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Abstract

Human islet transplantation is currently successfully establishing a role in the 

management of certain patients with type 1 diabetes. For islet transplantation to be 

successful there must be an adequate supply of high quality islets, which are damaged 

neither by host immunological defences nor the immunosuppressants used.

In an attempt to characterise human islet quality several tests were developed. The static 

stimulation test assesses P-cell function and responsiveness to glucose by measuring 

insulin release. To assess the degree of exocrine contamination of the islet preparation, 

the amylase content of both the whole pancreas and islet preparation were measured. 

Measuring the insulin content of both the whole pancreas and islet preparation allowed 

us to quantify the increase in insulin concentration as a consequence of the islet 

isolation procedure. The mean exocrine contamination (EC) was 2.5 ± 0.7%, mean 

insulin enrichment (IE fold increase) 180 + 37 and mean static stimulation index (SSI) 

was 1.47 ± 0.08 suggesting that the islet preparations have low levels of exocrine 

contamination, have significant insulin enrichment and release insulin in response to 

glucose. Thus the islet isolation procedure is reasonably successful at separating the 

endocrine from the exocrine pancreas. The curative potential of each islet material was 

then determined by transplanting representative islet samples to non-obese diabetic mice 

with severe combined immunodeficiency disease (NOD-SCID) as the biological 

endpoint in a standardised system. In the first two weeks following transplant, the 

degree of EC of the islet preparation may have some role in predicting the in-vivo 

function of islets, with those preparations of highest EC taking longer to restore 

normoglycaemia than the other groups. However, beyond 14 days post-transplant, EC is 

of no value in predicting the in-vivo function of islets. Similarly the degree of IE and 

the SSI have no value in predicting the in-vivo function of islets in this model. Thus, 

none of the biochemical indices (EC, IE nor SSI) are able to predict the in-vivo 

effectiveness or function of transplanted islets in the NOD-SCID mouse model.

Non-heart-beating donors (NHBDs) are generally not deemed suitable for whole organ 

pancreas donation but could provide a significant additional source of pancreata for islet 

transplantation if it was demonstrated that NHBD islets functioned no differently from



islets isolated from heart-beating donors (HBDs). The recovery of islets from NHBDs 

was comparable to that of control HBD. In-vitro assessment of NHBD islet function 

revealed function equivalent to those isolated from HBD, and NHBD islets transplanted 

to NOD-SCID mice efficiently reversed diabetes. A single donor transplant from a 

NHBD resulted in a state of stable insulin independence in a type 1 diabetic recipient. 

Thus, normally functioning islets can be isolated successfully from NHBD pancreata, 

suggesting that NHBDs may provide an untapped source of pancreatic tissue for 

preparation of isolated islets for clinical transplantation.

:
Rapamycin (sirolimus) is a macrolide fungicide with immunosuppressant properties that 

is used in human islet transplantation. Little is known about the effects of rapamycin on 

islets and MIN-6 cells (mouse clonal insulin-producing cells that are used 

experimentally as a (3-cell model). Rapamycin had a dose-dependent, time-dependent,
"

glucose-independent deleterious effect on MIN-6 cell viability. At day 1, using the MTT 

method (this mitochondrial succinate dehydrogenase activity assay is used as an indirect 

measure of cell viability), 0.01 nM rapamycin reduced cell viability to 83 ± 6% of 

control (p<0.05). Using the calcein AM method (a fluorescent marker of live cells), at 

day 2, 10 nM rapamycin caused a reduction in cell viability to 73 ± 5% of control 

(p<0.001). Furthermore, 10 and 100 nM rapamycin caused apoptosis in MIN-6 cells as 

assessed by the TUNEL assay (apoptotic nicked DNA is fluorescinated and detected at 

the single cell level by flow cytometry). Compared to control, there was a 3.1 ±0.6 fold 

increase (p<0.01) in apoptosis in MIN-6 cells treated with 10 nM rapamycin. A supra- 

therapeutic rapamycin concentration of 100 nM significantly impaired glucose- and 

carbachol-stimulated insulin secretion of rat islets and had a deleterious effect on the 

viability of rat and human islets. Thus, currently there is no evidence that therapeutic 

concentrations of rapamycin have any in-vitro deleterious effect on islets.
'3
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Chapter 1 Introduction 

1.1 Diabetes Mellitus

1.1.1 Introduction

Diabetes mellitus is defined as a metabolic disorder of multiple aetiology, characterised 

by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein 

metabolism, resulting from defects of insulin secretion, insulin action or both (1). Prior 

to the discovery of insulin in the early 1920s, diabetes was invariably fatal within two 

years in young patients. Insulin therapy has revolutionised the treatment of diabetes and 

permitted young patients with diabetes to live a long and full life. It has however, 

introduced a new set of problems such as the risk of hypoglycaemia and the 

development of long-term macrovascular and microvascular complications. 1

The diagnosis of diabetes is based on blood or venous plasma glucose concentrations, 

taking into account the presence or absence of symptoms (1). Often, the initial test is a 

random plasma glucose. In the presence of symptoms of diabetes (thirst, polyuria and 

weight loss), a random plasma glucose concentration of greater than 11.1 mmol/L is 

sufficient to diagnose diabetes. In the absence of symptoms one further diagnostic 

glucose measurement is required for confirmation. A plasma glucose of less than 5.5 

mmol/L indicates that the diagnosis of diabetes is extremely unlikely. Random plasma 

glucose concentrations between 5.5 mmol/L and 11.1 mmol/L are non-diagnostic and 

need to be repeated or a fasting plasma sample taken. A fasting plasma venous glucose 

concentration of greater than 7.0 mmol/L is diagnostic of diabetes mellitus (the previous 

diagnostic cut-off value was 7.8 mmol/L). A fasting plasma glucose concentration 

between 6.1 and 7.0 mmol/L places the patient in the category of impaired fasting 

glycaemia (IFG). Patients with a random plasma glucose in the non-diagnostic range 

and a fasting plasma glucose of less than 7 mmol/L should have an oral glucose 

tolerance test performed. In this test, the person is required to take an oral 75g-glucose 

load, and the plasma glucose concentration two hours later is measured. Two-hour 

plasma glucose concentrations of greater than 11.1 mmol/L indicate the presence of 

diabetes mellitus (irrespective of the fasting plasma glucose level), while concentrations 

between 7.8 and 11.1 mmol/L indicate impaired glucose tolerance (IGT). IGT 

represents an intermediate category between normoglycaemia and diabetes. Patients 

with IGT are more likely to develop diabetes and are at higher risk of cardiovascular

________________________________________________ _______
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disease than normoglycaemic individuals (2). IFG is analogous to IGT, and is the 

preferred method of determining impaired glycaemic control according to the American 

Diabetes Association guidelines (3). The two methods of detecting impaired glycaemic 

control do not always detect the same patients. Whilst a fasting sample is easier to 

perform than an OGTT, it is not as reliable in detecting patients who are at risk of 

subsequent cardiovascular events (4).

In 1999 the World Health Organisation (WHO) updated its relevant classification 

system for diabetes in an attempt to make the classification more clinically relevant 

(Table 1). The categories are based on the aetiology of diabetes, rather than the 

treatment, as was the case in the previous classification (5). This has avoided the 

confusion caused by the terminology of insulin and non-insulin dependent diabetes.

1.1.2 Type 1 diabetes mellitus

Type 1 diabetes, previously referred to as insulin-dependent diabetes mellitus (IDDM), 

is characterised by pancreatic p-cell destruction and absolute insulin deficiency, p-cells 

are destroyed by an autoimmune process, and antibodies to glutamic acid 

decarboxylase, which is located in the cytoplasm of p-cells, are found in 70-80% of all 

patients with type 1 diabetes, but less than 1% of the general population (6). In common 

with most autoimmune diseases, there is a strong genetic predisposition to type 1 

diabetes. Approximately 50% of the genetic predisposition can be attributed to the 

presence of a non-aspartic residue at position 57 of the beta chain of the human 

leukocyte antigen class IIDQ molecule (7).
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Type of diabetes Definition

Type 1

Autoimmune or 

Idiopathic

Beta-cell destruction usually leading to 

absolute insulin deficiency

Type 2 May range from predominantly insulin 

resistance with relative insulin deficiency 

to a predominantly secretory defect with 

or without insulin resistance

Other specific types Genetic defects of insulin function

Genetic defects of insulin action

Diseases of the endocrine pancreas

Endocrinopathies

Drug- or chemical-induced

Infections

Uncommon immune-mediated disease 

Other genetic syndromes

Gestational diabetes Includes impaired glucose tolerance and 

diabetes in pregnancy

Table 1. The WHO classification of diabetes mellitus (1).

As P-cells are destroyed, insulin levels fall below that required to maintain 

normoglycaemia and patients often present subacutely with the classical triad of 

symptoms: thirst, polyuria and weight loss. If these warning symptoms are not heeded 

or if destruction of p-cells is particularly rapid, the person may develop absolute insulin 

deficiency and become ketoacidotic. The rate of p-cell destruction varies between 

individuals, but in general is relatively rapid; therefore type 1 diabetes has a short latent 

period prior to detection. As a state of absolute insulin deficiency exists, insulin therapy 

is required from the onset of diagnosis.

Type 1 diabetes tends to be diagnosed in younger people, usually before 35 years of 

age. The incidence rate of type 1 diabetes in the United Kingdom has been estimated at
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13.5 per 100,000 in persons less than 15 years of age, and this incidence is increasing 

(8). Diabetes is the most common metabolic disease in the young. The Scottish Study 

Group for the Care of Young Diabetics demonstrated there is a rising incidence of 

diabetes in the under 16 years age-group, with an annual incidence of 25 per 100,000 

population and a near tripling of new cases in the last 30 years (9).

1.1.3 Type 2 diabetes mellitus

Type 2 diabetes, previously known as non-insulin dependent diabetes mellitus 

(NIDDM), is associated either with insulin resistance or a defect in insulin secretion, 

with or without insulin resistance (10). There is no autoimmune p-cell destruction, thus 

the deficiency in insulin is relative rather than absolute, and indeed systemic insulin 

levels are often high. Type 2 diabetes, as currently defined, is likely to result from a 

number of heterogeneous pathological processes. Whilst the aetiology of the condition 

is uncertain, it is strongly associated with obesity (11). There is a stronger genetic 

predisposition to type 2 diabetes than type 1 diabetes, but the underlying susceptibility 

genes have not yet been elucidated (12).

As there is no absolute deficiency of insulin, patients rarely develop ketoacidosis, and 

often they do not require insulin therapy in the initial stages of the disease. The 

development of relative insulin deficiency is often insidious, thus impaired glucose 

tolerance or diabetes may be present for many years prior the diagnosis of diabetes (13). 

These individuals remain at increased risk of diabetic complications, and indeed up to 

25% of patients with newly diagnosed type 2 diabetes already exhibit evidence of 

complications (14).

In America, the prevalence of diabetes in persons over 18 years of age increased from 

4.9% to 7.3% between 1990 and 1998, an increase of almost 50%. This was primarily 

due to the increased prevalence of type 2 diabetes. In parallel, an almost 80% increase 

in the prevalence of obesity from 11.1% to 19.8% was observed, with a high degi'ee of 

concordance between obesity and diabetes (p<0.001) (15,16). In 2000, it was estimated 

that around 1.4 million people in the UK have diabetes (17). At least a million more are 

thought to have diabetes but are undiagnosed (18,19,20). In the UK, it has been 

predicted that there will be 20% more people with type 2 diabetes alive in 2030 than in
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.2000 with a 20-30% increase in microvascular and macrovascular complications. 

Undoubtedly, this will have a significant economic impact on health care provision (21),

1.1.4 Complications of diabetes

The discovery of insulin by Banting and Best in 1922 revolutionised the treatment of 

diabetes, such that for the first time, a diagnosis of diabetes in a young person was 

compatible with relative longevity (22). However exogenous insulin delivery cannot 

replicate the endogenous mechanisms that control the secretion of insulin, consequently 

normoglycaemia cannot be continuously maintained. The chronic exposure to 

hyperglycaemia produces long-teim complications, which are classified as 

microvasculai' or macrovascular. a

g

Microvascular complications are specific to diabetes and include retinopathy, 

neuropathy and nepliropathy. Over 90% of patients with type 1 diabetes diagnosed 

before 30 years of age will develop evidence of retinopathy after 15 years of diabetes 

(23). After 30 years of diabetes, approximately 60% will develop the more serious 

proliferative retinopathy, which potentially can lead to blindness (23,24). The most
■ ■; ^

common forms of neuropathy are a peripheral symmetrical sensorimotor neuropathy 

and autonomic neuropathy, which can affect gastric motility, erectile function, bladder 

control and vascular tone. In the Pittsburgh Epidemiology of Diabetes Complications 

Study, 30% of patients who had type 1 diabetes for 20 years developed distal 

symmetrical polyneuropathy (25).

Macrovascular complications are due to accelerated atherosclerosis, and include 

ischaemic heart disease, peripheral vascular disease and cerebrovascular disease. The 

macrovascular complications are not specific to diabetes, but are more common in 

patients with diabetes (26,27,28). This is particularly true for type 2 diabetes, which is 

often accompanied by other vascular risk factors such as hypertension, dyslipidaemia 

and obesity (29).

1.1.5 Unstable diabetes

Unstable (or brittle) diabetes implies glycaemic instability in type 1 diabetics sufficient 

to cause life disruption. Glycaemic instability can manifest as recurrent admissions to 

hospital with diabetic ketoacidosis or hypoglycaemia. As there is no generally agreed

■ :___________________________
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definition of unstable diabetes, estimates of prevalence vary from 0.3% to ‘almost all 

diabetics’, although it is likely that the prevalence lies somewhere between 0.1 to 0.5% 

(30). Of those type 1 diabetics with unstable diabetes, the vast majority (59%) have 

recurrent admissions solely with ketoacidosis, 17% with hypoglycaemia and 24% 

recurrent admissions with both. Most patients are females between the ages of 15 and 

25 years. Diabetologists caring for those patients considered there to be an organic 

cause (autonomic neuropathy, subcutaneous insulin resistance, dementia, coeliac 

disease, chronic renal failure, hypopituitarism or steroid treatment) in less than 10% of 

cases. The rest were considered to be behavioural or psychosocial in origin, attributable 

to domestic problems, anorexia, denial, self-control or alcohol or drug addiction (30). 

Most patients with unstable glycaemia become more stable with time, however, not all 

patients live long enough to stabilise; there is a significant morbidity and mortality 

associated with unstable glycaemia and in addition a much poorer quality of life (31). 

Thus, although the prevalence of unstable glycaemia in the type 1 diabetic population is 

likely to be low, these patients have a poor quality of life and consume a 

disproportionate amount of health-care resources.

1.1.6 Discussion
Parenteral insulin therapy does not cure diabetes; it simply controls diabetes by 

lowering blood glucose levels, often sub-optimally. Parenteral insulin regimes attempt 

to replicate the physiological patterns of p-cell insulin release, however the finely-tuned 

release of the counter-regulatory hormones insulin, glucagon and others to maintain 

normal blood glucose levels are unachievable with current pharmacological technology. 

The chronic exposure to hyperglycaemia can lead to the long-term complications 

described previously. However, tightening glycaemic control (and thus reducing the 

long-term risk of complications) comes at a price. The Diabetes Control and 

Complications Trial Research Group showed that intensive insulin therapy to tighten 

diabetic control resulted in a three-fold increase in severe hypoglycaemia (32). Acute 

hypoglycaemia can cause drowsiness, confusion, disorientation, coma, cardiac 

arrhythmia and death. Recurrent, prolonged hypoglycaemic attacks are associated with 

permanent neurological deficits such as hemiparesis, memory impairment, diminished 

language skills, decreased abstract thinking capabilities and ataxia.

- -  "      '
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Thus type 1 diabetic patients are dependent on life-long parenteral insulin for survival 

and are in the unenviable position of setting (if they can) their glycaemic control 

somewhere on the spectrum between two extremes. They can chose tight glycaemic 

control (with reduced risks of long-term complications but increased risks of 

hypoglycaemia), poor glycaemic control (with increased risks of long-term 

complications but reduced risks of hypoglycaemia), or, as is usually the case, 

somewhere in between.

The concept of a cure for diabetes is the driving force behind innovations such as 

pancreatic and islet transplantation; the aim being to render diabetics normoglycaemic 

and independent of insulin, improve day-to-day quality of life and ameliorate secondary 

complications.

1,2 Diabetic nephropathy

1.2.1 Definition and diagnosis

Diabetic nephropathy is a chronic glomerular disease characterised by persistent 

proteinuria, increasing blood pressure and declining renal function in a patient who has 

diabetes. Clinically, diabetic nephropathy is diagnosed as the presence of proteinuria 

(>300mg albuminuria/24 hours) in a person with diabetes who has no other cause of 

renal disease and no concurrent urinary infection. It is a major cause of morbidity and 

mortality in persons with diabetes. The presence of proteinuria in a patient with type 1 

diabetes confers an eight-fold increased risk of death from cardiovascular disease 

compared with diabetic patients with no proteinuria (33). This represents a relative 

mortality that is a 37 times greater than in the general population. In addition, diabetic 

nephropathy is now the commonest cause of end-stage renal disease in the Western 

world (34).

The detection of proteinuria is therefore key to diagnosing diabetic nephropathy. Overt 

nephropathy with proteinuria can be detected by urinary dipstick, a simple qualitative 

measurement. However, urinary dipsticks for proteinuria have a minimum detection 

limit of 100-200 mg/L, and thus are insufficiently sensitive to detect smaller 

concentrations of albumin (microalbuminuria). Thus the urinary dipstick is primarily 

used as a screening tool to detect overt nephropathy. Following a positive test, the
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amount of proteinuria should be quantified. There are three methods of quantifying the 

degree of proteinuria (Table 2). Historically the standard method has been a 24 hour 

urine collection for albumin excretion, but this is problematic, as it requires the patient 

to collect their urine each time they micturate. This can be simplified by performing a 

timed overnight collection, and calculating the rate of albumin excretion. A more 

practical approach for screening purposes is to determine the albumin/creatinine ratio in 

a spot urine sample. By referencing the albumin concentration to the creatinine 

concentration, allowance is made for the state of hydration of the patient.

24hr urinary albumin 

excretion (mg)

Timed overnight 

collection (pg/min)

Albumin/creatinine

(mg/mmol)

Proteinuria >300 >200 >30

Microalbuminuria 30-300 20-200 3-30

Normoalbuminuria <30 <20 <2.5 (F) <3.5 (M)

Table 2. Methods of quantification of albuminuria.

1.2.2 Epidemiology

The incidence and prevalence of diabetic nephropathy have been steadily increasing 

over the last 20 years, and it has now become the single most common cause of end- 

stage renal failure in the Western world (34). In 2000, it accounted for over 43% of all 

new cases of end-stage renal failure in the USA. A large part of the 52% increase in the 

incidence of end-stage renal failure in the USA between 1991 and 2000 can be 

accounted for by the 86% increase in diabetic nephropathy during this period. The 

increased incidence of diabetic nephropathy was primarily due to a dramatic rise in the 

number of patients with type 2 diabetic nephropathy. This accounted for over 86% of all 

new cases of diabetic nephropathy in 2000. The median age for developing end-stage 

renal disease was 48 and 65 years for patients with type 1 and type 2 diabetic 

nephropathy respectively.

I

The incidence of diabetic nephropathy is not increasing as rapidly in the UK. In 2001 in 

England and Wales, diabetic nephropathy was the single most common cause of new 

cases of end-stage renal failure, but it accounted for only 18.6% of all cases (35). The 

median age for developing end-stage renal disease was 51 and 65 years for patients with



29

type 1 and type 2 diabetic nephropathy respectively. In contrast to the USA, patients 

with type 2 diabetic nephropathy comprised only 31% of all diabetes patients on renal 

replacement therapy.

Diabetic patients have increased morbidity and mortality on renal replacement therapy 

compared to non-diabetic patients. In 2001 in England and Wales, patients less than 65 

years old had one-year survival rates on dialysis of 82% and 92% for those with and 

without diabetes respectively. The equivalent rates for those over 65 years old are 72% 

and 78%. Furthermore, patients with diabetes are less likely to receive a renal 

transplant, which is the only form of renal replacement therapy compatible with long­

term survival in diabetic patients, hi 2001 in England and Wales, the proportion of 

patients who had a renal transplant as the mode of renal replacement therapy was 37% 

and 13% for patients with type 1 and type 2 diabetes respectively. This compares 

unfavourably with the 51% observed for non-diabetic patients.

In summary, diabetic nephropathy is the single most common cause of end-stage renal 

failure in the Western world and its incidence continues to rise. This places a huge 

demand on already stretched healthcare resources. Individuals with diabetes and 

proteinuria are 37 times more likely to die of cardiovascular disease than age-matched 

non-diabetic individuals. Patients with end-stage renal failure due to diabetic 

nephropathy have one-year survival rates on dialysis of between 72% and 82%. This is 

worse than many forms of cancer. Hence any interventions that can reduce the incidence 

or progression of diabetic nephiopathy could potentially have a significant impact on 

the individual with diabetes and healthcare finances.

1.2.3 Natural history
The natural history of diabetic nephropathy can be divided into a series of distinct stages 

that relate glomerular structural changes to clinical observations. The first evidence of 

diabetic nephropathy is glomerular hypertrophy, which is associated with 

hyperfiltration, and can be detected clinically as a raised glomerular filtration rate 

(GFR). The earliest histological abnormalities detected are thickening of the glomerular 

basement membrane (GBM) and diffuse mesangial expansion. These have both been 

detected within two years of the onset of diabetes (36). These changes are associated 

with an increase in blood pressure although it is still within the normal range (there may
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be loss of the nocturnal dip). It is unknown whether the increase in blood pressure is 

primary or secondary, but it does predict the subsequent development of 

microalbuminuria (37). In the early stages of GBM thickening and mesangial expansion 

there is no increase in urinary protein excretion.

As the mesangial expansion increases, the first clinical signs of the development of 

kidney dysfunction becomes apparent. Microalbuminuria occurs and blood pressure 

rises by approximately 3mmHg per year. Mesangial expansion correlates closely with 

the presence of proteinuria (38). The presence of microalbuminuria is associated with a 

24 times greater risk of subsequent overt nephropathy, and hence it functions as an 

excellent screening toll for identifying those at risk of nephropathy (39).

As diabetic nephropathy progresses, mesangial expansion is accompanied by early 

glomerulosclerosis. Around this time, proteinuria can be detected by dipstick testing; 

therefore this phase is known as overt proteinuria. As the mesangium accumulates, it 

occupies a greater proportion of the glomerulus, resulting in a smaller surface area 

available for filtration (38). In conjunction with increasing glomerulosclerosis, there is a 

progressive decline in GFR, until endstage renal disease is reached, usually within seven 

years of the onset of proteinuria (40).

1.2.4 Role of hyperglycaemia in the pathogenesis of diabetic nephropathy

It is well established that poor glycaemic control is associated with increased risk of 

subsequently developing nephropathy (40,41,42). The Diabetes Control and 

Complications Trial (DCCT) showed that aggressive glycaemic control in patients with 

type 1 diabetes could reduce the risk of developing nephropathy and the progression of 

early nephropathy (32). In this study intensive glycaemic control was compared to 

standard therapy in the primary and secondary prevention of nephropathy. Intensive 

control reduced the risk of developing microalbuminuria by 34% (p=0.04) and 43% 

(p=0.001) in the primary and secondary prevention groups respectively. It also reduced 

the risk of progression to proteinuria by 56% in the secondary prevention group

(p=0.01).

