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Abstract

Gastrointestinal parasitism is one of the greatest causes of disease and lost 

productivity in domestic animals .It remains a major constraint on production and 

welfare in domestic animals in all geographical locations all over the world. 

Anthelmintic treatment is the mainstay o f current control methods. However, with the 

widespread use o f anthelmintics, the problem of parasite resistance has emerged. 

Other modalities o f prevention and treatment are urgently needed. One of the most 

promising developments in this respect is the use of genetically resistant sheep. 

Selective breeding o f animals resistant to gastrointestinal parasitism is particularly 

attractive, but identifying the phenotypic and genetic markers o f resistance on which 

selection will be based is a major problem. Hence, this thesis has investigated some of 

the phenotypic and genetic determinants o f resistance to nematode infection in 

Scottish Blackface sheep when naturally infected with the gastrointestinal nematodes, 

particularly Teladorsagia circumcincta, and how these determinants may facilitate the 

suceessful selection of resistant animals.

Chapter thi’ee has investigated the seasonal pattern of T. circumcincta infection, as 

well as the changes in the mean and the distribution of faecal egg counts in Scottish 

Blackface sheep. There was no discernible pattern to egg counts with each season, 

and this could be attributed to factors like changes in grazing management, 

anthelmintic treatment, weather and humidity.
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Work described in chapter four has shown that there was considerable variation 

among populations. Faecal egg counts vary in natuially infected sheep, and mean egg 

counts vary among different populations and among the same population sampled at 

different times. In addition high mean faecal egg counts are not necessarily due to 

high intensities o f infection, but probably reflect the contribution o f species other than 

T. circumcincta.

The present study has not found any correlations between plasma IgA activity against 

third-stage larvae o f T. circumcincta and faecal egg (chapter five). Moreover, there 

was no significant correlation between growth rates in 24 week old lambs. The results 

suggest that IgA activity against fourth-stage larvae is probably a better marker of 

nematode resistance than IgA activity against third-stage larvae.

This research has identified three new sequences at MHC class II D RBl gene of 

Scottish Blackface sheep (chapter six). In addition, the study has provided evidence 

for QTL linked to parasitic infection and immune response on chi’omosome 3 and 

chromosome 20. The results reached in this study suggest that some aspects of 

parasite resistance are under strong genetic control, and with further research, this 

information could be used to select sheep for increased resistance to parasitic 

infection in marker assisted selection scheme.

The work detailed in this thesis has further increased our understanding o f the 

complex host/parasite relationship, and has confirmed that selective breeding, using 

the various phenotypic and genetic mai'kers studied, is possible.
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CHAPTER ONE

GENERAL INTRODUCTION



1.1 Gastrointestinal Parasitism on sheep

1.1.1 General

Sheep production constitutes an important part o f livestock farming in many parts of the 

world today. For example, in the UK there are approximately 20 million ewes and 24 million 

lambs (Clarkson and Winter 1997). The estimation of the sheep population in the world in 

2002 is slightly over 1000 million. This number has not changed greatly from year to year, 

but there are significant changes between developed and developing countries (FAO-STAT

2003).

World wide, parasite infections are one o f the greatest causes of disease and lost productivity 

in domestic animals (Vercruysse and Claerebout 2001).they can affect the host animal in 

many ways, for example, damage to the gut causing poor digestion or uptake of nutrients by 

the parasite, resulting in the host suffering from nutritional deficiencies. In general, the 

damage inflicted upon the host by the parasite is caused by a combination of events, the 

animal therefore exhibits decreased production, which is usually observed as a decreased 

growth rate and decreased wool weight, and if  left untreated would cause unacceptable 

welfare problems (Coles 1998). Sales o f antiparasitic drugs have grown more than in any 

other sector of the world wide animal health market in the last decade and now represent one 

quarter of the $18 billion market (Dalton and Mulcahy 2001). Parasites can infect and affect 

most internal and external niches o f the body but nematode infections o f the gastrointestinal 

tract o f ruminants are particularly important. Table 1 lists the common nematode infections in 

sheep. This introduction will focus on gastrointestinal nematode infection in general and on T. 

circumcincta in particular in Scottish Blackface sheep.



Table 1.1 Nematode parasites in sheep

Parasite Site Regional Distribution

Haemonchus contortus Abomasum Tropical/sub-tropical

Teladorsagia circumcincta Abomasum Temperate/sub-tropical
Ostertagia trifurcata Abomasum T emperate/ sub-tropical
Ostertagia leptospicularis Abomasum T emperate/sub-tropical

Trichostrongylus axei Abomasum Worldwide
Trichostrongylus colubriformis Small intestine Worldwide
Trichostrongylus vitrinus Small intestine Worldwide

Cooperia curticei Small intestine Worldwide
Cooperia surnabada Small intestine Worldwide

Nematodirus battus Small intestine Temperate
Nematodirus filicollis Small intestine Temperate
Nematodirus spathiger Small intestine Temperate

Bunostomum trigonocephalum Small intestine Worldwide

Gaigeria pachyscelis Small intestine Tropical

Strongyloides papillosis Small intestine Worldwide

Trichuris ovis Large intestine Worldwide

Chabertia ovina Large intestine Worldwide

Oesophagostum columbianum Large intestine Tropical/sub-tropical
Oesophagostum asperum Large intestine Tropical/sub-tropical
Oesophagostum verulosum Large intestine Tropical/sub-tropical



1.1.2 Teladorsagia circumcincta

1.1.2.1 Description

T. circumcincta was previously classified in the superfamilly Trichostrongyloidea of the order 

Strongylida, and the class Secernetea of the Nematoda phylum. However, in a more recent 

classification based on small subunit ribosomal RNA (SSU rRNA) phylogenetics, nematodes 

classified into five major clades; Dorylaimia (clade I), Enoplia (clade II) and Cliromadorea 

(which includes Rhabditida). Rhabditida can be further divided into Spirurina (clade III), 

Tylenchina (clade IV) and Rhabditina (clade V) (Fig .11), F. circumcincta is classified in the 

order Strongylida in clade V of the phylum Nematoda (Blaxter et al. 2000;Parkinsoii et al.

2004). F. circumcincta parasitises the abomasum of small ruminants and disease is associated 

with the emergence o f the late L4 from the gastric gland. Adults appear light brown and 

measure 0.6-1.2 cm. Males have long slender spicules with thi'ce distal branches (Soulsby 

1986).
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Figure 1.1. The phylogenetic structure of the Nematoda revealed by analysis of full-length 
small subunit rDNA sequences.



1.1.2.2 Life cycle

T. circumcincta has a direct life cycle (no intermediate host) as shown in Figure 1,2 and 

involves development through a series o f cuticle shedding moults. There are tlii’ee post

hatching pre-parasitic stages Li, L2 and L3 and two parasitic stages L4 and a final L5 immature 

adult stage (see Figure 1.2a). Hatched laiwae become infective (L3 larvae) in about 6  to 7 days 

and most larvae survive on pasture for 4 months, although some larvae may survive much 

longer. Infection is by ingestion o f L3 larvae by the host while grazing. The minimal prepatent 

period is about 14 days (Stear et al. 1995d), but can be up to 3 months (Stear et al. 1995a).. 

The L3 larvae penetrate the lumen o f the abomasal gland and moult to the L4 stage, as shown 

in Figure 1.2b and 1.2c. Following a period of growth and a further moult to the L5 

(immature adult) stage, they emerge from the gland and mature on the mucosal surface. Male 

and female worms copulate producing eggs, which are passed by the host in the faeces. The 

eggs hatch to the L; stage and further development to the L2 and L3 stages on pasture. 

Typically this life cycle takes tln'ee weeks to complete with variation depending on the 

weather and immune status of the animal (Urquhart et al. 1996).



Figure 1.2. The lifecycle o f  a typical stom ach worm. L1-L3 larval stages are free-living on pasture. 

L3 are ingested while the sheep is grazing and m igrate to the abomasum and burrow into the abomasal 

wall. L4 and L5 stage developm ent occurs w ithin the abom asal gland from where the larvae emerge 

and copulate producing eggs, (b) In the m ucosa the L3 develops into the L4 and L5 and then emerges, 

(c) The developing L4 larval stage within the mucosal layer o f  the abomasum (from: 

h ttp://cal.nbc.upenn.edu/m erial/ N em atodes/nem s_9.htm ).

