO production from 

macrophages from all immunised mice than from macrophages from the PBS control 

group. Significantly higher levels {P < 0.05) of NO were produced in response to HKC by 

macrophages from mice immunised with ACV + proCyaA* (20 ± 0.2 pM / 2 x 1 0 ^  cells) or 

ACV + CyaA* (15 ± 0.2 pM) compared with the ACV- (12 ± 0.2 pM), ACV -f- proCyaA- 

(11 .4 ± 0.2 pM), ACV + CyaA- (7.2 ± 0.1 pM) or CyaA* alone- (10.6 ± 0.2 pM) 

immunised groups or the PBS control group (2.5 ± 0.4 pM). (Fig. 43).

3.9.2 Nitric oxide production by peritoneal macrophages from mice

immunised with ACV plus graded doses of CyaA* after stimulation in 

vitro with B, pertussis antigens 

Groups of mice were immunised intraperitoneally on days 0 and 28 with CyaA*, % 

SHD of ACV alone or % SHD of ACV plus different doses of CyaA* (25, 12.5 or 6.25 

pg/dose) or were given PBS only. Peritoneal macrophages were isolated from mice on day 

42. After antigen stimulation for 24 h, the supemates were collected and assessed for NO 

production by the macrophages. Peritoneal macrophages from mice immunised with ACV 

+ 25 or 12.5 pg of CyaA* stimulated with PAgs + CyaA* produced significantly (P <

0.05) more NO compared with macrophages from mice immunised with ACV alone or the 

PBS control group (Fig. 44). Macrophages from all immunised groups did not respond to 

the PAgs stimulation any better than the PBS control group. In this experiment, FIKC- 

stimulation of peritoneal macrophages did not induce significant NO production. This may 

have been due to the 100-fold lower concentration of HKCs used for stimulation compared 

with the other experiments where 5 x 10^ cells/ml were used (Section 3.9.1; Fig. 43).

3.10 Global gene responses of murine bone-derived macrophages

in response to CyaA
The gene transcriptional responses induced in mouse bone maiTow-derived 

macrophages (BMMs) by exposure proCyaA*, CyaA or CyaA* were examined. A 

cytotoxicity assay (MTT) was used to determine a suitable toxin concentration hich was 

not cytotoxic to cells. Affymetrix technology was used to investigate the gene 

transcriptional responses.

3.10.1 MTT assay

3.10.1.1 BMM viability after incubation for 2 or 24 h with CyaA

A MTT assay was first performed to determine a toxin concentration that was 

relatively non-cytotoxic for the mouse bone marrow derived macrophages (BMMs).
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Figure 44

156

Nitric oxide production by peritoneal macrophages from mice 

immunised with ACV plus graded doses of CyaA* after stimulation in 

vitro with B. pertussis antigens

Peritoneal macrophages from mice immunised intraperitoneally with Yb SHD of ACV with 

or without graded doses of CyaA* (6.25, 12.5 or 25 pg) or given PBS only were stimulated 

in vitro for 24 h with HKCs (□ ) ,  PAgs (H  ) or PAgs + CyaA* ( ü  ) for 24 h. Other spleen 

cells were not stimulated, and served as controls ( g]). PAgs consisted of a mixture of 

detoxified-PT, -FHA and -PRN used at a final concentration of 2, 2 and 5 pg/ml, 

respectively. HKCs were used at a final concentration of 5 x 10^ cells/ml. Results represent 

the means of triplicate assays with SEM (bars). Symbol: ^  P  < 0.05 (groups vs ACV 

group: ANOVA).
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As shown in Fig. 45, after incubation for 24 h with CyaA, more BMMs were killed by 

CyaA compared with incubation for 2 h. At a toxin concentration of 20 ng/ml, -5%  or 

-20%  of BMMs were killed after incubation with CyaA for 2 h or 24 h, respectively. This 

toxin concentration was chosen for incubation of BMMs with CyaA for 2 and 24 h.

3.10.1.2 BMM viability after incubation for 24 h with CyaA, CyaA* or 

proCyaA*

As shown in Fig. 46, although both CyaA and CyaA* were cytotoxic towards 

BMMs, CyaA* was not as cytotoxic as CyaA; only CyaA was cytotoxic at a concentration 

of 20 ng/ml. The observation that CyaA* was less cytotoxic towards BMMs may be that 

there is less calcium in DMEM/F12 (CaCl2.2H20: 154.5 mg/1) compared with DMEM 

(CaCl2.2H20; 264 mg/1). CyaA* requires more calcium for cell killing than CyaA (Section 

3.4.3.5). ProCyaA* showed slight cytotoxicity at concentrations above 5 pg/ml. The 

negative control (which contained the same levels of urea as in the CyaA samples) did not 

affect cell viability compared with untreated cells. For comparative purposes, a final 

concentration of 20 ng/ml was used for proCyaA*, CyaA and CyaA* for incubation with 

BMMs for 24 h.

;3.10.2 RNA quantification and quality assessment

Good quality RNA was obtained as shown by two major RNA bands (Fig. 47). 

These small and large bands corresponded to 18S and 28S ribosomal RNA respectively. 

High RNA integrity values, for each RNA preparation, were produced by the Agilent 2100 

Bionalyser software (Appendices K1 and K2). The integrity values are essentially a 

measure of a comparison of the 18S and 28S rRNA peaks and indicate the state of rRNA 

degradation. A value of 10 indicates the least degradation. In addition, A260/A280 ratios 

were roughly -1 .6  indicating low levels of protein contamination in the RNA preparations. 

The cRNA, made from RNA from BMMs incubated with CyaA for 2 h and 24 h, were 

hybridised with MG-U74Av2 GeneChips® for 16 h or cRNA, made from RNA from 

BMMs incubated with proCyaA*, CyaA or CyaA* for 24 h, were hybridised with 

MOE430„2 Affymetrix arrays for 16 h.

3.10.3 Preliminary experiment to assess gene responses in BMMs after 

incubation for 2 or 24 h with CyaA

BMMs were incubated with 20 ng/ml of CyaA (in 400 pM urea) or with urea (400 

pM) for 2 and 24 h, and the RNA samples, each pooled from triplicate BMM treatments, 

were processed and applied to MG-U74Av2 GeneChips®, using 1 chip for each cRNA. 

This experiment had 2 purposes. 1) To investigate which time of CyaA treatment would 

yield the most informative data and 2) To check that 20 ng/ml CyaA would provide
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Figure 45 Cytotoxicity of CyaA towards murine BMMs

BMMs were incubated with CyaA for 2 h (solid squares) or 24 h (open squares). 

Cytotoxicity was assessed by the MTT assay. Results represent the means of assays 

performed in triplicate with SEM (bars).

100

80

60

40

20

Toxin concentration ([ig/ml)



Yiu Chong Gordon Cheung, 2006 159

Figure 46 Cytotoxicity of CyaA forms for murine BMMs after incubation for 24 h

ProCyaA* (open squares), CyaA (open circles) or CyaA* (open triangles) were incubated 

for 24 h with BMMs. Cells treated with urea at the same concentration as in the CyaA 

samples served as a control (solid squares + dotted lines). Results represent the means of 

assays performed in triplicate with SEM (bars).
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Figure 47 Quality of RNA extracted from BMMs after incubation with CyaA

Images of RNA from BMMs incubated with (A) CyaA for 2 h or 24 h or with (B) 

proCyaA*, CyaA or CyaA* for 24 h after electrophoresis on a Nano 6000 LabChip. The 

LabChips were then analysed on Agilent 2100 Bioanalyser which produced images as 

shown on the opposite page. Each treatment was performed in triplicate as indicated by # 

followed the number 1, 2 or 3.

Fig. 47A
Lane Sample
1 RNA ladder
2 2 h urea #1
3 2 h urea #2
4 2 h urea #3
5 2 h CyaA #1
6 2 h CyaA #2
7 2 h CyaA #3
8 24 h urea #1
9 24 h urea #2
10 24 h urea #3
11 24 h CyaA #1
12 24 h CyaA #2
13 24 h CyaA #3

Fig. 47B
Lane Sample
1 RNA ladder
2 proCyaA* #1
3 proCyaA* #2
4 proCyaA* #3
5 CyaA #1
6 CyaA #2
7 CyaA #3
8 CyaA* #1
9 CyaA* #2
10 CyaA* #3
11 Urea #1
12 Urea #2
13 Urea #3
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sufficient gene activation compared with the urea-treated control. The experiment involved 

a total of four arrays, each with -6,000 characterised murine genes and -6,000 expressed 

sequence tags. Sequences used in the design of the aiTay were selected from GenBank®, 

dbEST, and RefSeq. The expressed sequence tags were created from the UniGene database 

(Build 107, June 2002) and then refined by analysis and comparison with the publicly 

available draft assembly of the mouse genome from the Whitehead Institute Center for 

Genome Research (April 2002). Affymetrix GeneChips® have oligonucleotide probes (25- 

mers) lithographically synthesised in situ (Section 1.10.1). Affymetrix probes are designed 

in pairs: one sequence is the exact complement of the target sequence (Perfect Match; PM), 

and the other differs from the exact complement by one mutation in the middle of the 

probe (MisMatch; MM) (Section 1.10.1). The MM probes are designed to account for non­

specific binding of cRNA (Section 1.10.1). For any gene, up to 20 paired probes can be 

printed on the array. An expressed sequence tag is a tiny portion of an entire gene that can 

be used to help identify unknown genes and to map their positions within a genome. They 

are generated by sequencing either one or both ends of an expressed gene. The data from 

each aiTay were analysed using GeneSpring 7.2 software. A total of three pairwise 

comparisons was performed (2 h CyaA plus urea versus 2 h urea treatment, 24 h CyaA 

plus urea vs 24 h urea treatment and 24 h CyaA plus urea treatment vs 2 h CyaA plus urea 

treatment). To view a complete list of genes in the database, visit 

http://WWW.gti .ed.ac.uk/GPX/, accession number GPX-00031.1. A password, which can be 

requested from Dr, Paul Dickinson [Paul.Dickinson@ed.ac.uk], is required to access the 

database.

3.10.3.1 Gene responses in BMMs after incubation for 2 h with CyaA

There were 247 and 223 genes up- and down-regulated > 2-fold in BMMs, 

respectively, after treatment for 2 h with CyaA (plus urea) compared with treatment with 

urea alone. Genes which were up- and down-regulated > 3-fold are listed in Appendix L. 1 

and L.2, respectively. The more stringent criterion of a minimum 3-fold change was used 

to select genes most likely to be associated with CyaA treatment since no statistics could 

be performed as only 1 array had been used for each treatment in this preliminary 

experiment. Up-regulation of genes involved in immunity included the IL -lp  gene, l l lb  (> 

16-fold) and the cytotoxic T lymphocyte-associated protein gene, Ctla2a (> 4-fold).

Some up-regulated genes which coded for cell-surface molecules included Adora2b 

(-4-fold) and G jal (-5-fold). Dusp6, which encodes a protein that desphosphorylates 

signalling molecules was up-regulated by 3.26-fold. Genes involved in transcription 

included A hr  (-4-fold), Nfkbie (-4.3-fold), fo s  (-5 .39-fold) and Nr4a2 (-10-fold). 

Regarding cell differentiation and growth, Vegfa and Btg2 were transcribed the greatest.

http://WWW.gti
mailto:Paul.Dickinson@ed.ac.uk
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Other types of up-regulated genes were associated with apoptosis, cellular structure, 

metabolism and adhesion (Appendix L .l). There was also strong increased transcription of 

other genes such as Thbsl (Thrombospondin) (> 15-fold) and ArgJ (Arginase) (> 25-fold).

CyaA also down-regulated a number of genes that spanned a wide range of cell 

functions (Appendix L.2). These included Tnfa (-8-fold), genes that coded for cell-suiface 

receptors (Abcj2, > 8-fold), cell-signalling {Map3k8, > 15-fold), transcription (Np95, > 6- 

fold) and apoptosis {TrafS, > 4-fold). Overall, there was a wide spectrum of genes which 

were up- and down-regulated which have a role in all aspects of cell function in BMMs, 

after treatment with CyaA for 2 h.

3.10.3.2 Gene responses in BMMs after incubation for 24 h with CyaA

There were 226 and 204 genes up- and down-regulated > 2-fold in BMMs, 

respectively, after treatment with CyaA (plus urea) for 24 h compared with treatment with 

urea alone. Genes which were up- and down-regulated > 3-fold are listed in Appendices 

L.3 and L.4, respectively. Interestingly, only 115 genes were found up- or down-regulated 

> 2-fold in BMMs after treatment for both 2 h and 24 h with CyaA. However, 12% of the 

115 genes were regulated greater than 3-fold by both treatments. The gene for IL -ip  was 

again highly up-regulated, but most of the 3-fold up-regulated genes common to both time 

intervals were cell-surface receptors {Edg2, Adora2b  and G jal) or associated with 

adhesion {Col9al and Thbsl), The only gene that was down-regulated > 3-fold, and 

common to both treatments, was the cell cycle regulator gene, Np95. Generally, there were 

greater changes in the fold of transcription of most of the genes after treatment for 24 h 

compared with 2 h (Fig. 48A, B). The best examples of this were G jal (-5-fold to > 16- 

fold), l l lb  (> 16-fold to > 21-fold) and A rg l (> 25-fold to > 164-fold), after 2 h or 24 h, 

respectively.

Some genes that were detected after treatment for 24 h which were not detected after 2 h 

included the up-regulation of CD86 (> 3.5-fold), several chemokines (Cxcl2, > 9.5-fold; 

Cxcll, > 10-fold), integrins (ItgaS, > 14-fold) and receptors for chemokines (C crl, > 5- 

fold). Other types of up-regulated genes were associated in different cell processes, such as 

signalling (Cav), transcription (Nr4a2), cell growth {Husl), inducing apoptosis (Bnip3) and 

adhesion {Thbsl) (Appendix L.3).

CD51 was the only gene down-regulated at 24 h but not at 2 h that was involved in 

the immune response (Appendix L.4). Some of the down-regulated signalling and 

transcription-associated genes included Dusp2, Racgapl, Ptp4a3, Tkl, Np95 with Np95 

being down-regulated the greatest (~ 14-fold). Interestingly, there were 11 down-regulated 

genes involved in cell proliferation and DNA replication after treatment for 24 h with
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Figure 48 Line diagram showing the differences in gene transcription in BMMs 

after incubation for 2 h or 24 h with CyaA compared with the negative 

control

Differences in gene transcription > 3-fold after incubation with CyaA for (A) 2 h (left) or 

24 h (right) and (B) comparison of gene transcription (> 3-fold) between 2 and 24 h with 

CyaA treatment. Each line represents a single gene. Greatest up- or down-regulation of 

genes is represented by red or blue, respectively, as shown on the right hand panel.
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CyaA. Other genes which were down-regulated strongly included P satl (> 5.5-fold) and 

Lpl (> 80-fold) which are involved in metabolism and biosynthesis.

A further comparison was made to investigate the types of genes up- and down- 

regulated between 2 h and 24 h after treatment with CyaA, excluding any genes found up- 

and down-regulated after treatment with urea alone. This produced a gene list of 846 genes 

up- or down-regulated > 2-fold. About 39% of these genes were up- or down-regulated > 

3-fold and these genes are listed in Appendices L.5 and L.6, respectively. There were more 

genes detected using this comparison than by comparison of 2 h CyaA versus 2 h urea or 

24 h CyaA versus 24 h urea (Section 3.9.3.1 and 3.9.3.2). This situation would arise if a 

gene is up-regulated < 2-fold after treatment for 2 h with CyaA (and therefore not included 

in the gene list) but is then down-regulated > 2-fold after treatment for 24 h with CyaA, 

and vice versa.

There was increased expression of 7 genes associated with the immune response in 

BMMs between treatment of 2 h and 24 h with CyaA. In particular, expression of Traf5 

and Cxcl5 was increased by > 8-fold and > 30-fold, respectively. Two pro-apoptotic genes 

were also detected. Moreover, there were genes involved in signalling, transcription and 

cell growth, such as Map3k8 (> 28-fold), N m ycl (> 10-fold) and P tgsl (> 4-fold), 

respectively (Appendix L.5). Some genes associated with the immune response that were 

down-regulated from 2 to 24 h included M iplb  (> 4-fold), Ly86  (> 7-fold), Ifit2 (> 20- 

fold), Ccrl2 (> 3.5-fold) and H 2-Abl (> 3.5-fold). Interestingly, there was decreased 

transcription of the anti-apoptotic genes Bcl2 and Birc5 and the down-regulation of 8 

signalling genes e.g. Rgs2 (> 7-fold), and 5 transcription genes, e.g. Crem (~ 12-fold). 

There were 9 genes down-regulated that were associated with cell division (Gadd45b and 

Rrm2) accompanied by 2 genes associated with mitochondrial function {Clic4 and 

Cox6a2). An interesting observation was the up- and down-regulation of sic (solute carrier 

protein) genes involved in transportation of different substrates. The conclusions drawn 

from this preliminary study must be treated with caution as no statistics could be 

performed because only one chip was used for hybridisation with each test sample.

3.10.4 BM M  gene responses to the different CyaA forms after incubation for

24 h

The conclusions di'awn from the data in this section should be more reliable as 

three chips were hybridised with each test sample and demonstrate the reproducibility 

between the three hybridisations. Although fewer genes (430) were up- or down-regulated 

> 2-fold in BMMs after treatment for 24 h with CyaA compared with 470 genes up- or 

down-regulated > 2-fold in BMMs after 2 h with CyaA, there were greater levels of 

increased and decreased transcription after treatment for 24 h (Figs. 48A, B). In addition,
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approximately 30% of genes altered in transcription at 2 h were still detected after 

prolonged exposure to CyaA. Therefore, a period of 24 h was chosen to treat the BMMs 

with 20 ng/ml CyaA, CyaA*, proCyaA* and urea alone. In addition, the number of 

replicates for each hybridisation was increased to three so that statistical comparisons 

could be made. A new gene chip (MOE430_2, Affymetrix) containing 45,000 probe sets 

representing over 39,000 transcripts and variants from over 34,000 well characterised 

mouse genes was used for the subsequent experiment. Newly isolated BMMs were treated 

with CyaA, CyaA* or proCyaA* (all at 20 ng/ml in 400 pM urea) or with 400 p,M urea 

alone for 24 h. For each treatment, the RNA was pooled from three incubations, made into 

cRNA and hybridised to a MOE430_2 GeneChip (Affymetrix). This was done in triplicate 

for each treatment. Thus, the analysis was done in triplicate using pools of RNA from 3 

incubations for each of the three hybridisations, including the control, generating a total of 

twelve aiTays. The data were analysed using GeneSpring 7.2 software. A total of 3 

comparisons was performed: CyaA treatment versus urea treatment; CyaA* treatment 

versus urea treatment; and proCyaA* treatment versus urea treatment. A change in gene 

expression was reported if the fold change was at least 2.0. Data from a mock experiment 

(BMMs incubated in DMEM/F12 for 24 h in the absence of urea, kindly provided by Mr 

Andrew Livingston, University of Edinburgh) was used as a second negative control and as 

a comparison for any gene changes caused by urea itself. As shown in Fig. 49, 400 p.M 

urea caused changes in gene transcription in BMMs after treatment for 24 h as indicated by 

differences in colour patterns for each column of the urea treatment compaied with the 

mock treatment. In addition, the condition tree grouped the three mock treatments together 

and separate from the urea control indicating that the gene transcription profile after urea 

treatment was different from the mock treatment.

3.10.4.1 Gene responses to CyaA treatment

Transcripts for 3.5% of the probe sets were detected, representing 1,636 transcripts 

which were up- or down-regulated greater than 2-fold (P < 0,05) in BMMs after treatment 

with CyaA for 24 h. To view a complete list of genes in the database, visit 

http://www.gti.ed.ac.uk/GPX/. accession number GPX-00050.1. Access to the database is 

password encrypted and the password can be requested from Dr. Paul Dickinson 

[Paul.Dickinson@ed.ac.uk]. 61.5% of these genes were up- and down-regulated > 3-fold 

with a more stringent P  value (< 0.01) and, of these, approximately half (486 gene 

transcripts) were up-regulated. A further criterion was created to select up-regulated genes 

which were flagged as “present”, as determined by the MAS5 programme (Section 2.14), 

in all three replicates. Only 1 gene (Affy ID, 142885l„at) was excluded from the 486 

transcripts. Thus, it can be said with confidence that the genes listed in Appendix L.7 are

http://www.gti.ed.ac.uk/GPX/
mailto:Paul.Dickinson@ed.ac.uk
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Figure 49 Overview of gene transcription for different treatments of BMMs

A condition tree takes the data for each condition and hierarchically clusters the most 

similar treatments or samples together (green lines above each column). Green lines on the 

left of the columns groups genes according to location and function within the cell. The 

columns, each representing a treatment, is made up of horizontal bars (genes) and colour 

coded depending on their degree of gene expression (e.g. red and blue indicating high and 

low gene expression, respectively) compared with the 24 h urea control. A Mock treatment 

(BMMs incubated in the absence of urea for 24 h) was also included in this condition tree 

(kindly provided by Mr Andrew Livingston, University of Edinburgh).
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7;.up-regulated in BMMs after treatment with CyaA. A majority (32.5%) of up-regulated 

genes were associated with inflammation. These included Treml (> 50-fold) and Cmkorl 

(> 55-fold), CD antigen genes (CD80, CD86 and CD207), chemokine genes (Cc/7, Cxcl2,

Cxcl5, Cxcll and CxclT), the IL -lp  cytokine gene, the integrin a #  gene (Itgam), a colony 

stimulating factor receptor (Csf2rb2) and an IL-1, type II receptor. Interestingly, the 

cytokine regulator Illrn  was also up-regulated. Genes associated with the cell membrane

I
I
/y

included Ltb4rl (> 5-fold), lerS  (> 11-fold), G jal (-20-fold) and Fxyd2 (> 40-fold). Genes

involved in cell-signalling, Dusp6, Procr, F prl and Cav as well as transcription, Cebpb, 

Junb, Crem and A hr  were all up-regulated and detected previously (Section 3.9.3). Up- 

regulated pro-apoptotic genes included B c l2 lll, Tnfrsf21, S tkl7b  and EglnS, No anti- 

apoptotic genes were detected. Other genes that were strongly increased in expression, 

were N otchl (> 7-fold), Arg2 (> 27-fold), Nt5e (> 60-fold) and Thbsl (> 360-fold) 

(Appendix L.7). There was up-regulation of Ras homologues (Rab20, Rasa2 and Rhoe) 

and transcription factors found downstream of important signalling pathways {Elk3, c-fos, 

Junb and Fosl2). There was a whole suite of solute carrier proteins found to be up- 

regulated, such as cationic transporters, as well as genes involved in the degradation of the 

extracellular matrix {Mmp9 and M m pl9).

