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Summary

African trypanosomes are protozoan parasites that are unable to synthesise purines de 

novo and as a result must scavenge them from the host environment. Purines are 

transported into the cell via a number of surface membrane transporters that recognise 

specific motifs on the substrate. These transporters can be exploited to mediate the uptake 

of trypanocidal drugs, such as diamidines and arsenicals. The high affinity pentamidine 

transporter 1 (HAPTl) and the low affinity pentamidine transporter! (LAPTI) are 

involved in the uptake of the diamidine compound pentamidine and the specificities and 

associated affinities o f these transporters for various other compounds were tested by 

looking at the inhibitoiy effect of varying concentrations of test drugs on the uptake of 

^H-pentamidine.

A link was found between the carbon chain length of diamidine compounds and their 

affinity for HAPTl and LAPTI. For compounds containing benzene and furan rings, the 

position o f methyl groups in relation to these structures also appears to be important. 

HAPTl and LAPTI differ in ligand recognition profiles, although both are implicated 

here in the uptake of Isometamidium and Ethidium Bromide, two trypanocidal drugs 

previously thought to be taken up by diffiision only. As there is increasing drug resistance 

to all tiypanocidal drugs, HAPTl and LAPTI are extremely important as alternative 

de lively systems for trypanocides in the event that other transporters are lost in the field 

through drug pressure, for example P2.



The P2 transporter known to mediate the uptake of adenosine and 

melaminophenylarsenicals is shown here, by using transport assays in conjunction with 

Michaelis-Menten kinetics, to be the sole mechanism for the uptake o f veterinaiy drug 

Berenil, in Trypanosoma brucei brucei. Finally, Crithidia fasciculata, another 

kinetoplastid, is shown to have particular attributes, which would value this organism as a 

potential expression system for the characterisation of HAPTl and LAPTI.
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Chapter 1

General Introduction



African Trypanosomes and trypanosomiasis 

Classification, morphology and the life cycle

African trypanosomes are part of the order Kinetoplastid a, which encompasses a group of 

parasitic protozoan organisms, all possessing a unique organelle, the kinetoplast. This 

structure is found within the mitochondrion near the flagella and contains its own DNA 

which consists of a network of about 20 000 mincircles and 20-50 maxicircles. (Roberts 

and Janovy, 1996). Trypanosomes belong to the Trypanosomatidae family and members 

of this group, for example Leishmania and Crithidia, share morphological, biochemical 

and metabolic attributes. Trypanosomatids are usually pathogens of humans and animals 

where they reside in the blood of the vertebrate, definitive host and are transmitted by 

bloodsucking invertebrates.

The two species of trypanosome that infect humans. Trypanosoma brucei gambiense and 

Trypanosoma brucei rhodesiense are morphologically indistinguishable. They are 

heteroxenous and are transmitted by the tsetse fly of the genus Glossina. (Figure 1 A: Life 

cycle). The trypanosome is pleiomorphic in the human host. The long, slender, flagellated 

dividing form, which consumes large quantities of glucose and oxygen, differentiates to 

the short stumpy infective form, that lacks a free flagellum and has a pronounced 

undulating membrane. The latter form is ingested by the tsetse fly in a blood meal and 

multiplies in the posterior of the midgut for about 10 days before migrating to the 

salivary glands and transforming into epimastigotes. These are metacyclic 

trypomastigotes which will divide several times, usually by binary fission (although 

genetic recombination of phenotypes has been demonstrated) before being transmitted
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back to the definitive host by the vector, which acts as a syringe, injecting up to several 

thousand parasites in a single bite. It is thought that these haemoflagellates originally 

parasitised the digestive tracts of insects and were able to establish themselves in the 

vertebrate host by adapting morphologically and physiologically to cope with the new 

environmental conditions of blood (Hoare, 1967).

Pathology and Disease

Trypanosomiasis or sleeping sickness presents itself differently in patients depending on 

whether T.b.gambiense or T.b.rhodesiense is the source of infection. The former causes a 

chronic form of the disease with the patient progressively degenerating over a period of 

about two years from the point of transmission to death. However, in the case of 

T.b.rhodesiense infection, symptoms are more severe and death may occur within weeks 

of contracting the pathogen. Generally, there are two stages to the disease. The acute 

phase begins as a flu-like illness, with mild symptoms such as headache, joint pains and 

an irregular fever. At this stage parasites can be detected in the bloodstream of the 

infected person. They aie therefore fully exposed to the immune cells present in the 

blood and have evolved a strategy to evade the humoral immune response. The 

trypanosomes replace variant surface glycoproteins, which form a layer on the surface of 

the protozoa, with new proteins expressing a different antigenic profile. This is known as 

antigenic variation and leads to fluctuating parasitaemias, as the body takes about one 

week to mount an immune response to each new antigen. Therefore, symptoms also 

fluctuate in eorrelation with this phenomenon. As the disease progresses, symptoms



become more severe and patients may experience behavioural problems, mental 

retardation, lethargy, anaemia and emaciation, which is more pronounced in 

T.b.rhodesiense sleeping sickness (Figure IB).

In late stage sleeping sickness the parasites infect the central nervous system (CNS) and 

can be found in the cerebrospinal fluid (CSF). Progressive destruction of neurones occurs 

in cortical areas of the brain and patients may experience a plethora of associated 

neurological disorders such as tremors, involuntary movements, low and tremulous 

speech and a variety of psychological disorders. Gradually, the patient becomes more 

difficult to rouse from sleep and develops meningo-encephalitis leading to coma and 

ultimately death, if left untreated (Neva and Brown, 1994).

As the early stage symptoms of trypanosomiasis are similar to those of many other 

common diseases found in Africa, it is difficult to diagnose a patient from these alone. 

Trypanosomes can be detected in the blood using geimsa stain or ELISA and by 

examining CSF using the lumbar puncture method in late stage of the illness.

Epidemiology

There are now an estimated 400 000 people harbouring trypanosomiasis throughout 36 

countries in sub-Saharan Africa. (Barrett, 1999). The area at risk o f disease is dependant 

upon the distribution o f the tsetse fly vector (Figure 1C) and is commonly known as the 

tsetse fly belt. Tb.gambiense (West African) and Tb.rhodesiense (East African) are 

transmitted by different species o f tsetse fly, which reside in contrasting habitats (riverine 

and savannah, respectively) causing these species to be prevalent at opposite sides of the 

continent with the Rift Valley in the centre. Tb.gambiense is largely endemic in West



Figure 1 B: Sleeping sickness patient
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Figure ID: Crithidia fasciculata

Africa and can be contracted at work or home whilst collecting water from wells or 

rivers. T.b.rhodesiense, on the other hand, is a zoonotic, sporadic disease affecting 

particular occupational groups who spend time with wild or domestic animals. However, 

Tb.gambiense has also been discovered to be an important zoonotic pathogen in West 

Africa, for example Nigeria, in areas where livestock is reared (Coker et al, 2000). In 

1960 Human African Trypanosomiasis (HAT) had disappeared almost completely but 

since then the number of cases have been steadily rising and there are now epidemics in 

Southern Sudan, Uganda (Welbum et al, 2001) and the Democratic Republic o f Congo. 

There are several reasons for the massive increase in cases o f HAT. The colonials left 

Africa around the late 1950’s without leaving behind health policies, education and other 

control methods, previously used by them to combat the disease. Gradually, the fly 

populations returned to the areas where they had been eradicated. Politics also plays an 

important role, where politically unstable countries are unable to persist with national and 

local public health control programmes (Goodwin, 1964). In the event of war, which has 

been common in the afflicted areas, money is spent on other resources and the large scale 

migration o f people with parasites exposes a new population to the disease.



Bovine Trypanosomiasis

The three most important species of trypanosome that infect cattle are: Trypanosoma 

congolense, Tvivax and Th.brucei. The species most commonly acquired in East Africa 

is T.congolense and Tvivax in West Africa. T.b.brucei is not limited to a particular area 

and was the first species of trypanosome to be discovered in the blood of infected cattle 

by Sir David Bruce. All species cause the devastating disease nagana, named by the Zulu 

people, meaning “poorly”. Symptoms include anaemia, indicated by a reduction in 

packed cell volume (Bossche and Rowlands, 2001), oedema, watery eyes, fever and 

spontaneous abortion (Geerts and Holmes, 1998). Within months cattle become 

emaciated, uncoordinated and paralysed which eventually leads to death. Parasites can be 

detected in the blood and characterised using PCR, which is more reliable than ELISA 

and microscopic methods (de Almeida et al, 2001, Rebeski et al, 1999, Mugittu et al, 

2001, Desquesnes et al, 2001). Vascular damage is found in chronic T.congolense 

infection, probably because these trypanosomes attach to small blood vessels whereas 

T.b.brucei does not. However, T.b.brucei leaves the blood vessels and enters tissues to 

produce an inflammatoiy reaction whereas T.congolense is strictly a plasma parasite 

(Losos et al, 1973).

The severity and duration of disease is dependant upon the susceptibility o f the host. 

Certain taurine breeds of cattle indigenous to West Africa, the N ’Dama, Maturu and 

Dahomey, are resistant or partially resistant to trypanosomiasis (Paling et al, 1991). 

Although these cattle will still present symptoms, death is rare and they can control a 

rechallenge infection more efficiently than tryp anosusceptib le Boran breeds. 

Trypanotolerance is thought to be under genetic control and this may affect a hosts’



ability to control disease through immune mechanisms (Taylor, 1997). It would therefore 

be advisable to breed trypanotolerant cattle which will thrive in areas of tsetse infestation. 

However, these breeds, although immunologically stronger do not necessarily have the 

other desirable qualities required to make a sufficient profit on the market.

The tsetse fly area covers about 4 million square miles and it is thought that if the land 

could be used to raise cattle, the present cattle population in Africa would increase to 125 

million, almost double the current amount. At present there are about 45 million cattle 

forced to be raised under challenge fiom tiypanosomiasis and 6 million o f these alone are 

found in the Ghibe Valley, Ethiopia (Itty et al, 1995). In Tanzania between 1982-86 

74 818 cattle died from trypanosomiasis and at present 70% of the country is devoid of 

cattle (Mbwambo et al, 1988). It is estimated that US $12 000 000, related to cattle 

production in sub-Saharan Africa, is lost every year and this does not take into account 

losses made through manual labour, which is 80% in most areas, due to the lack of 

draught power (Taylor, 1997). Animal power has been extremely important in the rural 

and economic development o f Asia and Europe, something Africa has dispossessed. The 

inability to rear cattle and practise livestock farming due to tsetse infestation prevents 

economic development of these areas through depriving the people of a productive meat 

and milk trade and leading to poverty. Huge losses will also be made eveiy year on drugs 

to treat trypanosomiasis. As a solution farmers graze their cattle at higher altitudes where 

tsetse flies are scarce. However, this is often far from abattoirs and meat markets, forcing 

the farmers to drive cattle for weeks through tsetse-infested land without medicine, 

leading to unaccountable deaths in the herd (Jordan, 1986). However, it has recently been 

suggested that if farmers in areas o f high trypanosome risk pay higher prices for drugs



and full veterinary costs they should still be able to make good profits on their stock (Itty 

et al, 1995). This does not eliminate that fact that by being forced to pay these prices, 

these people are still economically disadvantaged.

Control of Trypanosomiasis

The current focus on control of trypanosomiasis in humans and animals is by 

chemotherapy. There is little hope of a vaccine due to lack of vaccine candidates. 

Antigenic variation makes it virtually impossible to vaccinate a host against a surface 

antigen and cattle recently vaccinated against parasite specific flagellai* pocket antigens 

were only partially protected against rechallenge with T.congolense and Tvivax (Taylor, 

1997). The other solution is to eradicate fly populations through methods of vector 

control. Mono- or Biconial fly traps baited with insecticides have been successful in 

reducing population numbers but people see little long tenn benefits and tend to 

dismantle the traps for use in social activities such as fishing. There are several 

insecticides available. DDT has been used for gi'ound spraying on a large scale but this is 

not viable during wartime conditions and it has also been found to have detrimental 

effects on the environment and surrounding wildlife. Pyrethroids have been used as cattle 

dips, which are less toxic and generally more flexible. However, there is an increasing 

problem of insecticide resistance (Allsopp, 2001, Grant, 2001). Other methods include 

clearing of breeding sites and elimination of animal reservoirs, both of which are

10



destmctive and time consuming and the movement of people out of infected areas is 

unpopular. A simple solution would be to graze cattle at night to avoid contact with the 

vector host. A novel idea is to release flies infected with an insect pathogen affecting the 

germ line, which will ultimately eliminate the residing population (Aksoy, 2001). 

However, a lot of research and ethical discussion must be carried out before this method 

becomes plausible.

Therefore, the only option left is chemotherapy. Although there are a number of drugs 

currently on the market for treatment of HAT and bovine trypanosomiasis these have 

several problems associated with them.

Chemotherapy

Drugs for treatment of HAT

There are four drugs available for treatment in humans: Suramin and Pentamidine used 

for treatment of early stage sleeping sickness caused by T.b.rhodesiense and 

Tb.gambiense, respectively. For late stage sleeping sickness Melarsoprol is the first drug 

of choice followed by DFMO (Difluoromethylomithine) if necessary. The modes of 

action of these drugs and the problems encountered are veiy different and these will now 

be discussed individually in some detail.

11



Suramin (Moranvl®)

HN NH
C = 0 o=c

SO j-

H H

Suramin, a polysiilphonated symmetrical naphthalene derivative, was developed by 

Gemian chemists and introduced for treatment of early stage sleeping sickness in 1922. 

At the time a number of naphthalene dye substances had been shown to have trypanocidal 

activity and therefore this compound was synthesised with the intention of being a 

trypanocide. Although the dmg has now been in use for 80 years the mode of action is 

still unknown. The drug camiot be used to treat late stage sleeping sickness, because with 

six negative charges at physiological pH, it cannot cross the blood brain barrier and 

therefore only removes tiypanosomes from the bloodstream. Toxic side effects, such as 

vomiting, shock and fatal hypersensitivity reactions occur in about 1 in 20 000 cases. 

However, Suramin is also the main dmg used against the filarial parasite Onchocerca 

volvulus, which is responsible for river blindness. Recently, the pharmaceutical company 

Bayer planned to stop production of the product, probably due to the lack of an attractive 

profit making market, and it would no longer be available if  the WHO had not interceded 

(BaiTett, 1999).

12



Pentamidine (Lomidine®)

HgN NHg
■0”-(CH2)5—0- 

HgN ^  ^  NHg

Pentamidine (1,5-bis (4’-amidinophenoxy) pentane) is an aromatic diamidine, synthesised 

in 1937. It is only effective at clearing trypanosomes fi'om the bloodstream and therefore is 

no use in late stage sleeping sickness. However, it has recently been found that 

pentamidine can, surprisingly, cross the blood brain barrier (BBB) and is detected in the 

cerebrospinal fluid (CSF) (Bromier et al, 1991). Perhaps this is due to the breakdown of the 

BBB by the inflammatory response caused by trypanosome invasion of the CNS. 

Pentamidine is not well absorbed orally and therefore must be given intravenously or by 

subcutaneous injection. When administered like this the drug is stored within the blood and 

tissues to create a prophylactic effect, protecting the individual for up to six months, and 

has been used on a mass scale in past epidemics (Goodwin and Rollo, 1955). A suckling 

child can also gain enough pentamidine from mothers’ milk to protect he/she from the 

disease (Williamson, 1962). However, the drug and other related diamidine compounds 

have a vasodepressor effect (Wien, 1943) and as a result can cause toxic side effects. 

Adverse reactions occur in about 50% of patients. Symptoms include swelling and 

abscesses at the sites of injection, hypoglycaemia progressing to diabetes mellitus and 

hyperkalemia (an excess of potassium in the blood) suggesting an impairment in renal 

hmction (Kleyman et al, 1995). It is found that combining Pentamidine and Suramin helps 

to alleviate these painful symptoms (Gumaraes and Lourie, 1951).

13



Pentamidine accumulates to 1 mM in the trypanosome before lysis occurs which is a 

surprisingly high concentration. The compound has various dmg targets such as S- 

adenosyl-L-methionine carboxylase, (although not involved in trypanocidal 

action)(Berger et al, 1993) mitochondrial topoisomerase II, Ca^^ transport (Benain et al, 

1993) and lysine-arginine transport (Berger et al, 1995). It has also been found to restrict 

the replication of a murine rotavirus by acting as a pro tease inhibitor (Vonderfecht et al, 

1988). The main mode of action is thought to be by binding to the minor grooves of DNA 

in the kinetoplast causing 5% cleavage in the minicircles (Wang, 1995). Trypanosomes 

exposed to pentamidine become dyskinetoplastic but still retain their mitochondrial 

membranes. Most drugs with affinity for DNA are also mutagenic. However, 

pentamidine is Ames negative (Stauffert et al, 1990), and there is absolutely no effect on 

nuclear DNA.

In the 1940’s pentamidine and the related diamidine compound propamidine, were shown 

to have potent bacteriocidal activity. As a result, propamidine can be used in topical 

application to prevent streptococci and staphylococci infection o f wounds and burns, with 

no toxic side effects (Fulton, 1943). It also shows some fungistatic action (Elson, 1945). 

Pentamidine has also shown activity against a variety of other organisms such as 

Plasmodium falciparum (the malaria causing parasite) (Bell et al, 1990, Stead et al, 

2001). Candida albicans, Babesia canis and can be used as an alternative to allopurinol 

for treatment of Leishmaniasis (Croft and Brazil, 1982). Most importantly it shows 

activity against Pneumocystis carinii that causes pneumonia by affecting oxidative 

phosphorylation and nucleic acid synthesis (Goa and Campoli-Richards, 1987). This 

opportunistic pathogen was rare before 1981 but due to the emergence of AIDS the

14



disease is now particularly prevalent in the US. Pentamidine was licensed for the 

treatment of Pneumocystis carinii in 1985 (Pearson and Hewlett, 1985). The 

manufacturers, Rhône-Poulenc, then raised the price of the life saving sleeping sickness 

drug, for use in the Western World and a special deal had to be negotiated by WHO to 

allow the drug to remain available to Africa (Barrett, 1999).