The effect of improved glycaemic control remained after four years of follow-up despite 

the fact that the difference in glycaemic control between intensive and conventional
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groups narrowed significantly (43). It is primarily based on the evidence from this study 

that the UK National Service Framework for diabetes recommends a target HbAlc of 

less than 7% for all patients with diabetes (44).

The evidence for a beneficial effect of intensive glycaemic control in retarding 

progression in patients who already have established nephropathy is less convincing. 

One study has shown a reversal of the histological lesions of diabetic nephropathy in 

patients at ten years following a successful pancreatic transplant (45). It does appear, 

however, that in advanced diabetic nephropathy the relative importance of systemic and 

intraglomerular hypertension may mask the effect of glycaemic control. This is in 

keeping with a study which showed that in patients with diabetic proteinuria who had 

good blood pressure control, the fall in glomemlar filtration rate correlated significantly 

with glycaemic control (46).

1.2.5 Role of hypertension in the progression of diabetic nephropathy

While hyperglycaemia is essential for the pathogenesis of diabetic nephropathy, it alone 

is insufficient. This is vividly demonstrated by two cases in which patients with long­

standing diabetes had co-existing unilateral renal artery stenosis (47,48). In the 

adequately perfused kidney, there was histological evidence of diabetic 

glomerulosclerosis, while in the contralateral stenosed kidney, no diabetic lesions were 

obseiwed despite the existence of an identical metaholic environment. This illustrates 

the importance of haemodynamic factors in the pathogenesis of nephropathy.

The strongest evidence for the beneficial effect of lowering blood pressure on the 

progression of diabetic nephropathy comes from studies in type 2 diabetics (49). In this 

study, patients were assigned to either tight or less-tight blood pressure control, and 

followed up prospectively for a mean period of 8.4 years. The mean blood pressure in 

the tight control group was significantly lower than in the less-tight group (144/82 

versus 154/87, p<0.0001). At six years of follow-up there was a 29% reduction in the 

progression to microalbuminuria (defined as urinary albumin concentration >50 mg/L, 

p=0.009), and a non-significant reduction in the progression to proteinuria (defined as 

urinary albumin concentration >300 mg/L, p=0.06). Based primarily on this data, the 

current National Institute for Clinical Excellence (NICE) guidelines recommend a target
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blood pressure of 140/80 for patients with diabetes who have no evidence of 

nephropathy and 135/75 for diabetics with either microalbuminuria or proteinuria (50).

1.3 Pancreatic Transplantation

1.3.1 Historical overview

The aim of the surgeons who first attempted pancreatic transplantation was a belief that 

those diabetic patients with end-stage renal failure required normalisation of their 

glycaemic control by pancreatic transplant to ensure the sustained viability of the 

transplanted kidney. This proved to be not entirely correct. However, the relative 

success (at that time) and perceived benefits of pancreatic transplant (with or without 

kidney) provided continued impetus to the development of pancreatic transplantation 

programs.

The first human pancreas transplant took place in December 1966 at the University of 

Minnesota and was reported in 1967 (51). The recipient was a diabetic patient with 

chronic renal failure, who in addition to a simultaneous kidney transplant (SPK), also 

received a segmental duct-ligated pancreas graft transplanted into the extraperitoneal 

position in the left iliac fossa. Vascular reconstruction was performed to the recipient 

external iliac vessels. This resulted in immediate insulin independence. Graft function 

persisted for two months when the patient died of sepsis, related to surgical 

complications. Between 1966 and 1973, the University of Minnesota group went on to 

perform 13 whole pancreas transplants (52). Of these 13 transplants, seven were 

performed with internal pancreatic duct exocrine drainage via a Roux-en-Y 

duodenojejunostomy. Thus the transplanted exocrine pancreas drained into the donor 

duodenum and then into the recipient’s jejunum. Cutaneous graft duodenostomy was 

performed on another five patients. In these cases the exocrine pancreatic secretions 

drained into the donor duodenum and then externally via a graft duodenostomy. One 

patient had the donor papilla of Vater anastomosed to the recipient’s bowel. The first 

11 patients were uraemic diabetics (ten had SPK transplants and one had a pancreas 

transplant alone, in a patient who remained on dialysis) and three were non-uraemic 

diabetic patients (pancreas transplant alone). It was thought at this stage in the evolution 

of kidney transplantation that for kidney transplants to be successful correction of the 

diabetic state was required, although this was later challenged (53, 54). Indeed, none of
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the pancreas allografts in the ten uraemic SPK patients rejected, all losses resulting from 

technical complications (thrombosis, infection, anastomotic leak) or death with a 

functioning graft. One uraemic SPK patient remained insulin-independent for over a 

year and died with a functioning pancreatic graft after the reinstitution of dialysis as a 

consequence of renal artery stenosis (52). This was the longest documented functioning 

graft until a series of SPK segmental transplants draining into the ureter were performed 

in the early 1970s in New York, which produced a recipient who remained insulin- 

independent for five years (55). This series of pancreatic transplants at the University of 

Mimiesota ended in 1973 with the expectation being that islet transplantation would 

imminently surpass pancreatic transplantation (56). This turned out to be overly 

optimistic and in 1978 a clinical pancreatic transplant program was reinstituted at the 

University of Minnesota (57).

Surgeons in Sweden (1976-1982) also attempted enteric drainage of pancreatic 

secretions by performing a Roux-en Y pancreaticqjejunostomy, however, as in previous 

cases, pancreatic and enterocutaneous fistulae occurred in all patients (58,59,60).

Many attributed the early failures of pancreatic transplant to complications related to the 

graft duodenum and hence in the late 70s and early 80s, several groups tried segmental 

pancreatic grafts (body or tail of the pancreas) which did not involve transplanting the 

donor duodenum. However the management of exocrine secretions continued to be a 

major problem and thus various methods were devised to control the exocrine drainage.

In 1978, surgeons in France attempted segmental pancreas transplantation with 

obliteration of the exocrine pancreas by inducing pancreatic duct occlusion by injecting 

the duct with Neoprene (polychloroprene), a synthetic polymer (61,62). Although 

exocrine pancreatic function was eliminated, foreign body inflammation, pancreatitis 

and graft damage ensued and hence, overall this technique was not deemed successful.

Other groups including the University of Minnesota attempted segmental pancreatic 

transplants with free intraperitoneal drainage of the exocrine secretions (63,64). 

Although the first recipient of an open-duct graft (PAK) achieved insulin-independence 

for 17 years, the open-duct graft procedure was successful in less than half of cases 

(65). Free peritoneal drainage of pancreatic secretions led to recurrent chemical

■ ______________________
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peritonitis and ascites often requiring graft irradiation and occasionally graft loss 

(63,66).

Thus alternative measures to manage exocrine pancreatic secretions were required. 

Initial attempts at anastomosing the pancreatic duct to the recipient ureter were 

unsuccessful as the procedure was technically challenging and necessitated an ipsilateral 

neplirectomy. hr addition, anastomotic leaks were common and to avoid them 

permanent silicone stents had to be inserted (67).

In the early 80s the University of Wisconsin modified the urinary drainage technique 

and drained the pancreatic duct into the recipient bladder (68). This reduced the acute 

complication rate experienced by Gliedman using the ureter (69), Nghiem and Corry 

made further modifications at the University of Iowa in 1987, by transplanting the 

whole pancreas and donor duodenum and anastomosing the donor duodenum to the 

recipient bladder (70). This technique was quickly adapted by most centres and 

remained the dominant surgical technique for management of pancreatic graft exocrine 

secretions into the 90s (71).

The advantage of bladder drainage is that although the complication rate is not 

necessarily lower than enteric drainage, the acute morbidity and severity of the 

complications are less (71). Also, in patients with a solitary pancreas transplant (PTA), a 

reduction in urinary amylase is a useful marker of organ rejection. Indeed, in pancreatic 

rejection, a reduction in urinary amylase can precede hyperglycaemia by several days. 

Although a decline in urinary amylase is sometimes preceded or accompanied by a rise 

in serum pancreatic enzyme levels, there have been several reports of rejection episodes 

occurring when only the urinary amylase level declined (72). With a SPK transplant, 

bladder drainage is not so crucial, as a rising serum creatinine indicates renal rejection 

(and concomitant pancreatic rejection if from the same donor). Indeed in SPK 

transplants serum creatinine rises before pancreatic exocrine and endocrine dysfunction 

occurs.

The chronic complications of bladder drainage include recurrent bladder infections, 

haematuria, acidosis and dehydration. If the complications are sufficiently severe, 

enteric conversion can be performed. The first conversion was reported by the

i



35

University of Cincinnati in 1987 (73). In one series of bladder drainage transplants, the 

enteric conversion rate was 10% (71).

Segmental pancreas transplantation did not completely disappear as this technique did 

facilitate the use of living donors, which was first attempted in 1979 and since then the 

University of Wisconsin has performed over 100 living donor transplants (74). Initially, 

recipients of living-donor pancreata were advantaged, as the incidence of rejection was 

less than that for cadaveric pancreata. However as immunosuppression and the results 

of cadaveric pancreatic transplants improved, the incentive to perform segmental living 

donor transplants receded (75).

The consensus site for pancreatic transplant has varied little; the vast majority are 

situated in the recipient’s pelvis, with arterial anastomosis of a donor Y-iliac extension 

graft to join the superior mesenteric and splenic arteries on the pancreas to the recipient 

right common iliac or external iliac artery. A variety of techniques have been used for 

venous drainage. Several patients had drainage of segmental pancreas transplant venous 

effluent into the recipient’s portal system, either via the recipient’s splenic vein, 

superior mesenteric vein or inferior mesenteric vein. In the 1980s portal drainage of 

pancreas graft venous effluent was performed in a few patients in several centres 

(76,77,78,79). However, it wasn’t until a series of cases of routine use of portal venous 

drainage in SPK transplants was reported in 1992 that others adopted the technique 

(80,81). Other groups used the recipient’s iliac vein to drain the transplanted pancreatic 

venous effluent. It makes more physiological sense for the transplanted graft venous 

effluent to drain via the recipient’s portal system and avoid the relative 

hyperinsulinaemia associated with systemic drainage (82).

In summary, whole organ pancreatic transplant started in the late 1960s and continued 

until the early 1970s. Thereafter segmental transplantation, which facilitated living 

donor transplantation, was popular firom the late 1970s to the early 1980s, but then was 

largely replaced with a return to whole-organ transplant. Enteric drainage, pancreatic 

duct injection and subsequently bladder drainage have been successively dominant from 

the early 1970s to the present date.
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1.3.2 Simultaneous pancreas and kidney transplantation (SPK)

This is the preferred procedure in type 1 diabetics with endstage or near endstage renal 

disease (ESRF). Patients with type 1 diabetes with impending ERSD who have minimal 

or limited secondary complications of diabetes and are between the ages of 20 and 40 

years are considered optimal candidates for SPK. One exception to this is the young 

diabetic patient for whom a suitable living related renal transplant is available. A living 

related renal transplant offers excellent long-term results with less immunosuppression 

than is required for SPK transplantation. However, not all type 1 diabetics with renal 

failure are acceptable candidates. It has been reported that only 64 per cent of diabetic 

patients screened are actually accepted for SPK. Severe cardiovascular illness has been 

identified as the main criteria for limiting patient selection. Patients who have 

undergone cardiac angioplasty or coronary artery bypass can be accepted but only if 

they have adequate left ventricular function without demonstrable ischaemia. Blindness, 

history of major amputation, or history of cardiac disease are considered to be relative 

contraindications to SPK. Although these diabetes-related problems are not reversible, 

there are a number of patients who are well adjusted to these complications and hence 

potentially can lead productive lives after dual organ transplantation.

Another factor to be considered is the timing of the transplantation. Pre-emptive 

transplantation offers the additional advantage of halting the diabetic complications 

before uraemia develops. Pre-emptive transplantation refers to the use of transplantation 

for primary renal replacement before dialysis commences. The aim is to take advantage 

of the possible benefits of transplantation over dialysis. These include improved 

survival, reduced costs, and reduced morbidity. Furthermore, if the increased waiting 

times, the variable progressive nature of diabetic complications along with the 

diminished survival that type 1 diabetics have on dialysis are taken into account, it can 

be argued that SPK transplantation should be carefully thought of as a potential 

treatment for diabetic patients before dialysis (83).

1.3.3 Pancreas transplantation alone (PTA)
Ideally, solitary PTA should be performed before the development of diabetic 

complications such as the need for a renal transplant. However, at present no reliable 

markers exist to predict, before the appearance of early lesions, which diabetic patients 

will develop complications. In some USA centres, PTA has been reserved for those
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patients with very unstable diabetes or hypoglycaemic unawareness that is life- 

tlireatening.

,Indications for PTA include two or more diabetic complications including evidence of 

early diabetic nephropathy such as microalbuminuria, proteinuria or early histological 

changes but with relatively preserved renal function (creatinine clearance greater than 

70 mL/minute). Other indications may include glucose hyperlability, defined as frequent 

episodes of hypoglycaemia without frank symptoms which lead to a significantly poor 

quality of life and increased risk of trauma or sudden death. Nevertheless, when non- 

uraemic diabetics are concerned, the morbidity and mortality associated with the long­

term immunosuppression and the surgical procedure itself must be weighed against the 

benefits of reversing or halting the progression of secondary end-organ diseases, 

reducing the risk of hypoglycaemic events, and improving quality of life. In summary, 

PTA is only appropriate in non-uraemic patients where the problems of diabetes aie 

perceived to be more serious than the potential problems of immunosuppression, hi the 

diabetic patients whose metabolic control is so fragile that their life is chaotic, PTA may 

be their only hope for a better lifestyle (83).

1.3.4 Pancreas after kidney transplantation (PAK)

In type 1 diabetic patients with a well functioning kidney transplant, sequential PAK 

transplant has been advocated because these patients are already receiving chronic 

immunosuppression. The benefits of a subsequent PAK transplant are improved quality 

of life and the fact that a functioning pancreatic allograft will likely prevent or reverse 

early diabetic changes in the existing kidney transplant. However, only patients with 

stable and adequate renal transplant function (creatinine clearance greater than 50 

mL/minute) should be considered for a PAK transplants. Patients with marginal 

function of their transplanted kidneys should instead be considered for a SPK (or no 

pancreas) because intensified calcineurin inhibitor therapy used postoperatively may 

have a detrimental effect on renal function (83).

1.3.5 Current practice
The various current techniques for pancreatic transplantation can be broadly classified 

according to the type of exocrine drainage performed. Bladder drainage (BD) is 

currently the most common method of duct management because of the ability of this
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procedure to allow monitoring of urinary amylase as a marker of pancreatic rejection, 

especially when PTA and PAK are performed. Due to recent improvements in 

immunosuppression and antimicrobial prophylaxis, enteric drainage (ED) is 

increasingly being utilised as a method for managing the exocrine secretions. ED is 

associated with a significant reduction in urological and metabolic complications with 

no increase in septic complications (84). Indeed of all SPK transplants performed in 

1998, ED was perfonned in over 50% of cases, whereas in 1994, ED was performed in 

only 6% (85). BD is reserved for PTA cases, to allow monitoring of the urinary 

amylase. In contrast to BD, with ED the length of the donor duodenum is not as critical 

as ED pancreatic secretions are reabsorbed in the distal bowel segment.

Currently, there are two types of venous drainage practised and the preferred method 

remains controversial. Systemic venous drainage (SV) is used in over 90% of transplant 

centres and is associated with a favourable outcome (86). It involves anastomosis of the 

donor portal vein to the recipient’s common or external iliac vein or vena cava. 

However, a theoretical disadvantage of SV drainage is the high levels of insulin in the 

systemic peripheral circulation. Hyperinsulinaemia has been shown in some 

experimental systems to be associated with insulin resistance and dyslipidaemia (87).

Portal venous drainage (PV) is the preferred technique in some centres and is claimed to 

be more physiological than SV drainage. Although follow-up is limited, it is claimed 

that this technique results in excellent graft survival rates and a reduced number of 

surgical complications. (88). The current technique of PV drainage is based on the 

technique described by Shokouh-Amiri et al (89) and involves anastomosis of the donor 

portal vein to the recipient’s superior mesenteric vein, which subsequently drains into 

the recipients portal vein. In addition to the potential physiological advantage, PV 

drainage is technically easier to perform than SV drainage and anastomosis to a 

mesenteric vein does not increase the risk of thrombosis (90).

In the majority of cases, a donor Y- (right common or external) iliac artery extension 

graft is used to join the superior mesenteric and splenic arteries on the pancreas.

Segmental pancreas transplantation is used as a therapeutic option in the few US centres 

offering live donor transplantation and in two European centres, which continue to
I
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perform segmental transplants from cadaveric donors (86). Segmental pancreas 

donation involves dividing the graft pancreas at the neck to give two pancreas segments 

-  the head, which is supplied by the superior mesenteric artery and portal vein and the 

body and tail, which is supplied by the splenic artery and vein. Transplantation of both 

these segments has been described, although currently the tail is the preferred segment 

for transplantation (in live donation). As with the majority of whole pancreatic 

transplants, the recipient iliac vessels are used to reconstruct the vascular supply of the 

donated pancreatic segment. Hence segmental pancreas transplantation has systemic 

venous drainage and the theoretical risks attached therein. Methods of duct management 

with segmental pancreas grafts include BD and duct injection. As there is no graft 

duodenum to anastomose to the bladder, the segmental pancreatic duct is anastomosed 

to the bladder mucosa. As the exocrine pancreatic secretions drain into the bladder the 

urinary amylase can be monitored for evidence of segmental pancreas rejection. 

Another alternative for controlling exocrine secretions, described previously, is to inject 

the duct with silicone or neoprene. The disadvantage of this approach is that monitoring 

of rejection by urinary amylase is not possible and complications may occur.

1.3.6 Outcomes

1.3.6.1 Introduction

The International Pancreas Transplant Registry (IPTR) is located at the University of 

Minnesota, Minneapolis and, in cooperation with over 200 centres, maintains a database 

of all reported pancreas transplants and the pre-transplant and post-transplant courses 

worldwide. Biostatistical analyses are performed regularly and the results are published 

or presented at international and national scientific meetings or on-line (91).

1.3.6.2 Tvpe of transplant

As of June 2003 19,600 patients have received pancreas transplants. Over 14,300 

pancreas transplants were reported from USA sites and over 5,300 from non-USA sites. 

In the USA, from 1998 to 2002, the majority of all transplant cases per year were SPK 

(about 79%), with PAK increasing significantly over time to about 14% per year and 

PTA increasing to about 6%. Pancreas transplants outside the USA, reported to the 

IPTR over a similar period, reveals that as in the USA, the vast majority of cases are 

SPK (92%), but compared to US totals the proportion of PAK (5%) and PTA (3%) 

transplants was lower.

Ï
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1.3.6.3 Success of pancreatic transplants

From 1997 to May 2003, the patient and graft survival rates for primary cadaveric 

pancreas transplants at 1 year are described in Table 3.

Patient 1 year survival rates (%) Pancreas graft 1 year survival rates (%)
Transplant type US (n=4818) Non-US (n=1649) US (n=4805) Non-US (n=1726)

SPK 95 96 85 85
PAK 98 INS 79 INS
PTA 95 INS 79 INS

Table 3. Patient and graft 1 year survival rates for primary pancreatic 
transplants from 1997 to 2003 for each type of transplant in the US 
and non-US countries (91). SPK, simultaneous pancreas-kidney; PAK, 
pancreas after kidney; PTA, pancreas transplant alone; INS, insufficient 
numbers to calculate.

The US pancreas graft survival rates from 1998 to 2003 compare favourably with the 

rates from 1994 to 1998 (SPK 83%, PAK 71% and PTA 64%) and fi'om 1987 to 1993 

(SPK 76%, PAK 47% and PTA 48%). In the US SPK recipients the simultaneous 

kidney graft 1 year survival rate was 92%. There were insufficient non-US solitary 

pancreas transplants to calculate meaningful survival rates (91).

1.3.7 Risks and benefits
Although initially beset with dismal survival rates, advances in surgical technique, 

immunosuppression, anti-viral prophylaxis and post-transplant monitoring have had a 

significant positive impact in lowering the morbidity and mortality associated with the 

transplant technique (92).

As described previously, the results of PTA in carefully selected individuals are 

impressive with 1-year graft survival of over 80% and patient survival as high as 98% 

(92,93). However, the procedure is still associated with significant risk of morbidity. 

Although technical complications have diminished (with improvements in surgical 

teclinique and immunosuppression), there are still problems with rejection, graft 

pancreatitis, anastomotic leak or thrombosis which can lead to an extended hospital stay 

and on occasions death. However these risks have to be weighed against the potential 

benefits of a successful whole pancreas transplant. These include freedom from insulin
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injections, blood glucose monitoring and dietary restrictions all of which would 

significantly improve the quality of life, especially in those diabetics with glycaemic 

instability and hypoglycaemic unawareness (94).

There is no doubt that pancreatic transplantation has a beneficial effect on diabetic 

complications (despite the transplant often occurring late in the course of the disease), 

although it takes some time for these positive effects to become significant. It can take a 

decade of excellent glycaemic control in non-uraemic recipients, following pancreas 

transplantation, for there to be any reversal of diabetic lesions in the native kidney (95). 

More importantly, type 1 diabetic recipients of SPK transplants survive significantly 

longer than diabetic recipients receiving kidney-alone grafts (96,97).

In conclusion, despite the improvements in patient and graft survival rates and the 

considerable progress made, whole organ pancreas transplantation is a complex surgical 

procedure that requires life-long immunosuppression. Consequently, whole organ 

pancreas transplantation is usually restricted to those type 1 diabetic patients with 

advanced chronic disease, as the risks of the procedure may outweigh the risks of the 

disease.

1.4. Immunosuppression

1.4.1 Introduction
The immunosuppressive regimens used in pancreas allograft recipients are the same as 

those for other organs. From the 1960s to the early 1980s the only available 

maintenance immunosuppressants were azathioprine and steroids. In 1980, the 1 -year 

pancreas graft survival rate overall was 20 per cent (98). Following the introduction of 

cyclosporine for general use in the mid-1980s, the 1-year graft survival rates reached 

approximately 75 per cent for SPK transplants and approximately 50 per cent for PAK 

and PTA cases (99). Tacrolimus and mycophenolate mofetil came into use in the mid- 

1990s (100,101) and current 1-year pancreas graft survival rates are over 80 per cent in 

all categories (71).
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1.4.2 Induction therapy

1.4.2.1 Introduction

Polyclonal and monoclonal antibody (mAb) preparations are used primarily as induction 

agents, that is, drugs that are prophylactically administered in the peri-transplant period 

in an attempt to prevent acute rejection. Prophylaxis against early acute rejection is 

especially beneficial in managing the recipient with delayed graft function. The agents 

provide effective immunological cover during a period when calcineurin inhibitors are 

either delayed or administered in sub-therapeutic doses until graft function improves. 