There was a slightly greater number of genes which demonstrated a > 3-fold 

reduction (P < 0 .01) in transcription (519 gene transcripts) compared with the number of 

up-regulated genes using the same criteria. A selection of the down-regulated genes is 

listed in Appendix L.8. These included pro-inflammatory genes such as Cc/3, Ccl4, lfit2, 

H2-Aa, H 2-Abl and Scarbl. Amongst the down-regulated genes involved with the immune 

response, were CD109 (-5-fold), CscllO  (-4-fold), lgh6  (-14-fold), Trem2 (> 7-fold), 

Ptger4 (> 9-fold) and Itgaô  (> 12-fold). Interestingly, only 10% of the down-regulated 

genes listed in Appendix L.8 were associated with the immune response compared with 

32.5% of up-regulated genes (Appendix L.7). There was a strong decrease in transcription 

of the anti-apoptotic gene BircS (> 16-fold). Approximately 40% of the down-regulated 

genes listed in Appendix L.8 were involved in cell growth, division and differentiation 

compared with only -3%  of up-regulated genes associated with the same functions 

(Appendix L.7). A large collection of genes involved in the cell cycle, e.g. 

minichromosome maintenance deficient genes (Mcm3 and Mcm5), Plk4, cell division cycle 

genes {Cdc25a and Cdc20), cyclin genes {Ccndl and Ccnf), kinesin genes {Kif2c and 

Kif22) and genes involved in DNA replication {Top2a and Rrm2) were found down- 

regulated in BMMs after CyaA treatment. Some down-regulated genes involved in cell- 

signalling included Rgs2 (-8-fold), Il6st (-12-fold), Racgapl (~ 15-fold) and Pbk (-30- 

fold). Tkl and U hrfl, genes associated with transcription, were down-regulated by -22-
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fold and -34-fold, respectively. Two genes associated with the mitochondrion {Clic4 and 

Cybb), 1 gene associated with cellular structure {Ckap2) and 2 genes associated with 

metabolism/biosynthesis (Psatl and Lpl) showed decreased transcription. There was a 

decrease in the transcription of several solute carrier transport genes. This was an 

interesting observation as there was also an increase in transcription of several different 

types of solute carrier transport genes (Appendix L.7). Other down-regulated genes 

included Tyms and Asns (both -12-fold), Trib3 (4.5-fold), Ect2 (> 6.5-fold) and Mthfd2 

(-15-fold). M icroanay analysis also identified 276 hypothetical transcripts or transcripts 

with unknown function (Visit http://www.gti.ed.ac.uk/GPX/. accession number GPX- 

00050.1) which were up- or down-regulated.

In summary, there were about 1000 genes that either were up- or down-regulated 

after treatment for 24 h with CyaA (> 3-fold, P < 0.01), but there were clear differences in 

the types of genes up- and down-regulated. Generally, there was an increase in expression 

of pro-inflammatory genes and genes that coded for receptors as well as increased 

transcription of genes associated with signalling pathways but there was decreased 

transcription of many genes involved in all aspects of cell function. Most strikingly, there 

was a substantial down-regulation of many genes involved in cell proliferation.

3.10.4.1.1 Morphology of BMMs in response to CyaA treatment

The morphology of BMMs after treatment with CyaA was different from that of 

control cells incubated with urea alone (Fig. 50). A majority of the BMMs treated with 

urea alone for 24 h appeared to be actively differentiating or proliferating as indicated by a
■

swollen cell body and two (or three) short processes (Fig. 50A). In contrast, CyaA treated 

BMMs showed a spherical morphology with ruffled membranes. These cells also produced 

long and thin processes (Fig. 50B) which were distinctly different from the protruding 

arms of urea-treated BMMs (Fig. 50A).

3.10.4.2 Gene responses to CyaA* treatment

After treatment of BMMs with 20 ng/ml of CyaA* for 24 h, no changes in 

transcription were detected using the same criteria as for CyaA treatment (Section 3.9.4.1)

i.e. a P  value, < 0.01 and minimum 3-fold change in gene transcription. Therefore, a lower 

criterion was used (P value < 0.05 with a minimum of 2-fold change). With this criterion, 

only 2 genes passed. Immunoresponsive gene 1 (Irgl, [Affy ID, 142738l_at]) and 

acyloxyacyl hydrolase (Aoah [Affy ID, 1450764„at]) were up-regulated by 4.3-fold (P 

value, 0.002) and 2.17 (P value, 0.0006), respectively, after CyaA* treatment.
'7:

http://www.gti.ed.ac.uk/GPX/
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Figure 50 BMM morphology after treatment with urea buffer or CyaA (in urea 

buffer) for 24 h

Cell morphology of BMMs in DMEM/F12 medium after treatment for 24 h, at 37 °C and 

5% CO2 in a humidified atmosphere, with (A) urea buffer or (B) CyaA (20 ng/ml) in urea 

buffer. Arrow 1 indicates a typical appearance of a proliferating cell after urea buffer 

treatment - note short processes on opposing sides of the cell body. Arrow 2 shows a 

rounded cell with an irregular ‘ruffled’ membrane after CyaA treatment -  note the 

production of long and thin processes from the cell bodies. The inserts in (A) and (B) are 

enlarged images of BMMs treated with urea and CyaA, respectively.



Yiu Chong Gordon Cheung, 2006 172

# % '



shown).

not shown).

Yiu Chong Gordon Cheung, 2006 173

3.10.4.2.1 Morphology of BMMs in response to CyaA* treatment

After treatment of BMMs with 20 ng/ml of CyaA* for 24 h, BMMs treated with 

CyaA* showed similar cell morphologies to BMMs treated with urea buffer alone (data not

3.10.4.3 Gene responses to proCyaA* treatment

After treatment of BMMs with 20 ng/ml of proCyaA* for 24 h, no genes were 

found up- or down regulated compared with the urea control even with the less stringent 

criteria of P  < 0.05 and a minimum of 2-fold change.

3.10.4.3.1 Morphology of BMMs in response to proCyaA* treatment

After treatment of BMMs with 20 ng/ml of proCyaA* for 24 h, BMMs treated with 

proCyaA* showed similar cell morphologies to BMMs treated with urea buffer alone (data

I
I
.-■S

: 7.

)



Yiu Chong Gordon Cheung, 2006 174

IChapter 4 

Discussion - CyaA structure and function

4.1 CyaA preparation
In order to reduce the levels of LPS further in the final purified CyaA preparations 

than described previously (MacDonald-Fyall et a l, 2004), a slightly different purification 

protocol was devised. This is important because LPS has immunomodulatory, pro- 

inflammatory and adjuvant properties. In addition, LPS synergises with CyaA and may 

therefore influence its activity in vitro and in vivo (Ross et a t, 2004). A majority of the 

LPS was removed from the inclusion bodies by increasing the number of wash steps. In 

addition, two washes with the detergent, CHAPS, was also a cheaper alternative to n- 

octylpyranoglucoside, as used previously by MacDonald-Fyall et a l (2004). CHAPS also 

successfully removed contaminating proteins as well as LPS from the inclusion bodies 

prior to DEAE-Sepharose and phenyl-Sepharose purification. The LPS levels within the 

purified CyaA preparations from E. coli BL21/DE3 were all extremely low, <0.1 EU/p.g 

protein as deduced by the chromo genic LAL assay. However, there was a slight 

discrepancy with the LPS levels between the chromogenic and gel clot assays, such that 

the gel clot LAL assay produced values slightly greater than the chromogenic LAL assay. 

This may have been due to the fact that the gel clot LAL is a semi-quantitative assay and 

the values given are the average of two values whereas the chromogenic assay is 

quantitative producing one value from a standard curve. Nevertheless, both assays 

confirmed that the levels of LPS in the CyaA preparations from small- and large-scale 

purification were significantly lower than those reported previously (MacDonald-Fyall, 

2002) which ranged from 14 -  257 EU/pg protein. The problem of LPS contamination in

the CyaA preparations was overcome by the use of E. coli BL2I/DE3 IpxM strain. CyaA
;

was expressed and purified successfully from this strain and the CyaA preparations were 

similar to that of CyaA expressed from the parent strain. Moreover, the IL-6 release assay 

showed that CyaA expressed from the E. coli BL21/DE3 IpxM induced significant less IL- 

6 release from MM6 cells compared with CyaA expressed from the parent strain despite 

containing similar levels of LPS. The use of CyaA expressed from E. coli BL21/DE3 IpxM 

would be ideal for future in vivo studies. In this study, large-scale purification of the 

different CyaA forms expressed from the E. coli BL21/DE3 parent strain allowed 

subsequent in vitro and in vivo studies to be done using the same batch for all experiments, 

for maximum consistency.
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4.2 The roles of enzymic activity and acylation for CyaA function
The MTT and LDH release assays were compared to detect the cytotoxicity of 

CyaA towards J774.2 cells. Only CyaA and CyaA* were cytotoxic and haemolytic and no 

activity was detected in these assays with proCyaA or proCyaA* up to a concentration of 

10 pg protein/ml. CyaA* required a greater concentration of calcium for cytotoxicity as 

shown by the severely reduced ability of CyaA* to kill J774.2 cells in RPMI medium 

compared with the marked increase in cytotoxicity when assayed in DMEM or RPMI 

supplemented with various amounts of calcium. CyaA* at concentrations below 1 pg/ml in 

DMEM was not as cytotoxic as CyaA in the MTT assay after incubation with J774.2 cells 

for 2 h but induced greater LDH release, and at a faster rate, than CyaA at the same 

concentrations (Fig. 21). After incubation for 24 h, only CyaA showed any cytotoxicity, at 

concentrations below 0.4 pg/ml in both the MTT and LDH release assays (Fig. 24). This 

killing at very low toxin concentrations may be related to the fact that caspase 3/7 activity 

was detected in J774.2 cells after incubation for 24 h with similar low concentrations of 

CyaA (Fig. 25B). Induction of apoptosis by CyaA has been reported previously (Khelef et 

al, 1993b; Khelef and Guiso, 1995; Bachelet et a l, 2002; Hewlett et a l, 2006). In 

contrast, the enzymically-inactive form, CyaA*, did not induce caspase 3/7 activity and 

was less efficient at killing J774.2 cells at low toxin concentrations. CyaA* could only kill 

cells at a toxin concentration greater than 0.1 pg/ml suggesting that a ‘quota’ of toxin 

molecules had to be present in order to kill cells in a manner which would lyse cells and 

release LDH. The possible explanation for this is the ability of CyaA* monomers to self­

associate to create oligomeric pores. Native CyaA produced dose-response curves in the 

MTT and LDH assays similar to CyaA* at toxin concentrations greater than 0.5 pg/ml 

after incubation for 24 h with J774.2 cells in DMEM, suggesting that native CyaA may 

also be oligomeric in these conditions.

In agreement with Hewlett et a l (2006), the present study showed that the type of 

cell killing was dependent on toxin concentration whereby, at low toxin concentrations (< 

0.1 pg/ml), CyaA principally kills by apoptosis, but at higher toxin concentrations (> 0.1 

pg/ml), CyaA efficiently lyses cells. It is likely that these two mechanisms overlap with 

each other at concentrations between 0.1 and 0.5 pg/ml. Time was an important factor for 

CyaA-mediated killing, particularly at low toxin concentrations (< 0.5 pg protein/ml) as 

cell killing was only observed after 24 h but not after 2 h incubation with CyaA. The major 

difference between CyaA and CyaA* was the greater cytotoxicity exhibited by CyaA* at 

higher calcium concentrations. This may be related to a greater capacity to self-associate to 

form oligomeric pores as shown by the faster kinetics of cell killing by CyaA* compared 

to CyaA (Fig. 23). CyaA* required only increased calcium levels to become at least as
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cytotoxic as CyaA. In this regard, CyaA* may be considered functionally similar to HlyA, 

which lacks the enzymic AC domain. HlyA has a wide spectrum of calcium-dependent 

cytocidal activity against a variety of cells including human monocytes (Bhakdi et a l. à
1990) and T-lymphocytes (Jonas et a l, 1993).

This study confinned that AC activity was not required for haemolysis (Sakamoto

et a l, 1992) as both CyaA and CyaA* were equally haemolytic towards sheep erythrocytes 

in 1 mM CaCH (Table 7). However, maximal haemolytic activity by CyaA for sheep 

erythrocytes occurred at 1 mM CaCh but declined with increasing calcium concentrations 

(Figs. 19, 20). This confinns previous similar observations by Bellalou et a l (1990b) and 

Ehrmann et al (1991). It has been suggested that higher calcium concentrations may

interfere with its activity by promoting aggregation rather than oligomerisation (Rose et
-

a l , 1995). In contrast, CyaA* behaved differently. At concentrations of CaCL greater than 

1 mM, more extensive and faster haemolysis was observed (Figs, 19, 20). This greater
■

haemolytic activity may have been due to the fact that CyaA* requires a greater number of 

calcium ions for maximum activity (Figs. 19, 22) and may therefore be less susceptible to

J

calcium-mediated aggregation. Indeed, far UV CD analysis showed that CyaA completely 

changed structure upon the addition of 7.5 mM CaCE (-37% (3-strands) whereas CyaA*
:

showed only a small decrease of CD spectral amplitude between 200 - 220 nm. This 

suggests that CyaA is more sensitive in sequestering calcium for changes in secondary 

structure compared with CyaA* to the extent that an entirely different structure is formed 

at CaCh concentrations > 7.5 mM (Fig. 28A). Although the highest concentration of CaCE 

used in HH buffer was 3 mM, the presence of several other salts may have helped facilitate

Î

aggregation of CyaA. It is noteworthy in this context that concentrations of CaCE used for 

haemolysis range from 1 mM to 10 mM (Westrop et a l, 1997; Martin et al, 2004; Vojtova 

et a l, 2006) malring it difficult to compare the haemolytic activity of CyaA from different 

laboratories.

The present data and that of Prior et a l (2005) showed that the concentration of 

CyaA required for 50% LDH release from J774.2 cells after incubation for 2 h when 

assayed in DMEM was greater than the concentration required for 50% killing by CyaA in 

the MTT assay when assayed in DMEM (Fig. 21). This could in part be explained by the 

lag period required for LDH release whereas killing measured by the MTT assay occurred 

without a lag period (Fig. 23). It is known that upon exposure of cells to CyaA, cAMP 

accumulation is almost immediate and the accumulation of intracellular CyaA proceeds 

without any noticeable lag period (Farfel et a l, 1987; Gentile et a l, 1988; Gordon et a l,

1989). Killing, measured by the MTT assay, may therefore reflect accumulation of the 

toxin within the cell. It is noteworthy that AC enzymic activity is not required for the

Î
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killing measured by the MTT assay as CyaA* is as active as CyaA, at higher calcium 

concentrations, and in fact has faster kinetics (Fig. 23). The requirement for greater toxin 

concentrations to kill 50% of cells in the LDH assay also suggests that formation of pores 

large enough to release LDH involves more toxin molecules in an oligomeric foim. The 

immediate onset of cell death in the MTT assay may well be due to the ability of CyaA to 

uncouple oxidative phosphorylation of mitochondria (Bachelet et a l, 2002) which is 

believed to be the basis for the MTT assay (Slater et a l, 1963). The present data indicate 

that CyaA* acts in a similar way, at an even faster rate (Fig. 23) showing that this 

cytotoxic effect is independent of AC enzymic activity.

Other reports have indicated that the non-enzymically active form of CyaA, 

equivalent to CyaA* used here, were non-cytotoxic (MacDonald-Fyall et al, 2004; Prior et 

al, 2005; Hewlett et a l, 2006) or required high protein concentrations (Boyd et a l, 2005; 

Basler et a l, 2006a) for lysis of J774.2 cells, yet were haemolytic towards erythrocytes 

(Hewlett et a l, 2006). In the present study, cytotoxicity of CyaA* alone was dependent on 

calcium for oligomerisation and pore-formation and it might be expected that this type of 

activity would be operative against both erythrocytes and macrophages. Hewlett et al 

(2006) reported that their enzymically-inactive CyaA form was cytotoxic, but not 

apoptotic, towards J774.2 cells when assayed in DMEM, although this apparently occurred 

only after pre-incubation with a monoclonal antibody which blocked delivery of the N- 

terminal enzymic domain into target cells. It would therefore be of interest to investigate if 

the lack of cytotoxicity of enzymically-inactive CyaA forms by other groups can be 

restored in the presence of high calcium concentrations.

In the present study, proCyaA was not cytotoxic or apoptotic towards J774.2 cells 

(data not shown) which is in contrast to the findings of Boyd et a l (2005) and Hewlett et 

al (2006). However, although proCyaA and proCyaA* were inactive up to 10 [.ig 

protein/ml in the cytotoxicity and haemolysis assays used here, proCyaA was able to 

inhibit the zymosan-stimulated oxidative burst by J774.2 cells with 50% inhibition at a 

concentration of 1.48 pg/ml. Inhibition of the zymosan-stimulated oxidative burst was the 

most sensitive assay used to assess cytotoxicity in the present study, with CyaA giving 

50% inhibition at 0.003 pg/ml. Thus, this assay provided evidence that proCyaA was able 

to intoxicate cells, albeit at a level some 500-fold less than CyaA in the oxidative burst 

assay. This agrees with the work of Hewlett et a l (2006) who showed that at toxin 

concentrations greater than 1 pg/ml, non-acylated CyaA was able to increase cAMP levels 

in J774.2 cells. The fact that proCyaA* was ineffective and CyaA* was 500-fold less 

effective than CyaA, agrees with previous work that this inhibition is cAMP dependent 

(Pearson et a l, 1985). CyaA* may inhibit the zymosan-stimulated oxidative burst by
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causing a loss of cell membrane integrity by the production of pores. In addition, this 

inhibition could be due to the dissociation of the NADPH oxidase complex or by 

interference with phosphorylation of the cytosolic protein components (El-Benna et a l,

2005). Thus, taken together, our data imply that the efficient inhibition of the zymosan-
;

stimulated oxidative burst and the induction of apoptosis in J774.2 cells is dependent on 

both acylation and the AC enzymic activity of CyaA but that acylation is most important 

for general cytotoxicity, implying that this effect is dependent on pore-formation at toxin 

concentrations above 0.1 pg/ml.

To assess whether conformational changes related to the interaction with calcium in 

the different CyaA forms could account for the temporal and quantitative differences in 

cell killing by CyaA or CyaA* observed in vitro, the different CyaA forms were subjected 

to analysis by far UV CD, near UV CD and fluorescence. The spectra of CyaA observed in 

the presence and absence of 1 mM CaClz were comparable to previous CD spectra with 

regard to spectral intensities (Rose et a l, 1995; Bauche et a l, 2006). However, our 

analyses suggested there were, in general, only small changes in the secondary structure 

contents in the presence of CaCl% (Table 8). CyaA*, as well as the two non-acylated forms, 

showed similar ehanges in spectra compared with CyaA, suggesting that they were all 

similar in structure and that the addition of calcium induced the same type of changes. In 

addition, a high resolution tertiary structure model for the N-terminal domain of CyaA* 

was constructed, with the help of Dr. Olwyn Byron (Division of Infection and Immunity, 

University of Glasgow), based on its sequence homology with the N-terminal domain of 

native CyaA (for which an atomic resolution structure is available - lYRT.pdb (Guo et al, 

2005)). From this model, it was apparent that the di-peptide insertion in the N-terminal 

domain did not affect the overall protein folding or structure, as it was comparable to that 

of native CyaA (data not shown).

Although, there were little changes in the estimated secondary structure on addition 

of CaCli, the spectral changes from far UV CD observed on addition of CaCl2 to the CyaA 

forms may have been due to a rearrangement or reorientation of the secondary structural 

elements with respect to each other (Fig. 28C). The near UV CD and fluorescence data 

pointed to a calcium-induced conformational change in CyaA which resulted in partial 

burial and immobilisation of aromatic side chains. It has been demonstrated that small 

backbone conformational distortions can lead to marked changes in CD signal (Manning et 

al, 1988). Indeed the ratio of ellipticities at 222 nm and 208 nm moves from a value of 

0.73 to 1.10 for all CyaA forms on addition of CaCh. Such a change would be consistent 

with isolated helices interacting to form structures of a coiled coil type (Lau et a l, 1984;

Zhou et a l, 1992) or could indicate the rearrangement of (3-structures into a helical-like
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pattern (Perczel and Fasman, 1992) of the type proposed for a parallel (3-roll motif within 

CyaA (Rose et a l, 1995). Studies on the alkaline protease from P. aeruginosa containing 

similar nonapeptide sequence repeats have shown that these repeats are involved in 

calcium binding and give rise to a parallel (3-helix or parallel P-roll structure (Baumann et 

a l, 1993). Similarly, chemically-synthesised proteins containing 6 glycine-rich repeats 

have been shown to give rise to a marked increase in the ellipticity value obtained at 220 

nm following calcium binding and analysis by circular dichroism (Lilie et al, 2000). One 

of the weaknesses of circular dichroism as a structural technique is the fact that 

contributions from (3-structures are generally masked in a/(3 proteins by more dominant n 

to 71* and n to tc* transitions contributed by the a-helices. For this reason, it is difficult to 

distinguish whether the structural rearrangements observed are due to those involving a- 

helices, (3-structures or indeed both. Some model proteins containing all (3-structures have 

been shown to give rise to CD spectra which resemble oc/(3 proteins. In the case of the 

parallel P-roll structure, it would not be surprising if the P-helical nature of this motif gave 

rise to a spectrum resembling that of a-helices given the number of P-tums present in this 

conformation.

An interesting observation from the far UV CD spectra was that there was an 

approximately 2-fold decrease in spectral amplitude and a small change in spectral shape 

when CyaA was diluted from 0.5 mg/ml to 0.05 mg/ml (Fig. 28C). This type of spectral 

change has been previously observed in the case of dilution of a solution of a 43-residue 

model peptide derived from the N-terminal domain of tropomyosin (Greenfield and 

Hitchcock-DeGregori, 1993), and has been interpreted as reflecting dissociation of a 

coiled-coil structure to form isolated helices. In the case of CyaA, the far UV CD data may 

indicate that CyaA can assume both monomeric and oligomeric forms in solution, 

depending on the protein concentration. This would help support the concept that a 

monomeric form of CyaA induces cAMP accumulation and apoptosis in J774.2 cells at 

low toxin concentrations, whereas at greater concentrations, an oligomeric form of CyaA 

kills cells through pore formation as indicated by the in vitro experiments in this study. Lee 

et al. (2005) demonstrated the self-association of CyaA monomers, a process that they 

indicated was dependent on acylation and not calcium but the fact that the spectra of 

proCyaA and proCyaA* were identical to that of native CyaA in the presence and absence 

of calcium suggests that non-acylated CyaA is oligomeric in solution. Acylation may only 

facilitate interaction with target cells expressing the CR3 receptor (El-Azami-El-Idrissi et 

a l, 2003).

