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Summary

The emergence of antibiotic resistant microorganisms is one of the most 

concerning problems in health welfare, and particularly, that of multi drug resistance. 

The active efflux of compounds from the cell is one of the key strategies used by 

microorganisms to avoid the noxious effects of toxic compounds and has become one 

of the most important mechanisms of multiple resistance, such transport processes 

being catalysed by an array of membrane associated proteins.

ATP-Binding Cassette Transporters, that carry out an energy dependent active 

transport process by which substances cross the cell membrane on the hydrolysis of 

ATP, also display the ability to translocate a number of unrelated molecules, 

including antibiotics. These transporters have been identified as one of the largest and 

most widely distributed families of such transmembrane transport systems. Virtually 

ubiquitous in nature, ABC transporters have been found in the genomes of every 

organism from the simplest archea through to man. The fact that they contribute the 

main pathway for resistance to anticancer drugs in humans highlights their importance 

and urgent need to study them.

In addition to the well known groups of antibiotics produced by members of 

the Streptomyces genus, that include aminoglycosides, tetracyclines, chloramphenicol, 

and some (3-lactams, which inhibit the protein synthesis or the proper formation of 

bacterial cell walls, the species Streptomyces peucetius produces the antibiotics 

doxorubicin and daunorubicin. These latter compounds are classified into the 

anthracyelines group and possess antitumoral activity, expanding the arsenal of 

compounds with different activity produced by Streptomyces.

The manner, in which S. peucetius avoids the effect of the antitumorals it 

produces, is by pumping them out of the cells, and the system that it utilises is that of 

an ABC transporter. In this system two subunits are present, one of them, DrrA, a 

peripheral membrane protein that acts as the energy-transducing component, and the 

other, DrrB, the membrane carrier. This type of permease carries out export of 

antibiotics in an ATP-dependent manner.



The expression of DrrA in E. coli proved to be a challenging enterprise as only 

low yields were obtained for DrrA at 16 °C, that were only improved when DrrA was 

fused to Thioredoxin. The over-expression and purification of DrrA allowed a partial 

characterisation of the catalytic activity of DrrA fused to Thioredoxin, with traditional 

biochemical methods, complemented by additional characterisation assays in wild 

type DrrA. The characterisation was based on assays of the ATPase activity of Thio- 

DrrA and DrrA, which displayed a measurable catalytic activity compatible with a 

role in energising transmembrane transport. These proteins were shown to be cation 

dependent ATPases able of binding and hydrolysing ATP in a similar manner to the 

NBD proteins of well-characterised prokaryotic ABC transporters, also showing 

common features to other NBD’s.
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Chapter 1

GENERAL INTRODUCTION 

1.1 The Resistance Problem

When antibiotics appeared, they were seen as a true miracle (although 

penicillin was discovered by Duchesne in 1896 (Duchesne, 1897; Ramon and Richou, 

1946), and rediscovered by Fleming in 1929, its clinical use was introduced in 1942 

and only widespread by 1946, after which a number of important antibiotics were 

being discovered; Levy, 1992). They were made by one microorganism and could 

stop growth and kill another one. Expectations were surpassed until it was realised 

that bacteria developed resistance against antibiotics (In 1946, 14% of all strains of 

Staphylococcus isolated in one hospital were found to be resistant to penicillin. By 

the end of that decade, the number had risen to 59%; Levy, 1992). Consequently, as 

more and more drugs were discovered and extensively used, bacteria were selected 

that were no longer killed by the antibiotic. These strains settled down in the 

environment and caused the re-emergence of infections such as tuberculosis, 

pneumonia, and some other nosocomial infections, that could not be treated by these 

compounds (Levy, 1998), Soon, it was observed that genes, which were responsible 

for conferring resistance to antibiotics, were copied and transferred by conjugation 

from resistant to sensitive organisms, spreading this resistance through bacterial 

populations (Franklin, 1992). In 1959, bacterial dysentery, linked to Shigella  

dysenteriae, was reported in Japan to be resistant to four different antibiotics. In 

1965, a strain o f Salmonella typhimurium, was shown to be simultaneously resistant 

to the antibiotics streptomycin, sulphonamides, tetracycline, ampicillin, neomycin, 

kanamycin and chloramphenicol (Smith, 1966), which has been an evident sign of 

concern since then.

The ability to transfer genes responsible for conferring resistance to different 

drugs by conjugation is due to the existence in the bacterial cell of transferable DNA 

elements of autonomous replication known as plasmids of resistance. This is one of 

the most important sources of resistance in diverse microorganisms. Other ways by 

which microorganisms acquire resistance are via transposons, and the events of 

transduction and transformation. Transposons are a very interesting resistance tool, as



they are mobile genetic elements, which can insert at random into plasmids or the 

bacterial chromosome independently of the host cell recombination system. In 

combination, these processes can enable a single bacterium to accumulate multiple 

antibiotic resistance genes harboured in a single plasmid that can in turn be passed 

between members of the same species or even across genera. In some transduction 

events, the host cell bears a special site for the attachment of bacterial viruses, also 

known as bacteriophages. If they integrate into the host chromosome, when the phage 

enters into a lytic phase it can carry pieces of that chromosome with its genetic 

information to a new target cell (Canchaya et al., 2003). Apart from plasmids, during 

transformation some naked DNA is taken up by the receptor cell and can be 

incorporated in its genome (Lorencz and Wackernagel, 1994; Dubnau, 1999).

Nowadays, there is a perceived fear of not having useful drugs to combat 

multiresistant-pathogenical microorganisms. An example of this, was the emergence 

of vancomycin resistance in enterococcus as this could spread to staphylococcus and 

pneumococcus, making common infections such as otitis and pneumonia untreatable 

(Travis, 1994). That fear seemed to become a reality when the first clinical isolate of 

Staphylococcus aureus with decreased susceptibility to vancomycin (MIC = 8 pg/ml) 

was isolated in Japan in 1997 (Hiramatsu et ah, 1997). These forms designated as 

glycopeptide-intermediate (GISA) or vancomycin-intermediate S. aureus (VISA), are 

characterised by a thickening of their cell wall (Cui et ah, 2000) due to an increased 

number of D-ala-D-ala targets in their outer layers that may trap the vancomycin 

molecules, increasing their MIC for vancomycin (Hiramatsu, 2002). Although these 

isolates proved not to be the feared threat and the vancomycin MIC remained low 

enough (<16 pg/ml), in June 2002, a high-level vancomycin-resistant S. aureus 

(VRSA, MIC= 1024 pg/ml) was finally reported (Chang et a l, 2003).

1.1.1 Resistance mechanisms

Microorganisms defend themselves from the effects of different drugs by 

several resistance mechanisms:

1) Modification of the antibiotic or drug

2) Alteration of the drug target

3) Decreased permeability of the cell towards drug molecules



4) Active-efflux of the drug

1.1.1.1 Inactivation or enzymatic degradation of the drug

In 1940, eleven years after the crucial discovery of penicillin by Fleming, 

Abraham and Chain reported the existence of a bacterial enzyme that degraded the 

antibiotic by hydrolysis of its -lactam ring, and discussed the possibility of its 

interference with future penicillin therapy (Abraham and Chain, 1940).

The P-lactamases, which inactivate the P-lactam antibiotics penicillin and 

cephalosporins, are the best-known example of this type of resistance mechanism. 

These antibiotics, containing a p-lactam ring, can act as pseudo substrates for the 

transpeptidases, enzymes that are responsible for the last stages of biosynthesis of the 

bacterial cell wall. Acylation of the active sites of the transpeptidases takes place. 

With a slow déacylation rate, these transpeptidases are slow to release the p-lactam 

ring from their active sites, preventing normal cross linking of peptide chains in the 

peptidoglycan layer, which remains mechanically weak and susceptible to lysis on 

changes in osmotic pressure (Walsh, 2000). The |3-lactamases cleave the ^-lactam 

ring, rendering these antibiotics inactive. Nowadays, more than two dozen of these 

enzymes, specified by different bacterial resistance genes, are known and are found in 

both Gram-positive and Gram-negative bacteria (Jacoby, 1994).

The therapeutic approach to counteract the action of these enzymes has 

consisted of producing many different semi-synthetic forms of the (3-lactam antibiotic. 

However, bacteria have evolved with point mutations in the (3-lactamases genes, 

resulting in enzymes with different amino-acid sequences and alteration of their 

substrate specifities (Jacoby and Medeiros, 1991). Additionally, the use of 

Augmentin (U.S. Trademark), a combination of amoxicillin and clavulanate, an 

inhibitor of p-lactamases, has also been an effective approach.

Another class of antibiotics that can be enzymatically inactivated are the 

amino-glycosides (e.g. streptomycin, kanamycin, and gentamicin). These molecules 

are covalently  m odified by enzym es such as phosphotransferases, 

nucleotidyltransferases and acetyltransferases, using the phosphoryl group of ATP, a



nucleotide triphosphate, and the acetyl group of acetyl-CoA, respectively (Shaw et a l, 

1993; Azucena and Mobashery, 2001). As a result of modification, the antibiotics 

have reduced affinity for the 168 rRNA in the ribosomal 308 subunit (Fourmy et a l, 

1996), and they can not exert their effect as inhibitors of protein synthesis. Whereas 

only one type of chemical modification in the |3-lactam antibiotic (hydrolysis of its 

ring) produces bacterial resistance, a dozen different types of modification are found 

that leads to resistance to a broad range of aminoglycosides. Aminoglycoside- 

modifying enzymes that work by acétylation are distributed in several groups and are 

characterised by the AAC prefix, the best studied being AAC(6’)-IV (also known as 

AAC(6’)-Ib) (Okamoto and 8uzuki, 1965) and AAC(3)-I (Williams and Northrop, 

1978), Enzymes that modify aminoglycosides by adénylation also comprise several 

groups, best characterised being ANT(4’) and ANT(2” )-I (Joshua et al., 1993; 

Pedersen et a l, 1995). Fourteen groups of enzymes phosphorylate aminoglycosides, 

the best studied being APH(3’)-IIIa (McKay et a l,  1994), APH(3’)-IIa and APH(3’)- 

la (Azucena and Mobashery, 2001). The enzymes involved in the chemical 

modification of amino-glycosides do not share more than 56% amino acid identity, 

and it is thought unlikely that these enzymes share a common ancestor.

In Gram-positive pathogens a bi-functional enzyme that modifies 

aminoglycosides has been found, being the only example of fused resistance genes. 

This enzyme encodes acetyl and phosphotransferase activities in separate protein 

domains, which have been acquired from different resistance genes (Davies, 1994; 

Ferretti et a l, 1986; Azucena et a l, 1997).

In the same way as the aminoglycosides, chloramphenicol is modified by 

acétylation, and this is carried-out by a dozen different chloramphenicol acetyl- 

transferases (CATs) (Bannam and Rood, 1991; Parent and Roy, 1992). The modified 

antibiotic is unable to bind to the ribosome and it cannot exert its effect. One CAT of 

note is the type I enzyme which acetylates chloramphenicol and also binds the 

antibiotic fusidic acid, thereby avoiding their action on protein synthesis. As with 

enzymes that inactivate aminoglycosides, the CATs seemed to have emerged through 

convergent evolution and do not seem to be related by point mutations to an ancestral 

gene (Bennett and Shaw, 1983).



The formation of glutathione adducts is a widely used mechanism to detoxify 

cell poisons in eukaryotes (e.g. herbicides in plants) and is another example of how 

antibiotics can be inactivated through modification. Although the formation of large 

quantities of glutathione is common in bacteria, the only example of this kind of 

modification is the inactivation of fosfomycin, another antibiotic that interferes with 

cell wall biosynthesis. A plasmid-encoded glutathione-5'-transferase, which catalyses 

the formation of an inactive fosfomycin-glutathione adduct, is responsible for the 

resistance phenotype (Area et al., 1990). Serratia marcensens and S. aureus 

fosfomycin resistance genes were cloned and sequenced but were found not to be 

related at the sequence level (Suarez and Mendoza, 1991; Zilhao and Courvalin, 

1990).

Other examples o f resistance by modification of antibiotics are the (9- 

phosphorylation of erythromycin and hydrolysis of its lactone ring (O’Hara et al., 

1989), and the (9-nucleotidylation of lincosamides in Gram positive bacteria (Arthur 

et aL, 1987; Brisson-Noël et al., 1988).

1.1.1.2 Alteration of the drug target

The main examples of this resistance mechanism relate to key macromolecules 

in some part of microbial metabolism, such as cell wall synthesis or DNA replication. 

An example of this mechanism is mutation of the transpeptidases involved in cell wall 

synthesis to create penicillin-binding proteins (PBPs) with lower affinities for the 

drug (Song et al., 1987; Chu et al., 1996). The ribosomes are other targets, and at 

least two different types of modification that render resistance to antibiotics are 

loiown.

To confer resistance, these mutations have to involve that part of the bacterial 

protein that interacts with the antibiotic (e.g. PBPs and ribosomes). When these 

regions are mutated they show less affinity for the drug and which cannot then 

interfere successfully with bacterial metabolic processes. m u r M N  genes in 

Streptococcus pneumoniae, which are separate from PBPs genes, and which control 

the addition of the short dipeptide units seryl- or alanyl-alanine to the stem peptide 

lysine, appeared to build a chemically unusual cell wall enriched with branched



muropeptides (Filipe and Tomasz, 2000). These processes might also make a good 

target for the design of new antibacterial drugs that work synergistically to treat 

resistant pneumococcal infections. In ribosomes, méthylation of the adenine residue 

A2058 in the 23 S rRNA component of the 50S ribosomal subunit by the Erm methyl 

transferase (Bussiere et ah, 1998) does not impair protein biosynthesis but lowers the 

ability of erytliromycin and pristamycin antibiotics to bind the rRNA.

One of the most concerning examples involving this type of resistance is 

found in Mycobacterium tuberculosis. To counteract the inhibiting effect of 

streptomycin on protein synthesis, mutations have appeared in the ribosome that 

prevents the antibiotic from binding. Mutations in the ribosomal gene rspL, which 

encodes the ribosomal protein S I2, produce a high resistance to streptomycin when an 

original lysine residue is changed into arginine. Another mutation affects the rrs 

gene, which encodes 16S rRNA, and also produces resistant phenotypes (Finken et al, 

1993).

Alteration of the drug target is an effective mechanism for conferring 

resistance to fluoroquinolones and rifampicins. Fluoroquinolones inhibit the 

metabolism of bacterial nucleic acids in Gram-positive and Gram-negative bacteria. 

They interact with the enzyme DNA gyrase, an A2B2 tetramer encoded by the gyrA 

and gyrB  genes, which mediates DNA negative supercoiling. The drug forms a 

complex with the enzyme and doubly cleaved DNA covalently bound to GyrA 

subunits. In this way the enzyme cannot re-ligate the cleaved DNA, which is 

accumulated and cell death is induced (Hooper, 1995). Mutations in these genes are 

linked to resistance to the fluoroquinolones. Rifampicin acts on the bacterial RNA- 

polymerase (3-subunit, encoded by the rpoB gene, preventing transcription. Point 

mutations, deletions and insertions in the 27 base pairs that encode the RNA- 

polymerase active site, confer resistance against rifampicin in Escherichia coli 

(Lisitsyn et al., 1984), M. tuberculosis (Mani et ah, 2001; Pozzi et ah, 1999) and S. 

aureus (Wichelhaus et ah, 1999).

We can also find this type of mechanism of resistance in eukaryotes. The 

resistance of pathogenic fungi to the synthetic nucleotide analogue 5-fluorocytosine 

(5FC) is the most studied. The nucleotide analogue is transported into the cell by a



cytosine permease and deaminated by a cytosine deaminase to 5-fluorouracil (5FU), 

then converted into 5-fluorouridylic acid, which is phosphorylated and incorporated 

into the fungus mRNA. This inhibits fungal growth as the transcript cannot be 

effectively translated. At the same time, 5FU is converted into 5-fluorodeoxyuridine 

mono-phosphate, which inhibits the enzyme thymidylate synthase, and by this 

mechanism prevents DNA synthesis and nuclear division. Resistance against this 

compound appears when some of the biosynthetic enzymes mutate so as not to utilise 

this compound, avoiding its incorporation into the RNA of the cell (Vanden Bossche 

et aL, 1994).

In the inhibition of ergo sterol biosynthesis we find another example of 

resistance in eukaiyotes. In this case, azole compounds act on the enzyme sterol 14 - 

demethylase (cytochrome P450 14DM or P45051). Mutations in this enzyme reduce its 

affinity for azoles, thus conferring resistance (Vanden Bossche et al, 1994).

Finally, a less generally utilised mechanism is used to arrest the effect of 

tetracyclines, when some microorganisms {Streptococcus spp; Staphylococcus spp; 

Listeria spp; Bacteroides spp) produce a protein that binds to the ribosome (TC 

resistance classes M, O, S and Q, respectively), preventing the access of the antibiotic 

to the ribosomal target (Burdett, 1996).

1.1.1.3 Decreased permeability of the cell towards drug molecules

It is well known that the plasma membrane is a very selective barrier to the 

permeation of solutes between the cell and the extracellular environment. This 

property ensures the rapid entry to the cell of essential molecules like amino acids, 

glucose and lipids, the maintenance of metabolic intermediates and the ejection of 

waste compounds from the cell.

The decrease of cellular permeability seems to be an important mechanism of 

bacterial resistance, especially in Gram-negative bacteria, which possess an outer 

membrane. While porins in the outer membrane allow some small hydrophilic 

molecules to enter, antibiotics are excluded because they are bigger and charged 

(Nikaido, 1994). This was the first resistance mechanism reported for Penicillin (in



Levy, 1992). Nowadays, some synthetic P-lactam antibiotics can cross through porins 

and are effective in the absence of any other resistance mechanism. A mutation in the 

gene that encodes the porin can cause resistance against drugs that enter the cell 

through this pathway. The decrease of cellular permeability to the drug is effective 

when it is coupled synergistically with another mechanism of resistance (Nikaido, 

2001; 2003).

Other bacteria like Mycobacterium possess an outer layer in their cell wall, 

characterised by the presence of mycolic acids. Resistance to isoniazid has been found 

in M  tuberculosis. This drug inhibits the synthesis of mycolic acids, which are 

incorporated into their cell wall and are essential for the permeability barrier function 

(Brennan and Nikaido, 1995).

1.1.1.4 Active-efflux of antibiotics and other drugs

The phospholipid bilayer, the basic structural entity of biological membranes, 

is substantially impermeable to most water-soluble molecules, including essential 

molecules. There is a need to transport these molecules across cellular membranes 

and this is mediated by transport proteins inserted into the lipid bilayer.

The active efflux of compounds from the cell has become one of the most 

important mechanisms of multiple resistance. In 1980, McMurry reported that the 

plasmid-encoded resistance to tetracycline in E. coli was due to energy-dependent 

efflux (McMuriy et al, 1980). This stimulated research into the mechanisms.

Transporters have usually been classified on the basis of tliree criteria, namely 

the energy source, the phylogenetic relationship, and the substrate specificity. The so- 

called primary active transporters mainly use chemical energy and constitute the bulk 

of drug efflux pumps in eukaryotic cells (Paulsen et al., 1998). They are usually 

energised by ATP. Secondary active transporters predominate in bacteria (Paulsen et 

al., 1998) (Table 1.1) and act as symports and antiports, coupling the movement of the 

solute to the transport of an ion along a concentration gradient (Poolman and Konings,

1993).



Within each of these two main classes of transporters, phylogenetic studies 

have led to the recognition of superfamilies, families and clusters, in correlation with 

their substrate specificity. According to their molecular assembly and the homology 

of their sequences, four families were known that presented this type of resistance 

mechanism in bacteria (Nikaido, 1994): the major facilitator (MF) superfamily, which 

shows homology to sequences of the glucose facilitators of mammalian cells (Saier et 

aL, 1999; Pao et aL, 1998; Ward et aL, 2001); the small multidrug resistance (SMR) 

family that consists of small transporters containing only four transmembrane helices 

(Paulsen et aL, 1996; Chung and Saier, 2001); and the resistance-nodulation-cell 

division (RND) that includes transporters for expelling cadmium, cobalt and nickel 

ions (Tseng et aL, 2003; Paulsen et aL, 1996; Saier et aL, 1994). These tliree families 

are classified as secondary active transporters (Fig. 1.1). The ATP-binding cassette 

(ABC) transporters comprise the fomlh family. In prokaryotes, transport or extrusion 

of drugs is predominantly carried out by antiporters that belong to the first three 

families. The ABC transporters are less represented in prokaryotes, but they are much 

more prevalent in eukaryotic organisms. This family of transporters use ATP to drive 

the expulsion of antibiotics and other compounds from the cell. Two new families of 

transporters, named DME (drug metabolite efflux) and MATE (multidrug and toxic 

compound extrusion) (Putman et al., 2000) have been added. A re-classification of 

SMR family as member of the DME has been suggested (Poole, 2004) and, a new 

superfamily named drug/metabolite transporter (DMT) has been proposed (Jack et aL,

2001), which includes the DME family.

Structurally, the MF family is characterised by having 12 membrane-spanning 

helices with a central loop between helices 6 and 7 that joins the two halves of the 

transporter, and as they are sequence-related, family members are thought to have 

arisen by gene duplication. There is another subfamily having 14 -helices, which 

could have evolved from the insertion of an increasingly hydrophobic central loop 

into the 12 _-helices precursor (Saier ei aL, 1999). The average size for the 

transporters of this family is 400 amino acid residues. Sugars and drugs are the main 

compounds transported by members of this family. TetA(B) and TetB(K) tetracycline 

transporters in E. coli and S. aureus respectively, are some of their best studied 

representatives. A particular case is shown where some MF (e.g. EmrB) and RND 

transporters can act in concert with an outer membrane protein such as TolC, which



acts as a protein channel that spans the outer membrane and the periplasm, for the 

translocation of drugs (Fig. 1.1).

The SMR transporters are the smallest of these four groups, composed 

approximately of 100 amino acids arranged into four helices (Paulsen et aL, 1996). 

Different studies of the E. coli multidrug transporter EmrE, that confers resistance to 

ethidium bromide and methyl viologen (Yerushalmi et aL, 1995, 1996), indicated that 

it could function as an oligomer (trimer) o f similar tertiary structure to the MF 

transporters (Rotem et a l,  2001) or, as suggested by 2-D crystallisation trials, perhaps 

as a dimer (Borges-Walmsley et aL, 2003). Studies had indicated that EmrE was a 

tetramer, comprised by two "conformational heterodimers", whose polypeptides were 

chemically but not structurally identical (Ma and Chang, 2004). However, a 

homodimer conformation was confirmed for this protein in complex with its substrate 

tetraphenyIphosphonium (TPP) (Pornillos et aL, 2005). In this conformation both 

subunits present opposite orientations in the membrane (they are antiparallel) and 

adopt slight different folds.

RND transporters also have a 12 -helix topology but with a large periplasmic 

domain between helices 1 and 2, and 7 and 8, and are much bigger than those of the 

MF family, consisting of some 1000 amino acid residues. Again, the resemblance in 

the sequences of the two halves suggests an internal duplication of a 6 -helix 

segment (Tseng et aL, 2003). All the members of this superfamily work as efflux 

transporters. AcrB, whose structure has been already determined (Murakami et aL,

2002), is one of the best-studied examples in this family of transporters, considered in 

Gram-negative bacteria, the most relevant multidrug efflux system in terms of 

resistance against clinically important agents (Poole, 2004). The DME family, 

recently described but poorly defined, seems to show similarities to the SMR family 

of proteins (Jack et a l, 2001).

MATE transporters are comparable in size to the MF transporters, with an 

average composition of 450 amino acids putatively arranged into 12 helices, but do 

not share similar sequences with members of the MF family. MATE transporters are 

a relatively new family among bacterial drug transporters, being less 

characterised than the former transporters. NorM and YdhE from Vibrio
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parahaemolyticus and E. coli respectively, are examples of these transporters that 

have been characterised, with NorM revealed as being a multidrug Na^-antiporter that 

confers resistance against dyes, fluoroquinolones and aminoglycosides (Morita et aL, 

1998); and YdhE conferring resistance to cationic antimicrobials (Yang et aL, 2003) 

(Table 1.1; Borges-Walmsley et aL, 2003).
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Pump Organism Substrate/modulatory ligands MFP/OMP References

MF
TetA E.coli TC Yin et a l,  2000
EmrB E.coli CCCP, NA, TL, CHH EmrA/TolC Lomovskaya, 1992
EmrD E.coli CCCP Nishino ct a/., 2001
MdfA/Cmr/ E.coli EtBr, PM, TC, Ery, Neo, Nor, CP, Yang et aL, 2003
CmlA IPTG, TPPf R6G, DAR, DXR, QA,

RP
FarB Neisseria gono- Fatty acids FarA/MtrE Lee and Shafer, 1999

rrhoeae
NorA Bacteroides fragilis Ery, Nor, PM Miyamae et aL, 1998

VceB Vibrio cholera CCCP, NA, Cip, Ery, PhMA, DOC VceA/TolC Colmer et aL, 1998
TetK S. aureus TC Guay et aL, 1993
NorA S. aureus EtBr, AC, QA, FQ, R6G, T P P \ PM Markham et aL,

1999
QacA S. aureus EtBr, QA, CH, PI Mitchell âr/., 1999
Bmr Bacillus subtilis EtBr, AC, QA, FQ, R6G, TPP+, PM Neyfakh A., 1992
LmrP Lactococcus lactis EtBr, DM, TPP^, QUN, TXlOO Van Veen et aL,

1999
MdrL Listeria EtBr, Ery, CTX Mata et aL, 2000

monocytogenes
Tap M. tuberculosis TC Wu et a l,  1999
Mmr M. tuberculosis EtBr, AC, Ery, TPP, SO, PY Wu et a l,  1999

Tap Mycobacterium TC, GM, 2-A'- and 2-N ’- Ainsa et al., 1998
fortuitum ethylnetilmicin, SM

LfrA Mycobacterium EtBr, AC, QA, FQ Sander et a l,  2000
smegmatis

CaMDRl Candida albicans FZ, NQO, benomyi, MTX Vanden Bossche et
al., 1998

SMR
Smr/QacC S. aureus EtBr, CV, QA, MV, TPP^ Littlejohn et a l.

1992
EmrE E.coli EtBr, AC, MY, TPP+ Yerushalmi et a l.

1995
EbrAB B. subtilis EtBr, AC, TPP^ Masaoka et a l ,  2000
YkkCD B. subtilis EtBr, PF, CV, PY, MV, CPC, CP, SM, Jack et a l,  2000

TC, TPP
Tbsmr M. tuberculosis AC, EtBr, MV Wu et a l,  1999
Pasmr Pseudomonas AC, EtBr, MV Li et aL, 2003

aeruginosa
QacE Gram-negative EtBr, QA, SU Kucken et a l ,  2000

organisms
QacEAl Gram-negative and Cip, EtBr, GM, QA, SU, TC Kucken et al., 2000

positive organisms



RND
AcrB E. coli

AcrB Haemophilus
influenza 

MexB P. aeruginosa
SmeB Stenotrophomonas

maltophila 
AcrB S. typhimurium
ArpB Pseudomonas puti-

da
MtrD N. gonorrhoeae

MATE
Bex A Bacillus thetaiota-

micron
NorM V ibrio  p a ra h a e 

molyticus
YdhE E, coli
VcmA V. cholera

YdhE B. fragilis
NorM  N. gonorrhoeae

NorM Neisseria
meningitidis

EtBr, AC, CV, SDS, TX-lOO, bile AcrA/TolC 
salts, -lactam s, Nov, Ery, Fus, TC,
CP, MMC, FQ, NA, organic solvents,
NBD-FC
EtBr, CV, Ery, RP, Nov

AZ, Cip, CV, RP,TX -100 
EtBr, Ery, TC

AC, DOC, Cip, Ery, Fus, NA 
Nor, Nov, RP, SDS, TC

Cip, E ry, N ov, TC, TX-lOO, _- 
lac tam s, A Z, v e rte b ra te  pep tide  
antimicrobials, spermicides

AC, EtBr, MV

CP, EtBr, Nor

AC, Cip, KM, Nor, SM, TPP^
Nor, Cip, DAR, DXR, SM, KM, EtBr,
H33342
Nor, Cip, EtBr
AC, EtBr, Ber, Cip, Nor

AC, EtBr, Ber, Cip, Nor

AcrA/
MexA/OprM

MtrC/E

M urakam i e t a l . , 
2002

Sanchez et al., 1997

Li et al., 2003 
A l o n s o  a n d  
Martinez, 2000 
Lacroix e ra /., 1996 
K ieboom  and de 
Bont, 2001 
Hagman et ah, 1995

Miyamae et al., 2001

M orita era /., 1998

Morita era /., 1998 
Hu da et al., 2001

Miyamae et al., 1998 
Rouquette-Loughlin 
et al., 2003 
Rouquette-Loughlin 
et al., 2003

Table 1.1 Secondary transporters that act as drug pumps
MFP and OMP stand for membrane fusion protein and outer membrane protein, respectively.

Substrate and ligand abbreviations: AC, acriflaviii; AZ, azithromycin; Ber, berberine; CCCP, carbonyl 

cy an id e  m -ch lo ro p h e n y lh y d ra zo n e ; C TX , C efo tax im e; CH , ch lo rh e x id in e ; CH H , 2- 

chlorophenylhydrazine hydrochloride; Cip, ciproflaxacin; CL, clarithromycin; CP, chloramphenicol; 

CPC, cetylpyridinium  chloride; CV, Crystal Violet; DAR, daunorubicin; DM, daunom ycin; DOC, 

deoxycholate; DXR, doxorubicin; Ery, erythromycin; FQ, fluoroquinolones; Fus, fusidic acid; FZ, 

fluconazole; GM, gentam icin; H33342, H oechst 33342; IPTG, isopropyl _-D-thiogalactoside; IS, 

indolizine sulphones (e.g. SR33557); KM, kanamycin; KZ, ketoconazole; LTC4, cysteinyl leukotriene; 

MMC, mitomycin; MTX, methotrexate; MV, methyl viologen; MZ, miconazole; NA, nalidixic acid; 

N B D -P C , 7 -n itro b e n z -2 -o x a - l,3 -d ia z o lp h o sp h a tid y lc h o lin e ; N B D -P E , l-m y ris to y l-2 - [6 -  

(NBD)aminocaproyl]phosphatidyIethanol-amine; Neo, neomycin; Nor, norfloxacin; Nov, novobiocin; 

N QO, 4-nitroquinoline N -oxide; OL, oleandom ycin; CM , oligom ycin; PF, proflavine; PhMA, 

phenylmercuric acetate; PI, pentamidine isothionate; PM, puromycin; PY, pyronine Y; QA, quaternary 

am ine compounds (including benzalkonium  chloride and cetyltrimethylammonium bromide); QUN, 

quinine; R 6G, rhodam ine 6G; R123G, rhodam ine 123G; RB, rhodam ine B, RP, rifampicin; SO, 

safran  in O; SM, streptom ycin; SP, spiram ycin; SU, sulphonam ides; TC, tetracycline; TL, 

thiolactomycin; TPP^, tetraphenylphosphonium; TXlOO, Triton X-100; VB, vinblastin; VC, vincristine; 

VP, verapamil, (modified from Borges-W almsley et al., 2003).
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Figure 1.1 Schematic representation of the membrane topology of proton-driven 

drug pumps representing main Secondary transporters families found in Gram- 

negative bacteria.
The helices o f the pumps appear spanning the lipid bilayer, and lipophilic antibiotics (in red circles) 

freely permeate the lipid bilayer. The three classes o f  antiporters are shown; SMR, four-helix small 

multidrug transporters; RND, 12-helix resistance-nodulation-cell division transporters; MF, 12- and 14- 

helix m ajor facilitator transporters. These transporters are shown using the proton motive force 

generated by respiration to eject antibiotics and other drugs into the periplasmic space between the 

inner and outer membranes. MF and RND transporters can act in concert with a membrane fusion 

protein (MFP) and an outer membrane protein (OMP), such as TolC, to translocate drugs across both 

the inner and outer membranes, expelling them from the cell. TolC acts as a protein channel that spans 

the outer m em brane as a -barrel, and also possibly spans the periplasm, as an -helical barrel 

(Koronakis et a l ,  2000). Although the exact role o f the MFP remains unknown, it may act as a protein 

channel translocating drugs between the inner-membrane transporter and the helical barrel o f TolC. 

Alternatively, it is believed that MFP pulls the two membranes together, so that the inner-membrane 

transporter can pass drugs directly (based on diagram by Borges-W almsley et aL, 2003, and McKeegan 

et aL, 2004).
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ATP-Binding Cassette Transporters carry out an energy dependent active 

transport process by which substances cross the cell membrane driven by the 

hydrolysis of ATP (Higgins, 1992). They have also been proposed to have a 12 

helix topology. The ability of these transporters to translocate a number of unrelated 

molecules, including antibiotics, and the fact that they contribute the main pathway 

for resistance to anticancer drugs in humans, highlights their importance and urgent 

need to study them.

The SMR transporter EmrE can exemplify a putative mechanism for multidrug 

transport involving the proton motive force in secondary transporters. Based upon 

site-directed mutagenesis experiments, the following steps have been proposed 

(Paulsen et aL, 1996; Murdoch et aL, 1999; Yerushalmi and Schuldiner, 2000; 

Schuldiner et aL, 2001) (Fig. 1.2):

a) Exchange between the drug and a pair of protons associated with a charged 

residue in the protein.

b) Translocation of the drug by a series of conformational changes driving it thi ough 

a hydrophobic pathway (in the EmrE case), and

c) Replacement of the drug by a pair of protons in the external medium and return to 

the initial conformational state.

The overall result of this process is the exchange of the drug and the proton 

(antiport). Similar to proton antiporters, a conformational change of the ABC proteins 

involved in drug extrusion is possible and is probably triggered by drug binding and 

ATP hydrolysis (Sonveaux et al, 1996; Sharom, 1997).
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Figure 1.2. Possible multidrug resistance mechanism for E, coli SMR EmrE

(based on the Yerushalmy and Schuldiner model; Yerushalmy and Schuldiner, 2000). 
As the substrate approaches the hydrophobic binding pocket (left), two protons are released from the 

negatively charged glutam ate cluster (top). W hen occupied by the substrate, the binding pocket 

becomes accessible to the other face o f  the membrane (right). The subsequent protonation o f  the 

carboxyl groups allows the release o f  the bound substrate (bottom). The protonated binding pocket 

relaxes back to the original membrane face so a new cycle can start.
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1.2 The ATP-Binding Cassette Transporters

ABC proteins are the largest superfamily of proteins with more than 3500 

members (Stieger and Biber, 2002). This family of transporters (also called traffic 

ATPases) includes many different transport proteins, found in organisms ranging 

from bacteria to humans (Lodish et al, 2000). In E. coli, about 5% of the entire 

genome encodes components of ABC transporters (Linton and Higgins, 1998).

While there are ABC groups involved only in the import or export of 

molecules, other members of this superfamily are not involved in transport (Dassa and 

Bouige, 2001). In prokaryotes, these transporters are localised exclusively in the 

cytoplasmic membrane of bacteria, while in eukaryotic organisms, they are found in 

the plasma membrane, endoplasmic reticulum membrane, mitochondrial inner 

membrane and intracellular vacuoles.

The histidine periplasmic permease system, HisJQMP, of S. typhimurium (Ames, 

1972), and the maltose transport system, MalEFGK, of E. coli (Davidson and 

Nikaido, 1991) were pioneer systems in the gradual discovery of the family. The 

human multidrug resistance P-glycoprotein, which renders cells resistant to anti

cancer treatments, has become the paradigm for ABC transporters involved in the 

problem of resistance and has renewed interest in the study of these transporters 

(Sharom, 1997). The term ABC was coined in 1990 (Hyde et al., 1990) enhancing 

the recognition of the importance of this diverse family of proteins. Nowadays, many 

more ABC transporters have been recognised in resistance to diverse classes of drugs 

and other chemical compounds (Table 1.2).
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Pump Organism Substrate/modulatory ligands References

M DRl/P-gp

(A BC Bl)

Homo sapiens DNR, DOX, R6G, R123G, H3342, NBD-PE, 

NBD-PC, PM, VC, VB, CC, TAXOL, 

dexamethasone, steroids, VP, Nic, IS, 

antimalarials

Sauna et a l,  2001

MRPl

(ABCCl)

H. sapiens Similar specificity to P-glycoprotein + LTC4 

and other glutathione s-conjugates.

Leslie et al., 2001

Pdrs (ABCG 

subfamily)

Saccharomyces

cerevisiae

R6G, R123G, RB, FZ, DNR, DOX, CM, 

CHX, CP, TAM, TFPZ, steroids, NBD- 

PE/VB, VC, TAXOL, VP, ionophoric 

peptides, QUN, CC.

Golin et al., 2003

Cdfi

(ABCG

subfamily)

C. albicans FZ, KZ, MZ, steroids Vanden Bossche et 

al., 1998

Pfmdrt Plasmodium

falciparum

MFQ, Art, Co, a-factor (yeast pheromone). Peel, 2001

PGPA Leishmania spp. Pentostam, metal-thiol conjugates Callahan et al., 1994

LmrA L  lactis EB, R6G, R123G, DNR, DOX, VB, VC, DM, 

CC, TPPL H33342, NBD-PE/VP, Nic, QUN, 

QUND, CA, IS.

van Veen et al., 2000

DrrAB Streptomyces

peucetius

DOX, DNR Kaur, 1997

MacB E. coli AZ, CL, Ery, OL Kobayashi et al., 

2001

Msr Streptomyces

rochei

DXR, Ery, OL, SP, TC Fernandez-Moreno et 

al., 1998

YvcC B. subtilis P-gp homologue Steinfels et al., 2002

MsbA E. coli Major transporters o f lipids from cytoplasm to 

outer membrane

Chang and Roth, 

2001

Pst M. smegmatis FQ Banerjee et al., 2000



Table 1.2 ABC drug pumps
A bbreviations in Table 1.2: ABC, ATP-binding cassette; Art, artemisinin; AZ, azithromycin; Cc, 

chloroquine; CC, colchicine; CHX, cycloheximide; CL, clarithromycin; CP, chloramphenicol; DM, 

daunomycin; DNR, daunorubicin; DOX, doxorubicin; EB, ethidium bromide; Ery, erythromycin; FQ, 

fluoroquinolones; FZ, fluconazole; H33342, Hoescht 33342; IS, indolizine; KZ, ketoconazole; LTC4, 

cysteinil leukotriene; MFQ, M efloquine; MZ, m iconazole; NBD-PC, 7-nitrobenz-2-oxa-l ,3-diazol- 

phosphatidylcholine; N BD -PE, l-m yrysto il-2-[6-(N B D ) am inocaproy 1] -phosphatidyl-ethano lamine ; 

N ic, nicardipine; OL, oleandom ycin; OM, oligom ycin; PM, puromycin; QUN, quinine; QUND, 

quinidine; R 6G, rhodamine 6G; R123G, rhodamine 123G; RB, rhodamine B, SP, spiramycin; TAM, 

tamoxifen; TC, tetracycline; TFPZ, trifluoroperazine; TPP^, tetraphenylphosphonium; VB, vinblastin; 

VC, vincristine; VP, verapamil, (modified from original by Borges-W almsley et al., 2003).
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1.2.1 Identification of ABC transporters

Nutrient uptake studies in E. coli gave the first indications of the existence of 

this remarkable group of proteins (Berger, 1973), Three systems were found 

responsible for nutrient transport: the phosphotransferase group, an osmotic shock- 

insensitive transporter group energised by the electrochemical gradient (secondary 

transporters), and a third group formed by primary, osmotic shock-sensitive systems 

energised by the hydrolysis of ATP and associated with periplasmic binding proteins. 

By using membrane vesicles was noticed that cells subjected to osmotic shock 

exhibited reduced transport rates for certain amino acids, whereas the uptake of others 

remained unaffected by the treatment. Subsequent studies showed that the transport in 

the shock-sensitive systems was abolished due to the loss of a vital substrate-binding 

protein (SB?) from the periplasm (Heppel, 1969).

Additional evidence for the presence of more of one type of transport was 

collected by studies of energy coupling mechanisms in E. coli (Berger, 1973; Berger 

and Heppel, 1974). SBP-dependant transporters were found to be insensitive to the 

effect of chemicals that uncoupled oxidative phosphorylation, whilst shock- 

insensitive transporters lost the capacity to uptake nutrients. Investigators concluded 

that the energy donors for the two classes of transporters were essentially different. 

The shock-sensitive transporters (SBP-dependant) required phosphate-bond energy to 

drive the transport process, whereas in the shock-resistant systems transport was 

driven by an energised membrane state, provided by the proton motive force 

generated via oxidative phosphoiylation.

In 1982, the first complete sequence of one of these periplasmic transporters, 

the histidine transporter of S. typhimurium, was published (Higgins et a l, 1982). 

Apart from the periplasmic “substrate”-binding protein (HisJ), this transporter has 

three membrane-associated components (HisQMP). Shortly after this sequence was 

published, the sequence of a component of the E. coli maltose transporter (MalK) was 

also determined. A 32% identity between proteins MalK and HisP was reported 

(Gilson et ah, 1982). The similarity in both sequences suggested they evolved from a 

common ancestor. When the oligopeptide transporter of S. typhimurium OppD was 

also shown to share similarities with the aforementioned proteins (Higgins et al..



1985), it was noticed that they included a consensus nucleotide-binding motif similar 

to those previously identified in ATP synthase, myosin and adenylate kinase (Walker 

et al., 1982). From that moment, the involvement of these domains in coupling ATP 

hydrolysis with the transport process became a central feature.

Although the first eukaryotic example of this family of transporter, the human 

multidrug resistance P-glycoprotein, was identified in 1974 (Ling and Thompson, 

1974; Juliano and Ling, 1976), the recognition that the ATP binding subunits from 

bacterial transporters described a large superfamily of proteins dates from 1986. 

Around this time, it was also proposed they were organised in a core of four domains. 

These domains were composed by two integral membrane subunits and by two 

nucleotide-binding subunits, which bind and hydrolyse ATP (Higgins et al, 1986). 

Actually, the general approach to the identification and analysis of ABC transporters 

consists in searching sequence conservation in the nucleotide-binding sites (NBDs) 

first. Thereafter, the search is directed to find genes that code for proteins with 

membrane spamiing domains (MSDs) and proteins with solute-binding motifs.

As ATP-binding domains display a high degree of sequence similarity, 

conserved m otifs can be deduced using the PRO SITE web site 

(http://br.expasy.org/prosite/). The ABC signature sequence (LSGGQ) was used 

initially to characterise these domains and it is commonly present in members of the 

ABC family. Nowadays two additional internal domains are used for this purpose: 

the first domain is that of the Walker A motif, also known as the ATP/GTP-binding 

motif (PROSITE:PDOC00017). The second domain overlaps the ABC signature 

motif (also known as C motif) (PROSITE:PDOCOOI85) and the Walker B motif. 

Walker A and Walker B motifs can be present in ATPases that are not part of the 

ABC family.

Having identified NBDs, genes that can code for membrane-spanning domains 

(MSDs) are sought. Four or more transmembrane spanning sequences in proteins 

with NBDs or in gene products from NBD-adjacent genes become candidates for 

MSDs components. Some MSD-containing proteins (prokaryote permeases) also 

contain a conserved EAA— G.........— I-LP m otif located in a cytoplasmic loop

19

http://br.expasy.org/prosite/


(PROSITE:PDOC00364), that can be used in the analysis of these transporters. This 

sequence is believed to interact with the NBD (Mourez et aL, 1997).

The current methodology underpinning these studies takes advantage of the 

STD GEN and ORAL GEN databases as primary sources of protein and DNA 

sequences. Searches for similarity are based on the use of some BLAST tools from 

NCBL The XDOM tool (Gouzy et a\., 1997) was also used to analyse the modular 

arrangement of protein domains. The PHDhtm program was used to predict the 

number and location of transmembrane regions and the pattern-matching program 

SIGNALP, to predict the signal peptide. The ChistalW (Thompson et aL, 1994) and 

MultAlign program (Corpet et aL, 1988) were used for multiple alignments.

1.2.2 The structural organisation of ABC transport proteins

Generally, ABC transporters have four domains arranged into two 

homologous halves. Each has a transmembrane domain arranged into six _-helices, 

and a nucleotide-binding domain (NBD) of about 200 amino acids (Ouellette et al,

1994) (Fig. 1.3). The transmembrane domains seem to be composed of very 

hydrophobic integral proteins, and their two six helix motifs are arranged so as to 

form a transmembrane pathway to transport the selected compounds. Additional 

membrane domains have been reported in some cases, but they do not seem to change 

the general behaviour of the system; for example, an extra five-helix membrane 

domain has been located at the N-terminus of the multidrug resistance protein (MRP) 

(Flou et al., 2000). The other two domains that bind nucleotides are relatively 

hydrophilic and peripheral to the membrane. It is thought that they appear in the 

cytoplasm associated with the membrane. Their hydrolysis of ATP releases energy to 

drive the efflux of different compounds out of the cell (Van Bambeke, 2000; Lodish 

et a l,  2000).

In several cases, a single gene encodes the four domains (e.g. P-glycoprotein; 

Higgins, 1992). In other cases, each domain is encoded as a separate polypeptide 

(e.g. the OppBCDF transporter; Hiles et al., 1987). Intermediate genetic organisation 

of ABC transporters can also exist, where separate genes encodes both membrane 

domains and both NBDs. A diagram of the topology of drug transporters belonging
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to the ABC superfamily is presented (Fig. 1.4). Exceptions to the classical 

arrangement of four domains is exemplified by the multidrug transporter LmrA 

from Lactococcus lactis, where the ImrA gene encodes a protein with a fused single 

membrane and nucleotide binding domain (van Veen et al., 1996), and drrA and drrB 

from S. peucetius (Kaur, 1997), which encode individually the NBD and the 

membrane domain respectively. Recent experiments have shown that DrrB forms at 

least eight helices instead of the six-helix model proposed for ABC transporters 

(Gandlur et al., 2004). In cases in which one of the ABC domains appears to be 

absent, one of the remaining domains functions as a homo dimer to maintain the 

proposed ABC complex (Higgins, 2001). As LmrA is thought to be assembled as a 

homodimer and DrrAB as a tetramer, it is believed that these transporters are 

topologically analogous to full size ABC transporters. In full size ABC transporters, 

the two halves of the protein resemble one another, suggesting that they have 

originated by gene duplication (Saier and Paulsen, 2001). Additional proteins are 

involved in some of these ABC systems. That is the case of importers (periplasmic 

binding-protein dependant (BPD)-ABC transporters), which employ an extra protein 

to bind the substrate to be transported (e.g. histidine and maltose transporters), but 

these proteins are associated in a reversible manner and do not form part of the four 

domain complex. Another example is the additional “R domain” present in the cystic 

fibrosis transm em brane conductance regulator (CFTR). The reversible 

phosphorylation of the R domain seems to regulate the function of the CF channel 

(Gadsby and Nairn, 1999).

P-glycoprotein (ABCBl), which is a large plasma-membrane glycoprotein, 

has two similar halves, characteristic of many of the transporters of this superfamily, 

containing six putative transmembrane helices and one NBD (Loo and Clarke, 1995; 

Kast et al., 1995). The two NBDs share 30-40 % amino acid sequence identity with 

each other and the equivalent domains of many other transporters included in the 

ABC family (Higgins et al., 1997). Besides P-glycoprotein, which is considered the 

most important example of an ABC transporter because it is responsible for resistance 

in humans against antitumoral drugs, MRP (ABCCl) (multiple resistance protein), 

which acts in the lungs, is also an important resistance-related transporter (Cole et al.,

1992). Other ABC proteins of medical importance are the chloride-chamiel protein 

involved in cystic fibrosis (CFTR; ABCC7; Gadsby and Nairn, 1999), the human
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adrenoleukodystrophy protein (ALDP; ABCDl), an ABC transporter associated with 

transport o f very long chain fatty acids (VLCFAs) into the peroxisome (Mosser et al,

1993), and the endoplasmic reticulum (ER) peptide transporter involved in antigen 

presentation (TAP; ABCB2 and ABCB3) (Abele and Tampe, 1999).

TMD 2

Figure 1.3 Putative structural organisation of an ABC transporter
TMD: Transmembrane domain 

NBD: Nucleotide binding domain

ABC transporters have four domains arranged into two homologous halves. Each one possesses a 

transmembrane domain arranged into six a-helices, and a nucleotide-binding domain. Some 

transporters function as importers whilst other export molecules out o f the cell.

This model depicts a structure with each half (TMD-NBD) o f the transporter encoded by a single gene.
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P-glycoprotein
H. sapiens

OppBCDF
S. typhimurium

RbsAC
E. coli

LmrA
L. lactis

DrrAB
S. peucetius

IQQQQQQn QQQQQOn n * XIQQOQO. .hDQQOOOQQO QQQQCOOCD

L Î DOOODDOOCD

ATP ADP 
+ Pi

Single polypeptide 
2 X 6-helix domains 
2 X ABC domain

ATP ADP 
+ Pi

Four polypeptides 
2 X 6-helices 
2 X ABC domains

ATP ADP 
+ Pi

Three polypeptides 
2 X 6-helix domains 
1 X ABC 
polypeptide with 2 
NBDs

ATP ADP 
+ Pi

Single poly
peptide 
1 X 6-helix 
domain 
1 X ABC 
domain

ATP ADP 
+ Pi

Two polypeptides 
1 X 8-helix 
domain
1 X ABC domain

Figure 1.4 Schematic representation of the membrane topology of diverse 

transporters belonging to the ABC superfamily
The prototype o f  ABC transporter presents two NBDs and 12 membrane-spanning a-helices arranged 

in two groups o f  six. In P-gp, a single gene encodes all four domains (Higgins, 1992); in OppBCDF 

each o f  the four domains are encoded by different genes (Hiles et al., 1987); in LmrA, a single gene 

encodes only one membrane and one NBD (van Veen et al., 1996); for DrrAB, separate genes encode 

one membrane and one NB domain (Kaur, 1997)*. Intermediate genetic organisations are also found: a 

single gene encodes both NBDs o f  RbsAC whilst membrane domains are encoded separately (Lida et 

al., 1984); or a single gene encodes both TMDs and NBDs but as heterodimers, as for TAP (Daumke 

and Knittler, 2001). MRP, C-class eukaryotic member (not shown) is also encoded by a single gene as 

P-gp, but it carries an additional five-helix TMD at the N-terminus (Hou et al, 2000).

*A new model has been proposed for the 5. peucetius DrrB TMD arranged in a group o f eight a-helices 

(Gandlur et al., 2004).
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1.2.3 The Nucleotide-Binding Domain (NBD)

The nucleotide-binding domains bind and hydrolyse ATP and couple this 

hydrolysis to solute translocation across the membrane. These domains consist of a 

core o f about 200-230 amino acids, and contain the ABC signature sequence 

(LSGGQ), also known as the C-loop or linker-peptide that has been the key to 

identification of new members of this transporter family. Also included are the two 

highly conserved sequences. Walker A (Wa) and Walker B (Wg) motifs (Walker et 

a l,  1982), which are responsible for ATP hydrolysis (Fig. 1.5). It is the conservation 

of this entire domain which is important in defining the family (Higgins et a l, 1986). 

The Walker A motif is generally present with the sequence “G-X-X-G-X-G-K-S/T”, 

X being any amino acid and a serine or threonine occupying the final position. The 

lysine in this motif interacts with the _- and _- phosphate groups of ATP, being 

essential for its hydrolysis. This region is also known as the phosphate (P-) loop. The 

Walker B motif is less conserved and is represented by the sequence “R/K-X-X-X-G- 

X-X-X-L-_-_-_-_-D”, _ being any hydrophobic residue. An aspartate in the Wg motif 

is responsible for eo-ordinating the Mg "̂̂  ion of Mg-ATP, which is required for 

nucleotide binding. Mutations of the Walker sequences generally impair the ATP 

binding or hydrolysis, particularly when lysine in the Walker A motif or aspartate in 

the Walker B motif are involved, leading to a complete loss of the ATPase activity in 

the protein. The Walker A motif is located near the N-terminus of the NBD, followed 

by the ABC signature motif, that appears immediately upstream of the Walker B 

motif (Fig. 1.5).

Based on sequence similarities with the RecA protein in E. coli, the so-called 

“Switch region” has also been reported. This is located downstream of the Walker B 

motif and is characterised by the presence of a histidine in the last position that seems 

necessary to maintain the transport integrity (Fig. 1.5). Additionally, the Q loop, also 

called the _-phosphate switch, between the Walker A motif and signature sequence, 

and the D loop (Hopfner et al., 2000), that contains an aspartic acid residue 

downstream of the Walker B motif, also forms part of the conserved sequences (Fig. 

1.5). All of these sequences are involved in the interaction with ATP and its 

hydrolysis.
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E  col HlyB(269) E Q G ~jH i E L L 1 |E P E S L Y S Y I4 |Q L Q |D -----------------------------------------------------------------------------------
Consensus(301) AEG K E E L S P S L F L S  L S

Figure 1.5 Sequence alignment of S. peucetius DrrA and some well-known ABC 

ATPases
Sequences are ordered to enable comparison with DrrA. Orange ovals or arrows indicate the main

conserved amino acid motifs
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1.2.3.1 Biochemical properties of ABC transporter Nucleotide-binding domains

The ability to bind and hydrolyse ATP and use the energy released to drive an 

active transport process, is the elemental feature that characterises these domains. 

Understanding how ABC transporters interact with the molecules or compounds that 

are transported is vital in elucidating their physiological role, and also in the design of 

strategies to circumvent the increasing problem of resistance to antimicrobials and 

cancer treatments.

The knowledge o f the conformations that these NBDs acquire when they 

interact with the substrate (ATP) and when other components of the transporter 

system are present is necessary to clarify the whole nature of the process. This 

section presents information generated by studies of the biochemical factors involved 

in ATP hydrolysis and conformational changes gathered from work with isolated 

NBD’s and intact ABC transporters alike.

The characterisation of ABC transporters has not proved an easy task. Whilst 

present in high numbers in eukaryotic cells, overexpression in the native host has not 

always been successful and has often resulted in low yields. Despite the predicted 

cytoplasmic localisation of the NBDs, many attempts to express them as soluble 

proteins or as fusion proteins have also met with limited success in the past. E. coli is 

the most common expression host for experiments of this sort and can overproduce 

recombinant protein from diverse organisms, retaining the proper folding of the native 

target protein. Some of the best-characterised ABC transporters that have been 

overexpressed in E. coli are proteins that occur naturally in that host (e.g. the 

maltose/maltodextrine transporter) or its close relatives {S. typhimurium maltose and 

histidine transporters). The characterisation of these transporter proteins requires the 

recovery and purification of sufficient amounts of soluble, stable and active protein 

for analysis by biophysical techniques such as X-ray crystallisation and nuclear 

magnetic resonance (NMR). Newer approaches such as the definition of domain 

boundaries within the protein to be overexpressed (Kerr ei al., 2003) may aid the 

effective expression of isolated NBDs.
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Working from the four domain structure for an ABC active transporter, it has 

been suggested that both NBDs are involved in powering the translocation of the 

transported solute. In systems such as the maltose transporter of S. typhimurium and 

E. coli, the transporter is composed of the periplasmic maltose-binding protein MalE 

(MBP), the two integral cytoplasmic membrane protein subunits MalF and MalG, and 

two copies of the ATPase subunit MalK (Ehrmann et aL, 1998). Purified MalK was 

shown to have constitutive ATPase activity and to be insensitive to vanadate, a 

compound that causes strong inhibition to the assembled transport complex 

(Sclmeider, 2001). These results indicate that functional coupling of the NBD to those 

parts of the ABC transporter embedded in the membrane must exist in order to 

explain the action of vanadate. The favoured model proposes that the protein 

undergoes a conformational change upon binding of Mg-ATP, and then interacts with 

the membrane components (Mourez et a l ,  1998), The proposed physical interaction 

between the NBDs and the transmembrane domains of the maltose transporter has 

been supported by site-directed chemical cross-linking experiments (Elunke et aL, 

2000). Results obtained with a proteoliposome-reconstituted transport system 

suggested that MBP transmitted, tlirough MalF and MalG, a signal to MalK inducing 

it to hydrolyse ATP (Davidson et ah, 1992). Co-operativity between the NBDs to 

drive the transport process has been reported for several systems, as in the case of P- 

glycoprotein (Buxbaum, 1999), MalK (Davidson and Sharma, 1997) and HisP 

(Nikaido and Ferro-Luzzi Ames, 1999). In isolated NBDs, Methanococcus 

jannasckii MJ0796 (Moody et a l,  2002) also showed co-operativity to hydrolyse 

ATP.

For the P-glycoprotein (MDRl; ABCBl), where both NBD subunits appear to 

be functionally equivalent (Loo and Clarke, 1994; Urbatsch et aL, 1995), Senior 

proposed a model for the NBD activity in which ATP hydrolysis occurs alternatively 

at each NBD (Senior et a l, 1995). In other transporters such as the multidrug 

resistance protein (M RPl), the NBDs are non-equivalent (Nagata et al, 2000). 

Photoaffinity labelling experiments revealed ATP binding exclusively at NBDl, 

whilst ADP trapping appeared predominantly at NBD2 of MRPl (Hou et aL, 2000). 

The NBDs of TAP (TAPi/TAPi; ABCB2/ABCB3), the transporter associated with 

antigen processing; also show different nucleotide binding affinities. In 

photolabelling experiments with free 8-azido ATP[_-^^P], the labelling efficiency for
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TAPi was markedly higher than for TAP2 (Alberts et aL, 2001), and identical 

mutations in the domains had different effects on peptide transport (Daumke and 

Knittler, 2001). On the other hand, it was reported that one intact ATP-binding 

subunit was sufficient to support ATP hydrolysis and translocation in the ABC 

transporter of histidine permease although at a rate half of that of the wild type 

transporter (Nikaido and Ames, 1999). These studies also indicated that only one 

NBD would be involved in the hydrolysis of ATP by isolated HisP.

The formation of a dimer as the active form of the NBD was proposed for 

HisP (Nikaido et aL, 1997). This conformation was also suggested for other NBDs of 

ABC transporters like the OpuAA of Bacillus suhtilis, where equilibrium between 

monomeric and dimeric forms has been reported (Horn et aL, 2003) and GlcV from 

Sulfolohus solfataricus (Verdon et aL, 2003).

In addition to the site for nucleotide binding, these domains in P-glycoprotein 

also bear a site for ligands such as flavonoids, which modulate drug transport (Conseil 

et aL, 1998). When exposed to several drugs that P-glycoprotein ejects from the cell, 

the rate of ATP hydrolysis was increased several fold (Ambudkar et aL, 1992). This 

effect of stimulation by drugs however, is only noticed when all the subunits are part 

of the complex (Loo and Clarke, 1994). Although it is not part of the ABC family, the 

E. coli arsenical efflux pump ArsAB shares similar structural and functional features 

to ABC transporters like the human multidrug-resistance P-glycoprotein (Gottesman 

et ah, 1996; Ambudkar et aL, 1999), and its ATPase subunit ArsA, has an allosteric 

site that exemplifies this behaviour. Although ArsA possess two nucleotide-binding 

sites (NBSs), its allosteric site is basically composed of three arsenite/antinionite 

binding sites formed by: His 148 (A l) and Ser420 (A2); Cysl 13 (A l) and Cys422 

(A2); and C ysl72 (A l) and His453 (A2) (Zhou et al., 2000). A l and A2 refer to the 

two NBDs of the ArsA ATPase catalytic subunit of the ArsAB transporter. Each one 

of these sites can accommodate a molecule of arsenate or antimonite. It has been 

proposed that the binding of antimonite or arsenite makes the two halves of ArsA 

come together, and that this conformational change induces an increase in ATP 

activity (Rosen et al, 1999), In other transport NBDs like OleB (fused to maltose 

binding protein) and KpsT, involved in the export of oleandomycin and polysialic 

acid by Streptomyces antibioticus and Æ coli (Buche et al., 1997; Bliss and Silver,
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1997) respectively, there are indications of an interaction with the substrate. Those 

results, however, do not rule out the possible participation of other components.

Although it is known the ABC transporter NBDs preference for ATP, other 

nucleotides can be accepted, usually with less affinity and reduced hydrolysis rate 

(e.g. in Buche et al., 1997). A similar situation prevails for divalent cations different 

from Mĝ "̂  that are utilised to stimulate ATP hydrolysis, but in this case, the range and 

concentration of the cation can influence the catalysis. For example in the 

characterisation of HisP, the ATP-binding subunit of the histidine transporter, Nikaido 

and co-workers found that Mn̂ "̂  was the best stimulator of HisP ATPase activity at 

high concentrations (above 1.5 mM) whilst Cô "̂  was the best at low concentrations 

(<1 mM) (Nikaido et a l, 1997).

A number of inliibitors of ATP hydrolysis have been found to interact directly 

with NBDs. Vanadate is a specific inhibitor for P-type ATPases and its action is used 

to distinguish different types of pumps. Vanadate inliibits the enzymatic activity of P- 

glycoprotein by trapping ADP at the catalytic site, preventing the release of the 

nucleotide from the protein (Urbatsch et a l, 1995). Vanadate also catalyses the UV- 

dependent cleavage of the polypeptide backbone at both the ABC signature and the 

Walker A motifs when it is trapped in the nucleotide-binding site o f the E. coli 

maltose transporter (Fetsch and Davidson, 2002). While reported for transport 

complexes, isolated NBDs remain insensitive to its effect (Table 1.3). Another 

inliibitor, N-ethylmaleimide (NEM), also affects intact transport proteins (Urbatsch et 

a l ,  1994). A covalent modification of a cysteine present in the Walker A motif is 

pointed out as the target of this compound (Feng and Forgae, 1992). ADP and other 

non-hydrolysable analogues have also been shown to affect the ATPase activity of 

many ABC proteins (Schneider and Hunke, 1998).

Mutations in key amino acids in any of the conserved sequences in the NBD 

can be used to abolish ATPase activity but not the binding of ATP. The affinity of 

ABC transporters for ATP shows a very broad range of variability (Table 1.3). It is 

probable that in some cases, the purification conditions and the status of its 

association with the full complex have affected the reported K,n and Vmax.
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Table 1.3 Enzymatic properties of some purified ABC transport systems and 

their isolated components

Protein Km (ATP) V  max Inhibitor Reference
(pM ) (nm ol/m in/m g prot.)

MalFGKa {E. coli) 74 860 Vanadate Davidson era /., 1992, 1996

MalK (S', typhimurium) 23.9 322 Insensitive to 

vanadate

Morbach et al., 1993

MalK {E. coli) 120 275 Insensitive to 

vanadate

Mourez et a/., 1998

HisQMPa (S. typhimurium) 8000 350 Liu and Ames, 1997

HisP (S. typhimurium) 205 500 Insensitive to 

vanadate

Nikaido et a i ,  1997

MglECA (S. typhimurium) nd 20 Vanadate Richarme et al., 1992

MglA {S. typhimurium) 60 140 Vanadate Richarme et al., 1993

HlyB-ABC {E. coli) 200 1000 Vanadate Koronakis et al., 1993

OleB (N-term.) 1 19400 Azide Aparicio et al., 1996

P -g ly c o p ro te in  (chinese 940 300 Vanadate, Shapiro and Ling, 1994

hamster) NEM

P-glycoprotein (human) 400 1650 Vanadate, Sharom eta l., 1995

(A B C B l) bafilomycin

P -g ly -N B D 2  ( c h in e s e 24 20000 Nd Sharma and Rose, 1995

hamster)

P-gly-NBDl (human) nd 180 Vanadate Shimabuku er a/., 1992

PstB (M. tuberculosis) 71.5 122 Sarin et al., 2001

Trx-DrrA 
(M  tuberculosis)

84.8 52 Nash, 2003

C FT R N B D l (human) 110 30 Azide Ko and Pedersen, 1995

CFTR NBD2 (human) 86 6 Ap5A R andake/a /., 1997

Ap5A, p \  p^ -d i  (adenosine-5’) pentaphosphate; NEM , N-ethylmaleimide; NBD, nucleotide binding 

domain. (This table is an adaptation from Schneider and Hunke, 1998).
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1.3 Structure of ABC transporters

I.3.1 Nucleotide-binding domains

The periplasmic histidine permease transporter (HisQMPi), present in E. coli 

and S. typhimurium is one of the best characterised ABC transporters and may be 

regarded as a good example of this superfamily. It consists of a membrane-hound 

complex comprising the integral membrane subunits HisQ and HisM, and two copies 

of the ATP-binding subunit HisP, which has properties intermediate between those of 

integral and peripheral membrane proteins (Kerppola et al., 1991), being accessible 

from both sides of the membrane (Baichwal et al., 1993). These two HisP subunits 

form a dimer as suggested by their cooperativity in ATP hydrolysis (Liu et al., 1997). 

The X-ray crystal structure of HisP from S. typhimurium was elucidated in 1998 

(Hung et a l, 1998) (Fig. 1.6).

The overall fold shape derived from the ciystal structui e of the HisP monomer 

(Fig. 1.6) is considered to be different from any other known protein, resembling an 

“L” with two thick arms (described as arm I and arm II). The ATP-binding 

pocket, containing the “phosphate-binding loop”, is localised near the end of arm I, 

which also includes the Walker B motif. The ABC signature motif forms part of arm

II, characterised by a higher _-helices composition. Limited similarities can be found 

between the structures of HisP and RecA (Story and Steitz, 1992) and the and _- 

subunits of bovine Fi-ATPase (Abrahams et al., 1994).

Thereafter, when structures were resolved for other bacterial ABC transporters 

(e.g. MalK, MJ1276, TAPI), a consensus fold for the NBD was revealed (Diederichs 

et al., 2000; Karpowich et al., 2001; Yuan et al., 2001; Gaudet and Wiley, 2001; 

Chang and Roth, 2001; Locher et al., 2002; and Smith et al., 2002). This fold shows 

the two armed L shape and localisation of the P- and C- loops that was first reported 

for HisP by Hung and collaborators (1998).
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molecule

Figure 1.6 X-ray ciystal structure of 5. typhimurium HisP monomer (Hung et al,,

1998)

A dimer conformation has been suggested as the active form o f several NBDs, 

and although the monomer conformation was similar, the manner o f how monomers 

were associated to form the dimer was significantly different (Janas et at., 2003). 

Dimer conformations have been indicated in some crystal structures like those of 

MalK from the archeon Thermococcus litoralis (Diederichs et al., 2000), and the 

structures o f wild type MJ0796 (Yuan et al., 2001) and mutant MJ0796-E171Q of 

Methanococcus janaschii (Smith et al., 2002). However, the best dimer model for 

NBD:NBD interaction is based upon ABC domains not from a transporter, but from 

the DNA repairing enzyme Rad50. In this dimer structure (Fig. 1.7), two nucleotides 

are clamped at the interface between two monomers, inducing them to dimerise 

(Hopfiier et al., 2000). In this model, the ATP molecules are sandwiched between the 

Walker A and B motifs of one monomer and the C-loop of the other monomer. The 

NBDs form a dimer with ATPase activity, they share homology with ABC-type 

ATPases and they are structurally similar to the monomeric MalK and HisP proteins. 

This NBD dimer from Rad50 is stable in solution in the presence o f Mĝ  ̂ and the 

non-hydrolisable ATP analogue adenyl imido diphosphate (AMP-PNP) (Hopfher et 

a l,  2000).
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Ann-1

Figure 1.7 Pyrococcus furiosus ATP-bound RadSO dimer crystal structure

(Hopfiier et al., 2000)

To support this dimer model, a MalK structure, which resembles Rad50, was 

obtained from E. coli (Chen et al., 2003) (Fig. 1.8). In the structure, it can clearly be 

seen that the ATP molecules interact with the Walker A motif (in red) o f one 

monomer and the signature (in purple) o f the other monomer in a sandwich type 

manner. MalK was crystallised in the absence and presence of ATP and showed a 

stable dimer conformation in the three different crystal conformations obtained. The 

stability o f these dimer structures in comparison to those of other NBDs can be 

attributed to an additional C-terminal sequence called the regulatory domain (not 

shown in Fig. 1.8), that contributes substantially to the dimer interface.

The architecture o f this ATP-bound MalK dimer is consistent with 

biochemical data obtained with the intact maltose transporter. Maltose-binding 

protein (MBP) stimulates ATP hydrolysis by MalFGKi, and vanadate traps a complex 

of Mg ADP, MBP, and MalFGK2 in the catalytic transition state (Chen et al., 2001). 

The highly specific photocleavage o f the MalK subunits in the presence o f UV light at 

the Walker A and LSGGQ motifs mediated by vanadate, demonstrates that both 

motifs lie very close to the position o f the ATP y phosphate in the catalytic transition
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State, and since the ABC signature motif is well separated from the Walker A motif in 

one subunit, specific cleavage at both sides provides strong evidence that the LSGGQ 

motifs complete the nucleotide binding sites of the opposing subunits (Chen et al.,

2003).

Figure 1.8 E. coli MalK dimer crystal structure (Chen et al., 2003)

Dimer structures similar to the configuration shown for RadSO were also 

discovered for NBDs of the vitamin B12 transporter BtuCD (Locher et al., 2002) and 

the E. coli maltose transporter (Chen et al., 2003).

1.3.2 Transmembrane Domains

Detailed structural studies o f membrane proteins have been particularly 

difficult in the past. A prerequisite for these studies is to overexpress such proteins in 

large quantities. E. coli is widely adopted as the system of choice for this purpose due 

to its high growth rate, well-characterised genetics and the wide range o f available 

vectors. However, the production o f properly folded transmembrane proteins and their
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purification has not been easily achieved. One obstacle in working with proteins that 

carry hydrophobic domains is the requirement for detergents. Whilst detergents 

generally aid solubility, they can also result in dénaturation of proteins and can be 

detrimental to their enzymatic activity (Swiderek et ah, 1997). Although advances in 

the crystallisation of single NBDs have occmred, the transmembrane domains show 

less conservation of sequence than NBDs and the involvement o f the membrane 

components in the global interaction with the NBDs still needs to be clarified.

The existence of mutations allowing maltose transport in the absence of the 

MBP led to the identification of sites in MalF and MalG thought to be important for 

the interaction with the MBP (Covitz et ah, 1994). A highly conserved motif of 20 

amino acids, EAA-X(3)-G-X(9)-I-X-L-P (Saurin and Dassa, 1994), called the EAA 

loop, has been suggested to interact with the NBD in the ABC importer-type proteins 

(Hunke et a l, 2000; Mourez et ah, 1997). This region is hydrophilic and lies in a 

loop facing the eytoplasm in all of these proteins of recognised topology (Saurin et 

ah, 1994). This EAA m otif seems to be of functional importance since several 

mutations have been characterised that have reduced or abolished transport in 

different uptake systems (e.g. maltose, Dassa 1990; iron (III) hydroxamate, Koster 

and Bohm, 1992; and phosphate, Webb et ah, 1992).

Site-directed mutagenesis experiments by Mourez and eollaborators (1997) 

showed that single substitutions in the EAA region of MalG abolished transport 

completely, but the same mutation in MalF had no effect, suggesting that these EAA 

motifs and perhaps the MalG and MalF proteins do not function symmetrically. In 

some cases, double mutants possessed properties that were not equivalent to the 

combined characteristics of their corresponding single mutants. This result suggested 

some kind of cooperativity between the EAA regions of MalG and MalF in the 

formation of a functionally important site. Two classes of mutants were also found 

that indicated two probable roles for the EAA motifs. Firstly, they may play a 

fundamental role in the association of MalK with the membrane and the formation of 

a functional transporter. This has been inferred from the observation that some EAA 

mutations result in localisation of MalK to the cytoplasm (in the normal transporter, 

80 % of MalK appears in a particulate fraction extracted by Triton X-100, which also 

contains MalF and MalG). Suppressor mutations in malK  that reconstitute the
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transporter function indicate that mutations in the EAA loop can be eorrected by 

mutations in the ATPase (“helical domain”). The second role inferred for the EAA 

regions from mutagenesis is that they might form part of a substrate binding site or a 

site that transduces a signal to MalK (Mourez et al., 1997).

Mourez and co-workers presented the following conclusions from their 

analysis: mutations in EAA loops might affect their direct participation in the 

membrane-NBD association, or indirectly, inducing a conformational change in other 

region of the proteins more directly involved in the interaction with MalK. EAA 

mutations might also disrupt the formation of the MalF-MalG heterodimer, resulting 

in the release of MalK in the cytoplasm. Another possibility is that EAA mutations 

alter a functional site that involves the three proteins MalF, MalG and MalK (Mourez 

et al., 1997). An EAA-like motif has been identified in some eukaryotic ABC 

transporters that may indicate a more generalised role for this sequence (Schneider 

and Hunke, 1998).

Although the EAA—  sequence might be distinctive in membranes involved 

in influx processes, an equivalent sequence has not been reported for transporters 

involved in efflux. Interactions between substrates and TM domains are not 

completely understood but they seem to be dependent on the nature and architecture 

of the drug-binding sites in the membrane, rather than the presence of particular 

conserved sequence motifs. This indeed might explain the broad substrate specificity 

found in multidrug transporters such as P-glycoprotein. The existence of many 

separate binding sites as well as the presence of a single flexible site that can 

accommodate different chemical structures within different sub-regions, have been 

proposed (Neyfakh, 2002). Several separate binding sites have been reported for P- 

glycoprotein: a lipid-exposed substrate binding site (Qu and Sharom, 2002), two non

identical drug interaction sites in the human protein (Dey et al., 1997), and a 

minimum of four distinct drug binding sites for substrates and modulators of P- 

glycoprotein transport (Martin et al., 2000). Nevertheless, the idea o f a common 

drug-binding pocket prevails for other investigators (Loo et al., 2003; Shapiro et al., 

1999). The existence of many separate binding sites to accommodate all the known 

different chemical classes of drugs known to be expelled by P-glycoprotein seems 

improbable. A single large flexible drug binding pocket might explain better the
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translocation of multiple different substrates. Structural analysis of a number of 

soluble multidrug-recognising proteins have shown the presence of large hydrophobic 

binding sites and that the binding of substrates is due to a combination of hydrophobic 

effects and electrostatic attraction rather than specific interactions (Neyfakli, 2002).

The concept of a single flexible binding site was based on research into the 

Bacillus subtilis transcriptional regulator BmrR (Neyfakh et al., 1991; Vazques- 

Laslop et al., 2000; Zhelesnova et al., 2000; Zhelesnova and Brennan, 2001). The X- 

ray crystal structure of this soluble multidrug-binding protein in complex with one of 

its substrates has been determined (Zhelesnova and Brennan, 2001). The drug is held 

in place within the protein eore by extensive van der Waals and stacked hydrophobic 

interactions, and with positively charged drugs, electrostatic interactions with a buried 

glutamate residue are important. In this system, each compound forms a different set 

of atomic contacts within the protein, in a flexible binding site. There is no special 

mechanism for multiple drug recognition by the BmrR protein, an idea that has been 

suggested for other proteins involved in multidrug transport (Sharom et al., 2001).

The staphylococcal protein QacR activates expression of the multidrug pump 

QacA in S. aureus (Schumacher et al., 2001), Although QacR is not an ABC 

transporter, it is the best example of how multidrug resistance proteins interact with 

their substrates. Six QacR structures bound to different substrates have been 

obtained, establishing that one large drug-binding pocket accommodates the different 

ligands. Aromatic and polar residues are present within the large pocket that also 

comprises several multiple drugs-binding mini pockets. Four glutamate residues, 

E57, E58, E90 and E l20 are involved in the charge neutralisation for different 

cationic drugs (Schumacher and Brennan, 2002). Conformational changes were 

observed when drugs were bound, allowing the hydrophobic core of the pocket, 

buried in the absence of drugs, to be exposed. On binding a drug, two aromatic 

residues Tyr92 and Tyr93, present in the drug-free state pocket, are expelled resulting 

in the displacement of glutamate 90 into the pocket and creation of the drug-binding 

pocket (Kaur, 2002). Two independent binding-sites have been identified for R6G 

and for ethidium, and a third site that overlaps part of the other sites (Schumacher and 

Brennan, 2003).
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Many of the features of the QacR structure are also found in BmrR (Kaur, 

2002). Although QacR and BmrR are not transporters, the architecture of the pocket 

of these structures appears to be well suited as a general characteristic of the MDR 

transporters.

1.3.3 Structure of complete ABC transporters

The recent determination of the crystal structure of various bacterial ABC 

transporters, such as the transporters for Lipid A and Vitamin B12 (e.g. E. coli MsbA; 

Chang and Roth, 2001 and BtuCD; Locher et al., 2002), is helping to elucidate the 

structure and mode of operation of ABC pumps. Although impeded for many years 

by the difficulty of expression and purification of the target proteins, the first high- 

resolution X-ray crystal structures of these membrane proteins are now available. 

Until recently, the only thi'ee-dimensional structure of a complete ABC transporter 

was a 25 Â resolution structure determined by electron diffraction (Rosenberg et al.,

1997). In 2001, Geoffrey Chang and Christopher Roth determined the first crystal 

structure of a complete ABC transporter at a resolution of 4.5 A, that of the E. coli 

MsbA transporter (Chang and Roth, 2001). This particular ABC transporter is a lipid 

flippase that translocates lipids from the inner layer of the cell membrane to the outer 

layer, and is more closely related to the mammalian P-glycoproteins than any other 

bacterial ABC transporter (Chang and Roth, 2001).

The overall organisation is consistent with most bacterial MDR-ABC 

transporters. The msbA  gene encodes a half transporter that contains a single 

membrane-spamiing region fused to a NBD, which is assembled into a homodimer. 

Hydropathy analyses confirm a six membrane spanning region and the localisation of 

the NBD on the cytoplasmic side of the membrane. Chang and Roth’s approach was 

to explore the cloning, overexpression and purification of more of than 20 full-length 

bacterial transporters and their homologues derived from several MDR-ABC 

transporter families and 12 bacterial species. From these, they sought the best subject 

for ciystallisation trials, attempting not less than 96,000 crystallisation conditions with 

about 20 detergents to finally obtain crystals of 35 different membrane proteins.
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The crystal structure obtained is compatible with that expected for this 

transporter; a homodimer, with each subunit composed of two domains. The structure 

also shows an additional intracellular domain (ICD) connecting the NB and TM 

domains. All the transmembrane -helices are tilted between 30° and 40° with respect 

to the plane of the membrane and give a cone shape to the structure (Fig. 1.9). The 

outer leaflet is the region where both TM halves contact at the top of the chamber 

cone holding the two monomers of the transporter together. The base of the structure 

facing the cytoplasm is -  45 Â in its widest dimension, being sufficient volume to 

accommodate the Lipid A molecule. There is no contact between NBDs, which are 

separated by ~ 50 Â at the closest point. Although in the structure of the NBDs the 

Walker A motif section was not well resolved, the ATP-binding sites are predicted to 

face away from the centre of the dimer. The inner leaflet is characterised by a eluster 

of positively charged amino acids contrasting with the hydrophobic environment in 

the outer membrane side. TM2 and TM5 (shown circled in Fig. 1.9) lead the contact 

between TM halves in the formation of the cone, and with TM6, have been proposed 

to play a role in the substrate recognition. The ICD region occupies an important part 

in the structure and shows considerably contact with both the TM and NB domains, 

including a direct contact with the NBD and TM 2, 5 and 6.

Chang and Roth (2001) suggested a possible mechanism to flip hydrophobic 

substrates in the E. coli MsbA transporter; the substrate (Lipid A as model) moves 

towards the base of the chamber presumably via the inner leaflet of the membrane. 

ATP binding and hydrolysis is triggered in the NBDs. Recruitment of the substrate 

and closure of the chamber is caused by the rearrangement of the TMs 2, 5 and 6 and 

the two NBDs. The polar environment in that part of the membrane presents an 

unfavourable environment for hydrophobic substrates and the substrate is flipped to a 

more favourable position in the outer leaflet bilayer of the chamber where it can 

establish hydrophobic interactions. The flipping of the substrate induces the chamber 

to undergo additional re-arrangements that include the separation of the NBDs and the 

repositioning of the main TM helices, enabling the complete expulsion of the 

substrate to the exterior and re-setting of the system. This particular mechanism 

explains the ability of multidrug transporters to drive the efflux of a number of 

different hydrophobic substrates. Additionally, the size and shape of the chamber 

allows the accommodation of a wide diversity of amphipathic molecules. This
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structure provides a foundation for the understanding o f the bioenergetics o f  

lipid/drug “flip flop” for the entire MDR-ABC transporter family.

120 A

EC1

Outer leaflet

Inner leaflet

C ytoplasm

O pening

Chamber

TMD

Lipid A

ICD

68 A
NBD

Figure 1.9 Structure of the E. coli MsbA homodimer (Chang and Roth, 2001)
TMD: transmembrane domain; ICD: intracellular domain; NBD: nucleotide binding domain

A second complete ABC transporter structure has been obtained, that o f the E. 

coli vitamin B12 importer BtuCD, at 3.2 Â resolution. All critical parts have been 

ordered and resolved (Locher et al., 2002). With a similar approach to the MsbA 

crystallisation, a number o f  different transporters were obtained from cloning and 

overexpression in E. coli and assayed in crystallisation trials. Crystals o f high quality 

were obtained for the BtuCD transporter and its structure is shown in Figure 1.10. 

This transporter consists o f two copies o f the TMD BtuC, and two copies o f the NBD 

BtuD, with subunits showing that the two ABC cassettes are in close contact with 

each other. The assembled complex is -  90 À tall, 60 Â wide and ~ 30 Â thick, and 

viewed from the front face, shows an overall shape resembling an inverted gate 

(Locher et al., 2002). Its structure contrasts with that of MsbA; in this case the TMD 

shows an asymmetric ordering and in a number higher than the 12 predicted 

transmembrane helices, there are not indications of the presence o f the ICD, and both 

NBDs are in close contact with each other.
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Each of the two BtuC subunits crosses the membrane 10 times creating a total 

of 20 helices in the transporter. Although very different from canonical transporters 

like MsbA that possess 12 helices, it is similar to the predicted transmembrane helices 

for other transporters such as the human antigen transporter TAP (19 helices; Lankat- 

Buttgereit and Tampe, 2002), and the ferrichrome-transporting FhuB protein (20 

helices; Groeger and Koster, 1998). The 10 transmembrane helices found per subimit 

are packed together in a rather entangled way with no similarities to the MsbA 

monomer. The interface between two membrane-embedded subunits allows a cavity 

to be formed (top section in the Figure) that is believed to correspond to the 

translocation pathway, being of sufficient size to accommodate the Vitamin B 12 

molecule.

The BtuCD structure shows the NBDs to be associated in a manner very 

similar to that reported for Rad50, where the P-loop of one monomer closely contacts 

the ABC signature region in the other monomer. This dimer interface consists mainly 

of amino acid residues from the highly conserved Walker A (P-loop) and D-loop, and 

from the moderately conserved Switch region, indicating that this dimer arrangement 

may be common to all members of the ABC family. Nevertheless, this dimer 

interface between both cassettes is rather small for a specific dimer contact surface 

and smaller than the interfaces between each pair of BtuC-BtuD subunits or between 

the two BtuC subunits. The structure suggests that the TM domains are required to 

stabilise the dimeric conformation of NBDs (Locher et al., 2002); in their absence the 

weak forces holding the dimers together may be insufficient to maintain their 

association. This would explain the divergence in dimer conformations for HisP and 

MalK.

Although there is not an ICD that links the TM and NB domains as occurs in 

the MsbA dimer, a long cytoplasmic loop between TM 6 and 7 from BtuC that folds 

into two short helices (LI and L2; shown in yellow in the Figure), provides the largest 

contribution to the TM-NB interface. This L loop has resemblance to the EAA motif 

of bacterial importers (Mourez et al., 1997), to the fourth intracellular loop of CFTR 

(ICL4) and to the first cytoplasmic loop in drug exporters, and it is believed that it 

may represent a general interface between ABC cassettes and membrane-spanning 

domains (Locher et al., 2002). The mechanism proposed for BtuCD is again based on

41



a series o f binding and rearrangement events coupled to ATP hydrolysis by the NBD. 

In this case, it involves a permanent contact between the TM and NB domains. It is 

proposed that the binding o f the periplasmic binding protein-vitamin B 12 complex to 

the periplasmic domain o f BtuC induces ATP hydrolysis by BtuD. Consequently, this 

energy powers further re-arrangement o f the NB and TM domains to allow substrate 

translocation to a large water-filled space in the cytoplasmic side o f the membrane. 

Release o f ADP re-sets the transporter to its original state.

Translocation pathway

TMD

Cytoplasm

NBD

N te r N-ter

Figure 1.10 Structure of E. coli BtuCD (Locher et al,, 2002)

The differences noted between crystal structures may be also influenced by the 

crystallographic techniques, leading to non-physiological interactions. Although a 

useful tool to determine the architecture of ABC transporters, it is still necessary to 

verify as far as possible proposed modes o f action. The crystal structure of Vibrio
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cholera MsbA (Chang, 2003) has been informative in this regard since it shows the 

same features of its predecessor E. coli MsbA, but with a notable difference. In this 

structure (Fig. 1.11) the NBDs do not present an interface separation as in E. coli 

MsbA but they are in very close contact. This finding, again, supported the suggested 

close interaction between both nucleotide-binding subdomains and indicated that the 

E. coli and V. cholera transporters crystal structures might differ because they 

represent different stages in the transport process.

Figure 1.11 Structure of V, cholera MsbA (Chang, 2003)

More recently, the structure o f S. typhimurium MsbA has been added to the 

understanding o f this transporter, providing further knowledge on its architecture and 

that o f ABC transporters in general (Reyes and Chang, 2005). This new structure, 

obtained in complex with Mg* ADP «Vanadate and Ra Lipopolysaccharide to a 

resolution o f 4.2 Â, seems to show a post-hydrolysis intermediate (Fig. 1.12). In this 

structure, the NBDs appear folded as expected, and face each other in close proximity 

to perform ATP hydrolysis and possibly drive substrate translocation. The resolution 

of this new X-ray structure by Chang’s group further supports the "flip flop" 

mechanism described earlier for the translocation o f lipids from the inner layer o f the 

cell membrane to the outer layer (see p. 39, and Chang and Roth 2001).
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RaLPS

Figure 1.12 Structure of S. typhimurium MsbA in complex with 

Mg«ADP«Vanadate and Ra Lipopolysaccharide (Reyes and Chang, 2005)
P: periplasm; M; lipid bilayer matrix; C: cytoplasm; Ra LPS: Ra lipopolysaccharide; TMD: 

transmembrane domain; ICD: intracellular domain; NBD: nucleotide binding domain

1.4 Distribution and classification of the ABC transporter superfamily

ABC systems are involved in transport as importers or exporters, and this 

feature is the primary approach to their classification, although they are also 

implicated in many cellular processes and in their regulation. Importers comprise 

mostly the prokaryotic “transport substrate” binding protein-dependent (BPD) 

transporters and are involved in the acquisition of essential nutrients by bacteria. 

Exporters are extensive in both prokaryotes and eukaryotes and are implicated in the 

expulsion o f harmful substances, the secretion o f extracellular toxins and the targeting 

of membrane components (Path and Ko Iter, 1993). A third class o f ABC systems is

44



not apparently involved in transport but in cellular processes such as DNA repair 

(Thiagalingam and Grossman, 1993), translation and regulation of gene expression 

(Belfield e ta l ,  1995).

A global phylogenetic tree of ATP-binding modules of ABC systems based on 

the MalK protein sequence was prepared in order to classify ABC transporters (Saurin 

et al, 1999). Two main branches were constructed, with one branch corresponding to 

proteins involved in export, while the other branch grouped proteins involved in 

import processes. Prokaryotes and eukaryotes were present in the first branch but the 

second one included only prokaryote proteins and mainly components of BPD 

transporters. ABC transporters were then divided in the families ABC-A and ABC-B. 

ABC genes in eukaryotes had already been classified in different families from 

ABC A to ABCG, based on gene organisation and primary sequence homology 

(Anjard et al, 2002; Klein et a l,  1999). Due to the broad distribution of ABC 

systems, more detailed use was made of the functions associated with these systems 

and three classes were primarily defined on the basis of cluster sequences analysis 

(Fig. 1.13) (Dassa and Bouige, 2001). Class 1 contains the majority of known 

exporters with fused nucleotide-binding domains (NBDs) and transmembrane 

domains (TMDs). Class 2 includes all systems with no known TMDs associated with 

ABC modules and consists of systems involved in antibiotic resistance and cellular 

processes other than transport. Class 3 contains all BPD importers and other poorly 

characterised systems which seem not to be involved in import. The general 

properties of the systems to which they belong appear summarised in Table 1.4.
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Figure 1.13 Unrooted phylogenetic tree of ABC proteins and domains presented 

by Dassa and Bouige
Only the branches pointing to families were drawn. The three classes and their main branches are 

indicated by different colours; black for class 1, violet for class 2 and teal blue for class 3. In class 3 

systems that are not conclusively related to import are highlighted by blue light squares. NO represent 

a few sequences with unknown function and apparently unrelated to neighbouring families. OPN-D 

and OPN-F, and HAA-F and HAA-G, correspond to the two different ABC subunits o f  OPN and HAA 

systems respectively. -C  and -N  added to a family name correspond to the C- and N- terminal ABC 

dom ains o f  system s w ith (TM -A BC)2, (A B C -TM ji and ABC] organisations; ABC refers to the 

nucleotide-binding domain, and TM, to the transm em brane domain. The ABC fam ilies are mainly 

named according to their functions. CCM: Cytochrome C maturation or Heme biogenesis; FAE: Long 

chain fatty acids or enzymes; DPL: Drugs, peptides, lipids; OAD: Organic anions, ions, drugs; MCM: 

M ethanogenesis; EPD: Eye pigm ent precursors, drugs; RLI: RNAse L inhibition, RNAse stability; 

ART: Antibiotic resistance, translation, regulation; CBU: Cobalt uptake; MET: Metals; ISVH: Iron- 

siderophores, vitam in B12, hem in; OSP: Oligosaccharides and polyols; MOI: M ineral and organic 

ions; OTCN: Osmoprotectants, taurine, cyanate, nitrate; PST: N ot mentioned; MKL: Unknown; OPN: 

O ligopeptides and nickel; PAO: Polar amino acids, opines; ABCY: Unknown; CDI: Cell division; 

LPR; Release o f lipoproteins from membrane; HAA: Hydrophobic amino acids and amines; YHBG: 

Unknown; ABCX: Unknown; MOS: Monosaccharides ; CLS: Capsular, Lipopolysaccharides, teichoic 

acids; DRA: Drug and antibiotic resistance; DRI: Drug resistance, bacteriocin immunity (based on 

diagram by Dassa and Bouige, 2001).
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Family

FAE

DPL

OAD

EPD

CCM

MCM

Saier
(a)

FAT

(5)

(9)

(8)

HemeE

HGNC Function 
(b)

Substrate type or process

ABCD EXPORT Long chain fatty acids or
enzymes

ABCB EXPORT Drugs, peptides, lipids

ABCC EXPORT Organic anions, ions, drugs

ABCG EXPORT Eye pigment precursors,
drugs

EXPORT Heme biogenesis 

Unknown Methanogenesis

ABC protein 
prototype (c)

ALD_HUMAN

HLYD_ECOLI
MDRl_MOUSE

CFTR_HUMAN
MRPI_Hl)MAN

WHlT_DROME 
PDR5_YEAST 
CCMA ECOLI

Organisation (d)

TM ABC

TM ABC (TM -AB02

(TM-ABC)2

ABC TM (ABC TM)2 

2TM ABC

Methyl coenzymc ABC2 
M reductase A

ART (7) ABCF Cellular
processes

Antibiotic resistance, 
translation, regulation

MSRA STAEP 
EF3_YEAST

ABC2

RLI

IIVR

ABCE RNase L inhibition, RNA 
stability
DNA repair, antibiotic 
resistance

RNA SELI 

irVTlA_ECOLI

ABC2

ABC7

MET MZT IMPORT Metals (Fe, Zn, Mn) ZNUC ECX>LI BP, 2TM, ABC

ISVH (3) IMPORT Iron-siderophores, vitamin 
B12, hemin

FHIJC_ECOLI OMR, BP, 2TM, ABC

OSP CUTI IMPORT Di or oligosaccharides and 
polyols

MALK_ECOLI BP, 2TM, ABC

MOI (1) IMPORT Minerals and organic ions CYSAECOLI 
POTD ECOIJ

BP, 2TM, ABC

OTCN (2) IMPORT Osmoprotectants, taurine, 
cy anate, nitrate

TAlîB_ECOLI BP, TM, ABC

OPN PepT IMPORT Oligopeptides and nickel OPPD SAI.TY 
NIKE_ECX)LI

BP, 2TMJABC

PAO PAAT IMPORT Polar amino acids, opines HISP SALTY BP, 2TM, ABC
HAA HAAT IMPORT Hydrophobic amino acids 

and amides
L iv e  ECOLI BP, 2TM, 2 ABC

MOS CUT2 IMPORT Monosaccharides RBSAECOLI BP, TM, ABC2

CBU
MKL
ABCY
YHBG
CDI

CoT Unknown
Unknown
Unknown

Cobalt uptake? 
Unknown

Cell division

CBIG SALTY 
MKL MYC’LE 
ABC ECOLI 
YHBOECOLI

FISE ECOLI

TM, ABC 
SS,TM,ABC 
LPP, TM,ABC 
SS, TM, ABC

TM, ABC
LPR DevE Release of lipoproteins from 

membranes
LOLD_ECOLI MFP or SS, (2)TM, ABC

ABCX ABCA EXPORT Unknown ABCX C \ APA ABC, 2 CY T

DRA (10) Drug and antibiotic 
resistance

DRRASTRPE 2TM, ABC (TM ABC7)2

DRI

CLS

(6)

(4)

Drug resistance, bacteriocin 
immunity
Capsular, lipopolysacchari
des, teichoic acids

BCILV_BACLI

KSTIECOLI

2TM, ABC

OMA, MPA2, TM, ABC



Table 1.4. Families of ABC systems identified in living organisms (Dassa and 

Bouige, 2001)
The three classes o f ABC systems appear with colour codes similar to presented in Fig. 1.13. Family 

names are abbreviations o f the substrate or the biological process handled by the systems. For families 

comprised o f systems with unknown function, an arbitrary name was assigned, (a) Names adopted by 

M. Saier for the classification o f transporters www.biolouy.ucsd.edu/-msaier/tTansport/tit iepage2.html. 

Some phylogenetic families described In this table are separated by his author in subfamilies according 

to substrate type. (I)  = SulT, + PhoT + MolT + FeT + POPT + ThiT; (2) = QAT + N itT + TauT; (3) -  

VB12T + FeCT; (4) = CPSE + LPSE + TAE; (5) = LipidE + GlucanE + P ro tlE  + Prot2E + Pep IE  + 

Pep2E +Pep3E + DrugE2 + DrugE3 + MDR + CFTR + Ste + TAP + HM T + MPE; (6) = NatE; (7) = 

D rugRA l + DrugRA2; (8) = EPP + PDR; (9) = C T l + CT2; (10) = D rugEl + CPR. (b) HGNC: these 

a re  th e  n am es  a d o p te d  by th e  H u m an  G en e  N o m e n c la tu re  C o m m itte e  

w w w .E en e .u c l .a c .u k / i i s e rs /h e s te r /a b c .h tm l . (c) When available, the Swissprot ID o f  the prototype 

protein is given, (d) Schematic representation o f  the organisation o f ABC systems. BP = extracellular 

substrate binding protein; LPP = extracytoplasmic protein with a lipoprotein type signal sequence; SS -  

uncharacterised secreted protein with a signal sequence; TM  = integral cytoplasmic membrane domain 

or protein; ABC = ATP binding cassette module; CYT = cytosolic protein; OM R ^  high affinity outer 

membrane receptor; OMP = outer membrane protein; OMA = outer membrane auxiliary protein; MFP 

= membrane fusion protein; MPA2 = type 2 cytoplasmic membrane periplasmic auxiliary protein
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1.5 Physiological role of ABC transporters

Different physiological roles have been listed for this superfamily of 

transporters, which is not too surprising if we take into account the many 

representatives from diverse lineages that form part of this group of transporters. 

Transport substrates comprise from veiy simple (e.g. ions) to complex molecules (e.g. 

proteins, complex polysaccharides and lipids). In some cases, these transporters are 

very specific, but in others, they show broad compound specificity. This is the case 

for transporters involved in multidrug resistance, which not only transport molecules 

with different physico-chemical properties but also compounds that vary significantly 

in size.

Apart from humans, fungi and bacteria, ABC transporters are also found in 

several parasitic protozoa, responsible for important illness around the world. For 

instance, the P-glycoprotein homologous gene, p fm d rl has been reported for the 

chloroquine resistant Plasmodium, the causative agent of malaria (Foote et al., 1989; 

Wilson et a l, 1989). Arsenate and antimony resistant Leishmania, where the gene 

ItpgpA has been isolated and its product shown to be more similar to the multidrug- 

resistance-associated protein (MRP) and to the cystic fibrosis transmembrane 

regulator (CFTR) than to P-glycoproteins (Cole et a l, 1992); emetine-resistant 

Entamoeba histolytica, which causes the universal amoebiasis (Descoteaux et a l ,  

1992), and metronidazole resistant Trichomonas vaginalis (Johnson, 1993) are other 

important examples of parasitic protozoa producing severe diseases in developing 

countries. In yeast, the STE6  gene of Saccharomyces cerevisiae encoded the first 

non-mammalian P-glycoprotein described so far (McGrath and Varshavsky, 1989). 

This protein is not involved in the transport of drugs but of a pheromone, which is 

necessary for mating. Other ABC transporters are involved in drug resistance, 

examples of those transporting drugs are the products of the SNQ2 gene, that confers 

resistance to 4-nitroquinolone-N-oxide and others chemicals (Servos et a l, 1993); and 

STSl and PD R5  that confer a multidrug resistance phenotype when they are 

overproduced (Bissinger and Kuchler, 1994). A more extended view of some of 

the different roles displayed by ABC transporters, with their respective examples, is 

presented in Table 1.5 to illustrate the importance of this family.
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Table 1.5. Physiological role of ABC transporters

Physiological

role

ABC

transporter

representative

Substrate Organism Reference

Nutrient HisJQMP Histidine S. typhimuriiim Ames, 1972

uptake
MalEFGK Maltose E. coll D avidson and N ikaido, 

1991
BtuCD Vitamin B 12 E. coll Reynolds et a i ,  1980
ModBC Molybdenum E. coll M aupin-Furlow  et a i , 

1995
Polysaccharide KpsTM K5 c a p su lla r

f ^ v ' tA a

E. coll K5 R e izere /a /., 1992

export

Pep tide and HlyBD Haemolysin E. coli Fath and Kolter, 1993

protein export
BcrABCD Bacitracin Bacillus

licheniformis
Podlesek et a i ,  1995

PrtED Proteases Erwinia
chrysantemii

Létoffé et a i ,  1990

NisT Nisin precursor L. lactis Engelke et a i ,  1992
LcnC Lactococcins L. lactis Franke et a i ,  1999
CvaB Colicin V E. coli Wu and Tai, 2004

Cellular NodlJ Nod factors Rhizobium
leguminosarum

Spaink et a i ,  1995

signalling and YbdAB" Unknown" B. subtilis Isezaki et a i ,  2001

differentiation

Multidrug P-gp (A B CB l) Multidrugs H. sapiens Gottesman et a i ,  1996
MRP (A B CC l) Multidrugs H.. sapiens Cole and Deeley, 1998

resistance LmrA Multidrugs L. lactis Van Veen et a i ,  1998
Pdr5 Multidrugs S. cerevisiae B issinger and Kuchler, 

1994
MacB Macrolides E. coli Kobayashi et a i ,  2001
PghT Multidrugs*^ P. falciparum KneXzet a i ,  1996

Intracellular TAP" Peptides'^ H. sapiens Beck et a i ,  1992

export
Atm Ip Iron/sulphur

clusters
S. cerevisiae L eigh ton  and Schatz, 

1995
ADLP (A B CD l) Long-chain 

fatty acids
H. sapiens Mosser et a i ,  1993

Ion channels CFTR (ABCC7) Chloride anions H  sapiens Luckie et a i ,  2003
SURd
(ABCC8/ABCC9)

Potassium
cations'*

K  sapiens A g u i la r - B r y a n  an d  
Bryan, 1999

“ A regulatoiy role in the sporulation o f B. subtilis has been suggested (Isezaki et a i ,  2001)

The multidrug transport P ghland  its resistance role in P. falciparum  has remained controversial due 

to contradictory results obtained by different authors (Bray et a i ,  1992; Ginsburg and Krugliak, 1992, 

Krogstad et a i ,  1987, 1992)

Antigen processing 

 ̂Potassium channels ATP dependent
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1.6 The drug-efflux system of Streptomycespeucetius

1.6.1 Actinomycetes

The Actinomycetes are a group of microorganisms that show characteristics of 

both bacteria and fungi. The growth habit of Actinomycetes is hyphal and may form 

a mycelium characteristic of fungi, although hyphae are always of smaller diameter 

and usually do not exceed one micrometre (Alexander, 1961). Additionally, 

Actinomycetes are able to produce an aerial mycelium and conidia characteristic of 

fungal species. When they are grown in pure liquid culture, the turbidity usually 

associated with bacterial growth is absent, and in many species the growth rate is not 

exponential as it is in bacteria (Alexander, 1961). However, unlike fungi, 

actinomycetes are prokaryotes. They have been placed in the bacterial group of 

Gram^, and in the order Actinomycetales. Actinomycetes play both detrimental and 

beneficial roles in nature. Among their negative attributes is their ability to cause 

opportunistic diseases in animals, humans, forestry and plants, and spoilage of hay, 

straw, cereal grains, seeds, bagasse, plant fibres, wood, pulp, paper, wool, 

hydrocarbons, rubber and plastic. Biodégradation by these organisms, on the other 

hand, plays an extremely useful role in waste removal and as an integral part of the 

recycling of materials in nature. Actinomycetes are numerous in soil, where they 

have three important environmental roles: decomposition of the organic matter; 

binding clay particles to their filaments that is conducive to crop production; and 

responsible in part, for the earthy odour of soil. Many Actinomycetes are also good 

chitin degraders because Actinomycetes are "late colonisers" and play vital roles in 

degradation processes and the formation of humus (Schrempf, 1995). Actinomycetes 

decompose lignocellulose from plant residues and have potential for bioconverting 

waste materials into chemicals. Mesophilic and thermophilic species produce 

celiulases, xylanases, amylases, proteases and ligninases. Thermotolerant and 

thermophilic species are active in composts degrading plant polymers and generating 

heat. The ability o f certain Actinomycetes to degrade lignin and/or cellulose is 

potentially important in the production of liquid fuel and chemicals from 

lignocellulose (Piret and Demain, 1988).
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Aerobic Actinomycetes that are frequently found in environmental 

microbiology include Streptomyces, Rhodococcus, Nocardia, Mycobacterium, Actino- 

madura, Nocardiopsis, and Dermatophilus (Grant and Long, 1981). Most attention 

has been focused on the ability of Actinomycetes to synthesise antibiotic compounds. 

Thus, the search for novel species and the mass screening of species for secondary 

metabolites has been a major focus of pharmaceutical companies worldwide.

Natural antibiotics, particularly those from the genus Streptomyces, are as 

important as the -lactam antibiotics, which are derived from chemical modification 

of existing antibiotics.

Actinomycetes are rather difficult to identify at the species level but cell wall 

type, extracted sugars, morphology and the colour of mycelia and sporangia, G + C 

content, membrane phospholipid composition, and the heat resistanee of spores are all 

useful in this regard. Comparison o f 16S rRNA sequences and pulse-field 

electrophoresis o f large DNA fragments produced by restriction endonuclease 

digestion are also used for classification purposes.

1.6.2 Streptomyces

The oxàQV Actinomycetales is divided into 10 suborders. The Streptomycineae, 

is the most relevant suborder as it contains the Streptomyces genus, many species of 

which are ecologically and medically important. Research on Streptomyces indicates 

that they, along with other fungi, may play an important role in the degradation of 

lignin. They play important roles in degradation in compost piles. Streptomyces are 

also important agents in the degradation of organic matter in soil and contribute to the 

formation of stable humus (Metting, 1992). A few species are pathogenic for animals 

and humans (McNeil and Brown, 1994); Streptomyces somaliensis is known to be 

pathogenic in humans, causing actinomycetoma (Nasher and Hay, 1998), which is an 

infection of subcutaneous tissues that produces swelling, abscesses and even bone 

destruction. Other species are phytopathogens.
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The Streptomyces genome is about twice the size o f E. coli, and the organism 

is characterised by the presence of L,L-diaminopimelic acid (L,L-DAP) in its cell wall 

peptidoglycan. It also possesses complex polar lipids that typically contain 

diphosphatidylglycerol. Members of the genus are aerobes and chemoorganotrophic, 

having an oxidative type o f metabolism. They are catalase positive and generally 

reduce nitrates to nitrites, degrade adenine, esculin, casein, gelatin, hypoxanthine, 

starch and L-tyrosine, and use a wide range o f organic compounds as sole sources of  

carbon for energy and growth (Goodfellow and Cross, 1974). Streptomyces albus is 

the species prototype and the differentiation o f species in this genus is difficult. There 

are over 50 named species, and their differentiation is based on a combination of 

pigmentation, morphological and physiological traits.

On isolation, colonies are discrete and lichenoid, leathery or butyrous; initially 

relatively smooth surfaced but later they develop a wide variety o f aerial mycelia that 

may appear granular, powdery, velvety or floccose (Alexander, 1991). Streptomyces 

produce a wide variety of pigments responsible for colours o f the vegetative 

mycelium, aerial mycelium and substrate, being the colour of mature sporulated aerial 

mycelia, white, grey, yellow and some other colours in between. Streptomyces are 

slow growing organisms and isolation plates are often incubated for 1 to 2 weeks to 

allow differentiation and adequate growth o f the colonies (Fig. 1.14).

%
o '
o O o

Figure 1.14 Streptomyces colonies on agar (reproduced from

http://rilefaox.\'t.cdii/iiscrs/chaucdor/biol 4684/M icrobcs/strcp.htinl)
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Besides producing many secondary metabolites, extracellular enzymes, 

enzymatic inhibitors and pigments (Schrempf, 1991), the bacterial genus 

Streptomyces is noted for the production of antibiotics, as much in volume as in 

diversity. Practically all the different chemical families of antibiotics active against 

bacteria, fungi, algae, viruses or tumours are produced by some representative from 

Streptomyces.

1.6.3 Drug export as self-protection mechanism in antibiotic producing 

organisms

Diverse mechanisms to protect antibiotic-producing organisms have been 

described (Ohnuki et aL, 1985; Levy, 1992). In tetracycline producers, cytoplasmic 

resistance determinants (e.g. TetM, OtrA) are associated with the ribosome and 

prevent its interaction with the antibiotic (Roberts, 1994; B hal and Hunter, 1995). 

The microorganism may lack the target site for the antibiotic it produces (Vining, 

1979). Modification of the antibiotic or its target site in the producing organism and 

active transport out of the cell seem to be the most common mechanisms to avoid the 

effect of these autotoxic compounds. A resistance mechanism implied for producers 

of antibiotic peptides (e.g. subtilin, nisin, lacticin) seems to require the presence of a 

couple of ABC transporters, one of them being necessary for the re-translocation of 

exported peptides that have penetrated the membrane from the external media (Abee,

1995). Another ABC peptide exporter also involved in producer self-protection is the 

bacitracin transporter (Bcr) of B. licheniformis (Podlesek et al., 1995). Both proton- 

dependent transmembrane electrochemical gradients and ABC pumps are represented 

in Streptomyces self-resistance mechanisms. The self resistance of S. peucetius to the 

anti-tumour anthracycline compounds daunorubicin and doxorubicin, is one of the 

known examples that involves active transport of antibiotic compounds out of the 

producing cell to avoid its toxicity (Guilfoile and Hutchinson, 1991; Kaur, 1997). 

Other Streptomyces species possess self-resistance mechanisms that involve ABC 

transporters; some examples include the tylosin-resistance protein TlrC from 

Streptomyces fradiae (Rostek et a l, 1991), which is similar to the DrrA protein; the 

oleandomycin transporter OleC from Streptomyces antibioticus (Olano et ah, 1996); 

the Streptomyces argillaceus mithramycin resistant-determinant (Fernandez et a l,

1996); the Cb carbomycin-resistance determinant in Streptomyces thermotolerans
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(Epp et al, 1987); and Streptomyces rochei msr that is another gene that would 

encode a multidrug ABC transporter (Fernandez-Moreno et al., 1998).

A summary of some examples of ABC transporters responsible for antibiotic 

resistance mechanisms in antibiotic producing microbes can be seen in Table 1.6. As 

many ABC transporters have been located in antibiotic biosynthetic gene clusters, it is 

logical to link their presence to some natural function for the export of the product 

across the cellular membrane to avoid their autotoxic effects (Mendez and Salas, 

2001).
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Table 1.6. ABC transporters in antibiotic-producing actinomycetes

Synthesised Producer ATP Membrane References

antibiotic

Type I

organism binding

protein

protein

Daunorubicin S. peucetius DrrA DrrB G u i l f o i l e  a n d  

Hutchinson, 1991

M ithramycin S. argillaceus MtrA MtrB Fernandez et al., 1996

Oleandomycin S. antibioticus OleC 01eC5 Rodriguez et al., 1993

Tetronasin S. longisporoflavus TnrB2 TnrB3 Linton et al., 1994

Macrotetrolide S. griseus Non-orf5 Non-orf6 Smith et al., 2000

Kasugamycin S. kasugaensis KasK KasL, KasM Ikeno et al., 2000

Rapamycin S. hygroscopicus OrfX Schwecke et al., 1995

Type II

Carbomycin S. thermotolerans CarA - Schoner ef a/., 1992

Spiramycin S. ambofaciens. SrmB - Schoner e/fl/., 1992

Tylosin S. fradiae TlrC - Rosteck et a/., 1991

Oleandomycin S. antibioticus OleB - Olano et al., 1996

A201A S. capreolus A rdl - Barrasa et al., 1995

Lincomycin S. lincolnensis LmrC - Peschke et al., 1995

Frenolicin S. roseofulvus FnrD - AF058302

Virginiamycin S. virginiae VarM - Kawachi et al., 2000

Type III

Bleomycin Stv. Verticillum BIe-0rf7 In ty p e  III 

transport both

C a lcu tt and S chm idt, 

1994

Streptomycin S. glaucescens StrV, StrW dom ains are Beyer et al., 1996

Chloroeremomycin A. Orientalis OrfZ fused Wageningem et al., 1998

Novobiocin S. sphaeroides NovA Steffensky et a l ,  2000

Nystatin S. noursei NysG and 

NysH

Brautaset et al., 2000

In p roducer o rganism  colum n; A is A m yc o la to p a to p sis \ S is S trep to m yces  and; Stv is 

Streptover tic ilium. In type I transporters, ATP-binding domains and membrane domains are produced 

in separate proteins. In type II transporters, membrane domains have not been reported. In type III 

transporters, ATP-binding domains are fused to membrane domains in a single protein. This table is an 

adaptation o f  the table presented by Mendez and Salas, 2001.
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1.6.4 The DrrAB pump system

In addition to antibiotics like aminoglycosides, tetracyclines, chloramphenicol, 

and some p-lactams that are produced by members of the genus Streptomyces, S. 

peucetius produces the antibiotics doxorubicin and daunorubicin (Guilfoile and 

Hutchinson, 1991). These compounds are classified into the anthracyclines and 

possess antitumoral activity (Arcamone, 1981), expanding the arsenal of compounds 

with different activities produced by Streptomyces.

The way in which S. peucetius avoids the effects of the anthracyclines they 

produce, is by pumping them out of the cell (Guilfoile and Hutchinson, 1991) using 

an ABC transporter (Gottesman and Pastan, 1993). Two subunits are present, one of 

them, DrrA, is a peripheral membrane protein that acts as the energy-transducing 

component, and the other, DrrB, is the membrane carrier. This type of permease 

cames out export of antibiotics in an ATP-dependent mamier.

In 1991, Guilfoile and Hutchinson cloned, sequenced, and transcribed the 

genes that confer resistance to the daunorubicin and doxorubicin compounds. The 

transformation of Streptomyces lividans allowed the analysis and recognition of the 

drrAB locus by resistance selection to the anthracyclines (Guilfoile and Hutchinson, 

1991). Transcription of both genes could not be detected early in growth, suggesting 

that drrA B  transcription might be co-regulated with the genes for antibiotic 

production.

Having identified start and stop codons for each reading frame of the operon, 

they could predict that drrA would encode a predominantly hydrophilic protein 

containing 330 amino acids with a molecular mass of 35,668 Da and a pi of 5. 

Similarly, drrB would encode a very hydrophobic protein, composed of 283 amino 

acids, a molecular mass of 30,614 Da and a pi of 7.5. They concluded that the 

sequence of the predicted product of the drrA gene was similar to the products of 

other transport and resistance genes, notably with P-glycoprotein from mammalian 

tumour cells and that it was probably involved in the transport of the same substrates. 

DrrB, on the other hand, showed no significant similarity to other known proteins. 

Later investigations reported that DrrB exhibited statistically significant sequence
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homology to integral membrane components of four bacterial ABC transporters, such 

as NodJ from NodlJ, involved in oligosaccharide export in R. leguminosarum (Evans 

and Downie, 1986), KpsM from KpsTM, involved in capsular polysaccharide export 

in E. coli (Smith ei aL, 1990; Pavelka et a l,  1991), and its capsular polysaccharide 

export homologues BexB from H. influenzae Bex ABC (Kroll and Moxon, 1990) and 

CtrC from N. meningitidis CtrDCB (Frosch et al., 1991). In conjunction with the 

homology that DrrA presents with the ATP binding constituents o f these four 

transporters, suggested a novel subclass of transporters to be named the ABC-2 family 

(Reizer et aL, 1992).

The open-reading frames of the drrrA and drrB genes were sub-cloned and 

expressed in E. coli expression vectors as single or coupled gene constructs (Kaur,

1997). Both gene products showed a molecular mass that corresponded to that 

predicted from their nucleotide sequences (36 kDa for DrrA and 31 kDa for DrrB), 

The DrrA protein was present in the cytosolic fraction and was also located in the 

membrane. The DrrB protein was scarcely expressed in the absence of the drrA gene, 

and was shown to be toxic for E. coli growth. DrrA was shown to bind ATP and GTP 

in the presence of magnesium ions in a UV cross-linking assay. The binding of 

nucleotide to DrrA was enhanced by the presence of doxorubicin, indicating that the 

activity of the pump was regulated by its substrate (Kaur, 1997; Kaur and Russell,

1998).

It has been suggested that a very close relationship between both subunits is 

required for the activity of this system, and subsequently, for the resistance of S. 

peucetius towards its own antibiotic. DrrA was expressed as an active form that could 

bind ATP only when it was in complex with DrrB. UV cross-linking studies with 

^^P] ATP showed that only the membrane-bound form of DrrA in cells containing 

both DrrA and DrrB, was in a conformation competent to bind and/or hydrolyse ATP 

(Kaur and Russell, 1998). Kaur and Russell’s work emphasised that ATP interacted 

with membrane-bound DrrA and not with DrrA present in the cytoplasmic fraction, 

irrespective of whether or not it was over-expressed in the presence of DrrB.

Although DrrB seems to be translated in the absence of DrrA, it was only 

detected after translation of both the drrA and drrB  genes (Kaur, 1997; Kaur, and
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Russell, 1998) indicating a requirement upon the drrA gene product for stabilisation 

of the DrrB protein. Chemical cross-linking studies also suggested a direct interaction 

between DrrA and DrrB with a probable stoichiometry of the complex as DrrAzDrrBz. 

The authors proposed that DrrA is an allosteric protein that acquires different 

conformations depending on the presence or absence of DrrB and the ligand 

doxorubicin.

Another gene, drrC, is also involved in S. peucetius resistance to anthiacycline 

antibiotics, specifically daunorubicin (Dm). However, DrrC is not part of the DrrAB 

pump; it is proposed to protect DNA from Dnr as soon as its production starts, and 

that DrrA and DrrB work to export the antibiotic after its concentration rises in the 

cell (Fur ay a and Hutchinson, 1998). A regulatory role for the dnr I  gene product in 

the production of DrrC, DrrA, and DrrB proteins has been proposed by these authors.

An equivalent DrrAB(C) system was also reported and characterised for M  

tuberculosis (Choudhuri et aL, 2002; Nash, 2003), although its role in this 

microorganism is not yet clear. DrrA, particularly, shares some features with other 

NBDs, notably its preference for ATP as substrate and its dependence upon divalent 

cations like magnesium. When purified in isolation and assayed, ATPase activity is 

not affected by the presence of the transport substrate and interaction with membrane 

components does not take place unless the protein is reconstituted into 

proteoliposomes.

Most ABC transporters consist of two nucleotide-binding domains (NBDs) 

and two transmembrane spanning domains (TMDs) of six-helices each. DrrAB 

consists of one NBD and one TMD, equivalent to a half transporter, and it is thought 

further association is required to form a full transporter structure. A seven-helix 

topology had been suggested for DrrB, different from the six-helix reported in the 

transmembrane domains of many other transporters. Recent experiments (Gandlur et 

aL, 2004), support an eight-helix topology (Fig. 1.15). Fusion of DrrB to several 

reporter genes indicated the presence of the N- and C-termini in the cytoplasm.
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ATP ADR + Pi
Cytoplasm

N-

Flgure 1.15 Diagrammatic presentation of the membrane topology of the two 

transport domains from S. peucetius DrrAB transporter.
Two polypeptides are encoded by different genes; the membrane domain (eight a-heiices) by drrB, and 

the nucleotide-binding domain, by drrA. The figure above represents a half transporter. Two TM and 

two NB domains would form the canonical structure for the ABC transporters.

New experiments from Kanr’s group (Kaur et al., 2005), have used single

cysteine DrrB mutants in chemical cross-linking experiments. Single cysteine 

residues were created in the transmembrane and cytosolic loops by site-directed 

mutagenesis, and subsequently attempts were made to link the DrrB proteins to a 

primary amine in DrrA. This was used to map possible sites o f  DrrA DrrB 

interaction. Interestingly, a motif that might be equivalent to the EAA sequences 

reported in ABC importers was identified in the N-terminal cytoplasmic tail o f DrrB, 

and shown by sequence analysis to be also present in exporters.
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1.7 Aims of the project

The goal of this project is to determine the molecular mechanisms of 

antibiotic binding and translocation for the doxorubicin pump, DrrAB, from S. 

peucetius.

Principally, the approach will be to prepare proteins for transient kinetic 

experiments to provide mechanistic information. If sufficient protein can be 

obtained, it might also be used for crystallisation trials to provide structural 

information. An additional potential goal would be to use the DrrA protein as a 

component of a biochip to screen for inhibitors of the antibiotic pump.

If the ATP binding domain can be functionally separated from the membrane 

domain of the transporter it may then be possible to overproduce these domains 

separately for detailed structure-function studies. Knowledge of the structure of DrrA 

will be important in elucidating the architecture of the antibiotic binding-site. As such, 

Drr is an important model system for the study of the molecular mechanism of 

resistance pumps. Understanding the structure and function of one of these pumps 

will be vitally important in combating the escalating threat posed by multidrug 

resistant pathogens and in cancer chemotherapy.
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Chapter 2
MATERIALS AND METHODS

2.1 Reagents and materials

2.1.1 Source of reagents and materials

Chemicals were mainly acquired from Sigma and BDH, but as well from 

Aldrich, Riedel-de Haen, and Fischer. Difco and Oxoid supplied microbial growth 

media. Enzymes used in molecular biology were obtained from Promega, Roche, or 

Gibco. Additional reagents or materials for special applications are noted in the 

respective section in this chapter.

2.1.2 Preparation of chemical and media solutions

General chemicals were weighed on an AND digital balance and dissolved in 

distilied/de-ionised water. Small amounts were weighed on a Metier Toledo digital 

fine balance.

2.1.3 Sterilisation of reagents and materials

Reagents and media to be sterilised were either autoclaved or filter sterilised, 

depending on their stability to heat. Sterilisation by autoclaving was performed at 

121 °C for 15 minutes at 4 atmospheres pressure. Filter sterilisation was used for heat 

labile liquid reagents by filtration tlmough a 0.2 pm Millipore syringe filter.

2.1.4 Centrifugation

Routine room temperature centrifugation of 1.5 ml microcentrifuge tubes was 

performed in a MSB MicroCentaiir benchtop microcentrifuge, fitted with a 24 place 

fixed angle rotor. When cooling was required, a Jouan CRi benchtop refrigerated 

centrifuge was used. Larger volumes of liquids were processed in a Beckman-Coulter 

Avanti J-E refrigerated centrifuge accommodating several different fixed angle rotors. 

A Beckman JA-10 rotor was used to process volumes up to 3 litres in 500 ml plastic 

containers, whilst a Beckman JA-21 rotor was used to process up to 400 ml in 50 ml
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tubes. High-speed ultracentrifugation was performed in a Beckman L8M 

ultracentrifuge using a Beckman Ti50 fixed angle rotor.

2.2 Microorganisms; growth and storage

A list of all bacterial strains used in this thesis is presented in the Table 2.1.

2.2.1 Growth media

Basic liquid cultures for propagation of E. coli strains used two main types of 

growth media:

Luria-Bertani (LB) medium:

NaCl lOg/L

Tryptone lOg/L

Yeast extract 5 g/L

2X YT medium:

NaCl 5 g/L

Tryptone 16 g/L

Yeast extract 10 g/L
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Table 2.1 Bacterial strains used in this study

Microorganism Genotype Origin Application

Escherichia coli enclAl hsdR17(ric]2~ V supE44 th i-1 Novagen General cloning

Novablue re c A I  g y rA 9 6  r e lA l  la c  [ F ’ 

proA 'B 'laéZJA Î5::TnlQ (tei^)]

Escherichia coli X L l- r e c A l  e n d A l g y r A 9 6  (h i —I Stratagene General cloning

Blue h sd R 1 7 su p E 4 4  r e lA l  la c  [ f  

pro  A *B^laéZ_MÎ5TnlO(tei^)]

Escherichia coli XL 10 Tef' __(tncrA) 183 (mcrCB-hsdSMR- Stratagene General cloning

Gold mrr)173 end A1 suoE44 thi-1 recA l 

gyrA96 re lA l lac The[F’ proAB lad’Z 

_M15 TnlO (Tei'̂ ) Amy Cam'

Escherichia coli TOP 10 F  m crA  _(mrr-hsdRMS-mcrBC) 

_80lacZ_M 15 _lacX74 recA l deoR  

araD 139 _(ara-leii)7697  g a lU  galK  

t'psL (Str’̂ ) endAlnupG

Invitrogen pBADTOPO 

cloning and 

mediated 

recombinant 

expression

Epicurian coli B L21 E. coli B F  omp had S (rjf mF) dcm' Stratagene pET21-a mediated

(DE3) Tef g a l EndA The[argU  ileY  leiiW  

Cam']

recombinant

expression

Epicurian coli BL21 AI F  ornpT h sdS ^  (rFmF) g a l dcm 

araB:: T7RNAP-tetA

Invitrogen pET21-a mediated 

recombinant 

expression

Escherichia coli BMH Thi, siipE, _(lac-proAB, [/?m/S:TnlO] Promega Site-directed

mutS [F’, proP4Q, la c j\Z _ M  15 mutagenesis

Escherichia coli _80lacZ_M l5 recA l endAl gyrA96 thi- Promega General cloning

DH5_pro 1 hsdR17(rir mF) supE44 re lA l deoR 

JlacZYA-argF) V I69

Escherichia coli F  mcrA _lacX74 gal E thi rpsL _phoA Invitrogen pBADTOPO

LMG194 (Pvu 11) _ara714 leii::TnlO cloning and 

mediated 

recombinant 

expression

Escherichia coli N a t StF R i f  Thi Lac Ara" G a t  M tt F Qiagen Protein expression

M15[pREP4] RecA'  ̂ Uvr'' Lon
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2.2.2 Growth of bacteria

Escherichia coli strains were routinely cultured in Luria-Bertani (LB) 

broth, supplemented with the appropriate antibiotic where necessary. When solid 

media were prepared, agar was added at 1.5% w/v prior to autoclaving. To provide 

higher cell densities when large volumes of cells were required for expression 

cultures, 2X YT broth was used. Other media such as SOC and NZY^ were used 

in some specific cases according to the requirements of the particular protocol.

Inoculation in liquid broth was achieved by transferring a single colony from a 

plate to an appropriate volume of medium. The culture was incubated, with rotary 

shaking at 200 rpm and 37 °C, in a 25-ml conical bottomed universal container.

Culture on solid media was achieved by streaking or spreading organisms onto 

the agar surface, using a sterile microbiological loop or sterile spreader. Plates 

were placed in a 37 °C incubator, in an inverted position, for 18 hours,

2.2.3 Storage of bacteria

Stock cultures of each bacterial strain used were prepared in order to maintain 

their long term integrity and viability. Stocks were typically prepared by mixing 800 

111 of an overnight liquid culture with 200 jal of sterile 80% glycerol, and stored at -80 

°C. These strains were retrieved by scraping a small amount of the frozen stock using 

a sterile loop, and then streaking this material onto solid growth medium for 

overnight incubation at 37 °C.

2.2.4 Antibiotics

The use of antibiotic markers in a culture is a useful tool to ensure the 

presence of plasmids and the selection of strains that carry specific genetic markers 

such as antibiotic resistance genes, avoiding contamination by other microorganisms. 

Antibiotics were made up at the following final concentrations unless otherwise stated 

and filter sterilised before use: ampicillin 100 mg/ml; carbenicillin 100 mg/ml; 

kanamycin 50 mg/ml; doxorubicin 2 mg/ml in DMSO.
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2.3 Isolation and analysis of nucleic acids

2.3.1 Agarose gel electrophoresis

Electrophoresis in horizontal gel slabs was used for analysis of DNA. 

Agarose was dissolved at 0.9-1% (w/v) in TAE buffer by boiling the mixture in a 

microwave. The solution was allowed to cool slightly before the addition of the DNA 

staining reagent ethidium bromide at a final concentration of 0.1 pg/ml. The mixture 

was poured into a horizontal gel-tray and allowed to set solid by cooling. Wells for 

sample loading were created in to the agarose slabs by fitting a comb into one end of 

the molten agarose solution. The agarose slabs were then placed into electrophoresis 

tanks and submerged in TAE buffer prior to sample loading.

The DNA samples were mixed with 6X loading buffer and applied to the gel 

wells, whilst a 1 kb DNA ladder (Roche Molecular Diagnostics; 5 pg) was used for 

reference. Gels were typically run at 110 V.

The presence of the dyes bromophenol blue and xylene cyanol in the loading 

buffer, allowed the progression of the samples through the gel to be observed so that 

we could determine when the DNA had migrated a sufficient distance. Then the gel 

was examined on an ultraviolet light transilluminator to visualise the DNA. If 

necessary, the gel was photographed using a Polaroid MP4 instant camera system or a 

SynGene Bio Imaging system.

Buffer compositions:

IX TAE:

4.84 g Tris base

1.142 ml glacial acetic acid

2 ml 0.5 M EDTA

Made up to 1 L in distilled water

6X DNA loading buffer:

100 mM EDTA (pH 8.0)

1% w/v SDS

0.1% w/v bromophenol blue
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0.1% w/v xylene cyanol 

50% glycerol

2.3.2 Small scale preparation of plasmid DNA

Bacterial strains harbouring plasmids were cultured in 5 ml LB broth, 

containing appropriate antibiotics, and harvested by centrifugation. Plasmid DNA 

was then isolated using the QIAprep Spin Miniprep Kit (Qiagen), according to the 

manufacturer’s instructions. The procedure uses the modified alkaline lysis method 

of Birnboim and Doly (Birnboim and Doly, 1979), and the lysate is subsequently 

neutralised and adjusted to high-salt conditions in one step, before centrifugation. 

The next step comprises the absorption of plasmid DNA onto a silica-gel membrane 

housed in the QIAprep spin column. The final steps comprise the washing and 

elution of purified plasmid DNA from the column.

2.3.3 Extraction of DNA from agarose gels

DNA was extracted from agarose gels for cloning. This was accomplished 

using the QIAquick Gel Extraction Kit (Qiagen) according to manufacturer’s 

instructions. The sample containing the DNA target was separated on an agarose gel 

containing ethidium bromide. After visualisation of the DNA on a UV 

transilluminator, the bands required were excised from the gel for extraction. The gel 

slices were mixed with solubilisation buffer (solution QG) at a ratio of 300 pi per 100 

mg of agarose and incubated in a water bath at 50 °C, until complete dissolution of the 

agarose had been achieved. The sample was then applied to a spin column, allowing 

DNA adsorption to its silica-membrane. Other components of the solution were 

cleared by centrifugation through the spin column. Subsequent washing removed 

traces of agarose and residual buffers. The DNA was eluted in a last step.

2.3.4 Alternative Procedure for gel extraction/purification/concentration of DNA

Alternatively, the Qiaex 11 resin (Qiagen) was also used for DNA gel 

extraction following the manufacturer’s instructions.
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2.4 DNA amplification, cloning and sequencing

2.4.1 Use of the Polymerase chain reaction (FCR)

PCR was mainly used to amplify the drrA gene for insertion into different 

vectors. Alternatively, PCR was also used for site-directed mutagenesis and 

assessment of the orientation of genes inserted in the pBADTOPO thio vector.

2.4.1.1 Template

Streptomyces peucetius drrA, or drrA and drrB, were prepared by PCR using 

the cosmid pWHM612 (the kind gift of Guilfoile and Hutchinson) as template.

2.4.1.2 Oligonucleotide primers for PCR

Oligonucleotide primers for PCR (Table 2.2) were synthesised at a 50 nmol 

scale by Life Technologies and supplied desalted and lyophilised. Primers were re

suspended in the appropriate volume of 10 niM Tris-HCl pH 8.0 to achieve a stock 

concentration of 50 pmol per micro litre.
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Table 2.2 Oligonucleotide primers for PCR

Primer name

pET21a-(7/'rX forward 

pET21a-c//rX reverse 

F E Ïll^-dirA B  forward 

FET2\?i-dn'AB reverse 

pET33b-c//7*42J forward 

pET33b-(3'/v’/1.5 reverse

Sequence (5’ to 3’)

CAT ATG AAC ACG GAG CCG ACA CGG GCC ATC GAA

CTC GAG TGC CAC CTT CTC CTC TTC CGC CGC TTC TTC

GCT AGC CAT CAT CAT CAT CAT CAT AAC ACG CAG CCG 

ACA CGG GCC ATC

AAG CTT TCA GTG GGC GTT CTT GTT GCG GTA CAG ACG 

CAT GGT CAG CGG

GCT AGC AAC ACG CAG CCG ACA CGG GCC ATC 

AAG CTT TCA GTG GGC GTT CTT GTT GCG GTA

^B hm O B O -thiodirA  forward GTG AAC ACG CAG CCG ACA CGG GCC ATC GAA

pBADTOPO- thiodn-A reverse TGC CAC CTT CTC CTC TTC CGC CGC TTC TTC

W C l^ -drrA B  forw ard  

W C l^ -drrA B  reverse 

PQE-i^/tX forward 

^QE-drrA reverse

GAA TTC GCA CCA CCA CCA CCA CCA CAA CAC GCA GCC 

GAC ACG GGC CAT CGA

AAG CTT TCA GTG GGC GTT CTT GTT GCG GTA CAG ACG 

CAT GGT CAG CGG

GAG CTC GTG AAC ACG CAG CCG ACA CGG GCC ATC 

AAG CTT TCA TGC CAC CTT CTC CTC TTC CGC CGC
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2.4.1.3 Standard PCR

PCR was carried out using HotStarTaq^^ thermostable DNA polymerase (a 

derivative o f Thermus aquaticus DNA polymerase) (Qiagen) and its respective 

buffers. This enzyme requires a period of incubation of 15 minutes at 95 to be 

active. This characteristic of the polymerase increases the probability of specific 

priming and extension. Typical reaction composition is presented below with cycling 

parameters (Table 2.3). Particular PCR conditions will be presented in the respective 

Results section.

A one-tube format reaction was performed using the following reaction

components:

Final volume 100 pi

lOX PCR buffer 10

dNTPs (10 mM) 2

Primer 1 (50 pmol/pl) 2

Primer 2 (50 pmol/pl) 2

DNA polymerase 1

Millipore water 82

Template DNA (40 ng/pl) 1

Deoxyribonucleotides dATP, dCTP, dGTP and dTTP were obtained as 100 

mM stock solutions. A mixture of the four dNTP’s was prepared with each one at a 

concentration of 10 mM.

On some occasions the use of the proprietary reagent Q-solution (supplied 

with HotStar Taq DNA polymerase) was essential to the success of the amplification 

of the DNA target sequence. This solution alters the melting properties of duplex 

DNA.
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Table 2.3 Cycling parameters for standard PCR reaction

Segment Cycles Temperature Time

Hot Star Taq 1 95 "C 15 minutes

activation

Dénaturation 30 94 T 45 seconds

Annealing Gradient 50-60 °C 45 seconds

Extension 72 "C 1 min. 30 sec.

Final extension 1 72 °C 10 minutes

PCR was performed on either an Eppendorf Gradient Thermocycler or a 

Techne Cyclogene Thermocycler. Both machines have heated lids which prevent 

evaporation of the reaction mixes during the cycling process. These lids were set to 

105 °C, removing the need for a layer of mineral oil over each reaction.

Reactions were set up on ice and transferred to the thermocycler for PCR. 

Thin-walled PCR reaction tubes and sterile tips were used for all reactions.

2.4.2 Vectors

2.4.2.1 pGEMT-Easy (Promega)

This vector was used for the cloning of all the PCR products except for the 

product to be inserted into the pBADTOPO thiofusion vector. These vectors are 

convenient systems for cloning of PCR products as they present single terminal T 

overhangs, which not only impede the recircularisation of the vector, but also provide 

compatible overhangs for PCR products that have been generated by thermostable 

polymerases with terminal transferase activity. These enzymes often add a single 

deoxyadenosine to the 3 ’ ends of the amplified fragments.
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2.4.2.2 pET21a (Novagen)

Ndel and Xhoi restriction sites flanking the drrA gene were incorporated into 

the primers used for amplification by PCR, and these sites in the pET21a plasmid 

were used for cloning. In this vector (Fig. 2.1), the sub-cloned gene is placed under 

control of the strong bacteriophage T7 promoter. Sub-cloning of both the drrA and 

drrB genes into pET21a was also performed. For this reaction, Nhel and Hindlll 

restriction sites were used.

2.4.2.3 pET33b (Novagen)

The vector pET33b was also used to sub-clone drrA and drrB together. Nhel 

and H indlll restriction sites flanking the drrAB sequence were designed into the 5’ 

termini of the primers.

2.4.2.4 pBADTOPO thiofusion (Invitrogen)

For cloning into this vector, drrA primers did not carry any restriction sites as 

the vector carries the enzymatic machinery for ligation of the PCR product. This 

plasmid (Fig. 2.2) contains the araB AD  promoter that can be tightly regulated to 

produce recombinant protein in a more controlled fashion.

2.4.2.5 pQElOO (Qiagen)

Sacl and Hindlll restriction sites were designed into drrA primers to enable 

ligation between these sites in the pQElOO plasmid. In pQE vectors, expression of the 

sub-cloned gene is achieved from the bacteriophage T5 promoter.

2.4.3 PCR based DNA sequencing

Sequencing of DNA was carried out by BaseClear (Leiden, The Netherlands), 

and by the University of Durham. Purified DNA template and, were necessaiy, gene 

specific primers, were sent to the service providers. Sequence data were returned in 

the form of text and cliromatogram files for manipulation and analysis. Data were 

analysed using Vector NTl 6.0 bioinformatics software (InforMax Inc.).
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Figure 2.1 Map of the pET-21a vector used to clone the d/rA  and drrAB  genes

(from Novagen)
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2.5 Enzyme mediated manipulations of DNA

2.5.1 Restriction enzyme digestion

Digestion of DNA with restriction endonucleases was performed in sterile 0.5 

ml micro centrifuge tubes at 37 °C in an incubator. Reaction mixes contained the 

appropriate enzyme buffer, restriction endonuclease and an appropriate amount of 

DNA. Sterile distilled water was added to a final volume of 20 pi. A standard 

reaction mix contained:

1 OX restriction enzyme buffer 2 pi

Experimental DNA sample 2-5 pi (up to 1.5 pg)

Restriction enzyme 1 pi (2-10 units)

MilliQ water Up to 20 pi

Digestion was allowed to proceed for 1-3 hours, depending on template 

concentration and the intended application. After the incubation period, samples were 

analysed by agarose gel electrophoresis.

2.5.2 Ligation of DNA to plasmid vectors

Vector systems used for cloning were linearised in preparation for ligation 

with the DNA of interest. For the cloning of PCR products, T-A cloning was used. 

For cloning of restriction fragments cohesive ligations were performed by cutting the 

vector to generate ends compatible with those of the DNA to be cloned.

2.5.2.1 T-A cloning:

For general propagation of PCR amplicons the pGEMT-Easy vector system 

was used (Promega). Reaction components were as follows:

pGEMT-Easy vector DNA 1 pi (50 ng)

2X rapid ligation buffer 5 pi

Gel purified PCR amplicon 3 pi (2:1 insert to vector ratio)

T4 DNA ligase 1 pi (5 Units)
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Ligation was allowed to proceed for 1 hour at room temperature or overnight 

at 4 prior to transformation.

2.5.2.2 pET cloning

PCR products amplified from S. peucetius were cut out of the pGEMT-Easy 

vector and ligated into different E. coli expression vectors (particularly pET21a). 

DNA excised from pGEMT-Easy by restriction enzyme digestion was ligated into 

linearised expression vectors that had been digested with the same enzymes, such that 

the two DNA fragments possessed complimentary ends. Components were;

Digested pET vector DNA 1 pi (50 ng)

Digested DNA to be cloned 3 pi (3:1 insert to vector ratio)

5X ligase buffer 4 pi

T4 DNA ligase 1 pi (5 Units)

Sterile distilled water to 20 pi

Ligation was allowed to proceed for 1 hour at room temperature prior to

transformation, or incubated at 16 °C overnight to guarantee a high number of

recombinant DNA molecules.

2.5.2.3 pBADTOPO thio cloning

For the construction of a recombinant protein expression system using the 

pBAD fusion vector, the drrA PCR product was ligated using an activation factor 

(Topoisomerase I) and the single overhanging 3’ deoxythymidine (T) residues 

contained in the vector. Reaction components were:

Fresh PCR product 3 pi

Salt solution 1 pi

Sterile water to a total volume of 5 pi

TOPO^ vector 1 pi

Final volume 6 pi
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The reaction mix was incubated for 5 minutes at room temperature for ligation. 

Subsequently, 2 pi of this reaction mixture was used to transform chemically 

competent LMG 194 E. coli cells according to standard protocols. The transformed 

bacteria were plated onto solid LB agar media supplemented with 100 pg/ml 

carbenicillin, and recombinant cells were isolated after incubation overnight at 37 °C.

2.6 Transformation of E. coli with DNA plasmid

2.6.1 Transformation of chemically competent E. coli cells

Chemically competent E. coli strains were acquired from various commercial 

sources, or produced in the laboratory. Transformation protocols were followed 

according to the manufacturer’s instructions. A typical protocol is described below.

Ligation reactions or plasmid preparations (2.5 pi) were added to 50 pi of 

thawed competent cells on ice and gently mixed. The mixture was then incubated on 

ice for 30 minutes. Heat shock was applied by immersion of the tube in a 42 °C water 

bath for 45 seconds. Tubes were rapidly restored to an ice bath for two minutes, 250 

pi of SOC medium (or equivalent) was added to each tube, and the suspension was 

shaken at 220 rpm and 37 °C for 1 hour. Cells were then plated onto LB agar 

containing the appropriate antibiotic and incubated at 37 °C overnight.

When fresh competent cells were prepared, the CaCb method was used. In 

this procedure, cells from an overnight culture are diluted 50 fold into a volume of 10 

ml and grown until an ODeoonm of 0.6 is reached. An aliquot of 1 ml is centrifuged 

(30-60 secs), the supernatant is discarded, and the pellet, kept on ice, is re-suspended 

in 0.5 ml of cold 50 niM CaCb for 10 minutes, or overnight at 4 ®C. After a second 

short spin, the pellet is again re-suspended in 0.3 ml of CaCb and kept on ice for 30 

minutes, or again overnight at 4 °C. At that stage, cells are ready for transformation.

2.6.2 Selective screening of recombinant bacterial clones

The presence of one or several antibiotic resistance determinants was a feature 

of all the plasmid vectors used in this work. This ensured that only successfully 

transformed bacteria could grow on media supplemented with antibiotics. DNA from
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these clones was then screened for the presence of insert using restriction digestion 

and/or sequence analysis. Ampicillin resistance was a feature of almost all the vectors 

used in this study.

Blue/white screening of recombinant pGEMT-Easy clones

Identification of pGEMT-Easy is aided by insertional inactivation of a - 

galactosidase reporter gene and the loss of hydrolysis of the substrate analogue X-gal 

(5-bromo-4-chloro-3-indolyl-_-D“galactoside). Expression of the -galactosidase 

gene is under the control of the lac promoter and successful transcription requires the 

presence of the inducer IPTG (isopropyl-_-thiogalactopyranoside). Colonies with 

non-recombinant plasmids appear blue on the indicator plates because the - 

galactosidase gene has not been disrupted and the X-gal substrate can be digested. In 

contrast, cells that carry recombinant plasmid remain white under these conditions.

To make indicator plates, LB agar plates containing 100 pg per ml ampicillin 

were spread with 100 pi of sterile 100 mM IPTG. Prior to inoculation, 100 pi of 2% 

(w/v) X-gal in dimethyl formamide, was spread onto the agar surface. These 

components were allowed to diffuse and dry on the plates for at least 1 hour before 

use. Plates were incubated in an inverted position, at 37 °C for 18 h, and white 

colonies picked and propagated for further analysis.

2.7 Heterologous expression of recombinant proteins

2.7.1 Expression of recombinant proteins from pET21a in Epicurian coli BL21 

(DE3)

Epicurian coli BL21 (DE3) cells were used for the production of recombinant 

proteins derived from pET21a carrying the S. peucetius DrrAB system. This bacterial 

strain is lysogenic for the lambda bacteriophage and carries an IPTG-inducible 

bacteriophage T7 RNA polymerase that is required for transcription from the T7 

promoter. Bacterial strains harbouring expression constructs were streaked onto an 

LB agar plate containing 100 pg per ml carbenicillin. Following overnight incubation 

and growth, a single colony was used to inoculate a starter culture. This culture was 

grown at 37 “C and 200 rpm overnight and used to inoculate a larger expression

77



culture at a 1/1000 dilution. All expression cultures were grown in baffled flasks with 

rotaiy shaking at 200 rpm to promote aeration, and supplemented with the appropriate 

antibiotic to maintain the retention of the pET plasmid. Growth continued until the 

culture reached an approximate ODeoo of 0.6. Expression was then induced by 

addition of IPTG to a final concentration of 1 mM, and was allowed to proceed for 3- 

4 hours. Tlu'ough interaction with the lac repressor, this triggered de-repression of the 

chromosomal lacUV5 promoter and hence the production of the T7 RNA polymerase, 

required for transcription of the target gene from the T7 promoter.

To assess the extent of heterologous protein expression, 1 ml aliquots were 

removed from the expression culture prior to induction and at Ih intervals thereafter. 

The cells were harvested by centrifugation at 16,600 x g  for 1 minute, and the cell 

pellet was prepared for analysis by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE), as described later.

Alternatively, the expression culture was grown until the cells reached an 

ODôoo of approximately 0.25. The temperature was then gradually reduced about 5 

degrees each 15 minutes until it reached 19“C. When an OD^oo of 0.6 was reached, 

cultures were induced by addition of IPTG. The reduction in temperature was 

continued to 17 °C, and the culture was then grown overnight.

2,7.2 Expression of recombinant proteins from pBADTOPO thiofusion in E. coli 

LMG 194 and Top 10 cells.

Single colonies of transformed E. coli LMG 194 or E. coli TOP 10 cells were 

picked to liquid medium and grown at 200 rpm and 37 °C overnight. Expression 

cultures were prepared by inoculation with a 1/1000 volume of overnight culture. 

Cultures were grown until the cells reached an approximate ODeoo of 0.6-0.7 before 

induction with arabinose.

To find the appropriate concentration of inducer, a pilot experiment was 

carried out using different concentrations of arabinose to induce protein expression at 

37 °C in 10 ml cultures that had reached mid-log phase. Arabinose concentrations 

were varied from 0.0002% to 2% (w/v) to identify the optimal concentration required
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for expression of soluble protein. Protein expression was induced for 4 hours and 

monitored at intervals by withdrawing 1 ml samples for centrifugation and re

suspension of cell pellets in 100 pi of 4X SDS-PAGE buffer. Samples (10 pi) were 

then analysed by SDS-PAGE.

Having explored the influence of arabinose concentration on protein 

expression, larger scale expression cultures were induced by addition of arabinose to a 

final concentration of 0.002%. Induction was allowed to proceed for 3-4 hours.

Similar to work with pET vectors, low temperature expression was used. 

Cultures were grown to an OD^oo of approximately 0.25, and the temperature was then 

dropped about 5 degrees each 15 minutes. When the temperature reached 19 °C and 

the cultures were at an ODôoo of 0.7, protein expression was induced by addition of 

0.002% arabinose. The temperature continued to be reduced to 17 °C, and the culture 

was induced overnight under these conditions.

2.7.3 Electrophoresis under denaturing conditions by Sodium Dodecyl Sulfate

(SDS) Polyacrylamide Gel Electrophoresis (PAGE)

Analysis of protein derived from expression experiments was achieved by 

separation of the proteins by electrophoresis. Pre-cast polyacrylamide mini-gel 

systems NuPAGE® Bis-Tris (Invitrogen) were employed under denaturing conditions. 

These gels were buffered at pH 6.4 and contained 12% aery 1 amide. Although they do 

not contain SDS, they are intended for denaturing gel electrophoresis. NuPAGE 

MOPS SDS was used as running buffer.

2.7.4 Electrophoresis of protein by Polyacrylamide Gel Electrophoresis

(PAGE) under native conditions

Pre-cast polyacrylamide mini-gel systems NuPAGE® Bis-Tris-Acetate 

(Invitrogen) were employed. These gels were buffered at pH 8.0 and had 3-8 % of 

acrylamide. NuPAGE Tris Glycine was used as running buffer, whilst NuPAGE SDS 

sample buffer from which SDS had been omitted, was used as sample buffer.
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2.7.5 Preparation of samples for SDS-PAGE

Samples for SDS-PAGE were prepared from bacterial pellets or from fractions 

collected during the purification of protein from disrupted bacterial cells. In the first 

case, for direct analysis, cell pellets were re-suspended in an appropriate volume of 

concentrated SDS-PAGE loading buffer, heated at 70 °C for 5 minutes and placed on 

ice until required.

In the second case, fractions from affinity chromatography were mixed at a 

3:1 ratio with SDS-PAGE loading buffer, and then heated at 70 for 5 minutes.

2.7.6 Preparation of samples without SDS for PAGE

In this case, samples purified by affinity cliromatography were mixed 3:1 with 

PAGE loading buffer, and then applied directly to the gel. Running buffer and the 

pre-cast gel did not contain SDS.

2.7.7 Electrophoresis protoeol

To each sample well of the gel, 10-20 pi of protein sample was added using a 

20 pi capacity Gilco micropipette or equivalent. Each gel included a lane of 

molecular weight markers (pre-stained SeeBlue standards from Invitrogen). A 

voltage of 200 V was applied and electrophoresis was allowed to run for 45 minutes.

2.7.8 Analysis of SDS-PAGE gels

Polyacrylamide gels were usually stained using Gelcode® Blue Protein Stain 

(Pierce). The gel was removed from its container and transfered into a 10 cm x 10 cm 

petri dish filled with distilled water. It was washed twice (10 minutes each wash) 

with gentle agitation to remove SDS, which could inhibit the staining process. After 

the second wash, 20 ml of protein stain was added and the staining was allowed to 

proceed for 1 hour. After this, the stain was discarded and replaced with water. 

Protein bands could be visualised after 15 minutes. The longer the gel remained in 

water, the greater the resolution of the bands.
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2.7.9 Analysis of non SDS-PAGE gels

Analysis of these gels was performed in a similar way but the initial washing 

was omitted.

2.8 Analysis of recombinant expression by Western blotting

Western immunoblotting was used to confirm the presence of recombinant 

proteins carrying a histidine tag (Hise).

2.8.1 Western transfer of proteins onto PVDF membranes

Western blotting, also called immunoblotting, is one of the best methods for 

detecting a particular protein in a complex mixture. Its three-steps comprise the 

separation of proteins through an SDS gel, the reaction of the target protein with 

specific antibodies, and detection by enzyme conjugates.

Electrophoresis was carried out as previously described for SDS-PAGE. Gels 

were run in duplicate, one for transfer and the other for direct analysis by staining. 

Proteins were transferred electrophoretically to a polyvinylidene fluoride (PVDF) 

membrane using a constant voltage of 30 V for 1 hour 30 minutes. The membrane 

was subsequently blocked by washing with a solution of non-fat milk powder and 

then probed with primary antibody (1:300 dilution of mouse anti-Hisg monoclonal 

antibody (Bio-Rad)), secondary antibody (1:1000 dilution of goat anti-mouse alkaline 

phosphatase conjugated antibody), and substrate (BioRad GDP-Star® 

chemiluminescent substrate). The membrane was thoroughly washed after each 

antibody incubation to remove unbound protein. The enzyme (AP) conjugated to the 

secondary antibody catalyses a light-emitting reaction when substrate is added, 

resulting in the exposure of X ray film.

2.9 Purification of DrrA

Recombinant DNA techniques usually permit the construction of fusion 

proteins in which specific affinity tags are added to the protein sequence of interest. 

These tags simplify the purification of recombinant fusion proteins by employing
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affinity chromatography methods. All heterologous expression constructs were 

designed in such a way as to encode six consecutive histidine residues at either the N- 

or C- terminus of the recombinant protein. This sequence enables the expression of 

the recombinant protein to be monitored by immunochemical methods, and 

purification by affinity cluomatography. The residues bind strongly to certain divalent 

cations, particularly Nî "̂ , allowing an efficient purification of the recombinant protein 

using “Immobilised Metal Affinity Chi'omatography” (IMAC). Nickel-nitrilotriacetic 

(Ni^'^-NTA) affinity chromatography was used.

Usually a 10 L culture in 2X YT medium containing carbenicillin (100 pg/ml) 

was induced to overexpress the target protein. The induction was accomplished with 

IPTG for the pET constructs carrying DrrA, or DrrA and DrrB. Arabinose was used 

to induce pBAD constructs to overexpress the Thio-DrrA fusion. In all the constructs 

DrrA was produced with a histidine tag, to aid further purification.

Cells were collected by centrifugation at 4,000 x g  for 8 min at 4 °C, the 

supernatant discarded, and the pellet placed on ice. The cells were re-suspended in an 

appropriate volume of re-suspension buffer (usually 30 ml Tris buffer pH 8.0 per L of 

culture) to allow for a concentration factor of 34 with respect to the original culture 

volume. The cell suspension was sometimes treated with lysozyme (1 mg/ml final 

concentration) and incubated for 1 hour before disruption in a homogeniser at 20 PSI. 

Cells were forced under high pressure through a small aperture in the base of a cell 

disrupter cup and passed twice through the chamber to assure they were successfully 

broken. The disrupted material was recovered from the disrupter cup and debris and 

insoluble proteins were harvested by centrifugation at 22,000 x g  for 20 minutes.

In an alternative protocol, cell disruption was performed using an Ultrasonic 

disintegrator (Sanyo Soniprep 150). Batches of 30-40 ml of cells were processed 

individually with 6 sonication pulses of 15 seconds and an interval of resting of at 

least 45 seconds between each pulse. The amplitude was maximised using the power 

control and the process was performed manually for the indicated times. The sample
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vessel (usually plastic Universal tubes were employed) was immersed on ice to avoid 

damage to the protein due to the heat generated.

2.9.1 DrrA purification under native conditions

2.9.1.1 DrrA purification from the soluble fraction

Affinity chromatography

The supernatant from the 22,000 x g  centrifugation step was decanted into 20 

ml ultracentrifuge tubes (Sorvall or Beckman) and ultra-centrifuged at 149,000 x g  for

1.5 hours to remove cell membranes. The supernatant thus obtained (representing the 

soluble fraction of the cell extracts), was used in Nickel affinity chromatography. 

This fraction was shaken gently at 4 °C for 1 hour or overnight, with NP'*'-NTA 

agarose affinity resin (Qiagen; 1 ml per 10 L of culture), and the slurry was loaded into 

a 0.8 cm diameter gravity fed chromatography glass column (Bio-Rad). The nickel 

cation in the Ni^^-NTA complex interacts with the histidine tag present in the DrrA 

protein derivative. The pellet collected during ultracentrifugation comprised the 

membranes and insoluble proteins. This was dissolved in a buffer containing an 

appropriate detergent before Nickel affinity clu'omatography (see next section).

After allowing the slurry to accumulate in the column (a batch usually 

corresponding to 2 or 2.5 L of culture), it was washed with increasing imidazole 

concentrations up to 50 mM prepared in the same buffer as the sample. Then, 10 ml 

of elution buffer (300 mM imidazole) was loaded onto the column in 1 ml aliquots, to 

elute the protein. The recovery of protein at stages through the purification process 

was assessed by SDS-PAGE.

Solubilisation buffers:

Phosphate buffer: 50 mM NaiHPO#, 300 mM NaCl, 10% (v/v) glycerol, 10 

mM imidazole, pH 8.0

Tris buffer: 50 mM Tris-HCl, 150 mM NaCl, 10% (v/v) glycerol, 10-20 mM 

imidazole, pH 8.0. Specific adjustments were made for particular assays, such as
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NaCl concentration adjusted to 400 mM, higher and lower glycerol concentrations, 

the addition of detergent and reducing agent. These are presented in the respective 

Results chapter.

MOPS buffer and a different Phosphate buffer formulation (pBADTOPO 

thiofusion manual) were also tested and are presented in the respective Results 

chapter.

2.9.1.2 DrrA purification from the membrane fraction

The purification of recombinant proteins from the membrane fraction followed 

the general procedure stated above. Cell membranes were separated from the soluble 

fraction after the 149,000 x g  centrifugation step. To solubilise these membranes 

(membrane pellet obtained from a 10 L culture), 50 mM Tris-buffer (200 ml) with 2% 

of dodecyl maltoside (DDM), was used. The membrane solubilisation proceeded for 

14 hours at 4 with gentle shaking. After that period, the mixture was ultra- 

centrifuged at 149,000 X g  for 30 minutes at 4 °C and non-solubilised material was 

discarded. The supernatant was then ready for affinity chromatography following the 

standard procedure already described, with the addition of 0.2% DDM in the wash 

buffers.

2.9.2 DrrA purification under denaturing conditions. Protein 

refolding

When heterologous proteins expressed in E. coli are present only as insoluble 

protein in inclusion bodies, solubilisation and refolding of the protein under 

denaturing conditions has been successful for some proteins.

In this procedure, the disrupted cell pellet was collected and solubilised in 

Tris-HCl lysis buffer with 8 M urea. Phosphate buffer was also tested. The suspension 

was shaken for 2 h at 4 °C. A further round of centrifugation at 6,000 g  removed 

material that remained insoluble. Tris-urea buffer was 50 mM Tris-HCl, 150 mM 

NaCl, 10% (v/v) glycerol, 10 mM imidazole, 8 M urea, pH 8.0.

84



2.9.2.1 Refolding with Urea

Refolding of DrrA solubilised from inclusion bodies was done using a 

decreasing urea gradient from 8 to 0 M. This was carried out on a column. To 

accomplish this, 200 pi of disrupted cell pellet was mixed in 10 ml of binding buffer 

for 1 hour, on ice. Five hundred pi of Ni^’̂ -NTA agarose was added to the column, 

and washed with 10 ml binding buffer to pre-equilibrate. The sample was then added, 

and the flow-through collected slowly over 15 min. The column was washed with 10 

ml of binding buffer containing 8 M urea, and 5 mM imidazole, followed by 10 ml of 

washing buffer containing 8 M urea, 20 mM imidazole. Flaving immobilised the 

protein onto the column, re-naturation was attempted by running a 20 ml gradient 

comprising 8 to 0 M urea through the chromatography medium. After a final wash 

with 20 ml binding buffer without urea, the re-natured protein was eluted with 3 ml 

elution buffer (0 M urea, 0.3 M imidazole), and collected in 500 pi aliquots, followed 

by a single pulse of 5 ml of elution buffer.

All the buffers were 20 mM Tris, 0.5 M NaCl and pH 8.0. Binding buffer was 

5 mM imidazole and 8 M urea. Washing buffer was the same as binding buffer 

except imidazole was 20 mM. Elution buffer was 300 mM imidazole. This protocol 

was also employed using 50 niM Tris and 0.15 M NaCl in the buffer recipe.

2.9.2.2 The Foldit Screen Refolding
The Foldit Screen Refolding kit (Hampton Research) was also used in an 

attempt to find conditions for refolding of the DrrA protein under denaturing 

conditions. Foldit is a fractional factorial-folding screen designed for use with 

proteins expressed from E. coli. In this protocol, inclusion bodies were solubilised in 

4 M Guanidine-HCl, 0.1 M Tris and 0.1 M NaCl, and a set of 16 different 

experimental conditions were assayed. Parameters included the type and 

concentration of buffer, salt, presence and absence of denaturing agents, type of 

cation chelator, polar and non-polar additives, presence and type of detergent, 

reducing agents, ligand addition, and protein concentration (Tables 2.4 and 2.5). 

Treated protein preparations were dialysed, checked on gels, and their activity was 

evaluated in ATPase activity assays and fluorescence spectroscopy.
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2.9.3 Dialysis of purified protein

Those eluted fractions which had the highest concentrations of protein as 

visualised on polyacrylamide gels, were collected and pooled to be dialysed against 

solubilisation buffer without imidazole.

Purified DrrA was dialysed before quantification and further experiments, as 

imidazole interferes with the BCA protein determination. Dialysis cassettes (Pierce 

Slide-A-Lyzer®) of different sizes were employed according to the volume of the 

sample. Occasionally dialysis tubing was used as well. For this, membrane (12-14 

kDa cut off) was cut into 8 cm sections and boiled for 10 minutes in water before use.

Dialysis of the protein was performed in 3 L Tris buffer pH 8 (50 mM Tris- 

HCl, 150 mM NaCl, and 10% glycerol) or equivalent, usually over 4 hours if the 

sample volume was less than 6 ml. The process was run at 4 °C with gentle stirring in 

a volume of 800 ml of buffer, being the buffer replaced each hour. If necessary, 

fractions were concentrated using a centrifugal concentrator (Amicon Centricon A 10) 

or a Stirred Ultrafiltration Cells device (Millipore) according to the protein volume.

2.9.4 Size exclusion chromatography

Purification by size exclusion was tested as a method for separation of Thio- 

DrrA from contaminating proteins. The ÂKTA purification system of Amersham 

Pharmacia Biotech was used for this purpose, and 16/60 Superdex 75 and 200 

columns were employed to run the chromatography. Each of these columns was 

equilibrated with 50 mM Tris-HCl buffer pH 8, 150 mM NaCl, and loaded with 1 ml 

of sample. A flow of 0.5 ml/min was set for the run and 1.5 X the 

volume of the column was used to elute the samples.
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Table 2,4 Foldit Screen Formulations

Buffeir Sait PEG Guanidine Cation/Che Polar and

(NaCl, KCl) 3350 HCl lator Nonpolar

(% ) Additives

1) Tris pH 8.2 264 mM, 11 mM 0.055 0 mM EDTA None

2) M ES pH 10.56 mM, 0.44 mM None 550 mM M gC f, CaCl2 None

6.5

3) M ES pH 10.56 mM, 0.44 mM 0.055 550 mM EDTA Sucrose, L-Arginine

6.5

4) Tris pH 8.2 264 mM, 11 niM None 0 mM M gCh, CaCb Sucrose, L-Arginine

5) M ES pH 264 mM, 11 mM None 0 mM M gCb, CaCb Sucrose

6.5 1

6) Tris pH 8.2 10.56 mM, 0.44 mM 0.055 550 mM EDTA Sucrose

7) Tris pH 8.2 10.56 mM, 0.44 mM None 550 mM M gCh, CaCb L-Arginine
i

8) M ES pH 264 mM, 11 mM 0.055 0 mM EDTA L-Arginine

6.5

9) M ES pH 264 mM, 11 mM 0.055 550 mM MgClz, CaCh Sucrose

6.5

10) T ris pH 10.56 mM, 0.44 mM None 0 mM EDTA Sucrose

8.2

I I )  T ris pH 10.56 mM, 0.44 mM 0.055 0 mM MgClz, CaClz L-Arginine

8.2 ■i
t

12) MES pH 264 mM, 11 mM None 550 mM EDTA L-Arginine
t

6.5

13) T ris pH 264 mM, 11 mM None 550 mM EDTA None
i

8.2 *

14) MES pH 0.56 mM, 0.44 mM 0.055 0 mM MgClz, CaCl2 None

6.5

15) M ES pH 0.56 mM, 0.44 mM None 0 mM EDTA Sucrose, L-Arginine

6.5

16) T ris pH 264 mM, 11 mM 0.055 550 mM MgClz, CaCl2 Sucrose, L-Arginine

8.2

All buffers were 55 mM.

EDTA was 1.1 mM; M gCb and CaCh were 2.2 mM. 

Sucrose was 440 mM, and L-arginine was 550 mM
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Table 2.5 Foldit Additions -  Pipetting and dilution table for Foldtit

Reagent Reagent 0.1 M 30 mM 100 10 mM Ligand Protein Final
# volume DTT Lauiyl mM GSSG (mM) (pL) [Prot.]

(pL) (pL) Maltoside

(pL)

GSH

(pL)

(pL) (mg/ml)

1 950 10 - - Up to 10 50 0.1

2 950 - 10 10 10 “ 50 0.1

3 950 - - 10 10 Up to 10 50 0.1

4 950 10 10 - - - 50 0.1

5 950 - - 10 10 Up to 10 50 1.0

6 950 10 10 - - - 50 1.0

7 950 10 “ - - Up to 10 50 1.0

8 950 - 10 10 10 - 50 1.0

9 950 10 - - - - 50 0.1

10 950 - 10 10 10 Up to 10 50 0.1

11 950 - - 10 10 - 50 0.1

12 950 10 10 - - Up to 10 50 0.1

13 950 - - 10 10 - 50 1.0

14 950 10 10 - - Up to 10 50 1.0

15 950 10 - - - - 50 1.0

16 950 - 10 10 10 Up to 10 50 1.0

Ligand was doxorubicin 30 pg/ml.



2.10 Protein determination

Protein concentrations were determined using the BCA Protein Assay Kit 

(Pierce Chemical Co.) with bovine serum albumin as standard. In this colorimetric 

assay, the protein reacts with the BCA reagent to give a violet colour of intensity 

equivalent to its concentration in a range between 20-2000 pg/ml, and that is 

measured at an absorbance of 562 mn. The Pierce BCA assay is a formulation based 

on bicinchoninic acid and combines the well-known reduction of Cû "*" to Cu^^ by 

protein in an alkaline medium (Biuret reaction) with the colorimetric detection of the 

cuprous cation (Cu"̂ )̂ using a special reagent containing bicinchoninic acid. The 

colour is the product of the chelation of two molecules of BCA with one cuprous ion.

Protein concentration was determined with reference to standards of bovine 

serum albumin (BSA), and although the test tube procedure was the most accurate 

method to determine protein concentration, the microplate procedure was chosen for 

routine use since only 25 pi of sample was required. In this procedure, 25 pi of the 

protein sample was added to a well into the microplate followed by 200 pi of the 

BCA reagent. The solutions were mixed, and incubated at 37 °C for 30 minutes. After 

the incubation period, sample absorbance values were measured in a microplate 

reader at 610 nm. The absorbance values were compared with those of a protein 

standard curve, and related back to protein concentration.

2,11 Characterisation of Thio-DrrA

2.11.1 DrrA protein sequence analysis

Protein analyses based on sequence were performed using NTI Vector and 

Wabim programs.

2.11.2 ATPase Activity

2.11.2.1 EnzCheck Phosphate Assay (Molecular Probes)

This method is based on a method described by Webb (Webb, 1992). The 

EnzChek Phosphate Assay System was used to run a number of ATPase activity 

assays to evaluate the success of the refolding procedures for DrrA prepared from

89



inclusion bodies (see sections 2.9.2 and 2.9.2.2). The system relies upon the 

spectrophotometric detection o f inorganic phosphate ( P j )  released into the assay 

medium by the activity of ATPase enzymes. Phosphate release is enzymatically 

coupled to phosphorolysis of the artificial substrate 2-amino-6-mercapto-7- 

methylpurine riboside (MESG). The phosphorolysis reaction produces a molecule 

with a strong absorption at 360 nm that can be monitored in real-time. The reaction 

was initiated by the addition of MgCb and the ATPase activity was monitored as an 

increase in absorbance of the reaction mixture at 360 nm over time.

To follow the kinetics of Pj release, an enzyme reaction was set up with the 

following components in a total volume of 1 ml of reaction mixture:

20X reaction buffer 50 pi

MESG substrate solution 200 pi

Purine nucleotide phosphorylase 10 pi (1 Unit)

ATP X pi

MgCb y pi

Experimental enzyme z pi

Tris-HCl buffer (50mM) 740 -  x -  y -  z pi

It is the purine nucleotide phosphorylase component of the reaction mixture 

which couples release of Pj by the ATPase enzyme to phosphorolysis of the MESG 

substrate.

2.11.2.2 Malachite green Assay

A colorimetric assay to determine free phosphate, based on the use of the 

ammonium molybdate/malachite green reagent (Nash, 2003; Maehatma, 2001; Harder 

et aL, 1994), was used in microplates. Malachite green in the presence of molybdate 

binds inorganic phosphate, which gives rise to a complex that can be measured

90



between 620-660 nm (Ekman and Jager, 1993). A total reaction volume of 500 pi was 

used for each sample. This included the DrrA protein (DrrA or Thio-DrrA), ATP, and 

assay buffer. The mixture was pre-incubated for 5 minutes at 37 °C. The reaction was 

then initiated by addition of MgCh. Immediately after the induction of ATPase 

activity, and at various time points thereafter, 45 pi of sample were withdrawn and 

pipetted into each well of the microplates, where 5 pi of 0.5 M EDTA had been 

previously added to sequester Mĝ "̂  ions and stop the reaction. At the end of the 

reaction time course, 100 pi of Malachite green assay solution was added to each 

sample in the well, and the microplate was immediately read at an absorbance of 610 

nm. Two experiments were run simultaneously, and protein of 1 pM concentration 

was usually sufficient to follow the development of colour in the reaction with 

malachite green in standard conditions. Routine experiments and characterisation 

were performed with this method and using 450 pM Mg^^ and 250 pM of ATP, final 

concentrations.

Preparation of Malachite green Assay solution

1. - Solution A: 4.2% (w/v) anunonium molybdate in 4 N HCl.

2. - Solution B: 0.045% (w/v) Malachite green solution in H2O.

3 . - 1  part of A is mixed with 3 parts of B.

4. - The resultant solution is filtered, giving a yellow colour.

Assay buffer was usually 50 mM Tris-HCl, 150 mM NaCl, glycerol 10%, pH 8.0.

2.11.3 Dependence on ATP concentration

ATP concentrations between 0.1 to 2 mM (prepared in assay buffer), were 

assayed as described in section 2.11.2.2 to find the concentration that induced the 

highest ATP-ase activity in recombinant DrrA proteins, enabling calculation of Km.

2.11.4 Dependence on divalent cation concentrations: Mn^\ Co^ ,̂ Zn^  ̂

and Câ ^

Concentrations of divalent cations between 0.1 and 2 mM (prepared in assay 

buffer), were assayed as described in section 2.11.2.2 substituting for Mĝ "̂ , to 

determine the efficiency of their stimulation upon the DrrA ATPase activity.
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2.11.5 Dependence on pH

A range of pH between 6.0 and 9.0 was tested to assess the optimum for DrrA 

proteins ATPase activity. MES/Na buffer was used for pH values between 6.0-6.5. 

MOPS/Na was used for pH range 6.6-7.5. Tris/Cl for pH range 8.0-9.0. All buffers 

were 50 mM.

2.11.6 Substrate specificity and inhibitors

The nucleotides triphosphate CTP, GTP, and TTP (prepared in assay buffer), 

were evaluated as substrates for Thio-DrrA. Forty pi of 3.125 mM stocks of each of 

the NTPs, were added to the reaction mix to obtain a final concentration of 250 pM. 

Reactions were initiated by addition of Mĝ "*" as described above. The effect of ADP 

on the ATPase activity of Thio-DrrA was also assayed. A final concentration of 250 

pM was used.

Ortho-vanadate and NaCl were assayed as inhibitors of the DrrA ATPase 

activity. Vanadate concentrations between 10-1000 pM were added to a standard 

DrrA assay for ATPase activity and its kinetics were followed. NaCl concentrations 

between 150-2000 pM were evaluated to determine if NaCl inlribited the Thio-DrrA 

ATPase activity. The conditions in these experiments were standardised with 250 pM 

ATP and 450 pM MgCb.

2.11.7 Dependence on DrrB presence

DrrA and Thio-DrrA were assayed for ATPase activity in presence of the 

DrrB protein (the kind gift o f Dr. McKeegan, Wolfson Institute, University of 

Durham). Protein concentration was 1 pM, and ATPase kinetics between 25 and 

2000 pM ATP was estimated. MgCh concentration was 450 pM. The assay buffer 

contained 0.2% DDM detergent.

2.11.8 Dependence on the presence of Doxorubicin or Daunorubicin

The effect of the presence of doxorubicin was assayed for both DrrA and 

Thio-DrrA. Concentrations of doxorubicin of 2, 10 and 20 pg/ml (~3, 17 and 34 

pM, respectively) were used in reaction mixtures with DrrA 37 pg/ml (~1 pM), to
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follow ATPase kinetics. The effect of the presence of daunorubicin (3 pM) was 

also assayed on Thio-DrrA ATPase activity.

2.11.9 Dependence on the presence of DrrB and Doxorubicin

The effect of both DrrB and doxorubicin on the ATPase activity of DrrA was 

evaluated. These two components were added to a reaction mixture containing DrrA 

protein and the kinetics of ATP hydrolysis was followed. DrrA and DrrB were 1 pM, 

whilst doxorubicin was 2 pM.

2.12 DrrA Site-Directed Mutagenesis

Site-directed mutagenesis is a valuable tool for the study of DNA function as 

well as for the analysis of protein structure and function. It is accomplished by 

hybridisation and extension of a synthetic oligonucleotide that is complementary to 

the target template except for a region of mismatch near the centre, and also by PCR 

methods. This mismatched region contains the desired mutation. In both cases, 

double-stranded DNA is obtained and used to transform an E. coli host.

2.12.1 GeneEditor protocol (Promega)

This protocol was used to obtain a single amino acid mutation in the protein 

Thio-DrrA for stopped-flow experiments based on the fluorescence of the amino acid 

tryptophan. This system uses antibiotic selection to obtain high frequency mutants. 

Oligonucleotides provided with the system encode mutations that alter the ampicillin 

resistance gene, creating a new additional resistance to the GeneEditor antibiotic 

selection mix. The selection oligonucleotide is annealed to a single or double

stranded DNA template at the same time as a mutagenic oligonucleotide. Subsequent 

synthesis and ligation of the mutant strand links the two oligonucleotides. The 

resistance to the GeneEditor antibiotic selection mix encoded by this mutant DNA 

facilitates selection of the desired mutation. A summary of the procedure is presented 

here.
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As single stranded DNA (ssDNA) was required as template for mutagenesis 

reactions, alkaline dénaturation of double stranded DNA (dsDNA) was achieved in a 

reaction that included plasmid DNA (dsDNA; 0.5 pmol ~2pg), 2 M NaOH, 2 mM 

EDTA (2pl), and dIÎ20. The DNA was precipitated with 2 M ammoniiun acetate (2 

pi) and 100% ethanol at -70°C (75 pi) for 30 minutes, and pelleted by centrifugation. 

The ssDNA pellet was washed in 70% ethanol (200 pi), re-collected by 

centrifugation, air-dried, dissolved in TE buffer (lOOpl), and a 10 pi aliquot was 

analysed by agarose gel electrophoresis in order to estimate the reaction success and 

yields.

ssDNA template (10 pi) was mixed with the phosphorylated selection 

oligonucleotide (1 pi; 0.25 pmol), the phosphorylated mutagenic oligonucleotide, 

(1.25 pmol), lOX amiealing buffer (2 pi), and dH20 up to 20 pi. The mixture was 

heated at 75 °C for 5 minutes, and slowly cooled to 37 (1.5 "C per minute). During

this period the oligonucleotides anneal to the template DNA.

Synthesis of the mutant strand and ligation was accomplished in a reaction 

containing dfUO (5 pi), lOX synthesis buffer (3 pi), T4 DNA polymerase (5-10 U; 1 

pi), and T4 DNA ligase (1-3 U; 1 pi). The reaction mixture was incubated at 37 °C 

for 90 minutes to allow mutant strand synthesis.

The DNA was then transformed into competent E. coli BMH 71-18 mutS ceils. 

This strain has a mutation in the mutS DNA repair gene which allows the cells to 

tolerate plasmids with small double strand mismatches. The cells were transformed 

with 3 pi of the mutant plasmid mixture prepared in the previous step. Transformation 

was performed by a standard heat-shock protocol. The entire mixture was incubated 

in 4 ml of LB medium containing the proprietary selection antibiotic overnight (37 

°C), allowing time for plasmid replication and segregation in such a way as to 

enliance the number of cells carrying the mutated plasmid.

Mutant plasmids obtained from the previous step were then transformed into 

competent E. coli JM109 cells, and selected on solid LB-agar medium containing the 

selection antibiotic. JM109 clones resistant to the antibiotic selection mixture were
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used to prepare plasmid DNA. The successful introduction of specific mutations was 

determined by DNA sequencing.

2.12.2 QuickChange Site-Directed Mutagenesis (Stratagene)

The QuikChange site-directed mutagenesis protocol (Stratagene), was also 

used for the same purpose. This method uses a supercoiled double-stranded DNA 

vector with an insert of interest as template, and two synthetic oligonucleotides 

primers containing the desired mutation. It is performed using Pfu Turbo® DNA 

polymerase and a temperature cycler. This enzyme replicates both plasmid strands 

with high fidelity and without displacing the mutant oligonucleotide primers, each 

complementary to opposite strands of the vector. Incorporation of oligonucleotide 

primers generates a mutated plasmid containing staggered nicks. After temperature 

cycling, the product is treated with Dpn  I endonuclease, which is specific for 

methylated and hemimethylated DNA, to digest the parental DNA template. The only 

DNA left is the newly synthesized DNA containing the mutation. This nicked vector 

containing the desired mutation is then transformed into XL 1-Blue supercompetent 

cells. A summary of the procedure is presented here. Two complementary 

oligonucleotides containing the desired mutation, flanked by unmodified nucleotide 

sequence, were synthesised for the mutagenesis experiment (Table 2.6).
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Table 2.6 Primers used for Site-directed mutagenesis in pBADTOPO thio-drrA

Primer name Mutation in Thio-DrrA Sequence (5’ to 3 ’)

drrA Y 140 forward Original Y was replaced by W in the CGG CTC CTG AAG ACC TG G

(Y140W) ABC signature region TCC GGT GGC ATG CGG

drrA Y 140 reverse Same CCG CAT GCC ACC GGA C C A

(Y140W) GGT CTT CAG GAG CCG

drrA Y37 forward Original Y position 37 in the DrrA CCG GCC GGT CTC GTC T G G

(Y37W) sequence, was mutated to W GGG ATC CTG GGG CCG

drrA Y37reverse Same CGG CCC CAG GAT CCC CC A

(Y37W) GAC GAG ACC GGC CGG

drrA A45 forward A in position 45 in the W alker A CTG GGG CCG A A C GGC

(A45W) motif, was mutated to W TG G  GGC AAG TCC ACC ACC

drrA A45 reverse Same GGT GGT GGA CTT GCC C C A

(A45W0 GCC GTT CGG CCC CAG

drrA-T50 forward T position 50 beside the W alker A GCC GGC AAG TCC ACC TG G

(T50W) motif, was mutated to W ATC CGC ATG CTG GCG

drrA T50 reverse Same CGC CAG CAT GCG GAT C C A

(T50W) GGT GGA CTT GCC GGC

Thio forward T he 2 o rig in a l W p rese n t in ATC CTG GTT GAT TTC G G G

Thioredoxin, were mutated to G GCA CAC G G G  TGC GGT CCG 

TGC AAA

Thio reverse Same TTT GCA CGG ACC GCA C C C  

GTG TGC C C C  GAA ATC AAC 

CAG GAT

PBAD forward priming site To check m utations in thioredoxin ATG CCA TAG CAT TTT TAT

gene CCA

drrA-T50 -forw ard T50 mutation was cancelled, and the GCC GGC AAG TCC ACC A C C

(W50T) original T  replaced the mutation W ATC CGC ATG CTG GCG

drrA-T50 -reverse Same CGC CAG CAT GCG GAT G G T

(W50T) GGT GGA CTT GCC GGC
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The sample reaction was prepared according to the following indications:

5 pi of lOX reaction buffer

X pi (5-50 ng) of dsDNA template

X pi (125 ng) of oligonucleotide primer #1

X pi (125 ng) of oligonucleotide primer #2

1 pi of dNTP mix

ddHiO to a final volume of 50 pi

One pi of PfuTurbo  DNA polymerase (2.5 U/pl) was added. A control 

reaction was performed as well. The reaction was cycled using the parameters 

outlined in the Table 2.7,

The reaction mixture was placed on ice for 2 minutes and allowed to cool to 

37 °C. One pi of the Dpnl restriction enzyme (lOU/pl) was added to the amplification

reaction, and this was thoroughly mixed by pipetting, briefly centrifuged, and

incubated for 1 hour at 37 °C to digest the parental supercoiled dsDNA.

One pi of the I-treated DNA was added to 50 pi o f XL 1-Blue 

supercompetent cells, previously thawed on ice, and the mix was incubated on ice for 

30 minutes. The transformation reaction was heat-shocked for 45 seconds at 42 °C, 

and then placed on ice for 2 minutes. NZY"  ̂broth (0.5 ml) preheated to 42 °C was 

added to the transformation reaction, and this was incubated at 37 "C for 1 hour with 

rotary shaking at 225 rpm. The transformation reaction (250 pi) was subsequently 

plated on agar plates containing the appropriate antibiotic for the plasmid vector.
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Table 2.7 Program for DNA amplification designed for QuickChange site- 

directed mutagenesis

Segment Cycles Temperature Time

1 1 95 T 30 seconds

2 12-18 95 °C 30 seconds

55 °C 1 minute

68 °C 1 m inute/kb o f

plasmid length

For single amino acid changes segment 2 was adjusted to 16 cycles, as suggested per manufacturers.
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2.13 Ligand Binding Analysis

2.13.1 Steady-state protein fluorescence measurements

Protein fluorescence measurements were assayed at room temperature using a 

Jasco FP-750 fluorescence spectrophotometer. The excitation light was set to 285 nm 

via a series of eliromating mirrors and the protein fluorescence was measured at right 

angles to the direction of the ineident light using the amplified signal provided by a 

photomultiplier tube.

Volumes of 200 pi of sample were prepared to load a Helma Suprasil quartz 

fluorescence cuvette and protein fluorescence spectra were obtained at wavelengths 

between 295 and 400 nm. Excitation and emission bandwidths were selected to be 5 

nm, and usually, the detection sensitivity of the photomultiplier tube was set to 

medium.

Changes in the fluorescence protein spectra would be measured when small 

volumes of ligand binding components were added at a high concentration to the 

protein solution. DrrA proteins, ATP, MANT-ATP and Mg were the basic 

components involved in the ATP system that was assayed.

2.13.2 Stopped-flow analysis of nucleotide protein interactions

Nucleotide interactions can produce transient changes in the fluorescence of 

proteins. Interactions involving the nucleotide-binding domain (NBD) of the pump 

DrrAB were assessed in a stopped-flow device from Applied Photophysics SMV 18. 

The stopped-flow system allows the rapid mixing of the protein with the ligand and 

enables one to time-resolve changes in the fluorescence on a millisecond time scale. 

Protein and ligand were injected in different channels that were directed in equal 

volumes to a mixing chamber at room temperature, by nitrogen-driven hydraulic 

plungers. Light excitation at 285 mn was provided by a xenon lamp and two serial 

monochromators, whilst a photomultiplier tube (PMT) was used to detect the emitted 

light.
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Tryptophan excitation light was fixed at 280 nm and emission light was 

filtered to select for the appropriate wavelength with 335 or 420 nm eut-off filters 

placed in front of the detection photomultiplier tube, where fluorescence data were 

collected. Alterations in the level of fluorescence were visualised as alterations in the 

voltage output of the tube. Ligand-binding experiments were set up to be performed 

under pseudo first-order conditions, having the ligand concentration in excess over the 

protein concentration. In that way, an exponential change in the fluorescence of the 

protein could be fitted by non-linear regression to an exponential equation defining a 

first order binding process.

The protein samples corresponding to the S. peucetius DrrAB NBD were 

assayed by this technique. For the assays, protein samples, Mg '̂ ,̂ and ATP or MANT- 

ATP in 50 mM Tris-HCl buffer with 150 mM NaCl and 10% glycerol, were used.
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Chapter 3 

Cloning and sequence analysis of genes in  the Streptomyces peucetius 

drrAB operon

The drrAB operon of Streptomyces peucetius was originally recognised by 

Giiilfoile and Hutchinson (1991). Sequence analysis showed the presence of two 

genes, drrA and drrB, which could encode the ATP-binding and transmembrane 

domains of an ABC transporter, respectively, and mediate self-protection against the 

anthracyclines compounds daunorubicin and doxorubicin. These compounds are 

important in cancer treatment as they show anti-tumour activity. The drrA gene was 

predicted to express a product with similar sequence to the products of other transport 

and resistance genes, such as P-glycoprotein from mammalian tumour cells.

3.1 PCR amplifîcatioii of the drrA and drrB genes.

Oligonucleotide PCR primers were designed for the spécifié amplification of 

the S. peucetius drrA and drrB  genes from the cosmid pWHM612 (Guilfoile and 

Hutchinson, 1991). The published drrA and drrB genes sequences (NCBI site) present 

in the GenBank database under the accession number M73758 were used in primer 

design. The drrAB  operon is 1,841 bp long. The drrA ORF is 993 bp long, and 

extends from position 471 to 1,463. The drrB ORF is 852 bp long and its beginning 

overlaps the drrA stop codon; it extends from position 1,460, to 2,311.

Additional nucleotides at the 5’ and 3’ ends of the gene(s) were included in all 

the primers except in those used to amplify the gene for ligation into the pBADTOPO 

thiofusion veetor (section 2.4.1.2. in Methods). This step was necessary to allow 

excision of the sequences from the initial cloning vector. A two-step strategy was 

planned to simplify the process of sub-cloning from the initial cloning vector into the 

expression vectors chosen for over-expression studies. To sub-clone drrA into 

pET21 a, the 5’ primer contained an ATG star t codon as part of an Ndel site that was 

substituted for the original GTG drrA start codon. In this construct, the original drrA 

stop codon was omitted from the 3 ’ end to allow the incorporation of a six-histidine 

tag in the C-terminus of the DrrA protein. A X h o l site was also incorporated at the 3’ 

terminus to enable subcloning.
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The amplification of drrA was successful using QIAGEN Q solution and a 

gradient between 50-60 °C (Table 3.1; Fig. 3.1). When the temperature gradient was 

not used, the temperature was set to 55 °C to amplify the gene. The amplification of 

the drrAB operon for other vectors was also successful with similar programs (Fig. 

3.2).

Table 3.1 Standard PCR program (Cycling parameters)

Segment Cycles Temperature Time

Hot Star Taq 

activation

1 95 °C 15 minutes

Dénaturation

Annealing

Extension

30 94 "C 

Gradient 50-60 °C 

72 °C

15-60 seconds 

30-60 seconds 

1 mill. 30 seconds

Final extension 1 12 °C 10 minutes

For the amplification o f the drrA gene, 15 and 30 seconds were set for dénaturation and annealing, 

respectively. A time o f 60 seconds was used in the same stages for amplification o f drrAB.
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Figure 3.1 PCR amplification of the drrA gene
The drrA gene was amplified from pWHM612 using 30 cycles under the following reaction conditions; 

94 °C dénaturation for 15 sec, annealing for 30 sec at temperatures ranging between 50 and 60 °C, 72 

°C extension for 90 sec. Lane M: 1 kb DNA molecular markers. Lanes 1-4: drrA PCR product from 

replicated reactions with identical conditions.

1.8 kb

IM 1 2

Figure 3.2 PCR amplification of the drrAB operon
The genes drrA and drrB were amplified from pWHM612 using 30 cycles under the following reaction 

conditions: 94 °C dénaturation for 1 min, annealing for 1 min at temperatures ranging between 50 and 

60 °C, 72 °C extension for 1 min. Lane M: 1 kb DNA molecular markers. Lanes 1-2: drrAB  PCR 

product from replicated reactions with identical conditions.
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3.2 Cloning of the drrA gene

The amplified drrA gene was purified from an agarose gel and cloned into the 

pGEMT-Easy vector (Fig. 3.3) (Section 2.3 in Methods). Ndel and X h o l  

endonuclease restriction sites had been designed to form part of the drrA gene at its 

ends, for sub-cloning in the pET21a vector. S a d  and Hindlll endonuclease restriction 

sites were present instead when the sub-cloning was intended for the pQElOO vector. 

No endonuclease restriction sites were designed into the ends of drrA for cloning into 

the pBADTOPO thiofusion vector (Table 2.2 in Methods). For cloning into pBAD, 

PCR products were isolated from several bands cut from analytical gels, and pooled 

into a single, large well, to get a high concentration of the PCR product for further 

TOPO ligation (Fig. 3.4).

3.3 Cloning of the drrAB operon

Several PCR products bearing the sequence of the drrA and drrB genes were 

also obtained (Fig. 3.2) to allow future co-expression with different vectors (e.g. 

pET21 a, pET33b). In this case, Nhel and Hindlll restriction sites were incorporated 

into the primers, an Nhel site in the 5’ terminus of the drrA gene, and a Hindlll site in 

the 3’ terminus of the drrB gene.

The product was cloned into the pGEMT-Easy vector and insertion confirmed 

by digestion with Nhel and Hindlll (Figure 3.5). The release of bands of around 3 kb 

(pGEMT vector) and 1.8 kb {drrAB operon) confirmed the success of this cloning.
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pGEMT-Easy

drrA

M 1

Figure 3.3 Restriction analysis of the pGEMT Easy-i/rrA plasmid
Plasmid DNA from transformed bacteria was isolated and digested with Nde\ and Xho\ before analysis 

on an agarose gel. M; 1 kb DNA molecular markers. 1: DNA fragments after digestion with Ndel and 

Xhol showing the vector and excised drrA insert (indicated).

2 kb

1 kb

M 1

Fig. 3.4 Electrophoresis of DNA in agarose gel showing concentrated drrA PCR 

product
DNA from PCR drrA product was isolated from several bands cut from analytical gels, and pooled 

into a single, large well, to obtain a high concentration o f  the PCR product for cloning into 

pBADTOPO thiofusion. M: 1 kb DNA molecular markers. 1: concentrated drrA PCR product with no 

restriction sites at its ends
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Figure 3.5 Restriction analysis of the pGEMTEasy-</rr4^ plasmid
Plasmid DNA from transformed bacteria was isolated and digested with Nhe\ and Hind\\\ before 

analysis on an agarose gel. M: 1 kb DNA molecular markers. 1: DNA fragments before digestion with 

Nhe\ and Hind[\\ showing the undigested pGEMT-easy drrAB construct. 2: DNA fragments after 

digestion with Nhe\ and HindWl showing the vector and excised drrAB insert
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3.4 Initial construction of pET drrA plasmids for over-expression

pET vectors were considered to be a good option to sub-clone the drrA gene 

for production of soluble protein for further assays. In particular, pET21a offered 

several immediate advantages to accomplish this objective. Apart from possessing a 

convenient resistance determinant (ampicillin), a varied multi-cloning site and a poly 

histidine-coding region suitable for affinity chromatography purification, it carries a 

powerful promoter (T7) to overexpress heterologous proteins. The E. coli RNA 

polymerase does not interact with this promoter, and hence “leaky” expression of the 

target protein is minimised in the uninduced state. The transcription of the 

heterologous gene is accomplished by transforming the expression construct into a 

host cell with a clrromosomal copy of the T7 RNA polymerase, itself under control of 

the lacUV5 promoter. The expression of the T7 RNA polymerase is induced by the 

addition of IPTG to a log phase culture. This in turn results in a very high 

transcription of the target gene sequence.

3.4.1 Sub-cloning of the drrA  gene into a suitable expression vector for

Escherichia coli.

The DNA segment of the drrA gene was obtained by digesting the initial 

pGEMT-Easy construct with Ndel and Xhol and ligation o f the small released 

fragment into pET21a (Fig. 2.1 in Methods, and Fig. 3.6). The drrA gene had been 

designed with the particular restriction sites N del and Xhol, to minimise any 

additional DNA sequence between the end of the gene and the encoded his-tag 

sequence, which could disturb the conformation of the expressed protein. As the start 

codon ATG forms part of the Ndel site, it substituted the original S. peucetius drrA 

gene start codon GTG, which was not necessaiy to include.

Transformants cariying the pETllei-drrA construct were selected on the basis 

of vector encoded antibiotic resistance. Recombinant expression plasmids were 

isolated by mini-prep and checked for the presence of the inserted drrA gene by 

restriction digest. A diagram showing the general cloning process for drrA gene (Fig. 

3.6) and a restriction analysis of recombinant pET expression plasmids (Fig. 3.7) are 

presented on the following pages.
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Nde\ PCR drrA gene insertion

Recombinant 
pGEMT-Easy 

plasmid

Isolated cloned drrA gene 
after restriction digest and 

gel extraction

Xho\

pET21a
expression

plasmid

Ligation o f  
cohesive ends 

- T4 DNA ligase

Cloning site

Isolated opened pET plasmid 
DNA after restriction digest and gel

extraction

pT 7

Recombinant pET 
expression construct

His.

Recombinant pET plasmid with drrA 
gene expression under the control of 
the T7 promoter. Inserted sequence is 
fused to a His6 purification tag

Fig. 3.6 Diagram showing the cloning of the drrA gene into the pET21a vector
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Fig. 3.7 Restriction analysis of the pET21a-</rr/l plasmid
Plasmid DNA from transformed bacteria was isolated and digested with Nde\ anà Xho\ before analysis 

on an agarose gel. M: 1 kb DNA molecular markers. 1: DNA fragments after digestion with Nde\ and 

Xho\ showing the vector and excised drrA insert (indicated).
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3.4.2 Sub-cloning of the drrAB operon into a suitable expression vector for 

Escherichia coli

To sub-clone the operon sequence corresponding to drrA and drrB for over- 

expression, a sequence coding for a histidine tag had to be added to the 5 ’ terminus of 

drrA  to make DrrA suitable for immobilised-metal affinity chromatography 

purification. When the sub-cloning was performed into pET33b, no histidine tag 

coding sequence had been included in the drrA gene, as the vector presented these 

sequences at both ends of the operon.

Additionally, some primers to clone this sequence in the vector pUC 18 were 

also prepared (Table 2.2 in Methods). Although the expression of genes in this vector 

is not high, former research with the drrAB system employed this vector (Kaur and 

Russell, 1998).

The successful sub-cloning of drrAB in pET21a can be seen in the restriction 

analysis of this plasmid (Fig. 3.8).

110



5 kb

2 kb

1 kb

pET21a

drrAB

M

Fig. 3.8 Restriction analysis of the pETZla-drr/tB plasmid
Plasmid DNA from transformed bacteria was isolated and digested with Nhe\ and Hind\\\ before 

analysis on an agarose gel. M: 1 kb DNA molecular markers. 1: DNA fragments after digestion with 

Nhe\ and Hind\\\ showing the vector and excised drrAB insert
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3.5 Initial construction of pBADTOPO thio-drrA

The pBADTOPO thiofusion vector (Fig. 2.2 in Methods and below) was also 

used to clone the drrA  gene for expression of DrrA. In this system, a fusion to 

Thioredoxin was created. No restriction sites were designed into the drrA primers as 

the pBADTOPO vector contains the enzymatic machinery to ligate PCR products. 

This vector also includes a sequence encoding a poly-histidine tag to ease protein 

purification by Immobilised metal affinity chromatography (IMAC). It was hoped 

that as Thioredoxin is a small and very soluble protein, it could help in the 

solubilisation of DrrA and minimise the production of inclusion bodies.

Insertion of drrA into the pBADTOPO thiofusion vector would create a single 

protein of 51.7 kDa. This protein would correspond to the DrrA protein (35.7 kDa) 

fused to an N-terminal HP-Thioredoxin (13 kDa) and a 6 histidine tag at the C- 

terminus (3 kDa). Some problems were experienced encountered in obtaining the 

construct, as it was difficult to discern if the constructs had the drrA gene inserted 

with the proper orientation. Uncommon single restriction sites were present in both 

the plasmid and the drrA gene, and it was difficult to assess the orientation of the 

insert on gels. Employing a PCR methodology for the same purpose produced 

contradictory results; the first four constructs to be tested were correctly inserted 

according to PCR amplification, but the analysis of their sequences showed that all of 

the four inserts were in the wrong orientation. Finally, after exhaustive analysis, a 

positive clone was obtained with the insert correctly orientated according to a 

restriction analysis with EcoRV and Narl. This was confirmed by sequence analysis. 

Expression from this construct was induced with arabinose and could be tightly 

regulated according to the used inducer concentration. A diagram showing the 

localisation of the drrA gene PCR product inserted into the vector pBADTOPO 

thiofusion is shown below:

thioredoxin RBS

A

EK site-T

drrA PCR 
product

I

A

T-V5 epitope 6 His Stop
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3.6 Transformation of £■. c<?//cells

The pET21a vector, carrying the drrA gene alone, or with drrB, was used to 

transform E. coli XL-10 for propagation of the plasmids. E. coli BL21 DE3 was 

transformed for protein expression. Similarly, E. coli DH5_ pro cells were used for 

the pET33b plasmid. Standard transform ation procedures were followed 

incorporating a 90 seconds heat shock at 42 °C that produced sufficient transformants 

for screening.

When transformation was carried out with the pBADTOPO thio-drrA  

construct, E. coli LMG194 or TOP-10 cells were employed. Heat shock at 42 °C for 

45 seconds, as suggested in the manual, produced sufficient transformants.

3. 7 Sequence analysis of the cloned drrAB  genes

The nucleotide sequences of the cloned PCR amplicons were consistent with 

those of the published drrA and drrB genes, except where restriction sites had been 

added to the primers, and where poly histidine tags were included in the construct. 

For example, a A/ioI site was introduced at the 3’ end of the drrA gene sequence for 

cloning of drrA alone into when the pET21 a vector, and no restriction site was 

included at the drrA 3’ terminus when cloning included drrB. The sequence data 

confirmed the success of the initial PCR reactions with genomic DNA and hence the 

transformed E. coli strains were laid down as glycerol stock cultures. An in silico 

analysis of the cloned sequences was also performed to establish that each encoded 

the expected DrrA and DrrB proteins.

3.7.1 Sequence analysis of the drrA-thio fusion

The drrA gene fused to thioredoxin bore some additional sequence from the 

pBADTOPO thiofusion vector comprising nucleotides for the Enterokinase (EK) site 

upstream from the 5Terminus of drrA, and the V5 epitope downstream from the 3’ 

terminus of drrA.

The whole coding sequence in the pBADTOPO thio-drrA construct was 1,446 

bp, encoding a protein of 481 amino acids. 990 bp were derived from drrA and of the
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remaining 456 bp, 18 coded for the histidine tag, 42 for the V5 epitope, and almost all 

the remainder, for the thioredoxin gene sequence.

3.8 Discussion

Vectors of pET series, and specially pET21a, were considered to be the best 

option for cloning and expressing the drrA gene. These vectors are popular because 

they offer several options for selection with antibiotics, tags for purification, such as 

the histidine repeat can be positioned at the N- or C-termini of the translation product 

and multiple cloning sites are available. In addition, they carry a strong promoter 

(T7), suitable for the transcription and expression of soluble proteins. Previous 

publications (Guilfoile and Hutchinson, 1991; and Kaur, 1997; Kaur and Russell, 

1998) reported that DrrA was a hydrophilic soluble protein, peripheral to the 

membrane. This suggested that vectors such as the pET series would be good 

vehicles to overexpress appropriate quantities of soluble DrrA for functional analysis. 

The pET21a vector seemed to be the most suitable of these pET vectors to achieve 

this aim.

In designing primers, care was taken to ensure the resulting DrrA protein 

would carry as few non-native residues as possible. By using N del and Xhol 

restriction sites, the gene could be cloned into pET in frame with tags and additional 

bases within the multiple-cloning site could be excluded. In addition, the presence of 

the histidine tag at the C-terminus of DrrA would avoid the co-purification by nickel- 

agarose affinity chromatography of products degraded from this terminus of the 

protein, ensuring the purification of a full length product.

The choice of the pBADTOPO thiofusion vector formed an alternative option 

for production of soluble DrrA protein. TOPO ligation is a very effective way for 

insertion of PCR products but it suffered the disadvantage that products could ligate 

into the vector in either orientation. As it was not easy to find appropriate single 

restriction sites, it proved difficult to identify clones with the intended orientation.
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A further option of the co-expression of drrA and drrB genes was established 

as previous work suggested that there was some degree of interdependence in the 

DrrAB system (Kaur, 1997; Kaur and Russell, 1998). These studies concluded that 

DrrB was not overexpressed at all in the absence of DrrA, and that active DrrA 

protein could only be obtained when co-expressed with DrrB.

This chapter reports the successful cloning of the S. peucetius drrA gene, and 

its sub-cloning into vectors for overexpression of the proteins. This was an important 

target in order to accomplish the project aims of purification of large quantities of 

these proteins in order to further study the biochemical, structural and physiological 

properties of ABC transporters in general and the function of the S. peucetius DrrA 

protein in particular.
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Chapter 4 

Heterologous expression of recombinant proteins

On the assumption that the cloned drrA gene would encode the nucleotide- 

binding domain (NBD) of the S. peucetius DrrAB pump, the next stage of the 

investigation involved its over-expression to obtain adequate quantities of protein for 

characterisation. After purification, it was planned that these studies would include 

the analysis of the ATPase activity of DrrA. This enzyme would utilise energy from 

ATP to drive the transport of the anthracycline compounds daunorubicin and 

doxorubicin out of the cell, avoiding their toxic effects.

Streptomyces is a soil microorganism, and its growth and handling are not as 

straightforward as for laboratory organisms. To overcome this handicap and avoid 

the requirement for special culturing facilities, it was decided that a biochemical study 

of DrrA would be founded upon its expression in a heterologous host. E. coli was 

selected since it has been used to overexpress successfully an enormous number of 

different proteins from biologically diverse species. Another very important reason 

for the use of E. coli is that genetic systems for the expression of heterologous 

proteins in this bacterium are well developed and characterised.

4.1 Heterologous over-expression of the S. peucetius DrrA protein

It was initially thought that drrA would be more easily cloned without drrB, 

and that the mainly hydrophilic properties of DrrA would favour the production of 

soluble protein for further characterisation.

4.1.1 Over-expression of the DrrA protein using the pET21a plasmid

The drrA gene was cloned into the pGEMT-Easy vector and sub-cloned into 

the pET21a vector. The start codon of drrA was thereby placed downstream of a 

bacteriophage T7 promoter, a lac operator sequence and an E. coli ribosome-binding 

site. These features should have ensured the repression of protein expression in the 

uninduced state, and high level transcription when the plasmid was transformed into a 

suitable host strain and induced with IPTG. The E. coli strain chosen for the purpose
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of expressing this gene was BL21 (DE3). This strain lacks two major cellular 

proteases, Lon and OmpT, which may interfere with the expression and purification 

of intact, full-length, recombinant protein; it also has a _DE3 lysogen, which is stably 

incorporated into the E. coli chromosome and encodes an IPTG inducible 

bacteriophage T7 RNA polymerase. It is the induction of this polymerase that allows 

transcription of the recombinant gene sequence. The vector also provided a six- 

histidine tag at the C-terminus of DrrA (see Ch. 3, sections 3.1 and 3.4.1).