L3

LIL2

(b)

(c)
Develop mg O em rtegle L4 
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1.1.2.3 Epidemiology

In the temperate regions, eggs are passed in the faeces of lambs during the spring, reaching a 

peak in the late summer (Boag and Thomas 1977). The source of the infection for lambs is 

believed to come from overwintered larvae, eggs passed by ewes during the pre-parturient 

period, and from lambs developing patent infection (Boag and Thomas 1977). Thus, pasture 

contamination builds up during the summer to give clinical teladorsagiasis. After October the 

majority of ingested laiwae become arrested. These arrested larvae can subsequently develop 

into adults during the following spring.

1.1.2.4 Pathogenesis and clinical signs

Disease is thought to be a consequence of the presence of fourth-stage larvae within the 

gastric gland (Armour et al. 1966). Infected gastric glands become stretched as the larvae 

grow and the surrounding epithelimu becomes hyperplastic. Partial cells are replaced hy 

undifferentiated epithelial cells, leading to a reduction o f functional gastric gland mass. This 

de-differentiation occurs not only in infected glands but also in adjacent uninfected ones. The 

loss o f parietal cells leads to an increase in abomasal pH and a failure to convert pepsinogen 

to pepsin and thus, to a reduction in digestive efficiency.

There is also evidence that infection stimulates zymogen cells to secrete pepsinogen. 

Elevated levels o f plasma pepsinogen can be detected by infected animals. This may be due 

either to leakage across the damaged mucosa or direct secretion into the circulation (McKellar 

1993). The elevation in pH can also lead to a failure of bacteriostasis.

The mucosa of affected animals is oedemic and hyperaemic with occasional mucosal 

sloughing. At the cellular level, there is a leakage of plasma protein across the mucosal 

membrane, which may be due to a breakdovm or incomplete formation of intracellular



junctions. This is the main cause o f the reduced nitrogen digestibility seen in infected animals 

(McKellar 1993).

Teladorsagiasis in lambs rarely causes diarrhoea. The main clinical signs are a depression in 

feed intake and loss o f weight. Infection leads to reduced nitrogen digestibility, reduced 

calcium and phosphorus deposition, poor carcase conformation, and impaired wool growth 

(Sykes and Coop 1977). Thus, the economic impact is through a depression in productivity. 

High levels of infection have been associated with population crashes in feral sheep on St. 

Kilda (Gulland 1992). Those animals that sui’vived population crashes were less heavily 

parasitised than those that died. Whether these deaths can be directly attributed to parasitism 

is uncertain, but even a moderate experimental infection can reduce growth rate o f the host by 

approximately one third (Coop et al. 1985).

1.2 Control of gastrointestinal nematodes of sheep

1.2.1 Anthelmintics

Anthelmintics have a strong effect in limiting worm burdens, and in particular in controlling 

adult worms. However, eggs can be found in faeces within 14-28 days after drug treatment 

coming from fresh infections or from worms that survive treatment (Bishop et al. 1996).

The development o f resistance to anthelmintics is a major threat to parasite control worldwide 

(Waller 1994). Initially, resistance developed slowly against the less efficient early 

benzimidazoles, but with the introduction of more efficient anthelmintics, selection pressure 

for resistance has increased. At present, there is resistance to pharmaceuticals within each of 

the anthelmintic groups available for treatment o f some parasite species. There has been no 

convincing evidence that if  selection pressure is removed there is a reversion to susceptibility



to anthelmintics (Jackson 1993). This is supported by findings that parasites resistant to 

benzimidazoles are as fit as susceptible parasites from the same strain (Elard et al. 1998).

For strategies aimed at delaying the onset of resistance to be successful they must use a 

minimum of chemoprophylaxis in order to reduce the number o f parasite generations exposed 

to anthelmintic, while maximising the efficacy o f the drug in order to remove heterozygous 

resistant genotypes. An important concept when considering this is the relationship between 

the parasite population within an animal (the infrapopulation) and the nematode population on 

the pasture (suprapopulation). If there is a large infrapopulation and a small suprapopulation 

and the host is wormed frequently then there will be a rapid increase in the number of 

resistance alleles within the total worm population. For instance, a dose and move strategy 

where animals coming from a highly contaminated pasture are treated and then moved onto a 

clean pastui'e is likely to select for parasite resistance (Sutherland et al. 2002).

In the UK control o f parasitic gastroenteritis is achieved by strategic dosing with 

anthelmintics (Mitchell and Fitzsimons 1983) or clean grazing, or a combination of both. 

Strategic dosing involves treatment of the ewes during the peri-parturient period, to limit 

pasture contamination, followed by dosing of the lambs during the grazing period. The 

frequency and timing of the strategic dosing of lambs depends on the risks of nematodirosis 

and the stocking rate of the pasture. One of the most important sources of infection for lambs 

is the peri-parturient rise in faecal egg output in ewes during the last trimester of pregnancy 

and early lactation (Armour and Coop 1991). This appears to be due to a relaxation in the 

immune response to parasites resident within the abomasum and to heshly acquired lai’vae.

Other strategies aimed at increasing the parasite kill are the use o f split doses of anthelmintic 

or combination therapy. Splitting the dose over two days increases the efficacy o f
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benzimidazoles drugs as it is related to the length o f time the parasite is exposed to the drugs 

(Sangster et al. 1991). Combination therapies are based on the premise that it is highly 

unlikely that resistance alleles to two groups o f anthelmintics will be found on one parasite. 

Such a strategy has been shown to delay the emergence o f resistance compared to strategies 

employing single drug therapies (Jackson 1993). However, simultaneous resistance to both 

classes may emerge at the same time with both strategies. A strategy employing two or more 

anthelmintics would add to the cost o f production and may not be economically feasible. At 

best, these strategies will only delay the emergence of resistance.

Perhaps one of the largest contributors to resistance emergence is the frequent underdosing of 

animals. Underdosing selects for heterozygous resistance thus increasing the number of 

resistance alleles within a population. The dose given should be that dose needed for the 

heaviest lamb but often a lower average dose is given thus underdosing the heaviest lambs 

(Boag and Thomas 1973).

1.2.2 Grazing management

Good grazing management is making the most efficient use o f herbage grown on a farm. 

Grazing management techniques can offer relatively simple and rapid solutions for improving 

helminth control and reducing anthelmintic usage (Barger 1997). Clean grazing is the practice 

of grazing sheep and lambs on pasture that has not carried young sheep or pre-parturient ewes 

during the previous 12 months. On many sheep farms clean grazing is restricted and often 

reserved for the lambs after weaning and dosing.

Alternate grazing of pastures by sheep and cattle is a way of preparing clean pastures; for 

young sheep, by pre-grazing with cattle or for young cattle, by pre-grazing with sheep (Barger 

1996). Most Nematode lai*vae of sheep die out during spring (Boag and Thomas 1970).
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Therefore, it is possible to exchange pastures grazed by sheep with those grazed by cattle. 

Moving newly weaned lambs on to clean pasture, i.e. pasture not grazed by sheep in the 

previous season, before the expected mid-summer rise in herbage infection has also been 

shown to be effective in reducing parasite loads and improving production (Githigia et al. 

2001). The same authors also reported that, contrary to some other reports, the benefits of 

moving lambs to clean pastiue could be achieved whether the move was accompanied by 

anthelmintic treatment or not.

Mixed grazing of cattle and pigs also favours the reduction o f O. 

ostertagi lai'val levels on pasture (Fernandez et al. 2001). The reduction in laival numbers is 

mainly due to the grazing behaviour o f the pigs, which, by grazing up to the very edge o f the 

cattle faeces, will either expose the larvae in faeces to adverse environmental summer 

conditions or ingest the cattle lai-vae, or both. Another study replaced a community of sheep 

endoparasites that had been classified as resistant to levamisole and albendazole with a 

community of more susceptible parasites using a dilution approach (Bird et al. 2001). 

Strategically timed anthelmintic treatments combined with pasture management reduced to 

non-detectable levels the endemic community o f anthelmintic resistant parasites in the flock.