Although equine antithymocyte globulins (ATG), rabbit antithymocyte globulins 

(rATG) and muromonab-CD3 (0KT3) have been used extensively in induction therapy, 

the original indication for all 3 agents was not prophylaxis, but rather the treatment of 

acute rejection.

1.4.2.2 Polvclonal antibodies

Polyclonal antibody preparations have been used for immunosuppressive therapy in 

transplantation for more than two decades. These preparations are purified 

immunoglobulin preparations derived from animals after immunisation with human 

thymocytes that contain antibodies with multiple, distinct antigen-combining sites or 

epitopes.

1.4.2.3 Monoclonal antibodies

A mAb is an antibody derived from a single clone that is active against a single target 

antigen. mAbs are manufactured using the hybridization technique to produce immortal 

hybridomas; murine myeloma cells are fused with antibody-producing B cells from the 

spleens of mice immunized against a particular antigen. The resulting hybridoma yields 

an infinite supply of purified, antigen-specific antibody against that particular antigen. 

Because each molecule of antibody is produced by descendants of a single B cell and 

will react with only one specific antigen, this is a monoclonal antibody.

1.4.2.4 Mechanisms of action

The first mAh to be approved for clinical use in humans was OKT3. OKT3 is a murine 

monoclonal IgG2a antibody that specifically reacts with the T-cell receptor~CD3 

complex on the surface of circulating human T cells. 0KT3 binds to a glycoprotein (the 

20-kd epsilon chain) on the CD3 complex to activate circulating T cells, resulting in a

_______________
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transient activation of T cells, release of cytokines, and blocking of T-cell proliferation 

and differentiation. Nearly all functional T cells are transiently eliminated from the 

peripheral circulation. Although T cells reappear in the circulation during the course of 

treatment, these cells are CD3-negative and are not capable of T-cell activation. T-cell 

function usually returns to normal within approximately 48 hours of discontinuation of 

therapy.

0KT3 acts in 2 phases (102). During the first phase, which begins immediately after 

injection, circulating T cells are depleted, primarily as a result of opsonization in the 

liver and cytolysis. The second phase of OKT3 action involves antigenic modulation. 

The CD-3 complex on the cell surface is removed, producing immuno-incompetent T 

cells, without further depletion of the T-cell population (103).

The evaluation of 0KT3 as specific therapy for rejection in human renal transplant 

recipients began in 1980 (104). This study provided strong evidence that OKT3 

produced significant results in the treatment of renal graft rejection. Subsequent 

prospective randomized trials yielded similar results (105). OKT3 was subsequently 

shown to be of benefit in the treatment of corticosteroid-resistant rejection in renal 

transplant patients who have received prophylactic cyclosporin (106). OKT3 has also 

been used to treat acute rejection in liver and heart transplant recipients (107,108,109). 

0KT3 initially was reserved for rescue therapy for acute rejection, but later was also 

used prophylactically to prevent acute rejection in the early postoperative period 

(109,110,111),

0KT3 is associated with a wide spectrum of side effects, most of which are relatively 

minor. Most occur almost immediately after administration of the first dose, but some 

are delayed for days or weeks. All patients experience a self-limiting first-dose 

response, usually limited to fever, chills, and mild pulmonary and GI symptoms. 

Approximately 5% experience more serious reactions such as cardiopulmonary distress, 

seizures, encephalopathy, meningitis, renal insufficiency, and graft thrombosis. 

Hypersensitivity reactions are rare.
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Recent research has focused on the role of the interleukin (IL)-2 receptor in acute 

allograft rejection. T-cell proliferation, a central event leading to graft rejection, is 

triggered by the interaction of IL-2 with its receptor on activated T cells, Anti-CD25 

mAbs selectively block IL-2 receptors (IL-2 receptor antagonists) on activated T-helper 

cells (112).

IL-2 is a major growth factor for activated T lymphocytes, and antibodies reacting with 

the Tac-chain component of the IL-2 receptor can prevent allograft rejection in animals. 

Because Tac chains are expressed only on a small fraction of activated lymphocytes, 

mAbs against the IL-2 receptor may offer a more specific means of immunosuppression 

than polyclonal antilymphocyte globulin in prophylaxis against graft rejection. 

Modification of mAbs through genetic engineering has obviated some of the problems 

historically associated with mAbs. By replacing most of the murine portion of the mAh 

with human amino acid sequences (to form a chimeric mAh or humanized mAh), 

problems with antigenicity and short serum half-life are eliminated. There are 2 types of 

anti-CD25 mAbs: chimeric (approximately 75% human and 25% murine protein) and 

humanized (approximately 90% human and 10% murine). Basiliximab is the chimeric 

mAh and daclizumab is the humanized mAh that binds specifically to the alpha or Tac 

subunit of the human high-affinity IL-2 receptor that is expressed on the surface of 

activated lymphocytes. All chimeric antibodies contain "xi" (for example basiliximab) 

and all humanised antibodies contain "zu" (for example daclizumab) within their names.

Daclizumab and basiliximab are comparable in terms of their clinical effectiveness. 

Both have been shown in large, prospective, randomized, controlled, blinded trials to 

decrease the incidence of acute kidney allograft rejection when combined with a 

cyclosporin-based triple therapy regimen. Both agents are well tolerated without side 

effects or evidence of toxicity (112).

1.4.2.5 Use of induction in pancreatic transplantation

Induction therapy is usually included in immunosuppressive protocols for recipients of 

whole-pancreas transplants. Indeed induction therapy is used with greater frequency for 

pancreas transplant recipients than other solid organ recipients. This is because SPK, 

PAK and PTA recipients all exhibit a higher risk of rejection than recipients of other 

solid organ transplants. There are few published formal multicentre, randomised,

________________
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prospective trials assessing the use of induction therapy, rather its use has been guided 

by practical experience. Nonetheless, in the USA in 2001 78% of solitary pancreas 

transplant recipients (PTA and PAK) and 75% of SPK transplants received induction 

therapy, compared to 59% of kidney transplant recipients (113).

The type of induction therapy has also changed over the years. In the USA, 100% of 

SPK transplants between 1994 and 1997 used muromonab-CD3 or ATG. Since 1998, 

the use of daclizumab, basiliximab and rATG has supplanted these. The use of rATG 

for all kinds of pancreas transplants increased in the USA from 0.7% in 1998 to 54% in 

2001 and from 1992 to 1997, almost all cases of induction therapy involved the use of 

either muromonab-CD3 or ATG. Between 1998 and 2001, basiliximab use rose in the 

USA from 7% to 32%, daclizumab from 15% to 21% and rabbit antithymocyte globulin 

rose from 0.4% to 29% (113).

Whole pancreas induction therapy in the US currently involves a T-cell-depieting agent 

(57% in 2001) and/or an interleukin-2 receptor (ÏL-2R) antagonist (48% in 2001). For 

comparison, amongst recipients of other organ transplants who received induction 

therapy in 2001, 21% of kidney transplants, 4% of liver transplants, 28% of heart 

transplants and 15% of lung transplants received T-ceil-depleting agent (113).

In 2001 many solitary pancreas transplant recipients received more than one induction 

agent, typically rATG and daclizumab. This dual strategy is unusual in that it is not 

replicated in other whole-organ transplants. Indeed in the US in 2001, of those 

receiving induction therapy prior to SPK transplant, 53% utilised an IL-2 receptor 

antagonist (basiliximab or daclizumab) and 36% received a T-cell depleting agent 

(rATG, 0KT3, or ATG) (113).

1.4.3 Mechanism of action of immunosuppressants

Maintenance immunosuppressive agents used for pancreas and other whole-organ 

transplantation fall into the following categories

• Corticosteroids

• Calcineurin inhibitors (such as cyclosporine and tacrolimus)

• Antimetabolites (such as azathioprine and mycophenolate mofetil)

.

  _____
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Others (such as rapamycin and cyclophosphamide)

To understand the mechanisms of action of these immunosuppressants it is necessary to 

describe the pathophysiological mechanisms that underpin the T cell response to the 

donor graft antigen. In order to activate the recipient T cell, T cell receptors must 

engage

• Foreign Major Histocompatibility Complex (MHC) molecules and

• Donor antigens.

In addition there must be costimulation of T cells by molecules such as CD80 and 

CD40. The presentation of donor alloantigen to recipient T cell can occur by two 

mechanisms-

The direct pathwav

Donor dendritic cells express high levels of MHC antigen and present the donor antigen 

directly to the recipient T cell, which is activated in the presence of costimulation 

molecules (114,115,116).

The indirect pathwav

Recipient dendritic cells invade the graft and uptake, process and present alloantigens to 

recipient T cells (117).

The relative contribution of these two pathways is poorly understood. Nonetheless, the 

consequence of antigen presentation is activation and proliferation of T cells which 

orchestrate the recruitment of numerous effector mechanisms such as B cells, natural 

killer cells, macrophages, neutrophils and eosinophils, resulting in graft rejection. Thus 

the role of T cells in graft rejection is critical. The immunosuppressants used in 

transplantation can be shown to have their main effect on the T cell intracellular 

signalling pathway or cytokine receptor, either in the process of activation of the T cell 

or in the subsequent proliferation of T cells (118).

Upon alloantigenic binding to the plasma membrane T cell receptor, increased 

cytoplasmic calcium activates calcineurin (a serine threonine phosphatase), which 

activates cytoplasmic transcription factors nuclear-factor-of^activated T cells (NF-AT), 

nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) (Figure 1). These factors
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migrate to the nucleus and induce the expression of genes that encode for interleukin-2 

(IL-2), -4, -7, -9 and -15, and interferon-y. These cytokines, when released from the 

activated T cells are involved in rejection of the transplant. In addition IL-2 binds to IL- 

2 receptors on T cells, which activates downstream phosphorylation of the mammalian 

target of rapamycin pathway (mTOR) and map kinase pathways. Both pathways 

converge to allow cell cycle progression in T cells stimulated by IL-2 and hence T cell 

proliferation.

-j

I
Alloantigen

Receptor
ICytokines

IL-2 Receptor

Cytokine 
gene 

activation
Proliferation

Figure 1. The role of interleukin-2 and the mechanism of stimulation, 
activation and proliferation of T cells following presentation 
of alloantigen.

1.4.4 Corticosteroids

Corticosteroids have been used as immunosuppressants since the inception of allo­

transplantation. They exert their immunosuppressive effect by preventing activation of 

macrophages, inhibiting antigen presentation and reducing their function as effector 

cells. In addition, they inhibit T cell cytokine production and thus subsequent T cell 

proliferation (119). Unfortunately there are numerous side-effects from steroids 

including hypertension, dyslipidaemia, accelerated atherosclerosis, osteopaenia, 

avascular necrosis of the joints, cataracts, weight gain and steroid-induced diabetes. 

Thus their use in the context of transplantation in diabetics is far from ideal.

i
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1.4.5 Calcineurin Inhibitors (CNIs)

1.4.5.1 M echanism  o f  action

In transplantation, the com m only used CN Is are cyclosporin and tacrolim us. The CNIs 

have their effect by binding with their respective binding protein to form  a com plex, 

which inhibits the phosphatase activity o f  calcineurin and thus prevents downstream  

translocation o f  cytoplasm ic transcription factors to the nucleus and subsequent 

inhibition o f  cytokine form ation (Figure 2) (120).

Antigen
Receptor

calcium release

Tacrolimus Cyclosporin
^  calcineurin

FKBP12

calcineurin activation

CYTOPLASM

NF-AT, NF-kB, AP I 
activation and migration to 

the nucleus

L Activation of gene \  
transcription A

* -4 : I n u c l e u s ' !

Cytokine secretion

IL-2

Figure 2. The intracellular signalling pathway and nuclear gene transcription 
involved in T cell cytokine synthesis and the inhibitory effect of CNI 
on the pathway (121,122).
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1.4.5.2 Clinical use
Cyclosporin is a lipophilic cyclic peptide that has been used in organ transplantation 

since the early 1980s and is historically the most important immunosuppressant 

employed in renal transplantation. Indeed its use has led to a substantial improvement in 

the success of organ transplants (123,124,125). It has also been used in patients with 

autoimmune diseases such as rheumatoid arthritis, lupus erythematosis and type 1 

diabetes mellitus.

Tacrolimus is a macrocyclic triene, which has similar immunosuppressant properties to 

cyclosporin. It is highly effective in preventing allograft rejection (121) and in the 

management of autoimmune disorders and skin disorders (126,127).

In large, prospective, randomised, multicentre trials in adults and children receiving 

solid organ transplants, tacrolimus was as least as effective or provided better efficacy 

than cyclosporin in terms of patient and graft survival, treatment failure rates and the 

incidence of biopsy-proven acute and corticosteroid rejection episodes (121,128).

1.4.5.3 Adverse effects

One of the major adverse effects of CNIs is nepluotoxicity, both acute and chronic 

(129,130). Acute nepluotoxicity is dose-dependent and reversible, whereas chronic 

nephrotoxicity is often associated with irreversible interstitial fibrosis of the renal tissue 

and afferent arteriolopathy (131). Following renal transplantation it is often difficult to 

differentiate between CNI-associated nephrotoxicity and chronic rejection (132). This 

nephrotoxic effect also limits the use of CNIs in other clinical settings such autoimmune 

disease or non-renal transplantation (133). Several studies demonstrated no difference in 

renal function between cyclosporin-treated and tacrolimus-treated renal transplant 

patients (128,134).

Infectious complications following transplantation would appear to be common to both 

cyclosporin and tacrolimus, ranging in severity from urinary tract infection to 

cytomegalovirus infection. Indeed the frequency and type of infection is similar in both 

cyclosporin- and tacrolimus-treated renal transplant patients (N128,135).

______________________________________________ ___



50

As the main cause of death in renal transplant recipients is cardiovascular or 

cerebrovascular disease it is important that the immunosuppressants used do not have an 

adverse effect on the recipient’s lipid profile nor systemic blood pressure, both risk 

factors for the development of vascular disease. In renal transplant patients, those on a 

cyclosporin regime have significantly higher total cholesterol, LDL cholesterol, 

triglyceride and systemic blood pressure and significantly lower HDL cholesterol than 

those on a tacrolimus regime (128,134,135,136), However, although tacrolimus has a 

healthier cardiovascular risk-factor profile than cyclosporin, it is still to be established 

whether this results in a clinically significant reduction in vascular outcomes.

Tacrolimus is associated with an early increase in new-onset diabetes after 

transplantation (NOD AT); however, the long-term incidence of NOD AT is possibly 

similar to cyclosporin regimens. In the long-tenn, tacrolimus may have a less 

detrimental effect on glucose metabolism because the steroid requirement is markedly 

less when compared to cyclosporin-based regimes and because some studies have used 

lower dosage and target trough tacrolimus concentrations (138,139).

Malignancy is a well-recognised adverse effect of immunosuppressants. Studies have 

shown there to be no difference in the incidence of malignancy between renal transplant 

patients treated with tacrolimus and cyclosporin. Indeed the reported incidence of 

malignancy in one study was less than 1% (128,135).

Other adverse effects of CNIs include tremor, which is more frequent in tacrolimus- 

treated patients than cyclosporin-treated patients. However, hirsutism, gingivitis and 

gum hyperplasia are significantly more frequent in cyclosporin-treated renal transplant 

patients than those treated with tacrolimus (128, 134,135).

1.4.6 Antimetab elites

1.4.6.1 Azathioprine

Azathioprine is the prodrug of 6-mercaptopurine, an analogue of adenine and 

hypoxanthine. Azathioprine is initially converted to 6-mercaptopurine (6-MP) in the 

liver, possibly in a non-enzymatic manner. 6-MP is catabolised by one of two 

competing mechanisms. Xanthine oxidase (XO), an intracellular enzyme present in liver 

and the gastrointestinal tract (but not in haematopoietic tissue), metabolises 6-MP to the

..
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inactive 6-thiouric acid. Alternatively, 6-MP can be catabolised by transmethylation via 

the thiopurine methyltransferase enzyme (TPMT) to the inactive methylmercaptopurine. 

A tliird enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) converts 6- 

MP to active and cytotoxic thioguanine nucleotides (TGNs), which accumulate in 

tissues and are either catabolised or incorporated into RNA or DNA. This results in 

inhibition of cell proliferation and in the context of transplantation, azathioprine acts as 

an iimnunosuppressant by preventing cytokine-driven proliferation of T cells. Both XO 

and TPMT can further metabolise active TGNs to inactive products. Thus low 

enzymatic activity of TPMT can lead to the accumulation of toxic metabolites, with 

consequent tissue toxicity. As TPMT is the principal inactivation pathway for cytotoxic 

TGNs in haematopoietic tissue (and XO is absent), haematopoietic toxicity of 

azathioprine is largely TPMT-dependent (139,140).

TPMT is a cytosolic enzyme that exhibits genetic polymorphism. There are nine variant 

alleles associated with TPMT enzymatic activity and TPMT genotypes correlate well 

with in-vivo red blood cell TPMT activity (141). Approximately 90% of individuals 

have high TPMT activity phenotype, which corresponds to the homozygous wild-type 

genotype. The intermediate-activity phenotype is associated with the presence of one 

mutant allele (heterozygotes) at the TPMT gene locus and affects approximately 10% of 

the population. Homozygotes have deficient TPMT activity and account for less than 

0.3% of the population (142,143). TPMT genetic polymorphism is clinically relevant in 

that those individuals with sub-optimal TPMT activity are more intolerant of 

azathioprine and more susceptible to haematopoietic toxicity than the homozygous 

wild-type genotypes (144,145). The TPMT phenotype of an individual can be measured 

by a radiochemical assay that measures the méthylation of mercaptopurine using [̂ "̂ C- 

methyl]-S-adenosylmethionine as the methyl donor, using the patient’s erythrocytes as 

the enzyme source (146). Alternatively, TPMT genotyping can be performed by means 

of polymerase chain reaction analysis that can detect mutations on the TPMT genomic 

DNA (147,148). Knowledge of a patient’s TPMT phenotype or genotype prior to the 

commencement of azathioprine allows dosage adjustments to be made to avoid 

myelosuppression in the intermediate-activity patients and therapeutic failure in the 

high-activity patients.

 '______
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In the UX, azathioprine is licensed for use in organ transplantation, rheumatoid arthritis, 

maintenance of remission of inflammatory bowel disease and myasthenia gravis. In 

many cases, administration of azathioprine allows a reduction in the dose of 

corticosteroids, thus reducing the risk of developing steroid-related complications.

Dose-related bone marrow suppression, including neutropenia, anaemia and 

thi'ombocytopaenia, is the commonest adverse effect of azathioprine and is usually 

associated with TPMT activity. Hepatic toxicity, including cholestatic jaundice, nausea, 

vomiting, abdominal pain, diarrhoea, hypersensitivity reactions (with fever, headache, 

arthralgia, rhabdomyo lysis and cardiovascular, renal, pulmonary and hepatic 

involvement), pancreatitis, eosinophilia, neurotoxicity and photosensitive eruptions 

have all been reported and are thought to occur independently of TPMT activity (149). 

Some studies have shown that the level of methylmercaptopurine, the inactive 

metabolite of mercaptopurine, may be related to hepatotoxicity (150,151).

1.4.5.2 Mvcophenolate mofetil (MMF)

Mycophenolate mofetil is also a prodrug, which is metabolised to mycophenolic acid 

(MPA). MPA reversibly and uncompetitively inhibits inosine monophosphate 

dehydrogenase, which is an essential enzyme required to sustain the guanine nucleotide 

pool and de novo DNA synthesis (152,153). Both B and T lymphocytes (unlike 

neutrophils) are dependent on this pathway for DNA and RNA synthesis (they cannot 

utilise the scavenger pathway) and hence inhibition of this pathway prevents 

proliferation of activated T cells (154). In lymphocyte cell-lines, MPA suppresses new 

DNA synthesis, expression of cell surface T-cell activation markers and cytokine 

production (155, 156).

In addition MMF disrupts the glycosylation of adhesion molecules involved in the 

attachment and infiltration of lymphocytes. Also, in experimental in-vitro models, MMF 

inhibits human arterial smooth muscle proliferation, which, if applicable clinically, may 

have a beneficial effect on arterial disease which has a critical role in chronic graft 

rejection (157),

Pooling of data from several studies has demonstrated that MMF can reduce acute 

rejection and graft loss due to rejection following renal transplant by approximately
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50% compared to placebo or azathioprine in patients also taking corticosteroids and 

cyclosporin at one year (158,159). At 3 years, studies showed a trend of decrease in 

graft loss from all causes and graft loss due to rejection in the MMF group, but not to a 

level of statistical significance (160). At present the 3 year data have not been pooled. 

There is also accumulating evidence that MMF can be used as rescue therapy for 

refractory acute rejection (despite treatment with 0KT3 or ALG) following renal 

transplantation and is more effective than azathioprine and intravenous corticosteroids 

(all patients received cyclosporin) up to 12 months (161).

Another potential benefit of MMF is that in maintenance therapy, its use may allow the 

reduction in dose or cessation of other immunosuppressants such as corticosteroids and 

cyclosporin, thus reducing the exposure of transplant recipients to the toxic effects of 

these drugs. Thus, there is emerging evidence that MMF may have a role in the 

maintenance phase of the management of renal transplantation.

The main adverse effects of MMF are gastrointestinal (diarrhoea and vomiting), 

haematological (neutropenia and thrombocytopaenia) and infective. In one study, there 

was an increase in each of these adverse effects compared to placebo and those effects 

were more prevalent in the higher dose MMF group (3 mg/day) than the lower dose (2 

mg/day) group. Indeed the marginal benefits on the incidence of rejection of using the 

higher dose of MMF over the lower dose were outweighed by increased adverse effects 

(162). Other studies showed no difference in the rate of opportunistic infection between 

MMF and control (azathioprine) groups. However, one study showed an increase in 

cytomegalovirus (CMV) infection in the MMF group (163), but another showed no 

difference between rates of CMV infection (158). In both these studies, neutropenia, 

lymphoma and gastrointestinal disorders were more h'equent in the MMF groups.

1.4.7 Rapamycin

Refer to Chapter 4, page 108.

_________________________________________
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1.5 New-onset diabetes after transplantation
1.5.1 Introduction

The life expectancy of type 2 diabetics is reduced by 8-10 years and atheromatous 

vascular disease (coronary artery and cerebrovascular disease) is the cause of 70% of 

such early deaths (164). Vascular disease is 2-3 times more common in type 2 diabetics 

than non-diabetics and those that present in their 40s and 50s have a twofold increased 

total mortality (165,166). The UK PDS demonstrated that in patients with type 2 

diabetes, coronary artery disease was significantly associated with baseline increased 

concentrations of low density lipoprotein cholesterol (LDL), decreased concentrations 

of high density lipoprotein and increased triglyceride concentration, haemoglobin Aic, 

systolic blood pressure, fasting plasma glucose concentration and a history of smoking, 

all modifiable risk factors. Indeed, there was an increased risk of coronary artery disease 

with haemoglobin Aic of >6.2%, the upper limit of normal, and an increased risk of 

11% for each incremental rise of 1% in haemoglobin Aic (167). It has to be noted 

however, that in terms of reducing the risk of coronary heart disease in individuals with 

type 2 diabetes, reduction in blood pressure has a greater impact than reduction of 

haemoglobin A\c.