In an attempt to investigate the behaviour of CyaA in solution, analytical 

ultracentrifugation was used. Preliminaiy SE studies indicated that dialysed CyaA was not
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a single homogenous species in solution as the data revealed that there were many different 

molecular weight species in the absence and presence of CaCL. Both SE and SV analyses 

were affected by thermodynamic non-ideality in the absence of CaCL (Sections 3.4.10,2 

and 3.4.10.3). Non-ideality can be caused by at least two factors: 1. repulsion between 

charged molecules (proteins) that are not shielded by solvent counter-ions; 2. size- 

exclusion effects arising from extended/elongated conformations. In both cases, the 

proteins do not compact efficiently when a centrifugal force is applied, thus interfering 

with the data analysis. In addition, the greater the centrifugal force, the greater the effect of 

non-ideality. The effects of non-ideality are decreased when less protein is present. This 

was particularly evident for CyaA in the absence of CaCL whereby the sedimentation 

coefficient of the main peak increased as the protein concentration was decreased (Fig. 

31 A). In addition, a Mw of 140 kDa was observed, but not 170 kDa (the Mw of CyaA), The 

addition of NaCl, which would deliver monovalent Na"*" and Cl cations could help to 

reduce the effects of non-ideality by shielding the proteins so that the charges present on 

the surface of the proteins cannot repel each other as significantly. This would also indicate 

whether the perceived non-ideality is being caused by charges on the protein surface or by 

elongation of CyaA. It is noteworthy that interpreting the SE and SV data for CyaA in the 

presence of CaCL is not a simple matter. In addition to possibly helping to reduce the 

effects of non-ideality, CaCL also induces changes in CyaA structure (Hewlett et al., 1991; 

Rose et al., 1995; Section 3.4.9) that may also influence the data analysis. Therefore, the ■

results from these studies must be interpreted with caution.

SE analyses of CyaA in the absence and presence of 1 mM CaCL, indicated the

appearance of many Mw species ranging from 20 to > 600 kDa. Studies have shown that 

CyaA can undergo auto-proteolysis (Ladant et al, 1986; Rogel et al, 1988; Bellalou et al, 

1990a) to release a 40 kDa fragment which has AC enzymic activity (Gilboa-Ron et al, 

1989). The fact that a 40 kDa Mw species, as well as other species at 20 -  80 kDa, were 

detected by SE analysis suggests that CyaA had degraded. Reducing centrifugation times 

could reduce degradation. On the other hand, high Mw CyaA species were detected in both 

the absence and presence of calcium, although more species were identified in a solution of 

dialysed CyaA containing I mM CaCL compared with no CaCL. Such high Mw species 

could be obtained by the formation of oligomers composed of two or three CyaA 

monomers. This is in agreement with other studies (Iwaki et al, 1995; Lee et al, 2005) 

that have suggested the requirement of 2 -  4 CyaA monomers for pore formation in target 

membranes. However, the presence of several other species, which do not fit with the 2 or 

3-mer model (Fig. 30 Table), may be due to aggregation between monomers and 

degradation products (Rose et a l, 1995). Interestingly, amongst the different species, one

II,

I
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at 170 kDa was observed in the presence of CaClg suggesting that CyaA may freely 

associate and dissociate between an oligomeric and monomeric form in solution in the 

presence of calcium.

These SV data correlated with the SE data suggesting that CyaA did not occur as a 

single species in solution as indicated by the numerous peaks at high toxin concentrations.

SV analysis of CyaA, in the presence of CaCL, at lower toxin concentrations (0.35 mg/ml)

still showed the presence of several peaks (Fig. 3 IB). To answer if CyaA could exist as a |

single Mw species at low concentrations, as suggested by CD studies, further studies could f  ; 

be performed with AUC using toxin concentrations lower than 0.35 mg/ml. Until the 

crystal structure of CyaA is solved, the mechanism of the association of the CyaA 

monomers remains elusive.



Yiu Chong Gordon Cheung, 2006 182

Chapter 5

Discussion - Protective and immunological responses in mice to 

ACV plus different CyaA forms

One of the objectives of this study was to assess the relative contributions of the 

AC enzymic activity and the pore-forming/invasive features of CyaA to the protective and 

adjuvant properties when co-administered with an ACV. This was done by using four 

different purified recombinant forms of CyaA. The properties of these different CyaA 

forms have been discussed in Chapter 4. Importantly, all the CyaA forms in the present 

study contained very low levels of LPS which, at the concentrations used, minimised any 

potential synergistic effect of CyaA with LPS (Ross et a l , 2004).

5.1 Protection experiments
In this present study, post-translational acylation of CyaA was essential for the 

enhanced protective effect towards the ACV against intranasal challenge with B. pertussis. 

Mice immunised intraperitoneally twice with ACV + CyaA or CyaA*, but not with the two 

non-acylated forms, proCyaA or proCyaA*, had reduced bacterial numbers in the lungs at 

7 days post-challenge compared with the ACV alone group. Significantly more protection 

(F < 0.05) was afforded when CyaA* (CyaA which lacks AC enzymic activity) was co­

administered with ACV compared with CyaA and the enhanced protective effect of CyaA* 

was found to be dose-dependent. However, the protection experiment with ACV plus 

different forms of CyaA was performed only once. Thus, whether CyaA* could 

reproducibly enhance the protection afforded by the ACV to a greater extent than CyaA 

was not tested. On the other hand, the ability of CyaA* to enhance the protective effect of 

ACV was tested three times. The extent of reduction in bacterial colonisation of the lungs 

and tracheas between mice that had received ACV alone or ACV + CyaA* (25 pg/dose) 

was variable (logio reductions of 1.38 (Section 3.5.1), 2.49 (Section 3.5.2) and 1.65 

(Section 3.5.3)) due to the nature of the in vivo bioassay but all three independent 

experiments showed a similar trend such that the bacterial counts in mice immunised with 

ACV + CyaA* was statistically lower compared with those of the ACV control group (P < 

0.05).

Mice immunised with 25 pg of the CyaA forms were not significantly protected 

against intranasal challenge. This indicated that the enhanced protective effect of CyaA* 

for ACV was more than the sum of the protective effects of CyaA* and ACV alone. The 

lack of protection afforded by any of the CyaA forms alone contrasted with previous
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reports where recombinant CyaA was shown to act as a protective antigen in mouse 

models of B. pertussis infection (Betsou et a l, 1993; Hormozi et al., 1999). Although there 

was little protection provided by any of the CyaA forms in our intranasal challenge model, 

a clear protective effect was seen in mice by all of the CyaA forms in an aerosol challenge 

model with a lower challenge dose. However, only mice immunised with proCyaA, 

proCyaA* and CyaA were significantly more protected than the PBS control group. 

MacDonald-Fyall (2002) showed that in mice immunised intraperitoneally once with CyaA 

or CyaA* there was a 50% reduction in bacterial numbers in the lung by 2-fold compared 

with the PBS control group after aerosol challenge with B. pertussis. This agrees with 

previous results from intranasal challenge models where CyaA protected mice when a 

lower challenge dose was used (Guiso et a l, 1991; Khelef et a l, 1992; Betsou et a l, 1993; 

Hormozi et a l, 1999; MacDonald-Fyall, 2002). Non-acylated proCyaA and proCyaA* also 

protected mice against B. pertussis challenge in the aerosol model. This contrasts with 

previous work where proCyaA was reported to be non-protective, even with a low 

intranasal challenge dose (Khelef et a l, 1992; Betsou et a l, 1993; Hormozi et a l, 1999). 

The reasons for this discrepancy may be related to the longer immunisation schedule (56 

days) adopted for our protection experiment, the route of immunisation, and differences in 

antigen dose, adjuvant and mouse strains compared with those used previously (Betsou et 

a l, 1993; Hormozi et a l, 1999). The protection experiment with the different CyaA forms 

alone and aerosol challenge was performed only once. Thus, whether the different forms of 

CyaA could reproducibly enhance the protection against B. pertussis aerosol challenge was 

not determined. A possible explanation as to why mice immunised with the different CyaA 

forms, in the presence of alum, were protected in the aerosol challenge could have been 

because of the high total IgG anti-CyaA antibody levels (Section 3.6.3.1, Table 13). The 

spleen cells and peritoneal macrophages from mice immunised with CyaA* alone were 

also responsive to antigen stimulation (Section 5.2) suggesting that both humoral and cell- 

mediated responses to CyaA could have a role in protection. However, this warrants 

further investigation.

5,2 Humoral and cell-mediated responses
The enhanced protection in mice immunised with ACV + CyaA* against B. 

pertussis intranasal challenge did not correlate with the total IgG antibody levels to FHA, 

PRN or PT because there were no statistically significant differences between groups that 

received ACV alone compared with the combination groups. This again contrasts with 

previous work (Hormozi et a l, 1999; MacDonald-Fyall et a l, 2004; Ross et a l, 2004) 

which showed that CyaA or CyaA* could act as an adjuvant by enhancing the levels of 

total IgG antibodies to co-administered antigens. This discrepancy may be due to the fact
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that, in one report, the data were obtained after a single vaccination via the intraperitoneal 

route (MacDonald-Fyall et a l, 2004) or, in the other reports, where two vaccinations were 

used, a smaller dose of CyaA or CyaA* was administered subcutaneously (Hormozi et a l , 

1999; Ross et a l, 2004). In addition, the ACV used here contained alum as adjuvant which 

may have increased the antibody levels to FHA, PRN and PT irrespective of the presence 

of the CyaA form. The levels of anti-CyaA total IgG antibodies were significantly (P < 

0.05) lower in mice that were co-immunised with ACV plus CyaA forms compared with 

mice immunised with the CyaA forms alone in the presence of alum (Tables 10, 13). 

However, mice immunised with different CyaA forms in the absence of alum produced 

similar levels of anti-CyaA total IgG antibodies to mice immunised with ACV plus the 

different CyaA forms. This might suggest that the increased levels of anti-CyaA total IgG 

antibodies were due to the types and amounts of aluminium compounds in the immunising 

preparations. Alum (containing Al(OH) 3  and AI2 O3) was used with CyaA forms alone, 

compared with the ACV which contained Al(OH) 3  only and where the CyaA forms added 

did not contain alum. Alternatively, the differences in anti-CyaA antibody titres may be 

due to antigenic suppression which was observed in other cases of combined vaccines 

(Vidor et a l, 1999). For example, when the Haemophilus influenzae capsular 

polysaccharide (conjugated to tetanus toxoid) vaccine is co-administered with DTaP, 

antibodies to the polysaccharide were significantly reduced in infants compared with those 

who received the vaccines separately (Vidor et a l, 1999). Further investigation is needed 

to confirm the reasons for the differences in anti-CyaA total IgG titre.

AC Vs have been shown to induce high levels of anti-pertussis IgGl antibodies in 

mice (Barnard et a l, 1996) and this was also observed in this study. However, the presence 

of the different CyaA forms did not alter the levels of anti-FHA, -PRN or -PT IgGl 

antibodies in mice although mice immunised with ACV + CyaA* produced significantly 

greater anti-CyaA IgGl antibodies than the ACV + proCyaA* group. Mice immunised 

with ACV + CyaA* also promoted significantly higher levels of anti-PRN IgG2a antibody 

production compared with mice immunised with ACV alone. IgG2a has been implicated in 

opsonisation and complement fixation of B. pertussis and associated with superior 

protection (Mahon et a l, 1997; Mills et a l, 1998). PRN has been reported to play a role in 

adhesion of B. pertussis to mammalian cells (Everest et a l, 1996). Therefore, increased 

levels of anti-PRN IgG2a antibodies could presumably decrease the ability of B. pertussis 

to adhere and could promote its clearance from the respiratory tract.

Humoral immunity alone may not be sufficient to confer long-teim protection 

against B. pertussis infection and the importance of cell-mediated immunity in the 

clearance of B. pertussis has been demonstrated (Mills et a l, 1993; Mahon et a l, 1996;
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Barbie et a l, 1997; Ryan et a l, 1997a; Leef et a l, 2000). ACVs typically induce a Th2- 

associated T-cell response in mice, characterised by high levels of anti-pertussis IgGl 

antibodies as well as Th2-associated cytokines, including IL-4 and IL-5, with little LFNy 

production (Redhead et a l, 1993; Barnard et al, 1996; McGuirk and Mills, 2000b). In 

humans, ACVs produce a more mixed Thl/Th2 response, including IL-4, IL-5, IFNy and 

IgG2a production (Ausiello et a l, 1997; Ryan et a l, 1998b). Cytokines secreted by 

immune effector cells, such as T-cells, play a key role in determining IgG isotype 

production and the outcome of immune responses to infectious agents. In the present study, 

the cytokine profiles of spleen cells and NO production from peritoneal macrophages from 

immunised mice after stimulation with various antigens were rather complex but some 

conclusions could be drawn from these data.

The spleen cells of mice immunised with ACV plus the non-enzymic CyaA forms 

(CyaA* or proCyaA*) responded well to antigen stimulation by secreting higher levels of 

IL-5, IL-6, IFNy and GM-CSF than cells from mice immunised with ACV alone. CyaA*- 

stimulated spleen cells from mice immunised with CyaA* alone were less able to produce 

IFNy and GM-CSF upon antigen stimulation than spleen cells from mice immunised with 

ACV + CyaA* although they produced comparable levels of IL-5 and IL-6. Thus, the 

proCyaA* and CyaA* forms of CyaA appeared to be promoting a mixed Thl/Th2 

response to B. pertussis antigens, which was most pronounced with the ACV + CyaA* 

group. In particular, spleen cell production of IFNy and GM-CSF was greatly enhanced 

compared to that obtained from mice immunised with ACV or CyaA* alone, indicating 

that proCyaA* and particularly CyaA* had an adjuvant effect for production of these 

cytokines when administered with ACV. Spleen cells from mice immunised with ACV + 

proCyaA or ACV + CyaA responded to antigen stimulation in a similar way to cells from 

ACV-immunised mice producing little or no IFNy or GM-CSF.

GM-CSF, produced principally by fibroblasts, monocytes/macrophages, endothelial 

cells and T cells (Liles and Van Voorhis, 1995), has been shown to activate monocyte/
I

macrophages and neutrophil PMNLs in vitro and to promote maturation of DCs in vivo 

(Wang et a l, 2000). Such effects include enhanced chemotaxis (Wang et a l, 1987), 

phagocytosis (Fleischmann et a l, 1986), respiratory burst and superoxide anion generation 

(Weisbart et a l, 1987). They also include adjuvant effects to boost maturation of dendritic 

cells for increased antigen presentation (Bowne et al, 1999; Lu et a l, 2002, Wang et a l,

2000), to promote a protective Thl-orientated immune response in mice vaccinated with a 

BCG vaccine (Wang et a l, 2002) or Chlamydia trachomatis elementary bodies (Lu et a l,

2002) and to promote an antigen-specific inflammatory response to aerosolised ovalbumin 

characterised by the production of the Th2-associated cytokines IL-4 and IL-5 (Stampfli el
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al, 1998). Thus, enhanced GM-CSF production due to the presence of CyaA* in ACV 

could enhance presentation of the antigens and promote both Thl and Th2 immune 

responses.

Higher levels of IL-8, a pro-inflammatory cytokine with lymphocyte chemo- 

attractant properties (Baggiolini et a l, 1994), were detected from HKC-stimulated 

peritoneal macrophages from mice immunised with ACV plus the different CyaA forms 

compared with the CyaA* control group. Interestingly, IL-8 mRNA has also been detected 

from B. pertussis-inÏQci&à bronchial epithelial cells (Belcher et a l, 2000), Both IL-8 

(Detmers et a l, 1991) and GM-CSF (Williams et a l, 1995) have been reported to promote 

the expression of the CD 1 lb/CD 18 (CR3) receptor found on the surface of neutrophil 

PMNLs and monocytes. CR3 is a receptor for several B. pertussis virulence-associated 

factors, including FHA, PRN and CyaA (Everest et a l, 1996; Mahon et a l, 1996; 

Guermonprez et a l, 2001). Therefore, it is conceivable that increased CR3 expression, that 

might result from greater GM-CSF production, could enhance phagocytosis of B. pertussis. 

In addition, neutralising anti-CyaA antibodies induced by mice immunised with ACV + 

CyaA or ACV + CyaA* (MacDonald-Fyall et al, 2004; Section 3.6.1.2.1) would block the 

inhibitory action of CyaA on neutrophil PMNLs (Mobberley-Schuman et a l, 2003, 

Weingart and Weiss. 2000; Weingart et a l, 2000) and also enhance clearance of the 

organism from the lungs.

Macrophages from mice immunised with ACV + CyaA* produced more NO after 

HKC and antigen stimulation than macrophages from mice immunised with CyaA* alone 

or ACV alone (Fig. 37), suggesting that these macrophages are highly activated (Torre et 

al, 1996; Xing et a l, 1998; Canthaboo et a l, 2002). Thus, increased levels of GM-CSF 

and NO in mice immunised with ACV + CyaA* could also enhance the uptake and 

presentation of antigens through the activation of antigen-presenting cells, such as 

peritoneal macrophages (Xing et a l, 1999) and dendritic cells (Bowne et a l, 1999; Wang 

et a l, 20000).

The HKC preparation was, except for IL-5, by far the best stimulant for cytokine 

production from spleen cells and NO production from macrophages. In some cases, 

cytokine levels from the spleen cells of PBS control mice were at levels similar to those 

from spleen cells from mice immunised with the antigen preparations, when stimulated 

with HKCs. This is most likely due to the high levels of LPS in the HKC preparation. LPS 

is a potent inducer of IL-12 in spleen cells (Mahon et a l, 1996). This cytokine was 

produced in large amounts by spleen cells from PBS control mice upon exposure to HKC. 

On the other hand, less IL-12 was released from cells from immunised mice upon antigen 

stimulation than from unstimulated cells. This may have been due to the presence of FHA
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in the PAgs antigen mixture as FHA has been shown to suppress IL-12 production in mice 

(McGuirk and Mills, 2000a). CyaA* treatment of spleen cells also appeared to suppress 

IL-12 production compared to unstimulated cells. It was clear that the level of LPS 

contamination in the PAg mixture or in the CyaA* preparation was insignificant, as little 

or no cytokine release was seen in the cells from the PBS control group upon stimulation 

with these antigens.

Small amounts of IL-1(3 were also detected from antigen stimulated-peritoneal 

macrophages from mice immunised with ACV plus the different CyaA forms and CyaA* 

alone but not from the ACV alone or PBS control groups. Greater levels of TNFa were 

produced from the macrophages of mice immunised with ACV + CyaA or CyaA* 

compared with the other groups. Indeed, IL-Ip and TNFa were both produced in greater 

amounts by the human monocyte cell line THP-1 after stimulation with WCV than with 

ACVs (Blood-Siegfried et ah, 1998) and the enhanced production of these two cytokines 

were believed to be attributed to LPS. Interestingly, in our study, HKC stimulation of 

macrophages did not induce IL-lp. However, the enhanced production of TNFa by 

macrophages of mice immunised with ACV + CyaA or CyaA* correlates with enhanced 

protection in these mice.

The data presented indicate that both CyaA and CyaA* have the ability to enhance 

the protective effects of an ACV, but they may act in different ways. AC enzymic activity 

and binding of a receptor by the toxin may have distinct modulatory effects on cells of the 

immune system. Bagley et a l (2002) reported that CyaA was a potent activator for 

maturation of human monocyte-derived dendritic cells and that this activity was dependent 

on the ability of CyaA to raise intracellular cAMP concentrations. Also, CyaA and non- 

acylated CyaA were reported to induce antigen-specific CD4^ Th2 and Trl regulatory 

cells, but an acylated, non-enzymic ally active form of CyaA, equivalent to CyaA* used 

here, was unable to act in the same way as the enzymically-active forms (Ross et a l, 2004; 

Boyd et a l, 2005), indicating that these effects were dependent on raised cAMP levels. 

The lack of adjuvanticity observed by Boyd et a l (2005) for their CyaA*-equivalent toxin 

may be related to a different route of immunisation or to the concentration of toxin used (1 

(ig/dose). Enzymically-inactive mutants of the E. coli cAMP-elevating heat-labile toxin 

(LT) have no adjuvanticity at very low doses but their adjuvanticities are enhanced by 

increasing their doses (Pizza et a l, 2001).

The AC enzymic domain of CyaA does not need to be active for efficient antigen 

presentation, as CyaA lacking AC activity and with T-cell epitopes inserted within the N- 

terminal AC domain can act as an efficient delivery vehicle to stimulate both cell-mediated 

and humoral immunity to these epitopes (Simsova et al, 2004). Delivery of viral and M.

Ë
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tuberculosis epitopes by AC-deficient CyaA generated both CD4^ and CD8  ̂ epitope- 

specific T cells (Simondon et a l, 1997; Mascarell et al., 2005; Wilkinson et a l, 2005). The 

CD4^ T cells were characterised as IFNy-producing Thl cells which indicated that

induction of these T-cell responses was by a mechanism not involving increased

Î
I
>s

intracellular cAMP production, such as cell-signalling events subsequent to receptor 

binding. Thus, whereas CyaA may favour induction of antigen-specific Th2-orientated 

responses via a mechanism dependent on increased intracellular cAMP, CyaA* appears to 

favour a more mixed Thl/Th2 response involving increased production of IL-5, IL-6, GM- 

CSF and IFNy from spleen cells and IL-8, TNFa and NO from peritoneal macrophages.

Boyd et a l (2005) reported that non-acylated CyaA was able to act as an adjuvant 

to increase total IgG responses to a co-administered antigen and to boost antigen-specific 

IL-4, IL-5 and IL-10 production, in vitro, by popliteal lymph node cells obtained from 

immunised mice. This is presumably because proCyaA can intoxicate target cells with low 

avidity (Boyd et a l, 2005; Hewlett et a l, 2006; Sections 3.4.4 (inhibition of the oxidative 

burst) and 3.4.5.1 (apoptosis)). The fact that alum was a constituent of the ACV used here 

may have masked any potential adjuvant effect that either of the proCyaA forms may have 

had towards the ACV. In addition, it would be of interest to investigate whether the 

proCyaA and proCyaA* forms could enhance the protective properties of ACV in the 

aerosol challenge model. It would also be informative to investigate whether the different 

CyaA forms could reproducibly protect mice against aerosol challenge with B. pertussis.

Ross et a l (2004) also demonstrated that LPS could synergise with CyaA to modulate the
:

pro-inflammatory response of macrophages and dendritic cells. Therefore, even though the 

CyaA preparations used here contained very low levels of LPS, it cannot be ruled out that 

there may have been some synergism between CyaA and LPS at the concentration of toxin 

used. This problem could be addressed using CyaA expressed in E. coli BL2I/DE3 IpxM 

that was shown to induce significantly less IL-6 secretion by MM6 cells compared with 

CyaA expressed from E. coli BL21/DE3. Urea could also be problematic for inclusion in 

vaccines. Some preliminary structural studies, using far UV CD, suggested that CyaA 

could be stably maintained in urea concentrations lower than 8 M urea (Fig. 29). A 

combination of both of these factors would allow the production of CyaA in a form more 

suitable for the inclusion in ACVs. However, further tests should be performed to evaluate 

the safety of CyaA* as a possible vaccine candidate as studies have shown that antibodies 

to CyaA can cross-react with mammalian AC (Monneron et a l, 1988). In addition, the in 

vivo bioassay used in this study may not have been sensitive enough to pick up the possible 

toxicity of the different CyaA forms (Prior et a l, 2005). Therefore, other more sensitive 

detection methods are required evaluate the possible toxicity properties of CyaA forms.
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In summary, these results show, for the first time, that the presence of enzymically- |

inactive CyaA form, CyaA*, can significantly enhance protection afforded by ACV in #
■ fr':

mice. The adjuvant properties of the CyaA* derivative suggest that it has potential as a 

vaccine component through enhancement of both Thl and Th2 immune responses.

::
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Chapter 6

The mechanisms by which CyaA mediates it cytotoxic effects on cells is largely 

unknown although cAMP-dependent signalling pathways are thought to play an important

Discussion -  Global gene responses in murine bone marrow- 

derived macrophages to different CyaA forms

role. Microarray technology was used to provide more information on the mechanisms 

mediated by CyaA upon exposure to bone maiTow-derived macrophages (BMMs). Since 

the BMMs express the CR3 receptor, these cell should be susceptible to CyaA intoxication.

The gene responses in BMMs in response to CyaA may also help us more fully understand 

the ways that B. pertussis causes damage during infection. BMMs, treated with 20 ng/ml of 

CyaA for 24 h, showed over 1000 significant changes in gene transcription compared with 

treatment with the same concentration of CyaA*, proCyaA* or with urea alone. The 

alteration of so many genes in BMMs after CyaA treatment is most likely due to the 

increase of cAMP caused by the invasive function of CyaA; no genes were altered in 

BMMs after treatment with proCyaA*. Only two genes were significantly altered by 

CyaA* and not by CyaA. These genes coded for Aoah (acyloxyacyl hydrolase) and Irgl 

whose expressions were both up-regulated by 2.17 and 4.3-fold, respectively. AOAH is an 

enzyme that hydrolyses acyloxyacyl bonds in the lipid A region of LPS, thereby 

detoxifying the LPS (Munford and Hall, 1989). By contrast, little is known about Irgl 

except that its expression is increased by LPS (Lee et a l, 1995) and that Irgl has also been 

detected in murine macrophages upon in vitro stimulation with Mycobacterium smegmatis 

(Basler et al, 2006b). The significance of up-regulation of these genes by CyaA* is 

unknown. It would be of interest to perform more microarray analyses with greater 

concentrations of CyaA* and proCyaA* to investigate the types of genes that are regulated 

by pore-formation and AC activity induced by CyaA, respectively.

6.1 CyaA causes up-regulation of genes involved in the activation of T cells

The transcription profile for BMMs treated with CyaA suggested an activated state 

as indicated by increased transcription of co-stimulatory molecules encoded by CD80 (B7- 

1) and CD86 (B7-2). APCs expressing CD80 and CD86 can both engage with CD28, 

expressed on T cells, which then helps to activate T cells in conjunction with the 

TCR/MHC class II complex (Section 1.6). Bagley et a l (2002) showed increased 

expression of both CD80 and CD86 in human monocyte-derived dendritic cells (DCs) 

upon exposure to CyaA for 20 h. By contrast, Boyd et a l (2005) failed to detect significant

Î



Yiu Chong Gordon Cheung, 2006 191

enhancement of CD86 expression on the cell surface of murine DCs after treatment for 24 

h with CyaA, although CyaA enhanced CD80 and MHC~II expression. According to our 

microan'ay data, MHC-II gene transcription was decreased after treatment for 24 h with 

CyaA and this agrees with a study by Kambayashi et al. (2001) who showed that cAMP- 

elevating agents suppressed the surface expression of MHC-II on murine bone marrow- 

derived DCs.

CD207, the mouse homologue of the human langerin receptor, was markedly up-

I;
A
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regulated by 141-fold. CD207 is a C-type lectin restricted to a subset of dendritic cells 

called langerhans cells (Takahara et a l, 2002). It is thought to interact with CDla to 

present non-peptide antigens, such as sugar-containing molecules found on bacterial 

membranes, to T cells (Hunger et a l, 2004). Surprisingly, CyaA induced the transcription 

of the integrin (%M gene, Itgam, which foims one half of the CR3 (CD 1 lb/CD 18) receptor 

although it was reported that CyaA was not able to increase CR3 expression on human 

neutrophil PMNLs in vitro (Mobberley-Schuman and Weiss, 2005). There was up- 

regulation (3.7-fold) of semaphorin 4a (Sema4A), a transmembrane protein which is 

preferentially expressed on bone marrow derived and splenic APCs, providing a co­

stimulatory signal to activate T cells (Kumanogoh et a l, 2002). Sema4A is also expressed 

on activated T cells and may promote conditions favourable for Thl differentiation in mice 

(Kumanogoh et a l, 2005). TREM-1, a member of the immunoglobulin superfamily, was 

up-regulated 50-fold. In the presence of bacteria or fungi, TREM-1 has been shown to be 

up-regulated on phagocytic cells in vivo and in vitro (Bouchon et a l, 2001). Moreover, 

human primary monocytes activated by TREM-1 have an improved ability to elicit T cell 

proliferation and production of IFNy (Bleharsld et a l, 2003).

6.2 CyaA induces inflammatory cytokine and chemokine transcription

6.2.1 IL-ip transcription

The genes encoding the pro-inflammatory cytokine, IL-lp (Illb), and its 

corresponding receptor, IUr2, and accessory protein, 111 rap, were significantly up- 

regulated. This is interesting because there was no IL-lp detected in the supemates of 

BMMs after treatment for 24 h with CyaA (data not shown). IL-ip is synthesised as a 

cytosolic 31 kDa precursor protein which must be cleaved by the IL-ip converting enzyme 

(ICE) to release the 17.5 kDa mature form of IL-ip (Wilson et a l, 1994). If IL-lp is not 

cleaved in BMMs, this would explain the lack of EL-ip detected in the supernates. A 

Western blot with monoclonal antibodies to full length or mature IL-ip could be 

perfonned on cell lysates to determine if this was the case. LPS is known to stimulate IL-

I
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ip  production and the possibility of residual LPS in the CyaA preparation inducing gene 

changes in this experiment is discussed in Section 6.6.

6.2.2 Chemokine transcription

CyaA altered the transcription of several types of chemokines in BMMs. The 

chemokine family is comprised of four subgroups: two important subgroups include the

CXC chemoldnes have an amino acid ‘X’ located between the first two conserved cysteine 

residues and are particularly chemotactic for neutrophil PMNLs whereas CC type 

chemokines do not have an amino acid between the first two conserved cysteine residues 

and are chemotactic for T cells and monocytes. Interestingly, Ccl4 (Mip-iP) and Ccl3 

(Mip-la) transcription was down-regulated by CyaA. Mice deficient in Ccl3 are more 

susceptible to Klebsiella pneumoniae infection (Lindell et a l, 2001) as well as a number of 

viral and parasitic infections (Salazar-Mather et a l, 2000; Olszewski et al, 2000). Thus, 

down-regulation of this chemokine by CyaA may facilitate B. pertussis infection. Other 

chemokines that were highly up-regulated included CxclJ (305-fold) and Cxcl5 (25-fold). 

Cxcl7 and Cxcl5 are both chemotactic and have been shown to promote adhesion and 

transmigration of neutrophil PMNLs in vitro (Schenk et a l, 2002; Chandrasekar et a l,

2003). However, Cxcl5 also has the ability to promote IL-lp mRNA transcription in rat 

cardiac-derived endothelial cells (Chandrasekar et a l, 2003). These chemokines are thus 

pro-inflammatory and their up-regulation by CyaA, which might encourage neutrophil 

influx, would seem to be counter-productive for the establishment of infection.

Sustained or excessive production of inflammatory cytokines, such as IL-lp, can 

have damaging consequences for the host such as enhancing the invasiveness of some 

bacteria by increasing tissue destruction (Sansonetti et a l, 1995). In response, the immune 

system has evolved systems to prevent excessive cytokine signalling. One group of 

cytokine-induced proteins, known as suppressors of cytokine signalling (SOCS) proteins 

alter cytokine signalling via feedback inhibition of the JAK/STAT signalling pathway 

(Alexander et al, 1999; Kovanen and Leonard, 1999). Indeed, Socs3 was up-regulated (P 

value = 0.0124) as well as the IL-1 receptor antagonist, Illrn. IL-lm binds to the same 

receptor as IL-1 a  and P (Hannum et a l, 1990) and does not activate signalling pathways, 

thereby, preventing the action of IL-1 a  and p. Furthermore, caveolin-1, a 22 - 24 kDa 

protein which has a multitude of functions which extend from the formation of caveolae on 

cell membranes to cell-signalling (Anderson, 1993), was up-regulated and has been shown 

to suppress IL-6 and TNFa inflammatory cytokine production by LPS-stimulated mouse 

macrophages in vitro (Wang et a l, 2006).



Yiu Chong Gordon Cheung, 2006 193

In summary, CyaA has a potent effect on the induction of inflammatory cytokine 

and chemokine transcription. This may be important for the host immune system as many 

phagocytic cell types will be recruited to fight against B. pertussis. The macrophages 

would, in turn, activate T cells to mount an adaptive immune response. However, B.
r

pertussis may also take advantage of this situation by deactivating and killing infiltrating 

phagocytes by the action of CyaA after binding to CR3 receptors expressed on incoming 

phagocytes using FHA, PRN and CyaA (Ishibashi et a l, 1994; Everest et a l, 1996; El- 

Azami“El“Idrissi et a l, 2003)

6.3 The effect of CyaA-induced cAMP accumulation on gene transcription

Increased levels of cAMP have been shown to down-regulate the production of 

lipoprotein lipase (Lpl) mRNA transcription in murine macrophages (Desanctis et a l, 

1994). In agreement with this report, there was > 100-fold reduction in Lpl transcription in 

the present study. The expression of Lpl, which is involved in the transport of lipoprotein 

into the cell, is up-regulated when peripheral blood monocytes differentiate into tissue 

macrophages (Klroo et a l, 1981; Chait et a l, 1982). Syndecan-1, a proteoglycan that may 

serve to anchor cells to the extracellular matrix (ECM), is also regulated by cAMP in 

mouse peritoneal macrophages (Yeaman and Rapraeger, 1993). Increased expression of 

syndecan-1 (up-regulated 13-fold by CyaA) may be important for macrophages to adhere 

and migrate through the ECM. This may allow the phagocytes to infiltrate the site of 

infection. Interestingly, macrophages synthesise and release prostaglandins, which elevate 

intracellular levels of cAMP by interacting with cell membrane-associated G protein- 

coupled E-prostanoid receptors (Breyer et a l, 2001), in response to inflammatory stimuli 

(Humes et a l, 1977). Prostaglandins are synthesised from essential fatty acids, such as 

arachidonic acid by cyclooxygenases, such as Cox-1 (Ptgsl) and Cox-2, and prostaglandin 

(PGE) synthases and coincidently, Ptgsl expression was increased -5.8-fold. Thus, in 

addition to cAMP being generated by CyaA, cAMP may also be generated by other 

mechanisms inside the cell.

6.3.1 CyaA induces arginase transcription which may alter NO production

cAMP also induces arginase production in murine macrophages (Coixaliza et a l, 

1997) which is known to down-regulate NO production (Gotoh and Mori, 1999). NO is 

synthesised from arginine by nitric oxide synthase (NOS) generating citrulline (Fig. 51). 

Arginine can be obtained from blood circulation, intracellular protein degradation, by 

regeneration from citrulline through the "citrulline-NO cycle" or by importing from the 

extracellular environment by protein transporters such as cationic amino acid transporters 

(Bogle et a l, 1992). As arginine is a common substrate for both NOS and arginase (Fig.
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Figure 51 Diagram of arginine metabolism in eukaryotic cells

Arginine is transported from the extracellular space by CAT and is then used for the 

production of NO or for the synthesis of glutamate and proline.

I

Taken from Mori and Goto (2004).
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51), arginase may compete with NOS for arginine, and down-regulate the production of 

NO. It has been postulated that arginase and NOS both regulate the production of NO 

(Mori and Gotoh, 2004). The 27-fold up-regulation of arginase mRNA by CyaA suggests 

that CyaA had induced arginase activity, which in turn may have diminished the capacity 

of the BMMs to produce NO. In addition, there was up-regulation of Slc7a7 (3.23-fold) 

and Slc7all (8-fold) which both code for cationic transporters that import L-arginine 

(Rotoli et a l, 2004) (Fig. 51) suggesting that CyaA-treated cells are importing large 

amounts of arginine. However, further tests need to be earned out to confirm the presence 

of arginase enzymic activity.

6.4 Signalling pathways
Little is known about the types of signalling pathways that CyaA can induce. 

However, as cAMP is a dominant feature of cell intoxication, it stands to reason that the 

gene changes observed in this study could be due to the activation of cAMP-dependent 

cell-signalling pathways.

6.4.1 The PKA signalling pathway activates CREB, CREM and C/EBP p

One of the best known cAMP-dependent signalling pathways is via protein kinase

A (PKA) which is composed of two regulatory and two catalytic subunits. As shown in 

Figure 52, when cAMP binds to two PKA regulatory subunits, the two PKA catalytic 

subunits are released and, in turn, can phosphorylate a number of target proteins such as 

cAMP-response element binding protein (CREB), cAMP-responsive element modulator 

(CREM) and CCAAT/enhancer-binding protein p (C/EPB P) (Sassone-Corsi, 1998; Don 

and Stelzer, 2002). Phosphorylated CREB homodimers bind to a CREB binding protein 

which allows interaction with the specific DNA regions called cAMP-response elements 

(CREs) that are found upstream of genes involved in hormonal responses, differentiation 

or proliferation (Della Fazia et a l, 1997). CREM is highly analogous to CREB and has the 

same efficiency and specificity of binding to CREs as CREB. However, CREM acts as a 

suppressor of cAMP-induced transcription (Foulkes et a l, 1991). Similarly, when cAMP 

activates C/EPB P, it translocates into the nucleus (Pelletier et a l, 1998), binds to DNA 

sequences called cAMP responsive units (Wilson and Roesler, 2002) found upstream of 

genes associated with cell proliferation (Buck and Chojkier, 2003) and inflammation 

(Ramji and Foka, 2002) and induces transcription of these genes. Eukaryotic cells up- 

regulate phosphodiesterase gene expression in response to excessive cAMP accumulation 

(Ma et a l, 1999) in order to degrade signalling cyclic nucleotides, such as cAMP and 

cGMP and prevent their accumulation (Fig. 52).
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Figure 52 The PKA signalling pathway

Ligand binding to receptors (R) activates coupled G-proteins (G) which, in turn, stimulate 

the activity of the membrane associated adenylyl cyclase (AC) converting ATP to cAMP. 

cAMP is also generated by invasive CyaA. cAMP causes the dissociation of the inactive 

tetrameric protein kinase A (PKA) complex into the active catalytic subunits and the 

regulatory subunits (Rs). Catalytic subunits (C) migrate into the nucleus, where they 

phosphorylate and thereby activate transcriptional activators such as CREB, CREM or 

CCAAT/enhancer-binding protein (3 (C/EPB p). CREB or CREM interact as a dimer with 

the cAMP response enhancer element (CRE) whereas C/EPB P binds to DNA sequences 

called cAMP responsive units (CRU). Genes found downstream of these sequences are 

then up-regulated. Phosphodiesterases regulate the PKA pathway by degrading 

intracellular cAMP.
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6.4.2 Mitogen-activated kinase signalling pathways

Mitogen-activated protein Idnase (MAPK) signalling cascades are activated by a 

wide variety of receptors including receptor tyrosine kinases, integrins and ion channels 

(Fig. 53). MAPKs phosphorylate specific serines and threonines of target protein
-

substrates, such as other protein Idnases, phospholipases, transcription factors and 

cytoskeletal proteins, that regulate cellular activities including gene transeription, mitosis, 

movement, proliferation and apoptosis. MAPKs are pai’t of a phosphorelay system 

composed of three sequentially-activated kinases and, like their substrates, MAPKs are 

regulated by phosphorylation. Thus, MAPKs are activated by MAPK kinases (MAPKKs) 

which are, in turn, activated by MAPK kinase kinases (MAPKKKs). Activation of these 

signalling pathways occurs when specific receptors detect the correct stimuli, e.g. 

cytokines, oxidative stress or binding of ligands to integrins. These activation signals are 

transduced to small GTP binding (G) proteins which in turn activate the MAPKKKs 

leading to the eventual activation of MAPKs (Fig. 53). In eukaryotes, there ai'e three well 

characterised subfamilies of MAPKs and these are shown in Fig. 53. These MAPKs 

include the extracellular response kinase (ERK), c-Jun N-terminal Kinase (INK) and p38 

signalling pathways. The ERK pathway can be activated by growth factors, cytokines and 

bacterial infections (Chang and Karin, 2001). The INK signalling pathway is activated by a 

variety of environmental stresses, inflammatory cytokines, growth factors and G-protein- 

coupled receptor agonists (Weston and Davis, 2002). The p38 signalling pathway can be 

activated by LPS as well as IL-1 and osmotic shock (Su and Karin, 1996). Phosphatases 

act as regulators of the MAPK signalling pathways by dephosphorylating the activated 

kinases.

6.4.2.1 The AP-1 regulatory complex

The transcription factors activated by ERK and INK MAPKs bind to regions of DNA 

called serum response elements (SRE) and TPA response elements (TRE), respectively. 

This can lead to the transcription of the fos  and jun family of genes, respectively. The 

protein encoded by c-fos dimerises with proteins encoded by c~jun to form an active gene 

regulatory protein called AP-1 (Karin et a l, 1997). The AP-1 complex is not exclusively 

composed of heterodimers of Fos and Jun, rather, AP-1 can also be heterodimers of several 

other transcription factors (Angel and Karin, 1991). A further level of complexity is that 

there are several members within the Fos and Jun family of proteins; e.g. the Jun family is 

comprised of c-Jun and JunB. JunB, as part of the AP-1 transcription factor, aiTests cell 

differentiation in hemapoietic cells and has a role in apoptosis (Passegue and Wagner, 

2000; Liebermann and Hoffman, 2002). Thus, the levels of different Jun members can 

modulate cell proliferation and cell death (Shaulian and Karin, 2001). Moreover, the ERK

i.
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Figure 53 The ERK, JNK and p38 signalling pathways

The ERK, JNK and p38 MAPK signalling cascades are activated by a wide variety of 

stimuli such as activation of G-protein-coupled receptors (GPCR), growth factors, 

cytokines, stress and mitogens. A signal is transduced to small GTP binding (G) proteins 

(Ras, Rac/cdc42), which in turn activate a MAPKKK (Raf, MLKl, MEKKl), a MAPKK 

(MEKl/2, MEK4/7, MEK3/6) and MAPK (ERKl/2, JNKl/2, p38). The MAPKs activate 

effector proteins which function as dimers to regulate different cellular functions. 

Activation of the ERK and JNK MAPKs also leads to the transcription of c-fos and c-jun, 

respectively, c-jun can be activated by ERK 1/2 and JNK 1/2.

Adapted from Karin (1995),

httn://www.biosource.com/content/literatureContent/Pathwav2QQ5/pdfs/MAPk.pdf and 

http://www.cellsignal.com/reference/pathwav/MAPK Cascade.asp

http://www.biosource.com/content/literatureContent/Pathwav2QQ5/pdfs/MAPk.pdf
http://www.cellsignal.com/reference/pathwav/MAPK
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signalling pathway is important in the production of key cell cycle regulatory proteins such 

as cyclin A, cyclin D, cyclin dependent kinase 2 (Cdk2) and Cdc25A (L’Allemain et al, 

1997; Schmitt and Stork, 2002).

6.4.3 The cAMP/Epac-1/Rap 1 signalling pathway

An increase of intracellular levels of cAMP could also activate Epac signalling pathway 

(Bos, 2003) as shown in the boxed area of Fig. 54. The cAMP/Epac-1/Rap 1 pathway 

regulates re-organisation of the actin cytoskeleton and the resulting morphological changes 

are important for many cellular processes, including cell migration and adhesion 

(Kitayama et a l, 1989; Caron et a l, 2000; Sebzda et a l, 2002; Rangarajan et a l, 2003).

6.4.4 CyaA and cell-signalling

Studies have shown that cross-linking of the CD 11b receptor with monoclonal 

antibodies activates the ERK signalling pathway in a human monocyte (THP-1) cell line 

(Reyes-Reyes et a l, 2002). Since CyaA also binds to CD 11b (Guermonprez et a l, 2001), it 

may be that this MAP kinase pathway could be activated in this way. However, the fact 

that CyaA* and proCyaA* altered significantly few or no genes, respectively, suggests that 

CyaA, at 20 ng/ml, cannot induce cell-signalling via interaction with the CR3 receptor and 

its affects must be cAMP-mediated. The cytotoxicity assays indicated that CyaA* killed 

cells at concentrations greater than 0.5 pg/ml in the presence of calcium (Section 3.4.3). 

ProCyaA has been shown to intoxicate macrophages at higher toxin concentrations (Boyd 

et a l, 2005; Hewlett et al, 2006; Basler et a l, 2006a). Therefore, it would be interesting to 

study global gene responses in BMMs to CyaA* and proCyaA at higher toxin 

concentrations.

The evidence presented above indicates that CyaA can induce the activation of 

different signalling cascades through cAMP by ‘cross-talk’ between the PKA, Epacl and 

ERK signalling pathways (Fig. 54). So, it would not be surprising to observe several 

different signalling cascades being activated in BMMs after CyaA treatment. As discussed 

in Section 6.4.1, cAMP can activate the PKA signalling cascade. From the analyses, CyaA 

induced transcription of Cebpb and Crem by -4-fold and ~ 18-fold, respectively. CEBP/p 

and CREM are activated by the PKA catalytic subunits. Interestingly, inhibiting the PKA 

signalling pathway with a chemical inhibitor prevented the activation of human monocyte- 

derived dendritic cells by CyaA, as shown by a decreased level of CD80 and CD86 

expression (Bagley et a l, 2002). JunB, Fos and Fosl2 transcription were also up-regulated 

4.6, 4.4 and 10-fold suggesting that the JNK and ERK signalling pathways are activated 

(Section 6.4.2.1). These gene products combine to form the dimeric AP-1 regulatory 

complex.
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Figure 54 Cross-talk between cAMP and the different signalling pathways

cAMP is an activator of several different signalling pathways in eukaryotic cells, cAMP 

activates the PKA and Epac signalling pathways (boxed area). Activated PKA can also 

indirectly activate the ERK signalling pathway through interaction with the Raf family of 

MAPKKKs by activating B-Raf, The inhibition of ERK by cAMP is linked to C-Raf 

inhibition, whereas ERK activation is linked to B-Raf. cAMP can uncouple C-Raf from 

Ras through direct phosphorylation of C-Raf by PKA.

Taken from http://www,cellsignal.com/reference/pathwav/MAPKERK.asp

http://www,cellsignal.com/reference/pathwav/MAPKERK.asp
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Elk3 (up-regulated 2.5-fold) is a member of the Ets family (Tamai et a l ,  1995) and 

like E lk l is also activated by ERK (Wasylyk et a l ,  1998; Fig. 57). Interestingly, Elk3 has 

been shown to behave as a transcriptional repressor of nitric-oxide synthase 2 in a mouse 

macrophage cell line (Chen et a l ,  2003). This may be another mechanism by which CyaA 

is able to down-regulate NO production in addition to up-regulating arginase transcription

Î

(Section 6.3.1). On the other hand, Dusp6  transcription was up-regulated 3.6-fold. Dusp6 

(Dual phosphatase 6 ) is an important protein for regulating the ERK signalling pathway 

because it dephosphorylates MAP kinase ERK2 on both thr-183 and tyr-185, thereby 

inhibiting the activity of ERK2 (Muda et a l ,  1996). If the ERK pathway is being strongly 

activated by CyaA, the detection of Dusp6 would coiTelate with the cells trying to regulate 

the activation of this pathway. The lack of phosphorylated ERK 1/2 (Section 3.4.6) from 

J774.2 macrophages after incubation for 10 min with 20 ng/ml CyaA would suggest that 

the ERK pathway is not activated within this short time period. It would be interesting to 

investigate how soon Dusp6, c-fos and c~jun transcription occurs by using RT-PCR or by 

Western blotting. Moreover, the phosphodiesterase, Pde4b, was up-regulated by 16.5-fold. 

This suggests that cAMP is strongly activating cAMP-dependent signalling pathways and 

the BMMs are trying to regulate its activation by controlling the amount of cAMP in the 

cell.

The changes in cell morphology of mouse fibroblast cells by the oedema toxin of B. 

anthracis (EdTx), which includes cell rounding and the production of long thin processes, 

is PKA dependent (Hong et a l ,  2005). Therefore, CyaA-induced morphological changes of 

BMMs and baby hamster kidney cells (Westrop et a l ,  1994) are likely to be a consequence 

of cAMP-activated PKA signalling. The changes in cell moiphology may be important for 

allowing bacterial dissemination through host tissues (Hong et a l ,  2005). Alternatively, 

cAMP/PKA can also directly phosphorylate Rho proteins (such as Rhoe) causing their 

inability to interact with effector proteins (Dong et a l,  1998). Rho proteins are intimately 

connected with the regulation of the actin cytoskeleton (Hall, 1998). There is no evidence, 

from the microarray study, to suggest that the Epacl pathway is activated in BMMs after 

CyaA treatment. However, Misra and Pizzo (2005) showed that this pathway could be 

activated in mouse peritoneal macrophages by using a cAMP-elevating agent, forskolin. It 

would be of interest to investigate if this pathway was activated by CyaA.

6.4.4.1 Cell-signalling by bacterial toxins

It was shown recently that the p38 signalling pathway can be activated by pore- 

forming toxins from Gram-positive and Gram-negative species, such as the pneumolysin of 

Streptococcus pneumoniae and the a-H lyA  from E, colt, respectively (Ratner et a l ,  2006). 

At 20 ng/ml, CyaA may not be able to produce pores (Chapter 4) which may explain the
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lack of evidence from microarray analysis to suggest that the p38 signalling pathway was 

activated. Interestingly, the cytotoxic enterotoxin (Act) of Aeromonas hydrophila can

activate the ERK pathway in murine macrophages (Galindo et a l ,  2004b) as well as 

producing the AP-1 transcription factor through increasing cAMP levels by stimulating 

prostaglandin production in vitro in murine macrophages (Chopra et a l ,  2000). Thus, there

could be a high chance that CyaA can also promote AP-1 formation, especially when c-fos 

and c-jun transcription were increased. Galindo et a l  (2003 and 2004a) also investigated 

the global gene responses in murine macrophages to Act. In the present study, it was very 

interesting to observe that CyaA also induced some of the same genes as Act, such as 

increased transcription of B cl2lll/B im el, Cebpb, Socs3, H im  and Junb. However, Act did 

not down-regulate large numbers of cell cycle-associated genes (Section 6.5). This ability 

of both toxins to increase intracellular cAMP levels in macrophages, albeit by different 

mechanisms (Confer and Eaton, 1982; Chopra et a l ,  2000) most probably accounts for the 

similarity in gene changes observed in macrophages after treatment with these toxins. 

However, the macrophages were incubated for 12 h with Act (Galindo et a l ,  2003) and for 

24 h with CyaA which would create differences in the cAMP levels in the cells. These 

factors may explain the differences in gene transcription between CyaA and Act.

Another study investigated the gene responses of RAW 264.7 murine macrophages 

to the lethal toxin of B, anthracis (Comer et a l ,  2005). Lethal toxin is comprised of 

protective antigen, which is responsible for binding and entry into host cells (Bradley et 

a l,  2001), and lethal factor, a zinc protease which cleaves MAPKKs (Duesbery et a l,  

1998). Therefore, it was not suiprising to see down-regulation of genes which are regulated 

by down-stream activated effector proteins of the ERK signalling pathway. For example, 

after treatment of macrophages for 1.5 h with lethal toxin, there was a decrease in c-fos and 

c-jun transcription by 3.4 and 2.2-fold, respectively. In addition, lethal toxin up-regulated 

prostaglandin E2 receptor, subtype 4 transcription, which has been shown to simulate 

cAMP production and activate the ERK 1/2 via phosphatidylinositol 3-kinase (Fujino et a l ,  

2002), as well as Dusp6 . The possible influence of EPS in the toxin preparations used, 

including CyaA, could have contributed to changes in gene transcription is discussed in 

Section 6 .6 .

It is evident from the gene lists that CyaA induces cell-signalling cascades as 

shown by increased transcription of several transcription factors. However, the activation 

of the ERK, PKA and Epac signalling pathways can only be speculative. Using a variety of 

different techniques, such as the use of chemical inhibitors and monoclonal antibodies 

against phosphorylated signalling proteins, the activation of any of these pathways can be 

elucidated. The activation of signalling cascades in macrophages, or indeed by other
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immune effector cells, by bacterial toxins could be a way for the host to deal with the 

infiltrating pathogens. Little is known about the cell-signalling mechanisms induced by 

CyaA, but the m icroanay study produced some indication of the complex results of CyaA 

intoxication on cell-signalling pathways.

6.5 Cycling and the cell cycle

The eukaryotic cell cycle is shown diagrammatically in Fig. 55A. Cells start 

division in the G1 phase then cycle through the S, G2 and M phases. Cells may either leave 

the G1 phase and become resting cells or continue replication by entering the G1 phase 

again. Several factors, such as cyclins, are involved in controlling the cell cycle. Cyclins 

are a family of proteins involved in the progression of cells through the cell cycle and 

nonnally form a complex with a specific cyclin-dependent kinase (Cdk) partner, a 

serine/threonine kinase, forming a cdk complex (Fung and Poon, 2005). Cylins aie 

produced or degraded as needed in order to drive the cell through the different stages of the 

cell cycle. When its concentration in the cell is low, cyclin detaches from cdk, inhibiting 

the enzyme’s activity (Bai et a l ,  1994). There are several different cyclins which are active 

in different parts of the cell cycle (Fig. 55B) and cause Cdks to phosphorylate different 

substrates. The cyclin B: Cdk (Cdc2a - also known as C dkl) complex is called M-phase 

promoting factor (MPF). MPF promotes the entrance into mitosis from the G2 phase 

(Labbé et a l ,  1989, Draetta et a l,  1989; Gautier et a l,  1990; Fig. 55B) by phosphorylating 

multiple proteins needed during mitosis, including condensing, various microtubule- 

associated proteins, proteins involved in the degradation of the nuclear envelope. Other 

cyclins include cyclin E, which is required for the transition from G1 to S phase (Fig. 55B) 

and cyclin A that is required for the cell to progress through the S phase (Fig. 55B). A 

cyclin-Cdk complex can also be regulated by several kinases and phosphatases, including 

Wee, Cdk-activating Idnases (Cak) and Cdc. Wee functions by phosphorylating Cdc2a and 

related Cdks on conserved tyrosine and threonine residues. This phosphorylation blocks 

the activity of the Cdc2a and prevents entry into mitosis. On the other hand, Cdc is a 

phosphatase that removes the inhibitor phosphate added by Wee, rendering the complex 

active. Cdk feeds back on Wee and Cdc to inhibit and enhance their respective activities, 

respectively (Mueller and Leise, 2005).

6.5.1 CyaA and cell proliferation

The microaiTay data showed that many genes whose products are involved in the 

cell cycle were down-regulated by CyaA, suggesting that a large population of the 

macrophages were not in a proliferative state. All the down-regulated genes that were 

involved in the cell cycle and their interactions with other proteins have been highlighted
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Figure 55 The eukaryotic cell cycle

(A) Representation of the different stages of the eukaryotic cell cycle. Cells start division 

in the G1 phase then cycle through the S, G2 and M phases. Cells may either leave the G1 

phase and become resting cells or continue replication by entering the G 1 phase again. 

Several factors, such as cyclins, are involved in controlling the cell cycle.

Adapted from http://www.biologvcomer.com/bio4/notes/mitosis.php.

(B) The involvement of different cyclins and cyclin dependent kinases (cdks) in the 

eukaryotic cell cycle. The involvement of some of these proteins are described in Section 

6.5.

Adapted from cell cycle methods on

http://www.biosource.com/content/literatureContent/methodPDFs/index.asp

http://www.biologvcomer.com/bio4/notes/mitosis.php
http://www.biosource.com/content/literatureContent/methodPDFs/index.asp
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in red in Figure 56. These include cyclins A, B, E  and F  as well as many Cdc genes and 

W eel, which is involved in regulating the cyclin/cdc complexes. Importantly, there was 

down-regulation of CcnBl (8.7-fold), CcnB2 (7.9-fold) and Cdc2a (6 -fold) whose gene 

products form cyclin B l, cyclin B2 and their Cdk paitner Cdc2a (also known as C dkl), 

respectively, which combine to make the M-phase promoting factor. Thus, lack of this 

complex would mean that the cells could not proceed into the mitotic phase (cell division) 

of the cell cycle.

CyaA also down-regulated several other genes whose functions are important for 

DNA replication such as several minichromosome maintenance deficient (Mem) genes 

which have roles in DNA unwinding (Pacek et a l ,  2006) and several kinesins (Kif) which 

have roles in spindle organisation (Kurasawa et a l ,  2004) and in mitosis (Haraguchi et a l,  

2006). There was decreased transcription of helicase (9.6-fold), topoisomerase (14.6-fold) 

and DNA polymerase (15-fold). These enzymes are required for the temporary separation, 

unknotting and the production of DNA, respectively. There was also decreased 

transcription of ribonucleotide reductase (35-fold) which is an enzyme that synthesises 

deoxyribonucleotides from ribonucleotides, providing the precursors necessaiy for DNA 

synthesis and repair (Eklund et a l,  2001). Finally, Rad51 and Rad54, down-regulated by 

18 and 11.5-fold, respectively, functionally cooperate to mediate homologous 

recombination and the repair of damaged chromosomes by recombination (Raschle et a l,  

2004). All these enzymes are central for DNA replication. There were a few genes 

involved in the cell cycle that were up-regulated by CyaA. These included Cnnm2 (20- 

fold), Vegfa (8 -fold) and Cspg2 (232-fold). Cyclin M2 has yet to be characterised. On the 

other hand. Vascular endothelial growth factor-A (VEGFA) is a multifunctional cytokine 

that has roles in endothelial cell proliferation and the formation of lymphatic vessels from 

pre-existing lymphatic vessels (Dvorak et a l ,  1995). Its expression is induced in the 

presence of macrophage colony-stimulating factor (which was used originally to culture 

the cells) and H ifla  expression (Varney et a l ,  2005). Coincidentally, H ifla  expression was 

up-regulated by 4.4-fold. Thus, the expression of Vegfa may be correlated with H ifla  

expression but the importance of Cyclin M2 and VEGFA in the macrophage response to 

CyaA function is unknown. Chondroitin sulphate proteoglycan (Cspg2) is expressed at 

high levels in human monocytes as they differentiate into macrophages (Kolset et a l ,  

1983). Chondroitin sulphate proteoglycan has also been shown to bind lipoprotein lipase 

(Edwards et a l ,  1995). However, as discussed in Section 6.3, Lpl transcription was 

decreased by -100-fold, presumably as a result of cAMP accumulation. Nevertheless, the 

high levels of Cspg2 transcription suggest that the macrophages are in a differentiated state 

as a result of CyaA action.
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Figure 56 Molecular Interactions of proteins in the eukaryotic cell cycle

Black arrows indicate binding interactions and stoichiometric conversions. Red arrows 

infer covalent modifications and gene expression. Green arrows show enzyme actions. 

Blue aiTows indicate stimulations and inhibitions. Shaded boxes highlight the up (green) or 

down (red)-regulation of the genes in BMMs after CyaA treatment. This figure maps the 

interactions involving E2F, pRb, Cyclin, and Cdk family members, their activators and 

inhibitors, as well as some important interactions with other components. The E2F 

transcription factors regulate cell cycle progression by controlling gene expression of key 

cell cycle regulators. Retinoblastoma gene product (RB) family members are important 

regulators of E2F function. Figure modified from Kohn (1999).
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CyaA has been shown to induce apoptosis of macrophages (Khelef et a l ,  1995; 

Bachelet et a l,  2002). Therefore it was surprising to find transcriptional regulation of only 

a few apoptosis-associated genes. These included up-regulation of pro-apoptotic genes 

B c l l l l l  (Gressner et a l ,  2005; Kirschnek et a l ,  2005), EglnS (Straub et a l ,  2003) and 

StklVb (Inbal et a l ,  2000), and down-regulation of anti-apoptotic genes such as Birc5. 

Interestingly, Birc5 is an inhibitor of caspase-3 and caspase-7 (Shin et a l,  2001). 

Thrombospondin-1 (up-regulated 360-fold) is an adhesive glycoprotein that mediates cell- 

to-cell and cell-to-matrix interactions (Bomstein, 2001) which can promote chemotaxis of 

human peripheral blood monocytes (Mansfield and Suchard, 1994). However, 

thrombospondin, is thought to act as a bridge in the recognition of apoptotic cells by 

avp3/CD36 expressed on macrophages (Friedl et a l,  2002).

In summary, there is an overwhelming number of genes involved in cell 

proliferation which have been down-regulated in BMMs after treatment with CyaA 

suggesting that the cells are in a differentiated but in a non-proliferative state. Low levels 

of caspase 3/7 were detected at 20 ng/ml (Section 3.4.5.2) which would imply that at this 

concentration the macrophages were only slightly apoptotic. Nevertheless, the m icroanay 

data indicated by BMMs were undergoing apoptosis upon exposure to CyaA at this 

concentration. The process of apoptosis may not require the need for de novo production of 

caspases as these are activated from pre-existing pro-enzymes and this may explain why 

there was no caspase gene induction observed in this study.

6,6 Macrophage gene responses to LPS
The possibility that LPS in the final CyaA preparation may have contributed to 

some of the transcriptional changes needs to be considered. LPS, at concentrations down to 

1 EU/ml can activate several signalling pathways (van der Bruggen et a l ,  1999), such as 

the ERK pathway (Fig. 57), after binding to the TLR4/MD-2 complex (Guha and 

Mackman, 2001). In addition, LPS-induced IL -lp  production has been shown to cause the 

production of IL -6  and matrix metalloproteinases (Dinarello, 1994). Mmp9, M m pl9  and II- 

lb  were up-regulated by 6.08, 6.47 and 35-fold, respectively (Appendix L.7). Treatment of 

murine peritoneal macrophages with bacterial LPS can also increase expression of c-fos 

(Introna et a l ,  1986) and can stimulate IL -ip , IL -6  and T N F a production in murine 

macrophages in vitro (Hirohashi and M onison, 1996; Guha and Mackman, 2001). Gao et 

a l  (2002) showed that 192 and 71 genes were significantly {P < 0.05) up- and down- 

regulated, respectively, more than 2-fold in RAW 264.7 murine macrophages when treated 

with 1000 EU/ml of E. coli LPS for 6 h. However, the transcription profile of LPS- 

stimulated RAW macrophages was different from CyaA-stimulated BMMs (Gao et a l ,
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Figure 57 Induction of cell-signalling cascades by LPS after binding to the 

TLR4/MD-2 complex

LPS binds with LPS binding protein (LPB) which helps facilitate interaction with the Toll­

like receptor (TLR4)/MD-2 complex via surface bound CD 14. A number of signalling 

cascades can be induced as a result of this interaction and are represented schematically 

below. These events lead to the induction of several types of transcription factors that 

regulate different aspects of cell function, such as cell proliferation and inflammatory 

responses.
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2002). For example, some genes such as IlIO, CxcllO and Tnfa were up-regulated by LPS 

but these were down-regulated or not altered by CyaA. In a previous report, CyaA 

(containing 2.2 EU/ml LPS) was shown to stimulate low levels of IL-6  from J774 murine 

macrophages and this was enhanced in the presence of LPS (Ross et a l ,  2004). However, 

no IL-6 , IL -iP  or T N F a were detected in the supemates after CyaA treatment of BMMs 

(data not shown) nor was there any alteration in IL-6  gene transcription. By contrast, genes 

that were altered in BMMs by CyaA but not by LPS (Gao et a l , 2002) included the down- 

regulation of many genes involved in cell proliferation (Section 6.5). In addition, treatment 

of BMMs with CyaA* or proCyaA*, which contained almost exactly the same amounts of 

residual LPS as CyaA, altered significantly fewer genes compared with CyaA. Thus, it 

seems reasonable to conclude that the gene transcription changes prompted by CyaA were 

due to CyaA alone and it can be argued that the LPS in the CyaA preparation (0.001 EU/ml 

LPS in 20 ng protein/ml), was not present in large enough quantities to influence gene 

responses in BMMs.

In studying the global gene responses of RAW 264.7 murine macrophage to the 

lethal toxin of B. anthracis (Comer et a l ,  2005) LPS was used at 2 EU/ml as a control. 

This was equivalent to the level of LPS contamination in the lethal toxin preparation used 

for stimulation of macrophages. The levels of LPS in the final concentration of CyaA used 

(0.001 EU/ml) was 200-fold lower than that of Comer et a l  (2005) and 10^-fold lower than 

that of Gao et a l  (2002). It cannot be ruled out, however, that CyaA and LPS can act 

synergistically to promote cell-signalling events. We observed significantly lower levels of 

IL -6  produced by MM 6 cells after treatment with CyaA (containing 0.04 EU LPS/pg 

protein) expressed from E. coli BL21/DE3 compared with LPS from E. coli BL21/DE3 

used at the same concentration. Moreover, increased cellular cAMP levels modulated the 

response to LPS in dendritic cells (Bagley et a l ,  2002) and synergism was also detected 

between LPS and CyaA for dendritic cell activation (Ross et a l ,  2004).

Microarray technology is not without its drawbacks; not all of the total RNA may 

be amplified to make cRNA. Thus, theoretically, some important genes may not have made 

it on to the final gene lists. In addition, the gene responses that took place in BMMs at 

intervals between 2 h and 24 h are unknown. The transcription of genes is not likely to 

remain static during the treatment period. For example, Comer et a l  (2005) monitored 

gene transcription in macrophages after treatment for 1.5 h and 3 h with lethal toxin and 

found significant differences in gene transcription involved in intracellular signalling, 

energy production, and protein metabolism. Galindo et a l  (2003) monitored gene 

transcription in macrophages after treatment for 2 h and 12 h with Act and found 

differences in the levels of cytokine transcription. Translating microarray data also requires
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caution as mRNA levels are not representative of protein levels. Thus it is not possible to 

identify activation of signalling pathways, for example, by phosphorylation. Moreover,

some proteins require post-translational modification before becoming active as suggested 

by the differences between IL -ip  gene transcription and secretion of the cytokine by 

BMMs after CyaA stimulation.

6.7 Conclusions

The microarray data have provided a valuable insight into the possible mechanisms 

of CyaA intoxication. A hypothetical situation is shown in Figure 58. Upon initial contact 

with the upper respiratory tract, B. pertussis switches on virulence-activated genes required 

for synthesis of adhesins, such as FHA and PRN, to adhere to ciliated cells, and toxins, 

such as CyaA which binds to macrophages via the CR3 receptor. Macrophages intoxicated

by CyaA express greater levels of CD80, CD8 6 , CD207 and TREM-1 which help activate 

T cells. As there is down-regulation of the MHC class II gene, the activation of T cells may 

be compromised. However, the macrophages may still be able to present antigen peptides 

to T cells using existing MHC class II molecules. The interaction between macrophages 

and T cells causes the induction of several different signalling pathways for both cell types. 

In the case of macrophages, cAMP accumulation and interaction with T cells induce 

signalling pathways that lead to the synthesis of IL -ip  and chemokines that can help 

recruit macrophages and neutrophil PMNLs to the site of infection. CyaA-intoxicated 

BMMs would express cytokine regulators and regulators for the ERK and PKA signalling 

pathways to try to antagonise the effects mediated by the supraphysiological increase of 

cAMP levels. However, this may be problematic for the host as continual production of 

CyaA by B. pertussis could potentially deactivate aniving cells expressing the CR3 

receptor by interfering with the presentation of antigens, thereby antagonising the ability of 

the host to mount an adaptive immune response towards B. pertussis infection. In addition, 

increased production of the integrin Gm (C D lib  -  part of CR3) receptor could potentiate 

the association of B. pertussis, via FHA and PRN, with macrophages to cause further 

neutralisation of host phagocytes by the induction of CyaA-mediated apoptosis and cAMP 

intoxication.

Up-regulation of cAMP in the BMMs by CyaA may activate several different 

pathways leading to increased transcription of c-fos and jun  which encode transcription 

factors to form the AP-1 protein complex which regulates cell proliferation and cell aiTest. 

The increased transcription of the anti-proliferative JunB may have effects on the down- 

regulation of cell cycle-associated genes and genes involved in DNA replication. Continual 

increases in cAMP ultimately leads to the induction of apoptosis by CyaA in a mechanism 

that still remains unclear although it is known that caspases 3/7 are activated and that
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Figure 58 CyaA interaction with BM M s

A generalised view of how B. pertussis may utilise CyaA to deactivate cells of the immune 

system in vivo. The description of these events can be found in Section 6.7. Numbers: 

im pairm ent of phagocytosis, induction  of apoptosis, ^inhibition of cell proliferation, "̂ cell 

death.
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mitochondria are involved (Bachelet et a l ,  2002). The deactivation of the immune effector 

cells in the surrounding area of infection may give an opportunity for B. pertussis to 

proliferate to high numbers to cause disease by the production of several types of toxins.

Evidently, CyaA is an important mediator in disabling host defences. Microarray 

analyses of macrophages treated with CyaA have generated a great deal of data and 

allowed new insights as to how CyaA may function in vitro and in vivo. However, more 

detailed research is required to validate the hypotheses that have been formulated from the 

gene transcription data.

Future work

Further experiments are required to validate the gene changes in BMMs. RT-PCR 

should be used to confirm the up- and down-regulation of some of the key genes. 

Inhibition of NO production could be tested by stimulation of BMMs with LPS and then 

incubation with CyaA. NO can be detected using the Greiss assay. The production of the 

AP-1 complex could be determined by the gel-shift assay. Consequnces of the activation of 

signalling pathways induced by CyaA could be determined using chemical inhibitors or 

with monoclonal antibodies to phosphorylated signalling proteins. The effects on the cell 

cycle could be investigated in a similar manner using monoclonal antibodies to 

phosphorylated cyclins. Greater concentrations of proCyaA and CyaA* can intoxicate and 

kill cells, respectively. Thus, further microarray experiments could be done on BMMs 

using toxin concentrations greater than 20 ng/ml with proCyaA and CyaA*. This may help 

separate the types of gene changes induced specifically by intoxication and/or pore- 

formation by CyaA.

With regards to the in vivo experiments, further work may focus on the adjuvant 

effects of the different CyaA forms towards an ACV in mice after parenteral immunisation, 

but where mice are challenged by aerosol rather than intranasally. Preliminary experiments 

from this study showed that the different CyaA forms were able to protect mice after 

aerosol challenge with B. pertussis. Thus, the other non-acylated CyaA forms may be a 

more attractive alternative for inclusion in AC Vs especially when CyaA* showed 

cytotoxicity towards murine macrophages in vitro.

Finally, it is unknown how CyaA molecules interact to form pores. Preliminary 

studies with analytical ultracentrifugation indicated that the conditions provided by simple 

dialysis were not optimal to study CyaA properly as judged by the extensive degradation. 

Thus, if conditions were optimised to minimise the degradation of CyaA, it may be 

possible to determine the molecular weight of a CyaA oligomeric complex in solution and 

to find out how many oligomers form a pore.
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Appendices

Appendix A: Medium composition for bacterial growth

A .l Luria-Bertani broth (LB)
Tryptone (Duchefa Biochemie) 10 g
Yeast extract (Duchefa Biochemie) 5 g 
NaCl 5 g

Made up to 1000 ml in distilled water then autoclaved.

A. 1.1 Luria-Bertani agar (LA)

For LA, add 1.2% (w/v) agar to LB prior to autoclaving.

A.2 Terrific broth (TB)

Media lOx salt solution

Tryptone 12 g KH2PO4 17 mM
Yeast extract 24 g K2HPO4 40 mM
Glyercol 4 ml

Made up to 900 ml in distilled water Made up to 100 ml in distilled water

Autoclave separately and add 100 ml of lOx salt solution to 900 ml of medium before use.

A 3 Preparation of antibiotics

Antibiotie Solvent Stock Final
concentration concentration

Ampicillin distilled water 50 mg/ml 50 pg/ml
Chloramphenicol 70% ethanol 12.5 mg/ml 12.5 pg/ml
Kanamycin distilled water 50 mg/ml 50 pg/ml

All antibiotics were passed through a 0.2 pm filter and then stored at -2 0  °C.

A,4 lOx Phosphate-buffered saline (PBS)

NaCl 1.7 M
KCl 100 mM
Na2HP0 4 .12H2 0  40 mM
K H 2PO 4 10 mM

Made up to 1000 ml in distilled water (pH 7.4). Dilute 1/10 before use.
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Appendix B : DNA solutions

B .l 6x DNA loading buffer
Bromophenol blue 0.25%  (v/v)
Sucrose 40% (v/v)
Tris-base 60 mM
EDTA 6 mM

B.2 lOx Tris-Borate EDTA buffer (TBE)
Tris-base 0.9 M
Boric Acid 0.9 M
EDTA 32 mM

Made up to 2000 ml in distilled water. Dilute 1:10 before use.

Appendix C: Buffers for CyaA expression and purification

C.l Competence solution
CaCl2.2H20 100 mM
MnCl2.4H20 70 mM
CHsCOONa 80 mM

Made up to 50 ml in distilled water (pH 5.5).

C.2 Buffers for urea extraction of CyaA from inclusion bodies
C.2.1 Solution A

Tris-HCl 50 mM
EDTA 5 mM

Adjust to pH 8.0.

C.2.2 Solution B

CHAPS* 1% (w/v) in Solution A

Adjust to pH 8.0. * Different detergents were compared as described in Section 2.4.4.1.1

C.2.3 Solution C

Tris-HCl 50 mM
EDTA 5 mM
Urea 2 M

Adjust to pH 8.0.

C.2.4 Solution D

Tris-HCl 50 mM
Urea 8 M

Adjust to pH 8.0.
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C.3 Buffers for DEAE-Sepharose purification of CyaA
C.3.1 Solution 1

219

Tris-HCl
NaCl
Urea

50 mM 
50 mM 
8 M

Adjust to pH 8.0.

C.3.2

Tris-HCl
NaCl
Urea

Solution 2

50 mM 
500 mM 
8 M

Adjust to pH 8.0.

C.3.3

Tris-HCl
Urea

Solution 3

50 mM 
8 M

Adjust to pH 8.0.

C.3.4 

NaCl
concentration

NaCl gradient

Volume 
solution 1

Volume 
solution 2

Volume 
solution 3

50 mM 
100 mM 
150 mM 
200 mM 
250 mM 
500 mM

70 ml
5 ml
7.5 ml 
10 ml
12.5 ml 
25 ml

20 ml
17.5 ml 
15 ml
12.5 ml

C.4

C.4.1

Buffers for Phenyl-Sepharose purification of CyaA 

Buffer A

Tris-HCl
NaCl
Adjust to pH 8.0.

C.4.2

Tris-HCl
NaCl
Urea

Buffer B

50 mM 
1 M

50 mM 
100 mM 
2 M

Adjust to pH 8.0.
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Appendix D: Protein analysis solutions 

D .l 5x loading buffer

I  
3

Glycerol 5 ml
20% SDS 2.5 ml
2-mercapto-ethanol 0.5 ml
I M  Tris-HCl (pH 6.8) 2.5 ml
Bromophenol blue 0.25% (w/v)

D .2 Resolving gel
% separation

7.5% 12% 15%
30% Acryl/Bis (37.5:1) (BioRad) 3.75 ml 6 ml 7.5 ml
I M  Tris-HCl (pH 8.8) 5.625 ml 5.625 ml 5.625 ml
dHzO 5.7 ml 3.45 ml 1.95 ml
10% (w/v) SDS 150 pi 150 pi 150 pi
10% (w/v) Ammonium persulphate 150 pi 150 pi 150 pi
TEMED (add last) 15 pi 15 pi 15 pi
Enough solution for 4 gels of each.

D .3 Stacking solution
30% Acryl/Bis (37.5:1) (BioRad) 9 ml
1 M  Tris-HCl (pH 6.8) 7.5 ml
dHzO 42 ml
10% (w/v) SDS 50 pi

D.6 Buffer A for Bradford’s protein assay
1 in 4 dilution of 8 M urea, 50 mM Tris-HCl (pH 8.0) (Appendix C.2.4) with distilled 

water to make 2 M urea, 12.5 mM Tris-HCl (pH 8.0).

I
Store at 4 °C. To 3 ml of stacking solution, add 100 pi of 10% (w/v) APS and 8 pi 
TEMED.

D.4 lOx Running buffer

Tris-Base 0.25 M
Glycine 1.92 M
SDS 0.035 M

Made up to 2000 ml in distilled water. Diluted 1 in 10 before use.

D.5 Coomassie Blue stain
Coomassie Blue 0.05% (w/v)
Methanol 500 ml
Glacial Acetic acid 100 ml
dHiO 400 ml
For destain, Coomassie Blue was omitted.
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Appendix E: Silver staining solutions
2 2 1

E .l Oxidising solution
Ethanol
Glacial acetic acid 
dHiO
Periodic acid

E.2 Staining solution
Solution A

Ammonium hydroxide 2 ml
0.1 M  Sodium hydroxide 28 ml

400 ml 
50 ml 
550 ml 
0.7% (w/v)

Solution B

dHzO
Silver nitrate

5 ml 
1 g

Solution A and solution B were made separately and then mixed. A transient brown 
precipitate disappeared within seconds. 115 ml dHzO was added to make 150 ml of 
staining reagent.

E.3
Compound
concentration

Citric acid 
Formaldehyde

Development solution
Stock 
required

10 mg/ml 
37% (v/v)

Volume

1 ml 
0.1 ml

Final
concentration

10 mg
0.0185% (v/v)

Made up to 200 ml with distilled water.

E.4 Stop solution

10% (v/v) acetic acid.

Appendix F: Western blotting

F .l

Tris-Base
Glycine

lOx Transfer buffer
0.25 M 
1.92 M

Made up to 2000 ml in distilled water. Diluted 1 in 10 before use and made up with 20% 
(v/v) methanol.

F.2
Ix P B S  
Tween 20

PBST

Appendix A.4 
0.2% (v/v)

Made up to 1000 ml in distilled water (pH 7.4).
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F.3 Blocking buffer
PBST Appendix F.2
Marvel 10% (w/v)

F.4 PBST diluent
PBST Appendix F.2
Marvel 5% (w/v)

F.5 Substrate solution
3’3-Diaminobenzidine (DAB) 0.05 g
PBS 98 ml
1% (w/v) CoClz 2 ml
30% (v/v) H2O2 100 pi

Appendix G: I n  v i t r o  characterisation of CyaA

G .l Conductimetry
G.1.1 Buffer A

Imidazole 5 mM
EDTA 10 mM

Adjusted to pH 6.1.

G.1.2 Buffer B

Tris-HCl 10 mM
CaCl2 1 mM

Adjusted to pH 8.0.

G.1.3 Bicine buffer

Bicine 10 mM
Magnesium acetate 1.5 mM
ATP 0.5 mM

Adjusted to pH 8.0.

G.2 Hanks HEPES buffer
NaCl 150 mM
KCl 5 mM
MgCL 1 mM
D-glucose 5 mM
HEPES 10 mM
Urea 200 mM
CaCU 0, 1, 2 or 3 mM (Section 2.6.2)

Made up with sterile distilled water at pH = 7.4 (Stored at RT).



H .l Casamino acids solution
NaCl 0.6% (w/v)
Casamino acids (Difco) 1% (w/v)
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G.3 Tissue culture
G.3.1 Maintenance medium for J774.2 macrophages

Foetal Bovine Serum (FBS) (Gibco) 50 ml 
L-Glutamine (Gibco) 5 ml
Antibiotics/antimycotics (Gibco) 5 ml
Added to 500 ml media (RPMI or DMEM^)

DMEM contains glutamax-1. Therefore, L-glutamine is not required.

G.3.2 Maintenance medium for MM6 monocyte/macrophages

HEPES (Gibco) 20 mM
Insulin (Sigma) 0.23 lU/ml
L-Glutamine (Gibco) 2 mM
Oxaloacetic acid (Sigma) 1 mM
Sodium pyruvate (Sigma) 1 mM
Non-essential amino acids (Gibco) Ix  
Antibiotics/antimycotics (Gibco) Ix  
F B S " 10% (v/v)

Added to 500 ml RPMI medium.

' MM6 cell assay medium contains 2% (v/v) FBS.

G.3.3 PBS wash buffer

PBS without calcium or magnesium (Difco) 500 ml 
Antibiotics/antimycotics (Gibco) 5 ml
FBS 5% (v/v)

G.4 ERK lysis buffer
HEPES 25 mM
EDTA 2.5 mM
NaCl 50 mM
NaF 50 mM
Sodium pyrophosphate 30 mM
Glycerol 10% (v/v)
Triton-XlOO 1% (v/v)

Adjust to pH 7.5 and filter sterilised.

Appendix H: Immunological assays

Made up to 1000 ml in distilled water (pH 7.0).
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H.2 Greiss reagent
N-[l-naphthyl] ethlyenadiamine dichloride 0.1% (w/v)
Sulphanilamide in 5% (v/v) H 3PO4 1% (w/v)

Each solution was made separately and mixed (1:1 ratio) prior to performing an assay.

H.3 Enzyme Linked Immunosorbent Assay (ELISA)
H.3.1 Carbonate coating buffer

NagCOs 15 mM
NaHCOg 30 mM
NaNg 7.7 mM

Made up to 1000 ml in distilled water (pH 9.5).

H.3.2.1 PBS-Tween

Ix  PBS (Appendix G.2)
Tween 20 0.05% (v/v)

H.3.2.2 PBST diluent/PBST blocking buffer

10% (v/v) FBS was added to make PBST diluent/PBST blocking buffer.

H.3.3 lOx acetate buffer

Sodium acetate-3-hydrate 0.5 M
-ri

Glacial acetic acid 816 pi ::
Made up to 500 ml in distilled water and adjusted to pH 6.0.

H.3.4 Peroxidase substrate solution

Acetate buffer (Appendix 1.3.3) 12 ml ;
dHzO 112  ml
Hydrogen peroxide 37 pi
1% (w/v) Tetramethyl benzidine
in dimethylsulphoxide 1.25 ml

H.3.5 Fluorescence-Activated Cell Sorter (FACS) analysis 1

1H.3.5.1 PBS Flow

PBS 100  ml
FBS 5 ml V-■;
10% (w/v) NaNg 1 ml ?

1

H.3.5.2 FACS Fix
7
\p

PBS 47.5 ml
dHzO 47.5 ml 7
40% (v/v) formaldehyde 5 ml

I
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Appendix I: Microarray studies

I .l L929 DMEM growth medium
Foetal Calf Serum (Gibco) 10% (v/v)
Supemate from L929 cells 10% (v/v)
Penicillin/Streptomycin (Gibco) 100 U/ml

Added to 500 ml DMEM/ F-12 (Gibco) with Glutamax-1 and pyridoxine.

I
I
7

7 

1
Predicted amino acid sequences of CyaA* (query) with CyaA (Sbjct) from nucleotide base 

sequences of the region from nucleotide 1438 to nucleotide 2103 in the 5 ’ region of cyaA 

of pGW44/188 and pGW44, respectively. LQ is the dipeptide insertion. Letters in bold and 

underline indicate amino acid substitutions.

Appendix J: Amino acid sequence of CyaA^ compared with

CyaA

Query 6 99 RKTSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTADLQIDMPAIMPHLSNFRDSACSSV 520 
++TSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTAD IDMFAIMPHLSNPRDSA SSV 

Sbjct 152 KETSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTAD~-IDMFAIMPHLSNFRDSARSSV 209

Query 519 TSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIACAGARSAVGTEARRQFRYDGDMNI 340 
TSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIA AGARSAVGTEARRQFRYDGDMNI

Sbjct 210  tsgdsvtdylartrraaseatggldreridllwkiaRagarsavgtearrqfrydgdmni 269

Query 339 GVITDFELEVRNALNRRAHAVGAQDWQHGTEQNNPFPEADEKIFWSATGESQiyiLTRGQ 160 
GVITDFELEVRNALNRRAHAVGAQDWQHGTEQNNPFPEADEKIFWSATGESQMLTRGQ 

Sbjct 27 0 GVITDFELEVRNALNRRAHAVGAQDWQHGTEQNNPFPEADEKIFWSATGESQMLTRGQ 329



Yiu Chong Gordon Cheung, 2006

Appendix K: RNA quality and quantity

226

K.1 Quantification and qualification of total RNA isolated from 

BMMs after treatment with CyaA or urea after 2 h or 24 h

Incubation
time Sample Replicate A 260 iim A 280 nm

A 260 nn7
A 280 nm

ratio

RNA
Cone

(pg/pl)

Total
RNA
(M-g)

RNA
integrity
number

2 h

Urea

1 0.23 0.19 1.2 4.6 41.4 9.3
2 0.23 0.16 1.5 4.7 42.3 9.8
3 0.34 0.23 1.5 6.8 61.2 9.5

Mean 0.26 0.20 1.4 5.4 48.3 9.53

CyaA

1 0.25 0.17 1.4 9.8 88.2 10
2 0.28 0.19 1.5 11.2 100.8 10
3 0.15 0.12 1.2 6 54.0 9.5

Mean 0.23 0.16 1.4 9 81.0 9.83

24 h

Urea

1 0.19 0.13 1.4 3.7 33.3 9.2
2 0.26 0.18 1.5 5.3 47.7 9.3
3 0.24 0.16 1.4 4.7 42.3 9.8

Mean 0.23 0.16 1.4 4.6 41.1 9.43

CyaA

1 0.23 0.16 1.4 9.3 83.7 9.9
2 0.24 0.17 1.5 9.8 88.2 10
3 0.19 0.13 1.4 7.4 66.6 8.2

Mean 0.22 0.15 1.4 8.8 79.5 9.13

7
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K.2 Quantification and qualification of total RNA isolated from

BMMs after treatment with different CyaA forms or urea 

after 2 h or 24 h

Treatment Replicate A 260  nm A 280 nm

A 260 n n /  

A 280 nm  

ratio

RNA Cone 
(Pg/pl)

Total RNA 
(Fg)

RNA
integrity
number

proCyaA* #1

1 0.87 0.56 1.56 2.2 19.7
2 0.87 0.56 1.56 2.2 19.7
3 0.87 0.56 1.56 . 2.2 19.7

Mean: 0.87 0.56 1.56 2.2 19.7 9.3

proCyaA^ #2

1 0.92 0.57 1.61 2.3 20.7
2 0.92 0.57 1.61 2.3 20.7
3 0.92 0.57 1.61 2.3 20.8

Mean: 0.92 0.57 1.61 2.3 20.7 8.9

proCyaA* #3

1 1.22 0.76 1.61 3.1 27.5
2 1.22 0.76 1.61 3.1 27.6
3 1.22 0.76 1.60 3.1 27.6

Mean: 1.22 0.76 1.61 3.1 27.6 8.8

CyaA #1

1 0.55 0.36 1.52 1.4 12.5
2 0.56 0.37 1.52 1.4 12.6
3 0.56 0.37 1.52 1.4 12.7

Mean: 0.56 0.37 1.52 1.4 12.6 8.9

CyaA #2

1 0.38 0.25 1.52 0.96 8.6
2 0.38 0.25 1.52 0.96 8.7
3 0.38 0.25 1.52 0.96 8.7

Mean: 0.38 0.25 1.52 0.96 8.7 7.1

CyaA #3

1 0.52 0.33 1.57 1.3 11.9
2 0.52 0.33 1.57 1.3 11.9
3 0.52 0.33 1.57 1.3 11.9

Mean: 0.52 0.33 1.57 1.3 11.9 8.6
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Treatment Replicate ^  260 nm •'d 280 nm
^  260 nn/ 
^  280 nm

ratio

RNA Cone 
(pg/|il)

Total RNA 
(M-g)

RNA
integrity
number

CyaA* #1

1 0.90 0.57 1.58 2.3 20.3
2 0.90 0.57 1.58 2.3 20.4
3 0.90 0.57 1.58 2.3 20.4

Mean: 0.90 0.57 1.58 2.3 20.4 9.8

CyaA* #2

1 1.00 0.63 1.60 2.5 22.6
2 1.01 0.63 1.60 2.5 22.7
3 1.01 0.63 1.60 2.5 2Z8

Mean: 1.01 0.63 1.60 2.5 22.7 9.8

CyaA* #3

1 0.88 0.55 1.57 2.2 19.8
2 0.88 0.55 1.58 2.2 19.8
3 0.87 0.55 1.58 2.2 19.8

Mean: 0.88 0.55 1.58 2.2 19.8 9.8

U rea# l

1 0.72 0.45 1.59 1.8 16.4
2 0.73 0.46 1.59 1.8 16.5
3 0.73 0.46 1.58 1.8 16.6

Mean: 0.73 0.46 1.59 1.8 16.5 9.6

Urea #2

1 0.72 0.47 1.53 1.8 16.4
2 0.73 0.47 1.54 1.8 16.6
3 0.73 0.47 1.55 1.8 16.5

Mean: 0.73 0.47 1.54 1.8 16.5 7.1

Urea #3

1 1.06 0.67 1.56 2.7 23.9
2 1.07 0.68 1.56 2.7 24.1
3 1.08 0.68 1.56 2.7 24.3

Mean: 1.07 0.68 1.56 2.7 24.0 8.7

Î

I

:

I

i'

Î
-■■i/

I
I
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Appendix L: Gene lists

L .l Up-regulated genes in BMMs after incubation for 2 h with

CyaA -  preliminary experiment

Affy ID Gene Name Fold change Description

CD ANTIGENS
99434 at C d 8 3 3.39

CYTOKINES AND CHEMOKINES
103486 at I l l b  16.52

CD 8 3 anti gen

interleukin 1 [3

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY
96912 s at C t l a 2 a 4.21

CELL SURFACE MOLECULES
96553„at
97733_at
100064_t_at

APOPTOSIS
160906_i_at

SIGNALLING
93285„at 
97844_at 
98018_at 
160901 at

G p c r 2 5

A d o r a 2 b

G j a l

n/a

D u s p 6  

R g s 2  

P r o c r  

F o s ;  c~ fo s

3.60
3.88
4.86

3.44

3.26
4.63
5.28
5.39

TRANSCRIPTION
160495_at A h r  4.05
101727_at N f k b ie  4.36
101805_f_at N f d 3 ;  E 4 B P 4  5.89
92248 at N r 4 a 2 10.08

cytotoxic T lymphocyte-associated protein 2 alpha*

G-protein coupled receptor 25
adenosine A2b receptor*
gap junction membrane channel protein a  1

insert in the fas apoptosis gene of MRL-IPR/IPR

dual specificity phosphatase 6 
regulator of G-protein signalling 2 
protein C receptor, endothelial 
c-fos oncogene

aryl hydrocarbon receptor
nuclear factor of kappa light polypeptide gene
transcription factor mRNA*
nuclear hormone receptor*

CELL GROWTH/DIVISION/DIFFERENTIATION
103520_at 
101583 at

V e g f a

B tg 2

CELLULAR STRUCTURE
95705 s at A c t b

3.11
3.35

5.65

METABOLISM/BIOSYNTHESIS
10437 l_at D g a t l  5.61

MITCHONDRION
93097_at A r g l

ADHESION
160469 at T h b s l

25.50

15.72

vascular endothelial growth factor A 
B-cell translocation gene 2, anti-proliferative

actin, P, cytoplasmic* 

diacylglycerol O-acyltransferase 1 

arginase 1, liver 

thrombospondin

An asterisk (*) indicates that the gene was detected by another probe (Section 1.10). 
n/a -  no gene name available.

j

I

I

: , 0 : l
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L.2 Down-regulated genes in BMMs after incubation for 2 h with

CyaA -  preliminary experiment

Affy ID Gene Name Fold change Description

tumour necrosis factor alpha
CYTOKINES AND CHEMOKINES
102629_at T n fa  -8.4

CELL SURFACE MOLECULES
102237„at 
93845 at

T b x a 2 r

A b c f 2

-3.49
- 8.12

thromboxane A2 receptor
ATP-binding cassette, sub-family F, member 2

APOPTOSIS
98433_at 
92415_at 
102629 at

B i d

C D 1 3 7 L

T m f S

-3.09
-4.49
-4.55

BH3 interacting domain death agonist 
CD137L
tnf receptor-associated factor 5

SIGNALLING
99874_at R a p 2 b

103833_at 
297106 at

H ip k 2

M a p 3 k 8

-3.23

-3.59
-15.14

RAS-related protein RAP-2B homologue { H o m o  

s a p i e n s )

homeodomain interacting protein kinase 
mitogen activated protein kinase kinase kinase 8

TRANSCRIPTION
9573 l„at Pa2d-pending -4.1
99564_at N p 9 5  -6.48

SESTRIN 1 (P53-REGULATED) 
nuclear protein 95

CELL GROWTHTDIVISION/DIFFERENTIATION
92310_at S n k  -3.23 serum-inducible kinase (polo-like kinase 2)

REGULATORY
99603_g_at T i e g l -4.32 TGFB inducible early growth response 1
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L.3 Up-regulated genes in BMMs after incubation for 24 h with

CyaA -  preliminary experiment
Affy ID Gene Name Fold change Description

CD ANTIGENS
102830„at C d 8 6 3.75 CD 86 antigen

CYTOKINES AND CHEMOKINES
94142_at C s f 3 4.27 colony stimulating factor 3 (granulocyte)
9476 l_at C c l 7 ;  S c y a 7 4.42 cytokine gene
101160_at C x c l2 9.70 chemokine (C-X-C motif) ligand 2
95349_g_at C x c l l 10.45 chemokine (C-X-C motif) ligand 1
103486_at I l l b 21.81 interleukin 1 P

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY
161968_f_at C c r 5 3.49 C-C chemokine receptor 5*
100906_at I t g b 7 4.55 integrin P 7
9306 l_at I t g a 7 4.77 integrin a  7
99413_at C c r l 5.13 chemokine (C-C motif) receptor 1
103039_at I tg a S 14.71 integrin alpha 5 (fibronectin receptor alpha)

CELL SURFACE RECEPTORS
100435_at E d g 2 4.92 endothelial differentiation, lysophosphatidic acid

G-protein-coupled receptor, 2
97733_at A d o m 2 b 8.09 adenosine A2b receptor*
103448_at S lO O a S 8.52 SlOO calcium binding protein AS (calgranulin A)
100064„f__at G j a l 16.12 gap junction membrane channel protein a  1

APOPTOSIS
93836_at B n ip 3 3.41 BCL2/adenovirus ElB  19kDa-interacting protein
160829_at P h l d a l 4.77 pleckstrin homology-like domain, family A, member

SIGNALLING
98628_f_at H i f l a 3.01 hypoxia inducible factor 1, a  subunit*
160280_at C a v 5.30 caveolin, caveolae protein

TRANSCRIPTION
92249_g_at N r 4 a 2 4.56 nuclear hormonal binding receptor

CELL GROWTH/DIVISION/DIFFERENTIATION
92504_at H u s l 13.04 Husl homologue {S . p o r n b e )

TRANSPORT
93738_at S l c 2 a l 4.12 solute carrier family 2, member 1

ADHESION
104483_at C o l 9 a l 4.54 procollagen, type IX, alpha 1
160469_at T h b s l 19.86 thrombospondin

OTHER
93023_f„at H i s t l h 3 f 4.13 histone H3 (H3.2-221)

An asterisk (*) indicates that the gene was detected by another probe (Section 1.10). 
n/a -  no gene name available.
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L.4 Down-regulated genes in BMMs after incubation for 24 h

with CyaA -  preliminary experiment
Affy ID Gene Name

CD ANTIGENS
93445 at C d S l

Fold change Description

-5.25 CD5 antigen-like

CYTOKINES AND CHEMOKINES
102424_at 
94425 at

C c l 3
L y 8 6

-3.61
-4.80

chemokine (C-C motif) ligand 3 
lymphocyte antigen 86

IMMUNE RESPONSE
104696_at C ts e

93583„s_at n /a

-3.04
-3.31

cathepsin E gene
fragment for mu-immunoglobulin C-terminus

APOPTOSIS
101521 at B ir c S -4.99 baculoviral lAP repeat-containing 5

SIGNALLING
92758„at D u s p 2  -3.06
94953_at R a c g a p l  -3.75
160862_at P t p 4 a 3  -5.48

tyrosine-threonine dual specificity phosphatase 
Rac GTPase-activating protein 1 
protein tyrosine phosphatase 4a3

TRANSCRIPTION
9608 l_at T k l
99564_at N p 9 5

-10.93
■14.37

thymidine kinase 
nuclear protein 95

CELL GROWTHmiVISION/DIFFERENTIATION
99632_at M a d 2 l l -3.05 mitotic arrest deficient, homologue-like 1 (yeast)
93356_at M a n ? -3.40 minichromosome maintenance deficient 7 (yeast)
100890_at C h a f l  b -3.52 chromatin assembly factor 1, subunit B (p60)
99067_at G a s 6 -3.97 growth arrest specific 6
101957_f_at A d p r t l -4.68 poly (ADP-ribose) polymerase (AA 1-1013)
93099_f_at P l k -6.08 polo-like kinase { D r o s o p h i la ) ^
100156_at M c m S -6.91 minichromosome maintenance deficient 5 (yeast)
98469_at A u r k b -7.40 aurora kinase B
95546_g_at w -12.50 insulin-like growth factor 1
102001_at R r m 2 -12.91 ribonucleotide reductase M2
99578_at T o p 2 a -18.76 topoisomerase (DNA) II a

CELLULAR STRUCTURE
97909_at S t m n l -10.55 stathmin 1

METABOLIC/SYNTHETIC
162341_r_at A k r l b 3 -5.52 aldose reductase
96295_at P s a t l -5.71 phosphoserine aminotransferase 1
9561 l_at L p l -84.68 lipoprotein lipase*

OTHER
98398_s_at A p o b e c l -3.22 apolipoprotein B editing complex 1
9285 l_at C p -3.73 ceruloplasmin

An asterisk (*) indicates that the gene was detected by another probe (Section 1.10).
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L.5 Genes up-regulated in BMMs from 2 h to 24 h after

incubation with CyaA -  preliminary experiment
Affy ID Gene name Fold change Description

CD ANTIGENS
102237_at C d 2 8 3.01 CD28 antigen

CYTOKINES AND CHEMOKINES
92415_at T n fs f9 ;  4 - l B B - L  5.36
103255_at T m f 5  8.35
98772 at C x c lS  31.29

4-tumor necrosis factor (ligand) superfamily, member 9 
tnf receptor-associated factor 5 
chemokine (C-X-C motif) ligand 5

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY
98304_at 
99413_at 
100906 at

Tlr6
C c r l

l t g b 7

3.35
3.45
3.50

toll-like receptor 6 
chemokine (C-C motif) receptor 1 
integrin beta 7

7

CELL SURFACE MOLECULES
92685,
93845,

T b x a 2 r
A b c j 2

APOPTOSIS
93836_at
102921_s_at

SIGNALLING
99953„at
100064_f_at
94063_at
93708„at
10271 l_at
98600_at
160280„at
97106_at

TRANSCRIPTION
N f a tc 2  

N m y c l

3.49
3.67

B n ip 3 5.23
T n fr s fb 5.38

R g l2 3.10
G j a l 3.30
S e m a 4 a 3.31
P i a s 3 3.65
R g s l 4 3.78
S l O O a l l 4.43
C a v 4.80
M a p 3 k 8 28.94

93074_g„at
103049_at

3.71
10.39

thromboxane A2 receptor
ATP-binding cassette, sub-family F, member 2

BCL2/adenovirus ElB  19kDa-interacting protein 1, 
tumour necrosis factor receptor superfamily, member 6

ral guanine nucleotide dissociation stimulator-like 2 
gap junction membrane channel protein a  1 
semaphorin 4A
protein inhibitor of activated ST AT 3
regulator of G-protein signalling 14
SlOO calcium binding protein A ll  (calizzarin)
caveolin, caveolae protein
mitogen activated protein kinase kinase kinase 8

nuclear factor of activated T-cells, cytoplasmic 2 
neuroblastoma myc-related oncogene 1

:
:

CELL GROWTH/DIVISION/DIFFERENTIATION
162204_r.
95597_at

at N o tc h  1 

P t g s l

3.50
4.18

notch 1
prostaglandin-endoperoxide synthase 1

TRANSPORT
9347 l_at 
103510_at

S l c 4 a 7

S l c 6 a l 2

3.05
4.06

solute carrier family 4, member 7 
solute carrier family 6, member 12

OTHER
96907_at 
161969 f at

C h e r p

C a p g

3.31
6.85

calcium homeostasis endoplasmic reticulum protein 
capping protein (actin filament), gelsolin-like t

I:

I
r i | i
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L.6 Genes down-regulated in BMMs from 2 h to 24 h incubation

with CyaA -- preliminary experiment
Affy ID Gene name Fold change Description

CD ANTIGENS
93445_at C d 5 l -5.22 CD5 antigen-like

CYTOKINES AND CHEMOKINES
102310_at C c l 2 2 -3.22 chemokine (C-C motif) ligand 22
104669_at h f 7 -3.72 interferon regulatory factor 7
94146_at M i p l b ;  C c l 4 -4.35 gene for macrophage inflammatory protein lb.
103639_at # 2 -21.81 IFN-induced protein with tetratricopeptide repeats 2

IMMUNE RESPONSE
92689_at l l l S b p -3.44 interleukin 18 binding protein
98822_at G l p 2 -4.39 interferon, alpha-inducible protein
160092_at I f r d l -5.08 interferon-related developmental regulator 1
93584„at I g h - 6 -6.93 immunoglobulin heavy chain 6 (of IgM)
94425_at L y 8 6 -7.21 lymphocyte antigen 86

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY
93617_at C c r l2 -3.54 chemokine (C-C motif) receptor-like 2
100998_at H 2 - A b l -3.74 histocompatibility 2, class II antigen A, (3 1

CELL SURFACE MOLECULES
98018_at P r o c r -3.28 protein C receptor, endothelial

APOPTOSIS
101521_at B ir c S -5.27 baculoviral ZAP repeat-containing 5

SIGNALLING
160532„at T p m l -3.06 tropomyosin 1, a
96553_at G p c r 2 5 -3.46 G-protein coupled receptor 25
97096_at P r k a r 2 a -3.81 protein kinase, cAMP dependent regulatory, type II <
160082_s_at A r f 4 -3.94 ADP-ribosylation factor 4
160862_at P t p 4 a 3 -4.11 protein tyrosine phosphatase 4a3
94953_at R a c g a p l -5.10 Rac GTPase-activating protein 1
97844_at R g s 2 -7.16 regulator of G-protein signalling 2
103025„at M o v l O -8.28 Moloney leukemia virus 10

TRANSCRIPTION
101805_f_at N f d 3 ;  E 4 B P 4 -3.61 transcription factor E4BP4
98977_at -4.37 Terfl (TRF1 ) -interacting nuclear factor 2
101727_at N f k b ie -5.15 nuclear factor of kappa enhancer in B-cells inhibitor
9608 l„at T k l -7.08 thymidine kinase, exon 1 and 2, partial
100533_s_at C r e m -11.94 cAMP responsive element modulator*

CELL GROWTH/DIVISION/DIFFERENTIATION
96120_at D n a j b ô -3.05 DnaJ (Hsp40) homologue, subfamily B, member 6
102779_at G a d d 4 5 b -3.25 growth arrest and DNA-damage-inducible 45 (3
100156_at M c m S -3.25 minichromosome maintenance deficient 5 (yeast)
93099_f_at P l k -3.86 polo-like kinase { D r o s o p h i l a )

101979_at G a d d 4 S g -7.12 growth arrest and DNA-damage-inducible 45 y
102001_at R r m 2 -7.81 ribonucleotide reductase M2
CELL DIVISION CYCLE GENES
94036_at C d c 4 2 e p 4 -3.23 CDC42 effector protein (Rho GTPase binding) 4
98067_at C d k n l a -3.63 cyclin-dependent kinase inhibitor 1A (P21)*
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MITOCHONDRIA
94254_at C l ic 4 -3.20 chloride intracellular channel 4*
99667_at C o x 6 a 2 -6.01 cytochrome c oxidase, subunit Via, polypeptide 2

CELLULAR STRUCTURE
101419_at T u b b 4 -3.27 tubulin, P 4
97909„at S t m n l -14.46 stathmin 1

DNA REPAIR/REPLICATION
99578_at T o p 2 a -12.15 topoisomerase (DNA) II a

TRANSPORT
103065„at S l c 2 0 a l -3.17 solute carrier family 20, member 1
93506_at S lc 2 5 a 3 -3.65 solute carrier family 25, member 3
96202_at S l c l a 2 -4.86 solute carrier family 1, member 2
104221_at S l c 7 a 5 -4.93 solute carrier family 7, member 5

METABOLISM/BIOSYNTHESIS
100046_at M th f d 2 -3.64 methylenetetrahydrofolate dehydrogenase
95608_at C ts b -3.66 cathepsin B*
10437l_at D g a t l -4.85 diacylglycerol O-acyltransferase 1
9561 l_at L p l -100.38 lipoprotein lipase*

CELL ADHESION
93194_at L y 9 -3.81 lymphocyte antigen 9

OTHER
9285 l_at C p -6.08 ceruloplasmin

An asterisk (*) indicates that the gene was detected by another probe (Section 1.10).
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L.7 Up-regulated genes in BMMs after incubation for 24 h with 

CyaA
Affy ID Gene name P  value Fold Description

change

CD ANTIGENS
1450513_at C d 3 3 0.0015 3.57 CD33 antigen
1437025_at C d 2 8 8.76E-05 4.29 CD28 antigen*’ ^
1451950_a_at C d 8 0 0.000301 4.30 CD80 antigen*’ ^
1418394_a_at C d 9 7 0.000321 5.28 CD97 antigen^
1449858_at C d 8 6 0.0018 13.96 CD86 antigen^
1425243_at C d 2 0 7 0.000212 141.20 CD207 antigen (langerin)

CYTOKINES AND CHEMOKINES
1421228„at C c l 7 1.92E-05 3.52 chemokine (C-C motil) ligand 7̂
1417266_at C c l 6 0.00114 3.59 chemokine (C-C moti^ ligand 6
1449195_s_at C x c l l  6 0.00178 3.66 chemokine (C-X-C motif) ligand 16
1449984„at C x c l2 1.68E-05 4.95 chemokine (C-X-C motif) ligand 2̂
1448995_at C x c l 4 0.000543 6.25 chemokine (C-X-C motif) ligand 4
1419209_at C x c l l 0.0001 6,30 chemokine (C-X-C motif) ligand 1*'
1419728_at C x c lS 0.00119 25.35 chemokine (C-X-C motif) ligand 5
1449399„a„at I l l b 0.000605 34.86 interleukin 1
1418480_at C x c l 7 5.79E-05 305.80 chemokine (C3-X-C motif) ligand 7

IMMUNE RESPONSE
1438767_at O s m 0.00254 3.13 oncostatin M
1426083_a_at B t g l 9.17E-06 3.14 B-cell translocation gene 1, anti-proliferative
1415856_at E m b 4.34E-05 3.42 embigin
1438934_x_at S e m a 4 a 0.00141 3.70 semaphorin B, mRNA sequence*
1453055„at S e m a ô d 0.00443 5.19 Semaphorin transmembrane domain and 

cytoplasmic domain 6D
1424759_at A r r d c 4 0.000244 9.69 arrestin domain containing 4*
1429348_at S e m a 3 c 0.000314 13.69 sema domain, immunoglobulin domain 

(Ig), short basic domain, secreted, 3C

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY
144873 l„at 111 O ra 0.00629 3.23 IL-10 receptor, a
1424595_at F l l r 3.94E-06 3.25 E ll receptor
1417460_at l f i tm 2 0.000151 3.34 IFN induced transmembrane protein 2
1421844_at 111 r a p 0.0036 3.74 IL-1 receptor accessory protein
1422190_at C S r l 6.54E-05 4,03 complement component 5, receptor 1
1419132_at T lr 2 0.000438 4.04 toll-like receptor 2
1422046_at I tg a m 9.66E-06 4.09 integrin a
1428018„a„at I g s f 7 7.68E-05 4.29 immunoglobulin superfamily, member 7
1449379_at K d r 2.47E-05 5.08 kinase insert domain protein receptor
1455660_at C s f 2 r b l 6.18E-05 5.27 colony stimulating factor 2 receptor, P 1, 

low-affinity (granulocyte-macrophage)
1425225_at F c r l3 0.000275 5.31 Fc receptor-like 3
1448673_at P v r l 3 0.00567 5.34 poliovirus receptor-related 3
1421034„a_at 114 r a 0.00132 5.48 interleukin 4 receptor, a*' ^
1435645_at M m d 0.00101 5.74 monocyte to macrophage 

differentiation-associated
1421304_at K lr a 2 0.00117 6.57 killer cell lectin-like receptor, subfamily 

A, member 2
1418741_at l t g b 7 0.00141 7.66 integrin P 1^
146027 l_at T r e n i3 0.00404 8.10 triggering receptor expressed on 

myeloid cells 3
1451584_at H a v c r 2 0.00031 8.82 hepatitis A virus cellular receptor
2142595l_a_at C l e c s f l 0 0.000658 9.81 C-type lectin, superfamily member 10 (Câ *" 

dependent, carbohydrate recognition domain)
1455660_at C s f 2 r b 2 6.78E-05 9.95 colony stimulating factor 2 receptor.

.4
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1435560_at I tg a l 2.33E-05 11.01

237

P 2, low-affinity (granulocyte-macrophage) 
integrin a  L*

142204l_at P i l r b 0.00156 11.06 paired immunoglobin-like type 2 receptor p
1440865_at l f i tm .6 8.78E-05 14.54 interferon induced transmembrane protein 6
1419609_at C c r l 0.000371 19.51 chemokine (C-C motif) receptor ri
1424254_at I f i t m l 0.000112 33.33 interferon induced transmembrane protein 1
1419532_at l l l r l 0.000103 36.27 interleukin 1 receptor, type 11̂
1447284_at T r e m l 8.26E-05 53.32 triggering receptor expressed on

1417625_s_at C m k o r l 0.000565 55.78
myeloid cells 1 * 
chemokine orphan receptor 1

CELL SURFACE RECEPTORS
1454966_at I tg a S 0.000151 3.08 integrin a  8*
1418826_at M s 4 a 6 b 0.000808 3.17 membrane-spanning 4-domains, subfamily A,

1417179_at T m 4 s f 9 0.000407 3.22
member 6B
transmembrane 4 superfamily member 9

1426794_at P t p r s 0.00237 3.25 protein tyrosine phosphatase, receptor type, S
1428615_at P 2 y 5 3.54E-05 3.25 purinergic receptor (family A group 5)
1421839_at A b c a l 0.00389 3.48 ATP-binding cassette, sub-family A member 1
1428988_at A b c c 3 0.000774 3.82 ATP-binding cassette, sub-family C

1419601_at K c n j l O 0.00111 4.07
(CFTR/MRP), member 3 
potassium inwardly-rectifying channel,

I437363„at H o m e r l 0.00246 4.13
subfamily J, member 10 
homer homolog 1 { D r o s o p h i la ) '^

1450234_at M s 4 a 6 c 5.56E-05 4.40 membrane-spanning 4-domains, subfamily A,

145252l„a_at P l a u r 0.00149 5.67
member 6C
urokinase plasminogen activator receptor

1420407_at L t b 4 r l 0.00524 5.78 leukotriene B4 receptor ri
1417894_at G p r 9 7 0.00562 6.45 G protein-coupled receptor 97
1450214_at A d o r a 2 b 0.000755 6.57 adenosine A2b receptor^
1450868_at D 8 E r t d 3 5 4 e 0.00085 7.14 DNA segment, Chr 8, ERATO Doi 354,
1419309_at G p 3 8 0.00589 7.53 glycoprotein 38^
1426258„at S o r l l 0.00293 7.70 sortilin-related receptor
1420603_s_at R a e t l a 0.000103 8.16 retinoic acid early transcript y
1420401_a_at R a m p 3 0.00117 10.28 receptor (calcitonin) activity modifying

1429310_at F lr t3 0.000679 11.05
protein 3
fibronectin leucine rich transmembrane

1419647_a„at l e r 3 0.000104 11.90
protein 3*
immediate early response 3̂

1423467_at M s 4 a 4 b 0.00025 14.82 membrane-spanning 4-domains,

1420842_at P t p r f 0.00125 16.87
subfamily A, member 4B
protein tyrosine phosphatase, receptor type, F

1415800_at G j a l 0.000141 19.46 gap junction membrane channel protein a  1 ^
1419759_at A b c b l a 0.00021 33.24 ATP-binding cassette, sub-family B

1456601_x_at F x y d 2 1.33E-05 42.68
member lA
FXYD domain-containing ion transport

APOPTOSIS
145073 l_s_at T n fr s j2 1 0.000328 3.24

regulator 2*

tumor necrosis factor receptor superfamily,

1456006_at B c l 2 l l l 0.00013 4.81
member 21 
BCL2-like 11*

1450997_at S t k l 7 b 4.97E-05 4.85 serine/threonine kinase 17b*
1418649_at E g h i3 0.00263 5.33 EGL nine homolog 3 (C. e l e g a n s )
1427127_x_at H s p a l b 1.13E-05 13.34 heat shock protein lA*

SIGNALLING
1422818_at N e d d 9 0.00146 3.33 neural precursor cell expressed.