Melarsoprol (Arsobal®)

NH2 s
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Melarsoprol is a trivalent melaminophenyl arsenical introduced in 1949 by Friedheim for 

the treatment of early and late stage sleeping sickness. It is active against both 

T.b.gambiense and Tb.rhodesiense infection. The drug is lipid soluble allowing it to 

cross the BBB and is therefore the current drug of choice for the treatment of late stage 

sleeping sickness. However, it has recently been discovered that surprisingly low levels 

of melarsoprol are detected in the CNS (Pepin and Milford, 1994). Perhaps this is 

because the drug is rapidly converted to the less permeable melarsen oxide and other 

compounds in the body (Barrett, 2000). The solid compound is unstable and the drug is 

therefore marketed as a solution. However, this still deteriorates soon after opening. Also, 

the solvent propylene glycol, used to form the solution, is an irritant and causes extreme 

pain when administered by intravenous injection (Jennings, 1993). The drug causes rapid
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lysis of trypanosomes but the mode of action is unknown. Melarsoprol has also shown 

activity against leukaemia and myeloma cells in vitro (Pepin and Milford, 1994).

There are several severe problems associated with this drug. Granulomatous tissue often 

forms at the site of injection but more importantly, about 5% of patients treated with 

melarsoprol suffer from a fatal post-treatment reactive encephalopathy (PTRE). 

However, without treatment there is 100% mortality and so there is no choice in 

accepting this painful and potentially life threatening chemotherapy (Kaminsky and 

Maser, 2000). There are various suggestions as to why these encephalopathies occur in 

some patients. It is possibly due to an excess of arsenic in the body. However, it appears 

that anti-inflammatory drugs, such as Prednisolone, helps to reduce the incidence of 

PTRE which suggests that the problem may come fi-om an inflammatory response 

directed at trypanosomes which remain in the CNS (Jennings, 1993). Or it may be 

possible that the release and binding of trypanosome antigens to the brain cells leads to 

recruitment of immune cells into the CNS. This will allow the formation of immune 

complexes and will h’igger a massive inflammatory reaction directed towards the brain 

tissue (Pepin and Milford, 1991). In either case, it is important to eliminate all 

tiypanosomes fi'om the CNS as quickly as possible or to catch the illness in early 

bloodstream stage before the CNS has become infected.

Another increasing problem associated with the drug is relapse of infection aftei 

treatment with melarsporol, a rare occurrence after treatment with Suramin or 

Pentamidine. This occurs in up to 17% of people treated and these patients will die unless 

given an alternative drug. This phenomenon has been reported since 1960 and is common 

in areas of epidemics. In Northwest Uganda, 1% of the population are infected with
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T.b.gamhiense and there have been huge increases in the rates of relapses (now almost 

30%) in this area. A study showed that this might be due to the parasites having reduced 

sensitivity to die drug (Matovu et al, 2002). Other factors may play a part in relapse, such 

as the patients’ metabolism (causing faster degradation of the dmg) and the affinity of 

parasites for extravascular sites in the CNS that cannot be accessed by the drug (Brun et 

al, 2001).

Eflornithine (PL-g-difluoromethyloriiithine) / Qrnidvl®
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Eflomithine, (DFMO) was inhoduced in 1990 for the treatment of late stage sleeping 

sickness and is also known as the resuiTection drug for its ability to bring people back 

from the brink of death. High levels can be found in the CSF demonstrating the drug’s 

ability to penetrate the BBB. It is usually used as a secondaiy treatment when 

melarsoprol fails but is only effective against T.b.gambiense infection, as Tb.rhodesiense 

appears to have an innate tolerance to the drug. The compound works by blocking the 

polyamine pathway at ornithine decarboxylase. The poly amine pathway has a central role
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in cell proliferation and therefore this is not only a drug target in trypanosomes but also in 

cancer cells, which proliferate indefinitely. Eflornithine was therefore originally 

synthesised as an anti-cancer reagent but was found to be particularly active against

trypanosomes (Barrett and Barrett, 2000).

Associated problems include drug administration, the extremely large doses of drug 

required and the cost at an estimated $750 per person.

rnmhination Chemotherapy

Essentially, all treatment given at late stage sleeping sickness is regarded as combmation 

chemotherapy because Suramin or Pentamidine are still used to clear bloodstream 

infection in conjunction with Melaraoprol. to treat the CNS infection. However DFMO 

and Suramin only produce a 70-80% cure rate and DFMO and pentamidine together are 

not successflil. Pentamidine also targets tlie polyamine pathway, like DFMO, but has the 

different target of S-adenosylmethionine decarboxylase. The binding of pentamidme to 

this enzyme is reversible, which may provide a reason for an unsuccessful cure when 

combined with DFMO (Jennings, 1992). The intake o f DFMO was increased by 50% if 

mice were kept in the light for 2 hours and Üien transferred to the dark for 4 hours. 

Clinical trails following this method are now being carried out on humans.

Nufurtimox/ Lampit is a drug used for the treatment of Chagas disease caused by the 

South American trypanosome, T.cnizi. It has also been given in combination with 

melarsoprol or DFMO to treat African trypanosomiasis (WHO, 1998). However, patrents 

respond poorly to tliis treatment due to bad side effects such as skin rashes, headache.
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gastro-intestinal problems and weight loss (Nieuwenhove, 1992). Supervision is required 

to ensure the course of treatment is completed (Jennings, 1993).

Development of New Drugs

To develop new drugs it is important to identify parasite specific drug targets and as 

some of these for trypanosomes are known, for example the polyamine pathway, drugs 

can be synthesised to target particular essential biochemical pathways in the parasite 

without disrupting the metabolism of host cells. Another important aspect of drug design 

is to improve the uptake o f drugs into the target cell, which has received little attention in 

the past ten years (Croft, 1999).

The major problem concerning the development of trypanocidal drugs is finding a way to 

get drugs to penetrate the BBB to treat late stage infection. The BBB is made up of 

endothelial cells joined by tight junctions. Cerebral capillaries prevent the entiy o f polar 

solutes into the brain. The components of the CSF are regulated by transport systems that 

allow the entry of amino acids, glucose and macromolecules whilst lipophilic compounds 

are allowed to passively diffuse across membranes. This presents a problem when trying 

to deliver drugs to this area of the body. High sugar solutions have been found to briefly 

open the intracellular junctions, which allow antitumour drugs to cross the barrier 

(Neiwelt and Barnett, 1989). However, recently the development of drugs for other 

diseases of the CNS found in the West, for example Alzheimers' and Parkinsons', have 

focused attention on research to improve the delivery of drugs across the BBB (Croft, 

1999).

19



At present there are no new compounds for trypanosomiasis in phases 2-3 of clinical 

trials. Drugs must pass efficacy, toxicity and mutagenicity testing before being tested on 

animals and eventually humans and most are withdrawn at an early stage. Due to the 

introduction of new safety regulations new drugs now take even longer to be approved. 

The trypanocidal activity o f DFMO was first published in the early 1980s’ and yet wasn’t 

legally registered in Europe until 1991 (Keiser et al, 2001). Also pharmaceutical 

companies have lost interest in the development of new drugs, as they will only be useful 

in developing countries, which don’t constitute an attractive profit making market, unless 

the drugs are effective against a wide range of organisms that can also be found in the 

western world. A Pan-African licensing agency may allow African pharmaceutical 

companies to see the benefits of developing drugs of local importance which will in turn 

show western companies that these drugs can be developed for a lot less than the US$300 

million the estimated annual cost (Barrett, 1999). Many of the drugs currently in use, 

with fire exception of DFMO, were introduced onto the market before licensing laws 

were tightened up in the 1970s’ and therefore the majority probably wouldn’t pass the 

safety tests of today. However, the consequences of no treatment outweigh those 

associated with dmg risks. Perhaps an alternative to new drugs would be to improve the 

drugs already available.

Veterinary Drugs

There are three drugs available on the market for the treatment of bovine 

trypanosomiasis. These are commonly known as Homidium, Berenil and Samorin. These
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are effective against T.brucei brucei., T.congolense and T.vivax infection in cattle, sheep 

and goats. They are popular because not only are they effective but also easily affordable. 

It has also been suggested that chemotherapy reduces the pathogenicity of particular 

strains (Losos and Ikede, 1972). I will now discuss the modes of action and problems 

associated with these drugs independently.

Diminazene aceturate/Berenil®

N=N— f

Diminazene, the active component of Berenil®, was synthesised by Jensch in 1955 as a 

tiypanocide for domestic livestock and is the most widely used therapeutic agent for the 

treatment o f bovine trypanosomiasis. This compound is an aromatic diamidine, derived 

fi-om Surfen C and is an analogue of pentamidine. The two compounds have very similar 

modes of action. Berenil also binds irreversibly to the minor groove of DNA probably via 

electrostatic and hydrogen bonds due to its charged tenninal amino groups and forms 

interstrand crosslinks (Gonzalez et al, 1999). It appears to have a higher affinity for AT 

rich portions of DNA and therefore binds more readily to 5’-AATT-3’ regions than 5 ’- 

TTAA-3’ (Den Bossch, 1972). However, it does also bind to GC rich regions of DNA but 

the bonds are weaker (Barcelo et al, 2001). Berenil also has DNA intercalating properties 

(Reddy et al, 1999) and acts as a topoisomerase II inhibitor in trypanosomes to cause
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cleavage in the kinetoplast minicircles, at a concentration of 1 pM. This is perhaps why it 

can produce dyskinetoplastids. In Tcruzi the binding of Berenil to AT rich initiation sites 

blocks replication of circular kinetoplastid DNA (Brack and Delain, 1975). A study 

showed that T.brucei brucei are irreversibly damaged after being exposed to diminazene 

for 1 minute at concentrations equal to those in the plasma of cattle receiving 

chemotherapy (Kaminsky et al, 1993). A strange phenomenon is that Berenil appears to 

release T.congolense into the blood stream from the microcirculation, where this species 

is usually found attached to endothelial cells (Maxie and Losos, 1977). It is suggested 

that Berenil does not kill the trypanosomes but makes them susceptible to the hosts’ 

defences. However, this has now been shown to occur with other tiypanocides and it 

appears that the higher the number o f parasites released into the jugular vein, the quicker 

the parasites are cleared from the bloodstream (Kalu and Aina, 1984).

The diamidine compound is marketed as a solution with the stabiliser antipyrine to 

prolong activity for 10-15 days in storage. The molecular structure consists of a triazene 

bridge linking two amidinophenyl moieties (Peregrine and Mamman, 1993). The drug is 

administered by intramuscular or intravenous injection at a recommended dose of 3.5-7.0 

mg“  ̂ kg per body weight. However, higher doses are often required to treat T.brucei 

brucei infection (Peregrine, 1994). High doses are relatively well tolerated, as there are 

no toxic side effects associated with the compound in cattle (Peregrine and Mamman, 

1993, Fairclough, 1963). On administration the drug is rapidly dispersed ft'om the site of 

injection to the plasma and lymph (Mamman et al, 1996) and then accumulates in the 

liver and kidneys (Kellner et al, 1985, Mdachi et al, 1995) but the majority is rapidly 

excreted in the urine within 24 hours and is therefore useless as a prophylactic. The drug
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can be detected in the milk of sheep and goats ten minutes after administration (El-Banna 

et al, 1999). and is also found at a high level in cows milk 8 hours after administration. 

This is a concern because the drug may be bio available to the consumer (Mdachi et al, 

1995). Also, a calf suckling firom a mother treated with Berenil could be exposed to sub 

lethal doses of the drug, which may contribute to the development of drug resistance. It 

may also be possible that the trypanocide residues are also present in meat products and 

could affect the consumer. It is therefore suggested that a drug withdrawal period of 28- 

35 days is recommended, before slaughter takes place, to minimise the consumers 

exposure (Aliu et al, 1984). In areas of high trypanosome challenge it would be too 

expensive to use Berenil as a sole treatment and therefore it is often used alongside other 

trypanocides. Berenil has also been found to prevent the establisliment of infection in the 

tsetse flies after a blood meal has been taken from cattle treated with the drug (Diack et 

al, 1997). In flies that do obtain infection, trypanosomes can be found in their midgut but 

reduced numbers develop a salivary infection and therefore camiot transmit the parasite 

to another host. The same is true for treatment with Samorin (Jefferies and Jenni, 1987). 

One of the major problems with Berenil is that it does not easily cross the BBB and 

therefore camiot clear trypanosomes from the CNS. This may account for relapse of 

infection, common in animal trypanosomiasis, as therapeutic drugs cannot target 

trypanosomes that remain in the CNS. It has been found that lithium chloride, which is a 

hyperosmolar agent, can cause openings in the endothelial cell junctions. This allows 

Berenil to penetrate the BBB at therapeutic concentrations (Odika et al, 1995). PCR can 

now be used as a sensitive method for monitoring the efficacy of diminazene and for
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the detection of remaining parasites in the CNS (Bengaly et al, 2001, Clausen et al, 

1999).

Diminazene can also be used as a babesicide in cattle and sheep, which adds an 

advantage of veterinary usage. In fact, its original name was Babesin. It shows good 

activity against Babesia canis in particular and has been used to successfully control this 

infection in dogs. However, care must be taken not to administer high doses due to toxic 

side effects such as nausea, vomiting, nervous disorders and anaphylactic shock caused 

by the over-stimulation of the parasympathetic nervous system (Milner et al, 1997, 

Peregiine, 1994). Diminazene has also shown activity against cutaneous and visceral 

leishmaniasis (Pevers and Killick-Kendrick, 1987).

It is not recommended for use in humans due to toxic side effects experienced by a few 

animal species, namely dogs, camels and horses. However, although diamidines are 

DNA intercalating agents they appear to be non teratogenic. They are negative in the 

Ames test for mutagenicity but have been shown to have mutagenic effects on 

Saccharomyces cerevisiae. A long-term study has been carried out demonstrating the 

effects of Berenil on humans. The study began in 1965 and patients were treated for 

T.b.gambiense and Tb.rhodesiense infections with the drug. Immediately after 

administration patients experienced numbness in legs, paralysis, nausea, vomiting and 

pain in the soles of feet. However, none o f these effects were permanent and all patients 

recovered fully. These side effects, with the exception of paralysis, are experienced when 

treated with Suramin, which is also a teratogen. Perhaps Berenil could be used as an 

alterative for the treatment o f early stage sleeping sickness (Abaru et al, 1984). It cannot
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be used if the CNS has become infected because this is associated with 

meningoencephalitis (Jennings, 1992).

Homidium (bromide or chIoride)/Ethidium®

H, N

Homidium is a phenanthridinium compound that was introduced in 1952 by Watkins. It 

can be prepared as either bromide or chloride salts, as both have equal trypanocidal 

activity (Peregrine, 1994). However, ethidium bromide is only soluble in boiling water, 

which may be disadvantageous in the field whereas ethidium chloride can be dissolved in 

cold water (Williamson, 1962). The drug is administered via intramuscular injection 

because adverse reactions occur if  given subcutaneously. It was originally used to stain 

nucleic acids because o f its ability to intercalate between DNA and its fluorescent 

properties. Browning first demonstrated the trypanocidal activity of phenanthridinium 

compounds in 1938. It has been found to affect glycosomal function, trypanothione 

metabolism and replication of minicircles in the kinetoplast (Steinert, 1969) and as an 

intercalating agent it also blocks the replication of nucleic acids. However, homidium is a 

potent mutagen (Macgregor and Johnson, 1977, McCann et al, 1975), which may cause 

problems because under drug pressure a mutagen can induce mutations in the target cell
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and select for genes that confer drug resistance. It was most widely used between the 

1960s’ and 1970s’ (Wang, 1995) but has since been removed from the market in some 

areas due to an increase in drug resistance. The drug is eliminated rapidly from the body 

making it a poor prophylactic. It also causes depression of the respiratoiy centre in 

monkeys to cause loss of consciousness. (Hawking, 1963b) However, it also 

demonstrates antibacterial activity that is increased if cationic ionisation is induced. 

However, it appears that the structure must be planar to have powerful antibacterial 

properties (Albert et al, 1949).

Isometamidium chloride/ Samorin®

Like homidium, Isometamidium (ISMM) is a phenanthridinium compound and is 

identical in structure apart from the addition o f an m-amidinophenyl-azo-amine moiety 

(Kinabo, 1993). This is in fact part o f the Berenil molecule and therefore ISMM can be 

thought o f as a conjugate of homidium and Berenil. Therapeutic trials were first carried 

out against T.congolense in mice (Wragg et al, 1958) and Berg introduced the drug onto 

the market in 1960. The drug is marketed as 70% ISMM and 30% isomers, one of which
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includes homidium, and is found in the form of a dark red powder that has 6% solubility 

in water at 20°C. The trypanocidal mode of action is similar to both homidium and 

Berenil, by acting as an intercalating agent of DNA and blocking nucleic acid synthesis 

(Wilkes et al, 1995). The kinetoplast is thought to be the principal target as this is where 

most of the drug accumulates in the trypanosome. It also promotes cleavage of the 

minicircles in kinetoplast DNA (Shapiro and England, 1990). This would explain its 

specificity towards trypanosomes and not the host cell. ISMM has 10-20 times more 

activity towards T.congolense than T.rhodesiense (Hill, 1965). However, it appears to be 

acutely toxic to mammals, a feature which is not observed in the other two trypanocides. 

Abscesses often develop at the site of injection.