Crops can be alternated with grassland and if  cattle are available there could be a rotation of 

cattle, sheep, and crops (Armour and Coop 1991). Strategies dependent on management 

alone are seldom practical as ‘clean’ pasture is rarely available. However, theses strategies are 

only applicable to T. circumciiicta which infect sheep only. In addition, theses strategies can 

occasionally lead to parasitic gastroenteritis from those parasites such as T. colubriformis, T. 

axei and N. battus that are capable o f crossing the species barrier between cattle and sheep. 

Also, there is evidence that a small proportion o f infective larvae can survive beyond 2 years 

on the herbage and upper soil layers (Armour et al. 1980). Therefore, there is a risk that
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reliance on pasture management alone may fail. Pasture that has been free from sheep for 12 

months can still harbour sufficient larvae to allow for sufficient numbers to develop during 

the subsequent grazing year to allow the appearance o f clinical teladorsagiasis (Boag and 

Thomas 1970).

The major problems of this method o f parasite control are the levels o f planning required and 

the fact that pastures cannot be used for grazing for extended periods, thereby limiting the 

numbers of animals a rotational grazing scheme could sustain. This obviously introduces 

economics into the equation. However, this method o f control may be more cost effective 

than treating higher numbers of animals with anthelmintics. Grazing management is definitely 

a viable alternative to anthelmintic treatment, although further research is required for other 

control strategies.

1.2.3 Vaccination

Vaccines have proven to be an extremely useful means of protection against a wide range of 

microorganisms. Vaccination against helminth parasites of animals has recently been 

reviewed, and much o f the major work on the development o f vaccines to gastrointestinal 

nematodes has been discussed (Emery 1996;Newton and Munn 1999).

Vaccines are safe, leave no chemical residues (and therefore there are no with-holding periods 

for animals), are environmentally fi'iendly and will be acceptable to consumers and users alike 

who are already familiar with the concept of vaccination in human medicine (Dalton and 

Mulcahy 2001). While there are some vaccines available against toxoplasmosis in sheep and 

the tick Boophilus microplus, there are no commercially available vaccines for the control of 

helminth infections in ruminants, with the exception of that for the bovine lungworm, 

Dictyocaulus viviparus (Smith 1999).
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It is unlikely that antiparasite vaccines will attain the almost 100% efficacy associated with 

new anthelmintics and bacterial/viral vaccines, but evidence obtained by using computer 

models o f the population dynamics o f host-parasite interactions indicate that adequate control 

can be achieved with vaccine efficacies well below 100% (Knox 2000). Modelling has 

demonstrated that a vaccine giving 50% protection at weaning to all sheep was about as 

effective as a strategic drenching program at controlling worms (Barger 1996). With a 

conventional vaccine, excellent control o f T. colubriformis was achieved with 60% effieacy in 

80% of the flock. And with a novel antigen vaccine, results were better than strategic 

drenching programs if  there was better than 80% efficacy or 80% of the flock responded with 

60% protection or better (Barnes et al. 1995).

Attempts have been made to immunise animals with vaccines made from a variety of parasite 

antigen preparations. Whole and gamma irradiated larval preparations have successfully been 

used to immunise mature (> 6  months), but not young animals (Knox 2000). Recent work has 

concentrated on isolating and identifying specific immunogenic parasite proteins, both 

somatic and excretory/secretory, which might act as suitable vaceine agents. Antigens that are 

preferentially recognised by resistant animals could also provide additional markers for the 

breeding o f more resistant lines of animals and this is described later.

Mcgillivery et al. (1992) extracted and isolated a 31 kDa glycoprotein antigen from the 

infective L3 stage of T. circiimcincta that was reeognised by total antibody in sera of infected 

sheep as early as 3 weeks after experimental infection. The same group then reported that the 

purified 31 kDa antigen had been used to successfully immunise lambs against challenge 

infections with T. circiimcincta (Mcgillivery et al. 1992) but this could not be confirmed in 

tliree subsequent trials using the same 31 kDa antigen as an immunising agent (Morton et al.

1995). This molecule was likely to be galectin, which is a beta- galactoside-binding lectin-like
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protein (Newton et al. 1997). While these authors did not attempt to test the galectin proteins 

as vaccine candidates, a galectin (Hco-gal-2) characterised from the gut o f H. contortus larvae 

did not confer any protection against infection with H. contortus as judged by FEC and worm 

counts (Newlands et al. 1999).

Surface antigens o f T. circumcincta L3 laiwae elicit strong bile and serum IgA responses and 

these antigens were used to vaccinate Finn-Dorset lambs (Wedrychowicz et al. 1992). Worm 

burdens o f immunised lambs were significantly lower than those in challenged control 

animals (Wedrychowicz et al. 1995). Mucosal and bile IgM antibodies recognising the L3 

siu'face antigens were more prevalent in the vaccinated lambs, while there were no differences 

between groups in the levels o f mucosal and bile IgA (Wedrychowicz et al. 1995).

There have been many other studies recently that have used components from larval 

excretions/secretions and particularly gut and surfaces derived proteins to immunise animals 

prior to challenge. Vaccines targeted against gut antigens are particularly appealing since it 

has been shown that species of Haemonchus and Teladorsagia appeared to ingest host 

antibody (Murray and Smith 1994). The majority o f these studies have been conducted with 

H. contortus (Coyne and Brake 2001), and have demonstrated levels o f protection ranging 

from 17 to 95%.

Perhaps the most promising reports are those on the development of a vaccine to H. contortus 

using the hidden antigen approach, where antibodies are raised to a gut antigen not normally 

exposed to the host immune system (Munn et al. 1993). The H. contortus vaccine gives 

protection o f greater than 90% by hyperimmunising sheep with integral membrane proteins 

extracted from intestines dissected from adult worms (Smith 1993; Tavernor et al. 1992). 

Reeombinant glycoproteins have been produced (Munn et al. 1993). The hidden antigen
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approach works very well in protecting against haemonchosis because H. contortus is a blood 

feeder and delivery o f parenterally raised antibody is direct. There is some optimism that a 

similar approach could be used to vaccinate against T. circumcincta or T. colubriformis 

because they ingest host immunoglobulin (Murray and Smith 1994). However, which isotype 

they ingest, and whether or not it will be possible for vaccines to produce that isotype at the 

mucosal surface is not known.

Barger (1996) wrote that “the most probable time to commercial availability o f a vaccine 

against H. contortus based on concealed antigen was judged to be 5 years, and in excess of 10 

years for vaccines against other nematode parasites”. Five years has now come and gone and 

there are no commercial vaccines available. Although a considerable amount of research has 

been conducted since 1996, it is highly unlikely that a vaccine will be available any time 

soon. Until a vaccine can be demonstrated to produce adequate protection especially in young 

vulnerable animals, the necessity to use other methods of control, in particular anthelmintics 

will remain.

1.2.4 Biological control

Two means o f biological control that have provoked interest are the use o f nematophagous 

fungi and species o f grass that prevent nematode infection (Waller and Faedo 1996).

When the chlamydospores of nematophagous fungi are ingested by sheep and excreted in the 

faeces they develop and produce hyphae that trap and kill developing nematode larvae 

(Waller and Faedo 1996). Duddingtonia flagrans appears to survive passage through the 

ruminant gut more efficiently than other nematophagous fungi (Faedo et al. 1998). In 

addition, D, flagrans has been demonstrated to significantly reduce faecal egg counts and 

increase live weight gain in young sheep on pasture receiving a mixed infection and fed on
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barley grains on which D. flagrans had been cultured (Knox and Faedo 2001). Similar results 

were obtained in calves under similar conditions (Sarkunas et al. 2000). Fungal spores present 

in faecal matter have been demonstrated to reduce significantly the number o f eggs and larvae 

of H. contortus (Pena et al. 2002), T. circumcincta (Githigia et al. 1997) and T. colubriformis 

(Faedo et al. 1997) from sheep, as well as major parasites from cattle, horses and pigs (Larsen 

2000) and most recent work has focussed on this fungus. Clinical disease has been averted in 

trials where calves naturally infected with O. ostertagi were given D. flagrans (Nansen et al.

1995). When lambs infected with predominantly T. circumcincta were fed D. flagrans there 

was a reduction in newly acquired worm burdens of 62% (Githigia et al. 1997). More work in 

this field is necessary to determine the optimiun dose of chlamydospores and the 

enviromnental impact o f seeding pasture with nematode trapping fungi.