4.1.1.1 Initial analysis of cell fractions

Cells of E. coli BL21 carrying pET21 a-<7rrri were grown at 37 ®C to 

exponential phase (ODeoonm = 0.6) in complex media (LB broth), and IPTG was added 

to 1 mM to induce expression. Growth continued for 3 hours and the cells were 

recovered by centrifugation. After disruption, a supernatant fraction and a pellet were 

obtained. The insoluble material in the disrupted cell pellet was prepared for analysis 

by incubation in 8 M urea Phosphate lysis buffer for 2 hours (see Ch. 2, section 2.9.2). 

The crude fractions were analysed for the presence of DrrA by addition of SDS- 

PAGE sample buffer and subsequent electrophoresis. A band on an SDS-PAGE gel 

with a molecular mass similar to that of the recombinant protein (37 kDa) was present 

in the insoluble fraction from the disrupted cells (designated the inclusion body 

fraction). The appearance of this band seemed to depend upon induction with IPTG 

(Fig. 4.1). The size of the recombinant protein and its expression in the presence of 

IPTG supported the notion that it was likely to be DrrA.

4.1.1.2 Optimisation of conditions for production of soluble protein

Attempts to shift the proportion of DrrA present in the insoluble fraction 

towards the cytosolic fraction, led us to test induction at lower temperatures, and 

induction with lower IPTG concentrations. Assays to obtain soluble DrrA protein 

using lower temperatures (30 and 25 °C) (Fig. 4.2) and lower IPTG concentrations 

(0.2 mM) did not increase the yield of soluble protein in early experiments using low 

volumes of media (1 L). Afterwards, induction at 18 °C provided some protein in the 

soluble fraction for purification by affinity chromatography (IMAC; see Ch. 2, section 

2.9), but the amounts were too low to proceed with characterisation assays (Fig. 4.3).
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Initially the yield of soluble DrrA was no higher than 30 jug protein/L of culture. In 

further experiments, a concentration of 60±20 jug protein/L of culture was obtained by 

induction at 17 °C with 1 mM IPTG. The first two fractions eluted from five IMAC 

purifications (each purification corresponding to approximately 2 L of culture) were 

collected. About 1 mg of DrrA in approximately 9 ml of pooled elution buffer was 

collected and dialysed.

4.1.1.3 Over-expression of DrrA from the pET21a plasmid in strain BL21 AI

Expression of the pET21 a construct was tested in the E. coli strain BL21 AI to 

establish if it was possible to improve the yields of DrrA by using a different bacterial 

strain. In this system, IPTG and arabinose inducers provide stringent regulation over 

the expression of DrrA. In spite of expectations, the expression of DrrA at 37 ^C and 

17 °C was not improved relative to the BL21 (DE3) strain, although multiple 

combinations of inducers were used. Induction with 0.01 mM IPTG had the weakest 

effect on the expression of DrrA in this system (Fig. 4.4), while 0.1 mM was the best, 

rendering the highest yield of soluble protein.

4.1.1.4 Analysis of expression of DrrA from the pET21a vector by Western blot

Western blotting was used to demonstrate the presence and identity of DrrA 

protein expressed from different constructs, exploiting the presence of a Hisg epitope 

tag. Antibodies raised against DrrA were not available.

The recombinant 37 kDa protein was produced by induction with 0.1-1 mM 

IPTG (and with Arabinose and IPTG in the BE 21 AI strain). After transfer to PVDF, 

blots were probed with antibody against the histidine tag. At 37 °C, almost all the 

protein appeared in the insoluble cytoplasmic fraction, presumably in inclusion 

bodies. However, at 18 °C a small amount of DrrA could be detected in the soluble 

cytosolic fraction. A proportion of DrrA also appeared in the membrane fraction (Fig. 

4.5).
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Figure 4.1 Preliminary fractionation of £. coli BL21(DE3) grown at 37 ®C to 

determine sub-cellular localisation of DrrA
Bacteria carrying the pET21a expression construct were grown at 37 °C to exponential phase and 

induced with 1 mM IPTG for 3 hours. In a control experiment, cells were treated identically but for the 

omission o f  IPTG. Soluble cytosolic proteins were obtained by cell disruption and centrifugation. 

Proteins recovered from the disrupted pellet following addition o f  urea were termed the inclusion body 

fraction. Samples were analysed by SDS PAGE and GelCode blue staining.

M: Protein molecular weight markers 

Lane I; Crude soluble fraction - IPTG 

Lane 2; Crude soluble fraction + IPTG 

Lane 3: Inclusion body fraction - IPTG 

Lane 4: Inclusion body fraction + IPTG

Approximately 20 pg o f  protein was loaded per well. The 37 kDA protein presumed to be DrrA is 

indicated.
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Figure 4.2 Preliminary fractionation of E. coli BL21(DE3) grown at 25 ®C to 

determine the sub-cellular localisation of DrrA
Bacteria carrying the pET2la expression construct were grown at 37 °C to exponential phase, shifted to

25 °C and induced with 1 mM IPTG overnight. In a control experiment, cells were treated identically

but for the omission o f IPTG. Cell fractionation and analysis was carried out as described in Figure 4.1

M: Protein molecular weight markers

Lane 1; Crude soluble fraction - IPTG

Lane 2: Crude soluble fraction + IPTG

Lane 3: Inclusion body fraction - IPTG

Lane 4; Inclusion body fraction + IPTG

Approximately 30 pg o f  protein from the soluble fractions and 20 pg from the inclusion bodies 

fractions were loaded to the gel.
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Figure 4.3 Expression and purification of DrrA from E. coli BL21 (DE3) cultures 

induced at 18 "C
Bacteria carrying the pET21a expression construct were grown at 37 °C to exponential phase, shifted to 

18 °C and induced with 1 mM IPTG overnight. Proteins from the soluble cytoplasmic fraction were 

purified by IMAC. Samples were analysed by SDS PAGE and GelCode blue staining.

M: Protein molecular weight markers

IB; Inclusion body fraction

FT: Flow-through from the IMAC column

WB|: Wash fraction from the column (25 mM imidazole)

WB;: Wash fraction from the column (50 mM imidazole)

Lanes I and 2: Fractions eluted from the IMAC column with 300 mM imidazole

20 pg o f  protein from the inclusion body fraction was loaded to the gel. IMAC was carried out with

material prepared from about 2 L o f induced culture.
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Figure 4.4 Expression and purification of DrrA from E. coli BL21 AI cultures 

induced at 17 ”C
Bacteria carrying the pET21 a expression construct were grown at 37 °C to exponential phase, shifted to 

17 °C and induced with 0.002% arabinose and the IPTG concentrations indicated, overnight. Proteins 

from the soluble cytoplasmic fraction were purified by IMAC. Samples were analysed by SDS PAGE 

and Coomasie blue staining.

M: Protein molecular weight markers

1: Inclusion body fraction (induction with 0.01 mM IPTG)

2: Protein eluted from IMAC column after loading with soluble cytosolic fraction (induction with 0.01 

mM IPTG)

3: Inclusion body fraction (induction with 0.1 mM IPTG)

4-6: Fractions eluted from IMAC column after loading with soluble cytosolic fraction (induction with 

0.1 mM IPTG)

7: Inclusion body fraction (induction with 1 mM IPTG)

8-9: Fractions eluted from IMAC column after loading with soluble cytosolic fraction (induction with 1 

mM IPTG)

In each case, IMAC was carried out with material prepared from about 2 L o f induced culture.
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Figure 4.5 Expression, purification and blotting analysis of DrrA from E. coli 

BL21 (DE3) cultures induced at 18 **C
Bacteria carrying the pET21a expression construct were grown at 37 °C to exponential phase, shifted to 

18 °C and induced with 1 mM IPTG overnight. Proteins from the soluble cytoplasmic fraction were 

purified by IMAC and analysed by Samples were analysed by SDS PAGE and GelCode blue staining 

(left panel) and Western blotting with an antibody against the histidine purification tag (right panel).

1 ; Protein molecular weight markers 

2: Inclusion body fraction from induction at 18 °C 

3: Inclusion body fraction from induction at 30 °C

4-6; First 3 fractions eluted from IMAC column after loading with soluble cytosolic fraction (induction 

at 18 °C)

7: Membrane fi-action (induction at 18 °C)

IMAC was carried out with material prepared from about 1 L o f  induced culture.
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4.2 Heterologous over-expression of DrrA and DrrB using pET vectors

It has been reported that the expression of DrrA is dependent upon the 

presence of DrrB, indicating a tight interaction between both proteins (Kaur, 1997, 

2005; Kaur and Russell, 1998). Therefore, the expression of DrrA was investigated as 

a component of the whole DrrAB complex. Plasmids pET21a and 33b were chosen 

as vectors for the drrAB operon to test whether more soluble DrrA could be obtained 

when expression was translationally coupled to DrrB.

4.2.1 Heterologous over-expression of DrrA and DrrB proteins using the 

pET21a plasmid

When both drr genes were cloned into the pET21a vector for expression 

studies DrrA could not be detected on gels after induction with 1 mM IPTG. Yields 

could not be improved by induction at 16 °C. Sequencing confirmed that part of the 

DNA sequence encoding the histidine-tag was missing from the construct, but a new 

vector preparation in which this feature was corrected also failed to express DrrA.

4.2.2 Heterologous over-expression of DrrA and DrrB proteins using the 

pET33b plasmid

The same approach was attempted using the pET33b vector. The drrAB PCR 

product was cloned into the expression vector and transformed into E. coli 

BL21(DE3). Transformants were grown and induced with 1 mM IPTG at 37 ”C. No 

signs of DrrA expression could be detected when samples were analysed on gels. The 

temperature at induction was dropped to 17 °C and IPTG added to 1 or 0.1 mM, 

Soluble cytosolic proteins were purified by IMAC for gel analysis. This revealed 

several bands on the gel including one that matched the molecular weight expected 

for DrrA (-37 kDa). Two additional bands of similar concentration were present 

around 39 kDa (Fig. 4.6) but the yield and purity of the material was insufficient to 

allow further progress.
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Figure 4.6 Expression and purification of DrrA from drrAB construct induced at 

17 X
Bacteria carrying the pET33b expression construct were grown at 37 °C to exponential phase, shifted to 

17 °C and induced with 0.1 mM IPTG overnight. Proteins from the soluble cytoplasmic fraction were 

purified by IMAC and analysed by SDS-PAGE and Coomasie blue staining..

M: Protein molecular weight markers

Lanes 1-3: Fractions eluted from the IMAC column

Soluble protein from a 2 L culture was loaded to the column

125



4.3 Heterologous over-expression of Thio-DrrA from the pBADTOPO 

thiofusion plasmid

Since only minimal quantities of soluble DrrA were obtained by expression of 

the pET constructs, a different approach was tested. The pBADTOPO thiofusion 

plasm id encodes for Thioredoxin, a protein of low molecular weight and high 

solubility, and the vector enables convenient fusion with the product of a cloned gene. 

It was considered that the properties of Thioredoxin might increase the proportion of 

DrrA protein in the soluble cytosolic fraction, although forming part o f a fusion 

protein. As this type of vector can be tightly regulated by an appropriate 

concentration of arabinose, a small-scale culture at 37 °C was used to determine the 

arabinose concentration that induced the highest expression of the Thio-DrrA fused 

protein. When the E. coli transformant were grown to an ODôoo of about 0.5, they 

were treated with different arabinose concentrations to induce expression of the DrrA 

protein (0.00002-0.2%; see section 2.7.2). Following a four-hour incubation period, 

the cells were recovered by centrifugation and samples from each culture were mixed 

and lysed with SDS NuPAGE buffer, and run on a gel. A Thioredoxin-DrrA fusion 

protein, of approximately 52 kDa molecular weight, was clearly expressed when 

cultures were induced with arabinose at concentrations between 0.002 and 0.2% (Fig. 

4.7).

Having chosen an arabinose concentration of 0.002% to induce the expression 

of the fused DrrA, experiments were carried out on a much larger scale (10 L). 

Although some protein appeared in the soluble cytosolic fraction when cultures were 

grown and induced at 37 °C (Fig. 4.8), most of the protein was present in the 

insoluble fraction (assumed to be inclusion bodies). Dropping the temperature of 

induction to 25 °C only produced a slight improvement in solubility (Fig. 4.9). Only 

when cultures were induced at 17 °C, did better yields of soluble Thio-DrrA emerge 

(Fig. 4.10). The presence of the histidine purification tag was confirmed by Western 

blotting using specific antibody (Fig. 4.11).

It was found that standardised experimental conditions of overnight culture at 

17 could produce Thio-DrrA at a concentration of 250 pg/mi in the eluate (12 ml). 

Using IMAC for purification, the first three fractions eluted from four purification
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runs (corresponding to 7 L of culture) yielded Thio-DrrA at 430 pg/L of culture. As 

DrrA comprises a 72.5% of the fused Thio-DrrA protein, it is possible to deduce that 

_  of this protein correspond to the DrrA fraction. This result shows that the inherent 

production of DrrA from the pBAD construct was about 3.6 fold higher than when the 

pET21a construct was used.

4.4 Comparative analysis of DrrA from expression vector systems

A comparative Western blot of DrrA proteins expressed from pET21 a and 

pBADTOPO thiofusion vectors after induction at 17 °C and 37 °C was performed. 

When E. coli cultures carrying these plasmids were induced at 37 °C, a very faint 

band of Thio-DrrA appeared on SDS-PAGE gels, whilst no DrrA could be detected 

from the pET21a expression system. The yield of DrrA from the pET21a construct 

when induced at 17 °C was scarcely more prominent than that obtained for Thio-DrrA 

produced at 37 “C, according to data from SDS-PAGE and Western blotting (Fig. 4.12 

and 4.13). Thus, it was concluded that the pET21a expression system worked best (if 

not ideally) when induced at 17°C and grown on overnight.

In contrast, the pBADTOPO ihio-drrA construct showed more promise as a 

vehicle for expression of recombinant DrrA. When induced with arabinose at 17 °C, 

this system yielded at least five times more Thio-DrrA than was obtained from other 

preparations as determined by SDS-PAGE (Fig. 4.12) and the determination of 

protein concentration. An additional band of similar size to DrrA appeared on the gel 

(Fig 4.12) and was reactive with anti-tag antibody in Western blots (Fig. 4.13). This 

was probably being a degradation product of the fused protein. Yields of soluble 

protein from the pET21a expression system were approximately 60 pg per litre of 

culture, whilst yields for Thio-DrrA were 375 pg/L (Table 4.1),
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Fig. 4.7 Expression of Thio-DrrA in E. coli LMG 194 after induction with 

different concentrations of arabinose
Cultures o f E. coli were grown at 37 °C to exponential phase, treated with varying concentrations o f  

arabinose, and incubated for an additional 4 hours. Total cellular protein was analysed by SDS-PAGE 

and GelCode blue staining.

M: Protein molecular weight markers

1 : Control taken at time o f induction, no arabinose added

2: Control at the end o f the induction period, no arabinose added

3: Culture induced with 0.000002% arabinose

4: Culture induced with 0.00002% arabinose

5: Culture induced with 0.0002% arabinose

6: Culture induced with 0.002% arabinose

7: Culture induced with 0.02% arabinose

8: Culture induced with 0.2% arabinose

A protein o f 52 kDa consistent with the size o f the Thioredoxin-DrrA fusion protein is indicated.
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Figure 4.8 Expression and purification of Thio-DrrA from E. coli LMG 194 

cultures induced at 37 C
Cultures o f  E. coli were grown at 37 °C to exponential phase, treated with 0.002% arabinose and 

incubated for an additional 4 hours. Cells were fractionated and recombinant protein purified from 

soluble cytoplasmic extracts by IMAC. Samples were analysed by SDS PAGE and Coomasie blue 

staining.

M: Protein molecular weight markers

IB: Inclusion body fraction

FT: Flow-through from the IMAC column

W Bl: Washings from the column (20 mM imidazole)

WB2: Washings from the column (50 mM imidazole)

1 and 2: Fractions eluted from the column (300 mM imidazole)
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Figure 4.9 Expression and purification of Thio-DrrA from E. coli LMG 194 

cultures induced at 25^C

Cultures o f E. coli were grown at 37 °C to exponential phase, shifted to 25 °C and treated with 0.002% 

arabinose overnight. Cells were fractionated and recombinant protein purified from soluble 

cytoplasmic extracts by IMAC. Samples were analysed by SDS PAGE and GelCode blue staining.

M; Protein molecular weight markers

Lane 1-2: First two fractions eluted from IMAC column (300 mM imidazole)
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Figure 4.10 Expression and purification of Thio-DrrA from E. coli LMG 194 

cultures induced at 17 "C
Cultures o f £. coli were grown at 37 ®C to exponential phase, shifted to 17 °C and treated with 0.002% 

arabinose overnight. Cells were fractionated and recombinant protein purified from soluble 

cytoplasmic extracts by IMAC. Samples were analysed by SDS PAGE and Coomasie blue staining.

M; Protein molecular weight markers

W,_2: Washings from the IMAC column (25 and 50 mM imidazole, respectively)

1-4: First four fractions eluted from the IMAC column (300 mM imidazole)
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Figure 4.11 Expression, purification and blotting analysis of Thio-DrrA from £. 

coli LMG 194 cultures induced at 17 ®C
Cultures o f E. coli were grown at 37 ®C to exponential phase, shifted to 17 °C and treated with 0.002% 

arabinose overnight. Cells were fractionated and recombinant protein purified from soluble 

cytoplasmic extracts by IMAC. Samples were analysed by SDS-PAGE and GelCode blue staining 

(upper panel) and Western blotting (lower panel) using antibodies against the histidine tag.

Lanes 1: First eluted fraction from IMAC column (300 mM imidazole)

Lane 2: DrrB prepared from a pET21 construct in a different experiment 

M (lane 3): Protein molecular weight markers

Lanes 4-9: Fractions 2-7 eluted from IMAC column (30 mM imidazole)
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Figure 4.12 Analysis of recombinant DrrA expressed as a single protein from 

pET21a and as a Thio-DrrA fusion protein
E. coli cultures were induced with 1 mM IPTG for expression o f  DrrA and with arabinose for 

expression o f  the Thio-DrrA fusion protein. Samples were analysed by SDS PAGE and GelCode blue 

staining.

M; Protein molecular weight markers

1: DrrA present in inclusion body fraction prepared from cultures induced at 37 °C

2: DrrA present in the soluble fraction prepared from cultures induced at 37 °C

3: DrrA present in the soluble fraction prepared from cultures induced at 17 °C

4: Thio-DrrA present in the soluble fraction prepared from cultures induced at 37 °C

5: Thio-DrrA present in the soluble fraction prepared from cultures induced at 17 °C

Sample loadings represent 0.1 % o f the disrupted cell pellet from 1 L o f culture. DrrA in the inclusion

body fraction (lane 1) was loaded as a reference marker for the migration o f DrrA
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Figure 4.13 Western blot analysis of DrrA expressed as a single protein from 

pET21a and as a Thio-DrrA fusion
Samples were prepared as in Figure 4.12

1 : DrrA present in inclusion body fraction prepared from cultures induced at 37 °C 

2; DrrA present in the soluble fraction prepared from cultures induced at 37 °C 

3; DrrA present in the soluble fraction prepared from cultures induced at 17 °C 

4: Thio-DrrA present in the soluble fraction prepared from cultures induced at 37 °C 

5; Thio-DrrA present in the soluble fraction prepared from cultures induced at 17 °C
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Table 4.1 Comparison of protein yields

Thio-DrrA DrrA

Volume of culture (L) 8 8

Volume eluted from IMAC 12 8

columns (ml)

Protein concentration (|ag/ml) 250 60

in the eluted material

Total protein obtained (mg) 3 0.48
Protein yield (pg/L) 375 60

Data was gathered from four independent purifications each using 2 L o f  culture, whose material was 

pooled for analysis. Protein yields represent the average from three determinations. In each case, E. 

coli strains were grown at 37 °C to exponential phase, shifted to 17 °C, treated with inducer (0.002% 

arabinose for Thio-DrrA, 1 mM IPTG for DrrA) and incubated overnight to induce expression. Proteins 

were isolated from soluble cytoplasmic fractions using IMAC.
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4.5 Discussion

Expression of transporter proteins has been a difficult task in the past. Membrane 

proteins need an appropriate environment for expression and purification besides 

intrinsic requirements for functionality. NBDs, on the other hand, have been 

classified as cytosolic domains, peripheral to the membrane, but they also are usually 

expressed with difficulty in hydrophilic environments. To overcome this drawback, 

researchers have usually had to search for particular approaches linked to the system 

under study. The following examples illustrate the different approaches investigators 

have used to overexpress transporters, particularly those of the ABC family;

a) Overexpression of eukaryotic genes using eukaryotic systems.

To overexpress eukaryote genes, eukaryotic vectors have been preferred to those 

of E. coli. Some examples include: mouse mdrl, where the biological activity of 

cDNAs were tested after cloning into the expression vector p91023b (Azzaria et aL, 

1989). This vector system had been used previously to express m drl (Gros et al., 

1986) and carries the adenovirus major late promoter and simian virus 40 enhancer to 

direct high levels of expression of cloned cDNAs. Wild-type human P-glycoprotein 

(ABCBl, MDRl gene product), has been expressed with a C-terminal histidine tag in 

S. cerevisiae plasma membranes using the yeast expression plasmid YEpMDRlHIS 

(A1 Shawi et al., 2003). Similarly, studies of human MRP 1 used baby hamster kidney 

(BHK-21) cells transfected with pNUT-MRP/His (Chang et al., 1997). The original 

vector (pNUT) also contains a mutant dihydrofolate reductase (DHFR) gene under the 

control of the SV40 early promoter, allowing for selection of transfectants with 

methotrexate

b) Overexpression of eukaiyotic genes using E. coli cells

Examples include that of the carboxyl-terminal NBD from Chinese hamster P-gp. 

This was cloned and overexpressed in the vectors pT7-7 and pET22b, and purified to 

allow structure-function studies of the NBDs. The overall yield of purified protein 

was of 25-50 pg/L of cell culture (Sharma and Rose, 1995). Mdll from S. cerevisiae 

has also been studied in this way to investigate its ATP hydrolysis cycle and 

properties of its NBD (Janas et al., 2003).
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c) Overexpression of prokaryotic genes using related prokaryotic systems

Overexpression of genes from E. coli or related bacteria has usually been

achieved with success. Examples include E. coli MsbA expressed in E. coli Novablue 

DE3 cells harboring a pET28b construct containing msbA (Reuter et aL, 2003); V. 

cholera MsbA, that was cloned into pET19b with a 23-residue fusion leader 

containing an N-terminal deca-histidine tag, and expressed in E. coli BL21(DE3) 

(Chang, 2003). In studies of the Mai transporter from E. coli, the components MalF, 

MalG, and MalK were overproduced simultaneously from two plasmids, pFG23, that 

carried malF and malG  under control of the trc promoter, and pMRll, that carried 

malK under the same promoter (Davidson and Nikaido, 1991). These plasmids were 

transformed into a strain HN597 carrying a deletion of the FoFi-ATPase. Mai 

proteins were recovered from membrane preparations and transport activity was 

reconstituted in proteoliposome vesicles. The maltose transport complex MalFGKi, 

modified with a polyhistidine tag at the N terminus of MalK, was also overexpressed 

in E. coli by Sharma and Davidson (Sharma and Davidson, 2000). The isolated MalK 

protein was purified from strain BL21(DE3) carrying the plasmid pMF8 with malK  

under control of a T7 promoter. Another example of a prokaryotic transporter gene 

expressed in a prokaryotic system is that of LmrA, which was overexpressed in L. 

lactis using nisin A-inducible vectors pNHLmrA, pNHLmrA-E314A, and pNHLmrA- 

E512Q (Balakiisluian et aL, 2004).

d) Overexpression of divergent prokaiyotic genes in E. coli

Recombinant proteins have been expressed in E. coli with varying degrees of 

suecess, depending in many cases of the approach of the research. MJ1267 from M. 

janaschii was cloned into pET28a and expressed in E. coli BL21(DE3) for further 

purification and crystallisation (Karpowich et aL, 2001). For another extremophile, 

glcV  from Sulfolobus solfataricus was inserted into the expression plasmid pETlSb 

and its product shown to undergo dimer formation in the presence of Mg-ATP 

(Verdon et aL, 2003). Of direct relevance to the present study, DrrA and DrrB from 

S. peucetius were subcloned and expressed either individually or together (Kaur and 

Russell, 1998). In a previous study (Kaur, 1997), the drr A and drrB genes were 

modified at to introduce restriction sites at their start codons. This aided subcloning 

to place expression under the control of the lac promoter in pSU2718, a vector
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previously used for expression of arsA. The drrA and drrB genes were also subcloned 

separately into pSU2718 at the Ndel-BBadlll sites after PCR amplification of the 

genes.

Despite the attraction of exceptionally high transcription and translation, the 

literature has plenty of examples where overexpression of recombinant proteins from 

the T7 promoter has given rise to the formation of inclusion bodies. Given that some 

transporters genes placed under the control of the T7 promoter have been 

overexpressed with success (e.g. the SMR of EmrE (Ma and Chang, 2003), the NBDs 

of HisP (Nikaido et aL, 1997) MalK (Schmees et aL, 1999) and others), cloning of 

drrA  under the control of this promoter in pET21a was an option worthy of 

exploration. It enabled very high levels of expression but almost all the recombinant 

protein was present in a fraction of insoluble protein, presumed to be inclusion bodies. 

No soluble DrrA was expressed at 37 °C whilst at 17 °C, some soluble protein was 

present and could be purified in low yield by IMAC. It is also worth noting that some 

DrrA appeared in the membrane fraction, but it was neither quantified nor was its 

ability to hydrolyse ATP assayed at this stage. One interpretation of these results is 

that the protein is less hydrophilic in character than indicated from SOSUI 

hydropathic analysis (not shown) and reported by other investigators (e.g. Guilfoile 

and Hutchinson, 1991; and Kaur, 1997). Utilisation of protein produced from pET21a 

would thus depend upon purification o f DrrA under denaturing conditions to 

solubilise the protein from inclusion bodies (Chapter 5). In this phase of the project, 

the other strategy explored was to seek greater yields of soluble protein by expression 

in different plasmid vectors.

We wished to assay co-expression of DrrA with DrrB as an option to improve the 

production of DrrA in the cytosol, but co-expression only seemed to be successful 

using the pET33b vector, and it did not show any improvement in DrrA yield over 

that from independent expression in pET21a. Moreover, IMAC isolated many other 

proteins from the soluble fraction, making this option even less satisfactory. The other 

strategy employed was to fuse DrrA to another protein of high solubility.
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Fusion to soluble proteins has allowed the overexpression of many proteins that 

previously formed inclusion bodies. NBDs such as mouse Pgp C-terminal NBD2 

(Baubichon-Cortay et aL, 1994) and M RPl (Cool et aL, 2002), both fused to 

Glutathione-N-transferase (GST), were recovered as soluble proteins. Similarly, 

NBDs such as those of Pgp (Sharma and Rose, 1995; Wang et aL, 1999; Berridge et 

aL, 2003), MRPl (Cool et a l, 2002), and OpuAC (Horn et al., 2005), have been fused 

to maltose-binding protein (MBP) and overexpressed as soluble proteins.

On the past decade, LaVallie et al. (1993) developed a promising E. coli 

expression system based on the use of E. coli thioredoxin as a gene fusion partner. 

Previously expressed as inclusion bodies, a variety of mammalian cytokines and 

growth factors could be expressed as soluble proteins to high levels when they were 

fused to Thioredoxin. Equally promising, fusion of Thioredoxin to the D-lactate 

dehydrogenase VanH, produced soluble, functional protein when other expression 

systems had completely failed. The intact fusion protein was used for kinetic studies 

and crystallization trials. Michaelis constants for NADPH, NADH, and pyruvate 

were derived for VanH and found to be comparable to those reported for the native 

dehydrogenase (Stoll et aL, 1998). The effect of Thioredoxin fusion on the 

production and folding of single chain Fv (scFv) antibodies in the cytoplasm of E. coli 

is another interesting example of protein fusion that resulted in high level expression 

and the retention of the correct folding pattern even in the absence of disulfide-bond 

isomerase Dsbc, an enzyme which has been shown to act as a chaperone for scFvs in 

the cytoplasm. When compared to MBP, Thioredoxin fusion was more effective in 

this regard. Another important feature of this Thio fusion was that antigen-binding 

assays showed that the scFv moiety maintained its affinity for the antigen, despite the 

presence of its fusion partner. It was concluded that Thio-scFv fusions could be used 

without removal of the Thioredoxin fusion partner and that the Thioredoxin acted 

largely as an intramolecular protein chaperone (Jurado et aL, 2006). An additional 

example where a Thioredoxin fusion has been important to overcome the formation of 

inclusion bodies is that of S. aureus gyrase A (Strahilevitz et aL, 2006). For this 

protein, the expression vector pBADTOPO thiofusion, was modified by the addition 

of DNA sequences encoding a hexahistidine tag upstream and a eleavage site for 

tobaceo etch virus protease downstream of the gene for Thioredoxin. A high level
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expression of soluble GyrA was achieved using this expression system in E. coli TOP 

10 strain and GyrA was purified to over 95% homogeneity.

In this project, improvement in expression of soluble DrrA was achieved 

tlu'ough fusion to Thioredoxin, What advantages prompted the use of Thioredoxin 

over other potential fusion partners? Thioredoxin is a low molecular weight protein 

(11.7 kDa) that is characterised by high solubility: It was hoped that this feature 

might help to maintain DrrA in solution under those conditions where the pET21a 

construct failed. If so, it was thought that the low size of Thioredoxin might not affect 

other properties of the fused protein under study. In addition, the pBADTOPO 

thioredoxin fusion vector provided tight regulation over expression through 

incorporation of the arabinose promoter. Although many studies have shown MBP to 

be effective in maintaining fusion partners in soluble form, its size (44 kDa) is 

significant and can be higher than the fused moiety. This can affect the intrinsic 

properties of the target protein, and makes necessary its elimination from the fusion 

complex. This can be done by cleave with proteases such as Factor Xa but this 

requires the introduction of a tluombin cleavage site to release MBP and assumes that 

the protease will not alter the protein of interest. At 29 kDa, Glutathione-5'- 

transferase suffers similar limitations.

Studies using the pBADTOPO thiofusion system confirmed that higher yields 

of DrrA protein could indeed be obtained by fusion to Thioredoxin, Although yields 

of the DrrA fusion protein at 37 °C remained very poor, reduction below 21 °C 

provided more protein that was soluble, and suggested that characterisation studies 

with recombinant DrrA would be possible.
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Chapter 5

Purification of DrrA

The purification of proteins over-expressed from the different vectors was a 

necessary step before proceeding to studies aimed at their characterisation. The 

production of these proteins with a tag such as the histidine repeat enabled the use of 

irmnobilised metal affinity chromatography (IMAC) for purification. Whilst these 

tags were present in several of the vectors used for the study, in other instances they 

were added to the PCR products to appear at the N- or C- termini of the protein. This 

feature provides a useful means to rapid and efficient purification.

5.1 Purification of DrrA under denaturing conditions

A common obstacle to the expression of recombinant proteins in foreign host 

cells is the accumulation of insoluble, aggregated protein in morphological structures 

called inclusion or refractile bodies. Several reasons can explain the origin of these 

elements: the target proteins may require specialised post-translational modification 

for full biological activity utilising enzyme systems that are lacking in the host 

organism used for expression. The natural conformation of the recombinant protein 

may not be able to form in the particular conditions prevailing in the host cell cytosol 

(e.g. when extracellular secreted proteins are expressed as intracellular recombinant 

proteins). In the natural producing organism, a variety of additional protein factors 

may be involved in assisting the protein to fold, and their level and specificity may 

differ in the expression host thereby affecting the refolding and solubility of the 

recombinant protein. Another important reason that may be responsible for this 

phenomenon is that the recombinant proteins may be produced at a rate and to a level 

that exceeds the limits of physiological solubility (Thatcher et aL, 1996).

Although the formation of inclusion bodies may not be desirable, typically the 

target protein comprises 70-90% of the structure and this represents a great advantage 

in the purification process, as the enclosed protein is concentrated. Given this, 

solubilisation and refolding need not yield large amounts of functional, recombinant 

protein to make possible other studies. Recovery of functionally active protein
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commonly requires the solubilisation of inclusion bodies under strong denaturing 

conditions to effectively separate and unfold the aggregated protein, followed by 

refolding. This can be accomplished by dialysis or dilution of the denaturing agent.

5.1.1 Refolding of DrrA from inclusion bodies using an 8 M urea gradient

Solubilisation of inclusion bodies is usually carried out in 8 M urea or 6 M 

guanidine hydrochloride at alkaline pH and in the presence of a reducing agent. In the 

case of a-chymotrypsin, Hibbard and Tulinsky (Hibbard and Tulinsky, 1978) showed 

the effective penetration of the interior of the enzyme by urea, in contrast to guanidine 

hydrochloride which showed no significant changes in the protein interior. Urea 

bound within the interior of a protein is presumed to stabilise the partly folded protein 

chains (Guo and Clark, 2001). Thus, for the purpose of unfolding/refolding proteins in 

inclusion bodies, urea appears to be a suitable choice as it is expected to stabilize the 

unfolded intermediates and simultaneously help unfolding the insoluble protein 

bodies sufficiently to correct any misfolded structures. Moreover, urea is one of the 

denaturing agents most eommonly employed in protein refolding processes, due to the 

fact that it is cheap, easily available, and can be easy removed without irreparable 

modification of the protein under investigation.

Work to this point established that the over-expression of DrrA always 

rendered the protein insoluble, and redueing the temperature and inducer (IPTG) 

concentrations below 37 °C and 1 mM, respectively, failed to raise the proportion of 

soluble recombinant protein. Since inclusion bodies containing DrrA were readily 

available, it was decided to attempt purification from this starting material. 

Conventional methods for refolding insoluble recombinant proteins include slow 

dialysis or dilution into a large volume o f refolding buffer or chromatographic 

refolding using packed columns. Chromatographic methods can include solvent- 

exchange, size exclusion chromatography and immobilization of the denatured protein 

onto a column or gel matrix, with subsequent dilution of dénaturant to promote 

refolding.

Examining reports in the literature, the advantages of on-column chemical 

refolding included: lack of dependence upon protein concentration, high yields of
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soluble protein, simultaneous purification and refolding and amenability to high- 

throughput refolding. Furthermore, physical separation of the molecules, for example 

by immobilising them on an IMAC resin, is thought to reduce the possibility of 

unfavourable protein-protein interactions occurring during the refolding process that 

can lead to aggregation and eventual precipitation of the target protein. Therefore, 

refolding of DrrA from the inclusion bodies was attempted, using as starting material 

E. coli cells carrying the pET21a-c/rrX construct, grown at 37 °C and induced with 1 

mM IPTG. Refolding was attempted on-column using a decreasing urea gradient (8-0 

M).

The DrrA inclusion bodies were solubilised in Tris-PICl buffer with 8 M urea 

(see Methods sections 2.9.2 and 2.9.2.1), mixed withNi^’̂ -NTA agarose resin to bind 

the histidine tag carried by the protein, and loaded into a glass chromatography 

column. The refolding process consisted of washing the protein-NiNTA resin 

complex in the column with decreasing concentrations of urea over an 8-0 M range. 

Finally, the protein was eluted from the column using a high concentration of 

imidazole (250-300 mM). The DrrA protein appeared in all eluted fractions and 

showed good purity on gel analysis (Fig. 5.1). After dialysis of the eluted purified 

material, DrrA fluorescence changes were initially monitored in the absence and 

presence of ATP-Mg^"^ as a means to evaluate the success of the refolding process. 

This analysis failed to show that the changes detected on the protein fluorescence 

were genuinely caused by the interaction between DrrA and the ATP-Mg^^ complex 

(see Chapter 7 section 7.1). Therefore, this methodology was replaced by an ATPase 

activity assay using the Molecular Probes EnzCheek phosphate assay.

As the EnzCheck phosphate assay (up to 150 pM of Pi detected) did not reveal 

any ATPase activity from the putatively refolded DrrA, further refolding experiments 

were devised to assess the ATPase activity of DrrA with a method that was more 

sensitive (1 to 30 _M; 50 to 1500 picomoles of Pi) and easier to set up, the Malachite 

green assay (Harder et aL, 1994).
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Figure 5.1 Purification of DrrA after urea gradient treatment on an IMAC 

column
Bacteria carrying pET21a-ûfr'r/< were grown at 37 °C to exponential phase and induced with ImM IPTG 

for 4 hours. 200 pg o f insoluble protein (“inclusion bodies”) was solubilised in 8 M urea and loaded to 

the IMAC column. After progressive reduction in the urea concentration and washing, protein was 

eluted with imidazole. Samples were analysed by SDS PAGE and Coomasie blue staining.

M: Protein molecular markers

WB (1-2); Wash fractions using 25 and 50 mM imidazole respectively 

1-6: Eluted fractions (300 mM)

A protein consistent with the predicted size o f DrrA is indicated
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Again, inclusion bodies from the disrupted cell pellet were solubilised in 8 M 

urea and the process of binding to NiNTA and reduction in the concentration of urea 

was repeated (section 2.9.2). The six fractions eluted from the IMAC column (0.5 ml 

each) contained DrrA protein, and fractions 3, 4 and 5, which had the highest protein 

concentrations, were pooled, dialysed and tested for ATP-ase activity using Malachite 

green. The kinetics of ATPase is typically followed for 15 minutes, but in this 

instance, the reaction was monitored for I hour to allow complete ATP hydrolysis. 

Again, the release of inorganic phosphate by the “refolded” DrrA could not be 

detected.

This experiment was repeated with 2-6 fold more starting material (up to 3 ml 

of disrupted cell pellet paste) solubilised in 8 M Urea, to increase the chances of 

detection o f even small amounts of “refolded” protein in the ATP-ase assay. 

Although it was possible to visualise intensely-staining bands corresponding to DrrA 

on polyacrylamide gels, there were no signs of ATP-ase activity using the Malachite 

green assay. These results confirmed that the solubilisation of DrrA from inclusion 

bodies using urea and on-column removal of the dénaturant did not yield 

appropriately folded DrrA protein.

5.1.2 Assay with a refolding kit

The Hampton Research Foldit Screen allows researchers to determine with a 

reasonable degree of confidence if a protein of interest can be folded from inclusion 

bodies. Sixteen different refolding formulations are arranged, and assayed to find the 

best conditions for proper refolding of proteins; these were assayed for the DrrA 

protein (Fig. 5.2 and 5.3) in another attempt to try to obtain active protein for 

characterisation. This system allows convenient variation of multiple variables 

(Tables 2,2 and 2.3 in Chapter 2) that include the type and concentration of buffer, 

salt, presence and absence of denaturing agent, type of cation chelator, polar and non

polar additives, presence and type of detergent, reducing agents, ligand addition, and 

protein concentration. Reagents to enable protein refolding should favour the 

formation of the native fold and minimise the aggregation of folding intermediates. 

Reagents such as polar additives (arginine), osmolytes (polyethylene glycol), 

detergents (lauryl maltoside), and chaotropes (guanidine hydrochloride) can minimise
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aggregation and increase the yield of properly folded protein (Foldtit Screen Hampton 

Research manual).

Inclusion bodies were solubilised with 6 M guanidine hydrochloride then 

diluted into the test conditions in order to reduce the dénaturant concentration. 

Refolding was assayed with protein alone, and in the presence of doxorubicin (Fig.

5.2 and 5.3). A summary of the refolding parameters tested is presented in Table 5.1.

To measure the success of refolding, ATPase activity was assayed using the 

Molecular Probes EnzCheck phosphate method. Although DrrA protein samples did 

not show signs of precipitation in the dialysis tubes under several sets of conditions 

(Fig. 5.3), none showed any ATPase activity. Binding of the ATP analogue MANT- 

ATP in the presence and absence of doxorubicin was also tested, but there were no 

fluorescence changes that would suggest some interaction between the protein and the 

ligands.

As attempts to refold DrrA from inclusion bodies were unsuccessful, 

alternative procedures were considered to express the protein in an active form and in 

sufficient quantities to proceed with further characterisation.
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Table 5.1 Hampton Research Foldit Screen refolding parameters tested for 

DrrA

Protein concentration 0.1 mg/ml vs. 1.0 nig/ml

Presence of polar additive +/- 550 inM L-Arginine

Presence of detergent +/- 30 mM Lauryl Maltoside

pH pH 6.5 vs. pH 8,2

RedOx potential 100 mM DTT vs. 100 mM GSH

Presence of chaotropic salt +/- 550 mM Guanidine Hydrochloride

Ionic strength 264 mM NaCl +11 niM KCl vs. 

10.56 mM NaCl + 0.44 mM KCl

Presence of cations or chelator 2.2 mM CaCl + 2.2 mM MgCl vs. 

1.1 mM EDTA

Presence of osmolyte +/- 0.055% (w/v) PEG 3350

Presence of non-polar additive +/- 440 mM Sucrose

Presence of ligand +/- 30 pg/ml doxorubicin

The detailed formulation is presented in the Methods section 2,9.2 in Chapter 2
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Figure 5.2 DrrA after treatment with 16 Foldtlt Screen refolding formulations 

(FOLDLT SCREEN from Hampton Research)
Bacteria carrying pET21 a-f/rr/l were grown at 37 ®C to exponential phase and induced with 1 mM 

IPTG for 4 hours. Insoluble protein (“inclusion bodies”) was solubilised in 6 M Guanidine-HCI at 0.1 

mg/ml protein concentration according to the Foldtlt Screen refolding formulations from Tables 2.5 

and 2.6 presented in the Methods section 2.9.2.2 and Table 5.1. After incubation for 7 hours, samples 

were dialysed in 20 mM Tris buffer. Samples were analysed by SDS PAGE and Coomasie blue 

staining.

M: Protein molecular markers

1-16: DrrA from Foldtlt Screen refolding formulations 1-16 

A protein consistent with the predicted size o f DrrA is indicated
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Figure 5.3 DrrA after treatment with different Foldtlt Screen refolding 

formulations (FOLDLT SCREEN from Hampton Research) in presence and 

absence of doxorubicin
Bacteria carrying pET21a-rfrr/l were grown at 37 °C to exponential phase and induced with 1 mM 

IPTG for 4 hours. Insoluble protein (“inclusion bodies”) was solubilised in 6 M Guanidine-HCI at 0.1 

mg/ml protein concentration except in samples number 5, 13, 14 and 16, where 1 mg/ml o f protein was 

used. After incubation for 7 hours, samples were dialysed in 20 mM Tris buffer. Samples were 

analysed by SDS PAGE and GelCode blue staining.

M; Protein molecular markers

1, 3, 5, 7, 10, 12, 14, and 16: DrrA from the same numbered Foldtlt Screen refolding formulations in 

presence o f ligand doxorubicin

2, 3, and 14: DrrA from the same numbered Foldtlt Screen refolding formulations in absence o f ligand 

doxorubicin

A protein consistent with the predicted size o f DrrA is indicated
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5.2 Native purification of DrrA and Thio-DrrA

Initially phosphate buffer had been used to solubilise DrrA from extracts of E. 

coli cells, but Tris-HCl buffer pH 8.0 was preferred in the experiments that followed. 

By using Tris buffers, phosphate was excluded and the sample was better suited for 

assays of ATPase activity. A buffer containing 50 mM Tris-HCl, 150 mM NaCl, and 

10% glycerol, adjusted to pH 8.0, seemed to be adequate for primary DrrA or Thio- 

DrrA protein purification.

Soluble extracts were prepared by ultracentrifugation to remove inclusion 

bodies and membrane components. The soluble fraction was divided into batches 

(1/2-3 L culture), mixed with Nî "*" agarose resin, incubated for 1 h and loaded onto an 

Econo glass column. After washing, the protein was eluted with 300 mM imidazole, 

and purified DrrA or Thio-DrrA was obtained under these conditions.

The eluted fractions that had the highest concentrations of protein, as determined 

from gel analysis, were pooled. This represented the total yield of soluble DrrA or 

Thio-DrrA obtained from the original culture (usually 10 L). Generally, these were 

the first two fractions eluted off the column. Some other bands with different sizes 

also appeared on the gel. Dialysis was necessary to remove the high concentration of 

imidazole used for elution, as it interferes with protein determination by the BCA 

method. Usually, four hours of dialysis in a volume of 3 L, was enough for pooled 

sample of less than 10 ml volume. If necessary, fractions were concentrated using an 

Amicon Centricon AlO centrifugal concentrator, or Stirred Ultrafiltration Cell that 

seemed to reduce low molecular weight contaminants as well. In the last case 

Millipore filter membranes with a cut off separation range of 30 and 10 kDa were 

used for Thio-DrrA (approximate size of 52 kDa) and DrrA (approximate size of 39 

kDa), respectively.

By including imidazole at concentrations of up to 50 mM in the wash buffers, the 

purification protocol yielded preparations of DrrA and Thio-DrrA of sufficient purity, 

as judged from gels by direct visualisation. However, some additional bands were 

present and further trials were attempted to achieve 95% purity, and also increase 

protein yields by about 20%.
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5.3 Trials for improved purification of Thio-DrrA using IMAC

Some changes in the concentration and/or the composition of the purification 

buffer were tested. The Tris buffer composition was varied to try and reduce the 

presence of contaminant bands in the protein preparation, and if possible, to also 

improve the yield of the Thio-DrrA protein. The addition of a reducing agent (2- 

mercaptoethanol) and detergent (dodecyl maltoside) was tested along with increases 

in glycerol and salt concentrations in the buffer. None of these changes produced an 

improvement in the purification of Thio-DrrA without detriment to the protein yield 

(Fig. 5.4 and 5.5). A buffer containing 50 mM Tris-HCl, 150 mM NaCl, 10% 

glycerol and 10 mM imidazole, pH 8.0, was retained as the basic composition of 

purification buffers.

The other approach to increase purity was to employ a lower concentration of 

inducer for the Thio-DrrA expression. The arabinose concentration was reduced 10- 

fold, from 0.002 % to 0,0002 % (Fig. 5.6). The protein produced and purified under 

these new conditions showed fewer contaminating proteins in the higher molecular 

weight range, but it was also much less concentrated than protein induced with 

0.002% arabinose, reducing the protein yield. It is probable that the partial 

disappearance of upper bands on the gel was caused by the low protein coneentration 

that was found in that preparation, when compared to induction with 0.002% 

arabinose.
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Thio-DrrA

Figure 5.4 IMAC purification of Thio-DrrA under different Tris-HCl buffer 

conditions: presence of DDM and 2-Mercaptoethanol
Cultures o f  E. coli LMG 194 carrying pBADTOPO thio-drrA were grown at 37 °C to exponential 

phase, shifted to 17 °C and treated with 0.002% arabinose overnight. Cells were fractionated and 

recombinant protein purified from soluble cytoplasmic extracts by IMAC. Buffer composition was 50 

mM Tris-HCl pH 8.0, 150 mM NaCl and 10% glycerol. Additionally, elution buffer was 300 mM 

imidazole. Samples were analysed by SDS PAGE and Coomasie blue staining.

M: Protein molecular weight markers

1-3: First three fractions from sample solubilised in buffer containing 10 mM 2-Mercaptoethanol (ME) 

eluted from the IMAC column

4-6: First three fractions from sample solubilised in buffer containing 0.05% Dodecyl-maltoside 

(DDM) eluted from the IMAC column

7-9: First three fractions from samples solubilised in control 50 mM Tris-HCl buffer 150 mM NaCl and 

10% glycerol
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Figure 5.5 IMAC purification of Thio-DrrA under different Tris-HCl buffer 

conditions: 20% of glycerol and 400 mM NaCl
Cultures o f  E. coli LMG 194 carrying pBADTOPO thio-drrA were grown at 37 °C to exponential 

phase, shifted to 17 °C and treated with 0.002% arabinose overnight. Cells were fractionated and 

recombinant protein purified from soluble cytoplasmic extracts by IMAC. Buffer composition was 50 

mM Tris-HCl pH 8.0, ISO mM NaCl and 10% glycerol. Additionally, elution buffer was 300 mM 

imidazole. Samples were analysed by SDS PAGE and Coomasie blue staining.

M; Protein molecular weight markers

1-3: First three fractions from sample solubilised in buffer containing 20% glycerol eluted from the 

IMAC column

4-6: First three fractions from sample solubilised in buffer containing 400 mM NaCl eluted from the 

IMAC column

7-9: First three fractions from samples solubilised in control 50 mM Tris-HCl buffer 150 mM NaCl and 

10% glycerol
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Figure 5.6 Expression of Thio-DrrA after induction with 0.0002 and 0.002% 

arabinose

Cultures o f  E. coli LMG 194 carrying pBADTOPO thio-drrA were grown at 37 °C to exponential 

phase, shifted to 17 °C and treated with 0.002% or 0.0002% arabinose overnight. Cells were 

fractionated and recombinant protein purified from soluble cytoplasmic extracts by IMAC. Buffer 

composition was 50 mM Tris-HCl pH 8.0, 150 mM NaCl and 10% glycerol. Additionally, elution 

buffer was 300 mM imidazole. Samples were analysed by SDS PAGE and Coomasie blue staining.

M: Protein molecular weight markers

1-4: First four fractions containing Thio-DrrA from cultures induced with 0.0002% arabinose, eluted 

from the IMAC column

5-8: First four fractions containing Thio-DrrA from cultures induced with 0.002% arabinose, eluted 

from the IMAC column 

9: Control Thio-DrrA dialised
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5.4 Purification of DrrA from the membrane fraction

In a 10 L trial with pET21a-JrrZ[, the soluble and the membrane fractions were 

purified and checked for the presence of DrrA. Although in the past some DrrA could 

be detected by Western blot in the membrane fraction, its yield was low. When the 

induction temperature was reduced to 16 °C, an appreciable quantity of DrrA protein 

partitioned to the membrane fraction suggesting that under these conditions, higher 

amounts of DrrA might be obtained from membrane fractions. The level of over

expression can be estimated when samples from soluble and membrane fractions from 

the same culture are compared (Fig. 5.7 and 5.8). A yield of 65 pg/L was found for 

DrrA from the membrane fraction, against 40 pg/L found for DrrA from the soluble 

fraction in the same experiment.

When DrrA isolated from membrane fractions failed to show any ATPase 

activity, it was thought that the high amount of detergent used in the solubilisation of 

the membrane and in the purification protocol might have affected the integrity of the 

protein. Reducing the concentration of the detergent DDM from 2 to 1 % for 

solubilisation, and to 0.05 % for purification, failed to recover active DrrA.

155



Protein
markers
191
kDa

64

51

39

28

19

12

DrrA

Figure 5.7 Overexpression of soluble DrrA from 10 L of media in four batches of 

2.5 L
Bacteria carrying the pET21a expression construct were grown at 37 °C to exponential phase, shifted to 

17 °C and induced with 0.2 mM IPTG overnight. Cells were fractionated and recombinant protein 

purified from soluble cytoplasmic extracts by IMAC. Samples were analysed by SDS PAGE and 

Coomasie blue staining.

M: Protein molecular markers

1-4: Fractions o f  the first purification batch (corresponding to 2.5 L o f culture) eluted from the IMAC 

column

1 ’-4 ’: Fractions o f the second purification batch (corresponding to 2.5 L o f  culture) eluted from the 

IMAC column
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Figure 5.8 Overexpression of DrrA from 10 L of media and its purification from 

the membrane fraction
Bacteria carrying the pET21a expression construct were grown at 37 °C to exponential phase, shifted to 

17 ”C and induced with 0.2 mM IPTG overnight. Cells were fractionated and recombinant protein 

purified from membrane extract by IMAC. Solubilisation buffer for the DrrA membrane fraction was 

50 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% glycerol and 10 mM Imidazole plus 2% DDM. Washing 

buffers were the same Tris buffer with 0.2% DDM. Elution buffer was 50 mM Tris-HCl pH 8.0, 150 

mM NaCl, 10% glycerol and 300 mM Imidazole plus 0.2% DDM. Samples were analysed by SDS 

PAGE and Coomasie blue staining.

M: Protein molecular markers

1-9: Fractions o f the membrane purification (corresponding to 10 L o f culture) eluted from the IMAC 

column
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5.5 Discussion

The use of a histidine tag in the different constructs allowed the purification of 

the different forms of DrrA in a few stages. Immobilised metal affinity 

chromatography (IMAC) was effective even when material from inclusion bodies was 

used. The insoluble cytoplasmic fraction formed the richest source of DrrA from all 

the vectors when cells were cultivated at 37 °C.

Solubilisation of inclusion bodies that contain recombinant proteins and 

refolding appeared an option worth investigating, although the efficiency of refolding 

was uncertain at best. Strong denaturing conditions such as the use of high 

concentrations of chaothropic agents like urea or guanidine hydrochloride in alkaline 

conditions are necessary to effectively separate and unfold the aggregated protein 

present in inclusion bodies. The use of 8 M urea for dénaturation and refolding of 

recombinant proteins has been reported by a number of authors. Zhang (Zhang et al., 

2005) reported studies in which pro-carboxypeptidase was successively refolded 

using urea gradient gel filtration. Further chromatography resulted in an enzyme 

preparation that was active and 90% pure. Zhang et al. (Zhang et al., 1998) worked 

with urea-denatured adenylate kinase and monitored the formation o f secondary 

structure, changes in surface hydrophobicity, and the recovery of catalytic activity 

during a refolding protocol. The outer membrane protein and ferric enterobactin 

receptor FepA from E. coli has also been successfully refolded from solubilised 

inclusion bodies using a combination of sulfobetaine 3-14 and sodium dodecylsulfate, 

prior to purification by using anion exchange and gel filtration chromatography 

(Buchanan, 1999). Finally, Liu et al. recently described the refolding of urea- 

denatured transglutaminase from S. fradiae expressed from a pET21a vector using an 

on-column refolding procedure (Liu et a l, 2006). Using a similar approach, the 

solubilisation of DrrA in 8 M urea, and its gradual refolding was investigated to try 

and make best use of the target protein from inclusion bodies. However, these 

attempts to refold DrrA as an active protein were not successful.

Denaturing conditions generated with guanidine hydrochloride have also been 

reported for the refolding of diverse recombinant proteins with varying degrees of 

success. Rehm et al. have described the purification of class II polyhydroxyalkanoate
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(PHA) synthase from P. aeruginosa (Rehm et al., 2001). The enzyme was 

overexpressed from the strong _10 promoter in E, coli BL21(DE3), leading to the 

formation of inactive inclusion bodies, comprising approximately 30% of total 

cellular protein. Inclusion bodies were dissolved and denatured with 6 M guanidine 

hydroehloride, and after the pro te in  was im m obilized on a NP"̂ ~ 

nitrilotriacetate-agarose matrix, it was refolded by gradual removal of the denaturing 

reagent. Refolded PHA synthase showed a spécifié enzyme activity corresponding to 

27% of the maximum specific activity of the native enzyme; Lee et ah, 2002, 

expressed a single-chain antibody derived from a murine monoclonal specific for 

human apolipoprotein B 100 in E. coli from a T7 promoter. Refolding was achieved 

through slow dilution into refolding buffer, and the soluble scFv was purified by 

affinity chromatography to obtain an active fraction with antigen-binding activity 

comparable with that of native Fab.

When generic refolding procedures are being developed, several arrays are 

available that aid the identification of appropriate refolding conditions. Among them, 

the Foldtlt screen from Hampton Research has been developed from reports by 

Armstrong et a l, (1999), Chen and Gouaux, (1997), and Rudolph and Lilly, (1996). 

This resource allowed convenient testing of 16 different folding conditions, and 

additional trials were assayed to seek properly folded DrrA from inclusion bodies. In 

spite of the diverse the conditions tested, none enabled the recovery of active DrrA, 

leaving the perception that refolding conditions would prove elusive, limiting the 

value of this purification strategy.

The small quantities of DrrA that were expressed finally as soluble protein 

from the pET21a construct, were active in hydrolysing ATP (see next chapter). These 

results did not support Kaur’s thesis that the catalytic component DrrA takes on an 

active conformation able to bind and/or hydrolyse ATP only when it is in complex 

with DrrB. Kaur and Russell (1998) showed in UV cross-linking studies with [_- 

^^P]ATP that only the membrane-bound form of DrrA in cells containing both DrrA 

and DrrB was in a conformation competent to bind ATP (Kaur, 1997; Kaur and 

Russell, 1998). Nonetheless, it is worth noting that Kaur's work was done in cell 

exti’acts, whilst in the experiments reported here, DrrA came from IMAC purification. 

As there are several examples in the literature of the binding and/or hydrolysis of ATP
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by isolated NBDs (HisP, Nikaido and Ames (1999); MalK, Walter et ah, (1992); 

MJ0796, from M. jannaschii. Moody et al., 2002), the observation that purified DrrA 

shared these properties is not implausible.

The partitioning o f DrrA into the membrane fraction at low induction 

temperatures might be responsible in part for the reduced DrrA concentration in the 

soluble fraction. This effect suggests the existence of a greater degree of hydrophobic 

characteristics in the protein than was expected. However, DrrA obtained from this 

source did not show any ATPase activity, even when milder detergent conditions 

were employed in purification. This result is not in contradiction with Kaur's 

proposal with respect to the functional conformation of membrane-bound DrrA. 

However, isolated bound-niembrane MalK could be overexpressed without its 

cognate Mai transport membrane proteins and recovered from inclusion bodies 

displaying ATPase activity (Walter et al., 1992).

The Thio-DrrA fusion protein became the main source of DrrA protein for the 

project, as protein could be expressed and purified to an acceptable degree and with 

sufficient yield for further characterisation studies. The yield of protein obtained 

from the pBAD construct could be improved to a modest extent and it was employed 

for the different characterisation trials that are presented in the following chapter. 

Efforts to improve the degree of purification of DrrA and obtain more rigorously 

purified Thio-DrrA protein were not successful and essentially, any slight 

improvements in purity were at the expense of the protein yield.
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Chapter 6

Characterisation of DrrA proteins

The characterisation of DrrA was one of the main goals of this work. Given 

its classification as a member of the ABC family, it was intended to test if DrrA could 

drive the efflux of the anthracyclines compounds daunorubicin and doxorubicin, via 

the DrrAB system from S. peucetius. Having established conditions for the expression 

and purification of soluble Thio-DrrA, the fusion protein was chosen for the analysis 

of biochemical properties. The low levels of soluble DrrA expressed from the pET21a 

vector created an obstacle to routine analysis of this form of the protein.

The characterisation of other ABC transporter NBDs has given rise to a wealth 

of experimental data on their biochemical properties. The study of P-glycoprotein, 

and other medically important ABC transporters like MRP and CFTR, has enlianced 

the research on other ABC transporters to reveal the essential structural and 

biochemical features of the transport process. This is of particular interest with regard 

to the phenomenon of drug resistance, since an understanding of transport could 

provide better approaches to the design of drugs or treatments to combat it.

6.1 Characterisation of the ATPase activity of DrrA proteins.

All ABC transporter NBDs identified to date have the ability to bind and 

hydrolyse ATP and, using the energy released by the phosphate bond, to drive 

transport processes. The role of DrrA as an ATPase to direct the extrusion of the self- 

produced anti-tumour compounds daunorubicin and doxorubicin out of the cells of S. 

peucetius was indicated in the works of Guilfoile and Hutchinson (1991), as also its 

similarity to P-glycoprotein, involved in resistance to anti-cancer drugs. One aim was 

therefore to characterise the ATPase activity of DrrA employing the Thio-DrrA fusion 

protein as representative of NBD.
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6.1.1 ATPase activity

To assess the ATPase activity of Thio-DrrA the protocol of Harder and 

collaborators (1994), based on the malachite green assay, was employed with some 

minor modifications (Nash, 2003; Maehatma, 2000). The assays, performed in 96 

well microtitre plates, displayed linearity over a range of Pi concentrations between 50 

and 4000 pmoles. Standard phosphate curves were prepared in order to quantify the 

amount of Pi released for each batch of reagent. The reagent was stable when stored 

at 4 ‘’C; at room temperature, with ageing, some precipitation and colour differences 

were found. Data generated for a typical standard curve can be seen in Figure 6.1.

The ATPase activity is a process dependent on the presence of divalent 

cations, in particular magnesium although other divalent cations have been shown to 

stimulate this activity to varying degrees. Total volumes of 500 pi were used in the 

reaction, in which the test protein was pre-incubated in the presence of ATP for five 

minutes at 37 °C; additional components were added after this pre-incubation stage. 

The addition of Mĝ "̂  was used to initiate the reaction and 45 pi of sample were 

removed from the mix at 5 minutes intervals over a fifteen-minute time course 

reaction, and transferred to the wells of a microtitre plate well containing 5 pi of 

EDTA. The role of EDTA is to sequester Mĝ "̂  and in consequence, stop the reaction. 

Having collected the required samples, 100 pi of malachite detection reagent was 

added to each sample and the results were collected immediately by measuring the 

absorbance at 610 nm. Although different authors (e.g. Mahatma et ah, 2000) 

recommend waiting some time to allow colour development (15-30 minutes), the 

strong aeidic conditions of the reagent causes the ATP in the samples to be gradually 

hydrolysed in the absence of enzymatic activity. This can mean that samples taken at 

zero time or controls that lack magnesium can also show development of green 

colour.
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Figure 6.1 Standard cui've to determine inorganic phosphate concentration by 

the Malachite green assay.

The standard curve above shows the response o f the malachite green Pj assay over a range o f 50 to 

3500 picomoles o f P|.

Samples containing different amounts o f phosphate were prepared by dilution o f a 1 mM NazHPO^ 

stock into Tris assay buffer (50 mM Tris-HCl, 150 mM NaCl, pH 8.0). An aliquot o f  45 pi o f each 

standard was mixed with 5 pi o f 500 mM EDTA in separate wells o f a 96-well microtitre plate. The 

assay was perform ed by adding 100 pi o f M alachite green detection reagent to each well and 

measuring the absorbance o f samples at 610 nm in a plate reader.

The curve showed linearity up to 3.5 nanomoles o f Pj
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In initial experiments to measure ATPase activity, Thio-DrrA was used at a 

concentration of 50 pg/ml following assays set up with M  tuberculosis Trx-DrrA 

(Nash, 2003). This concentration corresponds to approximately 1 pM fusion protein. 

It was found that a 15-minute reaction only produced an incipient light green colour. 

The reaction time was extended to 60 minutes in order to allow enough time for 

enzymatic hydrolysis of ATP (monitored as green colour development). DrrA fused 

to Thioredoxin, at a protein concentration of 50pg/ml, showed a 15-minute lag in 

activity after initiation of the reaction by the addition of Mĝ "̂  and incubation for 60 

minutes. This delay could not be completely reversed by doubling the Thio-DrrA 

concentration to 2 pM and therefore it was necessary to use a higher concentration of 

protein. This resulted in an Aeionm of 0.34 in a reaction time of 15 minutes, without 

the aforementioned delay. Thus, in the following experiments, reactions were run for 

15 minutes but with higher protein concentrations that in the first experiments.

A Thio-DrrA concentration of 120 pg/ml (-2.5 pM) was usually sufficient to 

follow the development of colour in the reaction with Malachite green over a 15 

minute reaction time. Routine experiments were carried out using final 

concentrations of 450 pM Mg^^ and 250 pM ATP. Figure 6.2 shows a standard 

ATPase activity assay for Thio-DrrA, stimulated by Mĝ "̂ , and results gathered in the 

absence of Mg^" .̂ As clearly seen in the Figure, ATPase activity could be 

demonstrated for Thio-DrrA by the release of Pj .

ATPase activity could also be detected for the DrrA protein, expressed from 

the pBT2\a-drrA construct. Here, 1 pM DrrA, corresponding to a concentration of 37 

pg/ml, was used, giving an Aeionm of 0.35 after 15 minutes of reaction.
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Figure 6.2 Standard ATPase aetivity assay for Thio-DrrA
Two identical reaction mixtures (see above) were incubated at 37 °C for five minutes prior to the 

addition o f 450 pM M gCli (diamonds), or H2O (squares). Forty-five pi samples were withdrawn from 

the reaction mixtures at five minute intervals, deposited in separate wells o f a m icrotitre plate, and 

mixed with 5 pi o f 500 pM  EDTA, to halt the reaction. Samples were analysed for P| content by 

reading their absorbance at 610 nm after the addition o f 100 pi o f the M alachite green detection 

reagent. Released P; values were obtained by comparison with a standard curve.
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6.1.2 Dependence on divalent cations: Mg^ ,̂ Mn^\ Co^ ,̂ and Câ ^

The ATPase activity of all known ABC transporter NBD’s has been shown to 

depend on the presence of divalent cations. These cations are potential stimulators of 

ATPase activity, Mĝ "̂  being the most common stimulator of these systems. As 

expected, magnesium ions were neeessary for the ATPase activity of Thio-DrrA and 

DrrA (Figure 6.2). In order to determine if other divalent cations could substitute for 

Mg "̂ ,̂ ATPase assays were performed with different divalent cations. Manganese, 

cobalt, calcium and zinc, used as dichloride salts, were tested for their ability to 

modulate the ATPase activity of Thio-DrrA. Other authors (e.g. Nikaido et a l, 1997; 

Aparicio et al., 1996) have shown that some cations other than Mg^^ can be strong 

activators of the enzymatic hydrolysis of ATP, depending on the concentration of the 

divalent cation in the reaction mix. In ABC transporter NBD’s the Walker B 

sequence is characterised by a main set o f hydrophobic amino acids and by the 

presence of a highly conserved aspartate residue that is involved in the co-ordination 

of the divalent cation.

The stimulating effect o f different divalent cations was tested over a 

concentration range between 0.1 and 2 mM. All assays to determine the inorganic 

phosphate released from the reactions employed the Malachite green method, and 

were performed at 37 °C, for 15 minutes and with a Thio-DrrA concentration of 100 

pg/ml (~2 pM). The Thio-DrrA ATPase activity reached a maximum (specific 

activity of 44 nanomoles/min/mg of protein) with about 500 pM MgCB (Fig. 6.3). 

This maximal activity was maintained up to a concentration o f Mg^'^of 600 pM. 

These data indicated an E C 5 0  of about 500 pM. Mĝ "̂  concentrations above 1 mM 

seemed to impair stimulation of the ATPase activity of the protein (data not shown).

Manganese ions also activated the ATP hydrolysis by Thio-DrrA but to about 

one third the level of that obtained for Mĝ "̂  (Fig. 6.4). Cobalt ions appeared rather 

better (Fig. 6.5), stimulating the ATPase activity of Thio-DrrA to a maximum of 9 

nanomoles P/min/mg of protein, which was roughly a half that reached with M gCf. 

This was obtained with concentrations between 400-600 pM of CoCf.
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Figure 6.3 Effect of Mg^  ̂ions on the ATPase activity of Thio-DrrA
ATPase activity was initiated by the addition o f at the concentrations indicated. The Malachite 

green P; release assay was used to calculate the rate o f ATP hydrolysis from 15-minute ATP hydrolysis 

kinetics at each concentration. D ata are presented as protein specific activity (nanomoles o f  Pi 

liberated/min/mg o f protein).

All assays were performed at 37 °C in a total volume o f 500 pi.
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Figure 6.4 Effect of ions on the ATPase activity of Thio-DrrA
ATPase activity was initiated by the addition ofM n"' at the concentrations indicated. The Malachite 

green P, release assay was used to calculate the rate o f ATP hydrolysis from 15-minute ATP hydrolysis 

kinetics at each Mn"+ concentration. Data are presented as protein specific activity (nanomoles o f  Pi 

liberated/min/mg o f protein).

All assays were performed at 37 °C in a total volume o f 500 p-1.
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Figure 6.5 Effect of ions on the ATPase activity of Thio-DrrA
ATPase activity was initiated by the addition o f  Co^  ̂ at the concentrations indicated. The Malachite 

green P; release assay was used to calculate the rate o f ATP hydrolysis from 15-minute ATP hydrolysis 

kmetics at each Co^^concentration. Data are presented as protein specific activity (nanomoles o f P; 

liberated/min/mg o f protein).

All assays were performed at 37 °C in a total volume o f  500 (xl.
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Calcium ions were the least efficient modulators of the activity of Thio-DrrA, 

being ineffective between 0.1-1.0 mM (data not shown). Similarly, Zn^’*' failed to 

stimulate ATPase activity at any concentration (data not shown).

The behaviour of Thio-DrrA was not dissimilar to that of other NBDs, such as 

HisP (Nikaido et ah, 1997) and M  tuberculosis Trx-DrrA (Nash, 2003). For these 

proteins, optimal cation concentrations were found to be in a range of 1-2 mM.

6.1.3 Dependence on pH

Thio-DrrA was active between pH 7.0-9.0, with maximum activity at pH 8.0- 

8.5 (Fig. 6.6). At pH 9.0 only a slight decrease in the Thio-DrrA ATP hydrolysis was 

observed. Values below 7 were detrimental to the ATPase activity of this protein; 

when a pH of 6.5 was used, the enzymatic activity was completely abolished.

6.1.4 Dependence on protein concentration

The plot of ATPase activity against protein concentration was non-linear (Fig. 

6.7), suggesting that Thio-DrrA molecules do not hydrolyse ATP independently of 

one another. This result might suggest that ATP hydrolysis for this protein is a 

cooperative process, where more than one Thio-DrrA molecule is necessary for 

ATPase activity.

6.1.5 Dependence on temperature

Temperatures of 24, 37 and 44 °C were assayed to evaluate the ATPase activity 

kinetics of Thio-DrrA (Fig. 6.8 and Table 6.1). A temperature of 37 °C was well- 

suited to the assay, as the rate of ATP hydrolysis at 24 °C was 50% lower than at 37 

°C, and the velocity of the reaction at 44 °C was not significantly superior (Fig. 6.8). 

The temperature range at which inactivation o f Thio-DrrA took place was not 

investigated.
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Effect of pH on Thio-DrrA ATPase activity
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Figure 6.6 Effect of the pH on the ATPase activity of Thio-DrrA
The M alachite green P| release assay was used to calculate the rate o f ATP hydrolysis from 15-minute 

ATP hydrolysis kinetics in each pH experiment. D ata are presented as protein specific activity 

(nanomoles o f  Pi liberated/min/mg o f  protein).

Different buffers were required to achieve the pH values for the assay. MES was used for the range pH 

6.0 -  6.5, MOPS was used at neutral pH and Tris was used for pH 8 -  9. Other reaction conditions were 

as standardised
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Thio-DrrA ATPase activity dependent on protein 
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Figure 6.7 Effect of the protein concentration on the ATPase activity of Thio- 

DrrA
The M alachite green P, release assay was used to calculate the rate o f ATP hydrolysis from 15-minute 

ATP hydrolysis kinetics with each protein concentration. The rate o f ATP hydrolysis by Thio-DrrA 

was shown to vary linearly with increasing protein concentration (data not shown). From those data, 

the ATP hydrolysis rates (nanomoles o f  Pj liberated/min) obtained, were plotted against Thio-DrrA 

concentration.
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Thîo-DrrA ATPase kinetics at different 
temperatures
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Figure 6.8 Effect of the temperature on the ATPase activity of Thio-DrrA
The M alachite green Pj release assay was used to calculate the rate o f  ATP hydrolysis in each 

experiment. The ATPase activity o f Thio-DrrA is displayed in 15-minute ATP hydrolysis kinetics, 

when the experiments were incubated at three different temperatures.

Table 6.1 Effect of the temperature on the Thio-DrrA ATPase activity

Temperature

24

37 °C 

44 °C

Specific activity 

(nanomoles Pi released /min/mg 

protein)

11.2

19.2

20.1

Specific activities were calculated on the basis o f  triplicated measurements o f the velocities calculated 

as in Fig. 6.8
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6.2 Substrate Specificity

6.2.1 Dependence of Thio-DrrA and DrrA activity on the concentration of ATP.

Determination of V,„ax and K,n

The determination of the steady-state kinetics parameters V,„ax and Km, gives 

useful information about the catalytic activity of the protein under study, allowing 

these parameters to be compared with similar proteins. K„, is the parameter that 

measures the affinity of the enzyme for its substrate, whilst Vmax measures the 

maximal velocity of the reaction at saturating substrate concentrations. ATPase 

activity data were obtained over a 200-fold range of ATP concentrations from 50 pM 

to 2 inM. The concentration of Thio-DrrA in these assays was chosen in order to 

obtain measurements of absorbance at 610 mn of approximately 0.34 at the end of the 

15-minute ATP hydrolysis reaction. This makes possible informative comparison 

between the different experiments. Thus, 3.7 pM protein was used for the 

determination of Vmax and K,». The rate of ATP hydrolysis varied in a hyperbolic 

maimer with increasing ATP concentrations, indicative of simple Michaelis-Menten 

type kinetics. Calculation of the affinity of Thio-DrrA for ATP gave a Km value of 

1.25 inM (Fig. 6.9), while for DrrA on its own, this value was in the order of 143 pM 

(Fig. 6.10), indicating different affinities for the substrate. Calculation of Vmax showed 

a substantial difference between the forms of DrrA, with values of 30 and 111 

nanomoles Pi/miiVmg protein for Thio-DrrA and DrrA, respectively. The low Vmax 

derived here for Thio-DrrA might be explained by the presence of additional amino 

acid sequences from Thioredoxin or a conformation that might diminish the original 

catalytic potential of DrrA, assuming that independently expressed DrrA retains its 

full ATPase activity.

A comparison of K,n and Vmax values for Thio-DrrA and DrrA with NBDs 

reported by other authors is shown in Table 6.2. The Km for the DrrA proteins does 

not suggest a high affinity for substrate, and although the Km for DrrA lies between 

values for MalK (S. typhimurium) and HisP {S. typhimurium), the Km for Thio-DrrA is 

10-fold higher and the highest in the Table. With reference to the Vmax parameter, 

DrrA showed again a value in the range reported for other systems, but Thio- 

DrrA displayed the lowest, suggesting an inappropriate state of that preparation.
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Figure 6.9 Effect of ATP concentration on the ATPase activity of Thio-DrrA
The Malachite green P| release assay was used to calculate the rate o f ATP hydrolysis from 15-minute 

ATP hydrolysis kinetics at each ATP concentration experiment. ATP assays were performed at 37 °C 

and initiated by the addition o f  45 pi ofMgCl^. The total volume for each assay was 500 pi with 45 pi 

o f sample analysed for P; content at 5-minute time intervals over a time course o f  15 minutes. A 

standard curve was used to convert absorbance values at 610 nm to nanomoles o f  P, Final values were 

expressed as specific activity in nanomoles ofP; released/minute/mg of protein.
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Figure 6.10 Effect of ATP concentration on the ATPase activity of DrrA
The M alachite green Pj release assay was used to calculate the rate o f ATP hydrolysis from 15-minute 

ATP hydrolysis kinetics at each ATP concentration experiment. ATP assays were perform ed at 37 “C 

and initiated by the addition o f 45 pi o fM gC l;. The total volum e for each assay was 500 pi with 45 pi 

o f  sam ple analysed for P; content at 5-minute tim e intervals over a tim e course o f  15 minutes. A 

standard curve was used to convert absorbance values at 610 nm to nanomoles o f  Pi. Final values were 

expressed as specific activity in nanom oles o f P| released/minute/m g o f protein.
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Table 6.2 Comparative analysis of K,n and Vmax values for different nucleotide- 

binding domains.

Protein

K„, (pM)

V

(nanomolesPi/min/mg

protein)

Reference

MalK (E. coll) 23.9 322 Morbach et 

a l,  1993

MalK {S. typhimurium) 80 700 Schneider et 

a l, 1995

HisP {S. typhimurium) 205 500 Nikaido et 

a l, 1997

PstB (M tuberculosis) 71.5 122 Sarin et a l ,  

2001

TrX“DrrA 84.8 52 Nash, 2003

Thio-DrrA 1250 30 This study

DrrA 143 111 This study
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As low specific activities were obtained for a number of different preparations 

of the protein, we thought this could be linked to the instability of the Thio-DrrA 

preparations.

6.2.2 Other Nucleotide Triphosphate as substrates for Thio-DrrA

Cytosine triphosphate (CTP), thymine triphosphate (TTP) and guanidine 

triphosphate (GTP) nucleotides were tested as alternative substrates for Thio-DrrA in 

a standard ATP reaction (Fig. 6.11). CTP did not act as substrate for Thio-DrrA at all 

and the TTP behaviour was not very different, although a minimal activity signal 

could be detected at the end of the reaction. GTP was the only NTP apart from ATP 

that acted as a substrate for this protein, suggesting that Thio-DrrA has a preference 

for pmine substrates.

6.2.3 Inhibitors of the ATPase aetivity of DrrA proteins

The effect of ADP on the ATPase activity of Thio-DrrA was tested. When 

used at the same concentration as ATP, it inhibited the Thio-DrrA ATPase activity by 

60% (Fig. 6.12). In the absence of ATP, no hydrolysis of ADP by Thio-DrrA could 

be detected.

Vanadate possessed the dual properties of a phosphate transition state ATPase 

analogue, and a photoactive chemical (Fetsch and Davidson, 2002). Therefore 

vanadate was tested as a potential inhibitor of the ATPase activity of DrrA and Thio- 

DrrA. Vanadate concentrations ranging from 10 pM to 4 mM were assayed. At a 

concentration of 500 pM, 50 % inhibition of the ATPase activity o f DrrA was 

detected; higher concentrations up to 4 mM did not enhance the level of inhibition 

(Fig. 6.13). The IC50 value of 0.5 mM was not dissimilar to the value reported by 

Nikaido and collaborators for the Histidine permease NBD, assayed in isolation from 

the other components of the histidine transporter. These authors reported a much 

more potent effect for vanadate when tested with the complete His transporter, 

reporting an IC50 of 6.5 pM (Nikaido et al., 1997). Similar results were reported for 

MalK, the ATPase subunit of the maltose transporter (Sclmeider, 2001).
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Thio-DrrA activity kinetics on diverse NTPs
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Figure 6.11 Nucleotide substrate specificity for Thio-DrrA
The M alachite green Pj release assay was used to calculate the rate o f nucleotide triphosphate (NTP) 

hydrolysis in each experiment. NTP assays were performed at 37 °C and initiated by the addition o f 45 

pi o f  MgClz. The N TPase activity o f  Thio-DrrA is displayed in 15-minute NTP hydrolysis kinetics, 

when the experiments were incubated with the different NTPs.
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Effect of ADP on the Thio-DrrA ATPase activity
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Figure 6.12 Effect of ADP on the ATPase aetivity of Thio-DrrA
The M alachite green Pj release assay was used to calculate the rate o f ATP hydrolysis in each 

experiment. ATP assays were performed at 37 °C and initiated by the addition o f 45 pi o f M gC^. The 

ATPase activity o f Thio-DrrA is displayed in 15-minute ATP hydrolysis kinetics. ADP was added at 

a concentration o f 250 pM.
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^Figure 6.13 Effect of Vanadate on the ATPase activity of DrrA
^ T h e  M alachite green Pj release assay was used to calculate the rate o f A T P hydrolysis from 15-minute 

^  A T P  hydrolysis kinetics at each vanadate concentration. A T P assays were perform ed at 37 °C in 

presence o f  different vanadate concentrations, and initiated by the addition o f 45 pi o f  MgCL- The 

total volume for each assay was 500 pi with 45 pi o f  sample analysed for Pj content at 5-minute time 

intervals over a time course o f 15 minutes. A  standard curve was used to convert absorbance values at 

610 nm to nanom oles o f Pj. Final values w ere expressed as specific activity in nanom oles o f Pj 

released/minute/mg protein.
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Thio-DrrA was used to test if increasing NaCl concentrations would inhibit 

ATPase activity, as reported for other NBDs (Nikaido et al., 1997). NaCl 

concentrations above 300 pM were found to inhibit the ATPase activity of Thio-DrrA 

substantially, as can be seen in Figures 6.14. For purification and assay of the protein, 

retaining a concentration of NaCl of 150 mM was thus validated.

6.2.4 Effect of the presence of DrrB on the ATPase aetivity of Thio-DrrA and 

DrrA

The presence of DrrB did not appear to influence the ATPase activity of Thio- 

DrrA, but the addition of the protein did appear to elevate background signals in the 

assay. A similar experiment was run using DrrA with a different preparation of DrrB 

that did not seem to generate background signal. According to these data (Fig. 6.15), 

DrrB did not elevate the ATPase activity in the reaction. It thus seemed unlikely that 

the proteins in their free state could interact in the same manner as is probably in the 

proposed complex DrrAiBi.
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Thio-DrrA ATPase kinetics under different NaCl
concentrations
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Figure 6.14 ATPase activity of Thio-DrrA under different NaCl concentrations
The M alachite green Pi release assay was used to calculate the rate of ATP hydrolysis from 15-minute 

kinetics in presence o f  different NaCl concentrations. ATP assays were perform ed at 37 °C and 

initiated by the addition o f 45 pi o f M gCb. The total volume for each assay was 500 pi with 45 pi o f 

sample analysed for P| content at 5-minute time intervals over a time course o f 15 minutes. A standard 

curve was used to convert absorbance values at 610 nm to nanomoles o f Pj.
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Effect of DrrB on the DrrA ATPase activity
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Figure 6.15 Effect of DrrB on the ATPase activity of DrrA
The M alachite green Pj release assay was used to calculate the rate o f  ATP hydrolysis in each 

experiment. Assays were perform ed at 37 °C in the presence o f  DrrA (1 pM  ) in the absence or 

presence o f  DrrB (1 pM; the kindly gift o f  Dr. McKeegan, Wolfson Institute, University ofn Durham). 

Reactions were initiated by the addition of 45 pi o f MgClz. The total volume for each assay was 500 pi 

w ith 45 pi o f sample analysed for P, content at 5-minute tim e intervals over a tim e course o f 15 

minutes. A standard curve was used to convert absorbance values at 610 nm to nanomoles o f R. Final 

values were expressed in nanomoles o f P, released.
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6.2.5 Effect of Doxorubicin on the ATPase activity of Thio-DrrA and DrrA

When the compound doxorubicin was added to a reaction mix containing 

Thio-DrrA or DrrA, no change in ATPase activity could be detected. Doxorubicin 

concentrations from 1-20 pg/ml (1.5-35 pM) were assayed to evaluate the effect on 

the ATPase activity of DrrA (Fig. 6.16). A link with other elements involved in the 

DrrAB system has not been established when DrrA has been expressed without the 

remainder of the DrrAB system. Some expectations had been raised about the 

possibility that anthracyclines compounds could act as modulators of the ATPase 

activity of DrrA, as occurs in the ATPase subunit ArsA of the E. coli non ABC 

transporter ArsAB, with its substrates arsenate and antimonite (Rosen et al., 1999). 

Although that pump is not an ABC transporter, it shows some similarities in 

conformation and function with the ABC transporters.

The combined presence of the DrrB protein and doxorubicin was also assayed 

to monitor any change in the catalytic activity of DrrA. Once more, the DrrA activity 

was unaffected (Fig. 6.17).
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Effect of Doxorubicin on DrrA ATPase activity
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Figure 6.16 Effect of Doxorubicin on the ATPase activity of DrrA
The M alachite green Pi release assay was used to calculate the rate o f  ATP hydrolysis in each 

experim ent. ATP assays w ere perform ed at 37 °C in the presence o f  doxorubicin at several 

concentrations. Reactions were initiated by the addition o f 45 pi o f MgCla- The total volume for each 

assay was 500 pi with 45 pi o f sample analysed for Pj content at 5-minute time intervals over a time 

course o f 15 minutes. A standard curve was used to convert absorbance values at 610 nm to nanomoles 

o f Pj. Final values were expressed as nanomoles o f P; released.
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Effect of Doxorubicin on the ATPase activity of 
DrrA in presence and ab sen ce of DrrB
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Figure 6.17 Effect of Doxorubicin on the ATPase activity of DrrA in the 

presence of DrrB
The M alachite green Pj release assay was used to calculate the rate o f ATP hydrolysis in each 

experiment. ATP assays were performed at 37 °C with DrrA (1 pM) in the presence o f doxorubicin (2 

pM), and / or DrrB (1 pM ). Reactions were initiated by the addition o f 45 pi o f  M gCl2. The total 

volume for each assay was 500 pi with 45 pi o f  sample analysed for P; content at 5-minute time 

intervals over a time course of 15 minutes. A standard curve was used to convert absorbance values at 

610 nm to nanomoles o f Pj. Final values were expressed as nanomoles o f Pj released.
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6.3 Comparative analysis between the proteins DrrA and Thio-DrrA

Overexpression of DrrA at 16 °C from the pET21a vector and of Thio-DrrA 

from the pBADTOPO thiofusionvector, provided the best sources of DrrA proteins in 

terms of purity and quantity. The properties of the DrrA preparations are compared in 

Table 6.3. It is interesting to notice the higher stability of the DrrA protein when it is 

stored at -20 °C, as it maintains almost 100% of activity over a period of two weeks, 

whilst Thio-DrrA appeared to be more sensitive to loss of activity during storage.

Table 6.3 Comparative analysis between experimental DrrA proteins

Thio-DrrA DrrA

ATPase activity (K m ) K m = = 1 .2 5  mM K m = 1 4 3  p M

Velocity of the reaction 3 0  nanomoles P/m in/m g 1 1 1  nanomoles Pj/min/mg

(V max) protein protein

B iophysical properties Similar

such as induction by

d ivalen t cations, pH,

inliibitors

A ctivity stability after Loss of 5 0  % activity in 2 Loss of 5  % activity in 2

ageing weeks time at -20 °C weeks time at -20  °C

Post-purification stability Variable and low High

Protein yield 2 5 0  pg/L 4 0  pg/L

Thio-DrrA was overexpressed from the pBADTOPO thio-drrA  fusion vector, induced with 0.002 % 

arabinose, whilst DrrA was over-expressed from the pE T 21 a-t/zvyt vector and induced with 1.0 mM 

IPTG.

Data on protein yields were taken from single experiments.
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6.4 Discussion

A partial characterisation o f Thio-DrrA was made using established 

biochemical methods, complemented by the characterisation of DrrA. The main 

property assayed was the ATPase activity of the proteins. This was of primary 

importance as there are reports that DrrA expressed in the absence of DrrB does not 

possess ATPase activity (Kaur, 1997; Kaur and Russell, 1998).

Essentially, the characterisation of the Thio-DrrA fusion protein showed 

features shared with other NBD’s, such as HisP and MalK from S. typhimurium, 

MalK from E. coli and DrrA from M. tuberculosis (Liu et ah, 1997; Nikaido et al, 

1997; Morbach et ah, 1993; Nash, 2003). Although the S. peucetius drrAB operon 

has been characterised by others (Guilfoile and Hutchinson, 1991), and the ability of 

DrrA to bind ATP has been reported (Kaur, 1997; Kaur and Russell, 1998), the data 

presented here are the first to show the hydrolysis of ATP by DrrA.

Thio-DrrA and DrrA possessed detectable catalytic activity consistent with a 

role in energising transmembrane transport. The protein was shown to be a cation 

dependent ATPase able of binding and hydrolysing ATP in a similar manner to the 

NBDs of well-characterised prokaryotic ABC transporters.

The Vmax value obtained for the Thio-DrrA fusion was markedly lower than 

that for DrrA and other NBDs, suggesting that the fusion protein at the time of assay 

had a low ATPase activity. This might reflect the inappropriate folding or reduced 

integrity of the protein under the conditions of expression or purification that were 

employed rather than its intrinsic activity. This fact seems to be supported by the 

results with DrrA expressed in isolation; the average velocity for this species was 

comparable with other NBDs. Km for DrrA was also in the range of values reported 

for other NBDs, but for Thio-DrrA the same parameter, was 9-fold higher, indicating 

a reduced affinity for ATP. Although higher Km values for ABC transporters have 

been reported (3.0 mM for MRP; Chang et ah, 1997) it appears possible that the 

fusion affected the character and catalytic activity of DrrA. Characterisation of Thio- 

DrrA therefore allow qualitative assessment of the features of DrrA. Whilst data from 

analysis of DrrA might be considered more informative with regard to the kinetics of 

the DrrA system {Km and Vmax), very limited amounts of the protein were available for
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experimentation due to its insolubility. Also, early reports make mention that DrrA is 

only functionally active when forming part of the membrane fraction. Hence, the 

potential necessity of membrane interactions needs to be considered before definitive 

evaluation of the ATPase activity of DrrA can be made.

Inhibition of ATPase activity by high NaCl concentrations has been reported for 

some NBDs (Nikaido et al., 1997), however, it was surprising to find inhibition of 

Thio-DrrA at concentrations below those (300 mM) recommended for IMAC 

purification. This might explain the low activities detected when NaCl was used at 

400 mM for the extraction and purification of some preparations of the protein.

Although an interaction of DrrB and doxorubicin with DrrA might be expected, 

if  any interaction took place between these species it failed to enhance the ATPase 

activity of the reaction. It is clear that these experiments do not emulate the natural 

conditions of the assembled transporter In the cell. It has been reported that isolated 

NBDs do not show the same pattern of behaviour as the complete transporter in the 

presence of inhibitors like vanadate and V-ethylmaleimide. Vanadate strongly 

inhibits the ATPase activity in assembled ABC transporters (e.g. HisQMP2 ; Nikaido 

et a l,  1997) but scarcely affects their NBDs when tested in isolation. Several of these 

single NBDs have shown low sensitivity to these agents. It is not clear whether the 

inhibition of DrrA ATPase activity by vanadate is of biological significance. The 

pattern observed (Fig. 6.13) shows an inliibitory effect that appears real but it is only 

evident over vanadate concentrations (in excess of 0.1 mM) that are high by 

comparison to those that inhibit intact ABC transporter systems (e.g. HisQMPi is 

inhibited by vanadate with an I C 50 of 6.5 pM whereas the ATPAse activity of HisP is 

unaffected by concentrations of 0.5 mM; Nikaido et al., 1997).

In common with the finding that doxorubicin does not enhance the ATPase 

activity of DrrA or Thio-DrrA, the basal ATPase activity of P-glycoprotein MdiT is 

not enhanced by drugs when its NBDs or N- or C-terminal half-molecules have been 

separately expressed (Loo and Clarke, 1994; Buxbaum, 1999). It is now known that 

the drug-binding sites in P-glycoprotein are localised in the transmembrane domain 

(Ambudkar et a i,  1999). If we assume that the drug-binding sites in DrrAB are also
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located in its TMD in an equivalent manner to P-glycoprotein, this might explain why 

the addition of doxorubicin to DrrA did not enhance ATPase activity. However, 

studies on the mechanism of the E, coli ArsA ATPase have shown that ArsA 

possesses allosteric sites for As(III) and Sb(III), that are transport substrates for the 

ArsAB pump (Rosen et ah, 1999). Antimonite stimulated ATP hydrolysis by ArsA 

by 10- to 20-fold whilst with arsenite, the stimulation was lower. Similar allosteric 

sites might occur in ABC NBDs, and the existence of sites for ligands in DrrA was a 

possibility worth investigating.

It has been suggested that cooperativity between NBDs is a probable feature 

for all the NBDs in ABC transporters. A dimeric form of the NBD in the 

mitochondrial ABC transporter M dllp (Janas et a l,  2003) was suggested when its 

ATPase activity was dependent in a non-linear fashion on protein concentration and 

confirmed by the formation of intermediate dimeric transition states trapped by 

vanadate or beryllium fluoride. In addition, an active NBD dimer has been reported 

for the OpuA system of B. subtilis, evidenced by size exclusion chromatography 

(Plorn et a l,  2003). There was little evidence that the ATPase activity of Thio-DrrA 

departed from a linear relationship with protein concentration, but the result is far 

from conclusive. One feature of the Thio-DrrA protein was its high aggregation state, 

a property that impeded the successful use of size exclusion chromatography to assess 

whether a dimer was favoured as the active form for DrrA. Clearly, this might have 

bearing on the potential formation of dimers with ATPase activity different from that 

of monomeric forms. This issue could not be addressed with independently expressed 

DrrA, as insufficient soluble protein could be recovered for this type of assay.
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Chapter 7

Fluorescence spectroscopy of DrrA proteins

Spectroscopic methods can be used to monitor changes in the conformation of 

transporter proteins and time-resolve these changes. Fluorescence spectroscopy is 

preferred for monitoring ligand-membrane protein interactions whilst stopped-flow 

fluorescence (SFF) spectroscopy is favoured for determination of the mechanisms of 

ligand binding and translocation. The latter method is more sophisticated and uses 

rapid techniques to measure the rate constants governing the translocation of the 

substrate across the membrane (Walmsley, 2000).

7.1 Intrinsic tryptophan fluorescence of DrrA refolded from 

inclusion bodies in a urea gradient

Based on the fluorescence properties of the aromatic amino acids tryptophan 

and tyrosine, fluorescence spectroscopy has proved to be a powerful tool for 

investigating the properties o f ABC transporter complexes (e.g. P-glycoprotein; 

Sharom et al., 1998, 1999, and 2001). The technique relies upon the unique responses 

that small changes in the environment generate in the fluorescence properties of 

individual tryptophan residues within a protein. Therefore, conformational changes in 

a protein, induced by events such as ligand binding, can often be correlated with a 

change in the fluorescence of tryptophan residues.

Refolding of DrrA from inclusion bodies produced with the pET2la vector did 

not appear to generate protein with ATPase activity (see Chapter 5, section 5.1). 

Fluorescence spectroscopy techniques were used to seek evidence that the DrrA was 

able to interact with its substrate but unable to hydrolyse any bound ATP. 

Fluorescence changes in DrrA were monitored in the presence of the ligand 

doxorubicin and the nucleotide analogue MANT-ATP (Fig. 7.1). The peak in the 

spectrum in the absence of ligand was maximumal at 340 nm. This was consistent 

with a folded rather than a denatured structure as tryptophans in proteins that have 

been denatured by urea or guanidine hydrochloride exhibit a âx of 350 nm 

(Reshetnyak and Burstein, 2001). The emission intensity fell by 29% in the presence 

of doxorubicin or MANT-ATP, and was reduced slightly more in the presence of
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both. When magnesium was added, emission intensity rose to match that of the 

doxorubicin-DrrA peak. The data thus suggested that MANT-ATP was binding the 

DrrA protein. The MANT-ATP, on the other hand, displayed a peak at 440 nm that 

remained the same even in the presence of the protein.

Although the protein displayed these spectroscopic properties, no ATPase 

activity was detectable for DrrA. Although this could be interpreted as evidence for 

the interaction of DitA with the ligands, the absence of ATPase activity did not justify 

further investigation.

7.2 Intrinsic tryptophan fluorescence of the fused protein Thio-DrrA

Protein fluorescence data, collected under steady-state conditions, can be used 

to calculate biochemical parameters such as the equilibrium dissociation constant 

and/or the stoichiometry of a particular protein-substrate interaction. These can also 

be time resolved to give mechanistic information. The detailed kinetic mechanism 

describing the activity of the E. coli ArsA ATPase was determined by Walmsley and 

collaborators using a combination o f these techniques (Walmsley et al., 2001). 

Conformational changes associated with ATP binding, metalloid binding, ATP 

hydrolysis and product release were all detected through changes in the tryptophan 

fluorescence of the protein.

In order to evaluate whether similar conformational changes might be detected 

during the binding of ATP to Thio-DrrA and its further hydrolysis, steady-state 

tryptophan emission spectra were collected for protein both in the presence and 

absence of nucleotide. A typical spectrum is shown in Figure 7.2. In absence of 

nucleotide, Thio-DrrA exhibited an emission maximum at a wavelength of 334 nm. 

The addition of 1 mM ATP to the protein resulted in a quench in the fluorescence (64 

% decrease), and the subsequent addition of 1 mM MgCb to the mix caused a further 

quench of 4%. Neither addition had any effect on the max value that remained 

constant at 334 nm.

The reduction in emission intensity after addition of ATP initially indicated 

that some of the four tryptophan residues present in Thio-DrrA was responsible for a
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nucleotide induced conformational change in the protein structure. Nevertheless, the 

adenine ring of ATP interferes with fluorescence measurements by absorbing 

photons, thereby reducing the intensity of both the excitation beam and of the 

observed emission spectrum. This phenomenon is known as “inner filter effect”, and 

has to be considered when measuring the steady-state fluorescence of ATP-binding 

proteins (Nash, 2003). The extent of the inner filter effect was evaluated for different 

concentrations of ATP (1.0-0.01 mM), and it was determined that the decrease in 

emission intensity for Thio-DrrA could be attributed to an inner filter phenomenon. 

The magnitude of the effect was substantial and it was judged that any further changes 

in tryptophan fluorescence of Thio-DrrA that might arise from specific interaction 

with ATP, were unlikely to be discernible by this technique. Further doubt was cast 

upon the value of this approach in control experiments with bovine albumin. BSA 

showed the same quench in protein fluorescence as DrrA protein when 1 mM ATP 

was added.
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Figure 7.1 Tryptophan fluorescence emission spectra of refolded DrrA in the 

presence of substrate and ligand
Protein was excited at 285 nm and emission scanned between 300 and 525 nm. Protein fluorescence 

peaks appeared at 340 nm. The composition o f  the test samples is indicated. The ATP analogue 

MANT-ATP has a fluorescence maximum peak at 440 nm (indicated). Fluorescence data are shown in

arbitrary units (A.U.).
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Figure 7.2 Tryptophan fluorescence emission spectra of Thio-DrrA
The fluorescence emission spectrum o f 2.5 pM Thio-DrrA was measured at room temperature in a 

buffer containing 50 mM Tris-HCl and 150 mM NaCl, pH 8.0. Tryptophan fluorescence was excited at 

a wavelength o f 285 nm and emission data gathered from samples (composition as indicated) between 

295 and 400 nm. Fluorescence data are shown in arbitrary units.
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7.3 Stopped-flow fluorescence studies of Thio-DrrA

Nucleotide interactions can produce transient changes in the fluorescence of 

proteins. Stopped-flow fluorescence spectroscopy allows the very rapid detection of 

changes in protein fluorescence in response to ligand binding. The method allows the 

rapid mixing of the protein with the ligand, and enables one to time-resolve changes 

in the fluorescence on a millisecond time scale (see Chapter 2, section 2.13.2).

Contrary to measurement of changes under steady-state conditions, the use of 

stopped-flow techniques negates inner filter effects because any reduction in signal 

due to the presence of ATP occurs prior to the onset of data collection. A second 

advantage of the technique is that even very small and rapid changes in fluorescence 

that may be missed under steady-state conditions can be detected and time-resolved to 

reveal mechanistic details of the interaction (Walmsley et aL, 2001). Stopped-flow 

experiments involve mixing two (or more) solutions together as rapidly as possible 

and getting them immediately to the optical observation point. The faster this 

happens, the earlier into the reaction one may observe (i.e. the smaller the dead time). 

Some stopped-flow instruments are capable of achieving dead times of less than 1.0 

millisecond.

7.3.1 Production of tryptophan mutants in Thio-DrrA for 

fluorescence experiments

Due to intrinsic fluorescence properties of the aromatic amino acids 

tryptophan and tyrosine, it is possible to measure changes in their signals when a 

ligand binds a protein with these residues adequately exposed. When this type of 

interaction was assessed for the nucleotide-binding domain of the pump DrrAB (Thio 

DrrA) in a stopped-flow device, no changes were detected in the presence of the 

natural substrate ATP, or its fluorescent-analogue MANT-ATP.

Site-directed mutagenesis is a valuable tool for studies of gene and protein 

structure and function that allows one to specifically change any given base in a 

cloned DNA sequence. In an attempt to obtain detectable signals, single mutations 

were constructed with the aim of introducing additional tryptophan residues in
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sections of the protein sequence that could be involved in the catalytic active site, or 

close to it. Tryptophan is more responsive to any change than tyrosine. Thio-DrrA 

contains four tryptophan residues, with two of them forming part of the Thioredoxin 

protein. The initial aim was to obtain a mutation in the protein ABC signature 

sequence to enhance its fluorescence signal without affecting its intrinsic ATPase 

activity. If this signal was not satisfactory, it was argued that different residues 

involved in the Walker A motif could be targeted later (Fig. 7.3).

Mutagenesis in Thio-DrrA

Fluorescence quenching following the addition of ATP had been previously 

reported for NBD’s (Schneider et al., 1994, working with MalK). The alleged ABC 

signature-sequence motif (also known as linker peptide) is one of the most highly 

conserved regions in ABC transporter NBD’s and it is generally represented by the 

consensus “LSGGQ”. It is located in the ABC transporter-specific a-helical sub- 

domain of the NBD. A number of crystallographic NBD dimers suggest this motif is 

part of a complex ATP binding site formed by juxtaposition of one NBD’s Walker A 

motif with the signature-sequence motif of a second molecule (Hopfner et al., 2000; 

Smith et al., 2002; Chen et al., 2003) . In S. peucetius DrrA the signature-sequence 

motif is represented by the sequence ‘YSGGM’, and it was selected as target for site- 

directed mutagenesis. Although not common, the same YSGGM signature sequence 

was reported for Streptococcus pyogenes OppD and OppF (Podbielski et al, 1996), 

and M. tuberculosis DrrA (Nash, 2003). Mutation of the m otifs  initial tyrosine 

residue (Y140) to a potentially fluorescent tryptophan residue (W) was devised. 

Being part of the most conserved sequence in these transporters, this region might 

well be intimately involved in both dimérisation of the NBD and the mechanism of 

ATP hydrolysis.

To produce this mutation in Thio-DrrA, primers were designed according to 

the protocols for the Promega Gene Editor system, and later, the QuickChange site 

directed mutagenesis system from Stratagene. In both cases, TAG codon was mutated 

to TGG, to replace tyrosine with tryptophan.
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(1) mntqptraie 
1 1

TSGLVKVYNG TRAVDGLDLN VPAGLVYGIL (40)

(41)
T TGPNGAGKSTT IRMLATLLRP DGGTARVFGH DVTSEPDTVR (80)

(81) RRISVTGQYA SVDEGLTGTE
1
NLVMMGRLQG YSWARARERA (120)

(121) AELIDGFGLG DARDRLLKTY SGGMRRRLDI AASIVVTPDL (160)

(161) LFLDEPTTGL DPRSRNQVWD IVRALVDAGT TVLLTTQYLD (200)

(201) EADQLADRIA VIDHGRVIAE GTTGELKSSL GSNVLRLRLH (240)

(241) DAQSRAEAER LLSAELGVTI HRDSPTALSD ARIDDPRQGM (280)

(281) RALAELSRTH LEVRSFSLGQ SSLDEVFLAL TGHPADDRST (320)

(321) EEAAEEEKVA KGELEGKPIP NPLLGLNSTR TGHHHHHHH

Figure 7.3 Positions of tryptophan mutations in the DrrA component of Thio-

DrrA
Residues selected for mutation by site directed mutagenesis are indicated in bold and shown by the 

arrow, corresponding to the mutations Y 37, A45 and T50 around the W alker A motif, and the mutation 

Y 140 that corresponds to the former ABC signature sequence mutation. In all these mutations, the 

original aminoacid was replaced by a tryptophan. Red text indicates the D rrA W alker A motif, blue 

shows W alker B and green highlights the ABC transporter signature-sequence.
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7.3.1.1 GeneEditor System (Promega):

To use the GeneEditor system, only a single primer was needed to produce the 

mutation and synthesise the mutated DNA. Its sequence was:

Primer SP DrrA

Sequence (5’ to 3’): CTC CTG AAG ACC TGG TCC GGT GGC

The original TAG codon was converted into TGG (fifth base triplet in the primer)

The first step in this protocol was to denature by alkali the plasmid DNA 

containing the gene of interest, and then use single stranded DNA as template for 

synthesis. This step was accomplished (Fig. 7.4), but no bacteria could be recovered 

that were transformed with the newly synthesised DNA plasmid. Numerous attempts 

to repeat the alkali dénaturation step did not show the expected pattern on gels with 

the single stranded DNA migrating ahead of the double stranded (Fig. 7.5). Although 

modifications were introduced such as the use of higher temperatures (70-80 °C) or 

longer incubation times (10-30 minutes) instead of room temperature and the five 

minutes suggested by the protocol, the electrophoresis pattern expected for denatured 

DNA could not be detected and transformation of competent cells with newly 

synthesised mutant DNA proved elusive.
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Double
stranded
DNA

Single
stranded
DNA

NDP DP

Figure 7.4 Alkali-mediated DNA dénaturation of pBADTOPO thio-drrA
NDP: Non-denatured plasmid DNA 

DP: Denatured pBAD thio-drrA plasmid

Double
stranded
DNA

NDP

Figure 7.5 Unsuccessful attempts to generate alkali denatured DNA from 

pBADTOPO thio-drrA
NDP: Non-denatured plasmid DNA

1-3: Plasmid preparations treated with alkali
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7.3.1.2 QuickChange Site-Directed Mutagenesis (Stratagene)

Site-directed mutagenesis was also attempted with this methodology from 

Stratagene. In this protocol, it was necessary to construct a pair of complementary 

primers each carrying the mutation towards the middle of the primer, with five codons 

of native sequence at either side.

7.3.1.2.1 Mutagenesis in the Thio-DrrA ABC signature

The complementary primers bearing the mutant sequence are shown below:

Primer DrrA Y 140 forward

Sequence (5’ to 3’): CGG CTC CTG AAG ACC TGG: TCC GGT GGC ATG CGG 

Primer DrrA Y 140 reverse

Sequence (5’ to 3’): CCG CAT GCC ACC GGA CCA GGT CTT GAG GAG CCG

Twenty-five and 50 ng of double-stranded pBADTOPO thio-drrA DNA were 

used as template, and with both reaction mixtures, transformants were obtained that 

carried the mutation. Transformants were selected for resistance to ampicillin, the 

antibiotic marker present in the plasmid.

The mutant DNA carried the original pBADTOPO thio-drrA plasmid 

sequence with the original tyrosine codon (YSGGM) mutated to tryptophan 

(WSGGM). The mutation was confirmed by DNA sequencing. Plasmid DNA was 

purified and transformed into E. coli LMG194 for expression of the mutated Thio- 

DrrA. The ATPase activity of this modified protein was similar to that of wild-type 

Thio-DrrA (Table 7.1). The protein was used in stopped-flow spectroscopy 

experiments, but no improvement could be detected in fluorescence signals in the 

presence of ATPase reaction components.

7.3.1.2.2 Mutations inside and around the Thio-DrrA Walker A motif

In ABC transporters, two other regions have highly conserved motifs and are 

implicated in nucleotide binding and hydrolysis, the Walker A and Walker B motifs.
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The Walker A site is implicated in the binding of phosphate and consequently is 

known as the phosphate loop. If a tryptophan, generated by a single mutation in this 

region of the protein was fluorescence-responsive, an interaction with the substrate 

should change the fluorescence signal.

Single amino-acid mutations were designed for Thio-DrrA to either sides of 

the Walker A motif, and within the motif. In all mutants, a tryptophan residue 

replaced the original amino acid. In the first mutation, a tyrosine at position 37 was 

altered to tryptophan (Fig. 7.3). In the second, the alanine inside the Walker A motif 

was changed as illustrated below:

Native DrrA Walker A motif 4 1 - G P N G A G K S - 4 8

I
Mutant (A45) 41- G P N G W G K  S -48

The highly conserved residues in the motif are in bold. A third mutation 

involving substitution of a threonine at position 50 was devised to the other flank of 

the Walker A motif (Fig. 7.3). All these plasmids were then purified from E. coli XLl 

Blue and transformed into E. coli LMG194 for expression of the Thio-DrrA mutants.

Although the Thio-DrrA mutants showed ATPase activity (Table 7.1), they 

did not give appropriate fluorescence signals in the stopped flow assays. Mutant 

Thio-DrrA Y37 showed 40% of the ATPase activity of wild-type Thio-DrrA, but its 

fluorescence was not responsive to the binding of ATP (Fig 7.6 A and B). For Thio- 

DrrA A45W, the protein lost almost all ATPase activity, indicating that the integrity 

of the Walker A motif is essential for activity (Fig. 7.6 C and D). For Thio-DrrA 

T50W, the protein retained full ATPase activity but did not give a fluorescence signal 

in stopped flow, although some signal amplification was suggested by the data (Fig. 

7.6 E and F).

Considering the SFF spectra obtained for the Thio-DrrA mutants, there are no 

net changes in fluorescence that appear to be linked to ATP binding or hydrolysis. 

Variation in the ATP concentration did not alter the strength of the fluorescent signal. 

The ATP analogue MANT-ATP possessed a fluorescence signal several times higher
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than that of ATP, but no improvement was noticed using this reagent, the main 

problem appearing to be a low signal-to-noise ratio. Additional mutations were 

generated to convert the tryptophan residues present in the Thioredoxin moiety into 

glycine to reduce the background signal. For example, a tiyptophan-free Thioredoxin 

moiety was exchanged into the Thio-DrrA T50 mutant. Assays with different ATP 

concentrations, ADP and MANT-ATP were performed in the stopped-flow 

instrument, but no improvement in the tryptophan fluorescence signal could be 

detected.
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Table 7.1 ATPase activity of mutant Thio-DrrA proteins constructed for 

stopped-flow assays

Tliio-DrrA Protein Specific activity (nmoles Pi/min/mg

protein)

Wild-type 40±2

Y140W 34±4

Y37W 15±3

A45W 3±0.5

T50W 374=3

The m alachite green Pj release assay was used to calculate the rate o f ATP hydrolysis, ATP assays 

were performed at 37 °C and initiated by the addition o f 45 pi o f  M gC f. The total volume for each 

assay was 500 pi with 45 pi o f  sample analysed for P; content at 5-minute time intervals over a time 

course o f 15 minutes. A standard curve was used to convert absorbance values at 610 nm to nanomoles 

o f  Pi. Final values were expressed as specific activity in nanom oles o f P| released/m inute/m g of 

protein.
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0.130
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C D

‘0.790

0.150

0.120

E

Figure 7.6 Stopped flow fluorescence spectra of Thio-DrrA mutant proteins in 

presence and absence of ATP and

Stopped-flow fluorescence traces generated by mixing 5 _M Thio-DrrA proteins with 1 mM ATP and 2 

mM MgCIz (final concentrations in the mixing chamber). ATP fluorescence was excited at 285 nm 

and emission data collected above 320 nm.

A and B represent Y37 T h io -D rrA ; C and D, A45 T h io -D rrA ; E and F, T50 T h io -D rrA , all in 

absence and presence o f ATP and Mg^^ respectively.
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7.4 Summary

Analysis of the DrrA proteins was carried out by fluorescence spectroscopy to 

monitor changes in tryptophan fluorescence in presence of ligands. Intrinsic 

tryptophan fluorescence was assayed for DrrA purified from inclusion bodies, 

denatured and subsequently refolded using a urea gradient, to evaluate the success of 

the procedure. The data were consistent with the protein possessing a folded 

conformation but one that lacked ATPase activity.

Intrinsic tryptophan fluorescence was also assayed for Thio-DrrA proteins. 

With these proteins, a high inner filter effect was noted from ATP. This obscured any 

changes in tryptophan fluorescence that might be caused by ligand interaction with 

the protein.

Stopped flow-fluorescence was employed in an effort to detect and evaluate 

changes in Thio-DrrA fluorescence in response to ligand binding. Substantial and 

consistent changes in tryptophan fluorescence could not be detected. To overcome 

this, mutations were introduced at locations close to or within the motifs implicated in 

ATPase activity of the protein, such as the Walker A (Y37, A45, and T50) and the 

ABC signature (Y140) motifs. Although the mutants retained ATPase activity, no 

improvement in tryptophan fluorescence was obtained. Finally, a pair of tryptophan 

residues present in the Thioredoxin moiety was converted to glycine residues in an 

attempt to eliminate the background fluorescence of the fusion proteins. Analysis of 

the resulting Thio-DrrA constructs did not show any improvement.
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Chapter 8

Final Discussion

"'DrrA is a component o f  the DrrAB pump o f  S. peucetius and its role is to 

drive the efflux o f  the anthracycline compounds doxorubicin and daunorubicin out o f  

the cell. DrrA is a protein located peripheral to the membrane and has the 

characteristics o f a cytoplasmic protein'\

ABC transporters are formed by several functional units and organised into 

modules consisting of a minimum of four functional domains - two ATP- 

binding/hydrolysing domains and two membrane-spanning domains (Higgins et al., 

1986). In contrast, the model for the S. peucetius ABC transporter DrrAB proposes 

that it is composed of two functional domains: a nucleotide binding domain (NBD), 

and a transmembrane domain (TMD). It has been suggested that the NBD was 

duplicated and that this event also happened with the original TMD, resulting in a 

DrrAzBz stoichiometry for the complex (Kaur and Russell, 1998).

That was the state of knowledge about the experimental system chosen for this 

project at its start. If  the ATP binding domain could be functionally separated from 

the membrane domain of the transporter, it was argued that it might be possible to 

overproduce the domains separately for detailed structure-function studies. As the 

doxorubicin energy-dependent pump was thought to comprise distinct membrane and 

ATPase domains, this goal seemed achievable. The wider importance of the study 

remains that if the molecular mechanism for pumps linked with drug resistance can be 

better understood, this will provide a rational basis for combating the threat posed by 

microorganisms resistant to multiple antibiotics, and improving cancer chemotherapy.

Many other soluble proteins from bacteria have been successfully 

overexpressed as heterologous proteins in E. coli. There was no a priori reason to 

think that this would not be the case for DrrA and the expectation was that DrrA 

would be expressed in sufficient quantities to perform a complete study of its 

properties. However, this did not prove to be the case. Although substantial quantities
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of recombinant protein were overexpressed using a pET-based construct, the vast 

majority of the product was present as inactive, insoluble inclusion bodies. The lack 

of biological function associated with this form of the protein impeded further 

biochemical analysis of native DrrA. Diverse trials were conducted to refold the 

aggregates from inclusion body into an active conformation but this proved to be 

futile. It has been suggested that certain structural features of the NBD promote non- 

physiological interactions between individual molecules, resulting in aggregation and 

insolubility (Yuan et al., 2001), and it is now known that inclusion body formation is 

a rather common event when overexpressing NBDs of ABC transporters.

Since DrrA could not be expressed as a native protein and refolding proved 

unsuccessful, an alternative mode of expression was sought. By expressing DrrA as a 

translational fusion to E. coli Thioredoxin, a stable soluble Thio-DrrA was eventually 

produced in quantities just sufficient for analysis.

Similar approaches had been used extensively for the heterologous 

overexpression of both prokaryotic and eukaryotic ABC transporter NBDs. Even so, 

expression of a DrrA fusion protein from a pBADTOPO thio vector was not easy. 

Low concentrations of inducers did not really improve the yield of soluble protein at 

37 °C. A change of temperature to 25 °C at induction was not sufficient to provide 

soluble Thio-DrrA. This goal was only reached by dropping the temperature close to 

17 °C, when finally a small quantity of soluble, active DrrA and rather more Thio- 

DrrA were obtained. These results led to the characterisation of Thio-DrrA, a form of 

DrrA that showed signs of ATPase activity. The presence of additional sequence, not 

least the Thioredoxin moiety, could impact upon the behaviour of DrrA compared to 

its native form.

Given these problems, might the overexpression of DrrA have been easier in a 

host closer to S. peucetius? This strategy was seen as inconvenient from the beginning 

of the project. There was no previous experience in the team to support research 

along these lines, and the longer culture times for Streptomyces was seen as an 

obstacle. In contrast, E. coli was extensively used by others in the research team for 

the expression of heterologous proteins and its well characterised genetics,
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biochemistry and physiology and the extensive availability o f vectors for 

overexpression were seen as major advantages.

The characterisation of DrrA was mainly based on its ATPase activity and this 

was assessed by release of phosphate, as determined by a malachite green/ammonium 

molybdate assay. To evaluate this activity in the different trials assayed and to 

observe clearly their differences with control experiments, concentrations of Thio- 

DrrA were used that would generate Aôiomn values close to 0.34 at the end of the 

reaction. A protein concentration of 1 pM (about 52 pg/ml) was found to carry 

activity too low to meet this criterion for some preparations. This variation suggested 

that the protein was not being expressed with complete ATPase activity and that some 

variation in this property was evident, batch to batch. In consequence, protein 

concentrations between 1 and 3 pM were required to meet the assay criteria. This 

approach was adequate for qualitative comparisons. The ATPase activity of the Thio- 

DrrA fusion protein was shown to exhibit cation dependence, a feature consistent with 

its proposed role as the energy transducing sub-unit of an ABC transporter. The 

structural integrity of the Walker A nucleotide-binding motif, a feature shared by 

other ATPase families, was also important and a mutant protein in which this motif 

was disrupted displayed much reduced levels of ATP hydrolysis. Thio-DrrA was 

shown to exhibit a broad range of substrate preferences with regard to nucleotide 

triphosphates and divalent cations. This feature is not uncommon amongst isolated 

bacterial NBDs and may be seen as a further indication that the behaviour of Thio- 

DrrA is typical for an NBD. These data are the first to show that the S. peucetius 

DrrA protein is a functional ATPase.

However, the low specific activity of Thio-DrrA compared to other ATPases 

was notable and disappointing. Although the Vmax data showed variations between 

experiments, it was reasonable to assume that the Km of the DrrA proteins would be 

constant. However K,n values derived for Thio-DrrA were a ten times higher than the 

same parameter for the isolated DrrA protein, indicating that something was affecting 

the properties of the fused protein. Heterogeneous ATPase activities might be linked 

to the presence of mixtures of soluble but inactive DrrA fusions with active forms of 

the protein. This important phenomenon has been encountered by other investigators 

and purification strategies have been proposed based upon monodispersity (see
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Nomine et al., 2001). Expression of isolated DrrA from the pET vector system 

always produced protein with a high activity, although yields were consistently low 

and could not be improved.

A number of biochemical and structural data suggest that the ATPase active 

form of ABC transporter NBDs is a dimer, as shown for the Rad50 and MalK 

(Hopfner et a l, 2000; Chen et a l, 2003). A dimer formation for Thio-DrrA could not 

be further corroborated because of aggregation problems with Thio-DrrA, and 

insufficient quantities of DrrA protein for size exclusion cliromatography.

The ATPase activity of Thio-DrrA and DrrA did not appear to be modulated 

by the presence of the putative DrrAB substrates doxorubicin and daunorubicin. This 

argues against the presence of an antibiotic binding site or sites on DrrA. DrrA thus 

does not seem to be an allosteric protein like ArsA as has been suggested by Kaur 

(Kaur, 1997). Interaction between DrrA and DrrB could not be detected and overall 

these experiments failed to take forward an understanding of the manner in which 

DrrA interacts with the substrates and the membrane components of this pump. This 

phenomenon has been reported in other systems (Nash, 2003; Nikaido et a l, 1997; 

Morbach et al., 1993), where isolated components of ABC systems behave differently 

when assayed in dilute solution rather than as part of the entire transporter complex. 

It seems clear that isolated DrrA retains it ATPase activity but how ATP hydrolysis 

mechanism is coupled to multidrug extrusion remains unclear.

Since the ATP binding domain is strongly conserved among ABC transporters 

with various specificities, it seems unlikely that this domain is involved in initial 

substrate recognition. As a consequence, identification of an ABC-type nucleotide 

binding domain alone cannot be taken as evidence for a putative MDR transporter 

(Allikmets et a l ,  1993; Karow and Georgopolous, 1993). It should be stressed that 

alterations in the drug resistance profile have been observed as result of mutations in 

the nucleotide binding domain, which indicate an intimate relationship with the 

hydrophobic domain(s) (Beaudet and Gross, 1995). Both biochemical and structural 

data are beginning to suggest that the ABC transporter function is highly dependent 

upon interactions between the various domains of the complex. As such, a complete
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understanding of its fimction may require researchers to adopt a “system-approach” to 

its analysis, rather than more traditional tecluiiques.

To achieve a more detailed characterisation of the NBD of the S. peucetius 

DrrAB pump, in particular the mechanism by which DrrA interacts with its substrate, 

efforts should be directed to finding a better vehicle for overexpression and 

purification. Fusion with maltose binding protein and use of a Nus tag has been 

promoted for improving yields of soluble protein, but it is clear that no fusion system 

can guarantee overcoming aggregation problems. Vectors containing promoters 

weaker than T7, should be assayed but it should also be clarified if insertion of Dn’A 

into the bacterial membrane independently or as a component of the DrrAB system 

influences its activity.
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