
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Characterisation of Nematode Prolyl 4-Hydroxylase 

Collagen Modifying Enzymes

Alan D. Winter

Wellcome Centre for Molecular Parasitology 

University of Glasgow

Submitted for the degree of Doctor of Philosophy at the 

University of Glasgow

December 2002



ProQuest Number: 10390631

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10390631

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



f^ASCOlV'
a , :



Declaration

The work presented in this thesis was performed entirely by the author except where 

indicated. This thesis contains unique work and will not be submitted for any other 

degree, diploma or qualification at any other university.

Alan Winter, December 2002



Acknowledgem ents

The following people are thanked for their kind provision o f reagents and materials: 

The C. elegans Genetic Centre (University of Minnesota, Minnesota, USA) and C  

elegans community labs for nematode strains; Rick Maizeis and Yvonne Harcus (both 

ICAPB, University of Edinburgh) for Brugia malayi worms; Bill Gregory (ICAPB, 

University of Edinburgh), for B. malayi time course cDNA; Mark Blaxter and Jen Daub 

(both ICAPB, University of Edinburgh) for B. malayi ESTs and BAC library screening; 

Steven Williams (PGP, Smith College) for B, malayi ESTs and cDNA library; Iain 

Johnstone (WCMP, University of Glasgow) for C  elegans timecourse cDNA, dpy-7- 

GFP plasmid and the DPY-7 antibody; Andy Fire and co-workers (Carnegie Institution 

of Washington, Baltimore) for plasmid vectors from the pPD series, plasmid, pRF-4, the 

synthetic intron insertion protocol and E. coli strain HT115(DE3); Robert Horvitz 

(MIT, Massachusetts, USA) for p76-16B; Chuck Shoemaker (AgResearch Ltd., New 

Zealand) for the BA7-1 plasmid; Melanie Thein and Tony Page, (WCMP, Glasgow) for 

strains TP 12 and TP13; Paivi Riihimaa, (Collagen Reseaich Unit, Oulu, Finland) for the 

Ce-phy-3 reporter construct; Liisa Kukkola (Collagen Reseaich Unit, Oulu, Finland) for 

the Ce-phy~4 and Ce-phy-5 reporter constructs; Gillian McCormack (WCMP, Glasgow) 

for the C. briggsae gene cloning. Johanna Myllyharju (Collagen Research Unit, Oulu, 

Finland) is thanked for human a l  and a l l  antibodies and especially for her collaborative 

work in insect cell expression o f Ce-PHY-2 and 5m -PHY-l. Some o f the work 

performed by Laura Gilchrist and Jimi-Carlo Bukowski-Wills for their BSc (Hons) 

projects at the University of Glasgow is included here.

The following people are acknowledged for the permission to quote their 

unpublished data; J. NovelU and J. Hodgkin {dpy-31)\ C. Thaker and A. Rose {dpy-5)\ J. 

Crew and J. Kramer {bli-1 and bli~2); M. Sapio, M. Hilliard and P. Bazzicalupo {cut 

genes); E. Maine and A. Smardon {dpy-17).

The help and advice of everyone at WUMP, past and present, was appreciated, 

especially Iain Johnstone, Brett Roberts, Collette Britton and my project assessors Dave 

Barry and Tansy Hammarton. I am also grateful to Brett for proof-reading this thesis. 

My supervisor Tony Page is thanked particularly for the opportunity to undertake this 

project and for his encoui'agement and support.

Lastly, to my family, friends and Linda a huge thank-you for everything.

11



Contents
Page

Declaration i

Acknowledgements ii

Contents iü

List of figures and tables xiv

Summary xvü

Chapter 1 

General introduction

1.1. Introduction 1

1.2. Structure and functions of the nematode cuticle ECM 2

1.3. Components of the cuticle 4

1.4. Collagen structure 5

1.5. Collagen biosynthesis 6

1.6. Cuticle collagens of C. elegans 8

1.6.1. C. elegans collagen mutants 9

1.6.2. Allele-specific phenotypes 11

1.6.3. Collagen RNAi mutants 15

1.7. Parasitic nematode collagen gene families 16

1.8. Collagen associations and gene expression 16

1.9. The role of the hypodermis in development and 17 

cuticle synthesis/moulting

1.10. Control of cuticle component gene expression 18

1.10.1. Nuclear hormone receptors 18

1.10.2. Megalin receptor 19

1.10.3. Heterochi'onic genes 20

1.11. Enzymes of collagen biosynthesis 20

1.11.1. P4H and its PDI subunit 20

1.11.1.1. Vertebrate a  subunits 22

1.11.1.2. Enzymatic reaction 22

111



1.11.1.3. P4H subunits from other species 24

1.11.1.4. PDI function in P4H complexes and 25 

individually in collagen biosynthesis

1.11.2. P4H and PDI as molecular chaperones in 27 

collagen biosynthesis

1.11.3. Peptidyl prolyl cis~trans isomerases 28

1.11.4. Collagen pro-peptidases 30

1.11.4.1. Cleavage of C. elegans N-tennini 30

1.11.5. Thioredoxin 32

1.11.6. Cross-linking enzymes 33

1.11.6.1. Tyrosine derived cross-links 33

1.11.6.2. Transglutaminases 36

1.12. Conservation of collagen biosynthesis in C. briggsae 37

1.12.1. C. briggsae bli~4 3 7

1.12.2. C. briggsae pdi-l!cyp~9 operon 38

1.12.3 C. briggsae DPY-7 38

1.13. Basement membrane (type IV) collagens 3 8

1.14. C. elegans as a model organism and a 39 

heterologous expression system

1.15. Inhibition of collagen biosynthetic enzymes 42

1.16. Project aims 43

Chapter 2 

Materials and methods

2.1. Standard reagents and media 44

2.2. Agarose gel electrophoresis 45

2.3. Nematode strains and culture 46

2.4. E. coli strains and culture 47

2.5. Purification and synthesis of DNA and RNA 47

2.5.1 Phenol/chloroform extraction and ethanol 47 

precipitation of DNA

2.5.2 Genomic DNA isolation 48

IV



2.5.3. Total RNA isolation 48

2.5.4. Purification of mRNA 49

2.5.5. Synthesis of first strand cDNA 49

2.6. PCR based cloning procedure 50

2.6.1. PCR conditions and polymerases 50

2.6.2. Purification of PCR products 50

2.6.3. PCR product cloning using pCRScript 51

2.6.4. T-overhang PCR cloning vectors 51

2.6.5. TOPO T-A cloning 52

2.6.6. Transformation of E. coli 52

2.6.7. Identification of bacterial transformants 5 3

2.6.7.1. Blue/white colour selection 53

2.6.7.2. PCR screening 53

2.6.8. Plasmid DNA preparation 54

2.6.9. Analytical restriction digests 55

2.7. Subcloning fi*om plasmids and bacteriophage 55

2.7.1. Restriction digests for subcloning 55

2.7.2. Ligations 55

2.8 Sequencing analysis 56

2.8.1. Sequencing analysis software and computer 56 

analysis of DNA and protein sequences

2.9. Protein techniques 57

2.9.1. Peptide antisera 5 7

2.9.2. SDS PAGE 57

2.9.3. Western blotting 57

2.10. Transformation of C  elegans 58

2.10.1. Microinj ection procedure 5 8

2.10.2. Behaviour of injected DNA 59

2.10.3. Selectable markers of transformation 59

2.11. Microscopy of live nematodes 60

2.12. SL-PCR 60

2.13. Promoter analyses 61

2.13.1. Promoter/reporter gene constructs 61

2.13.2. Staining for P-galactosidase activity 61

V



2.14. Semi-quantitative (sq-) RT-PCR 62

2.14.1. RT-PCR oîCe-phy-U Ce-phy-2 and 62 

Ce-pdi-2 from staged samples

2.14.2. Southern blotting 62

2.14.3. Radiolabelling oligonucleotide primers 63

2.14.4. Probing blots 63

2.14.5. Quantification of radioactive bands 64

2.15. RNA interference (RNAi) 64

2.15.1. RNAi by injection of in vitro synthesised double-stranded 64 

(ds) RNA

2.15.1.1. Construction of plasmids for in vitro RNA synthesis 64

2.15.1.2. 7^ vitro transcription of RNA 65

2.15.1.3. dsRNA injections 65

2.15.2. Bacterially-mediated RNAi 65

2.15.2.1. Constructs for RNAi feeding 65

2.15.2.2. Transformation of E. coli HTl 15(DE3) 66

2.15.2.3. RNAi feeding 67

2.16. Rescue of C. elegans mutant dpy-18 with Ce-phy-1 67

2.17. Cloning ofphy-\ alleles from dpy-18 strains 67

2.17.1. Ce-phy-1 cloning from dpy-18{e364) 67

2.17.2. Ce-phy-1 cloning from dpy-18{el096) 68

2.17.3. Ce-phy-1 cloning from dpy-18(bx26) 68

2.18. Developmental time-course analysis of RNAi embryos 68

2.19. Sample preparation for scanning electron microscopy 69

2.20. Injection of col-19::gfp construct 69

2.21. Antibody staining of nematodes 69

2.22. Rescue experiments with C. elegans dpy-18 strains 70 

by expression of alternative a  subunits

2.22.1. Constiuction of vector pAWl 70

2.22.2. Human a  subunit rescue constructs 70

2.22.3. Human a  subunit rescue constructs with 71 

synthetic intron sequences

2.22.4. Ce~phy~2 dpy-18 rescue construct 71

VI



2.22.5. Microinjection of C  elegans dpy-18 with 72 

alternative a  subunits

2.22.6. Single worm RT-PCR of human a  subunit 72 

rescue transgenic lines

2.22.7. Westerns for human a  subunit transgene expression 73

2.23. Examination of C. elegans mutant let-44 as a 73 

candidate Ce-pdi-2 mutant

1 2 3 A. let-44 strain GR1029 73

2.23.2. let-44 developmental timecourse analysis 74

2.23.3. Ce-pdi-2 genomic sequence from let-44 mutants 74

2.23.4. Ce-pdi-2 cDNA sequence from let-44 mutants 74

2.23.5. let-44 rescue experiments with Ce-pdi-2 75

2.23.5.1. Cosmid rescue of let-44 76

2.23.5.2. Plasmid rescue of let-44 76

2.24. Baculovirus expression 76

2.24.1. Insect cell expression construct for Ce-phy-2 77

2.25. Native extract analysis of C. elegans and B. malayi worms 77 

and insect cell samples

2.26. PCR mapping of Ce-phy-3, Ce-phy-4 and Ce-phy-5 78

2.27. Cloning of Bm-phy-1 cDNA 78

2.27.1. B. malayi ESTs 78

2.27.2. Phage cDNA libraiy screens 79

2.27.2.1. Preparation of plating cells 79

2.27.2.2. Library titres 79

2.27.2.3. Radiolabelled probe 79

2.27.2.4. Libraiy screen 80

2.27.2.5. Phage plaque elution 81

2.27.2.6. Subsequent library screening rounds 81

2.27.3. Phage DNA preparation 81

2.27.4. Bm-phy-1 5' RACE 82

2.28. Genomic sequencing of Bm-phy-1 83

2.29. Construct for baculovirus expression of Bm-phy-1 83

2.30. Glycosidase treatment of Bm-PHY-1 83

Vll



2.31. C  elegans dpy-18 rescue experiments with Bm-phy-1 84

2.31.1. Bm-phy-1 rescue constructs 84

2.31.2. Microinjection of Bm-phy-1 rescue constructs 84

2.31.3. Bm-phy-1 single worm RT-PCR from transformed lines 84

2.31.4. Western blotting for transgene expression 85

2.32. B, malayi developmental timecourse RT-PCR 85

2.33. Bm-phy-1 promoter cloning 85

2.33.1. TOPO Walking technique 85

2.33.2. Isolation of BAC clones 86

2.33.2.1. Hybridisation screening of BAC library 86

2.33.2.2. PCR screening of BAC library 87

2.34. Reporter gene expression in C. elegans from Bm-phy-1 promoter 87

Chapter 3

The combined functions of C. elegans phy-1 and phy-2 are essential for 

development and morphology due to their cuticle collagen modifying activity

3.1. Introduction 93

3.2. Results 94

3.2.1. P4H subunit-encoding gene identification 94

3.2.2. 7>a«.s-splicing analysis by SL RT-PCR 94

3.2.3. Determination of spatial expression patterns 95

3.2.3.1. Reporter gene vectors 95

3.2.3.2 Ce-phy-1 and Ce-phy-2 lacZ reporter gene consti'ucts 98

3.2.4. Temporal expression of Ce-phy-1 and -2  101

3.2.5. Embryonic expression 104

3.2.6. Interference of gene function by injection of 104 

double-stranded RNA

3.2.6.1. Ce-phy gene RNAi 107

3.2.6.2. Ce-phy-1 RNAi injection 107

3.2.6.3. Ce-phy-2 RNAi injection 109

3.2.6.4. Combined Ce-phy-1 and Ce-phy-2 RNAi injection 110

3.2.7. Characterisation of dpy-18 as a phy-1 mutant 111

vin



3.2.7.1. Identification of dpy-18 as a candidate phy-1 mutant 111

3 2 .12 . Rescue of the dpy-18 phenotype with wild type 111

transgenic Ce-phy-2 

3.2.7.3. Analysis of Ce-phy-1 molecular changes in 113

dpy-18 mutants

3.2.7.3.1. Amber stop codon mutation in dpy-18{e364) 113

3.2.7.3.2. A deletion in dpy-18{el096) 115

3.2.7.3.3. Allele hx26 is caused by an ochre stop codon 119

3.2.8. RNAi of Ce-phy-2 in a dpy-18 genetic background 119

3.2.8.1. Developmental timecourse of Ce-phy-2 122 

RNAi/(3^y-i5 embryos

3.2.9. RNAi by bacterial feeding 125

3.2.9.1. RNAi feeding of Ce-phy-1 and Ce-phy-2 125

3.2.10. Further characterisation of dpy-18 and Ce-phy RNAi mutants 127

3.2.10.1. C0L-19::GFP protein fusion 127

3.2.10.2. DP Y-7 antibody analysis 131

3.2.10.3. Scanning electron micrographs 133

3.2.11. dpy-18 rescue with alternative a  subunits 136

3.2.11.1. Human P4H a  subunit rescue constructs 136

3.2.11.2. Human a  rescue with C  elegans synthetic introns 139

3.2.11.3. dpy-18 rescue with Ce-phy-2 coding sequence 142

3.2.11.4. Detection of transgene expression 142

3.3. Discussion 145

3.3.1. Expression of Ce-phy genes 145

3.3.2. Single and combined mutant phenotypes indicated that the 145 

functions of Ce-phy genes are essential for development and

body morphology

3.3.3. Disruption of gene function is associated with disruption of 148 

cuticle collagens

3.3.4. In vivo evidence of the essential nature of P4H identifies 149 

this enzyme as a target for anti-nematode drug design

3.3.5. Collagen chaperone function of P4Hs 150

3.3.6. Human P4H rescue 150

IX



3.3.7. Ce-PHY-1 and Ce-PHY-2 complexes appear not to 151 

modify type IV collagens

3.3.8. Possible formations of P4H complexes in C. elegans 153

Chapter 4

C  elegans PDI-2 is essential for development as it is the single P4H P subunit

4.1. Introduction 155

4.2. Results 156

4.2.1. Examination of trans-spliomg 156

4.2.2. Protein sequence 156

4.2.3. Spatial expression pattern 159

4.2.4. Temporal expression of Ce-pdi-2 161

4.2.5. RNAi injection 164

4.2.6. Developmental timecourse analysis of the Ce-pdi-2 RNAi 166 

embryonic lethal phenotype

4.2.7. RNAi feeding 168

4.2.8. Analysis of the RNAi feeding phenotype 169

4.2.8.1. DPY-7 staining 169

4.2.8.2. Scanning electron microscopy 169

4.2.9. Examination of let-44 as a candidate Ce-pdi-2 mutant 172

4.2.9.1. let-44 developmental timecourse analysis 172

4.2.9.2. Rescue of let-44 phenotype 172

4.2.9.3. Ce-pdi-2 sequence from let-44 mutants 175

4.3. Discussion 177

4.3.1. Essential function of Ce-pdi-2 proposed to be the formation 177

of P4H complexes

4.3.2. Other roles of PDI in collagen synthesis 177

4.3.3. let-44 is not a Ce-pdi-2 mutant 178

4.3.4 Uses o f a Ce-pdi-2 genetic mutant 179

4.4. Future work to identify a Ce-pdi-2 genetic mutant 181

4.4.1. Screening of a chemically mutagenised nematode library 181

4.4.2. Precomplementation screen 181



Chapter 5

C  elegans PHY-1, PHY-2 and PDI-2 combine in unique ways to form enzyme 

complexes and are the only cuticle collagen modifying P4H subunits

5.1. Introduction 183

5.2. Results 184

5.2.1. Baculovirus expression of Ce-PHY-2 184

5.2.2. Native extract analysis of P4H complexes 185

5.2.3. Possible additional C. elegans P4H complex(es) 189

5.2.4. Analysis of divergent Ce-phy genes 191

5.2.4.1. Ce-phy-3 gene mapping 193

5.2.4.2. Ce-phy-3 RNAi in N2 195

5.2.4.3. Ce-phy-3 reporter expression pattern 195

5.2.4.4. Effect of Ce-phy-3 interference/removal on cuticle 196 

collagen localisation

5.2.5.5. Ce-phy-4 PCR mapping 198

5.2.4.6. Ce-phy-4 RNAi in N2 198

5.4.2.7. Ce-phy-4 expression pattern analysis 200

5.2.4.S. Effect of Ce-phy-4 interference/removal on cuticle 200

collagen localisation

5.2.4.9. Ce-phy-5 PCR mapping 200

5.2.4.10. Ce-phy-5 RNAi inN 2 202

5.2.4.11. Ce-phy-5 reporter gene expression 202

5.2.4.12. Effect of Ce-phy-5 interference on cuticle 202 

collagen localisation

5.2.4.13 Combined genetic/RNAi disruption of Ce-phy genes 205

5.2.5. Identification of a third P4H complex in C. elegans 207

5.2.6. C. briggsae P4H subunit homologues 209

5.3. Discussion 214

5.3.1. Ce-phy-1, Ce-phy-2 and Ce-pdi-2 form unique cuticle 214 

collagen modifying P4H complexes

5.3.2. Further work on C  briggsae P4H subunits 215

5.3.3. Tetratrico peptide motifs 216

5.3.4. Functional role for Ce-phy-3 217

XI



5.3.5. Ce-phy-4 deletion 217

5.3.6. Ce-phy-5 gene structure 218

5.3.7. Function of divergent Ce-phy genes 218

Chapter 6

Cloning of a hypodermally expressed independently active 

Brugia malayi pity homologue

6.1. Introduction 220

6.2. Results 222

6.2.1. Cloning of Bm-phy-1 cDNA 222

6.2.1.1. Identification and sequencing of expressed sequence 222 

tag clones

6.2.1.2. PCR based attempts to clone Bm-phy-1 224

6.2.1.3. Library screens to identify Bm-phy-1 224

6.2.1.4. Cloning of the Bm-phy-1 5' end sequence 226

6.2.1.5. Complete sequence of Bm-phy-1 cDNA and 226 

predicted protein

6.2.2. Bm-phy-1 genomic coding sequence 228

6.2.3. Baculovirus expressed Bm -?HY-l 229

6.2.4. Comparison of nematode and insect cell extracted Bm-ŸHY-1 231

6.2.5. Glycosylation levels in native and baculovirus expressed 231 

Bm-?HY-l

6.2.6. Functional analysis of .Sm-PHY-1 234

6.2.6.1. Vector for expression of J5m-PHY-1 in C  elegans 234

6.2.6.2. Rescue attempts with Bm-phy-1 cDNA derived constructs 236

6.2.6.3. Rescue attempts with Bm-phy-1 genomic constructs 236

62.6 A. Detection of transgene expression 238

6.2.7. Temporal expression 239

6.2.8. Analysis of the promoter region from Bm-phy-1 240

6.2.8.1. Cloning of the putative Bm-phy-1 promoter 240

6.2.8.2. Bm-phy-1 promoter-driven reporter gene 242 

expression in C. elegans

XII



6.2.9. Identification of other potential B. malayi P4H subunits 242

6.3. Discussion 246

6.3.1. Possible forms of the 5m-PHY-1 enzyme 246

6.3.2. Function of Rw-jy/zy-i 247

6.3.4. Bm-VW{-2 and Rw-PDI, potential P4H subunits 248

6.3.5. C. elegans as an expression system for parasite proteins 249

6.3.6. Expression of Bm-phy-1 250

Chapter 7 

General discussion

7.1. Introduction 253

7.2. The C  elegans cuticle collagen modifying P4H complexes 254

7.3. A phy  gene homologue from B. malayi 257

7.4. Type IV collagens 258

7.5. Human diseases resulting fi'om improperly modified collagen 259

7.6. C-terminal collagen processing in vertebrates and nematodes 260

7.7. Non-collagen proteins containing hydroxylated residues 261

7.8. Future prospects for direct analysis of parasitic nematode genes 262

7.8.1. RNAi 263

7.8.2. DNA ti'ansformation 264

7.9. Future prospects for genome wide analysis of cuticular ECM formation 264 

in C. elegans

Appendices

Appendix 1 Compiled Bm-phy-1 sequences 266

Appendix 2 Table of accession numbers 269

Appendix 3 List of published papers containing work described in this thesis 270

References 271

xin



List of figures and tables

Chapter 1

Figure 1.1. Diagrammatic representation of the C. elegans cuticle structure 3

Figure 1.2. Collagen biogenesis 7

Figure 1.3. Structure of a C. elegans collagen monomer 10

Figure 1.4. P4H reaction 23

Table 1.1. C. elegans collagen genes defined by mutation 12

Chapter 2

Table 2,1. Primer combinations for screening bacterial 54

colonies transformed with standard vectors 

Table 2.2. Oligonucleotide primer sequences 88

Chapter 3

Figure 3.1. Ce-phy-1 and Ce-phy-2 SL RT-PCR 96

Figure 3.2. Reporter gene vectors 97

Figure 3.3. Tissue specific expression of Ce-phy-1 and Ce-phy-2 100

Figure 3.4. Timecourse RT-PCR of Ce-phy-1 and Ce-phy-2 102

Figure 3.5. Temporal expression of Ce-phy-1 and Ce-phy-2 103

Figure 3.6. Embiyonic expression of Ce-phy-1 and Ce-phy-2 105

Figure 3.7. RNA interference of Ce-phy-1 and Ce-phy-2 108

Figure 3.8. Comparison of physical and genetic maps in the region of Ce-phy-1 112 

Figure 3.9. dpy-18 rescue with the wild type Ce-phy-1 gene 114

Figure 3.10. Ce-phy-1 PCR on dpy-18(el096) cDNA 116

Figure 3.11. Ce-phy-1 PCR on dpy-18(el096) genomic DNA 117

Figure 3.12. Ce-phy-1 sequences deleted in dpy-18{el096) 118

Figure 3.13. Mapping of the transcribed region of dpy-18{el096) 120

Figure 3.14. 75 alleles 121

Figure 3.15. RNAi of Ce-phy-2 in a dpy-18 mutant 123

F igure 3.16. Embryonic developmental timepoints 124

Figure 3.17. Ce-phy-1 and Ce-phy-2 RNAi feeding phenotypes 126

Figure 3.18. col-19::gfp fusion construct 129

Figure 3.19. COL-19;:GFP expression patterns 130

Figure 3.20. DPY-7 immunolocalisations of Ce-phy mutants 132

XIV



Figure 3.21. DPY-7 immunolocalisation of RNAi fed mutant strains 134

Figure 3.22. Scanning electron micrographs of mutants 135

Figure 3.23. dpy-18 mutant rescue with alternative a  subunits 137

Figure 3.24. dpy-18 mutant rescue with human a  subunits containing 141

intronic sequences

Figure 3.25. Transgene RT-PCR primer design 144

Chapter 4

Figure 4.1. Gene structure of Ce-pdi-2 157

Figure 4.2. SL RT-PCR of Ce-pdi-2 158

Figm'e 4.3. Amino acid alignment of CePDI-2 with O, volvulus and 160

human P4H subunit PDIs 

Figure 4.4. lacZ expression from the Ce-pdi-2 gene promoter 162

Figure 4.5. Temporal expression of Ce-pdi-2 163

Figure 4.6. Embryonic expression of Ce-pdi-2 165

Figure 4.7. RNA interference of Ce-pdi-2 167

Figure 4.8. DPY-7 immunolocalisation in Ce-pdi-2 RNAi fed nematodes 170

Figure 4.9. Scanning electron micrographs 171

Figure 4.10. Comparison of physical and genetic maps in the region 173

of Ce-pdi-2

Figure 4.11. Development timecourse analysis of a let-44 embryo 174

Figure 4.12. Ce-pdi-2 genomic and cDNA cloning from let-44 embryos 176

Chapter 5

Figure 5.1. Analysis o f P4H complexes from C. elegans extracts 187

Figure 5.2. Diagram of C. elegans P4H complex forms 190

Figure 5.3. Amino acid alignment of C. elegans PHY subunits 192

Figure 5.4. Gene structure predictions and mapping of Ce-phy-3 194

Figure 5,5. Tissue-specific localisation of Ce-phy-3 197

Figure 5.6. Gene structure predictions and mapping for Ce-phy-4 199

Figure 5.7. Gene structure predictions and mapping for Ce-phy-5 201

Figure 5.8. Predicted sequence of a second gene from the Ce-phy-5 locus 203

XV



Figure 5.9. Tissue-specific localisation of Ce-phy-5 204

Figure 5.10. Diagram of characterised C  elegans F4H complex forms 208

Figure 5.11. C  briggsae P4H subunit encoding ESTs 211

Figure 5.12. Alignment of C. elegans and C. briggsae PHYs 212

F igure 5.13. Alignment of nematode and human PDIs 213

Table 5.1. Combined Ce-phy gene removal/disruption 206

Chapter 6

Figure 6.1. Cloning and gene structure of Bm-phy-1 223

Figure 6.2. Amino acid aligmnent of Bm-FHY-1 with C. elegans, 227

O. volvulus and human a  subunits 

Figure 6.3. Native PAGE of a Triton X-100 extract of insect cell expressed 230

B m -m Y -\

Figure 6.4, Native PAGE comparison of nematode extracted and 232

recombinant ^m-PHY-1 

Figure 6.5. Analysis of glycosylation levels in nematode and insect cell extracts 233 

Figure 6.6. Diagram of Bm-phy-1 dpy-18 mutant rescue constructs 235

Figure 6.7. Comparison of body shapes of wild type and dpy-18 C  elegans 237

strains with transformed dpy-18 transgenic lines 

Figure 6.8. Analysis of Bm-phy-1 expression through L3 to adult development 241

Figure 6.9. Bm-phy-1 promoter driven expression in the hypodermal cells of 243

transgenic C. elegans

Figure 6.10. Amino acid comparisons of Bm-VDl with C. elegant and 245

O. volvulus PDIs

XVI



Summary

The function of prolyl 4-hydroxylases (P4H) in the formation o f the nematode cuticle 

was studied. The cuticle is one of the two major forms of extracellular matrix (ECM) in 

the nematode and performs vital roles in these animals including acting as an 

exoskeleton to maintain body morphology. Nematodes develop from an embryo 

through four larval moults to the adult stage. Each larval stage is characterised by the 

synthesis of a new cuticle and shedding of the existing structure. The nematode cuticle 

is a complex multi-layered structure formed principally from collagens that are 

synthesised by the underlying hypodermal tissue. Collagens are characterised by repeats 

o f the amino acid sequence Gly-X-Y, where Gly is glycine and X and Y can be any 

residue but are most commonly proline and 4-hydroxyproline respectively. Three 

collagen monomers combine to form a triple helix, with the presence of 4- 

hydroxyproline residues stabilising the structure. The enzyme P4H modifies Y position 

proline residues in newly synthesised collagen molecules within the endoplasmic 

reticulum (ER) of the cell to produce 4-hydroxyproline.

P4H role in cuticular ECM formation was examined primarily using the free-living 

species Caenorhabditis elegans due to its ease of handling and culture in the laboratory, 

the range of genetic and transgenic techniques available, and the complete genome 

sequence. Characterised collagen P4H from other species are most often multi-enzyme 

complexes formed from catalytically active a  subunits with the (3 subunit being the 

enzyme protein disulphide isomerase (PDI). The role of PDI in these complexes is not 

connected to its enzymatic activity but instead functions to keep the a  subunits in a 

catalytically active form within the ER of the cell. The described vertebrate P4Hs are 

« 2 ^ 2  tetramer complexes. Two different cx subunits have been identifed which form into 

separate enzyme complexes with a common PDI P subunit.

In this study the genes Ce-phy-1, Ce-phy-2 and Ce-pdi-2 were examined for their role in 

cuticular ECM formation in C. elegans. These genes were shown to be expressed 

throughout development in cuticle collagen synthesising hypodermal tissue in a manner 

reflecting the expression of their substrate, placing the encoded enzymes in the 

appropriate tissue for collagen modification, at times of maximal collagen synthesis.

xvii



Disruption of Ce-phy-1 gene function produced nematodes with a mutant body shape 

known as dumpy (Dpy). This demonstrated that this gene is required for correct body 

morphology and led to the identification of the strain dpy-18 as a Ce-phy-1 mutant. This 

represented the first identification of a P4H mutant in any organism. Double disruption 

of Ce-phy-1 and Ce-phy-2 or Ce-pdi-2 singly resulted in an embryonic lethal phenotype 

due to the loss of P4H activity resulting in a cuticle unable to maintain nematode body 

shape. Disruption of these genes was demonstrated to have an affect on the localisation 

of specific cuticle collagens. The forms of P4H complex present were examined which 

revealed the presence o f a unique mixed a  subunit tetramer, in addition to the already 

described dimer form of the enzyme. Examination of three divergent putative Ce-phy 

genes did not reveal any role for these in modification of the major ECMs in this 

nematode and showed that only Ce-PHY-1, Ce-PHY-2 and Ce-PDI-2 perform the 

essential modification of cuticle collagens.

P4H was also studied in the human infective filarial nematode Brugia malayi which is 

one of the causative agents of lymphatic filariasis in humans, a disease that affects over 

120 million people. A p h y  gene homologue, named Bm -phy-1, was cloned and 

characterised from this organism. In contrast to the both human a  subunit-encoding 

genes, which were shown to rescue the C  elegans dpy-18 P4H mutant, expression of 

Bm-phy-1 was not sufficient to repair the mutant form of these nematodes. Expression 

of this gene was demonstrated in all life cycle stages examined, with the gene promoter 

directing expression of a reporter gene to the hypodermal cells of C  elegans.

xvm
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Chapter 1 

General introduction

1,1. Introduction

In this study the role of the prolyl 4-hydroxylase (P4H) enzyme class in foraiation of 

nematode extracellular matrices (ECMs) was examined. ECMs in nematodes and all 

animals aie formed predominantly from collagens, which are produced via a number of 

enzymatic modification steps, including hydroxylation of proline residues by P4H. The 

wide range of human diseases resulting from the mutation or mis-processing of 

collagens demonstrates their critical function in development (Myllyharju and 

Kivirikko, 2001). Nematodes have two forms of ECM, the exoskeleton or cuticle that 

almost entirely encases the body, and the basement membranes that cover most of the 

internal organs (Kramer, 1997). The function of P4Hs in formation of the nematode 

cuticle was the particular focus of this work and was studied primarily in the free-living 

nematode Caenorhabditis elegans. This organism is an excellent model for the study of 

ECM formation due to the array of genetic, molecular and biochemical techniques 

possible in this system. Additionally, completion of the entire genome sequence 

(Consortium, 1998) enables identification of entire gene families of putative ECM 

components (Johnstone, 2000) and modification enzymes. A number of intra- and 

extracellular modification steps are required for formation of mature collagen (Prockop 

and Kivirikko, 1995), which must then be assembled in to higher order structures to 

form complex ECM structures, such as the nematode cuticle. The components and 

structure of the nematode cuticle, which have been studied most comprehensively in C. 

elegans, and the enzymes required to process and modify collagens, for which much 

work has focused on vertebrates, will be the central topics of this chapter. C. elegans, in 

addition to being a model animal, is also being increasingly utilised as a model for the 

less experimentally accessible parasitic nematode species (BUrglin et al., 1998), such as 

the filarial nematode Brugia malayi. Homologues of parasitic genes of interest can be 

studied in their free-living relative and knowledge of gene function gained in C. elegans 

then applied to the parasite species. C. elegans can also be used more directly to 

examine parasite genes by its use as a heterologous expression system (Hashmi et a l, 

2001). Both of these approaches were taken in this work to investigate a P4H from B. 

malayi.
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1.2. Structure and functions of the nematode cuticle ECM

The cuticle covers the outermost surface of nematode epithelial cells and also lines the 

pharynx and rectum. The cuticle is an ECM that performs a range of vital functions in 

nematode worms, as its correct foimation is required for maintenance of body shape, 

motility and interaction with the environment. ECMs aie a network of secreted 

extracellular macromolecules through which cells in tissues are in contact. These 

matrices hold cells and tissues together and provide an organised lattice for cells to 

migrate and interact (Prockop, 1998). ECM is found predominantly in connective 

tissues where it is more abundant than the cells it suiTounds. Unlike most metazoans, no 

interstitial matrix is found between the cells of tissues in C. elegans. Nematode cuticular 

ECMs are composed primarily of collagens (Cox et al., 1981a) which, along with other 

cuticular components, are secreted from the underlying hypodermal tissue. Nematodes 

progress through four larval stages (L1-L4) to the adult with a new cuticle being 

synthesised for each stage (Singh and Soulston, 1978). An alternative third-stage, the 

dauer larvae, is formed in conditions of low food or high population density. This 

highly resilient developmentally-anested stage can re-enter the developmental cycle at 

L4 when food is available. Five cuticles are therefore synthesised throughout nematode 

development, the first is formed at the end of embryogenesis and becomes the cuticle of 

the first larval stage. Newly synthesised cuticles are formed beneath existing cuticles 

that are then shed. The new cuticle allows for growth during the following 

developmental stage due to its highly folded nature. The process of moulting can be 

subdivided into three stages (Singh and Soulston, 1978); the first, early lethargus, is 

characterised by a gradual decease in activity and separation of the old cuticle from the 

underlying hypodermis. The new cuticle is then synthesised in late lethargus during 

which nematodes rotate rapidly around their longitudinal axis which loosens the old 

cuticle. Shedding of the old cuticle during ecdysis completes the moulting process.

The structure of all nematode cuticles examined appeal's similar in terms of overall 

structure and composition, and has been analysed most extensively in C. elegans (Cox 

et al., 1981a). The cuticle is a multi-layered extracellular matrix that completely encases 

the animal with the exception of small openings at the pharynx, anus, excretory pore 

and vulva. The ultrastructure of the cuticle consists of six main layers (Figure 1.1). 

These aie from external to internal; the epicuticle, cortical, medial, two fibrous layers 

and a basal layer. The basal layer is an amorphous region directly above the hypodermal



Chapter 1 Introduction

Annulus
Seam cells Annular

fUrrow

Annular
Annulus fwrrow

Epicuticle
Cortical
Medial

Fibre <
Basal

Figure 1.1. Diagrammatic representation of the C. elegans cuticle structure 

Transverse section of the cuticle and hypodermis of an adult worm showing the annuli, 

annular furrows and lateral alae structures visible on the cuticle surface. A section 

through the cuticle is also represented showing the different layers of the cuticle; the 

amorphous basal layer just above the hypodermis, the striated fibrous layers, the adult 

specific medial layer, cortical and surface epicuticle layers. The lateral hypodermal 

seam cells required for formation of the alae are also represented.
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tissue which is followed by the two fibrous layers, each of these consisting o f tightly 

organised fibres that spiral along the length of the worm in opposite directions. The 

internal cortical layer has no visible regularity to its structure and is confined by the thin 

external cortical layer, which is then covered by the epicuticle. Discernible external 

features on the cuticle surface of all stages are the annul! that are created by narrow 

evenly spaced indents (or annular furrows) that run circumferentially around the animal 

(Figure 1.1). Also visible on the cuticle surface are the alae that are only found in the LI 

(double alae), dauer (five-fold alae) and adult (three alae) stages (Cox et al., 1981b; 

Singh and Sulston, 1978). The alae run along the lateral sides of the animal and consist 

of raised tread-like protrusions that form over the hypodermal seam cells. As well as 

these surface differences found between different developmental stages, differences 

exist between stages in the number of layers, the fine structure of particular layers, and, 

in the case of dauer larvae, the thickness of the entire cuticle in relation to body 

diameter (Cox et al., 1981b). A defined medial layer is unique to the adult cuticle and 

consists of columns of material termed struts, generally positioned on either side of an 

annular furrow with the spaces between the struts thought to be fluid filled (Cox et aL, 

1981b). The species of collagens present in the cuticle is also stage-specific with 

particular collagens being developmentally regulated such as col-19 which is restricted 

to the adult stage (Liu et al., 1995) and col-2 which is expressed only in dauer larvae 

(Kramer et al., 1985).

1.3. Components of the cuticle

The cuticle of C  elegans, like other nematodes, is composed predominately of collagen, 

with collagenous material forming approximately 80% of this ECM (Cox et al., 1981a). 

These reducible and non-reducible cross-linked collagen proteins form the basal, fibre, 

struts, and internal cortical layers of the C. elegans cuticle. The non-collagenous 

fraction of the cuticular material is termed cuticlin. This is the insoluble, collagenase 

resistant, material that remains after treatment of cuticles with strong reducing agents 

and detergents. This insoluble portion of the cuticle consists of the external cortical 

layer and a limited amount of the internal cortical layer (Cox et a l ,  1981a). The proteins 

in these regions are held together by non-reducible covalent cross-links. Although 

cuticlin can be isolated from all stages o f the C. elegans life cycle it is particularly 

prevalent in the resistant dauer stage larvae (Cox et a l,  1981b), and may thus contribute 

to the particularly robust cuticle found in this larvae.
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1,4. Collagen structure

Collagens are a family of closely related though distinct molecules that form the 

majority of ECMs in all animals. Collagen molecules are defined by the presence of the 

repeat sequence of residues Gly-X-Y, where Gly represents glycine with X and Y 

representing any residue. Three monomeric collagen molecules combine together to 

form a triple helical structure formed by winding of each molecule round a common 

axis. This unique tertiary structure formed from the Gly-X-Y repeat regions requires 

that every third residue be the smallest amino acid glycine, as a result of space 

constraints at the centre of this coiled-coil molecule. No such size limitation is imposed 

upon the residues occupying the X and Y positions of the repeat sequence. Proline and 

4-hydroxyproline most often occupy positions X and Y of the repeats, as these two ring 

amino acids provide stability to the triple helix. 4-hydroxyproline further stabilises the 

triple helix as it is required for many of the hydrogen bonds and water bridges that 

provide additional stability to the triple helical structure (Kivirikko et al., 1992).

Nematode cuticular collagens are most similar to the vertebrate F AGIT (fibril- 

associated collagens with interrupted triple helices) type collagens (Shaw and Olsen, 

1991) although in terms of size, nematode collagens are about half that of the FACIT 

collagens. FACITs differ from other vertebrate collagens as they posses more than one 

triple helical region formed from Gly-X-Y repeat regions. FACIT collagens do not 

undergo proteolytic processing from a larger precursor form. As their name implies 

these multi-domain collagens are located on the surface of fibrils (staggered arrays of 

fibrillar collagen molecules) and are thought to be important as molecular bridges 

required for the organisation and stability of extracellular matrices.

It is not currently known whether nematode cuticle collagen trimers result from homo- 

or hetero-trimerisation of monomeric chains. Vertebrate collagens have been 

demonstrated to form from the combination of three identical chains, three different 

chains, or two chains of one form with a single chain of a different form. Although 

genetic evidence exists for the interaction of more than one type o f C. elegans cuticular 

collagen within a triple helical molecule (Kramer and Johnson, 1993; Levy et al., 1993; 

Nystrôm et ah, 2002) no direct evidence has confirmed this. Rather than involvement in 

the same triple helix the observed interactions could reflect higher order associations 

between triple helices or larger complexes.
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1.5. Collagen biosynthesis

Collagens have been studied most extensively in vertebrate systems (Engel and 

Prockop, 1991) and this provides a model on which to base what is known of nematode 

collagens. In vertebrates, production of a mature collagen occurs through a number of 

enzymatic modification steps and processing both intra- and extracellularly (Figure 1.2). 

As collagen molecules are synthesised a number of hydroxylation reactions occur. 

Hydroxylated residues in collagen occur from the modification of peptide-bound 

residues, not from the incorporation of hydroxylated amino acids. Y-position prolines 

are hydroxylated to 4-hydioxyproline (4Hyp) by prolyl 4-hydroxylase (P4H) enzymes 

in a step which is critical for collagen maturation. Lysine residues in the Y position of 

collagen repeats are also hydroxylated to 5-hydroxylysine. Hydroxylation of some X 

position prolines to 3-hydroxyproIine has also been described; however this occurs 

exclusively in the sequence Gly-3Hyp-4Hyp-Gly (Kivirikko et ah, 1992). Glycosylation 

of hydroxylysine residues by galactose or galactose and glucose, with glycosylation of 

certain asparagine residues is also found. Three collagen monomers then associate 

which, in many vertebrate collagens, is directed by the structure of their non-collagen 

like C-terminal domain. At this stage a number of intra- and inter-chain disulphide 

bonds are formed by the enzyme protein disulphide isomerase (PDI). A triple helical 

region is then formed which propagates along the length of the molecules in a C- to N- 

terminal direction (Engel and Prockop, 1991). A rate-limiting step in this procedure is 

the cis-trans isomérisation of peptidyl proline bonds. The presence of the sequences 

Gly-Pro-Y and Gly-Pro-4Hyp predisposes unfolded chains to form cis peptide bonds. 

Peptide bound proline residues must be in the trans configuration in the native triple 

helix and thus the slow cis-trans isomérisation step is rate-limiting. This reaction is 

catalysed in collagen biosynthesis by a group of enzymes termed the peptidyl prolyl cis- 

trans isomerases (PPlase). The fibril collagens of vertebrates are synthesised as trimeric 

procollagen precursors that contain non-Gly-X-Y domains at both their N- and C- 

termini. After secretion of the procollagen, the N- and C-propeptides are each cleaved 

by specific peptidases. The final steps of collagen assembly involve the cross-linking of 

molecules which for vertebrate fibril forming collagens is performed by lysyl oxidase 

converting some lysine and hydroxylysine residues. As well as catalysing the formation 

of disulphide bonds, PDI functions in other important ways during collagen 

biosynthesis. As will be discussed in a latter section, PDI is the P-subunit of the enzyme
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Figure 1.2. Collagen biogenesis

Some of the intra- and extra- cellular events in the formation o f mature processed 

collagen are shown. Hydroxylation of proline by P4H residues occurs co-translationally 

as collagens are translated by membrane bound ribosomes. Three collagen monomers 

then associate and are held in registration by inter-chain disulphide bonds, catalysed by 

PDI. Formation of a triple helix then occurs which most likely occurs in an N- to C- 

terminal direction with the rate-limiting isomérisation o f peptidyl-proline bonds 

performed by PPlase enzymes such as the CYPs and FKBs. These pro-collagen 

molecules are then processed by N-terminal and possibly C-terminal proteases. Cross- 

linking of collagens occurs both within and between trimers to form higher order 

structures, eventually leading to the complex multi-layered structure depicted.
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complex P4H (Pihlajaniemi et aL, 1987) and is required for this complex to function 

correctly. Folding of collagens also requires the function of molecular chaperones. 

Chaperones involved in collagen biogenesis are the P4H complex (Walmsley et aL, 

1999), independently functioning PDI (Wilson et aL, 1998) and the heat shock protein 

Hsp47. Hsp47 function has been shown to be essential for development in vertebrates as 

a mouse genetic knock out of Hsp47 is embryonic lethal (Nagai et aL, 2000).

1.6. Cuticle collagens of C. elegans

While the assembly of most collagens in vertebrates follows this basic outline, 

important exceptions occur that should be borne in mind for analysis of nematode 

collagens. Additionally, many non-fibrillar vertebrate collagens contain N- and C~ 

regions that are non-Gly-X-Y but are not cleaved, such as the FACIT collagens 

mentioned previously (Shaw and Olsen, 1991). Some also lack large C-terminal 

domains and may associate through di sulphide bonding. The triple helices of the 

transmembrane vertebrate collagen types XIII and XVII may fold in the N- to C- 

terminal direction (Myllyhaiju and Kivirikko, 2001). Also, importantly, hydroxylysine 

residues are not generally found in the C. elegans cuticle only being present in the dauer 

stage larval cuticle (Cox et aL, 1981b). No 3-hydroxyproline enzyme has been cloned 

for any species and in C. elegans no homologue of the chaperone Hsp47 has been 

identified. Additionally the cross-links in nematode cuticles appear to be of a different 

form from those found in vertebrates as they consist of di-, tri-, and/or isotyrosine 

residues (Fetterer et aL, 1993), which may explain the lack of hydroxylysine detected in 

nematode cuticles.

Completion of the C. elegans genome sequencing project (Consortium, 1998) has 

enabled identification of the entire complement of cuticular collagen genes in this 

organism. A total of approximately 154 genes, the majority of which are predicted gene 

products, have been identified as cuticular collagens (Johnstone, 2000), with the 

encoding genes being dispersed throughout the genome. For those genes that have not 

been experimentally confirmed, their classification as cuticle collagens is based on the 

identification of paiticular moleculai’ characteristics. Nematode cuticular collagens have 

the relatively small size of between 26 and 35 kDa, compared to vertebrate collagens of 

over 150 kDa, and C. elegans type IV basement membrane collagens (Guo and Kramer, 

1989) which are approximately 180 kDa in size. The genes encoding these proteins are
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also relatively small, typically less than 2 kilobases in length with few (generally 1-3) 

intronic regions. The proteins aie defined by two regions of Gly-X-Y repeats flanked by 

three clusters of highly conserved cysteine residues (Figure 1.3). The N-terminal Gly-X- 

Y domain is smaller containing 8-10 repeats, with the larger C-terminal triple helical 

region containing 40-42 repeats. The C-tenninal region typically contains 1-2 small 

regions of non-Gly-X-Y sequence, the exact position of which varies between 

molecules. Collagen genes also encode non-Gly-X-Y repeat N- and C-terminal 

domains. The N-terminal non-repeat region is variable in size, and contains regions of 

homology that include the signal peptide cleavage site and a proposed subtilisin-like 

cleavage site (Yang and Kramer, 1994). The signal peptide is required for directing 

proteins to the ER for secretion while the subtilisin site is likely to be necessary for 

processing of the pro-collagen in to a mature collagen molecule (Yang and Kramer,

1999). The C-terminal non-collagen domain is also variable in size often being 

extremely short, for example 14 residues encoded by col-19 (ZKl 193.1). In contrast bli- 

1 (C09G5.6) encodes a C-terminal extension of 400 amino acids, approximately ten 

times longer than average. However, whether the C-terminal regions of any of the C. 

elegans cuticle collagens are cleaved by a propeptidase, as seen with the vertebrate 

fibrillar collagens, has not yet been firmly established.

The number, position and spacing of the cysteine residue clusters flanking the Gly-X-Y 

domains are important when attempting to classify the collagen multi-gene family. The 

collagens are compared and grouped with an emphasis on their conserved cysteine 

clusters as the high degree of conservation in the Gly-X-Y regions of these molecules 

complicates analysis of inter-relatedness. These classifications are supported by the 

similar groupings generated when collagens are classified on either cysteine residues 

alone or according to homology in their N- and C-termini regions (Johnstone, 2000). 

This results in the ordering of the predicted collagens into six groups, 1, lA, 2, 3, dpy-7 

and dpy~2 (Johnstone, 2000). The size of the groups varies from group 1 with sixty- 

eight members to the dpy-2 group with only two members. These groups can be viewed 

at (http://www.worms.gla.ac.uk/collagen/cecolgenes.htm).

1,6.1. C. elegans collagen mutants

Fifteen body moiphology mutants have been characterised as being due to mutation in 

members of this collagen multi-gene family. These loci were originally identified by

http://www.worms.gla.ac.uk/collagen/cecolgenes.htm
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Figure 1.3. Structure of a C. elegans collagen monomer

Shaded boxes represent the Gly-X-Y repeat triple helix forming domains. In nematode 

collagens these domains are punctuated by small areas o f non-repetitive sequence. The 

non Gly-X-Y regions present at the N- and C- termini, and separating the two major 

regions of repetitive sequence are represented by horizontal lines. Conserved cysteine 

residue clusters are depicted by vertical lines. These residues form disulphide bonds and 

their spacing and positioning in the monomer are important in collagen classifications. 

The signal peptide, that directs the collagen to the ER and the N-terminal protease 

cleavage, which is removed to form the mature molecule, are indicated.
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random mutagenic screens and have subsequently been characterised as cuticular 

collagen genes. Morphologically abeirant forms resulting from mutated collagens take 

the form of Dpy (dumpy, short and fat), Lon (long, up to 50 % increase in body length 

compared to wild type), Rol (roller, helically twisted body), Bli (blister, fluid filled 

blistering of the cuticle) and Sqt (squat, which are a complex mixture of Dpy and Rol 

phenotypes). Different mutations are thought to affect the cuticle in different ways 

resulting in the varied phenotypes observed. The Dpy phenotype has been proposed to 

result from greater radial extensibility of the cuticle which, when subjected to the high 

internal hydrostatic pressure, produces an animal of a more spherical appearance 

(Kramer et aL, 1988). In contrast, the Lon phenotype could be due to a less radially 

extensible cuticle resulting in an increase in body length (Kramer et aL, 1988).

Genetic mutants of C. elegans cuticle collagens are described in Table 1.1. Genes from 

the group 1 collagens that have been identified by mutation are, sqt-1 (Kramer et aL,

1988), dpy-17 (E. Maine and A. Smardon, personal communication), lon-3, (Nystrbm et 

aL, 2002), rol-6 (Ki'amer et aL, 1990), dpy-5 (C. Thaker and A. Rose, personal 

communication), and bli-1 (J. Crew and J. Kramer, personal communication); from 

group 2, rol-8 (Bergmann et aL, 1998), bli-2 (J. Crew and J. Khamer, personal 

communication) and dpy-3 (McMahon et aL, 2003); and from group 3, sqt-3 (van der 

Keyl et aL, 1994) and dpy-13 (von Mende et aL, 1988). Also, from the dpy-7 group, 

dpy-7 (Johnstone et aL, 1992) and dpy-8 (McMahon et aL, 2003) have been identified; 

and from the dpy-2 group, dpy-2 and dpy-10 (Levy et aL, 1993). The only cuticle 

collagen group not to be represented by mutation is the group lA, which are highly 

homologous and may be functionally redundant (Johnstone, 2000). The dramatic 

morphological changes resulting from mutation of single collagen genes illustrates that 

the wild type cuticle of C. elegans, and therefore most likely all nematodes, is critical 

for deteiTOination of worm body shape.

1,6.2. Allele-specific phenotypes

Multiple mutant alleles have been isolated for many of the collagen genes. Depending 

on the nature of the molecular lesion, these alleles can give rise to different phenotypes 

(Kramer and Johnson, 1993). These complex phenotypes are a result of these genes 

encoding components of a mechanical structure with multiple interactions possible 

between each component at the levels of trimer formation, inter-trimer associations, and

11
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Gene Cosmid Group Phenotypes
sqt-1 B0491.2 1 Dpy, RRol, LRol, wLon w.t.(null), Dom
dpy-17 F54D8.1 1 Dpy
lon-3 ZK836.1 1 Lon
rol-6 T01B7.7 1 RRofwDpy, w.t. (null), Dom
dpy-5 F27C1.8 1 Dpy
bli-1 C09G5.6 1 Bli
rol-8 ZK1290.3 2 LRol
bli-2 F59E12.12 2 Bli
dpy-3 EGAP7.1 2 Dpy, DLRol
sqt-3 F23H12.4 3 Dpy, LRol, Dom
dpy-13 F30B5.1 3 Dpy ................
dpy-7 F46C8.6 dpy-7 Dpy, DLRol
dpy-8 C31H2.2 dpy-7 Dpy, DLRol
dpy-2 T14B4.7 dpy-2 Dpy, DLRol
dpy-10 T14B4.6 ..... Dpy, DLRol, LRol, Dom

Table 1.1 C. elegans collagen genes defined by mutation

C. elegans collagen genes defined by genetic mutation. Cosmid gene name, collagen 

group and the range of phenotypes resulting from mutation in eaeh gene are listed. 

Abbreviations used are: w .t, wild type; Dom, dominant mutant alleles; Bli, blister; Dpy, 

dumpy; DLRol, dumpy left roller; Lon, long; LRol, left roller; RRol, right roller.

12
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interactions between cuticular layers. Phenotypes can also show stage-specific 

differences such as nematodes homozygous for sqt-1 (e l350) which are wild type from 

L1-L2, Rol in L3 and dauer, and are Dpy in L4 and adult (Park and Kramer, 1994). 

Temperature specific effects have also been noted, such as the temperature-dependant 

sqt-3(e2117) phenotype which is embryonic or early larval lethal at high temperatures 

but almost wild type at the permissive lower temperature (Priess and Hirsh, 1986; van 

der Keyl et aL, 1994). Genetic interactions of several collagen genes have been 

described which may reflect interactions between their gene products. For example, a 

nonsense mutation of sqt-1 suppresses the rol-6 phenotype suggesting that the rol-6 

gene product is dependent on the presence of sqt-1 collagen (Kramer and Johnson,

1993). The Lon phenotype of lon-3 is also strongly suppressed by the absence of both 

sqt-1 and rol-6 gene products (Nystrôm et aL, 2002).

Null or putative null mutant alleles of C. elegans cuticle collagens are the most 

straightforward to inteipret as they result in the complete absence of protein, with 

phenotype reflecting levels of redundancy between different collagens. Genes that 

produce severe phenotypes can have null alleles that are essentially wild type, such as 

sqt-l(scl03) (Ki'amer and Johnson, 1993; Kusch and Edgar, 1986) and rol-6(nll78) 

(Ki'amer and Johnson, 1993). Null alleles from other genes such as dpy-10(cg36) (Levy 

et aL, 1993), and lon-3(sp23) (Nystrôm et aL, 2002) are mutant, demonstrating that the 

presence of these proteins is required for normal function of the cuticle.

The most common molecular changes in collagen mutants are glycine substitutions in 

the Gly-X-Y repeat regions with the vast majority producing severe phenotypes. Nearly 

all these mutations in C. elegans are recessive to wild type. Replacement within the 

Gly-X-Y of glycine with bulkier amino acid residues would distort the formation of a 

triple helix as described eai’lier. This would produce distortions and prevent normal 

interchain bonding within the distorted region thereby preventing triple helix assembly 

and stability. The recessive nature of these mutations suggests that such distorted 

trimers do not become incorporated into the cuticle. If these aberrant triple helices were 

incorporated they could be expected to disrupt higher order structures and may thus 

exert a dominant effect. As dominance is not generally observed implies that the mutant 

trimers are not incoiporated into the cuticle, and the phenotype is a result of absence of 

collagen rather than incorporation of mutant protein. Support for this proposition comes

13



Chapter 1________________________________________________________ Introduction

from the similarity in phenotype between null and glycine substitution alleles of 

collagen genes such as dpy-10 (Levy et aL, 1993) and sqt-1 (Kramer and Johnson,

1993). sqt-1 glycine substitution mutants such as sc99 displays a much milder 

phenotype (abnormal hermaphrodite tail and weak long) than these lesions normally 

engender and as mentioned sqt-1 nulls are essentially wild type, whereas dpy-10 null 

and glycine substitutions both result in mutant phenotypes (Levy et aL, 1993). 

Additionally, a glycine substitution mutation of dpy-7 has been shown to accumulate 

mutant protein in the cytoplasm with only a very small amount becoming secreted 

(Johnstone, 2000). It is not currently known whether cuticle collagen molecules are 

formed from homo- or hetero-trimers. The disruption of trimer assembly by glycine 

substitutions suggests that heterotrimerisation could occur. However, this association 

could take place only between the most similar collagens due to the differences in 

spacing and organisation of the repeat regions between collagens (Johnstone, 1994).

Dominant alleles of some genes exist, such as sqt-l{el350) and rol-6{sul006), that are 

substitutions of conserved arginine residues in the N-terminal non-Gly-X-Y region 

protease recognition site (Kramer and Johnson, 1993). The protein may therefore not be 

processed correctly and the mutant collagen would be assembled in to the cuticular 

matrix causing the distortions seen (Yang and Kramer, 1999). Different phenotypes can 

be found dependent on homo- or heterozygosity as exemplified by the sqt genes. The 

characteristics of dominance and differing phenotypes depending on hetero- or homo­

zygosity are also found in dpy-10 (cn64). This is also a substitution mutation in the N- 

terminal protease recognition site that displays a left Rol phenotype when heterozygous 

to wild type and is Dpy when homozygous. In a few cases dominant alleles can also 

result from glycine substitution mutations, as demonstrated by sqt-3 dominant alleles 

sc63 and e24. These are due to glycine substitutions in the triple helical encoding 

domain of sqt-3 (van der Keyl et aL, 1994). sqt-3(sc63) is a recessive Dpy and dominant 

left Rol while e24 is semi-dominant, generating moderate Dpys in the heterozygote 

state. Another interesting observation comes from the lon-3 gene whose null phenotype 

is Lon, as mentioned. However, when lon-3 was overexpressed from a transgene, Dpy 

animals are produced as a result of excessive production of protein (Nystrôm et aL, 

2002). These examples demonstrate the complex range of phenotypes resulting from 

cuticular collagen gene mutations.
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1.6.3. Collagen RNAi mutants

The current ongoing genome wide RNA interference (RNAi) screens of C. elegans 

(Fraser et aL, 2000; Gonczy et aL, 2000; Maeda et aL, 2001) have targeted a number of 

cuticular collagen encoding genes (data accessible through WormBase, 

http://www.wormbase.org). A total of twenty-nine genes have been assessed by RNAi, 

twenty-five of these were collagen genes not already represented by a mutant, three of 

which produced identifiable RNAi phenotypes. With RNAi treatment, cuticle collagen 

genes D2023.7 (group 1, chromosome V), C39E9.3 (group 1, chromosome IV) and 

F38B6.5 (group 2, chromosome X) all display embryonic lethality, or lethality 

immediately post-hatch. Some escapers for F38B6.5 were reported as displaying a 

morphologically mutant Sma (small) phenotype which may be Dpy. The RNAi screens 

also targeted four genes already defined by mutation, dpy-17, bli-1, sqt-3 and dpy-8. 

This enables a comparison between genetic mutant and RNAi induced phenotypes to be 

made. For dpy-17 and dpy-8, RNAi gave comparable phenotypes to the genetic mutant 

phenotype, sqt-3 gave Dpy early larval lethality with bli-1 showing embryonic lethality. 

The remaining twenty-two collagen genes covered by these screens were scored as wild 

type. Therefore a mutant phenotype has resulted from a number of the relatively small 

proportion of cuticle collagen genes covered by these RNAi screens. Thus it may be the 

case that from the remaining 114 genes, not included in the genetic mutants and not 

assessed by RNAi, more mutants could be discovered.

There are also a number of morphological mutants described for which the molecular 

basis has not been determined. Some of these may prove to be a result of mutant cuticle 

collagens. The mapping and cloning of these genes by phenotypic rescue methods is a 

labour intensive process, therefore an approach to reveal if these strains, as well as 

displaying gross morphological defects, have specific defects in formation of the 

cuticular collagens would be useful for further defining candidate cuticular collagen 

mutants. This process may also be useful in determining more subtle phenotypes such as 

collagen disruptions that do not result in gross changes in the nematode body shape. 

Importantly, among the remaining morphological mutants are genes that may be 

required for the process of X-chromosome dosage compensation and are thus not 

collagen-related mutants (Meyer, 1997).
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1.7. Parasitic nematode collagen gene families

Cuticular collagen genes have been isolated from a number of parasitic nematode 

species including Brugia malayi (Scott et aL, 1995), Brugia pahangi (Bisoffi and 

Betschart, 1996), Haemonchus contortus (Shamansky et aL, 1989), Ascaris suum 

(Kingston et aL, 1989) and Ostertagia circumcincta (Johnstone et aL, 1996). Estimates 

of collagen gene family size in some of these species (Selkirk et aL, 1989; Shamansky 

et aL, 1989) suggest all are multi-gene families although they may be smaller than the 

C. elegans family. Collagen gene cloning from these nematodes demonstrated that like 

C. elegans, the encoded collagens are small molecules and aie highly conserved 

between species. In some cases, direct homologues of particular C. elegans collagens 

have been identified. Homologues of the tandem gene pair col-12 and col-13 in C. 

elegans are represented in O. circumcincta and are extremely similai’ both in terms of 

genomic organisation and sequence (Johnstone et aL, 1996). In some cases members of 

a particular group will have as their most similar sequence a collagen from a different 

organism. This is represented by the C. elegans collagen dpy-7 whose most similar 

sequence is found in a plant parasitic nematode species Meloidogyne javanica Mjcol-3 

gene product (Johnstone, 2000; Koltai et aL, 1997).

1.8. Collagen associations and gene expression

Examination of the levels of specific collagen gene transcripts throughout post- 

embryonic development has revealed that a precise expression pattern of individual 

genes is repeated during the synthesis of a new cuticle (Johnstone and Barry, 1996). 

Collagen gene transcripts were found at specific intervals during the period between 

moults when the new cuticle is synthesised, and can be classified as early, middle and 

late expressers. The specific timing of expression within a moult for each gene is then 

precisely repeated during each subsequent stage. This temporal control of collagen gene 

expression provides a possible mechanism through which association of appropriate 

collagen trimérisation partners could occur. As discussed earlier, it is not cunently 

known whether collagen trimers aie composed of homo- or heterotrimers. However, if 

only relatively similar collagens are assumed to associate then expression of these 

collagens in the same temporal compartment would favour the interactions of correct 

partners (Johnstone and Barry, 1996). The structural class to which a collagen gene 

belongs should also then be reflected in the temporal class in which it is expressed. 

Additionally, the timing of expression of these cuticulai* components may also reflect
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their positioning within the final matrix with early expressed collagens possibly forming 

the most exterior layers and late expressed components the inside layers. The multiple 

complex interactions between different trimers would also be simplified by this 

temporal control over the pool of possible interacting molecules.

1.9. The role of the hypodermls in development and cuticle synthesis/moulting

The hypodeiTnal tissue of the nematode is the site of expression of all the enzymes and 

components involved in biogenesis of the nematode cuticle. The hypodermis is also 

central to moiphogenesis of the embryo, the maintenance of this shape which then 

becomes one of the primary functions of the cuticle. As such the hypodermis is the 

central tissue of nematode body morphology having first been instrumental in defining 

body shape, the hypoderaiis then synthesises the structure that preserves it. A brief 

description of the form and function of this tissue is therefore required, much of which 

is known from the study of C. elegans.

The nematode epidemtiis is a single layer of cells historically teimed the hypodeimis as 

the extracellular cuticle covers the apical surface of these cells. During early embryonic 

development in C. elegans, rapid cell proliferation occurs with little associated change 

in shape. Near the end of this period, cells on the dorsal surfaces of the embryo stop 

dividing and differentiate as hypodermal cells which flatten, spread and become linked 

through adherens junctions. These hypodermal cells then spread ventrally and anteriorly 

to enclose the embryo in a continuous epithelial surface closing at the ventral midline. 

Approximately midway through development, the embryo begins to elongate along its 

anterior-posterior axis, during this time there is almost no migration or division of cells 

(Sulston et aL, 1983). Change of shape of the embryo to the veimiform shape of the 

unhatched larvae is then driven by the contractions of circumferentially orientated actin 

microfilament bundles present at the apical membranes of hypodermal cells (Priess and 

Hirsh, 1986). These contractile forces are distributed evenly by microtubules and an 

extracellulai' layer surrounding the hypodermis (the embryonic sheath). These changes 

in the shape of the hypodermal cells cause the body to decrease in circumference and 

elongate fourfold along its longitudinal axis. Complete elongation also requires the 

underlying muscle cells. Body wall muscle cells lie directly beneath the hypodermis 

separated by a layer of basement membrane. Mutant embryos defective in the function
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of body wall muscles are defective in elongation. The requirement of muscle function 

for complete elongation is however not yet fully understood.

1.10. Control of cuticle component gene expression

The hypodeiTnis is also the tissue where the factors controlling expression of the 

components of the cuticle and the enzymes of biosynthesis function.

1,10.1. Nuclear hormone receptors

Nuclear hormone receptors (nhr) are a class of ligand-regulated transcriptional 

modulators, members of which are thought to be involved in the control of the moulting 

process in C. elegans. In Drosophila, moulting is controlled by the steroid hormone 

ecdysone through the function of the DHR3 nhr gene (Lam et a l ,  1997; White et al.,

1997). C  elegans possesses over 200 putative nhr genes, many of which have been 

demonstrated to be transcriptionally active (Sluder et aL, 1999). Most nhr% are refeiTed 

to as orphan receptors as their specific ligands are not known. C. elegans nhr-23 is the 

homologue of the ecdysone inducible Drosophila gene DHR3, with expression of nhr- 

23 found in the nematode hypodeimis throughout development (Kostrouchova et aL,

1998). Disruption of nhr-23 function through RNAi delivery at varied developmental 

stages show that its action is required during all four larval moults (Kostrouchova et aL, 

2001). RNAi disruption results in moulting and body shape defects in affected animals, 

specifically with an inability to shed the previous stage cuticle (Kostrouchova et aL, 

2001). C. elegans nhr-25 is the homologue of Drosophila pFTZ-Fl which is regulated 

by DHR3 (Lam et aL, 1997; White et aL, 1997). nhr-25 is expressed in the hypodermis 

and the somatic gonad of C. elegans (Asahina et aL, 2000; Gissendanner and Sluder,

2000). The null mutant of this gene displays embryonic lethality with embryos failing in 

the epidermally controlled process of elongation (Asahina et aL, 2000). RNAi 

interference reveals additional post-embryonic requirements where affected animals 

exhibit early larval lethality with associated moulting and morphology defects (Asahina 

et aL, 2000; Gissendanner and Sluder, 2000). These moulting defects are similar to nhr- 

23 and indicate that nhr-25 may be involved in control of moulting. However, whether 

nhr-25 is downstream of nhr-23 in C. elegans, as their homologues in Drosophila are, 

has not been directly demonstrated (Kostrouchova et aL, 2001).
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Analysis of the tissue-specific expression patterns and overexpression effects of other 

member of the large nhr gene class in C. elegans revealed additional genes with a role 

in moulting or the control of expression of cuticular components. Analysis of twenty- 

one of the nhrs in the genome revealed eight that are expressed in the lateral 

hypodermal (or seam) cells (Miyabayashi et aL, 1999). Overexpression of three of these 

genes; nhr-77, nhr-81 and nhr-82, gave defects in body morphology and the cuticular 

structure (Miyabayashi et aL, 1999). This suggests these nhr genes may be involved in 

the pathway of expression of stage-specific genes required for the functions of the seam 

cells.

1.10.2. Megalin receptor

The lrp-1 gene of C. elegans is also required for correct moulting in this nematode and 

is related to mammalian megalin. Mammalian megalin is involved in the uptake of 

cholesterol. Mutation of C. elegans lrp-1 confers a moderate Dpy phenotype with 

defects in the shedding and degradation of old cuticles apparent during moulting from 

one larval stage to the next (Yochem et aL, 1999). This causes most larvae to arrest at 

the L3-L4 moult or earlier. Nematode growth is known to require the presence of 

cholesterol and the phenotype of this lrp-1 mutant is similar to that resulting from the 

absence of cholesterol in the growth media (Yochem et aL, 1999). However, although 

the ultimate phenotypes of the mutant and sterol starvation are identical, the effect of 

sterol deprivation required two generations before taking effect whereas the mutant did 

not show this time-lag in expression of the phenotype. LRP-1 is localised to the apical 

surface of the cells comprising the majority of the hypodermis (Yochem et aL, 1999). 

Thus the tissue and cellulai' positioning of LRP-1, its resemblance to mammalian 

megalin, and phenocopy of mutation by cholesterol starvation suggests that LRP-1 

endocytoses sterols such as cholesterol. Defects in moulting with mutant LRP-1 could 

therefore be due to a failure to endocytose cholesterol. In insects, moulting is controlled 

through ecdysteroids which are synthesised from precursors such as cholesterol. As 

described earlier, the C. elegans homologue of DHR3 when disrupted displays moulting 

defects and cholesterol also appears to be required for moulting. This was shown both 

by the moulting effects arising from mutation of LRP-1, that may endocytose 

cholesterol, and by the dietary requirement for cholesterol in nematode media. These 

findings suggest that the control of moulting in nematodes may also occur through an 

ecdysone-induced process. The moulting defects found from disruption or mutation of
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genes such as nhr-25, that may potentially be downstream targets of nhr-23, support this 

contention. However, no direct evidence for ecdysteroids controlling nematode 

moulting is available. Additionally, synthesis of ecdysteroids from cholesterol in 

nematodes has not been demonstrated and C  elegans appears not to have homologues 

of the Drosophila ecdysone receptor complex genes.

1.10.3. Heterochronic genes

Heterochronic genes such as lin-29 have been shown to regulate the expression of 

collagen genes (Liu et aL, 1995). The predicted product of the lin-29 gene is a 

transcription factor and has been demonstrated to affect expression of stage-specific 

collagen genes (Liu et aL, 1995). In a lin-29 loss-of-function mutant moulting is 

affected, with mutants failing to terminate the moulting cycle after the L4 moult and 

going through repeated rounds of larval cuticle synthesis, lin-29 is a downstream 

member of the heterochronic regulatory pathway with its action being needed to 

terminate the moulting cycle. NHRs may therefore function in regulating the expression 

or function of genes such as lin-29, possibly in response to a hormonal signal.

1.11. Enzymes of collagen biosynthesis

As described earlier, many steps are required for the formation of a mature collagen 

molecule. This section will describe this process with a focus on the enzymes involved.

1.11.1. P4H and its PDI subunit

A critical step in collagen biogenesis is the hydroxylation of Y-position proline residues 

within the Gly-X-Y repeat regions. Vertebrate fibrillar collagens contain approximately 

10-12% Y-position hydroxyproline, representing approximately half of the total proline 

residues (Kivirikko et aL, 1992). Hydroxylation of proline at sequences X-Pro-Gly is 

catalysed by the enzyme prolyl 4-hydroxylase (P4H; EC 1.14.11.2), with this 

modification being required for thermal stability of collagen molecules at physiological 

temperatures (Kivirikko and Pihlajaniemi, 1998). This enzyme has been extensively 

characterised in vertebrates and is an azPz tetramer (Annunen et aL, 1997; Helaakoski et 

aL, 1995; Vuori et aL, 1992a). Catalytic activity resides in the a  subunits (Lamberg et 

aL, 1995; Myllyharju and Kivirikko, 1997; Myllyharju and Kivirikko, 1999), with the (3
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subunits consisting of the enzyme protein disulphide isomerase (PDI; EC 5.3.4.1) 

(Pihlajaniemi et ah, 1987).

In vitro analysis of this enzyme was hindered for many years by its multi-subunit 

structure. This problem was solved by the use of an insect cell expression system using 

recombinant baculoviruses (Crossen and Gruenwald, 1998). Utilising this system 

enabled co-infections of the insect cells with different viruses to be performed, thus 

generating cells that synthesised multiple recombinant proteins (Vuori et ah, 1992a). 

Formation of functional complexes from subunits can then occur allowing activity, 

inhibition and site-directed mutagenesis studies to be performed in vitro. Using cells 

from a multi-cellular organism to express the protein assists the correct folding and 

post-translational modification of recombinant proteins. Attempts have also been made 

to crystallise complexes purified from insect cells but these have proven unsuccessful to 

date, probably due to the complex structure of P4Hs. Production of recombinant active 

P4H has also been beneficial for the in vitro synthesis of collagens. Insect cells have 

extremely low levels of endogenous P4H activity and yeast cells, which can also be 

used for collagen production, have no natural P4H. Expression of recombinant P4H in 

these systems along with the collagen chains results in production of thermally stable 

collagen trimers (Lamberg et al., 1996a; Vuorela et al., 1997). These experiments also 

led to the observation that co-expression of both collagens and P4H subunits as well as 

resulting in better expression and assembly of collagen, led to an increase in assembly 

of P4H complexes (Kivirikko and Myllyharju, 1998; Lamberg et a l,  1996a). Thus 

production of a stable tetramer assembly required expression of collagen and raised the 

possibility that this property of the enzyme could be found in all cell types. Another 

interesting feature of P4H is revealed by the ability to constitute active enzyme in vitro. 

Enzymatically active hybrid complexes can be formed from the a  subunits of one 

organism and the p subunits from another. C. elegans PDI-2 can function in a tetramer 

with human a  subunits (Veijola et al., 1996a). The human PDI is extremely adaptable, 

forming active complexes with Drosophila (Annunen et al., 1999), mouse (Helaakoski 

et al., 1995) and C. elegans subunits (Veijola et al., 1994).
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1.11.1.1. Vertebrate a  subunits

In vertebrates, two a  subunits have been described in detail (Helaakoski et al., 1995; 

Helaakoski et al., 1989; Vuori et al., 1992a) while at least one other isoform has been 

identified in humans, but as yet remains uncharacterised (Myllyharju and Kivirikko,

2001). The two human a  subunits, ct(I) and a(II), both form (ot)2(P)2  tetramers with the 

human PDI subunit. Co-expression with both forms of the a  subunit together with PDI 

indicate that (a l)(a ll)(p )2  tetramers do not form (Annunen et al., 1997). The processed 

human a  subunits are 517 and 514 amino acids long, after removal of their ER signal 

peptides, and show an overall amino acid identity of 64%. Expression studies showed 

that the a(I) containing enzyme is the major form of the enzyme in most tissues but that 

the oc(II) type enzyme predominates in some specific tissues, and may play a major role 

in the development of cartilage and capillaries (Annunen et al., 1998). Both forms of 

human a  subunit undergo alternative splicing (Helaakoski et al., 1994; Nokelainen et 

al., 2001) and possess two sites for aspaiagine-linked oligosaccharide attachment. The 

enzymes produced from the different splice variants have no detectable differences 

(Nokelainen et al., 2001; Vuori et al., 1992a) and mutation of the glycosylation sites of 

human a(I) has no effect on the assembly or catalytic activity of the tetramer (Lamberg 

et al., 1995).

1.11.1.2. Enzymatic reaction

Enzymatic activity of P4H enzymes requires the presence of Fê "̂ , 2-oxoglutarate, 0%, 

and ascorbate (Figure 1.4). One atom from the O2 becomes incorporated in to succinate 

and the other into the hydroxy group foiTned on the proline residue. CO2 is generated 

from the reaction from the decarboxylation of 2-oxoglutarate. (Kivirikko and 

Myllyharju, 1998). From site directed mutagenesis studies for human a l  residues, H412, 

H483 and D414 represent the Fe^^-binding pocket, with the 2-oxoglutarate binding site 

corresponding to residues K493 and H501 (Myllyharju and Kivirikko, 1997). The 

human a l  peptide-binding domain has been defined as beginning at G 138 and ending at 

approximately S244 (Myllyharju and Kivirikko, 1999). While no covalent bonding is 

foiTned between subunits, the conserved cysteines found in a  chains have been 

implicated, by site directed mutagenesis of human ol, in intra-chain disulphide bonding 

(John and Bulleid, 1994; Lamberg et al., 1995). The first conserved cysteine is not 

thought to be important for this process but the second and third cysteine residues are
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Figure 1.4. P4H reaction

Schematic representation of the reaction catalysed by P4H showing the cofactors 2- 

oxoglutarate, Fê "̂ ' oxygen and ascorbate required for hydroxylation of Y-position 

proline residues in the Gly-X-Y repeats of collagen molecules. Succinate and CO2 are 

produced from the reaction.
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thought to form one intrachain disulphide bond, and the fourth and fifth cysteine 

residues a second. Both these bonds aie essential for the native subunit structure.

1.11.1,3. P4H subunits from other species

As well as vertebrates, P4H subunits have been characterised from Drosophila 

melanogaster (Abrams and Andrew, 2002; Annunen et al., 1999), nematodes 

(Merriweather et al., 2001; Veijola et al., 1996a; Veijola et al., 1994; Wilson et al.,

1994) Arabidopsis thaliana (Hieta and Myllyharju, 2002), algae (Kaska et al., 1987; 

Kaska et al., 1988) and a virus (Eriksson et al., 1999). Nineteen potential P4H may be 

present in the genome of Drosophila melanogaster (Abrams and Andrew, 2002), eight 

of which have been examined (Abrams and Andrew, 2002; Annunen et al., 1999). 

These eight genes are clustered, possibly with another two predicted genes, in a 183 kb 

region of the Drosophila genome (Abrams and Andrew, 2002). Conservation of most of 

the residues and motifs found for other P4Hs are found in these proteins (Abrams and 

Andrew, 2002; Annunen et al., 1999). Characterisation of one of these isoforms reveals 

identity of between 30-35% with the C. elegans and vertebrate a  subunits (Annunen et 

ah, 1999). When co-expressed in an insect cell expression system, this Drosophila a  

subunit forms an active tetramer with its own PDI, and forms a tetramer weakly 

with human PDI (Annunen et al., 1999). Tissue-specific embryonic expression patterns 

of six of the P4H genes from Drosophila, including the biochemically characterised 

form, have been demonstrated (Abrams and Andrew, 2002). Interestingly, the 

Drosophila genome only appears to encode two collagens, which are related to the type 

IV collagens of vertebrates, although it does encode a number of predicted proteins with 

collagen-like repeat regions (Abrams and Andrew, 2002). A P4H has been isolated from 

the parasitic filarial nematode Onchocerca volvulus and forms an active complex when 

co-expressed with its own PDI. Analysis suggests a number of other a  subunit encoding 

genes are also present in this organism (Merriweather et al., 2001). The genome of A. 

thaliana encodes six predicted P4Hs. Characterisation of one of these demonstrated that 

it was a low-molecular weight active monomer when expressed in an insect cell 

expression system (Hieta and Myllyharju, 2002). The enzyme contained the conserved 

catalytically important residues and could hydroxylate a range of substrates including 

synthetic peptides corresponding to proline-rich repeat regions in plant glycoproteins, 

collagen-like peptides and sequences present in hypoxia-inducible transcription factor
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(Hieta and Myllyharju, 2002). Small soluble monomeric forms of P4Hs have also been 

identified from Paramecium bursaria Chlorella virus-1 (Eriksson et al., 1999) and 

unicellular and multicellular green algae (Kaska et al., 1987; Kaska et a l,  1988). The 

recombinant viral polypeptide was capable of hydroxylating synthetic peptides 

coixesponding to proline-rich repeats coded for by the viral genome.

1,11.1.4. PDI function in P4H complexes and individually in collagen biosynthesis

PDI is an abundant ER luminal protein found in many cell types and is highly conserved 

between species. Usually the protein is isolated as a homodimer although monomers 

and homotetramers are known to occur (Ferrari and Sôling, 1999). In addition to its role 

as a P4H subunit, the multi-functional PDI has chaperone functions and is the catalyst 

of the rate limiting reactions of disulphide bond formation, isomérisation and reduction 

within the ER. In the yeast Saccharomyces cerevisiae, PDI mutants are inviable 

(Scherens et al,, 1991) and its essential role in this organism appears to be a result of its 

disulphide bond isomérisation activity (Laboissière et al., 1995). PDIs are 55 kDa 

modular proteins consisting of four domains; a, b, b\ a \ and an acidic C terminal 

domain, c. Domains a and a' each contain an independent active site motif CGHC, and 

show sequence similarity to thioredoxin. The b and b' domains have no catalytic 

sequence site and show no amino acid sequence similaiity to thioredoxin, but are 

thought to have a thioredoxin-fold structure. PDI can therefore be viewed as containing 

two active and two inactive thioredoxin domains. Deletion of the C-terminal domain, c, 

does not appeal' to affect any on the enzyme, chaperone or subunit functions of PDI 

(Koivunen et al., 1999). Coexpression of human a  subunits and PDI domains 

demonstrated that domains b' and a' fulfilled the minimum requirement assembly for an 

active P4H complex (Pimeskoski et al., 2001). However addition of domain b resulted 

in higher activity while the highest was achieved with all four domains (Pimeskoski et 

al., 2001). ER resident proteins related to PDI are ERp57 (also called ERp60), ERp72 

and PDIp. PDIp and ERp57 share the similar organisation of four thioredoxin-like 

domains (Freedman et al., 2002). ERp72 also has a similar domain configuration to PDI 

but contains an additional thioredoxin-like domain.

PDI enzymatic activity is not required for its function as a P4H subunit as demonstrated 

when human PDI with either or both catalytic sequences mutated, formed fully active
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P4H tetramers when co-expressed with a  subunits in insect cells (Vuori et al., 1992b). 

PDI functions as the (3 subunit within P4H complexes to maintain the a  subunits in a 

non-aggregated conformation as P4H a  subunits in the absence of PDI form into 

inactive insoluble aggregates (John et al., 1993). The role of PDI within P4H complexes 

is however more specific than that of keeping complexes soluble as demonstrated by 

attempts to replace PDI with other proteins. The human a  subunit had been shown to 

bind to the immunoglobulin-heavy-chain binding protein (BiP) which keeps the a  

subunits in a soluble assembly competent form (John and Bulleid, 1996). Co-expression 

of a  subunits with BiP in insect cells confirmed this association but demonstrated that 

the soluble complexes had no P4H activity (Veijola et al., 1996b). PDI therefore, in 

addition to keeping the a  subunits soluble maintains them in a catalytically active 

conformation. The PDI-related protein ERp60 likewise could not substitute for PDI in a 

P4H complex, as no tetramer was formed from co-expression of a  subunits with this 

protein (Koivunen et al., 1996). PDI is also a subunit of the microsomal triglyceride 

transfer protein and again the role of PDI as the p subunit in this aP  dimer is not as a 

disulphide isomerase and serves to keep the insoluble a  subunits in an active soluble 

complex (Lamberg et al., 1996b). P4H a  subunits do not contain an ER retention signal 

and so the P4H complexes ai'e retained in this subcellular compartment by a retention 

signal contained within the C-terminus of PDI. The critical role of PDI in this process is 

demonstrated by deletion of this region which causes the secretion of the tetramer and 

free PDI polypeptide from the ER (Vuori et al., 1992b).

In the cuticle of C. elegans, reducible bonds are formed which occur possibly between 

collagen trimers or at the level of higher order structure formation (Cox et a l,  1981a). 

The conserved C-terminal cysteine residues present in C. elegans collagens may also 

form disulphide bonds between monomeric collagen chains to nucleate triple helix 

formation. The importance of these interactions is demonstrated by the EMS sqt-1 

mutants in which replacement of one of these conserved C-terminal cysteines causes a 

recessive LRol phenotype (Kramer and Johnson, 1993). This mutant phenotype is 

distinct from the loss of function phenotype demonstrating the presence of mutant 

protein is inducing the morphology observed. The recessive nature of the mutant 

indicates that, either in the presence of wild type protein the aberrant protein fails to 

produce a phenotype, or, that the wild type protein is more effectively assembled than
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the mutant protein. In vitro substitution of either of these conserved cysteines in SQT-1 

or ROL-6 generates a LRol phenotype when expressed from a transgene (Yang and 

Kramer, 1994). Therefore disulphide bonding is required for noimal collagen function 

but not assembly. This analysis does not however reveal at what level the di sulphide 

bond formation is occuiring. Thus PDI has multiple roles in collagen biogenesis; it 

catalyses disulphide bond formation possibly at both the early and late stages of 

collagen synthesis, is the (3 subunit in P4H complexes, and as described below acts as a 

molecular chaperone.

1.11.2. P4H and PDI as molecular chaperones in collagen biosynthesis

Molecular chaperones are required for the coirect folding and assembly of proteins such 

as collagens within the ER. These chaperones bind to unassembled or misfolded 

proteins thereby preventing their aggregation or premature secretion. Proteins are then 

either maintained in an assembly competent form or are targeted for degradation. 

Human PDI mutants with double active site mutations demonstrated that PDI lacking its 

isomerase activity was still able to accelerate protein folding (Hayano et a l,  1995). As 

well as their enzyme related properties, P4H and PDI also perform chaperone functions 

during collagen biosynthesis (Walmsley et al., 1999; Wilson et al., 1998). Molecules 

that interact with retained collagen were identified using an in vitro translation system 

with semi-permeabilised cells which mimicked the initial stages in collagen assembly 

and modification (Bulleid, 1996). When hydroxylation was inhibited, P4H was shown 

to bind to unhydroxylated, non-triple helical chains. While hydroxylation was inhibited, 

P4H remained bound, but when activity was reactivated the enzyme became dissociated 

from the collagen (Wilson et al., 1998). Binding of P4H to collagen was also analysed 

using a proline analogue that permitted hydroxylation but prevented folding. Under 

these conditions P4H remained bound to the non-helical, hydroxylated collagen trimers 

indicating that the folding status and not the extent of hydroxylation regulated the 

binding of P4H (Walmsley et al., 1999). Thus this post-translational modifying enzyme 

has a role in the regulation of secretion of its substrate. The ability of P4H to interact 

with fully modified but non-triple helical molecules suggests a mechanism by which 

cells recognise misfolded mutant collagens such as those resulting from glycine 

substitutions. PDI plays a role in this P4H chaperone function as it is a subunit of the 

complex and contains the ER retention signal that retains improperly folded collagens
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intracellularly. In addition to this, PDI has independent chaperone activities as it 

associates independently with the C-propeptide of monomeric procollagens (Wilson et 

a l,  1998). In vertebrates, the chaperone Hsp47 is essential for development as 

demonstrated by the embryonic lethal phenotype of the mouse knockout with associated 

defects in collagen biosynthesis (Nagai et al., 2000). The chaperone Hsp47 interacts 

with the highest affinity with the triple helical form of collagen, and is hypothesised to 

function in stabilisation of regions of theimal instability within collagens (Tasab et al.,

2000). No Hsp47 homologue is identifiable in the C. elegans genome and this gene has 

not been found in any other nematode to date, highlighting the differences in collagen 

biogenesis existing between vertebrates and invertebrates.

1.11.3. Peptidyl prolyl cis-trans isomerases

Peptidyl prolyl cis-trans isomerases (PPlase; EC 5.2.1.8) catalyse the interconversion of 

prolyl imide bonds in peptide substrates. Three classes of this superfamily exist; the 

cyclophilins, FK506-binding proteins (FKBP) and parvulins (Gothel and Marahiel, 

1999). Members of different classes ai'e related only in terms of enzymatic activity and 

are unrelated in amino acid sequence. The receptors for the immonosuppresent drugs 

cyclosporin A (CsA) and FK506 are cyclophilin (Fischer et al., 1989; Takahashi et al.,

1989) and FK506-binding protein (Harding et al., 1989; Siekierka et al., 1989) 

respectively. The immunosuppresent effect of the drugs is however not a consequence 

of suppression of their PPlase activity (Schreiber and Crabtree, 1992; Walsh et al., 

1992). Although isolated from many organisms, the functions of most of these enzymes 

are not clear with a defined role being described for only a few (Gothel and Marahiel,

1999). One proposed role for PPIases is in collagen folding. The in vitro re-folding of 

type III denatured collagen was moderately increased by the presence of partially 

purified PPlase (Bachinger, 1987). The folding of procollagen I in suspended chick 

embryo tendon fibroblasts is inhibited by the presence of cyclosporin A (Steinmann et 

al., 1991) and in human skin fibroblasts, CsA delays helix formation of collagens I and 

III, resulting in overmodification and degradation (Steinmann et al,, 1991). These 

results support a role for PPlase catalysed folding of collagens both in vitro and in vivo.

Independent of its immunosuppresent effects, CsA and derivative compounds also have 

antiparasitic effects on a wide range of helminths, which typically results in damage to 

the tegument (Chappell and Wastling, 1992; Page et al., 1995a). The mode of action by
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which CsA compounds exert this effect is unknown but one possibility is the disruption 

of collagen folding. Cyclophilins {cyp) and FK506-binding proteins (fkb) have been 

characterised from free living and parasitic nematode species. Two cyp genes have been 

identified in B. malayi (Ma et aL, 1996; Page et a l, 1995b) with homologues of these 

being found in both O. volvulus and D. immitis (Hong et a l,  1998b; Ma et a l, 1996). A 

third isoform also being identified from D. immitis (Hong et a l,  1998a). CsA inhibition 

sensitive and insensitive isoforms of cyps have been described. These insensitive forms 

may play a part in resistance to CsA found in some nematodes. Crystal structure data 

from a CsA insensitive cyp from B. malayi identified alterations in residues required for 

CsA binding, explaining the insensitivity of this isoform to the compound (Taylor et a l,

1998).

Eighteen members of the cyp and eight members of the flcb families have been identified 

in C. elegans (Page et a l,  1996) (A. Page, personal communication). A number of these 

have been characterised (Doman et a l, 1999; Page, 1997; Page and Winter, 1998; Page 

and Winter, 1999) (A. Page, personal communication) and a role in formation of the 

nematode cuticle proposed for one cyp, cyp-9, and two jkbs. Cyps can be classified as 

cytosolic, secreted or mitochondrial, cyp-9 however does not come under any of these 

categories, and is grouped along with cyp-4, -8, -10 and -77 in a divergent cyp class. 

cyp-9 is found in an operon with a protein disulphide isomerase gene, pdi-1 (Page, 

1997). C. elegans and related species are unusual among multicellular animals in having 

many genes aiTanged in opérons (Blumenthal et a l, 2002; Page, 1999). These genes are 

co-transcribed from a common upstream promoter although unlike bacteria, nematode 

opérons are not co-translated; being first processed to moncistronic units by trans- 

splicing. Examination of the tissue-specific expression pattern from the common 

promoter of pdi-1 and cyp-9 demonstrates both are expressed in the cuticle synthesising 

hypodermal tissue (Page, 1997). This places cyp-9 in the appropriate tissue for 

modification of C. elegans cuticulai' collagens. The cycling pattern of transcript 

expression found between moults also points towards a cuticle synthesising function for 

this gene. The proposed role of the enzymes in this operon, based on biochemical 

function and expression, in the modification of cuticle collagens has not been 

conclusively demonstrated, however, as RNAi of cyp-9 does not result in an identifiable 

morphological or collagen related defect (A. Page, personal communication). This may
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be due to a redundancy of function where the hypodermally expressed FKBs may 

compensate for loss of CYP-9 activity.

1.11.4. Collagen pro-peptidases

Collagens, like many biologically important proteins, aie often synthesised as precursor 

molecules that must be proteolytically cleaved to produce the mature functional 

molecule. As mentioned above, C. elegans cuticle collagens contain a subtilisin-like 

cleavage site in their N-terminal non-triple helical domain. Analysis of both mutations 

of the collagens at these sites (Ki'amer and Johnson, 1993; Levy et aL, 1993; Yang and 

Kramer, 1994; Yang and Kramer, 1999), and mutation in enzymes proposed to process 

the collagens at these sites (Peters et aL, 1991; Thacker et aL, 1995), provide evidence 

that C. elegans collagens are specifically cleaved at their N-terminus by proteases. 

Enzymes have also been identified that process both the N- (Colige et aL, 1999) and C- 

termini (Kessler et aL, 1996; Li et aL, 1996; Scott et aL, 1999) of vertebrate pro­

collagen precursors. Subtilisin-like cleavage sites can also be identified in other 

parasitic nematode collagens such as B. pahangi Bpcol-1 (Bisoffi and Betschart, 1996) 

(residues 14-17), H. contortus 3A3 cuticle collagen (Shamansky et aL, 1989) (at 

residues 76-79) M. javanica Mjcol-3 product (Koltai et aL, 1997) (residues 88-91) and 

in the colost-1 and colost-2 encoded collagens from O. circumcincta (Johnstone et aL, 

1996).

1.11.4.1. Cleavage of C. elegans N-ter mini

The subtili sin-like recognition motif of C. elegans collagens is contained in the most C- 

terminal region of the four blocks of homology found in the N-terminal extensions of 

collagens and consists of a consensus amino acid sequences of (R/K)XX(R/K) (Kramer,

1994). Mutations in the cuticle collagen genes sqt-1, rol~6 (Kiamer and Johnson, 1993; 

Yang and Kiamer, 1994; Yang and Kramer, 1999), and dpy-10 (Levy et aL, 1993) have 

been identified that alter this proposed site and are thought to block cleavage through 

substitution of the conserved arginines. As these initial alleles were arginine to cysteine 

replacements, the possibility existed that the phenotype was due to ectopic disulphide 

bond formation. Analysis in vivo, of in vitro mutagenised rol~6 or sqt-1 collagens 

demonstrated that loss of the protease cleavage site was the cause of the phenotype 

rather than addition of disulphide bonds (Yang and Kramer, 1994). Replacement of 

either conserved arginine of this motif with anything other than lysine (strongly charged
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like arginine) resulted in a dominant right roller phenotype. Additionally, replacement 

of the second conserved arginine residue with cysteine or serine (structurally similar to 

cysteine but cannot form disulphide bonds) had the same effect. Also tested was 

cysteine substitution of other residues within the same homology block. No phenotype 

was observed in these mutants, suggesting that no ectopic disulphide bonds were 

formed and that functional protein was produced. Therefore mutations in this conserved 

N-terminal region of cuticle collagens block cleavage at the subtilisin-like site and 

prevent correct processing (Yang and Kramer, 1994). Analysis of two arginine 

substitution alleles of sqt-1, e l350 and scl, demonstrated that when this protease 

cleavage site is altered, cuticle collagen extracts showed lower levels of the SQT-1 

protein, indicating that mutant collagens were not assembled into the cuticle as 

efficiently (Yang and Kramer, 1999). The size of mutant monomers also displayed an 

increase in size consistent with retention of the fragment normally cleaved by the 

protease (Yang and Kramer, 1999). This provides direct evidence for the cleavage of 

collagens of C  elegans at these subtilisin-like recognition sites by an endopeptidase.

The enzymes in C. elegans, such as bli-4 that appear to process these collagens belong 

to the family of kex2/subtilisin-like proprotein convertases, due to their overall 

similarity to the endoprotease Kex2p in yeast and the sequence similarity of their 

catalytic domains to the bacterial subtilisins (Thacker and Rose, 2000). All members of 

this family share a similar protein domain structure, with an ER signal peptide followed 

by a prodomain, then subtilisin-like catalytic domain. The P domain is specific to the 

proprotein convertases and is followed by a unique C-terminal domain (Thacker and 

Rose, 2000). C. elegans has four members of this gene family but only one member, 

hli-4 (also called kpc-4, for kex2/subtilisin-like j^roprotein convertase), is involved in 

cuticle collagen assembly. This gene is also the most complex as it produces a number 

of alternatively spliced products. The first twelve of the 24 exons of the bli-4 gene are 

alternatively spliced to specific downstream exons. This produces nine proteins {bli-4 

A-I) with common pro-, catalytic and P domains but different C-terminal domains 

(Peters et aL, 1991; Thacker et aL, 1999; Thacker et aL, 1995). The C-terminal domains 

are thought to contain motifs that determine different sub- and possibly extracellular 

localisations of the isoforms.

31



Chapter 1________________________________________________________ Introduction

The bli-4 gene products are required for formation of a functional cuticle in C. elegans. 

The bli-4 locus was originally identified by the recessive allele e937 that manifests itself 

in the foimation of fluid-filled blisters (Bli) of the adult nematode cuticle (Brenner, 

1974). Thirteen additional alleles of the gene were subsequently identified which arrest 

during late embryonic development and are unable to complete elongation (Peters et al., 

1991; Thacker et al., 1995). For one member of this class of lethal alleles, e90, 

approximately a third of mutant animals progress further in development and are able to 

hatch to produce larvae, however these are extremely Dpy in appearance (Thacker et aL,

1995). The failure to complete embryonic elongation, along with viable Dpy and Bli 

phenotypes is characteristic of cuticle collagen associated function. The cloning of this 

gene and demonstration of expression in the hypodermis of C  elegans provided an 

explanation of the phenotypes observed. The original allele, bli-4{e937), is a result of a 

deletion of exons specific for isoforms A, E, F, G and H (Thacker et al., 1999; Thacker 

et al., 1995; Thacker and Rose, 2000). The lethal alleles were due to lesions in exons 1 

to 12 of bli~4 encoding the domains shared by all forms of the BLI-4 enzyme. Thus the 

activity of all the BLI-4 isoforms would be affected, therefore completely removing 

collagen processing activity. The viable phenotype of allele e937 suggests that the 

different isofoims are developmentally regulated. The Bli phenotype of e937 is found 

only in the adult, this is also the only stage in which the strut structures of the cuticle are 

found (Cox et al., 1981b). Blisters are thought to be a result of defects in the collagens 

forming the struts holding the fibrous and cortical layers of the cuticle together. 

Collagen genes bli-1 and bli-2 display the Bli phenotype and are missing the struts from 

the medial layer of the adult cuticle (J. Crew and J. Kramer, personal communication). 

The isoforms present in nematodes containing the e937 allele must therefore modify all 

other collagens correctly during the development but are not able to correctly process 

the collagens making up the adult specific struts. As the rest of the adult cuticle is intact 

demonstrates that, as well as developmental control, BLI-4 isoforms show substrate 

specificity.

1.11.5. Thioredoxin

Thioredoxins catalyse various thiol-disulphide exchange reactions. PDI and other ERp 

proteins ai'e members of the thioredoxin superfamily. All have at least one domain with 

thioredoxin homology and contain a redox-active thiol/disulphide site of the general 

sequence CXXC. As described in Section 1.11.1.4, cuticle collagens contain many intra-
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and inter-chain disulphide bonds. Homozygous knockout mice for the single 

thioredoxin gene are embryonic lethal, demonstrating the essential function of this gene 

in vertebrate development (Matsui et al., 1996). An existing genetic mutant of C  

elegans, dpy-11, was shown to conespond to a novel thioredoxin, which in addition to 

its thioredoxin domain, which is active when expressed in vitro, also contained a 

putative signal peptide and transmembrane domain (Ko and Chow, 2002). The gene is 

expressed exclusively in the hypodermis from early embryogenesis and throughout 

larval development. Examination of the subcellular localisation of DPY-11 shows it is 

associated with membranous organelles, possibly the ER. Both the signal peptide and 

transmembrane domain are required for function of DPY-11 as constructs lacking these 

regions were no able to repair the mutant phenotype. No substrate was identified for 

dpy-11 although its tissue and subcellular localisation, enzymatic activity and altered 

body morphology when mutated point strongly towards a role in modifying components 

of the C. elegans cuticle.

1.11.6. Cross-linking enzymes

1.11.6.1. Tyrosine derived cross-links

Cross-linking via di- and tri-tyrosine linkages are an important step in the synthesis of 

both the major fractions of the nematode cuticle, as cross-links have been found in the 

soluble collagenous component and the insoluble fractions of A. suum cuticles (Fetterer 

et al., 1993; Fujimoto et al., 1981). Synthesis of tyrosine-derived cross-links have also 

been identified in the sheaths of H. contortus larvae (Fetterer and Rhoads, 1990) and in 

cuticle extracts from C. elegans (Edens et al., 2001). The cuticular collagens from C. 

elegans have a typical size of 26-35 kDa. However, when analysed, the molecular 

weights of over 200 kDa can be found even after treatment with reducing agents (Cox et 

al., 1981a). Thus in addition to the reducible di sulphide bridges other non-reducible 

bonds, such as those derived from tyrosine, are involved in the cross-linking of 

nematode cuticle collagens. Many C. elegans collagen genes encode a conserved 

carboxy terminal tyrosine that may be involved in the formation of these cross-links. 

For mutations in C. elegans collagen sqt-1, alleles sc l3 and scl 13, the mutant protein is 

assembled into the cuticle, however, these mutants have different patterns of cross- 

linking (Yang and Kramer, 1999). The molecular change in these mutants alters an 

amino acid residue directly adjacent to the conserved tyrosine. This change is thus 

thought to affect the cross-links derived from this tyrosine imparting the roller
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phenotype observed (Yang and Kramer, 1999). The lack of hydroxylysine found in 

nematode cuticles and the cross-links derived from them demonstrate the difference in 

cross-linking between nematodes and mammalian collagens.

Tyrosine derived cross-links that stabilise the C. elegans cuticular ECM are catalysed 

by two C. elegans Duox genes. Disruption of these genes singly or in combination 

produced severe body moiphology and cuticle structure defects consistent with this role 

in modification of nematode cuticle components (Edens et al., 2001). Two Duox genes 

(for dual oxidase, as they posses both a peroxidase domain and a gp91 phox domain) 

were identified in C. elegans. Cc-Duoxl is expressed in the hypodermis and RNAi of 

this gene singly, or with sequences predicted to knockdown expression of both Ce- 

Duoxl and Cc-Duox2, gave identical results. Over half the affected progeny from RNAi 

displayed a Bli phenotype and approximately a third were Dpy (Edens et al., 2001). 

Additionally, RNAi affected animals appeared translucent and defects in movement 

were observed. Electron micrograph analysis of RNAi animals showed clear disruption 

of the cuticle with abnormal strut regions (Edens et al., 2001) similar to that found in 

other genes with mutant Bli phenotypes (J. Crew and J. Kramer, personal 

communication). Analysis of wild-type C. elegans extracts showed that all di-, and tri­

tyrosine linkages were found in the cuticle of C. elegans, extracts from RNAi-treated 

animals however showed a complete absence of these links (Edens et al., 2001). The 

peroxidase domain of both isoforms when expressed in vitro demonstrated an ability to 

form di- and tri-tyrosine linkages using a synthetic substrate (Edens et al., 2001). 

Homologues of the Duox genes have not yet been identified in any parasitic nematode 

species although EST and BAC-end sequences from B. malayi demonstrate a high 

degree of homology. Tyrosine-derived bonds have been identified in parasitic nematode 

cuticles (Fetterer and Rhoads, 1990; Fetterer et al., 1993) and these enzymes may also 

be required in these species for formation of a fully functional cuticle.

Tyrosine-derived cross-links are also found in the insoluble portions of nematode 

cuticles and these may also be modified by Duox enzymes. The collagenease-resistant 

insoluble residue remaining after treatment of nematode cuticles with ionic detergents 

and reducing agents is termed cuticlin. This fraction in C. elegans is found almost 

entirely in the external cortical layer and has a biochemical composition similar to but 

distinct from the soluble fraction, with decreased levels of glycine and hydroxyproline
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(Cox et aL, 1981a). The cuticles from dauer stage larvae contain a higher quantity of 

cuticlin those from other stages (Cox et a l,  1981b). This demonstrates the importance 

of this material in the resilience of the cuticle that is especially pronounced in dauer 

larvae.

Two genes, cut-1 (Sebastiano et al., 1991) and cut-2 (Lassandro et al., 1994), have been 

identified in C. elegans that encode components of cuticlin. CUT-1 is a component of 

the dauer stage cuticle and localises underneath the lateral alae of this stage (Ristoratore 

et al., 1994; Sebastiano et al., 1991). Immunolocalisation and transcriptional analysis of 

the second cuticlin gene, cut-2, indicates that its gene product is present in the cuticles 

of all stages, with expression peaking preceding the moults (Lassandro et al., 1994). 

RNAi of cut-1 results in Dpy-like dauer larvae that lack the alae (M. Sapio, M. Hilliard 

and P. Bazzicalupo, personal communication). These worms appear not to undergo 

radial shrinking with the enlarged regions corresponding to the normal positioning of 

the alae. The sequencing of the entire C. elegans genome reveals that a family of 

approximately thirty cut genes are present. Two in particular, cut-3 and cut-5, have 

close homology to the other cuticlins. cut-3 is expressed in late embryogenesis and 

RNAi gives Dpy LI larvae that lack alae. RNAi of cut-5, which is expressed in late 

embryogenesis and during dauer formation, affects the alae of both dauer and L is (M. 

Sapio, M. Hilliard and P. Bazzicalupo, personal communication). No effect on adult 

body shape or alae foimation was observed for any of these genes.

Recombinant CUT-2 is a substrate for cross-linking in vitro by horseradish peroxidase, 

which, in the presence of H2O2, polymerises CUT-2 to give high molecular weight 

complexes containing di-tyrosine cross-links (Lassandro et al., 1994). Tyrosine residues 

found in many of the amino acid repeat motifs found in CUT-2 may be participating in 

the cross-linking of these proteins. Work on the CUT-2 protein from C. elegans 

involved the use of a heterologous cross-linking enzyme. Although candidate enzymes 

have been proposed for this activity in other nematodes, only recently in C. elegans 

have Duox enzymes been characterised with peroxidase activity and cuticular specific 

defects upon disruption of activity. It would therefore be interesting to assess the ability 

of the recombinant Duox enzymes (Edens et al., 2001) to cross-link C. elegans cuticlins 

in vitro to determine if these may be one of their natural substrates. Cuticlin genes have 

also been found from Brugia species (Lewis et al., 1999). The transcript of Bpcut-1
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from B. pahangi cycles in a manner consistent with a component of the cuticle and the 

protein is localised to the median layer of the Brugia cuticle using a heterologous 

antibody (Lewis et al., 1999).

1.11.6.2. Transglutaminases

The presence of another cross-linking activity contributing to the insolubility of 

nematode cuticles was suggested when transglutaminase (TGase; EC 2.3.2.13) activity 

and enzymatic products were identified in B. malayi (Mehta et al., 1990; Mehta et al., 

1992). Chemical inhibitors of TGases were noted to affect the development and survival 

of filarial nematodes including B. malayi (Mehta et al., 1992; Rao et al., 1991). TGase 

inhibitors also inhibit the moulting of O. volvulus from L3-L4 with the products of 

TGase-catalysed reaction found localised to the larval cuticle (Lustigman et al., 1995). 

TGases post-translationally modify proteins through the introduction of a covalent bond 

between internal glutamine and peptide bound lysine to foim an 6-(y-glutamyl)lysine 

isopeptide bond. This link is resistant to proteolysis and is destroyed only after complete 

degradation of both peptide chains. TGases are widely distributed enzymes and occur in 

both intra- and extracellular foims.

Isolation and characterisation of active 56 kDa TGases from B. malayi (Singh and 

Mehta, 1994) and from the dog filarial parasite Dirofilaria immitis (Singh et al., 1995) 

suggested that these nematode enzymes were similar to each other but differed from the 

mammalian forms of the enzyme. Subsequent cloning of the enzyme from D. immitis 

revealed that this enzyme displayed no sequence homology to any other known TGase 

enzymes, but instead was similar to PDI and PDI-like endoplasmic reticulum proteins 

ERp60s (Chandrashekar et al., 1998). The recombinant protein displayed both TGase 

cross-linking activity and PDI activity (Chandrashekar et al., 1998) and inhibition of 

the enzyme showed effects on moulting of D. immitis (Chandrashekar et al., 2002) 

similar to that found for inhibition of O. volvulus TGases. In C. elegans, a gene 

encoding a 57 kDa protein has also been identified that displays both PDI and TGase 

activities (Eschenlauer and Page, 2003; Natsuka et al., 2001).
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1.12. Conservation of collagen biosynthesis in C. briggsae

In addition to the genes encoding collagen and processing enzymes described above for 

parasitic nematode species, conservation of collagen biogenesis has been demonstrated 

between C  elegans and C. briggsae. Like its relative, C. briggsae is a free-living 

nematode, with the two species having diverged around 40 million years ago. Although 

almost indistinguishable in terms of morphology and development, the genomes of 

these two species have diverged. Analysis in C. briggsae is assisted by a genome 

sequencing project (completed September 2002) thus enabling easier identification of 

putative homologues in this organism. Comparison of sequences demonstrates that 

conservation of DNA sequence is confined almost entirely to protein coding regions and 

short flanking sequences. Analysis of ECM components and enzymes in both 

Caenorhabditis species allows comparisons between gene coding and control regions as 

well as allowing genome organisation and gene function to be examined. The bli-4 

cuticular collagen N-terminal proteinase locus (Thacker et al., 1999), a cyp/pdi collagen 

specific operon (Page, 1999) and the homologue of the dpy-7 cuticular collagen 

encoding gene (Gilleard et al., 1997) have all been characterised in C. briggsae. These 

comparative studies have illustrated conservation of function between species, and 

identified important coding sequences and promoter elements.

1.12.1. C. briggsae bli-4

Cloning of the complex bli-4 locus from C. briggsae demonstrated the conservation of 

an essential collagen-modifying gene between nematodes, in terms of sequence, 

genomic organisation and function, cb-bli-4 was able to repair both the lethal and Bli 

phenotypes of C. elegans bli-4 mutants (Thacker et al., 1999) indicating that the 

heterologous enzymes could process the large number of C. elegans collagens correctly 

from all stages. Comparison of upstream regions additionally enabled identification of 

control elements that direct expression of this complex locus through conserved 

sequence elements. Comparison of the two genomic coding sequences revealed that four 

regions of homology existed. These had not been previously predicted as exons by 

computer analysis and were not represented in either species EST data. These regions 

were confirmed as transcriptionally active, thus identifying four additional isofoims 

encoded by this locus (Thacker et al., 1999). The comparative analysis in a related 

organism therefore revealed the complexity of this gene locus and demonstrates the 

utility of this process to provide a more complete understanding of gene function.
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1.12.2. C, briggsae pdi-11 cyp-9 operon

Both genes of the pdi-llcyp-9  operon described in C. elegans (Page, 1997) have been 

identified in C. briggsae with the proteins from both species demonstrating between 86- 

90% identity (Page, 1999). Like C. elegans, the C. briggsae genes are arranged in a 

genomic organisation suggestive of an operon. This is further confirmed by the operon 

specific mode of rran^s-splicing. Analysis of the upstream region of the C. briggsae 

operon reveals sequence homology to the region in C. elegans that was shown to drive 

expression of both genes (Page, 1997; Page, 1999). Therefore these species show 

conservation of a protein folding operon which is likely to be involved in collagen 

synthesis, demonstrating the importance of the functionally related proteins encoded by 

this operon.

1.12.3, C. briggsae DPY-7

A component of the C. elegans cuticle DPY-7 is required for formation of a fully 

functional cuticle with mutants displaying a Dpy phenotype (Johnstone et ah, 1992). 

The homologous gene in C. briggsae was capable of functioning in the C. elegans 

cuticle as assayed by phenotypic rescue by interspecies transformation of C. elegans 

mutants with the C. briggsae gene (Gilleard et al., 1997). This identified C6-DPY-7 as 

the true homologue and not only a structurally related collagen. Additionally, as 

expression was directed by the C. briggsae promoter elements this indicated that these 

sequences were sufficient to promote expression in the correct tissue and development 

time, and to provide sufficient levels of expression (Gilleard et al., 1997). Thus the 

sequence identity found between the two promoter regions is likely to be functionally 

important. For functional C. briggsae DPY-7 to be incorporated correctly into the C. 

elegans cuticle it must also be processed and modified by all the enzymes of 

biosynthesis in C. elegans, then associate with the correct molecules to foiTn the 

appropriate structure within the ECM. Also significant is the high degree of 

conservation of non-Gly-X-Y domains of the protein and of the X and Y position amino 

acids with the triple helical domain highlighting the importance of these regions and 

residues for function.

1.13. Basement membrane (type IV) collagens

As mentioned previously, in addition to the cuticle, a second type of ECM is found in C. 

elegans, the basement membrane. Basement membranes aie thin sheets of specialised

38



Chapter 1________________________________________________________ Introduction

molecules that form an extracellular matrix suiTounding tissues in all animals. In C. 

elegans basement membranes underlie the hypodermis and surround the pharynx, 

intestine, gonad and body wall muscles (Kramer, 1997). Type IV collagens are the 

major constituent of basement membranes. The structures of type IV collagens are 

highly conserved, with the majority of the molecules consisting of a Gly-X-Y repeat 

region containing numerous small intenuptions. Two type IV collagens have been 

identified in C. elegans. These are encoded by the genes emb-9 and let-2 which are 

homologues of the human al(IV ) and a2(IV) genes respectively (Guo et al., 1991; Guo 

and Kramer, 1989; Sibley et al., 1993). Mutation in both C. elegans emb-9 and let-2 

results in embryonic arrest in the developing nematode (Guo et al., 1991; Gupta et al., 

1997; Sibley et al., 1994; Sibley et a l,  1993). Type IV collagen encoding genes have 

also been isolated from parasitic nematode species B. malayi (Caulagi and Raj an, 1995) 

and A. suum (Pettitt and Kingston, 1991).

Type IV collagens in vertebrates have been demonstrated to contain 4-hydroxproline 

and hydroxylysine in Y positions of Gly-X-Y repeats (Kivirikko et al., 1992) and must 

therefore be modified by the hydroxylating enzymes. Examination of the gene let-268, 

the only lysyl hydroxylase enzyme in the C. elegans genome, shows this is specific for 

the modification of the basement membrane collagens (Norman and Moeiman, 2000). 

This is in agreement with the finding that cuticle collagens of most developmental 

stages of C. elegans do not contain hydroxylysine (Cox et al., 1981b). Expression of let- 

268 transgenes were detected in the body wall muscle cells and glial-like cells (Norman 

and Moerman, 2000), an expression pattern similar to that of the type IV collagens 

(Graham et al., 1997). A putative null allele of this gene shows embryonic lethality at 

the two-fold stage of development with the type IV collagens, EMB-9 and LET-2, being 

intracellularly retained (Noiman and Moerman, 2000).

1.14. C  elegans as a model organism and a heterologous expression system

C. elegans has a number of advantages as an organism for studying many biological 

processes including ECM formation. In addition to its ease of culture, small size and 

rapid life cycle, C. elegans is a self-fertilising hermaphrodite that can, if desired, be 

crossed with males, therefore making this organism extremely amenable for genetic 

manipulation (Brenner, 1974). C, elegans is also transparent making analysis by light
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microscopy possible. Extensive analysis has provided a complete embryonic and post- 

embryonic cell lineage map (Sulston and Horvitz, 1977; Sulston et al., 1983) and 

detailed information on development.

A lai'ge number of mutagenic screens have been performed on this organism, since the 

first screens nearly 30 years ago, which give a range of visible phenotypes (Brenner, 

1974). A bank of mutant strains has been constructed which are freely accessible 

through a central resource facility. Crosses can be performed with most mutant strains 

allowing mapping of mutations to specific chromosomal locations and construction of a 

genetic map. Many loci are represented by multiple alleles, and for those for which the 

conesponding the gene has been cloned, this allows a more extensive analysis of gene 

function to be undertaken.

C. elegans was the first multicellular organism for which the entire genome sequence 

was completed (Consortium, 1998). Availability of the data from the 97-megabase 

genomic sequence and the gene predictions o f the >19000 genes abolishes the time 

consuming process of gene cloning based on heterologous sequences. Complete 

genomic sequence is also required for analysis of gene families, as the full complement 

of potential family members can be identified on the basis o f sequence homology as 

illustrated by the large collagen (Jolinstone, 2000) and nhr (Sluder et al., 1999) gene 

families. EST projects have also provided useful data for confirming and refining 

computer based gene predictions, giving estimates of expression levels and providing 

data on alternative splicing of gene transcripts. This physical map of the genome can be 

compared to the genetic map using the C. elegans database ACeDB and can be used to 

identify candidate genes for paiticulai' mutant loci. The ability to rapidly genetically 

transform this nematode via microinjection (Mello and Fire, 1995; Mello et al., 1991), 

and more recently by ballistic transformation (Wilm et al., 1999), underpins much of the 

research performed on this organism and allows analysis of molecular function and 

expression in vivo. As the entire genome is available in the form of cosmids and Y ACS, 

mutants, which have been mapped genetically to a region of the genome, can be cloned 

by phenotypic rescue using transformation of pools of cosmids covering this area of the 

genome. Injection of sub-population of cosmids followed by injection of individual 

genes can be used to clone genes responsible for mutant phenotypes.
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The advent of double-stranded RNAi techniques developed from previous sense and 

anti sense RNA based gene interference techniques (Guo and Kemphues, 1995). dsRNAi 

was first performed in C. elegans (Fire et a l, 1998) and is now used in many organisms. 

Again this can be perfoimed rapidly by microinjection, and due to bacterial feeding 

based RNAi (Kamath et al., 2000; Timmons et al., 2001; Timmons and Fire, 1998) and 

RNAi soaking techniques (Tabara et al., 1998) has been extended to a genome-wide 

RNAi project (Fraser et al., 2000; Gonczy et al., 2000; Maeda et al., 2001). The 

temporary nature of the RNAi effect, and the difficulty in disrupting late acting and 

neuronally expressed genes has been addressed by transforming with DNA encoding 

sequences of taiget gene in an inverted repeat conformation under the control of an 

inducible promoter (Tavemarakis et al., 2000). Infoimation on gene sequence, structure, 

genetic mutants, RNAi and expression pattern data aie available through AceDB. C. 

elegans closest relative C. briggsae is also the subject of a now completed genome 

sequencing project thus revealing conserved functional and control features.

Many fundamental processes of biology such as development of body plan, and 

programmed cell death pathways are found in C. elegans. Likewise many of the 

components of the cuticular ECM and enzymes involved in its generation in C. elegans 

are conserved both between other nematodes and vertebrates. This nematode is 

therefore ideal for studying ECM formation due to the genetic and molecular biological 

techniques available. Additionally the nematode cuticle is a visible and examinable 

ECM with mutations in its formation having dramatic and readily identifiable outcomes. 

Manipulation and examination of these outcomes using the full complement of 

molecular genetic and biochemical techniques provides an invaluable system in which 

to study this process.

In addition to its function as a model organism to study gene function, C. elegans can be 

used to study functions of heterologous genes more directly. Phenotypic rescue of C. 

elegans genes by homologous genes from other organisms has been demonstrated for 

human (Levitan et al., 1996; Stem et al., 1993), Drosophila (Stem et al., 1993) and 

parasitic nematode genes (Britton and Murray, 2002; Kwa et al., 1995). The correlation 

of rescue of a C. elegans mutant by an H. contortus gene, based on drug resistance, was 

in one study shown to corresponded directly to whether the allele injected came from a 

drug sensitive or resistant strain (Kwa et al., 1995). This enabled identification of amino
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acids critical for sensitivity. While this process relies on an existing mutant, a recent 

study described a new RNAi approach to study heterologous rescue. Wild type C. 

elegans was transformed with a gene encoding a cathepsin L cysteine protease gene 

from H. contortus that produced no deleterious effects. Transformed C. elegans canning 

the transgene were then subjected to RNAi of their endogenous homologue of the 

cysteine protease. In non-transformed worms RNAi is embryonic lethal but in lines 

expressing the H. contortus protein selective removal of the C. elegans protein is not 

lethal, demonstrating that the heterologous gene is capable of functionally compensating 

for loss of the endogenous activity (Britton and Murray, 2002). This technique is rapid, 

does not rely on a stable mutant nematode strain, and can, in theory, be performed for 

any gene for which a homologue is identifiable in C. elegans. Conservation of control 

elements has also been demonstrated for a number of genes between parasitic nematode 

species and C. elegans (Britton et al., 1999; Qin et al., 1998) thus identifying conserved 

elements directing tissue specific control and also indicating patterns of expression for 

genes for which function may not be assigned. Upstream sequences from parasitic 

nematodes were fused to reporter genes and transformed in C. elegans and expression of 

the transgene assayed. A spatial expression pattern in defined cells and tissues, and any 

temporal specificity of expression observed, may assist in defining gene function.

1,15, Inhibition of collagen biosynthetic enzymes

Due to P4Hs central role in the biosynthesis of collagens it is an attractive target for the 

inhibition of collagen formation. Inhibition of this process is desirable in two respects. 

Firstly, loss of P4H function could in parasitic nematodes interfere with formation of the 

cuticle, and as such be used as a basis for drug control of these species. Inhibitors of 

P4H almost all bind to the 2-oxoglutarate binding site. Competitive analogue inhibitors 

of 2-oxoglutarate have anti-nematode effects, and in C. elegans cause embryonic and 

larval lethality and moulting defects (Myllyharju et al., 2002). In B. malayi inhibition of 

P4H results in cuticle-associated defects with a coixesponding reduction in 4- 

hydroxproline residues (Merriweather et al., 2001). Secondly fibrotic diseases of 

humans involve the excessive accumulation of collagen fibres which often occurs 

during wound healing. While it is an essential process, the excessive build up of 

collagen can result in the replacement of cellular tissue with fibrous tissue with 

accompanying impaiiment of tissue function.
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1.16. Project aims

The aim of this study was the definition and characterisation of P4H subunit-encoding 

genes involved in the foimation of nematode ECMs, particularly that of the cuticle, 

from free-living and parasitic species. Firstly, the expression patterns, RNAi/mutant 

phenotypes and subunit associations were to be defined for P4Hs from C  elegans. 

Thereafter homologues of interesting genes were to be identified from the filaiial 

parasitic nematode B. malayi. Modification by P4H had been demonstrated in vitro to 

be essential for the thermal stability of vertebrate collagens (Berg and Prockop, 1973) 

and, as such, P4H activity was hypothesised to be central to nematode development and 

formation of the collagen-rich cuticle. Understanding the enzymes involved in 

formation of the cuticle, which is essential for many nematode functions, could lead to 

identification of specific enzymes as targets for development of anti-nematode 

compounds and, in addition, provide greater insight into ECM foimation as it may occur 

in all species. Potential P4H subunits identified from the completed C. elegans genome 

sequence, and two P4H subunit-encoding genes identified previously were examined, as 

well as a P4H cloned and characterised from the filarial parasite B. malayi.

43



Chapter 2 Materials and methods

Chapter 2 

Materials and methods

2,1. Standard reagents and

Ampicillin:

BSA:

Chloramphenicol:

DEPC H2O:

DTT:

EDTA:

Ethidium bromide: 

IPTG:

L-broth:

LB-agar:

M9 buffer

2-mercaptoethanol:

NGM-agar:

media

100 mg/ml ampicillin (Sigma) in sterile distilled H2O 

Filter sterilised and stored at -20°C 

bovine serum albumin 10 mg/ml (NEB). Stored at -20°C.

12.5 mg/ml chloramphenicol (Sigma) in 100% ethanol. 

Stored at -20°C.

0.1% (v/v) diethylpyrocarbonate (Sigma) in sterile 

distilled H2O mixed overnight and autoclaved. Stored at 

room temperature.

dithiothreitol (Sigma) in sterile distilled H2O. IM stock 

stored at -20“C.

ethylenediaminetetra-acetic acid in sterile distilled H2O. 

Stock solution of 0 .5  M, pH 8.0. Autoclaved and stored at 

room temperature.

8 mg/ml in sterile distilled H2O. Stored at 4°C. 

isopropyl-p-D-thiogalactoside (Promega) in sterile 

distilled H2O. Stock concentration of 1 M filter sterilised 

and stored at -20°C

1% bacto tryptone (Difco), 0.5% yeast extract (Difco), 

0.5% NaCl in sterile distilled H 2O, pH 7.0 NaOH. 

Autoclaved and stored at room temperature.

L-broth + 15 g/L bacto-agar (Difco). Autoclaved and 

stored at room temperature.

3% KH 2PO4 , 6 % Na2HP0 4 , 5% NaCl, 1 0  mM MgS0 4 . 

lOX stock autoclaved and stored at room temperature.

14.3 M 2-hydroxethylmercaptan (Sigma).

0.3% NaCl, 1.7% agar (Difco), 0.25% peptone (Difco), 

0.0003% cholesterol (1 ml/L of 5 mg/ml stock in ethanol), 

in sterile distilled H2O. Autoclaved and 1 ml/L 1 M
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PBS:

Proteinase K:

SDS:

TBE:

TE buffer: 

Tetracycline:

Tris-HCl:

Tween-20:

X-gal:

CaCl2 , 1 mLL IM MgSO^ and 25 ml/L KPO4 (pH 6.0) 

added.

phosphate buffered saline: 7.31 g NaCl, 2.36 g Na2HP0 4 , 

1.31 g NaH2P0 4  2H20 in 1 L, pH 7.2. Autoclaved and 

stored at room temperature.

20 mg/ml proteinase K (Roche) in sterile distilled H2O. 

Stored at -20°C.

sodium dodecyl sulphate (Sigma) in H2O. Stock 

solution 10% stored at room temperature. 

lOX stock, 0.9 M Tris-HCl, 0.9 M Boric acid (Sigma), 25 

mM Na2EDTA pH 8.0, in sterile distilled H2O. Stored at 

room temperature.

10 mM Tris, ImM EDTA, pH 8.0).

12.5 mg/ml tetracycline hydrochloride (Sigma) dissolved 

in 50% ethanol. Stored at -4°C 

2-aminO“2-(hydroxymethyl)-l,3-propanediol- 

hydrochloride.

Polyoxyethylenesorbitan monolaurate (Sigma). 

5-bromo-4-chloro-3-indoyl-p-D-galactoside (Promega) 

dissolved in N,N'-dimethyl-formamide and stored at -  

20°C out of light. Stock concentration of 2% (w/v) X-gal.

Preparation of any standard reagents or media not detailed can be found in Sambrook et 

ah. Molecular cloning: a laboratory manual, 1989.

2.2. Agarose gel electrophoresis

Nucleic acids were separated on 0.7-1.5% (w/v) agarose gels. Agarose (Gibco BRL Life 

Technologies) was dissolved in IX TBE by heating until in solution, ethidium bromide 

was added to 0.08 p.g/ml and gels cast. Gels were run in IX TBE using electrophoresis 

equipment from Gibco BRL and 1 kb ladder (Gibco BRL). Nucleic acids were 

visualised and images captured using a UV transilluminator and imaging systems 

(Biorad),
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2.3. Nematode strains and culture

All nematode strains were received from the C. elegans Genetics Centre (CGC) 

(University of Minnesota, Minnesota, USA) or the relevant laboratories. Nematodes 

were cultured as described previously (Brenner, 1974) on NGM-agar inoculated with E. 

coli strain OP50 as a food source. Freezing and cleaning of C  elegans strains was 

performed as described in The Nematode Caenorhabditis elegans (Cold Spring Harbour 

Laboratory Press, Cold Spring Harbour, N.Y.).

C. elesans strains 

N2:

CB364:

CB2590:

EM76:

JK2757:

TP7:

*phy-4 A:

GR1029:

DR96:

TP12:

TP13:

wild type Bristol strain (Brenner, 1974) 

dpy-18(e364) III (Brenner, 1974) 

tra-1 {e1099)1dpy-18{e1096) III (Hodgkin and Brenner, 

1977); heterozygotes are wild type and segregate wild 

type, fertile wild-type males (tra-1 homozygotes) and 

Dpy {dpy-18 homozygotes). Dpys were selected, these 

worms have the genotype, dpy-18(el096) III. 

dpy-18(bx26) III; him-5{el490) V (Baird and Emmons, 

1990)

phy-2(okl77) IV (Friedman et al., 2000) 

phy-3{okl99) V (Riihimaa et al., 2002) 

phy-4{tm360) X

\et-44{mg21) lon-2{e678) X; mnDp31 (X;l) 

unc-76(e911)Y  (Brenner, 1974) 

kaIsl2[col-19:G¥?] 

dpy-18{e364) III; kaIs\2{col-19\G¥V\

* non-backcrossed strain produced by the C. elegans knockout project with no 

designated strain name, received from S. Mitani, Tokyo Women’s College, Tokyo, 

Japan.

C  brisssae strain 

AF16 (pka G16): wild type strain (Fodor et al., 1983)
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2.4. E, coli strains and culture

Liquid E. coli cultures were grown overnight in L-broth at 37°C in an orbital shaker. 

LB-agar was used for growth of bacteria on plates with overnight incubation at 37°C. 

Antibiotic selection was used where appropriate, generally 100 p-g/ml ampicillin, unless 

otherwise stated. Permanent bacterial stocks were made by addition of 0.8 mis of 

overnight cultures to 1 ml of 2% peptone/ 40% glycerol and storage at -80°C. Full 

genotypes of the E. coli strains used can be found from supplier or in reference given.

OP50:

XL-10 Gold:

HT115(DE3):

LE392:

GM2163:

strain used was a variant of the uracil requiring OP50 

strain (Brenner, 1974) with a tetracycline selectable 

marker. Strain received from CGC. 

ultracompetent cells, suitable for blue-white colour 

screening of recombinant plasmids. Multiple methylated 

DNA restriction systems removed. recA recombination 

and endAl endonuclease deficient giving greater stability 

to transformed DNA and better quality of purified 

plasmid. Purchased from Stratagene. 

tetracycline resistant, IPTG inducible T7 polymerase, 

RNase III minus (Timmons et al., 2001). Strain received 

from CGC.

used for infection and propagation of bacteriophages, no 

antibiotic resistance used for growth of bacterial culture. 

Purchased from New England Biolabs (NEB), 

chloramphenicol resistant, dam and dcm minus strain, 

endogenous adenine méthylation at GATC and cytosine 

méthylation at CC(A/T)GG abolished. Purchased from 

NEB.

2.5. Purification and synthesis of DNA and RNA

2.5.1 Phenol/chloroform extraction and ethanol precipitation of DNA

An equal volume of phenol : chloroform : isoamyl alcohol (25:24:1) (Sigma) was added to 

a solution of DNA, mixture vortexed for 1 minute then spun at 12k in a bench top 

centrifuge for 2 minutes. Top layer was removed and an equal volume of
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chlorofoiTn:isoamyl alcohol (24:1) (Sigma) added, vortexed, spun and separated as 

above. Aqueous layer was precipitated with 1/25 volumes of 5 M NaCl and 2 volumes 

of 100% ethanol. Precipitate was stored for at least 1 hour at -20°C then pelleted in a 

bench top centrifuge at full speed for 15 minutes. Pellet was washed in 75% ethanol, 

air-dried and the DNA suspended in TE buffer.

2.5.2 Genomic DNA isolation

C. elegans strains for genomic DNA extraction were grown on NGM OP50 plates and 

washed off plates with H2O. Worms were concentrated by centrifugation and stored at -  

80°C. 200-500 pi of concentrated worm pellet was added to 6 volumes of 1 X worm 

lysis buffer. For B. malayi genomic extraction, 10 adults were added to 6 volumes of IX 

worm lysis buffer. Worm suspensions were disrupted in a glass hand held homogeniser 

followed by incubation at 65°C for 4 hours. Debris was removed by centrifugation and 

DNA purified by repeated phenol:chloroform and chloroform extractions. DNA was 

treated with RNAse A (DNase free) (Sigma) at a final concentration of 100 pg/ml for 1 

hour at 37°C then phenol/chloroform extracted, chloroform extracted and ethanol 

precipitated. 100-500 ng of genomic DNA was used in 50 pi PCR volumes.

5X Worm lysis buffer: 0.25 M Tris-HCl (pH 8.0), 0.50 M NaCl, 0.25 M EDTA.

pH to 8.0, solution autoclaved and stored at 4°C 

IX Worm lysis buffer: 50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 50 mM, EDTA

1% SDS, 30 mM 2-mercaptoethanol, 100 pg/ml 

Proteinase K (Roche). IX lysis buffer was made by from 

5X stock with freshly added SDS, 2-mercaptoethanol and 

proteinase K.

2.5.3. Total RNA isolation

4 X volume of Trizol Reagent (Gibco BRL Life Technologies) was added to 100-1000 

pi of concentrated C. elegans pellet. For B. malayi, 800 pi of Trizol was added to three 

adult females. Suspensions were vortexed to solubilise and disrupt woims and left at 

room temperature for 20 minutes with occasional mixing. Insoluble material was 

removed by centrifuging 1 ml aliquots at 4°C at top speed. To the supernatants 160 pi 

of chloroform isoamyl alcohol was added. These were vortexed for 15 seconds,
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incubated at room temperature for 2 minutes, then centrifuged for 15 minutes at 4°C. 

400 pi isopropanol was added, solutions mixed and precipitated at room temperature for 

10 minutes. RNA was pelleted by centrifugation for 10 minutes at 4°C. RNA was 

washed with 75% ethanol (25% DEPC treated H2O), spun at 7,500 k for 10 minutes and 

resuspended in DEPC treated H2O.

2.5.4. Purification of mRNA

mRNA purification was accomplished using a Poly (A) Quik mRNA isolation kit 

(Stratagene). Total RNA, prepared as described above, was heated to 65°C then rapidly 

cooled on ice to remove any secondary structure, then sample buffer added to IX 

concentration. An oligo (dT) cellulose column was equilibrated with high-salt buffer 

and the sample applied to the column with a syringe, collected, then reapplied. Column 

was washed twice with high-salt buffer then three times with low-salt buffer. mRNA 

bound to the oligo (dT) cellulose was eluted four times in elution buffer preheated to 

65°C. RNA was then precipitated with 1/10 volume sample buffer and 2.5 volumes 

100% ethanol, washed in 75% ethanol (25% DEPC H2O) and resuspended in DEPC 

H2O.

lOX Sample buffer: 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 5 M NaCl.

High-salt buffer: 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.5 M NaCl.

Low-salt buffer: 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.1 M NaCl.

Elution buffer: 10 mM Tris-HCl (pH 7.5), 1 mM EDTA,

2.5.5. Synthesis of first strand cDNA

First strand cDNA was synthesised using a RT-PCR kit (Stratagene). 100 ng of mRNA, 

prepared as described above, was annealed to 7.5 ng/pil of oligo d(T) primer by heating 

to 65°C for 5 minutes then slowly cooling to room temperature. First strand buffer was 

added to IX concentration, dNTP’s to 4 mM and 50 units of Moloney murine leukaemia 

virus reverse transcriptase (MMLV-RT) added. Reaction was incubated at 37°C for 1 

hour, heat inactivated and 2 p,l used per 50 |J,1 PCR reaction.
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2.6. PCR based cloning procedure

2.6.1. PCR conditions and polymerases

All PCR reactions were performed using a Robocycler Gradient 96 PCR machine 

(Stratagene) in a 50 p,l volume unless otherwise stated. Routine PCR conditions used 

were; dénaturation at 92°C for 1 minute, primer annealing at 56°C for 2 minutes, and 

extension at 72°C for 1-2 minutes per kb of taiget sequence. Final concentrations of 0.4- 

0.6 |iM of each primer and 250 pM of each dNTP were used. Oligonucleotide primers 

were purchased from Sigma Genosys or Gibco BRL, the sequences of all primes used 

are given in Table 2.2. Taq polymerase (Applied Biosystems) was used in IX buffer IV 

(Applied Biosystems), supplemented with 2.5 mM final concentration MgCL, using 5 

units of enzyme per reaction. PCR with Pfu and Pfu Turbo DNA polymerases 

(Stratagene) was performed in IX Cloned Pfu DNA polymerase buffer (Stratagene) 

using 2.5 to 5 units of enzyme per reaction. 2-4 units of Vent DNA polymerase (NEB) 

was used per reaction in IX Thermopol buffer (NEB). Proof-reading polymerases Pfu, 

Pfu Turbo and Vent contain 3' to 5'-exonuclease activity that enable them to proof-read 

for nucleotide mis-incorporations and were used where appropriate to minimise eiTors 

in the amplified sequences.

lOX Buffer IV: 200 mM (NH4)2S0 4 , 750 mM Tris-HCl pH 9.0 (at 25°C),

0.1% (w/v) Tween-20. 

lOX Cloned Pfu buffer: 200 mM Tris-HCl (pH 8.8), 20 mM MgS0 4 , 100 mM

KCl, 100 mM (NH4)2S0 4 , 1% Triton X-100, 1 mg/ml 

nuclease-free BSA.

lOX Thermopol buffer: 100 mM KCl, 200 mM Tris-HCl (pH 8.8 at 25°C), 100

mM (NH4 )2S0 4 , 20 mM MgS0 4 , 1% Triton X-100.

2.6.2. Purification of PCR products

QIAquick Gel extraction and QIAquick PCR purification kits from QIAGEN were used 

to purify DNA from agarose gels or directly from PCR reactions, respectively. Both kits 

use a column with a silica gel membrane that binds DNA in the presence of high salt 

concentrations and pH <7.5. Gel extraction of DNA was accomplished by separating 

DNA on a 1% agarose gel, excising the desired band(s) and solubilising at 50°C in 3 

volumes (w/v) of QXl buffer. 1 volume of isopropanol was also added if DNA
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fragment to be purified was <0.5 kb or >4 kb. DNA was then bound to the column by 

spinning the solution through the column. Column was washed with QXl buffer 

followed by PE buffer to remove agarose and salt impurities. DNA was eluted with H2O 

(preheated to 50°C) by spinning 4 X 50 |nl volumes through the column. Ethanol 

precipitation was performed as described in Section 2.5.1. For QIAquick PCR 

purification 5 volumes of PB buffer was added to the PCR reaction, mixture spun 

through the column and washed with PE buffer. Elution and precipitation of DNA 

carried out as described with the addition of 10 jUg of glycogen as a carrier where 

required.

2.6.3. PCR product cloning using pCRScript

The pCRScript cloning kit (Stratagene) was used for cloning blunt ended PCR 

fragments. These fragments were produced either by PCR with a proofreading DNA 

polymerase or were made blunt ended. The pCRScript vector is supplied pre-linearised 

with S rfl, a rare cutting restriction enzyme that produces blunt end termini. Inclusion of 

Srf I in the ligation reaction reduces re-ligation of the vector, as, if this occurs, the 

enzyme recognition site is reformed and the plasmid cleaved. Ligation of an insert 

destroys the enzyme recognition site and so recombinant plasmids aie positively 

selected for. PCR product purified by one of the above methods was either ligated 

directly with pCRScript vector or made blunt ended in IX polishing buffer (Stratagene) 

with 0.25 mM each dNTP and 0.5 units of Pfu DNA polymerase. Reaction was 

incubated for 30 minutes at 72°C then 1/3 of reaction used for ligation. A 10 |nl ligation 

was performed by adding approximately 40X molar excess of PCR product to 10 ng of 

linearised pCRScript vector, in IX pCR Script reaction buffer with 1 mM rATP, 5 units 

Sr f l  restriction enzyme and 4 units T4 DNA ligase. Reaction was heat inactivated after 

1 hour at room temperature.

2.6.4. T-overhang PCR cloning vectors

Vectors such as pGEM-T (Promega) and pTAg (Invitrogen) are supplied linearised with 

3' terminal thymidine at both ends. These serve to prevent re-cicularisation of the vector 

and provide compatible bases for ligation with PCR product produced with Taq DNA 

polymerase. Amplification with Taq, and some other non-proof reading polymerases, 

causes the addition of single deoxyadenosine to the 3' ends of amplified DNA. Taq
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amplified product was purified using one of the above methods then ligated in a 10 pi 

reaction with 50 ng of vector in IX T4 DNA ligase buffer (NEB) with 1 pi T4 DNA 

ligase (NEB). A molar ratio of approximately 3:1 insert:vector was used in the ligation 

and reaction incubated overnight at 4°C. Blunt ended PCR product to be cloned in to a 

T-overhang vector had 3' A-tails added using Taq. Purified PCR product was added to 1 

X Buffer IV (AB), 0.2 mM final concentration dATP, and 5 units o f Taq (AB) in a 10 pi 

reaction. After incubation at 72°C for 30 minutes the reaction was heat inactivated. A 

proportion of this reaction was then used in a ligation with a T-overhang vector.

1 X T4 DNA ligase: 50 mM Tris HCl (pH 7.5), 10 mM MgClz, 10 mM DTT,

1 mM ATP, 25 pg/ml BSA.

2.6.5. TOPO T-A cloning

The pCR 2,1 TOPO kit (Invitrogen) was also used for cloning A-tailed PCR fragments. 

Purified PCR products were added with 1 pi TOPO vector and 1 pi Salt solution (1.2 M 

NaCl, 0.06 M MgCL) in a 6 pi reaction at room temperature for 5 minutes. The vector 

is supplied linearised with 3' overhanging-T residues and covalently bound 

Topoisomerase I at vector ends. The usual function of this enzyme is nicking 

supercoiled DNA then re-joining ends. This activity is used in TOPO cloning to enable 

ligase independent joining of fragments. After T-A base recognition between the vector 

and insert DNA, the vector bound Topoisomerase cleaves the phospodiester backbone 

of one strand at its recognition site. Foimation of a covalent bond between the 3' 

phosphate from the cleaved strand of the backbone and a residue from topoisomerase 

enables joining of DNA the ends and release of enzyme when the 5 -hydroxyl from the 

original cleaved strand attacks this bond.

2.6.6. Transformation of E. coli

Transformation of E. coli was performed using 40 pi of XL 10-Gold ultracompetent 

cells (Stratagene) with 2 pi of a ligation reaction from a cloning kit, followed by 

incubation on ice for 30 minutes, heat shock at 42°C for 30 seconds then ice for 2 

minutes. 400 pi of SOC media was added and transformation incubated at 37°C in an 

orbital shaker for 1 hour. Cell suspension was spread on LB + antibiotic plates, dried 

and grown overnight at 37°C. For blue-white colour selection of transformants 100 pi
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0.1 M IPTG and 100 pi 2% X-gal was added to the surface of a 9 cm plate prior to 

plating of cells.

2.6.7. Identification of bacterial transformants

2.6.7.1. Blue/white colour selection

When vector permitted, blue/white screening of colonies was performed. Vectors that 

can be used for colour screening contain the regulatory sequences and N-terminal 

sequences for E. coli protein P-galactosidase, coded for by lacZ gene. Embedded within 

the lacZ coding sequence is a multiple cloning site that does not affect the reading frame 

of the peptide but results in the addition of a few amino acids. Plasmids encoding the N- 

terminal of P-galactosidase aie used in conjunction with host E. coli cells that code for 

the C-terminal portion of protein. Neither peptide alone is active but when both are 

present they can associate and form an active protein. Cells expressing both peptides 

turn blue when grown on the artificial substrate analogue X-gal. Insertion of a fragment 

into the cloning site of the vector inactivates the N-terminal peptide resulting in no P- 

galactosidase activity and white coloured colonies. White colonies were screened by 

PCR.

2.6.7.2. PCR screening

Colonies selected for screening (either white when blue/white colour selection or 

random when no colour selection was applied) were picked and touched on to a 

LB+antibiotic master plate. The bacteria remaining was added to 100 \i\ H2O and boiled 

for 5 minutes and cell debris pelleted by centrifugation. 2 pi of colony boils were then 

added to a 20 pi PCR. PCRs were performed in IX PCR buffer (45 mM Tris-HCl pH

8.8, 11 mM Ammonium sulphate, 4.5 mM MgCL, 6.7 mM 2-mercaptoethanol, 4.4 pM 

EDTA pH 8.0, 1 mM each dNTP, 113 pg/ml BSA) with 100 ng of each primer and Taq 

polymerase. Primers used were complementary to the vector backbone flanking the 

cloning site. Colonies positive for presence of the insert were then identified on the 

master plate.
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Table 2.1. Primer combinations for screening bacterial colonies transformed with 

standard vectors

Vector Primer combinations (sequences in 

Table 2.2)

pCRScript/pBluescript SKM (Stratagene) 1224 and M13 reverse

pGEM (Promega) pGEM forward and pGEM reverse

pTAg (Invitrogen) MI3 Reverse and 1224.

PCR 2.1TOPO (Invitrogen) M I3 reverse and pGEM forward

pPD95.03* M l3 reverse and NLS

pPD96.04* M13 reverse and 96.04 reverse

pPD 129.36'*' (Timmons et a l, 2001) L4440 F and L4440 R

pVL1392 (Pharmingen) BY F and BY R

*pPD series of vectors were a gift from A. Fire (Carnegie Institution of Washington, 

Baltimore).

2,6.8. Plasmid DNA preparation

10 ml (small scale or mini plasmid preparation) or 50 ml (large scale or midi plasmid 

preparation) overnight bacterial cultures of LB-antibiotic were grown at 37°C in an 

orbital shaker. QIAGEN Mini or Midi plasmid kits or QIAprep spin columns were used 

to prepare DNA using solutions and procedure supplied by the manufacturer. The 

procedure is based on an alkaline lysis process that utilises the selective renaturation of 

plasmid DNA following dénaturation. Cells were lysed with NaOH/SDS in the presence 

of RNase A, NaOH denatured the cellular proteins, chromosomal arid plasmid DNA, the 

lysate was then neutralised with acidic potassium acetate. The high salt concentration 

causes SDS precipitation of denatured proteins, membrane bound chromosomal DNA 

and cell debris. Plasmid DNA renatures under these conditions and remains in solution. 

Columns containing an anion-exchange resin whose positively charged DEAE groups 

bind the phosphates of the DNA backbone but not degraded RNA, cellular proteins or 

metabolites, were used to purify plasmids. The salt conditions and pH of buffers 

deteimined whether DNA was bound or eluted from the column. Column-bound
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plasmid DNA was washed, eluted and isopropanol precipitated, DNA was examined by 

electrophoresis.

2.6.9. Analytical restriction digests

100-200 ng of plasmids were digested with 10 units of restriction enzymes in a 20 p.1 

digest in IX restriction digest buffers (NEB) for 2 hours at 37°C or other recommended 

temperature. For single digests the buffer used was as recommended and supplied by 

NEB. Double digests reactions were performed in a buffer compatible for both enzymes 

as recommended by NEB. 5-10 jxl of digests were analysed by electrophoresis.

2.7. Subcloning from plasmids and bacteriophage

2.7.1. Restriction digests for subcloning

Restriction digests were perfonned using 5-10 pg of insert containing plasmid or 

bacteriophage and target plasmid vector digested with 20 units of restriction enzyme in 

a 40 pi volume, at the appropriate temperature. For directional cloning digests were then 

phenol extracted, precipitated with ethanol (see Section 2.5.1), resuspended in H2O and 

digested with a second enzyme in the same manner. For non-directional cloning the 

recipient plasmid vector was treated with calf intestinal alkaline phosphatase (CIAP) 

(NEB) for 1 hour at 37°C, directly after treatment with the first restriction enzyme. 

Vector and insert fragments to be ligated were purified from agarose gels and ethanol 

precipitated as described in Section 2.6.2 and analysed for purity and quantity by 

agarose gel electrophoresis.

2.7.2. Ligations

Ligation of insert and vector DNA was performed in a 20 pi reaction with 100 ng vector 

DNA and a 3:1 molar ratio of insert to vector in IX T4 DNA ligase buffer. Ligations 

were left at 16°C overnight. 5-10 ng of DNA was then used to transform XLIO-Gold 

ultracompetent cells. All subsequent manipulations including bacterial transformation, 

screening of bacterial colonies, plasmid preparations and restriction digests were 

performed as described earlier in Sections 2,6.6 to 2.6.9.
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2.8 Sequencing analysis

DNA for sequence analysis was prepared in either precycled or uncycled foim. Pre­

cycled reactions were prepared using the ABI PRISM Dye Terminator Sequencing 

Ready Reaction kit. 8 pi Terminator Ready Reaction mix was added to 200 ng plasmid 

DNA with 3.2 pmoles of primer in a 20 pi reaction. Oligonucleotide primers were 

purchased from Sigma Genosys or Gibco BRL with sequences given in Table 2.2. 

Cycling was performed in a Gene Amp PCR System 2400 (Perkin-Elmer) with 

parameters; 96°C - 10 seconds, 50°C - 5 seconds, 60°C - 4 minutes for 25 cycles. 

Extension products were purified by ethanol precipitation with 1/10 volumes 3 M 

NaAcetate, pH 4.6, and 2.5 volumes 95% ethanol. Reactions were precipitated on ice 

for 10 minutes, centrifuged for 30 minutes, pellet washed in 250 pi 70% ethanol, then 

air-dried. These were taken to the Molecular Biology Support Unit (MBSU) Sequencing 

Service at Glasgow University for analysis. Uncycled DNA was supplied as plasmid 

along with primer(s), which were then processed by the MBSU Sequencing Service 

Glasgow University.

2,8.1. Sequencing analysis software and computer analysis of DNA and protein 

sequences

DNA sequence data was analysed, assembled and compared using; the ABI Prism 

Sequencing analysis software (PE Applied Biosystems), Vector NTi (Informax) and its 

associated programs Contig Express and Align X, and the Basic Local Alignment 

Search Tool (BLAST) (Altschul et al., 1990) from the National Centre for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gOv/l. Searches for B. 

malayi EST and GSS sequenees were perfonned using BLAST at the EMBL-EBI 

Parasite-genome server (http://www.ebi.ac.uk/parasites/parasite-genome.html). Data on 

sequenced C. elegans genes was accessed using WormBase 

(http://www.w0 iTnbase.0 rg/l and Intronerator (Kent and Zahler, 2000) 

(http://www.soe.ucsc.edu/~kent/introneratoiVl sites. The prediction of ER signal peptide 

cleavage sites of proteins was performed using the Signal P program (Nielsen et aL, 

1997) through the ExPASy molecular biology server (http://www.expasv.ch/l. 

Glycosylation predictions were performed using NetNGlyc 1.0 Prediction Server (Gupta 

et a l, 2002) from the Centre for Biological Sequence Analysis 

(http://www.cbs.dtu.dk/services/NetNGlvc/l. Amino acids sequences were aligned for
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comparison using ClutalW (http://www.ebi.ac.Uk/clustalw/l and processed using 

Boxshade (http://www.ch.embnet.org:80/software/BOX foimi.htmll.

2,9. Protein techniques

2.9.1. Peptide antisera

Peptides for immunisation were made by N-terminal fusion of synthetic peptides for 

proteins C^-PHY-1, Ce-PHY-2, Ce-PDI-2 and Bm-PHY-1 to keyhole limpet 

heamocyanin. (Sigma Genosys) via a cysteine residue. Polyclonal antisera were raised 

in two rabbits for each peptide (Sigma Genosys). C-terminal residues used for 

immunisations are shown below, C represents added cysteine residues, which are not 

present in the native protein sequences.

Ce-FBY-1 : ÇEPRNAPN VSPNLAKD VWETL

Ce-PHY-2: CLEEEVQENFIGDLSPYANDP

Ce-PDI-2: ÇGASEEEKAEEEADEEGHTEL

Bm-PHY-1: ÇRRPCGLSRS VEEQFVGDLS A

2.9.2. SDS PAGE

Samples were boiled in 5% final v/v IM DTT and IX NuPAGE SDS sample buffer 

(Invitrogen). Extracts were examined on a NuPAGE 4-12% Bis-Tris polyacrylamine gel 

(Invitrogen) in IX NuPAGE MOPS SDS buffer using NuPAGE antioxidant 

(Invitrogen) and run at room temperature for 45-60 minutes.

4X SDS buffer: 1.17 M sucrose, 563 mM Tris base, 423 mM Tris HCl,

278 mM SDS, 2.05 mM EDTA, 0.88 mM Sera Blue 

G250,0.7 mM Phenol red.

20X MOPS SDS buffer: 1 M MOPS, 1 M Tris base, 69.3 mM SDS, 20.5 mM

EDTA.

2.9.3. Western blotting

Proteins were transfeired using NuPAGE (Invitrogen) Western blotting apparatus and 

reagents. Blots were run for 1 hour at room temperature in IX Transfer buffer. Hybond- 

P PVDF membrane (Amersham Pharmacia Biotech) was used after activation by
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soaking in methanol. The membrane was blocked by soaking overnight in a solution of 

5% (w/v) Membrane blocking agent (Amersham Life Sciences) made in PB ST (PBS 

with 0.1 v/v Tween-20). Primary antibody dilutions were incubated at room temperature 

for 2 hours and membranes washed three times in PBST for 5 minutes at room 

temperature. Secondary antibody, a 1/15,000 dilution of goat anti-rabbit (or anti-mouse) 

IgG whole molecule alkaline phosphate conjugate (Sigma) was added for 2 hours at 

room temperature followed by washes. Antibodies were detected using Sigma Fast 

Tablets diluted in H2O.

Transfer buffer 20X: 500mM bicine, 500mM Bis-Tris, 20.5 mM EDTA

10-20% methanol added to IX transfer buffer.

2.10. Transformation of C. elegans

2.10.1. Microinjection procedure

C. elegans was transformed by microinjection (Mello et a l,  1991), detailed methods for 

which can be found in C. Mello and A. Fire, 1995 (Mello and Fire, 1995). DNA for 

microinjection was prepared using the standard QIAGEN method. Plasmids were co­

injected with a selectable marker to identify transformed progeny. Mixes for injection 

were made up to a final concentration of 120-200 pg/ml plasmid DNA in sterile 

distilled H2O and centrifuged before use to pellet debris. Pads for mounting worms for 

injection were made from a small volume of molten 2% agarose solution added to a 

large coverslip. This was covered with another coverslip to spread solution into thin 

layer. The top coverslip was removed and the agai’ose pad air-dried. Needles were 

pulled on a computer controlled electrode puller model 773 (Campden Instruments) 

using 1.2 mm O.D X 0.69 mm I.D. borosillicate glass capillaries with standard wall and 

inner filament (Clark Electromedical Instruments). Nematodes were added to agarose 

pads under liquid paraffin (BDH) and injected using an Axiovert-IOO inverted 

microscope (Zeiss) equipped with a flat, free-sliding glide stage with centred rotation 

with DIC/Nonuaski optics. DNA was injected in to the hermaphrodite gonad using a 

micromanipulator guided needle and pressurised nitrogen. Recovery buffer (2% 

glucose, IX M9) was added to injected worms on pads, after which they were 

transfened to fresh NGM OP50 plates in a pool of recovery buffer. Transformed 

progeny from injected hermaphrodites (FI generation) were identified by the phenotype
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confen'ed by the co-injected marker plasmid. These are selected either clonally or in 

small groups of 4-10, and the next generation (F2) surveyed for transfoiTnants.

2.10.2. Behaviour of injected DNA

Oocyte nuclei in the adult gonad share a common core of cytoplasm. As they mature, 

individual nuclei are incoiporated into plasma membranes along with a portion of the 

core cytoplasm. DNA injected in to this syncitium can also become incoiporated into 

the oocyte. In a fraction of the FI progeny (1-10%), recombination reactions occur 

between injected sequences that result in the formation of long tandem an ays. 

Recombination between co-injected plasmids occurs due to regions of homology within 

their vector backbones. Arrays that attain a large size can become heritable as 

extrachromosomal elements. Once assembled these elements are no longer targets for 

further intra-array recombination. The anays are then transmitted at a frequency of 

between 5-95% and lines can be maintained indefinitely by selection of the phenotype 

conferred by the marker DNA. Both marker and construct DNA should be contained 

within these arrays thus nematodes expressing the marker phenotype should contain the 

construct. It is possible for arrays to form that not contain any copies of the constmct, 

especially if this is injected at a low concentration. To ensure construct DNA was 

examined and that a result found in one line is not due to the particular rearrangement of 

DNA within a particular aiTay, multiple lines (generally more than three) were normally 

examined for each set of injections. Only one F2 line was selected from any positive FI 

plate of transformants, thus ensuring different lines were the product of separate 

rearrangement events.

2.10.3, Selectable markers of transformation

Plasmid pRF-4 (Mello et at., 1991) (a gift from A. Fire, Carnegie Institution of 

Washington, Baltimore) was used as a marker for transformation by co-injecting it at 

100 jig/ml. Plasmid pRF-4 contains a semi-dominant allele of the collagen gene rol- 

6{sul006) which is expressed from L3 onwards and in dauers. Transformants were 

identified by the right-hand roller phenotype conferred by this gene. Plasmid p76-16B 

(a gift from R. Horvitz, MIT, Massachusetts, USA) contains wild-type unc-76. UNC-76 

protein is found in all neuronal cells throughout development (Bloom and Horvitz, 

1997). The strain DR96 contains the mutant allele unc-76 {e911) and is uncoordinated,
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injection of DR96 with p76-16B rescues this phenotype (Bloom and Horvitz, 1997). 

unc'76 rescue was used as a marker of transformation by co-injecting p76-16B, along 

with a construct of interest, into the strain DR96 and identifying transfonnants by 

restoration of wild type movement. Expression of GFP (Chalfie et aL, 1994; Heim et 

aL, 1995), from the construct dpy-7-GFP (a gift from I. Johnstone, WCMP, Glasgow), 

which contains the dpy-7 cuticle collagen promoter fused to GFP, was also used as a 

selectable marker. This construct gives non-nuclear localised GFP expression in the 

hypodermal cells of transformed woirnis, with strong GFP expression detectable from 

embryo to L4, in dauers, and less strongly in adults, dpy-7-GFP was co-injected at a 

concentration of 5-10 p-g/ml and transformants were selected by detection of GFP 

expression under UV light using a Stemi SV-6 dissecting microscope (Zeiss).

2.11. Microscopy of live nematodes

Nematodes were washed in IX M9 in a watch glass and then transferred to microscope 

slides (with 2% agarose/0.065% sodium azide pads). A small volume of IX M9 was 

kept on the pad to prevent drying of samples and the coverslip added and sealed with 

white soft paiaffin BP. Nematodes were viewed as live specimens using an Axioskop 2 

microscope with a Hamamatsu digital camera. Images were processed and 

pseudocoloured (where appropriate) using Improvision Openlab software.

2.12. SL-PCR

To determine SL /ran^-splicing for C. elegans phy-1, phy-2 and pdi-2, RT-PCR was 

perfonned with control primers phy-1 F (pMal) and phy-1 R (pMal), phy-2 F and phy-2 

R (pMal), and pdi-2 F and pdi-2 R (pMal) on C. elegans N2 mixed stage cDNA with 

Taq for 30 cycles. The reverse primer from each primer pair was also used individually 

for RT-PCR with SLl (consensus nematode splice leader sequence 1, sense primer) and 

SL2 (consensus nematode splice leader sequence 2, sense primer). Products from these 

reactions deteimined if primary transcripts were spliced by either the SLl or SL2 

fran^'-spliced leader RNA sequences. SL RT-PCR was also performed for Ce-phy~4 and 

Ce-phy-5 using both SLl and SL2 primers in combination with; phy-4 R l, R2 and R3, 

for Ce~phy~4', and phy-5 cDNA R l, R2 and R3, for Ce-phy~5. For Ce-phy-4 40 cycles 

of PCR were used and for Ce-phy-5 30 cycles were performed.
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2.13. Promoter analyses

2.13,1 Promoter/reporter gene constructs

The Ce-phy-1 promoter was PCR amplified from N2 genomic DNA for 27 cycles with 

primers phy-1 PF (Pst I)/phy-l PR {Bam HI) and Taq polymerase to generate a 

fragment representing sequences from -2755 to +5 relative to the translational start 

ATG. The insert was cloned in to pCRScript, excised with Bam HI and Pst I and ligated 

with the lacZ reporter gene vector pPD95.03. The Ce-phy-2 promoter was similarly 

amplified with primers phy-2 PF 2 {Pst I) and phy-2 PR 2 {Bam HI). Sequences from -  

1715 to + 11, relative to the translational start site, were cloned into the pTAg vector 

and subcloned into pPD95.03 with Pst I and Bam HI. 1.5 kb of putative Ce-phy-5 

promoter was PCR generated as above using primers phy-5 F {Hind III) and phy-5 R 

{Xba I) and cloned into pGEM-T by Laura Gilchrist as part of a BSc (Hons) project. A 

fragment, representing sequences from -  1402 to + 125 relative to the translational stait 

site, was subcloned in to pPD95.03 with Hind III and Xba I. N2 genomic DNA was 

used for production of Ce-pdi-2 promoter sequences from -2620 to +5 using primers 

pdi-2 PF {Sph I) and PR {Bam HI), Taq and 27 cycles of PCR. The 2.6 kb product was 

cloned into pTAg vector then pPD95.03 with Sph I and Bam HI. Final promoter/reporter 

gene constructs were sequenced to confirm identity of insert and ensure an in-frame 

fusion of insert sequences with the lacZ reporter gene. Transformation of C. elegans 

was performed by microinjection into the syncitial gonad of N2 or DR96 

hemiaphrodites. N2s were injected with constmcts at 20 |iig/ml and plasmid marker 

pRF-4 at 100 ju-g/ml. DR96 was injected with marker plasmid p76-16B at 100 p,g/ml and 

reporter construct at 20 pg/ml. At least three independent lines were examined for 

expression of P-galactosidase for each reporter construct.

2.13.2. Staining for P-galactosidase activity

The method used is a variation on the procedure described by Andrew Fire, 1992. 

Transgenic C. elegans containing reporter constructs were washed from mixed 

population NGM plates in IX M9, concentrated by centrifugation and washed twice. 

The volume was reduced to 100 pi and an equal volume of 2.5% gluteraldehyde 

(Sigma) added. Suspensions were incubated for 20 minutes at room temperature with 

occasional gentle mixing, followed by two washes with IX  M9. The volume was 

reduced to 100 pi, worms pipetted onto microscope slides, vacuum dried, immersed in
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acetone at ~20°C for 5 minutes and air-dried. 50-100 pi of staining mixture was added 

per slide, a microscope coverslip (BDH) added and sealed with nail varnish. Worms 

were checked every hour for staining or left overnight.

Staining mix (1 ml): 500 pi 0.4 M NaP0 4  (pH7.5), 1 pi MgCl2 , 100 pi Redox

buffer (50 mM potassium ferricyanide, 50 mM potassium 

ferrocyanide), 4 pi 1% SDS, 400 pi H2O. For the standard 

staining procedure 12 pi of 2% (w/v) X-gal was used in 

the mix; for sensitive staining the mixture was pre-heated 

to 65°C then 12 pi freshly made 20% (w/v) X-gal added.

2.14. Semi-quantitative (sq-) RT-PCR

2.14.1. RT-PCR of Ce-phy-1, Ce-phy-2 and Ce-pdi-2 from staged samples

PCR was performed on staged cDNA samples representing two hourly intervals 

throughout post-embryonic development (Johnstone and Barry, 1996). PCR 

amplification was perfonned using two sets of primers pairs, one conesponding to the 

test gene, and a second set, ama-1 F and ama-1 R, for the control gene ama-1 (Bird and 

Riddle, 1989), which encodes the largest subunit of RNA polymerase II. Ce-phy~l 

primers used were phy-1 F (pMal) and phy-1 R (pMal), Ce-phy-2 primers were phy-2 F 

(pMal) and phy-2 R (pMal), and for Ce-pdi-2 primer pair pdi-2 F (pMal) and pdi-2 R 

(pMal) was used. 15 pmol of each primer and 1.5 pi of staged cDNA samples were used 

in each 50 pi reaction. Taq DNA polymerase was added to IX PCR buffer (45 mM 

Tris-HCl pH 8.8, 11 mM Ammonium sulphate, 4.5 mM MgCl2, 6.7 mM 2- 

mercaptoethanol, 4.4 pM EDTA pH 8.0, 1 mM each dNTP, 113 pg/ml BSA). Reactions 

were cycled in a Robocycler Gradient 96 PCR machine (Stratagene) (92°C - 5 minutes 

for 1 cycle followed by, 92°C - 1 minute, 56°C - 1 minute, 72°C - 2 minutes for 35

cycles) and samples separated on 1.25% agarose gels

2.14.2. Southern blotting

Agarose gels were treated with 0.25 M HCl acid for 20 minutes, rinsed with 

neutralisation buffer, soaked for 20 minutes in dénaturation buffer, followed by rinsing 

in neutralisation buffer. Gels were then treated for a further 20 minutes with 

neutralisation buffer. DNA was transferred using a standard southern blot method in
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lOX SSC with wicks cut from 3 MM paper and Hybond-N (Amersham Life Sciences) 

nylon membrane. Membranes were washed in 3X SSC, air-dried and cross-linked in a 

UV Stratalinker 2400 (Stratagene).

20 X SSC: 3 M NaCl, 0.3 M NaCitrate, pH to7.5 with conc. HCl.

Dénaturation buffer: 0.4 M NaOH, 0.8 M NaCl.

Neutralisation buffer: 0.5 M Tris, 1.5 M NaCl, pH 7.6.

2.14.3. Radiolabelling oligonucleotide primers

For each gene tested, the four primers used for PCR were radioactively end-labelled 

with Y^̂ -P using T4 polynucleotide kinase, in a single reaction. This enzyme transfers 

Ŷ -̂P from rATP to the 5' end of oligonucleotides. 25 pi reactions were performed in IX 

T4 polynucleotide kinase buffer (NEB) with 10.5 pmol/pl of each primer. To this 35 

pCi of [y^^-P]ATP and 10 units of T4 polynucleotide kinase (NEB) were added and 

reactions incubated at 37°C for 30 minutes. Reactions were terminated at 95°C for 5 

minutes.

2.14.4. Probing blots

Herring sperm DNA (10 mg/ml) was denatured at 100°C for 5 minutes and 50 pi added 

to 50 mis Church and Gilbert solution (preheated to 56°C) in a hybridisation bottle and 

incubated at 56°C for 1-2 hrs. Radiolabelled probe (half of the 25 pi reaction) was 

added along with the corresponding membrane and incubated at 56°C overnight in a 

rotating hybridisation oven (Stuart Scientific). Membranes were washed twice for 5 

minutes with preheated wash buffer at 56°C in hybridisation bottles in the hybridisation 

oven. Blots were then washed twice in a container with wash buffer in a rocking 56°C 

water bath, before a final wash in 3X SSC. Filters were dried on Watmann 3 MM paper 

and exposed to X-ray film (Kodak) for 1-16 hours.

Church & Gilbert solution: 100 mis IM NaP0 4  pH 7.2 (71 g anhydrous Na2HP04

with 4 mis of 85% orthophosphoric acid in 1 litre of 

H20), 70 mis 20% SDS, 0.4 mis 0.5 M EDTA (pH 8),

29.6 mis H20.

Wash buffer: 2X SSC, 0.1% SDS.
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2.14.5. Quantification of radioactive bands

Radioactive bands corresponding to the test gene and ama-1 for each PCR were located 

on the nylon membrane by compaiison to the autoradiograph and then excised. Excised 

bands were added to 2 mis scintillation fluid (National Diagnostics) and counted in a 

liquid scintillation counter (LKB Wallace). The relative abundance of the test gene 

transcript was calculated from the ratio of test gene signal to ama-1 signal for every 

point in the lifecycle. Results were plotted in arbitrary units.

2.15. RNA interference (RNAl)

2.15.1. RNA! by injection of in vitro synthesised double-stranded (ds) RNA

This procedure was based on the method originally described by Fire et aL, 1998.

2.15.1.1. Construction of plasmids for in vitro RNA synthesis

For Ce-phy-1 the construct phy-lcDNA,pCRScript was made by PCR on N2 mixed 

stage cDNA with primers phy-1 F (pMal) and phy-1 R (pMal) with Taq polymerase 

using 25 amplification rounds. The 1.6 kb product was cloned into pCRScript. Clone 

was separately digested with Not I and Sma I for the T7 and T3 in vitro transcription 

reactions respectively (see below). A Ce-phy-2 RNAi construct was similarly made 

using primers phy-2 F (pMal) and phy-2 R (pMal). The 1.6 kb product was cloned into 

pCRScript and separately digested with Not I and Sma I for the T7 and T3 reactions 

respectively. Ce-phy-3 RNAi construct phy-3,pPD129.36 (see Section 2.15.2.1) was 

used to produce RNA using two T7 promoters. Sense and antisense RNA was produced 

separately after linearisation with Xba I and Xho I. Ce-phy-4 RNAi construct phy- 

4,pGEM (see Section 2.15.2.1) was used to produce RNA using T7 and Sp6 promoters. 

Sense and antisense RNA was produced sepai'ately after linearisation with Not I (T7) 

and Nco I (Sp6). Ce-phy-5 RNAi construct phy-5,pPD 129.36 clone (see Section 

2.15.2.1) was used to produce RNA using two T7 promoters. Sense and antisense RNA 

produced separately after linearisation with Not I and Nco I. Ce-pdi-2 RNAi construct 

pdi-2 cDNA,pCRScript was made by PCR on N2 mixed stage cDNA with primers pdi-2 

F(pMal) and pdi-2 R (pMal) with Taq polymerase using 25 amplification rounds. The 

1.4 kb product was cloned into pCRScript and digested separately with Not I and Sma I 

for T7 and T3 reactions respectively
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2.15.1.2. In vitro transcription of RNA

10 pg of plasmid DNA was digested for each strand to be transcribed using the 

restriction enzymes indicated for the appropriate reaction. Digests were purified by 

phenol/chlorofoim extraction and 4 pg of linearised template DNA used in a 100 pi 

transcription reaction with either the T7, T3 or Sp6 Ribomax large scale RNA 

production kits (Promega). Reactions were performed in the appropriate IX reaction 

buffer, with IX enzyme mix and 7.5 mM final concentration of each dNTP. Reactions 

were allowed to proceed for 4 hours after which 4 units of RQ l DNase (RNase-free) 

was added and incubated at 37°C for 15 minutes. After extraction with phenol (pH 4.5) 

and chlorofoim, RNA was precipitated with isopropanol and sodium acetate. Samples 

were resuspended in DEPC treated H2O. 10-20 pg of each single-stranded RNA was 

then mixed in a volume of 40 pi in IX injection buffer (20 mM KPO4 , 3 mM K Citrate, 

2% polyethylene glycol 6000, pH 7.5) and incubated at 37°C for 30 minutes. The 

presence of dsRNA was verified by comparison of annealed and single-stranded 

samples separated on an agarose gel.

2.15.1.3 dsRNA injections

dsRNA was microinjected in to the syncitial gonad of C. elegans using the procedure 

described above for DNA transformation (Section 2.10.1). A concentration of 0.5-1.0 

mg/ml dsRNA was injected. After overnight recovery of injected animals to allow 

clearing of embryos, worms were plated singly on to NGM OP50 plates and transferred 

daily.

2.15.2. Bacterially-mediated RNAi

2.15.2.1. Constructs for RNAi feeding

25 cycles of PCR on N2 mixed stage cDNA with Taq and primers pairs phy-1 HSC 

F/phy-1 HSC R, and phy-2 HSC F/phy-2 HSC R were used to produce full-length Ce- 

phy-1 and CQ-phy-2 cDNA fragments respectively. Products were cloned in to the pTAg 

vector and subcloned with Eco RV into CIAP treated pPD 129.36 (Timmons et al., 

2001). 900 bp of Ce-phy-3 sequence was PCR amplified for 30 cycles with Taq from 

N2 cDNA with primers T20B3.7 cLF and T20B3.7 NR. This was cloned in to pGEM-T 

and subcloned into pPD129.36 with Xba I and Xho I. 40 cycles of PCR were used for 

the amplification of Ce-phy-4, using Taq on N2 cDNA with primers phy-4 FI and phy-4
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R3. The 484 bp product was cloned in to pGEM-T and subcloned in to pPD 129.36 with 

Not I and Nco I. For Ce-phy-5 primers phy-5 cDNA F2 and phy-5 cDNA R3 were used 

for 30 cycles with Pfu on N2 cDNA to give a 560 bp product which was cloned in to 

pGEM-T, this clone was made by Laura Gilchrist as part of a BSc (Hons) project. Ce- 

phy-5 was subcloned from this plasmid into pPD129.36 with Not 1 and Nco I. The 

construct that was used to produce in vitro RNA for Ce-pdi-2 (see Section 2.15.1.1) was 

used to subclone Ce-pdi-2 sequences into the feeding vector using Xmn I and Pst I to 

excise the gene and ligated with Sma I and Pst I digested pPD129.36. C. briggsae phy-1 

sequences were PCR amplified with Taq from C. briggsae G16 mixed stage cDNA 

using primers CB phy-1 F and CB phy-1 R. The product was cloned into pGEM-T then 

in to pPD129.36 using Sal I and Nco I. Cb-phy-2 was cloned as for Cb-phy-1 using 

primers CB phy-2 F and CB phy-2 R. Cb-pdi-2 was cloned as above but using the 

primers CB pdi-2 F and CB pdi-2 R and subcloned using Sal I and Apa I. Cloning of the 

C. briggsae gene fragments was performed by Jimi-Carlo Bukowski-Wills as part of a 

BSc (Hons) project. All pPD129.36 clones were sequenced with primers L4440 F and 

L4440 R to ensure.integrity of double T7 sites in vector backbone and the identity of 

inserts.

2.15.2.2. Transformation of E. colt HT115(DE3)

E. coli HT115(DE3) cells (Timmons et aL, 2001) were made competent by inoculating 

an overnight culture of LB+ 12.5 |ig/ml tetracycline. LB (+tet) was then inoculated with 

a 1:100 dilution of the overnight culture and cells grown to mid-log phase (OD6oo=0.4). 

Cells were pelleted for 10 minutes at 3000 ipm at 4°C and gently resuspended in 0.5X 

original volume of cold, sterile 50 mM CaC^. After ice incubation for 30 minutes, cells 

were spun as before and resuspended with CaCb at 0. IX original volume. Cells were 

frozen at -80°C in 10% glycerol in single use aliquots. Transformation with pPD129.36 

constructs was performed using 1-100 ng/p-1 plasmid DNA with 100 pi of competent 

cells. Cells with DNA added were incubated on ice for 30 minutes then 37°C for 1 

minutes and ice for 2 minutes. Cells were then put in an orbital shaker for 1 hour with 

400 pi SOC. Transformed cells were selected on LB (+amp+tet). Transfonnants were 

PCR tested to confirm the presence of plasmid.
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2.15.2.3. RNAi feeding

The feeding method used was based on the optimised procedure described by Kamath et 

aly 2000 (Kamath et aL, 2000). Cultures were inoculated overnight with Amp (no Tet) 

and used to seed NGM plates containing 100 pg/ml Amp and 1 mM IPTG. These were 

left overnight at room temperature to induce T7 RNA polymerase. Nematodes were 

added and incubated at 25°C for 2 days.

2.16. Rescue of C. elegans mutant dpy-18 with Ce-phy-1

Ce-phy-1 control and coding sequences were amplified from N2 genomic DNA using 

27 cycles of PCR with primers Phy-1 (Not I) F and Phy-1 (Sal I) R and a mixture of Taq 

and Pfu polymerases in a unit ratio of 10:1. The 7 kb product was ligated with pGEM-T 

vector and sequenced over the cloning junctions to confirm identity. The clone 

contained sequences from -2006, relative to ATG, to position 227 after TA A, therefore 

including the Ce-phy-1 promoter, coding sequence and 3' UTR (containing the 

polyadenylation signal sequence and transfer site). This clone was injected at a 

concentration of 5 pg/ml in to strains carrying dpy-18 alleles e364 and e l096. As a 

marker of transformation, dpy-7-GFP was injected at 10 pg/ml and the final DNA 

concentration increased with pBluescript SKM at 100 pg/ml. Control injections were 

performed with dpy-7-GFP and pBluescript plasmids alone.

2.17. Cloning of phy-l alleles from dpy-18 strains

cDNA and genomic DNA were produced for dpy-18 alleles e364, el096  and bx26 using 

the methods described in Section 2.5.

2.17.1. Ce-phy-1 cloning from dpy-18{e364)

Full-length coding sequence clones were amplified from dpy-18{e364) with primers 

phy-1 HSC F and phy-1 HSC R following 27 cycles of PCR with Taq. Two pGEM-T 

clones from separate PCR reactions were analysed, one was fully double strand 

sequenced with primers pGEM forward, pGEM reverse, phy-1 IS IF, phy-1 IS 2F, phy- 

1 IS 3F, phy-1 IS 4F, phy-1 IS 5F, phy-1 IS IR, phy-1 IS 2R, phy-1 IS 3R, phy-1 IS 4R, 

phy-1 IS 5R, phy-1 F (pMal) and phy-1 R (pMal). The second clone was double-strand 

sequenced only over potential mutation regions. Full-length phy-1 genomic coding 

sequence was produced from dpy-18{e364) with primers phy-1 HSC F and phy-1 HSC
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R following 28 cycles of PCR using a 10:1 Taq/Pfu mix. The pGEM-T clone was 

double strand sequenced over the region of mutation using primers phy-1 IS 4R and 

phy-1 (new) GS F.

2.17.2. Ce-phy-1 clonmgfvomdpy-18{el096)

PCR on cDNA prepared from dpy-18(el096) with full-length Ce-phy-1 primers, phy-1 

HSC F and phy-1 HSC R, gave no product. Control PCRs were performed with the Ce- 

phy-1 primer combination on N2 cDNA and primers specific to Ce-phy-2 on e l096 

cDNA. PCR on genomic e l096 DNA with primers phy-1 (Not I) F and phy-1 (Sal I) R 

with a 10:1 TaqIPfu mix and 28 cycles produced a band approximately 800 bp smaller 

than N2. This was cloned into pGEM-T. The area of deletion was further defined by 

PCR using, phy-1 IS IF with Phy-1 (Sal I) R, and Phy-1 (Not I) F with phy-1 IS 5R. 

The genomic e l096 clone was then sequenced with primers pGEM forward, pGEM 

reverse, phy-1 PS IF, phy-1 PS 2F and phy-1 IS 5R to define the deletion. Transcription 

of Ce-phy-1 sequences from el096  mRNA was mapped by PCR using the full length 

antisense primer phy-1 HSC R in combination with a range of sense primers phy-1 F 

(pMal), phy-1 IS IF, phy-1 IS 2F, phy-1 IS 3F, phy-1 IS 4F and phy-1 IS 5F.

2.17.3. Ce-phy-1 cloning from dpy-18{hx26)

The dpy-18(bx26) allele was analysed by PCR cloning full-length coding sequence from 

cDNA prepared from this mutant strain with primers phy-1 BV F and phy-1 BV R using 

27 cycles and Pfu. This product was A-tailed, cloned in to pGEM-T and sequenced as 

above. The genomic sequence of Ce-phy-1 from bx26 genomic DNA was cloned over 

the proposed mutation region (performed by L. MuiTay, WCMP, Glasgow). PCR with 

primers phy-1 IS IF and phy-1 IS 2R with 30 cycles using Pfu gave a 1.6 kb product. 

This was cloned in to pCRScript and sequenced with phy-1 IS 2R.

2.18. Developmental time-course analysis of RNAi embryos

RNAi was performed by injection, worms left to recover for 10 hours then transferred to 

fresh plates. Embryos being produced after this time should be RNAi affected. Pre- 

gastrulation embryos were collected and washed in M9 and mounted on slides prepared 

with dried 2% agarose, covered with a coverslip and sealed with White soft paraffin 

(Pinewood Laboratories). Embryos were then monitored throughout development and
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images taken at intervals of 30 minutes using a Hamamatsu digital camera with a Zeiss 

Axioskop 2 microscope and Improvision Openlab software.

2.19. Sample preparation for scanning electron microscopy

RNAi feeding was performed on wild type N2 strain with Ce-pdi-2, and dpy-18{e364) 

strain with Ce-phy-2 on ten 9 cm plates with ten L4s added per plate. Plates were grown 

for 11 days at 25°C, then nematodes were washed with 10 mis PBS, allowed to settle on 

ice or spun very gently. The volume was taken down to approximately 150 p.1 and 500 

pi 2.5% gluteraldehde (25% stock grade 1, EM grade, diluted in PBS) was added and 

left for 90 minutes at room temperature. Nematodes were washed twice in PBS for 5 

minutes and volume reduced to 100 pi. Samples were taken to the Electron Microscopy 

Centre at the University of Glasgow. Samples were processed there by fixing in 1% 

osmium and dehydration in acetone, these were then processed in a critical point drier. 

Mounted samples were viewed using a Philips 500 scanning electron microscope.

2.20. Injection of col-19::gjp construct

Plasmid BA7-1, a gift from C. Shoemaker (AgResearch, New Zealand), contained the 

C. elegans collagen col-19 (ZK119.3) genomic sequence and 5' control sequence fused 

to gfp. Wild type N2 nematodes were injected with BA7-1 at 20 ug/ml along with pRF- 

4 as a marker for transformation. After confirming GFP fluorescence in transformed 

lines the BA7-1 plasmid was injected alone with 100 ug/ml pBluescript SKM into N2, 

dpy-18(e364) and phy-2(okl77) strains, and transgenic lines generated. Strains TP 12 

and TP13 were generated by integration of transgenic aiTays in N2 and dpy-18{e364) 

backgrounds respectively. Generation of integrated strains was performed by M. Thein 

and A. Page (both WCMP, Glasgow).

2.21. Antibody staining of nematodes

Nematodes were washed of plates in IX M9 buffer, washed and volume reduced to 100 

pi. Poly-L-lysine microscope slides were prepared by adding a drop of a 0.1% w/v 

solution of poly-L-lysine (Sigma) to slides and baking at 80°C for 30 minutes. 

Nematodes were added to slides, covered with a coverslip and immediately frozen on a 

cold block in dry ice for 15 minutes (or overnight). After removal of the coverslip slides 

were immersed in -20°C methanol for 10 minutes, followed by -20°C acetone for 10
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minutes. Slides were air dried, washed with IX PBST (PBS with 0.1 v/v Tween-20), 

blocked with 1% w/v dried milk in PBST and washed again. The anti-DPY-7 

monoclonal antibody (a gift from I. Johnstone, WCMP, University of Glasgow) was 

raised in mice and is specifically active against the unique C-terminal domain of the C. 

elegans collagen DPY-7 (McMahon et aL, 2003). This was used at a concentration of 

1/50 dilution of anti-DPY-7(5b) in PBST, with 100 pi of diluted antibody used per 

slide. This was left for 1 hour at room temperature (or overnight at 4°C), followed by 

washing in PBST. 100 pi of a 1/100 dilution of secondary antibody, Alexa Flour 488 

goat anti-mouse IgG (Molecular probes), was added and incubated at room temperature 

for 1 hour out of the light. Slides were washed, 14 pi mount solution (50% glycerol, 

0.5X PBS, 2.5% DABCO (Sigma) added, and coverslips sealed with nail varnish. 

Nematodes were viewed as described.

2.22. Rescue experiments with C. elegans dpy-18 strains by expression of 

alternative a  subunits

2.22.1. Construction of vector pAW l

Vector pAW l was constructed for the expression of alternative ot subunit coding 

sequences with the 5' and 3' sequences from Ce- phy-1. The Ce-phy-1 promoter from 

plasmid phy~l,pPD95.03 (see Section 2.13.1) was excised with Pst I and Bam HI and 

the 2.8 kb fragment cloned into pBluescript SKM. Ce-phy-1 3’ UTR sequences were 

generated by PCR from N2 genomic DNA using primers phy-1 3'UTR F {Sac I) and 

phy-1 3'UTR R {Sac I) with 27 cycles and Vent polymerase. This product was cloned 

into pCRScript, digested with Sac I, cloned into plasmid phy-1 prom,pBluescript SKM 

and selected for the correct orientation of the 3' UTR insert. The resulting construct was 

sequenced at the junctions of inserts with the primers 1224 and M13 reverse and named 

pAWl.

2.22.2. Human a  subunit rescue constructs

Adult human lung cDNA was produced from adult human lung total RNA (Stratagene). 

Full-length cDNA sequences from human prolyl 4-hydroxylase a  subunits I and II were 

amplified from this template by PCR. a  subunit I was produced with the primers hP4H 

a l  F {Bam HI) and hP4H a l  R {Not I) using Pfu Turbo polymerase (Stratagene) with 30 

PCR cycles. Subunit a l l  was amplified similarly using the primers hP4H a ll  F {Bam
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HI) and hP4H a l l  F R {Not I). Both products were cloned into pCRScript then 

subcloned into vector pAW 1 with Bam HI and Not I. Clones were sequenced at their 

junctions using primers M13 Reverse and pAW Seq F.

2.22.3. Human a  subunit rescue constructs with synthetic intron sequences

The synthetic intron (SI) insertion protocol and intronic sequence used were based upon 

a protocol received from A. Fire (Carnegie Institution of Washington, Baltimore). Two 

complementary oligos, IVS sense and I VS antisense, were designed to represent a 

typical C. elegans intron, containing the required splice donor and acceptor sequences to 

be recognised by the C, elegans splicing machinery. As the double-stranded oligo is 

ligated into a blunt site the reading frame is unaltered after its excision. Equal volumes 

of these primers were mixed, heated to 65°C for 5 minutes then allowed to cool slowly 

to room temperature, to allow annealing of oligos to form a double-stranded blunt ended 

section of DNA. The construct hP4H a l cDNA, pAW 1 contains a single Bsa BI 

recognition site within the coding region of a l. However the enzyme is méthylation 

sensitive and DNA from a l  clone prepared with standard strains of E. coli is not 

cleavable with Bsa BI. Plasmid hP4H a l  cDNA, pAWl was therefore transformed into 

the E. coli strain GM2163 which is dcm and dam minus. Bsa BI digestible plasmid 

DNA was purified from this strain. Approximately 10 ng of linearised plasmid was then 

ligated with a large molai’ excess of the annealed SI (approximately 4000 times) by 

adding 250 ng SI in a 10 |Lil reaction. Bsa BI was included in the ligation reaction to 

reduce the background resulting from self-ligation of the non-CIAP treated plasmid. 

Positive clones for hP4H a l, SI, pAWl were identified by PCR, using a gene-specific 

primer in combination with a single stranded IVS primer. These were then sequenced 

with hP4H a l  primer to confirm the presence of the insert. hP4H a l l  cDNA, pAWl was 

cut with restriction endonuclease Stu 1 and the synthetic intron ligated using a similar 

process to that described above. The construct was sequenced with hP4H a ll  IS IF.

2.22.4 Ce-phy-2 dpy-18 rescue construct

C. elegans phy~2 cDNA was cloned by PCR from mixed stage cDNA using primers 

phy-2 FL F {Xba I) and phy-2 FL R {Sac II). This product was cloned into pCRScript, 

subcloned into pAW l by digestion with Xba I and Sac II and sequenced with M13 Rev.
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2.22.5. Microinjection of C  elegans dpy-18 with alternative a  subunits

Human a  cDNA and SI constructs, and Ce-phy-2 rescue clones were injected into dpy- 

18(e364) at concentrations of 100 |ig/ml with the plasmid dpy-7-GFP at 5 |ig/ml as a 

marker and injection mixes made up to a final concentration of 150 ftg/ml with 

pBluescript SKM. The Ce-phy-2 rescue clone was also injected at the lower 

concentration of 1 0  p,g/ml.

2.22.6. Single worm RT-PCR of human a  subunit rescue transgenic lines

Single worms (transformed or non-transformed) were picked onto unseeded plates and 

washed in a pool of IX M9. These were picked into a 0.2 ml PCR tube in 2 jal DEPC 

treated H2O and frozen at -80°C. Lysates were prepared by adding 1 pi of single worm 

lysis buffer (SWLB) plus proteinase K (final concentration 0.5 fig/fil) with an overlay of 

mineral oil. These were incubated at 65°C for 1 hour followed by 95'^C for 15 minutes. 

1 jal of Promega DNAse I (RNAse free RQl lunit/|il) was added and reaction incubated 

at 37°C for 30 minutes and heat inactivated for 15 minutes at 95°C. The QIAGEN One 

Step RT-PCR procedure was used to attempt RT-PCR amplification from human a  

subunit mRNA. This procedure allows the reverse transcription and PCR to be 

performed as a one-step procedure by use of an enzyme mix containing Omniscript 

(QIAGEN) and Sensi script (QIAGEN) reverse transcriptases along with HotStail DNA 

polymerase (QIAGEN). This mix of reverse transcriptase enzymes enables transcription 

from a range of RNA concentrations, thus allowing for production from picogram 

concentrations of starting RNA. The DNA polymerase included is inactive during the 

reverse transcription step and is activated after a heating step at 95°C, Therefore the 

polymerase should not interfere with the reverse transcription step and the production of 

non-specific and primer-dimer products in the first cycle is reduced. PCR conditions 

used were as suggested in the QIAGEN protocol with IX Q solution being included, a 

final concentration of 6  mM was used for each primer. 21 p,l of mix was added to 4 pi 

of worm lysate. Cycling conditions were:- 

50°C -30 minutes} 1 cycle 

95°C -15 minutes} 1 cycle

92°C - 1 minutes, 62°C - 2 minutes, 72°C - 2 minutes} 40 cycles 

72°C - 10 minutes} 1 cycle.
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Primers used for hP4HaI, SI, pAW 1 lines were hP4HaI cDNA F and hP4HaI SW RT 

R or hP4HotI SW RT F and hP4HaI SW RT R. Two lines were tested one with each set 

of primers. One line of hP4HaII, SI, pAW l was tested with hP4HaII cDNA F and 

hP4HaII SW RT R only. Primers tested on plasmids to confirm that SW RT R primers 

which span the synthetic intron region were positive on cDNA clones and negative on 

SI containing clones.

SWLB: 10 mM Tris (pH 8.0), 50 mM KCl, 2.5 mM MgClz,

0.45% Tween-20, 0.05% gelatin. Made without Tween- 

20, autoclaved, Tween-20 added, stored at -  20°C.

2.22.7. Westerns for human a  subunit transgene expression

Details of buffers, SDS PAGE and western blotting can be found in Sections 2.9 and 

2.25. GFP positive and negative worms (20-30 animals) from human a  SI rescue 

experiments were collected in 50 pi of IX M9. Whole plates were also washed along 

with a plate of dpy-18 (e364) for comparison. Woims were pelleted and washed with 

IX M9 and pellets frozen at -80°C. To the whole plate extracts P4H buffer was added 

to IX concentration, samples homogenised and spun for 30 minutes at 4°C. 

Supernatants were removed and boiled in IX NuPAGE sample buffer and 5% DTT. 

Pellets were resuspended and boiled in IX P4H buffer, IX SDS sample buffer and DTT. 

GFP positive and negative worm collections were boiled in IX SDS sample buffer and 

5% DTT. Samples were run on SDS PAGE gels and western blotted. One line for each 

human a-subunit was tested using antibodies K17 (anti human a l  polyclonal antibody 

raised in rabbits) at 1/3000 dilution and a 1/1000 dilution of 95K4B (anti human a ll  

monoclonal antibody raised in mouse). Both these antibodies were a gift from J. 

Myllyharju, Collagen Research Unit, Oulu, Finland.

2.23. Examination of C. elegans mutant let-44 as a candidate Ce-pdi-2 mutant

2.23.1. let-44 strain GR1029

Strain GR1029 has the genotype let-44(mg41) lon-2{e678)X:mnDp31{X;f). The let-44 

and lon-2 mutations are balanced by a free duplication that contains a wild-type copy of 

both loci. Approximately a third of animals from this strain loose the free duplication 

and arrest as dead embryos due to the let-44 mutation. Animals that retain the free
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duplication are phenotypically wild type and segregate wild type and dead embryos. 

Strain GR1029 was investigated to determine if the locus let-44 was mutant for Ce-pdi-

2.

2.23.2. let-44 developmental timecourse analysis

let-44 embryos was examined at regular time intervals throughout development to 

determine if their embryonic anest phenotype was similar to that of Ce-pdi-2 RNAi 

treated nematodes. The procedure used here is described in the developmental 

timecourse analysis of RNAi treated embryos (Section 2.18). As approximately 33% of 

GR1029 embryos observed were let-44 mutants any embryos that went on to hatch were 

excluded from analysis.

2.23.3. Ce-pdi-2 genomic sequence from let-44 mutants

To generate genomic Ce-pdi-2 sequence from let-44 mutants, GR1029 hermaphrodites 

were allowed to egg lay for 8  hours. These embryos were then left to develop for 16 

hours. After this period any unhatched embryos were considered dead, the vast majority 

of which should be let-44 mutants. Single let-44 embryos were transferred using a 

drawn out glass capillary to a watch glass and washed in IX M9 buffer. Embryos were 

then singly transferred using a capillary containing Chitanase (20 mg/ml) in salts and 

put in thin walled PCR tubes. These were frozen at -8 0 °C and 4 |xl single worm lysis 

buffer (SWLB) with proteinase K added along with a mineral oil overlay, and the 

reaction incubated at 65°C for 1 hour followed by 100°C for 15 minutes. This treatment 

lysed the embryos releasing their DNA, which was used as a template for PCR using 

Taq polymerase. Primers pdi-2 HSC F and pdi-2 HSC R resulted in the wild type sized 

2 kb product. PCRs were repeated with proofreading polymerases, however no products 

were obtained. Taq products were isolated and cloned into vector pCR2.1 TOPO. 

Clones were sequenced with M l3 reverse, pdi-2 IS IF, pdi-2 IS 2F, pdi-2 IS IR and 

pdi-2 IS 2R and pGEM forward. This was repeated for three individual embryos.

2.23.4. Ce-pdi-2 cDNA sequence from let-44 mutants

Ce-pdi-2 sequence was also generated from let-44 mRNA by RT-PCR from pools of 

embryos. Attempts were initially made to clone Ce-pdi-2 sequences from let-44 mutants 

using 1-3 embryos, generated as described above, lysed in SWLB with proteinase K
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followed by DNase treatment. These were then used as a template for reverse 

transcription and PCR using the QIAGEN One Step RT-PCR procedure. This approach 

was however unsuccessful in generating consistent results. Instead a pool of 

approximately thirty let-44 embryos was collected, washed twice with 200 p,l PBS, 

resuspended in 180 p,l lysis buffer (0.5% SDS, 10 mM EDTA, 10 mM Tris pH 7.5), 10 

p\ 2-mercaptoethanol and 10 jil proteinase K (10 mg/ml) added, and stored at -80°C. A 

modified version of the Total RNA Isolation Reagent (TRIR) (ABgene) protocol was 

followed, which allows the isolation of RNA using a formulation of guanidine salts, 

urea and phenol. Embryos were lysed by incubation at 55°C for 1 hour then cooled to 

4°C, Total RNA was isolated using the TRIR, with the lysis step above replacing the 

suggested homogenisation procedure, and with 2.5X volume of reagent used rather than 

the suggested 5X volume. RNA was resuspended in DEPC treated water and 1/100 

volume RNasin (Promega 30 units/p,l). RNA was divided between six sepaiate RT- 

PCRs and the QIAGEN One Step RT-PCR procedure used as described previously 

using the cycling conditions below and the primers pdi-2 HSC F and pdi-2 HSC R. The

1.4 kb products were cloned into vectors pGEM-T or pCR2.1 TOPO and sequenced 

with vector specific sequencing primers and pdi-2 IS IF, pdi-2 IS 2F, pdi-2 IS IR and 

pdi-2 IS 2R.

PCR conditions :- 

50°C -30 minutes} 1 cycle 

95°C -15 minutes} 1 cycle

92°C - 1 minutes, 56°C - 2 minutes, 72°C - 2 minutes} 40 cycles 

72°C - 10 minutes} 1 cycle.

2.23.5. let-44 rescue experiments with Ce-pdi-2

Repair of let-44 phenotype by microinjection of the wild-type copy of the mutated gene 

would result in the production of viable worms that have lost the free duplication but 

contain the introduced free array. Progeny from injections in which this has occurred 

would be identifiable due to the presence of the lon-2 genetic locus that would result in 

worms with a phenotypically long appearance, lon-2 worms aie typically 50% longer 

than wild type worms at all stages.
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2.23.5.1. Cosmid rescue of let-44

To investigate the potential of Ce-pdi-2 to rescue the let-44 phenotype the strain 

GR1029 was injected with wild type Ce-pdi-2 and progeny scored for presence of Lon. 

Cosmid C07A12 contains the entire coding region, promoter and 3' UTR regions for 

Ce-pdi-2 at position C07A12.4. Cosmid DNA was prepared by the same procedure used 

for plasmid DNA preparations. The cosmid was checked for the presence of Ce-pdi-2 

sequences by PCR using primers pdi-2 PF and pdi-2 Resc R and microinjected into the 

strain GR1029 at a concentration of 1 pg/ml or 5 pg/ml, with 5 pg/ml dpy-7-GFP 

marker and 120 pg/ml pBluescript SKM.

2.23.5.2. Plasmid rescue of let-44

A Ce-pdi-2 plasmid designed to rescue let-44 phenotype was constructed. Primers pdi-2 

PF and pdi-2 Resc R were used with 28 cycles of PCR using 10:1 TaqiPfu mix. This 

fragment coiTesponded to position -2628 relative to translational initiation, includes all 

of coding sequence and 1112 bases after TAA (included predicted poly-adenylation 

signal sequence). The product was cloned into pGEM-T vector and sequenced with 

pGEM forward. pGEM reverse and pdi-2 IS IF. Plasmid DNA was injected at 5 pg/ml 

with 10 pg/ml dpy-7-GFP and pBluescript SKM at 100 pg/ml. Transgenic worms were 

not taken to F2.

2.24. Baculovirus expression

The baculovirus expression vector system (Crossen and Gruenwald, 1998) was used for 

the expression of proteins. This results in high expression levels, due to host cell gene 

expression shutoff and expression from a strong late viral promoter, and post- 

translational modification of the desired protein. In addition, this system enables co­

expression of multiple proteins by co-infection of cells with more than one recombinant 

virus. The Pharmingen system used here utilises the Autographa califomica nuclear 

polyhedrous virus (AcNPV). In tissue culture, baculovirus genes, such as polyhedrin, 

ai'e non-essential and can be replaced by a heterologous gene. As insertion directly into 

viral genome is not easy, a transfer vector is used where genes can be cloned into the 

vector, mixed with AcNPV DNA and the heterologous gene recombined into the viral 

genome by virtue of homologous flanking regions. Modification of AcNPV DNA by 

deleting the non-essential polyhedrin gene increases the efficiency of the process, a
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lethal deletion downstream from this locus is also included. Co-transfection of insect 

cells {Spodoptera frugiperda) with a transfer vector, containing the gene to be 

expressed, flanked by sequences suiTounding the polyhedron locus, results in recovery 

of the lethal phenotype and insertion of the gene into AcNPV DNA. This vector 

contains a polyhedrin promoter, lacks the polyhedrin coding sequence, but contains 

flanking sequence allowing homologous recombination into AcNPV DNA and rescue of 

the lethal mutation. This results in high level expression of the heterologous gene from 

the polyhedrin promoter, and expression of a non-fused protein.

2.24.1. Insect cell expression construct for Ce-phy-2

Ce-phy-2 was cloned from N2 mixed stage cDNA by PCR with primers phy-2 BV F 

{Not I) and phy-2 BV R (new) {Xba F) for 30 cycles with Pfu. The product was cloned 

into pCRScript and subcloned with Xba I and Not I in to the vector pVL1392. 

Sequencing was carried out with primers phy-2 BV F and phy-2 BV R, phy-2 IS IF, 2F, 

IR and 2R. The Collagen Research Unit, Oulu, Finland, perfonned the expression of 

Ce-PHY-2 in insect cells.

2.25, Native extract analysis of C  elegans and B, malayi worms and insect cell 

samples

Protein extracts were made from a 500 pi volume of concentrated C. elegans, and from 

approximately 100 adult female B. malayi parasites, collected from the peritoneal cavity 

of jirds (a gift from R. Maizels and Y. Harcus ICAPB, University of Edinburgh). 

Worms were disrupted using a glass hand held homogeniser in IX  P4H buffer with 

DTT and protease inhibitors added fresh prior to use. Samples were left on ice for 2 

hours, spun and supernatants and Native sample buffer added to IX concentration. 

Insect cell extracts were made from 10 ml cultures with cells washed in PBS. Cell 

pellets were then resuspended in 500 pi Homogenisation buffer, homogenised, spun and 

supernatant analysed in IX Native sample buffer. Samples were separated on 4-12% 

Tris Glycine polyacrylamide gels (Invitrogen) in IX Native mnning buffer (Invitrogen), 

gels run overnight at 4°C with 20 volts. Proteins were transferred to PVDF membranes 

by Western blotting, perfonned as described in Section 2.9.3. For C. elegans PHY-1, 

PHY-2 and PDI-2 detection the corresponding peptide antisera were used at 1/5000
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dilution in PBST. For Bm-PHY-1, antisera was used at 1/4000 dilution in PBST (mix of 

two rabbits final bleeds).

4 X P4H buffer: 0.4 M NaCl, 0.4 M Glycine, 40 mM Tris pH 8.0, 0.4%

Triton-XlOO, make up in H^O, pH to 7.8 (at 4°C). DTT 

added to a final concentration of 40 pM and protease 

inhibitors PMSF (to 4mM), EDTA (to 4mM), EGTA (to 

4mM), E64 (to 8 pM) Pepstatin (to 0.4 pM) added. 

Homogenisation buffer: 67mM Tris, 267 mM NaCl, 0.2% Triton-X 100.

4X Native sample buffer: 2mls of 1.25 M Tris, 4 mis glycerol, 0.96 mg

bromophenol blue, make up to 1 0  mis with H2O).

lOX Tris-glycine

native running buffer: 29g Tris Base, 144g glycine, make to 1 litre with H2O.

2.26. PCR mapping of Ce-phy-3, Ce-phy-4 and Ce-phy-5

For Ce-phy-3 sense primers T20B3.7 cF, T20B3.7 cSF and T20B3.7 cLF were used for 

PCR in combination with the antisense primer T20B3.7 NR, firstly on genomic DNA 

then on cDNA to map the transcribed region of the gene. Ce-phy-4 sense primers phy-4 

FI and phy-4 F2 were used in PCR with phy-4 R l, phy-4 R2 and phy-4 R3 in all sense 

and antisense combinations on genomic and cDNA. Ce-phy-5 sense primers phy-5

cDNA FI and phy-5 cDNA F2 were used for PCR with anti sense primers phy-5 cDNA

R l, phy-5 cDNA R2 and phy-5 cDNA R3 in all possible combinations with genomic 

and cDNA templates. Attempts were also made to map Ce-phy-4 and Ce-phy-5 by SL 

PCR as described in Section 2.12.

2.27. Cloning of Bm-phy-1 cDNA

2.27.1. B. malayi ESTs

SW3D9CA480SK was supplied as a dried Taq PCR product from the amplification of 

bacteriophage clones with the primers T7 and T3. This 500 bp fragment was 

resuspended in 10 ju,l H2O and cloned into pCRScript. Multiple attempts were made to 

sequence this clone but were unsuccessful. MBAFCX8G05T3, MBAFCZ7H09T3 and 

SWAMCAC30B11SK (Bm-PDI EST) were supplied as bacteriophage. 5 ptl of phage
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was amplified by PCR using primers T7 and T3 at 100 ng/p,! in a 50 |il reaction using 

Taq polymerase with the following conditions

95°C for 3 minutes} 1 cycle

94°C for 15 seconds, 55°C - for 20 seconds, 72°C - 3minutes} 35 cycles 

72°C for 10 minutes} 1 cycle.

PCR products of 1.5 kb and 1.4 kb respectively were cloned into pGEM. Clone X8G5, 

pGEM was sequenced with primers pGEM forward, pGEM reverse, X8G5 FI, X8G5 

R l, X8G5 F2, X8G5 R2. Z7H9, pGEM was sequenced with pGEM forward and pGEM 

reverse primers.

2.27.2. Phage cDNA library screens 

2.27.2.1. Preparation of plating cells

A single colony of LE392 from a freshly streaked LB agar plate was added to 20 mis of 

LB with 200 pi 20% maltose and grown for 16 hours. Cells were pelleted by 

centrifugation for 5 minutes at 6000g and resuspended in 10-15 mis filter sterile lOmM 

MgS0 4  to an OD^oo of 2 (approximately 1.5 X 10  ̂cells per ml).

2.27.2.2. Library titres

B. malayi adult male cDNA library (SAW94NLBmAm) was titred by taking serial 1/10 

dilutions of phage libraiy stock in phage buffer (20 mM Tris-HCl pH7.4, 100 mM 

NaCl, 10 mM MgS0 4 ). 20 pi of 1/100 to 1/100,000 dilutions were added to 0.1 ml 

LE392 plating cells in a 15 ml falcon tube, mixed gently and left at room temperature 

for 15 minutes. Top agarose was melted and kept at 42°C. 3 mis of top agarose was 

added to falcon tube, mixed gently and plated on 100 mm prewarmed LB plates. After 

setting, plates were incubated at 37°C overnight. 20 pi of 1/10,000 dilution gave 100 

plaque forming units (pfu) therefore library titre is 5 X 10  ̂pfu/ml.

2.27.2.3. Radiolabelled probe

A 312 bp PCR product was generated with Taq polymerase and the primers X8G5 FI 

and BM N Phy Reverse covering the predicted 3' coding region of Bm-phy-1. This was 

cloned into pGEM and sequenced. Clone Bm-phy 3' frag, pGEM was digested with Sac
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II and Spe I to liberate insert. A Prime It II Random primer-labelling kit (Stratagene) 

was used to label probe. Random 9-mer primers anneal to multiple sites along the length 

of DNA. The Klenow fragment of DNA polymerase I incorporates nucleotides, one of 

which is radioactive, into the primer template complexes. Using 3' exonuclease deficient 

Klenow results in rapid incorporation of nucleotides. 100 ng of gel purified insert from 

clone Bm-phy 3' frag,pGEM was labelled using 10 pi random oligonucleotide primers 

in a reaction volume of 34 pi. This was heated to 100“C for 5 minutes then 5 pi of 5 X 

dCTP buffer, 5 pi of labelled a^^P dCTP (lOmCi/ml) and 1 pi of Exo" Klenow enzyme 

added. The reaction was incubated at 37°C for 30 minutes and stopped by addition of 2 

pi stop solution. The probe was purified using NucTrap probe purification column 

(Stratagene) with Push column Beta shield Device (Stratagene) that removes 

unincorporated nucleotides from the probe. The column was equilibrated with 70 pi IX 

STE (100 mM NaCl, 20 mM Tris pH 7.4, 10 mM EDTA). The probe volume was made 

up to 70 pi with IX  STE and applied to the column and collected along with two 

washes with 70 pi IX STE. The radiolabelled probe was denatured at 100“C for 5 

minutes in a screw top tube then rapidly cooled on ice immediately before use. 50 pi of 

probe was used per hybridisation bottle.

2.27.2.4. Library screen

The bacteriophage library was plated on two 25 cm x 25 cm square LB plates. For each 

plate 200 pi of 1/1000 dilution of phage stock with 1 ml of plating cells in a 50 ml 

falcon tube were processed as above using 40 mis of top agarose. The total number of 

plaques screened was approximately 2 x 10"̂ . Plates were left at 4°C for a few hours to 

harden top agaiose. Hybond-N nylon membranes (Amersham) were cut to size and 

labelled to identify plate and contact side. Dry filters were placed carefully onto plates, 

labelled with inked syringe pricks and left for 1 minute then removed. Duplicate plaque 

lifts were performed from each plate with the second filter left in contact with the plate 

for 2 minutes. Filters were processed by immersion in the following solutions; 1.5 M 

NaCl, 0.5 M NaOH for 2 minutes, 1.5 M NaCl/0.5 M Tris pH 8  for 1 minute, 1.5 M 

NaCl/0.5 M Tris pH 8  (second container) for 1 minute, 20X SSC for 1 minute, 1 M 

NH4AC, IX SSC for 1 minute. Filters were air-dried on Watmann 3MM paper for 1 

hour then placed DNA side up in UV cross-linker. Pre-hybridisation and hybridisations 

were performed at 60°C as described in Section 2.14.4.
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2.27.2.5, Phage plaque elution

Positive plaques were identified by first orientating the autoradiographs on the filters 

using luminous markers (Stratagene), autoradiographs where then marked where ink 

marks appeared on the filter, this then enabled the autoradiograph to be orientated on 

plates and positive plaques located. The position of positive plaques was checked with 

the duplicate filters. Only plaques positive on both filters were used. Eleven positive 

plaques were selected for further screening. These were picked with a sterile Pasteur 

pipette by plugging the plate and adding this plug to 5 mis of phage dilution buffer with 

a drop of chloroform. Plugs were left for at least 4 hours at 4°C in the dark to allow 

elution of the phage from the agarose.

2.27.2.6. Subsequent library screening rounds

All positive phage clones were titred as before then plated on 9 cm plates with 0.1 mis 

of LE392 cells and 3 mis top agai" and left overnight at 37°C. Rounds of plaque lifts, 

hybridisations and isolations were performed as before until approximately 1 0 0 % of 

plaques were positive. This required nine clones to be screened to the tertiary stage and 

two to the quaternary stage.

2.27.3. Pbage DNA preparation

Liquid phage preparations and DNA isolations were performed following the 

LambaSorb Phage Adsorbant (Promega) protocol. This utilises a reagent consisting of a 

conjugate of Staphylococcus aureas cells and rabbit polyclonal antibody directed 

against lambda bacteriophage particles which allows purification of phage particles 

from crude lysates. Phage were grown on LB agar plates and single well isolated phage 

plaques picked by removing a plug of agar into 1 0 0  mis of phage buffer, which was 

then left at 4°C. LE392 cells were freshly grown in 0.2% maltose and 100 mM MgSO^. 