D. flagrans and other biological methods have potential, alone or in conjunction with other 

control methods, for the control of nematode infection. Additional research must be 

conducted to identify the most appropriate method o f administration o f the biological control 

agents. Any possible implications to the host and those subsequently consuming or using the 

animals in question must also be investigated.

Changing the type o f feeding can affect the worm burdens and faecal egg counts o f lambs 

suffering from parasitic gastroenteritis, for example, feeding lambs Sulla {Hedysarum 

coronarium) can reduce worm burdens and faecal egg counts (Niezen et al. 1998a;Niezen et 

al. 1998b). These plants contain condensed tamiins, which can reduce larval establishment 

and increase nematode mortality (Niezen et al. 1998b).
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1.2.5 Selection of resistant animals

Genetic resistance is the term usually used to describe instances where particular individuals 

or breeds show significantly enhanced levels o f resistance compared with the mean response 

of the population (Stear and Wakelin 1998). Genetic resistance to parasites can be studied at a 

number o f levels. In domestic animals, resistance may be evident clinically. For example, 

when animals are kept in environments known to carry the infective stages o f a parasite, 

variation between individuals may be seen in different patterns of disease, in time of recovery 

or in differential mortality. Variation at this level may reflect differences in the abilities of 

animals to control infection, resistance or to tolerate the physiological disturbances caused by 

infection (Bisset and M om s 1996).

Genetic resistance can be exploited in several ways. Breeds resistant to infection can be used 

in the place o f those that are more susceptible. Substitution of susceptible breeds with 

resistant breeds is an approach that is practised in the developing world (Baker 1995). For 

example the Red Maasai breed is more resistant to H. contortus than European breeds 

(Mugambi 1994). However, for breed substitution to be beneficial the new resistant breed 

must be at least as productive as the breed it replaces. Resistant breeds are often smaller and a 

common perception is that they are less productive than the larger, more susceptible breeds. 

Related to this is the misconception o f farmers that the new breed is inferior to the larger 

breed even when evidence to the contrary is available. For breed substitution to be effective, 

the farmers need to be persuaded, which can be a difficult task to achieve.

Resistant breeds can also be exploited by the use o f cross-breeding and the development o f a 

composite population (Nicholas 1987). Most o f the references to the use of genetic resistance 

to infection have been to selection from within populations of sheep for breeding 

programmes. Such programmes depend upon several factors. They include the heritability of
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resistance, intensity of selection, the genetic variation o f the trait within the population, the 

accuracy of the selection process, the time from one generation to the next, and the size o f the 

population (Stear and Wakelin 1998).

Within breed variation is well documented and nematode infection in ruminants is known to 

have a negative binomial distribution (Barger 1985), with a small proportion o f the hosts 

caiTying a large proportion o f the parasites. Greater resistance to gastointestinal nematode 

infection is often associated with greater antibody responses, higher levels of T cell 

proliferation and increased inflammatory responses, particularly those involving eosinophils 

and mast cells (Dineen et al. 1978;Douch et al. 1986;Douch et al. 1995a;Douch et al. 

1996;Stear et al. 2002b) see section 1.3.

The immune response to nematodes in mature sheep involves an immediate hypersensitivity 

reaction. The effect of these responses will vary according to the nematode species involved 

in the infection (Stear et al. 1995c;Stear et al. 1999b). Albers et al. (1987) demonstrated a 

strong association between resistance to H. contortus and resilience, which can be defined as 

‘the ability o f an animal to withstand the pathogenic effects o f roundworm challenge and thus 

maintain acceptable health and productivity with minimal recourse to anthelmintic treatment’. 

Interest in selecting for resilience was bought about thi’ough observations that although some 

animals had high levels o f faecal egg counts, growth levels remained higher when compared 

with less productive animals with lower egg output (Bisset et al. 2001).

1.3 Immunity to gastrointestinal parasites in sheep

There are thi'ee components o f immunity to gastrointestinal parasites: decreased worm growth 

and fecundity, increased percentage o f parasite inhibition and decreased worm number. The 

control o f worm numbers can be achieved by preventing the establishment of incoming larvae
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(Miller et al. 1983), by the expulsion o f developing lai*vae and ultimately by the rejection of 

established adult worms (Emery et al. 1993;Miller 1984). Although the initiation of immune 

responses is antigen specific, the mechanisms underlying worm expulsion can have non

specific effects on other nematodes present in the same or distal part of the alimentary tract 

(Dineen et al. 1977).

It is clear that the immune response to gastrointestinal parasites in ruminants is T cell 

dependent. Sheep immune to H. contortus can have their immune response partially abrogated 

after treatment with anti-ovine CD4+ monoclonal antibody (Gill et al. 1993). No comparable 

effect is seen when the sheep are similarly depleted o f CD8+ cells. However, there remains 

little information on the process of antigen presentation, cellular recruitment and the role o f 

regulatory cytokines in the immune responses in ruminants. It is generally assumed that the 

effector immune responses in ruminants follow a Th2 type response as seen in rodent models. 

This is supported by typical Th2 type responses such as eosinophilia, mastocytosis and IgE 

production in helminth infected sheep (Miller 1984).

Blood and tissue eosinophilia is a typical characteristic of helminth infections (Rothwell 

1989). The function of eosinophilia in mucosal parasites remains unclear. In mice their 

generation in the bone maiTOw is IL-5 dependent and they have been associated with 

protection against parasites migrating thi’ough tissues (Rothwell 1989;(Doligalska et al. 1999). 

However, there remains no conclusive evidence that they are required for protection against 

gastrointestinal helminths (Miller 1996), although they have been associated with some o f the 

detrimental effects of parasitism (Balic et al. 2000). There is an association between the levels 

of infiltration of eosinophilia and diarrhoea in T. colubriformis infected sheep (Larsen et al. 

1994).
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Mast cells have often been implicated as an effector mechanism in the control o f helminth 

burdens (Huntley et ai. 1987;Stear et al. 1995c). The number o f T. circumcincta parasites is 

associated with numbers o f globule leukocytes in animals over six month o f age. In contrast, 

worm burden is not associated with parasite specific IgM or IgG, numbers o f peripheral 

eosinophils or the numbers of mucosal mast cells (Seaton et al. 1989;Stear et al. 1995c). As 

globule leucocytes are generally regarded as discharged mast cells (Murray et al. 1968), it 

would appear that control of T. circumcincta worm burdens can be mediated through an 

immediate hypersensitivity response involving the discharge of mast cells. Although similar 

accumulations of mast cells have been associated with resistance of sheep to H, contortus, 

(Amarante et al. 1999) there is no unequivocal evidence o f a role for mast cells in immune 

exclusion (Huntley et al. 1992).

Mucosal mast cells could affect parasite loads in any of three ways. Firstly, they may be 

directly anti-parasitic. They can release a variety o f low molecular weight mediators after 

attachment of parasite molecules to IgE. These mediators may have direct detrimental effects 

on the parasites survival. Secondly, chymases released systemically and into the gut lumen 

increase gut permeability, which would allow the leakage o f plasma antibody into the gut 

lumen (Jones et al. 1994;Scudamore et al. 1995). Thirdly, mast cells may have an important 

role in the coordination of local immune responses tlu'ough the production of cytokines such 

as IL-4, IL-5, and IL-6  (Miller 1996).

Antibodies or immunoglobulins are a group o f glycoproteins present in the serum and tissue 

fluids o f all higher vertebrates, and on the surface of B cells, where they recognise antigen. 

There are five distinct classes of immunoglobulin, namely IgG, IgA, IgM, IgD and IgE, 

although there is no evidence that sheep express IgD (Hein 1998). The different 

immunoglobulins differ in size, charge, amino acid composition and carbohydrate content. In
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addition to the differences between classes, the immunoglobulins within each class are also 

very heterogeneous. Each immunoglobulin molecule is bifunctional, one region of the 

molecule is concerned with binding to antigen while a different region mediates effector 

functions such as binding of the immunoglobulin to host tissues, to various cells of the 

immune system and to phagocytic cells (Roitt et al. 2001).

The basic structure o f all immunoglobulin molecules is a unit consisting o f two identical light 

polypeptide chains and two identical heavy polypeptide ehains that are linked together with 

disulphide bonds in a classical ‘Y ’ shape. The class and subclass o f the immunoglobulins are 

determined by their heavy chain type. In humans there are four classes o f IgG, named IgGl to 

IgG4. There are also two classes o f human IgA but as yet only one class each o f IgM, IgD and 

IgE have been identified (Roitt et al. 2001). Sheep have only two classes of IgG; IgGl and 

IgG2, but these are not directly comparable to the IgG classes of other species (Hein 1998). 

Sheep also have one class each o f IgA, IgM and IgE (Hein, 1998). In general, the IgG 

subclasses are the most prominent isotypes in serum, while IgA is most prominent at mucosal 

surfaces such as the lungs and gastrointestinal tract, but in ruminants there is a significant 

amoimt of IgGl found in the mucosa.

IgGl is regarded as a good marker for resistance to T. colubriformis in sheep (Douch et al.

1996). However, in cattle infected with O. ostertagi, rising IgGl titres were not associated 

with immunity (Hilderson et al. 1995). Interestingly, there was a negative correlation between 

IgA and IgGl responses in sheep to T. circumcincta (Sinski et al. 1995a). IgA may have a role 

in resistance to this parasite in lambs (Stear et al. 1995b). Therefore, the negative relationship 

between IgA and IgGl in animals infected with T. circumcincta would cast doubt on whether 

IgGl plays a role in immunity to T. circumcincta, at least in lambs.
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IgE has been associated with developing immunity to H, contortus (Kooyman et al. 1997). In 

this experiment, increased total sermn IgE and IgE directed against parasite 

execretory/secretory product were correlated with decreased worm burdens. However, there 

was no IgE response detected against L3 larvae. This would suggest that immunity involving 

IgE might not be directed at incoming larvae.

In cattle infected with O. ostertagi, the influence of IgE on infection is poorly defined. There 

is evidence that the level of lymph IgE is negatively correlated with parasite burden (Baker 

and Gershwin 1993). However, there is conflicting evidence for the relationship between 

infection level and total serum IgE. A high level o f infection resulted in elevated IgE in calves 

compared to those exposed to lower levels (Miller et al. 1996). In contrast, in a different 

experiment, higher IgE responses were seen in calves moderately infected compared to calves 

given higher infection (Baker and Gershwin 1993).

IgA production is increased in lambs selectively bred for resistance to H. contortus (Gill et al.

1994). In sheep infected with T, circumcincta local parasite-specific IgA was correlated with 

worm length (Smith et al. 1985). Four experiments were recorded, two involving 4.5 month 

old lambs and two involving 10  month old lambs, the correlation between mean worm length 

and peak lymph IgA was 0.96. However, correlation between age groups can be misleading. 

Older lambs have shorter worms on average than younger lambs. Any parameter that varies 

with age will give a correlation with worm length (Stear et al. 1996b).

During lactation, resistance to helminth infections is often poorer than in non lactating ewes. 

However sheep infected with T. circumcincta have increased levels of IgA in gastric lymph 

during lactation (Smith et al. 1983). This could suggest that the depression in immunity seen 

at this time is not due to decreased IgA production. However, the increased level of IgA in the
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lymph could also reflect the increased transport o f IgA from the gastric mucosa to the 

mammary gland.

Anti-parasite IgA may interfere with feeding by the parasite (Stear et al, 1995b). IgA may also 

work indirectly by binding to eosinophils in the mucosa, provoking the release o f cytokines. 

In human infections, IgA/antigen complexes induce eosinophils to release IL-5 (Dubucquoi et 

al. 1994). Thus, IgA could act indirectly in the orchestration of immune responses at mucosal 

surfaces.

1.4 Factors affecting the establishment of infection

1.4.1 Sex

In vertebrates the sex o f the host influences the infection rate, the intensity o f infection and 

the rate of development of resistance to parasitic infection (Poulin 1996). Male animals are 

usually more susceptible to infection and develop resistance less quickly than females (Zuk 

and McKean 1996). Entire (uncastrated) male sheep were found to be more susceptible to 

infection with O. columhianum than entire females (Dobson 1964). Castration of females but 

not males reduced this sex difference. Other studies have confirmed that castration of males 

does increase resistance to infection (Barger 1993). These sex differences can theoretically be 

attributed to several factors. There could differences in physiology between the sexes, 

differences in behaviour, differences in farm animal management or differences in the rate of 

ingestion of parasites (Poulin 1996).

Four possible physiological mechanisms have been proposed to explain sex differences in 

susceptibility to parasitism. They are the deleterious effect in males o f being the 

heterogametic sex, the effect o f stress, the direct effect of sex steroids on the parasite, or 

indirect effects of steroid hormones on the immune system. The heterogamatic hypothesis is
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based on the supposition that deleterious recessive alleles normally masked in the 

homogametic sex would have an effect in males because only one o f their sex cliromosomes 

is fully functional. However, in birds where females are heterogametic, femal birds are more 

resistance to infection than male (Poulin 1996).

There is increasing evidence that male sheep with gastrointestinal nematodes infection show 

generally greater intensity and high prevalence than females. This has been demonstrated in 

natural, predominantly T. circumcincta infections (Gulland and Fox 1992;Stear et al. 1995b) 

experimental infections with H. contortus (Adams 1989), deliberate infection with T. 

colubriformis (Windon and Dineen 1981) and with O. columbianum (Dobson 1964).

These differences are usually attributed to a physiological cause, usually hormonal in origin, 

as in some of the studies cited above, there may be an association between testesterone and 

the immune system (Barger 1993). It must be noted that the majority of male sheep in the 

farming industry are castrated and therefore, sex hormones could not be the main cause of 

differences between males and females. The more ecological view usually postulated that 

gender differences in parasitic infection were due to differences in the life histories of males 

and females, with one sex perhaps eating more or different food, and thus ingesting more 

infective stages, or perhaps inliabiting an area with a greater tendency to harboiu parasites, 

such as a stream margin (Herd et al. 1992).

In smnmary, sex differences in susceptibility and resistance to parasite infection are clear but 

the mechanisms underlying these differences are unclear.
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1.4.2 Host age

Age influences the ability o f animals to mount effective immune responses to a wide variety 

of pathogens. For example ruminants less than six months of age are more susceptible than 

older animals to viral, bacterial and parasitic intestinal and respiratory pathogens (Colditz et 

al. 1996). The possible reasons for this include not having been previously exposed to the 

agent to develop active immunity, the suppressive effects of passively acquired maternal 

antibody or stress associated with early life such as weaning. However, when these factors are 

taken into account there still appears to be a constitutive immunological hyporesponslveness 

to infection (Watson and Gill 1991).

Young lambs have significantly lower proportions of CD4+ and CD8 + lymphocytes but 

greater proportions of B cells and T19+ lymphocytes (Watson et al. 1994). Sheep less than a 

year old mount significantly poorer antibody and T cell responses to various antigens and 

mitogens in comparison to older sheep (Watson et al. 1994; Watson and Gill 1991). However, 

young lambs are able to mount sufficient immune responses to a variety o f antigens to confer 

immunity. Work on mouse models has challenged the widely held view that neonates are 

immunologically privileged. They are able to generate immunity provided that antigen is 

correctly presented to T cells (Forsthuber et al. 1996). This would suggest that the 

hyporesponslveness seen in young animals might not result from an incompetent immune 

system but rather from a lack of adult numbers o f immune cells.

1.4.3 Host Nutrition and Growth rate

The importanee of nutrition in gastrointestinal nematode infections has been recognised for 

many decades by veterinarians and health workers who have observed that malnutrition (poor 

nutririon) and intestinal parasitism share a similar geographical distribution, with the same 

individuals experiencing both disease states simultaneously (Koski and Scott 2001). It has
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been demonstrated on numerous occasions that infection leads to malnutrition and 

alternatively malnutrition increases susceptibility to infection (van Houtert and Sykes 1996)

In parasitic gastroenteritis there is an increased loss of endogenous protein into the 

gastrointestinal tract, an increased turnover of epithelial cells, and increased mucoprotein 

secretion (Parkins and Holmes 1989). Most of this protein in sheep infected with H. contortus 

will be reabsorbed in the gastrointestinal tract though partly as non-protein nitrogen (Rowe et 

al. 1988) There is however an energy cost to the host in recycling endogenous protein and the 

gross efficiency of use of metabolisable energy is decreased (Sykes and Coop 1977).

In cattle infected with O. ostertagi, gastrin levels increase at the same time as pH, while in 

sheep infected with T. circumcincta, gastrin levels become elevated before abomasal pH, and 

the elevated pH occurs when the sheep are infected with larval and adult stages (Anderson et 

al. 1985). This suggests that elevated pH in sheep is not simply a consequence o f loss of 

parietal cell fiinction due to L4 lai'vae occupying gastric glands nor that elevated gastrin levels 

are a consequence of increased abomasal pH.

Anorexia (loss of appetite) is the major consequence of infection for host nutrition (Sykes and 

Coop 1977;Symons 1985), although the mechanisms remain unknown. Cattle infected with O. 

ostertagi show a relationship between inappetence and elevated gastrin concentration (Fox et 

al. 1989a). Omeprazole® (human gastric acid secretion inhibitor) inhibits gastric acid 

secretion and therefore increases blood gastrin (Fox et al. 1989b). Gastrointestinal parasitism 

in ruminants leads to impairment of live-weight gain, soft tissue deposition, skeletal growth, 

and milk and wool production (Coop and Holmes 1996).
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One example illustrates the influence o f gastrointestinal nematode infection on weight gain 

(Coop et al. 1982). 12-week period, animals were kept inside and fed a defined diet. 

Uninfected animals gained approximately 15 kg, animals infected daily with 1,000, 3,000 or 

5,000 larvae gained 13, 11 and 8 kg, respectively. Interestingly, regular anthelmintic 

treatments of animals receiving 5,000 larvae daily restored weight gain by only 10 kg. While 

the details differ among experiments the general principles are widely held. Increasing levels 

of infection reduces weight gain and anthelmintic treatment restores part o f the lost weight 

gain but not to the values seen in uninfected animals (Coop et al. 1982).

An alternative means of assessing the importance o f infection on weight gain under natural 

conditions is to estimate genetic congélations between weight gain or body weight and a trait 

that indicates infection status such as faecal egg count. The genetic correlation describes 

relationships between level of infection and weight gain at the individual animal level. Five 

such studies with predominantly T. circumcincta infection have been carried out. All studies 

estimated the genetic correlation between bodyweight and faecal egg count during natural 

exposure.

One study in Scottish Blackface sheep estimated the genetic correlation at -0.8 (Bishop et al.

1996); a second in Polish Longwool sheep estimated the correlation at -0.6 (Bouix et al.

1998); a third in Scottish Blackface sheep estimated the correlation at -0.3 (Bishop and Stear 

2000a) and a fourth in Scottish Texel sheep estimated the correlation at -0.1 (Bishop and Stear 

2001a). A fifth study in feral sheep also produced a negative genetic correlation between egg 

count and body size (Coltman et al. 2001a) Whilst these correlations do apparently differ, 

modelling studies suggest that the size o f the correlation will vary with the intensity of 

infection (Bishop and Stear 1999). However, all these relationships are favourable. Together, 

they indicate that animals with lower egg counts grow more quickly and that variation among
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animals in resistance to predominantly T. circumcincta infection plays an important role in 

growth under conditions of natural challenge.

Somewhat surprisingly, the favourable genetic correlations of parasite resistance and growth 

found for predominantly T. circumcincta infections in Europe do not appear for 

predominantly H. contortus or T. colubriformis infections in Australia and New Zealand 

(Albers et al. 1987;Bisset et al. 1992;Douch et al. 1995b;Eady et al. 1998;McEwan et al.

1995). Here the correlations tend to be neutral or unfavourable. The genetic correlations of 

wool production with parasite resistance are also unfavourable; as egg counts decrease wool 

production also decreases (McEwan et al. 1995). The unfavourable genetic correlations of 

wool growth with resistance have been attributed to competition between wool producing 

cells and cells o f the immune system for cysteine (Miller et al. 1998). The unfavourable 

correlations with growth could reflect differences in management conditions, host breed or 

parasite species. However, they do suggest that under some circumstances the immune 

response to gastrointestinal nematodes can have deleterious consequences, this is considered 

later.

The influence of infection with T. circumcincta on growth rate also depends upon the 

nutritional status o f the host (Coop et al. 1995;Stear et al. 2000). As stated earlier, well-fed 

animals show very few, if  any, clinical signs compared to animals on a normal diet (Coop and 

Kyriazakis 1999). In addition, there may be compensatory protein absorption in the small 

intestine but this will be affected by infection with small intestinal nematodes (Parkins and 

Holmes 1989). Mixed nematode infections are likely to be more pathogenic than single 

species infections for this reason.
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Nematode infection can also adversely affect wool production, carcass composition and milk 

production (Parkins and Holmes 1989). Perhaps the safest conclusion is that nematode 

infection can decrease production but the severity o f production losses varies with the 

intensity o f infection, host nutrition, host immunity and the species composition of the 

infection (Sykes 1994).

1.5 Phenotypic markers

In order to identify animals with improved resistance to GI parasites a quick, cheap and 

reliable measurement on the live animal is required. A number of immunological and 

physiological parameters have been examined as phenotypic or predictive markers o f 

resistance. These have included faecal egg counts (FEC), IgA activity eosinophils, pepsinogen 

and fructosamine.

1.5.1 FEC

Selection for reduced faecal egg counts is relatively easy to assess and is now part of breeding 

programmes. Breeding for reduced FEC also has the added benefit in that pasture 

contamination will be reduced in subsequent generations. However, there remains some 

disagreement about the effectiveness o f using FEC as a marker since they have shown 

unfavourable associations with production traits. For example, (Bisset and Morris 1996) 

reported that although genetically low FEC Romney lambs had significantly reduced burdens 

of the most important nematode species, they had no significant production advantages over 

their higher FEC counterparts when grazed together under the same larval challenge. Indeed 

some results have indicated a slightly unfavourable association between FEC and wool 

production and growth rate in lambs (McEwan et al. 1995). Other limitations to the usefulness 

of FEC include potential losses of production while drench is witlilield for FEC testing, the 

inability to store samples for long periods and the labour-intensive nature of the method
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making automation unlikely (Douch et al. 1996). (Bisset and Morris 1996) suggested that the 

main benefits o f selectively breeding for low FEC are likely to be derived indirectly as a 

result of reduced pasture contamination as described previously.

1.5.2 Serum pepsinogen

Serum pepsinogen concentrations are an indicator of nematode infection (Reid and Armour 

1975). There are a number of factors that lead to increased serum pepsinogen concentrations 

following infection. The increased pH caused by infection decreases the pepsinogen: pepsin 

conversion rate which augments the concentration o f pepsinogen, the disruption of the 

epithelial cells allows pepsinogen to leak into the bloodstream. In addition, increases in 

pepsinogen levels may be caused by intestinal storage cells, called chief cells, no longer 

storing pepsinogen but releasing it upon production (Stear et al. 1999a).

1.5.3 Serum eosinophil

Peripheral blood eosinophils are thought to be involved with the killing o f infective larvae 

during an infection. They possess extremely potent mediators that can damage and kill 

nematode parasites. Increases in the number of eosinophils have long been recognised as a 

characteristic feature of nematode infection. (Stear et al. 2002b) suggests that in the Scottish 

Blackface, serum eosinophil numbers can be used as an indicator o f resistance to T. 

circumcincta infection. In Merino sheep, however, the use o f eosinophils as indicators of 

resistance is not recommended ((Woolaston and Baker 1996).

1.5.4 Fructosamine

Nematode infection induces protein deficiency in animals. Plasma fructosamine 

concentrations reflect the protein status o f an animal and thus are potentially useful indicators 

o f the severity of infection (Stear et al. 2001b).

31



1.5.5 IgA activity

Resistant animals not only produce more IgA than susceptible sheep but they also produce 

IgA against specific parasite molecules not recognised by their susceptible counterparts (Stear 

et al. 1999b). The association between worm burden and local IgA is so strong that it has 

been suggested that IgA may be more useful than FEC as a marker of susceptibility to 

infection (Stear et al. 1999b).

1.6 Genetic markers

The problem with all of the phenotypic markers described is the necessity for an infection to 

establish, at least in part, before the trait can be measured and superior animals identified. It is 

desirable that selection criteria be developed that will be informative in the healthy animal 

and this has become a reality with the use of modern technologies utilising genetic markers.

1.6.1 Haemoglobin

Sheep have two major alleles (A and B) for haemoglobin. Several studies have suggested that 

animals with haemoglobin type A A (HbAA) are more resistant then HbAB, which in turn are 

more resistant than HbBB, to infection with either H. contortus (Preston and Allonby 1979) 

and T. circumcincta (Altaif and Dargie 1978). However, other workers have been unable to 

confirm this association (Kassai et al. 1990). Therefore, no general conclusion can be drawn 

concerning the usefulness of haemoglobin type as a predictive marker for resistance.

1.6.2 Interferon gamma (IFN-y)

An association of an allele at a microsatellite locus located in the first intron of the interferon 

gamma gene with resistance to gastrointestinal parasitism has been found (Crawford et al.

1997). Confirmation came from a study that reported reduced FEC were associated with
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differences at the IFN-y microsatellite allele in free living Soay sheep infected predominantly 

with T. circumcincta (Coltman et al. 2001a). The same allele was also associated with 

increased T. circumcincta-spQciûc IgA levels. These studies are consistent with the idea that a 

functional polymorphism leading to reduced expression or efficacy of IFN-y could enhance 

the immune response to gastrointestinal nematodes by favouring the aetivity of the THz cell 

subset and antibody associated immune mechanisms.

1.6.3 MHC

The major histocompatibility complex (MHC) plays a vital role in host defence against 

infection, as described previously. The class II genes are among the most polymorphic genes 

in humans (Bodmer et al. 1990), and assuming the same is true in sheep, makes the MHC an 

ideal candidate for selection. Associations between the MHC and nematode infection have 

been reported in several species (Stear et al. 1990).

The relationship between ovine lymphocyte antigens (MHC class I antigens) and 

parasitological parameters in two flocks o f Romney sheep in New Zealand has been 

investigated (Douch and Outteridge 1989). The study showed that animals that possessed the 

OLA combination SY la  + lb  had significantly lower FEC than animals that did not possess 

this combination. SY 6 occurred significantly more frequently in above average FEC sheep 

and was associated with significantly higher FEC during secondary challenge infection. 

Interestingly, OLA SY 6  is also associated with resistance to footrot (Outteridge et al. 1989), 

and this may be one reason why this method is not yet in use as a selection strategy.

The association of different MHC class II genes has been reported in Scottish Blackface 

lambs naturally infected, predominantly with T. circumcincta (Schwaiger et al. 1995). This 

study demonstrated that substitution o f the most common allele (I) with allele 0 2  resulted in a
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58-fold reduction in FEC in 6 month old lambs and a 22-fold reduction in 5 month old lambs. 

The MHC class I antigen GlSbr was associated with reduced FEC in the same flock o f lambs 

(Stear et al. 1996a). Additionally, there was a significant correlation between presence o f the 

GlSbr class I antigen and D RBl G2 allele, or in other words, the alleles are in linkage 

disequilibrium. Similar associations between alleles at the D RBl locus and FEC have been 

found in Soay sheep (Paterson et al. 1998).

While research continues in many polymorphic genes o f the MHC class I and II, the 

importance o f the D RBl gene to nematode resistance is highlighted by Schwaiger et al. (1995) 

and accordingly will receive most attention in this review. The D RBl locus within the MHC 

accounted for approximately 10% of the total variation in FEC, and with the addition o f sex, 

sire and dam, the model accounted for 81% of the variation in FEC in 6 month old lambs 

(Schwaiger et al. 1995).

The direct involvement of DR molecules in regulating resistance against gastrointestinal 

nematodes is likely because o f their central role in antigen presentation and antibody 

responsiveness (Schwaiger et al. 1995). The substitution of the I for the G2 allele by selective 

breeding should produce animals with superior resistance to T, circumcincta. However, 

associations with other economically important traits must first be checked in case breeding 

for the G2 allele selects animals with poorer productivity and/or increased susceptibility to 

other pathogens.

1.7 Objectives of this study

Gastrointestinal nematodes are responsible for morbidity and mortality in many sheep rearing 

enterprises worldwide, particularly in the tropics. In the temperate UK, infection is a major
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contributor to reduced production particularly through sub-clinical infections (Armour and 

Coop 1991).

Although nematode infection can be controlled by the use of anthelmintics and grazing 

management, the rapid evolution o f resistance to drugs (Jackson 1993) and the 

impracticability o f control tln*ough management has created an urgent and increasing need to 

develop alternative strategies to control nematode infection. These include the use of 

genetically resistant sheep (Stear and Murray 1994), improved dietary supplements (Holmes 

1993), the use of nemtophagous fungi (Waller 2003) and the development of vaccines (Smith

1999). The applicability of all these methods will be greatly helpful with better understanding 

of the interaction between the parasite and host in controlling nematode infection

The general purpose of this thesis was to investigate several phenotypic and genetic markers 

for resistance to nematode infection in naturally infected Scottish Blackface sheep. The 

phenotypic markers were faecal egg count and IgA activity against third-stage lawae. The 

genetic marker was the class II region of the major histocompatibility complex.

The specific objectives were to:

i. Investigate the variation in faecal egg count distribution in Scottish Blackface sheep 

naturally infected with T. circumcincta in August, September and October for thi'ee 

consecutive years from 2001 to 2003..

ii. To investigate the variation in faecal egg counts among populations of sheep from two 

farms in central and southern Scotland.

iii. To explore whether IgA activity against L3 could be used as an indicator trait for 

resistance to nematode infection.
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iv. To determine the relationship between IgA activity against Ls, faecal egg counts and 

growth rate.

V. To search for QTLs associated with nematode parasite resistance in Scottish Blackface 

sheep using faecal egg counts and IgA activity as indicator traits.

:S
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CHAPTER TWO

GENERAL MATERIALS AND METHODS
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In this chapter are detailed the materials and methods used in this study. Details of specific 

assays and any minor changes to these methods are detailed in the relevant chapters. 

Assistance with methods is acknowledged in the acknowledgement section.

2.1 PARASITOLOGY

2.1.1 Faecal Worm Egg Count

Faeces samples were taken directly from the rectum of the lambs and stored at 4°C until 

processed. A modified McMaster salt flotation technique (Miller and Nawa 1979;Wells 1963) 

was performed to estimate the concentration o f nematode eggs in the faeces. Tlii’ee grams of 

faeces were added to 42 ml o f tap water, the mixtiu'e was then homogenised mechanically and 

poured through a 250-micron aperture sieve and the filtrate was transferred to a 15 ml glass 

test tube and spun for two minutes at 560g. The supernatant was discarded and the faecal 

pellet was broken up by vortexing and the tube was filled to its former level with saturated 

sodium chloride solution. The tube was gently inverted six times, until the suspension was 

mixed. Both chambers of a McMaster egg counting slide (Gelman Hawksley Ltd., 

Northampton, England) were filled using a plastic Pasteur pipette. The preparation was then 

examined using the x25 objective o f a Stereomicroscope. The number o f eggs present in both 

chambers was counted and the result was multiplied by 50 to give the number o f eggs per 

gram. To improve accuracy o f the teclmique, four slides were counted per animal.

2.1.2 Herbage Analysis

The importance o f pasture laival counts is to determine and identify the differences in larval 

species and concentration of infective larvae L3 o f parasitic nematodes on pasture. A w- 

shaped route across the paddock (diagonally four times) was used to collect herbage samples 

(Taylor 1939). The samples were collected by hand, where fifty evenly spaced stops were 

made along each route. At each stop, foui' plucks of grass were taken to make a total o f 200
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plucks per plot. Herbage samples were collected in a plastic bag, which was weighed and put 

into a small hand operated washing machine (Easy Pressure Washer, Classic Supplies Ltd., 

Leeds). Eight litres of lukewarm water were added and the bag was tied and the machine 

turned thi'ough two hundred revolutions. The herbage was filtered tlirough a 2mm mesh sieve 

into a bucket. The washed grass was then spread on a tray and dried in an incubator at 70°C. 

When the grass was completely dried, the herbage was weighed again. The dry weight was 

then used in the final calculation o f numbers of laivae per kilogram-dried herbage (L3/kdh). A 

38-micron sieve was used to filter the washings contained in the bucket where the material 

was retained. The larval suspension was drawn thi'ough a coarse filter paper (Whatmans 

Grade 113, 18.5cm) using a Buchner funnel and vacuimi pump. A single milk filter paper 

(Maxa Milk filters, A. McCaskie, Stirling) was put on top o f the retained material, the 

combination inverted and placed on a Baermaim filter funnel filled with lukewarm water. 

After a minimum of six hours, 10 ml o f fluid was withdrawn and the laivae were 

differentiated and counted.

2.1.3 Weight of the Iambs

Individual body weight o f the experimental lambs were recorded using a sheep weighing scale 

at each blood sampling and faecal collection dates during October 2001, 2002 and 2003.

2.1.4 Preparation of third stage larvae

The strain o f T. circumcincta larvae used was a gift o f the Moredum Institute, Pentlands 

Science Park, Penicuik, Scotland. Sufficient numbers o f larvae for the preparation of somatic 

extracts were obtained by passage o f the larvae tlnough parasite-naïve sheep at Glasgow 

University Veterinary School.
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Third-stage larvae were collected from faecal cultures of eggs o f deliberately infected sheep 

and exsheathed in 1% Sodium hydrochloride (Milton 2, Richardson-Vicks Ltd) in phosphate 

buffered saline (PBS, pH 7.4) for 10 minutes at 37°C. Exsheathed larvae were then 

re suspended in 50 ml PBS and centrifuged at lOOg for 10 minutes. The supernatant was 

removed and then washed twice. The larval pellet was washed once in PBS containing lOOIU 

inf* penicillin, 0.1 mg ml'^ streptomycin, 2.5pg ml"’ amphotericin B and 0.05 mg m f ’ 

gentamicin to prevent any contamination (Sinski et al. 1995a). Larvae were then given a final 

wash in 50 ml o f 10 inM Tris buffer (pH 8.3), containing ImM  disodium ethylene diamine 

tetracetic acid (EDTA), ImM  ethylene glycol bis (2-aminuteso ethyl ether)-N,N,N’,N’- 

tetracetic acid (EGTA), ImM  N-ethylmaleimide (NEM), 0.1 pM pep statin, ImM  phenyl 

methyl sulphonyl fluoride (PMSF), and O.lmM N-tosylamide-L-phenylalanine chlorormethyl 

ketone (TPCK) as protease inhibitors (protease inliibitor solution) (Sinski et al. 1995a). The 

larval pellet was then resuspended in an equal volume o f protease-inhibitor solution 

containing 1 % sodium deoxycholate and homogenised using a handheld electric homogeniser 

(Janke & Kunkel IKA Laborteclmik, Staufen, Germany) on ice. When larvae were completely 

homogenised, they were centrifuged at 500g for 20 minutes and the soluble extract was 

filtered tlnough a sterile 0.2pm syringe filter. The extract was again spun at 500g for 20 

minutes and the supernatant aliquoted and stored at -80°C  for subsequent use.

2.2 Serological methods

2.2.1 Blood Samples

Blood samples were collected in October 2001, 2002 and 2003 by jugular venepuncture into 

evacuated glass tubes containing 20 niM disodium EDTA (Becton Dickinson UK Ltd, 

Oxford, UK) as an anticoagulant. Plasma and buffy coats (the leucocyte rich region of whole 

blood) were obtained by centrifugation at lOOOg for 30 minutes and stored at ~~20°C until 

further use.
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2.2.2, Preparation of rat anti-sheep IgA monoclonal

The rat hybridoma cell line (M l521) was obtained from Dr. S. Hobbes, Dr. P. Bird and 

Professor I. McConnell and maintained by the following culture protocol: A vial of frozen 

cells was removed from liquid nitrogen, thawed quickly in water at 37°C and suspended in 10 

ml of culture media (90% RPMI 1640 (+2 inM L-glutamine), 10% foetal calf serum (PCS), 

and 50 pg/ml gentamicin (Gibco). Cells were pelleted by centrifugation at 150g for 5 minutes. 

Cell viability was checked by mixing 100 pi cell suspension with 100 pi 0.4% Trypan Blue 

stain and the number o f cells was counted using a haemocytometer. Cells were diluted into 

culture media to give a cell concentration o f 3x10^ cells per ml. Cultures were incubated at 

37°C in 5% CO2 and examined on a daily basis.

After 4 days, when the cells were confluent, cultures were centrifuged for 10 minutes at 150g. 

The supernatant was removed and stored at -20°C  in 1 ml aliquots. Cells were then either re

seeded to produce more antibody supernatant or frozen for subsequent culture as follows: 

cells were resuspended in 10  ml culture media, counted as described previously, then 

resuspended at a concentration of 5xlO^/ml in freezing medium (10% dimethyl sulphoxide, 

20% PCS, 70% RPMI 1640 +2mM L-glutaminase). Cell suspensions were then frozen in a 

“Mr Frosty” cell cryopreservation container (Nalgene) at -  80°C for 24 hours which allowed a 

cooling rate o f -1 °C/minute. Vials were then transferred to liquid nitrogen for long term 

storage.

2.2.3 ELISA assays

An Enzyme-linked immunosorbent assay (ELISA) was used to detect ovine IgA activity 

against somatic laival extracts o f third-stage laivae h'om T. circumcincta. Each well of a 96- 

well flat-bottomed microtitre plate (Nunc) was coated with 100 pi of laival antigen 

preparation (L3) at 5pg mP’ in 0.06M sodium carbonate buffer pH 9.6 overnight at 4°C. The
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plates were washed five times with O.OIM PBS containing 0.05% Tween 20 (PBS-T). In order 

to minimise non-specific binding of antibody, the wells were incubated with 2 0 0  pi per well 

of PBS-T containing 4% skimmed milk powder for two hours at 37°C. The plates were then 

washed five times in PBS-T. The individual sheep plasma samples were diluted 1:10 in PBS + 

0.4% skimmed milk (PBS-TSM). The plates were then incubated with 100 pi per well, in 

duplicate for 30 minutes at 37*^0. Positive and negative controls were diluted 1:10 in PBS- 

TSM and run in triplicate on each plate to minimise the effect of variation between plates on 

different days. After incubation and another five washes in PBS-T, plates were incubated with 

100 pi per well o f a monoclonal rat IgG anti-sheep IgA diluted in PBS-TSM for 30 minutes at 

37°C. After five washes in PBS-T, the plates were incubated with 100 pi per well o f a mouse 

anti-rat IgG alkaline phosphatase antibody conjugate (Sigma) diluted in PBS-TSM for 30 

minutes at 37°C. After a final five washes in PBS-T, the plates were incubated in 100 pi per 

well with Bluephos® Microwell Phosphatase Substrate system (Kirkegaard & Perry 

Laboratories, Gaithersburg, MD, USA) at 37°C. The optical density of each well was then 

read at 635 nm with a multichannel spectrophotometer (Titertek Multiscan MC, Labsystems, 

Oy, Finland or Dynex MRX, Dynex Technologies, Ashford, UK) for 15 minutes. Usually this 

was done at five minute intervals, until the positive control optical density reading was 

between 1.5-2. Each batch o f monoclonal and secondary antibody was titrated to determine 

the appropriate concentration. This procedure was carried out on the Grifols Triturus® ETA 

Analyser.

2.2.4 Optical density indices

Optical density is the absorbance o f an optical element for a given wavelength 1 per unit 

distance. The Positive and negative controls in each ELISA assay were pooled plasma 

samples from Individual animals which had given either very strong (positive control) or very 

weak (negative control) optical densities using the methods of Sinski et al. (1995). To
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minimise the variation between results obtained on different days and between plates, optical 

densities for each sample were transformed into an optical density (OD) index using the 

following equation (Sinski et al. 1995a):

OD Index -  ^  sample -  OD o f  negative control
OD o f  positive control -  OD o f  negative control

2.3 Molecular Biology

2.3.1 DNA Extraction

2.3.1.1 Solutions and Media

IM Tris-HCl pH7.5

A total of 121 g Trizma base (Tris [hydroxymethyl] aminomethane; