
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Cross-talk between the Oestrogen Receptor and the 

Human Epidermal Growth Factor Receptor (HER) 

family: Role in resistance to Tamoxifen treatment

in breast cancer.

Sian Tovey MBChB MRCS

Section of Surgical Sciences and Translational Resear ch 

Division of Cancer Sciences and Molecular Pathology

Submitted for the degree of MD to the University

of Glasgow 

April 2006

Tovey 2006



ProQuest Number: 10390640

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10390640

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW
UNIVERSITY

vUBRARY;



Acknowledgements

I would like to thank Dr John Bartlett and Professor Cooke for all their support and 

encouragement during the period of research and subsequent writing up of this thesis. 

Additional thanks must go to Barbara Dunne, Tove Kirkegaard, Amanda Forsyth, 

Joanne Edwards, and Caroline Witton for help in development of laboratory 

techniques and skills.



List of Contents

List of Figures 7

List of Tables 10

Publications 11

Abbreviations 12

Summary 14

Chapter 1 : Introduction

1.1 Breast cancer 17

1.2 Endocrine Therapy 17

1.2.1 Tamoxifen 18

1.2.2 Aromatase Inhibitors 2 0

1.3 Oestrogen receptor 22

1.3.1 Receptor phosphory 1 ation 24

1.3.2 Ligand independent action 25

1.3.3 Non-genomic action 26

1.3.4 Co-regulators 27

1.3.5 Non-classical response elements 28

1.4 Mechanism of action of Tamoxifen & potential mechanisms for resistance 29

1.4.1 Loss of ER 30

1.4.2 Variant/mutant ERa 31

1.4.3 Presence/altered expression of ER(3 31

1.4.4 Tamoxifen agonist stimulation of growth 32

1.4.5 Development of ligand independent ER mediated transcription 34

1.4.6 Role of Growth Factors 35



" 1

:

1.4.7 Estrogen Regulated genes: TFFl (pS2) and PR 36

1.5 Human Epidermal Growth Factor Receptor (FIER) Family 3 8

1.5.1 HER 1-4 family: 4 closely homologous receptors 38
I

1.5.2 Role of the HER family in normal breast 40 7

1.5.3 Role of the HER family in breast cancer 41

1.5.3.1 EGFR/HERl 41

1.5.3.2 HER2 42

1.5.3.3 HER3 43

1.5.3.4FIER4 44

1.5.3.5 FIERI-4 acting in combination 48

1. 6  Relationship between H ER l-4 and resistance to tamoxifen 49

1.6.1 Experimental studies 49
4

1.6.2 Clinical studies 49
4

1.6.3 Aromatase Inhibitors versus Tamoxifen 51 4

1.7 Cross talk between ER and HER pathways: Relationship with 53
'

Tamoxifen resistance?

1.7.1 Mitogen-activated protein kinase (MAPK) pathway 55

1.7.2 Phospatidylinositol-3 kinase (PI-3K) and Akt pathway 56 4

1.7.3 Continuous cycling of growth factor stimulated ERa activation? 5 8

1 . 8  Statement of Aims 61

Chapter 2: Methods

2 . 1 Patient Selection 65

2.1.1 Ethical clearance 65
Î.

2.1.2 Patient Database 65

2.1.3 Patient Exclusion 6 6



2.2 TMA construction 67

2.2.1 TMA Technology 67

2.2.1.1 Missing samples/Loss rate 67

2.2 .1 . 2  Heterogeneity 6 8

2.2.2 Technique 69

2.2.3 TMA Layout 70

2.2.4 Control Tissues 71

2.3 Immunohistochemisty 72

2.3.1 Antibody Protocols; General principles 72

2.3.2 IHC protocol for ER 77

2.3.3 IHC protocol for PR 79

2.3.4 IHC protocol for EGER 79

2.3.5 IHC protocol for HER2 82

2.3.6 IHC protocol for HER4 84

2.3.6.1HFR1

2.3.6.2H4.77.16

2.3.7 IHC protocol for HER3 89

2.3.8 IHC protocol for phospho specific HER2 (pHER2) 92

2.3.9 IHC protocol for Phospho specific ER 95

2.3.9.1 Phospho ERa Serine 118

2.3.9.2 Phospho ERa Serine 167

2.4 Scoring Principles 100

2.5 Statistical analysis 103

Chapter 3 : Results



3.1 ERa status and patient characteristics of ERa positive group 105

3.1.1 ERa Status 105

3.1.2 ERa Staining and scoring 105

3.1.3 Patient Characteristics: ER positive only group (n=402) 107

3.1.4 ER cytoplasmic staining 109

3.1.5 Disease Free Survival on Tamoxifen: Relationship to intensity 109 

of ER staining

3.2 Core availability 111

3.2.1 Missing cores/cores with no tumour 111

3.2.2 CoiTelation between core results is marker/antibody dependent 112

3.3 Progesterone (PR) 114

3.3.1 PR Expression 114

3.3.2 Survival data 114

3.4 HER 1-4 116

3.4.1 HER 1 -4 Expression and staining patterns 116

3.4.2 Survival and disease free analysis 117

3.4.3 Coexpression of H ER l-4 antibodies 120

3.4.4 Conelation with PR status and relationship with survival 122

3.4.5 Analysis of molecular markers as time dependent variables 123

3.5 Phosphorylated ER 125

3.5.1 pERaSerl 18 andpERaSerl67 expression 125

3.5.2 Relationship between phosphorylated ERa and ERa status 127

3.5.3 Relationship between phosphorylated ERa and PR status 127

3.5.4 Relationship between phosphorylated ERa and H ER l-3 status 128

3.5.5 Correlation with relapse on tamoxifen and known clinical 128



prognostic markers

3 . 6  Comparison of HER4 antibodies. 130

3.6.1 Cut-offs determining membranous, cytoplasmic and nuclear 130

staining status

3.6.2 Membrane staining 130

3.6.3 Cytoplasmic staining 131

3.6.4 Nucleai'staining 131

3.6.5 Relationship with clinicopathological variables and the other 134

HER family members.

3.6.6 Survival and disease free analysis 135

3.7 pHER2 antibody 136

3.7.1 pHER2 staining 136

3.7.2 Suivival and disease free analysis 136

3.7.3 Relationship between pHER2 and HercepTest scores 137

Chapter 4: Discussion

4.1 TMA validity and Limitations of the Study 138

4.2 H ER l-3 positive and/or PR negative patients are associated with early 142

relapse on tamoxifen.

4.3 HERl -3 activates membrane ER via phosphoiylation. A role for 148

phosphorylated ERa in tamoxifen resistance?

4.4 HER4 153

Chapter 5 : Conclusion 156

References 159

Appendix I 186

Appendix n  187



%

List of Figures

1 Oestrogen binding to the ER 23

2 Phosphorylation sites o f  the ER 25

3 Tamoxifen antagonises AF2 transcription activating function but not 30

AF~1 function

4 An increasing ratio o f coactivators (A) to corepressors (R) may lead to 33

inappropriate tamoxifen agonist activity.

5 Phosphorylation ofAF-1 region by components o f growth factor 34

pathways may lead to ligand independent activation despite presence o f  

Tamoxifen.

6 Multiple layers o f  interaction have been identified as being key factors 40

in the generation o f the diverse pattern o f signalling messages.

7 Cross talk between the HER family and phosphoiylation sites o f  the 59

A F l region o f the ER may result in ligand, independent activation.

8 ER at the membrane may directly signal via interaction/crosstalk with 60

HERl

9 Illustration o f typical core placement layout in IMA. 70

10 ER nuclear staining: Histoscore intensity andfrequency 106

11 Sunlval cun’es demonstrating cumulative disease free sunival 110

differences on tamoxifen between patients positive or negative fo r  cytoplasmic 

ERa staining.

12 PR nuclear staining: Histoscore intensity andfrequency 114

13 Survival curves demonstrating cumulative disease free siuMval 115

differences on tamoxifen between patients positive or negative fo r



4%

nuclear PR staining

14 Frequency histograms fo r  membrane staining intensity fo r  a) HERl, 118

b) HER2, c) HERS and d) HER4

15 Survival cun>es demonstrating cumulative disease free survival 119

differences on tamoxifen betu>een patients positive or negative fo r  a) HERl, b) 

HER2, c) HERS and d) HER4.

16 Survival curves demonstrating cumulative disease free survival 121

differences on tamoxifen between a) patients positive or negative fo r  HERFS  

b) patients positive fo r  more than one HERFS family member, patients 

positive fo r  only one type ofHER receptor and patients negative fo r  all HER 

family members.

17 Survival curves demonstrating cumulative disease free survival 123

differences on tamoxifen between patients either HERFS positive and/or PR 

negative and patients HERFS negative and PR positive.

18 Frequency histograms fo r  membranous a) pERaSerl 18 and b) 126

pERaSerl 67 staining; cytoplasmic c) pERaSerl 18 and d)pERaSerl67  

staining; and nuclear e) pERaSerl 18 and f)  pERaSerl 67 staining

19 Sunnval curves demonstrating cumulative disease free sunnval 129

differences on tamoxifen between patients positive or negative fo r  

membranous pERaSerl 18.

20 Frequency histograms fo r  membranous (a & b), cytoplasmic (c & d) 132

and nuclear (e & f) staining intensity using the H4.77.16 and HFRl 

antibodies.

21 Sunnval cufwes demonstrating cumulative disease free sunnval 135

differences on tamoxifen between patients positive or negative fo r



nuclear HER4 using the H 4.77.16 antibody.

22 Frequency histogram showing intensity o f membranous phosphorylated 136

HER2 staining



List of Tables

1 Comparison to pathology ER status 107

2 Comparison between final dataset and original pre-excluded group 107

3 Recurrence type 108

4 Core availability for ER TMAs 1 1 1

5 Valid cores for ER TMAs 112

6  Percentage of cases with valid cores for each antibody 112

7 Correlation between cores for each antibody 113

8  Relationship between PR and HER status 122

9 Time dependent analysis of variables 124

10 Relationship between pERSer 118, pERSerl 67, nuclear ER and HERl -3 127

expression

11 Comparison of H4.77.16 and HFRl staining patterns in the membrane, 132

cytoplasm and nucleus

12 Membranous HER4: Correlation between pathological variables and 134

HER family

13 Cytoplasmic HER4: Correlation between pathological variables and 134

HER family

14 Relationship between HER2 and Phospho-HER2  scoring 137

10



List of Publications

•4

1. Tovey,S.M., Dunne,B., Forsyth,A., Witton,CJ., Cooke,T.G., and Bartlett,FM. 4

(2005). Can molecular markers predict when to implement treatment with aromatase 
inhibitors in invasive breast cancer? Clinical Cancer Research. IL  4835-4842.

2. Tovey,S.M., Witton,C,J., Bartlett,J.M., Stanton,P.D., Reeves,J.R., and Cooke,T.G. 
(2004). Outcome and human epidermal growth factor receptor (HER) 1-4 status in 
invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine 
labelling. Breast Cancer Research. 6, R246-R251.

-

4

. '‘2

11



List of Abbreviations

AF-1, AF-2 transcription-activating function 1,2

AT AC Arimidex, Tamoxifen, alone or in combination Trial

BH3- BCL-2 homology 3 domain

DBD DNA binding domain

ERa Oestrogen Receptora

ERE oestrogen response elements

FISH Fluoresence in situ hybridyzation

H&E hematoxylin and eosin

HER Human epidermal growth Factor Receptor

HSP heat shock proteins

4ICD HER4 intracellular domain

lES Intergroup Exemestane Study

IHC Immunohistochemistry

LBD ligand-binding domain

MAPK Mitogen-activated protein kinase pathway

NEAT National Epirubicin Adjuvant Trial

NTD N-terminal domain

pERaSerl 18 Phosphorylated ERa at Serine 118

pERaSerl 67 Phosphorylated ERa at Serine 167

pHER2 Phospho specific HER2

PI-3K phospatidylinositol-3 kinase

PR Progesterone Receptor

TACE TNFa-converting enzyme

12



TEAM Tamoxifen Exemestane Adjuvant Multinational Trial

TMA Tissue microarray

13



Summary

Tamoxifen is a potent anti cancer agent and has long been the standard for adjuvant 

endocrine therapy in breast cancer in the United Kingdom. Despite this success, 

resistance to Tamoxifen is a significant clinical problem; almost all patients with 

metastatic disease experience progression and up to 2 0 % of early breast cancer 

patients relapse whilst on adjuvant treatment. The primary mechanism of action of 

Tamoxifen is via competitive inhibition of oestrogen binding to oestrogen receptors. 

The subsequent reduction in expression of oestrogen related genes such as growth 

factors and angiogenic factors results in reduced cell proliferation, enhanced apoptosis 

and reduced cell growth. However as the complexity of oestrogen receptor function is 

increasingly revealed, particularly in terms of its mechanism of action and interactions 

with other signalling pathways, our understanding of Tamoxifen activity and the 

development of resistance against it has also expanded.

Tamoxifen resistance may be either novo ” (present prior to Tamoxifen treatment) 

or “acquired” during the course of treatment. Identifying the biological mechanisms 

behind Tamoxifen resistance is important paiticulaily as increasing clinical trials 

evidence implies superiority of aromatase inhibitors over Tamoxifen. It is not 

currently clear whether this superiority is the case for all ER positive patients, or 

whether there is a particular group of patients resistant to Tamoxifen whose tumours 

may be sensitive to aromatase inhibitors.

The HER family of tyrosine kinase receptors (HERl-4) initiate a complex signal 

transduction cascade modulating cell proliferation, survival, adhesion, migration and 

differentiation. We have postulated that cross talk between the HER family and the 

ER may underlie development of Tamoxifen resistance in breast cancer. We have
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used tissue microarray technology and immunohistochemistry in analysis of a 

retrospective database of 402 ER positive. Tamoxifen treated patients to test the 

hypothesis that overexpression of HER family members 1-3 is associated with 

phosphorylation of the ER and with clinical relapse on Tamoxifen (‘Tamoxifen 

resistance’).

We have demonstrated that H ERl-3 (but not HER4) and PR status can identify time- 

dependent de novo Tamoxifen resistance, with risk declining markedly after 3 years 

o f tamoxifen treatment. We also demonstrate for the first time in vivo expression of 

phosphorylated ERa at the cell membrane of breast cancer cells and have 

demonstrated a correlation between H ER l-3 status and membranous phosphorylated 

ER. This supports recent reports of an interaction between membrane-bound ERa and 

the HER family and its pathways and provides further evidence for the non-classical 

actions of the ERa at the membrane. We confirm previous reports that phosphorylated 

ERa in the nucleus is associated with higher ERa expression and a more 

differentiated phenotype suggesting that it acts as a marker of an intact, functional, 

ERa signalling pathway.

Data presented here demonstrates the significant role played by H ER l-3 in promoting 

Tamoxifen resistance in hormone responsive breast cancers. It also emphasises the 

different role of HER4 in this context. This work is particularly clinically relevant 

with recent trials suggesting that the apparent superiority of aromatase inhibitors over 

Tamoxifen may be linked to the expression of specific tumour markers. In fact oui" 

results parallel those from the AT AC and lES trials which suggest that, whilst PR 

negative patients derive greater benefit from initial aromatase inhibitor treatment, PR 

status has no impact on response when given as delayed treatment to those who were 

disease free on Tamoxifen after 3 years.
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Taken together, these data strongly supports the conclusion that the predictive value 

of PR, and possibly H ERl-3, expression is time dependent and identifies patients at 

high risk of de novo Tamoxifen resistance. The ability to select, at diagnosis, patients 

at high risk of early relapse on Tamoxifen could provide the opportunity to tailor their 

adjuvant therapy on an individual basis, either in terms of an aromatase inhibitor or by 

supplying them with a HER family inhibitor such as 1res sa or Herceptin to be used in 

conjunction with their endocrine treatment.

There is some evidence that, in contrast to genomic activity, non-genomic ERa 

activity can be stimulated by SERMS such as Tamoxifen. Therefore Tamoxifen may 

be incapable of breaking (or even may stimulate) any cycle linking non-genomic and 

genomic ERa with the growth factor pathways. From our results, we speculate that 

membrane bound ERa, in conjunction with the HER family, may be responsible for 

initiating tumour cell proliferation even in the presence of Tamoxifen resulting in de 

novo Tamoxifen resistance. These results have implications for establishing ERa 

status, particularly in the clinical diagnostic setting, as more detailed analysis in terms 

of location and function of the receptor may become the norm for diagnostic testing in 

the future.

Further research is required to determine the mechanisms relating to Tamoxifen 

resistance particularly in regard to the nature of the interactions at the membrane 

between the ER and HER family. Testing these hypotheses in the context of the 

redesigned TEAM trial will provide a valuable insight into the most appropriate future 

therapeutic options for differing sets of breast cancer patients.
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Chapter 1: Introduction 

1.1 Breast cancer

Breast cancer is the most common female malignancy with more than 40,000 cases 

diagnosed in the UK in 2000. The lifetime risk of developing breast cancer is 1 in 9 

and its incidence is on the increase (www.show.scot.nhs.uk/isd/). Survival rates 

however are improving year on year from a 5 year suivival rate of 52% in the 1970s 

to 80% during the years 1998-2001 (www.statistics.gov.uk/1.

Breast cancer rarely occurs in women under the age of 25 years. Thereafter, the 

incidence increases steadily until the menopause, where the rate of increase slows. 5- 

1 0 % of cases have a known familial predisposition but for the majority aetiology is 

not always clear. Exposure to increased endogenous (early menarche and late 

menopause) or exogenous hormones has been implicated as have environmental 

factors such as, diet/obesity, alcohol and physical activity (Muti, 2004).

1.2 Endocrine Therapy

Endocrine systemic therapy is an effective and minimally toxic method of treating 

homione responsive breast cancers. Indeed endocrine manipulation has been used in 

varying forms since the discovery of the beneficial effects of oophorectomy on young 

women with locally advanced breast cancer (Beatson AT, 1896). Now cancers 

expressing oestrogen receptors aie treated with some form of endocrine therapy to 

abolish the proliferative effect of oestrogen on these tumours. This may be achieved 

by depleting the environment of oestrogen with either aromatase inhibitors or the 

lutenising-hormone-releasing agonist goserelin. Alternatively, treatment that involves

17
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competition with oestrogens for binding to the ERa can be used, such as the ‘selective 

oestrogen receptor modulator’ Tamoxifen.

1.2.1 Tamoxifen

Tamoxifen was originally developed as an oral contraceptive, but its potential anti- 

oestrogenic properties were subsequently recognised (Haiper and Walpole, 1966) and 

was introduced as a endocrine agent for the treatment of breast cancer. Initially 

hormone treatment was given to all patients but trial evidence confirmed 

responsiveness in the oestrogen receptor positive patients only (Early Breast Cancer 

Trialists' Collaborative Group, 1998; Stewart, 1992). Tamoxifen subsequently became 

the first line agent in endocrine responsive breast cancer.

The primary mechanism of action of Tamoxifen is via competitive inhibition of 

oestrogen binding to oestrogen receptors. The subsequent reduction in expression of 

oestrogen related genes such as growth factors and angiogenic factors results in 

reduced cell proliferation, enhanced apoptosis and reduced cell growth (Osborne,

1998). However it is not a pure antagonist, and in fact exerts both agonist and 

antagonist effects. Generally it is an agonist in bone and endometrium (Kedar et al., 

1994; Love et al., 1992), whereas it is used for its antagonist effect on genes important 

for cell proliferation or suivival in the breast.

Tamoxifen is a potent anticancer agent and is well established in clinical practice for 

use in ERa positive breast cancer. The Scottish Cancer Trials Breast Group results 

demonstrated tamoxifen, taken for a median duration of 60 months, significantly 

prolonged disease-free survival overall (P = .0001), in both premenopausal (n=214) - 

and postmenopausal (n=533) node negative patients. Analysis of a large number of 

randomised trials (Early Breast Cancer Trialists' Collaborative Group, 1998; Early

18



adjuvant treatment eventually relapsing (Osborne, 1998). This is despite the fact that 

most cases retain the nuclear steroid receptors (Clarke et a l, 2001b). Tamoxifen 

resistance may be either ‘We novo” (present prior to Tamoxifen treatment) or 

“acquired” during the course of treatment. De novo resistance may partially be 

explained by Tamoxifen being used to treat ERa negative tumours or by inadequate or 

inaccurate measurement of the ERa status. However despite this it appears that a 

proportion of ERa positive tumours are intrinsically hormone-independent (McGuire, 

1980).

Despite many years of use, there is still no adequate explanation as to why some 

potentially sensitive tumours become resistant to Tamoxifen. However as the

19

'1
Breast Cancer Trialists' Collaborative Group, 2005) demonstrated a 50% proportional £

reduction in the recurrence rate and a 28% proportional mortality reduction for ERa
.1

positive patients taking adjuvant Tamoxifen for 5 years. These overviews

.demonstrated a long term and increasing benefit of Tamoxifen with survival benefits
'I

maximised at 5 years of treatment.

As well as remaining the standard ac^uvant therapy for women with ERa positive

tumours following surgery. Tamoxifen can also achieve tumour regression in many 4
j

patients with locally advanced or metastatic disease. It is generally well tolerated and
■I

responses are longer compared to cytotoxic chemotherapy (Dowsett, 2001).
"'4

Side effects of Tamoxifen include menopausal symptoms such as hot flushes and it 

carries an increased risk of thromboembolic disease. Its partial agonist effects include 

uterine proliferation (with an associated increased risk of uterine malignancy) as well 

protective oestrogen like effects on bone metabolism resulting in an increase and 

stabilisation of bone density. Despite its proven benefits however, resistance often 

develops to Tamoxifen, with almost all patients with metastatic disease, and some on

,4
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complexity of oestrogen receptor function is increasingly revealed, particularly in 

terms of its mechanism of action and interactions with other signalling pathways, our 

understanding of Tamoxifen activity and the development of resistance has also 

expanded. Identifying the biological mechanisms behind Tamoxifen resistance is 

important, particularly as increasing clinical trials evidence implies superiority of 

aromatase inhibitors over Tamoxifen (Dowsett, 2003).

1.2.2 Aromatase Inhibitors

Aromatase is a cytochrome P450-dependent enzyme, which acts at the last step in the 

synthesis of oestrogen by catalyzing the conversion of androgens to estrogens. 

Aromatase inhibitors work by preventing conversion of androstenedione to oestrone 

and oestrodiol in peripheral tissues (fat, muscle etc) and locally within established 

breast tumours (Reviewed in (Caipenter and Miller, 2005). By inhibiting aromatase, 

the levels of plasma oestrogens are reduced by over 97% in postmenopausal women 

(Brodie andNjar, 1996).

Earlier aromatase inhibitors also affected adrenal corticosteroid function but current 

third generational potent selective inhibitors do not have these potentially toxic side 

effects. They may be steroidal (Exemestane) or non-steroidal (Arimidex, Letrozole). 

Steroidal AIs are analogues of androstenedione and are noncompetative, irreversible 

inhibitors of the aromatase enzyme. The non-steroidal inhibitors act by binding 

reversibly to the enzyme complex. Both classes have been shown to reduce 

circulating oestrogen to 1% to 10% of pretreatment levels (Buzdar et a l, 1997). Initial 

evidence with regard to the efficacy of these newest aromatase inhibitors has come 

from the neoadjuvant (Ellis et a l, 2001) and metastatic settings (Mouridsen et al, 

2001; Nabholtz et a l, 2003) and these drugs are commonly used as the first line

20



treatment in these cases. In the adjuvant setting whilst emerging data on the efficacy 

of aromatase inhibitors does not yet identify a group of patients for whom additional 

benefit is derived in terms of overall survival, the AT AC (Arimidex, Tamoxifen, 

alone or in combination), IBS (Intergroup Exemestane Study) and BIG-98 studies all 

demonstrate a clear benefit in terms of disease free survival (Coombes et al., 2004b; 

Howell and on behalf of AT AC trialists' Group, 2004; Coates et a l, 2007). It is not 

currently clear whether this superiority is the case for all ERa positive patients, or 

whether, as is widely predicted, there is a particular group of patients resistant to 

Tamoxifen whose tumours may be sensitive to aromatase inhibitors. There is 

however, growing evidence that specific tumour markers may be used to identify 

tumours which exhibit resistance to Tamoxifen and/or demonstrate enhanced 

responsiveness to aromatase inhibitors (Schiff et a l, 2004; Ross and Fletcher, 1998; 

Dowsett, 2003). These markers include both conventional markers of endocrine 

responsiveness (ERa and PR) and receptor tyrosine kinases such as the human 

epithelial growth factor (HER) family of receptors.

It has been suggested that cross-talk between the oestrogen receptor and HER family 

may underlie Tamoxifen resistance (Schiff et a l, 2004) and thus may also go some 

way towards explaining the superior clinical results demonstrated with aromatase 

inhibitors.
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1.3 Oestrogen receptor

In order to explore the potential mechanisms underlying Tamoxifen resistance, it is 

necessary to first attempt to understand the complex behaviour of the oestrogen 

receptor. Oestrogen action is mediated through the oestrogen receptors ERa and ERP; 

both members of the nuclear hormone receptor superfamily. Although more 

information about ERP is now available, most of our knowledge about the role 

oestrogen plays in breast cancer is with regard to its’ actions via ERa.

ERa is a 65kDa nuclear transcription factor receptor expressed in 46-77% of breast 

cancers (Robertson, 1996). The conventional pathway for ERa action is well 

described (Figure 1). The ERa exists as a monomer bound by heat shock proteins. 

Subsequent ligand binding causes dissociation of the heat shock proteins and 

alteration of receptor conformation. In this classical pathway the activated receptors 

then homodimerize, and in a complex with coregulatory molecules bind to oestrogen 

responsive elements (ERE) in the promoter region of target genes, to alter 

transcription (Klein-Hitpass et al., 1988; Kumar and Chambon, 1988). The targets of 

proliferative oestrogen/ERa action include genes such as fas, jiin-B and myc (Weisz 

and Bresciani, 1993), cell cycle-controlling gene products such as cyclin D1 

(Musgrove et a l, 1993), cyclin-dependent kinase inhibitors (Planas-Silva and 

Weinberg, 1997) and growth factors and their pathways (Migliaccio et a l, 1996; 

Dickson and Lippman, 1995).
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Figure 1

Ihe ER is composed o f an N-terminal domain (NTD), a central DNA binding domain 

(DBD) and a C-terminal ligand-binding domain (LED). Oestrogen binding to the ER 

causes dissociation o f the heat shock proteins (HSP). The activated receptor 

subsequently homodimerize and form a complex with co-activators (A) and co­

repressors (R), which binds to oestrogen response elements (ERE) in the promoter 

region o f  target genes.

Like other nuclear steroid receptors, the ERa is comprised o f an N-terminal domain 

(NTD), a central DNA binding domain (DBD) and a C-terminal ligand-binding 

domain (LBD). The DBD mediates ERE recognition. The LBD in region E contains 

an oestrogen-inducible transcription-activating function called AF-2 (Kumar et al., 

1987; Tzukerman et al., 1994). In addition there is a constitutively active
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transcription-activating function AF-1 which is located in the NTD region of the 

receptor (Tora et a l, 1989). AFl and AF2 can function independently or 

synergistically to activate transcription and promote signalling depending on the cell 

and promotor context (Kumar et a l, 1987; Shang and Brown, 2002).

ER activation and its’ subsequent cellulai* actions are in fact more complex than 

originally thought and deviate from the original concept of the classical nuclear 

receptor at more than one level. A background to this will now be outlined, and 

discussed further when considering the implications of this in the development of 

Tamoxifen resistance.

1.3.1 Receptor phosphorylation

Modification of proteins through phosphorylation is a key mechanism by which the 

activity of transcription factors can be regulated (Shao and Lazar, 1999). The ER has 

the potential to be regulated via phosphorylation at all of its domains which results in 

post-translational modifications. Phosphorylation at serines 104 /106, serines 118 and 

167, serine 236 and on tyrosine 537 has been demonstrated using deletional or point 

mutation analysis (Ali et a l, 1993; Castoria et a l, 1993; Le Goff et a l, 1994; Chen et 

a l, 1999).

The AF-1 region is phosphoiylated by components of growth factor pathways (Figure 

2) such as MARK kinases (Kato et a l, 1995) and Akt/Protein Kinase B (Campbell et 

a l, 2001) or by cyclin dependent kinases (Chen et al, 2000; Rogatsky et a l, 1999) to 

promote co-activator recruitment and transactivation. The DBD can be 

phosphorylated by PKA (Chen et a l, 1999) to inhibit transcriptional activity via 

decreasing DNA binding and regulation of dimérisation. In addition the AF2 region
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can be phosphorylated by Src kinases on tyrosine 537 (Arnold et al., 1997) to enhance 

dimerization, ligand binding and co-regulator recruitment.

POST TRANSLATIONAL MODIFICATION: 
PHOSPORYLATION

CDK2

0 0

MAPK

S104/106 |S118 I S167

Src KINASES

AFl NTD DBD LBD AF2

TRANSACTIVATION DIMERIZATION E SENSITIVITY

Figure 2

Ihe A F l region can be phosphorylated by MAPK kinases, Akt or cyclin dependent 

kinases. The DBD has been shown to be phosphorylated by PKA and the AF2 region 

by Src kinases.

1.3.2 Ligand independent action

The function o f the AF-1 region, which controls ligand-independent activation, seems 

to depend on various factors. AF-1 action appears to be more apparent in various cell 

types (Berry et al., 1990; Webb et al., 2000), in the presence o f high levels of AF-1 

coactivators (Webb et al., 1998), or following activation o f components o f growth
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factor pathways such as MAPK, INK kinase (Font and Brown, 2000; Kato et a l, 

1995) (Feng et a l, 2001) or AKT (Campbell et a l, 2001) activation. In addition 

reports have suggested that cells with high levels of ER expression are able to self- 

generate ligand independent AF-1 transactivation and growth (Fowler et a l, 2004).

1.3.3 Non-genomic action

There is increasing evidence for the non-genomic actions of ER, particularly as an 

explanation for the more rapid (seconds to minutes) signalling that can be produced 

by oestrogen stimulation (Simoncini et a l, 2000; Kousteni et a l, 2001; Castoria et a l,

1999). Under these circumstances the ER is able mediate its rapid actions via direct 

association with signal transduction components without any transcriptional activity 

taking place (Losel et a l, 2003). Some of these non-genomic actions appear to be 

taking place outside the nucleus, either in the cytoplasm or at the membrane. 

Oestrogens appear to be able to mediate some actions through a putative membrane 

associated oestrogen receptor (Watson and Gametchu, 1999; Simoncini et a l, 2000; 

Pappas et a l, 1995). In the late 1970s Pietras & Szego (Pietras and Szego, 1977) 

reported the presence of high affinity binding sites for oestrogen associated with the 

plasma membranes of the MCF7 human breast cell line. This observation was largely 

ignored until recently, when evidence for non-genomic actions of ERa increased. 

Pappas et al co-incub ate d rat pituitary cells with an antibody specific to intracellular 

ER and a fluorescent ER-BSA conjugate. They demonstiated that these labels 

colocalize on cells suggesting that mERa may be structurally similar to intracellular 

ERa. In addition using confocal microscopic methods, translocation of full length 

ERa into the membrane has been demonstrated in response to oestrogen (Song et al,

2002) and transfection of ERa negative cells with ERa resulted in 5% of ER locating

26



to the membrane with the remainder mostly in the nucleus (Razandi et a l, 1999). 

Recent work has suggested that these membrane receptors may be particularly 

important in the role oestrogen plays in ‘survival or anti-apoptotic mechanisms 

(Razandi et a l, 2000). Oestrogen stimulation of membrane ERa has been shown to 

result in G protein activation, which results in rapid stimulation of protein kinase C, 

protein kinase A, MAPK and PI3K (Kelly and Levin, 2001; Marquez and Pietias, 

2001). There is also evidence that this membrane receptor may directly signal via 

activation/cross talk with the membrane growth factor EGFR (Razandi et a l, 2000). 

Note that this also provides a mechanism for a positive feedback loop as downstream 

growth factor pathway members such as MAPK and Akt may then phosphorylate the 

ERa as discussed previously.

1.3.4 Co-regulators

ER-mediated gene transcription is regulated at yet another level depending on co- 

regulator availability and function. The receptor interacts with corepressors or 

CO activators that inhibit or enhance its activity on target genes respectively. In the 

inactivated state, the ERa is bound to corepressor complexes. On oestrogen binding, 

the conformational change in AF2 facilitates an interaction with co-activators (Ali and 

Coombes, 2002). Three related co-activators, known collectively as the p i60 co­

activators, stimulate ERa activity following ligand stimulation, via interaction with 

AF-2 (reviewed (Leo and Chen, 2000; McKenna et a l, 1999)). These 3 proteins are 

known as nuclear receptor co-activators NCOAl (also known as SRCl), NCOA2 

(also known as TIF2 or GRIPl) and NCOA3 (also known as P/CIP, ACTR, ATB-1, 

RAC3 orTRAM l).
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1.3.5 Non-classicaï response elements

As well as regulating transcription through classical EREs in the promotor regions of 

target genes, the ER also interacts with a growing number of non classical response 

sites (Savilie et a l, 2000; Weatherman and Scanlan, 2001). These sites do not 

necessarily require DNA-protein interactions between the receptor and promotor 

element, but instead regulate transcription through protein-protein interactions 

between the receptor and other transcription factors such as the fos jun complex (AP- 

1) and Sp-1.
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1.4 Mechanism of action of Tamoxifen and potential 

mechanisms for resistance.

Tamoxifen is not a pure antagonist, and in fact exerts both agonist and antagonist 

effects. Generally it is an agonist in bone and endometrium (Kedar et al., 1994; Love 

et a l, 1992), whereas it is used for its antagonist effect on genes important for cell 

proliferation or survival in the breast.

The antagonist effect of Tamoxifen arises from inhibition of the AF-2 transcription- 

activating function (despite allowing release from heat shock proteins and ERE 

binding) (Figure 3) (Parker, 1996). However unlike steroidal anti-oestrogens such as 

ICI 182,780, (Wakeling et a l, 1991) it does not appear to antagonise the AF-1 

function (McDonnell et al., 1995). Tamoxifen therefore allows weak AF-1 activity 

although in most cases this is insufficient to increase gene transcription (Berry et a l, 

1990), However, in circumstances where the AF-1 region can become activated, this 

activity becomes more significant. This has been thought to explain the mechanism of 

action behind Tamoxifens’ tissue specific partial agonist effects. The ERa activity in 

breast epithelium is due mainly to AF-2 therefore Tamoxifen acts largely as an 

antagonist, whereas in the uterus, the role of AF-1 is more significant, explaining its 

agonist effects there.
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Figure 3

Tamoxifen (TAM) antagonises AF2 transcription activating function but not AF-1 

function.

Several mechanisms have been proposed to explain Tamoxifen resistance (Osborne,

1998);

1.4.1 Loss of ERa

Loss of ERa expression, particularly in metastasis, has been proposed as a mechanism 

for the development of resistance to hormonal therapy. Most ERa positive breast 

cancers will also contain populations of ERa negative cells. Under the selective 

pressure of anti-oestrogen treatment, the ERa negative cells may come to predominate 

so accounting for an apparent switch in their tumour receptor status (Graham et al., 

1992). However there is also convincing evidence that ERa expression is a stable
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phenotype (Robertson, 1996). We know that at least 2/3rds of tumours that become 

resistant to tamoxifen continue to express ERa (Encamacion et a l, 1993). Tamoxifen 

resistant cell lines frequently demonstrate sustained ERa content and remain 

responsive to pure anti-oestrogen therapy (Brunner et al, 1993). We also know that 

tumours that have become resistant to Tamoxifen as an initial endocrine therapy will 

often go on to respond to a 2""* line anti-hormonal treatment such as megace, an 

aromatase inhibitor or oophorectomy (Murray and Pitt, 1982; Robertson et a l, 1989; 

Sawka et a l, 1986), indicating the continued presence of a functional ERa.

1.4.2 Variant/mutant ERa

Mutation of the ER gene could affect function or response to Tamoxifen. There is a 

naturally occurring ER mutant that recognises Tamoxifen as an agonist only (Fuqua,

1994). However the effect that these mutants have on clinical resistance in vivo is yet 

to be determined (Hopp and Fuqua, 1998).

1.4.3 Presence/altered expression of ERp

In 1996 a second ER was identified (Mosselman et a l, 1996) with subsequent 

identification of various isoforms such as ER(31(wildtype), ER(32 (identical to |3cx), 

ER|33, ER(34, ER(35, and ERA5), (Lewandowski et a l, 2002; Ogawa et a l, 1998; 

Tong et a l, 2002). ERp is highly homologous to the ERa and has been shown to bind 

estrogens with an affinity similar to that of ERx, and activates expression of reporter 

genes containing oestrogen response elements in an oestrogen-dependent manner. 

When a gene does not require activation of the ER’s AF-1 function, ERa and ERp 

appear equivalent at regulation of tianscription (Cowley and Parker, 1999). However, 

in addition to acting as a homodimer, ERB also heterodimerizes with ERa (Pace et a l.
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1997). Evidence suggests that the expression of functional ERa/p heterodimers, may 

result in unique patterns of gene regulation, many of which are distinct from the genes 

regulated by the ER homo dimers (Monroe et al., 2005).

It has been suggested that an altered ratio of ERa: ERp may occur during 

carcinogenesis (Leygue et al., 1998) with the ERa proportion progressively increasing 

as the cells acquire a more aggressive phenotype. This alteration in ERa: ERp ratio 

may also play a role in Tamoxifen resistance (Speirs et al., 1999; Salvatori et al.,

2003). Recent in vitro evidence has confirmed that high levels of ER-beta predicted 

for improved disease-free and overall survival in patients treated with adjuvant 

tamoxifen therapy (Hopp et al., 2004b). However more studies are required to 

examine the role of various isoforms with a report from small numbers of patients 

suggesting ERPcx in primaiy lesions correlated with a poor response to tamoxifen 

(Saji et al., 2002).

1.4.4 Tamoxifen agonist stimulation of growth

In some patients it appears that Tamoxifen therapy can stimulate tumour growth. This 

is illustrated by the clinical response sometimes shown after Tamoxifen is stopped 

because of progression, and explains a lack of response to oophorectomy in 

premenopausal women who remain on Tamoxifen (Wiebe et al., 1993). In addition 

clinical trials have suggested that longer treatment with adjuvant Tamoxifen is no 

better, and may possibly be worse, than the standard 5 year treatment (Fisher et al., 

2001; Early Breast Cancer Trialists' Collaborative Group, 1998).

MCF-7 breast cancer cell line engrafts can be selected in vivo to become stimulated 

by tamoxifen (Osborne et al., 1987). More recently an explanation for this has been 

proposed involving a disturbance between ERa and its’ coactivators and corepressors
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(Smith et al., 1997; Osbome et al., 2003) (Figure 4). It is suggested (Takimoto et al.,

1999) that Tamoxifen antagonism may not be a passive competitive process but may 

involve active recruitment of corepressor or coactivator proteins to produce mixed 

responses. These studies suggest that an increasing ratio of antagonist specific 

coactivators to corepressors may lead to inappropriate agonist activity so producing 

the hormonal resistant state.

AFl  ̂ LBD I

ER < TAM >
ER g

LBD

NTD DBD

AFl NTD DBD
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PROMOTER REGION GENE

Altered transcription; fos, jun, 
myc, cyclin D, cdk inhibitors

Figure 4

An increasing ratio o f coactivators (A) to core pres sors (R) may lead to inappropriate 

Tamoxifen agonist activity.

One particular coactivator AIBl, which may be activated by growth receptor 

pathways (Font and Brown, 2000), has been linked to poor prognosis in Tamoxifen 

treated ERa positive patients (Osbome et al., 2003). In addition levels of the co­
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repressor N-CoR was reduced in an animal model of tamoxifen resistance (Lavinsky 

et al., 1998).

Other oestrogen-like effects of Tamoxifen may stem from ERa action at genes with 

alternative non-classical response elements such as AP I or Sp-1 sites (Saville et al.,

2000). For example ERa has been shown to enhance AF-1 activity in the presence of 

tamoxifen (Weatherman and Scanlan, 2001; Webb et al., 1999).

1.4.5 Development of ligand independent ER mediated transcription

The concept of ligand independent activation of ERa, particularly in regard to 

activation of the AF-1, has already been discussed. There is considerable evidence 

that ligand independent activation can follow the activation of components of growth 

factor pathways such as MAPK, JNK kinase (Font and Brown, 2000; Kato et al., 

1995) (Feng et al., 2001) or AKT (Campbell et al., 2001). Activation of the normally 

quiescent AFl region may promote gene transcription even in the presence of 

tamoxifen (Figure 5).

< TAM  >

PROMOTER REGION GENE

Figure 5
Altered transcription; fos, jun, 
myc, cyclin D, cdk inhibitors

Phosphorylation o f AF-1 region by components o f  growth factor pathways may lead 

to ligand independent activation despite presence o f Tamoxifen.
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Evidence for the role of the HER family in this process and in development of 

subsequent Tamoxifen resistance will be discussed in the following chapters. 

However cell lines acquiring oestrogen independence often retain their responsiveness 

to anti-oestrogens (Clarke et al., 1989) thus it may be that oestiogen independence 

and anti-oestrogen resistance involves overlapping but separate mechanisms.

1.4.6 Role of Growth Factors.

Growth factors have been shown to produce oestrogen-like effects in ER positive 

breast cancers even in the absence of oestrogenic stimuli (Bunone et a l, 1996; El 

Tanani and Green, 1997). Thus growth factor signalling may play a critical role in 

regulating the response of breast cancer cells to both oestrogens and anti-oestrogens. 

Wliilst tamoxifen blocks the oestrogenic induction of growth factors such as TGF-a, 

IGF-1 and EGF (Dickson and Lippman, 1995), it also induces the secretion of the 

growth inhibitoiy factor TGF-pl (Knabbe et a l, 1987) suggesting the promotion of a 

inhibitory autocrine loop. However tamoxifen resistant MCF7 cells have been shown 

to overexpress TGF-pl (Herman and Katzenellenbogen, 1996; Arteaga et a l, 1999) 

and reversal of TGF-j31 activity can restore tamoxifen sensitivity in vitro (Arteaga et 

a l, 1999). Indeed, whilst treatment with exogenous TGF-p inhibits breast cancer cell 

proliferation (Knabbe et a l, 1987) it can also stimulate MAPK (Frey and Mulder, 

1997; Visser and Themmen, 1998) associated tumour growth.

In addition in patients who do not respond to tamoxifen, TGF-P2 levels increase 

before clinical detection of recurrence implying resistance to any growth inhibitoiy 

effects(Kopp et a l, 1995). Overexpression of TGF-p2 can suppress natural killer 

(NK) cell function and inhibition of TGF-p2 restores NK cell function and tamoxifen
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sensitivity in vivo (Arteaga et a l, 1999). This suggests TGF-P2 overexpression may 

affect resistance through immunological mechanisms.

Another growth factor family that has stimulated interest with respect to tamoxifen 

resistance is the insulin like growth factors. Both IGF-I receptors (IGF-I-Rs) and IGF- 

II receptors (IGF-II-Rs) are expressed in breast tumours (Papa et a l, 1993) but in the 

context of tamoxifen resistance most attention is focussed on IGF-I-R because of 

evidence of crosstalk with the ER (Lee et a l, 1999). More recently studies have 

shown an alteration of insulin-like growth factors-binding proteins (IGF-BP) that 

generally inhibit IGF function with IGFBP-2 demonstrated as a marker for 

antiestrogen resistant breast cancer cell lines, although not necessarily a contributor to 

the resistant cell growth (Juncker-Jensen et a l, 2006). Unlike other growth factors, 

IGF-IR expression appears to be positively correlated with ERa expression in breast 

cancer and recent work has suggested that it may be involved in activation of 

membrane bound ERa (Razandi et a l, 2003b). In addition it has been suggested that 

IGF-IR is a key component involved in acquisition of resistance to the anti-EGFR 

small molecule inhibitor gefinitib in tamoxifen resistant cells (Hutcheson et a l, 2006). 

The HER family of tyrosine kinase growth factor receptors has also been implicated 

in the development of tamoxifen resistance and will be discussed in more detail in the 

next section.

1.4.7 Estrogen Regulated genes; TFFl (pS2) and PR

PS2 (TFFl) and PR aie both estrogen regulated genes. The expression of TFFl is 

regulated through an ERE and expression PR through a Spl recognition site on the 

progesterone receptor (PR) gene. The pS2 gene is often used in breast cancer in 

studies of ER action/activation (Krieg et a l, 2004)
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In terms of predicting response to tamoxifen, cytosolic expression of trefoil protein 

TFFl (previously known as pS2), has been shown to be linked to good outcomes and 

endocrine responsiveness (Corte et al., 2006; Gion et al., 1993) in some studies but 

not in others (loachim et al., 2003; Elledge et al., 2000).

The evidence for PR in predicting tamoxifen response has drawn conflicting 

conclusions over the years. Certainly PR expression has been thought to demonstrate 

an intact, functioning ER pathway. The large Oxford overview did not confirm PR as 

a predictive marker for tamoxifen response (Early Breast Cancer Trialists' 

Collaborative Group, 1992) however a retrospective analysis of a large dataset with 

standardised methodology demonstrated that ER/PR positive patients showed better 

outcomes on tamoxifen than ER positive/PR negative patients in multivariate analysis 

(Osbome et al., 2005; Bardou et al., 2003). In keeping with this, the AT AC trial 

suggests an increased benefit of tamoxifen over aromatase inhibitor in PR negative 

patients (Dowsett et al., 2005). In addition, unlike ER, sequential biopsies suggest that 

PR levels may decrease dramatically with up to half of tumors completely losing PR 

expression when resistance to endocrine therapy evolves (Gross et al., 1984) 

suggesting a potential model for acquired resistance. The expression of different PR 

isoforms as predictors of tamoxifen response may also be of importance. 

Overabundance of PR-A has been associated with resistance to tamoxifen (Hopp et 

al., 2004a) while a functional polymorphism resulting in increased production of PR- 

B may be associated with an increased risk of breast cancer (De, I et al., 2003).
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1.5 Human Epidermal Growth Factor Receptor 

(HER) Family

1.5.1 HER 1-4 family; 4 closely homologous receptors

Evidence has suggested that Tamoxifen resistance may involve cross talk between the 

HER family and the ERa (Schiff et al., 2004). The HER family of tyrosine kinases 

receptors lies at the head of a complex signal transcription cascade which modulates 

cell proliferation, survival, adhesion, migration and differentiation. This multi-layered 

signalling network provides an opportunity for a potentially huge diversity of 

signalling messages. The family is comprised of 4 closely homologous receptors 

HERl (ErbBl/EGFR), HER2 (ErbB2/neu), HER3 (ErbBS) and HER4 (ErbB4). 

Growth factor-induced HER signalling is essential for normal cellular processes 

however it also plays a key role in the aberrant development and growth of tumour 

cells (Yarden, 2001b).

The HER receptors are trans-membrane receptors. Each HER family member is 

composed of an extracellular ligand binding domain, a lipophilic transmembrane 

segment and cytoplasmic tyrosine kinase region with a regulatory carboxy-terminal 

segment (Ullrich and Schlessinger, 1990; van der Geer P. et al., 1994). Ligand 

binding to the extracellular domain induces the receptors to form hetero- or homo­

dimers. Cross-phosphorylation of the tyrosine residues then occurs resulting in the 

docking sites for signalling complexes. The subsequent release of enzymes and 

adapter proteins into the cytoplasm stimulates multiple signal transduction cascades. 

Three layers of interaction have been identified as being key factors in the generation 

of the diverse pattern of signalling messages (Alroy and Yarden, 1997) (Figure 6).
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1. Firstly, 2 main groups have been identified as HER ligands (Mendelsohn and 

Baselga, 2000). There are 6 direct ligands of HERl. Epidermal growth factor 

(EGF), amphiregulin and transforming growth factor alpha (TGFa) only bind to 

HERl. Heparin binding EGF (HB-EGF), betacellulin, and epiregulin can bind to 

both HERl and HER4. A second class of ligand called neuregulins bind to HER3 

and HER4. Neuregulin-1 and -2  bind to either receptor, while neuregulin-3 and - 

4 bind to HER4 only. Recent work has shown that 2 different ligands activating 

the same receptor can have a differential impact on transcriptional outcome (Amin 

et a l, 2004).

2. Secondly, each of the ligands has a different preference for stabilising particular 

receptor dimers. Yarden et al created cell lines co-expressing a combination of 

HER family receptors. The mitogenic index of each dimer was compared and the 

most active signalling complex was between HER2 and HER3 (Yarden, 2001a). 

In general heterodimers generate more potent signals than homodimers (Alroy and 

Yarden, 1997).

3. Thirdly, each ligand receptor dimer directs its signal through a unique but 

overlapping set of signalling pathways (Olayioye et a l, 2000). These signal 

transduction cascades include the MAPK pathway, PKC, phosphoinositol kinase, 

Akt and several transcription regulators. Ultimately these signals reach the 

nucleus and lead to nuclear gene activation.

Further complexity is highlighted by the fact that HER2 enhances and stabilises 

dimerization but apparently has no ligand (Klapper et a l, 1999) whereas HER3 has no 

inherent kinase activity so must be dinierised with another HER family member to 

exert an influence on downstream signalling (Guy et a l, 1994).
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Figure 6

Multiple layers o f interaction have been identified as being key factors in the 

generation o f the diverse pattern o f signalling messages.