500 lull of LE392 culture was incubated with the agar phage plug at 37°C for 20 minutes 

then added to lOOmls of LB + 100 mM MgS0 4  in 37°C orbital shaker until bacterial 

lysis occurred. Phage particles were isolated with LambaSorb Phage Adsorbant 

(Promega) and heated to release phage DNA. DNA was phenol:chloroform extracted, 

precipitated with ammonium acetate and ethanol and RNase A treated as described in 

the protocol. Eleven clones were subcloned into the plasmid vector pBluescript SKM 

using Eco RI and Xho I. Two clones of around 1.6 kb were selected and sequenced
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completely on both strands. Primers used were 1224, M13 reverse, BM phy 1.1 IS IF, 

2F, 3F and BM phy 1.1 IS IR, 2R, 3R(B). Nine clones were sequenced with 1224 and 

M l3 Reverse.

2.27.4. Bm-phy-1 5 ’ RACE

The amplification of the 5' end of Bm-phy-1 was performed using the Rapid 

Amplification of cDNA ends kit (Gibco BRL). This method involves conversion of total 

RNA to cDNA using a gene specific antisense oligonucleotide and an RNAase H 

derivative of Moloney monkey leukemia virus reverse transcriptase. Terminal 

deoxynucleotidyl transferase (TdT) is used to transfer a homopolymeric tail to the 3' end 

of this cDNA (which represents the 5' end of mRNA). Nested PCR using a further two 

gene specific primers in combination with primers complementary to the added 

homopolymeric tails, provided in the kit, are used to amplify the 5' end of the cDNA 

sequence.

Total RNA was extracted from three B. malayi adult females using Trizol reagent 

(Gibco BRL Life Technologies). The solution was drawn through a narrow gauge 

needle several times then purified as described in Section 2.5.3. 350 ng of total RNA 

was used in the reverse transcription reaction using 2.5 pmols primer BM phy RACE 1. 

RNA and primer were incubated at 70°C for 10 minutes then cooled before addition of 

other components. The reaction was performed in IX PCR buffer (Gibco) with MgCL 

and dNTP’s (20 mM Tris-HCl pH8.4, 50 mM KCl, of 2.5 mM MgCL and 400 p,M each 

dNTP), incubated at 42°C for 1 minute, then 50 minutes at 42°C using 200 units of 

Superscript II reverse transcriptase. Products were purified using the QIAGEN PCR 

purification procedure. TdT tailing was performed using all purified reverse transcribed 

DNA in IX Tailing buffer with dCTP (10 mM Tris-HCl pH8.4, 25 mM KCl, 1.5 mM 

MgCL, 200 |iM dCTP). The reaction was incubated at 94°C for 3 minutes, then 37°C 

for 10 minutes with Tei*minal deoxynucleotidyl transferase (Gibco). A tenth of this 

reaction was used as a template for PCR, with Taq using primers 5' RACE Abridged 

anchor primer (Gibco) and BM phy RACE 2. 1 p,l of a 1:10 dilution of this PCR product 

was used in a subsequent reaction using nested primers 5' RACE Universal 

amplification primer (Gibco) and BM phy RACE 3 with Taq, The 454 bp 5' RACE 

product was cloned into pCR 2.1 TOPO and sequenced.
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2.28. Genomic sequencing of Bm-phy-1

Three clones were generated by PCR using primers BM phy Res F {Bam HI) and BM 

phy Res R {Not I) on B. malayi genomic DNA (made from 10 adult females received 

from Rick Maizels in ICAPB Edinburgh) with Pfu or Taq polymerases. These were 

made by cloning PCR products into pCRScript (then subcloning in to pAW l) or 

pCR2.1 TOPO. These clones were then sequenced with M13 reverse, pGEM forward, 

pAW l Seq F, BM phy IA  IS IF, 2F, 3F, IR, 2R and 3R(B); and BM phy G seq IF, 2F, 

3F, 4F, IR, 2R, 3R.

2.29. Construct for baculovirus expression of Bm-phy-1

Full length Bm-phy-1 cDNA was cloned by PCR from B. malayi cDNA (cDNA from A. 

Page, WCMP, Glasgow) using Pfu polymerase and primers BM phy-1 BV F and BM 

phy-1 BV R. The product was cloned into pCRScript cloning vector then subcloned into 

vector pVL1392. Clone Bmphy-1, pVL1392 was sequenced with primers BM phy 1.1 

IS IF, 2F, 3F, IR, 2R and 3R(B). Details of vector and expression system are given in 

Section 2.24. The Collagen Research Unit, Oulu, Finland, performed the expression of 

Bm-PHY-1 in insect cells

2.30. Glycosidase treatment of Bw-PHY-1

Carbohydrates were removed from protein samples by treatment with PNGase F (NEB). 

IX dénaturation buffer (NEB) was added and incubating at 100°C for 10 minutes then 

Buffer G7 (NEB) was added to IX concentration and NP-40 (NEB) to 1%. 2 pi of 

enzyme was added per reaction. For each sample a minus enzyme control was included, 

with samples being otherwise treated identically. Samples were incubated at 37°C 

overnight, separated by SDS PAGE and Western blotted (performed as described in 

Section 2.9.3). Anti-Bm-PHY-1 antibody was a 1/4000 dilution of a mixture of rabbits 

2624 and 2625 final bleeds in PBST.

10 X G7 buffer: 0.5 M Sodium phosphate (pH 7.5)

10 X Denaturing buffer: 5% SDS, 10% 2-mercaptoethanol

83



Chapter 2_______________________________________________Materials and methods

2.31. C. elegans dpy-18 rescue experiments with Bm-phy-1

2.31.1. Bm-phy-1 rescue constructs

Bm-phy-1 coding sequence was cloned from both cDNA (cDNA from A. Page, WCMP, 

Glasgow) and genomic DNA (made from 10 adult females received from Rick Maizels, 

ICAPB, Edinburgh) by PCR with the primers BM phy Res F {Bam HI) and R {Not I) 

using Pfu and Pfu Turbo polymerase respectively. Products were cloned into pCRScript 

then subcloned with Bam HI and Not I into the vector pAW l (see Section 2.22.1). The 

clones were sequenced over the coding sequence insertion site with the primers pAW 

Seq F and M13 Reverse. A synthetic intron was inserted into clone BM phy-lcDNA, 

pAWl using the process described (Section 2.22.3). The clone was digested with Stu I 

which cuts once within Bm-phy-1 coding sequence and not at any other site in the 

plasmid. Linearised plasmid was ligated with the double-stranded synthetic C. elegans 

intron and the construct was sequenced to check for correct insertion of the intronic 

region.

2.31.2. Microinjection of Bm-phy-1 rescue constructs

The Bm-phy-1 cDNA rescue clone was injected into dpy-18{e364) at concentrations of 

10 pg/ml and 100 pg/ml with the plasmid dpy-7-GFP at 5 pg/ml as a marker; injection 

mixes were made up to a final concentration of 150 pg/ml with pBluescript SKM. 

Transformants were selected by GFP fluorescence and over 5 semi-stable transmitting 

lines were examined for each concentration. The Bm-phy-1 genomic rescue clone was 

injected into dpy-18{e364) at concentrations of 10 pg/ml, 30 pg/ml and 100 pg/ml as 

above. The construct Bmphy-1 SI, pAWl was injected in to dpy-18{e364) at 10 pg/ml 

and 1 0 0  pg/ml as above and at least five lines scored for rescue for each set of 

conditions.

2.31.3. Bm-phy-1 single worm RT-PCR from transformed lines

Single worm RT-PCR (see Section 2.22.6) was perfoiTned with primers BM phy Res F 

and BM phy-1 SWRT R on two different BM phy-1 SI, pAW l lines (injected at 100 

|Lig/ml) and on one Bm-phy-i genomic rescue line (injected at 1 0  fig/ml).
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2.31.4. Western blotting for transgene expression

Details of buffers, antibodies, SDS PAGE and Western blotting can be found in 

Sections 2.9 and 2.25. Two different synthetic intron containing cDNA lines, (100 

pg/ml) and one Bm-phy-1 genomic rescue line (10 pg/ml) were tested by collecting 

GFP positive and negative worms. One synthetic intron containing cDNA (100 pg/ml) 

was tested by extracting protein from a mixed population of transformed and non­

transformed worms from a whole plate and comparing to dpy-18{e364). Protein were 

run on SDS PAGE gels, Western blotted and probed with anti-Bw-PHY-l antibody.

2.32. B. malayi developmental timecourse RT-PCR

A panel of cDNAs made from daily extracts of infected jirds (up to day 14 post 

infection, after which 2-4 day extracts were taken) (Gregory et al., 2000) (a gift from 

Bill Gregory, ICAPB, University of Edinburgh) was examined. PCR conditions used 

were; 1 pi of staged cDNA per 20 pi reaction and 30 cycles of PCR with Taq 

polymerase. Two pairs of primers were used simultaneously; BM phy 1.1 IS IF and BM 

phy 1.1 2R for Bm-phy-1, and BM Tub A and BM Tub B specific to the B. malayi 

tubulin gene. Products were separated by electrophoresis, blotted, probed and excised 

radioactive bands quantified by scintillation counting as described previously (see 

Section 2.14.2.-2.14.5).

2.33. Bm-phy-1 promoter cloning

2.33.1. TOPO Walking technique

A region of the Bm-phy-1 promoter was cloned using a linker PCR technique. The 

TOPO walker (Invitrogen) teclinique uses the ligation activity of Topoisomerase I from 

Vaccinia virus to enable the amplification of unknown genomic sequences. Genomic 

DNA was digested with a range of restriction enzymes that leave 3' overhangs. This was 

then dephosphorylated and primer extension performed, using a primer from a region of 

known sequence, with Taq polymerase which adds 5' A-tails. This template is then 

combined with a 58 bp double-stranded section of DNA that has topoisomerase I 

covalently attached to a 3' T-overhang at one end. Dephosphorylated 3' A-overhangs 

provide the acceptor sites for the TOPO linker. Addition o f this linker allows nested 

PCR to be performed using primers designed against sequence at the known end of the 

DNA, and primers designed to the TOPO linker sequences at the end of the DNA where
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the sequence is not known. 1.5 jiig of genomic DNA was digested per reaction; this was 

then dephosphorylated with calf intestinal alkaline phosphatase, extracted with 

phenol:chloroform and ethanol precipitated. Half of this was then used as a template for 

primer extension with BM phy GW IR, an anti sense primer designed against the 5* end 

of the coding sequence, and cycled once for; 94°C - 4 minutes, 56°C - 2 minutes, 72°C - 

20 minutes. A tenth of this reaction was then used in the TOPO linking reaction, of 

which a third was used in a 50 p.1 PCR with primers LinkAmp 1 and BM phy GW 2R. 1 

pi of a 1/10 dilution of this PCR was used as a template in a nested PCR with primers 

LinkAmp primer 2 and BM phy GW 3R. A 700 bp product from a Pst I digested 

product was cloned into pGEM, from which three clones were sequenced with pGEM 

forward and pGEM reverse primers. Further attempts to "walk" further 5' in this region 

were unsuccessful.

2.33.2. Isolation of BAG clones

Isolation of B. malayi BAC clones containing 5’ genomic sequence from Bm-phy-1 was 

done with the help of J. Daub in the laboratory of M. Blaxter (both ICAPB, University 

of Edinburgh). A BAC library was screened by a combination of two methods, probe 

hybridisation to a gridded BAC library filter and PCR.

2,33.2,1. Hybridisation screening of BAC library

A biotin labelled probe was generated with a biotin labelled T7 primer (NEB) along 

with a gene specific primer BM phy 1.1 IS 3R(B) using a plasmid clone containing 5' 

genomic sequences from Bm-phy-1 and a T7 site as a template. The 1,7 kb PCR purified 

product was hybridised to BAC filters using the NEB NEBlot phototope and Phototope- 

star detection kit protocols. For prehybrisation and overnight hybridisation a 

temperature of 55°C was used. Hybridisation was followed by two washes in 2X 

SSC/0.1% SDS followed by two 55°C washes in 0.1% SSC/0.1% SDS. Filter was then 

blocked with blocking solution (5% SDS, 125 mM NaCl, 25 mM sodium phosphate, pH 

7.2) for 10 minute at room temperature. 50 |xl of Avidex (Streptavidin-Alkaline 

phosphatase conjugate) solution, diluted 1/2000 with block solution, was added for 5 

minutes. Four washes were carried out in 10 mM Tris-HCl, 10 mM NaCl, 1 mM MgCl%, 

pH 9.5. 20 mis CDP-Star reagent was diluted 1/250 with IX CDP Star dilutent and the 

filter incubated at room temperature for 5 minutes with gentle shaking. The filter was
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air-dried and sealed in hybridisation bags, exposed to X-ray film and the identity of 

clones giving a positive signal determined by using the co-ordinates of the positive 

signal on the grid to determine clone number.

2.33.2.2. PCR screening of BAC library

PCR screening was performed on pre-made BAC PCR pools. These were made by 

replicating 12 of the 364 well plate format that the library is in (full library is contained 

in 48 364 well plates therefore PCR pools only represent 25% of library) onto 48 96 

well plates. From each of these plates a pool from each row was made, row pools were 

then combined to give a plate pool. PCR was performed using the primers BM phy BV 

F and BM phy GW IR to give a product of approximately 100 bp from the 5' end of 

Bm-phy-1 coding sequence. 20 ji,l PCR using 2 p,l of pools as template were cycled in a 

Hybaid PCR Express as follows:-

94°C - 3 minutes} 1 cycle

94°C - 15 seconds, 55°C - 20 seconds, 72°C - 3 minutes} 35 cycles 

72°C - 10 minutes} 1 cycle

Plate pools were screened to identify plates containing positive clones. From these 

positive plates the row pools were then screened. Six clones were identified by 

hybridisation that had a supporting PCR result (i.e. a positive result from a row pool 

PCR containing a clone identified by hybridisation). From three of these clones, 3al7, 

4b8 and 4o8, BAC DNA was isolated by growing 400 ml cultures in 12.5 pg/ml 

chloramphenicol and using QIAprep spin columns (QIAGEN) to purify BAC DNA. 

BACs were then sequenced with primers BM phy GW IR, BM phy GW 4R, BM phy 

BAC seq IR, 2R and 3R.

2.34. Reporter gene expression in C. elegans from Bm-phy-1 promoter

2.2 kb of Bm-phy-1 5' putative promoter region was amplified from B. malayi genomic 

DNA using Pfu polymerase and the primers BM phy-1 PF {Sph I) and BM phy-1 PR 

{Bam HI). This region represents position -2189 to +8 , relative to the translational start 

site. The product was cloned into pCRScript, subcloned into the C. elegans reporter 

gene vector pPD96.04 with Sph I and Bam HI and the construct sequenced with primers
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M13 Reverse and 96.04 reverse. The construct was then injected along with the marker 

plasmid p7616B into the C. elegans strain DR96, with both plasmids at 100 pg/ml. Six 

lines were examined for reporter gene expression by viewing GFP expression of live 

worm and using the sensitive X-gal staining procedure, described in Section 2.13.2, for 

P-galactosidase activity.

Table 2.2. Oligonucleotide primer sequences

Primer sequences are given in 5' to 3' orientation with engineered sequences given in 

lower case and restriction sites in lower case and underlined.

Oligonucleotide primer Sequence (5 -3 ')

5’ RACE Abridged anchor 

primer (Gibco kit)

ggccacgcgtcgactagtacGGGIIGGGIIGGGIIG 

(lower case= various restriction sites, I=deoxinosine)

5* RACE Universal 

amplification primer (Gibco kit)

cuacuacuacuaGGCCACGCGTCGACTAGTAC 

(u=dUMP, for UDG cloning which was not used here)

1224 CGCCAGGGTTTTCCCAGTCACGAC

96.04 reverse TCTGAGCTCGGTACCCTCCAAGGG

ama-1 F TTCCAAGCGCCGCTGCGCATTGTCTC

ama-1 R CAGAATTTCCAGCACTCGAGGAGCG

BM N Phy Reverse CCAATAGTATTTAAGCAC

B M # y  I .I IS  IF GCTTCTGGTGTTCAACCG

B M p /iy l.lIS  IR GTTAACACAGGACACGCAG

BMp/iy 1 .1IS2F GGAAACAGCGGAGCATG

m A phy  1.1 IS2R GGTATGATGCTGTTTCAAG

B M p A y l.lIS  3F GGTGGTCATTATGATCC

BM  phy I M S  3R(B) GCGTGGATGATTTGGATC

BM phy BAC seq IR TCCAGGCACTTGACGATTG

BM phy BAC seq 2 R GAACAATTTGAGGCTTATTG

BM phy BAC seq 3R CGCTTTCTTCTAGCCACCATC

BM phy-lBVF(Ac?r I) eascseccscATGATAGCTACCGTGGTGTTC

BM phy-1 BV R (Xba I) gctctagaTTAAGCACTTAGATCGCCCAC
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Oligonucleotide primer Sequence (5 -3 ')

BM phy G seq 1 F CCAGTCAGTGCTTATCTGC

BM phy G seq 1 R GCAGAATGAATTGAATACTC

BM phy G seq 2 F CACCCCAAATCTATCTAAG

BM phy G seq 2 R GTTAGTTAGCTTTTGACAACAG

BM phy G seq 3 F GTAAGGATTTTCGAAAGCGA

BM phy G seq 3 R GATCAAACTCCTAGACCC

BM phy G seq 4 F CTGACTTTTAGACTAATAATC

BM phy GW 1 R GCTTCCAGAAGTAACTCC

BM phy GW 2 R GTGTAGTACTCCGCAGTGC

BM phy GW 3 R GAACACCACGGTAGCTATC

BM phy-1 PF {Sph I) ggcgcatgcGAATGAGACAATTGCACAAG

BM phy-1 PR {Bam HI) ggcggatccGCTATCATCACTGGCTCTGGA

BM phy RACE 1 CATCAGCTATCTCCTTAAC

BM phy RACE 2 GTAAGGCTATTGCAGCTC

BM phy RACE 3 CCAAATCTTCCGTTGTAG

BM phy Res F {Bam HI) gcggatccgATGATAGCTACCGTGGTGTTC

BM phy Res R {Not I) saeceeccscTTAAGCACTTAGATCGCCCAC

BM phy-1 SW R T R GATCGGCTTAAGCCACAAGGCCTTCG

BMTub A AATATGTGCCACGAGCAGTC

BMTub B CGGATACTCCTCACGAATTT

B V F ATCACAAACTGGAAATGTCTATC

BV R GGATTTCCTTGAAGAGAGTGAG

CB pdi-2 F {Kpn I) cgggtaccGTCATTTGAAGAAGAAGAGA

CB pdi-2 R {Sac I) CGGAGCTCAACTTAGACGAGACTTTCTC

CB phy-1 F {Bam HI) cgggatccTCTACGCTCCAATTAAAGTC

CB phy-1 R {Sac I) gcgagctcTGTTGACTCTCTCGACGACT

CB phy-2 F {Kpn I) gcggtaccAGCAGAAAAAGATGTGACGAC

CB phy-2 R {Sac I) cggagctcCAGTGATATTCTTGAGGAAAG

hP4H a l  F {Bam HI) gcggatccgATGATCTGGTATATATTAATTATAGG

hP4H aI R(A orI) ececssccecTCATTCCAATTCTGACAACG

hP4H a ll  IS IF CAACCAAGTCACAGGTGCTG
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Oligonucleotide primer Sequence (5'-3')

hP4H aISW R T F GGCAGAAGAGGACAAGTTAG

hP4HaI SW RT R TTGGCTGCCCCAACCTGATCTTCATC

hP4HaII F {Bam HI) gcggatccgATGAAACTCTGGGTGTCTGC

hP4HoII R {Not I) ecscecccecTCAGTCAACTTCTGTTGATC

hP4HaII SW RT R CAGGCAGGTAGTCCACAGGCCTCTC

I VS sense GTAAGTTTAAACTATTCGTTACTAACTAACTTTA

AACATTTAAATTTTCAG

I VS anti sense CTGAAAATTTAAATGTTTAAAGTTAGTTAGTAA

CGAATAGTTTAAACTTAC

L4440F GAGTGAGCTGATACCGC

L4440R GTGCTGCAAGGCGATTAAG

M l3 reverse AACAGCTATGACCATGATTA

NLS CACCCACCGGTACCTTACGC

pAW Seq F CATCTTGCGGGTCTTGCTCAG

pdi-2 F (pMal) {Xmn I) saceaaeeatttcGCCGTCATTGAAGAAGAAGAG

pdi-2 R (pMal) (F^M) ggcctgcagTTAGAGCTCGGTGTGTCCCT

pdi-2 HSC F {Kpn I) gccggtaccATGTTCCGGCTCGTCGGTCTG

pdi-2 HSC R {Kpn I) gccggtaccTTAGAGCTCGGTGTGTGTCCCTC

pdi-2 IS 1 F CTCAAGCTTTTCCGCAAC

pdi-2 IS 1 R CGAGCTTGTCCCAGGTTGG

pdi-2 IS 2 F GTAAAGTCCGAGATTGAG

pdi-2 IS 2 R CGAAGTCTGGCTTGAACTTG

pdi-2 P F {Sph I) GATGGAGAGCATGCATGTTTTG

pdi-2 P R {Bam HI) cgcgggatccAACATCACGATGAATAGCGAATGG

pdi-2 Resc R CACTGCTCAATCGGATTCG

pGEM forward GTTTCCCAGTCACGACGTTG

pGEM reverse CAGGAAACAGCTATGACCA

phy-1 {Not I) F 2 c s 2 ceaccecTTGGCTCTCCTAAGTTTCAGC

phy-1 {Sal I) R gcgtcgacGGCTTGCAGCCATCACTTCACAGG

phy-1 3’UTR F {Sac I) gcggagctcCTCTAAGCATTGGTTTTCATTG

phy-1 3’UTR R ( t o  I) gcggagctcACTAGGGAATTGTCGGCTGC
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Oligonucleotide primer Sequence (5-3 ')

phy-1 F (pMal) {Eco RI) ggcgaattcGATCTGTTCACCTCGATTGC

phy-1 R (pMal) {Pst I) ggcctgcagTTAGAGGGTCTCCCAGACGT

phy-1 HSC F {Eco RV) gcggatatcATGCGCCTGGCACTCCTTGTAC

phy-1 HSC R {Eco RV) gcggatatcTTAGAGGGTCTCCCAGACGTC

phy-1 IS 1 F CACAGATGACAGTTATGG

phy-1 IS 1 R CTTGGCCTCAGTGAAGACG

phy-1 IS 2 F GTGGAGGTGGAAGATATTC

phy-1 IS 2 R GGCTTCGCGAGCTCCTG

phy-1 IS 3 F GCCGTCCCGACTCTGTCC

phy-1 IS 3 R GTCCTCGTACCATTTGAC

phy-1 IS 4 F CTCTAAAAGCGCGTGGC

phy-1 IS 4 R CCATCGGCAAGATCCTTG

phy-1 IS 5 F CTGCCCACCAAGAATGATG

phy-1 IS 5 R GAGTACTCCTCCGACAGC

phy-1 (new) GS F GGCTGCTCCCAACTATTG

phy-1 P F {Pst I) gcgctgcagGGTCTGCTGGCCGTTTCGTCAG

phy-1 P R {Bam HI) gcaggatecCGCATTCTGAAAAATTGAGAG

phy-1 PS 1 F CTATGTGTAATGCGAAAC

phy-1 PS 2 F CGGTTGATGCTTCTAAAACG

phy-2 BWF{Not I ) eacsceeccecATGAGAGCAGTTTTGCTAGTC

phy-2 BV R (new) {Xba I) gcgtctagaCTATGGATCATTGGCATATGGGGAC

phy-2 F (pMal) {Xba 7) ggctctagaGATTTGTTCACTGCAATTGC

phy-2 R (pMal) {Pst I) ggcctgcagCTATGGATCATTGGCATATG

phy-2 FL F {Xba F) gctctagagATGAGAGCAGTTTTGCTAGTC

phy-2 FL R  ( t o / / ) eacceceeCTATGGATCATTGGCATATG

phy-2 HSC F {Eco RV) gcggatatcATGAGAGCAGTTTTGCTAGTC

phy-2 HSC R (Eco RV) gcggatatcCTATGGATCATTGGCATATGG

phy-2 IS 1 F CACTGATAACCGAGTTCG

phy-2 IS 1 R CTCCGCGTTCTGGTTGACTC

phy-2 IS 2 F CCAACAATTGAGGAATGG

phy-2 IS 2 R GCTCGCTTCAGCTTTGG
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Oligonucleotide primer Sequence (5-3 ')

phy-2 P F 2 {Pst I) ggcgctgcagAGACTATAGTCTATAGCTGAAAACG

phy-2 P R 2 {Bam HI) gcgggatccACTGCTCTCATTCTGAAAGACAAATC

phy-4 FI ATGAACTATTTTCAAACCCTC

phy-4 R l CTACGGAAGACACGTCGGCATG

phy-4 F2 GCATCCGGTACGTTCAACAG

phy-4 R2 CGTGGCAATGATCTTCTCTCCAG

phy-4 R3 CTGGCAGCAACTGAGTAG

p h y -5 P F (//M III) GCCCAGGCCCAAAGCTTCTAGCGC

phy-5 P R {Xba I) gcctctagaCCACGGAGCTCCTTCCCACACTTGTC

phy-5cDNA FI {Nde I) gcgcatatgTTCAATTTTCTCACACCGTTCACCG

phy-5cDNA R l {Bam HI) gcggatccTTAAAATTCTCCCGGAAAAAGTAGAG

phy-5cDNA F2 TCCGAGCCCTTCATCCTACAG

phy-5cDNA R2 GGCTGATCCCTCATGCGGAGC

phy-5cDNA R3 TCGTGGACCCATAAAGTCGCACC

SLl GGTTTAATTACCCAAGTTTGAG

SL2 GGTTTTAACCCAGTTACTCAAG

T3 AATTAACCCTCACTAAAGGG

T7 GTAATACGACTCACTATAGGGC

T20B3.7 cF {Xba I) gcgtctagaATGATGGATTCCATCTGCATC

T20B3.7 cSF {Xba I) gctctagaATGCTCCCGGTCGACATGG

T20B3.7 cLF {Xba I) gctctagaATGATTTCTGTCACTTTCCG

T20B3.7 NR {Xho I) gcgctcgagCGGTATAAGCCACGAAGCATG

X8G5 FI CAGTCGCTCAACACCGG

X8G5 R l GCCAAACACATTTTGCG

X8G5 F2 CTGTTACTGCACGTTGG

X8G5 R2 GTACCCTTCGGTTTATG
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Chapter 3

The combined functions of C. elegans phy-1 and phy-2 are essential for 

development and morphology due to their cuticle collagen modifying activity

3.1. Introduction

The cuticular collagens of the nematode C. elegans are hydroxylated, with 

approximately equal levels of hydroxyproline ( 1 2 %) and proline ( 1 1 %) being found 

(Cox et al., 1981a), indicating the presence of P4H activity in these nematodes. One 

P4H a  subunit-encoding gene from C. elegans had been previously cloned and 

biochemically characterised (Veijola et al., 1994). This gene, Ce-phy-1, was 

subsequently sequenced by the Genome sequencing consortium and assigned to 

cosmid/YAC T28D6.1/Y47D3B.10 on chromosome III. The cosmid sequence differed 

slightly from the published sequence and it is the consortium sequence refeired to in this 

work. When co-expressed in an insect cell expression system, Ce-PHY-1 formed an 

active complex with the human PDI subunit (Veijola et al., 1994). This complex 

differed from enzymes described previously as it formed a dimer. The catalytic 

properties of this hybrid dimer were however, similai' to those of the human tetramer. 

Subsequent cloning of the authentic C. elegans PDI partner demonstrated that this also 

formed a dimer with Ce-PHY-1 in an insect cell expression system (Veijola et al., 

1996a). Unusually, Ce-PHY-1 formed a less stable association with the C. elegans PDI, 

Cg-PDI-2, than with human PDI, and the complex formed was much less active that the 

hybrid. As the C. elegans PDI subunit was able to form an active tetramer with human 

a  subunits (Veijola et al., 1996a), dimer formation was evidently a property of Ce- 

PHY-1 and not Ce-PDI-2. Ce-PHY-1 contains a 32 amino acid C-terminal extension 

which is absent in the human a  subunits. The function of this extension was 

investigated to examine if it was the determining factor in dimer or tetramer formation. 

Deletion of this region removed the ability of this subunit to form either a dimer or 

tetramer (Veijola et a l, 1996a). Therefore, although sequences critical for dimer 

formation are present in this extension its removal was not sufficient to produce 

tetramers.

Sequencing of the C. elegans genome revealed the presence of another conserved 

putative P4H a  subunit encoding gene. This gene is encoded by cosmid F35G2.4 from 

chromosome IV and was named Ce-phy-2. The aim of this chapter was to define the
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temporal and tissue specific expression of Ce-phy-1 and Ce-phy-2 and assess their role 

in the biogenesis of C  elegans ECMs. The tissue-specific expression of both genes was 

examined by transgenic expression of reporter genes from Ce-phy gene promoters. 

Expression of gene transcript levels was examined at time points throughout post- 

embryonic development by a semi-quantitative RT-PCR approach. The effect of 

disruption/removal of gene function, using RNAi/mutant analysis, was determined on 

nematode development and on the expression and localisation of specific cuticle 

collagens. The genetic mutant strain dpy-18 was identified as a Ce-phy-1 mutant and the 

potential of inter-species phenotypic repair assessed by expression of human P4H a  

subunits in this genetic background.

3.2. Results

3.2.1. P4H subunit-encoding gene identiHcation

A P4H a  subunit-like encoding gene from C. elegans, Ce-phy-1, had been cloned and 

described as an active P4H which formed dimers with partner PDIs (Veijola et ah, 

1994). By searching the C. elegans database a second gene, Ce-phy-2, was identified 

which was predicted to encode a protein 57% identical to Ce-PHY-1. Both proteins 

contained the conserved active site histidine, aspartic acid and lysine residues (Lamberg 

et al., 1995; Myllyharju and Kivirikko, 1997) and intra-molecular disulphide bonding 

cysteine residues (John and Bulleid, 1994; Lamberg et al,, 1995) (amino acid sequence 

and conserved residues are shown in Figure 6.2 in chapter 6 ). Both genes were 

represented by a number of expressed sequence tag (EST) sequences from embryonic 

and post-embryonic stages (data accessible through WormBase and Intronerator 

databases, addresses in Section 2.8.1), although no evidence of alternative splicing was 

found from this data for either Ce-phy-1 or -2. Additionally no indication of alternative 

splicing of coding sequence was found during the sequencing of these genes in the 

course of the study described here. This is in contrast to the human a  subunit-encoding 

genes which are both alternatively spliced (Helaakoski et al., 1994; Nokelainen et al., 

2001).

3.2.2. rraws-splicing analysis by SL RT-PCR

rraw5 -splicing is the addition of a short leader sequence, the spliced leader (SL), which 

is not associated with the gene itself, onto the 5' end of the mRNA. An estimated 70% 

of C. elegans genes are SL rraw^-spliced by the two major forms of SL, SLl and 2
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(Zorio et al., 1994). The SL2 sequence is normally specific to the downstream gene(s) 

of an operon and is found on approximately 15% of genes (Blumenthal et al., 2002; 

Zorio et al., 1994). Although the genomic organisation of these genes did not suggest 

organisation of either in an operon, the trans-spMcing pattern was analysed by SL PCR. 

Both genes were analysed with a control pair of gene-specific primers, Figure 3.1, lanes 

1 and 4, and the gene-specific antisense primer for each transcript in combination with 

sense primers designed against the consensus sequences of SLl and SL2 rraw.s-splice 

leaders, lanes 2, 3, 5 and 6 . Ce-phy-1 and -2 primers were positive for the controls and 

the SLl specific primer sets and negative for SL2. A non-coding first exon for Ce-phy-1 

had already been described which was not trans-splicQd (Veijola et al., 1994). An SLl 

positive result from mixed-stage cDNA for Ce-phy-1 shown here demonstrated that 

rra«5 -splicing of this gene also occuned and suggested that either the original clones 

examined were chimeras or that stage-specific regulation of spicing may be occuning. 

The Ce-phy-2 gene was also trans-splicQd by the SLl leader sequence. The similarity in 

size of both SLl products to their gene specific products indicated that the predicted 5' 

ends of both genes was correct.

3.2,3. Determination of spatial expression patterns

3.2.3.1. Reporter gene vectors

To determine the tissue-specific expression of Ce-phy-1 and Ce-phy-2 an approach 

using transgenic reporter genes was taken. Other techniques are available in C. elegans 

for the study of gene expression patterns. Immuno-cytochemistry reveals protein 

localisation patterns, while in situ hybridisations shows RNA distribution, however 

these were not used as the foimer requires a specific antibody (which was not available 

at that time), and in situ hybridisations is a technically difficult approach with variable 

success in this organism. We chose the examination of gene expression in C. elegans 

using the cis-acting sequences from the genes under examination to direct expression of 

a reporter gene. The E. coli lacZ gene encodes the enzyme P-galactosidase (POal). This 

protein has been used as a reporter molecule in various organisms and can be expressed 

in many C. elegans tissues.

A specific series of vectors has been generated and distributed by the laboratory of A. 

Fire for this purpose (Fire et al., 1990). A diagram of vectors from this series used in 

this study is shown in Figure 3.2. The backbone for these vectors was originally derived
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—  Ce-phy-1 ---------

1 2 3
—  C e-phy-2 —  

4 5 6

Figure 3.1. Ce-phy-1 and Ce-phy-2 SL RT-PCR

Agarose gel of products resulting from SL RT-PCR of C. elegans phy genes -1 and -2. 

Lanes 1-3 are an examination of Ce-phy-1. Lane 1 shows the products amplified using 

gene specific primers for Ce-phy-1, lane 2 shows the product amplified using SLl 

specific sense primer and an antisense Ce-phy-1 gene primer, lane 3 is from PCR with 

SL2 specific and an antisense Ce-phy-1 gene primer. Lanes 4-6 are an examination of 

SL splicing for Ce-phy-2 with gene specific primer combination (lane 4) followed by an 

SLl gene anti sense primer combination (lane 5) and a SL2 gene antisense primer 

combination (lane 6 ). The arrow indicates the position of the SLl product for both 

genes. The positions of molecular size standards are indicated with sizes given in 

kilobases.
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Promoter cloned into 
5 ’ cloning site

pUC19 
plasmid

lacZifW SF) unc-SdV  backbone

Synthetic lsî,S 
intron (SI)

GFP (3 SI) Zfl^Z(+12SI)

pPD95.03

pPD96.04

Figure 3.2. Reporter gene vectors

Diagram of the reporter gene vectors used. Promoter sequences are inserted into the 5' 

multiple cloning site upstream of multi-intron containing reporter genes lacZ and GFP. 

Reporter genes were either a multi-intron containing lacZ (pPD95.03, used in Chapters 

3 and 4) or a multi-intron containing lacZ/gfp fusion (pPD96.04 used in Chapters 5 and 

6 ). The positions of an additional synthetic intron and nuclear localisation signal (NLS) 

are indicated. The 3' region from the C. elegans gene unc-54 was included in the vectors 

used in this study.
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from pUC19 with the lacZa region deleted to avoid duplication from insertion of the 

complete copy of the lacZ gene. The last 51 bp of lacZ have also been replaced by a 

synthetic oligonucleotide to allow the addition of a 3' cloning site just after translational 

termination of lacZ. Additionally this sequence has been modified to introduce silent 

changes to eliminate codons used rarely in C  elegans. Into this 3' multiple cloning site 

3' flanking sequences were inserted, which for the vectors used in this study came from 

the C. elegans unc-54 gene. This sequence is thought to be capable of functioning in all 

somatic tissues. If the potential of a particular 3' region to affect gene expression was to 

be investigated, the 3' region present in the vector can be replaced with this potential 

control region. A 45 bp ATG and nuclear localisation signal (NLS) containing cassette 

is located upstream from the lacZ coding sequence. The NLS, from the SV40 T antigen, 

is an eight amino acid sequence that can target a normally cytoplasmic protein, such as 

pGal, to the nucleus when placed at either end of the protein or at a variety of internal 

sites. The nuclear localisation of the reporter gene aids in the identification of cells 

expressing reporter proteins. For transcriptional fusion constructs, translational initiation 

occurs at the ATG provided by this cassette with the NLS therefore being at the N- 

terminus of pGal. In this study translational fusions were constructed with the ATG and 

first few amino acids of the protein included with the promoter, therefore translation is 

initiated at the gene ATG. This positions the NLS at the junction between the fused 

proteins. A 42 bp synthetic intron segment is inserted upstream of the NLS and after the 

5' cloning site, as expression has been demonstrated to be more efficient from spliced 

than unspliced transcripts. The vectors used in these studies were derivatives of the 

original vectors with multiple introns inserted into the lacZ coding sequence. Decoy 

sequences are inserted upstream of the 5' multiple cloning site of the vectors used. 

These consist of a short intron followed by an open reading frame that terminates just 

before the multiple cloning site. Inclusion of these sequences reduces the background 

staining in these more sensitive vectors. The vector used in this chapter was pPD95.03, 

which consisted of a 5' decoy sequence, upstream synthetic intron, NLS, lacZ coding 

sequence containing eleven additional synthetic introns, and the 3' region from C. 

elegans unc-54 gene.

3.2.3.2 Ce-phy-1 and Ce- phy-2 lacZ reporter gene constructs

For Ce-phy-1 and Ce-phy-2, putative promoter regions were amplified from N2 

genomic DNA. Approximately 2.8 kb of Ce-phy-1 upstream sequence, up to and
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including the ATG and two bases of the second codon, was fused in-frame with the lacZ 

gene in the vector pPD95.03. 1.7 kb of Ce-phy-2 sequence was used, incorporating the 

first eleven base pairs of coding sequence. Background expression using reporter gene 

vectors with increased sensitivity with no promoter is possible although non-specific 

expression is generally limited to gut and phaiyngeal cell types. Constructs were 

transformed into the C. elegans germ line via microinjection and transformants selected 

by the expression of phenotypic markers, rol~6 or unc-76 rescue, then fixed and stained 

for PGal activity. Individual nematodes do however display mosaicism, and therefore at 

least three independent lines were selected for each construct and marker combination. 

Many individual nematodes encompassing all the different life cycle stages were 

examined to establish which individual nuclei were reproducibly expressing the reporter 

gene constructs. Both hypodermally and non-hypodeiTnally expressed transformation 

mai'kers were employed, thereby excluding the possibility of reporter expression being 

driven by the transcriptional regulatory units of the marker plasmid. No differences 

were noted in the expression patterns between transfoniiants generated using either 

marker, and no significant differences were observed between the independent lines 

generated in this study.

For both genes, all stages from embryo to adult consistently expressed the reporter gene 

constructs in at least the hypodermal cell nuclei. Expression of both genes was examined in 

detail in the first larval stage, as the position of the hypodermal cell nuclei can be most 

accurately determined in this stage. For Ce-phy-1 and Ce-phy-2, expression was detected in 

the LI hypodermal cells; including the anterior HOL, HIL, hyp3, 4, 5, 6 and 7; posterior 

TL, hyp7, 8, 9, 10, 11; and the mid body hyp7 and lateral P, V, H2R and H2L cells (Figure

3.3, panels A, B, D, and E). Mosaicism in expression was evident, especially in the 

posterior hyp and anterior hyp3 and hyp4 cells. In accordance with the increase in numbers 

of hypodermal cells in the late larval and adult stages, the expression pattern becomes 

increasingly more complex (Figure 3.3. panels C and F). For both genes most of the 

identifiable stained nuclei are of hypodeimal origin, additional nuclei are however 

apparent, particulaiiy for Ce-phy-2. The hypodermal pattern for Ce-phy-1 and Ce-phy-2 

includes the vulval cell nuclei (indicated in Figure 3.3. panel F). In addition, Ce-phy-2 

expression was occasionally detected in the body wall muscle cells, which become 

increasing evident when sensitive staining methods were applied (data not shown). 

Expression predominately in the hypodeimal cells was indicative of a function for both
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Figure 3.3. Tissue specific expression of Ce-phy-1 and Ce-phy-2 

lacZ expression from Ce-phy gene promoters. Panels A-C show results for Ce- 

phy-I. Panel A, lacZ expression in an LI co-expressing the rol-6 marker plasmid. 

Panel B, lacZ expression in an LI co-expressing the unc-76 marker plasmid. Panel 

C, lacZ expression in an adult co-expressing the rol-6 marker. Panels D-F show 

results for Ce-phy-2. Panel D lacZ expression in an LI co-expressing the rol-6 

marker plasmid. Panel E lacZ expression in an LI co-expressing the unc-76 

marker plasmid. (F) lacZ expression in an adult co-expressing the rol-6 marker, 

vulval cell staining is indicated by an arrow. Bar on A, B, D and E equals 10 p,m, 

bar for C and F equals 100 pm. (G) Diagrammatic representation of hypodermal 

cell nuclei in an LI larvae.
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these genes in modification of the nematode cuticular ECM. The nematode epidermis is 

known as the hypodermis and is the site of synthesis, modification and secretion of the 

components of the cuticle. Similar expression patterns to those found have been described 

for C. elegans collagens (GiHeard et al., 1991 \ Nystrom et al., 2002) and collagen 

modifying enzymes (Thacker et al., 1995). The weaker expression of Ce-phy-2 in the body 

wall muscles raised the possibility that this gene could play a role in modification of the 

basement membrane collagens sun’ounding and secreted by this tissue.

3.2.4. Temporal expression of Ce^phy-l and -2

The temporal expression pattern of the transcripts from Ce-phy-1 and -2 was examined by 

applying a semi-quantitative reverse transcriptase PCR (sq-RT-PCR) approach (Johnstone 

and Barry, 1996). This permitted the abundance of the individual genes to be quantified via 

mRNA isolated from synchronised populations of C. elegans sampled at two hourly 

intervals throughout post-embryonic development. Synchronous post embryonic cultures 

were prepared by collecting embryos from gravid adults, these were then hatched in the 

absence of food which causes developmental arrest in the early LI stage. Synchronised 

populations were then used to prepare RNA samples (Johnstone and Baixy, 1996). RT- 

PCR was then peiformed simultaneously with two sets of primers, both of which span 

introns to enable signals from genomic DNA and cDNA to be distinguished. RT-PCR 

reactions separated on agarose gels for Ce-phy-1 and Ce-phy-2 are shown in Figure 3.4. A 

and B respectively. These gels were blotted and the radioactive bands quantified. The 

abundance of the test transcript was then expressed as the ratio of the amount of its 

amplified product to control transcript product. The control gene used was the 

constitutively expressed gene ama-1 (the RNA polymerase II large subunit gene) (Bird and 

Riddle, 1989).

In agreement with the reporter gene assays, which indicated expression in all 

developmental stages, RT-PCR analysis showed the presence of transcripts from both 

genes at all the larval and adult time points examined. Both genes presented very similar 

transcript profiles (Figure 3.5), displaying an overall increase throughout larval 

development, with distinct peaks of abundance corresponding to the mid-larval stages. 

Expression is highest in the L4 larvae and is followed by a dramatic drop in the adult stage. 

Comparable oscillating expression patterns have been described for a number of individual 

cuticle collagen genes (Johnstone and Barry, 1996; McMahon et al., 2003) and the genes
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ama-1
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Figure 3.4. Timecourse RT-PCR of Ce-phy-1 and Ce-phy-2

(A) Agarose gel showing products from RT-PCR of Ce-phy-1 from staged cDNA with 

simultaneous amplification o f the control gene ama-1. (B) Agarose gel showing 

products from RT-PCR of Ce-phy-2  with ama-1. The positions o f molecular size 

standards are indicated with sizes given in kilobases. Along the top o f the gel picture the 

time in hours is given which represents hours post-hatch. The developmental stages 

from LI to adult that the samples represent are indicated below the gel.
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Figure 3.5. Temporal expression of Ce-phy-1 and Ce-phy-2

Graph showing expression levels of transcripts, in relation to ama-1, throughout post- 

embryonic development. Levels are expressed in arbritary units along the y-axis. The x- 

axis shows the time in hours post-hatch. The vertical bars represent the timing of the 

moults with the corresponding developmental stage indicated. A single peak of 

expression is found for each gene within each larval stage.
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encoding two potential collagen-folding enzymes, CYP-9 and PDI-1 (Page, 1997). The 

four larval stages are characterised by the shedding and re-synthesis of the cuticle, a 

structure in which more than 80% of the proteins are collagenous (Cox et al., 1981a). As 

the exoskeleton progressively increases in size, greater pulses of collagen folding enzymes 

will be required to assemble this complex extracellular matrix. The high degree of 

similarity between the transcript abundance profiles for these two Ce-phy genes indicated 

that they may have shared or common roles, a point supported by their almost identical 

spatial expression pattern data. These inter-moult waves of expression in the cuticle 

synthesising hypodermal cells shows these genes are strongly expressed in the appropriate 

tissue and with the correct developmental timing for the encoded enzymes to modify the 

collagens of the nematode cuticle. A role in modification of the type IV basement 

membrane collagens possibly of the body wall muscles could not however be excluded 

from these results.

3.2.5. Embryonic expression

A combination of spatial and temporal expression analysis was performed to determine 

expression of Ce-phy-1 and Ce-phy-2 in the developing embryo. Expression of both genes 

was examined by RT-PCR, PCRs from embryo cDNA are shown in Figure 3.6A, lanes 1 

and 7. The remaining lanes are pools of the samples from time points within each stage 

(lane 2 and 8 represent LI, lanes 3 and 9 L2, lanes 4 and 10 L3, lanes 5 and 11 L4, and 

lanes 6 and 12 adult) aie shown for comparison. Expression of Ce~phy-1 in the embryo is 

just detectable in lane 1; for Ce~phy~2 no band is distinguishable from the gel. Expression 

of both genes in these samples was confirmed on quantification of these bands (data not 

shown), and from reporter gene data showing expression of Ce-phy-1, Figure 3.6B, and 

Ce-phy-2, Figure 3.6C, in embryos.

3.2.6. Interference of gene function by injection of double-stranded RNA

RNA-mediated interference or RNAi is a technique that uses exogenous RNA to 

interfere with the function of an endogenous gene. The use of double-stranded (ds) 

RNA in this technique was first described in C  elegans by A. Fire and co-workers with 

phenocopies of null gene phenotypes produced by introducing dsRNA corresponding to 

a target gene by microinjection (Fire et al., 1998). Comparison of RNAi induced 

phenotypes with the characterised mutant phenotypes of a number of genes validated 

this procedure as identical phenotypes were produced. The RNAi effect is not normally
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 Ce-phy-1-
1 3 5

 Ce-phy-2—
7 9 11

Ce-phy

ama-1

Figure 3.6. Embryonic expression of Ce-phy-1 and Ce-phy-2

(A) Agarose gel showing a comparison of embryonic expression of the Ce-phy genes 

with samples representing developmental stages L 1 to adult. Lanes 1 and 7 are embryo 

samples, lanes 2 and 8 are L 1 samples, lanes 3 and 9 are L2 samples, lanes 4 and 10 are 

L3, lanes 5 and 11 are L4 and lanes 6 and 12 are adult. Lanes 1-6 represent expression 

from embryo to adult of Ce-phy-1 along with the control gene ama-1, lanes 7-12 

represent embryo to adult expression of Ce-phy-2 in comparison to ama-1. (B) Ce-phy- 

1 promoter driven reporter gene expression in the developing 3-fold embryo in the 

hypodermal cell nuclei. (C) Ce-phy-2 promoter driven reporter gene expression in the 

developing 3-fold embryo in the hypodermal cell nuclei.

105



Chapter 3___________________________________________________________ Results I

heritable and is found only in the progeny of injected animals. This procedure was 

developed from interference using sense or antisense RNA individually. This showed 

that both forms of single stranded RNA were capable of eliciting an interference effect 

independently (Guo and Kemphues, 1995). Interference using double-stranded RNA is 

however several orders of magnitude more efficient at producing an effect than the 

single strand procedures (Fire et al., 1998). The phenotypes seen previously with single 

stranded RNA approaches may have in fact been due to the presence of small amount of 

double-stranded RNA in these preparations due to priming of reverse strand from 3' 

overhangs. No precise size limit has been defined for the type of fragment that is 

capable of producing an effect although routinely RNA of between 0.5 kb and 2 kb is 

used. Cross reactivity with non-target sequences has been noted (Fire et al., 1998; 

Tabara et al., 1998). Although the exact level of similarities at the nucleotide level with 

which cross reactivity occurs is not known, an estimate of approximately 80% similarity 

causing cross-interference has been suggested (Tabara et al., 1998). If cross-reactivity is 

a potential problem a region that is present only in the target gene and not in potential 

cross-reactive sequences can be used. Alternatively, if necessary, untranslated regions, 

particularly at the 3' end, can be used. Unless absence of gene activity is verified at the 

transcriptional or translational level complete removal of gene activity by RNAi cannot 

be assumed and the resulting effect is often referred to as transcript disruption or 

knockdown, rather than knockout. dsRNA can be introduced into many positions in the 

body with the interference effect spreading throughout the tissues of the worm (Fire et 

al., 1998), however in our experience microinjection into the syncitial gonad of the 

adult produced the best results. The amount of material injected could be more easily 

assessed within the confines of the gonad, with a similar volume being introduced to 

that used for DNA injections. Additionally the injected animals appeared much healthier 

after gonadal injections thus maximising survival rate and progeny size. The 

effectiveness of RNAi can also depend on a number of variables including the target 

tissue and the timing of expression of gene to be disrupted. Neuronally expressed genes 

can be resistant to RNAi (Tavemarakis et al., 2000) and genes expressed late in larval 

development can be resistant to RNAi carried out in the parent (Fire et al., 1998). Also 

RNAi is concentration dependent so the amount of RNA delivered may affect the 

results (Fire et al., 1998). It is also important to note that the amount of interference 

required for an effect to be seen would be predicted to be gene dependent. The fraction
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of cells that need to be affected, and the fraction of activity that must be eliminated, for 

an effect to be achieved will be different for individual genes.

3.2,6.1 Ce-phy gene RNAi

RNAi using double-stranded RNA was used to define a functional role for both Ce-phy 

genes. As the Ce-phy-1 and Ce-phy-2 genes were both expressed predominately in a 

tissue for which no resistance to RNAi had been reported, the hypodemiis, and from an 

early point in development, none of the potential problems mentioned were predicted to 

affect their disruption. Similarity at the nucleotide level between Ce-phy-1 and Ce-phy-2 

is 57%, which was considered low enough to assume no cross-interference. 

Additionally, both genes have each other as the most similar nucleotide sequence in the 

C. elegans genome, which made the probability of cross-reaction with another sequence 

low. dsRNA was produced in vitro for both Ce-phy-1 and Ce-phy-2 by PCR cloning 

almost full length coding sequence (both approximately 1.6 kb) in a pBluescript-like 

cloning vector. This vector contains the promoter and initiation sites for the 

bacteriophage RNA polymerases from T7 and T3 at opposite ends of the cloning site. 

Single stranded RNA was produced separately from each site in different reactions. 

Linearisation of the plasmid with an enzyme that cleaves at the opposite end of the 

insert from the promoter to be used for transcription gives a suitable template for the in 

vitro transcription of single stranded RNA using the appropriate enzyme. The single 

strands were then annealed together in a salt buffer to produce dsRNA corresponding to 

the cloned gene. The presence of dsRNA was verified by gel electrophoresis. dsRNA 

was injected into the gonad of young adult N2 hermaphrodites. After a period of 

recovery, from 4 hours to overnight, nematodes were transferred singly to fresh plates. 

This period allows for partially developed embryos to be cleared and progeny scored are 

those that have been exposed to dsRNA for their entire development. Injected worms 

were then transferred daily to fresh plates and their progeny scored.

3.2.6.2. Ce-phy-1 RNAi injection

Injection of dsRNA at a concentration of 0.5 mg/ml into wild type N2 C. elegans for 

Ce-phy-1 gave a highly penetrant dumpy (Dpy, short and fat body shape) phenotype in 

approximately 90% of progeny from affected plates. A RNAi affected individual 

(arrowed) is shown in comparison to a N2 worm in Figure 3.7A. The injected animals 

themselves appeared phenotypically wild type. RNAi affected animals were
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Figure 3.7. RNA interference of Ce-phy-1 and Ce-phy-2

A) Typical progeny from wild type N2s following Ce-phy-1 RNAi injection 

(arrowed) displaying a Dpy phenotype, shown in comparison to untreated an 

untreated wild type N2. Bar 100 îm.

B) Representation of the severe Dpy phenotypes resulting from injection of wild type 

N2 nematodes with combined Ce-phy-1 and Ce-phy-2 dsRNA at a overall 

concentration of I mg/ml. Bar 40 |im.
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predominantly medium Dpy, approximately 2/3 the length of wild type nematodes with 

a very small number showing more extreme body shape defects. The degree of 

disruption of Ce-phy-1 function achieved by this process was not assessed and so it was 

not possible to say whether the medium Dpy phenotype resulted from partial or 

complete dismption of gene function. The RNAi phenotype from interference of Ce- 

phy-1 was found not to be heritable, as progeny from affected animals appeared wild 

type all respects. The medium Dpy phenotype produced by RNAi of Ce-phy-1 

suggested a role in the development or maintenance of nematode body shape for this 

gene tlirough modification of the cuticle. Similar body shape defects have been found 

for a number of mutant collagen genes (Johnstone et aL, 1992; Levy et al., 1993; von 

Mende et al., 1988). The lack of phenotype in the injected adult is in agreement with 

this role, as we have shown this is when expression of Ce-phy-1 is low due to the cuticle 

already being formed. No other phenotype was observed in these RNAi worms other 

than their altered body morphology. The small percentage of RNAi progeny displaying 

more extreme body defects may suggest that the degree of nucleotide similarity which 

could cause low level cross-reactivity is lower than suggested previously, a fact 

supported by a recent study (Hussein et al., 2002), and that these extreme phenotypes 

were caused by disruption of Ce-phy-1 and also cross-interference of gene(s) with a 

similar sequence.

3.2.6.3. Ce-phy-2 RNAi injection

dsRNA corresponding to the Ce-phy-2 gene was injected at a concentration of 0.5 

mg/mi into N2 C. elegans. No effect was found in either the injected animals or their 

progeny after injection with Ce-phy-2 dsRNA. Worms were assessed as being wild type 

on the basis of body shape, movement, internal morphology egglaying and fecundity. 

The level of gene disruption was not assessed and it was therefore not possible to 

determine if Ce-phy-2 gene function had been successfully knocked-down. Lack of a 

mutant phenotype observable under laboratory conditions for Ce-phy-2 suggested that, 

assuming effective interference, the function of this gene was not essential for formation 

of the nematode cuticle. The lack of observable phenotype was even more surprising 

given the additional staining of Ce-phy-2 in the body wall muscle cells. Due to the 

impoitance of the muscle cells for producing type IV collagen and the severe embryonic 

lethal phenotypes resulting from mutation in these collagens (Guo et al., 1991; Gupta et 

al., 1997; Sibley et a l, 1994; Sibley et a l, 1993) and processing enzymes (Nonnan and
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Moeiman, 2000), an effect from lack of hydroxylation of proline could be predicted to 

have a strong phenotype. The lack of mutant phenotype by RNAi of this gene strongly 

suggested that Ce-phy-2 was not involved in processing of type IV collagens. It was 

also possible however, that either the RNAi of this gene was not effective, or that in 

particular muscle tissue expression was not being disrupted.

S.2.6.4. Combined Ce-phy-1 and Ce-phy-2 RNAi injection

Combined RNAi using single stranded RNAs from two different genes had been 

reported to have equivalent effects to that produced from double genetic mutants of the 

coiTesponding genes (Rocheieau et ah, 1997). The effect o f combined Ce-phy-1 and Ce- 

phy-2 interference in an N2 background was examined by mixing equal volumes of the 

preparations of dsRNA used previously, producing a final concentration of each dsRNA 

of 0.25 mg/ml. Injection at this concentration produced identical results as found for 

single dismption of Ce-phy-1, as most of the progeny were medium Dpy in appearance. 

A higher concentration of dsRNA at 0.5 mg/ml for each gene was made, injection at 

that concentration produced much more severe effects, as shown in Figure 3.7.B. 

Extreme body shape defects were evident with affected progeny approximately a 

quarter of the length of wild type. Many of these remained in a coiled position 

throughout development. The severe dumpy phenotype was evident in 97% (1,189 out 

of 1208 hatched progeny) of progeny. The more extreme phenotypes produced by 

interference of both genes showed that the Ce-phy-2 dsRNA used was effective in 

knocking down Ce-phy-2 function at the concentration used previously for single 

disruption. Therefore the wild type appearance of Ce-phy-2 singly dismpted nematodes 

was reliable and was not a result of lack of interference. Secondly it indicated that the 

medium Dpy phenotype from Ce-phy-1 disruption is due to knock-down of this gene 

alone and not a result of interference of Ce-phy-2 as well. Additionally, it demonstrated 

that these genes are required in combination for development of wild type body shape 

and suggested a central role for these genes in formation of the C. elegans cuticle which 

serves to maintain the post-embryonic elongated form of the nematodes. Dismption of 

both genes caused production of an even weaker cuticle that was barely capable of 

maintaining any normal worm body shape.
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3.2.7. Characterisation of dpy-18 as a phy-1 mutant

3.2.7.1. Identification of dpy-18 as a candidate mutant

Examination of the genetic map of the regions surrounding the Ce-phy-1 physical map 

position suggested the recessive medium Dpy mutant, dpy-18, as a candidate Ce-phy-1 

mutant. The Ce-phy-1 RNAi phenotype was extremely similar to the appearance of this 

mutant and no other Dpy or body shape mutants were found in this area, dpy-18 was 

first identified almost 30 years ago in one of the first genetic screens in C  elegans 

(Brenner, 1974) but had remained uncharacterised at the molecular level. Multiple 

alleles of dpy-18 had been identified and the genetic position of this locus mapped on 

clii'omosome III. As illustrated in Figure 3.8. the dpy-18 map position was 8.62 while 

the interpolated map position of phy-1 was 7.8. A study of the associated male tail ray 

defect of thi’ee dpy-18 alleles, e364, e l 096 and bx26, demonstrated that while this aspect 

of the phenotype was affected by temperature (not evident at 16°C) the overall body 

morphology phenotype was not temperature sensitive (Baird and Emmons, 1990).

3.2.7.2. Rescue of the dpy-18 phenotype with wild type transgenic Ce-phy-1

To determine if  dpy-18 was mutant in Ce-phy-1, phenotypic rescue was attempted with 

wild-type Ce-phy-1 coding and flanking sequence. Genomic sequence was chosen to 

promote maximum expression of the transgene. No cosmid containing complete 

genomic sequence for this gene was available as the coding sequence for Ce-phy-1 is 

divided between a Y AC, containing the promoter and first two exons, and a cosmid, 

containing the remainder of the genomic sequence and 3' UTR, as illustrated in Figure

3.8. Ce-phy-1 sequences were therefore cloned from wild type genomic DNA by PCR. 

The region cloned included approximately 2 kb of upstream sequence, the entire 

genomic coding sequence and approximately 300 bp of 3' UTR. 2.8 kb of promoter had 

previously been shown to direct strong hypodermal expression of reporter genes but the 

full region was not included in this construct due to PCR size constraints. The 3' UTR 

included the poly(A) signal sequence and transfer site. A mixture of two polymerases, 

Taq and Pfu, was required to efficiently amplify this 7 kb product which was cloned 

into a plasmid vector. Full-length sequencing was not performed on this construct but 

the ends of the fragment were sequenced to confirm the identity of the insert. The 

construct was injected into dpy-18 mutant strains caiTying alleles eS64 and e l096 along 

with a GFP expressing marker, dyp-7-GFP. Control injections in dpy-18 were 

performed with DNA mixes lacking the Ce-phy-1 sequences. Repair o f the dpy-18 body
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Figure 3.8. Comparison of physical and genetic maps in the region of Ce-phy-J 

Positions of dpy-18 locus at 8.62 on chromosome III on the genetic map and the Ce- 

phy-1 encoding cosmid/YAC. The interpolated genetic map co-ordinate of Ce-phy-1 at 

position 7.8 is indicated. The Ce-phy-1 gene is encoded by the Y AC Y47D3.B (shown 

in red) and the cosmid T28D6 (shown in yellow). The direction of gene from ATG to 

TAA is shown with an arrow. The figure is adapted from the data available from 

WormBase.
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morphology defect with Ce-phy-1 was evident in transformed FIs identified by UV 

microscopy. Multiple semi-stable transformed lines from both e364 and el096  

containing strains were identified and mutant repair found for all transformed animals. 

A comparison of transformed and un-transformed dpy-18 nematodes is shown in Figure 

3.9, with clear reversion to wild-type body shape seen in the transgene expressing 

nematode. No repair was found for injection mixes lacking wild type Ce-phy-1 

sequences. The similarities between Ce-phy-1 RNAi and dpy-18 phenotypes, their 

comparative positions on their respective maps and the phenotypic rescue of dpy-18 

mutants with wild type Ce-phy-1, indicated that dpy-18 was a Ce-phy-1 mutant.

3.2.7.3. Analysis of Ce-phy-1 molecular changes in dpy-18 mutants

3.2.7.3.I. Amber stop codon mutation in dpy-18(e364)

To confirm the relationship between gene and mutant, the Ce-phy-1 gene sequence was 

analysed from three dpy-18 mutant alleles. cDNA and genomic DNA were isolated 

from strains carrying dpy-18 alleles e364, el096  and bx26. Strain CB364 carrying dpy- 

18 allele e364 had already been defined as containing an amber stop codon as it is wild 

type when crossed with amber mutant suppresser strains (Waterston and Brenner, 

1978). Therefore any lesion found in Ce-phy-1 from this strain should correspond to this 

type of mutation. Full-length coding sequence, from translational start to stop, was 

cloned from this strain and double-strand sequenced over the length of the insert. Two 

clones from independent PCR reactions were analysed in this way to discriminate 

between PCR induced errors, produced by the non-proof-reading DNA polymerase used 

for amplification of these sequences, and true changes in the gene sequence. 

Comparison of the two clones revealed only one consistent base change, this mutation 

G275-A275 was predicted to cause the alteration of a TGG, tryptophan?6 encoding, to a 

TAG amber stop codon. dpy~18{e364) was produced by ethyl methanesulphonate 

(EMS) mutagenesis (Brenner, 1974) and the point mutation found for Ce-phy-1 is 

consistent with the G/C-A/T transitions most often produced by EMS mutagenesis. The 

production of an amber stop codon was also identified as predicted, which suggested 

this molecular change was the true e364 molecular lesion. Cloning of genomic Ce-phy-1 

sequences from e364 and double strand sequencing over the point mutation region 

confirmed this mutation as the molecular alteration responsible for the dpy~18{e364) 

phenotype. A stop codon at the stait of the second Ce-phy-1 exon is predicted to result 

in a severely truncated protein containing only 75 of the 559 amino acids of this protein
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Figure 3.9. dpy-18 rescue with the wild type Ce-phy-1 gene 

Rescue of the medium Dpy phenotype o f a dpy-18{eS64) showing the 

repair to wild type body shape o f the transformed nematode (arrowed) 

compared to a dpy-18 mutant. Identical results found were found for 

rescue of dpy-18{el096) mutants (data not shown). The DIC image is 

shown in panel A, with the UV image shown in panel B demonstrating 

expression of the marker plasmid dpy-7-GFP.
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and missing all defined functional regions and conserved residues. This strain is 

therefore predicted to be a functional null. Therefore the rescue of dpy-18 with wild 

type Ce-phy-1 and identification of a mutation in this gene in a dpy-18 strain 

demonstrates conclusively that dpy-18 is a Ce-phy-1 mutant.

3.2.7.3.2. A deletion in dpy-18{el096)

Allele el096  of dpy-18 was also investigated to determine the nature of the molecular 

lesion in this strain. A similar approach to the analysis of the e364 mutant was initially 

adopted, however, PCR with full-length coding sequence primers from cDNA extracted 

from el096  nematodes gave no product, see Figure 3.10. Control PCRs were performed 

to confirm the ability of the Ce-phy-1 primers to amplify using these conditions and the 

quality of mutant template cDNA. PCRs with Ce-phy-1 specific primers using N2 

template DNA, lane 1, and primers specific to Ce-phy-2 on mutant template cDNA, lane 

3, both produced the expected amplification products. Additionally no product was 

amplified by PCR using mutant genomic template with the same Ce-phy-1 primers used 

on cDNA (data not shown). Using primers flanking the coding region a PCR product 

was generated from mutant genomic DNA approximately 800 bp smaller than that 

amplified from wild type template, suggesting a deletion of gene sequence. Figure 3.11. 

A. This region was cloned and the extent of the putative deletion further defined by 

PCR analysis. Each primer used to clone this region was used in combination with 

another primer from within the Ce-phy-1 coding sequence. Figure 3.11. B. PCR with the 

sense primer phy-1 IS IF in combination with phy-1 {Sal I) R, lane 1, did not show 

evidence of the deletion, however, phy-1 {Not I) F in combination with the antisense 

primer phy-1 IS 5R, lane 2, produced a product 800 bp smaller than predicted. The 

mutation therefore lay to the 5' end of the gene and included the ATG sequence but did 

not extend as far as primer phy-1 IS 5R (which lies approximately 180 bp downstream 

of ATG) and was an estimated 800 bp in size. Primers phy-lPS IF and phy-1 PS 2F 

were therefore designed within the Ce-phy-1 promoter region approximately 800 bp 5' 

of the ATG and the deletion clone sequenced with these and primer phy-1 IS 5R. The 

extent of the mutated sequence in dpy-18{el096) is shown in Figure 3.12. 776 bases of 

sequence were deleted, from -688 to +88, removing a significant region of the promoter 

and 5' sequences coding for 30 N-terminal amino acids of C^-PHY-1, including the 

predicted signal peptide residues. No other genes are predicted in the area covered by 

the deletion. Lack of a signal peptide suggests that any protein produced from this gene
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e l0 9 6

Figure 3.10. Ce-phy-1 PCR on dpy-18{e1096) cDNA

Agarose gel of products resulting from PCR on N2 cDNA with full-length coding 

sequence primers for Ce-phy-1 (lane 1) in comparison with e l 096 cDNA (lane 2), 

which generates no product. Full-length coding sequence primers specific for Ce-phy-2 

were applied to the e l 096 cDNA (lane 3) as a control for the ability to amplify other 

sequences from this template DNA. The positions of molecular size standards are 

indicated with sizes given in kilobases.
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Figure 3.11. Ce-phy-1 PCR on dpy-18{el096) genomic DNA

(A) Agarose gel o f products resulting from PCR of N2 and dpyl8{el096) genomic 

DNA with Ce-phy-1 primers lying outwith the region covered in the mutant cDNA 

analysis. The 6.4 kb product from the mutant genomic DNA is smaller than the 7.2 kb 

product amplified from wild type template, indicating a deletion of Ce-phy-1 sequences 

in dpy-18{e 1096). (B) Mapping of deletion to the 5' or 3' end of Ce-phy-1 was 

performed. Primers at the 3' end gave correct sized 3 kb band (lane 1) and primers 

specific to the 5’ end of the gene (lanes 2) showing the presence o f a 800 bp deletion. 

The size in kilobases of this mutant band is indicated. The positions of molecular size 

standards are indicated with sizes given in kilobases.
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“166 gcagacgaca tcttgcgggt cttgctcagt tttgattttt ttttttcgaa cocatgagat
-106 gtccgccgct ataattttot ctggcgtttg tgtcaaatct ttattgtaaa ctttatccgc

M R  L A L

“46 ttcoogtttt gcaggttttt aattccotaa ctotoaattt ttcaqaATGC GCCTGGCACT
P h y - 1  HSC F

L V L  A T I G  Y A V  A / D  L F T S I  A D M

15 CCTTGTACTA GCCACAATCG GCTATGCA6T TGCCGATCTG TTCACCTC6A TTGCCGACAT
Q N L  L E T E  R N I  P K I  L D K Y  I H D

75 GCAAAACCTT CTGGAAACTG AAAGAAATAT TCCGAAAATC CTTGACAAAT ACATTCACGA

E E E  R L V Q  L K K  L S E  E Y S K  K N E

1 3 5  CGAGGAAGAG CGACTGGTTC AGCTGAAGAA GCTGTCGGAG GAGTACTCGA AGAAAAATGA

*+ P h y - 1  I S  5R

1 S T  E N G L  K D I  T N P  I N A F  L L I

1 9 5  GATTTCGATT GAAAATGGGC TCAAGGATAT TACGAATCCG ATCAATGCGT TTTTATTGAT

K R K

2 5 5  CAAGAGAAAG g t a a t t t t g t  t t g c a a t a g g  t t t t a a g t t a  t t g c a g c c g a  c a t c t c a c t g

Figure 3.12, Ce-phy-1 sequences deleted in dpy-18{e1096)

Deleted sequences are shown in bold, uppercase represents exonic sequences, lower 

case represents promoter and intron sequence. The translation of exon sequences is 

given above and the position o f relevant primers in this region indicated with 

underlining and arrows. The position of the signal peptide cleavage site in the N- 

terminal amino acid sequence is shown with a forward slash.
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would not be targeted to the ER and would therefore be non-functional. Alternatively, 

lacking proximal promoter sequence it might be predicted that no gene transcription 

would occur. Interestingly, despite lacking a large region of the promoter region 

transcription of the gene can still be detected. RT-PCR products were produced using 

the full-length reverse primer in combination with a number of upstream genes from the 

area of the gene not deleted, Figure 3.13. Therefore the gene is a predicted null due to 

the lack of encoded signal peptide causing loss of targeting to the ER where it is 

required to function in the modification of secreted proteins.