However, the increased cardiovascular morbidity and mortality associated with diabetes 

is not restricted to the non-transplant population. It has been shown that diabetic kidney 

transplant recipients have a significantly higher mortality from ischaemic heart disease 

than diabetics in the normal population (168) and that diabetes is the most important 

risk factor for developing both cerebrovascular and peripheral vascular disease in 

kidney transplant recipients (169). Furthermore, traditional risk factors associated with 

cardiovascular disease (for example, diabetes, hypertension and dyslipidaemia) are also 

risk factors for chronic graft rejection (170).

New-onset diabetes after transplantation (NODAT) is recognised as a significant 

adverse effect of many immunosuppressants and as recipients of organ transplants 

survive longer, the secondary microvascular and macrovasculai' complications of 

diabetes mellitus have assumed ever-greater importance (171,172). Thus any additional 

iatrogenic vascular risk factors must be considered significant. Furthermore, 

cyclosporin, steroids and tacrolimus are not only diabetogenic but can also cause
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dyslipidaemia and hypertension, all additional cardiovascular risk factors. It is for this 

reason that sirolimus and mycophenolate mofetil are considered to be beneficial as at 

present they are thought not to be diabetogenic, which in the context of pancreas and 

islet transplantation is desirable.

1.5.2. Definition, incidence and prevalence

Estimating the incidence and prevalence of NODAT is problematic as many 

investigators have used different diagnostic criteria. The following criteria have been 

published;

• WHO guidelines, whereby two fasting venous plasma glucose concentrations above 

7 mmol/L are required (173)

• Fasting venous plasma glucose of more than 8.4 mmol/L on three separate occasions 

or an abnormal oral glucose tolerance test (174)

• Two fasting venous plasma glucose concentrations of more than 7.8 mmol/L and an 

abnormal oral glucose tolerance test (175)

• Three fasting venous plasma glucose concentrations of more than 7.8 mmol/L but 

no confirmatory oral glucose tolerance test (OGTT) (176)

• Two random venous plasma glucose concentrations above 11.1 mmol/L (177)

• A random venous plasma glucose above 22.2 mmol/L at any point or over 11.1 

mmol/L for two weeks or any patient requiring insulin for over two weeks (178).

In addition, many researchers attempting to estimate the incidence and prevalence of 

NODAT have observed transplant patients for less than 12 months. This is an 

insufficient period of follow-up post-transplant as NODAT may develop years after 

transplant. As a consequence of different diagnostic criteria and variable, insufficient 

duration of follow-up, the published reported incidence of NODAT has varied 

significantly fi*om 2% to 53% (179). In one study, the cumulative incidence of 

NODAT, analysed retrospectively in 11,659 transplant patients was 9.1% at 3 months, 

16% at 12 months and 24% at 3 years (N180).

In order to standardise the diagnosis and management of NODAT, experts devised the 

International Consensus Guidelines under the auspices of the International Diabetes

________ I______________________ ______
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Foundation (181). The guidelines suggest that the criteria for diagnosing NODAT 

should be the same as those for diagnosing diabetes in the non-transplant population (1).

1.5.3 Natural history, pathogenesis and risk factors

Following transplantation, the risk of developing NODAT is greatest during the first six 

months. However, there is a progressive linear increase in the diagnosis of NODAT 

thereafter (182). In some cases the development of NODAT is similar in many ways to 

the natural history of type 2 diabetes, with an insidious onset initially associated with 

impaired glucose tolerance and lack of symptoms, ultimately resulting in overt glucose 

intolerance with symptoms of hyperglycaemia (183). It differs from type 2 diabetes in 

that on occasions, overt NODAT may resolve, leaving the patient with impaired glucose 

tolerance (as defined by OGTT) for many years after remission of overt diabetes (184). 

NODAT after pancreatic transplantation can occur as a consequence of many factors 

including graft ischaemia, graft rejection, steroids, and drug-induced or autoimmune 

damage to islets. A single mechanism of NODAT has not been clearly established and a 

unified hypothesis has not emerged. Calcineurin inhibitors (CNI) such as cyclosporin 

and tacrolimus may have their diabetogenic effect by binding to calmodulin, which is 

physiologically involved in P-cell insulin secretion. Indeed it has been demonstrated 

that calmodulin inhibitors can restore insulin secretion in cyclosporin-treated rat islets

(185). In addition the selective localisation of FKBP12 and calcineurin in islets 

compared to acinar tissue, might explain why the toxic pancreatic effects of tacrolimus 

are exclusive to the endocrine pancreas and have no effect on the exocrine pancreas

(186). Studies in rat insulinoma cell-lines demonstrated that tacrolimus inhibited insulin 

mRNA transcription and hence insulin synthesis. Withdrawal of tacrolimus allowed 

insulin mJRNA transcription and insulin synthesis to return to normal. Furthennore, 

glucose uptake into rat striated muscle cell-lines and the number of insulin receptors 

was not affected by tacrolimus (187). This suggests that the diabetogenic effect of 

tacrolimus is not caused by the induction of peripheral insulin resistance, but by a 

reduction in P-cell synthesis and secretion of insulin.

It has been proposed that corticosteroids cause NODAT by a variety of mechanisms 

such as decreased insulin receptor number and affinity, impaired peripheral glucose 

uptake in muscle, impaired suppression of endogenous insulin production or release of

'  " - ' I -  -
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free fatty acids. Indeed there may also be a genetic predisposition. It is likely however, 

that the predominant defect is peripheral insulin resistance (188).

Although tacrolimus and cyclosporin are considered to be steroid-sparing agents (by 

facilitating a reduction in dose of concomitant steroid), they are both potent inhibitors of 

the cytochrome p-450, the pathway responsible for steroid metabolism. Thus even 

patients on tacrolimus or cyclosporin and low doses of steroids may develop 

Cushingoid features including impaired glucose tolerance.

Apart from the immunosuppressants used, there are other recipient risk factors which 

are positively associated with NODAT (181);

• pre-existing impaired glucose tolerance

• age over 40 years

• metabolic syndrome (with normal glucose tolerance)

• a family history of type 2 diabetes

• African or Hispanic ethnicity

• obesity

• pre-transplant hepatitis C infection.

1.5.4 Consequences of developing NODAT

It has been demonstrated consistently that the development of NODAT is associated 

with a significant decrease in graft function and survival compared with controls in 

kidney transplant recipients up to 12 years post-transplant (176,189). Also, liver 

transplant recipients with NODAT are more likely to experience acute rejection than 

controls (190). In addition to the graft effects of NODAT, many studies have 

demonstrated reduced patient survival compared to controls (175,183). Supporting the 

theory that glucose intolerance has a deleterious effect on post-transplant outcome is the 

observation that simultaneous pancreas-kidney transplants in diabetic patients have 

improved long-term survival compared to cadaveric kidney transplantation alone (191).

1.5.5 Consensus Guidelines
The International Expert Panel Meeting convened by the International Diabetes 

Foundation made a series of recommendations regarding the screening, diagnosis,
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treatment and management of NODAT in 2003 (181). The guidelines aim to reduce the 

incidence and impact of new-onset diabetes after transplantation by providing 

appropriate management strategies for transplant recipients. These management 

strategies are extremely detailed and involve;

• standardisation of diagnostic criteria of NODAT which are consistent with the 

criteria for diagnosing diabetes in the non-transplant population

• detailed clinical decision pathways for the pre-and post-transplant assessment of 

glycaemic status with recommendations based on the results

• recommendations on individualised immunosuppressive therapy depending on 

glycaemic status

• assessment of other vascular risk factors and the management thereof

• specific recommendations detailing the step-wise therapeutic approach to the 

management of NODAT

• target levels for LDL cholesterol, HbAic and blood pressure

1.6 Islet Transplantation

1.6.1 Historical overview

The concept of transplanting just islets and not the whole pancreas is enticing as it 

potentially avoids the risks associated with transplantation of the non-endocrine 

pancreas. However, until recently, it has been extremely difficult to achieve this goal 

successfully. Over 30 years ago, islet transplantation successfully reversed diabetes in 

rodents, however, early attempts at replicating this success in humans failed as a 

consequence of ineffective immunosuppression and poor quality, low-yield islet 

preparations.

Two important developments in the evolution of human islet transplantation occurred in 

the late 1960s. Separation of pancreatic islets from the non-endocrine components was 

technically challenging. However, distending the pancreatic duct with a salt solution 

and injecting collagenase into the duct, allowed enzymatic digestion of the pancreas. 

Furthermore, it was discovered that islets could be separated from the digested acinar 

tissue based on their differential density in sucrose gradients (192).

____________________________________________ _________
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These improved techniques allowed investigators to ameliorate chemically-induced 

diabetes in rats by injecting allografted islets into the peritoneum (193,194). Thereafter 

intraportal injection of islets became the preferred site in rat experiments (195). Rat 

models allowed further improvements and refinements to be made to the process of islet 

transplantation, thus leading to a series of clinical islet allograft transplants in human 

type 1 diabetics immunosuppressed with azathioprine and steroids. Seven patients 

received dispersed pancreatic tissue into the peritoneal cavity or portal vein. However, 

although insulin-requirements were reduced and the procedure proved to be safe, no 

patient achieved insulin-independence (194). Insulin-independence following islet 

transplantation did not occur until 1978, when a group in Zurich, Switzerland embolised 

digested non-purified islet tissue into the recipient’s spleen (with a simultaneous kidney 

transplant) (196).

In 1986 the Ricordi chamber was introduced; a semi-automated mechanical and 

enzymatic procedure which separated islets from pancreatic acinar tissue. This 

facilitated considerable improvements in the quality and yield of islets and is still 

considered a major advance of its time (197).

hi 1989, nine patients undergoing abdominal multi visceral (including pancreas) 

resection for malignancy received intraportal single-donor human islets. 50% of patients 

achieved and maintained insulin-independence until death from recurrence of 

malignancy (198). Subsequent successes using steroid-free immunosuppression (high 

dose tacrolimus) were reported, representing the first experience with less diabetogenic 

immunosuppression (199).

In the 90s further discoveries and improvements were made in the islet isolation 

procedure. Liberase enzymes replaced traditional collagenase, which is a crude and 

variable fermentation by-product of Clostridium histolyticum. This resulted in improved 

islet yield, viability and functionality. In addition, lot-to-lot consistency is assured, with 

every manufactured lot adhering to the same enzyme activity specifications. Also, each 

lot is tested for endotoxin to ensure consistently low levels (200). Other improvements 

included the use of a cooled COBE-cell apheresis system (201) and the use of less toxic 

osmotic gradients for islet purification (202).
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Despite the improvements in process and the technical advances made, only 10% of 

type 1 diabetics transplanted with human islets and reported to the Islet Transplant 

Registry between 1974 and 2000 were able to discontinue insulin therapy for more than 

one year (203). However, 28% did have sustained C-peptide secretion (204), Further 

peri-transplant improvements included intensive insulin and anti-oxidant therapy, 

vitamin D, anti-T cell induction and alternative immunosuppressants (for example 

mycophenolate mofetil and cyclosporin). However, despite reporting improved rates of 

insulin-independence at some centres, overall the results remained poor (204,205).

1.6.2 The Edmonton protocol (206)

It became apparent that the following factors were responsible for the poor success rate 

of human islet transplantation-

• inadequate islet potency

• inadequate islet transplant mass

• inadequate prophylaxis against allograft rejection or autoimmunity

• use of diabetogenic immunosuppressants

These issues led to the establishment and implementation of a new protocol, which 

addressed each of these limitations.

Inadequate islet potency

Islet function was optimised by using a low-endotoxin collagenase enzyme, 

transplanting the islets immediately (to limit cold ischaemia) and avoiding exposure to 

xenoproteins (fetal calf serum).

Inadequate islet transplant mass

Each transplant recipient received on average 11,000 islet equivalents/ kg body weight, 

using islets from two donors.

Sub-optimal immunosuppression
Potent, less diabetogenic, steroid-free immunosuppressants were used. Thus 

corticosteroids were replaced with daclizumab (a CD25 monoclonal antibody) in 

addition to low-dose tacrolimus and sirolimus (206).
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Recent follow-up in over 50 patients treated with the Edmonton protocol reveals a 1- 

year insulin-independence rate of 80%, with a 3-year islet graft function (persisting C~ 

peptide secretion) rate of 90%, a considerable improvement on previous results (207). In 

addition, initial results from the nine-centre Immune Tolerance Network trial have 

shown that this protocol can be replicated elsewhere (208). Innovative refinements 

continue to be made to the protocol. The most significant recent advances include

• the development of single-donor transplants (previously recipients required two 

and sometimes three donors) (209)

• refining islet culture to improve purity and allow transport between centres (210)

• confirmation that steroid-free, low-dose tacrolimus and sirolimus is effective for 

patients receiving islets after kidney transplants (211)

• introduction of anti-inflammatory and calcineurin-inhibitor-sparing regimes 

(212)

1.6.3 Limitations

Despite the recent and continuing improvements and success with human islet 

transplantation, there are still associated problems and adverse sequelae. As the long­

term risks of human islet transplantation and immunosuppression are unknown, the 

procedure is only being offered to those type 1 diabetic patients who have unstable 

diabetes to the extent that they have a significant morbidity and mortality without 

transplant. Thus the majority of type 1 diabetics are at present considered to be 

unsuitable for islet transplantation. If there was to be a relaxation in the inclusion 

criteria for transplantation, and more type 1 diabetics became eligible for 

transplantation, there would be insufficient pancreata available to meet demand. 

Currently most centres require two (and on occasions three) pancreata per recipient.

Although islet transplantation avoids surgery there are still risks associated with the 

procedure. As islets are infused into the portal vein via a percutaneous approach, there is 

a risk of bleeding after the procedure (10%) and portal vein thrombosis (less than 0.5%). 

This may increase with repeated infusions (213). In addition, although the incidence of 

life-threatening sepsis, post-transplant lymphoma and malignancy are extremely low to 

date, the long-term effects of the current immunosuppressive regimes are unknown and 

unquantified. Drug-related side effects include mouth ulceration, hypertension.
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dyslipidaemia, anaemia, accelerated nephropathy and diabetogenicity (207). Thus, 

although considerable improvements have been made in the field, further refinements 

are required to enhance the success of islet transplantation.

1.6.4 Current technical innovations
1.6.4.1 Islet culture

It is not yet clear whether islets should be cultured prior to transplantation. Several 

transplant centres do maintain islets in culture prior to transplantation, using culture 

media specifically designed for islets (214). The aim of this approach is twofold. Islet 

culture may improve the purity of islets, but also culturing islets prior to transplantation 

allows time for the patient to travel to the centre for transplantation, instead of 

relocating many months prior to the transplant. In addition, in the future, if any 

tolerogenic intervention or immunological preconditioning is required, then this could 

take place in the window between removal of the pancreas and transplantation. At 

present many centres are investigating whether it is possible to increase the islet yield 

in-vitro, during culture. Factors that may potentially increase islet mass include islet 

growth factors such as hepatocyte growth factor and islet neogenesis-associated peptide 

(215,216).

1.6.4.2 Islet engraftment

Once transplanted into the portal vein, many islets die (207). This may be as a 

consequence of pre-existing central necrosis in the larger islets; however, there is also 

some emerging evidence that the high levels of tissue factor present in human islets may 

provoke significant platelet binding and islet injury. Specific blocking antibodies have 

been used to disrupt this pathway in-vitro with the aim, ultimately, of protecting 

transplanted human islets in-vivo (217). In addition, in rodents, attempts have been 

made to promote islet neovascularisation by inserting the vascular endothelial growth 

factor gene into the islet genome (218,219). Other strategies for improving islet 

engraftment include the use of anti-inflammatory antibodies such as etanercept (a 

soluble TNF-receptor antibody) (220), anti-macrophage therapy, antioxidant therapies, 

vitamin D and the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors such as 

pravastatin (221). Indeed all these approaches have been shown to be of some benefit in 

preclinical studies.

  _ _ ................
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1.7 Tolerance Induction

1.7.1 Introduction

The aim of tolerance induction is to manipulate the recipient’s immune response such 

that the transplanted allograft can survive and function without the use of 

immunosuppressants. Although this has been achieved successfully in non-human 

models it has been extremely difficult to achieve in humans. Outwith the sphere of 

human islet transplantation, a limited degree of success has been achieved in other 

fields. Selected patients have been weaned off immunosuppressants following kidney 

and liver transplants, initially by reducing the dose and frequency of administration and 

in some cases, stopping immunosuppressants completely. Although a significant 

number of patients rejected their transplant and had to recommence 

immunosuppressants, a small proportion remained stable with preserved graft function 

without any therapeutic immunosuppression (222,223,224). In these cases it was 

considered that microchimerism was responsible for the graft tolerance (225). In another 

study, thymoglobulin induction followed by tacrolimus monotherapy in renal, hepatic 

and pancreatic transplant recipients allowed more than 50% of patients to be reduced to 

tacrolimus dosing once weekly (226). In addition numerous living-donor liver transplant 

children have been weaned off all immunosuppression, with continued graft function 

(227,228). Why some patients are able to tolerate allografts without any 

immunosuppression is not clear. Furthermore it is unclear how long graft tolerance will 

last and whether there is accelerated chronic rejection (229,230).

At present, there are several avenues being explored with regard to tolerance and 

immune protection of isles. These include;

• costimulation blockade

• use of immuno-privileged sites for islet implantation

• intrathymic administration of donor antigens

• haematopoietic chimerism

Prevention of rejection via manipulation of the recipient immune response has been 

attempted with various combinations of conventional, generalised immunosuppressive 

drugs, polyclonal or monoclonal antibodies, and chimeric molecules that target key
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components of the immune system, by donor antigen administration, and by 

transplantation of haematopoietic cells to induce chimerism. Using a variety of
y.":'

approaches, it is now possible to prevent rejection of allogeniec islets in rodents, dogs,

monkeys, and humans, but reports of donor-specific tolerance in larger animals and 

humans have remained more sporadic (231)

Experimental approaches to the prevention of rejection have been designed to block one 

or more of the myriad of interactions that occur between T cells and antigen-presenting 

cells. Blockade of this afferent arm of the immune response can prevent the generation 

of efferent responses, such as the development of cytotoxic T cells and antibodies, thus 

enhancing graft survival. Approaches that solely target molecules involved in the 

effector immune response have generally not been as effective at prevention of rejection 

or induction of tolerance. Such agents can be effective when used in combination with 

other drugs or biological agents that act earlier in the immune cascade by targeting cells 

that escape blockade at earlier time points (231).

A variety of strategies have been used to block receptor-ligand interactions, thus 

suppressing or altering T cell signalling and activation and leading to T cell clonal 

deletion, anergy, or regulation. Polyclonal and monoclonal antibodies, recombinant 

molecules, generalised immunosuppressive drugs and strategies incorporating 

administration of donor antigen, have been utilised to achieve these effects, with 

prolongation of graft survival a desired effect and induction of tolerance the ultimate 

goal.

Several monoclonal antibodies specific for T cells and T cell subsets have been tested in 

islet transplant models. With regards to pan-T-cell specific reagents, both anti-CD2 and 

anti-CD3 specific monoclonal antibodies have been tested in animal models. Peri- 

transplant administration of anti-CD2 has been reported to prolong the survival of 

murine pancreatic islet allografts and of rat islets in murine recipients (232,233). 

Administration of anti-CD3 led to prolonged graft survival in murine islet allograft 

recipients, with some experiencing permanent engraftment, although tolerance was not 

achieved, and injection of donor strain leucocytes resulted in rejection in recipients with 

long-term surviving grafts (234). Also, peri-transplant treatment of non-human primates 

with an anti-CD3-immunotoxin conjugate, plus a short course of cyclosporin and

_________
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methylprednisolone, resulted in long-term islet survival (235). Taken together with data 

that demonstrates permanent remission of diabetes in anti-CD3 treated NOD mice with 

recent disease onset, anti-CD3 treatment appears to have significant potential as therapy 

for patients with type 1 diabetes who undergo islet transplantation (236).

With regards to T-cell subsets, a single course of a depleting anti-CD4 monoclonal 

antibody was shown to result in indefinite islet allograft survival in mice (237,238). In 

addition, allografted mouse islets were permanently accepted in anti-CD4 or anti-CD4 

plus CD8 treated mice, but not in recipients treated with anti-CD8 alone or with the pan- 

T-cell reagent, anti-Thy 1,2 (239).

1.7.2 Costimulation blockade

A great deal of research has focused on antirejection approaches that block T cell signal 

2 activation (costimulation), whilst leaving signal 1 antigen activation unaffected. At the 

time of transplantation, blockade of co-stimulation leads to incomplete activation and 

may result in the induction of antigen-specific unresponsiveness and operational 

tolerance. Several pathways of co-stimulation have been elucidated, and their 

manipulation explored as a potentially therapeutic means of tolerance induction. LFA-1, 

CD 154 and CD28 have received considerable attention because of their fundamental 

roles in T-cell activation (240).

Mice receiving an allogeniec islet graft with a short course of anti-LFA-1 antibody 

resulted in long-term graft acceptance and donor-specific tolerance (240,241).

Similarly, islet transplantation performed across a fully mismatched histocompatibility 

barrier was accepted permanently after transient treatment aimed at blockade of the 

CD28-CD80/86 interaction alone (242,243) or in combination with blockade of CD40- 

CD154 interaction (244). Blockade was obtained by the administration of a soluble 

chimeric molecule (cytotoxic T-lymphocyte antigen 4 immuno globulin, CTLA-4-Ig) 

that prevents CD28 engagement and of an anti-CD 154 monoclonal antibody.

CD 154 blockade has also been explored as a part of a strategy comprising the 

administration of donor-specific spleen cell subpopulations. Convincing data have been 

presented that transient blockade of co-stimulation together with the administration of

_____________________________________________
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donor-specific cell subsets, can lead to permanent acceptance of allogeniec islet grafts

(245).

1.8 Aims
The aims of this study were to

• develop in-vitro biochemical tests to assess the quality of human islet 

preparations

• perform these biochemical tests systematically on all procured human pancreata 

and islet preparations

• assess whether any donor or islet isolation factors correlate with the results of 

the in-vitro biochemical tests

• assess whether human islets can restore normoglycaemia when transplanted into 

the NOD-SCID mouse

• investigate the relationship between the in-vitro biochemical tests and in-vivo 

islet function in the NOD-SCID mouse model

• assess whether donor characteristics have any effect on the function of 

transplanted islets in the NOD-SCID mouse

• investigate the effect of warm ischaemia on in-vivo tests of islet function

• assess the effect the immunosuppressant rapamycin has on MIN-6 cells, rat islets 

and human islets.
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Chapter 2 

In-Vitro Islet Quality Tests
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Chapter 2 In-Vitro Islet Quality Tests

2.1 Introduction

During the last two decades, advances in islet biology have resulted in a greater 

understanding of the mechanisms involved in regulated insulin secretion by islets of 

Langerhans. The main events can be summarised as follows. Glucose oxidation by the 

p"Cell is essential for insulin secretion. In particular, glucokinase, the first step in 

glycolysis, has been convincingly shown to be the p-cell glucose sensor (246). p-cell 

metabolism of glucose results in an increase in the ATP/ADP ratio leading to closure of 

the Katp channel, depolarisation of the p-cell, and influx of extracellular Câ '*' thr ough 

voltage-dependent Ca^  ̂ channels. The subsequent increase in intracellular Ca^  ̂ then 

activates insulin exocytosis. The possibility of other signalling pathways involved in 

glucose-induced insulin secretion has also been suggested (247-252). These crucial 

biochemical pathways are indispensable to the correct functioning of a p-cell, and by 

extension, to transplanted islets. However, few islet transplant centres have addressed 

these issues in a systematic fashion.

In the Edmonton study, seven patients with unstable type 1 diabetes were successfully 

transplanted with human islets and in many cases became insulin-independent (206). 

They characterised the islet allografts by;

1. Cold ischaemia time (CIT)

CIT is defined as the duration from cross clamping of the donor aorta to implantation of 

the islets. The mean ± SD duration of CIT in 16 islet preparations was 13.9 ± 9 hours.

2. hnmunohistochemical analysis

Immunohistochemical staining allowed the composition of each islet preparation to be 

calculated. In 16 islet preparations the mean ± SD percentage of P-cells present was 24 

±12 %, a-cells was 10 ± 5 % and amylase-containing cells was 30+15 %.

___  ___
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3. Total number of islets per isolation

One islet equivalent (lEQ) is the standard unit used to report the volume of islets. One 

lEQ has a diameter of 150 microns. The mean ± SD total number of islets per isolation 

was 357,336 ± 109,042, with a range from 125,317 to 591,278 lEQ.

4. Total number of islets infused

Of the seven patients who received islets, one patient required four separate islet 

transplants and the rest received two separate islet preparations. The mean ± SD number 

of lEQ infused per patient was 11,547 ± 1604 per Kg of recipient’s body weight (the 

actual mean ± SD number of islets transfused per patient was 816,767 ± 56,047). The 

mean ± SD number of islets transfused in the first transplant was 389,016 ± 73,769, 

374,926 ± 107,962 in the second transplant, 125,317 in the third transplant (only one 

patient) and 244,453 in the fourth transplant (only one patient).

5. Mean static stimulation index (SSI)

The in-vitro SSI was calculated by dividing the insulin secreted by islets exposed to 20 

mM glucose by the insulin secreted by islets exposed to 2.8 niM glucose. The mean ± 

SD SSI was 6.5 + 5, with a range from 3.0 to 23.5.

As part of the follow-up studies, an attempt was made to relate the quality and quantity 

of the transplanted islets (as defined by some of the above variables) to the clinical 

outcome following transplantation in 17 patients (207). As this series contained more 

patients than the first paper (206), the mean averages differed slightly. For example, the 

mean ± SEM number of lEQs transplanted at the first transplant was 374,283 ± 20,247 

and 391,647 ± 32,921 lEQs at the second transplant. Each patient received a mean ± 

SEM of 850,035 ± 37,911 lEQs (or 12,330 ± 581 lEQs/Kg recipient body weight).

In order to compare the quality and quantity of islets with the subsequent success or 

otherwise of the islet transplant, several post-transplant measures of glycaemic control 

were calculated by performing the following tests;
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1. Oral glucose tolerance test (QGTTI

OGTTs were performed two weeks after the first transplant and then at two weeks, three 

and six months off insulin and every 6 months thereafter. The test was performed in the 

fasting state using 75 g of oral glucose, with blood samples drawn at baseline and 30, 

60, 90 and 120 minutes.

2. Intravenous glucose tolerance test (IVGTT)

IVGTTs were performed between the first and second transplants, 1, 3 and 6 months 

after becoming insulin independent after the second transplant, and every 6 months 

thereafter. The test was performed in the fasting state using 50% dextrose, 300 mg/Kg 

body weight, given over one minute after two baseline samples (-10 and 0 minutes) for 

glucose, insulin and C-peptide were drawn. Sampling was then at 3, 4, 5, 7, 10, 15, 20, 

25 and 30 minutes, with time 0 being the start of the infusion.

3. Arginine stimulation test (AST)

ASTs were performed between the first and second transplants, 1, 3 and 6 months after 

becoming insulin independent after the second transplant and every 6 months thereafter. 

5 g arginine HCl was infused intravenously over 30 seconds into the patient in the 

fasting state, and insulin levels were checked at the following time periods: -10, 0, 2, 3,

4. 5, 7 and 10 minutes.

The iy q x T  allowed the calculation of the acute insulin response to glucose (AIRg) 

based on the mean of the insulin level at 3, 4 and 5 minutes after the infusion less the 

mean basal insulin level. Glucose disposal (Kq) was calculated as the slope of the 

natural log of the glucose values from 10 to 30 minutes. The areas under the curve for 

insulin and C-peptide (AUCi and AUCc-p) were calculated as the area under the curve 

above baseline over 30 minutes post-infusion. Acute insulin response to arginine 

(AIRarg) was calculated by taking the mean of the three highest values at 2, 3, 4 and 5 

minutes post-infusion less the mean basal value (6). These values were compared with 

various measures of islet quality and quantity;

1. Total number of islets transplanted and cold ischaemia index

The total number of lEQ transplanted correlated with all measures of insulin reserve and 

glucose disposal at mid-transplant and 3 months after transplant (Table 4). This

I
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correlation was stronger at 3 months than at 1 month (207). The Edmonton gi'oup 

devised the cold ischaemic index (CII), which is calculated by multiplying the total 

number of lEQs infused by 10“̂ and dividing by the cold ischaemia time (hours). The 

CII for each infusate was summed as a total for each patient. The correlation between all 

measures of insulin reserve and glucose disposal and CII was stronger than the 

correlation with number of lEQs infused (207).

number r p value
Islet equivalents versus
AIRg 26 0.463 0.017
AIRarg 9 0.789 0.011
AUCi 26 0.501 0.009
AUCc.p 26 0.522 0.006
f<G 26 0.49 0.011
CII versus
AIRg 26 0.589 0.002
AIRarg 9 0.827 0.006
AUG, 26 0.684 <0.001
AUCc.p 26 0.728 <0.001

26 0.684 <0.001

Table 4. Relationship of both lE Q  transplanted and the cold ischaemic index 
with measures of insulin secretion and glucose disposal at 3 months 
post-transplantation (207).

2. In-vitro SSI

The authors describe the absence of a correlation between the SSI and AIRg, fasting 

glucose and meal tolerance test-stimulated glucose levels. They make no mention of any 

correlation between in-vitro SSI and AUCi, AUCc-p, AUCg and (253).

3. Islet purity

Again, the authors describe the absence of a correlation between the islet purity and 

AIRg, fasting glucose and meal tolerance test-stimulated glucose levels and make no 

mention of any correlation between islet purity and AUCi, AUCc-p, AUCg and (253).

hi summary, it can be concluded that;

• the greater the number of islet equivalents transplanted, the greater the insulin 

reserve and glucose disposal in the transplant recipient.

i |

-
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• the greater the cold ischaemic index (or the lower the cold ischaemia time) the 

greater the insulin reserve and glucose disposal in the transplant recipient 

(206,207,253).

Despite the improvement in insulin reserve and glucose disposal that occurs post­

transplant, these patients still have a substantially reduced insulin reserve compared to 

controls. The reason for this is not clear and remains to be elucidated.

The first sets of parameters are aimed at assessing p-cell function and responsiveness to 

glucose by measuring the dynamics of insulin release, both in a static and peri fusion 

system. To assess the degree of exocrine contamination, the amylase content of both the 

whole pancreas and islet preparation are measured. Measuring the insulin content of 

both the whole pancreas and islet preparation allows us to quantify the increase in 

insulin concentration as a consequence of the islet isolation procedure. By staining the 

islet preparations with dithizone (which stains insulin-containing cells red) it is possible 

to calculate the purity of the islet preparation.

2.2 Materials and Methods

2.2.1 Pancreas procurement procedures

Pancreata were harvested by a number of Surgeons in the Pennsylvania, New Jersey and 

Delaware States, USA and the procedures were approved by the Institutional Review 

Board of the University of Pennsylvania, USA.

HBD pancreata were harvested using standard multi-organ recovery techniques. 

University of Wisconsin Solution was used for preservation of both HBD and NHBD 

pancreata. For NHBDs, life-support was withdrawn and death declared following 

cardiac asystole. A five-minute interval between pronouncement of death and initiation 

of organ recovery was observed. In all cases, the time to aortic cannulation and 

initiation of organ perfusion was less than 7 minutes. The period from withdrawal of 

life support to aortic cross-clamp was defined as the warm ischaemia time.

 ______ -  - . ' I
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2.2.2 Donor data

Donor data was collected by Paige Oliver, Secretary, Hospital of the University of 

Pennsylvania (HUP), Philadelphia, USA,

The US United Network of Organ Sharing (UNOS) and local Gift of Life organisations 

procured pancreata from selected and appropriate donors and organised distribution and 

transport to the Hospital of the University of Pennsylvania (HUP) Human Islet 

Transplantation Program (HITP). Each donated pancreas had a unique identifying code 

(UNOS number), which tracked with the pancreas and subsequent islet preparation. On 

arrival at the HUP, each pancreas was given a local identifying T (transplant) number, 

which also remained with and identified the specimens derived from it throughout their 

distribution. Each pancreas arrived with a fonn, which described the following donor 

details-

• Age and gender

• Height, weight and body mass index (BMI)

• Referring institution

• Whether the donor had type 2 diabetes or not

• Whether the donor was a HBD or NHBD

2.2.3 Islet isolation

Perfonned by Dr Shaoping Deng, Research Assistant Professor, Department of Surgery, 

University of Pennsylvania, Philadelphia, PA, USA.

Pancreas preparation and phase I digestion (re-circulation phase)

The pancreas was trimmed and a small sample removed for measurement of insulin 

content, amylase activity and protein content. The whole pancreas was then perfused 

and distended with collagenase (Liberase, 0.5g in 350mL of Hanks solution), cut into 

several small pieces and placed into the digestion chamber (Figure 3). A stainless steel 

filter was placed over the upper half of the chamber and the chamber closed. The whole 

digestion circuit was filled with Hanks solution and the chamber secured in a 

mechanical shaker.
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Figure 3. Islet isolation procedure.

As the digestion proceeded there was an increase in the amount of dispersed digested 

pancreatic tissue. The digestion was considered complete when an increase in the 

amount of tissue liberated from the chamber was observed, most or all of the islets were 

free of the surrounding acinar tissue, intact islets were observed, and the acinar tissue 

became finer (smaller cell clusters). The amount and size of acinar tissue, number of 

islets, percent free and score were recorded. In order to stop the collagenase digestion 

process, room temperature tissue-culture medium (RPMI tissue-culture medium) was 

added to the system and the heat-exchange coils removed from the water-bath. A
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peristaltic pump maintained a constant flow rate round the circuit. When tissue started 

appearing in the stream (around 10 minutes), small samples were removed from the 

sample port, stained with dithizone (which stains insulin, and hence islets, red) and 

observed under the microscope.

Collection / Digestion phase II

Cold (2 to 8°C) human serum albumin was added to twenty 50 mL conical flasks. 

Digest from the system was sequentially added to fill each of the conical flasks, until no 

more islets were observed (typically between conicals 12 and 20). At this stage the 

system was refilled with tissue-culture medium and the whole process repeated until 

there were no islets left in the circuit.

Washing and centrifugation

The conical flasks were centrifuged and all, but 3 to 5 mL, of the supernatant was 

removed. The remaining supernatant and pellet were aspirated and transferred to a clean 

conical flask containing tissue-culture medium with human serum albumin. Any 

residual tissue remaining in the flasks was washed with additional tissue-culture 

medium (CMRL 1066) and added to the flask. The digest was then washed tliree times 

by resuspending the tissue, centrifuging the flask, aspirating and discarding the 

supernatant, then adding tissue-culture medium with human serum albumin to the pellet.

Cobe cell separation (Figure 4)

Islets were then purified on a Cobe 2991 cell separator using a continuous gradient. An 

equal volume of low- and high-density material was transferred to the two chambers of 

the gradient-maker, allowing for the creation of a continuous gradient. The digest was 

pumped into the Cobe bag and spun for three minutes. This process dispersed the digest 

along a density gradient and allowed low-density tissue (for example islets) to be 

separated from high-density tissue (for example acinar tissue). Thereafter, the Cobe bag 

was compressed, expelling the contents and the different-density fractions (from low to 

high) were collected in conical flasks containing tissue-culture medium. A small sample 

was taken from each flask to assess islet count, purity and quality score. The purified 

islets were then washed three times and then incubated at 22*̂ C in tissue-culture medium 

(CMRL 1066) plus human serum albumin.
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Figure 4. Cobe cell separator.

2.2.4 Static insulin secretion test

1.2 ml of 2.8 mM and 25 mM glucose tissue-culture medium (RPMI), supplemented 

with 1 M HEPES (N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid), 10% fetal 

bovine serum, 100 U/mL penicillin and 100 pg/mL streptomycin was added in triplicate 

to a 24-well non-tissue culture treated plate. The plate was then placed in a 37°C 

incubator under conditions of 95% air and 5% CO2 for 1 hour. The human islet 

preparation was supplied by the human islet isolation and culture laboratory in 

supplemented CMRL medium in a 250 mL tissue culture flask. By removing 0.2 mL of 

this islet suspension and counting the number of islet equivalents present it was possible
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to calculate the total volume of suspension required to yield 300 islet equivalents 

without requiring to hand-pick islets. This volume of islet suspension was pipetted into 

a 10 mL polypropylene conical tube and the islets allowed to gravitate to the bottom of 

the tube. The supernatant was removed and discarded and the islets washed once with 

the 2.8 mM glucose RPMI solution. The islet pellet was then resuspended in 2.6 mL of 

the 2.8 mM glucose RPMI solution. 800 pL of the homogeneous suspension was 

removed (for sonication for measurement of protein and insulin content and amylase 

activity) and pipetted into a 10 mL polypropylene conical tube. The remainder of the 

suspension was aliquoted (300 pL each) into the low-glucose (3 of 2.8 mM) and high- 

glucose wells (3 of 25 mM, resulting in a glucose concentration of 20 mM). The plate 

was then incubated at 37*̂ 0 for 2 hours under conditions of 95% air and 5% CO2 . After 

incubation 700 pL of the supernatant was removed (without any islets) and sent for RIA 

insulin analysis.

2.2.5 Sonication of islets

The sample was centrifuged for 2 minutes at 200 RPM and the supernatant removed. 

The islet pellet was resuspended in 1 mL of TH buffer (50 mM HEPES and 1% Triton 

X-100 (ethylene glycol octyl phenyl ether)) and sonicated for 3 minutes on ice. The 

sample was then centrifuged and the supernatant removed for measurement of protein 

and insulin content and amylase activity.

2.2.6 Sonication of whole pancreas specimen

A frozen piece of human pancreas was supplied by the human islet isolation and culture 

laboratory in a 50 mL polypropylene conical tube and allowed to thaw on ice. A 3 x 3 x 

3mm cube of pancreas was dissected and cut into as many small pieces as possible. The 

minced pancreas was added to 1 mL of TH buffer (50 mM HEPES and 1% Triton X- 

100) in a 10 mL polypropylene conical tube and sonicated for 5 minutes on ice. The 

sample was then centrifuged and the supernatant removed for protein and insulin 

content and amylase activity.

2.2.7 Protein assay

The Pierce Micro BCA Protein Assay kit was used to measure protein levels (254). 

Protein reduces Cû  ̂ to Cu’"" in an alkaline medium, which is chelated with

   '   _ _ .   :
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bicinchoninic acid (BCA), to give a purple-coloured complex which exhibits a strong 

absorbance at 562 nm, that is linear with increasing protein concentrations.

protein + Cû "̂  ----------- -------► Cu‘  ̂+ 2 B C A -----------► purple-coloured complex

100 pL of sample or standard was added in duplicate to a 96-well microplate. To each 

well, 100 pL of reagent was added manually and incubated at 37”C for 1 hour. The 

absorbance of each well was measured by a Wallac Victor microplate reader and the 

sample protein concentration calculated according to the standard curve, which is linear 

from 1 to 200 pg/mL.

2.2.8 Amylase assay

The Sigma Infinity Amylase Reagent kit was used to measure amylase activity (255). 

This is a colorimetric kinetic assay, which measures the rate of formation of yellow p- 

nitrophenol at a wavelength of 405 nm,

Ethylidene p-nitrophenol-G7 a-amylase E-G3 + pNP-G4 + 2 E-G4 + 2
(E-pNP-G7) + 5 H2O ^  pNP-G3+ 2 E-G5 + 2 pNP-G2

pNP-G4 4- 2 pNP-G3 a-glucosidase ^ 5 p-nitrophenol + 14G
+ 2 pNP-G2 +14 H2O ^  (yellow complex)

Where G = glucose.

50 pL of sample was added in duplicate to a 96-well microplate. The Wallac Victor 

dispensed 50 pL of reagent (heated to 37®C) to a well then measured the absorbance 

over a two minute period, before moving on to the next well. The software calculated 

the mean change in absorbance per second (AOD/sec). To calculate the amylase activity 

in U/mL, the following formula was used -

Amylase activity (U/mL) = AOD/sec x 60 x TV
S V x E X P

Where TV -  total reaction volume, in this case 0.1 mL 

SV = sample volume, in this case 0.05 mL

E = millimolar extinction coefficient of p-nitrophenol, in this case 10.13 

P = pathlength, in this case 0.354 cm

  _. _ .
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2.2.9 Calculation of quality indices

Standardisation

The amount of amylase and insulin in the islet preparation and whole piece of pancreas 

depends on the mass of tissue present in the sample. In order to standardise the amylase 

and insulin concentrations, these values were divided by the protein concentration of the 

sample. Thus amylase activity is expressed as Units/mg of protein and insulin 

concentration as ng/mg of protein.

Static Stimulation Index

The Static Stimulation Index (SSI) quantifies the ability of each islet preparation to 

secrete insulin in response to glucose. It is calculated as follows-

I
SSI= mean insulin secretion (ng/mL) at 20 mM glucose J

mean insulin secretion (ng/mL) at 2.8 mM glucose II

Exocrine contamination

The Exocrine Contamination (EC) quantifies the degree of pancreatic exocrine 11

contamination of the final islet preparation and is calculated as follows-

EC (%) = sonicated islet amvlase activitv (U/mg of protein) x 100
sonicated pancreas amylase activity (U/mg of protein) i

Insulin enricliment

The Insulin Enrichment (IE) quantifies the degree of enrichment of the islet preparation 

in comparison to the whole piece of pancreas and is calculated as follows-

lE (fold increase) = sonicated islet insulin conc. (ng/mg of protein)
sonicated pancreas insulin conc. (ng/mg of protein)

2.2.10 Perifusion stimulation index

Performed by Dr Marko Vatamaniuk, Post-doc Fellow, Department of Biochemistry 

and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.

100 representative human islets were handpicked and counted and placed in a plastic 

perifusion chamber. The perifusion apparatus consisted of computer-controlled fast- 

performance HPLC system, which allowed programmable rates of flow and glucose 

concentration in the perifusate, a 37”C water bath and a fraction collector. The 

perifusate was Krebs-HEPES buffer (115 mM NaCl, 24 mM NaHC03, 5 mM KCl, 1
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mM MgCli, 2.5 mM CaCl], 25 mM HEPES, pH 7.4 and 0.25% bovine serum albumin) 

and equilibrated with 95% O2 and 5% CO2 .

100 human 
islets

m m p

perifusion
chamber

valve filter

37 C water bath

fraction collector95% O2 and 5% CO2
Figure 5. Perifusion system.

The islets were initially exposed to 3 mM glucose in Krebs-HEPES buffer and the 

insulin secreted measured in the samples collected by the fraction collector. Thereafter 

the glucose concentration was increased to 30 mM and the insulin secreted by the islets 

measured. Knowing the flow rate allowed the insulin secretion to be expressed as 

ng/mL, thus allowing the perifusion stimulation index (PSI) to be calculated.

PSI = insulin secretion (ng/mL) at 30 mM glucose 
insulin secretion (ng/mL) at 3 mM glucose
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2.2.11 Statistics

Statistical analyses were perfonned using GraphPad Prism software version 3.00 and 

Minitab Release 13 for Windows. Data are presented as mean ± S.E.M. Statistical 

significance of differences between groups was analysed by the unpaired t test and 

between multiple groups, one-way analysis of variance (ANOVA) and Newman-Keuls 

multiple comparison tests. Correlation between variables was calculated by normalising 

the non-Gaussian data by logarithmic transformation, then calculating the Pearson 

correlation. A p value of <0.05 was considered statistically significant.

'II

■I
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2.3 Results

2.3.1 In-vitro tests

The protein content of each islet preparation and pancreas was measured to quantify the 

amount of tissue present (Figures 6 and 7). This allowed different islet preparations and 

pancreata to be compared and also allowed standardisation of the insulin content and 

amylase activity of each islet preparation and pancreas.
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The mean protein content of 50 islet preparations was 0.38 ± 0.03 mg/mL, whereas the 

mean protein content of 47 pancreata was 3.9 ± 0.4 mg/mL.

The amylase activity of each islet preparation and pancreas was measured to quantify 

the degree of success at removing the exocrine component from the pancreas during the 

islet isolation procedure. To allow comparisons between preparations the amylase 

activity was divided by the protein concentration (Figures 8 and 9). Thus the mean 

amylase activity of 50 islet preparations was 0.059 ± 0.014 U/mg protein, whereas the 

mean amylase activity of 47 pancreata was 3.4 ± 0.3 U/mg protein.
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to protein concentration.
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Pancreas preparation

Amylase activity in sonicated human pancreas specimen 
standardised to protein concentration.

Exocrine contamination (EC) was calculated by dividing the standardised islet amylase 

activity by the corresponding pancreatic amylase activity and expressing the number as 

a percentage. This allowed us to quantify and then compare each islet isolation 

procedure (Figure 10). The mean exocrine contamination in 47 islet preparations was

2.5 ± 0.7%.
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Figure 10. Exocrine contamination of each human islet preparation.

The insulin content of each islet preparation and pancreas was measured to quantify the 

degree of success at removing all the insulin-containing tissue from the pancreas. Each 

preparation was compared by dividing the measured insulin concentration by the protein 

concentration (Figures 11 and 12). Thus the mean insulin content of 50 islet 

preparations was 4.1 ± 0.6 pg/mg protein, whereas the mean insulin content of 47 

pancreata was 0.093 ± 0.02 pg/mg protein.
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Pancreas preparation

Insulin concentration in sonicated human pancreas specimen 
standardised to protein concentration.

Insulin enrichment was calculated by dividing the standardised islet insulin content by 

the corresponding pancreas insulin content and expressing the number as a ‘fold
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increase’. This allowed us to quantify and then compare each islet isolation procedure 

(Figure 13). The mean insulin enrichment (fold increase) in 47 cases was 180 ± 37.
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Figure 13. Insulin enrichment of human islet preparation.

The static stimulation index (SSI) quantifies the ability of each islet preparation to 

secrete insulin in response to glucose. It was calculated by dividing the mean insulin 

secretion at 20 mM glucose by the mean insulin secretion at 2.8 mM glucose (Figure 

14). The mean SSI of 50 islet preparations was 1.47 ± 0.08.
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Figure 14. Static stimulation index of each human islet preparation.

The perifusion stimulation test is regarded as a more physiological measure of the 

responsiveness of islets to glucose. The perifusion stimulation index (PSI) was 

calculated by dividing the insulin secretion at 30 mM glucose by the insulin secretion at 

3 mM (Figure 15). The mean PSI of 37 islet preparations was 9.8 ± 1.1.
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2.3.2 Correlation between donor, pancreatic, isolation and islet characteristics 

and test results

Figures 10, 13, 14 and 15 demonstrated considerable variability between different 

pancreas/islet preparations. To assess whether there were any donor or islet isolation 

factors that were associated with the results of the biochemical tests, the Pearson 

correlation and level of significance were calculated. Non-Gaussian data was 

normalised by logarithmic transformation (Table 5).
7®
,1:

Î
PSI SSI log IE log EC Purity log lEQ/g Total lEQ Pane wt log CIT log BMI

Age -0.13 -0.09 -0.08 0.11 -0.05 -0.03 0.00 0.17 -0.02 0.03
log BMI 0.12 0.24 0.09 0.16 -0.06 -0.10 0.14 0.30** -0.02
log CIT 0.26 0.04 0.14 -0.04 -0.04 -0.07 0.08 -0.10
Pane wt 0.35* -0.06 0.09 -0.01 -0.06 -0.02 0.14

TotallEQ -0.23 0.10 0.09 0.34* -0.07 0.16
log lEQ/g -0.25 0.11 -0.03 -0.26 0.12

Purity (%) -0.15 0,15 0.06 0.13
log EC -0.32 0.15 0.30
log IE -0.41 -0.09

SSI -0.19

Table 5. Pearson correlation between donor, pancreatic, isolation and islet 
characteristics and test results. BMI, body mass index (Kg/m^; CIT, 
cold ischaemia time (hours); Total lEQ, total number of lEQs obtained 
from the pancreas; lEQ/g, number of lEQ isolated per weight of whole 
pre-digested pancreas; EC, % exocrine contamination; IE, insulin 
enrichment (fold increase); SSI, static incubation index; PSI, perifusion 
stimulation index; * P<0.05, ** P<0.01.

The Pearson correlation between the perifusion stimulation index and the total pre­

digestion pancreatic weight was 0.35 (p<0.05). The only other significant correlations 

were between the total lEQs obtained and the log of the exocrine contamination 

(p<0.05) and the total pre-digestion pancreatic weight and the log of the donors’ BMI.
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2.4 Discussion

It is notable that the results of each of the in-vitro tests display remarkable heterogeneity 

between islet preparations. This may indeed reflect accurately the actual qualitative 

differences between islet preparations, however, this is only an assumption. In the 

clinical arena, new tests or assays would be compared against a gold standard reference 

method using reference materials. Furthermore, new method evaluation involves 

assessing accuracy, precision, sensitivity and specificity of a test. Once in use, accuracy 

of a test would be continually assessed by participation in external quality assurance 

schemes and precision by repeatedly measuring the same internal quality controls to 

ensure that the test is performing in a reliable and consistent manner. Clearly in this 

research setting, with these kinds of tests, rigorous method evaluation is not possible. 

Thus when making any conclusion based on the data produced from these tests it has to 

be borne in mind that the only guarantor of consistency is the operator and this is far 

from objective.

The biochemical indices (exocrine contamination, insulin enrichment and static 

stimulation index) were developed to quantify the quality of the islet isolation procedure 

and the subsequent in-vitro function of the islet preparation. Indeed, with a mean 

exocrine contamination of 2.5 ± 0.7%, mean insulin enricliment (fold increase) of 180 ± 

37 and mean static stimulation index of 1.47 ± 0.08, it could be concluded that on the 

whole, the islet preparations-

• have low levels of exocrine contamination

• have significant insulin enrichment

• release insulin in response to glucose.

This suggests that the HUP islet isolation procedure may be reasonably successful at 

separating the endocrine from the exocrine pancreas. In addition, the in-vitro glucose- 

stimulated increase in insulin secretion demonstrates that the islet preparation is 

capable, to some extent, of responding in-vitro in a physiological manner appropriate to 

the hyperglycaemic environment found in diabetes. The static incubation test used in 

this project is similar to that used by the Edmonton group (206), which achieved a 

considerably higher mean SSI of 6.5 ± 5, compared to 1.47 ± 0.08 in our study. As both
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the islet isolation procedures and static incubation tests are similar, broadly similar 

results might be expected, however this was not the case. The reasons for this have not 

yet been established. The logical possibilities include the likelihood that either the HUP 

SSI test performs poorly or the HUP isolated islets don’t function well. The only way to 

solve this issue would be to perform the HUP SSI test on the same islet preparation as 

another centre, however, this is impractical. In addition, as there is a paucity of 

published data on exocrine contamination and insulin enrichment of islet preparations it 

is impossible to compare these results with other centres. Whether our absolute level of 

exocrine contamination or insulin enrichment is good or bad is difficult to say.

Regarding the donor characteristics, perhaps it is not surprising that the greater the body 

mass index of the donor the greater the total pancreas weight, however this does not 

correspond to increased numbers of total islets nor lEQ per weight of pancreas. This 

might suggest that the increase in pancreatic weight associated with increased body 

mass index is related to an increase in weight of the non-endocrine component of the 

pancreas, possibly the fat component. There is no plausible scientific reason why there 

should be a relationship between perifusion stimulation index and total pre-digestion 

pancreatic weight, assuming that the increase in pancreatic weight is not associated with 

increased numbers of larger islets. Also, there is no convincing explanation as to why 

there is an association between total lEQs obtained and the log of exocrine 

contamination.
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Chapter 3 In-Vivo Tests of Human Islets

3.1 Introduction

Having collected the donor characteristics (age, sex, body mass index and diabetic 

status), developed the in-vitro tests of human islet function and establishing methods for 

estimating the exocrine contamination and insulin enrichment of the islet preparation, 

the next stage was to assess whether any donor characteristics or the in-vitro test indices 

could predict the curative efficacy of islet transplantation in the NOD-SCID mouse 

model. The curative potential of this islet material was determined by transplanting islet 

samples into NOD-SCID mice then measuring the glycaemic response as the biological 

endpoint in a standardised system. If this strategy was able to demonstrate that one 

particular index or donor variable was able to predict the curative efficacy of the islets 

when transplanted into NOD-SCID mouse then the next step would be to assess whether 

these findings are replicated when transplanting islets into human diabetic recipients. 

The ability to quantify the quality of each individual islet preparation prospectively, 

based on in-vitro testing and donor characteristics would offer several theoretical 

benefits. A quality score for each islet preparation would allow selection of the 

preparation most likely to be successful in restoring normoglycaemia in the diabetic 

recipient and thus the need for implantation of several islet preparations from several 

donors for each diabetic recipient might be avoided. For this approach to be successful 

there might be logistical problems, in that, each of the in-vitro tests developed cannot be 

measured by an automated analyser. Each is manually intensive and technically 

challenging and may take several hours to perform. For any of the in-vitro tests to be 

clinically worthwhile would require on-call staff to be always available, for an islet 

isolation that might take place irregularly and infrequently. Also, as the in-vitro tests are 

time-consuming, the islets to be used for transplantation would have to be cultured 

whilst awaiting the results of the quality tests. However, in terms of future research, the 

development of validated in-vitro quality tests would have numerous worthwhile 

applications. There is significant on-going research into changes in islet isolation 

procedures and islet culture conditions which might have a positive effect on islet 

efficacy. Instead of having to use the biological endpoint of transplanting islets into 

NOD-SCID mice, which is expensive and extremely time-consuming, initial
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modifications in procedures and conditions could be assessed by performing the 

validated quality in-vitro tests.

Furthermore, it might be possible to predict islet efficacy based on certain donor 

characteristics, such as the age, gender, body mass index (BMI) or diabetic status of the 

donor. Again, this might allow a more refined selection of a suitable donor, to optimise 

the clinical benefits to the diabetic recipient.

More realistically, where donors are outnumbered by waiting potential recipients, the 

ability to quantify the quality of an islet preparation would not lead to islets being 

discarded because of their inferior quality, nor potential donors being rejected. It might 

be that those recipients, who receive an islet preparation with an unfavourable profile, 

would have to be scrutinised more closely post-transplant, or possibly subjected to an 

alternative post-transplant regime.

Insulin independence is often only achieved after infusion of two or three separate islet 

preparations procured from different donors. In light of the shortage of cadaveric 

donors and the fact that each recipient requires islets from multiple donors, isolated islet 

transplantation is unlikely to wholly replace whole organ pancreas transplantation. A 

potential source of donor pancreata that has not been thoroughly evaluated for islet 

transplantation is non heart-beating donors (NHBDs). NHBDs have life-support 

withdrawn and subsequently, cardiac arrest occurs at a variable interval prior to 

initiation of organ recovery (256), whereas, in traditional brain dead or heart-beating 

donors (HBDs) cardiac arrest occurs at the time of organ recovery. Thus waim 

ischaemia is defined as the time between cardiac arrest and organ cooling by cold 

perfusion. NHBD pancreata are not considered appropriate for whole organ 

transplantation by most transplant centres because of the concern of ischaemic injury 

leading to graft pancreatitis after reperfusion. However, whether pancreata procured 

from NHBDs can provide an adequate number of functional islets for successful 

isolated islet transplantation in humans is unknown.

There have been reports of successful recovery of islets from NHBD pancreata, 

however the function of the islet preparation has not been thoroughly studied and
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attempts at human transplantation with NHBD islets have not been described (257,258). 

In this study, the ability to recover functional islets from NHBDs was evaluated (259).

3.2 Materials and Methods

3.2.1 Pancreas procurement procedures

The procurement procedures are described on page 72 (2.2.1).

3.2.2 Donor data

The collection of donor data is described on page 73 (2.2.2).

3.2.3 Islet isolation

The islet isolation procedure is described on page 73 (2.2.3).

3.2.4 Mouse transplantation

Performed by Dr Shaoping Deng, Research Assistant Professor, Department of Surgery, 

University of Pennsylvania, Philadelphia, PA, USA.

To evaluate the in-vivo function of islets, isolated human islets were transplanted into 

NOD-SCID mice. The mice were rendered diabetic by intraperitoneal injection of a p- 

cell toxin (two doses of streptozotocin, 150 mg/Kg on day 0 and day 2). NOD-SCID 

mice were transplanted with 1000 islets under the left kidney capsule. Islet graft 

function was monitored by blood glucose measurement on day 1 ,3 ,5 , 7, 14, 28, 60 and 

100. At the end of the experiment (100 days post-transplantation), the kidney bearing 

the transplanted islet graft was removed and blood glucose levels monitored in the 

animal for the next week to confirm that a functioning islet graft was responsible for the 

maintenance of normoglycaemia.

3.2.5 Statistics

Statistical analyses were performed using GraphPad Prism software version 3.00 and 

Minitab Release 13 for Windows. Data are presented as mean ± S.E.M. Statistical 

significance of differences between groups was analysed by the unpaired t test and 

between multiple groups, one-way analysis of variance (ANOVA) and Newman-Keuls
i .
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multiple comparison tests. Correlation between variables was calculated by normalising 

the non-Gaussian data by logarithmic transformation, then calculating the Pearson 

correlation. A p value of <0.05 was considered statistically significant.

3.3. Results

3.3.1 Mice transplantation

To evaluate the in-vivo function of islets, human islets were transplanted into 

streptozotocin-induced NOD-SCID mice and the blood glucose measured at intervals 

thereafter (Figure 16). The mean blood glucose concentration in 72 mice (20 

experiments), immediately prior to transplantation, was 20.3 ± 0.4 mmoI/L. 1 day after 

transplantation, the mean blood glucose concentration in 55 mice (20 experiments) fell 

to 11.6 ± 0.7 mmol/L. 3 days after transplantation, the blood glucose concentration in 50 

mice (20 experiments) rose to 12.5 ± 0.8 mmol/L and subsequently fell again, such that 

by day 60 normoglycaemia had been achieved, with a mean blood glucose 

concentration in 48 mice (20 experiments) of 5.4 ± 0.4 mmol/L. The initial fall in blood 

glucose at day 1 may be attributed to necrosis of transplant p-cells and the subsequent 

release of insulin. The blood glucose then rises again by day 3 and thereafter starts to 

fall gradually as the transplanted islets release insulin appropriately in response to 

hyperglycaemia, such that from day 60 to day 100, normoglycaemia is maintained.

22 n
20“

<D 18-
16-
14"

â , | 12-
10-

o 8-
m 6-

4-
2-
0- 1— I— I— I— I— I— i— I— I— I— I—

0 10 20 30 40 50 60 70 80 90 100

t
transplant

Days post-transplant

Figure 16. Mice blood glucose levels before and after transplanting human 
islets under the renal capsule of NOD-SCID mice (mean ± SEM).
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3.3.2 In-vitro tests and their relationship to in-vivo tests of islet function

To assess whether the results of the in-vitro tests had any value in predicting the 

effectiveness of transplanted islets in the NOD-SCID mouse model, the mice were 

divided retrospectively into groups, for each in-vitro test, for the purposes of analysis. 

Grouping the mice into quartiles yielded too few mice in each group, so the mice were 

divided into tliree groups each containing equal numbers of experiments, that is, islet 

preparations from a single donor. However, for each islet preparation (from a single 

donor), there was often a different number of mice transplanted depending on the 

availability of mice at that time. The mean blood glucose concentration and SEM at the 

various time-points were calculated in each of the three groups and compared to assess 

whether there was a statistically significant difference or not.

With respect to EC (Figure 17), all groups of NOD-SCID mice were rendered 

normoglycaemic by the transplantation of human islets. The group with the lowest EC 

had lower mean glucose levels than the middle group. Both the low and middle groups 

had lower glucose levels than the high group. However, these differences were only 

significant at days 7 and 14 post-transplant. At day 7, there were significant differences 

between the low and middle groups (p<0.01) and between the low and high groups 

(p<0.01). At day 14, there were significant differences between the low and middle 

groups (p<0.05) and between the low and high groups (p<0.05).
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Figure 17. Effect of exocrine contamination (EC) of the human islet 
preparation on glycaemia, following human islet transplantation into 
NOD-SCID mice. * P<0.05, ** P<0.01,
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Thus, in the first two weeks following transplant, the degree of exocrine contamination 

of the islet preparation may have some influence on the ability of the transplant to lower 

glucose levels, but ultimately exocrine contamination has no influence on whether the 

transplanted islets can restore normoglycaemia in the NOD-SCID mouse model.

Regarding IE (Figure 18), all groups of NOD-SCID mice were rendered 

normoglycaemic by the transplantation of human islets. There were no significant 

differences between each group at any time-point post-transplant. Thus, the degree of 

insulin enrichment of the islet preparation has little influence on the ability of the 

transplant to restore normoglycaemia in the NOD-SCID mouse model.
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Figure 18. Effect of insulin enrichment (IE) of the human islet preparation on 
glycaemia, following human islet transplantation into NOD-SCID 
mice.

The SSI was used as an indicator of the in-vitro insulin-secretory response of isolated 

human islets to glucose. Ultimately, both the low and high SSI groups restored 

normoglycaemia (Figure 19). However, the middle group (with SS indices between 1.2 

and 1.6) only ever achieved borderline glycaemic control. The middle SSI group had

■f.i ? : ■  . ‘ 5 V N , .



100

significantly different mean glucose levels from the low and high groups at days 14, 28, 

60 and 100 (p<0.01). Thus, human islets with low and high SSI can restore 

normoglycaemia in the NOD-SCID mouse model.
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Figure 19. Effect of static stimulation index (SSI) of the human islet 
preparation on glycaemia, following human islet transplantation into 
NOD-SCID mice. ** P<0.01.

3.3.3 Donor characteristics and their influence on in-vivo tests of islet function

To investigate whether a donor’s age, BMI, gender or diabetic status have any influence 

on the in-vivo function of transplanted islets, again the mice were divided into several 

groups retrospectively.

Those mice receiving islets from donors less than 40 years old, initially had a slower 

reduction in mean blood glucose concentration than those receiving islets from donors 

over 40 years old (Figure 20A). At day 1 and day 7 post-transplantation there was a 

significant difference in mean blood glucose. At day 1 the younger age group had a
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mean glucose concentration of 13.1 ± 1.1 mmol/L (n=28, in 10 experiments) whereas 

the older age group had a mean glucose concentration of 10.1 ± 0.9 mmol/L (n=27, in 

10 experiments), p<0.05. Also, at day 7 the younger age group had a mean glucose 

concenti'ation of 11.8 ± 1.2 mmol/L (n=36, in 10 experiments) whereas the older age 

group had a mean glucose concentration of 8.2 ± 0.8 mmol/L (n=22, in 8 experiments), 

p<0.05. However, ultimately, both groups achieved normoglycaemia, which was 

maintained. Thus, the age of the donor only appears to have any influence on in-vivo 

islet function immediately following transplantation.

Although islets from female donors resulted in lower mean glucose levels than islets 

from male donors, both groups ultimately restored and maintained normoglycaemia in 

the diabetic mouse model and there were no significant differences between sexes 

(Figure 20B). Results are expressed as mean blood glucose concentration (mmol/L) ± 

SEM of 7 experiments (n=6 to 27) in the male group and 13 experiments (n=22-45) in 

the female group.

Islets transplanted from donors with a BMI <25 (normal) and >30 (obese) both restored 

normoglycaemia, with no significant differences between these groups (Figure 20C). 

However, those islets from donors with a BMI between 25 and 30 took longer to restore 

normoglycaemia, with significant differences between this middle group and the low 

group (BMK25) at days 3 (p<0.01), 7 (p<0.001) and 14 (p<0.05) post-transplant. 

Results are expressed as mean blood glucose concentration (mmol/L) ± SEM of 6 

experiments (n=10 to 21) in the BMI<25 group, 8 experiments (n=9 to 29) in the BMI 

25 to 30 group and 6 experiments (n—9 to 22) in the BMI>30 group. Thus, ultimately, 

regardless of a donor’s BMI, islets can restore and maintain normoglycaemia in this 

NOD-SCID mouse model.
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Figure 20. Effect of different donor age (A), sex (B), body mass index (C) and 
diabetic status (D) on glycaemia, following human islet 
transplantation into NOD-SCID mice. * P<0.05, ** P<0.01, *** 
P<0.001.

Islets from donors with type 2 diabetes had higher mean glucose levels than those from 

non-diabetic donors (Figure 20D). Results are expressed as mean blood glucose 

concentration (mmol/L) ± SEM of 14 experiments (n=20 to 50) in the non-diabetic 

group and of 2 experiments (n=4 to 8) in the diabetic group. Mean blood glucose levels 

in the type 2 diabetic group were significantly higher at days 3 (p<0.05), 5 (p<0.01), 7 

(p<0.001), 14 (p<0.001) and 28 (p<0.001), compared to islets from donors without 

diabetes. Thus transplanted islets from diabetic donors do not function as well as those 

from non-diabetic donors in the NOD-SCID mouse model
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3.3.4 Effect of the presence of warm ischaemia on in-vivo tests of islet function

HBD had no warm organ ischaemia as cardiac arrest occurs at the same time as organ 

recovery, whereas NHBD have life support withdrawn and organ recovery initiated at 

least five minutes after pronouncement of death (after cardiac arrest). Results are 

expressed as mean blood glucose concentration (mmol/L) ± SEM of 4 experiments 

(n=14) in the NHBD group and of 16 experiments (n=20 to 58) in the HBD group. 

Mice, transplanted human islets from either NHBD or HBD, had similar mean glucose 

levels with restoration and maintenance of normoglycaemia and no significant 

differences between groups (Figure 21). In addition, there were no other significant 

differences between the two groups (Table 6). Thus in this in-vivo model, NHBD can 

provide islets that function as well as islets from HBD.
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Figure 21. NOD-SCID mice blood glucose levels following transplantation of 
human islets from HBD (no warm ischaemia) and NHBD (warm 
ischaemia present). HBD, heart-beating donor; NHBD, non-heart- 
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NHBD HBD
VAËlKBLE mean ± SEM (n) mean ± SEM (n) p value
Age (years) 41.2 + 3.8 (9) 46.9 ±1.6 (83) 0.189 (NS)
BMI (kg/m^) 29.1 ±2.6 (9) 27.8 ±0.8 (107) 0.635 (NS)
CIT (hours) 5.7 ±1.1 (9) 7.3 ± 0.4 (96) 0.190 (NS)

Pancreatic weight (g) 96.1 ± 14.0 (9) 89.8 ±3.9 (104) 0.674 (NS)
Digestion time (min.) 60.0 ± 4.4 (9) 68.2 ±2.1 (104) 0.113 (NS)

lEQ/g of pancreas 7315 ±1894 (8) 7100 ±1706 (71) 0.937 (NS)
Purity (%) 72.5 ± 10.3 (4) 63.1 ±2.6 (82) 0.442 (NS)

EC (%) 3.8 ±2.8 (7) 2.3 ±0.6 (39) 0.610 (NS)
IE (fold increase) 139 ±67 (7) 185 ±43 (39) 0.578 (NS)

SSI 1.6 ±0.2 (7) 1.5 ±0.1 (41) 0.496 (NS)

Table 6. Donor, pancreatic, isolation and pre-transplant islet variables in 
NHB donors, compared to HB donors.
BMI, body mass index (kg/m^); CIT, cold ischaemia time (hours); lEQ/g, 
number of lEQ isolated per weight of whole pre-digested pancreas; EC, 
% exocrine contamination; IE, insulin enrichment (fold increase); SSI, 
static incubation index; NS, not significant.

3.4 Discussion
In this study, transplanting human islets into diabetic mice effectively controls diabetes 

and restores and maintains normoglycaemia. At the end of the experiment (100 days 

post-transplantation), the kidney bearing the transplanted islet graft was removed by 

surgical nephrectomy. Thereafter the blood glucose concentrations rose to diabetic 

levels confirming that a functioning islet graft was responsible for the maintenance of 

normoglycaemia. The initial fall in blood glucose following transplantation is attributed 

to the death of insulin-containing cells, which release insulin in a pathological, 

uncontrolled manner. The blood glucose then rises again and then starts to fall gradually 

as the transplanted islets release insulin appropriately, in response to hyperglycaemia.

To assess whether the results of the in-vitro tests had any value in predicting the 

effectiveness of transplanted islets in the NOD-SCID mouse model, the mice were 

divided retrospectively into groups as described in Methods and Results. In the first two 

weeks following transplant, the degree of EC of the islet preparation may have some 

role in predicting the in-vivo function of islets, with those preparations of highest EC 

taking longer to restore normoglycaemia than the other groups. However, beyond 14 

days post-transplant, EC is of no value in predicting the in-vivo function of islets, in this
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model. Similarly the degree of IE and the SSI (with one exception) has no value in 

predicting the in-vivo function of islets in this model. The one exception is the middle 

SSI group (between 1.2 and 1.6). This middle group struggles to achieve the degree of 

normoglycaemia seen in the low and high SSI groups. Why islets with less glucose- 

stimulated insulin secretion (lower SSI) can perform better than islets with higher SSI 

(the middle SSI group) is difficult to explain.