The recommended doses of 0.50-1.0 mg‘  ̂ kg are too toxic for routine use; however, 

Samorin is the only veterinary drug to exhibit prophylactic properties. A single dose can 

protect an animal for up to 7 months from infection (Wilkes et al, 1995). However, in 

areas of high tsetse fly challenge a single dose may only protect cattle for up to five 

weeks (Stevenson et al, 1995). Also, the efficacy of the drug treatment is found to be 

affected by the size of the initial inoculum of trypanosomes, or rather the degree of 

parasitaemia in the host blood (Sones and Holmes, 1992). After being administered by 

intramuscular injection the drug is rapidly dispersed throughout the body tissues, 

accumulating in the liver, kidney and spleen. However, a large amount o f the drug binds 

to the injection site and is released slowly from this location to exert the prophylactic 

effect (Kinabo, 1993). The duration of protection is dependant on drug susceptibility of 

different trypanosome populations and the drug dose concentration administered to 

convey protection. A higher drug dose appears to protect cattle against subsequent
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challenge for a longer period (Peregrine et al, 1988). The main route of elimination from 

the body is through excretion in the faeces. It is unclear how the drug is eliminated from 

the body, as excretions in the urine and milk are low (Murilla et al, 1996). It has also 

been found that Samorin prevents transmission of T.congolense to the tsetse fly vector 

and therefore acts as a transmission-blocking drug (Jeffries and Jenni, 1987).

Future developments

There are currently no new veterinary trypanocides being produced by pharmaceutical 

companies (Kinabo and Bogan, 1988), Instead recent attempts have been made to 

improve the drugs that are already available. Problems with toxicity have been reduced 

by complexing diminazene and isometamidium with dextian sulphate (De Dekin et al, 

1989) have devised a cylindrical device that releases homidium at a slow rate when 

implanted in the body of rabbits. It appears to increase the prophylactic effects of the 

drug, protecting rabbits for up to 300 days, with no side effects involved. This would be 

useful in areas of constant tsetse challenge (Kinabo, 1993). However, if  the body weight 

to device size ratio were to remain constant the contraption would be impractically large 

in cattle (Peregrine, 1994).

Finally, Quinapyramine (Figure IE), a drug withdrawn from the market in 1976 due to 

widespread drug resistance has now been reintioduced onto the market for treatment of 

Tevansi in camels, horses and donkeys.
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Figure IE: Quinapvramine/Antricvde
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The Emergence of Drug Resistance

The most important problem associated with current chemothempeutic drugs is the 

emergence of drug resistance, which, with the low level of screening, is largely 

responsible for the recent re-emergence of sleeping sickness. Resistance, to different 

extents, has now been reported to every veterinary trypanocidal dmg and also to some 

drugs available for the treatment o f HAT. The resistance is rapidly increasing and 

spreading throughout the African continent and as reports are mainly obtained from 

small-scale studies the extent of the problem may be grossly underestimated. Drug 

resistance obviously renders infected people and cattle refractory to treatment and the 

problem is amplified due to the lack of the development of new dmgs at present or in the 

foreseeable future.
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It is thought that resistance to a drug takes about ten years to develop. Resistance can 

occur in two ways, where individuals in the population with genes confeiTing a drug 

resistant phenotype as opposed to a drug sensitive one, are selected for in response to 

drug pressure. However, the preferred theoiy is that the parasite becomes genetically 

altered in some way through an adaptive process similar to that of antigenic variation. 

This is known as “acquired” drug resistance. There are several factors thought to be 

responsible for the induction of diug resistance. One of the most important is exposing 

the pathogen to sub-lethal doses of a drug, which allows it to continue to divide and 

replicate in the presence of the drug, encouraging selective mutations to arise. Treating an 

infected patient with a sub-therapeutic dose or by using a drug with a long half-life that is 

slowly eliminated from the body of the host, aids this process. Often compliance of 

patients to complete a course of treatment is low due to adverse side effects and invasive 

diagnostic procedures, which will ultimately lead to cases of relapse. As many 

trypanocides have an affinity for DNA and may therefore be mutagenic, they themselves 

may cause mutations to produce a resistant phenotype (Geerts and Holmes, 1998).

There is also evidence to suggest a positive correlation between high tsetse fry challenge 

and an increase in the level of drug resistance in a particular area. This is probably due to 

an increase in drug use in these areas (Geerts et al, 2001).

At a molecular level, several biological modifications in a parasite could be responsible 

for a resistant phenotype. Changes in membrane permeability or a reduction in specific 

membrane receptors or transporters could lead to a reduction in uptake of the drug 

preventing it from reaching toxic levels or the target in the cell (Sutherland and Holmes, 

1993). In some cases the receptor or transporter may be lost completely, preventing drug
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access into the cell. In other cases an up-regulation of drug efflux pumps can occur, again 

to prevent the drug reaching toxic levels in the cell. This is found to be a common cause 

of multi-drug resistance. P-glycoproteins are a set of energy-dependant efflux pumps 

encoded by a multigene family that shares a considerable amount o f homology with 

bacterial membrane associated proteins. They are part of a class of ABC transporters 

which couple ATP hydrolysis to transport substances across the cell surface membrane 

(Matovu et al, 2001). Over-expression of these pumps in response to drug pressure is 

responsible for increased efflux of the drug and the development of drug resistance. 

Agents that block these efflux pumps can often reverse this type of dmg resistance 

(Hayes and Wolf, 1990, Dalton et al, 1989). These agents, for example calcium 

antagonist verapamil are unable to reverse resistance to trypanocides and therefore the 

mechanisms of dmg resistance in trypanosomes do not appear to be the same as those for 

Plasmodium or cancer cells (Anene et al, 1995, Fairlamb et al, 1992). However, recently 

tlii'ee genes encoding ABC like transporters have been identified in T.brucei, but their 

function is unknown (Maser and Kaminsky, 1998). A change in the intracellular target 

can also cause reduced affinity of the drug for the ligand. It is unclear whether dmg- 

resistant trypanosomes are less pathogenic, which has been suggested for at least one 

laboratory strain (Berger et al, 1995). A mutation relating to dmg resistance may affect 

virulence factors, which may lead to a reduction in pathogenicity. However, this is a 

controversial issue and has been disputed (Ainanshe et al, 1992, Geerts et al, 2001).
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Solutions to delay drug resistance.

In humans, it is best that the patient remains in hospital until the infection has cleared to 

prevent vector transmission of drug resistant parasites. In cattle, it is important to avoid 

the administration of sub-therapeutic doses. This is often a problem as farmers may 

underestimate the body weight of their animals. Also, unskilled workers are allowed to 

administer the drugs, which are often diluted to save money and there is a constant 

increase of poor quality drugs leaking onto the market that do not contain the stated 

amount of active drug ingredients. This could be solved by quality control and release of 

drugs as a single dose treatment. The use of sanative pairs, such as isometamidium and 

Berenil, can reduce the development o f resistance as there is little cross resistance 

between them and because both drugs have separate targets, it is unlikely a parasite will 

evolve a mutation converging resistance to both drugs. It has been found, however, that 

the use o f Berenil with either isometamidium or homidium leads to a higher rate of 

mortality than if the latter two drugs are used independently (Dolan et al, 1992). The 

number o f drug treatments can be reduced by using an integrated control programme. 

This is particularly important in areas of high tsetse fly challenge where the number of 

drug treatments will be increased, in turn leading to an increase in selective drug 

pressure. The increase in number o f drug treatments also poses a threat to the 

environment due to the excretion of contaminants (Anene et al, 2001). Mass treatments
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should also be avoided at all costs and individual cases should be treated. Once resistance 

to a drug has transpired the dose of the dmg should not be increased as this will lead to a 

higher level of resistance. It is better to remove the drug from the market and allow the 

resistant phenotype to revert back to the sensitive wild type profile. However, the best 

way to prevent drug resistance in the first place is to administer high doses of drugs that 

will kill all residing parasitaemia in the host. Unfortunately, all trypanocidal drugs are 

toxic in high doses and the margin of safety between cure and toxicity in extremely 

narrow (Anene et al, 2001). In the case of multiple dmg resistance, chemotherapy is 

useless and the only feasible option is thi’ough vector control (Geerts and Holmes, 1998). 

It is imperative that we gain an accurate insight into the extent of dmg resistance 

ciuTently present in the population to allow appropriate control measures to be applied to 

different geographical areas. There are several ways to test trypanosomes for drug 

sensitivity and monitor the type of infection present in cattle. Small ruminants can be 

used to assess the concentration of trypanocide required to produce either a pemranent 

cine or to clear all parasites fi*om the blood. However, these tests are not only time 

consuming but are also expensive. Cattle must also be kept in fly-proof sheds tlnoughout 

the test to prevent re-infection, which may not always be possible. As an alternative, tests 

can be carried out on mice, which is relatively successful for T.brucei brucei. In vitro 

assays have the biggest advantage allowing for large numbers of field isolates to be tested 

simultaneously and if metacyclic organisms are used, the results can be applied directly 

to the field. However, assays can also prove to be expensive (Hirumi et al, 1993), not all 

types of trypanosomes grow well in vitro (e.g. T.b.gambiense and T.congolense) and 

phenotypes may change during adaptation to the new conditions.

33



Resistance to Veterinary Drugs

Resistance to diminazene, homidium and isometamidium has now been reported in 11 

countries throughout sub-Saharan Africa (Peregrine, 1994). Resistance to Berenil by a 

T.congolense strain in Nigeria was first reported in the field in 1967 (MacLennan and 

Jones-Davies, 1967) It has now been repeatedly documented in Nigeria (Jones-Davies, 

1968) Chad, Kenya, Tanzania, Somalia, Burkina Faso, Uganda and Ethiopia. There is 

also evidence to support long-term resistance to berenil, shown in the Ghibe Valley, 

Ethiopia, where berenil resistance was first described in the 1980s and is still highly 

prevalent today (Rowlands et al, 2001, Rowlands et al, 1993). Resistmrce to Berenil can 

develop in three ways: through repeated exposure to sub-lethal doses, the development 

of cross-resistance with quinapyramine or innately, with no previous exposure. However, 

although resistance to this drug has been reported the incidence is mlatively low 

compared to resistance levels to the other veterinary and arsenical tiypanocides. 

Widespread and long-term use does not ultimately lead to the development of resistance 

and induction of resistance in the laboratory by exposing infected mice to sub-curative 

doses of Berenil has been virtually impossible (Whiteside, 1963). In one study, even after 

40 months of drug exposure the resistance to Berenil was still low (Peregrine and 

Mamman, 1993, Hawking, 1963a). This may be attributed to the fact that in Berenil 

resistant populations the number of parasites actually resistant to the drug is thought to be
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as low as 1 in 10  ̂parasites (Mamman et al, 1995b). In the field, perhaps low resistance 

levels are due to the induction of a regime that involves the use of sanative pairs in 

endemic areas. In 1983 Njou reported a strain of T.congolense that was resistant to 

7mg/kg of the drug, which is double the recommended dose. However, the infection 

could be cleared by ISMM, the drug’s sanative pair (Mbwambo et al, 1988). This is often 

found to be the case (Desquesnes et al, 1995) and this is the recommended course of 

action in Berenil resistant areas.

Low resistance may also be attributed to the rapid elimination of the drug from the body 

of the host. On the other hand, resistant isolates appear to retain their resistant phenotype 

after several passages of cyclical transmission and therefore once resistance to Berenil 

occurs it remains stable (Gray and Roberts, 1971). Relapsing infection is often taken to 

be a sign of drug resistance. However, it has been found that if  trypanosome strain from a 

relapsing host is inoculated into a new host, treatment with Berenil clears infection if 

administered within 3 days of reinfection. If left for a longer duration Berenil is 

ineffective possibly due to the parasites being relocated in an inaccessible area, for 

example cryptic sites (Jeimings et al, 1977, Mamman et al, 1993). The dose for clearing 

relapse infections is affected by the initial size of inoculum of parasites. As the number of 

parasites in the inoculum increases the dose of drug required to clear infection also 

increases. This will affect the level of resistance in the population (Mamman et al, 

1995a). The dose at which relapse occurs can also be enhanced by gradually exposing the 

resistant parasites to increasing levels of Berenil (MacLennan and Na’isa, 1970).
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T.vivax populations have been shown to express high levels of resistance to the 

prophylactic action of ISMM but not to the therapeutic action (Peregrine et al, 1991a) In 

1991, Sutherland et al showed that resistance to ISMM was associated with reduced 

accumulation of the drug, which was demonstrated by a reduction in fluorescence of the 

drug. Lysis of the cells produced a higher fluorescence and therefore an increase in drug 

uptake, which showed the involvement of the cell membranes in limiting drag uptake in 

resistant clones. It was later found that ISMM is transported across the cell membrane via 

a protein carrier (Zilberstein et al, 1993). Accumulation of the drag within the cell 

involves a specific receptor located on the surface membrane. The addition of calcium 

antagonists increased the accumulation of ISMM in resistant clones indicating that an 

efflux mechanism is involved in the development of resistance to this drug and this 

mechanism is energy dependent (Sutherland et al, 1992a). This was supported through 

the use of a kinetic model to determine the cause of reduced accumulation (Sutherland et 

al, 1992b). It has also been found that sensitive clones accumulate most of the drug at pH 

7.4 whereas the optimum pH for accumulation in resistant clones is pH7, which indicates 

a change in receptors (Sutherland and Holmes, 1993). It has also been suggested that the 

modulation of the mitochondrial potential is involved with development of resistance to 

ISMM. When agents were used to disrupt mitochondrial function the mitochondrial 

membrane potential was inliibited along with the inhibition of isometamidium uptake and 

accumulation (Wilkes et al, 1997). The number of ISMM transporters in the plasma 

membrane of resistant strains also appear to be reduced demonstrated by a lower Vmax but 

an equal Km value to the sensitive strains.
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Homidium appears to be worst affected by drug resistance and is now basically rendered 

useless as an effective treatment. Williamson and Stephen first recorded resistance to the 

drug in 1960 and it appears that most relapses are due to T.congolense infection. By 1965 

resistance was widespread and since then there have been continued reports (Scott and 

Pegram, 1974). It has been demonstrated that animals infected with drug resistant 

trypanosome strains eliminate homidium more rapidly from their bodies but the reason 

for this is unclear (Murilla et al, 2002).

Cross-resistance is often observed between homidium and isometamidium (Schonefleld 

et al, 1987). In this case Berenil is the recommended treatment as no cross-resistance has 

been observed between ISMM and Berenil, although sometimes repeated doses are 

required to obtain a complete cure (Küpper and Wolters, 1983). Surprisingly, there 

appeared to be cross-resistance to Berenil and homidium in 1968 when there had been 

none the year previously (Jones-Davies, 1968, Na’isa, 1967). Berenil and homidium 

have both been shown to interact with kinetoplastid DNA to produce dyskinetoplastids. 

As the kinetoplast is apparently the drug target for both drugs, the loss of this organelle 

will lead to resistance to these drugs. However, this appears to be an isolated case of 

cross-resistance and was never proved to exist through laboratoiy techniques. In areas 

where multiple drug resistance has not been detected Berenil can be used to treat 

homidium resistant cases, as generally there appears to be no cross-resistance between 

them (Gadir et al, 1972).
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The drug quinapyramine, the original prophylactic agent, which was withdrawn ifom the 

market in 1976, was not only removed due to the development of resistance to it, in 

particular, but because it appeared to be associated with multiple drug resistance to 

Berenil, isometamidium and homidium. This cross-resistance is extremely easy to induce 

in the laboratoiy (Ndoutamia et al, 1993). Multiple resistance to all three drugs by 

isolated T.congolense clones has now been reported in the Ghibe Valley, Ethiopia, 

(Afewerk et al, 2000, Mulugeta et al, 1997, Codjia et al, 1993) Burkina Faso (Clausen et 

al, 1992) Southern Somalia (Ainanshe et al, 1992) and Sudan (Mohamed-Ahmed, 1992), 

In these areas sanative pairs diminazene and isometamidium were used and both drugs 

failed to cure infected animals at the normal dose rate. It is more woriying that resistance 

has developed to both these drugs because there is no chemotherapeutic alternative left. 

However, although trypanosome strains can develop resistance to both berenil and ISMM 

(Peregrine et al, 1991b, Chitambo and Arakawa, 1991, Mo loo and Kutuza, 1990) this 

resistance to each, occurs independently and as yet there has been no cross-resistance 

demonstrated between the two drugs. This at least is good news that the use of one drug 

will not automatically lead to the development of resistance to the other (Chitambo and 

Arakawa, 1992).

Transporters of T.brucei

The main difference between the metabolism of trypanosomes and their host is that 

trypanosomes are unable to synthesise purines de novo and as a result must scavenge 

them ifom the host environment. This is achieved through the transport of the purines
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into the cell via surface membrane transport systems. The uptake of substances can either 

be passive by diffusion or through active transport, the latter involving the accumulation 

of a substrate to high concentrations within the cell. It is thought that there are at least 

400 genes for transport proteins in the T.brucei genome and a large amount o f these will 

be expressed on the surface of cells for the transport of substances (Borst and Fairlamb, 

1998). It is important to understand the mechanisms of purine uptake in these organisms 

to allow the generation of trypanocides that can utilise this transport system and be 

delivered into the cell. In 1980 James and Born showed that T.brucei and T.congolense 

consumed adenosine and to a lesser extent inosine and guanosine from the surrounding 

environment. This transport was saturable and conformed to Michaelis-Mentin kinetics. It 

was suggested that the tissue damage inflicted upon the host by the parasite increased the 

concentration of amino-purines in the extracellular fluid. Adenosine is a ribonucleoside 

found either fr-eely in cells or as part of nucleic acids. It can inhibit or stimulate the 

release of neurotransmitters and is also involved in platelet and neutrophil functions, 

(Plagemann et al, 1988) In excess It can cause marked cardiovascular effects (Griffith and 

Jarvis, 1996). Inosine is a hypoxanthine riboside found in meat and yeast. It is a product 

of the first stage of the breakdown of adenosine to uric acid (Wang, 1995). Bloodstream 

forms o f T.brucei have been shown to posses several transporters for the uptake of 

nucleosides and nucleobases. (Listed below).
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Transporter Substrate transported into the cell

PI Inosine, Guanosine, Adenosine

P2 Adenosine, Adenine, Melaminophenyl arsenicals,

Pentamidine

H2 Hypoxanthine, Adenine, Guanine

H3 Hypoxanthine, Adenine, Guanine

HAPT1 Pentamidine and Propamidine

LAPTl Pentamidine and Propamidine

Two hypoxanthine transporters have been characterised in bloodstream forms, H2 and 

H3. They have specificities for purine/pyrimidine bases and guanosine and purine bases, 

respectively. They have no affinity for adenosine (De Koning and Jarvis, 1997). T.brucei 

also possesses glucose transporters for the uptake of its main energy source, glucose 

(Borst and Fairlamb, 1998). Most importantly, two adenosine sensitive transporters have 

been identified (Carter and Fairlamb, 1993, De Koning and Jam s, 1999). The PI 

transporter mediates the transport o f adenosine, inosine and guanosine. The P2 

transporter is specific for adenosine and adenine. The PI transporter has a higher affinity 

for adenosine than the P2 transporter with Km values of 0.35p,M and 0.94p,M, 

respectively (De Koning and Jaiwis, 1999). An adenosine transporter has also been 

identified in pro eye lie T.brucei that appears to function as an H^ symporter and is 

identical in specificity to the PI transporter found in bloodstream forms (De Koning et al, 

1998). The insect-dwelling form also has an HI hypoxanthine transporter. These types of
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nucleoside/nucleobase transporters are present in a variety of other organisms. There are 

two nucleoside transporters in mammalian cells designated N1 and N2 which have 

similar substrate specificities to the PI and P2 transporters (Griffith and Jarvis, 1996). 

Leishmania donovani has also evolved to possess two high affinity nucleoside 

transporters to scavenge nucleoside substrates fi'om the environment, which is an 

effective system even when the concentrations of nucleosides available are extremely 

low. The specificities for these transporters are independent of each other and therefore 

the two transporters can be distinguished structurally and kinetically. The first has 

affinity for inosine and guanosine and the second for adenosine, adenosine analogues and 

pyrimidines. Deficiencies in the uptake of these substances can be attributed to two 

mutations (Aronow et al, 1987).

T.cruzi also has two nucleoside transporters, which are specific for purines and 

pyrimidines, respectively (Finley et al, 1988).

The role of nucleoside transporters in drug resistance

In HAT the major concern is the rapidly increasing resistance to melarsoprol, as this is 

the only effective and widely available drug used to treat late stage sleeping sickness. 

Currently, up to 20% of people in areas o f epidemic are not responding to treatment with 

the drug (Barrett, 1999). DFMO has been implemented as a backup drug used to treat 

patients who are unresponsive to melarsoprol but it is expensive. Nufiirtimox has also 

proved successful in the treatment of melarsoprol relapse patients although has a plethora 

of associated side effects.
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In 1959, Williamson discovered that the lysis of melamine sensitive trypanosomes was 

inhibited by the amino-purines adenine and adenosine. This showed that the 

melaminophenyl arsenicals were competing for the same transport system as amino- 

purines. The P2 transporter was identified as the canier for melaminophenyl arsenicals. A 

drug efflux mechanism is not involved in the development o f resistance (Bacchi, 1993, 

Carter and Fairlamb, 1993).

Arsenical sensitive T.brucei readily absorbs and concentrates arsenical compounds 

whereas resistant lines do not. An arsenical resistant T.brucei line, RU15, has reduced 

adenosine uptake with a 3-fold reduction of V^ax for the PI transporter and P2 activity 

cannot be detected This suggests that the melaminophenyl arsenical resistant phenotype 

is associated with modulated P2 transporter activity (Carter and Fairlamb, 1993). The 

mutation that caused melarsoprol resistance was reversible and P2 activity could be 

restored. Defective P2 function confers melarsoprol resistance (De Koning et al, 2000). 

The salvage of purines is not critically affected by the loss of P2 transporter function 

because the PI, FI2 and H3 transporters can still transport sufficient amounts of purines 

into the cell.

Since 1951 it has been noticed that clinical isolates from patients refi'actory to 

melarsoprol treatment and laboratoiy produced arsenical resistant strains presented cross­

resistance between melamine based arsenicals (melarsen) and diamidine compounds 

(pentamidine) (Rollo and Williamson, 1951, Williamson, 1951). This cross-resistance is 

present in both T.b.rhodesiense and T.b.brucei isolates. Cross-resistance usually suggests 

that the drugs have a common drug target or a common uptake mechanism. It is unlikely 

that diamidines and arsenicals have the same trypanocidal mode of action because
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induced cell death by arsenicals is extremely rapid whereas diamidines must accumulate 

to higher levels in the cell before lysis occurs (Barrett and Fairlamb, 1999). There is a 

correlation between cross-resistance and the interatomic distances between the 

benzamidine rings. The greater the distance between the rings in a particular diamidine 

compound, the lower the cross resistance with melarsoprol (Fairlamb et al, 1992).

In 1975 Damper and Patton identified a transport system for pentamidine in T.brucei that 

was saturable and conformed to Michaelis-Menten kinetics. It could be competitively 

inhibited by other aromatic diamidine compounds such as propamidine, 

hydroxystillbamidine and benzamidine (Damper and Patton, 1976a, 1976b). Drug 

resistant strains were found to accumulate less pentamidine than drug sensitive strains 

suggesting that resistance is related to a reduction in dmg accumulation. The integrity of 

the cell membrane is important in the development of diamidine resistance because the 

use of Triton X to break down the surface membrane leads to the accumulation of drugs 

by the resistant trypanosomes (Sutherland et al, 1992a).

In 1995 it was demonstrated that pentamidine and other aromatic diamidines were 

substrates for the P2 transporter (Carter et al, 1995). Adenosine transport by P2 is dose- 

dependently inhibited, by 95%, as concentrations of pentamidine increase. Melarsen 

resistant cells had a reduced ability to transport adenosine and pentamidine. The resistant 

strain RU15 also had a reduced capacity and affinity for the uptake of pentamidine. 

However, it has also been shown with other resistant strains that the accumulation of 

pentamidine is unaffected and that reduced drug uptake is not the cause for drug 

resistance (Berger et al, 1995).
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The P2 transporter recognises a common motif that is found on amino-purines, 

melaminophenyl arsenicals and diamidine compounds (Figure IF). This supports Paul 

Erlichs theory in 1898 that a drug is comprised of a haptophoric part that is recognised by 

a cell receptor and a toxophoric part that administers the pharmacological action. When 

resistance to aromatic arsenicals develops the resistance is directed towards the non- 

arsenical part of the drug, or the h^tophoric part (Williamson and Rollo, 1959). 

Therefore, this can be exploited by designing drugs that present this motif attached to a 

toxic compound. The drug can then be recognised by the transporter and will be taken 

into the cell where the toxic part o f the molecule can work on a drug target. This has been 

successful where polyamine analogues, which compete with enzymes in the polyamine

wP2 recognition Motif: 
H2N-C(R i)=N-R2

NHj

f  T
'1  ̂o

OH OH 

A d e n o iin e

NHz Ilk CHzOH

Pentamidine Melarsoprol

Figure IF: The P2 recognition motif is present on adenosine, arsenicals and aromatic diamidines and is 

indicated in red.
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biosynthetic pathway, were coupled to the P2 recognition motif (Tye et al, 1998). The 

ribose moiety is not necessary for ligand binding to the P2 transporter. However, the 

purine ring is extremely important, the crucial part being the amine group at position 6 on 

the ring. Compounds containing this motif generally have high affinity for the P2 

transporter, but the motif alone does not guarantee binding. Binding energies of 

melarsoprol and pentamidine, which both contain this motif, are high. However, the 

binding energy of Berenil is much lower probably due its more rigid structure caused by 

the double bond in the centre of the molecule (De Koning and Jarvis, 1999).

Recent studies showed that by cloning the gene TbATl {T.brucei adenosine transporter 

1) in the yeast Saccharomyces cerevisiae led to the identification of a P2 type of 

transporter with an affinity for adenosine. Yeast expressing this transporter was also 

sensitive to melaminophenyl arsenicals. Substrate specificity and transport kinetics 

appeared to correspond to the P2 transporter. However, the cells were insensitive to the 

diamidine compounds (Maser et al, 1999). By comparing the cDNA sequence for TbATl 

of wild-type T.brucei and arsenical-resistant T.brucei, a change in six amino acids was 

observed. Therefore individual strains are producing two forms of the same molecule on 

the surface. This modulation can be induced by exposing the parasites to selective drug 

pressure in the laboratory and has also been identified in a strain isolated from a relapse 

patient (Kaminsky and Maser, 2000). Therefore this gene can be used to distinguish 

between sensitive and resistant trypanosomes (Matovu et al, 2001). This marker for 

resistance could be useful as a diagnostic technique in the field. TbATl gene shows 

considerable homology to the human nucleoside transporter hENTl and hENT2 as well as
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to L.donovanî transporters LdNTl and LdNT2 (Carter et al, 1999). A P I transporter gene 

TbNT2 from T.brucei has also been cloned and when expressed in Xenopus oocytes it 

leads to the uptake of inosine, guanosine and adenosine. There are six other genes present 

in this cluster, which may code for other transporters and are therefore possibly involved 

in drug resistance (Landfear, 2001, Sanchez et al, 1999).

Although there is widespread arsenical resistance in the field, the drugs used to treat early 

stage HAT (Suramin and Pentamidine) do not appear to be affected by the threat of drug 

resistance and are still reliable at producing an acceptable cure rate (Kaminsky and 

Maser, 2000). If both arsenicals and pentamidine are solely substrates for the P2 

transporter and loss of this protein leads to arsenical resistance it would be expected that 

cross-resistance to pentamidine would also occur. In studies, which show cross-resistance 

between arsenicals and diamidines, there is always an alteration in activity of the P2 

adenosine transporter. However, lines resistant to arsenicals have been shown to be 

sensitive to pentamidine, which led to the idea that there must be more than one route of 

entry for pentamidine into the cell (Barrett and Fairlamb, 1999). In sensitive cells, [^H]- 

adenosine transport is inhibited by pentamidine and [^H]-Pentamidine transport is 

inhibited by adenine and melaminophenyl arsenicals but surprisingly is only partially 

inhibited by adenosine, again suggesting another route of pentamidine into the cell 

(Carter et al, 1995). As previously mentioned strain RU15 appeared to have a loss of P2 

function and although resistance occurred to arsenicals there was only very minor 

resistance to pentamidine. Also, there is only ever reduced uptake of pentamidine in 

resistant cells and not a complete lack of uptake and therefore it is likely that pentamidine
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enters the cell by more than one transporter. This was found to be the case. Pentamidine 

is taken up by multiple transporters. An adenosine -sensitive pentamidine transporter 

(ASPTl) which has all the characteristies of a P2 transporter, a high affinity pentamidine 

transporter (HAPTl) with a Km of 36 nM and a low affinity pentamidine transporter 

(LAPTl) with a Km of 56 pM (De Koning and Jarvis, 2001, De Koning, 2001). The fact 

that there are three transporters could explain the lack of cross-resistance between 

arsenicals and pentamidine in the field. If P2 is lost through selective drug pressure the 

drug will still be able to penetrate the cell through HAPTl and LAPTl. Both of these 

transporters are retained in a T.brucei line, tTTbATl, in which both copies of TbATl had 

been deleted (Matavu et al, unpublished). However, the true biological function of these 

transporters is unknown. It is important to discover the natural substrates for HAPTl and 

LAPTl and study the structural and binding relationships between substrates and the 

transporters because drugs can then be designed with specific affinity to these carriers. 

This would be extremely useful in the field where P2 was lost through selective drug 

pressure because drugs could still be targeted to trypanosomes through these other entry 

sites. I therefore looked at the structural relationships between HAPTl and LAPTl and 

various trypanocides and diamidine analogues in an attempt to identify the motifs crucial 

for uptake by these transporters. This was carried out using unlabelled test compounds to 

inhibit the uptake of [^H] pentamidine.
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Tranporters and diminazene resistance

A high level of cross-resistance has been observed between melarsoprol and the 

veterinary diamidine drug berenil. This is unusual because cross-resistance between 

melarsoprol and pentamidine, in the field, is low. It is likely that Berenil is taken up by 

one transporter only and that the loss of this transporter confers resistance. It is also likely 

that berenil enters the call via the P2 transporter, which would explain the high level of 

cross-resistance between melarsoprol and Berenil. Studies on T.evansi showed that 

adenosine transport by the P2 transporter was dose-dependently inhibited by Berenil. 

This is not conclusive evidence that Berenil is transported by the P2 transporter, but it 

suggests that this is probably the case. However, when Berenil was used in combination 

with adenine to inhibit adenosine transport by P2, there was a moderate, but not 

significant, increase in the inhibitory effect. This could suggest the presence of another 

Berenil transporter (Suswam et al, 2001), but the data are inconclusive.

Alterations in the P2 nucleoside transporter have been associated with reduced uptake of 

diminazene aceturate. Studies with a Berenil resistant T.equiperdum clone revealed that 

the P2 transporter had a significantly reduced affinity for adenosine although the 

transporter appears to be retained. Therefore, perhaps the P2 transporter is actually lost 

which allows the presence of a low affinity adenosine transporter with a similar substrate 

specificity to be detected. However, it appears that Berenil resistance is related to a 

change in function of the P2 transporter (Barrett et al, 1995). Arsenical resistant clone 

RUI5 displays strong cross-resistance with berenil but not with diamidine pentamidine
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(Fairlamb et al, 1992). This can be explained by the presence of the two additional 

pentamidine transporters HAPTl and LAPTl.

Recently a TbATl null mutant has been constructed and was found to be only partially 

resistant to melaminophenyl arsenicals and pentamidine but showed a very high level of 

resistance to Berenil. This again supports the idea that berenil enters the cell via the P2 

transporter only. Melarsan oxide appeared to be entering through both P2 and HAPTl. 

This would suggest that arsenical resistance requires the loss of both of these transporters 

(Unpublished).

If the sole transporter for diamidine compounds is the P2 transporter, then there should be 

a high incidence of Berenil resistance in the field, hr fact, there is quite a lot of resistance, 

but perhaps lower than might be expected. This is mainly the result of the 

pharmacokinetics of diminazene being cleared quickly so it does not linger at a 

subcurative level strong enough to induce selection of resistance. I conducted a series of 

experiments to identify the P2 transporter as the mediator of Berenil uptake and detect the 

presence of any other Berenil transporters.

Crithidia fasciculata

Crithidia fasciculata is a monoxenous flagellated trypanosomatid of mosquitoes. The 

organism has been of biochemical interest since 1933 when Margeurite Lwoff showed 

that the parasite could be giown easily in peptone water by adding a little haem or blood 

(Kidder and Dutta, 1958). Different Crithidia species have been used as models to study
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biochemical pathways and gene expression of trypanosomes, as the two organisms share 

common biochemical features. Two high affinity purine nucleoside transporters have 

been identified in Cfasciculata . CfNTl is an adenosine transporter with a Km of 9.4 + 

2.8 pM for the substrate. CfNT2 demonstrates mediated uptake of inosine with a Km of 

0.38 ± 0.06 pM and also recognises guanosine but not adenosine. ( De Koning et al, 

2000b). The uptake of these substrates is saturable and conforms to Michaelis—Menten 

kinetics. The specificities of these transporters loosely resemble those of PI and P2, 

identified in T.brucei brucei. However, in this case, the stage of life cycle affects purine 

uptake, for example, during logarithmic phase the uptake of adenosine and inosine is 

dramatically increased (De Koning et al, 2000b). Two purine transporters with identical 

substrate specificities to CfNTl and CfNT2 have also been identified in C.luciliae (Hall 

et al, 1996).

HAPTl and LAPTl of T.brucei brucei, which have been previously discussed, both 

recognise the trypanocidal drug pentamidine but the true biological substrate for these 

transporters is unknown. If these transporters can be expressed in another 

trypanosomatid, which lacks a pentamidine transporter, the sequence responsible can be 

isolated and compared to other transporter sequences that will perhaps allow us to 

characterise LAPTl and HAPTl and ultimately discover their biological function. 

C.fasciculata has been chosen as the organism to act as an expression system in this 

study. There are several reasons for this. Crithidia grows extremely fast, reaching 

maximum density of 2 x 10  ̂ organisms/ml in 48 hours, it can be grown easily on 

chemically defined media and a relatively large amount of work has also been carried out 

involving the uptake and effects of pentamidine. In 1966, Gutteridge added pentamidine
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to cultures of C.fasciculata during exponential phase and found that the net synthesis of 

protein, RNA, DNA and phospholipid was decreased. At 500 pM glucose stimulated 

respiration was also found to be sensitive to the drug. Resistance to pentamidine can be 

induced by exposing the organisms to increasing concentrations over a period of about 5 

months, which is relatively slowly compared to the development of resistance against 

arsenicals (Wallis 1966), (This is similar to the situation in the field with development of 

drug resistance in trypanosomes). A resistant line was able to grow in pentamidine at a 

concentration of 500 pM and this was maintained for a period of 1 year and 7 months. 

However, after this time, drug resistance fell away rapidly. In another study, involving 

pentamidine resistance in C.oncopelti, cross resistance between other diamidine groups 

and arsenicals was demonstrated and it was suggested that diamidine resistance may be 

due to the inability of the drugs to reach there normal drug targets within the cell. (Wallis 

1966).

Although a specific pentamidine transporter has not been identified in C.fasciculata the 

organism is obviously taking up the drug and this can be prevented by induction of 

pentamidine resistance. Perhaps the drug is being taken up by CfNTl, which would be a 

similar situation to the uptake of pentamidine, by the P2 transporter in trypanosomes.

It is therefore important to determine the absence or presence of a pentamidine 

transporter in the organism of choice, C.fasciculata strain HS-6. If the results are negative 

for mediated pentamidine uptake, the organism is ready to be used as an expression 

system. If a pentamidine transporter is discovered this must be eliminated tlu'ough the 

induction of drug resistance, where presumably the transporter will be lost. Verification 

that resistance is caused by loss of pentamidine transport will be required. By
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transfoiTQing a DNA library into the organisms lacking a pentamidine transport system, 

cells expressing either HAPTl or LAPTl will be those able to take up pentamidine. 

HAPTl and LAPTl will be identified by their distinct substrate affinities and 

specificities.
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Chapter 2

Materials and Methods
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Trypanosomes

Bloodstream forms of Trypanosoma brucei, strains S427 (wild type) or T. brucei lacking 

the TbATl adenosine transporter gene (A TbATl) were taken from frozen stocks and used 

to infect female Wistar rats via intra-peritoneal injection. Following a 48-hour incubation 

period, the blood was removed under anaesthetic at the point of peak parasitaemia by 

cardiac puncture, using heparin as an anti-coagulant. The blood was kept on ice before 

being centrifuged at 2500 ipm for 15 minutes. This allows the separation of the blood into 

three different components: a red blood cell layer, a plasma layer and a white huffy-coat 

layer which is found between the former two and contains the trypanosomes. This layer 

was gently removed using a pasteur pipette and resuspended in a phosphate saline glucose 

solution (PSG) (51.84 mM Na2HP0 4 , 3.29 inM NaH2 PO4, 72.7 inM NaCl and 61mM 

glucose in ddd H2O, pH 8). The trypanosomes were isolated from the remaining red blood 

cells by passing the huffy coat layer tln'ough a DE52 cellulose Whatman anion exchange 

column. (Lanham 1968) Trypanosomes are more positively charged than rat red blood 

cells between the pH range of 6-9 and therefore the red blood cells become trapped in the 

cellulose whilst the trypanosomes are allowed to pass through. DEAE-cellulose was added 

to the column to a depth of roughly 5cm. Alternatively, a 50ml syringe can be used with a 

small amount of glass wool placed in the bottom. The column was washed through with 

200 mis of PSG, pH8. It is important that the pH of the column is exactly 8.0 otherwise the 

blood cells will run tlirough. The cellulose was stined and left to settle and the buffy-coat 

layer was loaded on top. PSG was used to wash the trypanosomes tlu'ough the column 

which were collected and then washed twice in assay buffer (14 niM glucose, 33.6 mM
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HEPES, 23.9 mM MOPS, 23.8 mM NaHCOa, 4.7 mM KCl, 0.3 mM MgCl, 97.5 mM 

NaCl, 0.08 mM NaH2PÛ4, 2.8 mM CaCh, 0.08 mM MgS0 4 , pH 7.3) by centrifugation at 

2200 rpm for ten minutes at 4°C. A cell count was performed using a haemocytometer and 

the cells were resuspended in the required volume to produce the desired cell number of 1 

X loVml. The cells were left at room temperature for 20 minutes to allow them to adapt to 

the experimental conditions become more active for drug uptake. Motility of the cells was 

observed using a microscope at the end of the experiment to ensure the cells were viable 

throughout. All contaminated materials were disposed of using bleach.

Crithidia fasciculata

C. fasciculata strain HS-6 which was isolated by Shim and Fairlamb (1988) was used 

in transport studies and drug sensitivity assays. The organisms were cultivated in LIT 

medium (Liver Infusion Broth 9 g/litre, Tryptose 5 g/litre , 20 mM NaCl, 56 mM 

NaH2P0 4 , 5.3 mM KCl, 5.5 mM Glucose, Haemin lOmg/litre, pH 7.2) which is 

autoclaved for 15 minutes at 15 psi before adding 10 % Heat Inactivated Foetal Calf 

Semm and Gentamicin sulphate at 25 pg.mf^ . The cultures were maintained at 25°C 

and were passaged every 2-3 days into 10 mis of fresh medium. For transport assays 2 

mis of culture in logarithmic growth phase (1-2 x 10  ̂cells/ml) were added to 100 mis 

of fresh medium and incubated for about 24 hours. The cells were haiwested by 

centrifugation at 2200 rpm for 15 minutes and then washed twice in assay buffer. 

Normal practise is to keep cells at 4°C during this process. However, this is not 

necessary for Crithidia and it is acceptable to centrifuge cells at 25'̂ C. A cell count 

was carried out using a haemocytometer and the cells were resuspended in the required 

volume of assay buffer to give 1 x 10  ̂ cells/ml. For drug sensitivity assays the final 

concentration of cells should be 5 x lO"̂  cells/ml and they do not have to be transfened
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to assay buffer. It is important to keep cells under sterile conditions during passage to 

avoid contamination of cultures.

Radiolabeled compounds, diamidine analogues and other test compounds.

[^H] Pentamidine isethionate (3.63 TBq/mmol) and [^H] Diminazene aceturate (3.07 

TBq/mmol) were synthesised by Amersham Pharmacia Biotech for Dr M.P. Barnett 

and Dr H. P. de Koning (University of Glasgow), respectively. Both radiolabeled 

compounds were stored at -20°C. The test compounds were either purchased from 

Sigma (adenosine, benzamidine, diminazene, DAPI, inosine and ethidium bromide) or 

Rhône-Poulenc in France (pentamidine, stillbamidine, propamidine isethionate, 

hexamidine, heptamidine and octamidine) with the exceptions of butamidine which 

was generously donated by Dr Alan Fairlamb (University of Dundee). The diamidine 

analogues, meta-pentamidine and ethamidine were sent from Professor Richard 

Tidwells’ laboratory at the University of North Carolina and the DWB compounds 

075, 569 and 544 were synthesised by Dr David Boykin at the University of Georgia 

State who also works in collaboration with Professor Tidwell.
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Uptake Assays for Transport Studies

The uptake of radiolabeled [^H] Pentamidine and [^H] Diminazene aceturate were 

determined using the method described previously (De Koning and Jarvis 1997, De 

Koning et al. 1998) with appropriate modifications for this study.

Test compounds

Stock solutions of test compounds were made in assay buffer to the highest
j

concentration possible, which was determined by the solubility properties of each 

compound. For example Pentamidine can reach up to lOmM in assay buffer whereas 

Diminazene only reaches about 4mM. Due to insolubility it was not always possible 

to obtain the concentration required for full saturation of the transporter and therefore 

several saturation cuiwes are incomplete. A series of dilutions were made over a 

decreasing concentration gradient of wide range. The concentrations should be four 

times the desired final concentration.

Radiolabeled permeant

The [^H] Pentamidine and [^H] Diminazene aceturate were made up in assay buffer to 

four times the desired final concentration. The concentration of the permeant was 

selected several-fold below the K^ of the transporter being studied. The High Affinity 

Pentamidine Transporter (HAPTl) has high binding affinity for pentamidine and 

therefore the transporter becomes saturated at a low drug concentration requiring the 

final concentration in the assay to be 10 nM. The Low Affinity Pentamidine 

Transporter (LAPT), however, has lower binding affinity for the drug and necessitates 

the higher permeant concentration of IpM  to measure uptake. It is possible to use a 

lower concentration of radiolabel and add unlabeled pentamidine up to the desired
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concentration. No uptake of pentamidine by HAPTl will be observed in the LAPTl 

experiments, as the permeant concentration is high enough to fully saturate HAPTl. 

To study HAPTl or LAPTl in the T .brucei wildtype strain S427,  ̂ H-pentamidine 

uptake by the P2 transporter must be prevented by saturating it with a final 

concentration of ImM adenosine, which can be added to the radiolabel solution. As 

the number and type of ti*ansporters for diminazene uptake were unknown, a series of 

experiments were conducted using a range of different permeant concentrations (0.02 

pM, 0.05 pM and 2 pM).

The assav (see figure 21

Solutions containing various concentrations o f test compounds in assay buffer were 

added to the radiolabel, where appropriate, and vortexed thoroughly. Assay buffer 

without inhibitor was added to detennine 100% uptake of the permeant. lOOpl of the 

mixture was added to numerically labelled 1.5 ml eppendorf tubes which had the lids 

removed and contained 250pl of oil mixture (di-n-butylphthalate (BDH) and mineral 

oil (Sigma) at a 7:1 ratio.) The radiolabel/test compound solution forms an isolated 

bubble on the top of the oil layer. lOOpl of cells were added to each eppendorf and 

incubated for 60 seconds for pentamidine uptake or 30 seconds for diminazene, 

mixing the cells to mix with the radiolabel and the test compound. After the incubation 

period 1ml of ice-cold stop-solution (250 pM of unlabeled pentamidine or diminazene 

in assay buffer, which will fully saturate the transporter) was added to stop further 

mediated uptake. Some of the permeant will stick to the outside of the cells instead of 

being internalised and it is therefore important to eliminate this value from the final 

count. The control involved adding ice-cold cells and radiolabel simultaneously onto

58



the oil layer, with a period of zero incubation by adding the stop solution immediately 

followed by immediate centrifugation. Any apparent uptake observed will not be 

through mediated uptake and can be deducted from the counts. Centrifugation at 

13000 rpm for 1 minute at room temperature was perfonned to condense the cells into 

a pellet at the bottom of the oil layer and therefore isolate them from the rest of the 

radiolabel. The cells contained the radiolabeled permeant accumulated during the 

assay. The eppendorfs were flash frozen in liquid nitrogen before removing the pellets 

using tube cutters and transferring them to coiTesponding numerically labelled 

scintillation vials. 250 pi of SDS (2%) was added to break open the cells and fully 

expose the radio lab el present inside. The pellets were left for 20 minutes to allow the 

SDS to work , after which, 2 mis of scintillation fluid was added to each vial. The 

amount of accumulated radiation was determined in a liquid scintillation counter. 

Uptake of each concentration of test compound was perfoimed in triplicate.
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Potential inhibitor +
radiolabel (^H Pentamidine 
or ^H- Diminazene).

laver

Cells are added and 
incubated with the 
inhibitor/radiolabel 
mixture.

V
3

Figure 2
A schematic diagram of the transport 
assay method.

Stop solution is added before 
centrifugation, after which cells 
become condensed in a pellet 
below the oil layer.

stop solution

Data Analysis

Each experiment was performed in triplicate unless otherwise stated. Full dose- 

response curves with a minimum o f three points over a suitable range, were fitted 

using either FIG P (Biosoft) or Prism (Graphpad) computer packages and the 

Michaelis-Menten constant, Km and maximum transport rate, V max were calculated. 

The 50% inhibition value, IC 5 0  was established from the inhibition profiles o f the 

different test compounds. This value was then used in the Cheng-Prusoff equation, 

shown below, to determine the inhibition constant Kj.

K i = I C 50/ [ l + ( L + K m ]

Where L is the permeant concentration.

Ki is a measure of the substrates' ability to bind to the transporter but does not indicate 

that the ligand is being transported across the surface membrane. The Cheng-Prusoff 

equation can only be applied in the case o f a competitive inhibitor. There are several 

indicators to suggest that the test compounds were demonstrating competitive 

inhibition, therefore indicating that the equation is valid. The permeant is always 

taken up by mediated transport and can be overcome by a high concentration of

60



substrate. The slope coefficients of the fitted curves are always close to -1, which is 

associated with monophasic competitive inhibition. In the cases where the possibility 

of biphasic competition was apparent, an F test, using Prism, was performed to 

determine statistical significance. All assays were performed in triplicate and are 

depicted as average and standard errors.
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Chapter 3

Inhibition of H- Pentamidine

uptake by various diamidines and

phenantridines
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Part 1: Piamidine analogues with fiiran rings as inhibitors of ^H-Fentamidine 

uptake bv HAPTl and LAFTl in T.brucei brucei bloodstream forms.

Results

Experiments were carried out using transport assays to determine the ability of three 

diamidine analogues DB75, DB544 and DB629 to inhibit the uptake o f  ̂ H-pentamidine 

by HAPTl in T. brucei (wild-type strain 427). Diamidine test compounds were mixed 

with the permeant and incubated with the trypanosomes for 60 seconds before being spun 

down through an oil layer to form a pellet containing the radiolabeled pentamidine that is 

accumulated during the assay.

The test compounds are aromatic diamidines like pentamidine, with the pentane 1,5 

diether replaced with a furan ring. DB75 is the prototype fiiran diamidine with the 

benzamidine groups at positions 1 and 4 o f a central fiiran moiety. DB544 also has 

methyl groups (CHg) attached to the fiiran ring to form a 2,3 dimethylfiiran diamidine. In 

DB629 the methyl groups are on the benzene rings instead, at the ortho position relative 

to the furan ring. (Chemical structures are shown in Table 1).

All three compounds had some effect on the uptake o f ^H-Pentamidine by HAPTl and 

the results are presented as inhibition plots (Figure 3.1) which show the inhibitor 

concentration plotted against ^H-pentamidine uptake (pmol (10  ̂ cells)" ŝ' )̂. IC 5 0  values 

have been calculated fi'om the inhibition profiles of the test compounds and are shown in 

the figure legends. Figures 3.1 A and B shows the dose dependent inhibition of mediated 

pentamidine uptake by DB544 with an IC 5 0  value of 22.7 pM and hill slope close to 4 . 

The second test compound DB75 also shows inhibition of permeant uptake with a higher
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ICso o f 42.2 îM. However, the plot has not decreased to zero at a concentration of 250 

pM. This suggests that the uptake of pentamidine is not hilly inhibited by DB75 and 

therefore HAPTl is not hilly saturated.

HAPTl in s427.
0.00100

0
CO
a
3
0>c
1
E
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0.00075-

H 0.00050

CDQ. 0.00025- ■ DB75, IC5 0  = 42.2 nM
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1--------- r
-8 -7
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A D B S 4 4 , I C 5 o = 2 7 ^ M  
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47 6 59 8
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FIG 3.1. Inhibition of HAPTl mediated ^H-Pentamidine uptake by diamidine analogues in 
T,brucei brucei bloodstream forms, strain 427 wild type. Uptake of lOnM ^H-Pentamidine was 
measured over a 60 second period in the presence or absence of potential competitive inhibitors, which 
were, unlabeled diamidine analogues with a furan ring and variations betw^n the position of R groups The 
compounds are as indicated, DB75 (■), DB544 (■«*-) and DB629 (■). The IC50 values calculated from the 
inhibition profiles are shown in the graph legends. The results are representative of those obtained from a 
minimum of 3 repeats of the same experiment. Each point is the average of triplicate determinations and 
variation is specified in the standard error bars.

Graph B, again shows the inhibition profile o f DB544 with an IC50 of 27 pM. DB629 

also appears to have some affinity for HAPTl with an IC50 of 89 pM which is 

considerably higher than that o f DB544 and therefore DB629 has a lower afifinity for 

HAPTl.

Ki values were calculated for each o f the three compounds using the Michaelis-menten 

equation (Table 1). DB75 had low affinity for HAPTl with a K, of 1.2 pM ± 20.2 and 

did not fully inhibit mediated uptake of pentamidine at 250 pM. This is a relatively high 

concentration of compound considering that HAPTl is inhibited by extremely small 

concentrations o f pentamidine, with a Km value of 0.036 pM. DB629 has a slightly 

higher affinity for HAPTl with a Ki o f 30.9 pM ± 14.2 and also has the addition of 

methyl groups on both benzene rings. This suggests that the transporter receptor site 

favours a structure with R groups at this position or may just favour the presence of 

methyl groups. This seems to be confirmed by the Kj value of DB544 (15.3 pM ± 2.6) 

which, though, lower, was not significantly different fiom the one for DB629. However, 

it was significantly lower than the value for DB75 (P< 0.05). 7 Since DB544 has methyl 

groups attached to the fiiran ring it appears that the position o f the methyl groups may 

influence the binding to the transporter. Also, we can suggest that the presence o f methyl 

groups is important in binding to the transporter as DB75, which lacks these structures, 

has the lowest affinity to HAPT,
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Table 1

Ki values, for the diamidine analogues that inhibit the uptake of ̂ H-Pentamidine permeant by HAPTl, 
were calculated from the IC50 values obtained from transport assay experiments such as those shown in 
Fig 3.1. Each experiment was carried out between 3-5 times and the Kj values represent average and 
standard error. The methyl groups located at different positions on the molecule are shown in red. As 
pentamidine is the original suWtrate found to be taken up by HAPTl, for pentamidine is also 
included. All values have been obtained through experiments performed by Dr. H de Koning, Denise 
Candlish and myself.

Compound name and 
biochemical structure

Ki(pM) Number of 
repeats

■" 0 ^H2N—Ç ÿ—NH2 

NH2 NH2

71.2 ± 
202

4

DB629

CH,

30.9 ± 
14.2

3

DB544

H,N ^

15.2 ± 
2.6

5

Pentamidine

0.036 ± 
0.006 
(Km)

3
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However, if  we look at the low Km value of pentamidine for HAPTl and compare this to 

the Kj values of any o f the DB compounds it is obvious that none of them have 

particularly good affinity for HAPTl. Therefore, the carbon chain must play an important 

role in determining how well a compound is taken up by this transporter because 

substituting the chain for a furan ring leads to an extreme increase in Ki and therefore a 

decrease in affinity for HAPTl.

The same experiments were also used to determine whether DB75, DB544 and DB629 

inhibited the uptake o f ^H-Pentamidine by LAPTl (Figure 3.2). It was found that DB75 

did not inhibit pentamidine uptake and therefore is not taken up by LAPTl. However, 

both DB544 and DB629 showed dose dependant inhibition of mediated
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I
3  0 .002 -  
0) c
?
E
5  0.0014
0)
CL

0.000

A DB544, ICso =12.4 jiM 

■ DB 629, 1050 = 27.8 fiM
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log[lnhibitor] (M)

FIG 32. Inhibition o f LAPTl mediated ^H-Pentamidine uptake by DB544 and DB629 in 
T.brucei brucei bloodstream forms, strain 427 wild type. Uptake of lp,M ^H-Pentamidine was 
measured over a 60 second period in the presence or absence of unlabeled diamidine compounds DB544 
( ^  ) and DB629 (■) which have methyl groups at different positions. Each point is the average of triplicate 
determinations and variation is specified in the standard error bars.

67



pentamidine uptake with IC50 values of 12.4 pM and 27.8 pM, respectively (n = 1). This 

suggests that although both diamidine analogues have poor affinity for HAPTl they have 

good affinity for LAPTl when compared to the original substrate pentamidine which has 

a Km of 56.17 pM.The pattern of order o f binding affinity for LAPTl is the same as for 

that of HAPTl with DB75 having little or no affinity for both transporters and DB544 

having the highest affinity for both. However, several more experiments using DB544 

and DB629 as inhibitors for ^H-Pentamidine uptake by LAPTl should be conducted to 

allow Ki values to be calculated and ultimately gain a more accurate overview of the 

inhibitoiy profiles of these compounds.
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Part 2; Benzamidine compounds, diamidine analogues and 

phenantridines as potential inhibitors of ^H-Pentamidine uptake in 

Trypanosoma brucei bruceU bloodstream forms.

A set of benzamidine compounds with varying functional groups located at different 

positions o f the ring (figure 3.3) were tested for the inhibition of ̂ H-pentamidine uptake 

by both HAPTl and LAPTl in T.brucei brucei bloodstream forms. Experiments consisted 

of transport assays as described in the previous section. The molecule benzamidine 

consists o f a benzene ring attached to an amidine group. This structure forms the end 

groups of the aromatic diamidine, including pentamidine and DB75. Pentamidine, which 

has high affinity for both HAPTl and LAPTl, is constructed o f two benzamidine 

molecules linked by a pentanediether. Using benzamidine as an inhibitor of pentamidine 

uptake will determine whether or not the presence o f a benzamidine moiety is sufficient 

for the recognition by HAPTl or LAPTl.

Increasing concentrations o f benzamidine, up to 1 mM, were used to inhibit the uptake o f 

^H-pentamidine by LAPTl and was found to have no effect on mediated pentamidine 

uptake. Therefore, an IC 5 0  value could not be obtained. In addition 3-aminobenzamidine 

and 4-aminobenzamidme were also used to test for inhibition of ^H-pentamidine uptake 

by both HAPTl and LAPTl. These compounds also had no effect on mediated 

pentamidine uptake by either transporter, up to a maximum concentration o f 10 mM. 

Finally, compounds 2-hydroxybenzamidine and 4-hydroxybenzamidine, containing 

hydroxyl groups at the positions indicated, were tested in an identical manner for 

competitive inhibition of pentamidine uptake by HAPTl and LAPTl, 2- 

hydroxybenzamidine had no effect on pentamidine uptake by LAPTl or HAPTl, up to a
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Figure 3.3: Benzamidine compounds
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concentration of 4 mM. The compound was not soluble at higher concentrations. 4- 

hydroxybenzamidine presented dose dependent inhibition of ̂ H-pentamidine by HAPTl, 

An IC50 value derived from the inhibition profile was 2.9 ± 1,1 mM (n = 3). This is an 

extremely high value for HAPT and indicates that the compound has a very low affinity 

for this transporter. 4-hydroxybenzamidine had no clear effect on LAPTl,It appears that 

both transporters slightly favour a hydroxyl group at position 4 but overall the 

benzamidine compounds have no effect on uptake o f pentamidine and therefore are not 

recognised by the transporters.

Various other diamidine compounds were also tested for the inhibition of ̂ H-Pentamidine 

by both HAPTl and LAPTl. The first to be tested was DAPI (4 ’6-diamidino-2“ 

phenylindole) that is commonly used as a blue fluorescent DNA probe due to its DNA 

intercalating properties. The structure has a diamidine composition Wiere the carbon 

chain has been replaced with a pyrrole ring fused to one of the benzene rings, forming 

indole. (Table 2). DAPI was found to dose-dependently inhibit the uptake o f ^H- 

Pentamidine by both HAPTl and LAPTl. (Figure 3.4 A and B) DAPI appeared to have a 

relatively low affinity for HAPTl at 26.6 ± 5 .8  pM when compared to the original 

substrate pentamidine which has a Km o f 0.036 pM for the same transporter. However, 

surprisingly, DAPI has an extremely high affinity for LAPTl with a Ki of 13.6 ± 13.6 pM 

compared with pentamidine (Km of 56.2 ± 8.2 pM, P< 0.05) LAPTl, therefore, appears to 

favour the structure o f DAPI over that o f  pentamidine, whereas HAPTl does not.
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Figure 3.4 A and B: The inhibition of ^H-pentamidine uptake by DAPI in HAPTl (A) and 

LAPTl (B). IC50 vlaues were calculated from the inhibition profiles and are 28.5 pM and 18.8 

pM for HAPTl and LAPTl, respectively (n = 1).
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The second diamidine compound to be tested for the inhibition of ̂ H-Pentamidine uptake 

was meta-pentamidine. This compound has the amidine groups not at the para-position as 

seen in pentamidine, but at the meta-position, (Structure see Table 2) Meta-pentamidine 

was used to inhibit the uptake o f ^H-pentamidine by HAPTl and demonstrated dose 

dependent inhibition o f the transporter, with a Ki value o f 65.1 ± 18.1 pM. It is clear that 

the change o f amidine groups from the para to the meta position greatly reduces the 

affinity of a compound for HAPTl.

Finally, a new test compound synthesised for activity against trypanosomes, labelled 

3SMB 101 was used to inhibit mediated uptake o f ^H-Pentamidine by HAPTl. (Table 2). 

This compound uses the pentamidine structure as a scaffold with an amido and an ethoxy 

group added to position 2 o f either benzene ring (2-ethoxy,2 kmido-pentamidine). 3 SMB 

101 was found to inhibit ^H-pentamidine uptake with a Ki of 109 ± 17.45 pM, which is 

relatively low. It therefore appears that HAPTl favours a simpler structure, but it is 

impossible to say whether the size or the charge o f the substitutions (or both) is 

responsible for the loss o f affinity.

The affinity o f the phenantridine ethidium bromide (homidium) for HAPTl and LAPTl 

was also investigated. This compound was chosen for two reasons. The first is that it is a 

widely used tiypanocide for the treatment o f bovine trypanosomiasis, thought to enter the 

trypanosome by diffusion. As uptake is not thought to be mediated by a surface
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Table 2

Ki values, for the diamidine compounds that inhibit the uptake of ^H-Pentamidine permeant, were 
calculated from the IC50 values obtained from transport assay experiments. Values are presented for both 
the low and high affinity transporters. Each experiment was carried out between 2-4 times and the values

Diamidine Structure and name LAPT HAPT Number of 
Repeats

Ki
(pM)

Ki (pM) LAPT HAPT

DAPI

NH2 ^

13.6 ± 
3.4

26.6 ± 
5.8

2 3

Meta-pentamidine

HgN NH2

ND 65.1 ±
18.1

ND 4

3SMB 101 ^

0  NH2

y L  0 C = \
j__/  /—r \ NH2

/ V ^ /  \ — f  NHz
H,N

ND 109 ±17 ND 2

^Pentamidine

H2N  ̂ NH2

56.17 ± 
8.29

0.036 ± 
0.06

4 3

shown represent averages and standard errors.

ND, not determined
 ̂Km values are shown for pentamidine rather than K, values.



membrane transporter it would be interesting to find out if  Ethidium bromide has any 

affinity for HAPTl or LAPTl. The second reason is that Berenil and Isometamidium 

(ISMM) have been previously tested for the inhibition of ̂ H-pentamidine uptake by both 

pentamidine transporters. ISMM is comprised of both Berenil and ethidium bromide 

molecules and therefore an insight into the recognition motifs of HAPTl and LAPTl can 

be gained by comparing the Ki values of the tliree compounds. Ethidium bromide 

consistently showed dose dependent inhibition of ̂ H-pentamidine uptake by HAPTl, but 

with a high Ki value of 99.2 pM ±17.9 pM indicating a low affinity for this transporter. 

If these results are compared with those found for Berenil and ISMM (Table 3). Berenil 

shows a slightly lower Ki value of 63.1 pM but ISMM shows a significantly lower Ki 

value of 3.60 pM. It therefore appears that out of the three compounds, ISMM has the 

highest affinity for HAPTl, followed by Berenil and finally by ethidium. ISMM, a 

combination of the other two compounds, is more easily recognised by HAPTl than 

either ethidium bromide or Berenil on their own.

The same experiments were earned out for LAPTl, where ethidium bromide inliibited 

the uptake o f  ̂ H-pentamidine, with the suiprisingly low Ki of 18.83 ± 7.34 pM. Ethidium 

bromide has a high affinity for LAPTl. Of this class of compounds Berenil displayed the 

lowest affinity (Ki ~ 494.2pM) and ISMM again showed the highest affinity (Ki = 

7.21 pM) (Table 3). It appears that LAPTl favours the phenanthridine structure over 

Berenil but also that when both compounds are combined to form ISMM; the affinity for 

LAPTl is significantly increased (P < 0.05). Comparing the results for HAPTl and 

LAPTl suggests that theses transporters may have slightly different recognition motifs. 

In an attempt to discover the biological function of these transporters the compounds
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Choline chloride (10 mM), Lactic acid (10 mM), Palmitic acid and Laurie acid (both at 

1.3 mM), products found in the host environment, were tested for their ability to inhibit 

the uptake o f  ̂ H-pentamidine by both HAPTl and LAPTl. None o f the compounds had 

any effect at the tested concentrations.
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Table 3
Ki values for the inhibition of ̂ H-pentamidine uptake by common bovine trypanocides are shown below for 
both HAPTl and LAPTl. Each experiment was repeated three times and the K; value is therefore an 
average value of three Individual experiments. Dr H. de Koning and Lynsey Wallace carried out the work 
on Berenil and isometamidium.

Name and Structure o f Compound HAPT LAPT
Ki
(UM)

Ki
(liM)

Berenil

63.09 494.2

H

Isometamidium

3.60 7.21

HgN _

CH2

!
CH3

Ethidium Bromide

99.18 18.83
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Part 3: Diamidine compounds of varying carbohydrate chain length as 

inihibitors of ̂ H-Pentamidine uptake in Trypanosoma brucei brucei 

bloodstream forms.

Results

Transport assays performed exactly as described in the previous section, were carried out 

using diamidine compounds with increasing carbohydrate chainlength to inhibit the 

uptake of ̂ H-Pentamidine (IpM) by LAPTl in T. brucei èrwcc/bloodstream forms. All 

of the diamidines tested, which are listed with diagrams of their chemical structures in 

Table 4, consistently and dose dependently inhibited mediated pentamidine transport by 

LAPTl. However, the extent at Wiich they individually compete with pentamidine for 

the same transporter varies dramatically and appears to be dependent on the central 

carbon chain.

The results were evaluated in graphs such as those demonstrated in Figure 3.5 which 

show the inhibitor concentration plotted against LAPTl-mediated ^H-Pentamidine uptake 

(pmol(10^ cells) s'̂ ) . The IC 5 0  values were calculated from the inhibition profiles o f  

the diamidines and are representative o f values obtained for several repeats of the same 

experiment. Figure 3.5 A shows the effect of pentamidine and hexamidine on transport of 

the permeant. As pentamidine is the original substrate found to be transported by LAPTl 

it is often useftil to use it as a control against which the afSnity of other test compounds 

can be compared. Hexamidine appears to have a higher affinity for LAPTl than 

pentamidine with IC 5 0  values o f 49 pM and 161 pM, respectively. Both compounds are 

identical £Ç>art from the number of carbon molecules in the connecting chain (Table 4 and 

Figure 3.7 C). The addition o f another carbon molecule to hexamidine to produce
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FIG 3.5. Inhibition of LAPTl mediated ^-Pentamidine uptake by diamidine analogues in 
T.brucei briœei bloodstream forms, strain ATbATl. Uptake o f  IpM ^H-Pentamidine was 
measured over a 60 second period in the presence or absence o f  potential competitive inhibitors, which 
were, unlabeled diamidine analogues o f  varying carbohydrate chainlength, as indicated. A, Pentamidine 
(■ ) and Hexamidine (■ ), B, Hexamidine (■ ) and Heptamidine (■ ), C, Heptamidine (■ ) and Octamidine 
(■ ), D, Octamidine (■ ) and Pentamidine (■ ). The IC50 values calculated from the inhibition profiles are 
shown in the graph legends. The results are representative o f those obtained from three repeats o f  the same 
experiment. Each point is the average o f  triplicate determinations and variation is specified in the standard 
error bars.
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heptamidine leads to a further increase in the affinity for (Figure 3.5 B) In this case 

hexamidine displays an IC50 value o f 30.8 pM, while the value for heptamidine was 5.8 

pM, denoting a higher affinity for the transporter. Figures 3.5 C and D show the effect of 

octamidine, possessing 8 methylene groups on pentamidine uptake alongside inhibition 

profiles o f heptamidine and pentamidine, respectively. Surprisingly, octamidine appears 

to display a lower affinity for HAPTl than heptamidine, with Ki values of 21 ± 7 pM and 

14 ± 2 pM, respectively, but this difference was not statistically significant (P>0.05). All 

hillslopes for the sigmoid plots presented are close to 4  consistent with a single 

transporter model showing inhibition of mediated drug uptake.

Several other diamidine compounds o f shorter chain lengths were also used as potential 

inhibitors, in previous experiments by Dr. H. de Koning, L.Wallace and D.Candlish. The 

Ki values for diamidines with 2-8 carbons in the central chain are presented in Table 4. 

Propamidine displayed the highest Ki value of 316 pM for LAPTl, The Ki value 

gradually decreased as the number o f methylene groups increased. Butamidine has the 

lower Ki of 196,83 pM, Hexamidine, heptamidine and octamidine all display relatively 

high affinity for HAPTl, and their Ki vaîpçs are not statistically different.
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Table 4
Ki values, for the diamidine compounds that inhibit the uptake of ^H-Pentamidine permeant, were 
calculated from the IC50 values obtained from transport assay experiments such as those shown in Fig 3.5. 
Values are presented for both the low and high affinity pentamidine transporters. Each experiment was

D ia m id in e  S tr u c tu r e  a n d  n a m e L A P T l H A P T l N u m b e r  o f  r e p e a ts

K i

( m )

K i

( bM )

L A P T l H A P T l

Ethamidine
N D >  1 0 0

0 4

Propamidine

3 1 5 .8 7  ±  
3 .1 3

6 .5 2  +  
1.66

5 5

Butamidine

1 9 6  ± 3 1 3 .9  +  1 .4 3 4

'‘Pentamidine

5 6 .1 7  ±  
8 .2 9

0 .0 3 6  +  
0 .0 0 6 *

4 3

Hexamidine

3 5  +  9 0 .0 5 9  +  
0 .0 1 0 *

4 3

Heptamidine

1 4 + 2 0.12  +  
0 . 01*

3 4

Octamidine

2 1 + 7 2.20  +  
0 .4 8 *

4 3

ND, not determined.
* Values taken fi'om experiments conducted by Dr.H. de Koning and D. Candlish 
“ Km values are shown for Pentamidine rather than Ki values.
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The difference in binding affinities between propamidine and heptamidine for LAPTl is 

large. However, these values are not a measure of drug uptake by LAPTl in T.brucei, We 

can only measure true drug uptake using a substrate that is radiolabeled, in this case 

pentamidine. Therefore the Ki is an inhibition constant defines the inhibitor concentration 

inhibiting 50% of the transporters. In the case of pentamidine the Km value (56.17 pM) is 

given because a direct measurement of pentamidine uptake could be taken.

These results suggest that a longer carbon chain length increases binding affinity to 

LAPTl and suggest that a chainlength of 7 methylene groups may be optimal. 

Experiments using the same method and the same range of diamidine compounds, 

including ethamidine (carbon chain of 2), were carried out to investigate the effects o f 

carbon chain length on the uptake of ^H-Pentamidine (15 nM) by HAPTl. Figure 3.6 

shows the inhibition o f ^H-Pentamidine uptake (pmol (10^ cells) s'*) by butamidine. 

Unlabeled pentamidine was used as an intemal control. It is obvious Ifom this graph that 

butamidine dose dependently inhibits the uptake of pentamidine. The Hill slope for 

butamidine is close to 4 , indicating that only HAPTl is being inhibited. This is 

confirmed by the observation that butamidine only inhibits to the same level as 

pentamidine in its first (high affinity) phase.
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HAPT1-mediated pentam idine 
uptake in ATbATl.
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g  0.0001
Cl
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FIG 3.6. Inhibition o f HAPTl mediated ^-Pentamidine uptake by Butamidine in T.brucei 
brucei bloodstream forms, strain ATbATl. Uptake of 15 nM ^H-Pentamidine was measured over a 
60 second period in the presence or absence of unlabeled diamidine compound butamidine (■). Unlabeled 
pentamidine (A ) was used as a control. This experiment was repeated three times and the above graph is 
representative of the overall result obtained. Each point is the average of triplicate determinations and 
variation is specified in the standard error bars.

The shift for butamidine to the right o f pentamidine shows that butamidine has a higher 

ICso value and therefore a lower affinity than pentamidine for HAPTl. K, values of 

diamidines of increasing carbon chain length for HAPTl are also shown in Table 4. 

Ethamidine with foe lowest carbon chain length has foe highest Ki value of over 100 pM. 

There is a significant decrease in Ki for propamidine and butamidine (6.35 pM and 3.91 

pM, respectively). The Km value for pentamidine is given at 0.036 pM ± 0.006, which is 

extremely low and shows that pentamidine has foe highest affinity for HAPTl. As the
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carbon chain length fiirther increases for the compounds hexamidine, heptamidine and 

octamidine the Ki values also increase from 0.059 pM to 0.125 pM ± 0.001, to 2.20pM, 

respectively, though the difference between pentamidine and hexamidine is not 

significant. This data concludes that an aromatic diamidine optimally bind HAPTl with a 

carbon chain length of 5. Generally the compounds with the higher number o f carbon 

molecules show a higher affinity for HA PTl. A compound with a 9-methylene chain was 

not available bit it would be expected to show lower affinity for HAPTl than octamidine. 

A summary of the effect of carbon chain length on ^H-Pentamidine uptake by both 

HAPTl and LAPTl is shown in Figure 3,7 A and B. Although the Ki values are of very 

different concentrations for HAPTl and LAPTl due to the kinetics o f the individual 

transporter, a similar pattern can be seen between the two which is clearly presented in 

the graphs. For both, propamidine and butamidine, with carbon chains o f 3 and 4, have 

veiy large Ki values and the difference in Ki value between butamidine and pentamidine 

is extensive. The optimum chain length for HAPTl and LAPTl appear to be different 

being pentamidine and heptamidine respectively. However, all the compounds in this 

range have fairly high affinities for both transporters. There is an increase in Ki for 

octamidine, which is associated with both the transporters, this increase being much more 

pronounced for HAPTl. Statistical analysis reveals that the HAPTl optimum is 5-6 

methylene groups, compared to 6-8 for LA PTl.
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FIG 3.7. Ki values calculated for the inhibition of HAPTl or LAPTl mediated transport of 
^H-Pentamidine, by diamidine analogues of increasing carbohydrate chain length. Uptake of 
^H-Pentamidine was inhibited by unlabeled diamidine compounds of increasing carbohydrate chainlength 
from ethamidine (2 x CHi ) to octamidine ( 8 x CH2). The Ki values were calculated from the Michaelis- 
Menten equation. These values were plotted against the carbohydrate chainlength number for A, the 
HAPTl and B, the LAPTl. C, shows the standard diamidine molecular structure with the variable segment 
indicated in red.
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Chapter 4 

The uptake of Berenil (Diminazene 

aceturate) bv T r v v a n o s o m a  b r u c e U

bloodstream forms.
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A time course experiment, using the transport assay method, as previously described in 

the Materials and Methods section, was carried out to measure the uptake of 

diminazene by bloodstream forms o f Trypanosoma brucei (wild type). Cells were 

incubated over increasing time points with fixed concentrations of ^H-diminazene at 0.05 

pM or 1 mM. As diminazene is a substrate for the P2 transporter, at ImM the transporter 

should be fully saturated and the presence o f any other diminazene transporters will 

become apparent. The same experiment was also carried out using TbATl cells that no 

longer have a functional P2 transporter. Any uptake occurring in these cells will not be 

through the P2 transporter and will again allow the detection of any other specific 

diminazene transporters. The results were plotted as diminazene uptake (pmol/lO^cells/s) 

against time (s) (Figure 4A). In the WT cells at 0.05 pM uptake was rapid and linear over 

a period o f 120 seconds with a rate o f 8.6 ± 0.5 finol (10^ cells)'* s'*. However, at 1 mM 

there was no evidence of mediated uptake. A very small amount of substrate appeared to 

be taken up, possibly, by passive difiRision into the cells, however this did not reach 

statistically significant levels (P = 0.8). There was no mediated or unmediated uptake 

observed in the TbATl cells. The uptake o f diminazene by Trypanosoma brucei is 

therefore mediated by a single transporter that is likely to be the P2 transporter.

Using the transport assay, unlabelled diminazene was used to inhibit the uptake o f ^H- 

diminazene over a period of 30 seconds (Figure 4B). The reduced incubation time was 

based upon the rate o f uptake of ^H-diminazene observed in the previous timecourse 

experiment, which appeared to be higher than the uptake of pentamidine by Tbrucel ^H- 

diminazene uptake was inhibited dose dependently by unlabelled diminazene and the 

inhibition profiles obtained from a repeat o f 4 experiments confirmed the presence of a
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single, saturable transporter involved in the mediated uptake. The Km and Vmax values 

were calculated and are found to be 0.445 ± 0.106pM and 0.049 ± 0.010 pmol/lO^cells/s, 

respectively (n = 4)

^  diminazene uptake in T.brucd bloodstream forms

Diminazene uptake
1.2 g  0.05 pM label, ♦ 

g  0.05 pM label. A lt  ATI 
g  1 mM unlabelled diminazene, ♦ 
#  1 mM unlabelled diminazene.0.9

0.6

0.3

12020 40 60 80 1000

Time(s)

Figure 4A : Timecourse of ^H-diminazene uptake in T.brucei s427($) and ATbATl
bloodstream forms. (A) Uptake o f ^H-diminazene, at concentrations of 0.05 pM in the presence or 
absence of ImM unlabelled diminazene was measured over increasing time periods in both wild type and 
TbATl knockout bloodstream forms of T.brucei (indicated in the figure legend)
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Figure 4B; The inhibition of ^H-diminazene uptake by unlabelled diminazene in T.brucei 
s427. The uptake of ^H-diminazene at 0.05 pM, was measured over a 30 second period in the 
presence of unlabelled diminazene. The IC50 values were calculated from the inhibition profiles 
shown in the graph. A Michaelis-Menten plot was used to calculate the Km and Vmax values.
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Other known substrates o f  the P2 transporter, adenosine and pentamidine, were used to 

inhibit the uptake o f  ^H-diminazene to determine whether P2 is the transporter 

responsible for transport o f  the substrate across the membrane. (Figure 4C) Both test 

compounds inhibited the uptake o f  ^H-diminazene. After several repeats the Ki values 

were calculated fiom the inhibition profiles and pentamidine was found to competitively 

inhibit ^-dim inazene with a higher affinity (Ki = 0.21 ± O.OlSpM (n =  2)) than 

adenosine (Ki = 0.25 ± 0.081 pM (n =  4)).
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Figure 4C: The inhibition of ^H-diminazene by adenosine and pentamidine. The uptake of 
^H-diminazene at 0.05 pM, was measured over a 30 second period in the presence or absence of 
unlabelled P2 substrates, adenosine ( ■ )  and pentamidine ( • ) .  The IC50 values were calculated 
from the inhibition profiles shown in the graph.
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These results clearly demonstrate that -diminazene is taken up by the P2 transporter. 

To investigate whether there was any additional contribution from the related PI 

transporter, inosine, a substrate for the PI transporter, was also tested for inhibition of 

^H-diminazene. It was observed that inosine had no clear effect on the uptake of 

diminazene, and the drug is therefore not taken up by the PI transporter. (Figure 4D)
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log[lnhibitor] (M)

■ diminazene 
IC5 0  — 0.13 |iM
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1C 50 =0.14 |iM

•  inosine

Figure 4D: The inhibition of ̂ -dim inazene uptake by adenosine, pentamidine and inosine.
The effects of inosine, a PI substrate, on the uptake of ^H-diminazene were measured over a 30 second 
period. Adenosine and pentamidine, known to inhibit ^H-diminazene uptake from the previous experiment, 
were used as controls.

We can conclude that the uptake of diminazene is mediated by a single transporter that is 

identical to the P2 transporter in that it has all the substrate specificities and the saturation 

profile o f this transport system. When this transporter is knocked out there is no uptake 

and therefore the P2 transporter is the only transporter involved in diminazene uptake.
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Chapter 5 

Pentamidine uptake and drug 

sensitivity in C r i t h i d i a  f a s c i c u l a t a
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Part 1: Pentamidine uptake in Crithidia fasciculata

Pentamidine uptake by Crithidia fasciculata (strain HS-6) was measured using the 

transport assay method described in the Materials and Methods section. However, in this 

case, the concentration of permeant remained eonstant at concentrations IpM  or ImM 

whilst the time of incubation was varied. The time course is plotted as the rate of uptake 

o f pentamidine (finol (10^ eells)'* s'^) against time. (Figure 5 A). At IpM  uptake o f 

^H- pentamidine is linear over a period o f 2  minutes at a rate of 0.2  finol (10  ̂ cells)'^ s"’ 

as determined by linear regression (r  ̂ = 0.998). This is conclusive evidence of the 

presence o f a pentamidine transporter. However, at ImM, there is no uptake of permeant, 

indicating that the pentamidine transporter is saturable and uptake o f label is completely 

inhibited by unlabelled pentamidine at this concentration.

Increasing eoncentrations o f unlabeled pentamidine were then used to inhibit uptake of 

 ̂ H- Pentamidine to test for the number o f transporters involved. Figure 5B is 

representative of results obtained from four repeats o f the same experiment. In this 

experiment, pentamidine inhibited the uptake of permeant with an IC50 o f O.SSpM. 

Conversion o f the same data to a Miehaelis-Menten plot yielded the Km and Vmax values. 

The data shown in Figures 5B and C are consistent with a model transporter that is 

saturable and conforms to Miehaelis- Menten kinetics. The average Km and Vmax values 

for pentamidine uptake by Crithidia fasciculata are 0.66 ± 0.18pM and 0.054pmol/10^ 

eells/s (± 0.033), respectively.
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Uptake of H- Pentamidine by Crithidia fasciculata (strain HS-6). Cells were incubated with 

fixed concentrations of permeant at l^M or ImM for increasing time periods to measure the uptake of 

pentamidine (pmols (10^ cells)'* S'*), and thus determine the presence or absence of a specific pentamidine 

transporter.

Propamidine was also assayed for the inhibition of pentamidine uptake (Figure 5B) and it 

was found to have a much lower affinity for the transporter than pentamidine, with a Ki 

ofl28±38pM .
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5B and C

Pentam idine Uptake in Crithidia fascicuiata
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The Inhibition of Pentamidine in CfascicuUda by pentamidine and propamidine. Figure 
5B shows the dose dependant inhibition of ̂ H- Pentamidine by diamidine compounds pentamidine (■) and 
propamidine (A ). The ICso values were calculated from the inhibition profiles. Figure 5C is a Michaelis- 
menten plot showing the rate of uptake of 1 pM ^H- pentamidine over 60 seconds by C.fasciculata.
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Finally, pentamidine analogues butamidine and diminazene were also tested for their 

ability to inhibit pentamidine uptake by competing for the identified transporter. A time 

course for the uptake of ^H-diminazene by C.fasciculata showed that there was no 

evidence o f mediated uptake o f diminazene, by this organism (data not shown). 

However, when diminazene was used as an unlabelled inhibitor of ̂ H-pentamidine, dose 

dependent inhibition was observed with a Ki value of 8.02 pM (S.E. 4.43 pM). 

Butamidine appeared to have a good affinity for the pentamidine transporter with a low 

Ki value o f 0.49 pM (SE. 0.017 pM). Both these experiments were only performed twice 

and fiirther repeats should be carried out to obtain more conclusive results.
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A Modified Alamar Blue Assay as a method to determine drug sensitivity o f Crithidia 

fasciculata.

A method was required to determine the sensitivity o f Crithidia fasciculata (strain HS-6) 

to pentamidine and various other tiypanocides. This is important to form a correlation 

between the dmg sensitivity and drug uptake by the parasite.

There are several methods available for drug sensitivity testing in kinetoplastids but the 

Alamar Blue assay appeared to be the most reliable and easily reproducible o f the various 

options. Alamar Blue was originally used to examine the cytotoxic effects of compounds 

on mammalian cells. It has since been found to be successful in the determination of drug 

sensitivities in human infective African trypanosomes. (Raz et al, 1997) The dye 

employed in the assay has fluorescent properties and is metabolised by the parasites and 

therefore can be used to indicate the extent o f metabolic activity. As the metabolic 

activity will be highest during cellular proliferation in logarithmic growth phase, there is 

a linear relationship between the fluorescent signal emitted and the number of dividing 

cells. It was assumed that it would be possible to use Alamar Blue to study drug 

sensitivity in C.fasciculata based on the similarities in biochemical function between 

trypanosomes and Crithidia.

Stocks o f the test compounds were prepared at 500 pM and 200 pis o f each were added 

to the first column of a 96 well plate, with a separate row for each drug, in duplicate. The 

remaining wells contained 100 pis o f LIT medium and doubling dilutions were made by
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transferring 100 pis of stock drug into the adjacent well to mix with the medium. This 

was repeated along the row using a multi-channel micropipette. DMSO, Wiich rapidly 

kills Crithidia, was used as a positive control. Wells containing cells without dmgs were 

used as negative controls. A cell count of the culture was performed using a 

haemocytometer and the cell density was adjusted to the desired cell density. Usually, for 

trypanosomes, this would be 5 x 10̂  cells per ml. However, Crithidia has a faster growth 

rate than trypanosomes, reaching maximum density of 2 x 10* organisms per ml in 48 

hours. Therefore, a density ofSxlO * cells per ml was used. lOOpl o f cells were added to 

every well which reduces the dmg concentration by half and therefore the highest dmg 

concentration is 250pM. Due to the growth rate of Crithidia, the cells were incubated 

with the drugs for 7 hours instead o f 48 hours, after which time 20 pi (10%) o f Alamar 

Blue was added. If the cells are unaffected by the drug the dye will be metabolised 

causing a colour change fi'om blue to pink. (See figure 8a). However, if the cells are 

sensitive to the dmg the dye will remain blue. It was found that after the usual incubation 

period of 24 hours with the dye there was no colour change. The plates were incubated 

for a further 24 hours and an obvious colour change occurred which could be read on the 

automatic plate reader fluorometer.

Figure 5D: The Abmar Blue Assay

lOOpI of medium plus 

lOOpI of test drug (A) in 

well. lOOpI of cells is 

added.(B)

After incubation o f cells with 

test drug for 7 hours 20pl of 

alamar blue is added.

After further incubation for 48 

hours, living cells will 

metabolise the dye, changing the 

colour from blue to pink.
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It is unclear why Crithidia requires an incubation time o f 48 hours, as opposed to 24 

hours, to metabolise the Alamar Blue. Reduction o f Alamar Blue in trypanosomes is part 

of the glycolytic pathway (Raz et al, 1997) and therefore differences in this biochemical 

pathway, between the two organisms, may be responsible for the increase in incubation 

time essential to obtain a result.

Cell counts were also performed on individual wells to help validate the Alamar Blue 

assay as a reliable test for drug sensitivity in C.fasciculata. It was found that the cell 

counts corresponded to readings taken by the fluorometer. Viability o f the cells was also 

noted.

RESULTS

Drug sensitivity of C.fasciculata to various trypanocidal compounds was examined using 

the modified Alamar Blue assay as described above. (Figure 5E)

Figure 5E

Drug sensitivity in Crithidia fasciculata
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The results are plotted as measure fluorescenee against the log concentration of test 

trypanocide. The graph shown is typical o f the results found from three repeats. DMSO, 

as the positive control, kills all cells at the maximum concentration of 20%, which was 

confirmed microscopically. From the plot an IC50 o f about 1.25 2.5 % was calculated. It 

appears that pentamidine also kills cells at concentrations over 100 pM. However, this 

strain of Crithidia does not appear to be sensitive to concentrations lower than this and at 

62.5 pM pentamidine has no effect. When examined microscopically cells were found to 

be frilly motile in all wells including those containing the highest concentration o f drug. 

However, the cell numbers were dramatically reduced, suggesting that pentamidine has 

an effect on the mechanisms involved in cell replication and division rather than a toxic 

effect leading to cell lysis.

Propamidine also had an effect on the cell growth at 250 pM but was less effective than 

pentamidine, having no effect on the cells at 125 pM and an estimated IC50 o f about 181 

pM compared to the lower IC50 o f 138 pM for pentamidine (n =1).

C.fasciculata is not sensitive to diminazene, stillbamidine or butamidine (n = 4).
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CHAPTER 6

Discussion
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The structure-activitv relationships of the pentamidine transporters 

HAPTl and LAPTl

Several unlabelled potential substrates were used to inhibit the uptake of ̂ H-pentamidine 

by HAPTl and LAPTl to gain an understanding o f the structure-activity relationships of 

these transporters, to determine the individual specificities of each and to search for 

compounds that may be the true biological substrates present in the host environment. 

The structure-activity relationships between substrate and both HAPTl and LAPTl, 

respectively appear to be extremely complex. The central alkane chain that joins the 

terminal polar groups, in diamidine compounds, is important in the binding and 

recognition o f a substrate by HAPTl and LAPTl. The part the chain plays in this 

mechanism is unclear. Variation o f the chain length by the addition or subtraction of 

(CH2)n groups has a dramatic effect on the ability o f a diamidine compound to bind to the 

transporters. There is a clear correlation between the number o f methylene groups and the 

afiSnity o f a substrate for HAPTl or LAPTL The optimal chain length for binding is 

when n = 6-8 for LAPTl and n = 5-6 for HAPTL (Figure 3.7) Trypanocidal activity also 

increases as the length of the alkane chain increases to n =5, Beyond this the compounds 

become less active. (Lourie, 1939) This may be because as n increases the compound is 

taken up with a higher afBnity and therefore the drug will be imported into the cell at a 

faster rate to show a higher activity towards the parasites. For HAPTl and LAPTl, once 

the optimal chain length has been reached, affinity for the transporters appears to 

decrease as the chain length continues to increase.
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It may be interesting to look for the same structure activity relationships between carbon 

chain length and binding to the P2 transporter. However, the carbon bonds in this chain 

are completely saturated rendering the chain inert and therefore it is unlikely that the 

actual chain is involved in binding to the transporter. It is possible that the ether links on 

either side of the chain are involved in binding, as they have free electron pairs that can 

engage in H-bonding. The chain length will affect the positioning of these groups. From 

another perspective, the apparent correlation between the affinity and the chain length 

may in fact reflect chain flexibility. The molecular model of pentamidine shows that it 

may not adopt a linear conformation under all conditions. It probably bends to co localise 

the two end charged groups, (Stead et al, 2001) particularly if  stabilised in a complex. 

This is due to ti-ti orbital stacking o f the benzene rings and allows these groups to share 

electrons and stabilises this conformation. At optimal orientation the binding energy of tt- 

stackings by electrostatic and Van der Walls forces can reach up to 10 kJ. (Wallace et al, 

2002, De Koning and Jarvis, 1999) Such a conformation will not be possible for very 

short or inflexible linking groups between the two diamidine rings.

If  the alkane chain only acts as a linker between the outer rings and groups, then 

presumably, minor changes to the chain would not have a drastic effect on the affinity of 

the substrate for the transporter. In 1948, Schoenbach and Greenspan found that the 

introduction of two methyl groups to the alkane chain did not alter the trypanocidal 

activity but it is unknown if  these modifications led to a reduced uptake of substrate. I 

found that by replacing the central chain with a furan ring decreased the affinity for both
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transporters. The reason for this could be because the structure is more rigid which 

prevents the molecule from bending to allow tc-ti orbital stacking to occur. Alternatively, 

it may be due to a decrease in O atoms from two to one, which has led to a reduction in 

spare electrons available to form interactions with the binding pocket. The addition of 

methyl groups to the molecules increases the affinity and the position o f these seems 

important, doubling the affinity for HAPTl if moved from the benzene rings to the 

central furan ring. It appears that for high affinity binding, it is crucial that the middle 

portion of the diamidine remains as an alkane chain. The presence of two benzamidine 

groups appears to be essential for binding as demonstrated by the inability of 

benzamidine compounds to inhibit pentamidine uptake by HAPTl and LAPTl. However, 

the addition o f a hydroxyl group at position 4 on the benzene ring, promotes some 

binding activity to both HAPTl and LAPTl. This group is equivalent to the ether oxygen 

in pentamidine. This shows the importance o f an oxygen atom or other H-bond acceptor 

in the binding. The addition o f lai^e, bulky groups to position 3 on the benzene ring of 

pentamidine reduces binding activity possibly by physically preventing the binding.

The position of the side chain on the benzene ring, relative to the amide group, clearly 

affects binding to the transporter. This is illustrated most clearly by the difference in 

binding affinity between pentamidine and meta-pentamidine, but also by comparing 2- 

hydroxybenzamidine and 4-hydroxybenzamidine. It has been found that Berenil-resistant 

strains show no resistance to a modified drug with the amide groups at the meta position 

of the molecule (Hawking, 1963a). In the resistant line, the transporter may have
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undergone a conformational change with the mutated transporter now selective for 

‘tneta-Berenil V

HAPTl and LAPTl appear to differ in ligand recognition profiles and therefore these 

binding pockets are distinguishable by their differences in specificity. The optimal chain 

length for binding to LAPTl and HAPTl differs, as previously discussed. Also, DAPI 

was shown to have a higher affinity for LAPTl than the original substrate pentamidine, 

but a low affinity for HAPTl. It is unclear why this should be the case. However, in 1971 

Dann et al showed that DAPI was slightly superior to Berenil in exerting trypanocidal 

action against T.congolense, DAPI is considered to have the same mode of action as 

Berenil, by binding to DNA and therefore these differences may be due to transport. 

Indeed Berenil displays little affinity for either HAPTl or LAPTl and it is unclear 

whether T.congolense expresses P2.

Another difference between HAPTl and LAPTl lie in their affinity for Berenil, 

isometamidium and ethidium bromide. Although both transporters have the highest 

affinity for isometamidium, HAPTl has a higher affinity for Berenil than for ethidium 

bromide, Wiereas the opposite is true for LAPTl. Perhaps these transporters have slightly 

different biological functions and recognise different substrates Ifom the host 

environment. It is possible that ethidium bromide and isometamidium are not only taken 

up by diffusion, as first thought, but by mediated transport through HAPTl and/or 

LAPTL It may yet appear that ethidium bromide only enters the cell via diffusion 

because little is transported by HAPTl and none by the P2 transporter. Moreover, it is 

possible that other transporters with affinity for ethidium bromide exist and could be
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involved in uptake. However, if  LAPTl does transport ethidium bromide, it is likely to 

play an important role in the transport of this dmg, as it is a high capacity transporter, 

even for pentamidine for which it has a lower affinity (De Koning, 2001a ; Bray et al 

2003) However, passive diffusion may still be the main mechanism of uptake.

It is unlikely that LAPTl and HAPTl play a part in the development of resistance to 

these drugs, as other mechanisms such as efflux pumps appear to be associated with 

isometamidium resistance (Sutherland et al, 1992a) There is little cross-resistance 

between isometamidium and Berenil and none between Berenil and ethidium bromide 

and resistance to each is thought to develop independently. This can be explained by a 

model in which these dmgs are taken up by separate transporters: Berenil by P2 only and 

ISMM by HAPTl and/or LA PTl.

There was one main problem encountered during these kinetic studies. In most of the 

experiments, unlabelled pentamidine was used as a control to show dose-dependant 

inhibition of the uptake of ^H-pentamidine. However, at 4 inM LAPTl never became 

fully saturated. It is thought that this could be for two reasons. The ^H-pentamidine label 

was quite old and tritium on the pentamidine could have exchanged with water. This 

water may have been taken up into the cell, indistinguishable from ^H-pentamidine and 

thereby causing an unsaturable background. It may also be possible that some 

pentamidine was entering the cells via diffusion, which is a non-saturable process, and is 

likely to occur at such high concentrations. This could be checked by using cells which 

are permeable to water but impermeable to pentamidine, such as erythrocytes.
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Other general problems encountered when performing kinetic and transport studies 

involve the inability to directly measure the transport o f substrates across the membrane. 

The Ki is a measurement of the competing substrates ability to block binding and 

therefore uptake of the radiolabelled permeant. As a molecule must bind and then travel 

across the membrane into the cell before the transporter can bind to another molecule, the 

time it takes for a substance to be physically transported across the membrane, affects the 

binding affinity of the transporter. A molecule with high affinity binding may take a 

longer period of time to cross the membrane, or vice versa, and this will make the Ki 

value higher or lower accordingly. However, studying transport in this way is considered 

to be standard, accurate and reliable.

The structure-activity relationships of HAPTl and LAPTl are obviously complicated and 

it is still unclear what the function o f these transporters is in the host environment. It may 

be useful to look at pentamidine transport systems in similar organisms eg. kinetoplastids 

such as Leishmania. In 1976 Damper and Patton found that pentamidine did not share the 

same transport system as lysine and arginine in T.brucei. However, since then, 

pentamidine has been shown to inhibit arginine transport in Ldonovani (Kandpal et al, 

1995) and also shares the arginine/lysine transport system in C.fasciculata. It may be 

possible that HAPTl and LAPTl transport these substances. Pentamidine has also been 

shown to inhibit Ca^^ transport in T.brucei brucei. (Benain et al, 1993) and agents, which 

inhibit Ca2+ channels in L.donovani, were also shown to inhibit pentamidine uptake 

(Basselin et al, 2002) Perhaps HAPTl and LAPTl should be tested as Ca^  ̂transporters. 

Another idea is that HAPTl or LAPTl are polyamine carriers because a pentamidine
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transporter in Ldonovani has been shown to have this fimction and similarly is not 

sensitive to adenosine, like HAPTl and LAPTl. (Basselin et al, 1996)

The P2 transporter as the sole mechanism for the uptake of Berenil.

From using ^H-Berenil to directly measure the uptake of the dmg, and using different 

well-known unlabelled substrates of PI and P2 to inhibit this uptake, it is found that a 

single transporter is involved in the uptake o f Berenil by T.brucei and this transporter has 

been identified as the P2 nucleoside transporter. The Ki values of known P2 substrates, 

pentamidine and adenosine, were 0.22 ± 0.02 pM and 0.25 ± 0.08 pM, respectively 

which are extremely close to the Ki values of these compounds for the P2 transporter 

which are 0.43 ± 0.02 and 0.92 ± 0.06 pM, respectively. There are several other pieces of 

evidence to support the results found in this study. Berenil has previously been shown to 

have no significant affinity for HAPTl or LAPTl, which supports the finding that 

Berenil, enters the cell via one route only. (De Koning, 2000) As the drug is only taken 

up by the P2 transporter this provides an explanation for why there is a high level of 

cross-resistance between Berenil and melarsoprol in the field. The loss of P2 function 

would appear to confer resistance to both dmgs. Although resistance to Berenil itself has 

been difficult to develop in the laboratory the loss o f P2 fimction due to exposure to the 

veterinaiy arsenical dmg cymelarsan may also lead to Berenil resistance and may account 

for the increase in Berenil-resistant eases as arsenical dmgs become more widely used in 

animals. The low level of Berenil resistance in the field, compared to other veterinary 

dmgs, is obviously not due to the presence o f multiple Berenil transporters, as is probably
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the case for related diamidine, pentamidine. It is possibly due to the drugs ’ rapid 

elimination from the host body, which renders the drug useless as a prophylactic.

In the past it has been speculated that T.b.gambiense or T.b.rhodesiense, infecting 

livestock, which are subsequently treated with subcurative doses o f Berenil, could 

become resistant to the drug. If this strain, with a loss in P2 function, was then to be 

transmitted to a human the patient would also be refractoiy to treatment with melarsoprol. 

(De Koning, 2001) This worry is perhaps a little more justified now that there is 

conclusive evidence that Berenil is only taken up through the P2 transporter and 

presumably loss of function confers a drug resistant phenotype. This has been tested in 

the laboratory by inducing Berenil resistance and then monitoring for P2 function and 

activity (Barrett and Stewart, unpublished) and also in this study by using TbATl 

knockout cells, which lack a fimctional P2 transporter, to look at the affects on the 

kinetics of Berenil uptake.

It should be kept in mind that although there is only a single transporter for Berenil 

uptake in T.brucei, this might not be the case for other hypanosome species. Suswam, 

2001, suggested that there was more than one Berenil transporter in T.evansi and yet it 

has been commented that T.congolense may not have a P2 transporter (Wilkes, 

unpublished) and if  so how does the drug enter this hypanosome species? This is a 

relatively important question as T.congolense is the most prevalent species infecting 

cattle and is associated with almost all cases of Berenil resistance. The mechanisms of 

transport and resistance development may be completely different for this parasite, which
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holds important implications for treatment regimes in the field and the development of 

new trypanocidal drugs.

The uptake of pentamidine by Crithidia fasciculata.

When C.fasciculata was incubated with 0.1 pM of ^H-Pentamidine over a period of 2 

minutes, uptake of the drug was continuous and linear for the duration with no evidence 

o f reaching a plateau. An increase in time points would probably show an increase in 

drug uptake until a maximum concentration had been accumulated. This may take as long 

as 24 hours as is seen in a pentamidine sensitive strain o f C.oncopelti. (Wallis, 1966) At 1 

mM there is no uptake because at this concentration the transporter is fully saturated. 

These results do confirm the presence o f a pentamidine transport system with a relatively 

high affinity for pentamidine, which has a low Km value for the transporter at 0.66 ± 0.8 

pM. When increasing concentrations o f unlabelled pentamidine were used to inhibit the 

uptake of Pentamidine the inhibition profile obtained shows that there is a single 

pentamidine transporter, which is saturable and conforms to Miehaelis M enten kinetics. 

However, the rate of pentamidine uptake is minimal and the Vmax is extremely low at 

0.054 pmol (10^ cells) * s‘*) and probably the reason why Crithidia can accumulate 

pentamidine over a long period of time. Therefore, although a pentamidine transporter is 

present pefhaps its contribution to the uptake o f the drug is insignificant and elimination 

is not necessaiy for HS-6 to be used as an expression system for HAPTl and LAPTl.

The toxicity results show that pentamidine does not have any effect on cells at 

concentrations below 62.5pM. Even at the highest concentration of250pM  there are still
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motile cells present in the vials. This may be because the dmg only has growth inhibitory 

effects on Crithidia, as previously suggested, (Newton and Le Page, 1967) or that this 

particular strain is partially resistant to pentamidine. Newton and Le Page also found that 

17pM completely inhibited the growth o f C.fasciculata in 12 hours and another study 

showed that 338pM inhibited all growth o f cells after only 3 hours. (Wallis, 1966) 

Obviously, these parasites are much more sensitive to the dmg than those used in this 

study but the reason for this is unclear. It has been previously suggested that perhaps 

pentamidine can enter the cells via the purine transport systems that have been identified. 

(Gutteridge, 1966) It has also been discovered that when cells are grown in purine free or 

purine depleted medium they increase the number of transporters in response to purine 

starvation (de Koning et al, 2000b) and accumulate purines at a fester rate. (Alleman, 

1996, Hall et al, 1996) The same is tme for several Leishmania species. (Seyfeng and 

Landfear, 1999) This gives the parasite an advantage over the host to compete for the 

available nutrients. (Gero, 1997) Other parasites have also been shown to upregulate or 

downregulate the uptake o f nutrients under stress. It may be possible that an excess of 

purines in the medium could cause the down regulation of purine transporters in 

C.fasciculata and if pentamidine enters through this system, organisms will have a 

reduced rate of uptake for the substrate and consequently the ^pearance of reduced 

sensitivity to the dmg. It may be that the medium used here has slightly elevated levels of 

purines compared with the medium used to grow the parasites in previous experiments 

where the organisms appear to have a much greater sensitivity to pentamidine.

However, it has also been suggested that nutrient availability can directly affect the 

organisms ’ sensitivity to chemotherapeutic agents such as tiypanocides. (Alleman, 1996).
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A simple way to solve this dispute would be to identify the transport system involved in 

the uptake o f pentamidine. By using the substrates o f CflSTTl (adenosine) and CfNT2 

(inosine and guanosine) to inhibit the uptake of pentamidine it can be determined whether 

the drug is competing with the natural substrates for these transporters.

Propamidine, a diamidine analogue closely resembling pentamidine, was used to inhibit 

the uptake o f pentamidine and it was found to have a lower affinity for the same 

transporter with a Ki of 128.52pM (± 38.42). Propamidine also had a slight effect on 

cells in the Alamar Blue assay but only at the very high concentration o f250)liM.

It is not surprising that propamidine is also taken up by this transporter as the 

biochemical structure is extremely similar to that of pentamidine and the transporter 

probably recognises a common motif on both compounds. It is also not surprising that 

propamidine has a lower affinity for the transporter, as this is what has been found for 

pentamidine transporters HAPTl and LAPTl in Tbrucei hrucei. However, there appeais 

to be a correlation between the affinity for the transporter and the level o f toxicity to 

cells. Pentamidine with a higher affinity for the transporter than propamidine also has a 

greater toxic effect on cells. Perhaps the lack o f toxicity is due to the lack o f sufficient 

uptake by the cells to cause either cell death or sufficiently inhibit cell growth. Wallis 

found that a pentamidine resistant strain also showed increased resistance to propamidine 

and stillbamidine. As it appears that this C/asciculata strain may be partially resistant to 

pentamidine, perhaps this accounts for the lack o f sensitivity to both these compounds.

A time course showed no evidence of Berenil uptake. However, this compound 

showed a high affinity for the pentamidine transporter by inhibiting the uptake o f 

pentamidine. Rather than actually being transported across the membrane, Berenil is
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possibly sticking to receptor sites on the transporter surface and therefore is blocking the 

uptake of Pentamidine by preventing it from attaching to the transporter. This would 

suggest why there was no Berenil found within the cell pellets. This would also 

explain why Berenil shows no toxic effects towards the organisms. However, this may 

also be due to a different drug target and mode of action compared to pentamidine, due to 

its more rigid structure. (Newton and Le Page, 1967) Wallis also found that his 

C.fasciculata strains were insensitive to Berenil.

The feet that this C.fasciculata strain has a pentamidine transporter, even though it may 

be insignificant, means that to gain more accurate results with the expression o f HAPTl 

and LAPTl, it must be knocked out. This is currently being achieved by exposing the 

organisms to increasing concentration of pentamidine and at present cells are beginning 

to grow well in a concentration of500pM.

General Discussion

Considerable progress has been made towards the identification o f the recognition motifs 

o f HAPTl and LAPTL The feet that the transporters have different specificities for a 

variety of trypanocides suggests that they differ in biological function in the host 

environment, by mediating the uptake o f separate substrates. However, it is still unclear 

what these substrates are. Presumably, they possess characteristics of the trypanocides 

that have been shown to have high affinity for HAPTl and LAPTl in this study. It is 

important to understand these stiucture-activity relationships more clearly in order to be 

able to predict other substances, which can enter the cell through these particular 

transport mechanisms. Substances found in the blood of the host could be randomly
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tested for their affinity to HAPTl or LAPTl, but this would be time consuming and so 

far has proved unsuccessful. The best hope is to characterise these transporters through 

using Crithidia fasciculata as an expression system. Once the sequences for the 

transporters are obtained, homology between genes in related organisms can be identified 

and perhaps provide an insight into the function o f LAPTl and HAPTL With the 

increasing drug resistance that is associated with the loss o f P2 function, it is important to 

find alternative dmg targets or drug deliveiy systems in the parasite. HAPTl and LAPTl 

provide an alternative route for the uptake o f trypanocides and therefore a drug with little 

affinity for P2 but a high affinity for HAPTl and LAPTl is of great value. On the other 

hand, i f  HAPTl or LAPTl transport a substance essential for the function o f a 

biochemical or metabolic pathway, inhibitors could be used to block the uptake of such a 

compound and may, potentially lead to cell death. The identification o f P2 as the 

transporter for Berenil has important implications for veterinary medicine. It is possible 

that Berenil-resistance is related to a loss o f P2 fimction and, i f  so, there is no other way 

to deliver this drug into the cell, rendering it useless. The high levels o f cross-resistance 

between arsenicals and Berenil in the field are worrying. Resistance to arsenical drugs is 

rapidly increasing and appears to be related to the loss of P2 fimction. Cymelarsan, a 

veterinary arsenical dmg, is becoming more widely used and as arsenical resistance 

increases this will exacerbate the problem of Berenil resistance, which is the only 

veterinary drug left virtually unaffected by this disaster. The mechanisms for the uptake 

of several compounds have been identified in this study and a clearer overview now 

exists on the transport systems o f Tbrucei brucei. (Table 5)
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This updated model of transporters in Tbrucei brucei can be applied to human infective 

species T.b.gambiense and T.b.rhodesiense and may aid in the creation and the 

implementation o f a new and more efficient treatment regime for both humans and cattle. 

It is now crucial that the function of HAPTl and LAPTl is identified for the design of 

novel chemotherapeutic agents in an attempt to combat the rapidly spreading drug 

resistance. However, whilst trypanosomiasis remains a neglected disease, in the funding 

sense, research progress will continue to be slow and there may not be much time left 

until the last effective trypanocide is rendered ineffective.

Table 5

Transporter Substrate transported into the cell

PI Inosine, Guanosine, Adenosine

P2 Adenosine, Adenine, Melaminophenyl 

arsenicals. Pentamidine, Diminazene

H2 Hypoxanthine, Adenine, Guanine, Guanosine

H3 Hypoxanthine, Adenine, Guanine

HAPTl Pentamidine, Diamidines with increasing 

carbon chainlength fi-om propamidine to 

octamidine, Isometamidium

LAPTl Pentamidine, Diamidines hexamidine, 

heptamidine, octamidine, Isometamidium, 

Ethidium Bromide, DAPI.

An overview of the surface transporters involved in the uptake of trypanocides in Tbrucei brucei.
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