3.2.7.3.3. AUele bx26 is caused by an ochre stop codon

Strain EM76, carrying allele dpy-18{bx26), was also examined at the molecular level. 

This was analysed in a manner identical to e364 although only one Ce-phy-1 cDNA 

clone was sequenced as PCR products were made with a proof-reading polymerase, and 

the mutation was confirmed by analysis of genomic DNA. A stop codon was found 

resulting from a C-T transition, causing a CAA-TAA (glutamine253~Ochre stop) change. 

EM76 was also produced from an EMS screen (Baird and Emmons, 1990) with this 

transition being a common result of treatment with this mutagen. The point mutation is 

at the stait of exon five and again is predicted to produce a severely truncated and non­

functional protein. The position of this mutation and those of the other two identified 

alleles are shown in Figure 3.14.

3.2,8. RNAi of Ce-phy-2 in a dpy-18 genetic background

Identification of dpy-18 as a Ce-phy-1 mutant allowed for a more detailed examination 

of the combined effects of removal of both Ce-phy-1 and Ce-phy-2 function. Combined 

RNAi of both these genes produced severely Dpy animals (Figure 3.9. B), although the 

degree of removal of gene function of either gene was not determined, and the 

effectiveness of RNAi knock-down of multiple genes has not been extensively 

examined. A putative null allele of dpy-18 was used which was assumed to have no 

active phy-1 present. Thus the effect of knock-down of one gene with complete absence 

of Ce-phy-1 activity could be determined. Strain CB364 [dpy-18 {e364)\ was injected 

with dsRNA conesponding to Ce-phy-2 at a concentration of 0.5 mg/ml. In a wild type 

genetic background this produced no effect, however, in the dpy-18 mutant background 

progeny from injected animals were embryonic lethal. Animals from affected plates 

were being determined as dead when they remained unhatched 16 hours after the
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pMal 2F 3F 4F 
F

Figure 3.13. Mapping of the transcribed region of dpy-18{e1096)

Agarose gel of products resulting from PCR with the primers indicated in combination 

with a common antisense primer on dpy-18{e1096) mutant cDNA. The antisense primer 

covered the translational stop region and was used with a primer within the deletion 

region (pMalF) and primers lying outwith the deleted region (1F-5F). Wild type 

products were amplified from the areas not deleted, demonstrating the production of 

mutant Ce-phy-1 mRNA missing its 5' coding sequence. The positions of molecular size 

standards are indicated with sizes given in kilobases.
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Figure 3.14. dpy-18 alleles

The positions of molecular mutations found within the Ce-phy-1 gene in the dpy-18 

strains investigated are shown. The gene structure of Ce-phy-1 is also depicted as is the 

Ce-phy-1 encoding cosmid/YAC in relation to the genetic map.
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removal of the adult. These were counted and embryonic lethality was observed on 

affected plates at a penetrance of 89% (1118 dead embryos out of 1250 laid). Those 

animals that hatched were Dpy or severely Dpy in appearance. This identified an 

essential role in nematode development for the combined Ce-phy genes, as without their 

combined function nematodes could not complete embryonic development.

3.2.8.I. Developmental timecourse of Ce-phy-2 RNAi/Jpy-i5 embryos

The embryonic lethal phenotype of Ce-phy-2 RNAi injected dpy-18 nematodes was 

examined in more detail by monitoring their appearance throughout embryonic 

development. This was accomplished by injecting animals as described above then, 

after a period to ensure RNAi was effective, pre-comma stage embryos were collected 

and photographed at 30 minute intervals as they developed. Specific time points during 

this process are shown in Figure 3.15. Comma stage embryos developed normally to the 

three-fold stage where elongation has been completed, transforming a ball of cells in to 

a worm shape. Embryos at this stage were active, with movement and twitching 

indicating correct formation of muscular structures and attachments. After the three-fold 

stage the mutant phenotype becomes apparent as embryos become less active and 

gradually lose their elongated shape. Examination of the timing of loss of worm body 

morphology reveals that this corresponds exactly with the time when the cuticle 

becomes the support to maintain the nematodes body form (Sulston et ah, 1983). The 

embryonic development of wild type C. elegans is depicted in Figure 3.16, showing 

elongation of the embryo occuning followed by the timing of cuticle synthesis. The 

RNAi cuticles are weakened due to improper modification and are therefore unable to 

fulfil their role of supporting the nematodes vermiform shape. RNAi treated embryos 

continue to collapse back over time to a more disorganised state. The terminal 

phenotype is variable but was typically like the two-fold stage. These animals did not 

hatch, gradually ceased movement, vacuolated and died. These results show that both 

genes are essential for development and formation of a functional cuticle capable of 

maintaining morphology. The movement of developing embryos and attainment of a 

fully elongated form distinguishes them form the mutant phenotypes of genes involved 

in the fomiation of the basement membranes, typically two-fold paralysis, and further 

supports a non-type IV collagen modification role for Ce-phy-1 and Ce-phy-2.
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Figure 3.15. RNAi of Ce-phy-2 in a dpy-18 mutant

DIC images showing the developmental timecourse of a dpy-18 mutant 

injected with dsRNA for Ce-phy-2. Bar represents 10 îm. (A) 1.5 fold 

embryo (440 minutes). (B) 3-fold elongated embryo (570 minutes) with the 

head and tail out of focal plane. (C) Retracting embryo (710 minutes). (D) 

Terminal phenotype (approximately 1,800 minutes), a fully retracted dying 

embryo. Bars equal 10 p,m.
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Figure 3.16. Embryonic developmental timepoints

Timing o f the main events occurring during C. elegans embryonic development. 

Adapted from Sulston et al., (1983). Note the timing of the beginning of cuticle 

synthesis.
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3,2.9. RNAi by bacterial feeding

Bacterially-mediated RNAi was developed by utilising the unusual ability of the RNAi 

effect to spread throughout the tissues of the body from the delivery site. Engineering 

the E. coli food source of C. elegans to produce dsRNA was shown to cause specific 

RNAi effects (Timmons and Fire, 1998). This procedure uses two convergent, inducible 

T7 RNA polymerases flanking a fragment of the gene to be disrupted. Using a bacterial 

strain with an inducible lac promoter enables production of RNA from both strands by 

treatment of the bacteria with IPTG, these strands then anneal within the cell to form 

dsRNA. As the initial experiments showed weaker disruption compared to injections, 

the procedure was refined further by using a viable mutant bacterial strain deficient in 

RNase III, the enzyme specific for double-stranded RNA (Timmons et al., 2001). The 

RNAi feeding procedure was then optimised by the discovery that although uninduced 

bacteria produced no phenotypes, strong induction (in liquid culture) produced a lower 

penetrance in phenotypes than the presumed weaker induction on plates using moderate 

concentrations of IPTG (Kamath et al., 2000). Severity and penetrance of the RNAi 

effect was also found to be temperature dependent, being more effective at higher 

temperatures (Kamath et al., 2000). A particular advantage of the feeding procedure is 

that the RNAi effect can be titrated to reveal secondary phenotypes that could be 

masked by a strong primary phenotype such as embryonic lethality. This could be 

accomplished by reducing (1000-fold) the induction concentration of IPTG, or by 

simple dilution of induced bacteria with uninduced bacteria. Thus the possibility exists 

to generate a series of RNAi phenotypes analogous to a series of genetic mutants.

3.2.9.I. RNAi feeding of Ce-phy-1 and Ce-phy-2

The full-length gene coding sequences virtually identical to the sequences used for 

RNAi injections were cloned for both genes into the double T7 bacterial-feeding vector. 

This was then transfonned into the HTI15(DE3) strain of E. coli and the production of 

RNA was induced. Nematodes were then added to these plates and grown at 25°C. The 

effects of feeding of dsRNA via bacteria for Ce-phy-1 in an N2 background were not as 

severe as for injections, with nematodes displaying a very slight dumpy phenotype (data 

not shown). Likewise the effect of feeding of Ce-phy-2 RNAi bacteria to dpy-18 

nematodes was not as severe as injection (Figure 3.17. panels A and B), with many of 

the progeny showing similar defects to those seen in Ce-phy-1 and Ce-phy-2 

simultaneous RNAi injections. During the course of this work a phenotypically wild

125



Chapter 3 Results I

Ce-phy-2  RNAi 
dpy-18{e364)

/ ' I Ce-phy-1  RNAi 
phy-2{okI  77)

Figure 3.17. Ce-phy-1 and Ce-phy-2 RNAi feeding phenotypes

Body morphology mutants resulting from Ce-phy-2 RNAi expressing bacteria fed to 

dpy-18 mutants (panels A and B), and Ce-phy-1 fed to phy-2 deletion mutants (panels C 

and D). Panels A and C represent the typical results from these combined experiments 

with panels B and D representing the range of phenotypes observed. Unshed cuticle and 

cuticle constrictions are evident in panel C. All images were taken at the same 

magnification.
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type Ce-phy-2 deletion strain, JK2757 [p/iy-2(6> :̂777)], had been identified. This strain 

contained a 1335 bp deletion removing most of Ce-phy-2 exons 4-7, followed by a 

premature stop codon directly after the deletion end point (Friedman et ah, 2000). No 

other predicted coding sequences are removed by this deletion. The phenotype of this 

strain corroborated the Ce-phy-2 RNAi phenotype and indicated that lack of a basement 

membrane specific phenotype upon Ce-phy-2 RNAi was not due to lack of penetrance 

of the RNAi effect in muscle cells. Using this putative null Ce-phy-2 deletion strain and 

feeding Ce-phy-1 produced very similai' results (Figure 3.17. panels C and D) to the 

reverse combination. The majority of animals from these experiments displayed the 

appearance of the nematodes shown in panels A and C, while a smaller percentage were 

severely malformed with a less uniform appearance, the range of these phenotypes is 

shown in panels B and D. These extreme body morphology mutants confirmed that the 

effect of double disruption of these genes is to severely disrupt cuticle foimation and 

that this defect is the cause of embryonic lethality in these nematodes. Also it provided a 

means to produce large quantities of viable progeny for transgene, antibody and electron 

microscopy analysis. Although severely malformed, these animals have formed a cuticle 

and analysis using these methods enabled a more detailed look at the effects of loss of 

P4H activity on collagen and formation of the nematode cuticle.

3.2.10. Further characterisation of dpy-18 and Ce-phy RNAi mutants

3.2.10.1. COL-19: :GFP protein fusion

Due to the nature of the structural collagen molecules and the large number of 

processing steps required to generate mature collagen, producing a collagen GFP fusion 

is more problematic than a conventional protein fusion. The N-terminal regions of 

collagens are cleaved, therefore an N-terminal fusion at the extreme N-terminus would 

not be feasible as the GFP protein would be cleaved by the N-terminal specific 

proteases. A possible alternative to this would be an N-teiminal fusion with the GFP 

inserted at the C-terminal site of the protease recognition site. It is possible though that 

the presence of the GFP protein in this region could affect cleavage. Due to the triple 

helical structure of most of the mature collagen regions and the severe effects of a single 

amino acid change in these regions, insertion of GFP at this location would not be 

feasible. Processing at the C-teiminal ends of nematode collagens is not so well 

understood, and whether any or all aie cleaved by a specific C-terminal protease is not 

currently known. Fusion of GFP to collagens at the C-terminus could thus provide a
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means to tag these molecules. This approach was not successful with C. elegans 

collagens C39E9.9 and T01B7.7 (rol-6) which produced transgenic animals but no GFP 

expression (Thein et a l, 2003). C-terminal fusion of GFP to collagen ZKl 193.1 (COL- 

19) was successfully performed by C. Shoemaker (AgResearch Ltd. New Zealand) from 

whom the plasmid BA7-1 was received. Plasmid BA7-1 contains the genomic col-19 

promoter and coding sequence fused in frame to GFP-c3 (Crameri et al., 1996) in the 

vector pSP65. The vector also contains the 3' UTR from the Schistosoma mansoni triose 

phosphate isomerase gene. This 3' UTR region may or may not be utilised in this 

construct. This collagen: fusion plasmid is depicted in Figure 3.18.

Promoter/reporter gene studies of col-19 suggested an adult specific expression pattern 

for this gene (Liu et al., 1995), and analysis of its C-tenuinal non-Gly-X-Y region 

demonstrated that this was one of the shortest domains found for the C. elegans 

collagens, being only 9 amino acids long. Plasmid BA7-1 was injected into C. elegans 

wild type N2 strain at a concentration of 20 fig/ml with pRF-4 at 100 jLig/ml. Once the 

GFP fluorescence of transformants was established, the plasmid was re-injected at the 

same concentration with pBluescript SKM at 100 jxg/ml and transfoimants were 

selected on the basis of fluorescence in the adult stage from the COL-19::GFP fusion 

protein. Semi-stable lines were generated and adults examined under high power 

magnification to determine the expression pattern. Discernible external features on the 

cuticle surface of all stages are the annuli that are created by nanow evenly spaced 

indents (or annular furrows) that run circumferentially around the animal (see Figure 

1.1). Also visible on the cuticle surface are the alae that are only found only in the LI, 

dauer, and adult stages (Cox et al., 1981b; Singh and Soulston, 1978). The alae run 

along the lateral sides of the animal and consist of raised tread-like protrusions that form 

over the hypodermal seam cells. COL-19: :GFP expression was found in the adult annuli 

and alae (data shown for integrated lines, see below, in Figure 3.19).

Transcript disruption of Ce-phy-1 by bacterial feeding in these N2 COL-19::GFP 

transgenic lines produced a disrupted appearance of the collagen (data not shown, see 

below). dpy~18(e364) and phy-2(okl77) strains were then injected with the construct. 

The N2 and dpy-18 COL-19::GFP transgenic lines were integrated (by M. Thein and A. 

Page, WCMP, Glasgow) to generate strains TP12 and TP13 respectively. The 

expression pattern of the integrated lines and the phy-2(okl77) transgenic non­

integrated lines are shown in Figure 3.19. The COL~19::GFP pattern in TP12 is
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Figure 3.18. col-19::gfp fusion construct

The col-19::gfp fusion construct of plasmid BA7-1 is illustrated, with genomic col-19 

fused at its C-terminal encoding region to gfp (in green). An expansion of the fusion 

region is shown to demonstrate how the sequences were adjusted to maintain the correct 

reading frame.
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Figure 3.19. COL-19::GFP expression patterns

The C0L-19::GFP expression pattern in the annuii of the adult cuticle from strain TP 12 

(panels A and B); TP12 was produced form the integration of a col-19::gfp  fusion 

plasmid in to the wild type N2 strain. Disrupted COL-19::GFP expression pattern in 

strain TP 13 (panels C-F); TP 13 was produced form the integration o f a col-19::gfp 

fusion plasmid strain in to strain CB364 [dpy-18{e364)\. Wild type appearing COL- 

19::GFP expression pattern in a phy-2 deletion strain (JK2757) expressing col-19::gfp 

from a free array (panels G and H ) . All images were taken at the same magnification.
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identical to that produced from the transgene. C0L-19::GFP localisation in TP 12, panel 

A and B, can be seen in the adult annuii and alae (alae out of focal plane). In panels C- 

F, the COL-19-GFP distribution pattern in strain TP13 is shown. The dpy-18 mutant 

background of this integrated strain results in the abnormal collagen expression pattern, 

identical to that found from Ce-phy-1 RNAi of the N2 COL-19::GFP transgenic lines. 

Phenotypes ranged from that shown in panel C, where collagen is distributed in much 

broader and less uniform stripes than the wild type, to the more severe, where in 

addition to mislocalisation, the collagen has a fragmented appearance. These results 

demonstrate that in addition to the body morphology defect indicative of a cuticle 

collagen defect, loss of Ce-phy-1 results in a specific cuticle collagen phenotype. In 

phy-2(okl77), panels G and H, the distribution pattern of COL-19::GFP from the 

transgene was identical to that of the wild type, consistent with the wild type appearance 

of this strain.

3.2.10.2. DPY-7 antibody analysis

The C. elegans cuticle collagen DPY-7 has an extended C-terminal domain not shared 

by other members of this family. A monoclonal antibody raised against this region of 

the protein specifically recognises the DPY-7 protein (McMahon et a/„ 2003). The 

DPY-7 antibody is found to locate to the circumferential annular fun’ow regions of the 

cuticle, but not to the alae. This antibody was used as a marker for the effects of single 

and combined removal/reduction of Cc-PHY subunits. The localisation of DPY-7 was 

first examined in wild type, dpy-18{e364) andphy-2{okl77) strains. Figure 3.20. Panels 

A and B show a wild type adult with DPY-7 localising to the annular furrows with 

regular and evenly spaced bands, which almost contact the lateral alae. Panels C and D 

show localisation in the adult of the Ce-phy-1 mutant strain dpy-18. The pattern of 

DPY-7 is clearly disrupted no longer being restricted to the defined narrow bands but 

localising in a more disjointed manner with larger less regular bands, and in some 

regions being completely absent. In panels E and F a late larval stage dpy-18 mutant is 

shown with a more regular appearance of DPY-7. In wild type larval stages which lack 

the lateral alae structures, DPY-7 bands fonn over the seam cells which secrete the alae 

and partly interdigitate (McMahon et al., 2003). This clearly does not occur for dpy-18 

mutants and while localisation to discrete bands was found, these bands do not meet and 

interdigitate. A correlation between the increased severity of the Dpy appearance of 

mutants as they get older and the more Dpy body shape towards the mid-point of the
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Figure 3.20. DPY-7 immunolocalisations of Ce-phy mutants

DPY-7 immunolocalisations in wild type and mutant strains. Wild type N2 strain 

showing DPY-7 collagen localisation specifically in the annular furrows o f the adult 

cuticle (panels A and B). Disrupted DPY-7 immunolocalisation in the adult cuticle of 

mutant dpy-18{e364) (panels C-D) and in the late larval stage of this strain (panels E-F). 

The wild type appearance of DPY-7 immunolocalisation in an adult o f the phy-2  

deletion strain is shown in panels G and H. All images were taken at the same 

magnification.
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body, was reflected in the DPY-7 collagen phenotypes of dpy-18 mutants. DPY-7 

protein mis-localisation was more severe in the adults, and in the larvae was more 

pronounced further from the head and tail regions. The localisation of DPY-7 in the 

phy-2 deletion mutant is shown in panels G and H where localisation appeared wild 

type, the stage depicted is an adult, for comparison with panels A and B. These finding 

for the single Ce-phy mutant strains were in agreement with their moiphological 

characteristics, with wild type collagen distribution for the wild type appearing phy-2 

deletion strain and collagen mislocalised or absent for the abnormal body shape dpy-18 

strain. These findings with a characterised monoclonal antibody support the findings of 

collagen specific disruption found using a GFP tagged collagen, and suggests that the 

disruption found for these two very different collagens would be reflected in all the 

cuticle collagens.

The studies on single mutants of Ce-phy genes with a collagen mai'ker confirmed an 

important role for at least Ce-phy-1 in collagen modification. As both genes were found 

to be essential for embryonic development and body morphology, the effect of double 

removal/disruption on collagen distribution was assessed by analysis of the pattern of 

DPY-7 expression in RNAi fed mutants. In Figure 3.21 the distribution of collagen in 

Ce-phy-2 RNAi fed dpy-18 mutants (panels A and B) and Ce-phy-1 fed phy-2{okl77) 

mutants (panels C-F) is shown. These show that upon removal/interference of both Ce- 

phy genes that DPY-7 collagen deposition is severely decreased, with some intra­

cellular retention visible in panels C and E. Also the increase in severity of body 

moiphology upon disruption of both genes function is shown to be accompanied by an 

increased severity in cuticle collagen disruption.

3.2.10.3. Scanning electron micrographs

The surface detail of dpy-18 mutants and dpy-18 mutants fed with E. coli expressing 

dsRNA for Ce-phy-2 was examined by scanning electron microscopy. In Figure 3.22 

panels A and B show the overall shape and detailed appearance of visible cuticular 

structures of a dpy-18{e364) adult. The lateral alae, that in wild type run straight along 

the length of the nematode, are in this mutant disordered, fragmented and branched; 

indicating loss of Ce-phy-1 function affects formation of these structures. The evenly 

spaced annulae that run around the wild type animal appear to be formed to some 

degree but are inegular and disjointed due to the pitted appearance of the cuticle. Panels
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Figure 3.21. DPY-7 immunolocalisation of RNAi fed mutant strains 

DPY-7 immunolocalisations in dpy-18 mutants fed with Ce-phy-2 RNAi expressing 

bacteria (panels A and B), and in phy-2  deletion mutants fed Ce-phy-1 expressing 

bacteria (panels C-F). Some intracellular retention of collagen is evident in larva and 

embryo in panels C and E respectively. All images were taken at the same 

magnification.

Facing page 134



Ce-phy-2 RNAi 
dpy-18{e364)

Ce-phy-1 RNAi 
phy-2(okl77)



Figure 3.22. Scanning electron micrographs of mutants

Scanning electron micrographs o f dpy-18{e364) (panels A, x50; and B, x400) dpy-18

mutants fed Ce-phy-2 RNAi expressing bacteria (panels C,x200; D, x800; E, x200; and 

F,x800).
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C-E show the effect of RNAi of Ce-phy~2 in the Ce-phy-1 mutant background. The 

highly distorted body shape is evident at lower magnifications (panels C and E) and the 

lack of surface cuticle structures is shown in panels D and F. Neither individual shows 

visible annulae or alae and the surface particularly in F has a creased appearance. 

Therefore removal/disruption of the Ce-phy-l/Cephy-2 gene functions, in addition to 

disrupting overall body shape and collagen expression, affects the appearance of the 

cuticle surface and surface structures.

3.2.11. dpy-18 rescue with alternative a  subunits

3.2.11.1. Human P4H a  subunit rescue constructs

Humans have two P4H a  subunits (Annunen et al., 1997; Helaakoski et al., 1989) 

similar to the two conserved isoforms in C  elegans. The human a  subunits both occur 

naturally in a tetramer of the form (X2P2 (Annunen et al., 1997; Vuori et al., 1992a) with 

the P subunit being human PDI (Pihlajaniemi et al., 1987). Co-infection experiments 

suggest that a human mixed tetramer consisting of (a l)(a ll)(p )2  does not exist 

(Annunen et al., 1997). The p subunit from humans can function to form an active C  

elegans P4H enzyme in an insect cell expression system (Veijola et al., 1994), and the p 

subunit from C. elegans, Cc-PDI-2, forms an active tetramer when coexpressed with the 

human a l  subunit (Veijola et al., 1996a). However this tetramer from human a l  and Ce- 

PDI-2 is formed much less frequently than seen with the human a  with human PDI, 

resulting in extracts with approximately 33% the activity of human tetramers (Veijola et 

al., 1996a). Phenotypic rescue of the C. elegans P4H mutant, dpy-18, with human a l  

and a l l  subunit encoding genes was attempted in order to assess inter-species 

conservation of gene function. The ability of these genes to rescue could also determine 

if the association found for a l  in insect cells can also occur in the nematode, and if the 

a l l  subunit could also form with Ce-pdi-2

Rescue experiments with the phy-1 null mutant, dpy~18{e364), were performed using 

the a  subunit coding sequence with C. elegans upstream and downstream flanking 

sequences. A vector was constructed which contained the C. elegans phy-1 promoter 

and 3' UTR (vector pAW l), Figure 3.23. Similar regions of Ce-phy-1 were used in the 

rescue construct used to define dpy-18 as a Ce-phy-l mutant. Additionally the promoter 

region used had been defined as directing strong hypodermal reporter gene expression
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Figure 3.23. dpy-18 mutant rescue with alternative a  subunits

(A) Depiction of the C  elegans phy-1 gene construct (containing promoter, genomic 

and 3' UTR sequences) used to successfully rescue dpy-18 mutants, indicated with, (+).

(B) Representation of vector pAWl with inserted sequences. Vector pAWl consists of 

the Ce-phy-1 promoter and 3' UTR. Between these sequences human P4H a  subunits 

cDNAs, a  subunits cDNAs with a single C. elegans synthetic intron and Ce-phy-2 

cDNA were inserted. Sizes of fragments are not drawn to scale. Constructs were 

injected into the C. elegans P4H mutant dpy-18{e364). Rescue with transformed 

sequences is indicated with, +; Lack of rescue is indicated, (-)
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in C. elegans. The a  subunits should therefore be expressed at high levels with the 

appropriate developmental timing and tissue specificity. The 3' UTR region incorporates 

the polyadenylation signal sequence and poly(A) transfer site, and is almost identical to 

the region used for rescue of dpy-18 with Ce-phy-1. The human a  genomic sequences 

were though to be prohibitively large for a PCR based cloning procedure at a size of 69 

kb for a l  (Helaakoski et a l, 1994) and 35 kb for a l l  (Nokelainen et a l, 2001). 

Therefore full-length cDNA coding sequence for human P4H subunits a l  and a l l  were 

produced by PCR cloned from human lung cDNA. Expression from transgenes of 

human cDNAs has been demonstrated to produce funetional products in C. elegans 

(Levitan et a l, 1996; Sugimoto et a l, 1995). Although different spliee variants exist for 

both the a  subunit encoding genes (Helaakoski et a l, 1989; Nokelainen et a l,  2001), no 

attempt was made to identify the specific splice variants cloned. However the a l  splice 

from (utilising exon 9), is the more abundant form in lung tissue (Helaakoski et a l,

1994) from which the cDNA was derived. Both forms of a l l  splice variants appear to be 

expressed in equal proportions in lung tissue and both produce equally active enzymes 

in insect cells (Nokelainen et a l, 2001). Likewise recombinant a l  produced from either 

splice variant can assemble into tetramers with identical properties (Vuori et a l, 1992a). 

Clones were sequenced at their junctions using primers M13 Reverse and pAW seq F. 

The human a  subunit proteins produced from these chimeric constructs should both 

have four additional amino acid at their N-terminus. This is due to the reading frame set 

up by the CE phy-1 promoter which includes the first five bases of the Ce-phy-1 coding 

sequence. Using the Signal P signal peptide prediction site the extra amino acids were 

predicted not to influence the native signal peptide cleavage sites of either protein, and 

were therefore assumed not to interfere with signal peptide function.

Human a l  and a l l  cDNA rescue clones, Figure 3,23, were injected separately into dpy- 

18{e364) at concentrations of 100 ng/pl together with the plasmid dpy-7-GFP at 5 ng/pl 

as a marker, and injection mixes made up to a final concentration of 150 ng/p.1 with 

pBluescript SKM. Transformation with pBluescript SKM and dpy-7-GFP alone had 

already been assessed and found to have no effect on the phenotype of dpy-18 mutant 

nematodes. Transfomiants were selected by GFP fluorescence and over five semi-stable 

transmitting lines examined for each construct. Neither construct was capable of 

rescuing the dpy-18 phenotype. No change in body morphology of transformed woims
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was evident when compared to both dpy-18 and non-transformed worms from injected 

lines.

3.2.11.2. Human a  rescue with C. elegans synthetic introns

Although cDNA clones appear to be expressed for some genes, lack of introns in these 

constructs could result in transgene expression being extremely low or absent. 

Compaiison of expression levels of intron containing and intronless transgenes in 

transgenic animals and tissue culture demonstrated increased expression levels of 

around 100-fold from spliced transcripts (Brinster et al,, 1988; Buchman and Berg, 

1988). This is thought to be a consequence of the coupling of intron splicing with export 

of mRNA from the nucleus (Luo and Reed, 1999). Lack of intronic sequences could 

result in the message remaining untranslated as it would be unable to exit the nucleus. 

Insertion of synthetic introns into the coding sequences of the E. coli lacZ gene at 

various positions has been demonstrated to stimulate expression of the transgene in C. 

elegans (Fire et al., 1990).

An artificial intron based on typical C. elegans introns (Blumenthal and Steward, 1997) 

was synthesised and inserted into blunt-ended restriction sites of human a l  and a ll. For 

the human a l  rescue construct, Bsa BI was the only enzyme site available which gave 

blunt ended termini, cuts only once within the a l  coding region, and nowhere else 

within the plasmid. The enzyme was however sensitive to méthylation of its recognition 

site which blocked digestion of the plasmid. Bsa BI has a recognition site of 

GATNNNNATC, however if the sequence is GATCNNNATC or, as it is in a l, 

GATNNNGATC, the underlined A is methylated. This occurs in standard strains of E. 

coli that contain the methylase encoded by the dam gene. The a l  rescue plasmid was 

therefore transfoiTned in to the E. coli strain GM2163 which is dcm and dam minus and 

digestable plasmid DNA was purified. The double-stranded oligonucleotide was ligated 

into the Bsa BI site. The plasmid was then sequenced to confirm the presence of the 

synthetic intron in the correct orientation and to ensure no flanking sequences had been 

lost. Therefore a C  elegans synthetic intron sequence was inserted 374 bp into the 

coding sequence of a l. Methylase-deficient strains can show increased rates of 

recombination, therefore, the plasmid was digested with Ssp I which cuts a number of 

times within the inserted sequences of the plasmid. Digestion with the a l  rescue 

construct with synthetic intron plasmid with this enzyme produced the expected pattern
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of fragments indicating that no recombination had occun’ed by growth in the methylase 

deficient strain (data not shown). The a l l  rescue construct was digested with restriction 

endonuclease Stu I to provide a blunt ended site for insertion of the C. elegans synthetic 

intron sequence and construct sequenced. The intronic sequence was inserted 837 bp 

into the a l l  cDNA coding sequence.

Both a l  and a l l  synthetic intron-containing rescue constructs, a l  SI and a l l  SI, Figure 

3.23, were injected separately into dpy-18{e364) at a concentration of 100 ng/p,l with 

dpy-7-GFP (5 ng/jiil) and pBluescript SKM (50 ng/pl). Injection of the a l  SI plasmid 

was found to paitially repair the dpy-18 phenotype. Five transgenic lines were examined 

and rescue to wild type body length and shape was found to be incomplete, although, as 

can be seen in Figure 3.24, transformed worms were noticeably longer than dpy-18 

mutants. Not all transformed worms were rescued, although no untransformed 

nematodes displayed more wild type body shape. The lines were not however 

particularly healthy, and varied slightly in the degree of repair, some also displayed 

occasional sterility in individuals. Only two lines could be generated with a l l  SI rescue 

plasmid as it was difficult to generate sufficient quantities of FIs. These lines showed 

all the same effects as the a l  rescue, although repair was not quite as pronounced. To be 

capable of partial repair of the dpy-18 phenotype, the human a  subunits must be 

expressed from the transgene and associate with the nematode p subunit Cc-PDI-2. a l  

had already been shown to form an active subunit with this protein in an insect cell 

system. These results indicate strongly that human a l l  can also associate with Ce-PDI-2 

to form an active enzyme. Additionally these hybrid complexes must then recognise C. 

elegans collagens as a substrate and be able to perform hydroxylating and chaperone 

functions. Despite their diverse foims human collagens are predominantly modified by 

human a l  and a l l  complexes. The C. elegans collagens are however distinct from most 

vertebrate collagens although they are similar in some respects to vertebrate FACIT 

collagens. Hybrid complexes must be able to modify these nematode collagens pointing 

to a high degree of functional conservation between these highly divergent organisms. 

As much of our understanding of these enzymes and their substrates has come from 

examination of vertebrate systems, this conservation of function justifies the paiallels 

drawn between systems. The paitial rescue found suggests that if a fully active complex 

was formed the difference in substrates resulted in collagens modified in a non-wild 

type manner. Alternatively a complex may be formed that did not provide high activity
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Figure 3.24. dpy-18  mutant rescue with human a  subunits containing intronic 

sequences

Panel A shows an N2, panel B a dpy-18 mutant. Panels C (DIG) and D (GFP expression 

under UV) show partial repair of the dpy-18 phenotype with the human a l  P4H subunit 

containing a synthetic intron expressed from the construct pAW l. Panels E (DIG) and F 

(GFP expression under UV) show partial repair of the dpy-18  phenotype with the 

human a l l  P4H subunit containing a synthetic intron expressed from the construct 

pAWl.
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levels possibly due to the a  subunits not associating efficiently with Cc-PDI-2 as 

suggested by inseet cell expression data (Veijola et al., 1996a).

3.2.11.3. dpy^lS rescue with Ce~phy-2 coding sequence

Ce-phy-2 sequences were also expressed in this system to determine if this would 

provide any degree of repair of the Ce-phy-1 null dpy-18 phenotype. The form of 

complexes containing the Cc-PHY-2 subunit was not known at this point although the 

genetic and RNAi data indicated that Ce-PDI-2 was the common subunit for both Ce- 

PHY-1 and Cc-PHY-2 (see Chapter 4). It was therefore thought that the Cc-PHY-2 

could be found in a separate complex to Cc-PHY-1 with a common P subunit, Cc-PDI- 

2, in an analogous fashion to the human a l  and a ll  complexes which are each formed 

separately in combination with a common P subunit. The Ce-phy-2 cDNA coding 

sequences were therefore cloned between the Ce-phy-1 control sequences in vector 

pAW l, Figure 3.23, to determine if either the slight differences observed in timing of 

subunit expression could influence phenotype or if simple overexpression of this protein 

could rescue the deficiency of Cc-PHY-l. Therefore if different developmental timing 

was required expression of Cc-PHY-2 under control of the Cc-PHY-1 promoter from a 

transgene could provide sufficient protein at the appropriate developmental time to 

modify collagens. Plasmid was injected into C. elegans dpy-18 mutants at 100 pg/ml 

with transformation marker dpy-7-GFP at 5 pg/ml, and the final concentration made up 

to 150 p-g/ml with pBluescript SKM. Transformation at this concentration of rescue 

plasmid was toxic with transformed animals dying as embryos. Transformants were 

generated with injection at 10 pg/ml which was slightly toxic but does not rescue the 

dpy-18 phenotype. Insertion of synthetic introns was not possible for Ce-phy-2 due to 

the lack of appropriate restriction sites.

3.2.11.4. Detection of transgene expression

Expression of the human a  subunit transformed dpy-18{e364) lines was assessed using 

RT-PCR from single worms. Transformed lines containing the cDNA without the 

synthetic intron constmct were not assessed for expression. The constructs with 

synthetic introns were examined, although differentiation of spliced and unspliced 

transcripts, or product arising from contaminating plasmid DNA, was not practical due 

to the small size of the intron. Instead primers were designed to span the synthetic 

intron-exon boundaries in such a way that only 5-6 bp of the 25-26 bp primers lay to the
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5' end of the intron. On un-spliced mRNA derived product or contaminating DNA, the 

primer should anneal beyond the 3' end of the intron sequence and so not yield a 

product as the 3' bases of the primer would be unable to anneal (see Figure 3.25). If the 

gene is transcribed and the intron eoiTectly spliced this primer should anneal and used in 

conjunction with a standard forward primer should produce a product. PCR product 

arising from correctly spliced RNA could also be confirmed by digestion of the product 

with Bsa BI (al) or Stu I (all) as these site would be reformed upon correct processing 

of the RNA.

Primers were tested on a l  and a l l  plasmids with and without synthetic introns. Primers 

gave the correct sized band from the cDNA clones and gave no product from the clones 

containing the synthetic intron as expected (data not shown). Therefore in single worm 

RT-PCR a product should only result from reverse transcribed mRNA and not from 

unspliced mRNA or any plasmid remaining after DNase treatment. RT-PCRs were 

performed on two transformed lines and untransformed controls, no expression of 

transgenes could be detected in the transformed lines using this method (data not shown. 

Western analysis was also attempted to determine if transgenic lines were expressing 

the human proteins. The antibody used for detection of a l  was a rabbit polyclonal 

(Veijola et a l, 1996b), with a ll  being a mouse monoclonal (Annunen et a l, 1997), both 

were a gift from J. Myllyharju (Collagen Research Unit, University of Oulu, Finland). 

Progeny were collected from transformed dpy-18 lines containing the synthetic intron 

rescue constructs. No expression of a l  or a l l  could be confirmed at the protein level 

(data not shown).

143



Chapter 3 Results 1

Synthetic intron

_X__
Exon " Exon 

^  RT-PCR

No product

cDNA

Exon Exon

I  RT-PCR

Product

Figure 3.25. Transgene RT-PCR primer design

Depiction of predicted effect of PCR with primers designed to detect spliced product on 

intron and non-intron containing templates.
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3,3. Discussion

3.3.1. Expression of Ce-phy genes

The first aim of this chapter was to define the temporal and tissue-specific expression of 

Ce-phy-1 and Ce-phy-2 in order to assess the likelihood of a role for the encoded 

enzymes in the biogenesis of the C. elegans cuticular ECM, Expression of these genes 

was demonstrated in the cuticle synthesising hypodermis, in all the identifiable cells of 

this tissue. This spatial expression pattern was confirmed using two different marker 

plasmids. Both hypodermally {rol-6) and non-hypodennally expressed (unc-76) 

transformation markers were employed. No differences were observed in the expression 

patterns generated with the different mai'kers. This indicated that transcriptional 

regulatory units within marker plasmids were not driving reporter gene expression and 

producing the expression patterns observed. Thus the expression of Ce-phy-1 and Ce- 

phy-2 in the hypodeiTnis was likely to reflect their endogenous expression pattern. The 

expression of both genes throughout post-embryonic development was examined using 

a semi-quantitative RT-PCR approach. This process has been used to very finely define 

the temporal expression of a number of collagen genes (Johnstone and Barry, 1996; 

McMahon et al„ 2003). The expression of the Ce-phy genes was found to be very 

similar to the collagens examined with expression peaking once within each lai’val stage 

and falling to near starting levels at times around the larval moults. Low level 

expression was also found in the adult stage for both genes. Some growth of the adult 

does occur and some collagens are expressed at this stage (Johnstone and Barry, 1996), 

which would require accompanying expression of P4H. The first larval stage cuticle is 

synthesised during embryogenesis and expression of both Ce-phy genes was 

demonstrated in the embryo, consistent with the encoded enzymes being required 

throughout development for the formation of cuticle collagens of all stages. The almost 

identical expression pattern of these two genes suggested overlapping or combined roles 

in modification of these collagens.

3,3.2 Single and combined mutant phenotypes indicated that the function of Ce-phy 

genes are essential for development and body morphology

The C. elegans dpy-18 strain was identified as being mutant in Ce-phy-1, and was the 

first identified mutant in the P4H class of enzyme for any organism. Three alleles of 

dpy-18 were identified in this study, two were point mutations that introduced an early 

stop codon, predicted to cause premature termination of translation and production of
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non-functional peptides. One allele was a deletion mutant missing the promoter and N- 

terminal coding sequences which would cause loss of the ER signal peptide. No 

missense point mutations were identified that would cause amino acid replacement 

mutations of essential residues. A number of residues required for P4H function have 

been identified in vertebrate genes including the conserved active site histidine, aspartic 

acid and lysine residues (Lamberg et al., 1995; Myllyharju and Kivirikko, 1997) and 

intra-molecular disulphide bonding cysteine residues (John and Bulleid, 1994; Lamberg 

et al., 1995). These residues are present in both Ce-phy-1 and Ce-phy-2, however in this 

analysis, and two other studies (Friedman et al., 2000; Hill et al., 2000), confirmation of 

their requirement in Cc-PHY-1 was not demonstrated by specific mutation in any of the 

mutants examined. However, the eight remaining uncharaeterised mutant alleles 

available for dpy-18 may contain some mutants for which these residues may be 

substituted. Additionally, analysis of this kind may reveal other residues essential for 

functional enzyme. Therefore identification of dpy-18 as a Ce-phy-1 mutant enables the 

analysis of the moleculai’ changes in these mutants which could possibly reveal residues 

involved in subunit associations or substrate interactions, the later of which could be 

important for both the enzymatic and chaperone functions of these enzymes.

The mutant body morphology of dpy-18 was similai* to other cuticle-related defects 

from mutant collagens (Jolinstone, 2000) and collagen processing enzymes. Mutation of 

certain cuticle collagen genes such as dpy-7 (Johnstone et al., 1992) and dpy-10 (Levy 

et al., 1993) result in a similar medium Dpy phenotype to that observed for dpy-18. The 

null phenotype of these genes is also Dpy indicating that the mutant phenotype resulting 

is due to lack of collagen in these cases. Thus a reduction in the function of a 

hypodermally expressed P4H enzyme has a similar effect on overall body morphology 

as the removal of certain key collagens. The degree to which the removal of P4H 

activity resulting from the loss o f the Cc-PHY-1 protein affected the level of 4- 

hydroxproline in the cuticle collagens was assessed by amino acid analysis of mutant 

and wild type cuticle (Friedman et al., 2000; Winter and Page, 2000). These studies 

showed that the cuticles of dpy-18 animals had 4HP levels of around 30% the level of 

wild type. This confirmed that removal of Ce-PHY-1 had the predicted effect on the 

cuticle collagens and also indicated that there was a residual level o f P4H activity in 

these mutants. This remaining activity could be predicted to result from the activity of 

the most similar enzyme in the C  elegans genome, Cc-PHY-2.
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The Ce-phy-2 gene was previously uncharaeterised and for which no biochemical, 

functional or genetic data existed. Single removal of this gene's function by RNAi 

revealed no gross phenotype. This was later confirmed by analysis of a genetic mutant 

which was wild type in appearance (Friedman et al., 2000). Therefore the combined 

removal of both Ce-phy genes was examined to deteimine if disruption of Ce-phy-2 

would have an additional effect in the background of the medium Dpy Ce-phy-1 null 

phenotype. This was done in two ways, by simultaneous injection of dsRNA 

corresponding to both sequences, and by disruption of Ce-phy-2 sequences in a dpy- 

18{e364) genetic background. Both approaches produced similar though distinct results. 

The effect of combined removal/reduction was much more severe than the medium 

dumpy appearance of dpy-18 with severe malformation of body shape evident. The 

effect of combined RNAi injection resulted in a severe Dpy appearance with worms 

remaining in a coiled position. Removal of gene function in a dpy-18 background 

resulted in 90% embryonic lethality in the progeny of injected animals. The 

development of these embryos was observed over time to determine what stage in 

embryonic development they reached. Ce-phy-2 BlHAildpy-18 embryos were 

photographed every 30 minutes from the comma stage and were shown to develop 

normally until after the 3-fold stage. After this time the worm has elongated and the 

cuticle becomes responsible for maintenance o f this shape. At this stage the embryos 

were wild type in appearance and movement, however after this point the worm 

gradually retracted back from their elongated form, ceased movement, failed to hatch 

and died. The progeny from combined injections were slightly less severe than these 

worms and did manage to hatch but otherwise the phenotype of the hatched coiled 

larvae and unhatched embryos was comparable. This similarity excluded any likelihood 

of the embryonic lethal effect being a non-specific lethal effect as a result of increased 

sensitivity to RNAi, rather than the effect on the cuticle collagens of removal of both 

conserved Ce-phy genes. It also showed the incomplete penetrance o f combined RNAi 

as the effect was less severe using this method. Interference of more than one gene by 

RNAi may therefore result in a reduced effectiveness of the interference process. The 

hydroxyproline levels of severely Dpy laiwae and embryos was not determined but 

would be predicted to be negligible due to the extreme effect on the cuticle observed.
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The embryonic lethal phenotype of these P4H disrupted nematodes is similar to that 

described for a mutant allele of the C  elegans cuticle collagen sqt-3 (Priess and Hirsh, 

1986). sqt-3{e2117) is a temperature sensitive mutation with embryos elongating and 

retaining their elongated shape at the lower permissive temperature but which at higher 

growth temperatures retraet. Comparison of embryos raised at the different temperatures 

demonstrated that the major structural striated layer is missing at the restrictive 

temperature, confirming a cuticle specific defect in these animals. Both the retraction 

after normal elongation and the terminal phenotype of these embryos are very similar to 

those resulting from the combined removal of Ce-phy-1 and Ce-phy-2. The detailed 

embryonic lethal phenotype of the four cuticle collagen genes; D2023.7, C39E9.3, 

F38B6.5 and C09G5.6 {bli-1), identified by the genome-wide RNAi screens have not 

been analysed in detail. However one could hypothesise that these would display a 

similar elongation and retraction embryonic lethal phenotype.

RNAi feeding phenotypes of each Ce-phy gene in strains bearing a null mutation of the 

other gave a less severe phenotype than RNAi injection of Ce-phy-2 in a dpy-18 

background. However these were also informative in a manner analogous to that of less 

severe alleles of embryonic lethal genes. The reason proposed for the embryonic 

lethality of double Ce-phy removal/disruption was the generation of a malfoimed cuticle 

that was unable to maintain the normal elongated foim. This proposal is strongly 

supported by the viable feeding RNAi phenotypes, which were extremely malformed. 

The phenotype of these mutants was also examined by scanning electron microscopy 

which reveals the lack of properly formed surface cuticle structures such alae and 

annuii.

3.3.3. Disruption of gene function is associated with disruption of cuticle collagens

The specific effect of removal/reduction of Ce-phy-1 and Ce-phy-2 was examined using 

the localisation and expression of two collagens as a marker. The adult specific cuticle 

collagen COL-19 was examined via a GFP fusion transgene which was integrated into 

the wild type N2 strain (generating strain TP 12) and dpy-18{e364) (generating strain 

TP13) and analysed from a free-array in a Ce-phy-2 deletion strain. This analysis 

showed that loss of Ce-phy-2 alone gave no change in COL-19 expression from that 

found in TP12. However, loss of Ce-phy-1 caused mis-localisation of the collagen 

within the cuticle, as it is no longer uniformly localised to the annuii. Additionally
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COL-19 takes on a fragmented thread-like appearance in some individuals. These 

findings were supported by analysis of DPY-7 using a monoclonal antibody. Again the 

Ce-phy-l deletion strain phenotype was identical to wild type while the dpy-18 mutant 

showed mutant localisation of this collagen. Analysis of RNAi disrupted mutants 

showed the severity of the DPY-7 phenotype to reflect the more severe body 

morphology defects found in these animals. An advantage of using the RNAi feeding 

approach to analyse these phenotypes was that viable animals were produced; thus 

degradation of collagen that could occur in analysis of dead embryos was not a 

consideration. These studies supported the role of both the Ce-PHYs in modification of 

the nematode cuticle collagens and suggested, as was indicated from both the 

genetic/RNAi evidence presented here and the biochemical evidence (Winter and Page,

2000), that Cg-PHY-1 was the more important enzyme for this process.

3.3.4. In vivo evidence of the essential nature of P4H identiGes this enzyme as a 

target for anti-nematode drug design

All previous work defining this class of enzyme as central to collagen biosynthesis was 

based on biochemical observations. Description of the dpy-18 mutant and the effects of 

removal of Ce-phy-2 in this genetic background as embryonic lethal demonstrated in 

vivo the essential function of this enzymatic step in the synthesis of collagens of the 

nematode cuticle and suggested that this is likely to be true in all species. Also as 

disruption of Ce-phy-1 and Ce-phy-2 was sufficient to induce this effect indicated that 

these encoded subunits of the two major enzymes involved in the biosynthesis of cuticle 

collagens in C. elegans and suggested homologues of these enzymes would have similar 

roles in other nematode species. Studies in the parasitic nematode O. volvulus identified 

a P4H a  subunit and PDI which when expressed formed an active enzyme 

(Merriweather et al., 2001; Wilson et al., 1994), however no data was provided on the 

formation of this complex. Both these subunits of O. volvulus are highly conserved with 

C. elegans suggesting that these enzymes may play a similar essential role in filaiial 

parasitic species as they do in C. elegans. Also like C. elegans the existence of more 

than one a  subunit seems likely in this organism as other homologous ESTs were 

identified (Merriweather et al., 2001). The essential role of these enzymes, identified in 

C. elegans development due to their role in modification of the nematode cuticle, 

identifies them as potential target for development of anti-nematode drugs. It has been 

shown in vivo for B. malayi (Merriweather et al., 2001) and C. elegans (Friedman et al..
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2000; Myllyharju et ah, 2002) that inhibitors of P4H result in cuticle specific defects, 

highlighting the potential for development of P4H inhibitory compounds for the control 

of parasitic nematode species. Treatment of adult B. malayi parasites resulted in 

apparent separation of the epicuticle from the underlying structure and reduced ratios of 

4 hydroxyproline were found especially from isolated embryos (Meniweather et al.,

2001). Additionally, a novel series of compounds have also been developed that inhibit 

P4H compounds both in vitro and in vivo (Franklin et a l,  2001) and these could be 

investigated for potential anti-nematode activity.

3.3.5. Collagen chaperone function of P4Hs

It is important in the analysis of the C. elegans P4H enzymes to take into account the 

chaperone function as well as the enzymatic properties of these enzymes. When 

hydroxylation was inhibited for human P4Hs, this enzyme bound to unhydroxylated, 

non-triple helical collagen chains thereby preventing their secretion (Walmsley et al., 

1999). This chaperone function is likely to also be found for the C. elegans cuticle 

collagen P4Hs examined here. The effects of removal of the chaperone function of these 

enzymes could therefore not be separated from the removal of enzymatic activity. Thus 

whether the effect of P4H disruption would be as severe without the combined loss of 

the chaperone function is difficult to establish using the methods employed here. A 

prediction of the result of chaperone function loss would be that partially folded or 

incompletely modified collagens would be secreted and not retained. However studies 

on P4H double mutants presented here suggest less collagen is secreted suggesting 

retention of incompletely modified protein. This raises the question that if P4H is 

removed, and hence collagen molecules incompletely modified, what molecules are 

involved in retaining the collagens. The C. elegans genome does not encode for Hsp47, 

the other major collagen chaperone identified. Thus other collagen specific chaperones 

must be involved in the process of collagen biosynthesis in the nematode. One 

important identified chaperone is the enzyme PDI (Wilson et al., 1998) which can 

function independently of its role in P4H complexes as a collagen chaperone.

3.3.6. Human P4H rescue

The identification of the P4H mutant dpy-18 also provided a means by which to assess 

the function of other P4H encoding genes by expressing them in this genetic 

background. The human P4H a  subunits have been well characterised biochemically
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(Kivirikko and Myllyharju, 1998) however, the ability of both to partially repair the 

phenotype of this mutant illustrates a remarkable degree of evolutionary conservation of 

function. This is especially notable considering the very different forms of collagens 

between nematodes and vertebrates. Repair of mutant phenotype using the human a  

subunits suggested that similar experiments from more closely related nematodes, such 

as the filarial nematode B. malayi, would be possible upon identification of such genes. 

Thus the function of these putative chemotherapeutic targets could be assessed in vivo. 

If capable of functional rescue, the effect of inhibitors on the activity of the enzyme 

could be rapidly assessed by analysing the effect of drug treatment on transgenic C. 

elegans body shape. Studies such as these would have the potential to complement in 

vitro studies on inhibition of recombinant enzymes with the added advantage that the in 

vivo problems of drug uptake and crossing cuticle and cell boundaries would also be 

assessed. Additionally, the effect on the human enzymes could be assessed in this 

system using the same body morphology assay as a guide to inhibitory function, with 

the aim of finding possible compounds that would inhibit nematode but not vertebrate 

enzymes. This assay would provide a means by which to extremely rapidly assess the 

specific inhibitory properties of compounds and identify those for further in vitro 

characterisation. Rescue of C. elegans dpy-18 mutants with a phy gene homologue from 

B. malayi is addressed in Chapter 6.

3.3,7. Ce-PHY“1 and C^-PHY-2 complexes appear not to modify type IV collagens

Although faint expression in body muscle cells was observed for Ce-phy-2 and no 

expression was found in this tissue for Ce-phy-1 it was possible that the complete 

expression pattern of these genes was not uncovered when transgenically determined. It 

was possible that all regulatory regions required for the endogenous expression pattern 

were not contained within the constructs tested. Thus although faint, the muscle-specific 

expression for Ce-phy-2 may have reflected real and possibly much stronger expression 

of the endogenous gene in muscle cells. Therefore the possibility of either or both of 

these genes being involved in modification of the type IV collagens produced by body 

wall muscle cells had to be considered. The body musculature is ananged as 

longitudinal bands of muscle cells, with one running in each quadrant of the body. The 

four bands of muscle lie in grooves in the hypodermis, and at the regions where the 

hypodermal cells aie overlaid by muscle cells they are particularly thin. Fibrous 

elements that extend through the cytoplasm of the hypodermal cells at these points
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anchor the muscle to the cuticle and transmit the forces of muscle contraction to the 

cuticle to enable movement. Body muscle cells also generate type IV collagen both for 

regions of their own basement membranes and for the basement membranes of other 

tissues (Graham et al., 1997).

Basement membranes are thin sheets of ECM which surround the major organs of C. 

elegans. Type IV collagen is found in nearly all regions of basement membranes, 

exceptions being the pseudocoelomic face of the body wall muscle and on the regions of 

hypodermis between body wall muscle quadrants (Graham et al., 1997). Although the 

pharynx and intestine are covered with type IV collagen-containing basement 

membranes, these tissues do not express the type IV collagen genes (Graham et al., 

1997). Type IV collagen made in body wall muscle cells can assemble into pharyngeal, 

intestinal and gonadal basement membranes. These nematode type IV collagens could 

be predicted to contain 4-hydroxproline and hydroxyl y sine in the Y positions of Gly-X- 

Y repeats as has been shown for vertebrate type IV collagens (Kivirikko et al., 1992). 

Severe embryonic lethal phenotypes are found in C. elegans from mutation of type IV 

collagens (Guo et al., 1991; Gupta et al., 1997; Sibley et al., 1994; Sibley et al., 1993) 

and their processing enzymes (Norman and Moerman, 2000). Thus a similai* severe 

phenotype could be predicted from lack of 4-hydroxyproline in these collagens. 

Mutations in another component of the basement membrane causes an uncoordinated 

(Une) phenotype. Products of the C. elegans unc-52 gene are homologous to 

mammalian perlecan, a component of basement membranes (Rogalski et al., 1993). One 

class of mutants in this gene are viable but develop progressive paralysis. The basement 

membrane has been shown to be critical for the assembly of myofilaments within the 

body wall muscle as in the absence of perlecan in unc-52 mutants myofilament 

assembly does not occur (Rogalski et al., 1993).

The lack of these phenotypes combined with the specific embryonic lethal phenotype 

displayed upon the combined Ce-phy gene removal/disruption indicated that neither 

gene was involved in modification of type IV collagens. The movement of developing 

embryos and attainment of a fully elongated form distinguishes them from the mutant 

phenotypes of genes involved in the formation of the basement membranes, typically 

two-fold paralysis. Additionally the dpy-18 mutant strains had no detectable basement 

membrane associated defects. Thus while not exhaustively examined by for example
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antibody analysis, the Ce-PHY-1 and -2 subunits were considered not to affect type IV 

collagen modification and thus formation of the basement membrane ECM of these 

nematodes.

3.3.8. Possible formations of P4H in C  elegans

The data at this stage suggested that two different P4H enzymes were present in C. 

elegans that modified the collagens to be incorporated into the cuticle. The genetic 

evidence suggested that a Cg-PHY-1 P4H, possibly the already identified dimer, was 

more active than the proposed Cg-PHY-2 P4H enzyme. This was verified by the 

biochemical data from 4HP levels of cuticle extracts of dpy-18 (Friedman et al„ 2000; 

Winter and Page, 2000) and the Ce-phy-2 deletion strain (Friedman et al., 2000). dpy-18 

cuticle collagens had a greater reduction in 4-hydroxproline levels of than those from 

the Ce-phy-2 mutant strain. The greater importance of Ce-PHY-l was also indicated by 

the body morphology defect of nematodes mutant for this enzyme, compared to the wild 

type body form of the Ce-phy-2 mutant. The effect on localisation of collagens in the 

cuticle also indicated a greater role for Cg-PHY-l. However what form either of these 

enzymes took in vivo had not been established although in vitro data indicated that a Ce- 

PHY-l/Ce-PDI-2 dimer was likely to be present (Veijola et al., 1996a). Ce-PHY-2 

could however be hypothesised to be foiTned from a dimer or tetramer containing this 

subunit in combination with a Cc-PDI, or could possibly be active as a monomer. 

Active P4Hs monomers have been characterised from A. thaliana. (Hieta and 

Myllyharju, 2002), Paramecium bursaria Chlorella virus-1 (Eriksson et al., 1999), and 

from unicellular and multicellular green algae (Kaska et al., 1987; Kaska et al,, 1988). 

Alternatively, if a p subunit were required for Ce-PHY-2 to form an active enzyme, the 

Cg-PDIs would be obvious candidates. Ce-PDI-1 was shown not to form a complex 

with Ce-PHY-1 (Veijola et ah, 1996a) but was still a possible candidate for fonning a 

complex with Cg-PHY-2. The RNAi phenotype of the Ce-pdi-1 gene displayed no 

phenotype (Gonczy et ah, 2000) (A. Page, personal communication) and studies had 

suggested a non-P4H role for this enzyme (Page, 1997; Veijola et ah, 1996a). Thus the 

defined P4H subunit Ce-PDI-2 was considered a more likely candidate for further 

analysis. In humans the a l  and a l l  subunits both form active a 2p2 tetramers with PDI, 

with evidence suggesting that complexes containing both a  subunits do not form 

(Annunen et ah, 1997; Vuori et ah, 1992a). The mouse a l  and a l l  subunit also 

individually combined with human PDI to form active P4H tetramers (Helaakoski et ah.
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1995). Thus the most obvious hypothesis from the C. elegans data was a common PDI 

subunit, possibly Ce-PDI-2, for two separate P4H complexes, with the complexes being 

in the form of ap  dimers.

Therefore this chapter determined the essential cuticle collagen modifying role for Ce- 

PHY-1 and Ce-PHY-2 but what remained unresolved was what the foims of P4H 

enzyme were which contained these subunits, and if these were the only cuticle collagen 

modifying P4Hs found in this nematode. These points were analysed in the following 

chapters, firstly by examination of the Ce-pdi-2 gene to determine if the enzyme 

encoded by this gene was the likely in vivo subunit for either or both of Ce-PHY-1 and 

Cg-PHY-2 (Chapter 4). Secondly Ce-PHY-2 was expressed in an insect cell co­

expression system to determine associations formed with identified and potential P4H 

subunits, and the presence of these complexes confirmed from in vivo extracts (Chapter 

5). Finally three divergent Ce-PHY encoding genes were examined for a role in cuticle 

biogenesis (Chapter 5).
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Chapter 4

C  elegans PDI-2 functions as the single P4H p subunit and is essential for

nematode development

4.1. Introduction

Ce-pdi-2 was first identified from an EST sequence (McCombie et al., 1992) that was 

then used to screen a C  elegans cDNA library, identifying all but the two most N- 

terminal amino acids (Veijola et al., 1996a). The gene was subsequently sequenced by 

the C  elegans Genome Sequencing Consortium (Consortium, 1998) and assigned to 

cosmid C07A12.4 and its localisation on the X chi'omosome was confirmed. The 

predicted protein is highly homologous to the human P4H p subunit, or human PDI 

(Pihlajaniemi et al., 1987). Insect cell expression of Ce-PDI-2 confirmed it as an active 

disulphide isomerase with activity similar to the human PDI (Veijola et al., 1996a) 

based on an assay for the renaturation of reduced, denatured RNase (Lyles and Gilbert, 

1991). Co-expression studies using this system demonstrated that this peptide was 

capable of forming active P4H complexes with a  subunits from C. elegans and human. 

Cc-PDI-2 had been shown to form an a 2P2 tetramer with human a l, and a dimer with 

Cc-PHY-1 (Veijola et al., 1996a). Another isoform of PDI exists in C. elegans, Ce- 

PDI-1, which has also been confirmed as an active disulphide isomerase (Veijola et al., 

1996a). Cc-PDI-1 displays lower amino acid homologies with Ce-PDI-2 (48% identity 

and 66% similarity) than Cc-PDI-2 shares with human PDI, suggesting a different role 

for Cc-PDI-1. Cc-PDI-1 has been examined in detail and was found not to form P4H 

complexes with any a  subunits tested (Veijola et al., 1996a). Cc-PDI-1 has been linked 

to the process of cuticle collagen folding by its expression pattern and its genomic 

organisation within an operon (Page, 1997). The downstream gene in this operon is a 

peptidyl prolyl cis-trans isomerase, a class of enzyme which is thought could be 

involved in the folding of the collagen triple helix (Page, 1997). This arrangement of 

genes is also conserved in the close relative of C. elegans, C. briggsae, further 

suggesting a functional relationship between these two genes (Page, 1999). RNAi 

phenotype of Ce-pdi-1 gene displayed no phenotype (Gonczy et al., 2000) (A. Page, 

personal communication) which when compared to the effects of single and combined 

removal of Ce-phy-1 and Ce-phy-2 further indicated that this gene was not a P4H 

subunit. Another enzymatically active PDI from C. elegans, Cc-PDI-3, has been
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recently identified which has been shown to have transglutaminase activity 

(Eschenlauer and Page, 2003). Cc-PDI-3 has, like its homologue in the parasite D. 

immitis (Chandrashekar et al., 1998), been defined as an ERp60-like protein. ERp60 

proteins are related to PDIs but have been shown to be incapable of functionally 

replacing PDIs in a P4H complex (Koivunen et al,, 1996). These findings suggested a 

non-P4H role for this enzyme, although, like Cc-PDI-1, it is likely to have a collagen- 

related function, possibly being involved in cross-linking these molecules.

Cc-PDI-2 was therefore analysed to determine a role for this enzyme in the fomiation of 

P4H complexes in vivo with Ce-PHY-1 and Cc-PHY-2. In this chapter, expression 

pattern studies and analysis of RNAi knockouts were performed and compared to the 

results for the Ce-phy genes. Further characterisation of the Ce-pdi-2 partial disruption 

RNAi phenotype was performed at the level of specific collagens by 

immunolocalisation and SEM. The locus let-44 was examined to determine if this 

represented a Ce-pdi-2 mutant.

4,2. Results 

4.2.1. Examination of ̂ ranv-splicing

The four exons gene structure of Ce-pdi-2 is shown in Figure 4.1. The size of the 3' 

UTR is estimated on the basis of the ESTs with the longest 3' sequence and the likely 

position of a poly adénylation signal sequence in this region. Primers F(pMal) and 

R(pMal), indicated on Figure 4.1, were used in combination with SLl and SL2 to 

examine ^rara-splicing, the results of which are shown in Figure 4.2. Lane 1 shows the 

product generated by gene primers used to amplify Ce-pdi-2 from mixed stage cDNA, 

Figure 4.2 lanes 2 and 3 show lack of appropriately sized product being amplified by 

use o f the SLl and SL2 primers respectively with the gene antisense primer. This shows 

that unlike Ce-phy-1 and Ce-phy-2 this gene is not SLl ^ra/75'-spliced, and in addition 

does not appear to be ^ra«5-spliced by SL2. Ce-pdi-2 is therefore included in the small 

group of approximately 20% of the C. elegans genes that are not trans-spliced by either 

SLl or SL2 (Zorio et al,, 1994).

4.2.2. Protein sequence

The completed sequence predicts a protein of 493 amino acids with a proposed signal 

peptide of 16 amino acids, giving a mature peptide length of 477 residues. The signal
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C«-pdi-2 (C07A12.4) gene structure
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Figure 4.1. Gene structure of Ce-pdi-2

Gene structure o f Ce-pdi-2 is depicted with exons shown as coloured boxes, exon 

numbers are indicated with roman numerals, intron regions are shown as lines and 3' 

UTR is an open box. Sizes of intron, exon and 3' UTR regions are given in base pairs. 

Positions of the most 3' EST sequences are given that indicated the likely position of the 

polyadenylation site. Promoter region and primers are given (region not drawn to scale). 

The positions of important primers are illustrated.
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Ce-pdi-2

Gene SLl SL2

Figure 4.2. SL RT-PCR o ï Ce-pdi-2

Agarose gel of products resulting from SL RT-PCR of the C  elegans pdi-2 gene. Lane 

1 shows the product amplified using gene specific primers for Ce-pdi-2, lane 2 shows 

no product amplified by PGR using SLl specific sense primer and the anti sense gene 

primer, lane 3 shows no product amplified by PCR SL2 specific and antisense gene 

primer. The positions of molecular size standards are indicated with sizes given in 

kilobases.
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peptide cleavage site is in agreement with the signal peptide predicted from the initial 

incomplete N-terminal protein sequence (Veijola et al,, 1996a). The C-terminus encodes 

an HTEL that is a variant of the KDEL ER retention signal encoded by the human PDI. 

The Ce-PHY-l and Cc-PHY-2 polypeptides, like most P4H a  subunits, do not contain 

an ER retention signal and so could be retained in this subcellular compartment by a 

retention signal contained within the C-terminus of Cc-PDI-2. The critical role of 

vertebrate PDI in this process is demonstrated by deletion of this region which causes 

the secretion of the tetramer and free PDI polypeptide from the ER (Vuori et al., 

1992b). A comparison of amino acid sequences of Ce-PDI-2 and identified P4H P 

subunits from O. volvulus (Wilson et al., 1994) and human (Pihlajaniemi et al., 1987) 

are shown in Figure 4.3 (signal peptides have been removed and numbering refers to the 

matui*e processed peptides). Cc-PDI-2 shows identity o f 71% and similarity of 84% to 

Ov-PDI, and 59% identity and 78% similarity with human PDI. The conserved active 

sites residues are indicated with an asterisk. This protein therefore demonstrates a high 

degree of homology with other defined P4H p subunit PDIs supporting the proposed 

involvement of this gene as a C  elegans p subunit.

4,2,3. Spatial expression pattern

The putative promoter region from Ce-pdi-2 were generated by PCR and cloned into the 

reporter gene vector pPD95.03. This plasmid contains lacZ with multi-introns and a 

nuclear localisation signal and has been described in Figure 3.2. Approximately 2.6 kb 

of upstream region plus the first five bases of coding sequence were fused in-frame with 

lacZ and the construct transformed into C. elegans by microinjection. Primers used to 

produce this fragment are illustrated in Figure 4.1. Two different strains were used for 

injection with two different coiTesponding markers. A semi-dominant allele of the 

collagen gene rol-6 was used as a marker in the wild type strain, allowing identification 

of transformants on the basis of the roller phenotype (Mello et al., 1991). Wild type 

une-76 was used as a marker for an unc-76 mutant stain enabling selection of 

transformants on the basis of repair of uncoordinated movement to wild type mobility 

(Bloom and Horvitz, 1997). The construct was injected into both strains at a 

concentration of 20 pg/ml with markers at 100 pg/ml. Transformants were selected and 

semi-stable lines established. For each marker three or more lines were maintained and 

examined for pGal activity using the standai’d concentration of the artificial substrate
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Figure 4.3. Amino acid alignment of Cc-PDI-2 with O. volvulus and human P4H 

subunit PDIs

Amino acid alignment o f Ce-PDI-2 with O. volvulus {Ov) and human PDI subunits of 

P4H enzymes. Gaps (-) were introduced for maximal alignment and signal peptides 

were removed, therefore numbering refers to the mature processed proteins. Active site 

residues are indicated with asterisks. Genbank Accession numbers- Cc-PDI-2 

(U41542), Ov-PDI (U12440) and human PDI (X05130).
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X-gal. Many different nematodes were examined and all the life cycle stages were 

observed to determine which cells were expressing the reporter gene. No differences 

were noted between the different marker and strains used. Ce-pdi-2 driven lacZ 

expression was seen in all stages from embryo to adult. Figure 4.4 panels A and B 

shows LI larvae expressing lacZ in their hypodermal cell nuclei. Expression was 

detected in the LI hypodermal cells; including the anterior HOL, HIL, hyp3, 4, 5, 6 and 

7; posterior TL, hyp7, 8 ,9 , 10, 11; and the mid body hyp7 and lateral P, V, H2R and 

H2L cells. Mosaicism in expression was evident, especially in the posterior hyp and 

anterior hyp3 and hyp4 cells. This hypodermal pattern of expression is almost identical 

to the Ce-phy studies. In the late larval and adult stages the expression pattern becomes 

increasingly more complex Figure 4.4 panel C. The function of PDIs in modifying 

collagens would predict expression of Cc-PDI-2 in the hypodermis where the cuticular 

collagens are synthesised and secreted. No additional staining in the vulva or in 

muscles, as seen for Ce-phy-I and Ce-phy-2, was observed. Other than these 

differences, the Ce-pdi-2 expression pattern was identical to the Ce-phys supporting the 

proposed association of Cc-PDI-2 in P4H complexes with both these proteins.

4.2.4. Temporal expression of Ce-pdi-2

To examine the expression of Ce-pdi-2 through development, RT-PCR was performed 

on staged cDNA sampled from regular intervals throughout post-embryonic 

development. RT-PCR was performed on two hourly samples using a set of primers 

specific to Ce-pdi-2 and a control set of primers to the large subunit of RNA polymerase 

II encoding gene ama-I (Bird and Riddle, 1989), Figure 4.5 A. Both sets of primers span 

an intron region of the gene thus enabling the cDNA signal to be distinguished from 

products arising from any genomic DNA contamination. Quantifying the strength of 

signal produced from Ce-pdi-2 compared to ama-I allowed the relative abundance of 

the Ce-pdi-2 transcript to be determined for each time point. The Ce-pdi-2 temporal 

expression profile, Figure 4.5B, revealed that the transcript was expressed throughout 

larval development. Within lar val stages expression levels after the moult are low, these 

rise during each stage peaking at approximately the mid-point. Levels then fall to near 

their starting point, before rising in the next stage. The single peak of expression once 

within each larval stage corresponds to the synthesis of a new cuticle once within each 

intermoult period. Cuticle collagens which have been examined in this way show a 

similar oscillating pattern of expression (Jolinstone et al., 1996; McMahon et al., 2003).
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Figure 4.4. lacZ expression from the Ce-pdi-2 gene promoter 

Images show the Ce-pdi-2 promoter-driven lacZ expression in the 

hypodermal cells of C. elegans. Panel A, lacZ expression in an LI co­

transformed with the rol-6 marker plasmid; panel B, lacZ expression in an 

LI eo-transformed with the unc-76 marker plasmid.; panel C, lacZ 

expression in an adult co-transformed with the rol-6 marker. Scale bar on 

panels A and B and equals 10 pm, bar for C equals 100 pm. Panel D shows a 

representation of hypodermal cell nuclei in an LI larvae.
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Figure 4.5. Temporal expression of Ce-pdi-2

(A) Agarose gel showing the timecourse RT-PCR of Ce-pdi-2 with the control gene 

ama-I amplified simultaneously. The positions of molecular size standards are indicated 

with sizes given in kilobases. Along the top of the gel picture the time in hours is given 

which represents hours post-hatch. The developmental stages from L 1 to adult that the 

samples represent are indicated below the gel. (B) Semi-quantititive RT-PCR graph. 

Expression levels o f Ce-pdi-2  transcripts in relation to ama-I throughout post- 

embryonic development are expressed in arbritary units along the y-axis. The x-axis is 

the time in hours post-hatch. The vertical bars represent the timing of the moults with 

the corresponding developmental stage indicated. A single peak of expression is found 

within each developmental stage.

163



Chapter 4___________________________________________________________Results II

Unlike C. elegans phy-1 and phy-2, Ce-pdi-2 has a much more pronounced peak of 

expression within the section of adult development examined. Some collagen genes are 

expressed in the adult stage and the Ce-pdi-2 peak observed in the adult stage may 

correspond to the gro’wth of the cuticle in adults. This growth would require collagen 

gene expression and the corresponding requirement for disulphide isomerase activity 

alone and/or for its function as a subunit of a P4H. It is extremely unlikely that the peak 

of expression seen in the adult stage could result from expression of this gene from 

embryos contained within the adults as the method used to prepare RNA from these 

nematodes does not enable extraction from embryos (Johnstone and Bany, 1996). 

Additionally the peak of expression in the adult stage could be due to other functions of 

this multi-functional enzyme. Comparison of the Ce-pdi-2 expression with Ce-phy-1 

and -2 shows an extremely similar profile within each cuticle synthesising larval stage. 

This similarity is in keeping with the proposed association of these proteins in P4H 

complexes and the function of these enzymes in modifying the nematode cuticle. 

Expression levels are seen generally, for all three subunits, to increase through the larval 

stages, followed by substantial reduction in adults. Less P4H activity would be required 

in adults as grov^th is accomplished by modification of the existing cuticle compared to 

synthesis of a complete new cuticle for each larval stage. Expression of Ce-pdi-2 was 

also detected by PCR in embryo cDNA and is shown in Figure 4.6A compared to 

pooled samples for each of the other developmental stages. Expression in the embryo of 

Ce-pdi-2 is confirmed by reporter gene analysis, Figure 4.6B.

4.2.5. RNAi injection

The function of Ce-pdi-2 was examined in a similar manner to that o f Ce-phy-I and Ce- 

phy-2 using RNA mediated interference. The possibility of Ce-pdi-2 sequences cross- 

interfering with similar genes was considered. At the nucleotide level the most similar 

gene to Ce-pdi-2 is Ce-pdi-1 but these only share 60% identity, less than that proposed 

to cause cross-interference (Tabaia et aL, 1998). Additionally Ce-PDI-1 has been 

covered by one of the large scale RNAi screens and produces no phenotype (Gonczy et 

al., 2000), indicating that any phenotype produced by interference of Ce-pdi-2 would 

not be a result of disruption of the other isoform. dsRNA was produced in vitro for Ce- 

pdi-2 by cloning almost full length coding sequence (1.4 kb) into a pBluescript like 

vector.
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Figure 4.6. Embryonic expression of Ce-pdi-2

A) Agarose gel showing a comparison of embryonic expression of Ce-pdi-2 with 

samples representing developmental stages LI to adult. Lane 1 is an embryo sample, 

lane 2 is an L 1 sample, lane 3 is an L2 sample, lane 4 is an L3 sample, lane 5 is an L4 

sample, and lane 6 is an adult sample. Expression can clearly be seen in the embryo 

stage. (B) Ce-pdi-2 promoter driven reporter gene expression in the developing embryo, 

showing expression in the hypodermal cells.
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Ce-pdi-2 dsRNA was injected into the gonad of young adult hermaphiodite N2s. After a 

period of recovery, from 4 hours to overnight, nematodes were transferred singly to 

fresh plates. This period also allowed for par tially developed embryos to be cleared, and 

progeny scored were exposed to dsRNA for their entire development. Injected worms 

were then transferred daily to fresh plates and progeny from previous plates scored. 

Injection of dsRNA for Ce-pdi-2 resulted in embryonic lethality. Plates were scored as 

having dead embryos if embryos were present when the adult was removed but had not 

hatched after an overnight period at 20°C. Progeny were counted and dead embryo 

numbers compared to hatched progeny. These embryos were checked the next day to 

ensure no more progeny had hatched. Only plates where an effect was observed were 

scored as some injections were unsuccessful. Scoring of progeny showed that RNAi via 

injection of dsRNA for Ce-pdi-2 gave 99% (1431 dead out of 1432 embryos laid) 

lethality in a wild type genetic background. Therefore single removal of Ce-pdi-2 

generated similar levels of embryonic lethality as the Ce-phy-2 A it dpy-18 mutant

combination. This suggested that this gene could encode a P4H (3 subunit involved in 

both proposed C  elegans P4H complexes.

4.2.6. Developmental timecourse analysis of the Ce-pdi-2 RNAi embryonic lethal 

phenotype

The lethal embryonic phenotype of Ce-pdi-2 RNAi injected nematodes was examined in 

more detail by monitoring their appeaiance thi’oughout embryonic development. This 

was accomplished by injecting animals with Ce-pdi-2 dsRNA, and then after a period of 

10 hours, to ensure RNAi was effective, pre-comma stage embryos were collected and 

photographed at 30 minute intervals throughout development. Specific time points 

during this process are shown in Figure 4.7. Comma stage embryos developed normally 

to the thiee-fbld stage, where elongation was completed, transforming a ball of cells 

into a worm shape. Embryos at this stage were active and moved, indicting correct 

formation of muscular structures and attachments. After the three-fold stage the mutant 

phenotype becomes apparent, as embryos become less active and gradually lose their 

elongated shape. Examination of the timing of loss of worm body morphology reveals 

that this corresponds exactly with the time with which the cuticle becomes the support 

to maintain the nematodes elongated body form, see Figuie 3.16. The Ce-pdi-2 RNAi 

cuticles were proposed to be weakened due to improper modification and are therefore
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Figure 4.7. RNA interference of Ce-pdi-2

Development timecourse of wild type N2 injected with dsRNA tor Ce-pdi-2. Bar 

represents 10 pm. (A) 1.5 fold embryo (430 minutes). (B) 3-fold elongated 

embryo (560 minutes) with the head and tail out of focal plane. (C) Retracting 

embryo (700 minutes). (D) Terminal phenotype (approximately 960 minutes); a 

fully retracted dying embryo.
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unable to fulfil their role of supporting the nematodes vermiform shape. RNAi treated 

embryos continue to collapse back over time to an even more disorganised state. The 

terminal phenotype is variable but was typically reminiscent of the two-fold stage of 

embryonic development. These animals did not hatch but gradually ceased movement, 

vacuolated and died. The exact similarity in the embryonic lethal phenotype resulting 

from Ce-pdi-2 RNAi and that of Ce-phy-2 RNAi in dpy-18, compare Figure 3.15, 

mutants strongly supported the contention that Ce-PDI-2 is the only (3 subunit in P4H 

complexes containing Ce-PHY-1 and Ce-PHY-2. The contribution of other possible 

functions of this PDI in cuticle collagen modification could not be easily assessed as it 

was not possible to determine if the cuticle was fuither weakened by loss of disulphide 

bonding activity in addition to the proposed loss of P4H activity resulting from Ce-pdi-2 

interference.

4.2.7. RNAi feeding

RNAi can also be accomplished by feeding nematodes bacteria expressing dsRNA. The 

same fragment used for in vitro production was cloned into the double T7 vector 

pPD129.36. This was then transformed into a strain of bacteria that contains an IPTG 

inducible T7 polymerase. Bacteria containing the annealed single strands were then fed 

to wild-type C. elegans. The results for feeding were much less pronounced than those 

found for injection. Phenotypes were extremely vaiiable with a single experiment and 

between experiments, ranging from slightly to extremely Dpy progeny. The most 

consistent phenotype observed was the extreme dumpy phenotype. These nematodes 

were so fragile that mounting them for images was extremely difficult as they burst 

when placed on the slide and it was not possible to capture images of the individuals. 

Ce-phy-2 RNAi feeding in dpy-18 mutants (and Ce-phy-I RNAi feeding in the phy-2 

deletion mutant) also produced severely Dpy progeny, however the “coiled” position 

mutants (Figure 3.17) typical of these experiments was not found for Ce-pdi-2 RNAi. 

The increased fragility of these mutants also provided a very crude assessment of the 

more weakened state of the cuticles of Ce-pdi-2 RNAi-treated nematodes possibly due 

to the loss of other functions of this gene. Additionally RNAi feeding was found to be 

temperature dependent. More pronounced RNAi effects were seen at the higher 

temperatui’e of 25°C compared to 20°C. Whether this was a function of the RNA effect 

being stronger at this temperature or whether nematode collagens are more fragile at
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higher temperatui'es and thus more susceptible to disruption was not determined. The 

phenotypes seen for feeding were thought to be the result of incomplete disruption of 

the Ce-pdi-2 gene. The body shape defect are consistent with a role for this gene in the 

modification of the cuticular collagen ECM and are similar to the incomplete joint 

disruption of Ce-phy-1/Ce-phy-2 by double injection or RNA feeding o f one Ce-phy 

gene in the mutant background of the other.

4.2.8. Analysis of the RNAi feeding phenotype

The viable RNAi phenotypes resulting from RNAi feeding provided a useful tool with 

which to examine the proposed collagen and cuticle malformations proposed for Ce- 

pdi-2 disruption. The Dpy phenotypes were consistent with a role in collagen 

modification, as this phenotype often results from collagen mutation. Additionally the 

embryonic lethal phenotype of Ce-pdi-2 RNAi injected worms indicated strong cuticle 

abnormalities. To specifically examine the cuticle and its collagens two approaches 

were taken, firstly to disrupt Ce-pdi-2 function and use a cuticular collagen specific 

marker to assess the effeet on collagen. Secondly to look in detail at the surface of the 

disrupted euticle using scanning electron microscopy (SEM) to observe specific surface 

cuticular structures.

4.2.8.1. DPY-7 staining

The antibody DPY-7 localises the DPY-7 protein to the circumferential annular furrows 

of the cuticle and is found throughout C. elegans development. Wild type nematodes 

fed Ce-pdi-2 dsRNA expressing bacteria were stained with the DPY-7 antibody. Only a 

few animals were found to contain detectable levels of DPY-7 protein in their cuticles, 

shovm in Figure 4.8. Staining in RNAi nematodes, panels C and D, is only found in 

small areas of the cuticle in a disordered manner when compared to the regular and 

discrete localisation in the wild type, panels A and B.

4.2.8.2. Scanning electron microscopy

The surface of Ce-pdi-2 RNAi fed animals was examined by scanning electron 

microscopy (SEM). It was not possible to examine worms treated in this way by 

conventional mirosopy due to their extremely fragile cuticles. Figure 4. 9 show the 

effect on the cuticle of Ce-pdi-2 disruption when examined by SEM. Panel A shows the 

mutant body shape while panel B illustrates the effect on the cuticle with its highly
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Figure 4.8. DPY-7 immunolocalisation in Ce-pdi-2 RNAi fed nematodes 

DPY-7 immunolocalisation in wild type N2s and RNAi affected animals showing the 

collagen specifically in the annular furrows of the wild type adult cuticle (panels A and

B) compared to the disruptive effect of RNAi of Ce-pdi-2 feeding (panel C and D).
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Figure 4.9. Scanning electron micrographs

SEMs o f wild type C. elegans fed with bacteria expressing Ce-pdi-2 dsRNA. Panel 

magnification x 100, panel B magnification x400.
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convoluted surface, loss of annulae and distorted alae. These effects are similar to the 

results found for the Ce-phy genes examined.

4.2.9. Examination of let~44 as a candidate Ce-pdi-2 mutant

4.2.9.1. let-44 developmental timecourse analysis

The locus let-44 maps to position -8.53 on chromosome X in comparison with the Ce- 

pdi-2 containing cosmid C07A12.4 which has an interpolated map position o f -7.63 

(Figure 4.10). No other embryonie lethal phenotype is present within a 3-4 eM region. 

The strain GR1029 was investigated to determine if  the locus let-44 was mutant in Ce- 

pdi-2. Strain GR1029 has the genotype let-44(mg41) lon-2{e678)X; mnDp31(X;f). 

Animals that retain the free duplication are wild type and segregate wild type and dead 

embryos. Approximately a third of animals lose the free duplication and aiTest as dead 

embryos. The phenotype of arrested embryos when examined tlirough time intervals 

during development, shown in Figui*e 4.11, is similar to that described for Ce-pdi-2 

RNAi lethal embryos. Mutant embryos developed to the fully elongated three-fold stage 

of development. After this stage, at a time consistent with the cuticle becoming the 

mechanical support maintaining the elongated form of the worm, embryos collapsed 

back from the three-fold stage to a more disorganised state that failed to hatch and 

subsequently died. This similarity in phenotype and difference from the most common 

embryonic lethal phenotype seen in C. elegans, the paralysed arrest at two-fold or pat 

mutants, suggested let-44 was a good candidate for a Ce-pdi-2 mutant.

4.2.9.2. Rescue of let-44 phenotype

Repair of the let-44 phenotype by microinjection of the wild type copy of the mutated 

gene would result in the production of viable worms that have lost the free duplication 

but contain the introduced free array. Progeny from injections in which this has 

occurred would be identifiable due to the presence of the lon-2 genetic locus that would 

result in wonns with a phenotypically long appearance, lon-2 worms are typically 50% 

longer than wild-type worms at all stages. To investigate the ability of Ce-pdi-2 

sequences to rescue the let-44 phenotype the strain GR1029 was injeeted with wild type 

Ce-pdi-2 and progeny scored for Lon. Cosmid C07A12 contains the entire coding 

region and promoter and 3' UTR regions for Ce-pdi-2 at the position C07A12.4. Cosmid 

DNA was prepared and checked for the presence of Ce-pdi-2 sequence by PCR. The 

cosmid was co-injected with the GFP expressing plasmid dpy-7-GFP. Most injections
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Figure 4.10. Comparison of physical and genetic maps in the region of Ce-pdi-2 

Positions of let-44 (blue writing) locus at 8.53 on chromosome X on the genetic map 

and the Ce-pdi-2 encoding cosmid C07A12 (shown with a blue background and white 

writing). The interpolated genetic map co-ordinate of Ce-pdi-2  at position 7.63 is 

indicated. Figure adapted from WormBase data.
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Figure 4.11. Development timecourse analysis of a let-44 embryo 

(A) 1.5 fold embryo (400 minutes). (B) 3-fold elongated embryo (620 minutes). 

(C) Retracted embryo (735 minutes).
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of the cosmid at a higher concentration (5 p,g/ml) resulted in very few live transformed 

progeny with dead GFP expressing embryos present. After repeated attempts at this 

concentration one line was obtained which gave no Ion progeny and dead GFP positive 

embryos. The cosmid was therefore toxic at this concentration and so was re-injected at 

a concentration of 1 pg/ml. Four lines were established but none of these showed any 

evidence of phenotypic rescue of let-44 (data not shown). The toxicity of the plasmid at 

anything but low concentrations could have been due to the overexpression of other 

genes contained in this cosmid. The low concentration of cosmid required to give viable 

transgenic progeny could have resulted in a level of Ce-pdi-2 expression insufficient to 

achieve rescue. Therefore transgenic rescue was also attempted with a PCR generated 

fragment containing only Ce-pdi-2 sequences cloned into a plasmid. The fragment was 

produced with the same primer, pdi-2 PF indicated in Figure 4.1, used as the sense 

primer and a antisense primer down stream of the predicted polyadenylation sequence, 

pdi-2 Rees R also shown on Figure 4.1. The promoter region o f this fragment was 

therefore identical to the promoter used in reporter gene experiments which produced 

strong hypodermal staining in all developmental stages, and should have been sufficient 

to provide high level expression of the transgenic Ce-pdi-2 gene. This plasmid was 

injected into the strain caiTying mutant let-44 at a concentration o f 5 |ag/ml with dpy-7- 

GFP. The combination of the higher concentration used and the increase in copy 

number of the Ce-pdi-2 gene per microgram should have resulted in higher expression 

of the desired gene without the possible negative effects of overexpression of other 

genes. Viable progeny were produced with this method although no evidence of rescue 

of the let-44 was found.

4,2.9.3. Ce-pdi-2 sequence from let-44 mutants

The lack of repair of let-44 with Ce-pdi-2 indicated, but did not prove, that let-44 was 

not mutant in this gene. In order to investigate this further Ce-pdi-2 sequences were 

cloned from let-44 embryos. Sequences from both mRNA and genomic sources were 

amplified, as shown in Figure 4.12, cloned and sequences and let-44 and wild type Ce- 

pdi-2 sequences compared. Primers pdi-2 HSC F and pdi-2 HSC R were used (Figure 

4.1), which cover from the translational start to stop of this gene. No consistent change 

in Ce-pdi-2 sequence was foimd between any of the six cDNA and three genomic DNA
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PCR products examined. The inconsistent changes that were present were likely to be a 

result of the high number of amplification cycles taken to amplify the cDNA sequences.

3 “Ve

1482 bp

B

1966 bp

Figure 4.12. Ce-pdi-2 genomic and cDNA cloning from let-44 embryos 

(A) Agarose gel showing products resulting from RT-PCR of Ce-pdi-2 from let-44 

embryos. Lanes 1-3 show amplification of wild type sized 1482 bp product, -ve 

indicates the negative control PCR lane. Products from this and a repeat set of PCRs 

were cloned and sequenced (B) Agarose gel showing products resulting from PCR of 

genomic Ce-pdi-2 sequence from let-44 embryos showing amplification of wild type 

sized 1966 bp product, -ve  indicates negative control PCR lane. Products were cloned 

and sequenced. The positions of molecular size standards are indicated with sizes given 

in kilobases.
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4.3. Discussion

4.3.1. Essential function of Ce-pdi-2 proposed to be the formation of P4H 

complexes

This chapter set out to establish the likelihood of Ce-PDI-2 representing an in vivo 

partner for the Ce-PHYs discussed in chapter 3. A dimer had already been shown to 

form between Ce-PHY-l and this enzyme in vitro (Veijola et al., 1996a). The results in 

this chapter support this finding and further suggest that this may be the only cuticle 

collagen-specific PDI in this nematode. Other functions are proposed for two other 

related PDIs in C. elegans (Eschenlauer and Page, 2003; Page, 1997), and in humans a 

single PDI forms separate complexes with two different a  subunits (Annunen et al., 

1997; Vuori et al., 1992a). Analysis of Ce-pdi-2, in a similar manner to analysis of the 

Ce-phy genes, demonstrated that this gene had all the characteristics expected to encode 

the only P4H p subunit associated with C^-PHY-1 and Ce-PHY-2. Their expression 

patterns were virtually identical both in terms of the cells expressed and the timing of 

expression. As was proposed for the Ce-phy genes, Ce-pdi-2 did not seem to be 

involved in modification of the type IV collagens and was instead cuticle collagen 

specific. The identical phenotype displayed by RNAi embryos also suggested that the 

main role of Ce-PDl-2 is as a subunit for the Ce-PHYs. DPY-7 staining of Ce-pdi-2 

RNAi fed nematodes also showed collagen disruption. The model that was therefore 

proposed at this stage was two separate cuticle collagen P4Hs, both containing Ce-PDI- 

2 in combination with either Ce-PHY-1 or Ce-PHY-2. As a dimer had already been 

described, this was a possible form these proposed complexes could take, although the 

ability of Ce-PDI-2 to form tetramers with human subunits had been established, 

indicating that this could also be the case in the nematode.

4.3.2. Other roles of PDI in collagen synthesis

PDI also has additional roles in collagen biosynthesis as it acts independently of P4H to 

catalyse disulphide bond formation and also acts as a chaperone. Reducible bonds are 

formed between collagens that foim the nematode cuticle which possibly occur at the 

level of trimer formation or during the assembly of higher order structures (Cox et al., 

1981a). These bonds are likely to form between the conserved C-terminal cysteine 

residues present in C  elegans collagens. Replacement of one o f these conserved C- 

terminal cysteines in the C  elegans collagen SQT-1 gives a roller mutant phenotype
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(Kramer and Johnson, 1993). Therefore disulphide bonding is required for normal 

collagen function and so loss of this function may have an additional effect to that 

resulting from P4H removal. It was not possible in the work presented in this chapter to 

separate these two effects although a method to define this is discussed in Section 4.3. 

PDI also has a role as a chaperone in collagen biosynthesis to assist the correct folding 

and assembly of these proteins. P4H also performs chaperone functions during collagen 

biosynthesis (Walmsley et al., 1999; Wilson et al., 1998), thus dismption of PDI by 

RNAi would effect both the individual PDI chaperone functions and those of the P4H 

complex, which could no longer form. Removal of these chaperone functions would 

also be predicted to affect collagen biosynthesis.

4.3.3. let-44 is not a Ce-pdi-2 mutant

To confirm the RNAi mutant phenotype possible genetic mutants which mapped nearby 

were examined to determine if any could represent a Ce-pdi-2 mutant. A strain bearing 

the let-44 mutation was investigated as potentially being a Ce-pdi-2 mutant as to date no 

other loci in this area displayed either body morphology or embryonic lethal 

phenotypes. This mutant was proposed based on the comparable map positions of the 

Ce-pdi-2 gene and the mutant locus, and the similarities between mutant and gene RNAi 

induced phenotypes; both of which showed elongation followed by retraction after 

cuticle synthesis. Transgenic rescue experiments and molecular analysis of Ce-pdi-2 

sequences in this strain suggested that this was not a Ce-pdi-2 mutant as no repair of 

phenotype was observed and no molecular mutation was isolated. The possibility 

existed that a mutation could lie outwith the examined coding sequence o f the gene and 

could still affect gene function. Although possible this type of mutation, in for example 

the promoter region, is not foimd as often due to the greater probability of generating an 

effect by changes within the coding region compared to within control sequences. 

Taken together the lack of rescue with both cosmid and plasmid bearing wild type Ce- 

pdi-2 sequences and the lack of detection of a molecular lesion in this gene indicated 

that this locus did not represent a Ce-pdi-2 mutant.

The phenotype of let-44 is indicative of a role in cuticle collagen modification due to its 

similarity to the genes discussed here and the cuticle collagen mutant sqt-3(e2117) 

(Priess and Hirsh, 1986). Nearby genes were therefore examined within a 3 cM region 

either side of let-44 (position -8.53 on X) to establish if  any other candidates genes
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existed within this area. Nearby genes were therefore examined that could be involved 

as either a component of the cuticle or affect the generation of the cuticle. Two nuclear 

hormone receptor (nhr) genes (C07A12.3 and F16H11.5) lie to the right o f let-44. 

Disruption of nhr genes have been described which affect body morphology and 

moulting (Asahina et al., 2000; Gissendanner and Sluder, 2000; Kostrouchova et al., 

1998; Miyabayashi et al., 1999). However both of the genes near let~44 have been 

covered in a RNAi screen and do not display embryonic lethality or body shape 

mutations, with one appearing wild type after RNAi the other sterile (Maeda et al., 

2001). Interestingly, to the left-hand side o f let-44 at position -8.15 a collagen is 

encoded by the gene F14H12.1 (see Figure 4.10) the RNAi phenotype of which has not 

been determined. The genome wide RNAi screens (Fraser et al., 2000; Gônczy et al., 

2000; Maeda et al., 2001) have uncovered embryonic or immediately post hatch lethal 

phenotypes for collagen genes (see Section 1.6,3). When these RNAi phenotypes are 

positioned along with the existing collagen genetic mutants (see Section 1.6.1. and 

Table 1.1) on collagens grouped by similarity (Johnstone, 2000), a cluster of genes (6 

out of 7 nearest neighbours) occurs in group 1 for which a mutant phenotype has been 

described. The let-44 candidate F14H12.1 is a member of the group 2 collagens for 

which rol-8 and a RNAi post-hatch lethal collagen, F38B6.5, are grouped next to each 

other. F14H12.1 positioning within group 2 places it directly next to these other two 

collagens, supporting its role as a candidate let-44 mutant and perhaps indicating 

clustering of mutations on the basis of similarity also occurring in group 2 collagens. 

Thus on the basis of the comparative map position and its phenotype this collagen may 

represent the let-44 mutation, adding to sqt-3{e2II7), and possibly other embryonic 

lethal RNAi mutants which have not been studied in detail, exhibiting the elongation 

and retraction embryonic lethal phenotype displayed by Ce-pdi-2 RNAi mutants and 

Ce-phy double mutants.

4.3.4. Uses of a Ce-pdi-2 genetic mutant

A project to produce null alleles of all the genes identified/predicted in the C. elegans 

genome is currently being undertaken by a consortium of labs 

(http://elegans.bcgsc.bc.ca/knockout.shtml). These labs screen randomly mutagenised 

nematode libraries by PCR to identify deletions in specific genes of known sequence. 

The consortium aim is to provide a putative null allele o f any gene requested by a lab 

with C  elegans resources. However a request in 1999 for a C07A12.4 knockout to be
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made by the C. elegans knockout consortium has yielded no results to date. Other 

approaches to generate a strain are detailed in Section 4.4. Production of a genetic 

mutant would confirm the RNAi phenotype of this gene and provide a suitable strain for 

which to assess interspecies conservation of PDI function and in vivo assessment of in 

vitro mutagenised PDIs. pdi genes from parasitic nematodes such as B. malayi could be 

identified as true orthologues if they were able to replace C. elegans pdi-2 function, and 

an essential function for development and cuticle biogenesis of the parasite gene 

inferred. Additionally, a genetic Ce-pdi-2 mutant would provide a strain in which in 

vitro mutagenised PDIs could be assessed for their ability to function both as a PDI 

individually and as a P4H subunit. This would provide a method to elucidate the cause 

of the Ce-pdi-2 embryonic lethality by assessing whether this is due to loss of PDIs 

independent roles, its subunit functions or a combination of these. PDIs can still 

function as P4H subunits in vitro when both PDI active sites have been mutagenised 

(Vuori et al., 1992b). Therefore mutagenised enzymatically inactive Ce-PDI-2 could be 

used to rescue the mutant strain and determine if return o f P4H activity alone is 

sufficient to repair the phenotype completely. Similar studies could be performed on 

PDIs from other species if  rescue of the C. elegans mutant with the wild type genes was 

first established. However resolving the effects of disruption o f Ce-PDI-2 due to 

complex/enzymatic functions and PDIs chaperone functions, which are described 

above, could not be addressed in this way. Humans PDI mutants containing double 

active site mutations and so lacking isomerase activity still retained chaperone activity 

(Hayano et al., 1995). Thus transgenic rescue of a Ce-pdi-2 mutant with an 

enzymatically inactive PDI would be likely to produce protein that would act as a 

chaperone as well as a P4H subunit.

Alternatively if it is not possible to produce a Cg-PDI-2 genetic mutant using the 

process described in Section 4.4, the experiments described above could be performed 

using a RNAi approach. Functional replacement of gene function with PDIs from other 

organism could be performed by transformation of the foreign gene in to wild type C  

elegans followed by RNAi of the endogenous Ce-pdi-2. This approach as been recently 

successfully performed for C. elegans and H. contortus cysteine protease genes and the 

results verified in a stable mutant (Britton and Murray, 2002). The Ce-pdi-2 coding 

sequence could be used if the foreign gene sequence is sufficiently different to the C  

elegans gene. Alternatively if the nucleotide coding sequences were too similar the 3'
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UTR region of Ce-pdi-2 could be used to selectively disrupt this genes function. Similar 

approaches could be used with mutagenised pdi genes from C. elegans and other 

species.

4.4. Future work to identify a Ce-pdi-2 genetic mutant

4.4.1. Screening of a chemically mutagenised nematode library

A potential approach to generate a Ce-pdi-2 genetic mutant would be to adopt a similar 

approach to the C. elegans gene knockout consortium but perform the library 

construction and screening independently. This library could be produced either by 

random Tel transposon insertion (Plasterk, 1995) or chemical mutagenesis (Liu et aL, 

1999). Tel insertion does not in itself necessarily result in gene inactivation as insertion 

often occurs within intronic regions. Therefore, after identification o f an insertion in the 

target gene a subsequent round of screening would be required to identify animals in 

which the transposon and flanking DNA are deleted through transposon excision. 

Chemical mutagenesis, which produces small deletions, has the advantage over Tel 

mutagenesis as additional rounds o f screening are not required. Chemical mutagenesis 

can be performed using microtitre plate-based culture for ease of handling. 

Mutageneised animals (Po) can be distributed in wells and grown in liquid culture to 

yield F2 . Mutagenised worms from each well can then be divided into frozen stocks and 

DNA lysates for PCR analysis. Lysates, or pools of lysates, can then be screened with 

gene specific primers using conditions where production of product from a gene 

containing a deletion would be preferentially amplified (Liu et al., 1999).

4.4.2. Precomplementation screen

An alternative, and possibly less time consuming, method for producing a mutation in a 

specific gene of known sequence with a lethal RNAi phenotype, or predicted lethal 

phenotype, is to precomplement with the target gene then mutagenise the transgenic 

strain. For Ce-pdi-2 the RNAi induced embryonic lethality is predicted to represent the 

null phenotype. A transgenic strain could be produced by microinjection with wild-type 

Ce-pdi-2 coding and promoter sequences. Co-injection with a selectable marker would 

also be required, this could either be semi-dominant rol-6 marker, unc~76 rescue or a 

GFP expressing transgene. Before progressing an important control would be to confirm 

expression of the target gene from the transgenic array. A transgenic strain from which 

transcription had been verified and that showed transmission at a low to medium
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frequency (30-50%) would then be mutagenised. Progeny from this population would 

be screened for requirement of transgene presence for viability. These animals would 

potentially be the result of target chr omosomal gene inactivation by mutation. Due to 

the essential function of the target gene only individuals carrying the wild-type copy on 

the transgene would be viable and those where the transgene had been lost would be 

inviable. Therefore lines that display 100% transmission o f the marker gene phenotype 

and dead embryos would be candidate Ce-pdi-2 mutants. It would be important to 

distinguish between other possible outcomes that could produce 100% marker 

phenotype such as transgene integration events. The presence of dead embryos on the 

100% marker plates would also aid distinction of target gene removal from integration 

events.
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Chapter 5

C. elegans PHY-1, PHY-2 and PDI-2 combine in unique ways to form enzyme 

complexes and are the only cuticle collagen modifying P4H subunits

5.1. Introduction

The enzymes encoded by C. elegans phy-1, phy-2 and pdi-2 genes have been shown in 

the preceding chapters to have a central role in modification of the cuticular ECM of 

this nematode. These genes displayed shared tissue specific and developmental 

expression profiles which were characteristic of their proposed function. The combined 

effect of removal/disruption of both Ce-phy genes gave an identical embryonic lethal 

expression pattern to that resulting from the single removal o f Ce-PDI-2. The specific 

timing where abnormal development became apparent in these embiyos was also 

identical, and was consistent with modification of the cuticular ECM. Biochemical 

analysis of dpy-I8 {Ce-phy-I mutant) strains indicated the presence of residual 

hydroxylation of their cuticle collagens (Friedman et al., 2000; Winter and Page, 2000). 

Analysis of a Ce-phy-2 mutant strain showed cuticle collagen hydroxylation levels 

lower than wild type but twice as high as dpy-I8 mutants (Friedman et al., 2000). These 

results suggested the presence of two P4H enzymes in this nematode. In vertebrates, 

characterised complexes are of the form tetramers (Helaakoski et al., 1995; 

Helaakoski et al., 1989; Vuori et al., 1992a) and an Œ2p2 tetramer had been described 

from Drosophila (Annunen et al., 1999). The form of a P4H formed from subunits from 

the parasitic filaiial nematode O. volvulus (Merriweather et al., 2001) was not 

determined but was likely to be either an a 2P2tetramer or an ap  dimer. An 

interpretation of the C. elegans data at this stage suggested that, similar to other species 

examined, the two Ce-PHYs were in two separate P4H complexes; with the more active 

enzyme containing Cg-PHY-1. Analysis of Ce-PDI-2 indicated both predicted 

complexes would contain this protein as a p subunit. Studies had suggested a non-P4H 

subunit role for another C  elegans PDI, Ce-PDI-1 (Page, 1997; Veijola et al., 1996a) 

which supported the contention that Ce-PDI-2 was the common p subunit. The exact 

form(s) of these putative complexes was however not known. A C. elegans P4H 

complex had been defined previously in vitro, where co-expression o f Ce-PHY-1 and 

Ce-PDI-2 (but not Ce-PDI-1) in an insect cell expression system had shovm that these 

two polypeptides combined to form an active dimer (Veijola et ah, 1996a). In an effort
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to determine the forms of the P4H enzyme found in C. elegans, Ce-PHY-2 was 

expressed in an insect cell co-expression system with possible partner proteins and the 

resulting associations determined. Analysis o f these associations was confirmed in vivo 

and suggested that, contrary to expectation, a third enzyme form was present in C. 

elegans', which was hypothesised to contain Cg-PHY-2 and Ce-PDI-2 and, it was 

initially thought, an additional subunit. This possibility was investigated further by 

defining the expression and function of three divergent Ce-phy-Wks genes with a view to 

their possible inclusion in this hypothetical complex, and to assess any other 

involvement they may have in nematode ECM formation. In addition, preliminary 

experiments on C  briggsae homologues of C  elegans phy-I, phy-2 and pdi-2 were 

initiated to determine if these genes performed a similar* essential function in this 

species.

5,2. Results

5.2.1. Baculovirus expression of Ce-PHY-2

The baculovirus expression system enables multiple proteins to be co-expressed in 

insect cells and subsequent protein associations determined (Vuori et al., 1992a). Co­

expression of multiple proteins is accomplished by infection of cells with multiple 

recombinant viruses. The Pharmingen system (Crossen and Gruenwald, 1998) utilises 

the Autographa californica nuclear polyhedrons virus (AcNPV). In tissue culture, 

baculovirus genes such as polyhedrin are non-essential and can be replaced by 

heterologous genes via homologous recombination from a transfer vector. The 

heterologous genes are expressed from a strong promoter resulting in high levels of 

expression. Expression of Ce-PHY-2 was carried out in collaboration with J. Myllyharju 

at the Collagen Research Unit, University of Oulu, Finland to determine the form of any 

complex containing this subunit. The only previously described C. elegans P4H 

complex was a Ce-PHY-1 dimer with Ce-PDI-2 (Veijola et al., 1996a). On the basis of 

the genetic/RNAi data, Ce-PDI-2 was considered to be the common subunit in 

complexes containing both Ce-PHY subunits, therefore Ce-PHY-2 was assessed for its 

ability to form P4H complexes with this and other subunits by co-expression.

Ce-PHY-2 was cloned into the baculovirus expression vector and fully sequenced to 

detect any errors in the PCR generated sequence. The clone was determined to be 

identical to the sequence predicted from cosmid data confirming this data and the
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intron/exon boundary predictions made. P4H a  subunits expressed alone in this system 

are usually highly insoluble (Vuori et aL, 1992a), with one of the primary functions of 

the PDI subunit being to prevent aggregation (John et al., 1993). Expression of Ce- 

PHY-2 in this system alone was insoluble as expected, with efficient extraction of 

protein from cells requiring 1% SDS buffer (J. Myllyharju, personal communication). 

This indicated that, as predicted from RNAi/mutant analysis, Ce-PHY-2 was not active 

alone as a monomer and required the presence of other subunit(s). Surprisingly Ce- 

PHY-2 was found not to associate with Ce-PDI-2, Ce-PDI-1 or human PDI individually 

when co-expression cell lines were analysed by native western analysis using subunit 

specific antibodies (J. Myllyharju, personal communication). This was an unexpected 

finding as it was initially predicted that Ce-PHY-2 may form a dimer with Ce-PDI-2 in 

a similar manner to Ce-PHY-1 (Veijola et al., 1996b), and the RNAi data had indicated 

that both predicted Ce-PHYs complexes would have a common Ce-PDI-2 p subunit. 

However, when Ce-PHY-2 was expressed in combination with both Ce-PHY-1 and Ce- 

PDI-2 subunits, an active tetramer was formed with subunit specific antibodies 

indicating the presence o f all three polypeptides in the complex (J. Myllyharju, personal 

communication). Expression of Ce-PHY-2 with Ce-PHY-1 and Ce-PDI-1 did not 

produce any complex. The tetramer was therefore predicted to be of the form Ce-PHY- 

l/Ce-PHY-2(Ce-PDI-2)2 and was shown to be over 10-fold more enzymatically active 

than the previously described C. elegans dimer, suggesting that this may be the 

principle form of the enzyme in this organism. No other mixed a  subunit P4H tetramer 

had been described from any other organism and data from humans indicated that they 

were not formed in vertebrates (Annunen et al., 1997), suggesting this form of P4H 

complex, if verified in vivo, may be nematode-specific.

5.2.2. Native extract analysis of P4H complexes

To analyse the forms of the P4H enzymes from C. elegans in vivo, extracts were made 

from wild type N2, CB364 [dpy-I8{e364); Ce-phy-I predicted null], and JK2757 \phy- 

2(okI77); Ce-phy-2 deletion] strains and compared to the triple expressing insect cells. 

These insect cell lines contain the Ce-PHY-1/CePDI-2 dimer along with the mixed a  

subunit tetramer, Ce-PHY-1 /Ce-PHY-2(Ce-PDI-2)2. This analysis was performed to 

determine if the C. elegans tetramer and dimer predicted from the insect cell data were 

present in the nematode in vivo, and what the corresponding complexes were in C.

185



Chapter 5_______________________  Results III

elegans P4H mutant strains. Nematode extracts were examined by nondenaturing 

PAGE, Western blotted and probed with subunit specific antibodies to Ce-PHY-1 and 

Ce-PHY-2. Although the Ce-PDI-2 antibody recognised the dimer and tetramer 

complexes in insect cells (data not shown) this antibody did not recognise these 

complexes efficiently in nematode extracts, and thus the data on complex formation 

using this antibody is not included here. In vivo PDI subunits of P4H complexes are 

made in large excess to the a  subunits (Kivirikko et al., 1992), reflecting the additional 

roles of these multi-functional PDI enzymes. Thus the free Ce-PDI-2 was found in these 

samples to react well with the antibody (data not shown) but the dimer and tetramer 

P4H complexes were extremely poorly detected. An excess of free Cg-PDI-2 inhibiting 

complex detection would not have occurred in the insect cell expression system since all 

subunits would have been expressed at similai* levels.

The described tetramer and dimer forms of the P4H complex were present in wild type 

N2 extracts when detected with an anti-Ce-PHY-1 antibody, with the tetramer form 

being more abundant than the dimer (Figure 5.1, lane 1). The insect cell extract is 

shown in lane 4 for compai'ison. Examination of the wild type extracts with an anti-Ce- 

PHY-2 antibody showed only the presence of the tetramer, lane 5, confirming the co­

expression data. Therefore the in vivo data confirms the predictions from co-expression 

studies; wild type C. elegans contains two P4H complexes, a Ce-PHY-1/Ce-PDI-2 

dimer and a more abundant Ce-PHY-1/Ce-PHY-2/(Ce-PDI-2)2 tetramer. dpy-I8{e364) 

extracts showed no immunoreactive bands using anti-Ce-PHY-1 antibody, lane 2, 

(identical results were also found for the strain bearing allele e l 096, not shown), 

confirming the lack of full-length expression in both these strains. dpy-I8{e364) was 

predicted to produce a severely truncated protein, however the antibody is active against 

the extreme C-terminal amino acids of Ce-PHY-1. The lack o f detection of protein does 

not confirm this strain as a null but does demonstrate lack of full-length protein 

production. However, as all the active site residues are missing in the mutant protein 

produced from this strain, and read-through translation was not detected, it was 

considered to be a functional null. The strain with allele dpy~18{eI096) did encode the 

region detected by the antibody but lacked the promoter region and protein signal 

peptide encoding sequences. Analysis by RT-PCR suggested transcription of Ce-phy-1 

was taking place and, if translated, the protein from these mutant transcripts would lack
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Figure 5.1. Analysis of P4H complexes from C  elegans extracts 

Triton X-100 soluble nematodes extracts from wild type and mutant C. elegans strains 

analysed by nondenaturing PAGE and Western blotting. Lane 1 and 5 show extracts 

from the wild type N2 strain, lanes 2 and 5 are from a dpy-I8{e364) mutant strain, lanes 

3 and 7 are form the phy-2 deletion mutant strain and lane 4 is the Tx-lOO extract from 

insect cells co-expressing Ce-PHY-1, Ce-PHY-2 and Ce-PDI-2. Lanes 1-4 were probed 

with anti-Ce-PHY-1 antibody, lanes 5-7 were probed with anti-Ce-PHY-2 antibody. 

The positions of the identified P4H dimer (D) and tetramer (T) complexes are indicated 

with arrows.
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a signal peptide and would therefore be non-functional. Additionally the loss of 5' non­

coding sequence would affect the SLl trans-spYiomg of Ce-phy-I gene transcripts from 

this strain. The SL sequences are proposed to be involved in translation initiation 

(Blumenthal and Steward, 1997) thus loss of the 5' UTR sequence would stop addition 

of the SLl sequence and translation. The lack of protein detection suggested that the 

abnormal transcript was either not translated or that the abnormal protein was degraded; 

either possibility indicates dpy-I8{el096) was also a null allele of Ce-phy-l. The 

phenotypes of dpy-I8{eS64) and dpy-18{el096) were identical and so both were 

considered true genetic nulls. Analysis of the dpy-I8 mutant extracts with anti-Ce-PHY- 

2 showed the presence of a faint band, lane 6, although found consistently this band was 

not always as strong or the background staining as low as in the data shown. This band 

did not appear to represent a dimer or tetramer as it migrated above the size of the dimer 

indicated. Additionally in the wild type extract probed with anti-Ce-PHY-2 antibody, 

lane 5, there was no corresponding band found. Therefore this in vivo analysis initially 

appeared to support the original insect cell data, that Ce-PHY-2 only formed a P4H 

complex in the described mixed PHY subunit tetramer.

Analysis of the strain bearing allele phy-2{okI77) {Ce-phy-2 deletion) with anti-Ce- 

PHY-1 antibody did not detect a tetramer complex, lane 3, therefore the formation of a 

tetramer required the presence of Ce-PHY-2. However, despite the absence of this 

highly active complex, nematodes from this stain were phenotypically wild type. This 

could be explained by the increased levels of the Ce-PHY-1/Ce-PDI-2 dimer formed, 

compare lanes 1 and 3, in this strain. As approximately equal protein amounts were 

loaded, the abundance of the dimer in wild type and the phy-2{okI77) strain can be 

directly compared. An increase in the formation of the less active dimer complex that 

can be seen in phy-2{okl77) must be sufficient to produce wild type body shape by 

compensating for lack of a tetramer complex. When phy-2{okI77) animals were assayed 

for levels of 4-hydroxproline, they were found to be 60% of the level of wild type 

(Friedman et a l,  2000), indicating that although levels were lower, this level is 

sufficient to provide wild type body shape under laboratory conditions. No reactivity 

was found in Ce-phy-2 deletion extracts using an anti-Ce-PHY-2 antibody, lane 7, 

confirming the predicted absence of full-length protein in this strain.
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5.2.3. Possible additional C. elegans P4H complex(es)

Examination of nematode extracts provided in vivo confirmation of the presence of a 

Ce-PHY-l/Ce-PHY-2(Ce-PDI-2)2 tetramer and a Ce-PHY-1/Ce-PDI-2 dimer. It also 

initially appeared to be in support of these being the only forms of P4H complex in C  

elegans formed from only these three subunits. This raised the question o f how dpy-18 

mutant strains were viable. As mentioned previously when cuticle extracts from dpy-18 

mutant strains were assayed for 4-hydroxyproline content the levels found were 30% 

that of wild type (Friedman et al., 2000; Winter and Page, 2000). These nematodes are 

deficient in Ce-PHY-1, and lacking this subunit would mean neither the tetramer nor the 

dimer would form. Lack of these two complexes was confirmed from in vivo extracts 

from this strain. Ce-PHY-2 did not appear to form any complex independently of Ce- 

PHY-1 and Ce-PDI-2, thus an undefined complex was thought to exist which provided 

the P4H activity in dpy-18 nematodes to modify their collagens to the levels noted 

above. Figure 5.2A shows a cartoon of the P4H complexes present in wild type and 

mutant strains, suggesting the presence of a third complex.

Several possibilities for another type of complex existed. However, if  the RNAi data 

was considered accurate, the undefined complex must contain both Ce-PHY-2 and Ce- 

PDI-2 as additional disruption of Ce-PHY-2 causes death of dpy-18 nematodes and 

single disruption of Ce-PDl-2 gives an identical lethal phenotype suggesting that a 

common p subunit was present in all complexes. Initial results from insect cell co­

expression data indicated that a dimer or tetramer did not form from these two subunits 

alone, and neither type of complex was initially considered to be present on native 

Western analysis of nematode extracts. It was therefore hypothesised that another 

complex, containing Ce-PHY-2 and Ce-PDI-2, was present that required an additional 

unidentified subunit to form. Although, as already indicated, no additional tetramer 

sized Ce-PHY-2 complex was present in native Western analysis of worm extracts. It 

was considered a possibility that this was a result of the Ce-PHY-2 epitope, while being 

accessible in the characterised tetramer, was inaccessible in this putative complex. 

Therefore the complex proposed, on the basis of the RNAi and insect cell co-expression 

data, was another mixed a  subunit tetramer, containing Ce-PHY-2, Ce-PDI-2 and an 

additional undefined Cg-PHY (Figure 5.2B). Other possible complexes were also 

conceivable, and if mixed p subunits complexes were hypothesised as being able to
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Figure 5.2. Diagram of C. elegans P4H complex forms

A) A depiction o f the forms of P4H complexes found in wild type and mutant C. 

elegans. The wild type N2 strain is shown with the identified tetramer and dimer 

forms of the P4H complex. Mutant strains are shown with the complex forms they 

possess depicted and those that are absent indicated with a dash. The phenotype 

resulting from the missing forms of the complexes are given. This analysis 

suggested the presence of a third uncharacterised P4H complex, indicated, ?.

B ) Diagram of a proposed third P4H complex based on the initial finding that Ce-PHY- 

2 and Ce-PDI-2 did not form a complex independently when co-expressed in an 

insect cell expression system. A third enzyme form was therefore predicted which 

contained both these proteins in a tetrameric complex in combination with a third 

unidentified Ce-PHY subunit, represented as PHY-? in the diagram.
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form, another two complexes containing Ce-PHY-2 and Ce-PDI-2 could be predicted; a 

homo-a-subunit/mixed p subunit tetramer (Ce-PHY-2/Ce-PHY-2/Ce-PDI-2/Ce-PDI-?) 

and a mixed a  subunit/mixed p subunit tetramer (Ce-PHY-2/Cg-PHY-?/C^-PDI-2/Ce- 

PDI-?). Yet more complexes could be envisioned if the RNAi/genetic data was not 

accurate as these need not contain Ce-PHY-2 and Ce-PDI-2 and could be formed from 

every possible combination of putative a  and p subunits in tetramer, dimer and possibly 

monomer forms. The mixed a  subunit tetramer containing Ce-PHY-2/Ce-PHY-?(Ce~ 

PDI"2)2 was however the favoured model for a third possible P4H enzyme as the RNAi 

data was considered reliable, the embryonic lethality of combined Ce-phy~l and Ce- 

phy-2 removal had been confirmed genetically (Friedman et al., 2000), and a mixed a  

subunit P4H had been described already in this organism in the course of this work but 

no mixed p subunit P4H had been described for any organism.

Access to the complete C  elegans genome sequence enabled identification of tliree 

predicted divergent Ce-phy-\ikQ genes (identified by J. Myllyharju, personal 

communication). These were further characterised to determine any role they may have 

in collagen modification. If  one of these was involved in a mixed a  subunit tetramer 

with Ce-PHY-2 and Ce-PDI-2, reduction of these genes functions in a dpy-18 genetic 

background should prevent formation of the proposed tetramer, and would be predicted 

to result in embryonic lethality. In addition characterisation of these genes was also 

performed with a view to assessing their capacity, singly or in combination, for 

involvement in biogenesis of C. elegans ECMs of either the cuticle, possibly in a role 

different to the one proposed, or the basement membrane.

5.2.4. Analysis of divergent Ce-phy genes

A comparison of the amino acid sequence of the proteins from the three predicted Ce- 

PHYs compared to Ce-PHY-1 and -2 is shown in Figure 5.3 (the amino acid sequence 

of Ce-PHY-3 shown is the experimentally identified form described later). This shows 

that while highly diverged, and much smaller in the case of Ce-PHY-3 and Ce-PHY-4, 

the active site histidine, aspartic acid and lysine residues (Lamberg et al., 1995; 

Myllyharju and Kivirikko, 1997) are all present, indicated with asterisks. The first and 

third conserved cysteine residues (John and Bulleid, 1994; Lamberg et al., 1995) are 

also present in all sequences, indicated with an asterisk, as is probably the second. The
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Figure 5.3. Amino acid alignment of C. elegans PHY subunits

An alignment o f Ce-PHY subunits, Ce-PHY-1 and Ce-PHY-2, and divergent 

uncharacterised subunits, Ce-PHY-3, Ce-PHY-4 and Ce-PHY-5, is shown. Gaps (-) 

were introduced for maximal alignment and signal peptides were removed, therefore 

numbering refers to the mature processed proteins. Conserved cysteines (C), aspartate 

(D), histidine (H) and lysine (K) residues are Indicated with asterisks. Positions o f 

residues highly conserved between Ce-PHY-1, Ce-PHY-2 and other characterised P4H 

a  subunits are indicated with a dollar sign ($), the first cysteine indicated in this fashion 

is present in the divergent Ce-PHY subunits immediately adjacent to the marked 

cysteine. The histidine marked in this fashion has been replaced with arginine in all 

three divergent polpeptides. Accession numbers Ce-PHY-1 (Z81134), Ce-PHY-2 

(Z69637), Ce-PHY-3 (Z81593), Ce-PHY-4 (U46671) and Ce-PHY-5 (AL032623). The 

Ce-PHY-3 depicted is the experimental identified form, the accession number given is 

for the Genbank prediction, see Riihimaa et a l ,  2002 for the modified gene sequence. 

The predictions used for Ce-PHY-4 and Ce-PHY-5 are those from Genebank.
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position of this second conserved cysteine in Ce-PHY-1 and -2 is indicated with a dollar 

sign, and is immediately adjacent to cysteine residues found in each of the divergent 

polypeptides. The fourth conserved cysteine and the position of a catalytically important 

histidine are also indicated for Ce-PHY-1 and -2 with a dollar sign. This conserved 

cysteine is not present in the divergent Ce-PHYs. In human P4H subunit a l, the 

histidine corresponding to this position can be partly replaced by arginine (Myllyharju 

and Kivirikko, 1997) as is the case in all tliree divergent C  elegans PHY polypeptides.

5.2,4.1. Ce-phy-3 gene mapping

A predicted protein with low homology, less than 12% identity, to Ce-PHY-1 and -2 

was identified, and termed Ce-PHY-3. This putative P4H subunit was encoded by the 

gene T20B3.7 which maps to chromosome V. Analysis of the coding sequences 

revealed two different gene structures, one predicted by Genefinder and the other by the 

Intronerator computer programs. No EST data was available to confirm or exclude 

either gene model. Genefinder predicted a four exon gene, Figure 5.4A, compared to 

Intronerator which predicted an extra very short 5' sequence as the first exon, with the 

second exon being a larger version of Genefinder exon one Figure 5.4B. Both the 

predicted proteins from these proposed genes lacked a signal peptide. Therefore an 

additional prediction was produced from analysis of possible coding sequences 

upstream of the 5' end of T20B3.7. This identified a potential 5' exon that encoded a 

signal peptide between S23 and Q24 (J. Myllyhaiju, personal communication). The 

predicted gene was therefore five exons in length with exons 2-5 corresponding to 

exons 2-5 of the Intronerator gene prediction. The first exon was however different and 

was predicted to be 208 bp in length. Figure 5.4C. This resulted in a large first intron of 

4150 kb, intronic sequences of this size are uncommon in C  elegans, where the 

majority of introns are less than 60 bp.

The three possible predictions were tested by PCR to determine the true 5' end coding 

sequence of Ce-phy-3, An antisense primer designed just upstream of the translational 

stop codon, which was common to all predictions, was used with tliree different 

upstream primers corresponding to the three different gene models (Figure 5.4A). All 

three primer combinations were tested on genomic DNA to confirm that the primer 

combinations were able to produce products. However the sense primer T20B3.7 cF,
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Figure 5.4. Gene structure predictions and mapping of Ce-phy-3

The gene structure for Ce-phy-3 predicted by Genefinder (A), Intronerator (B) and an 

experimental prediction (C) are shown. Exon sequences are represented by filled boxes 

with sizes of exons given in base pairs above. Exon numbers are indicated by roman 

numerals. Intronic sequences are shown as lines with the sizes in base pairs indicated. 

The positions of primers used to map this gene are shown with arrows. The sequences 

removed in a Ce-phy-3 deletion stain are shown. (D) RT-PCR of Ce-phy-3 sequences to 

determine which gene model was correct with primers corresponding to the Genefinder 

prediction (lane 1), the intronerator prediction (lane2) and the experimental prediction 

(lane 3). The size of the amplified fragment in lane 3 is given in base pairs. The 

positions of molecular size standards are indicated with sizes given in kilobases.
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corresponding to the Intronerator prediction, could not be tested in this way as it 

spanned an intron and gave no product. The other two primer combinations produced 

PCR products of the expected size. PCR on N2 mixed stage cDNA gave a product from 

both the Genefinder and the signal peptide search prediction, but no product from the 

Intronerator based primers. Figure 5.4B. This indicated that the signal peptide 

containing prediction was the real gene and the presence of product from the Genefinder 

prediction was due to this sequence also being present in the larger prediction. The 

signal peptide containing prediction was confirmed by sequencing of the PCR product 

and will be referred to as Ce-phy-3.

S.2.4.2. Ce-phy-3 RNAi in N2

The effect of removal of Ce-phy-3 was assessed by disruption of gene function using 

both RNAi feeding and microinjection in a wild type genetic background. Both 

approaches were taken as injection normally provide the most potent interference 

technique but feeding can be effective in identifying additional post-embryonic 

phenotypes (Fraser et al., 2000) and for disrupting late acting genes. The 900 bp product 

from PCR with primers T20B3.7 LF and T20B3.7 NR was cloned into pPD l29.36 and 

was used to produce RNA in vitro from the two T7 promoters. Double-stranded RNA 

was injected into N2 heiTnaphrodites at a concentration of 0.5 mg/ml and progeny 

assessed for phenotype. Ce-phy-3 RNAi-treated nematodes were phenotypically wild 

type when viewed in the laboratory and analysed for body shape, movement and 

fecundity. Results from RNAi feeding were identical. The Ce-phy-3 disruption 

phenotype was confirmed by analysis of a Ce-phy-3 deletion strain, TP7 produced by 

the C. elegans Gene knockout consortium (Riihimaa et al., 2002). This strain bears a 

1241 bp deletion removing exon 2, 3, and 4, and a region of exon 5 (Figure 5.4), and 

was also wild type in appearance. Deletion of this region does not remove any other 

predicted coding sequences.

5.2.43. Ce-phy-3 reporter expression pattern

A Ce-phy-3 promoter/reporter fusion construct was made in the /acZ/GFP reporter gene 

plasmid pPD 96.04 by P. Riihimaa (Collagen Research Unit, Oulu, Finland). The pPD 

series of vectors are described in Chapter 3 with the vectors used being derivatives of 

those described by A. Fire (Fire et al., 1990). The vector pPD96.04 contains a 5' decoy 

sequence, an upstream synthetic intron, nuclear localisation signal (NTS), and the 3'
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region from unc-54. The reporter gene is a fusion of GFP (Clialfie et a i, 1994; Heim et 

aL, 1995), containing three synthetic introns, and lacZ containing a further eleven 

introns. NLS-containing GFP reporter constructs had been previously found to result in 

incompletely nuclear localised protein. However the degree o f retention was improved 

using gfpllacZ fusion genes, suggesting that the poor localisation of GFP alone may be 

the result of the relatively small size of this protein. The promoter region used 

incorporated Ce~phy-3 sequences from -1480 to + 8  relative to the translational start 

ATG. The construct was injected in to N2  hermaphrodites with the marker plasmid 

pRF-4 {roU6) and transgenic lines selected. Lines were then stained for p-galactosidase 

activity (pGal). Ce-phy~3 promoter driven expression of pGal was found in the 

spermatheca of adult hermaphrodites, Figure 5.5. The spermatheca is a specialised 

region of the gonad and is the site of oocyte fertilisation. Expression in an organ of this 

function indicates strongly that Ce-phy-3 is not involved in biogenesis of either of the 

major ECM forming C  elegans collagens. However there are limitations to this 

technique and the transgenic expression pattern of a gene may not fully reflect the 

expression of the endogenous gene as the putative promoter region used may not 

containing all the cw-acting sequences necessary for native gene expression.

S.2.4.4. Effect of Ce-phy-3 interference/removal on cuticle collagen localisation

To further determine if Ce-PHY-3 had any cuticular collagen-modifying role the 

expression pattern of the C0L-19::GFP fusion was determined after RNAi disruption of 

the Ce-phy-3 in the strain TP 12 (an integrated line expressing COL-19 fused to GFP), 

and DPY-7 immunolocalisations were performed in the Ce-phy-3 deletion strain. Strain 

TP 12 was fed dsRNA corresponding to the Ce-phy-3 gene and the effect on COL-19- 

GFP distribution determined. Mutation or interference of the cuticle collagen associated 

Cg-PHY-1 was found to affect C0L-19-GFP localisation. However, no effect was found 

on C0L-19-GFP localisation after Ce-phy-3 RNAi disruption, as the pattern was 

completely consistent with that found for wild type nematodes (data not shown). This is 

also in accord with a non-cuticulai* collagen role for this enzyme although it should be 

noted that the single removal of Cg-PHY-2, as determined using the deletion strain, also 

had a wild-type C0L-19-GFP transgene expression pattern. Likewise the localisation of 

the cuticle collagen DPY-7 in a Ce-phy-3 deletion mutant strain was found to be wild 

type (data not shown).
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Figure 5.5. Tissue-specific localisation of Ce-phy-3

Sensitive X-gal staining for P-galactosidase expression in a transgenic C. elegans 

expressing lacZ from the Ce-phy-3 promoter. This is shown to direct expression of the 

reporter gene to the spermatheca.
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5.2.5.5. Ce-phy-4 PCR mapping

The Genefinder and Intronerator programs also made two different predictions of exon 

structure for the gene encoded by cosmid C14E2.4, provisionally named Ce-phy-4, 

which are shown in Figure 5.6 A and B. These gene structures differed only in the size 

of the last of the six exons. No EST data was available to coiToborate either gene model. 

Primers were designed against sequences common to both gene predictions, and wild 

type N2 genomic DNA was tested to verify the primer combinations; these were then 

used on N2 cDNA. Although no product was generated using a standard number of 

amplification rounds, one was obtained using 40 cycles with the primers FI and R3. 

This 484 bp product, Figure 5.6C, lane 3, corresponds to the sequence from the 

translational start ATG to the 3' end of exon 3. This was the largest cDNA amplified 

fi'om the predicted sequences, no product was produced with primer FI in combination 

with R1 or R2 (Figure 5.6C, lanes 1 and 2). Attempts were made to map the 3' end using 

a poly-T primer in a first round amplification with FI followed by a semi-nested PCR 

using the poly-T and F2 primers. The product amplified from this reaction was found to 

be due to contamination of reactions with DNA containing T-rich sequences. Further 

attempts to map the gene by SL PCR were unsuccessful, possibly due to the high 

number of amplification cycles required. Further mapping of this gene would require 

multiple primers to be designed particularly over exon 4 to see if perhaps this region 

encodes two genes. 5' and 3' RACE could then be used to verify transcriptional start and 

stop sites. As the extent of the gene could not be defined further the prediction made by 

Genefinder was referred to as Ce-phy-4. The predicted protein from this gene contained 

an ER signal peptide (cleavage predicted between Y 19 and G20) and many of the 

conserved residues present in P4H subunits but over all shows less than 11% identity 

and 20% similarity with Ce-PHY-1 and Ce-PHY-2.

5.2.4.6. Ce-phy-4 RNAi in N2

The 484 bp fragment isolated by PCR was cloned in to plasmid vectors and used to 

produce dsRNA in vitro and in bacteria in a similar manner to that described earlier. 

This was introduced to N2 hermaphrodites by microinjection and feeding using E. coli 

producing dsRNA. The progeny produced from both interference methods were wild 

type as determined by observation using standard light microscopy. During the process 

of this work, a Ce-phy-4 deletion strain was produced bearing a deletion covering exons 

4 and 5 (see Section 2.3). Deletion of this region does not remove any other gene coding

198



Chapter 5 Results III

Genefinder C«-pky~4

ATG 
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FI

544   421  295 2 6 4 ^ ^  955
*■ -4- <
F2 R3 R2

P  Intronerator Ce^ky-4

ATG 
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FI

544 — 421» <■
F2 R3

cDNA product derived 
from this genomic region

R1

TAG

295" 264---------  1061■4 4r
R2 R1

C«~pky-4t^

484 bp

Figure 5.6. Gene structure predictions and mapping for Ce-phy-4 

The gene structure for Ce-phy-4 predicted by Genefinder (A) and Intronerator (B). Exon 

sequences are represented by filled boxes with sizes of exons given in base pairs above. 

Exon numbers are indicated by roman numerals. Intronic sequences are shown as lines 

with the size in base pairs indicated. The positions of primers used to attempt mapping 

of this gene are shown with arrows. The genomic sequences removed in a Ce-phy-4 

deletion stain are shown, as is the corresponding genomic sequence of the area which 

was amplifiable from cDNA. (C) RT-PCR of C e-phy-4  sequences to map the 

transcribed region of the gene, a common sense primer (FI) was used in combination 

with antisense primers R1 (lane 1), R2 (lane2) and R3 (lane 3). The size of the band 

amplified in lane 3 is indicated in base pairs. The positions of molecular size standards 

are indicated with sizes given in kilobases.
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sequence. This region lies outwith the area amplifiable by RT-PCR. These nematodes 

were not backcrossed but visual inspection revealed no mutant phenotype.

5.4.2.7. Ce-phy-4 expression pattern analysis

A promoter construct produced by L. Kukkola (Collagen Research Unit, Oulu, Finland) 

was injected into N2 hermaplirodites, 2.1 kb of upstream region, -2138-+6, was used in 

a fusion with lacZ and GFP in the reporter gene vector pPD96.04. Transmitting lines 

were analysed for Pgalactosidase expression using sensitive staining techniques and 

staining reactions left for at least 16 hours. No activity was identified using this 

promoter region to drive reporter gene expression.

5.2.4.8. Effect of Ce-phy-4 interference/removal on cuticle collagen localisation

To further examine the function of Ce~phy~4, RNAi feeding experiments were carried 

out in an TP12 (N2, C0L-19::GFP) genetic background, to assess the effect of gene 

disruption on the expression of this collagen fusion protein. No difference was observed 

using this analysis between wild type and RNAi treated nematodes (data not shown). 

Similarly DPY-7 localisation was normal in the Ce-phy-4 deletion mutant strain (data 

not shown).

5.2.4.9. Ce-phy-5 PCR mapping

C. elegans gene Y43F8B.4 was named Ce-phy-5, as the predicted protein from the 

Genefinder structure displayed approximately 17% identity and 24-29% similarity with 

the two conserved C  elegans PHYs; the protein was also of a similar predicted size. An 

ER signal peptide is predicted with cleavage occumng between Ih  and F 15. The 

Genefinder structure predicted for this gene comprised seven exons shown in Figure 

5.7A. This gene lies completely within the intronic region of the gene Bovine pancreatic 

trypsin inhibitory domain (Y43F8B.3). PCR primers designed to Ce-phy-5 full-length 

sequence failed to produce the correct product using mixed stage N2 cDNA (control 

primers on genomic DNA were successful). A range of primers were designed and 

applied to the same cDNA template. The largest amplifiable region was produced using 

the intron spanning primer combination FI and R3, which gave a product of 731 bp. 

Figure 5.7D lane 3. A previous Genefinder prediction, Y43F8B.k, corresponded closely 

to the region amplified, Figure 5.7B. This gene had a longer predicted exon 4 that

200



Chapter 5__________________________________________________________Results III
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Figure 5.7. Gene structure predictions and mapping for Ce-phy-5 

The gene structure for Ce-phy-5 from Genefinder (A), an alternative Genefinder 

prediction (B) and that of a possible second gene, Ce-phy-5b (C). The cosmid gene 

name for Ce-phy-5, Y43F8B.4, is also indicated. Exon sequences are represented by 

filled boxes with sizes of exons given in base pairs above. Exon numbers are indicated 

by roman numerals. Intronic sequences are shown as lines with the size in base pairs 

indicated. The positions of primers used to attempt mapping of this gene are shown with 

arrows. The genomic region corresponding to that amplifiable from cDNA is shown. 

(D) RT-PCR of Ce-phy-5 sequences to map the transcribed region of the gene, primer 

FI in combination with R1 (lane 1), R2 (lane 2), and R3 (lane 3); and primer F2 in 

combination with R1 (lane 4) R2 (lane 5) and R3 (lane 6). The positions of molecular 

size standards are indicated with sizes given in kilobases. The sizes of amplified bands 

are indicated in base pairs.
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encoded a translational stop codon. Re-examination of the Ce-phy-5 genomic region 

suggested that this area could encode two genes, these were provisionally named Ce- 

phy-5a and Ce-phy-5b. Figure 5.7B and C. Ce-phy-5a corresponds to the Genefinder 

prediction Y43F8B.k and Ce-phy-5b is encoded by the remaining three exons in this 

area with a larger predicted first exon (corresponding to previous exon 5). The 

differences in predicted sequences between exon 4-5 of Genefinder compared to 

possible Ce-phy-5 a and Ce-phy-5 b genes are shown in detail in Figure 5.8. The 

predicted Ce-phy-5b product also contains a predicted signal peptide cleavage site 

between Si? and Lig. No attempt was made to confirm the presence of this Ce-phy-5b 

gene and no EST data was available to verify any of the gene predictions made.

5.2.4.10. Ce-phy-5 RNAi in N2

A 560 bp fragment amplified using primers F2 and R3, corresponding to the Ce-phy-5a 

gene, was cloned, sequenced and used to produce dsRNA in vitro and for bacterial 

RNAi feeding. Interference using this sequence in N2 hermaphiodites produced no 

identifiable mutant phenotype.

5.2.4.11. Ce-phy-5 reporter gene expression

A PCR fragment corresponding to upstream sequences of the Ce-phy-5 a from -1402 to 

+125 was cloned in frame with lacZ reporter gene in the plasmid pFD95.03. Transgenic 

lines produced carrying this plasmid, injected at 20 mg/ml along with the pRF-4 {rol-6) 

plasmid marker at 100 mg/ml, did not produce any staining pattern. Injection of a very 

similar construct, made by L. Kukkola, Oulu, Finland, at the same concentration did 

however give a reproducible expression pattern using sensitive staining techniques, 

shown in Figure 5.9. Three cells of the pharynx stain in larval and adult stages. These 

cells would appeal’ to be the pharyngeal gland cells, right and left subventral and dorsal 

gland cells (Bird and Bird, 1991).

5.2.4.12. Effect of Ce-phy-5 interference on cuticle collagen localisation

The function of Ce-phy-5 was fuither examined by RNAi feeding experiments carried 

out with strain TP 12 (N2, C0L-19::GFP) to assess the effect of gene disruption on the 

expression of this collagen fusion protein. No differences were observed between wild 

type and RNAi treated nematodes using this technique (data not shown).
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Ce-phy-5 (Y43F8.4)
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H I F L  L F C  F I T  A F S / L F A K

C A C ATTTTTC T T C T A T T T T G  C T T TA TTA TC  GCTTTCAGTC TT TTCGCAAA

Figure 5.8. Predicted sequence of a second gene from the Ce-phy-5 locus 

The sequence from Ce-phy-5 at the junction of exons 4 to 5 is shown in comparison to 

an alternative model where this region encodes two genes. Extension of the end of exon 

4 to include a stop codon provides the end of the new Ce-phy-5a (which correspond to 

the previous prediction of this gene by Genefinder) and extension of the beginning of 

exon 5 provided the start of the new Ce~phy5b. The predicted signal peptide cleavage 

site of the protein encoded by this gene is indicated by a forward slash.
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Figure 5.9. Tissue-specific localisation of Ce-phy-5

Sensitive X-gal staining for P-galactosidase expression in transgenic C  elegans. The 

Ce-phy-5 promoter is shown to direct expression of the reporter gene to the gland cells 

at the back of the pharynx (arrowed).
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5.2.4.13 Combined genetic/RNAi disruption of Ce-phy genes

No phenotypes were evident from single disruption of any of the divergent Ce-phy gene 

functions in a wild type genetic background. Removal/reduction of all pairwise 

combinations of Ce-phy genes was then attempted by RNAi interference of each gene in 

all the available P4H genetic mutant backgrounds. The effects of RNAi of Ce-phy-2 in a 

dpy-18 mutant background, and of Ce-phy-1 in a Ce-phy-2 deletion mutant background 

had already been determined (Chapter 3). Although less severe than the effects of 

injection, the RNAi feeding procedure for both Ce-phy-1 and Ce-phy-2 had been 

demonstrated to be effective. Therefore, RNAi in the Ce-phy-3 and Ce-phy-4 deletion 

mutant strains was performed using only this delivery method. Additionally 

removal/reduction of each combination were also determined from RNAi injections and 

feeding of Ce-phy-3 and Ce-phy-4 in the dpy-18 and Ce-phy-2 Is strains. Analysis of the 

disruption of Ce-phy-3,-4 and -5 in the Ce-phy-1 null mutant strain dpy-18 (and the 

complementar y disruptions of Ce-phy-1 in the Ce-phy-3 and Ce-phy-4 deletion strains) 

would reveal if any of these genes were involved in formation of a proposed third P4H 

isoform. This complex, containing Ce-PHY-2/Ce-PHY-?/(Ce-PDI-2)2, was postulated 

to account for the survival and residual 4-hydroxproline content of dpy-18 mutants. 

However, none of these combinations resulted in a phenotype different from the single 

removal of Ce-phy-1, which indicated that neither Ce-PHY-3, Ce-PHY -4 or C^-PHY-5 

was involved in this type of complex. Additionally no other combination of gene 

disruption affected this or any other observable aspect of nematode development. The 

results from all RNAi experiments are shown in Table 5.1. This is particularly 

interesting with regard to the type IV or basement membrane collagen of C. elegans. 

Based on mutant phenotype and expression pattern data, no major role could be 

identified for Cg-PHY-1 and -2 in modification of these collagens. If  not involved in 

hydroxylation of the cuticular collagens, either alone or in a complex of the type 

proposed, a function for the divergent Ce-PHYs could have been in type IV collagen 

biosynthesis. From the data produced from this analysis this does not seem to be the 

case as phenotypes indicative o f disruption of the basement membrane components such 

as embryonic lethality (Guo et al., 1991; Norman and Moerman, 2000) or 

uncoordinated movement (Rogalski et al., 1993) were not seen.
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Strains and phenotypes

method
N2 dpy-18 phy~2ts phy-3à phy-4ts

Ce-phy-1 inj. Dpy Emb
- —

fed Dpy sDpy w.t. w.t.

Ce-phy-2 inj. w.t. Emb - -

fed w.t. sDpy w.t. w.t.

Ce-phy-3 inj. w.t. Dpy w.t. w.t

fed w.t. Dpy w.t. w.t

Ce-phy-4 inj. w.t. Dpy w.t. w.t

fed w.t. Dpy w.t. w.t.

Ce-phy-5 inj. w.t. Dpy w .t w.t.

fed w.t. Dpy w.t. w.t. w.t.

Table 5.1. Combined Ce-phy gene removal/disruption

The combined removal/disruption o f the Ce-phy genes was performed by RNAi 

delivered via injection (inj.) and bacterial feeding (fed) o f each gene in the single 

mutant genetic backgrounds; dpy-18 (phy-1 mutant) and deletion mutants (A) of Cg- 

phy-2, -3  and -4. The results for single RNAi o f each gene in a wild type (N2) 

background are also shown. The resulting phenotypes are given; w.t. (phenotypically 

wild type) Dpy (dumpy), Emb (embryonic lethal) sDpy (severely dumpy). A dash 

indicates combinations that were not performed.
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5.2.5. Identification of a th ird  P4H complex in C. elegans

The finding that no additional phenotype was produced on interference of divergent Ce- 

phy  genes in dpy-18 mutants suggested that their gene products had no involvement 

with C^-PHY-2 and Ce-PDI-2 in a third C  elegans P4H complex. These results 

therefore forced a re-assessment of the existing data that demonstrated that, although 

not readily detectable by Western analysis, a complex must be formed between Ce- 

PHY-2 and C^-PDI-2. When insect cell extracts co-expressing these two proteins were 

re-examined for P4H activity using an assay based on the hydroxylation coupled 

decarboxylation of 2-oxo-[l-^'^C]glutarate (Kivirikko and Myllyla, 1982) enzymatic 

activity was detectable at a low level (J. Myllyharju, personal communication). When 

the wild type and mutant strain complex data (Figure 5.1), was re-assessed in light of 

these new findings, the previously disregarded band in dpy-18 mutants detected with 

anti-Ce-PHY-2 antibody, suggests a complex can be formed from Ce-PHY-2 and Ce- 

PDI-2. The complex formed is most likely to be a dimer with the differences in 

migration between this dimer and the Ce-PH Y -1 /Ce-PDI-2 dimer being possibly 

accounted for by differences in the isoelectric points between the two PHY subunits. 

Due to the limitations discussed earlier for the anti-Ce-PDI-2 it was not possible to 

accurately determine whether this band is observed in dpy-18 samples using this 

antibody. Thus it has not been conclusively confirmed that this is the other subunit 

found in this complex. However, the genetic/RNAi data and biochemical activity of the 

co-expression extracts would indicate that this is the case. The proposed Ce-PHY-2/Ce- 

PDI-2 dimer however would not appear to form under conditions where either two of 

the main configuration o f P4H in C. elegans can form. It is not found in the wild type 

extracts detected using anti-Ce-PHY-2, and it would therefore appear to be a forced 

association occurring in the absence of appropriate partners. A summary of the forms of 

complexes thought to exist in wild type and mutant C. elegans strains is shown in 

Figure 5.10. Wild type N2s have two major forms of complex, the described dimer and 

mixed tetramer. The additional dimer forming from Ce-PHY-2 and Ce-PDI-2 is 

illustrated in this figure in brackets to indicate that while this complex has the potential 

to make an active P4H enzyme it does not form under normal conditions. In dpy-18 

mutant strains neither the tetramer or Ce-PHY-1/Ce-PDI-2 dimer complexes are 

produced due to the absence of Ce-PHY-1. In this case the second dimer forms which 

hydroxylates collagens to a level sufficient to allow survival in a morphologically 

mutant form. In the Ce-phy-2 deletion mutant strain the tetramer cannot form and the

207



Chapter 5 Results III

strain

N2

phy-2S

P4H conu>ltxe« prcstnt

UY-ll PDI-2

PhcnotYPe

Wild type

Dumpy

Wild type

pky-1 nuU/pXtK 2A ___ _ _ Embryonic lethal

Figure 5.10. Diagram of characterised C. elegans P4H complex forms 

A depiction of the forms of P4H complexes found in wild type and mutant C. elegans. 

The wild type N2 strain is shown with the identified tetramer and dimer forms of the 

P4H complex. Mutant strains are shown with the complex forms they possess depicted 

and those that are absent indicated with a dash. The phenotype resulting from the 

missing forms of the complexes are given. A third complex is indicated in brackets in 

the wild type as it is thought not to form under wild type conditions but provides the 

P4H activity in a dpy-18 mutant that lacks the two other forms of the enzyme due to 

mutation in Ce-phy-1. This third form of the complex was formed from Ce-PHY-2 and 

Cg-PDI-2 combining as a dimer which, in the initially analysis, was thought not to form.
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activity of the Cg-PH Y -1 / Ce-PDI-2 dimer enables worms to develop with wild type 

appearance. The effects of mutation are only detectable in this strain on biochemical 

analysis of their cuticle collagens. When both Ce-phy genes are mutated/dismpted none 

of the three complexes can form thus causing embryonic lethality due to loss of 

modification of collagens foiming the first cuticle. The effect of single removal of Ce- 

pdi-2 has an identical phenotype supporting the co-expression data indicating that this is 

the common (5 subunit for all the enzyme complexes. All three of the enzyme forms 

described here for C  elegans are unique as no other mixed PHY or a  subunit tetramer 

has been identified, and no P4H dimers have been characterised for any other species. 

These combinations of subunits may prove to be nematode specific and inhibition of 

their formation could provide a possible basis for design of anti-nematode dmgs.

5.2.6. C  briggsae P4H subunit homologues

At this point in time C. elegans was only nematode from which the form and function of 

P4Hs had only been analysed in detail. Characterisation of an active P4H from O. 

volvulus did not include an analysis of what form the enzyme was found in vitro, or if 

this was reflected in vivo (Merriweather et al., 2001). The related nematode C. briggsae, 

was therefore examined to determine if homologues of the three P4H forming genes 

were present in this organism and to attempt to establish if they were performing a 

similar essential function. C. briggsae is also a free-living nematode with the two 

species having diverged around 40 million years ago. Additionally C  briggsae has its 

own genome-sequencing project thus enabling identification of putative homologues of 

interesting genes in this organism. Although both species appear essentially 

morphologically identical their genomes have diverged. Conservation of sequence, 

proposed function and genome organisation have been found for many genes however 

including collagens (Gilleard et al., 1997) and collagen-related enzymes (Page, 1999; 

Thacker et a/., 1999).

Three EST sequences corresponding to possible P4H subunits were identified fiom C. 

elegans closest relative, the free-living nematode C. briggsae. These sequences showed 

a high degree of homology to Ce-phy-I, Ce-phy-2 and Ce-pdi-2. EST pk34g06.sl 

(accession number R04908), identified by M. A. Marra from a mixed stage G16 

Lambda cDNA library, is 82% identical at the nucleotide level to Ce-phy-1. Translation
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of this sequence produces a hypothetical protein sequence with 91% identity and 93% 

similarity to Ce-PHY-1. A second EST thought to correspond to Ce-phy-2 was also 

identified from the same library. EST pk31fl0.rl (accession number R04761) was 84% 

identical to a region of Ce-phy-2, with the proposed translation showing 81% identity 

and 85% similarity to N-terminal sequences from Ce-PHY-2. A potential homologue of 

Ce-pdi-2 was identified again by M. A. Marra. EST pkl3h05.rl (accession number 

R04009) which was 93% identical to the C. elegans nucleotide sequence. This sequence 

would not however translate in a single reading frame, and as the sequence in the 

database is raw data it was likely to have contained errors. In order to translate the 

sequence and compare protein sequences, bases for which a gap was introduced in the 

nucleotide alignment between the two genes were removed. Removal of five bases in 

this manner enabled translation of the sequence in a single reading frame. This showed 

96% identity and 97% similarity to N-terminal sequences from Ce-PDI-2. These EST 

clones were not available for further analysis and SL PCR using antisense primers 

designed against the EST sequence was not successful in generating further data from 

C. briggsae mixed stage cDNA. Amino acid sequence comparisons of the putative 

proteins with their likely C. elegans counterpart are shown in Figure 5.1 lA-C.

Therefore, at that time, in the absence of full-length products, RNAi experiments were 

performed to determine if these enzymes functioned similarly to their C  elegans 

counterparts. Primers were designed based on the available sequence data and 

expression of these sequences was verified by RT-PCR from mixed stage G16 cDNA, 

which produced products of the expected sizes (Figure 5.1 ID). These were cloned in the 

RNAi feeding vector and bacterial cell line and fed to C. briggsae. However no effects 

were visible in these nematodes. After completion of these experiments, the complete 

genome sequence for this organism became available. The availability of the genomic 

sequences corresponding to the ESTs described enabled the cloning and sequencing of 

the full length cDNAs for each of these genes (performed by G. McCormack, WCMP, 

Glasgow). Amino acid comparisons for Ce- and C6-PHY proteins are shown in Figure

5.12, and Ce-PDI with P4H PDIs from other organisms shown in Figure 5.13.
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Figure 5.11. C. briggsae  P4H subunit 

D  encoding ESTs

A) Amino acid comparison of a translation 

o f EST pk34g06.sl (accession number 

R04908), predicted to encode C. briggsae 

(Cb) PHY-1, with the corresponding region 

of C g-PHY-1 (signal peptide removed) 

(accession number Z81134). Asterisks 

indicate highly conserved cysteine residues.

B) Amino acid comparison of a translation of 

EST pk31fl0.rl (accession number R04761), 

predicted to encode C6-PHY-2, with Ce- 

PHY-2 (accession number Z69637).

C) Amino acid comparison of a translation of EST pkl3h05.rl (accession number 

R04009), predicted to encode C6-PDI, with Ce-PDI-2 (accession number U41542). 

Asterisks indicate active site residues.

D) Agarose gel showing products from RT-PCR of Cb-phy-I (lane 1), Cb-phy-2 (lane 

2) and Cb-pdi (lane 3) sequences from wild type C. briggsae confirming expression 

of these genes. The products indicated were used to generate dsRNA for subsequent 

RNAi experiments. The positions of molecular size standards are indicated with sizes 

given in kilobases.
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Figure 5.12. Alignment of C. elegans and C. briggsae PHYs

Amino acid comparison of predicted C. briggsae {Cb) PHY-1 and C6-PHY-2 with Ce- 

PHY-1 (accession number Z81134) and Ce-PHY-2 (accession number Z69637). The 

signal peptide regions for all polypeptides were removed and conserved residues 

indicated with an asterisk. Gaps (-) were introduced for maximal alignment.
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Figure 5.13. Alignment of nematode and human PDIs

Amino acid alignment of C6-PDI, Ce-PDI-2, O. volvulus {Ov) and human PDI subunits 

of P4H enzymes. Gaps (-) were introduced for maximal alignment and signal peptides 

were removed, therefore numbering refers to the mature processed proteins. Active site 

residues are indicated with asterisks. Genbank Accession numbers- Cc-PDI-2 

(U41542), Ov-PDI (U12440) and human PDI (X05130).
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5.3. Discussion

5.3.1. Ce-phy-1,, Ce-phy-2 and Ce-pdi-2 form unique cuticle collagen modifying P4H 

complexes

The first hypothesis on the forms of the P4H complexes in this organism was that two 

independent enzymes existed, one a complex of Ce-PHY-1 with Ce-PDI-2, and a 

second less active enzyme formed from Ce-PHY-2 and Ce-PDI-2. A combination of in 

vitro and in vivo analysis using subunit specific antibodies revealed unexpectedly that 

Ce-PHY-1 was in fact in involved in two complexes, one a dimer with Ce-PDI-2 and 

another a tetramer containing all three subunits. In the Ce-phy-I mutant strain dpy-18 

neither of these complexes could form. However the presence of 4-hydroxyproline had 

been identified in the cuticle collagens of dpy-18 mutant strains (Friedman et al., 2000; 

Winter and Page, 2000) and P4H enzyme activity was demonstrated in extracts from 

this mutant (Myllyharju et al., 2002). An additional enzyme must therefore have been 

active in the absence of Ce-FHY-1. Data strongly favoured the view that this must 

contain Ce-PHY-2 and Ce-PDI-2, however these were thought not to form a complex 

when only these two proteins were co-expressed in an insect cell system. The possibility 

was that another subunit was required to foim an additional mixed PHY subunit 

tetramer. Three divergent predicted Ce-PHY encoding genes were investigated to find if 

they were involved in a complex of this form.

All the data from these genes indicated that they were not involved in a cuticle collagen 

modifying P4H complex of the proposed form. The data also suggested these putative 

enzymes did not modify the nematode cuticle in any other way, or, it would appear the 

other major ECM of nematodes, the basement membrane. Re-analysis of the insect cell 

data revealed that Cc-PHY-2 and Ce-PDI-2 alone could, under certain conditions, form 

an active enzyme. This analysis has therefore proved that, as was originally thought, Ce- 

PHY-1, Ce-PHY-2 and Ce-PDI-2 are the only cuticle collagen modifying P4H subunit 

forming enzymes in this nematode. Additionally the manner in which these subunits 

combine has not been described for any other organism and clearly differs from that of 

the human enzymes. The central importance of Ce-PHY-1 particularly was also 

highlighted, as removal of this single gene removes the only two naturally occurring 

forms of the enzyme. The third form of the enzyme would appear to be an association 

that occui’s in vivo only under the forced conditions of the dpy-18 mutant background. If 

similar forms of the complex were present in parasitic nematodes the homologue of
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PHY-2 may not be able to form any complex at all in the absence of a PHY-1 

homologue. The ability of a Ce-PHY homologue to form an independent complex may 

have been completely lost in other species, as no selective pressure would force its 

maintenance. Thus identification of a PHY-1 homologue in these species and discovery 

of compounds capable of inhibiting this enzyme alone may be sufficient for loss of all 

the essential cuticle modifying activity in these nematodes.

5.3.2. Further work on C. briggsae P4H subunits

The lack of effect that was found from the disruption of proposed P4H subunit-encoding 

homologues in C. briggsae was surprising given the close evolutionary relationship 

between these nematodes. This could be a result of the observation that certain 

fragments do not seem capable of inducing an interference effect where others from the 

same gene are functional (Tabara et al., 1998). The RNAi effects found in C  elegans 

for the homologous genes by feeding compared to injection delivery methods was less 

pronounced, perhaps the region of interfering dsRNA combined with, for these genes, a 

less effective delivery method, could result in lack of mutant phenotype. In vitro 

transcription and injection of the C  briggsae sequences would determine if  the feeding 

method used for RNAi delivery was a factor in the lack of observable mutant 

phenotypes. The recent identification of the full-length sequences enables these RNAi 

experiments to be repeated using either full-length gene sequence, as was successful for 

the C. elegans genes, or different gene regions. This will reveal if  these genes perform 

the same essential functions as their homologues do in C. elegans. This could be 

confirmed by inter-species rescue using C  briggsae subunits to attempt repair of C. 

elegans dpy-18 mutants. The complementary experiment may also be possible; rescuing 

a C. briggsae mutant with C. elegans subunits.

A number of Dpy genetic mutants have been identified in C. briggsae (by R. Johnsen 

and D. Baillie, Simon Fraser University, British Columbia, Canada) with similar 

phenotypes to C. elegans dpy-18. Several approaches are possible to establish which, if 

any, of these C. briggsae dpy {cby) strains correspond to C. elegans. Firstly, if the RNAi 

of Cb-phy-I was Dpy but Cb-phy-2 was wild type, Cb-phy-2 RNAi could be used to 

rapidly screen the strains for additional lethality when this gene is disrupted. If 

embryonic lethality was observed this would indicated that the strain was mutant in Cb- 

phy-I, which could be verified molecularly, and would also indicate that the subunits
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could be found in similar complexes as in C. elegans. Alternatively, transgenic rescue 

could be attempted with the Cb-phy-1 gene and then the C. elegans homologue. These 

studies would reveal whether the essential functions of these P4H genes aie conserved. 

Additional insect cell co-expression and in vivo analysis of wild type and mutant strains 

(if identified) would determine if the subunits form in similar ways to that described for 

C  elegans.

5.3.3. Tetratrico peptide motifs

The only functional domain so far identified for the a  subunits of P4H enzymes is the 

human a l peptide-binding domain which has been defined as beginning at G138 and 

ending at approximately S244 of this protein (Myllyharju and Kivirikko, 1999). 

Additionally, in C. elegans residues have been identified that are required for formation 

of the mixed PHY subunit tetramer, where the first 122 N-terminal amino acid residues 

of the matuie processed Cg-PHY-2 protein, and residues Q121 to A271 o f Ce-PHY-1 

are critical for assembly of the tetramer (Myllyharju et al., 2002). This was established 

by producing hybrid polypeptides in vitro with the critical residues swapped between 

proteins. Formation of a tetramer occurred only if the regions were present on separate 

proteins, suggesting these regions contain elements which are required for interaction of 

the subunits. Interestingly, within the Ce-PHY-1 critical region is a single tetratrico 

peptide repeat (TPR) motif (Lamb et al., 1995). These motifs are usually found in 

repeated units in proteins and are involved in protein-protein interactions. Analysis of 

Ce-PHY-1 shows the presence of a single TPR motif at position E l 88 to H221, however 

no TPR is found by a similar analysis of Ce-PHY-2. This suggests that this TPR motif 

may be the essential feature of the region identified above for Ce-PHY-1 to form a 

tetramer. Lacking this TPR motif may be the reason that Ce-PHY-2 cannot form a 

complex efficiently without Ce-PHY-1. In support of this hypothesis, analysis o f the 

human a  subunits, both of which are capable of forming an active tetramer, showed that 

both contain a single TPR motif at comparable positions to Ce-PHY-1. The 

determination of the potential importance of these motifs for subunit interactions and 

characterisation of the C. briggsae genes will also be informative, as the TPR motif is 

also found in subunits from this organism. However, in this case it is C6-PHY-2 that 

possesses the motif and it is not present in C6-PHY-1. An understanding of the function 

and associations between P4H enzyme subunits from this organism should reveal
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whether these motifs are likely to be functional. Also it could be that as well as or in 

addition to subunit association the TPR motifs are involved in interactions with the 

collagen substrate as the positioning of these motifs for these proteins falls within the 

region defined for human a  subunit I as representing the peptide binding domain.

5.3.4. Functional role for Ce-phy-3

As described above no phenotype was detected by visual inspection of Ce-phy-3 RNAi 

treated nematodes, or in the mutant strain, suggesting no role in modification of the 

cuticle collagens of C. elegans. Additionally, RNAi of this gene in P4H mutant 

backgrounds produced no further detectable phenotypes, indicating it did not work in 

combination with another gene in this process. However, the spatial expression pattern 

in the spermatheca of late larval and adult stages suggested a possible role for the 

product of this gene in either the modification of type IV collagens produced by the 

spermatheca (Graham et al., 1997) or of collagens of the egg shell. Analysis of the 

hydroxy proline content of the Ce-phy-3 deletion strain embryos demonstrated a 

reduction in the hydroxyproline content of these embryos which were otherwise 

phenotypically normal (Riihimaa et al., 2002). Although not ruling out a role for Ce- 

PHY-3 in modification o f type IV collagens expressed in the spermatheca these findings 

suggests that the role of this enzyme is in biosynthesis of collagens in the early embryo 

most likely those contained in the egg shell (Riihimaa et al., 2002). Interestingly 

baculovims expression in insect cells of this protein showed that by itself it was 

insoluble and inactive, formed no association with Ce-PDI-2 or human PDI, but did 

form an active enzyme when co-expressed with Ce-PDI-1 (Riihimaa et al., 2002). This 

PDI isoform does not form complexes with any other a  subunit tested (Myllyharju et 

al., 2002; Veijola et al., 1996a) and is found in an operon with C. elegans cyp-9 gene 

(Page, 1997). However what form any complex with Ce-PHY-3 this protein made could 

not be determined (Riihimaa et al., 2002).

5.3.2. Ce-phy-4 deletion

The Ce-phy-4 deletion strain was not backcrossed to remove any additional mutations 

from the genome before being used in these RNAi studies. Therefore should any 

phenotype have resulted from any of the combinations using this strain the results 

would have been considered preliminary findings. In that case the experiment would
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have to be repeated once this strain had been backcrossed to N2. Then, if reproducible, 

the results could be compared to the complementary experiment using Ce-phy-4 RNAi 

in wild type and mutant strains. The region deleted in the Ce-phy-4 deletion strain was 

not amplifiable by RT-PCR and so may not represent the Ce-phy-4 gene. This could 

therefore indicate that two genes were present or if only one this gene was not covered 

by the mutation. If  the second of these possibilities was true then experiments 

performed which involved the disruption of the other Ce-phy genes in this deletions 

background may not represent the removal/disruption of the two genes. However these 

combinations should have been assessed by Ce-phy-4 RNAi in strains dpy-18, phy-2A 

and phy-SA. If  this were the case, then the combined disruption of Ce-phy-4 and Ce- 

phy-5 would however still be undetermined from this study. This could be resolved by 

double injection of both these sequences although, as found for the combined RNAi 

knock-down of Ce-phy-1 and -2, this can result in a reduced effectiveness compared to 

the actual result of removal of the two genes. Additionally, if  the Ce-phy-4 locus was 

defined as producing more than one gene then all the possible combinations of putative 

P4H subunits would not have been tested.

5.3.3. Ce-phy-5 gene structure

The possibility of additional genes also exists for the Ce-phy-5 region. Although this 

was not tested, two genes each with an expected signal peptide can be predicted in this 

region. PCR has confirmed that regions of the first gene are expressed in C  elegans 

although the presence of the extended region of the fourth exon that would complete 

this gene was not determined. Likewise, primer combinations specific for amplifying a 

potential second gene in this region were not used. If more than one gene was 

transcribed from this locus, then all the combined RNAi disruptions o f divergent Ce-phy 

genes would not have been performed, as the region used for RNAi corresponded only 

to the Ce-phy-5a region.

5.3.4. Function of divergent Ce-phy genes

All evidence presented here would lead to the conclusion that none o f the divergent Ce- 

phy genes are involved in the generation of the C  elegans cuticle collagens. However 

no role in any another biological process could be conclusively determined for Ce-phy-4 

and -5 by the RNAi data. Tissue-specific expression patterns were identified for Ce-

218



Chapter 5__________________________________________________________ Results III

phy-3 and -5 suggesting possible functions. A possible approach to gain more insight 

into the function of the divergent Ce-phy would be to use a hypersensitive RNAi strain 

containing rrf-3 mutant alleles. Use of strains containing mutants alleles of this putative 

RNA-directed RNA polymerase produced approximately twice the number of mutant 

phenotypes when compared to interference in the wild type N2 strain (Simmer et al., 

2002). Many of these genes had known genetic mutant phenotypes for the target gene 

that were not previously detected by RNAi. Although these were neuronally expressed 

genes, which are known to be refractory to RNAi by injection and feeding, the Ce-phy-4 

expression pattern has not been determined and other specific cell types not yet defined, 

may also be resistant to RNAi in a similar manner to cells o f the nervous system. Thus 

RNAi of Ce-phy-3, -4, and -5 in this hypersensitive RNAi strain may reveal a further 

function for these genes. A possible function for these genes at the time of starting this 

work could have been in regulation of the hypoxia inducible factor (HIF). In 

mammalian cells the transcription factor (HIF) is post-translationally regulated by prolyl 

hydroxylation (Ivan et al., 2001; Jaakkola et al., 2001; Yu et al., 2001). HIF is a central 

regulator of oxygen homeostasis with the majority of the transcriptional responses to 

hypoxia regulated by it. HIF operates as a heterodimer of HlF-a and HlF-p subunits, 

where HIF-a is the regulated component. Under normal oxygen conditions the von 

Hippel-Lindau tumour suppressor protein (VHL) binds directly to HIF-a and targets it 

for degradation. In hypoxic conditions degradation of HIF is inhibited and HIF-a can 

bind to HIF-p and activate transcription. Targeting of HIF-a for VHL-mediated 

degradation is regulated by prolyl hydroxylation (Ivan et al., 2001; Jaakkola et al., 

2001). In hypoxic conditions HIF-a is not hydroxylated and is thus not bound by VHL 

and is able to activate target genes. Mutants in the C. elegans HIF-a encoding gene 

exhibit no defects at normal oxygen levels but are unable to survive under hypoxic 

conditions (Jiang et al., 2001) normally tolerated by wild types (van Voorhies and 

Ward, 2000). A role for the divergent Ce-phy genes described here in this process now 

seems unlikely as the C. elegans gene egl-9 (egg-/aying defective) was identified as the 

HIF-a hydroxylating enzyme. EGL-9 acts as the oxygen sensor and represents a novel 

functional group of 2-oxoglutarate-dependent oxygenases (Epstein et al., 2001).
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Chapter 6

Cloning of a hypodermally expressed independently active 

Brugia malayiphy homologue

6.1. Introduction

Brugia malayi along with B. timori and Wuchereria bancrofti are the causative agents of 

lymphatic filariasis in humans, with over 120 million people infected and over 1 billion 

people at risk of infection in over 80 countries (Michael and Bundy, 1997; WHO, 

2000). In humans the pathologies associated with infection are raiely related to the 

larvae but instead to the adult nematodes. Although lymphatic filariasis is rarely fatal it 

is a debilitating and often disfiguring disease. Approximately a third of those infected 

are incapacitated and/or disfigured by the infection, while about another half have 

internal damage to their renal and lymphatic systems (Ottesen et al., 1997). Recently 

lymphatic filai'iasis has been recognised as the second leading cause of long-term 

disability worldwide. As such the Filarial Genome Project (FGP) was initiated in 

response to the World Health Organisations (WHO) call for a genomics approach to the 

causative agents of lymphatic filariasis, with a view to better control or possible 

eradication of the parasite. The complex life cycle of these filarial nematodes involves 

human infection by mosquito transmitted L3 larvae. These larvae then invade the body 

and develop to adults that, for B. malayi, reside in the lymphatic vessels of the human 

host. Here the long-lived adults (up to five years) produce millions of live LI larvae, 

termed microfilaria, that may then be transmitted to the mosquito via blood. 

Microfilariae then undergo two moults within the mosquito host to become human 

infective L3 larvae.

Parasitic nematode species are particulaidy intractable to genetic and molecular analysis 

due to their complex life cycles, difficulty of maintenance in the lab and lack of 

transgenic techniques. B. malayi can however undergo its entire life cycle in the lab 

using a rodent host. In addition, a genome project exists through the FGP, consisting of 

EST analysis and genomic mapping projects. FGP labs have also constructed and made 

available reagents to aid molecular analysis such as filaiial cDNA and genomic 

libraries. The detailed knowledge and techniques available for the study of the free- 

living nematode C. elegans are also extremely useful for the study of filarial nematodes 

in two ways. Firstly, the homologue(s) of a parasitic nematode target gene may be
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examined in this organism using the full range of methodologies available for C. 

elegans. The advantages of genetic and transgenic manipulation along with ease of 

culture, the complete genome sequence and the defined development, makes for rapid 

and more complete study in this organism. Knowledge of the gene function in C  

elegans can then be applied to the parasite homologues. Secondly, the free-living 

species can be used more directly to examine parasite genes. Using C. elegans as a 

heterologous expression system can reveal functional roles and control elements of 

parasite genes (Hashmi et aL, 2001). Additionally, for foreign protein expression, use of 

C. elegans is advantageous as it is a higher eukaryote and expression of filarial parasite 

proteins in C. elegans is more likely to result in proteins in their native form than 

expression in other systems. Expression of parasite protein in C. elegans has proved 

possible (Krause et aL, 2001; Redmond et aL, 2001) and is important where a protein to 

be produced as a vaccine has conformational epitopes, or where glycosylation and/or 

enzymatic activity are important for the proteins effectiveness as a vaccine.

Results in C  elegans have shown the essential nature of P4H complexes in development 

and body morphology as a result of the cuticular collagen modifying activity of this 

enzyme. Additionally, the three subunits comprising the complex forms in this 

nematode, Ce-PHY-1, Ce-PHY-2 and Ce-PDI-2, combine in unique ways that may be 

nematode specific. Examination of three other divergent phy~VikQ genes in C. elegans 

showed they were not to be involved in cuticular collagen modification, thereby 

underlining the importance of Ce-phy-1, Ce~phy-2 and Ce-pdi~2 in this essential 

process. The characterisation of a viable Ce-phy-1 knockout also provides the potential 

for functional studies of other P4Hs by transformation into C. elegans. Commercially 

available inhibitors of P4H function have been shown to function in the destruction of 

B. malayi adults, with what appears to be cuticular defects (Merriweather et aL, 2001), 

thus highlighting this enzyme as a drug target for control of infection. A proyl 4- 

hydroxylase phy  gene from B. malayi was therefore cloned and characterised and C  

elegans used as an expression system to examine more directly some aspects of gene 

function and control.
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6.2, Results

6.2.1. Cloning of Bm-phy-I cDNA

6.2.1.1. Identification and sequencing of expressed sequence tag clones

Expressed sequence tags (ESTs) are single sequence reads from randomly selected 

cDNA clones with data from EST projects available through publicly accessible 

databases. Sequence similarity search tools such as BLAST (Altschul et aL, 1990) can 

then be used to survey this data for sequences of interest. In addition to giving a 

representation of the genes expressed in an organism, EST data also provides 

information on levels and stage specificity of expression. An impression of the 

expression level of a particular gene can be gained from the number of representative 

ESTs found. The expression of a gene in a particular developmental stage and/or tissue 

may also be represented in the EST dataset as many are derived from tissue and stage- 

specific libraries. B, malayi has an ongoing EST based genome project with over 22,000 

ESTs currently in the database (Williams et aL, 2000). These represent about 8000 

genes or approximately 40% of the predicted genes in the B. malayi genome (Williams 

et aL, 2000).

To determine if any ESTs were present in the B. malayi database that represented 

potential prolyl 4-hydroxylase homologues the database was searched with complete 

Ce-PHY-1 and Ce-PHY-2 protein sequences. When these were compared to a translated 

B. malayi EST database using tBLASTn three ESTs were identified that were 

homologous to the C  elegans proteins. SW3D9CA480SK (accession number 

AA585698), (submitted by Steven A.Williams, FGP, Smith College) from a B. malayi 

L3 moulting day 9 larval cDNA library (SW97WLMBmL3d9), gave 67% identity and 

77% similarity to C. elegans Cc-PHY-1 over a 53 amino acid region. 

MBAFCX8G05T3 (accession number AA509222), (submitted by Mark Blaxter, FGP, 

Edinburgh University) from an adult female cDNA library (SAW96MLWBmAF), gave 

68% identity and 85% similarity over a 69 amino acid region. MBAFCZ7H09T3 

(accession number AA406985), submitted by Mark Blaxter from the same library, gave 

46% identity and 71% similarity over a 122 amino acid region.

EST clones were received from the FGP and sucloned via PGR for further sequence 

analysis, see Figure 6.1. SW3D9CA480SK was a 500 bp clone that gave very poor 

sequence data. The clone MBAFCX8G05T3 gave a product o f 1.5 kb by PGR.
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Figure 6.1. Cloning and gene structure of Bm-phy-1

A. Cloning of the full-length Bm-phy-1 cDNA sequence. Open boxes indicate the SLI 

trans-spliced leader and 5' and 3' UTRs. The 1626 bp coding sequence is represented by 

a filled box, ATG and TAA indicate, respectively, the translational start and stop 

codons. The positions of the ESTs identified and areas sequenced are shown along with 

the probe used for library screening. The position of the largest phage clones isolated, 

the 5' RACE PCR product used to complete the cDNA sequence and the full length 

PCR which was completely sequenced to confirm the cDNA are also represented. B. 

Gene structure of Bm-phy-1. Exon sequences are represented by filled boxes with sizes 

of exons given in base pairs above. Exon numbers are indicated by roman numerals. 

Lines represent intronic sequences with the sizes in base pairs indicated. The 3' UTR is 

depicted as an open box and the positions o f SL1 trans-splicing and polyadenylation 

signals are indicated.
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Sequence from only one end of this clone was homologous to prolyl 4-hydroxylase 

however this homology ended approximately 600 bp through the clone after which no 

significant homology was found. This clone was thought to be chimeric, a problem that 

has been documented previously in the libraries used for production of EST data 

(Williams et aL, 2000). The 1.4 kb clone MBAFCZ7H09T3 was sequenced at its 5' and 

3' ends only. Both ends gave homology to prolyl 4-hydroxylase but did not appear to 

represent the full-length gene. Due to the sequencing and chimeric clone problems, and 

the incomplete nature of this clone, further sequence analysis was not continued. 

Comparison of the sequence generated from all three ESTs (for SW3D9CA480SK 

original sequence was used) showed that they all contained the predicted 3' coding 

sequence and 3' UTR of a phy-like gene, termed Bm-phy-L

6.2.1.2. PCR based attempts to clone Bm-phy~l

Attempts were made to clone Bm-phy-1 gene using 3' end sequence from the ESTs and 

the splice leader sequences (SLI and SL2) as 5' primers. An estimated 70% of C. 

elegans genes are SL ^ra«5'-spliced (Zorio et aL, 1994) and ^ra«.y-splicing has been 

identified in B. malayi using an SLI sequence identical to that found in C  elegans 

(Takacs et aL, 1988). Primer BM N Phy Reverse was used in combination with primers 

SLI and SL2 on a vai'iety of cDNA templates. None of these combinations gave 

products. cDNA libraries were also screened by PCR with vector specific primers along 

with BM N Phy Reverse to attempt amplification of full-length cDNA. Library PCRs 

did not amplify any Bm-phy-1 sequences and attempts at 5’ RACE were also 

unsuccessful at this stage.

6.2.1.3. Library screens to identify Bm-phy-1

A  B. malayi adult male cDNA library SAW94NLBmAm (from Steven A.Williams, 

FGP, Smith College) was screened using a probe representing 312 bp of 3' coding 

sequence from Bm-phy-1, identified from the EST sequences. The highest homologies 

between prolyl 4-hydroxylase genes aie found in this region and it was hoped that this 

approach could potentially identify more than one Bm-phy gene. The library was tested 

by PCR and found to be positive for the region used for the probe, indicating that the 

gene would be represented in this library. From screens o f this library, eleven positive 

clones were identified and were taken to the tertiary or quaternary screening level, 

subcloned into plasmids and sequenced.
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Full-length sequencing was performed on two 1.6 kb clones both o f which were found 

to represent Bm-phy-1 (see Figui*e 6.1). The nine other clones identified contained 

inserts with sizes ranging from 0.6 kb to 1.6 kb and were all also from Bm-phy-1. 

Sequence was identical from all clones at their 3' ends, the 5' ends of four clones were 

shorter but identical to the consensus sequence. Three other clones had large non-P4H 

sequence at their 5' end. These sequences showed 98% homology to 28S Ribosomal 

RNA from Brugia pahangi. These sequences were judged, therefore, to be from 

chimeric clones containing sequences from more than one gene. The 5' end of two 

clones had an unusual form, the structure of which could only be determined once the 

entire cDNA sequence was assembled (after 5' RACE, Section 6.2.1.4). They were 

eventually shown to represent the 5' end of the gene in one reading frame, a 170 bp 

deletion, followed by the remainder of the consensus sequence in a different reading 

frame. These clones were thought to be artefacts from library construction or to be 

derived from aberrant transcripts. Excluding the 5' ends of these two clones and the 

chimeric clones, the consensus sequence generated from library screening therefore 

provided 1669 bp of sequence, with a 1515 bp open reading frame, 154 bases of 

untranslated 3' sequence and a poly (A) tract.

No consensus AATAAA polyadenylation signal sequence was identified within the 3' 

UTR before the poly(A) sequence. A non-consensus signal sequence of G AT AAA was 

however found as shown in the complete genomic sequence (Appendix 1). In C. elegans 

the requirement for consensus AATAAA consensus sequence is not as stringent as in 

vertebrates (Blumenthal and Steward, 1997). Approximately half of C. elegans genes 

have the consensus sequence with the remainder having a limited number of variants 

that occur in a very defined region, normally 11-17 bp upstream, from the cleavage site. 

The GATA A A variant signal sequence is found in approximately 5% of the C. elegans 

genes examined (Blumenthal and Steward, 1997). Of the tolerated variations of the 

consensus sequence found in C  elegans only GATAAA was found in the 3' UTR of 

Bm-phy-1. As 11 base pairs separate the 3' end of this motif and the poly(A) cleavage 

site the positioning of this motif in Bm-phy-1 is also identical to the restricted 

positioning found in C. elegans and is thus the proposed polyadenylation signal 

sequence of Bm-phy-1.

225



Chapter 6__________________________ _______________________________ Results IV

6.2.1.4 Cloning of the Bm-phy-1 5’ end sequence

Comparison of putative ^m-PHY-l amino acid sequence with known prolyl 4- 

hydroxylase sequence suggested the 5' end sequence was incomplete. The N-terminal 

amino acids also did not contain an expected ER signal sequence when analysed using 

Signal P (Nielsen et aL, 1997). This suggested that none o f the clones sequenced 

contained the sequence from the extreme 5' end. The 5' RACE system for rapid 

amplification of cDNA ends was used to determine the Bm-phy-1 5' coding sequence 

(see Figure 6.1). This technique involves the transfer of a homopolymeric tail to the end 

of the unknown DNA sequence. PCR primers based on known sequence and the 

artificially linked sequence were then used to amplify the 5' end of the cDNA. A total of 

three clones from two separate PCRs were sequenced and provided information on 

trans-splicing, 5' UTR sequence and 111 bp of 5' protein coding sequence. The 5' 

RACE data was assembled with the existing Bm-phy-1 sequence to give the full-length 

cDNA. The linkage between the two sets of sequences and the overall sequence of the 

gene was confirmed by complete sequencing of a full-length PCR product (see Figure 

6 .1).

6.2.1.5 Complete sequence of Bm-phy-1 cDNA and predicted protein

The completed cDNA Bm-phy-1 sequence was submitted to the EMBL database under 

accession number AJ297845. Bm-phy-1 is ^ram-spliced by a consensus 22 bp SLI 

splice leader sequence. The presence of this ^ram-spliced leader sequence does not 

allow for the identification of the transcriptional start site by this analysis. An 8 bp 5' 

UTR is then followed by a single open-reading frame of 1626 bp and a 3' UTR of 154 

bp, giving a predicted protein of 541 amino acids. The N-terminal amino acid sequence 

was analysed for an ER signal sequence as predicted using the Signal P server (Nielsen 

et aL, 1997). A signal peptide was predicted in 5/w-PHY-l with cleavage most likely to 

occur between amino acids A17 and D18 of the protein sequence giving a mature 

protein size of 524 amino acids. Possession o f a signal peptide by Bm-PHY-1 is 

expected from comparison with other prolyl 4-hydroxylase subunits and the expected 

ER localisation of this enzyme. An alignment of the derived mature amino acid 

sequence of 5m-PHY-l (signal peptide removed) in comparison with mature prolyl 4- 

hydroxylase a  subunits from other organisms is shown in Figure 6.2. .Sm-PHY-1 was 

most similar to Cc-PHY-1 with 59% identity and 76% similarity. Next most similar was

226



Figure 6.2. Amino acid alignment o f 5w-PHY-l with C  elegans, O, volvulus and 

human a  subunits

Amino acid alignment of B. malayi {Bm), C. elegans {Ce) and O. volvulus (Ov) PHY 

proteins, and human P4H a  subunits. Gaps (-) were introduced for maximal alignment 

and signal peptides were removed, therefore numbering refers to the mature processed 

proteins. The two predicted N-glycosylation sites of .S/w-PHY-1 are marked (++++) and 

refer only to this polypeptide. Conserved cysteines (C), aspartate (D), histidine (H) and 

lysine (K) residues are indicated with an asterisk. Genbank Accession numbers- Bm- 

PHY-1 (AJ297845), Ce-PHY-1 (Z81134), Ce-PHY-2 (Z69637), Cfr-PHY-1 

(AF369787) Human a l  (M24486) and Human a l l  (U90441).



Chapter 6 Results IV

Bjti- P H Y - 1 1
C e - P H Y - 1 1
O v - P H Y - 1 1
C e - P H Y - 2 1

H u m a n a I 1

H u m a n a I I 1

B m - P H Y - 1 5 9
C e - P H Y - 1 5 9
O v - P H Y - 1 5 9
C e - P H Y - 2 5 9

H u m a n a I 6 1

H u m a n a I I 5 9

B m - P H Y - 1 1 1 9
C e - P H Y - 1 1 1 7
O v - P H Y - 1 1 1 9
C e - P H Y - 2 1 1 9

H u m a n  a I 1 1 7

H u m a n  a l l 1 1 5

B m - P H Y - 1 1 7 8
C e - P H Y - 1 1 7 6
O v - P H Y - 1 1 7 9
C e - P H Y - 2 1 7 8
H u m a n  a I 1 7 6

H u m a n  a l l 1 7 4

B m - P H Y - 1 2 3 8
C e - P H Y - 1 2 3 5
O v - P H Y - 1 2 3 8
C e - P H Y - 2 2 3 7

H u m a n  a I 2 3 5
H u m a n  a l l 2 3 3

B m - P H Y - 1 2 9 3
C e - P H Y - 1 2 9 0
O v - P H Y - 1 2 9 3
C e - P H Y - 2 2 8 7

H u m a n  a I 2 9 4
H u m a n  a l l 2 9 1

B m - P H Y - 1 3 5 1
C e - P H Y - 1 3 4 8
O v - P H Y - 1 3 5 1
C e - P H Y - 2 3 4 5

H u m a n  a I 3 5 4

H u m a n  a l l 3 5 1

B m - P H Y - 1 4 1 1
C e - P H Y - 1 4 0 8
O v - P H Y - 1 4 1 1
C e - P H Y - 2 4 0 5
H u m a n  a I 4 1 4
H u m a n  a l l 4 1 1

B m - P H Y - 1 4 7 0
C e - P H Y - 1 4 6 7
O v - P H Y - 1 4 7 0
C e - P H Y - 2 4 6 4

H u m a n  a I 4 7 3
H u m a n  a l l 4 7 0

B m - P H Y - 1
C e - P H Y - 1 5 2 7
O v - P H Y - 1 5 2 9
C e - P H Y - 2 5 2 4

H u m a n  a I

H u m a n  a l l

STAT

DSYG 
RHQD0K 

S
R SN S

+ +  +  +
L N A S G - V Q P F  

DQG -N YT 
SNSQMRTV
i I g e k v s n  

KH-KS

KY-QA

wgGE-is SKVS
£AGE-E TT KSQft

KNNE---
K------

VNKSASD
-EKTLTNQTEA

GNRN
IDGNRA

EWD!
QUI EWDS

T-PEPK
SPYANDP

227



Chapter 6__________________________________________________________ Results IV

C^-PHY"2 with which Bm-PHY-1 shows 53% identity and 71% similarity. The filarial 

parasitic nematode Onchocerca volvulus protein Ov-PHY-1 (Merriweather et ah, 2001) 

shows 49% identity and 70% similarity. The human subunits a l  (Helaakoski et ah, 

1989) and a l l  (Annunen et ah, 1997) ai'e 45% and 44% identical, and 62% and 63% 

similar respectively. Cc-PHY-3 (Riihimaa et al., 2002), Ce-PHY-4 and Ce-PHY-5 are 

not included in the alignment analysis, these shared from between 10-18% identity and 

19-31% similaiity with ^m-PHY-1. The conserved cysteine residues required for 

intrachain disulphide bonding (John and Bulleid, 1994; Lamberg et ah, 1995) and the 

active site histidine, aspartic acid and lysine residues (Lamberg et al., 1995; Myllyharju 

and Kivirikko, 1997) are all found in Bm-ŸHY-l (indicated with an asterisk in Figure 

6.2). The predicted peptide-binding domain of ^m-PHY-l, which was defined for 

human a l  (Myllyhaiju and Kivirikko, 1999), extends from N140 to P260 of the 

processed protein. The extended C-terminal region found in Cg-PHY-1 and Ov-PHY-1, 

which, for Ce-PHY-1, is implicated in PDI binding (Veijola et al., 1996a), is not present 

in ^m-PHY-1. 5w-PHY-l has two predicted N-linked glycosylation sites at N49-L52 

and N140-G143 (indicated with +, Figure 6.2), a predicted mature molecular mass of

60.4 kDa and isoelectric point of 5.48. The protein is thus comparable to Ce-PHY-1 

whose 543 amino acids (minus 16 amino acid signal peptide) have a isoelectric point of 

5.83, a mass of 62 kDa, and one N-linked glycosylation site (Veijola et ah, 1994) in a 

similar position (N142-F145) to the second 5m-PHY-l site. A tetratrico peptide repeat 

motif (Lamb et al., 1995) is also found in Rm-PHY-1 at a similar position to the motif 

identified in Ce-PHY-1.

6.2.2. Bm-phy-1 genomic coding sequence

The consensus sequence from three separate PCR products was used to deteimine the 

4596 base pair full length genomic coding sequence for Bm-phy-1. The sequence 

spanning 12 exons and 11 introns was submitted to EMBL with accession number 

AJ421993 (see Appendix 1). Exonic sequences were identical to those derived from 

mRNA. Introns ranged in size from 119 bp to 479 bp with an average intronic size of 

270 bp. Larger intronic size, as compared to C  elegans, is a general feature of the B. 

malayi genomic sequences available (Blaxter, 1998). A diagram of gene structure with 

exon and intron sizes is shown in Figure 6.1. All intron sequences began with a GT
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dinucleotide and ended with an AG in keeping with the consensus sequence for intron- 

exon boundaries (Blumenthal and Steward, 1997).

6.2.3. Baculovirus expressed Bm-ŸWV-l

Baculovirus expression enables multiple proteins to be expressed at the same time in 

insect cells and protein associations to be determined (Vuori et al., 1992a). Co­

expression of multiple proteins is accomplished by infection of cells with multiple 

recombinant vimses. Expression of 5m-PHY-l was carried out in collaboration with J. 

Myllyharju at the Collagen Research Unit, University of Oulu, Finland, a  subunits 

expressed alone in this system are usually highly insoluble (Vuori et al., 1992a), one of 

the primary functions of the PDI subunit being to prevent aggregation (John et al., 

1993). The other defined function of PDI subunits in P4H complexes is to retain the a  

subunits within the ER (Vuori et al., 1992b). Protein was extracted from insect cells 

expressing Bm-PHY-1 alone in a Triton-X 100 buffer, surprisingly Bm-PHY-1 was 

found within this fraction and did not require further solubilisation in 1% SDS, a 

treatment normally needed for singly expressed a  subunits. Therefore 5m-PHY-1 is 

soluble when expressed alone from baculovirus in an insect cell expression system and 

does not aggregate in the absence of PDI. Triton-X 100 extracts run on native gels show 

three 5m-PHY-l immunoreactive bands. Figure 6.3. P4H activity of insect cell 

expressed 5m-PHY-l was analysed using a method based on the hydroxylation-coupled 

decarboxylation of 2-oxo-[l -'"^Cjglutarate (Kivirikko and Myllyla, 1982) (performed by 

J. Myllyharju). This demonstrated that 5m-PHY-l is an active P4H enzyme with 

activity of about half that shown for the C. elegans tetramer (J. Myllyharju personal 

communication). Other examples of P4H which are active in the absence of a PDI 

subunit exist (Eriksson et al., 1999; Hieta and Myllyharju, 2002; Kaska et al., 1987; 

Kaska et al., 1988), however none, with the exception o f the HIF-a modifying 

hydroxylases (Bruick and McKnight, 2001; Epstein et ah, 2001), are from the animal 

kingdom. This unique feature of the 5m-PHY-l of forming an active enzyme in the 

absence of a PDI subunit, provides another example o f the diverse forms of these 

enzymes in free-living and parasitic nematode species. The potential of 5m-PHY-l to 

bind to other PDI proteins was also examined by co-expressing the protein in the insect 

cell system with PDI subunits from a variety of species (co-infections performed by 

Johanna Myllyharju) including C. elegans and human. Surprisingly the BM protein does
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Figure 6.3. Native PAGE of a Triton X-100 extract of insect cell expressed 5m-PHY-l. 

Triton X-100 extracts from insect cells expressing Bm-PHY-1. Native Western analysis 

of this extract shows the presence of three 5m-PHY-l immunoreactive bands (arrowed).
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not associate with any of the P-subunits tested. This is in contrast to the C. elegans and 

human a  subunits which can both associate with the other PDI subunit (Veijola et al., 

1996a; Veijola et al,, 1994).

6.2.4. Comparison of nematode and insect cell extracted Bm-PHY-1

A comparison of 5m-PHY-l from nematode extracts and insect cell expressed proteins 

was performed. Nematode protein was extracted from approximately 100 adult female 

Brugia malayi parasites. The procedure was designed to keep the complexes in their 

native state by preserving protein-protein interactions thus enabling analysis of potential 

complexes. When compared directly by native PAGE and Western blotting both 

extracts show two major 5m-PHY-l immunoreactive bands (Figure 6.4). The bands 

from different sources do not migrate at comparable positions, with bands from parasite 

extracted material migrating higher than the insect cell expressed protein. In Figure 6.4 

lane 3 a C  elegans native extract probed with anti-Ce-PHY-1 antibody is shown for 

comparison, with sizes of the dimer and tetramer bands indicated. Bands from both 

worm extracts can be seen to have a more similar profile than either does to the Bm- 

PHY-1 insect cell sample. Although extractions from nematodes and insect cells were 

performed using different buffers, differences in buffer systems are unlikely to account 

for the size differences as C. elegans complexes extracted fr om worm and cell sources 

using these buffers migrated in identical positions to each other (Figure 5.1)

6.2.5. Glycosylation levels in native and baculovirus expressed Bm -VW \-\

The 5m-PHY“l protein contains two predicted N-glycosylation sites (see Figure 6.2). 

Extracts from nematode and insect cells were treated with N-glycosidase F and analysed 

by SDS PAGE and Western blotting to determine whether these sites are modified, and 

whether the native size difference found between these samples was due to differences 

in glycosylation levels. Figure 6.5 shows glycosidase and non-glycosidase treated 

samples from insect cell extract (lanes 1 and 2) and worm extract (3 and 4). With 

glycosidase treatment a single band of approximately 60 kDa, representing 

unglycosylated protein, is observed for both samples (lanes I and 3). The untreated 

insect cell extract (lane 2) displays the 60 kDa unglycosylated band with an additional 

band of approximately the same intensity migrating slightly higher. Unglycosylated Bm- 

PHY-1 is not found in the untreated B. malayi worm extract, the nematode extract lacks
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Figure 6.4. Native PAGE comparison of nematode extracted and recombinant Bm- 

PHY-1

5/w-PHY-l extracted from B. malayi parasites, lane 1, and from insect cells, lane 2, was 

compared by Native PAGE probed with anti-5m-PHY-l, along with C  elegans extract 

(run on the same gel then separately probed with anti-Ce-PHY-1) in lane 3. Positions of 

tetramer (T) and dimer (D) bands are arrowed for the C  elegans extract.
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Figure 6.5. Analysis of glycosylation levels in nematode and insect cell extracts 

Glycosylation levels of Bm-PHY-1 in extracts from B. malayi parasites and insect cells 

were determined by comparing N-glycosidase F treated and untreated samples from 

both sources. Lane 1 - insect cell extract glycosidase treated, lane 2 - insect cell extract 

untreated, lane 3 - worm extract glycosidase treated, lane D - worm extract untreated. 

The arrow indicates the 60 kDa unglycosylated form of 5w-PHY-l found in lanes 1 and 

3. In lane 2 the 60 kDa band is found along with one higher band, representing the 

single glycosylated form. In lane 4 the single glycosylated form is found most 

abundantly along with a higher, twice glycosylated form.
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the 60 kDa band but has two higher bands. The smaller of these is the more prominent 

and corresponds to the larger band found in lane 2. This band probably represents the 

mono-glycosylated form of Bm-FHY-l with the higher less abundant band in lane 4 

representing 5m-PHY-l glycosylated at both sites. Therefore compared to the worm 

extracts, insect cell extracts are under glycosylated containing approximately equal 

quantities of single glycosylated and non-glycosylated protein. In contrast, nematode 

derived 5m-PHY-l is always glycosylated, predominantly singly, with a lesser amount 

modified at both sites. Differences in glycosylation may account for some or all of the 

size difference found between worm and insect samples analysed under native 

conditions.

6.2.6. Functional analysis ofB/n-PHY-l

6.2.6.I. Vector for expression of 5/«-PH Y-l in C. elegans

Phenotypic rescue of a C  elegans P4H mutant with Bm-phy-1 was attempted in order to 

assess interspecies conservation of gene function and gain insight into the native 

function of the B. malayi gene. Attempts were made to rescue the C. elegans phy~l null 

mutant \dpy-18{e364)~\ using the Bm-phy-1 coding sequence expressed under control of 

a C. elegans promoter. A vector, pAW l, was constructed which contained the C. 

elegans phy-1 promoter and 3' UTR. The 3' UTR region incorporated the 

polyadenylation signal sequence and poly (A) transfer site. For a further description of 

the vector pAWl see Section 3.2.11.1. A similar approach had been successfully 

applied to rescue the dpy-18 mutant phenotype with the endogenous C. elegans gene 

and to partially rescue with human P4H a  subunits (Figure 6.6A and Figure 3.24). Full- 

length Bm-phy-1 coding sequence, in the form of cDNA or genomic DNA, was inserted 

between the two C. elegans sequences as depicted in Figure 6.6B. The junction between 

the Ce-phy-1 promoter sequence and the Bm-phy-1 coding sequence encodes four extra 

amino acids at the N-terminus of the protein. These result from the first five bases of the 

Ce-phy-1 coding sequence being included with the promoter sequence, the Bam HI 

restriction site used to fuse both fragments, and an additional base engineered in the 

Bm-phy-1 sense primer to adjust the reading frame. The addition of these amino acids 

was predicted not to interfere with the function of the N-terminal ER signal sequence o f 

5m-PHY-l by using the Signal P signal peptide prediction program. An ER signal 

peptide is still identified with cleavage occurring at the same site. The additional N-
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Figure 6.6. Diagram of Bm-phy-1 dpy-18 mutant rescue constructs

(A) Depiction of the C. elegans phy-1 gene construct (containing promoter, genomic 

and 3' UTR sequences) used to successfully rescue dpy-18 mutants, indicated with, (+).

(B) Representation of vector pAWl with inserted Bm-phy-1 sequences. Vector pAWl 

consists of the Ce-phy-1 promoter and 3' UTR. Between these sequences B. malayi phy- 

1 cDNA, cDNA with a single C. elegans synthetic intron, and genomic sequences were 

inserted. Sizes of fragments are not drawn to scale and the full number of introns for the 

genomic fragment not depicted. Constructs were injected into the C. elegans P4H 

mutant dpy-18{e364). Lack of rescue with transformed Bm-phy-1  sequences is 

indicated, (-).
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terminal amino acids were therefore predicted not to interfere with native protein 

function. Similai’ extra amino acids were added to the a  subunits o f humans which still 

retained activity (see Section 3.2.11.2).

6.2.6.2. Rescue attempts with Bm-phy-1 cDNA derived constructs

Constructs were microinjected into a strain carrying a dpy-18(e364) mutation and 

transgene function assessed by the ability to repair the medium Dpy phenotype of this 

mutant. Transformed animals from multiple semi-stable lines made by transformation 

with high (100 pg/ml) and low (10 pg/ml) concentrations of the rescue construct were 

examined but no phenotypic rescue was observed. The plasmid dpy-7-GFP was co­

injected as a mai'ker of transformation. Figure 6.7 shows C. elegans dpy-18{e364) 

mutants transfoimed with the rescue construct (panels C, DIC image, and D, showing 

expression of marker plasmid under UV light) in comparison to wild type N2 (panel A) 

and a dpy-18{e364) mutant (panel B) with no repair to wild type body moiphology 

evident in transformed dpy-18.

Lack of introns in this construct could result in low levels of transgene expression as a 

comparison of intron containing and intron-less transgenes in transgenic animals and 

tissue culture demonstrated increased expression levels of around 100-fold from the 

spliced transcripts (Brinster et al., 1988; Buchman and Berg, 1988). An artificial intron 

based on typical C. elegans introns (Blumenthal and Steward, 1997) was synthesised 

and inserted in to the Bm-phy-1 cDNA coding sequence using a blunt ended restriction 

site. The 51 bp C. elegans intron was inserted into a Stu I restriction recognition site 

located 57 bp from the end of Bm-phy-1 coding sequence. Microinjection of this 

synthetic intron-containing Bm-phy-1 construct into dpy-18 also failed to rescue the Dpy 

phenotype, with results identical to those shown in Figure 6.7 found using different 

concentrations and with multiple lines.

6.2.6.3. Rescue attempts with Bm-phy-1 genomie construets

Genomic Bm-phy-1 coding sequence constructs were used to determine if the multiple 

intron containing genomic sequence was capable of rescuing dpy-18. High 

concentrations (100 pg/ml) of this construct were toxic and no transformed lines could 

be generated as transformed nematodes died during embryonic development.
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Figure 6.7. Comparison of body shapes of wild type and dpy-18 C. elegans strains with 

transformed dpy-18 transgenic lines

Typical results from dpy-18 rescue attempts with Bm-phy-1. Panel A, wild-type N2 C  

elegans animal; panel B, Ce-phy-1 null strain dpy-18(e364) with shorter fatter body 

shape than the wild type; panel C, DIC image of a transformed dpy-18 line with panel D 

showing corresponding fluorescence from the marker plasmid dpy-7-GFP. Panels C and 

D show the failure of ^m-phy-1 transformation to repair the dpy-18 phenotype. These 

results were consistent for all three types of construct injected; cDNA, cDNA with 

synthetic intron and genomic, and for all lines examined and at all concentrations 

attempted.
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Examination of multiple lines generated from lower, non-lethal, injection concentrations 

showed no repair o f the Dpy phenotype in transformed worms compared to non­

transformed controls. A possible reason for the failui'e of the Bm-phy-1 genomic 

construct to rescue could be the presence of the eleven B. malayi introns within the 

coding sequence of Bm-phy-L Although all of these introns seem to conform to the 

consensus splicing sequences o f C  elegans (Blumenthal and Steward, 1997) this 

organism may not be able to splice introns properly and/or efficiently for other reasons. 

Improperly spliced Bm-phy-1 mRNA could result in either a truncated protein from the 

creation of a premature stop codon, a protein missing domain(s) due to exonic regions 

being spliced out, or lack of splicing which would either not be exported or would result 

in a non-functional protein. Splicing in C. elegans of heterologous genes from H. 

contortus (Kwa et al., 1995; Redmond et al., 2001) occurs correctly, however no data is 

yet available on the expression and splicing in C. elegans of B. malayi genes.

6.2.6A, Detection of transgene expression

Expression of Bm-phy-1 transformed dpy-18(e364) lines was assessed using RT-PCR 

from single worms. Transformed lines containing just the cDNA construct were not 

assessed for transgene expression. For the cDNA with synthetic intron constructs 

discrimination on the basis of size between spliced and unspliced transcripts (and 

product arising from contaminating plasmid DNA) was not practical due to the small 

size of the intron. Instead primer BM phy-1 SWRT R was designed to span the 

synthetic intron-exon boundaiy in such a way that only 6 bp of the 26 bp primer lay to 

the 5' end of the intron. On un-spliced mRNA derived product or contaminating DNA 

the primer should anneal beyond the 3' end of the intron sequence and so be unable to 

yield a product due to bases at the 3' end of the primer being unable to anneal (see 

Figure 3.25). If  the gene is transcribed and the intron correctly spliced this primer 

should anneal and, used in conjunction with a standard forward primer, should generate 

a product. PCR product arising from correctly spliced RNA could also be confirmed by 

digestion of the product with Stu I, the site which would be reformed upon coiTect 

processing of the RNA.

Primers BM phy Res F and BM phy-1 SWRT R were tested on Bm-phy-1 cDNA and 

cDNA with synthetic intron plasmid DNA. Primers gave the correct sized band of 1.6 

kb from the cDNA clone and gave no product from the clone containing the synthetic
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intron as expected (data not shown). Therefore in single worm RT-PCR a product 

should only result from reverse transcribed mRNA and not from unspliced mRNA or 

any plasmid remaining after DNase treatment. RT-PCRs were performed on two 

transformed lines and untransformed controls, no expression of transgenes could be 

detected in the transformed lines using this method (data not shown). A Bm-phy-1 

genomic DNA construct line was also examined for transcription o f the transgene by 

single worm RT-PCR using full-length gene cloning primers in comparison to control 

untransformed worms. Correct splicing and discrimination of contaminating DNA was 

based on the large size difference between spliced product (1.6 kb) to unspliced product 

(4.5 kb). No product was obtained for the genomic Bm-phy-1 containing line (data not 

shown). Western analysis was also attempted to determine if transgenic lines were 

expressing the Brugia protein. As the antibody to the B. malayi protein is reactive to the 

last 20 C-terminus amino acids, detection of expression by this means would indicate 

that expression and accurate splicing had occun-ed. Worms were collected from 

transformed dpy-18 lines containing Bm-phy-1 cDNA with synthetic intron and genomic 

constructs. Two different synthetic intron lines were tested along with one genomic line 

with experiments repeated twice. No 5m-PHY-1 protein could be detected however 

using this method (data not shown).

6.2.7. Tem poral expression

The EST data and library screens provided information on the developmental stages 

where expression of Bm-phy-1 is found. ESTs were identified from adult females and 

L3 larvae, with library screening demonstrating expression in adult males. For a more 

detailed analysis of developmental timing of expression, RNA extracted from different 

points in the nematode life cycle was examined for the presence of the Bm-phy-1 

transcript. RT-PCR was performed using cDNA (a gift from Bill Gregory of ICAPB in 

the University of Edinbui’gh) made from daily extracts of infected jirds (daily extract 

taken up to day 14 post infection, after which 2-4 day extracts were taken) (Gregory et 

ah, 2000). These samples cover the L3/L4 and L4/adult moults. PCR was performed 

using the primers BM phy 1.1 IS IF and BM phy 1.1 IS 2R. This primer pair span an 

intron and produce a product of 655 bp which can be distinguished from the larger 

product produced from genomic DNA. A second set of primers to the 5. malayi tubulin 

gene, which also span an intron, were simultaneously applied as an internal control. 

PCR was performed on the staged cDNA samples with gene specific and control
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primers (Figure 6.8). Gels were also Southern blotted, radioactively probed and 

quantified by scintillation counting. Bands from Bm-phy-I and B. malayi tubulin from 

each time point were excised and the relative abundance of Bm-phy~l mRNA levels was 

determined by subtracting the value for tubulin from the same time point (data not 

shown). Although this process was repeated on three independent sets of PCRs no 

repeatable pattern of values from quantification could be generated. Expression was also 

found by RT-PCR from an LI (microfilaria) extract (data not shown). Taken together 

with the EST and library screening data these results show that Bm-phy-1 is expressed 

in microfilaria, at all time points examined thiough out L3 and L4 development and in 

both adult sexes. Due to the inability to generate reliable data from quantification the 

fluctuation of expression levels within these larval stages and between the L3/L4 moult 

and L4/adult moult could not be assayed although visual examination does suggest a 

high level of expression during the moulting period.

6.2.8. Analysis of the promoter region from Bm-phy-1

6.2.8.I. Cloning of the putative Bm-phy-1 promoter

Two methods were used to identify sequences lying upstream from the 5' end of Bm- 

phy-1 coding sequence. A combination of a linker based PCR genomic walking 

technique and isolation of a BAC from a genomic Brugia library generated data for 2.2 

kb of putative promoter sequence. This was submitted to the EMBL database with 

accession number AJ421994. Upstream sequences were confirmed as being linked to 

the coding region by PCR on genomic DNA. A 3' ^ra«5-splice acceptor site sequence, 

TTTCCAGA, is located at position -15 to -8  with respect to the ATG with splicing of 

the SLI sequence occuning after the G and before the A nucleotide (see Appendix 1). 

The sequence differs from the consensus ^ra«5'-splice acceptor site of TTTTCAGA 

found most commonly in C. elegans (Blumenthal and Steward, 1997). Located 130 bp 

from the splice acceptor site is a TATAA box (indicated in Appendix 1). This is the 

binding site for the RNA polymerase II TATA box binding protein. Three heat shock 

elements, two of which are also found in the promoter of Ce-phy-1, are present in the 

upstream sequence of the Brugia gene. The significance of these elements has not been 

detennined for either gene. No other motifs could be identified and no major regions of 

similarity could be identified between the Bm-phy-1 promoter and those from the C. 

elegans phy genes when Dot plot analysis was performed (data not shown). The 2.2 kb
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Bm -phy-1

Bm -tub

Moult Moult
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Figure 6.8. Analysis of Bm-phy-1 expression through L3 to adult development 

Expression of the Bm-phy-1 transcript was compared to the constitutively expressed 

tubulin transcript through L3 to L4 and L4 to adult moults. Extracts made from parasites 

were from daily samples from infected jirds through L3 and L4 then at longer intervals 

in the adult. Numbers refer to days post infection. PCR was performed on these samples 

simultaneously with primer pairs for both genes.
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region identified does not appear to contain any other coding sequence as determined by 

BLASTx analysis.

6.2.S.2. Bm-phy-1 promoter-driven reporter gene expression in C  elegans

PCR generated upstream sequences were translationally fused to multi-intron 

containing, nuclear localised reporter genes lacZ/GFF in the vector pPD96.04 

(described in Figure 3.2). This construct, fusing approximately 2.2 kb of Bm-phy-1 

upstream sequence and the first three N-teiminal amino acids from 5m-PHY-l, was 

transformed into the C. elegans strain DR96 at 100 pg/ml. Multiple lines were 

examined with expression being found consistently in the hypodermal cells; shown in 

Figure 6.9, panels A-D. Reporter GFP expression was particularly prominent in the 

hypodermal cells hyp5, 6 and 7 of the head (panel A), and in the pair o f hyp7 cells in 

the tail of adult wonns (panel B). Using sensitive staining techniques for the detection 

of p-galactosidase activity, expression can be seen in larval stages again strongly in the 

head and tail (panels C and D). Less pronounced expression can also be seen in the 

hypodermal cells hyp4, 5, 6 and 7 o f the body (panel C). With prolonged staining lacZ 

expression was also obseiwed in the vulval cells of the adult (data not shown), which are 

of ectodermal origin, and in adult body-wall muscle cells (data not shown). Expression 

was found in embryos from the 3-fold stage of development (data not shown). This 

pattern of expression predominantly in cells of hypodermal origin is consistent with this 

gene functioning to modify cuticular collagens. The secondary staining of muscle cells 

and vulval cells is identical to that found for the C. elegans homologues Ce-phy-1 and 

Ce-phy-2, which both express in vulval cells with additional muscle cell staining found 

for Ce-phy-2. Both C. elegans genes showed much stronger and more complete 

hypodermal staining under less sensitive conditions than is observed here.

6.2.9. Identification of other potential B. malayi P4H subunits

In order to more fully understand the nature and composition of F4H complexes in 

Brugia malayi, additional phy isofoims and a pdi homologue, if they are present in the 

genome, should to be identified and characterised. A candidate B. malayi PDI was 

identified using the program tBLASTn with full length Ce-FDI-2 protein sequence 

compared against the Brugia malayi nucleic acid database. An EST sequence was 

identified the derived amino acid sequence for which displayed high identity to FDI
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Figure 6.9. Bm-phy-1 promoter driven expression in the hypodermal cells of transgenic 

C  elegans

Transgenic expression patterns in C  elegans of reporter genes expressed from the Bm- 

phy-1 promoter. Panel A is a merge of DIC and UV images showing expression of GFP 

in the hypodermal cells hyp5, 6 and 7 in the head. Panel B is a merge showing 

expression o f GFP in the hyp7 cell of the tail. Panels C-D show lacZ  staining, with 

panel C showing transgene expression in the hypodermal cells hyp4, 5, 6 and 7 o f the 

head and body; panel D indicated reporter expression in hyp7 cells of the tail (compare 

panel B).
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protein sequences. EST SWAMCAC30B1ISK (accession number AI784701) was 

submitted by Steven A. Williams, FGP, Smith College. This EST would appear to 

represent the incomplete N-terminal region of a potential Brugia PDI protein, see Figure 

6.10A. The predicted translation of 92 amino acids from this EST, putatively termed 

.Sm-PDI, showed 94% identity and 96% similarity with Ov-PDI (Wilson et al., 1994). 

With Cg-PDI-2 shows 76% identity and 86% similarity. This sequence then

shows higher identity to the human PDI (63% identity, 75% similarity) than to the other 

defined non-P4H associated PDI isoform from C. elegans, PDI-1 (Veijola et al., 1996a) 

(61% identity, 78% similarity). This EST clone was received from the FGP however 

cloning and sequencing of it did not provide any additional data as the insert of the 

clone was under 400 bp in size and did not generate good sequence data.

To date, the available ESTs in the B. malayi database showing homology with prolyl 4- 

hydroxylases are the three ESTs described which represented Bm-phy~l (an additional 

EST, SWD25CAU08C01SK, is 97% identical with Bm~phy~l and most probably also 

represents this gene). Screening of a Brugia bacteriophage cDNA library with Bm-phy-1 

3' coding sequence did not identify any additional/jAy genes. To identify other potential 

Bm-phy genes tBLASTn was performed using full-length Ce-PHY-2 protein sequence 

compared against a translated database of genomic sequences. A B. malayi BAG end 

sequence, submitted by the Mark Blaxter, FGP, Edinburgh as a Genome Survey 

Sequence (GSS), was identified that was not identical to Bm-phy-1. BMBAC305D10T7 

(accession number BH615947) when translated in frame -2 shows homology with PHY 

subunits. The derived 79 amino acid sequence, provisionally named Bm-VYiY-2, shows 

42% identity (60% similarity) with Ce-PHY-2. A low identity of approximately 30% is 

shared with .Sm-PHY-l, however an identity of 76% is found between Bm-PHY-2 and 

Ov-PHY-l. An alignment of protein sequences from both Brugia PHY proteins and Ov~ 

PHY-1 is shown in Figure 6. lOB.

The BAG from which the Bm-phy-2 sequence was identified is not useful for 

identification of the complete sequence of this gene. Bm-phy-2 resides at the end of this 

BAG and appeal’s to represent the incomplete 5' end of the coding sequence. The 

orientation of Bm-phy-2 is however 3' to 5' with respect to this end of the clone, thus 

continued sequencing would only complete the 5' end of the gene. Therefore the nature
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Figure 6.10. Amino acid comparisons of 5am-PDI with C. elegans and O. volvulus 

PDIs.

A) Comparison of nematode PDIs. Amino acid alignments of the predicted 92 amino 

acid region from the EST SWAMCAC30B1 ISK termed 5m-PDI with nematode PDIs 

from C  elegans (Ce) and O. volvulus (Ov). Active site residues are indicated with 

asterisks. Accession numbers, 5m-PDI EST (AI784701), Ce-PDI-2 (U41542) and Ov- 

PDI (U12440).

B) Comparison of nematode PHYs. Amino acid alignments of the derived 79 amino 

acid sequence from GSS sequence BMBAC305D10T7 named here Bm-VWY-1 with 

PHYs from filarial nematodes B. malayi (Bm) and O. volvulus (Ov). Accession numbers 

5m-PHY-2 EST (BH615947), 5m-PHY-l (AJ297845) and Ov-PHY (AF369787).
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and orientation of the Bm-phy-2 sequence within this clone does not facilitate the 

generation of 3' sequence through further analysis of the BAG clone.

6.3. Discussion

6.3.1. Possible forms of the Bm-ŸïfY-1 enzyme

In what form(s) the Bm-FHY-\ enzyme occurs has not yet been conclusively 

established. ^m-PHY-1 may not require association with any other protein to form an 

active enzyme and in this case the presence of multiple bands found in native analysis 

could represent multimers of the 5m-PHY-l protein. In this case the native size 

differences between insect and nematode derived proteins would arise only from 

differing glycosylation modification levels. Whether monomer, multimeric or both 

forms of the enzyme were active would also have to be established in this scenario. Gel 

filtration studies using recombinant 5w-PHY-l indicated that P4H is found only in 

fractions corresponding to a tetramer sized complex, indicating that -PHY-1 may 

possibly self-associate into active tetramers which partially dissociate into 

enzymatically inactive dimer and monomer foims (J. Myilyharju, personal 

communication). Alternatively, if partner(s) are required for 5m-PHY-l, the size 

differences between native samples may reflect the differences in the 

size/charge/glycosylation of the natui’al partners in the nematode compared to insect cell 

PDI-like proteins with which Bm-FHY-l may be forming complexes with when 

expressed in this system. Regardless of whether 5m-PHY-l functions alone or forms an 

active complex with endogenous insect cell protein(s), it differs from its homologous 

enzymes in nematodes, vertebrates and Drosophila characterised to date, as all these 

enzymes require a PDI subunit for activity. P4Hs which do not require additional 

subunits, but function as monomers, have however been identified in A. thaliana (Hieta 

and Myilyharju, 2002), algae (Kaska et ah, 1987; Kaska et al., 1988) and a virus 

(Eriksson et al., 1999). The nematode and vertebrate HIF-a modifying hydroxylases 

also function in this manner (Bruick and McKnight, 2001; Epstein et a l, 2001). Bm- 

PHY-1 does not posses a reeognisable ER retention signal and if acting without 

additional proteins would in theory not be retained within its expected sub-cellular 

localisation. However it would not be unique in this respect either, as neither the Ov- 

PHY-1, nor its partner, Ov-PDI, possess an identifiable ER retention motif 

(Merriweather et al., 2001; Wilson et al., 1994). P4H tetramers are usually formed from
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[(al)2]p2 or [(all)2]p2 , uniquely however in C  elegans a tetramer can only form if all 

three subunits (Ce-PHY-1, Ce-PHY-2 and Ce-PDI-2) are present. To determine if Bm- 

PHY-1 is capable of functioning in a mixed PHY subunit tetramer it could be expressed 

in combination with C^-PDI-2 and either Ce-PHY-1 or Ce-PHY-2. This analysis would 

reveal whether Bm-PHY-1 requires more than one additional protein to form a complex 

with other subunits and may indicate whether this type of complex is perhaps nematode 

specific. This property o f 5w-PHY-l, if identified, would then make it similar to Ce~ 

PHY-2, as it requires both Ce-PHY-1 and Ce-PDI-2 to form a P4H complex. However, 

a clear difference however between the two proteins in this case would be that unlike 

Ce-PHY-2, Bm-PHY-1 is also a soluble, active P4H enzyme when expressed alone in a 

recombinant system.

6.3.2. Function of Bm-phy-l

The Bm-phy-I gene was found to be unable to rescue the phenotype of the C. elegans 

phy-1 mutant, dpy-I8. Thus the function of this gene is either different to the essential 

collagen modifying function defined for Ce-phy-I or the conditions of the experiment 

were not conducive to correct function of the Brugia gene. Identical approaches were 

employed for detection of expression from Bm-phy-I transgenes as were used in 

detection of human a  subunit transgene expression (see chapter 3). The human a  

subunits were determined to be active due to their repair of dpy-18 body morphology 

but despite this, no transgene expression was detected at either the protein or mRNA 

level. Therefore although no expression was detected for Bm-phy-I in C. elegans this 

did not rule out that the possibility the gene was being expressed. If  the gene was 

expressed, codon usage differences between different species could be a factor 

determining protein production, and thus rescue efficiency. Examination of the Bm-phy- 

I coding sequence however does not reveal any unusual codons that are not utilised in 

C. elegans, nor does Bm-phy-1 use any codons that are found rarely in C  elegans. If  

expression of the protein in its native form was occurring at sufficient levels lack of 

rescue could be attributable to other reasons. Firstly the protein when expressed by 

baculovirus had a lower activity level than the C. elegans tetramer. If this reflects the 

natural level o f activity of the Bm-?WY-\ protein this may not be sufficient to 

compensate for the P4H activity needed to produce wild-type body shape C  elegans. 

Alternatively, if sufficient levels of active protein were present in transformed
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nematodes, the C. elegans cuticular collagens may provide an unsuitable substrate for 

this enzyme and would not be con’ectly modified. If  .Sm-PHY-l modifies cuticular 

collagens the available data would suggest that the Brugia substrate is similar. Only one 

cuticular collagen, Bm-COL-2 (Scott et al., 1995), has been cloned from B. malayi. 

Analysis suggests that, like the C. elegans collagens, this collagen is a member of a 

multi-gene family (Selkirk et ah, 1989) although the exact size o f this family is not 

known. The 33 kDa size of Bm-COL-2 protein is typical o f the relatively small 26-35 

kDa size of C. elegans collagens. Bm-COL-2 shows similarities with the C. elegans 

cuticular collagens, particularly to those of group 2. Comparison at the amino acid level 

gives 46% identity and 50% similarity with C. elegans collagen T07H6.3 and similar 

values for other collagens from group 2. Precise positioning of cysteine residues, 

required for registering and stabilising the collagen triple helix, is also conserved 

between Bm-COL-2 and group 2 collagens from C  elegans. Additionally, regions of 

conserved sequence in the amino teiminal non-Gly-X-Y domains of C. elegans 

collagens (homology blocks A-D) (Kramer, 1997) are also found in Bm-COL-2, which 

contains homology domains B, C and D although it appears to lack the subtilisin-like 

protease recognition site (Scott et al., 1995). Lastly, rescue may not be observed in C. 

elegans using Bm-phy-I as the protein may occui* as part of a complex in its native 

from. If  additional subunits are needed for a fully functional ^m-PHY-1 enzyme, these 

would not be provided by transformed C. elegans as the most likely partner in this 

nematode, Ce-PDI-2, does not form a complex in vitro with jSw -PHY-1.

6.3.4. jBw-PHY-2 and JÎ/«-PDI, potential P4H subunits

In order to understand more fully the nature and composition of P4H complexes in B. 

malayi, additional Bm-phy and Bm-pdi homologues would have to be identified and 

characterised. Through this process the full range of possible P4H complexes in this 

nematode could be examined. Two sequences were identified from B. malayi that aie 

proposed to represent a second Bm-phy isoform and a Bm-pdi. However the size of the 

Bm-pdi EST clone and the form of the Bm-phy-2 BAG did not permit further sequence 

analysis. Using primers designed to the existing sequence data full-length sequence 

from both these genes could potentially be identified by PGR screening the BAG library 

used to identify the promoter of Bm-phy-I. BAGs positive for the sequence of interest 

could be obtained from the FGP labs. Should the sequences identified represent Bm-pdi 

and Bm-phy-2 as proposed, cDNA from these genes could be cloned and sequenced to
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confirm/redefine predicted intron/exon boundaries. To ascertain if  these proteins are 

P4H subunits and determine the types of complexes present in B. malayi they could then 

be expressed in an insect cell system and associations between them and Rw-PHY-1 

determined by co-expression studies. Other potential approaches to study these genes 

are addressed in Section 6.3.5.

6.3.5. C  elegans as an expression system for parasite proteins

The ability of these potential B. malayi P4H genes to functionally compensate for loss 

of P4H activity in C. elegans could also be determined in a manner similar to that 

already described. Although Bm-phy-1 was not able to rescue the C  elegans dpy-18 

mutant, rescue was achieved by expression of human a  subunits in this mutant. To be 

enzymatically active, the human subunits must first presumably combine with a paitner 

p subunit from C. elegans, almost certainly Ce-PDI-2. This hybrid complex must then 

be capable of hydroxylating C. elegans collagens that are markedly different from most 

human collagens. Rescue of a P4H mutant in C. elegans with B, malayi genes is 

therefore conceivable due to the much closer evolutionary relationship between these 

two nematodes. Although no data currently exists for rescue of C. elegans mutants with

B. malayi genes this process has been successful using genes from the parasitic 

nematode H, contortus. The ben-1 gene from C. elegans encodes p-tubulin with loss of 

this gene leading to resistance to the benzimidazole (BZ) drugs. Parasite p-tubulin was 

shown to function in C. elegans by injection into the BZ resistant Ce-ben-1 mutant 

strain with Hc-ben-l cloned from a BZ sensitive H. contortus strain (Kwa et al., 1995). 

Expression of the parasite gene gave renewed sensitivity to BZ in C. elegans. In 

contrast, transformation of Ce-ben-1 mutants with a mutated H. contortus P-tubulin 

gene gave no acquired sensitivity. This process therefore provides a method for 

identification of residues important in drug action/resistance. Heterologous rescue of C. 

elegans by a H. contortus gene has also been described for cathepsin L proteases. The 

embryonic lethality of a C  elegans cpl-I deletion strain was rescued by transformation 

with a homologue from its parasitic relative (Britton and Murray, 2002). This 

demonstrates the conservation of essential developmental function between these two 

genes in different species and identifies them as true orthologues. This suggests that the 

function of this enzyme in H. contortus is essential for development of the parasite and 

as such is a target for chemical control. The degree of amino acid identity found
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between H. contortus and C. elegans for p-tubulin is over 90% (Kwa et al., 1995) with 

the identity of mature cathepsin L proteases between these two species of 87% (Britton 

and Murray, 2002). These identities are significantly higher than the 57% identity 

between the PHY proteins from C. elegans and the more distantly related B. malayi. 

However as described partial rescue of a C. elegans P4H mutant by human a  subunits 

(43-44 % identity) has been achieved. Heterologous rescue with a Brugia P4H protein 

or complex in C. elegans would enable the effects of site-directed mutagenesis and 

chemical inhibition of the parasite enzyme(s) to be performed in vivo. This would allow 

a much more detailed analysis of Brugia P4H function than is currently achievable. It 

may be potentially possible to examine the function of an entire B. malayi complex in 

the absence of any C. elegans cuticle collagen modifying activity. Mutants for Ce-phy-1 

and Ce-phy~2 have already been identified. Although no mutant currently exists for Ce- 

pdi-2 one could be generated using the process discussed earlier (see Chapter 4 ). 

Alternatively if no mutant was identified, “pre-rescuing” with the parasite pdi gene 

followed by RNAi to specifically remove Ce-pdi-2 function could be employed to 

assess the ability of Bm-pdi to replace native enzyme function. This approach has been 

successfully used in C. elegans for rescue with parasite genes (Britton and Murray, 

2002).

6.3.6. Expression of Bm-phy-1

C. elegans has been used as a heterologous transformation system to determine if 

promoter elements from parasitic nematodes can direct expression of a reporter gene in 

this organism. This approach was used here to determine that the Bm-phy-1 promoter 

was able to direct tissue-specific expression in C  elegans. No published data exists to 

date for heterologous expression in C. elegans of reporter genes driven by B. malayi 

promoters. The promoter region for the Bm-phy-I gene was identified and used to drive 

reporter gene expression in the hypodermal cells of C. elegans. Although the native 

localisation of this protein in the parasite is not known, its P4H activity and the 

expression patterns of homologous genes from C. elegans would predict a hypodermal 

localisation for expression of this gene. Expression in this cuticle synthesising tissue is 

in keeping with a proposed role for this gene in the modification of B. malayi cuticular 

collagens. The restricted tissue specific expression by sequences from B. malayi in C. 

elegans in the tissue appropriate for the proposed function of this gene demonstrates
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that evolutionary distantly related nematodes (Blaxter and Bird, 1997), appear to show 

conservation of the elements required for directing spatial expression. This method 

provides a means to predict the native expression pattern of a gene via inference from 

expression of reporter genes in a heterologous system, and can be used when no other 

approach to determine spatial expression is available. Examination of other gene 

regulatory sequences from B. malayi, and comparison with function and native 

expression, will reveal if conservation of expression is found more generally between 

these two nematodes.

Expression of reporter genes in C  elegans has been described for promoters from a 

number of genes from related parasitic nematodes. The gluteraldehyde-3 -phosphate- 

dehydrogenase promoter from the potato cyst nematode, Globodera rostochiensis, 

directs expression of GFP in C. elegans mainly to the body wall muscle cells (Qin et al,,

1998). Immunological studies of this protein in the parasite indicate that this is the 

native localisation site. Upstream sequences from two H. contortus genes, the 

pepsinogen pep-1 and the cysteine protease gene ac-2, directs expression of reporter 

genes to the gut cells in C. elegans (Britton et al., 1999). This gut-specific expression 

correlates with the localisation of the native proteins in the parasite and with the 

proposed functions of these genes. The promoter region of a hypodermally expressed 

cuticulai* collagen gene from Ostertagia circumcincta also directs expression of a 

reporter gene to the hypodermis in C. elegans (Britton et al., 1999). The gluthione S- 

transferase gene promoter from the filarial nematode O. volvulus was found to direct 

expression in C  elegans in a manner consistent with its native expression pattern in the 

parasite (Krause et al., 2001). One observation from some of these studies is that 

although tissue specificity of expression is conserved, temporal expression may not be 

as well conserved, with timing of expression of the reporter genes in C. elegans found 

not to be identical to that described for the native proteins (Britton et al., 1999). This 

was also found in examination of Bm-phy-1 expression where although tissue specificity 

is conserved, expression in larval stages was comparatively weak. This suggests that 

although promoter elements appear to be recognised by a conseiwed basal transcription 

apparatus, the elements that direct spatial expression may be more conserved than those 

responsible for developmental timing of gene expression.
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The Bm-phy-I reporter gene expression seen in late larval and adult stages is consistent 

with the available RT-PCR data. Strong expression was found at all L3, L4 and adult 

time points examined by RT-PCR from staged cDNA samples. It was not possible 

however to quantify this data to deteimine fluctuation of expression levels within a 

moulting period. Synchrony of the cultures used for cDNA preparation is a factor to be 

taken into account when interpreting any results from this procedure. This however is 

not sufficient to explain the differences found between experiments using the same 

template. A degree of synchrony in cultures can be inferred from other non-quantified 

RT-PCRs on this same panel of cDNAs. The genes Bm-alt-1 and Bm-alt-2, when 

examined in this way have clear periods of expression followed by periods of no 

detectable expression (Gregory et al., 2000). If  cultures were extremely asynchronous 

this pattern of expression would be unlikely. It may be interesting to repeat these 

experiments with the 60S ribosomal protein encoding gene as an internal control as has 

successfully been applied in B. pahangi (Lewis et al., 1999).

In prolyl 4-hydroxylases we have an enzyme whose function is well understood and 

whose range of forms are now becoming clear. The essential nature o f their activity for 

development and body morphology has been demonstrated in C  elegans both by 

genetics/RNAi analysis and by chemical inhibition studies. The extrapolation of the 

knowledge gained in C. elegans and other species along with the emerging use of C. 

elegans as a surrogate system for expression of foreign proteins provides powerful 

approaches for understanding parasite genes and assessing their potential as targets for 

chemical control.
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Chapter 7 

General discussion

7.1. Introduction

In this study the role of the P4H enzyme class in formation of nematode ECMs was 

examined. As is found for all animals, nematode ECMs are formed predominantly from 

collagen. Nematodes have two forms of ECM known as the cuticle and the basement 

membranes (Kramer, 1997). The nematode cuticle is an exoskeleton that almost entirely 

encases the animal and the function of P4Hs in the formation of this structure was the 

focus of this work. P4E1 function was studied in the free-living nematode C  elegans and 

in the filarial parasitic nematode B, malayi. C. elegans has a number of advantages for 

the study of many biological processes, including ECM formation, due to the range of 

genetic, transgenic, molecular and biochemical techniques which can be used in this 

animal. Completion of the entire genome sequence (Consortium, 1998) also enabled 

identification of entire gene families such as those predicted to encode subunits of P4H 

enzymes. Due to these advantages C. elegans is also being used increasingly as a system 

to study the less experimentally amenable parasitic nematode species. This can be 

approached by studying the homologue of a parasitic gene of interest in C  elegans and 

using the knowledge of gene function to infer function of the parasite gene, as well as 

directly examining parasite genes by using the free-living species as a heterologous 

expression system (Hashmi et al., 2001).

The nematode cuticle is composed principally of collagen (Cox et al., 1981a) and as 

well as its many other functions, such as movement and protection from the 

environment, is critical for nematode body morphology. The cuticle is formed and shed 

five times during the development of C  elegans and all nematodes. The first cuticle is 

formed in the late stages of embryogenesis and this forms the cuticle of the first larval 

stage. Cuticles are then shed and re-formed during each of the subsequent four larval 

moults (Singh and Soulston, 1978). Much of what is known about the structure and 

formation of the cuticle comes from the study o f C. elegant. The entire genome of this 

organism encodes 154 cuticulai* collagen genes (Jolinstone, 2000). These collagens are 

relatively small compared to vertebrate collagens, and homologues o f a similar nature 

have been identified in a number of parasitic nematode species (Bisoffi and Betschart, 

1996; Johnstone et al., 1996; Kingston et al., 1989; Scott et al., 1995; Shamansky et al..
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1989). A number of collagen mutants have been described in C. elegans, with the 

abnormal body morphology exhibited by these animals demonstrating the requirement 

of these molecules for cuticle formation and development (Johnstone, 1994). All 

collagens are defined by the presence of regions of Gly-X-Y repeats, where Gly is the 

amino acid glycine and X and Y can be any residue, but are most commonly proline and 

4-hydroxyproline respectively. Matuie collagen is foimed by trimérisation of 

monomers, which ultimately form a triple helical structure, and a number of enzymatic 

modification steps. These modifications occur both intra- and extra-cellularly and pre- 

and post-trimer formation. Steps involved in the formation of mature collagen 

molecules are; hydroxylation of proline and lysine residues, disulphide bond formation, 

formation of a triple helix which requires the action of a peptidyl prolyl cis-trans 

isomerase, cleavage of non-triple helical regions of trimers and cross-linking reactions.

In vitro studies of vertebrate collagens indicated that a central processing step was the 

hydroxylation of Y position proline residues to 4-hydroxyproline. This residue is 

modified co- and post-translationally with collagens lacking these residues found to be 

thermally unstable at physiological temperatures (Berg and Prockop, 1973). The 

enzymes responsible for this modification are the collagen P4Hs which have been 

extensively characterised in vertebrates (Kivirikko and Myilyharju, 1998). The 

identified collagen P4Hs are usually multi-subunit enzyme complexes with a 

catalytically active a  subunit, with the (3 subunit being formed by PDI (Pihlajaniemi et 

al., 1987). Two characterised a  subunits have been described in mouse and humans 

(Annunen et al., 1997; Helaakoski et al., 1995; Helaakoski et al., 1989) and these form 

complexes with a common PDI (3 subunit. The vertebrate enzymes complexes take the 

form of « 2 p2 tetramers, with tetramers containing different a  subunits thought not to 

form (Annunen et al., 1997; Vuori et al., 1992a). However, relatively little was 

understood about the role of these enzymes in formation of nematode ECMs.

7.2. The C. elegans cuticle collagen modifying P4H complexes

In this study, two conserved C  elegans a  subunit-encoding genes, Ce-phy-I and -2, are 

described, along with a single associated PDI subunit, Ce-pdi-2. Three divergent 

a  subunit-encoding genes, Ce-phy-3, -4 and -5, were also examined to determine any 

role in formation of nematode ECMs. Expression of Ce-phy-I, Ce-phy-2 and Ce-pdi-2
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was demonstrated in the cuticle synthesising ectodermal cells (known as the 

hypodermis) at times of maximal collagen synthesis. Single disruption of Ce-phy-1 

resulted in nematodes with a morphologically mutant body shape, typical of that found 

for many collagen gene mutants. Single disruption of Ce-phy-2 gave no observable 

phenotype. The mutant dpy-18 was identified as being the result of lesions in the Ce- 

phy-1 gene and represented the first description of a P4H mutant in any organism. The 

body shape defect combined with the temporal and tissue specific expression pattern of 

this gene implicated it strongly in the modification of the cuticle collagens of C  

elegans. This proposed role was strengthened when the combined function of the Ce- 

phy genes was determined to be essential for normal embryonic development. 

Disruption of Ce-phy-2 function by RNAi in the Ce-phy-1 mutant strain, dpy-18, 

resulted in failure of affected progeny to complete embryonic development, embryos 

developed normally until the cuticle was required to maintain their elongated form. The 

cuticle of these double mutant/disrupted worms was then too weak to maintain this 

morphology, and the elongated form of the embryo was lost. An exact copy of this 

phenotype was exhibited in C. elegans embryos with single dismption of Ce-pdi-2. 

Using bacterially mediated RNAi, viable post-embryonic phenotypes of both the double 

Ce-phy and single Ce-pdi-2 disruption were generated. The phenotypes of these viable 

mutants confirmed a cuticle collagen-specific role for these genes as they displayed 

severe body shape malformations. These RNAi feeding mutants, along with the dpy-18 

mutant and a Ce-phy-2 deletion strain, generated by the C  elegans gene knockout 

consortium, were examined in detail for the effect of enzyme disruption on two 

collagens. The effect on the production and localisation of C. elegans collagens COL-19 

and DPY-7 were examined using a GFP fusion and monoclonal antibody respectively. 

The expression and localisation of collagen was found to be severely affected in dpy-18 

mutants, and in double Ce-phy and single Ce-pdi-2 disrupted animals, although not in 

the morphologically wild type Ce-phy-2 deletion strain. The identical temporal and 

spatial expression patterns, and RNAi and collagen disruption phenotypes, of Ce-pdi-2 

to that of the Ce-phy genes suggested that this was the sole p subunit for both Ce-phy 

gene products. The let-44 locus was investigated as a potential Ce-pdi-2 mutant due to 

its position nearby Ce-pdi-2 on the genetic map and a similar mutant embryonic 

development profile to that of Ce-pdi-2 RNAi embryos. Examination of Ce-pdi-2 

genomic and cDNA sequences from let-44 mutants did not reveal any molecular lesion
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in the Ce-pdi-2 coding sequence. Likewise, repair of the mutant phenotype of let-44 

with wild type Ce-pdi-2 sequences was not observed. These results indicated that let-44 

was not a Ce-pdi-2 mutant.

One P4H complex had been described previously at the biochemical level. Ce-PHY-1 

was observed to form an active dimer when co-expressed with Ce-PDI-2 in an insect 

cell system (Veijola et al., 1996). The genetic evidence above was consistent with the 

finding that Cg-PDI-2 functioned as a P4H p subunit with Ce-PHY-1 in vivo and also 

suggested that it was the common subunit for both Cg-PHY-1 and -2. To establish what 

forms these enzymes existed in Ce-PHY-2 was expressed in an insect cell expression 

system (in collaboration with J. Myilyharju). This suggested that C  elegans, as well as 

containing a Ce-PHY-1/ Ce-PDI-2 dimer, also possessed a unique Cg-PH Y -1 / Cg-PH Y - 

2/(Ce-PDI-2)2 tetramer. No P4H complex of this form had been previously described. 

Investigation of in vivo extracts from C  elegans strains confirmed this finding and 

demonstrated that the wild type appearance of the Ce-phy-2 deletion was a result of 

formation of a larger amount of Ce-PHY-l/Ce-PDI-2 dimer in the absence of the mixed 

Ce-PHY subunit tetramer. However the viability of dpy-18 mutants which lacked both 

the described forms of the complex suggested the existence o f an additional complex 

which contained Cg-PHY-2 and Cg-PDI-2. However this third complex was at first 

thought not to be simply formed by only these subunits as they were reported to form no 

association when co-expressed in an insect cell expression system. The divergent Ce- 

phy, -3, -4 and -5, genes were therefore examined to determine if  they could be involved 

in formation of a third P4H complex or alternatively in another aspect o f ECM 

development in this organism. From this study these genes were determined not to have 

a role in either the modification of the major ECMs or the formation of a third P4H 

complex in this nematode. No effect was found on collagen markers from the single 

removal/disruption of each divergent Ce-phy. Additionally, no phenotypes were 

observable from either the single or combined removal/disruption of these genes. 

Importantly, no further effect was found upon gene function knockdown in a dpy-18 

mutant genetic background. If any of these gene products were required in the 

hypothesised third P4H complex, transcript interference of this gene in a Ce-phy-l null 

background would have had a similai* effect to removal of both Ce-phy-1 and -2 or 

single disruption of Ce-pdi-2. Since no embryonic lethality was observed, and no
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increase in severity of the mutant morphology noted, these subunits were deemed to not 

be required for formation of the additional P4H complex. In light of these findings the 

co-expression data from Ce-PHY-2 with Ce-PDI-2 was re-examined, revealing P4H 

activity in these extracts. This data and analysis of in vivo extracts indicated that this 

third complex was a Ce-PHY-2/Ce-PDI-2 dimer which is probably only formed in the 

absence of Ce-PHY-1. Although the activity of this complex is low it must be sufficient 

to hydroxy late the cuticle collagens in dpy-18 mutant strains to enable these nematodes 

to exist, albeit in a morphologically aberrant form. These findings therefore confiimed 

that Ce-PHY“1, Ce-PHY-2 and Ce-PDI-2 are the sole subunits responsible for 

modification of the C. elegans cuticle collagens and associate in unique, possibly 

nematode-specific, combinations. The identification of the essential nature of these 

genes highlighted the P4H class of enzymes as potential targets for design of anti­

nematode compounds. The identification of a TPR protein-protein interaction motif 

(Lamb et al., 1995) within a region of Cg-PHY-1 which had previously been described 

as being critical for complex formation (Myilyharju et al., 2002) suggests a possible 

way in which subunits could associate. Ce-PHY-2 does not have a TPR motif and does 

not form complexes alone under wild type conditions. Examination of the homologues 

of Ce-PHY-1 and -2 in the nematode C. briggsae showed that in this case C6-PHY-2 

does contain a TPR motif but C6-PHY-1 does not, suggesting that in this organism Cb- 

PHY-1 may require Cô-PHY-2 to form its natural complexes.

7.3. A phy gene homologue from B. malayi

The parasitic nematode Brugia malayi is one of the causative agents of lymphatic 

filariasis in humans. Approximately a third of the 120 million people infected are 

severely incapacitated by the infection which may include damage to their renal and 

lymphatic systems. (Michael and Bundy, 1997; Ottesen et al., 1997; WHO, 2000). The 

possibility of using P4H inhibition to control these nematodes was also supported by the 

ability if  commercially available inhibitors to disrupt B. malayi adult cuticles 

(Merriweather et a l, 2001). This finding together with the essential function of C. 

elegans P4Hs in cuticle collagen modification highlights this enzyme class as a potential 

drug target for control of parasitic nematode infections. Studies in B. malayi are 

facilitated by the Filarial Genome Project (FGP), which was initiated in response to the 

World Health Organisations call for a genomics approach to a the causative agents of 

lymphatic filariasis. The FGP have an ongoing Expressed Sequence Tag (EST) and
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genomic sequencing projects as well as having constructed and made available filarial 

cDNA and genomic libraries. Additionally, B. malayi can undergo its entire life cycle in 

the laboratory, thereby making it possible to collect fresh material for analysis. The 

characterisation of a viable Ce-phy-1 knockout also provided the potential for functional 

studies of other P4Hs by transfoimation into C  elegans. A P4H phy  gene from B. 

malayi was therefore cloned and characterised and C. elegans used as an expression 

system to examine more directly some aspects of gene function and control. The B. 

malayi PHY homologue, ^m-PHY-1, is unusually a soluble and active P4H in the 

absence o f a PDI subunit. Most catalytic subunits of P4H enzymes examined require a 

PDI subunit to maintain them in a soluble and active form (John et a l,  1993). Rm-PHY- 

1 was also found not to form any complexes with P4H subunits from other organisms. 

This is another unusual property of this protein not found for subunits from other 

organisms. Expression of the Brugia gene was examined using C. elegans as a 

heterologous expression system where it demonstrated expression in the cuticle 

synthesising tissue, suggesting this homologue would also function to modify cuticle 

collagens. Interestingly, despite this proposed function and the independently active 

form of the enzyme it was not able to replace function in a C. elegans phy-1 mutant. A 

similar analysis with both a  subunits from humans demonstrated that these could both 

partially hmctionally replace Ce-phy-1. The possibility exists that Bm-PHY-1 requires 

other subunits for full activity/function in vivo and sequences from two other possible 

P4H subunit-encoding genes were identified in this study.

7.4. Type IV collagens

The basement membranes form the second major ECM in nematodes and contain type 

IV collagens. In C. elegans, type IV collagen containing basement membranes underlie 

the hypodermis and surround the pharynx, intestine, gonad and some body wall muscles 

(Kramer, 1997). Mutation in both C  elegans type IV collagen encoding genes emb-9 

and let-2 results in embryonic arrest in the developing nematode (Guo et al., 1991; 

Gupta et al., 1997; Sibley et al., 1994; Sibley et al., 1993) with many alleles displaying 

temperature sensitivity. None of the C. elegans P4H genes examined in this study 

appeared to be involved in the modification of basement membrane type IV collagens.

C. elegans phy-1 and phy~2 were specific for the modification of the cuticle collagens 

and no evidence was found for involvement of the divergent Ce-phy genes in this
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process. Type IV collagens in vertebrates have been demonstrated to contain 4- 

hydroxproline and hydroxy lysine in Y positions of Gly-X-Y repeats (Kivirikko et a l,  

1992) and must therefore be modified by the hydroxylating enzymes. This raised the 

question of how C  elegans type IV collagens are modified. Examination of the single 

lysyl hydroxylase enzyme C. elegans, let~268, demonstrates that this is specific for the 

modification of the basement membrane collagens (Norman and Moerman, 2000). This 

is in agreement with the finding that cuticle collagens of most developmental stages of 

C  elegans do not contain hydroxy lysine (Cox et al., 1981b). The protein is an ER 

localised homodimer with expression of transgenes being detected in the body wall 

muscle cells and glial like cells (Norman and Moerman, 2000). This expression pattern 

is similar to that of the type IV collagens but is not seen in all the tissues which express 

type IV collagens (Graham et al., 1997). A putative null allele o f this gene shows 

embryonic lethality at the two-fold stage of development with the type IV collagens, 

EMB-9 and LET-2, being intracellularly retained (Norman and Moerman, 2000). Less 

severe alleles allow some secretion of collagens to the basement membranes and these 

animals were found to progress further in development. These obseiwations show that 

correct modification of lysine is required for collagen secretion. As hydroxylysine is not 

generally found in the C  elegans cuticle collagens and no type IV specific function was 

found for any Ce-phy gene suggests that nematodes unlike vertebrates do not require 4- 

hydroxproline in their type IV collagen, but hydroxylysine is specifically required to 

stabilise these collagens.

7.5. Human diseases resulting from improperly modified collagen

Some human diseases have been described which are due to improperly modified 

collagen (Myilyharju and Kivirikko, 2001). Although no genetic disease has been found 

for P4H, mutation in the human lysyl hydroxylase 1 gene manifest as Ehlers-Danlos 

syndrome type VI (Yeowell et al., 2000; Yeowell and Walker, 2000). EDS is a 

heterogeneous group of inherited connective tissue disorders characterised by altered 

mechanical properties of the skin, joints, blood vessels and ligaments, Lysyl 

hydroxylase, like its C. elegans homologue let-268 (Norman and Moerman, 2000), 

catalyses the hydroxylation of lysine residues in procollagen. In vertebrates 

hydroxylysine is used in the formation of intermolecular cross-links that gives collagen 

its strength. Many mutations in this gene, but not the genes encoding two other

259



Chapter 7_________________________________________________________ Discussion

isoforms, have been identified, with loss or reduction of hydroxylysine resulting in 

collagens that contain fewer cross-links and therefore show reduced stability.

Vertebrate fibrillar collagens are processed to remove their N- and C-termini. Both 

these regions must be cleaved for the proteins to assemble into fibrils under 

physiological conditions. Failure to remove the N-terminal propeptide, either by 

mutation of the collagen sequence at the processing site (Byers et al., 1997; Vasan et 

al,, 1991) or by mutation of the proteinase enzyme itself (Colige et al., 1999) causes the 

type VII form of Ehlers-Danlos syndrome (EDS). These mutations are analogous to the 

mutations in the N-terminal recognition site of C. elegans cuticle collagens (Kramer and 

Johnson, 1993; Levy et al., 1993; Yang and Kramer, 1994; Yang and Kramer, 1999) 

and bli-4 processing enzyme (Peters et al., 1991; Thacker et al., 1995). The autosomal 

dominant EDS type VIIA and type VIIB result from mutations in the type I collagen 

encoding genes, CO LlA l and C0L1A2 respectively, which abolish the N-terminal 

processing site (Byers et al., 1997; Vasan et al., 1991). The third variant of the 

condition, the recessively inherited type C, comes from mutations in the N-terminal 

proteinase gene, procollagen I N-proteinase (Colige et al., 1999) which processes the 

aminopropeptide of type I and II procollagens (Colige et al., 1995)

7.6. C-termiiial collagen processing in vertebrates and nematodes

Enzymes which modify the C-teimini of vertebrate fibrillar collagens have also been 

identified. This proteinase activity, which cleaves the C-terminal propeptides of 

procollagens I, II and III, was shown to be the enzyme previously known as bone 

morphogenic protein (Kessler et al., 1996; Li et al., 1996). The metalloprotease BMP-1 

and a longer protein, named mammalian tolloid (mTLD), are encoded by alternatively 

spliced transcripts of the same gene (Takahara et al., 1994). BMP-1/mTLD-null mice 

aie perinatal lethal and show evidence of abnormal collagen processing, but have 

properly formed bone structures. This suggested possible redundancy and led to the 

isolation of distinct but related C-terminal protease, mammalian Tolloid-like-1 (mTLL- 

1) (Takahara et ah, 1996) which also specifically process procollagen at the correct C- 

terminal site (Scott et ah, 1999). Interestingly, for the fibril collagen a l(V ) the N- 

terminus is processed by BMP-1 and the C-terminus is cleaved at a different site 

(Imamuia et ah, 1998) perhaps demonstrating the potential complexity of collagen
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processing. A gene with homology to BMP-1 has been identified in C. elegans by 

characterisation of the mutant dpy-31 (J. Novelli and J. Hodgkin, personal 

communication). Processing of the C-termini of C. elegans collagens is has yet been 

confirmed, however a mutant strain has been recently identified that may be defective in 

processing these regions. C. elegans nematodes with the dpy-31{e2770) allele are 

severely dumpy in appearance with the phenotype displaying temperature sensitivity. At 

the permissive lower temperature half the progeny are lethal and the remainder dumpy. 

All worms raised at the restrictive temperature are embryonic lethal or arrest at early 

larval stages. The altered body morphology, embryonic lethality and temperature 

sensitivity of this locus suggests a role in formation of the nematode cuticle. A cosmid 

containing a gene that encodes a predicted zinc metalloprotease related to BMP-1 

rescues the mutant phenotype of dpy~3L This gene is therefore a candidate for 

involvement in the processing o f the C-propeptides of some or all o f the C. elegans 

collagens.

7.7. Non-collagen proteins containing hydroxylated residues

Although the vast majority of hydroxylated amino acids occui* in collagens, a number of 

other proteins have been described which contain 4-hydroxyproline and hydroxylysine. 

Proteins of this nature include acetylcholinesterase, which contains 4-hydroxproline and 

hydroxylysine, and elastin which only contains hydroxyproline (Kivirikko et ah, 1992). 

Although the proteins are non-collagens these residues are found in collagen-like 

domains of the polypeptides. Unlike collagens though these proteins do not contain 3- 

hydroxyproline, which has been found only in collagens, although no gene for a prolyl

3-hydroxylase has been cloned from any organism.

In mammalian cells the transcription factor hypoxia inducible factor (HIP) is post- 

translationally regulated by prolyl hydroxylation (Ivan et a l,  2001; Jaakkola et a l, 

2001; Y u  et ah, 2001). HIF is a central regulator of oxygen homeostasis with the 

majority of the transcriptional responses to hypoxia regulated by it. HIF operates as a 

heterodimer of HIF-a and HIF-(3 subunits, where HIF-a is the regulated component. 

Under normal oxygen conditions the von Hippel-Lindau tumour suppressor protein 

(VHL) binds directly to HIF-a and targets it for degradation. In hypoxic conditions 

degradation of HIF is inhibited and HIF-a can bind to HIF-(3 and activate transcription.
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Targeting of HIF-a for VHL-mediated degradation is regulated by prolyl hydroxylation 

(Ivan et al., 2001; Jaakkola et al., 2001). In hypoxic conditions HIF-a is not 

hydroxylated and is thus not bound by VHL and is able to activate target genes. Mutants 

in the C. elegans HIF-a encoding gene exhibit no defects at normal oxygen levels but 

are unable to survive under hypoxic conditions (Jiang et al., 2001) normally tolerated by 

wild types (van Voorhies and Ward, 2000), The C. elegans gene egl-9 (egg-/aying 

defective) was identified as the HIF-a hydroxylating enzyme which acts as the oxygen 

sensor and represents a novel functional group of 2-oxoglutarate-dependent oxygenases 

(Epstein et al., 2001). Three human and one Drosophila HIF P4Hs have been identified 

and shown to hydroxylate the HIF-a subunit depending on oxygen concentration 

(Bruick and McKnight, 2001; Epstein et al., 2001). These proteins are distinct from 

animal collagen P4Hs both in terms of their hydroxylation amino acid recognition 

sequence (Ivan et al., 2001; Jaakkola et al., 2001; Yu et a l ,  2001), their apparent 

monomeric form (Bruick and McKnight, 2001; Epstein et al., 2001) and presumed 

cytoplasmic subcellular localisation. Additionally mammalian collagen P4Hs are unable 

to hydroxylate the HIF-a polypeptide (Jaakkola et a l, 2001). Description of this method 

of regulation of proteolytic targeting via prolyl hydroxylation gives the possibility of 

other proteins being similarly regulated.

Another interesting protein that contains 4-hydroxproline is PrP^^ or prion protein 

scrapie isoform. Neurodegenerative diseases such as scrapie in sheep, bovine 

spongiform encephalopathies (BSE) and Creutzfeldt-Jakob disease (CJD) in humans, 

are associated with the conversion of a normal, cell surface protein, PrP^ (cellular prion 

protein) to an aggregated conformational isomer PrP^^. The N-terminal region o f this 

protein contains an X-Pro-Gly consensus sequence for prolyl 4-hydroxylase 

modification. Recombinant protein is modified at this site to 4-hydroxproline as is 

protein extracted from scrapie infected mice (Gill et a l, 2000). This suggests a possible 

role for post-translational modification at proline residues by a prolyl 4-hydroxylase 

enzyme in the control of PrP^ function and in development of the disease.

7.8. Future prospects for direct analysis of parasitic nematode genes

Functional analysis of nematode parasite genes has been slowed by the lack of 

transformation, genetic methods and cell lines available for these organisms. Hence an
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approach involving the investigation of homologous genes of interest from free-living 

species has often been taken, complemented by the emerging use of C. elegans as a 

heterologous host for analysis of both functional and regulation of parasite genes 

(Hashmi et al., 2001). Recent advances suggest future prospects for the direct analysis 

of par asitic nematode genes such as the P4H subunits of B. malayi.

7.8.1. RNAi

RNAi is powerful and relatively straightforward technique used in C  elegans which can 

be performed by RNA injection (Fire et al., 1998), soaking (Tabara et al., 1998), 

bacterial feeding (Timmons et al., 2001) or DNA transformation (Tavernarakis et al., 

2000). Recently the technique of RNAi soaking has also been adapted to the parasitic 

nematode Nippostrongylus brasiliensis suggesting a possible broader use of this 

approach in related species (Hussein et al., 2002). In vitro transcribed dsRNA 

corresponding to acetylcholinesterase (AChE) B isoform was used to soak adult 

parasites for a period of 6 days in culture. Production of the secreted enzymes was 

monitored by sampling the culture medium daily and assaying for AChE activity. 

Suppression of enzyme activity of between 80-90% was induced for a period of 4-6 

days. Cross-interference was found as secretion of three AChE isoforms (A, B and C) 

were suppressed by interference with AChE B sequences even though the sequences 

used were only 67-68% identical between isoforms B and A. This finding suggest a 

possible downward revision of the nucleotide identity required for cross-interference to 

occur in. In this study the ability of the parasite to re-establish infection in the host was 

affected by the conditions required for RNAi treatment, prohibiting an assessment of the 

effect in the host after RNAi knockdown. Despite this the success of this technique in N. 

brasiliensis suggests this approach may be useful in directly defining roles of other 

parasite genes. In particular this approach would be applicable to B. malayi as this can 

be cultured in the laboratory. Thus the effect of RNAi inhibition o f Bm-phy-I and other 

potential P4H could be assessed. This analysis could be performed even before the full 

gene sequences of potential subunits had been identified. Thus the large amounts of data 

produced by the EST projects for this and other organisms (Degrave et al., 2001; 

Williams et al., 2000) could be used to produce functional data.
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7.8.2. DNA transformation

Transformation of parasitic nematode species has until recently not been possible. 

However the direct analysis of parasite gene function in vivo may now be possible due 

to techniques developed in C. elegans. Transformation of C  elegans although usually 

performed by microinjection can also be carried out by particle bombardment, termed 

biolistics (Wilm et al., 1999). DNA co-precipitated with gold particles can be shot at 

worms by use of a helium beam to generate semi-stable transformed lines. Biolistic 

DNA transformation of Ascaris embryos demonstrated various promoters including the 

SL RNA promoter could drive expression of the luciferase reporter gene (Davis et al.,

1999). Biolistic transformation of Ascaris with luciferase RNA also resulted in enzyme 

activity (Davis et al., 1999). This technique has also been successful in the filarial 

parasite Litomosoides sigmodontis (Jackstadt et al., 1999), a rat parasite often used as a 

model for human filarial parasites, and B. malayi (Higazi et al., 2002). In L. sigmodontis 

adult worms were biolistically transformed, allowed to recover and reinfected into 

hosts. lacZ expression driven by an actin promoter was obseiwed in these individuals 

and in a small number of microfilariae sigmodontis (Jackstadt et al., 1999). For B. 

malayi embryos, adult female parasites and infective larvae were transformed by 

bombardment and luciferase activity detected (Higazi et al., 2002). When similai' 

techniques were used with a GFP reporter to view live worms expression was detected 

in the hypodermis. However, this was the tissue in which the particles had become 

embeded and when nematodes were microinjected with the same construct expression 

was again found in the tissue where DNA had been delivered (Higazi et al., 2002). 

Although semi-stable lines have not been produced in B. malayi and the techniques have 

not been adapted to reveal tissue specific promoter activity, the ability to transiently 

transfect this organism should make these experiments possible. This along with 

emerging parasite RNAi techniques should enable a more direct assessment of parasite 

gene function to complement studies utilising C. elegans and could be applied both to 

the Bm-phy-1 and the other putative P4H subunit encoding genes in this organism.

7.9. Future prospects for genome wide analysis of cuticular ECM formation in C. 

elegans

In this study a C  elegans strain was used that was especially informative for examining 

ECM formation. A collagen GFP fusion construct was made that, when transformed in 

to the nematode, produces protein that localises to specific regions of the C. elegans
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cuticle (Thein et al., 2003). The cuticle collagen COL-19 when fused to GFP localised 

specifically to the adult annular fuiTows and alae stmctures of the cuticle. Integrated 

lines generated were used in this study to analyse the effect o f Ce-phy gene disruption 

or mutation on the localisation of the GFP tagged collagen. For the Ce-phy-1 gene Ce- 

phy-1/Ce-phy-2 double, clear disruption was evident both at the level of overall 

morphology and of the individual collagen. However this strain could also be used to 

uncover subtle phenotypes for genes where RNAi gave no discernible phenotype. These 

could then be assessed by use of the C0L-19::GFP strain to examine cuticle collagen- 

specific effects of gene disruption. A project is also underway in C. elegans to construct 

a complete genome-wide RNAi bacterial feeding library. As whole chromosomes of this 

library are now freely available it may be possible to perform a high-throughput screen 

using this collagen marker strain. This process, as well as identifying collagen 

phenotypes for genes where a role in cuticle formation could be hypothesised, such as 

the Ce-phy genes, may also identify novel genes either for which no function has be 

found proposed or could define new roles in ECM formation for genes already 

described. Many of the C. elegans genes have no known homologues in any other 

species databases (Blaxter, 1998). As the cuticle plays such an important role in the 

nematode life cycle some of these genes may represent novel components or enzymes 

not previously identified. This may either provide infoimation for possible additional 

drug targets exploiting processes specific to nematode development not present in 

vertebrates, or if  homologous genes are found in vertebrates, will identify novel 

processes common to formation of all ECMs. This process of discovery of new mutants, 

with possible novel functions, along with the further characterisation of existing genes 

and mutants identified as being critical for cuticle formation in C. elegans will aid the 

discovery of anti-nematode drugs and understanding of the biosynthesis of ECMs in 

vertebrates and other animals.
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Appendix 1 

Compiled Bm-phy-1 sequences

Complete genomic sequence of Bm-phy-1 including promoter and 3' untranslated 

regions. Promoter, intronic and untranslated regions are in lowercase lettering. 

Translation of the uppercase exonic sequences is given above the DNA sequence with 

the signal peptide region shown in italics. The signal peptide cleavage site, between 

residues A17 and D18, is indicated by a (/). Within the promoter region the RNA 

polymerase II binding site, or TAT A A box, is underlined. The arrow indicates the site 

of fra/îi'-splicing of the SLl rra«,s-splice leader (sequence shown) with splicing 

occurring after the final G and before the final A of the trans-splxoing signal sequence 

(underlined). Within the 3' UTR the underlined sequence represents the predicted 

polyadenylation signal of the Bm-phy-1 transcript.

1 gaatgagaca attgcacaag tattagagcg acttgcatgt aggaaaaggt
51 ttggttcttt taactattct agctacctac tgccgttaat ttattggcca

101 gaaattgctt taatgtagaa aactacaaat aatgaaggag catgtactat
151 aagtaagtga tatgcaattg atatgattca acatatcgtt tgatttatca
201 atgaatttgt cccaaaaatg acatagaatt atactaaaga ttgttgtgca
251 acgaatacaa aatggctttg ttactcattg tccccgtcac ttgagtacaa
301 atttcaatgg tgtgttaaat aaaccttagt tacactcaat tatattaaaa
351 ttcagcaaac atttgaagac agttcctgtg acaataacaa gacgattaat
401 aagaaagaca agtaaaaaga tttatacgat taatgggaag tagcaaacat
451 atgatgactt tatgaaaatt gaacaaaaac gagattytat ggtaagaggc
501 gaaaactttt tttacaccga ttcaaagact tattttactt gttattgttt
551 aatgttgtga tggtggctag aagaaagcga aattctattt tagtagcacc
601 agttttctca ctttgaattg taarwccaat tgaaacttca attttaataa
651 attttcatta aataatctaa aatctttttc ccactagaga tcaaatagag
701 cttaaagttc tacatttttc ctgtactcgg tctttctgct caataagcct
751 caaattgttc attaatttat atttaagaca caaatggatt taatagtaat
801 attaacaaat ttatcttgtt cgggatcaaa tctgcaggaa ttcattaact
851 tacggtgagt aaagtgatgt ttctagtcct tttttaataa attcattcca
901 tattttaagt tatatagtga gaaagggaaa taaatatatt cccgaagaaa
951 aattaatgtg atgtggtagt gctaaaaatt tagatcacac tacgtacagg

1001 acgacgaaga cttagccccc tttcctcctt cattgttttt ctatttctgt
1051 atttgatttt ctctgtcact tttttaaatc tctccttctc tcttggcawc
1101 tatctattaa aacgacaaat tataatatct caatttcaaa ttttctagga
1151 ttgtaaatgt ttgttgaaga ttagaagaaa tgaaaaagga ctgaagcttg
1201 gaatatattt ccctctctct attccaatcg tcaagtgcct ggatagttcc
1251 tctcctttcc aacagtaaaa ttgtttcact gttgtaggat ttcaaaagag
1301 gttgaaaccc attacggagg aagaatcaga ttatatgaaa acgcgaaaga
1351 ttaaaatgta cgagagtata gtcgccatgt ggttgacagt cttccggaaa
1401 catggaagta ataagcaacc tttcccgtaa tgagtcgtcc ggcagtgcac
1451 ttagaagaag gctactactg ccattgtggt tagcaaatgt catcatccat
1501 cccattacta cagctgactg cagtaactct tcgctttttg cattgtacat
1551 gagagaaaaa gaagaggaag gaaggataga ttgccttctc gcctgccttt
1601 cctttcagca ttttcggctc atatccatca ctttttctct ctctcccttc
1651 ctttcaaatt ccttcttctc ttagatctgt tcgtattgat tttatttgac
1701 tgtccgcaat tttgttgcta tttgtctgtc caataataaa tttcccctcc
1751 ttgtttcatc tataatttat agtgacctgt taatgctcaa attaatgtca
1801 tcacttctct cccctaatct tgcagagttt aggattgaaa ttaggacaac
1851 tacgacacta agggcgactt ttgcgccctt agtgtcgtag ttgtccgatt
1901 ttaagttact tccatatttt aattttgctc atagaaaagc agtaaacata
1951 gatgatatgg tatcatttaa atccttcatt taatgagagt tttttaaaaa
2001 acctaaattt tattaccgta gcacaacaaa ggtagtggat tgaagcatct
2051 qaattataat ggacttgaat aaatcaaatg ataacgtttt acagtaattg
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2101 cgctgtttct ttgttacaac gtattcgttg taaaagaaca tatcttcatt

S L l  g g t t t a a t t a c c c a a g t t t g a g
Y  M I  A T

2151 atttgttatt ttgatacttc ttattttcca gagccaqtqA TGATAGCTAC

V  V F I  L A L E S T  T H A / D L F  
2201 CGTGGTGTTC ATTTTGGCAC TGCGGAGTAC TACACATGCT GATTTATTTA

T S I A  E M E  L L L E  A D K  R I P
2251 CATCAATCGC AGAAATGGAG TTACTTCTGG AAGCTGATAA GAGAATTCCT

D L L D  M Y I  E R F  Q Q R L  D Q I
2301 GATTTGCTCG ATATGTACAT CGAAAGGTTC CAACAACGTT TGGATCAAAT

R Q
2351 TAGACAgttt gttttatcca tttatgttga aagtttaaaa tttttggatg
2401 cctttaaaat attgcgccag ttggattata atgttcaagt actaaaaatg
2451 gttatcaatt actggaagaa tatgatttca atttcgattc tttcatctta

L S V G K K
2501 agtgtcagat cccactaatt ttatttttca gGCTTTCAGT AGGCAAAAAA

Q L G N  R S L G N D I R L L  S N P
2551 CAGCTTGGCA ATCGCAGTTT AGGAAATGAT ATACGATTGC TAAGCAATCC

V S A  Y L L I  K R L  l E E  W D D
2601 AGTCAGTGCT TATCTGCTTA TCAAAAGACT GATTGAGGAA TGGGATGATA

I K R L  A G S D I G E  E L L  K E I
2651 TAAAACGGTT GGCAGGAAGT GATATTGGCG AAGAGTTATT GAAGGAAATT

S E L R  A M N  Y V K  N P T T
2701 TCAGAATTAC GAGCAATGAA TTATGTGAAA AACCCTACAA CGgtactttt
2751 tcatgagtcc ctccctaact tatcctattc tatgatctta gcagattact
2801 tctcatttct ataatttgca tgaaaagtaa ggttcaaatt atcataatta
2851 tgaatttttt taagatttac ggacacttat aggatggatt ttcagtaatt
2901 tttcatataa aattgggcaa atgacctctt gcttcaataa aatacatttt

E D  L V G A A I A L L R L Q D
2951 tgagGAAGAT TTGGTTGGAG CTGCAATAGC CTTACTTCGG CTGCAAGATA

T Y R L  N V K  E I A D  G K I  L N A
3001 CATATCGGCT AAATGTTAAG GAGATAGCTG ATGGGAAAAT TCTGAATGCT

S G V Q P F T 
3051 TCTGGTGTTC AACCGTTTAC AGgttcgaaa gcaaatgcat tataaaatga
3101 cgtttccagt ccttatattt tgaacacctt aatgaatgtt ttattttagt
3151 acatacattt ctaactgtct gctaaattag ggtctaggag tttgatcaaa
3201 tgtcaagccc tgcttttaaa gttcagcata aaatggatga acaaaaagtt
3251 tgcaattatt tgaaactgta tttgctgcta tttttttctt ctgtttaccg
3301 aagaagtttc aactttcgga tataaaaaag aaagatacag gcatatatat
3351 attttatcat aattagtatt tttttagaac aatttctaaa aattctggta

A R D G F  D I G
3401 tggaatatga ttttatattt tttcagCCAG GGATTGCTTT GATATTGGTC

R A A Y N V N  D Y Y H T L I  W M E
3451 GAGCAGCATA CAATGTGAAT GACTACTACC ATACCTTAAT ATGGATGGAA

E A Q E  R L R D E A  P R E T  V Q L
3501 GAGGCACAGG AGCGGTTGCG GGATGAAGCG CCGCACGAAA CTGTGCAATT

K E I  L E Y L  A F A L F K Q G N
3551 AAAGGAAATT TTGGAATATT TAGCTTTTGC GCTCTTCAAA CAAGGCAATC

L K R A L L L  T E Q L  H T I
3601 TGAAACGCGC CCTTCTGCTC ACTGAACAGC TGCATACAAT TGgttgtttt
3651 ttactacttg tagtgttact tgaattttaa tttgaaactg tgtaagttca
3701 cccaaatcta tctaagattt ttgctacgtt gctaccatta aagattatta
3751 tggtatattt tagaaacgtt caatatataa gaagctaaat atagcgaatt
3801 caaatttaga tcaggttact tttcgtaacc gaggttaaat aatgtccttc

D P N H  P R A K N N I  K W Y
3851 ttcatcacag ATCCAAATCA TCCACGCGCA AAAAACAATA TTAAGTGGTA

E D L  L A E E  G L K P I D  Y R R
3901 TGAAGACCTA TTGGCTGAGG AAGGTCTGAA GCCAATTGAT TATCGGCGAA

N I P P  V T N  P R P T  T G L  E T A
3951 ATATTCCGCC GGTAACTAAT CCTCGACCTA CGACTGGTTT GGAAACAGCG

E H D I  Y E A L C R  N E I P  V
4001 GAGCATGATA TCTACGAAGC CTTATGTAGA AACGAAATAC CCGTGgtgtt
4051 ttttctgtat cttactcaca tttgaacaaa actgctttgg ttaaactgac
4101 aaaattttaa aataagaaaa tctgttgtca aaagctaact aacttccgtt
4151 aggccaatta agaggtaaat taaaaacata attaaactgt ttgcataatt
4201 tcgtttcggg aagtcgatga ttagccgtta ctcgaatttt gctttacgta
4251 actaccttca taaaaaacaa aaaattattc aggaggcaaa aattaatatg
4301 agagacaaac ggtttatcta aggcgttttt ttatggatat gagaagtttc
4351 agtaagcaat tgtaagcctt ttagtcttgt ttccctccta tttctgggca
4401 aaaaaataaa atctgaaatt tctaaatttt gttattttga aaactttttg
4451 aactcatctg cgcttcttta ttcactcgta atttttcact ttcatttttt

S I  K V T S  K L Y
4501 cagttgaaac gtcaaaattt tcagAGCATT AAGGTAACGT CAAAACTTTA

C Y Y K M D R  P F L R L A P F K
4551 CTGCTACTAC AAAATGGATC GTCCATTTTT GCGTTTGGCT CCTTTCAAAG

267



Appendices

V E I L  R F N  P L A V  L F R D V I
4 601 TTGAAATTTT AAGATTTAAT CCACTCGCCG TATTGTTCCG TGATGTTATT

T D E E  V T M  I Q M  L A T P R 
4 651 ACAGACGAAG AAGTTACAAT GATCCAAATG TTGGCGACAC CGAGAgtatc
4701 cgttatttta ataagcatct taatattgtc cttcctatgt tttctttatt
4751 atattatccc ttataattaa tttctaaatg atattctttt gcaaattaat
4801 tgtaaggatt ttcgaaagcg aaattcaatg tcggtttttt tttttaattt

L
4851 ttttcttctc tatcccctta ctttttatta tttttattgt tttcatagCT

R R A T V Q N  S I T  G E L  E T A
4901 GCGAAGAGCT ACTGTGCAGA ACTCGATAAC TGGTGAACTT GAAACAGCAT

S Y R T S K S
4 951 CATACCGAAC AAGTAAAAGg ttggctgtaa acttgctcac attcatgatt
5001 tgctagctta agaagcattt tagctggatg cgaaagtttc cggaatatat
5051 gatggtcaat tgtagggaga catgagcact tttttttatt tttaaaaaaa
5101 ttaattttta gatttcgaga attgtgatat atcctatttc aaatagatgt
5151 aaaaaaaatt ttaattgctg atgttttgta cttgccatac ctgctttcta
5201 ctattttgga tgtttgaaag aaagtataag atttctgaat tttattattt
5251 cacaggattt catgaaatta cttcaatttc ttttttcctt attcactggt
5301 aagaaataaa ttgcaaggaa aaaagcgaat gctttgttca tttacttata

A W L  K D E  E H E V  V H R  I N K
5351 gTGCATGGTT GAAAGATGAG GAACACGAAG TTGTACATCG GATCAATAAA

R I D L  M T N L E Q  E T S E  E L Q
5401 CGAATTGATC TGATGACTAA TTTGGAGCAA GAGACTTCAG AAGAATTGCA

5451 Ggtttgttgc ttttattcaa agacaaattt taaaattaaa ttgctgatgt
5501 ttcttacttg ctttacctgc tttctattac tagttaattt gtagtttaat
5551 taattccaga tttcacatat ataatttgta tttttactac aaatcactgt
5601 ttggaaattt tgtttctcag taatagtttg cctttaaaaa agtctctaac
5651 tccctaattt cacagtatta ctttgaagat tcacactgtt tagttgtttt
5701 ggctggtatt actgtcatcg tagtgcgatg ctttttttat tcaatagttt

V G N Y
57 51 ctactatttt gtatttttca tgctaaagca aatattagGT TGGAAATTAT

G I  G G H Y D  P H F D F A R
5801 GGTATTGGTG GTCATTATGA TCCTCATTTT GACTTCGCAA GAgtaagttt
5851 cattattttc gattaattaa aatattttta tttaattttt taactctgat
5901 ttattttttc attattgtac tgagtatttt attgtacata aatgatgtgg

R E E V N A F Q S L  N T G
5951 cattcattca gAGAGAAGAA GTTAACGCTT TTCAGTCGCT CAACACCGGG

N R L A T L L F Y
6001 AATCGTTTGG CAACATTGCT ATTTTATgtg agtattcaat tcattctgca
6051 taaaagaaat tagaaaagga gggtcgctaa ttttcgctaa tactcgctaa
6101 tttctgtgaa gcccaaacca ccaaaatctc ttgttgtaac tttgatgcat
6151 taaaattgtt tgaaaacata aaatttctaa acgtcatctt tttcaaattt
6201 tctctgctcc tagtttactt ttctctaacc gttaagttta ttcagtccat
6251 agccattgct gaaaaagttg cttttaaatg aaaatttttt aaaacgaaaa

M T Q P  E S G G A T V  E T E
6301 aatttacagA TGACACAGCC TGAATCAGGA GGTGCTACTG TATTTACTGA

V K T  T V M P  S K
6351 GGTTAAAACA ACAGTTATGC CTTCTAAAgt tagtgatttc tacatgtttt
6401 gatcaatatt actatttaaa ctttgccatt ttgattggaa gtggtggtcg
6451 aattggaaaa ttgaagattg atatctgctt aaagtctttt ggatgaagtt
6501 tttcggatac taaattacga atttgaagtt tttctgactt ttagactaat

N D A L
6551 aatcaagttt ttgaataaaa agaaattttc tttgcagAAC GATGCATTAT

F W Y N  L L R S G B G D L R  T R H
6601 TTTGGTATAA TTTATTGCGC AGCGGTGAGG GTGACTTGAG AACACGTCAC

A A C P V L T  G T K W V S N  K W I
6651 GCTGCGTGTC CTGTGTTAAC CGGTACGAAG TGGGTTTCAA ATAAATGGAT

H E R  G Q E F R R P C G L S R S
6701 ACATGAACGT GGTCAAGAGT TTCGAAGGCC TTGTGGCTTA AGCCGATCAG

V E E Q  F V G D L S A  *
6751 TGGAAGAACA GTTTGTGGGC GATCTAAGTG CTTAAatact attgggaagt
6801 acactaaaaa gctaagaatt tttgatacat tatatttcaa agtaatataa
6851 ctgttactgc atgttgggaa agccaaaact aaatttataa tatgtccaga
6901 taattttgga ttaattccat atgataaaaa cttgtaggc
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Gene Chromo­
some

Cosmid/YAC Accession
number^

Protein
2size

Signal
peptide^

Ce-phy-l III T28D6.I/
Y43D3B.10

Z81134 559 16

Ce-phy-2 IV F35G2.4 Z69637 539 16
Ce-pdi-2 X C07A12.4 U41542 493 16

‘̂ Ce-phy-3 V T20B3.7 Z81593 318 23
 ̂Ce-phy~4 X C14E2.4 U46671 429 19
 ̂Ce-phy-5 V Y43F8B.4 AL032623 533 14
Bm-phy-1 N.D. N.A. AJ297845 541 17
Bm-phy-1
genomic

N.D. N.A. AJ421993 N.A. N.A.

Bm-phy-1
promoter

N.D. N.A. AJ421994 N.A. N.A.

Bm-phy-2
GSS

N.D. N.A. BH615947 79 -

Bm-pdi EST N.D. N.A. AI784701 92 -

N.D.- not determined 

N.A.- not applicable

* Accession numbers are for cosmids/YACS, except for gene Bm phy-1, where it 

corresponds to the cDNA sequence.

 ̂Predicted protein sizes are given in amino acids and include the signal peptide regions.

 ̂ Signal peptides were predicted using Signal P and are confirmed experimentally for 

Cg-PHY-1 only (Veijola a/., 1994).

Ce-PHY-3 protein size given is that of the larger experimental identified form, the 

accession number given is for the Genbank prediction, see Riihimaa et aL, 2002 for the 

modified gene sequence.

 ̂The Genebank predictions were used to give the protein sizes for the putative proteins 

encoded by Ce-phy-4 and Ce-phy-5 although these are unconfirmed.
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Appendix 3 

List of published papers containing work described in this thesis

Winter, A. D., and Page, A. P. (2000). Prolyl 4-hydroxylase is an essential procollagen- 

modifying enzyme required for exoskeleton formation and the maintenance of 

body shape in the nematode Caenorhabditis elegans. Molecular and Cellular 

Biology 2 0 ,4084-4093.

Riihimaa, P., Nissi, R., Page, A. P., Winter, A. D., Keskiaho, K., Kivirikko, K. I., and 

Myllyharju, J. (2002). Egg shell collagen formation in Caenorhabditis elegans 

involves a novel prolyl 4-hydroxylase expressed in spermatheca and embryos 

and possessing many unique properties. Journal o f  Biological Chemistry 277, 

18238-18243.

Myllyharju, J., Kukkola, L., Winter, A. D., and Page, A. P. (2002). The exoskeleton 

collagens in Caenorhabditis elegans are modified by prolyl 4-hydroxylase with 

unique combinations of subunits. Journal o f  Biological Chemistry 277, 29187- 

29196.

Winter, A. D., Myllyharju, J., and Page, A. P. (2003). A hypodermally expressed prolyl

4-hydroxylase from the filarial nematode Brugia malayi is soluble and active in 

the absence of protein disulphide isomerase. Journal o f  Biological Chemistry^ in 

press.

Thein, M. C., McCormack, G., Winter, A. D., Minstone, I. L., Shoemaker, C. B., and 

Page, A. P. (2003). ThQCaenorhabditis elegans exoskeleton collagen COL-19: 

an adult-specific marker for collagen modification, assembly and the analysis of 

organismal morphology. Developmental Dynamics^ in press.
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