Thus, none of the biochemical indices (EC, IE nor SSI) are able to predict the in-vivo 

effectiveness or function of transplanted islets in the NOD-SCID mouse model. This 

could be due to a variety of reasons. There could be problems with the validity of the 

tests. As this project is at the leading edge of this development, there is no previous 

similar experience of human islets to fall back on. That is, there are no available 

established human reference materials, so it is not possible to comment on the accuracy 

of the tests. In addition, in view of the finite availability of samples it is difficult to 

assess precision adequately. There is also the issue of the relevance of in-vitro tests. It 

may be that the short static incubation test in no way reflects the ability of the 

transplanted islets to respond to hyperglycaemia in-vivo. Indeed, in a static incubation 

test there is accumulation in the well of other hormones such as somatostatin, which 

inhibit insulin secretion (260). In addition, as this is an in-vitro test, the sympathetic and 

parasympathetic control of insulin secretion is absent. Also, it is possible that as there is 

so little exocrine contamination and such substantial insulin enrichment in most samples 

there is not a sufficient spread of values to permit adequate prediction of the in-vivo 

function of islets. However, most importantly, is the issue of lEQ dose-insulin response. 

It is possible that this model of in-vivo testing of islet function (with particular reference 

to the number of islets transplanted) results in a test with poor sensitivity. In other 

words, to discriminate between low and high quality islet preparations, perhaps fewer 

islets should have been transplanted. However, this problem will likely be addressed by 

the next phase of the HITP, which has already begun. Several brittle type 1 diabetic 

patients have now been transplanted with human islets and are subjected to intensive 

and thorough post-transplantation monitoring of glycaemic control and insulin secretion 

along similar lines to the Edmonton group (207,253). The in-vitro biochemical tests 

continue to be performed and at a later date comparisons will be made between these in- 

vitro results and the post-transplant data.
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To investigate whether a donor’s age, BMI or gender has any value in predicting the in- 

vivo function of transplanted islets, the mice were divided into several gi'oups 

retrospectively. There are some significant differences between groups within the first 

14 days post-transplant, but otherwise, islets from all groups were able to restore 

normoglycaemia in this model, no matter the donor’s age, BMI or gender. It is clear that 

islets from donors with type 2 diabetes do not respond as well as those from donors 

without diabetes, as even by day 60 normoglycaemia is not restored in the type 2 

diabetes group. This would be expected, as it is known that the pathological process in 

type 2 diabetes involves not only peripheral insulin resistance, but also P-cell 

dysfunction. Thus, if the NOD-SCID mouse model is a model that does indeed 

accurately reflect the transplanted in-vivo function of islets and allows for extrapolation 

to humans, it would seem reasonable that scrupulous attempts are made to ensure that 

donors do not have diabetes (which is often difficult to determine in critically-ill, 

stressed patients).

As NHBD islets performed as well as HBD islets in the in-vitro and in-vivo assays of 

islet function, this prompted the HUP HITP group to attempt a clinical transplant with 

islets procured from a NHBD. The transplanted NHBD preparation successfully 

reversed diabetes with infusion of islets from a single donor, a feat that has not been 

reported previously (259). It is believed that the duration of warm ischaemia may have a 

deleterious effect on islet viability (261,262). In this study, most of the pancreata 

procured had a warm ischaemia time of less than 30 minutes. Thus, this suggests that a 

short course of warm ischaemia in NHBDs may not have a significant deleterious effect 

on isolated islets in terms of islet function.

In summary, none of the in-vitro biochemical tests developed was able to predict the 

curative potential of islet material when transplanted into NOD-SCID mice. Also, islets

1

from type 2 diabetic donors were unable to restore normoglycaemia in NOD-SCID 

mice. In addition, normally functioning pancreatic islets can be isolated successfully 

from the pancreata of NHBDs with a short warm ischaemia time and a single donor 

transplant from a NHBD resulted in a state of stable insulin independence in a type 1 

diabetic recipient. In light of the current shortage of donors and the islet mass 

requirements of an increasing number of potential recipients, procuring pancreata from 

NHBDs might provide an additional source of isolated islets for clinical transplantation.
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Chapter 4

The Effect of the Immunosuppressant Rapamycin on MIN-6 Cells, Rat

and Human Islets
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Chapter 4 The Effect of the Immunosuppressant Rapamycin on 

MIN-6 Cells, Rat and Human Islets

4.1 Introduction

Rapamycin (sirolimus) is a macrolide fungicide with potent antimicrobial, 

immunosuppressant and anti-tumour properties. As an immunosuppressant it has a 

mechanism of action distinct from that of cyclosporine, tacrolimus, corticosteroids and 

azathioprine. In humans, it has been used successfully as an immunosuppressant in islet 

(206), combined kidney-pancreas (263), renal (264) and liver (265) transplantation and 

as rescue therapy in lung and heart transplantation (266). Rapamycin has also found a 

role as a tool to suppress neointimal hyperplasia of rapamycin-eluting coronary stents in 

humans with coronary artery disease (267) and in the porcine coronary model (268). 

Indeed gene expression profiling of human stent-induced neointima by cDNA array 

analysis of microscopic specimens, reveals upregulation of FK506-binding protein 12 

(FKBP12), the intracellular binding protein of rapamycin (269). Furthermore, CCI-779 

(a water-soluble ester analogue of rapamycin) has significant activity against a wide 

range of in-vitro human cancers. It is currently undergoing clinical evaluation as an anti­

tumour agent (270).

The anti-proliferative effects of rapamycin can be explained by understanding the 

intracellular mechanism of action of rapamycin. Rapamycin binds intracellular FKBP12 

to form a complex, which binds to and inhibits the serine/threonine kinase activity of 

the mammalian target of rapamycin (mTOR) (271). Inliibition of mTOR blocks 

downstream phosphorylation of several proteins. A reduction in the kinase activity of 

p7 Qs6k j.gg^pg iji reduced phosphorylation of the 40S ribosomal protein S6  (which is 

essential for mRNA translation and hence protein synthesis) (272). Also, there is 

increased binding of the dephosphorylated eukaryotic initiation factor 4E binding 

protein-1 (4EBP1), or phosphorylated heat- and acid-stable protein (PHAS-1), to the 

mRNA cap-binding subunit of the eukaryotic initiation factor-4 (eIF-4F) complex, 

which inhibits its activity. This blocks the translation of niRNAs required for cyclin D1 

synthesis, protein synthesis and cell cycle progression from Gi to S phase (273). In 

addition, there is increased turnover of cyclin D1 at the protein and mRNA level. This

■■
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effect, in addition to the decreased translation of cyclin D1 (due to 4EBP1/ eIF-4F 

inhibition) results in a relative deficiency of cyclin D l, which is required for G% to S 

phase transition (270).

Rapamycin causes cell death by apoptosis in BKS-2 lymphoma cell lines. Tacrolimus 

(which competes with rapamycin for FKBP12 binding sites) inhibits rapamycin-induced 

apoptosis, suggesting that, in this cell line, rapamycin binding to FKBP12 is essential 

for programmed cell death (274). In addition, rapamycin induces apoptosis in the Rhl 

and Rli30 rhabdomyosarcoma cell lines, and it is likely that mTOR has a critical role in 

rapamycin-induced apoptosis (275). Rapamycin enhances apoptosis and increases 

sensitivity to cisplatin in the human promyelocytic leukaemia cell line HL-60 and the 

human ovarian cancer cell line SKOV3 (276). Rapamycin can evoke apoptosis in 

human dendritic cells, in a time- and dose-dependent manner. The caspase inhibitor 

ZVAD-fmk only partially inhibits rapamycin-induced apoptosis. Monocytes, 

macrophages (either monocyte-derived or freshly isolated alveolar macrophages) and 

myeloid cell lines are resistant to the apoptotic effect of rapamycin (277). In addition, 

interleukin-7 prevents apoptosis of T-cell acute lymphoblastic leukaemia cells by down- 

regulating the cyclin-dependent kinase inhibitor p27’̂’*’̂  and up-regulating bcl-2 

expression. The effect on p27^‘̂ * is inhibited by rapamycin, suggesting that in its 

phosphorylated form, p27 '̂^  ̂ act as a tumour suppressor gene (278). In addition, 

rapamycin inhibits mitochondrial-based p70^^\ which prevents phosphorylation of 

serine-136 on the pro-apoptotic BAD (the phosphorylated form is inactive) and blocks 

cell survival induced by insulin-like growth factor. Furthermore, IGF-1-induced 

phosphorylation of BAD Ser-136 is abolished in p70^'"^-deficient cells. This suggests 

that p70^^ ,̂ by phosphorylating and hence inactivating BAD is crucial to continued cell 

survival (279). Although rapamycin inhibition of mTOR and subsequent 

dephosphorylation of p70̂ '"̂  resulted in a significant reduction in proliferation of BxPC3 

and Panc-1 human pancreatic adenocarcinoma cell lines, rapamycin alone did not 

induce apoptosis in this cell line (280). In summary, rapamycin has been shown to 

induce apoptosis in some cell lines, but not others.

In the Edmonton study, blood trough rapamycin levels were monitored to maintain them 

in the range of 12 to 15 ng/mL for the first three months and in the range of 7 to 10 

ng/mL (or 7.66 to 10.9 nM) thereafter (206). Other authors describe a putative
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rapamycin therapeutic window in a renal transplant regime that includes cyclosporine, 

as 5 to 15 ng/mL (or 5.47 to 16.4 nM) (281).

The Edmonton study was not designed to assess the effect of rapamycin on islet 

function. A previous study demonstrated that rapamycin, with or without cyclosporine, 

is not associated with adverse impact on islet function or glucose metabolism in the 

canine model of pancreatic transplantation (282). Another study demonstrated that 

rapamycin induces primary non-function of islet xenografts in a dose-dependent manner 

suggesting that rapamycin may be diabetogenic (283). Yet another study demonstrated 

that rapamycin reduces insulin secretion of HIT-T15 cells after 48 hours culture, but 

rapamycin had no effect on insulin secretion of Wistar rat islets after 24 hours culture 

(284). The effect of rapamycin on the MIN-6 cells and islets is not clear. Thus, the aim 

of our study was to address whether rapamycin has any effect on MIN-6 cells and rat 

and human islets in-vitro.

4.2 Materials and Methods

4.2.1 MIN-6 ceil culture

MIN6 insulinoma cells were cultured in T175 cm flasks in 25 mM glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM), supplemented with 15% fetal bovine serum, 100 

U/mL penicillin, 100 pg/mL streptomycin and 2 mM L-glutamine at 37"C under 

conditions of 95% air, 5%C0z. Medium was changed every 3 or 4 days. Cells were 

trypsinised weekly and passages 35-50 were used exclusively.

4.2.2 Isolation of pancreatic islets
The Children’s Hospital of Philadelphia guidelines for the use and care of laboratory

animals were followed. Male Sprague-Dawley rats (Charles River Laboratories, Boston, 

MA, USA) were injected with Nembutal (0.05 mg/g rat). After the rats were 

anaesthetised, the bile duct was cannulated, and the pancreas was inflated with

approximately 20 mL of Hanks’ balanced buffer. The inflated pancreas was removed, and 

cleaned of its lymph nodes, fat, blood vessels and bile duct. Tissue was digested with 

collagenase P (Roche Molecular Biochemicals) as previously described and purified on a 

discontinuous Ficoll gradient (285,286). Isolated islets were washed and cultured in 

complete CMRL-1066 (supplemented with 10% fetal bovine serum, 2 mM L-glutamine,
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100 U/mL penicillin, 100 pg/mL streptomycin) culture medium at 37®C (95% air, 

5%C02).

4.2.3 MIN-6 cell viability determination

1. MTT: The MTT assay is an indirect measure of cell viability. The assay is based on 

the ability of viable cells (in particular mitochondrial succinate dehydrogenase) to 

reduce MTT (C,N~diphenyl-N’4-5-dimethyl thiazol-2-yl tétrazolium bromide) to 

insoluble coloured formazan crystals. 1.6 x 10̂  MIN-6 cells from one T175 flask were 

plated in one 24-well plate in 25 mM glucose DMEM for 3-4 days. Thereafter, the 

medium was removed and replaced with different glucose concentrations and different 

rapamycin concentrations in DMEM for either 1, 2 or 4 days. After culture with or 

without rapamycin, cells were washed twice with 1 niL Krebs-HEPES buffer (115 mM 

NaCl, 24 mM NaHC03, 5 mM KCl, 1 mM MgCb, 2.5 mM CaCh, 25 mM HEPES, pH

7.4 and 1% bovine serum albumin) no glucose and incubated in 1 mL Krebs-HEPES 

buffer (0 mM glucose) with 0.5 mg/mL MTT for 60 min at 37°C. The supernatant was 

discarded, and cells in each well were lysed with 500 pL of 2-propanol and incubated 

for 60 minutes at room temperature. The optical density of the resultant coloured 2- 

propanol was measured at 560 nm on a MicroKinetics plate reader.

2. Fluorescent live/dead cell assav: A two-colour fluorescence cell viability assay was 

used based on the ability of calcein-AM to be retained within live cells, inducing an 

intense uniform green fluorescence and ethidium homodimer (EthD-1) to bind the 

nuclei of damaged cells, thus producing a bright red fluorescence in dead cells. 1.6 x 10̂  

MIN-6 cells from one T175 flask were plated in one 24-well plate in 15 mM glucose 

DMEM for 3 to 4 days. Thereafter, the medium was removed and replaced with 

different rapamycin concentrations in 15 mM glucose DMEM for either 2 or 4 days. 

After culture with or without rapamycin, cells were washed twice with 0.5 mL sterile 

PBS. The wash solution was then centrifuged, the supernatant removed, and the pellet 

resuspended in 200 pL PBS containing 2 pM calcein-AM and 4 pM EthD-1. This 

solution was then returned to the appropriate well of the 24-well plate and incubated at 

room temperature for 45 minutes in the dark. The green fluorescence of the live cells 

was measured by the Wallac 1420 Multilabel Counter (Perkin-Elmer Life Sciences, 

Gaithersburg, MD, USA). Excitation was at 488 nm and live cells were detected at
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wavelength of 510 nm with a bandpass filter. Images of the stained cells were captured 

by digital fluorescence microscopy using the SimplePCI software (Compix Inc. Imaging 

Systems, Cramberry, PA, USA).

4.2.4 Cell viability in human islets

Human islets were obtained from the Islet Isolation Core of the JDFI-Penn Islet 

Transplantation Center, with the approval of the local Ethics Committee. Consent was 

obtained in accordance with accepted guidelines. Purity was assessed by staining the 

preparation with dithizone and calculating the percentage of all tissue that stained 

positive for insulin. Human islets were cultured in CMRL (supplemented with 10% fetal 

bovine serum, 2 mM L-glutamine, 100 U/mL penicillin) at 37®C under conditions of 95% 

air, 5%C02 in a T75 flask. All human islets were removed from the flask, washed, and 

resuspended in 12 mL of CMRL. A volume of islet suspension was added to each well 

of a 6-well plate. Either vehicle control (0.1% ethanol) or rapamycin was added to each 

well. After 4 days culture, 0.2 mL of supernatant was removed from each well and 0.2 

mL of Krebs-HEPES buffer (0 niM glucose) with 0.5 mg/mL MTT was added and 

incubated for 120 minutes at 37"C. Thereafter, all well contents were removed, spun and 

the supernatant removed. The islets were then washed with 1 mL Krebs-HEPES buffer. 

The supernatant was again discarded and 300 pL of 2-propanol was added and 

incubated for 60 minutes at room temperature. After further centrifugation, 200 pL of 

supernatant was removed for MTT analysis. The optical density of the resultant 

coloured 2-propanol was measured at 560 nm on a MicroKinetics plate reader.

4.2.5 Rat islet insulin secretion

Rat islets were cultured inlO-cm tissue-culture dishes, containing 10 mL of 

supplemented CMRL-1066 and 1, 10 or 100 nM rapamycin or the vehicle control (0.1% 

ethanol). After 4 days culture, islets were removed and washed twice in RPMI medium. 

Within each dish, rat islets were divided into 3 groups depending on their size; small, 

medium or large. Five rat islets per well were counted into a 6-well plate, picked 

sequentially, starting from the group of largest islets to the group of smallest islets and 

then back to the group of largest islets and incubated in 1.5 mL of either a low-glucose 

RPMI solution (3 mM glucose) or a high-glucose RPMI solution (20 mM glucose) with 1 

mM carbachol at 3TC  for 2 hours. After incubation, the supernatant was removed and
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analysed for its insulin content by radioimmunoassay (Peim Diabetes Center RIA Core, 

USA).

4.2.6 Cell viability in rat islets

Propidium iodide (PI) is a highly polar dye, which penetrates cells with damaged 

membranes and stains the nuclei red. Fifty rat islets were cultured in 3 ml of 

supplemented CMRL-1066 and either 10 or 100 nM rapamycin or the vehicle control 

(0.1% ethanol). After four days culture, PI solution was added to each well (final 

concentration 15 pg/mL) and incubated for 45 minutes in the dark at room temperature. 

Islets were then removed, centrifuged and the supernatant removed and discarded. The 

islets were resuspended in 60 pL Krebs-HEPES buffer and transferred to a 384-well 

plate. The intensity of PI fluorescence was measured by a Wallac 1420 Multilabel 

Counter (Perkin-Elmer Life Sciences, Gaithersburg, MD, USA), with excitation at 485 

nm and emission at 630 nm. Fluorescent images were captured by confocal fluorescence 

microscopy at pixel size of 0.546pm and 20x magnification with excitation at 488 nm 

and emission at 610 nm (Penn Diabetes Center Biomedical Imaging Core, USA). For 

each well, a minimum of 10 random size-matched islets were acquired under bright and 

fluorescence microscopy.

4.2.7 Identification of apoptosis by transferase-mediated dUTP nick-end labeling 

assav
An in-situ Cell Death Detection Kit (Boehringer Mamihein, Indianapolis, IN, USA) was 

used to detect apoptotic cells. In this method, terminal deoxynucleotidyl transferase was 

used to catalyse the polymerisation of fluorescein-labeled nucleotides to free 3-OH 

tennini of DNA strand breaks. After 19 hours culture DMEM with vehicle control 

(0.1% ethanol), 10 or 100 nM rapamycin, MIN-6 cells were trypsinised and washed 

twice with cold PBS (Phosphate-Buffered Saline)/!%BSA. Cells were then fixed with 

200 pL 2% paraformaldehyde and incubated for 60 min at room temperature. After 

rinsing with PBS, cells were resuspended with 250 pL of permeabilisation solution 

(0.1% Triton X-100 in 0.1% sodium citrate) and incubated for 30 min at room 

temperature. Then, 50 pL of TUNEL reaction mixture was added to samples and the 

positive controls, (50 pL of label solution only was added to the negative controls), and 

cells were incubated at 37“C for 1 h. Apoptotic cells were identified by FITC staining,
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and analysed by flow cytometry. A Coulter EPICS Elite Flow cytometer (Beckman- 

Coulter, Hialeah, FL, USA) equipped with a 5-watt argon laser operated at 488 nm and 

260 milliwatts output was used for all studies. Monomeric forms of the MIN6 cells 

were electronically gated based on forward and side scatter measurements to exclude 

cell aggregates from evaluation. Fluorescence signals were collected with a 

photomultiplier tube configured with 550 nm dichroic and 525 nm band pass filters. 

10,000 events were collected into a 4 decalog single parameter histogram for each 

sample. Percent positive cells were determined based on the evaluation of cells treated 

with TUNEL reagents lacking TdT using a cursor setting that yielded less than 2% 

positive cells.

4.2.8 Islet ceil apoptosis identified by electron microscopy

Rat islets were cultured in complete CMRL-1066 in 6-cm dishes with vehicle or with 

rapamycin 100 ng/ml for 4 days. Islet preparations were then washed briefly with pre­

warmed, serum-free medium, and fixed with 2.5% glutaraldehyde and 2% 

paraformaldehyde in sodium cacodylate buffer for 4 hours. The islets were collected 

from the dish to make a pellet. After washing, osmication, and dehydration with ethanol 

and propylene oxide, the pellets were embedded in EM-Bed 812, and polymerized at 

70°C for 48 hours. Semithin sections (1 micron) were stained with Toluidine blue to 

screen general cell morphology. Ultrathin sections (80 nm) were cut with a diamond 

knife, stained with uranyl acetate and lead citrate, and examined with a JEOL-1010 

TEM operated at the accelerated voltage of 80 kv.

4.2.9 Statistical analysis and data presentation

Data are presented as mean ± S.E.M. Statistical significance of differences between 

groups was analysed by one-way analysis of variance (ANOVA) and Newman-Keuls 

multiple comparison tests. A p value of <0.05 was considered statistically significant. 

The molecular weight of rapamycin is 914.2, thus a rapamycin concentration of 10 

ng/mL is actually 9.142 nM. The rapamycin stock solutions used in this study were 

0.01, 0.1, 1, 10 and 100 ng/mL. However, to ease comparisons with the units used in 

clinical therapeutic drug monitoring, the rapamycin concentration data in the graphs is 

labelled as 0.01, 0.1, 1, 10 and 100 nM.
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4.3 Results

4.3.1 Dose-dependent effect and time-course of rapamycin on MIN-6 cell viability 

using MTT

To determine whether rapamycin has a deleterious effect on MIN- 6  cells, MIN- 6  cells 

were incubated with rapamycin concentrations of 0  (vehicle control), 0 .0 1 , 0 .1 , 1 , 1 0  

and 100 nM in DMEM for 1, 2 or 4 days and then evaluated for cell viability using the 

MTT method. Results are expressed as mean (% of control mean) ± SEM of 3 

experiments performed in quadruplicate (n=12). As early as day 1 (Figure 22A), 

rapamycin started to reduce MIN- 6  cell viability in a dose-dependent manner. At day 1, 

the threshold concentration causing decreased MIN- 6  cell viability was 0.01 nM 

rapamycin (83 + 6 % of control, p<0.05), the maximal effect was at 10 nM rapamycin 

(63 ± 5% of control, p<0.001) and IC5 0  was 0.02 iiM rapamycin. At day 2 (Figure 22B), 

the threshold concentration was 0.01 nM rapamycin ( 6 8  ± 6 % of control, p<0.001), the 

maximal effect was at 1 0  nM rapamycin (52 ± 2 % of control, p<0 .0 0 1 ) and IC50 was

0.01 nM rapamycin. At day 4 (Figure 22C), the threshold concentration was again 0.01 

nM rapamycin (77 ± 4% of control, p<0.001). The maximal effect was not reached at 

day 4 and hence the IC5 0  could not be calculated. The tlireshold concentration at day 1, 

2 and 4 was the same (0.01 nM rapamycin), although the level of significance increased 

from day 1 to day 2 and 4. The IC50 fell from 0.02 nM rapamycin at day 1 to 0.01 nM 

rapamycin at day 2. These results suggest that rapamycin has a dose-dependent 

deleterious effect on MIN-6 cell viability, evident at 1 day, by using the MTT method.
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Figure 22. Dose-dependent effect of rapamycin on MIN-6 cell viability 
measured by MTT metabolism. MIN-6 cells were plated in 24-well plates and 
cultured for 3-4 days in 25 mM glucose (G25) DMEM (15% fetal bovine serum). 
Supernatant was removed and cells were further cultured with various concentrations of 
rapamycin or vehicle control (0.1% ethanol) in G25 DMEM (15% FBS) for 1 day (A), 2 
days (B) or 4 days (C). Cell viability was measured by MTT metabolism. Results are 
expressed as mean (% of control mean) ± SEM of 3 experiments performed in 
quadruplicate (n=12). * P<0.05, ** P<0.01, ***P<0.001.
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4.3.2 Glucose-dependencv of rapamycin effect on MIN-6 cell viability

These experiments were designed to assess whether the rapamycin effect on MIN-6 cell 

viability, as measured by the MTT method, was glucose-dependent after 4 days culture 

(Figure 23). Results are expressed as mean (normalised to control mean) ± SEM of 3 

experiments from 8 to 12 observations. MIN-6 cells cultured in 3 or 15 mM glucose in 

DMEM had a threshold concentration of 0.1 nM rapamycin (78 ± 5% of control, p<0,05 

and 76 ± 1% of control, p<0.05 respectively). MIN-6 cells cultured in 25 mM glucose 

DMEM had a threshold concentration of 0.01 nM rapamycin (77 ± 4% of control, 

p<0.05). The maximal effect was not reached for 3 or 25 mM glucose, but MIN-6 cells 

cultured in 15 mM glucose had a maximal effect at 10 nM rapamycin (49 ± 5% of 

control, p<0.05) and an IC50 of 0.09 iiM rapamycin. At each rapamycin concentration 

(0.01 nM to 100 nM) there was no significant difference between the cell viability of 

MIN-6 cells cultured for 4 days in 3, 15 or 25 mM glucose. These results suggest that 

the dose-dependent effect of rapamycin on MIN-6 cell viability is glucose-independent. a
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Figure 23. Glucose-dependency of rapamycin effect on MIN-6 ceil viability 
measured by MTT metabolism. MIN-6 cells were plated in 24-well plates and 
cultured for 3-4 days in 25 mM glucose (G25) DMEM (15% FBS). Supernatant was 
removed and cells were further cultured with various concentrations of rapamycin or 
vehicle control (0.1% ethanol) each in 3 mM glucose (G3- hatched bars), 15 mM 
glucose (G15-stippled bars) and 25 mM glucose (G25-solid bars) DMEM (15% FBS) 
for 4 days. Cell viability was measured by MTT metabolism. Results are expressed as 
mean (normalized to control mean in the absence of rapamycin) ± SEM of 3 
experiments from 8 to 12 observations. * P<0.05.
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4.3.3 Dose-dependent effect and time-course of rapamycin on MIN-6 cell viability 

using calcein AM

The aforementioned MTT assay is an indirect measure of cell viability -  it actually 

measures formazan, which is a purple substance formed by the oxidation of yellow C,N- 

diphenyl-N’4-5-dimethyl thiazol-2-yl tétrazolium bromide (MTT) by the action of 

mitochondrial succinate dehydrogenase. Hence, the more mitochondrial succinate 

dehydrogenase present, the greater the purple intensity of the sample. However, it is 

possible that the overall activity of succinate dehydrogenase is not only related to the 

number of viable cells present. It is difficult to exclude an intracellular metabolic effect 

of rapamycin, which may be having an inhibitory effect on succinate dehydrogenase. It 

is for this reason, we attempted to demonstrate reduced MIN-6 cell viability by a 

different method; a two-colour fluorescence cell viability assay. This assay is based on 

the ability of calcein-AM to be retained within live cells, inducing an intense uniform 

green fluorescence and ethidium homodimer (EthD-1) to bind the nuclei of damaged 

cells. Thus the more green fluorescence present, the more live cells are present in the 

sample. Results are expressed as mean fluorescence (normalized to control mean) ± 

SEM of 3 experiments performed in quadruplicate (n=12). At day 2 (Figure 24A), the 

tlueshold effect was at 10 nM rapamycin (73 ± 5% of control, p<0.001), with no 

maximal effect achieved. At day 4 (Figure 24B), the threshold effect was at 0.1 nM 

rapamycin (54 ± 5% of control, p<0.001), with a maximal effect at 10 nM rapamycin 

(40 ± 4% of control, p<0.001) with an I C 5 0  of 0.01 nM rapamycin. Fluorescent images 

are of MIN-6 cells cultured with 0.1% ethanol (Figure 24C) or 100 nM rapamycin 

(Figure 24D) for 4 days, then stained with calcein AM and ethidium homodimer (EthD- 

1). The images demonstrate increased bright red fluorescence in those cells treated with 

rapamycin compared to control. These results confirm the previous findings, using the 

MTT method, that rapamycin does indeed have a dose-dependent deleterious effect on 

MIN-6 cell viability.
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Figure 24. Dose-dependent effect o f rapamycin on M lN-6 cell viability 
measured by calcein fluorescence. MIN-6 cells were plated in 24-well plates and 
cultured for 3-4 days in 15 mM glucose (G15) DMEM (15% FBS). Supernatant was 
removed and cells were further cultured with various concentrations of rapamycin or 
vehicle control (0.1% ethanol) for 2 days (A) or 4 days (B). Cell viability was 
quantitated by Calcein fluorescence. Results are expressed as mean fluorescence 
(normalised to control mean) ± SEM of 3 experiments performed in quadruplicate 
(n=12). ***P<0.001. Fluorescent images are of MIN-6 cells cultured with 0.1% 
ethanol (C) or 100 nM rapamycin (D) for 4 days, then stained with Calcein AM and 
ethidium homodimer.

4,3.4 Effect of rapamycin on rat islet insulin secretion

To determine whether rapamycin has any effect on glucose-stimulated insulin 

secretion of rat islets, islets were cultured with vehicle control or different 

concentrations of rapamycin for 4 days, and thereafter a 2 hour static incubation test 

was performed on each group of islets. Results are expressed as mean insulin 

secretion (pU/islet/2 hours) ± SEM in 4 experiments from 8 to 12 observations. The 

rat islets cultured in vehicle control had a four-fold increase in insulin secretion in
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response to 20 mM glucose and 1 mM carbachol (CCH) compared to 3 mM glucose 

control (Figure 25). At rapamycin concentrations of 1 and 10 nM there was a reduction 

in glucose-induced insulin secretion, which was not statistically significant. At a supra- 

therapeutic rapamycin concentration of 100 nM, however, there was a 54% reduction 

(from 198 ± 25 to 90 ± 8 pU/islet/2 hours) in glucose and carbachol-induced insulin 

secretion (p<0.01). Basal insulin secretion (3 mM glucose) was not affected by 

rapamycin at any concentration tested. These results suggest that a supra-therapeutic 

rapamycin concentration of 100 nM significantly impairs glucose-induced insulin 

secretion.
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Figure 25. Effect of rapamycin on rat islet insulin secretion after 4 days culture.
Rat islets were cultured with either 1, 10 or 100 nM rapamycin or vehicle control (0.1% 
ethanol) in supplemented CMRL for 4 days. Islets were washed then incubated for 2 
hours with 3 mM glucose or 20 mM glucose and 1 mM carbachol, then samples were 
taken for insulin RIA. Results are expressed as mean insulin secretion (pU/islet/2 hours) 
± SEM in 4 experiments from 8 to 12 observations. ** P<0.01.

I

4.3.5 Effect of rapamycin on rat and human islet cell viability

To determine whether rapamycin has any effect on human and rat islet cell viability, 

islets were cultured with vehicle control (0.1% ethanol) or rapamycin for 4 days and 

then cell viability was measured by different methods. Results are expressed as mean
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fluorescence, normalized to control mean ± SEM in 6 experiments. After 4 days culture 

in different rapamycin concentrations, rat islets were stained with propidium iodide to 

quantify rat islet cell death (Figure 26A). At 1 and 10 nM rapamycin there was a small, 

insignificant increase in PI fluorescence, but at a supra-therapeutic rapamycin 

concentration of 100 nM there was a 5.3 fold increase in PI fluorescence (p<0.01). The 

images of rat islets (a bright field image was first acquired followed by a confocal 

image to detect PI fluorescence and overlaid) demonstrate increased PI fluorescence 

from the islet cultured with rapamycin (Figure 26C), compared to control (Figure 26B). 

Human islets were cultured for 4 days with a supra-therapeutic rapamycin concentration 

of 100 nM or control and then human islet cell viability measured using the MTT 

method (Figure 27). Results are expressed as mean (normalised to control mean) ± SEM 

of 4 experiments with 11 observations. There was a 55% reduction in MTT metabolism 

compared to control islets (p<0.001). These results suggest that a supra-therapeutic 

rapamycin concentration of 100 nM has a deleterious effect on rat and human islets.
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Figure 26. Effect o f rapamycin on rat islet cell viability. (A) Rat islets were 
cultured with either 1, 10 or 100 nM rapamycin or vehicle control (0.1% ethanol) in 
supplemented CMRL for 4 days. Islets were then stained with propidium iodide and 
the fluorescence intensity measured. Results are expressed as mean fluorescence, 
normalised to control mean ±  SEM in 6 experiments. ** P<0.01. Rat islets were 
cultured with 0.1% ethanol (B) or 100 nM rapamycin (C) for 4 days and then stained 
with PI. A bright field image was first acquired followed by a confocal image to 
detect PI fluorescence and overlaid.
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Figure 27. Effect of rapamycîn on human islet cell viability after 4 days culture.
Human islets were cultured with either rapamycin or vehicle control (0.1% ethanol) in 
supplemented CMRL for 4 days. Cell viability was measured by MTT metabolism. 
Results are expressed as mean (normalised to control mean) ± SEM of 4 experiments 
with 11 observations. ***P<0.001.

4.3.6 Rapamycin induces apoptosis in MIN~6 cells

To assess whether rapamycin induces apoptosis, MIN-6 cells were treated with either 

vehicle control (0.1% ethanol), 10 or 100 nM rapamycin for 19 hours and then the 

degree of apoptosis was measured by the TUNEL assay (Figure 28). Results are 

expressed as mean (normalised to control mean) ± SEM of 4 experiments from 7 to 8 

observations. Compared to control, there was a 3.1 ± 0.6 fold increase (p<0.01) in 

apoptosis in the MIN-6 cells treated with 10 nM rapamycin and a 3.4 ± 0.4 fold increase 

(p<0.01) in apoptosis in the MIN-6 cells treated with a supra-therapeutic rapamycin 

concentration of 100 nM. These results suggest that 10 and 100 nM (a supra-therapeutic 

concentration) rapamycin induces apoptosis in MIN-6 cells.
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Figure 28. Effect of rapamycin on MIN-6 cell apoptosis. MIN-6 cells were 
cultured with either 10 or 100 nM rapamycin or vehicle control (0.1% ethanol) in 5 inM 
glucose DMEM for 19 hours, then apoptotic cells were measured by flow cytometric 
TUNEL assay. Results are expressed as mean (normalised to control mean) ± SEM of 4 
experiments from 7 to 8 observations. **P<0.01
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4.3.7 Rapamycin induces apoptosis in rat islets

Rapam ycin causes cell death o f  rat islet-cells as assessed by  electron microscopy. 

Rapam ycin treatm ent o f  rat islets resulted in num erous apoptotic p-cells (Figure 29B) as 

well as a-cells (Figure 29C). P-cells were identified by their specific square shape 

granules, and a-cells were recognized by their round dark granules by electron 

m icroscopy. V ehicle-treated islets cells had a normal ultrastructure (Figure 29A). In 

contrast, rapam ycin-treated islet-cells showed typical apoptotic m orphologic changes 

including nuclear condensation (a), nuclear envelopes w ith irregular dilation (b), 

granule dilution (c), clum ped and condensed m itochondria (d), as w ell as some typical 

apoptotic bodies (solid arrow).
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Figure 29. Apoptotic effect of rapamycin on islet cells. Rat islets were cultured in 
C M R L1066 (10%  FBS). Islets were treated with vehicle (A) or w ith rapam ycin 100 
ng/ml (B, C, D) for 4 days. Cell apoptosis was assessed by  electron m icroscopy. 
Apoptotic cells (p-cells, panel B, a -ce lls , panel C) in islets were detected by nuclear 
condensation (a), nuclear envelope irregular dilation (b), granule dilution (c), clum ped 
and condensed m itochondria (d) and apoptotic bodies (solid arrows, panel D). Results 
are representative o f  two independent experiments.
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4.4 Discussion

We have demonstrated for the first time, by several methods, that a therapeutic 

concentration of rapamycin causes cell death of the transformed MIN-6 cell line and 

that a supra-therapeutic rapamycin concentration has a deleterious effect on primary 

islet cells. In MIN-6 cells, this effect starts to occur as early as day 1 with a very low 

threshold concentration (0.01 nM), as measured by the MTT method. Why the MTT 

method appears to be more sensitive than the calcein method (at day 2 the tlireshold 

concentrations is 10 nM) is not easily explained. This may reflect the fact that calcein 

staining is indicative of cell death only, whereas MTT measurement reflects two cellular 

processes, namely cell viability and mitochondrial metabolism. As such, rapamycin may 

not only reduce cell viability, but also have an additional inhibitory effect on 

mitochondrial metabolism. The effect of rapamycin does not seem to be modulated by 

glucose concentration in the medium.

To confirm the findings observed in the clonal insulin-producing MIN-6 cells, the effect 

of rapamycin was also studied in rat and human islets. The rat islet PI fluorescence 

experiment was designed to assess whether rapamycin causes rat islet cell damage. 

However, there was only a significant effect at a supra-therapeutic rapamycin 

concentration of 100 nM. We also showed that this concentration of rapamycin reduces 

human islet cell viability, by the MTT method. These results confirm that rapamycin 

toxicity at therapeutic concentrations is limited to the MIN-6 cell line and only at supra- 

therapeutic concentrations does rapamycin have a deleterious effect on rat and human 

primary islet cells. The TUNEL assay data demonstrates that rapamycin-induced MIN-6 

cell death occurs by apoptosis. Electron microscopy indicates that rat islet a- and (3-cell 

death occurs by apoptosis at a supra-therapeutic rapamycin concentration of 100 nM.

In addition to causing MIN-6 cell apoptosis, rapamycin also impairs insulin secretion in 

the static-incubation insulin-secretion test. In this study, the observed reduction in 

insulin secretion may be attributed in part to the reduced rat islet cell viability and in 

part to an intracellular signalling impairment, such as inlribition of mitochondrial 

glucose oxidation as possibly demonstrated indirectly by the effect of rapamycin on 

MTT metabolism.
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The mechanisms of rapamycin-induced reduction of insulin secretion and MIN-6 cell 

viability are currently not completely understood. The apoptotic effects may involve the 

inliibition of mTOR and its down-stream effectors. This may result in increased levels 

of phosphorylated pro-apoptotic factors (and tumour suppressor genes) and/or reduced 

levels of anti-apoptotic factors. An alternative hypothesis might be a disruption of 

normal translation of proteins, which are essential for continued cell survival (the 

mTOR cell-survival pathway) (279).

The successful normalisation of glucose control in brittle type 1 diabetic patients using 

the Edmonton protocol has provided a potential cure for this disease. However, the 

long-term side effects of this protocol are still not clear, such as whether the 

immunosuppressants used can cause p-cell toxicity. In the Edmonton Study patients had 

trough blood rapamycin levels monitored to maintain them in the range of 12 to 15 

ng/mL for the first three months after transplant and in the range of 7 to 10 ng/mL 

thereafter (206). It is suggested by various authors that the target therapeutic range for 

whole blood trough concentrations of rapamycin is 5 to 10 ng/mL or 5 to 15 ng/niL with 

concomitant cyclosporin treatment (287). The rapamycin concentrations required to 

cause in-vitro MIN-6 cell death and apoptosis are similar to the range of whole-blood 

trough rapamycin concentrations desired in patients receiving rapamycin as an 

immunosuppressant. The rapamycin concentration required to evoke deleterious effects 

on rat and human islets in our in-vitro study is supra-therapeutic; nonetheless, 

transplanted islets are also exposed to higher whole blood peak rapamycin 

concentrations. Furthermore, human islets transplanted into the portal vein aie exposed 

to higher peak rapamycin concentrations, following gastrointestinal absorption of 

rapamycin, than the concentrations present in the circulating peripheral whole blood. 

Indeed, peak rapamycin levels in portal blood have been observed to be double the 

levels found systemically (288). Also, unpublished data from one patient, reveals that 

the intra-portal rapamycin concentration 2 hours post-dosing was 54 ng/mL, whereas 

the peripheral whole-blood concentration was 42 ng/mL, both levels significantly higher 

than the target peripheral whole-blood rapamycin trough concentration.

A previous study demonstrated that 10 nM and 100 nM rapamycin had no effect on rat 

islet insulin secretion after 24 hours culture (284). We found that culturing rat islets



with a supra-therapeutic rapamycin concentration of 100 nM for 4 days did indeed 

reduce insulin secretion. This difference may be explained by the insufficient duration 

of exposure of rat islets to rapamycin in the previous study.

In summary, this is the first report to demonstrate that therapeutic concentrations of 

rapamycin can cause in-vitro MIN-6 cell apoptosis, and that supra-therapeutic 

concentrations of rapamycin in-vitro, can have a deleterious effect on rat and human 

islets and reduce rat islet insulin secretion. More work needs to be done on rat and 

human islets to establish whether therapeutic concentrations of rapamycin have any 

effect on primary (3-cells and whether there are any consequent clinical implications.
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Chapter 5 Conclusions and Future Directions

Currently we have evidence that human islet transplantation, in a select group of type 1 

diabetics, can result in insulin-independence for more then two years (207). i

Furthermore, at present, the acute risks of the procedure and risks of the 

immunosuppressant regime are less than the pre-existing risks of labile diabetes and 

hypoglycaemia. In view of the short period of follow-up, it is not possible to comment 

on the long-term risks nor benefits. The unanswered questions include;

• does islet transplantation have any influence on pre-existing micro- or 

macrovascular diabetic disease?

• does islet transplantation have any influence on the development of micro- or 

macrovascular diabetic disease?

• how long does the period of insulin-independence post-transplant last?

• are there any long-term effects of the immunosuppressants used?

If indeed the acute risks of the procedure and the risks of long-term immunosuppression 

are shown to be minimal, or the improvement in glycaemic control reduces the 

frequency of diabetic complications and the grafts continue to function, it could be 

argued that islet transplantation should be extended to a wider, less restrictive cohort of 

type 1 diabetic patients. If this comes to fruition, then the yield of high-quality islets 

will need to be increased. Even if there is no relaxation in the inclusion criteria for 

transplantation, the experience of transplant physicians is that organ demand always 

outstrips supply.

Thus, it is essential to increase the pool of potential donors to increase the overall 

number of pancreata available for islet isolation. In addition, the islet isolation 

procedure should be optimised such that there is as great a yield of high-quality islets as 

possible. In addition, the immunosuppressant regime should be as non-toxic to the 

transplanted islets as possible, while at the same time preventing the islets from host 

immunological damage.

This thesis has demonstrated that it might be possible to increase the supply of 

pancreata by using islets from a source not previously considered, namely non-heart-
I
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beating donors. On the other hand, according to our data, islets from type 2 diabetic 

donors would not be considered useful.

Our aim when developing our in-vitro quality assessment tests was to characterise the 

islet preparation quality and subsequently correlate the results of the in-vitro tests with 

the in-vivo function of the islets in the diabetic mouse model. This did not prove to be 

successful. It may be that this is because the in-vitro tests do not reflect the in-vivo 

function of the transplanted islets in any way, or perhaps the diabetic mouse model was 

not optimised for use in these types of experiments. Nonetheless, these in-vitro tests 

continue to be performed in the current stage of the HUP Islet Transplantation Program. 

Five patients with type 1 diabetes have already received human islets and are all insulin- 

independent. All patients are undergoing sophisticated post-transplant assessments of 

their glycaemic control and insulin reserve by perfonning the same tests used in the 

previous studies (206,207,253). These results will then be compared to the in-vitro tests 

to determine whether any correlation exists. If a correlation does exist it may be 

possible to characterise the islet preparation according to the in-vitro tests and predict 

the efficacy of the islet preparation when transplanted.

The ideal immunosuppressant regime should provide maximal immunological 

protection, whilst at the same time having minimal (especially islet) toxicity. There have 

been no substantive reports of a diabetogenic effect of rapamycin. Indeed one of the 

perceived benefits of the current immunosuppressant regime is that it is essentially islet- 

neutral. The disadvantage of the previous regimes that used cyclosporin and 

corticosteroids was that these drugs have the potential to cause diabetes either by 

increasing peripheral insulin resistance or by toxicity to the transplanted islets. 

Currently, we have no evidence that therapeutic concentrations of rapamycin have any 

in-vitro effect on rat or human islets, although further work and close observation of 

current rapamycin-treated islet transplant recipients is required before concluding that 

therapeutic concentrations of rapamycin have no detrimental effect on transplanted 

human islets.

hi light of the clinical success of islet transplantation programs, and the realisation that 

the main current limiting factor if  these programs are to be expanded is the inadequate

'
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supply of islets, alternative donor and cell sources for (3-cell replacement has become an 

area of intense research interest.

The foetal pancreas develops from the endoderm. The most primitive pancreatic cell is 

undifferentiated and under the influence of transcription factors will develop into either 

endocrine or exocrine cells (289,290). In humans, pancreatic cells containing insulin are 

present from 8 weeks of foetal life (291), whilst those containing exocrine enzymes are 

not present until 12 weeks (292). Beta and other endocrine cells form from 

undifferentiated cells and initially remain in their midst together with developing 

exocrine cells. In the human foetal pancreas obtained early in the second trimester, 29% 

of cells are undifferentiated, 48% contain exocrine enzymes and 16% endocrine 

hormones (7% insulin) (293). Beta and other endocrine cells eventually form buds on 

the periphery of the mixed cell clusters and break away to coalesce and form islets 

(294).

Thus it is theoretically possible, that given the right environment, embryonic pancreatic 

undifferentiated stem cells can be stimulated to differentiate into insulin-secreting cells. 

This approach has been successful in reversing diabetes in mice (295). However, the use 

of aborted human embryonic tissue for research is controversial with many groups 

ethically opposed to it. Nonetheless research has taken place (mainly in animals) not 

only with foetal stem cells, but with foetal pancreatic tissue. Islet-cell clusters from 

porcine foetal and neonatal pancreata have been transplanted into human recipients with 

type 1 diabetes and renal failure, however, although the grafts continued to function 

there was no reduction in exogenous insulin requirements (296). Furthermore, although 

a porcine supply of islets for transplant into humans could possibly satisfy demand there 

are many that are concerned that this would allow the transmission of pig endogenous 

retrovirus to humans. Thus this avenue of research has diminished in recent years.

Instead of using foetal stem cells for reversal of diabetes much research has been 

devoted to using adult stem cells to reverse diabetes. Peck et al claimed to have reversed 

diabetes in non-obese diabetic (NOD) mice by transplanting islets generated in vitio 

from pancreatic adult stem cells, which had not been previously isolated (297). 

Furthermore Bonner-Weir et al have been working on expanding human pancreatic

I,
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differentiated duct cells (‘functional stem cells’) in vitro, then turning them into insulin- 

producing islet cells (298).

Other avenues being explored in an attempt to engineer insulin-secreting cells include 

genetic engineering of hepatocytes to secrete a single-chain insulin analogue (299), 

genetic engineering of intestinal mucosal cells to secrete insulin in physiological 

response to hyperglycaemia (300) and using adenovirus to induce islet neogenesis 

within the liver of mice (301).

In summary, there are numerous approaches being investigated to optimise the current 

regimes based on the Edmonton experience and intense research activity in techniques 

designed to uncover alternative sources of p-cells.

Of course the goal of all researchers working in this area is to replace the failing native 

P-cells with alternative insulin-secreting cells to effect a ‘cure for diabetes’.

_________
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