1445539_at P d e 7 b 0.00138 3.50
developmentally down-regulated gene 9 
phosphodiesterase 7B

1415834_at D u s p 6 8.93E-05 3.59 dual specificity phosphatase 6̂
1452202_at P d e 2 a 0.000951 4.12 phosphodiesterase 2A

I
J

::
■

■i
:

1



Yiu Chong Gordon Cheung, 2006 238

1438097„at R a b 2 0 0.000217 4.17 RAB20, member RAS oncogene family
1451715^at M a f b 0.00152 4.36 v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein B (avian)
1428733_at G n g t2 0.000417 5.25 guanine nucleotide binding, y  

transducing activity polypeptide 2
1417694_at G a b l 4.92E-05 5.81 growth factor receptor bound protein 2- 

associated protein 1
145518l_at R a s a 2 0.00119 6.02 RAS p21 protein activator 2*
1420664_s_at P r o c r 0.000437 6.23 protein C receptor, endothelial^
143426l_at S i p a l l 2 0.00135 7.76 signal-induced proliferation-associated 1 

like 2
1416701_at R h o e 0.000272 7.80 ras homolog gene family, member E*
1450808„at F p r l 0.00369 11.20 formyl peptide receptor ri
1417143_at E d g 2 0.000262 13.27 endothelial differentiation, lysophosphatidic 

acid G-protein-coupled receptor, 2*
1422474_at P d e 4 b 1.50E-05 16.49 phosphodiesterase 4B*
1449145_a_at C a v 0.00025 44.11 caveolin, caveolae protein^

::

Ï

TRANSCRIPTION
1417394_at K lf 4 0.00366 3.06 Kruppel-like factor 4 (gut)
1423176_at T o b l 0.000105 3.46 transducer of ErbB-2.1
1449530_at T r p s l 2.60E-05 3.51 trichorhinophalangeal syndrome I (human)
1417662_at E lk 3 3.33E-06 3.55 member of ETS oncogene family*
1427844„a„at C e b p b 0.000529 3.98 CCAAT/enhancer binding protein P*’ ^
1419354_at AW 0.00356 4.04 Kruppel-like factor 7 (ubiquitous)
1421604_a_at w 0.000245 4.16 Kruppel-like factor 3 (basic)**
1423100_at F o s 0.000568 4.44 FBI osteosarcoma oncogene
1416035_at H i f l a 0.000209 4.51 hypoxia inducible factor 1, a  subunit*
1415899_at J u n b 0.000838 4.61 Jun-B oncogene^
1426464„at N r l d l 0.00203 4.61 nuclear receptor subfamily 1, group D, 

member 1
1418025„at B h lh b 2 0.000411 4.83 basic helix-loop-helix domain, class B2
1451132_at P b x i p l 3.68E-05 5.20 pre-B-cell leukemia transcription factor 

interacting protein 1
1422697_s_at J a r id 2 0.000388 5.48 jumonji, AT rich interactive domain 2
1420796_at A h r r 0.000668 5.99 aryl-hydrocarbon receptor repressor
1451255_at L i s c h ? 0.000657 7.45 liver-specific bHLH-Zip transcription factor
1425732_a_at M x i l 0.00153 8.09 Max interacting protein 1 * contains bhlh 

domain
1437247_at F o s l2 0.000498 10.11 fos-like antigen 2
1440275_at R u r tx 3 0.00321 10.58 runt related transcription factor 3
1428306_at D d i t 4 0.000236 10.60 DNA-damage-inducible transcript 4
1448713_at S ta t 4 0.000205 13.79 signal transducer and activator of 

transcription 4
1449037_at C r e m 0.000119 18.58 cAMP responsive element modulator^
142263l„at A h r 0.000259 24.16 aryl-hydrocarbon receptor^

CELL GROWTH/DIVISION/DIFFERENTIATION
1434496_at P l k 3 0.00385 4.10 polo-like kinase 3 ( D r o s o p h i l a Ÿ
1436405_at D o c k 4 0.000338 5.25 dedicator of cytokinesis 4
1418634_at N o t c h l 0.00224 7.26 Notch gene homolog 1 { D r o s o p h i la ) ^
1420909_at V e g f a 0.00397 8.04 vascular endothelial growth factor Â
1423475_at C n n n i2 0.000291 19.49 cyclin M2
1427256_at C s p g 2  

MITOCHONDRION

0.000125 232.80 chondroitin sulfate proteoglycan 2

1416381_a_at P r d x S 1.51E-05 4.58 peroxiredoxin 5
1418847_at A r g 2  

CELLULAR STRUCTURE

0.000442 27.75 arginase type II*’ ^

1421090_at E p b 4 . 1 l l 0.00284 3.14 erythrocyte protein band 4.1-like 1*
1455405„at P s t p i p 2 0.00156 3.74 proline-serine-threonine phosphatase-

Î

i

interacting protein 2*
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1416298_at M m p 9 0.00521 6.08
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matrix metalloproteinase 9*
1421976_at M m p l 9 0.000268 6.47 matrix metalloproteinase 19*
1448990„a„at M y o l b 0.000368 8.22 myosin IB***
1415943_at S d c l 0.00012 13.50 syndecan 1*

PLASMA MEMBRANE/SIGNALLING
1421407„at F 2 H 2  0.000625 23.96 coagulation factor II (tlrrombin) receptor-likc2

TRANSPORT
1453721_a_at S lc 3 1 a 2 0.00038 3.01 solute carrier family 31, member 2
1435009„at S l c 9 a 6 0.0017 3.11 solute carrier family 9 (sodium/hydrogen

1434773_a_at S l c 2 a l 0.00336 3.23
exchanger), isoform 6
solute carrier family 2 (facilitated glucose

1447181_s_at S l c 7 a 7 0.000523 3.23
transporter), member ri
solute carrier family 7 (cationic amino acid

1453915_a_at Slc37a3 0.000456 3.69
transporter, y+ system), member 7
solute carrier family 37 (glycerol-3-phosphate

1420697_at S l c l 5 a 3 3.08E-05 5.73
transporter), member 3
solute carrier family 15, member 3

1449005_at S l c l 6 a 3 1.15E-05 6.95 solute carrier family 16 (monocarboxylic acid

1457989_at S l c 4 a l l 0.00278 7.86
transporters), member 3
solute carrier family 4, sodium bicarbonate

1420413_at S l c 7 a l l 0.00139 8.01
transporter-like, member 11
solute carrier family 7 (cationic amino acid

METABOLISM/BIOSYNTHESIS
1449454_at B s t l  0.00419 3.10

transporter, y+ system), member 11 

bone marrow stromal cell antigen 1
I449538_a_at G c n t l 0.000651 3.30 glucosaminyl (N-acetyl) transferase 1, core 2
1416086_at T p s t2 5.83E-05 3.31 protein-tyrosine sulfotransferase 2
1418645_at H a l 0.00015 3.36 histidine ammonia lyase
1448647_at M a n 2 a l 0.000193 3.43 mannosidase 2, a  1
1419692_a_at L t c 4 s 0.000375 3.72 leukotriene C4 synthase
1454666_at S p t l c 2 0.00494 3.80 serine palmitoyltransferase, long chain

1435133_at U g c g 0.00263 4.25
base subunit 2
UDP-glucose ceramide glucosyltransferase*

1423414_at P t g s l 9.67E-05 5.78 prostaglandin-endoperoxide synthase 1*
1451843_a„at G g t a l 0.00321 6.66 glycoprotein galactosyltransferase a  1, 3*
1430388_a_at S u lfZ 8.83E-05 6.68 sulfatase 2*
1420994_at B 3 g n t 5 0.00194 18.41 UDP-GlcNAc:betaGal beta-1,3-N-

1428547„at N tS e ;  C D 7 3 4.08E-05 60.75
acetylglucosaminyltransferase 5 
5' nucleotidase, ecto*’ ^

ADHESION
1460302_at T h b s l 1.21E-06 362.90 thrombospondin 1 *’ ^

REGULATORY
1451798„at I l l r n 0.00769 2.65 interleukin 1 receptor antagonist*' ^
143489l_at 4833445A08Rik 0.00331 4.53 prostaglandin F2 receptor negative regulator

indicates the gene being recognised by a second probe (Section 1.10).

 ̂ indicates that the gene has been detected in the preliminary experiment (Section 3.10.3).
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L.8 Down-regulated genes in BMMs after incubation for 24 h

with CyaA
Affy ID Gene name

CD ANTIGENS
1448182_a„at C d 2 4 a  

1436346_at C d l 0 9

P  value

0.00149
0.000699

Fold Description 
change

CYTOKINES AND CHEMOKINES
1418930_at C x c l l O  5.30E-05
1419561_at C c l 3  4.23E-05
1421578_at C c l 4  6.70E-05

IMMUNE RESPONSE

-3.57
-4.76

-3.85
-5.62
-4.63

CD24a antigen 
CD 109 antigen

chemokine (C-X-C motif) ligand 10 
chemokine (C-C motif) ligand 3̂  
chemokine (C-C motif) ligand 4̂

1448736_a„at H p r t 0.00105 -3.51 hypoxanthine guanine phosphoribosyl 
transferase

1441075_at LOC329416 0.00248 -3.82 nitric oxide synthase trafficker
1421547„at L y 7 8 0.00509 -4.35 lymphocyte antigen 78
1451905_a_at M x l 0.0011 -4.52 myxovirus (influenza virus) resistance 1
1419721_at G p r l 0 9 b 0.00115 -4.88 interferon-Y inducible gene, Puma-g
1415855„at K i t l 0.00152 -5.49 kit ligand
1427329_a_at I g h - 6 0.000116 -14.31 immunoglobulin heavy (of IgM) chain 6

CELL SURFACE RECEPTORS INVOLVED IN IMMUNITY

f

1421596_s_at H 2 8 0.00169 -3.19 histocompatibility 28
145243 l_s„at H 2 - A a 0.00138 -3.34 histocompatibility 2, class II antigen A a*'
1450648„s_at H 2 - A b l 0.00144 -3.37 histocompatibility 2, class II antigen A (3 1*’ ^
1422892_s_at H 2 - E a 0.00218 -4.03 histocompatibility 2, class II antigen E "$
1444040_at L a i r l 0.000927 -4.93 leukocyte-associated Ig-like receptor 1 * ai
1416050„a„at S c a r b l 0.000857 -6.80 scavenger receptor class B, member ri .a
1421792_s_at T r e m 2 0.000438 -7.46 triggering receptor expressed on myeloid cells

CELL SURFACE RECEPTORS
'.V

1420699_at C l e c s f l 2 0.00263 -3.33 C-type (calcium dependent, carbohydrate /il
recognition domain) lectin, superfamily ..c:

member 12 ".,ic
1440882_at L r p 8 0.000421 -3.97 low density lipoprotein receptor-related i f

protein 8
1419605_at M g l l 0.000695 -4.90 macrophage galactose N-acetyl-

galactosamine specific lectin 1
1422430_at F i g n l l 0.00511 -7.69 fidgetin-like 1
1424208_at P t g e r 4 0.00513 -9.26 prostaglandin E receptor 4
1437347_at E d i i r b 0.000471 -10.92 endothelin receptor type B
1422445_at I t g a ô 0.00292 -12.58 integrin a  6 Y

APOPTOSIS î'.;

1429494_at T r im 3 5 0.00124 -3.18 tripartite motif-containing 35
1428842_a_at N g f r a p l 0.0018 -3.28 nerve growth factor receptor

(TNFRSF16) associated protein 1 %
1424278„a_at B ir c S 0.00344 -16.61 baculoviral lAP repeat-containing 5̂

i
SIGNALLING 1
1449175_at G p r 6 S 0.00224 -3.69 G-protein coupled receptor 65 ii.
1434518_at P h k a 2 5.60E-05 -5.10 phosphorylase kinase a  2 ,
1437303_at l l 6 s t 0.00398 -4.48 interleukin 6 signal transducer*
1419247_at R g s 2 0.000467 -8.06 regulator of G-protein signalling 2^ 1
1451358_a_at R a c g a p l 0.000104 -15.34 Rac GTPase-activating protein 1 ^
1448627_s_at P b k 3.88B-05 -29.59 PDZ binding kinase , ; 3 ;

'M m
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TRANSCRIPTION

241

1418036_at P r im 2 0.00409 -3.13 DNA primase, p58 subunit
1439012_a_at D c k 0.00103 -4.27 Deoxycytidine kinase, mRNA sequence
1435368„a„at A d p r t l 0.00203 -4.35 ADP-ribosyltransferase 1
1424629_at B r c a l 0.00103 -4.83 breast cancer 1
1448834_at F o x r n l 0.00272 -5.46 forkliead box M l
1424105^a^at P t t g l 0.000218 -6.45 pituitary tumor-transforming 1
1420715_a_at P p a r g 0.000305 -6.94 peroxisome proliferator activated receptor y
1437187_at E 2 J 7 0.000214 -8.20 E2F transcription factor 7
1449363_at 0.00214 -8.77 activating transcription factor 3
1416544„at E z h 2 0.00126 -11.64 enhancer of zeste homolog 2 ( D r o s o p h i l a )

1423809_at Tc/79 0.000229 -15.77 transcription factor 19
1416258_at T k l 0.000547 -22.37 thymidine kinase ri
1415810„at U h r f l 0.000199 -34.01 ubiquitin-like, containing PFID and 

RING finger domains, 1 (nuclear protein 95) ^

CELL GROWTH/DIVISION/DIFFERENTIATION
1415775_at R b b p 7 0.000919 -3.32 retinoblastoma binding protein 7
1450886_at G s g 2 0.000745 -3.39 germ cell-specific gene 2
1416773_at W e e l 0.00358 -3.55 wee 1 homolog (S . p o m b e )

1450414_at P d g f b 0.000691 -4.13 platelet derived growth factor, B
1427005_at P lk 2 0.000788 -4.39 polo-like kinase 2 ( D r o s o p h i l a )
1451567„a„at l f i 2 0 3 0.00466 -4.65 interferon activated gene 203*’^
14245 U_at S tk 6 0.000868 -4.76 serine/threonine kinase 6 (Aurora kinase A)
1424156„at R b l l 0.00364 -4.78 retinoblastoma-like 1 (pi 07)
1452954_at U b e 2 c 0.000771 -5.92 ubiquitin-conjugating enzyme E2C
1416214_at M c n i4 0.000439 -6.58 minichromosome maintenance deficient 

4 homolog (S . c e r e v i s i a e ) *
1448635„at S m c 2 l l 0.000194 -7.75 structural maintenance of chromosomes 

2-like 1 (yeast)*
1426653_at M c m 3 0.00194 -8.13 minichromosome maintenance deficient 3 

(S . c e r e v i s i a e ) ^ ’ ^
1424128_x_at A u r k b 0.00261 -8.26 aurora kinase B^
1437580_s_at N e k 2 0.000962 -8.33 never in mitosis gene A-related expressed 

kinase 2
1419838_s_at P l k 4 0.00152 -8.33 polo-like kinase 4 ( D r o s o p h ila ) '^ '  ^
1423877_at C h a f l  b 0.0006 -8.47 chromatin assembly factor 1, subunit B (p60)^
1416746_at H 2 a f x 0.00136 -9.17 H2A histone family, member X
1422460_at M a d 2 U 0.00316 -9.17 mitotic arrest deficient, homolog-like 1 (yeast)
1423775_s_at P r c l 2.13E-05 -9.17 protein regulator of cytokinesis 1
1447363_s_at B u b l b 0.00246 -10.65 budding uninhibited by benzimidazoles 

1 homolog, p (S . c e r e v i s i a e ) *
1448777_at M c m 2 0.000658 -13.95 minichromosome maintenance deficient 

2 mitotin (S . c e r e v i s i a e )
1416030_a_at M c m 7 0.002 -18.69 minichromosome maintenance deficient 

7 (S . c e r e v i s i a e Ÿ
1415945„at M c m 5 0.000415 -19.01 minichromosome maintenance deficient 

5, cell division cycle 46 (S . c e r e v i s ia e ) * '  ^
1418293_at l f i t 2 0.000808 -19.72 interferon-induced protein with 

tetratricopeptide repeats 2̂
1416309_at N u s a p l 0.00169 -22.22 nucleolar and spindle associated protein 1
1419519_at I g f l 0.00159 -31.45 insulin-like growth factor 1 *’ ^
1438852„x„at M c m 6 0.00207 -32.05 minichromosome maintenance deficient 

6 (MIS5 homolog, S . p o m b e ) *

CELL DIVISION CYCLE GENES
141713Uat C d c 2 5 a 0.0019 -3.50 cell division cycle 25A, mRNA sequence
1454742_at R a s g e f l b 8.24E-05 -4.08 RasGEF domain family, member IB
1426002_a_at C d c 7 0.000302 -4.63 cell division cycle 7 (S . c e r e v i s i a e )
1439377_x_at C d c 2 0 0.00277 -7.09 cell division cycle 20 homolog (S . 

c e r e v i s i a e ) *  ' ^
1456077_x_at C d c 2 5 c 0.00268 -5.32 cell division cycle 25 phosphatase mRNA
1416575_at C d c 4 5 l 0.00472 -5.92 cell division cycle 45 homolog (S . 

c e r e v i s ia e ) - l ik &
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1448314_at C d c 2 a 5.90E-05 -5.99 cell division cycle 2 homolog A (S. p o m b e )

1417458_s_at C k s 2 0.000293 -6.21 cell division cycle 28 protein kinase
regulatory subunit 2

1417019„a„at C d c 6 0.00148 “6.76 cell division cycle 6 homolog (S .

c e r e v i s i a e )

144844 l„at C k s l 0.00089 -8.85 cell division cycle 28 protein kinase
regulatory subunit 1

143081l_a_at C d c a l 0.000484 -12.29 cell division cycle associated 1

CYCLINS
1417420_at C c n d l 5.21E-05 -4.52 cyclin D 1 ^
1416868_at C d k n 2 c 0.0019 -6.80 cyclin-dependent kinase inhibitor 2C 

(p i8, inhibits CDK4)
1422513_at C c n f 0.00306 -6.99 cyclin
1450920„at C c n b 2 0.000145 -7.94 cyclin B2
1419943_s_at C c n b l 0.000873 -8.70 cyclin B l*
1422535_at C c n e 2 0.000758 -10.36 cyclin E2
1417910„at C c n a 2 0.00332 -20.88 cyclin A2*

KÏNESINS
1450692_at 
143761 l_x_at 
1452315_at 
1451128 s at

K i f 2 c
K i f l l

K i f 2 2

0.00115 -6.45 kinesin family member 4
0.00496 -9.52 kinesin family member 2C*’ ^
7.96E-05 -11.29 kinesin family member 11*
0.000237 -11.98 kinesin family member 22*’^

MITOCHONDRION
1450048_a_at I d h 2 0.00318 -3.53 isocitrate dehydrogenase 2 (NADP+), mRNA
1416345_at T im m S a 0.000238 -3.58 translocase of inner mitochondrial

membrane 8 homolog a (yeast)
1423392_at C l ic 4 0.000451 -4.52 chloride intracellular channel 4*’ ^
1422978_at C y b b 0.00343 -6.54 cytochrome b-245, p polypeptide^
1426423_at S h m t2 0.00449 -8.00 serine hydroxymethyl transferase 2

CELLULAR STRUCTURE
1417144_at T u b g l 0.00355 -3.57 tubulin, Y 1
1425476_at C o l 4 a 5 0.00257 -3.97 procollagen, type IV, a  5
1451989_a_at M a p r e 2 0.000223 -4.48 microtubule-associated protein, RP/EB

family, member 2
1433892_at S p a g S 0.000783 -5.41 sperm associated antigen 5*
1428976_at T m p o 0.000568 -6.45 thymopoietin*
1417450_a_at T a c c 3 0.000138 -7.46 transforming, acidic coiled-coil

containing protein 3*
1434748_at C k a p 2 0.004 -8.55 cytoskeleton associated protein 2̂
1449153„at M m p l 2 0.000328 -8.62 matrix metalloproteinase 12
1417445_at K n tc 2 0.000616 -8.85 kinetochore associated 2

DNA REPLICATION
1417947..at P e n a 0.000219 -4.27 proliferating cell nuclear antigen
1438130..at T a f l 5 0.00252 -4.72 TATA box binding protein (TBP)-associated 

factor
1416641..at L i g l 0.000829 -5.29 ligase I, DNA, ATP-dependent
1416915..at M s h 6 0.00365 -8.20 mutS homolog 6 (E . c o l i )
1452534..a_at H m g b 2 0.000393 -8.33 high mobility group box 2*
1417541..at H e l l s 0.000145 -9.62 helicase, lymphoid specific (Hells), mRNA*
1450862..at R a d 5 4 l 3.96E-05 -11.52 RAD54 like {S . c e r e v i s i a e )

1454694..a_at T o p 2 a 0.000765 -14.62 topoisomerase (DNA) II
1419397..at P o l a l 4.74E-05 -15.06 polymerase (DNA directed), a  1
1418281..at R a d S l 0.000133 -18.08 RAD51 homolog (S . c e r e v i s i a e f
1448226..at R r m 2 0.00068 -35.97 ribonucleotide reductase M2*’ ^
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1415775_at R b b p 7 0.000919 -3.32 retinoblastoma binding protein 7
1451782_a_at S l c 2 9 a l 0.00116 -3.06 solute carrier family 29 (nucleoside 

transporters), member 1
1417061_at S l c 4 0 a l 0.00603 -3.08 solute carrier family 40 (iron-regulated 

transporter), member 1
1416954_at S l c 2 5 a l  0 0.00283 -3.45 solute can'ier family 25 (mitochondrial 

carrier; dicarboxylate transporter), member 10
1416629_at S l c l a S 0.00536 -3.91 solute carrier family 1 (neutral amino 

acid transporter), member 5
1421129_a_at A t p 2 a 3 0.00216 -4.10 ATPase, Ca++ transporting, ubiquitous
1422788_at S l c 4 3 a 3 0.000493 -5.62 solute carrier family 43, member 3
1418326_at S lc 7 a 5 0.00106 -13.16 solute carrier family 7 (cationic amino 

acid transporter, y+ system), member 5
1437052_s_at S l c 2 a 3  0.00166 

METABOLISM/BIOSYNTHESIS

-14.64 solute carrier family 2 (facilitated 
glucose transporter), member 3

1415852_at lm p d h 2 0.000321 -3.18 inosine S'-phosphate dehydrogenase 2
1455106_a_at C k b 0.000544 -3.38 creatine kinase, brain
1415823_at S c d 2 0.00243 -3.70 stearoyl-Coenzyme A desaturase 2*
1416563_at C tp s 0.0037 -3.86 cytidine 5'-triphosphate synthase
145268l_at D ty m k 0.000449 -4.67 deoxythymidylate kinase*
1454843_at P r p s 2 0.000572 -4.78 phosphoribosyl pyrophosphate synthetase 2
1423569_at G a t in 0.00153 -5.29 L-arginine: glycine amidinotransferase
1423828_at F a s n 0.000331 -5.32 fatty acid synthase
1437874„s„at H e x b 0.000104 -5.81 hexosaminidase B
1437325„x„at P y c s 0.000179 -6.58 pyrroline-5 -carboxylate synthetase
1454607_s_at P s a t l 0.000347 -8.26 phosphoserine aminotransferase ri
1419270„a„at D u tp 0.00229 -10.11 deoxyuridine triphosphatase
1422479_at A c a s 2 0.0015 -10.33 acetyl-Coenzyme A synthetase 2 (ADP 

forming)*
142499 l„s_at T y m s 0.0034 -12.21 thymidylate synthase
1433966_x_at A s n s 0.0019 -12.44 asparagine synthetase*
1431056_a_at L p l  

REGULATORY

0.000184 -102.04 lipoprotein lipase^

1426065_a_at T r ib 3 0.00319 -4.50 Tribbles homologue*

OTHER
1419513_a_at E c t2 9.23E-05 -6.71 ect2 oncogene
1419254_at M th f d 2 0.00201 -14.95 methylenetetrahydrofolate dehydrogenase 

(NAD+ dependent)

* indicates the gene being recognised by a second probe (Section 1.10).

indicates that the gene has been detected in the preliminary experiment (Section 3.10.3).
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