1.5.2 Role of the HER family in normal breast.

The HER family is involved in the regulation of normal breast growth and 

development (DiAugustine et al., 1997; Carraway et al., 1997). Their ligands have 

been shown to stimulate the lobulo-alveolar development of the mouse mammary 

gland in explant cultures and in vivo (Jones et al., 1996). Identifying the individual 

role of each receptor is complex, especially with the presence of multiple ligands 

(Stem, 2003). However, in mouse, HERl and HER2 are abundant prior to puberty 

and during subsequent developmental stages whereas HER3 and HER4 are at low 

levels prior to maturity (Schroeder and Lee, 1998; Sebastian et al., 1998). All 4 HERs 

are evident throughout pregnancy and lactation (Schroeder and Lee, 1998).
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1.5.3 Role of the HER family in breast cancer.

Dys-regulation of all 4 members of the HER family has been demonstrated in a 

variety of human cancers.

1.5.3.1 EGFR/HERl

HERl is a IVOkD transmembrane receptor that is expressed on the surface of most 

cell types and is located on human chromosome 7q21. HERl is expressed in a variety 

of human cancers, including non-small cell lung cancer, head and neck, gastric, 

colorectal, oesophageal, prostate, bladder, renal, pancreatic and ovarian cancers 

(Salomon et a l, 1995). The HERl ligand EGF was shown to be a potent mitogen in 

the breast cancer cell line MCF-7 (Osbome et a l, 1980) and the first reports of HERl 

expression in human breast cancers were in 1985 (Sainsbury et a l, 1985).

Sainsbury et al were also the first to identify a link between HERl and prognosis in 

breast cancer (Sainsbury et a l, 1987). Since then, many studies have examined this 

relationship, not always with conclusive results (reviewed (Klijn et a l, 1992) and 

(Nicholson et a l, 2001a)). One of the largest studies was recently performed using 

immunohistochemistry in 1029 patients (Tsutsui et a l, 2002). Multivariate analysis 

demonstrated that HERl was an independently significant prognostic factor for 

disease free and overall sum val Certainly we know there is a significant negative 

correlation between EGFR positivity and ER status (Koenders et a l, 1991).

There has also been speculation as to the future of HERl as a predictive factor for 

selection of various treatment modalities. ZD1839 (Iressa) is an orally active selective 

HERl tyrosine kinase inhibitor which has shown promise in preclinical trials, and is 

currently undergoing phase R clinical trials in breast cancer (Morris, 2002). High
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expression of HERl has been associated with resistance to radiotherapy (Sartor, 2000) 

and its putative role in Tamoxifen resistance will be discussed later.

1.5.3.2 HER2

The HER2 proto-oncogene encodes an 185kD transmembrane glycoprotein and is 

mapped to chromosome 17q21. Despite apparently having no ligand, HER2 

homodimers form avidly and HER2 is the prefened dimerization pailner for other 

HER members (Graus-Porta et al., 1997; Tzahar et al., 1996). This may help explain 

the high oncogenic potential of HER2. HER2 heterodimers have particularly high 

ligand-binding and signalling potency (Sliwkowski et al., 1994) with the most potent 

dimer in terms of cell growth and transformation being HER2-HER3 (Pinkas- 

Kramarski et a l, 1996). It has been proposed (Klapper et al, 1999) that HER2 maybe 

the ultimate co-ordinator of the signalling network, amplifying signalling by multiple 

ligands.

HER2 is normally expressed in a variety of cell and tissue types and is frequently 

overexpressed in a number of human cancers (Hynes and Stem, 1994). HER2 

overexpression and amplification is found in lung, gastric and ovarian cancers 

(Schneider et al., 1989; Yoshida et a l, 1989; Berchuck et a l, 1990).

Both preclinical and clinical studies indicate that HER2 amplification and 

overexpression is involved in oncogenic transformation and tumorigenesis in breast 

cancer. Cell lines that overexpress the HER-2 gene product display a highly 

transformed and tumorigenic phenotype as compared with control cells (Chazin et a l, 

1992; Di Fiore et a l, 1987). In addition HER2 gene amplification or protein 

overexpression has been demonstrated in 15-30% of invasive breast cancers (Berger 

et a l, 1988; Slamon et a l, 1987). The majority of cases of HER2 overexpression
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appear to be as a consequence of HER2 gene amplification (Pauletti et a l, 1996). 

Slamon et al (Slamon et al., 1987) first linked HER2 with poor prognosis in breast 

cancer in 1987. Since then there have been multiple studies investigating this 

relationship. A meta-analysis of 47 trials (Ross and Fletcher, 1998) demonstrated 

HER2 was an independent predictor of prognosis in 60% of the trials involving 67% 

of patients. Of note all the studies that used FISH to detect gene HER2 amplification 

concluded that there was a clear association between HER2 status and prognosis. 

Herceptin (trastzumab) is a HER2 monoclonal antibody against its extracellular 

domain. Patients with strongly HER2-positive metastatic breast cancer derive 

significant clinical benefit from single-agent and combined Herceptin therapy 

(Baselga, 2001) in the metastatic setting for HER2 positive patients. More recently 

interim results from the BIG HERA trial suggest significantly improved disease free 

suiwival with reduction in distant metastasis in HER2 positive patients given adjuvant 

Herceptin for 1 year (Piccart-Gebhart et al., 2005).

1.5.3.3 HER3

In 1989 a S*'* member of the HER family was identified (Kraus et al., 1989) as a 148- 

IcDa transmembrane polypeptide mapped to chromosome 12ql3. Due to substitutions 

in critical residues in its catalytic domain, HER3 has an impaired kinase (Guy et ai.,

1994), and thus can only process its signalling in the context of a receptor 

heterodimer. HER3 is found in cells of the developing gastrointestinal, reproductive 

and urinary tracts as well as the skin, endocrine and nervous systems (Prigent et a l, 

1992). HER3 is expressed in tumours of the skin, ovaiy and gastrointestinal tract 

(Bodey et a l, 1997; Maurer et a l, 1998; Simpson et al, 1995). There is also evidence 

for its role in breast cancer. Markedly elevated HER3 niRNA levels have been
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demonstrated in certain human mammary tumour cell lines (Kraus et a l, 1989). In 

addition HER3 has been demonstrated to be overexpressed in 15 -52%  of breast 

cancers (Lemoine et a l, 1992; Naidu et a l, 1998; Travis et al, 1996).

Conflicting evidence has been produced on the prognostic significance of HER3. 

Some (Witton et a l, 2003; Naidu et a l, 1998; Tovey et a l, 2004; Travis et a l, 1996) 

have demonstrated a relationship between HER3 and markers of poor prognosis in 

breast cancer. Others have concluded that HER3 overexpression is consistent with a 

good prognostic outlook (Pawlowski et a l, 2000).

1.5.3.4 HER4

HER4 deserves particular attention when examining the role of the HER family in 

breast cancer as there is now substantial evidence suggesting that it may play a 

protective role in breast cancer in contrast to the other family members. The 

HER4/erbB4 gene encodes a 180-kDa transmembrane tyrosine kinase (Plowman et 

a l, 1993) on chromosome 2 (Zimonjic et a l, 1995). HER4 is widely expressed in 

many adult and foetal tissues and is generally found in the differentiated 

compartments (Srinivasan et a l, 1998). In normal breast tissue HER4 appears to play 

a critical role in the late differentiation of mammary gland function (Jones et al,

1999) especially during pregnancy and lactation (Tidcombe et a l, 2003). This is 

consistent with data from cell lines showing that whilst HER4 can support 

proliferation and transformation, in some lines it has also been shown to induce 

growth arrest and differentiation (Sartor et a l, 2001; Williams et a l, 2003). Recently, 

evidence, again from cell lines using agonistic monoclonal antibodies, showed the 

HER4 antibody inhibited cell growth in contrast to the HER2 antibody which 

stimulated growth (Amin et a l, 2004). Using a global gene-expression monitoring
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system, they also reported that activation of HER2 or HER4 in the same cell line 

differentially activated gene transcription.

The evidence for a role for HER4 in tumorigenesis is scanty. One small study looking 

at solid tumours demonstrated overexpression in some adenocarcinomas and a loss of 

expression in squamous cell carcinomas (Srinivasan et al, 1998). Certainly HER4 is 

expressed in several breast cancer cell lines (Plowman et a l, 1993). Studies have 

demonstrated the expression (29 -82%) of the HER4 protein in breast cancers 

(Srinivasan et a l, 1998; Srinivasan et a l, 2000; Suo et a l, 1998; Suo et a l, 2002) 

although they also suggested that this expression may be decreased when compared to 

normal breast tissue. Gene amplification has been demonstrated in 13% of breast 

cancers (Vogt et a l, 1998).

We have recently shown that, in contrast to other HER family members, HER4 

expression is associated with increased suiwival and lower proliferation indices 

(Tovey et a l, 2004; Witton et a l, 2003). These results are supported by data linking 

HER4 to established good prognostic indicators such as a lower grade of tumour 

(Kew et a l, 2000; Srinivasan et a l, 2000), ER positivity (Pawlowski et a l, 2000) and 

low proliferation indices (Knowlden et a l, 1998). However, whilst other groups have 

also demonstrated a link between HER4 positivity and a longer disease free interval 

(Suo et a l, 2002) there have also been conflicting reports associating HER4 with an 

adverse prognostic significance (Lodge et a l, 2003). More recently there has been 

evidence from a large series of patients suggesting that the prognostic value of HER4 

overexpression is dependent on coexpression with other HER family members (Abd 

El-Rehim et a l, 2004). In this study, when the group was looked at as a whole, HER4 

status was not related to survival. However in cases showing expression of one family
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member only (homodimers), they found a significant association between HER4 

homodimer-expressing tumours and improved disease free survival.

There are intrinsic problems in comparing these studies and their outcomes. Different 

cut-off points for positivity have been chosen depending on the study and the 

modality of staining looked at (membrane, cytoplasm, and nuclear). Some groups 

have reported staining in all 3 locations, whilst others have found no membranous 

(Lodge et al., 2003) or no nuclear staining (Suo et al., 2002). Three different 

antibodies have been used in these studies. The HFRl clone developed by the Gullick 

group has been the most widely used (Kew et al., 2000; Lodge et al., 2003; Srinivasan 

et al., 1998; Srinivasan et al., 2000; Abd El-Rehim et a l, 2004). This group 

demonstrated the ability of this antibody to recognise HER4 by immunoprécipitation, 

western blotting and immuno-staining of NH3T3 cells transfected with HER4. They 

demonstrated no cross-reactivity with EGFR using A431 cell lysates or with HER3 or 

HER4 using lysates from SKBR3 or 293/HER3 cells. A SantaCruz antibody C l8 has 

also been used by one group (Suo et a l, 2002). In our previously study on frozen 

tissue we used a Neomaikers antibody H4.77.16.

Recent studies have substantially enlianced our understanding of the many functions 

of HER4. Indeed, as well as acting as a membrane signal transduction receptor, 

nuclear HER4 is required for mammary gland development and lactation though gene 

regulation in conjunction with STAT5A (Clark et al, 2005; Williams et a l, 2004), 

and mitochondrial HER4 has been shown to mediate apoptosis in the mitochondria 

via BAK (Vidal et a l, 2005).

Recent evidence suggests that, as with HER2 and EGFR, the HER4 protein can be 

enzymatically cleaved, which may markedly alter the function of the intracellular 

domain of the receptor. Cleavage occurs within the juxtamembrane region through the
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activity of TNTa-converting enzyme (TACE) followed by further proteolytic 

processing by presenilin-dependent y-secretase activity (Lee et a l, 2002; Rio et a l,

2000) to release the cleaved intracellular domain (4ICD). Indeed this 4ICD has been 

shown to harbour a BCL-2 homology 3 (BH3)-domain and independently function as 

a BH3-only protein (pro-apoptotic members of the BCL-2 family required to initiate 

mitochondria dysfunction) so mediating cellular apoptosis. However it has also been 

demonstrated in the nucleus acting as a chaperone for STAT5A (Williams et a l,

2004) to alter gene regulation. Thus, it is essential to determine both the location and 

intensity of staining for HER4 in order to fully understand its’ function in vivo. 

Indeed, one recent study using the HFRl antibody demonstrated very different 

correlations in terms of survival depending on cellular location of HER4 staining. 

Whilst membranous HER4 was associated with a good prognostic outlook, nuclear 

HER4 was associated with significantly shorter sum val times (Junttila et a l, 2005). 

Thus one possible explanation for the conflicting reports on HER4 and its association 

with survival may be that the results are antibody dependent. HFRl, the antibody 

developed by the Gullick group recognises the intracellular domain of HER4 and is 

thus able to recognise both the intact receptor and the cleaved ICD as it traffics 

through the cell. However the H4.77.16 clone recognises an extracellular domain of 

HER4 and thus, on tissue sections, detects the full length receptor not the cleaved 

ICD. The variance in reported results for in vivo analysis of HER4 expression may be 

a reflection of differing antibody specificities, especially with respect to the intra­

cellular and extra-cellular domains of the protein. Certainly we know that even for 

established diagnostic markers such as ER and PR within laboratories participating in 

external quality assessments (EQAs) there are still problems with technical validation 

and standai'dization (Rhodes et a l, 2001).
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1.5.3.5 HERl-4 acting in combination

As discussed with regard to HER4, one of the problems with the above analysis is the 

examination of these receptors in isolation, whereas in reality expression of multiple 

receptors may result in a synergistic or an additive response. We know that cancers 

that overexpress HERl or HER2 in combination have a worse prognosis than those 

which are positive for only one receptor (Tsutsui et al, 2003). In contrast when HER2 

and HER4 are co-expressed there is a reduced risk of relapse and death compared to 

tumours where HERl and 2 are overexpressed (Suo et al, 2002; El Tanani and Green, 

1997). This suggests that HER4 may be able to antagonise the HER2 effect on poor 

clinical outcome. In cell lines high levels of HER2 expression alters the ability of 

HERl tyrosine kinase inhibitors to inhibit HERl phosphorylation (Christensen et a l,

2001), In terms of potential treatments, whilst we know HER2 amplified tumours can 

be successfully treated with Herceptin (Piccart-Gebhart et a l, 2005; Smith et a l, 

2007), we don’t know how co-expression of other HER family members may 

influence this response.
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1.6 Relationship between HERl-4 and resistance to 

tamoxifen

Most studies in this field have investigated Tamoxifen resistance in the context of 

HERl and HER2 overexpression.

1.6.1 Experimental studies

Benz et al (Benz et a l, 1993) took oestrogen positive, hormonally sensitive MCF-7 

cells and transfected them with very high levels of HER2. Despite the cells remaining 

oestrogen dependent they became resistant to Tamoxifen. Other studies (Pietras et al,

1995) using HERl and HER2 showed similar results but found that tumour cell 

growth became independent of oestrogen with a downregulation of ERa. Pietras et ai 

and others have also demonstrated that inhibitors against HER2 and HERl can restore 

Tamoxifen sensitivity in HER2 overexpressing tamoxifen resistant cells (Kurokawa et 

a l, 2000).

Furthermore MCF-7 cells which over time had become resistant to tamoxifen were 

demonstrated to have increased levels of both HERl and HER2 compared to 

Tamoxifen responsive cells (Nicholson et a l, 2001b; Knowiden et a l, 2003). Again 

cell growth in these models was significantly reduced with the use of the HERl 

inhibitor (Iressa) and HER2 antibody (Herceptin).

1.6.2 Clinical studies

There has been a multitude of studies reporting on the proposed influence of HER2 

expression on hormonal resistance, but results are varied and confusing. Some studies
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have demonstrated a clear link with resistance (Bems et al, 1995; Borg et a l, 1994; 

Carlomagno et a l, 1996; Houston et a l, 1999; Leitzel et al, 1995; Yamauchi et al, 

1997; Wright et a l, 1992). Others have not demonstrated any association (Elledge et 

al, 1998; Soubeyran et a l, 1996; Berry et a l, 2000; Knoop et a l, 2001; Archer et a l,

1995).

The picture for HERl is equally unclear. Some studies have indicated a positive link 

with Tamoxifen resistance (Newby et a l, 1997; Nicholson et a l, 1994) with others 

not showing any significant difference (Knoop et a l, 2001).

Several explanations have been proposed for this conflicting evidence (Dowsett, 

2001; Elledge e ta l ,  1998).

1. Several of the studies included ERa negative or ERa unknown tumours in their 

analysis (Carlomagno et a l, 1996; Leitzel et a l, 1995) which will not respond to 

tamoxifen and are also more likely to be HER2 or HERl positive. Often when the 

results are substratified for ERa status any significant association is lost 

(Nicholson et a l, 1994).

2. Multiple treatment settings were analysed including neoadjuvant (Soubeyran et 

a l, 1996), metastatic (Leitzel et a l, 1995) and local recurrence (Houston et al.,

1999).

3. Only a small group of patients will be both ER and HERl/2 positive which makes 

it difficult to achieve statistical power in a study. Some studies have shown that as 

little as 10% of tumours are ERa and HER2 positive with the percentage even 

lower for HERl (Dowsett, 2001).

4. Chemotherapy is also routinely given to many of these patients, which may 

interact with HER2 status. For example it has been suggested that anthracyline 

therapy may overcome HER2 induced resistance.
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5. Multiple methods have been used to measure HER2 status with a variety of cut­

offs for positivity such as IHC (Elledge et a l, 1998), FISH (Beny et a l, 2000) and 

serum measurements (Leitzel et a l, 1995).

6. The duration of Tamoxifen therapy varied. Some studies only examined the 

follow-up with Tamoxifen treatment after one year which may not be long enough 

for a resistance pattern to develop (Knoop et a l, 2001).

It is likely that the limited statistical power of these studies together with the inclusion 

of ER negative cases explains the majority of these conflicting results and it would be 

important to address these points in planning a future in vivo study examining any 

association between the HER family and tamoxifen resistance.

There is little in vivo or in vitro evidence currently to link HER3 and HER4 to 

tamoxifen resistance (Larsen et a l, 1999; Knowlden et a l, 1998), although similar 

signalling pathways are activated by H ER l-4.

1.6.3 Aromatase Inhibitors versus Tamoxifen

Some of the most convincing clinical evidence for the role of HERl and 2 in 

tamoxifen resistance has come from neo-adjuvant trials where HERl/2 positive 

patients have significantly greater response to aromatase inhibitors than to Tamoxifen 

(Ellis et a l, 2001). Whilst there is no definite evidence that this is also the case in the 

adjuvant setting from trials so far, this is now being built into subtrial analysis 

(retrospectively for the AT AC trial and prospectively for TEAM (Tamoxifen 

Exemestane Adjuvant Multinational)). Certainly data from the AT AC (Dowsett,

2003) and lES trials (Coombes et a l, 2004a) suggest that some differences do exist in 

the molecular profile of patients who respond to early or to delayed treatment with
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aromatase inhibitors. In the ATAC trial PR negative patients derived greater benefit 

from initial aromatase inhibitor treatment compared to Tamoxifen. However PR status 

had no impact on response when aromatase inhibitors were given as delayed treatment 

to patients who had been disease free on Tamoxifen for 2-3 years (IBS). Whether the 

negative PR is acting as a suirogate marker for H ERl-3 overexpression in the AT AC 

trial remains to be seen but we do know that, as with ERa, there is an inverse 

relationship between PR expression and HER2 expression (Marsigliante et al., 1993; 

Quenel et al., 1995).

Further evidence on the relative importance of other growth factor receptors, 

including HERl, 3 & 4 are required before these findings alter clinical practice, 

particularly in the adjuvant setting.
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1.7: Cross talk between ER and HER pathways:

Relationship with Tamoxifen resistance?

Whilst some have argued that the mechanisms behind the HER families’ role in 

Tamoxifen resistance is due to a dislocation of the growth factor stimulated pathways 

from ER signalling, this is disputed by the fact that switching to another fomi of 

endocrine therapy can overcome resistance patterns both in vitro and clinically. Thus 

it is likely that ER signalling remains involved.

Several mechanisms have been proposed by which the type I RTKs may modify 

response to oestrogens and tamoxifen. There is a considerable body of biological 

evidence suggesting that this cross talk occurs at multiple levels and appears to be bi­

directional (Nicholson et al., 1999).

The most obvious relationship between the HER family and ERa status appears to be 

a negative one. Certainly tumours positive for H ERl-3 tend to be ERa negative 

(Witton et al., 2003) and, in the case of EGFR, it has also been suggested that at an 

individual cell level EGFR and ERa are mutually exclusive (Sharma et a l, 1994). 

This may partially be explained by an active mechanism at a transcriptional level 

whereby oestrogen suppresses EGFR (Yarden et al, 2001; Wilson and Chrysogelos,

2002) or HER2 (Newman et a l, 2000).

However we also know that oestrogen and EGFR can also have a stimulatoiy effect 

on each others pathways. In several ERa positive breast cancer cells lines it has been 

shown that oestrogen is able to transiently induce EGFR expression (Yarden et a l,

1996). Some evidence has suggested that oestrogen induced growth factor pathway 

stimulation may be via ‘non classical pathways. For example recent studies have
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demonstrated the ability of oestrogen to stimulate activation of the MAPK and PIK3 

pathways independently of gene action (Migliaccio et a l, 1996; Simoncini et al.,

2000). Alternatively there may be interaction with sites such as Spl (Salvatori et al.,

2003) resulting in direct transcriptional action of ERa on the EGFR gene.

In addition, the growth factors TGFa and EGF can produce oestrogenic effects in ER 

positive cells in the absence of oestrogenic stimuli (i.e. ligand independent activation) 

(Bunone et al., 1996; El Tanani and Green, 1997). Again recent evidence suggests 

that this interaction may be in a non-genomic manner (Razandi et al., 2003b) possibly 

involving interactions at the cell membrane (Chung et al., 2002). Ultimately though, 

irrespective of location, there still needs to be an endpoint by which the growth 

factors or their down stream effectors may manipulate ERa activation. As discussed 

eaiiier, oestrogen receptors are phosphoproteins (Shao and Lazar, 1999) and whilst 

ligand binding controls AF2 activity, AFl activity is regulated by phosphorylation at 

sites including serine 104/106, SI 18 and S167. (Ali et a l, 1993; Le Goff et a l, 1994; 

Smith, 1998; Arnold et a l, 1994). The potential of ERa to be modulated by 

phosphorylation provides a key mechanism by which the HER signal transduction 

pathways may influence ERa transcription. Multiple pathways activated by the HER 

receptors have been identified, which are often interlinked (Jorissen et a l, 2003). 

These pathways may provide the means by which a growth factor signal at the cell 

surface results in ERa phosphorylation and subsequent modulation of its functions 

including DNA binding and transcriptional activation despite the presence of 

tamoxifen. The cellular proliferation Ras/MAPK pathway and the survival/anti- 

apoptosis PI3-K/AKT pathway are both generating the most interest in terms of anti- 

oestrogen resistance mechanisms.
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1.7.1 Mitogen-activated protein kinase (MAPK) pathway

Growth factors acting via tyrosine kinase receptors activate MAPK by first the 

GTPase Ras then subsequent serine-theonine kinase Raf-1 activation (Hill and 

Treisman, 1995). The MAPK pathway is a key phosphoiylation cascade by which 

growth factor signal transduction is conveyed from the plasma membrane to the 

nucleus (English et al., 1999) (figures 6 & 7). The MAPKs phosphorylate and thereby 

modify the function of numerous proteins including those regulating cell cycle 

checkpoints and gene transcription (Chang and Karin, 2001). In the nucleus MAPK 

activates transcription factors such as myc and Elkl. Under normal conditions 

activation of the MAPK pathway is transient and attenuated by many control 

mechanisms including inactivating phosphatases (Keyse, 2000; Pearson et al., 2001). 

The control however may become lost and several lines of evidence suggest that 

dysregulation of this pathway may have particular significance in breast 

carcinogenesis.

MAPK activity has been shown to elevated in breast tumours often with upregulation 

of its gene expression (Sivaraman et a l, 1997) and has been associated with decreased 

survival (Mueller et a l, 2000). Phosphorylated MAPK positivity (identified using 

IHC) has been associated with a poor response to Tamoxifen therapy (Gee et al,

2001) in ERa positive tumours. Similar results have been demonstrated in vitro where 

HER2 driven MAPK elevation has been associated with Tamoxifen resistance 

(Kurokawa et a l, 2000; Benz et a l, 1993).

The serine phosphoiylation site SI 18 in the AFl region of the ER has been found to 

be a target for phosphorylation by MAPK (Kato et a l, 1995; Bunone et a l, 1996). 

Work using cell line mutants has identified a key role for SI 18 in oestrogen - 

independent MAPK activation of ER (Atanaskova et a l, 2002; Chen et a l, 2002).

55



However there also seems to be a role for ligand dependent (via oestrogen and to a 

lesser extent tamoxifen) activation of SI 18 which does not require MAPK (Chen et 

al., 2002). Thus it is postulated that oestrogen and also tamoxifen activation of the 

AFl region can be enhanced/circumvented by MAPK mediated growth factor 

signalling. This may provide a potent explanation for Tamoxifen and other anti­

oestrogen resistance.

However some studies indicate this ligand-independent signalling does seem to retain 

the ability to be inhibited by Tamoxifen (Atanaskova et al., 2002), suggesting that the 

this is method of signalling may not be sufficient to induce anti-oestrogen resistance 

on its own.

1.7.2 PhospatidyIinositol-3 kinase (PI-3K) and Akt pathway

The phospatidylinositol-3 kinase (PI-3K) and Akt pathway is known to have a key 

role in the cell survival (anti-apoptosis pathway) (Franke et a l, 1997). Akt (protein 

kinase B) is a member of a conserved family of serine/theonine protein kinases that 

includes Aktl, Akt2 and Akt3 (Alessi and Downes, 1998). Activation of 

tiansmembrane growth factor receptors results in the recruitment of PI3 kinase to the 

plasma membrane (Datta et a l, 1999). PI3 kinase subsequently promotes the 

generation of phosphorylated phosphoinositides which then bind and activate Akt 

(Campbell et a l, 2001; Chan et a l, 1999). It appears that HER3 in particular has a 

strong link to the Akt pathway with 6 binding sites being identified for PI3-K 

(Carraway, HI and Cantley, 1994).

Activated Akt then plays a key role in cell survival by phosphoiylating and hence 

modulating the activity of various transcription factors at the nucleus. Akt has been 

demonstrated to suppress apoptosis. Mechanisms for this include phosphoiylation
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(and hence inhibition of action) of the pro-apoptotic proteins BAD and capase-9 

(Cardone et a l, 1998; Datta et a l, 1997). Thus disruption of the Akt pathway may 

well result in tumour growth. Indeed cell lines with constitutively activated Aktl 

undergo malignant transformation (Sun et a l, 2001b).

Various studies have implicated members of the AKT pathway in the pathogenesis of 

breast cancer. Aktl kinase activity has been demonstrated in high grade breast cancers 

(Sun et a l, 2001b). Akt2 gene amplification has been reported in a small percentage 

of breast cancers (Bellacosa et a l, 1995) and Akt3 mRNA is elevated in ERa negative 

breast cancers (Nakatani et a l, 1999).

PTEN is a phospholipid phosphatase tumour suppressor gene that normally attenuates 

the Akt survival signal (Cantley and Neel, 1999) by dephosphoiylating 

phosphatidylinositol-triphosphate (PtdlnsP) and suppresses cell growth through the 

negative regulation of cell cycle and cell survival. Downregulation of PTEN is 

associated with increased PI3 kinase activity with subsequently higher levels of 3'- 

phosphorylated phosphoinositides, which bind to and activate PK-B/Akt. Reduced 

expression of PTEN has been demonstrated in high grade breast cancers (Bose et a l,

2002) and has recently been associated with relapse-free smwival and disease-specific 

suiwival in tamoxifen treated ER positive patients (Shoman et a l, 2005).

There is evidence that the Akt pathway may also mediate signalling from the growth 

factor receptors to the ERa (Martin et a l, 2000). Constitutively active Akt has been 

shown to induce ER reporter activity in the absence of oestradiol (Kurokawa and 

Arteaga, 2003) and MCF-7 cells overexpressing AKTa were not as sensitive to 

inhibition by Tamoxifen compared to wild type cells (Campbell et a l, 2001). Studies 

using cell lines with mutated serine residues have demonstrated that Akt mediates its 

action on the ERa by phosphorylation of serine residue Seri 67 in the AFl region.
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This again occurs in a ligand independent manner (Campbell et a l, 2001; Martin et 

a l, 2000).

Thus there is evidence that both the Akt and MAPK pathways may mediate the ERa -  

HER crosstalk leading to anti-oestrogen resistance in breast cancer. Again a limitation 

of examining these pathways independently is that they do not act in isolation. For 

example Akt has been shown to inhibit the Raf-MEK-MAPK pathway through 

phosphoiylation of Raf-1 (Zimmermann and Moelling, 1999). Ras has also been 

shown to bind and activate a subunit of PI3-K (Pacold et a l, 2000) and Akt activation 

is partially dependent on the activity of Ras

1.7.3 Continuous cycling of growth factor signalling stimulated ERa activation?

These in vitro results suggest the possibility that continuous cycling between a ligand- 

independent activated ERa and growth factor signalling could develop (Clarke et a l, 

2001a) so promoting unopposed tumour growtli. So where would tamoxifen fit into 

this cycle? As discussed previously. Tamoxifen acts by targeting the AF2 but not the 

AF-1 regions of the ERa. Should the AF-1 region become involved in ligand 

independent mediated activation this would provide a mechanism by which growth 

factor pathway stimulation of the ERa could occur with no mechanism for Tamoxifen 

to antagonise it (Figure 7).
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Figure 7

Cross talk between the HER family and phosphorylation sites o f the A F l region o f the 

ER may result in ligand independent activation.

More recently it has been suggested that ERa located at the membrane may directly 

signal via activation/cross talk with HERl (Razandi et al., 2003b). High levels of 

membranous ERa have also been associated with oestrogen-induced MAPK 

activation in MCF-7 cells (Zivadinovic and Watson, 2005). In addition, in vitro 

evidence has also suggested that resistance to Tamoxifen-induced apoptosis is 

associated with a direct interaction between HER2 and a cell membrane ER (Chung et 

al., 2002). If present in vivo, these interactions could provide a mechanism for a 

positive feedback loop, vdiere following activation o f the HER2-ERa axis at the cell 

surface, activation o f downstream signalling proteins such as MAPK and Akt initiate 

phosphorylation of the ERa at the nucleus (Figure 8). Interesting, recent evidence has 

also suggested that HER2 overexpression in ERa positive breast cancer cells 

promoted nucleus to cytoplasm relocalisation o f ERa so demonstrating further

59



evidence for a interaction between the HER family and ERa cellular location (Yang et 

al., 2004).

Figure 8

ER at the membrane may directly signal via interaction/crosstalk with HERl 

(Razandi et al., 2003b).
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1.8 Statement of Aims

A retrospective clinical follow up study has been performed on archival formalin - 

fixed paraffin embedded tissues, to further examine the relationship between the well 

demonstrated ERa-HER pathway crosstalk and Tamoxifen resistance. Tissue blocks 

from patients who had ERa positive cancers and who were treated with Tamoxifen 

have been analysed and the results correlated with clinical progression of these 

patients on Tamoxifen (i.e. Tamoxifen resistant disease).

The initial hypothesis under test is that the cases positive for H ERl-3 (but not HER4) 

will exhibit de novo resistance to Tamoxifen treatment reflected by shortened time to 

relapse on Tamoxifen treatment. We also postulate that this may occur following 

cross talk between the HER family and the ERa and have therefore examined 

evidence of ERa activation in these patients by analysing the phosphorylation status. 

In addition, as discussed earlier, recent trial results (Coombes et al., 2004a; Dowsett,

2003) demonstrate that PR status can determine who responds to early or to delayed 

treatment with aromatase inhibitors. Given the known inverse relationship between 

PR expression and HER2 expression (Marsigliante et a l, 1993; Quenel et a l, 1995) 

we therefore also postulate that both H ER l-3 and PR expression are time dependent 

predictors of Tamoxifen resistance (as would be predicted if these were de novo 

resistance mechanisms).

There is a need to address some of the problems we have identified previously when 

considering this relationship between the HER family and Tamoxifen resistance.

1. Much of the previous work has looked at the individual HER receptors in 

isolation. However, as explained, many of these receptors are co-expressed and 

certainly in the case of the potent HER2-HER3 heterodimer rely on each other for
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signal transduction. Thus we will determine H ERl-4 status in these tumours and 

identify the role that coexpression of receptors may play in determining 

Tamoxifen resistance.

2. The numbers involved has limited many previous studies. The small percentage of 

patients who are both ERa and HER positive will always limit the power of a 

study. We will use tissue micro array technology to increase the numbers of 

tumour samples we can analyse. This involves removing cores from pre-existing 

paraffin embedded blocks and reembedding them in an arrayed master block. 

Subsequent analysis of hundreds of specimens on only a few slides is therefore 

possible. There is also the additional advantage that all specimens are analysed 

under identical conditions. This technique has been validated in breast cancer 

(Torhorst et al., 2001) and will be discussed in more detail in the methods section.

3. During the course of undertaking this work, increasing evidence has come to light 

with regard to the cellular localisation of both the ERa and HER receptors. As 

discussed earlier ERa has been shown to act at the membrane (Razandi et a l, 

2002; Razandi et al., 2000) and there has also been studies reporting the existence 

of various members of the HER family at the nucleus (Razandi et a l, 2003a; Lin 

et a l, 2001; Ni et a l, 2001; Offterdinger et a l, 2002). The exact function of the 

receptors at these sites is not clear. Wliilst scoring the TMAs for 

presence/intensity of receptor positivity, it will be important to also play close 

attention to the cellular location of any staining.

4. Although the many studies have demonstrated amplification or overexpression of 

the HER receptors in relation to Tamoxifen resistance, we do not know if  these 

extra receptors are in fact activated. One way of demonstrating activation is by 

examination of the phosphorylation status of the receptors. Indeed phosphoiylated
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HER (determined using immunohistochemistry) was demonstrated in only 12% of 

HER2 positive patients in a recent study (Thor et al., 2000). They suggested that 

phospho"HER2 status provided improved prognostic information compared to 

HER status alone. We will therefore determine phosphorylated HER2 status in 

this study.

5. As discussed earlier one possible explanation for the conflicting reports on HER4 

and its association with survival may be that the results are antibody dependent. 

We have therefore chosen to compare the staining patterns of widely used 

antibodies in standardised conditions which are known to target either the 

intracellular (HFRl) or extracellular (H4.77.16) domains of HER4.

Thus a summary of the aims would be to

1. identify the H ERl-4 status of the tumours by analysis of protein expression

2. identify activation of ERa by assaying the phosphorylation of ER at the 2 key

sites discussed earlier using antibodies to SER 118 and SER 167

3. identify if PR status correlates with HER family positivity

4. investigate the activation of HER2 by assaying its phosphorylation status

These results would then be analysed to:

1. identify any relationship between HER 1 -4 and ERa phosphorylation

2. establish if activation of ERa by H ER l-4 is associated with resistance to

tamoxifen

3. identify any correlation between PR status and Tamoxifen resistance

4. determine if PR and/or HER family associated Tamoxifen resistance is time 

dependent.
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Future Implications

This department is currently constructing a TMA bank from cases involved in the 

TEAM trial. Markers identified as being significant from this work will be used in the 

prospective translational research arm of the trial.
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Chapter 2 Methods

2.1 Patient Seleetion

2.1.1 Ethical clearance

Ethical clearance was obtained from the Glasgow Royal Infirmary LREC committee 

(LREC 02SG007).

2.1.2 Patient Database

Details of sequentially diagnosed breast cancer patients, suitable for surgical excision, 

from years 1980 -1999 had been kept in a registered database kept within the 

University Department of Surgery. These patients had surgery and subsequent 

adjuvant therapy according to protocols at the time of diagnosis. Patients who had 

neoadjuvant treatment in terms of endocrine treatment, chemotherapy and 

radiotherapy prior to their surgeiy were also included in the database. The total 

number of patients in the database is 1116. Patient follow-up details have been 

entered prospectively since diagnosis. These entries include information on 

attendances, recurrence and metastasis details, date and cause of death and adjuvant 

therapy details (including tamoxifen treatment duration).

From this database, patients were selected who had been treated with adjuvant 

Tamoxifen therapy and who were either known to be ER positive or who did not have 

a record of ER status being tested. Patients with an unknown ER status were included 

to increase the numbers available for analysis, on the basis that all patients in the 

study would have their ER status re-tested. The number of Tamoxifen treated ER 

positive or ER unknown tumours was 685.
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1.3 Patient Exclusion

From this group of 685 patients, further exclusions were made on the following basis:

1. If  their follow up and full Tamoxifen history was not complete in terms of 

details of any relapse or duration of Tamoxifen ti eatment (n=52).

2. If the tumour blocks from pathology were not available or deemed unsuitable 

by the pathologist (B Dunne) because of limited tissue availability which may 

have compromised further diagnostic testing (n=177).

456 patients were therefore eligible for the study. 75 of these patients were ER 

nonspecified, with the remainder having being tested positive for ER by either ligand 

binding (130) or immunohistochemistry (251). No details about the methodology of 

these diagnostic tests over the years was available, and in the majority of cases it was 

only documented if the patient was ER positive or negative with no details on the 

values of ligand binding assay value or IHC score.
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2.2 TMA construction

2.2.1 TMA Technology

One of the key objectives of this study was to utilise a method by which many tissue 

samples could be tested for multiple antibodies in a limited amount of time. Tissue 

microarray technology has been increasingly used as a way of achieving this objective 

since it was developed by Kononen et al in 1998 (Kononen et al., 1998). Since then 

various studies have published work validating TMA use in both breast cancer and 

other tissues (Camp et al., 2000; Hoos and Cordon-Cardo, 2001; Torhorst et al., 

2001). The technique involves removing a representative core of tissue (0.6mm 

diameter) from the tumour block and inserting it into a recipient block along with 

cores from other donor blocks. The recipient block can then be sectioned and used for 

routine analysis in the same way as standard sections. Up to 300 individual tumour 

cores may be placed into a single recipient block thus enabling multiple tumour 

analysis in one IHC staining run.

The advantages of using micro array technology include bring able to perform high 

speed analysis, whilst minimising damage done to donor blocks so presemng 

valuable tissue for further research or diagnostic needs. In addition it enables 

standardisation of testing, with direct comparison of staining intensities between 

specimens so improving the subjective interpretation of results.

However there are some problems associated with this technique.

2.2.1.1 Missing samples/Loss rate

Cores within a TMA section may be damaged or lost during sectioning, or the core 

may not contain identifiable tumour. Core loss duiing sectioning and staining is a
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common problem with microarrays and ranges from 10% to more than 30% 

(Bubendorf et al., 1999; Hoos and Cordon-Cardo, 2001; Schraml et al., 1999; 

Torhorst et al., 2001). Sectioning loss can be minimised when performed by a suitably 

trained and experienced technician, and by attempting to array uniformly long cores 

for each specimen. The chance of obtaining identifiable tumour in the core can be 

maximised by using a trained pathologist to identify representative tumour areas.

The impact of lost cases can be minimised by increasing the number of cores taken 

per specimen. Parallel TMAs are therefore constructed for each series of original 

specimens. Torhorst et al (Torhorst et al., 2001) correlated the results from standard 

tissue sections with the results from 4 independent TMAs. They found that the 

fraction of interpretable tumours was 86-93% if 2 cores were available, 92-96% if 3 

cores available and 94-96% if all 4 cores available depending on antibody tested (PR, 

ER andp53).

2.2.1.2 Heterogeneity

Breast cancers are heterogeneous at both a moiphological and genetic level (Osborne, 

1985; Symmans et al., 1995). One potential drawback with TMA technology is that 

the 0.6mm biopsies taken from a tumour block will not be representative of the whole 

tissue specimen because of tumour heterogeneity. It has been suggested that optimum 

number of core-cut biopsies required to ensure an accurate histological diagnosis and 

grading of a tumour is 4 (Mcllhenny et al., 2002). However this study was based on 

free hand core techniques and 8% of the cores had no discernable histological features 

at all. Tohorst et al (Torhorst et al., 2001) reported that the fraction of tumours with 

heterogeneous findings was 9% for ER, 29% for PR and 11% for p53. For PR they 

required 3 samples of each tumour to achieve the same levels of positivity as large
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section analysis. However it must be remembered that a tumour block itself often 

represents a small fraction of the actual tumour. Camp et al (Camp et al., 2000) 

compared the results of expression of HER2, ER and PR in up to 10 cores per 

specimen with the results from standard tissue sections. They reported that results 

combining 2 cores demonstrated over 95% concordance between these two methods, 

and that the addition of a 3̂  ̂core increased concordance to over 97%.

Hoos et al (Hoos and Cordon-Cardo, 2001) analysed results found when looking at a 

more complex phenotype of expression of retinoblastoma (RB) protein. They 

demonstrated that using just 2 cores per specimen required some cases to be excluded 

from analysis is instances where there were contradictory results. However the 

addition of a 3“* core to the analysis improved concordance rates to 91%.

Based on the above results, we decided to minimise the effects of core loss and tissue 

heterogeneity by constructing the TMAs in triplicate. However more recent 

publications have suggested that at least 4 cores are required, especially for markers 

with a heterogeneous staining pattern such as PR (Sapino et al., 2006).

2.2.2 Technique

This department has been using TMA technology for some time in IHC and FISH 

analysis of breast, ovaiian and prostate tissue. We are currently involved in the 

construction of TMAs for the TEAM and NEAT (National Epirubicin Adjuvant Trial) 

trials. The TMAs were constructed for this study by myself under guidance from 

pathology MLS Os working within the department.

Formalin fixed paraffin embedded tissue bocks, prepared after surgical excision of the 

tumours, were obtained from the department of pathology. A tissue section from each 

block was stained using haematoxylin and eosin (H&E) to identify areas of tumour.

69



Representative areas on the H&E were identified by a pathologist (Barbara Dunne) 

and marked on the slide. As discussed earlier this is essential as it ensures the core 

taken contains representative tumour cells.

Prior to removing the cores, 5 x 3pM sections were cut from each pathology block by 

a MLSO in the lab. These sections have been stored and may be used in the case of 

any missing samples from the TMA slides or to validate the TMAs in any cases where 

there are doubts about the heterogeneity of tissue staining for a particular antibody. 

Subsequently 3 * 0.6mm cores of tissue were removed from each block at the area 

marked by BD using a tissue arrayer (Beecher instrument). This precision instrument 

uses 2 separate core needles for punching the donor and recipient blocks, together 

with a precise co-ordinate system to place and locate the tissue samples in the array. 

These cores of tissue were then transformed to 3 recipient blocks (80-120 cores per 

block) to form triplicate tissue arrays. In total we constructed 5 different arrays each 

in triplicate (total 15 donor blocks).

2.2,3 TMA Layout

The cores were placed at 1 mm intervals, with regular larger gaps as to ensure ease of 

identification of core position during analysis (Figure 9).

row normal tissues

1 2 3 5 6 7 8 9 11 12 13 14 15

Figure 9

Illustration o f  typical core placement layout in TMA.

70



2.2.4 Control Tissues

Cores were taken from 10 blocks containing samples of normal tissue (sourced from 

USA commercial). These nomial tissues consisted of skeletal muscle, smooth muscle, 

normal breast, lung, placenta, prostate, tonsil, lymph node, skin and testes. A core 

from each of these was placed in order, in a row, above the tumour cores in each of 

the 15 donor blocks. This provides the basis of controls for each of the antibodies, 

which have known staining patterns in normal tissues. This row of normal tissues 

also provided a mechanism for correct orientation of the TMA section after 

sectioning.

The completed tissue array blocks were heated at 37° for 10 minutes to ensure the 

tissue cores and paraffin stick together. Serial 3pM sections were then cut by a MLSO 

from the TMAs using silanised slides to improve section contact with the slide during 

high temperatures used in some antigen retrieval protocols.

Given the extremely valuable natuie of these TMAs in terms of a future research 

resource we took care to establish clear criteria for the number and timing of any 

TMA sections cut. Cutting too few sections would result in wastage (re-aligning and 

facing blocks to cut into them) whilst cutting too many may result in tissue oxidation 

of unused sections over time.

71



2.3 Immunohistochemistry

Immimohistochemisüy involves using an antibody to link a cellular antigen 

specifically to a stain that can be more readily seen with a microscope. Advantages of 

IHC include the ability to detect location of staining as well as providing a semi 

quantitative assessment of intensity. Problems however can occur in relation to 

specificity of the antibody as well as the need to expose antigenic sites to the 

antibody, particularly in formalin fixed tissues.

The 10 antibodies were chosen to achieve the aims for this study. These were 

antibodies against ER, PR, EGFR (HERl), HER2, HER3, HER4 (2 antibodies), 

phosphoiylated HER2 and phosphoiylated ER at 2 sites (serine 118 and serine 167). 

A summaiy of the antibodies used is attached in Appendix I.

2.3.1 Antibody Protocols: General principles

During the work up of the antibodies I followed a set of general principles described 

below which were subsequently tailored to each antibody as described in detail later. 

Both breast cancer whole sections and sections from a small practice TMA were used 

during the work up of all antibodies (as well as the relevant control slides).

A. Dewax, rehydmiion

Prior to any immunohistochemical staining using formalin fixed, paraffin embedded 

tissue, sections have dewaxed and rehydrated. Paraffin must be removed from the 

tissue to allow the water-based buffers and antibodies to penetrate.

For all antibody protocols this was done using the following regime:

1. Dewax in xylene (Fishers chemicals) 2* 4minutes
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2. Rehydrate in graduated alcohols;

• 100% alcohol 2*4minutes

• 90% alcohol 2minutes

• 70% alcohol 2 minutes

3. Rinse in water

B. Block o f endogenous peroxidase activity

Breast tissue is known to contain endogenous peroxidase. To minimise background 

staining from this, sections were treated with hydrogen peroxidase (VWR 

International Ltd; supplied at concentration ~ 30%), which is known to iixeversibly 

inactivate endogenous peroxidase. This was done either before or after antigen 

retrieval at a concentration of either 0.3% or 1% for either 10 or 20 minutes 

depending on the protocol determined for each antibody.

C. Antigen retrieval

To facilitate the antibody - antigens reactions in fixed tissue, it may be necessary to 

unmask or “retrieve” the antigens through pretreatment of the specimens. Antigen 

retrieval has been shown to increase reactivity of the majority of antigens in tissues. 

This was done by one of three methods under routine use in the lab, depending on the 

antibody used. These methods were:

1. Pressure microwave treatment in Tris EDTA buffer (0.37g sodium EDTA (BDH 

Laboratory Supplies) and 0.55g Tris base (Sigma) made up to 1 Litre with dH2 0 ). 

Microwave irradiation of formalin-fixed, paraffin-embedded specimens in buffer has 

been found to markedly enhance the retrieval of antigens. During this procedure the 

energy provided helps break some of the bonds formed during fixation, thus 

increasing the intensity of reactions.
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2. Boiling (in calibrated water bath set at 96°) in lOmmoI/L citrate buffer (we used 

1:10 Epitope Retrieval solution taken from DAKO Herceptest kit) for 20minutes.

3. Trypsinisation. Sections are incubated in 0.1% trypsin (Sigma) (dissolved in 0.1% 

calcium chloride (Sigma) solution preheated in a 37° waterbath) for 10 minutes. The 

conditions of concentration, time and temperature must be tightly conti'olled, so that 

the enzymes can break some of the bonds formed during fixation, uncovering 

antigenic sites, but the antigen should not be digested completely.

The choice of antigen retrieval method will be discussed later for individual 

antibodies.

D. Blocking non-specific background staining

Any non-specific background staining was blocked using one of 2 methods depending 

on the protocol. This was done by either:

1. Serum Free block (0.25% casein in PBS, containing carrier protein and 15mM 

sodium azide; DAKO) for 10 minutes

2. Normal horse serum (Vector) at concentration of 15pl/ml for 15 minutes 

Following incubation with blocking agent the solution was tapped off and the sections 

were blotted.

E. Blocking o f  Endogenous Biotin

Breast tissue is known to contain endogenous biotin. To minimise background 

staining, most of the protocols required treatment with an Avidin/Biotin Blocking 

agent (Vector) following the incubation with the horse serum or serum-free block. 

This was done by:

1. Incubation with Avidin D solution 15 minutes

2. 5 minute wash in TBS buffer

3. Incubate with Biotin solution for 15 minutes
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4. 5 minute was in TBS buffer

F. Incubation with Primary antibody

Sections were incubated with the primary antibodies at optimum concentrations and 

conditions determined for the individual antibodies (as described later). Antibodies 

(including the negative control antibodies) were always diluted in a tris-HCL buffer 

containing carrier protein and 0.015M sodium azide (DAKO). A slide from each run 

was always incubated with an isotype matched control antibody whilst working up the 

antibodies and in the final runs to ensure no false positive staining. Slides were 

washed twice in TBS buffer for 5 minutes following incubation.

G. Visualisation Methods

I used the DAKO LSAB+ Kit HRP, which utilises a refined avidin-biotin technique in 

which a biotinylated secondaiy antibody reacts with several peroxidase-conjugated 

streptavidin molecules. Slides were washed in TBS buffer between and after 

incubations with the link antibody and Strepavidin peroxidase solutions.

Detection was then completed with incubation with a 3,3’diaminobenzidine (DAB) 

solution (Vector Laboratories) for 2-10 minutes. The DAB solution was washed off in 

running water for 10 minutes.

H. Counterstaining, Dehydration and Mounting

The sections were counterstained, and then dehydrated using the following method.

• Haemoxylin 1 minute followed by rinse in mnning H2O

• Blue with Scotts tap water substitute (about 30 seconds) followed by rinse in

running H2O

• 70% alcohol 1 minute

• 90% alcohol 1 minute

• 100% alcohol 2*1 minute
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• xylene 2*1 minute

• slides were then mounted in DPX

Note: TBS buffer solution

Tris base saline buffer was made in the laboratory at a 1:10 dilution of a solution 

made by dissolving 60g Tris base and 87.6g NaCL perlL (IH2O (pH to 7.5).
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2.3.2 IHC protocol for ER

(Dako: clone 1D5 monoclonal IgGl mouse antibody)

To stain for ER I used a DAKO ER antibody used routinely in the diagnostic setting 

in our pathology department. The protocol used is given below.

*Make up Tris EDTA buffer +start warming solution while rehydrating

A) Dewax and réhydraté 

Dewax in xylene 2*4 min

Rehydrate in 100% alcohol 2*4 min 

90% alcohol 2min

70% alcohol 2min

rinse in water

Incubate sections in 0.3% H2O2 for 20 mins (8ml H2O2 in 400ml d H2O) 

rinse in water

B) Antigen retrieval

• make up Tris EDTA buffer (pH8)

• 0.37g sodium EDTA

.  0.55g Tris

• make up to 1 Litre with (IH2O

• microwave full power 14 min to warm solution

• add slides and lid and microwave on full power for 2 min to bring up pressure 

(lift yellow cap)

• microwave for 5 min under pressure

• remove weight to allow steam to escape

• cool for 20min

• wash running water
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C) Staining

• DAKO pen to ring sections

• Incubate in blocking solution for 15 min (15 p horse serum per ml TBS)

• Blot serum from sections

• Incubate in primary antibody at room temp for 30min (1:50 in antibody 

dilutent)

• Wash TBS 5min

• Incubate in secondaiy antibody (DAKO yellow) for 15 min at room temp

• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 15 min at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5ml d H2O: add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix) 30sec

• Wash running water lOmin

D) Counterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX
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2.3.3 EHC protocol for PR

The TMA sections were given to the department of pathology and processed as part of 

a diagnostic run for PR staining.

2.3.4 IHC protocol for EGFR 

(Mouse monoclonal IgGl Zymed 28-0005 clone 31G7)

We used a mouse anti-EGFR antibody whose use on breast cancer sections was first 

described in 1984 (Gusterson et al., 1984). It is a Zymed product; clone 31G7, 

monoclonal IgGl antibody. It has subsequently been used in a large neoadjuvant 

clinical trial (Ellis et al., 2001). We also have experience in using this antibody in the 

laboratoiy in analysing overexpression of EGFR in prostate cancer, and this protocol 

was followed without modification as described below.

*Put 80ml 0.1% calcium chloride solution in 37° water bath

A) Dewax and rehydrate

• Dewax in xylene 2*4 min

• Rehydrate in 100% alcohol 2*4 min

• 90% alcohol 2min

• 70% alcohol 2min

• rinse in water

• Incubate sections in 0.3% H2O2 for 20 mins (4ml H2 O2 in 400ml d H2O) on 

stirrer

• rinse in water
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B) Antigen retrieval

• Make up 0.1% trypsin in preheated 0.1% calcium chloride and allow to 

dissolve: (0.08g)

• Incubate slides in trypsin for 1 Omin in 37° water bath

• Wash in running water

• Transfer slides to a staining dish with water (slides can be stored like this)

C) Staining

• DAKO pen to ring sections

• Incubate in blocking solution for 20min (15pi horse serum per ml TBS)

• Blot serum from sections

• Incubate in primary antibody for 1 hour in humidified chamber at 25° (1:50 in 

DAKO antibody dilutent)

• Wash TBS 5min

• Incubate in secondary antibody (DAKO yellow) for 30 min at room temp

• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 60min at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5ml d HgO: add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Counterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water
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E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX
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2.3.5 IHC protocol for HER2

(Dako HercepTest^^* Immunogen is the synthetic C-terminal fragment 

(intracytoplasmic part) of the HER2 protein)

This laboratory is an approved national testing centre for HER2. My slides were 

included in a diagnostic run using the DakoCytomation Autostainer. We also plan to 

use these slides in a HER2 FISH but these results will not be available for report in 

this thesis.

A) Dewax and rehydrate

• Dewax the slides: 2 x 5  mins in Xylene

• Rehydrate: 2 x 3 mins 100% alcohol

• 3 mins 90% alcohol.

• Rinse in Water.

• Rinse in water.

B) Epitope Retrieval

• 40 mins at 96 °C in heated water bath.

• Cool for 20 mins.

• Transfer in to wash buffer for 5 mins

C) Staining
• R n g  sections with DAKO pen to create a barrier

• Incubate in peroxidase blocking reagent for 5 mins.

• R nse in water.

• Incubate in primary antibody in humidified chamber for 30 mins.

• Wash 5 mins in wash buffer

• Incubate in visualization reagent at room temp for 30 mins

• Wash 5 mins in wash buffer.
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• Make DAB substrate. To 1 ml DAB substrate add 1 drop DAB chromogen

• Incubate sections with substrate until colour develops (10 mins)

• Wash in water.

D) Counterstam

• Stain in haematoxylin for 3 mins.

• Rinse in running tap water

• Blue with Scotts tap water substitute

• Rinse in running tap water

E) Dehydrate and mount

• 1 min 70% alcohol

• 1 min 90% alcohol

• 2 x 1  min 100% alcohol

• 2 x 1  min xylene

• mount in DPX
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2.3.6 IHC protocol for HER4

As discussed previously we wished to compare the staining results of 2 HER4 

antibodies which target either intra -  or extracellular domains. Monoclonal IgG2b 

mouse antibody HFRl was first used by Srinivasan et al (Srinivasan et a l, 1998) in 

1998 to determine the expression of HER4 in formalin fixed paraffin embedded 

noimal tissues and cancers. This group demonstrated the ability of this antibody to 

recognise HER4 by immunoprécipitation, western blotting and immunostaining of 

cytocentrifuge preparations of NH3T3 cells transfected with HER4. There was no 

crossreactivity with EGFR using A431 cell lysates or with HER3 or HER4 using 

lysates from SKBR3 or 293/HER3 cells. We wished to compare the staining patterns 

of this antibody to those of a second monoclonal IgGl antibody clone H4.77.16 also 

supplied by Neomarkers. Our laboratoiy has previous experience in using this 

antibody in frozen breast cancer samples (Witton et a l, 2003). The HFR-1 antibody is 

raised against an intracellular epitope aal 249-1264 whilst the H4.77.16 antibody is 

raised against an extracellular fragment. Therefore HFRl is thus able to recognise 

both the intact receptor and the cleaved ICD as it traffics through the cell. However 

the H4.77.16 clone will detect the full length receptor not the cleaved ICD.

2.3.6.I HFRl

(Mouse monoclonal Ab Clone HFR-I#MS 637-Po)

The datasheet for this product suggested that the antibody should be used at a dilution 

of between 1:40 to 1:20 from the initial concentration of 200pg/ml with no antigen 

retrieval required. Breast cancer sections were used in the work up of this antibody 

together with skeletal muscle slides provided by Neomarkers used as positive control 

slides. Antibody concentrations from 1:10 to 1:100 incubated over periods of between
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30 minutes and 2 hours were tried, with the optimum antibody concenti'ation found to 

be at a 1:50 dilution (i.e. 4pg/ml) for 1 hour. Initially there was some residual mild 

background staining seen on the negative control slides, however this was eliminated 

when the hydrogen peroxide concentration was increased to 1% for 20 minutes and 

serum free block (DAKO) was used instead of horse serum as a blocking agent. This 

method provided the optimum range of staining intensity with minimal background 

staining and clear negative control slides.

A) Dewax and rehydrate 

Dewax in xylene 2*4 min

Rehydrate in 100% alcohol 2*4 min 

90% alcohol 2min

70% alcohol 2min

rinse in water

Incubate sections in 1% H2O2 for 20 mins (13.3ml H2O2 in 400ml d H2O) 

rinse in water

B) No Antigen retrieval

C) Staining

• DAKO pen to ring sections

• Incubate in serum free blocking solution for I Omin

• Blot serum from sections

• Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

• Incubate in primary antibody at room temp for 1 hoiu' (1:50 in antibody

dilutent)

• Wash TBS 5min

• Incubate in secondary antibody (DAKO yellow) for 30 min at room temp
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• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 60min at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5mi d H2O: add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Counterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX

23.6.2 H4.77.16

(Mouse monoclonal Ab, IgGlclone H4.77.16 #MS-270-PABX)

The datasheet for this antibody did not provide any guidance for its use in IHC and 

the only other published work using this antibody was for immunoprécipitation and 

flow cytometry (Tang et al., 1999; Witton et a l, 2003) . However it had been used 

within our lab on frozen tissue sections (Witton et a l, 2003). On frozen tissue the 

antibody was used a concentration of 2|o,g/ml overnight at 4°. No antigen retrieval had
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been used and biotinylated secondary antibodies with horseradish peroxidase 

streptavidin-biotin complex and DAB were used for antibody detection. The initial 

work up of this antibody attempted to replicate this method following dewaxing and 

rehydration of the cut sections. However no staining was detected using this method. 

Therefore a modification of the protocol used with the HFRl antibody was tried. This 

method using an antibody dilution 1:20 (50|ug/ml) for 2 hours provided optimum 

range of staining intensity with minimal background staining and clear negative 

control slides.

A) DeM>ax and rehydrate 

Dewax in xylene 2*4 min

Rehydrate in 100% alcohol 2*4 min

90% alcohol 2min

70% alcohol 2min

rinse in water

Incubate sections in 1% H2O2 for 20 mins (13.3ml H2O2 in 400ml d H2O) 

rinse in water

B) No Antigen retrieval

C) Staining

• DAKO pen to ring sections

• Incubate in serum free blocking solution for lOmin

• Blot serum from sections

• Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

• Incubate in primaiy antibody at room temp for 2 HOURS (1:20 in antibody

dilutent)

• Wash TBS 5min
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• Incubate in secondary antibody (DAKO yellow) for 30 min at room temp

• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 6Omin at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5ml d H%0: add 2 drops

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Coimterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

xylene 2* Imin*

mount in DPX
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2.3.7 IHC protocol for HER3

(Mouse monoclonal, IgGl, clone H3.105.5, #MS-303-PABX)

We used a monoclonal IgGl antibody clone H3.105.5 supplied by Neomarkers. This 

antibody is raised against the extracellular domain of recombinant human HER3 

oncoprotein Our laboratory has previous experience in using this antibody in frozen 

breast cancer samples (Witton et al., 2003). The antibody has previously been tested, 

within the laboratory, using an immunohistochemical immunoperoxidase technique 

for its ability to detect HER3 in frozen sections of pellets of cells transfected with c- 

erbB-3 c-DNA and expressing high levels of protein. Both antibodies labelled these 

cells strongly but not the untransfected parent line (data unpublished).

The datasheet for this product did not provide any guidance for its use in IHC and the 

only published work using the antibody for immunoprécipitation (Chen et al., 1996). 

However it had been used within our lab to determine protein expression on frozen 

tissue sections. On frozen tissue the antibody had been used at a concentration of 

2pg/ml overnight at 4°. No antigen retrieval was used and biotinylated secondary 

antibodies, horseradish peroxidase streptavidin-biotin complex and DAB were used 

for antibody detection. My initial work up of this antibody attempted to replicate this 

method following dewaxing and rehydration of the cut sections. However no staining 

was detected using this method. Therefore a modification of the protocol used for the 

HER4 antibodies was tiled with no antigen retrieval and room temperature 

incubations. This method demonstrated some staining. The protocol was then run at 

antibody concentrations between 1:10 and 1:100 dilutions for between 30 minutes and 

2 hours. These titrations demonstrated that the antibody dilution 1:20 (50pg/ml) for 2 

hours provided the optimum range of staining intensity with minimal background 

staining and clear negative control slides.
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A) Dewax and rehydrate

• Dewax in xylene 2*4 min

• Rehydrate in 100% alcohol 2*4 min

• 90% alcohol 2min

• 70% alcohol 2min

• rinse in water

• Incubate sections in 1% H2O2 for 20 mins (13.3ml H2O2 in 400ml d H2O)

• rinse in water

B) No Antigen retrieval

C) Staining 

DAKO pen to ring sections

Incubate in serum free blocking solution for lOmin 

Blot serum from sections

Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

Incubate in primary antibody at room temp for 2 HOURS (1:20 in antibody

dilutent)

Wash TBS 5min

Incubate in secondaiy antibody (DAKO yellow) for 30 min at room temp 

Wash TBS 5min

Incubate in Streptavidin HRP (DAKO red) for 6Omin at room temp 

Wash TBS 5min

Incubate in DAB substrate until colour develops (5ml d H2O: add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water
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D) Counterstam

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX
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2.3.8 IHC protocol for phospho specific HER2 (pHER2)

(Mouse monoclonal Ab IgGl, Ab-18 (clone PN2A), #1072 Neomarkers)

HER2 has at least 4 tyrosine autophosphorylation sites including Tyrl023 and 

Tyrl248 on the C-terminal (Hazan et a l, 1990). Antibodies against the Tyrl248 site 

have been developed (DiGiovanna and Stem, 1995; Epstein et a l, 1992) by raising 

antisera against the tyrosine-phosphorylated c-terminal (residues 1243-1255) HER2 

peptide sequence and the resultant clone PN2A is commercially available from 

Neomai'kers. Specificity of this clone was demonstrated, by its’ developers, by its 

ability in immunoblotting to recognise p i85 in a tyrosine-phosphorylation dependent 

manner without recognising the closely related phosphoiylated EGFR or the highly 

homologous COOH terminus of HER4 (DiGiovanna and Stem, 1995; Bangalore et 

al, 1992).

We used the Neo markers PN2A clone (monoclonal IgGl). The datasheet for this 

product suggested antigen retrieval was optimised by boiling sections in lOmM citrate 

buffer followed by incubation of the antibody diluted to between 1:10 and 1:20 times 

the original concentration of 200pg/ml for 2 hours at room temperature. Positive 

control slides supplied by Neomarkers and sections from paraffin embedded SKBR-3 

cells (known to express phosphoiylated HER2 (DiGiovanna and Stem, 1995) were 

used a positive controls to work up antibody.

Antibody retrieval was peifonned by boiling (in calibrated water bath set at 96°) the 

sections in lOmmol/L citrate buffer (1:10 Epitope Retrieval solution taken from 

DAKO Herceptest kit) for 20minutes.

Antibody dilution titrations were peifoimed for 1:100, 1:50, 1:20 and 1:10 

concentrations. I also compared the results of incubating the antibody overnight for 4° 

to incubation at room temperature from between 2 hour and 8 hour durations.
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Incubation with the antibody at 1:10 concentration for 6 hours at room temperature 

provided the optimum results in terms of range of intensity staining combined with 

minimal background staining and clear control slides.

A) Dewax and rehydrate

• De wax in xylene 2*4 min

• Rehydrate in 100% alcohol 2*4 min

• 90% alcohol 2min

• 70% alcohol 2min

• rinse in water

• Incubate sections in 1% H2O2 for 10 mins (13.3ml H2O2 in 400ml d H2O)

• Rinse in water

B) Antigen retrieval

• 1:10 HER2 antigen retrieval solution used

• 20min 96°

• 20min cool

• rinse in water

C) Staining

• DAKO pen to ring sections

• Incubate in serum free blocking solution (DAKO) for lOmin

• Blot serum from sections

• Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

• Incubate in primaiy antibody at room temperature for 6° (1:10 in antibody

dilutent)

• Wash TBS 5min

• Incubate in secondary antibody (DAKO yellow) for 30 min at room temp
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• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 60min at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5ml d H2O: add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Counterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2* 1 min

• xylene 2* Imin

• mount in DPX

94



2.3.9 IHC protocol for Phospho specific ER

The oestrogen receptor has multiple phosphoiylation sites, which modulate the 

function of the receptor as discussed previously. We wished to concentrate on the 

phosphorylation sites of Serine 118 (the putative target of the MAPK pathways) and 

Serine 167 (the putative target of the Akt pathway). Antibodies to each of these sites 

aie commercially available. There is no published literature regarding either of these 

antibodies.

2.3.9.1 Phospho ERa Serine 118

(Mouse monoclonal, IgG2b 16 J4 antibody #2511 cell signalling)

The Phospho-oestrogen receptor (serl 18) 16J4 antibody was purchased from Cell 

signalling. It is a 65.5 kDa monoclonal antibody, (isotype IgG2b) produced by 

immunising mice with a synthetic phosphopeptide coixesponding to residues 

surrounding Serl 18. Product literature for the antibody demonstrates its ability to 

detect ER only when phosphorylated at Serl 18, with no cross reactivity with ER(3. 

Breast cancer sections were used in the work up of this antibody. The datasheet for 

this antibody suggested heating the sections in lOmM sodium citrate buffer for 10 

minutes. It suggested overnight incubation at 4° at 1:50 dilution (in blocking 

solution). However using this method, there was some slight background staining on 

some sections treated with an isotype matched control antibody. By changing the 

antigen retrieval time to 20 minutes (as per Herceptest), diluting the antibody in 

DAKO antibody dilutent and using protein free block instead of horse serum, this 

background was eliminated. Using this method at 1:50 the staining pattern was 

generally strong throughout the majority of positive sections, therefore antibody 

titration was performed using dilutions from 1:50 to 1:500. The optimum
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concentration in terms of range of intensity staining and minimal background staining 

was found to be 1:300.

A) Dewax and rehydrate

• Dewax in xylene 2*4 min

• Rehydrate in 100% alcohol 2*4 min

• 90% alcohol 2min

• 70% alcohol 2min

• rinse in water

B) Antigen retrieval

96

?£

• 1:10 HER2 Ag retrieval sol used
'*

• 20min 96°

• 20min cool

• rinse in water

• Incubate sections in 1% H2O2 for 10 mins (13.3ml H 202 in 400ml d H2O)

C) Staining

• DAKO pen to ring sections

• Incubate in serum free blocking solution for 1 Omin

• Blot serum from sections

• Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

• Incubate in primary antibody at 4° overnight (1:300 in antibody dilutent)

• Wash TBS 5min

• Incubate in secondaiy antibody (DAKO yellow) for 30 min at room temp

• Wash TBS 5min

• Incubate in Streptavidin HRP (DAKO red) for 60min at room temp

• Wash TBS 5min



• Incubate in DAB substrate until colour develops (5ml d H2O; add 2 di'ops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Counterstain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX

2.3.9.2 Phospho ERa Serine 167 

(Rabbit polyclonal Ab, #2514 cell signalling)

The phospho-oestrogen receptor (serl67) polyclonal antibody (Cell Signalling) was 

produced by immunising rabbits with a synthetic phospho-serl67 peptide 

corresponding to residues surrounding Seri 67 of human ER. Product literature for this 

antibody states that the antibody detects ER only when phosphorylated at Seri 67 with 

no cross-reaction with phosphoiylated isoform ER)3.

Breast cancer sections were used in the work up of this antibody. The product 

datasheet for this antibody suggested heating the sections in lOmM sodium citrate 

buffer for lOminutes. It suggested overnight incubation at 4° at 1:50 dilution (in
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blocking solution). However we decided to follow the protocol already described 

above as used for Seri 18 antibody. This produced some faint staining at the 1:50 

concentration. Antibody concentrations at 1:10, 1:20 were then tried with the 1:10 

concentration demonstrating a good range of staining patterns between sections.

A) Dewax and rehydrate

• Dewax in xylene 2*4 min jI
• Rehydrate in 100% alcohol 2*4 min j

• 90% alcohol 2min |

• 70% alcohol 2min

• rinse in water

B) Antigen retrieval

• 1:10 HER2 Ag retrieval used

• 20min 96°

• 20min cool

• rinse in water

• Incubate sections in 1% H2O2 for 10 mins (13.3ml H2O2 in 400ml d H2O)

C) Staining

• DAKO pen to ring sections

• Incubate in semm free blocking solution for 1 Omin

• Blot serum from sections

• Avidin Biotin Block (Avidin 15min / TBS 5min / Biotin 15 min / TBS 5min)

• Incubate in primary antibody at 4° overnight (1:10 in antibody dilutent)

• Wash TBS 5min

• Incubate in secondaiy antibody (DAKO yellow) for 30 min at room temp

• Wash TBS 5min
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• Incubate in Streptavidin HRP (DAKO red) for 6Omin at room temp

• Wash TBS 5min

• Incubate in DAB substrate until colour develops (5ml d H2O; add 2 drops 

Buffer, mix, 4 drops DAB stock, mix, 2 drops hydrogen peroxide, mix)

• Wash running water

D) Coimtersiain

• Haemoxylin for 60 sec

• Rinse running water

• Blue with Scotts tap water substitute

• Rinse running water

E) Dehydrate and mount

• 70% alcohol Imin

• 90% alcohol Imin

• 100% alcohol 2*1 min

• xylene 2* Imin

• mount in DPX
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2.4 Scoring Principles

During the work up of the antibodies, my skills at semi quantitative 

immunohistochemistiy scoring were developed under the guidance of my supervisor 

(JB). Scoring was performed on a light microscope (Laborlux S, Leitz). Prior to any 

final scoring of the TMAs, a series of TMA slides (including the Herceptest and ER 

slides) were double scored, achieving an ICCC (Intra-class correlation coefficient) of

0.94 (n=890) for membrane staining and 0.84 (n=827) for nuclear staining. These 

results indicated excellent correlation between scores. All subsequent cases were 

scored by ST alone. In addition intra-observer correlation was also performed by 

selecting a TMA slide from 6 separate antibody runs (for phospho HER2, phospho 

ER(167), ER, PR, HFRl and H3.105.5) and scored blind by ST on 2 separate 

occasions for each relevant staining modality (membranous, cytoplasmic, nuclear'). 

The Intra-class coefficient correlation (ICCC) score was 0.8282 for membrane scoring 

(n=274), 0.9431 for cytoplasmic scoring (n=345) and 0.9327 (n=422) for nuclear 

staining.

As discussed previously, there have been numerous publications describing the 

discovei-y of protein expression out-with classically expected areas. For this reason, 

for each core scored, we recorded a separate score for any membrane, cytoplasmic or 

nuclear staining seen.

In the absence of any consistent method of scoring most of the antibodies used, we 

elected to use a unifoi'm approach for each staining location.

1. Membrane staining. For any membrane staining demonstrated, I opted to use 

the well described Herceptest system. Cores with over 10% of strong
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membrane staining were assigned 3+; cores with over 10% moderate staining 

were assigned 2+. Cores with over 10% weak staining were assigned 1+.

2. Cytoplasmic staining. For any cytoplasmic staining seen a Histoscore was 

given. This method is well described for cytoplasmic staining and involves 

giving a weighted score for percentages of staining seen. For example, a core 

demonstrating 50% of cells with weak (1+) staining intensity, 20% of cells at 

a moderate (2+) and 20% of cells at a strong (3+) intensity would be given a 

histoscore of 150 (50*1 + 20*2 + 20*3). Thus using this method the maximum 

histoscore that can be achieved is 300.

3. Nuclear staining. Traditionally in the clinical diagnostic setting ER and PR 

scoring has been done using the Allred system (Haiwey et a l, 1999). This 

method involves assigning a proportion score (the estimated proportion of 

positive-staining tumor cells: 0, none; 1, < 1/100; 2, 1/100 to 1/10; 3, 1/10 to 

1/3; 4, 1/3; to 2/3; and 5, > 2/3) and an intensity score (the average intensity of 

positive tumor cells: 0, none; 1, weak, 2, intermediate; and 3, strong). The 

proportion and intensity scores are added to obtain a total score (range from 0 

to 8). An alternative but similar method is the QuickScore (Detre et a l, 1995) 

which is calculated in a similar way but with different cut-offs for the 

proportion score (1=0-4%; 2=5-19%; 3=20-39%; 4=40-59%; 5=6-=79% and 

6=80-100%). Flowever we wished to use a continuous variable method of 

scoring which would also enable ease of correlation with cytoplasmic scoring 

results. We therefore also scored all the nuclear staining using the Histoscore 

method.
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Once individual cores had been individually scored, we then needed to decide on how 

the triplicate cores would be combined to provide one single score for each tumour 

when there was any discrepancy between results. There was little guidance in the 

published literatuie on how this was best achieved. Therefore we developed the 

following approach:

1. Membrane scores. When there was any discrepancy between cores, then the 

percentages stained at each intensity level were combined. For example where 

3 cores were available there would need to be at least 30% combined 

percentage of strong membranous staining for the combined score to be given 

a 3+. If just 2 cores were available the combined percentage would have be at 

least 20% to achieve an intensity level.

2. Cytoplasmic scores. The average histoscore for the available cores was taken.

3. Nuclear scores. The average histoscore for the available cores was taken.

102



2.5 Statistical analysis

Suivi val analysis can be performed using a variety of endpoints. Traditionally breast 

cancer related death has been used for analysis of prognostic markers as it is a fixed, 

‘hard’ endpoint. However it can be lead to problems when analysing response to a 

particular therapy as patients relapsing on Tamoxifen would normally be switched to 

alternative endocrine therapies such as aromatase inhibitors, which would confuse any 

data looking at Tamoxifen use only. In addition, for this analysis, we decided to 

terminate follow-up duration after Tamoxifen use was stopped. The advantage of this 

method is that it focuses on patients with disease recurrence whilst on Tamoxifen (i.e. 

'Tamoxifen resistant') and excludes patients who relapse after Tamoxifen use. This 

second set of patients could be theoretically be considered as having potentially 

tamoxifen 'sensitive' tumours, as they were disease free whilst on adjuvant 

Tamoxifen but relapsed when their ti eatment came to an end.

The statistical software package SPSS version 9 was used for all analysis. The Kaplan 

Meier life table statistical analysis was used for analysis of disease free survival 

whilst on Tamoxifen. This was performed over two time periods with respect to HER 

and PR status; throughout the duration of Tamoxifen treatment (to parallel ATAC) or 

after 3 years of Tamoxifen treatment (to parallel the lES trial). Note again that 

patients recurring after termination of adjuvant treatment were classed as censored 

events, as these patients could be classed as relapses because of treatment withdrawal 

rather than because of resistance to Tamoxifen treatment. Cox Regression and Hazard 

Ratio analysis was performed with inclusion of the biological marker alongside 

known prognostic factors size, nodal status and grade. Because of the variety of 

chemotherapy regimes used over the time period of this study, the influence of
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chemotherapy treatment on the relationship between biomarker and tamoxifen 

resistance was not statistically examined. In addition, menopausal status was not 

documented for these patients, however age (above or below 50) was incoiporated as 

a variable in statistical analysis.
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Chapter 3: Results 

3.1 ERa status and patient characteristics of ERa 

positive group

3.1.1 ERa Status

It was particularly important to confirm ERa status in our cohort as in the peiiod over 

which these patients were diagnosed ERa testing moved from ligand binding assays 

to conventional ICH testing. The 15 TMA slides were stained alongside a control 

slides which had been provided by the department of pathology. There was an 

example of a strongly positive, weakly positive and negatively staining breast cancer 

section on the slide and this provided a reference for subsequent scoring. One control 

slide was incubated with an isotype matched antibody and showed no staining.

3.1.2 ERa Staining and scoring

For 34/456 (7.5%) cases there was insufficient material for ERa analysis, either due to 

core loss or insufficient tumour material in cores and these patients were therefore 

excluded from further analysis. Further results and discussion relating to missing/non- 

valid cores will take place later.

Both nuclear and cytoplasmic staining was noted (Appendix Ha). The nuclear staining 

was scored using the Histoscore system as described previously and scores for each 

core were then averaged. ERa slides were double scored for nuclear staining by ST 

and JB and the results averaged. All cases with a nuclear Histoscore 10 or above were 

considered ERa positive (based on current departmental pathology guidelines for 

suitability for endocrine treatment). 20/422 (4.74% of valid cases) were therefore ERa
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negative leaving 402 cases classed as being ERa positive. The 54 ERa negative or 

ERa unknown patients were excluded from any further analysis relating to this study 

with regard to Tamoxifen resistance.

The mean ERa histoscore of the ERa positive (n=402) tumours was 150.46 (S.D. 

57.89) and the median was 153.00 (range 10-300) (Figure 10).

233/402 (57.96%)

100 85/4 0 2 (2 1 .14%) 84/402 (20 .90%

10-100 101-200 201-300
ER nuclear Histoscore Range

Figure 10

ER m id  ear staining: Histoscore intensity andfrequency.

These ERa results were compared to the original results from pathology (performed at 

time of diagnosis, either by IHC or ligand binding) (Table 1). There is a significant 

correlation demonstrated between our TMA results and the pathology results. With 

incorporation of cases labelled weakly positive by pathology into the pathology ER 

positive group, the concordance between TMA and pathology results is 98% (kappa 

.487). Note that 3 cases labelled positive by pathology (all by IHC) were negative 

within the TMA sections. Of those cases labelled weak (all by lElC) by pathology 

4/20 were negative on the TMA sections.
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Table 1
Comparison to pathology ERa status

TMA ERa Total
NEG POS

neg 3 3

PATH ERa status ns
pos

10
3

61
325

71
328

wk 4 16 20
Total 20 402 422

Comparison o f TMA obtained ERa status with pathology 
department determined ERa status

3.1.3 Patient Characteristics: ER positive only group (n=402)

The original group of ER positive/unknown patients consisted of 686 patients prior to 

exclusions for block unavailability or missing follow-up. The final dataset of our 

TMA classified ER positive patients (n=402) was compared to this original group in 

terms of grade, nodal status, histology, size, Nottingham Prognostic Index (NPI) 

(Galea et al., 1992) and age (Table 2). As can be seen no significant difference can be 

seen between the 2 groups in terms of these clinico-pathological variables (%̂ ).

In addition to tamoxifen, 99/399 (24.8%) patients had chemotherapy (3 unknown) and 

110/399 (27.57%) had radiotherapy (3 unknown). The median duration of tamoxifen 

therapy was 5 years (range 0.3-18yrs). The mean follow-up duration is 6.91 years (SD 

3.34 years) and median 6.45 years (range 0.64-18.42 years). There were seventy four 

breast cancer specific deaths. There were one hundred breast cancer relapses, seventy 

eight of which were whilst on Tamoxifen.
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Table 2
Comparison between final data set (n=402) and original pre-excluded group (n=686)

final d a ta  s e t  
num ber/tota l valid  %

P re-exc lu d ed  g ro u p  
nu m ber/total valid%

X2 
p v a lu e

1

G rade ^

m issing

82 /310
154/310
74 /310

92

26 .45
49 .68
23 .8 7

142/569  24 .96  
270 /569  47 .45  
157/569  27 .59  

117

p=0,4868

0

nodal status ^

m issing

193/369
107/369
62 /3 6 9

33

5 2 .3 0
2 9 .0 0
18 .70

340 /612  55 .6  
176/612  28 .8  

96 /612  15.7  
74

p=0.7596

ductal

m issing

322 /397
4 5 /3 9 7
30 /397

5

81.11
11 .33
7.56

522 /659  79 .2  
74/659  11.2  
63 /659  9.6  

27

p=0.5371

T1

T3
m issing

154/380
204 /380
22 /380

22

4 0 .5 3
53 .68
5.79

252 /630  40  
339 /630  53 .8  

39/630  6 .2  
56

p=0.9601

<3.5

’S.'
m issing

105/284
135/284
45 /2 8 4

118

36 .97
47 .18
15 .85

145/442  32.8  
213 /442  4 8 .2  

84 /442  19 
244

p=0.3956

a g e  <50  
>50

65
337

16 .17
83 .83

123/686 17.9  
563 /686  82.1

p= 0.6828

The final dataset of our TMA classified ER positive patients (n=402) w as compared to the 
original pre-excluded group in terms o f grade, nodal status, histology, size, Nottingham 
Prognostic Index (NPI) and age. The p value w as calculated from chi-square y2  analysis

The number and timing of recui'rences is shown in Table 3. The average time to 

recurrence on Tamoxifen (n=68) is 2.5 years (SD 1.89 years) with median 2.15 years 

(0.1-8.1 years). The median time on Tamoxifen (for those without recurrence) was 

5yrs.

Table 3
Recurrence Type
R e c u r r e n c e  ty p e F req u en cy P e r c e n ta g e
N one 283 70 .40
On tam oxifen early (years 0-3) 53 13.18
On tam oxifen late (>3years) 25 6.22
After tam oxifen com pletion 34 8.46
S eco n d  Primary 7 1.74
Total 40 2 100 .00

Frequency and percentage o f type and timing o f breast cancer 
recurrence in relation to tamoxifen use.
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3.1.4 ER cytoplasmic staining

The mean cytoplasmic histoscore for the ER positive group was 49.57 (S.D. 36.54) 

and the median 50 (0-150). ER cytoplasmic staining intensity was correlated with ER 

nuclear staining intensity (p<0.001 Kendall’s tau-b).

3.1.5 Disease Free Survival on Tamoxifen: Relationship to intensity of ER 

staining

When the ERa positive cohort was split into groups depending on intensity of ERa 

nuclear staining (i.e. above and below median value) there was no significant 

differences in recurrence on Tamoxifen that could be related to intensity of the 

nuclear staining (p=0.2327). This was also the case when only relapses occurring in 

the first 3yrs where analysed.

Interestingly however, cases without any cytoplasmic staining (n=83) were 

significantly more likely to recur on Tamoxifen (Figure 11, p=0.0127). Note that for 

this, and all following survival curves the time on tamoxifen extends beyond 1 Oyrs as 

several patients in our cohort (especially those on diagnosed earlier) did stay on 

tamoxifen long after the now established 5yr treatment duration.
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1.0

.9

ËRcyto pos(n=319).8

.7

.6

ER cyto neg (n=83)

.5
0 5 10

Time On Tamoxifen

Figure 11

Kaplan-Meier survival cun>es demonstrating cumulative disease free survival 

différences (endpoint o f breast cancer disease relapse whilst on Tamoxifen) between 

patients positive or negative fo r  cytoplasmic ERa staining. Cutoffs fo r  positivity fo r  

variables are defined in the text. P values represent log rank testing o f the difference 

in cumulative disease free survival.
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3.2 Core availability

3.2.1 Missing cores/cores with no tumour

Cores may be invalid because of either core dropout (missing cores) or because the 

core contains no respresentative tumour. An example of the number and percentages 

of cores that are valid/missing can be seen in Table 4 which has been taken from 

results for the ERa antibody. The percentage of cores missing ranged frrom 0-30% 

(average 11,15%) and the percentage with no readily identifable tumour present 

ranged from 16-28.3% (average 22.7%). This meant that the number of valid cores 

ranged from 54-79% (average 66.69%). Cores A to E were constructed 

chronologically and it can be seen that with regards to the core drop out rate this 

improved markedly from over 30% loss for TMA A to less than 3% for TMA E as 

experience of core construction was obtained.

Table 4
Core availability for ERa TMAs

missing no tumour valid
1

A (n=100) 2 
3

30 (30)% 
30(30%) 
43 (43%)

16 (16%) 
23 (23%) 
21 (21%)

54 (54%) 
47 (47%) 
43 (43%)

1
B(n=119) 2 

3

13(10.9%) 
21 (17.6%) 
17(14.3%)

24 (20.2%) 
23 (19.3%) 
21 (17.6%)

82 (68.9%) 
75 (65%) 
81 (68.1%)

1
C (n=100) 2 

3

2(2%) 
2(2%) 
4 (4%)

19(19%) 
19(19%) 
22 (22%)

79 (79%) 
79 (79%) 
74 (74%)

1
D (n=60) 2 

3

3(5%) 
2(3.3%) 
0 (0%)

17 (28.3%)
18(30%)
19(31.7%)

40 (66.7%)
40 (66.7%)
41 (68.3%)

1
E (n=77) 2 

3

2(2.6%)
1(1.3%)
1 (1.3%)

16(20.8%) 
19(24.7%) 
22 (28.6%)

59 (76.6%) 
57 (74%) 
54 (70.1%)

Frequency and percentage o f missing cores, cores with no tumour 
and valid cores for each TMA (A~E). TMAs were constructed in 
triplicate ( 1-3).
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As the TMAS are constructed in triplicate most cases had a least one valid core 

available for analysis. Again using the ERa TMA as an example. Table 5 shows that 

whilst 181/456 (39.7%) had all 3 cores available, only 34/456 had no valid cores. 

Table 6 shows the percentage of cases with one or more valid cores available for 

analysis for each of the antibodies used when analysing results for the ERa positive 

cohort only (n=402). The percentages of cases available for analysis ranges from 

84.83 to 98.88%.

Table 5
Valid cores for ERa TMAS
Valid cores Frequency Percent

0 34 7.50
1 130 28.51
2 111 24.34
3 181 39.69

Total 456 100

Frequency and percentage o f number o f 
valid cores (0-3) for the TMAs stained for 
ERa.

Table 6
Percentage o f cases with valid core(s) for each antibody

Antibody Percentage
PR 96.52
HER1 98.88
HER2 97.5
HER3 H3.105.5 87.81
HER4 H4.77.16 84.83
HER4 HFRl 89.3
pER118 95.52
pER167 90.8
pHER2 93.78

Percentage o f cases with one or more valid cases 
available for analysis for each o f the antibodies when 
analysing the ERa positive cohort only (n=402)

3.2.2 Correlation between core results is marker/antibody dependent

Whilst we have not compared the TMA core results with those from whole sections, 

Table 7 provides some idea of correlations of scores between the cores for each 

antibody. It can be seen that there is a noticeable difference between known, well
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validated antibodies such as ER, PR and HER2 (which demonstrate higher ICCC 

scores) and the phosphorylated antibodies such as pERllS, pER167 and pHER2 

(which show lower ICCC scores). Reasons for this may include the heterogeneity of 

the tissue for these particular receptors in their activated state or may reflect problems 

with pick-up of the phosphorylated state in formalin fixed tissue. Certainly for some 

of these phosphorylated antibodies comparison and correlation with whole tissue 

sections may well be important.

Table 7
Correlation between cores for each antibody 
ICCC between cores for each antibody for those with all 3 valid cores

A n tib o d y n ICCC MEMB ICCC CYTO ICCC IMUC
ER 181 0 .5956 0 .7 1 5 6
PR 228 0 .7 6 4 0
HER2 198 0.7911
HER4 H 4.77 .16 130 0 .2 7 1 4 0 .1746 0.1091
HER4 HFR1 145 0 .3 0 9 0 0 .3274 0 .2 9 2 0
pE R 118 69 0.0961 0 .4766 0 .4 6 6 8
pE R 167 173 0 .2649 0 .5570 0 .2 6 2 6
pHER2 169 0 .2 6 6 7 0 .4376 -0 .0061

Intra-class coefficient correlation (ICCC) scores for each antibody, in each 
cellular location, for those cases with all 3 cores valid.
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3.3 Progesterone (PR)

3.3.1 PR Expression

Both nuclear and cytoplasmic staining was seen (Appendix Hb). All cases with a 

nuclear Histoscore 10 or above were considered PR positive (based on current 

departmental pathology guidelines for reporting PR positivity). There were 241/388 

(62.1%) PR positive patients and 147/388 (37.9%) PR negative cases. The mean PR 

nuclear histoscore is 75.38 (S.D. 87.15) and median 33.75 (range 0-300) (Figure 12). 

There was no significant correlation seen between PR and ER nuclear Histoscore 

values (p=0.309, Kendall’s tau-b).

3.3.2 Sui’vival data

Patients negative for PR were significantly more likely to relapse whilst on 

Tamoxifen (Figure 13, p=0.0017).

147/388  (37.89% )

115 /3 8 8 (2 9 .6 4 % )

7 8 /3 8 8 (1 9 .5 9 % )

50/368  12

0-9 10-100 101-200 201-300

PR nuclear Histoscore Range

Figure 12

PR nuclear staining: Histoscore intensity and frequency.

114



I 
I
I
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Time On Tamoxifen

Figure 13

Kaplan-Meier sur\nval curves demonstrating cumulative disease free survival 

differences (endpoint o f  breast cancer disease relapse whilst on tamoxifen) between 

patients positive or negative fo r  nuclear PR staining. Cut-offs fo r  positivity fo r  

variables are defined in the text. P values represent log rank testing o f the difference 

in cumulative disease free survival.
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3.4 HER 1-4

3.4.1 HER 1-4 Expression and staining patterns

EGFR/HERl

Only membranous staining was demonstrated for HERl (Appendix lie). The 

frequency and intensity of staining is shown in Figure 14a. Cases with any 

membranous HERl staining were classed as being positive for HERl overexpression 

(6/393, 1.5%).

HER2

Both membranous and cytoplasmic staining was seen (Appendix lid). The slides were 

scored independently by 2 scorers with an ICCC of 0.8863. The mean Herceptest 

score from the 2 scores was taken to the nearest integer. The frequency and intensity 

of HER2 staining are demonstrated in Figure 14b. Patients were considered positive 

for HER2 if they had at least 2+ staining intensity (i.e. at least 10% tumour cells were 

scored as being moderately positive). 51/397 (12.8%) cases were therefore positive 

forHER2.

HER3

Membranous, cytoplasmic and nuclear staining was seen using the H3.105.5 antibody 

(Appendix lie). The membrane score frequency for ERa positive patients is shown in 

Figure 14c. Patients were considered positive for HER3 if they had at least 2+ 

staining intensity at the membrane (i.e. at least 10% tumour cells were scored as being 

moderately positive) resulting in 56/353 (15.9%) cases considered positive. The 

median cytoplasmic histoscore was 83.33 (range 0-265) with mean 93.99 (SD 63.53) 

and the median nuclear score was 58.33 (range 0-250) with mean 61.21 (SD 36.05). 

HER4
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Membranous, cytoplasmic and nuclear staining was seen using the H4.77.16 antibody 

(Appendix Ilf). Membrane score frequency for ERa positive patients is shown in 

Figure 14d. Patients were considered positive for HER4 if they had at least 2+ 

staining intensity (i.e. at least 10% tumour cells were scored as being moderately 

positive). 46/341 (13.5%) cases were positive for HER4. The median cytoplasmic 

score was 38.33 (range 0-250) with mean 48.57 (SD 50.83). The median nuclear score 

was 0 (range 0-200) with mean 15.01 (SD 26.42).

These findings correlate with our previously published results in ER positive cancer 

where we demonstrated 3.0% patients were EGFR positive, 11.2% HER2 positive, 

11.0% HER3 positive and 16.5% HER4 positive (Witton et al., 2003). A recent large 

study showed generally higher rates of positivity throughout with 14.0% positive for 

EGFR, 29.3% for HER2, 45% for HER3 and 44.9% for HER4 (Abd El-Rehim et al., 

2004). This study used different antibodies and a different method of identifying 

cutoff levels than our study.

3.4.2 Sui’vival and disease free analysis

Despite a marked separation of the relapse free survival cuiwes for HERl positive 

patients relapsing on Tamoxifen, statistical significance in this small group was not 

reached (Figure 15a p-0.4739). HER2 and HER3 positive patients were significantly 

more likely to relapse on Tamoxifen (Figure 15b & 15c, p=0.0280, p=0.0278 

respectively). However HER4 positive patients showed no significant difference in 

survival on Tamoxifen (Figure 15d, p=0.2159).
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Figure 14a Figure 14b

400-, 387/393 (98.47%)

1/393 (0.25%) 2/393m (0.051%) 3/393(0.75% )

N egative  1+ 2 + 3+
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290/397 (73.05%)

56/397 (14.11%)

26/397 (6.55%) 25/397 (6.30%)

N egative 1+ 2+
H ER 2 m e m b ra n e  Intensity

Figure 14c

208/353 (59.92%)

89/353(25.21%)

56/393(15.86%)

N egative 1+ 2+ 3+

H ER3 m em b ran e  n ten sity

Figure 14d
400

208/341 (61.0%)

87/341 (25.51%)

44/341 (12.90%)

27341 (0

N eg ativ e  1+  2+

H E R 4 m e m b ra n e  n ten s ity

Figure 14

Frequency histograms fo r  membrane staining intensity fo r  a) HERl, b) HER2, c) 

HER2 and d) HER4.
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Figure 15a Figure 15b
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Figure 15

Kaplan-Meier sun>ival cun>es demonstrating cumulative disease free suiMval 

differences (endpoint o f breast cancer disease relapse whilst on tamoxifen) between 

patients positive or negative fo r  a) HERl, b) HER2, c) HER3 and d) HER4. Cut-offs 

fo r  positivity fo r  variables are defined in the text. P values represent log rank testing 

o f the difference in cumulative disease free sunnval.
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3.4.3 Coexpression of HERl-4 antibodies.

The following illustrates the co-expression patterns of the H ERl-4 family.

1.HERl: 6/ 393(1.5%) positive

• 1/6 also positive for HER4

• 1/6 also positive for HER3 and HER4

• 1/6 also positive for HER2, HER3 and HER4

• 3/6 positive for HERl alone

2.HER2: 51/397 (12.85%) positive

• 7/51 also positive for HER3

• 3/51 also positive for HER4

• 5/51 also positive for HER3 and HER4

• 1/51 also positive for H ER l, HER3 and HER4

• 35/51 positive for HER2 alone

3.HER3 56/353 (15.86%) positive

• 7/56 positive for HER2

• 17/56 also positive for HER4

• 1/56 also positive for HERl and HER4

• 5/56 also positive for HER2 and HER4

• 1/56 also positive for H ER l, HER2 and HER4

• 25/56 positive for HER3 alone

4. HER4 46/341 (13.5%)

• 1/46 also positive for HERl

• 3/46 also positive for HER2

• 17/46 also positive for HER3

• 1/46 also positive for HERl and HER3
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• 5/46 also positive for HER2 and HER3

• 1/46 also positive for HERl, HER2 and HER3

• 18/46 positive for HER4 alone

There were significant correlations between expression of EGFR and HER4 (p=0.019, 

Fishers exact test), between HER2 and HER3 (p=0.030, and between HER3 and 

HER4 (p<0.001, f ) .

98/350 (28%) patients were positive for either one of HERl, HER2 or HER3 (HERl- 

3), and H ER l-3 positivity predicted for early relapse on Tamoxifen (p=0.0060, Fig 

16a). Interestingly the trend for relapse on Tamoxifen appears to increase if  patients 

are positive for more than one HER family member (p=0.0093, Figure 16b).

Figure 16a Figure 16b

.§

s

h pos (n=98)

T im e O n  T am ox ifen

I

only ono HSRF3 posi
T im e O n  T am ox ifen

Figure 16

Kaplan-Meier survival curves demonstrating cumulative disease free survival 

differences between a) patients positive or negative fo r  HERl-3 (positive fo r  either 

one o f HERl, HER2 or HER3). b) patients positive fo r  more than one H E R l-3 family 

member, patients positive fo r  only one type o f  HER receptor and patients negative fo r  

all HER family members. Cutoffs fo r  positivity fo r  variables are defined in the text. P 

values represent log rank testing o f the difference in cumulative disease free siuMval
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3.4.4 Correlation with PR status and relationship with smwival

Table 8 shows the relationsliip between PR and each HERl-3 member. HER3 shows a 

significant inverse relationship with PR (p=0,001, There is no significant 

relationship between PR and either HERl or HER2, although when the group is 

combined as H ERl-3 the significant inverse relationship persists (p=0.001, y^).

Table 8
Relationship between PR and HER status.

HER1 
neg pos

HER2 
neg pos

HER3 
neg pos

HERl-3 
neg pos

PR pos
141 2 
236  4

120 22  
213  28

94 31 
197 25

74 48  
174 49

Total

Patients positive

377  6

for HER1, HER2,

333  50

HER3 or HER1-3 c

291 56

',ombined (c a s e s  p<

2 4 8  97

ositive for one or
more o f HER1 HER2 or HER3) with respect to PR status. Cut-offs for positivity are defined 
in the text.

Figure 17 shows the significantly increased rate of relapse on Tamoxifen (p<0.0001) 

when H ERl-3 positive and/or PR negative patients are combined as a poor prognostic 

group. This ‘high risk’ H ER l-3 positive/PR negative group also predicted for 

increased relapse in Cox’s multivariate analysis (p=0.0069) when analysed alongside 

known prognostic variables size, grade and nodal status.
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p<O.Q001

1
PR pos and HER nog (n=173)

PR neg 4/-HER pos (n=197)

T im e o n  tam o x ifen

Figure 17

Kaplan-Meier survival cur\’es demonstrating cumulative disease free survival 

differences between patients either HERl-3 positive and/or PR negative and patients 

HERl-3 negative and PR positive. Cutoffs fo r  positivity fo r  variables are defined in 

the text. P values represent log rank testing o f the difference in cumulative disease 

free sun’ival.

3.4.5 Analysis of molecular markers as time dependent variables

Kaplan-Meier suivival analysis was subsequently peiformed following exclusion of 

those patients who relapsed during the first 3 years of treatment, with the aim of 

focussing on those patients who had later relapses. Using this method of analysis the 

PR negative/HERl -3 positive group no longer demonstrated any significant 

difference in recuirence rates on Tamoxifen (p=0.0858).

Table 9 shows the number (and percentages) of recurrences on Tamoxifen in years 1- 

3 compared to years 4-5 in the high/low risk groups as identified by the relevant 

molecular markers. (Note that only patients remaining disease free  at 3 years are 

included in the year 4-5 group). It also shows the Hazard ratios (95% Cl) from Cox’s 

multiple regression with the relevant factors analysed alongside size, nodal status and 

grade. The p-values from this analysis demonstrate a significant difference between
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recurrences in the high versus low risk groups when analysed for the years 1-3, whilst 

PR and H ER l-4 status has no significant impact on recunences in years 4-5.

Table 9
Time dependent analysis o f  variables.

HERl-3 PkR HERl-3 i)os/PR neg
Years Positive Negative Hazard

Ratio
Positive Negative Hazard

Ratio
High risk Low Risk Hazard

Ratio
1-3 21/98

21.4%
25/251
10.0%

2.18
(1.13-
4.21)
p=0.01
89

22/240
9.2%

31/147
21.1%

0.48
(0.26-
0.92)
p=0.025
4

39/197
19.8%

11/173
6.4%

3.08
(1.40-
6.8)
p=0.005
2

4-5 3/70
4.3%

7/204
3.4%

0.96
(0.18-
5.05)
p=0.96
11

8/204
3.9%

5/108
4.6%

1.62
(0.39-
6.68)
p=0.501
6

8/147
5.4%

5/152
3.3%

0.91
(0.23-
3.64)
p=0.899
0

HER1-3 positive  =  cases expressing one o r more o f HER, HER2, HER3 above the cut offs defined in the 
text. HER1-3 negative  =  cases negative for a ll three receptors. PR positive  =  cases expressing  
progesterone receptors. PR negative  =  cases lacking progesterone receptor expression. C om bined High 
R isk = cases e ither HER1-3 pos and/or PgR negative, Low  risk = cases both HER1-3 negative and PgR  
positive. Hazard Ratio  =  relative increased haza rd  (with 95% confidence intervals in brackets) from  
Cox's regression analysis fo rH E R 1-3  positive versus HER1-3 negative cases, PgR positive versus PR  
negative and  H igh versus Low  risk cases respectively. Years 1-3 (4-5) =  patients at r isk (denom inator) 
and num bers o f  re lapses (numerator) within different subgroups during years 1-3 (4-5  =  in years 4 and  
5) o f tamoxifen treatm ent only. Percentages  =  percentage relapse rates in a t risk population during time 
period  in question. P values derived from C ox’s  m ultiple regression analysis
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3.5 Phosphorylated ER

3,5,1 pERaSeiTlS and pERaSeiT67 expression

Nuclear, cytoplasmic and membranous staining was observed for both pERaSerllS 

and pERaSerl67 (Appendix Eg and Ilh and Figures 18 a-f). For pERaSerl 18, 12.5% 

(48/384) showed membranous staining, 94.3% (362/384) exhibited cytoplasmic 

staining (median histoscore 175 (range 0-300), mean 163.69 (SD 81.60)) and 98.4% 

(378/384) exhibited nuclear staining (median score of 145 (range 0-270), mean 

141.77 (SD 47.12)). For pERaSerl67, 20.8% (76/365) showed membranous staining, 

70.68% (258/365) exhibited cytoplasmic staining (median histoscore 50 (range 0- 

250), mean 60.42 (SD 55.71)) and 95.6% (349/365) demonstrated nuclear staining 

(median histoscore 96.70 (range 0-250), mean 102.16 (SD 55.45)).

There were significant conelations between the intensity of nuclear pERaSeiTlB and 

nucleai- pERaSerl67 staining (p<0.001, Kendall’s tau-b) and between cytoplasmic 

pERaSerllS and cytoplasmic pERaSerl67 staining intensity (p<0.001, Kendall’s tau- 

b). There was also overlap between membranous staining with 25/357 cases 

exhibiting staining for both pERaSerl 18 and pERaSerl 67 at the membrane.
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Figure 18a
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Figure 18b
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Figure 18d
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Figure 18

Frequency histograms fo r  membranous a) pERaSerllS and b) pERaSerl67 staining; 

cytoplasmic c) pE R aSerllS  and d) pERaSerl67staining; and nuclear e) pERaSerllS  

andf) pERaSerl 67 staining
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3.5.2 Relationship between phosphoiylated ERa and ERa status

Nucleai' and cytoplasmic pERaSerllS staining correlated significantly with the 

intensity of ERa nuclear staining (p<0.001 and p=0.006 respectively, Kendall’s tau-b, 

Table 10) as did nuclear and cytoplasmic pERaSerl67 staining (both p<0.001; 

Kendall’s tau-b).

In addition nuclear and cytoplasmic pERaSerl 18 staining correlated significantly 

with the intensity of ERa cytoplasmic staining (p=0.004 and p<0.001 respectively, 

Kendall’s tau-b) as did nuclear and cytoplasmic pERaSerl67 staining (p=0.003 and 

p<0.001; Kendall’s tau-b).

However there was no correlation between the intensity of nuclear ERa staining and 

the presence of either membranous pERaSerl 18 or pERaSerl 67 expression (Mann- 

Whitney, Table 10). There was also no correlation between cytoplasmic ERa staining 

and the presence of membranous pERaSerl 18 although there was a significant 

correlation with the presence of membranous pERal 67 (Mann Whitney, p<0.001)

3.5.3 Relationship between phosphoi^lated ERa and PR status

There was no correlation between PR positivity and either nuclear or cytoplasmic 

pERaSerl 18 or pERaSerl 67 histoscores (Mann Whitney) or presence of membranous 

pERaSerl 18 (p=0.082, or pERaSerl67 (p=0.139, %̂).
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Table 10
Relationship between pER SerllS , pERSer167 and nuclear ER and H ER l-3  
expression

ERa HERl-3
nuclear ER cytoplasm ic ER

nuclear p<o.oor p=0.004* p=0.006**
pERaSerl 18 cytoplasm ic p=0.006* p<o.oor p=0.294**

m em brane p=0.407** p=0.496** p<0.001***
nuclear p<0.001* p=0.003* p=0.522**

pERaSer167 cytoplasm ic p<0.001* p<0.001* p=0.229**
m em brane p=0.133** p<0.001** p=0,002***

*KendaH's tau-b, **Mann-\A/hitney, ***x2 
b o ld = p o s it iv e  co rre la tio n , italic-negative correlation

pE R aS erl 18 represents phosphorylated ERa at Ser118 at nucleus,cytoplasm and 
membrane. p E R a S e rl67 represents phosphorylated ERa at S e ri67 at nucleus, 
cytoplasm and membrane. ERa represents nuclear or cytoplasmic staining ERa  
staining. H ER l-3  represents patients positive for one o f HERl, HER2 and/or HER3 
at the membrane.

3.5.4 Relationship between phosphoi'ylated ERa and HERl-3 status

Nuclear pERaSerllS staining was negatively correlated with HER 1-3 overexpression 

(p=0.006, Mann-Whitney) but there was no association between nuclear pERaSerl 67 

and HERl-3 expression (p=0.522). In addition there was no correlation between 

cytoplasmic pERaSerl 1S or pERaSerl67 and HERl-3 expression (Mann Whitney). 

However, the presence of both membranous pERaSerllS and membranous 

pERaSerl67 was significantly correlated with HERl-3 positivity (p<0.001 and 

p=0.002 respectively; Pearsons yl. Table 10).

3.5.5 Correlation with relapse on tamoxifen and known clinical prognostic 
markers

Increased nuclear pERaSerl 67 correlated with smaller size and lower grade of tumour 

(p<0.001 and p=0.001 respectively, Kendall’s tau-b) and cytoplasmic pERaSerl67 

intensity correlated with small tumour size (p<0.001). However the presence of 

membranous pERaSerl 18 was associated with larger tumours (p=0.009, Pearsons %2).
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Nuclear and cytoplasmic pERaSerllS and membranous pERaSerl67 did not 

correlate with nodal status, grade or size of tumour.

Whilst there was no significant association between phosphoiylated ERa at the 

nucleus or cytoplasm and relapse on tamoxifen, patients positive for membranous 

pERaSerllS were significantly more likely to have disease relapse (p==0.0412, Figure 

19). No such association was observed with membranous pERaSerl 67 (p=0.8472).

Q

1.0

.9

.8
m e m b  p E R 1 18  n e g a tiv e

.6
m e m b p E R I I S  p o s itiv e

.5

Time On Tamoxifen

Figure 19

Kaplan-Meier siuMval ounces demonstrating cumulative disease free survival 

differences (endpoint o f  breast cancer disease relapse whilst on tamoxifen) between 

patients positive or negative fo r  membranous pERaSerllS. Cut-offs fo r  positivity fo r  

variables are defined in the text. P values represent log rank testing o f the difference 

in cumulative disease free siu^ival.
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3.6 Comparison of HER4 antibodies.

3.6.1 Cut-offs determining membranous, cytoplasmic and nuclear staining status

Membranous, cytoplasmic and nuclear staining was seen using both H4.77.16 

(Appendix Ilg) and HFRl (Appendix Hi) antibodies. To compare the respective 

staining of the two antibodies, cutoffs were chosen to determine positive or negative 

staining for the respective modalities. For membranous HER4 any staining at the 2+ 

or higher level was chosen as described previously. Cases were considered positive 

for cytoplasmic or nuclear staining if the average histoscore for the respective 

modality was over 10. Concordance between two antibodies, with regard to staining at 

the membrane, cytoplasm and nucleus, was evaluated using chi-square kappa value 

where a value of 1 indicates perfect agreement and a value of 0 indicates that 

agreement is no better than chance.

3.6.2 Membrane staining

Membrane staining intensities for each antibody are shown (Figure 20a & b). 46/341 

(11.4%) patients were classed as positive using the H4.77.16 antibody and 28/359 

(7.0%) using the FlFRl antibody. The concordance between the 2 antibody results is 

88.44% (n=329, Table 11) with a kappa value of 0.426 (where a value of 1 indicates 

perfect agreement and a value of 0 indicates that agreement no better than chance). It 

can be seen that the percentage of tumours that are negative is similar between the 2 

antibodies but that the H4.77.16 antibody appears to detect a stronger intensity of 

staining at the membrane. This may reflect a difference in sensitivity between the 

antibodies or alternatively reflect a difference between TACE cleaved but y-secretase 

intact HER4.
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3.6.3 Cytoplasmic staining

The median cytoplasmic histoscore for H4.77.16 antibody was 36.67 (range 0-250) 

and mean 48.21 (SD 50.32). The median cytoplasmic histoscore for HFRl was 75 

(range 0-253) and mean 78.75 (SD 61.10). The HFRl antibody therefore has 

generally has higher levels of cytoplasmic staining (Figmes 120c & d). 225/341 

(66.0%) patients were classed as positive using the H4.77.16 antibody and 293/359 

(81.6%) using the HFRl antibody. The concordance between the 2 antibody results is 

74.77% (n=329, Table 11) with a kappa value of 0.351. This difference may reflect 

the fact that HFRl can recognise both cleaved 4ICD and the intact (recycling) HER4 

whilst H4.77.16 will recognise the intact form only.

3.6.4 Nuclear staining

The median nuclear score for H4.77.16 antibody was 0 (range 0-200) and mean 15.01 

(SD 26.42). The median nuclear score for HFRl was 63.33 (range 0-200) and mean 

64.83 (SD 38.65). The antibodies showed veiy different staining patterns in the 

nucleus (Figures 20e & f). 116/341 (34.0%) patients were classed as positive using 

the H4.77.16 antibody and 332/359 (89.3%) using the HFRl antibody. Whilst over 

60% of patients stained with the H4.77.16 had no nuclear staining, the vast majority 

showed some staining with the HFRl antibody. Once split into positive and negative 

groups the concordance between the 2 antibody results is 40.12% (n=329, Table 11) 

with a kappa value of 0.051. This lack of agreement may well reflect the fact that the 

cleaved 4ICD (recognised by HFRl) is much more likely to be found in the nucleus 

than the intact form.
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Figure 20a Figure 20b
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Figure 20

Frequency histograms fo r  membranous (a & b), cytoplasmic (c & d) and nuclear (e & 

f)  staining intensity using the H 4.77.16 and HFRl antibodies.
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Table 11
Comparison o f H4.77.16 and H FR l staining patterns in the membrane,
cytoplasm and nucleus
M em b ran e H 4 .77 .16

n eg pos total kappa value
neg 273 28 301

HFR l p os 10 18 28 0 .426  (p<0.001)
total 283 46 329

C y to p la sm ic H 4.77 .16
neg p os total kappa value

n eg 41 15 56
HFR1 pos 68 205 273 0.351 p<0.0001

total 109 220 329

N u c lea r H 4.77.16
n eg p os total kappa value

n eg 21 3 24
HFR1 p os 194 111 305 0.051 (p=0.018)

total 215 114 329

Chi- square where numbers o f cases negative orpostitive for each 
antibody in at either the membrane, cytoplasm or nucleus are shown using 
cutoffs defined in the text Cohen's Kappa value measures the agreement 
between the 2 antibodies where a value o f 1 indicates perfect agreement 
and a value o f 0 indicates that agreement is no better than chance
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3.6.5 Relationship with clinicopathological variables and the other HER family 

members.

Both antibodies demonstrated a significant relationship between membranous HER4 

and increasing size and HER3 positivity (Table 12). For the patients positive for 

F1ER4 using the HFRl antibody; 22/28 (78.57%) were also positive for another 

member of the HER family. For the H4.77.16 this figure was 28/46 (60.87%).

Table 12

JR H4.77.16 membrane 
p value correlation x'

HFR1 membrane
p value correlation

NPI 4 .7 9 9 0.091 6 .0 9 5 0 .047 p os
size 8 .652 0 .013 pos 8 .608 0 .008 p os
grade 2 .4 5 3 0 .293 0.75 0 .687
nodal 1 .769 0 .413 3 .202 0 .202
egfr Fishers 0 .019 pos Fishers 0 .074
her2 1 .657 0 .243 Fishers 0 .314
her3 53 .6 7 <0.001 pos Fishers <0.001 p os

Grade = Bloom and Richardson grade. Nodal status = number o f positive nodes. NPI 
= Nottingham Prognostic Index (grade+nodal status+ 0.02*size in mm).

Both antibodies showed a correlation between HER4 cytoplasmic staining and 

increasing NFI, nodal status, size and HER3 positivity (Table 13). Neither antibody 

showed any significant correlations between nuclear HER4 staining and pathological 

variables or HERl-3 status.

Table 13

test
H4.77.16 histoscore 

p value correlation
HFR1 histoscore 

p value correlation
NPI Kendall's tau-b 0 .004 pos <0.001 pos
size Kendall's tau-b <0.001 p os 0.021 pos
grade Kendall's tau-b 0 .0 7 6 <0.001 p os
nodal Kendall's tau-b 0 .0 0 4 p os <0.001 p os
egfr Mann-W hitney 0 .035 0 .436
her2 Mann-W hitney 0.381 0.771
her3 Mann-W hitney <0.001 p os 0.001 p os

Grade = Bloom and Richardson grade. Nodal status = number o f positive nodes. NPI 
Nottingham Prognostic Index (grade+nodal status+ 0.02*size in mm).
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3.6.6 Suï’vival and disease free analysis.

For both antibodies there was no relationship between disease free or overall survival 

and membranous HER4 staining. Cases who were positive for HER4 only (and not for 

any other members of the HER family) where identified (n=6 for HFRl and n=18 for 

H4.77.16) but these patients again did not have significantly different rates of 

suiwival. Cytoplasmic staining was not correlated with disease free or overall survival 

using either antibody. However cases demonstrating nuclear HER4 staining using the 

H4.77.16 antibody were significantly more likely to have poorer overall survival 

(p=0.0124, Figure 21). There was no such correlation with survival with the HFRl 

antibody.

1.1

1.0

.9

nu c  HER4 n e g  (n = 2 2 6 ).8

.7

.6 n u c  HER4 p o s  (n= 116)

.5

200 10

Follow up duration

Figure 21

Kaplan-Meier survival curves demonstrating cumulative disease free smMval 

differences (endpoint o f breast cancer disease relapse whilst on tamoxifen) between 

patients positive or negative fo r  nuclear HER4 using the H4.77.16 antibody. Cutoffs 

fo r  positivity fo r  variables are defined in the text. P values represent log rank testing 

o f the difference in cumulative disease free survival.

135



3.7 pHER2 antibody

3.7.1 pHER2 staining

Membranous, cytoplasmic and nuclear staining was seen (Appendix Ij). Intensity of 

membranous staining can be seen in Figure 22. Using 2+ scoring intensity as a cutoff 

there are 24/366 (6.37%) positive for phosphoiylated HER2.

217/377 (07.6%)

136/377 (36.1%)

24/377 (6,4%)

N egative 1+ 2+

Phosphory lated  H ER2 m em brane ntensily

Figure 22

Frequency histogram showing intensity o f  membranous phosphorylated HER2 

staining

3.7.2 Sui’vival and disease free analysis

Neither membranous, cytoplasmic nor nuclear staining positivity was correlated with 

disease free suiwival on tamoxifen. In addition there was no correlation with known 

prognostic variables, size, grade and nodal status.
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3.7.3 Relationship between pHER2 and HercepTest scores.

There is no significant relationship (%2 p=0.938, Table 14) between the intensity of 

membrane staining for HER2 and phosphorylated HER2 staining. Indeed many cells 

negative for Herceptest showed staining for phosphorylated HER2.

Table 14
Relationship between HER2 and Phospho-HER2 scoring

P h o sp h o -H E R 2  
0 1+ 2+

Total

H e r e c e p e s t 0 157 100 16 273
1 + 31 19 3 53
2+ 15 8 2 25
3+ 14 8 3 25

Total 217 135 24 376
Relationship between membranous HER2 and membranous 
Phospho-HER2 scoring, intensity scored as 1+(weak), 
2+(moderate) or 3+ (strong) staining.

Our results did not support the previously published reports suggesting that that 

pHER2 status provided improved prognostic information compared to HER2 status 

alone (Thor et a l, 2000). Therefore no further analysis was performed using these 

results.
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Chapter 4 Discussion

4.1 TMA validity and Limitations of the study

We have demonstrated that TMA technology can be used successfully to quickly 

process large numbers of cases though imniunohistochemistiy protocols in a limited 

amount of time. In addition we were able to peiform direct comparison of staining 

intensities between specimens so improving the subjective inteipretation of results. 

However as other studies have shown, we also had significant rates of core loss.

The overall percentage of cores missing was 11.15% and the percentage with no 

readily identifable tumour present was 22.7%. This meant that the number of valid 

cores ranged from 54-79% (average 66.69%). This is in keeping with published 

results (Bubendorf et a l, 1999; Hoos and Cordon-Cardo, 2001; Schraml et al., 1999; 

Torhorst et a l, 2001). Of note, the core drop out rate improved markedly as 

experience of TMA constmction was obtained suggesting that core loss is dependent 

on operator experience. As predicted, constructing the TMAS in triplicate minimised 

the impact seen because of core loss. Depending on the antibody, the percentages of 

cases with at least one valid core ranged from 84.83 to 98.88 %. These figures 

suggest that using 4 cores per case may have improved the availability of valid cores 

for analysis.

Concerns have also been raised with regard to the impact of tissue heterogeneity on 

TMA results although it must be remembered that a tumour block itself often 

represents a small fraction of the actual tumour. Evidence comparing core and whole 

section results has suggested that this problem is minimised by having more than one 

core available for analysis (Hoos and Cordon-Cardo, 2001; Camp et a l, 2000). We 

have not compared TMA results to those of whole sections; however we did
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determine the correlation between core results in those cases that had all 3 cores 

available. This demonstrated a noticeable difference between known, well validated 

antibodies such as ER, PR and HER2 which demonstrate higher ICCC scores, and the 

phosphorylated antibodies such as pERllS , pER167 and pHER2 which show lower 

ICCC scores. The discrepancy in these results may result from the heterogeneity of 

the tissue for these particular receptors in their activated state or may reflect problems 

with pick-up of the phosphoiylated state in formalin fixed tissue. In addition some of 

the less well validated antibodies had more evidence of background staining 

compared to Herceptest staining for example. Certainly for some of these 

phosphoiylated antibodies, correlation with whole tissue sections may well be 

important.

One concern with regard to analysis of multiple testing of variables is the possibility 

that “significant” associations are being demonstrated due to ‘chance’ rather than 

being due to a true correlation. For an acceptable significance of p=0.05 this would 

occur in 1 in 20 tests. Whilst the majority of this study is based on suiwival analysis, 

multiple correlations have been peiformed particularly in comparison of HER4 

antibody staining. One method of adjusting for this would be to perform the 

Bonferroni test, based on Student’s t statistic, which adjusts the observed significance 

level for the fact that multiple comparisons are made (Bland and Altman, 1995). 

However it must also be noted that all analysis performed in this study were on a pre­

planned basis and in addition the majority of correlations analysed have been 

statistically significant.

The findings in this thesis highlight the problems of comparative analysis within the 

literature with regard to identification of prognostic/predictive markers. The use of 

different antibodies, scoring systems, conditions and comparison of TMAs with whole
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sections all make comparative analysis difficult. A recent meeting on Cancer 

Diagnostics (NCI-EORTC) has led to the development of REMARK guidelines 

(McShane et al., 2005) which provide suggestions on how both the trial design and 

reporting of results of marker based studies can be standardised to improve the ability 

to compare results across studies.

One recent advance in immunohistochemical based marker studies has been the use of 

automated image analysis (Camp et al., 2002). There are various systems on the 

market including ACIS (ChromoVision) and AQUA (HistoRx). Whilst automated 

image analysis is becoming more commonplace in pathology laboratories it has its 

drawbacks. Whereas an experienced pathologist can score only tumour cell 

immimoreactivity, this may not be true of a machine, and overestimates of postivity 

might ensue. This is paiticularly important when considering location of staining, 

where detection of staining at the nucleus, cytoplasm or membrane may have veiy 

different prognostic implications. However use of image analysis technology is 

particularly attractive in terms of image capture for storage of the image for future 

analysis and for ease of inter-scorer comparision.

Whilst IHC based marker studies continue to be used to identify new prognostic 

markers, other emerging approaches such as reverse transcription polymerase chain 

reaction and DNA microarrays are increasingly used as prognostic or predictive tests. 

For example Oncotype DX (Genomic Health Ltd) represents an important conceptual 

advance in the diagnosis of ER positive cancers. This RT-PCR based assay measures 

ER mRNA expression as well as the expression of several downstream ER-regulated 

genes (PR, BCL-2, SCUBE-2) that may represent a functional ER (Paik et al., 2004). 

The use of high throughput gene-expression profiling techniques has lead to the 

identification of subsets of breast cancers with different molecular signatures. One
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such comprehensive study using hierarchical clustering has suggested that gene- 

expression patterns of breast cancer can be split into 4 major classes; luminal-like 

(usually ER positive), basal-like (mostly ER negative), normal-like and HER2- 

positive (Pérou et a l, 2000). This technique has also been used to identify a 70-gene 

prognostic predictor for increased chance of relapse (van de Vijver et a l, 2002; 't 

Veer et a l, 2002). However with all new technologies, reproducibility of results and 

standardisation of methodology must be determined. Promising markers identified 

using these methods must investigated in laboratory to gain insight into their function 

before being considered as new diagnostic markers (Pusztai et a l, 2006).
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4.3 HERl-3 positive and/or PR negative patients are 

associated with early relapse on tamoxifen.

We have demonstrated results which confirm the significant role played by the type I 

receptor tyrosine kinases HERl, HER2 & HER3 in promoting tamoxifen resistance in 

homione responsive breast cancers. The results also emphasise the different role of 

HER4 in this context. In addition, these data demonstrate that PR negative tumours 

have a reduced responsiveness to tamoxifen which is only weakly related to 

expression of HERl-3. Therefore a phenotype of either HERl-3 positivity or PR 

negativity in ER positive breast cancers appears to be linked to tamoxifen resistance - 

as defined by elevated risk of disease relapse despite endocrine therapy. Strikingly, 

however, it appears that this elevated risk applies in the first 3 years of tamoxifen 

therapy only. Most interestingly, these data appear to explain recently reported 

discrepancies relating to PR status and aromatase inhibitors in clinical trials 

(Coombes et al., 2004a; Dowsett, 2003).

Previously we have demonstrated that expression of HERl-3 is linked to high 

proliferation indices in breast cancer, whilst HER4 is associated with a low 

proliferation index (Tovey et al., 2004). Furthermore, preliminary data suggested that 

patients with ER positive disease were at greater risk of early relapse due to HERl-3 

expression than ER negative cases (Witton et al., 2003). Now we have analysed the 

expression of the type I receptor tyrosine kinases (HERl-4) in a large retrospective 

group of tamoxifen treated, ER positive cases. Patients whose tumours were positive 

for HERl-3 were shown to be at a significantly greater risk of relapse whilst on 

adjuvant tamoxifen, supporting a role for the HERl-3 receptors in tamoxifen
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resistance (figmes 15 & 16). Conversely, we show no relationship between the 

expression of HER4 and early relapse on tamoxifen supporting growing evidence that 

this receptor type plays a distinct role to other members of the type I RTK family. 

Further discussion with regard to HER4 and its role in breast cancer will occur later. 

Our results also suggest that the overexpression of more than one HER family 

member significantly increases the likelihood of relapse on tamoxifen (figure 16). 

Similar evidence from a recent report (Abd El-Rehim et al., 2004) and our earlier data 

(Witton et a l, 2003) supports an additional negative effect on outcome when multiple 

receptors are co-expressed. The ability of HER2 and HER3 to potentiate signalling 

through other receptors has been demonstrated in vitro (Yarden, 2001b) suggesting 

this is a possible mechanism by which heterodimers may produce a more marked 

effect than homodimers. We know that HER2 enhances and stabilises dimerization 

but apparently has no ligand (Klapper et a l, 1999) whereas HER3 has no inherent 

kinase activity so must be dimerised with another HER family member to exert an 

influence on downstream signalling (Guy et a l, 1994). Evidence has suggested that 

this HER2-HER3 heterodimer is the most potent combination of all (Yarden, 2001a). 

Whilst some of the most convincing published clinical evidence for the role of HERl 

and 2 in tamoxifen resistance has come from neo-adjuvant trials (Ellis et a l, 2001) the 

major adjuvant trials comparing tamoxifen to aromatase inhibitors have largely failed 

to build this in to planned prospective analysis. However there has been some data 

from the AT AC (Dowsett, 2003) suggesting that differences do exist in the molecular 

profile of patients who respond to early aromatase inhibitors in preference to 

tamoxifen when analysed in regard to the PR status of the patients. Our results 

confirm suggestions that ER positive/PR negative tumours are significantly less likely 

to respond to tamoxifen treatment than ER positive/PR positive tumours (Coombes et
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al, 2004a; Dowsett, 2003).This is of particular current interest given the ATAC and 

lES evidence with regard to PR. The ATAC trial was designed to compare the 

efficacy of tamoxifen versus the aromatase inhibitor Arimidex (either alone or in 

combination) in ER positive post menopausal women. Early results from this trial 

demonstrate a superiority of Arimidex over tamoxifen in terms of disease free 

suiwival However, retrospective sub analysis from this trial also suggested that this 

increased clinical benefit derived from Arimidex was particularly evident in the PR 

negative tumour patients (Dowsett, 2003).

The inverse relationship demonstrated here between PR and HER 1-3 expression 

(Table 8) might support supposition that PR negativity may be acting as a suixogate 

marker for HERl-3 overexpression in the ATAC trial This would link the ATAC 

data with data from the neoadjuvant trials (Ellis et al, 2001; Ellis et a l, 2003) 

demonstrating that aromatase inhibitors circumvent HERl/2 mediated tamoxifen 

resistance in vivo. However, closer examination of the evidence presented here 

confirms that ER positive/PR negative tumours and HERl-3 positive tumours 

represent distinct patient sub-groups with relatively little overlap. Only 12% (42) of 

tumours were both PR negative and HERl-3 positive with 19.1% PR negative/HERl- 

3 negative and 15.3% PRpositive/HERl-3 positive. This suggests that the association 

between HERl-3 expression and loss of PR expression, whilst real, is weak and that 

alternative, as yet unexplained, mechanisms must underpin tamoxifen resistance in PR 

negative tumours. PR expression has long been thought to reflect a functional, ER 

transcription pathway. It is possible that the ER in these PR negative patients is not 

functioning as a nuclear receptor, but instead is active through non genomic 

mechanisms either in the cytoplasm or at the membrane where it may interact with the 

HER family or other active signal transduction pathways. However, evidence relating

144



to the expression of different PR isoforms, and potentially ERp, as predictors of 

tamoxifen response may also be of importance (Bardou et al., 2003; Isaksson et al., 

2003; Iwase et al., 2003). Further work is required to investigate these potential 

explanations. However, our data suggests that in both HERl-3 positive and PR 

negative breast cancers there is evidence of resistance to tamoxifen (this group 

represents almost 50% of all ER positive cancers in this study). In these patients, 

based on published evidence from the ATAC trial and from Ellis’ group, we 

hypothesise that enhanced response rates could be obtained by use of aromatase 

inhibitors in place of tamoxifen at an early stage. Conversely, we hypothesise, many 

other patients, particularly those with HERl-3 negative and PR negative tumours, 

may continue to derive significant benefit from tamoxifen without the need to switch 

to aromatase inhibitors.

However, this conclusion would initially appear to be contradicted by data from the 

lES study (Coombes et al., 2004a), in which patients were randomised to continued 

treatment with either the aromatase inhibitor Exemestane or tamoxifen following 

completion of 2-3 years of tamoxifen. This trial also showed a benefit in disease free 

survival in those patients switched to Exemestane. This benefit was shown equally in 

both PR negative and PR positive patients. We hypothesised that in this scenario 

many patients with de novo tamoxifen resistance would in effect be excluded from 

this trial as many recurrences would have occurred prior to randomisation. Perhaps 

most interestingly then, our results also show that HER and PR status do not appear to 

influence relapse on tamoxifen after 3 years of tamoxifen treatment which parallels 

these recently published lES results (Coombes et al., 2004a).

We showed no significant differences in relapse rates on tamoxifen relative to PR 

status in ER positive patients who had already suiwived disease free for three years.
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These results support our conclusion that PR negativity identifies a group of tumours 

with de novo tamoxifen resistance, who may therefore respond to aromatase inhibitors 

if treated early, i.e. from time of diagnosis (as per the ATAC trial). We suspect these 

patients are in effect excluded from the lES study by virtue of their having relapsed 

prior to the randomisation point of this study. This suggests that PR status is a time 

dependent predictor of early relapse due to de novo tamoxifen resistance. Further 

evidence for this supposition is provided for the moderate association between PR 

status and outcome in the ARNO 95/ ABCSG 8 Trials (Jakesz et al., 2004) which 

randomised patients to either tamoxifen or Anastrasole following only 2 years of 

tamoxifen treatment. Taken together, these data stiongly support the conclusion that 

the predictive value of PR, and possibly HERl-3, expression is time dependent and 

hence identifies patients at high risk of de novo tamoxifen resistance. However, data 

from the BIGl-98 study, which is comparable to ATAC in design, does not appear to 

support this argument (Jakesz et a l, 2004). Whilst the most likely explanation of this 

is under-powering of the sub-analysis relating to PR status, caution should be 

exercised before extrapolating results from ATAC and those presented here to 

treatment of patients. These results also highlight the importance of distinguishing 

clearly between the molecular pathways involved in de novo and acquired resistance, 

particularly in the clinical setting in terms investigating any changing molecular 

profile of recurrent tumours. Ultimately investigation of the underlying mechanisms 

behind later recurrences may demonstrate up-regulation of previously dormant HERl- 

3 pathways or alternatively it may involve other, as yet unknown pathways, which 

may also be detectable at diagnosis.

From a clinical perspective, data from the ATAC trial, if confirmed, may provide 

sufficient support to encourage early switching of ER positive patients from
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tamoxifen to aromatase inhibitors if their tumours do not express PR. Despite the 

importance of these findings however, additional information from prospective 

clinical trials is required before recommendations relating to patient management can 

be made. In this context it is particularly important that translational science tumour 

banks are being collected in the context of current clinical trials. The value of such 

tumour banks is clearly demonstrated by the AT AC data, despite the retrospective 

nature of the analysis. The data presented here supports extending pre-planned 

prospective analysis, such as that defined within the multinational TEAM trial 

(prospectively testing for interactions between HERl-3 and outcome relating to 

tamoxifen or Exemestane treatment), to incorporate measurement and reporting of PR 

status. Such analyses should, in the light of ongoing variations in PR and ER 

measurement (Chebil et a l, 2003), be performed centrally. The recent redesign of the 

TEAM trial to allow comparison of “switching” from Tamoxifen to Exemestane after 

2-3 years directly with continuous Exemestane treatment provides an ideal platform 

for this hypothesis to be tested. The ability to select, at diagnosis, patients at high risk 

of early relapse on tamoxifen could provide the opportunity to tailor their adjuvant 

therapy differently, either in terms of an aromatase inhibitor or by supplying them 

with a HER family inhibitor such as Iressa or Herceptin to be used in conjunction 

with their endocrine treatment (particularly if they are pre-menopausal and hence not 

suitable for aromatase inhibitors).
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4.4 HERl-3 activates membrane ER via 

phosphorylation. A role for phosphoryiated ERa in 

tamoxifen resistance?

Having provided evidence that HERl-3 overexpression is associated with de novo 

tamoxifen resistance, attention must be focussed on the mechanisms and pathways 

involved. Several mechanisms have been proposed by which the type I RTKs may 

modify response to oestrogens and tamoxifen. As discussed previously there is a 

considerable body of biological evidence suggesting that cross talk between the HER 

family signalling pathways and the ER at several levels may be responsible. 

Signalling pathways activated by the type I RTKs have been shown to activate the ER 

by phosphoiylation at sites including those on the API region of the ER. As discussed 

previously, the serine phosphorylation site SI 18 on the API region of ER is a target 

for phosphoiylation by MAPK (Kato et al., 1995). MAPK is a component of the Ras- 

Raf-MAPKs pathway and over-expression or activation of this pathway has been 

associated with a poor clinical response to tamoxifen therapy (Gee et al., 2001) and to 

tamoxifen resistance in vitro (Benz et a l, 1993; Kurokawa et a l, 2000). In addition 

the phosatidylinositol-3 kinase (PI-3K) - Akt pathway has been also shown to mediate 

activation of the ER at serine 167 (also in the API region) (Campbell et a l, 2001) 

resulting in reduced sensitivity to tamoxifen in vitro. The consequence of 

phosphorylation of the ER in breast cancers may be to promote the known receptor 

agonistic activity of tamoxifen and to enhance transcription of genes involved in 

proliferation and genes which block apoptosis leading to tumour growth. Therefore 

our initial hypothesis was that we would be able to demonstrate a relationship 

between overexpression of the type I RTKS at the membrane and phosphoryiated ER
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at the nucleus, and that these patients would also be more likely to relapse on 

tamoxifen therapy.

Our results demonstrated the presence of phosphoryiated ERa within the nuclear, 

cytoplasmic and membrane components of breast cancer cells. In terms of the nuclear 

staining we demonstrated results that initially may be thought to be out of keeping 

with our original hypothesis. We demonstrated no correlation between HERl-3 and 

phosphoryiated nuclear ERa (serl67) and nuclear expression of pERaSerl67 was 

associated with smaller tumour size and lower grade, hi addition, HERl-3 was 

inversely related to expression of pERa at the Seri 18 site. In fact, these results are in 

keeping with other recently published results using the same pERal 18 antibody. 

Murphy et al determined pERal 18 staining in 117 primary breast tumours from node­

negative patients who were subsequently treated with adjuvant tamoxifen. They also 

demonstrated a positive correlation of nuclear pERal 18 with expression of total ERa, 

PR positivity, lower grade and longer disease free survival (Murphy et al., 2004a; 

Murphy et al., 2004b). In addition. Gee et al have published preliminary results using 

this antibody (cohort size not described) which also demonstrated associations with 

improved disease free survival and PR status. (Gee et al., 2005). These studies, when 

combined with data presented here, would suggest that the effects of HERl-3 in 

promoting tamoxifen resistance may be mediated through mechanisms other than 

direct phosphoiylation of the ER, at these specific sites, within the nucleus of breast 

cancer cells and that phosphoryiated nuclear ER acts as a marker of an intact, 

functional, ERa signalling pathway. However these results are also complicated by 

the fact that Murphy et al reported an association between nuclear pERal 18 staining 

and MAPK overexpression mid Gee et al noted a direct association with Akt activity 

which has also been demonstrated by ourselves (Kirkegaard et ah, 2005). The
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possibility that ER function may be modified by either phosphoiylation at other sites, 

or via phosphoiylation of co-factors, cannot be cuirently excluded.

In addition to the widespread nuclear phosphoiylated ER staining, we also found that 

a small but significant subset of patients demonstrated either pE R allS  or pE.Ral67 

staining at the membrane. Whilst the Murphy group did not comment on the presence 

of membrane staining (Murphy et al., 2004a), Gee et al commented on its presence 

but failed to link it with any meaningful clinical relationships (Gee et al., 2005). In 

contrast to our results found with nuclear staining we have also demonstrated novel 

findings associating phosphoryiated ERa at the membrane with HERl-3 

overexpression and increased tumour size, which may indicate a different function for 

the ERa at this site.

In the late 1970s Pietras & Szego (Pietras and Szego, 1977) reported the presence of 

high affinity binding sites for oestrogen associated with the plasma membranes of the 

MCF7 human breast cell line. This observation was largely ignored until recently, 

when evidence for non-genomic actions of ERa increased, particularly as a postulated 

explanation for the more rapid signalling via signal transduction pathways normally 

activated by growth factor receptors, produced by oestrogen stimulation (Simoncini et 

al., 2000; Kousteni et al., 2001; Castoria et al., 1999). This non genomic signalling 

appears to take place outside the nucleus and now it appears that oestrogens are able 

to mediate some of these actions through a membrane associated oestrogen receptor 

(Watson and Gametchu, 1999; Simoncini et a l, 2000; Pappas et a l, 1995).

Recent work has suggested that these membrane receptors may be particularly 

important in the role oestrogen plays in ‘su m v a l or anti-apoptotic mechanisms 

(Marquez and Pietras, 2001; Razandi et a l, 2000). Oestrogenic stimulation of

150



membrane ERa has been shown to result in rapid stimulation of G proteins, protein 

kinase C, protein kinase A, MAPK and PI3K activation in vitro (Migliaccio et a l, 

1996; Simoncini et a l, 2000; Zivadinovic and Watson, 2005; Razandi et a l, 2003b; 

Filardo et a l, 2002; Kelly et a l, 1999). These kinase signals have been shown to 

activate nuclear ERa transcriptional activity (Sun et a l, 2001a). Therefore the 

genomic and non genomic actions of ERa seem to be complementary and may even 

synergise via cross-regulatory interactions mediated by cross talk with growth factor 

pathways (Pedram et a l, 2002). The physiological relevance of rapid extranuclear 

signalling has been provided by experiments showing that these actions contribute to 

the anti-apoptotic effect of oestrogen in bone (Kousteni et a l, 2002) and to the rapid 

effects of oestrogen on vasodilation and protection of endothelial cells against injury 

(Figtree et a l, 2003). Whilst in vitro evidence for this association between 

membranous ERa and the HER family and its downstream pathways has been shown 

in an increasing number of cell types, our results demonstrate for the first time a 

potential link between the 2 pathways in human breast cancer specimens.

In addition to this we also show a correlation between membranous phosphoiylated 

ERa and disease relapse on tamoxifen at Seri 18 but not at Seri 67. There is some 

evidence that, in contrast to genomic activity (i.e. action of the ERa to promote gene 

transcription), non-genomic ERa activity can be stimulated by SERMS such as 

tamoxifen (Zivadinovic and Watson, 2005; Aronica et a l, 1994; Cato et a l, 2002). 

Therefore tamoxifen may be incapable of breaking (or even may stimulate) any cycle 

linking non-genomic and genomic ERa the growth factor pathways. Thus membrane 

bound ERa (in conjunction with the HER family) may be responsible for initiating 

tumour cell proliferation even in the presence of tamoxifen resulting in de novo 

tamoxifen resistance. Aromatase inhibitors however, act by depriving the
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environment of oestrogen which would shut o tf both the nuclear and membranous ER 

activity resulting in termination of this cycling.

It is not clear from our results if the interaction demonstrated between phosphoryiated 

ERa at the membrane and HERl-3 is true for pERa only or whether it represents an 

interaction with membranous ERa in general, regardless of phosphoiylation status. 

Membranous ER staining has not traditionally been detected in routine diagnostic 

ERa immunohistochemistiy staining and indeed none was seen in our study. This may 

reflect an antibody concentration effect whereby the much smaller numbers of ERa 

receptors at the membrane are overshadowed by the greater intensity of ERa nuclear 

staining. By detecting phosphoryiated ERa only, this concentration effect may 

become less prominent, enabling detection of staining of pERa at the membrane.

These findings emphasise the importance of determining the non-classical actions of 

ERa particularly with respect to interactions with cell survival pathways. However 

further work is needed to confirm any correlation that HERl-3 associated 

membranous ERa may have with tamoxifen resistance. These results also have 

implications for establishing ERa status, particularly in the clinical diagnostic setting. 

Whilst, over the years, ERa detection has progressed from ligand binding assays to 

standardised IHC testing, more detailed analysis in terms of location and function of 

the receptor may become the norm for diagnostic testing in the future. As we become 

increasingly more aware of the complex nature of ERa and its interactions, these 

results only serve to highlight the difficulties involved in identifying the mechanisms 

behind tamoxifen resistance and subsequently in developing treatment strategies to 

overcome them.
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4.5 HER4

We have demonstrated for the first time that the H4.77.16 antibody can be used 

successfully in formalin fixed tissue. In keeping with previous reports we also have 

found membranous, cytoplasmic and nuclear staining. The HFR-1 antibody is raised 

against an intracellular epitope aal 249-1264 (therefore will detect both the intact and 

cleaved form of 4ICD) whilst the H4.77.16 antibody is raised against an extracellular 

fragment (hence will detect only the full length HER4 protein or the cleaved 

extracellular domain at the cell surface). This difference in antigen site may explain 

the different staining patterns we have seen in terms of location; with each antibody 

appearing to select for distinct compartments. Thus HFRl may select for cytoplasmic 

and nuclear HER4 ICD whilst H4.77.16 selects for membranous HER4 and possibly 

also HER4 being recycled in cytoplasm or nucleus. This ability to distinguish between 

site and function of HER4 and its fragments is particularly important with recent 

evidence highlighting the different functions of nuclear and mitochondrial HER4. We 

now know that whilst HER4 at the membrane is accountable for signal transduction, 

mitochondrial 4ICD nuclear HER4 appeal's to be involved in apoptosis mediation 

(Vidal et a l, 2005) and nuclear HER4 is required for mammary gland development 

and lactation.

Despite the differences seen in staining location, we demonstrate that in terms of 

relationships with pathological variables, HER family members and prognostic 

importance, when tested under standardised conditions on the same set of tumours; 

both antibodies provide generally similar results. The exception to this is the 

association that H4.77.26 detected nuclear HER4 has with poorer survival. This

153



correlates with recently published results demonstrating that whilst membranous 

HER4 was associated with a good prognostic outlook, nuclear HER4 was associated 

with significantly shorter sum val times (Junttila et al., 2005). Interestingly though 

this study was using the HFRl antibody. Clearly this demonstrates that despite strong 

evidence for the role of the cleaved 4ICD, intact HER4 may also have a significant 

role to play.

We have not demonstrated any association between membranous HER4 and survival 

when considered alongside other HER family members or alone. However we did 

demonstrate an association between membranous and cytoplasmic HER4 and known 

poor prognostic variables. These results have not helped clarify the ongoing debate on 

the role of HER4 in breast cancer but may be explained by several factors. Our 

patients are a tamoxifen treated group, the majority of which are ER positive. 

Previous studies, including ours, have suggested a greater tendency for HER4 to be 

associated with ER positive tumours (Tang et al., 1999; Wright et a l, 1992; 

Pawlowski et a l, 2000). Within this generally less aggressive set of cancers, the effect 

of HER4 may be less pronounced.

The patterns of coexpression reported between HER4 and other family members may 

also explain some of the conflicting reports here and in published studies. In contrast 

to this study, in our previously reported series where HER4 was associated with good 

prognosis, we found minimal overlap between HER4 positive patients and other HER 

family members (Witton et a l, 2003). In addition a recent large study has suggested 

that the “protective” effect of HER4 may be abrogated if expression of other members 

of the type I RTKs are also present (Abd El-Rehim et al, 2004). That may explain 

why on this occasion, where we demonstrate higher levels of co-expression, we no 

longer see the beneficial results on survival reported previously.
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This is also consistent with data from cell lines showing that whilst HER4 can induce 

growth aiTest and differentiation (Sartor et a l, 2001; Williams et a l, 2003), when co­

expressed with other receptors, such as HER2 & HER3, signalling through these 

receptors promotes proliferation and ovemdes the effects seen when HER4 is 

expressed in isolation (Yarden, 2001b).

In conclusion, we have demonstrated that antibodies against 2 different HER4 

receptor antigen sites identify clear differences in staining patterns. The differences in 

published reports may well reflect the differing abilities of antibodies to detect 

distinctly different HER4 functions. In the future careful attention to the location and 

consequent function of the HER4 fragment targeted is needed. It is possible that 

antibodies more specifically targeting the TACE or BH3 domain may prove valuable 

in further elucidating the functions of HER4 particularly in regard to impact on 

clinical outcome in breast cancer.
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Chapter 5 Conclusion

The research presented here is particularly important because it demonstrates a time 

dependent element to tamoxifen resistance which is likely to reflect de novo 

resistance. Both HERl-3 and PR expression, in ER positive primary breast cancers, 

could now be used to identify patients who may exhibit de novo tamoxifen resistance. 

Furthermore both PR and FIERI-3 appear to be time dependent predictors of risk of 

relapse with risk declining markedly after 3 years of tamoxifen treatment. These data, 

taken in context with data from the recent AT AC and lES studies, strongly support 

the hypothesis that HERl-3 and PR status identifies separate tamoxifen resistant 

tumour subsets, and that patients with HERl-3 expression or lacking PR expression 

are likely to benefit from early implementation of therapy with aromatase inhibitors. 

Conversely, these data would also suggest that ER/PR positive tumours lacking 

FIERI-3 expression (over 50% of cases), could be treated by switching to an 

aromatase inhibitor following 2-3 years of tamoxifen treatment. Further research to 

determine the mechanisms relating to tamoxifen resistance and to test this hypothesis 

in the context of the redesigned TEAM trial will provide a valuable insight into the 

most appropriate future therapeutic options for differing sets of breast cancer patients. 

In addition to reinforcing the concept that members of the HER family are involved in 

tamoxifen resistance, we have also produced novel evidence with regard to how this 

may be taking place. Phosphoryiated ER at the nucleus was not linked with the FIER 

family or with tamoxifen resistance and instead appears to indicate a functional 

responsive ER. Detection of the presence of phosphoiylated ER at the nucleus may in 

fact be more relevant if tested for after the commencement of tamoxifen therapy, with 

those still expressing it at that time being possible candidates for developing clinical 

tamoxifen resistance. Detecting the presence/absence of this marker during
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neoadjuvant endocrine trials may shed more light on this in the future. With regard to 

the membranous phosphoiylated ERa staining we have demonstrated relationships 

with both the HER family and with resistance to tamoxifen. This comes at a time 

when much attention has been focussed on membranous ERa signalling mechanisms 

and our results should contribute to this debate as it is the first time this relationship 

has been demonstrated in human breast cancer specimens. Further work is required to 

more closely examine the nature of this link between ERa at the membrane and the 

HER family. Particularly interesting are the Src family kinases which are known to be 

involved in cancer cell adhesion and migration. There is evidence suggesting that 

specific G proteins mediate the ability of oestrogen receptors at the membrane to 

activate matrix metalloproteinases via Src to lead to transactivation of EGFR. 

Analysis of expression of Src within our database has been planned.

While clinical knowledge with regard to the mechanisms behind de novo resistance is 

rapidly progressing, further attention should be directed towards identifying the 

causes of acquired resistance. This would include for example the scenario of 

PRpos/HERneg patients who initially do well on tamoxifen but who develop 

resistance at a later date. Do these patients develop secondaiy stimulation of the HER 

pathways, or do they have an unidentified marker that could have been identified at 

the outset? Whilst it appears that fewer ER positive patients have de novo resistance 

to aromatase inhibitors, will these agents also be linked to a later acquired resistance 

pattern as demonstrated in in vitro with regard to long term oestrogen deprivation 

(Chan et al., 2002)7 Traditionally it has been difficult to obtain histological tissue 

from breast cancer recurrences (many metastasis occur in bone for example which is 

difficult to biopsy). However information gained from these samples may be 

invaluable with regard to determining causes of acquired resistance. A recent study
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using detecting serum HER2 showed that 25% of patients treated with tamoxifen and 

26% of patients treated with letrozole in a metastatic or advanced disease setting 

converted from serum HER2 negative to HER2 positive at the time of progression 

(Lipton et al., 2005). This switch in HER status has also has been detected in formalin 

fixed tissue (Gutierrez et af, 2005) (in very small numbers).

Further research into causes of tamoxifen resistance (both de novo and acquired) is 

particularly important for younger women with breast cancer. Whilst postmenopausal 

HER positive women have the advantage of being able to switch to aromatase 

inhibitors, premenopausal women may not. If the aetiology behind tamoxifen 

resistance in these younger women is clearly identified as being due to HERl-3 

overexpression, then targeted therapy such as Herceptin or Iressa can be used. Many 

clinical trials using combinations of either aromatase inhibitors or tamoxifen with a 

tyrosine kinase inhibitors have begun in the metastatic setting and may soon be 

extended to the adjuvant treatment (Johnston, 2005). There are also other emerging 

dual-inhibitor therapies (Reid et al., 2007) such as Lapatinib, a tyrosine kinase 

inhibitor of both EGFR and HER2, which has shown clinical benefit in trastuzumab 

refractory metastatic breast cancer.

Breast cancer suiwival rates have improved markedly over the years largely because 

of better directed therapies based on clinical trial evidence. However continued 

improvements are likely when treatment can be initiated on individual, rather than 

population based, characteristics. The recent HERA trial results are evidence of 

targeted individual treatment based on a single biological marker. Identification of 

further markers will be able to help clinicians give detailed prognostic and treatment 

advice tailored to the individual cancer patient.
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Appendix II

Photomicrographs of immunohistochemical TMA staining
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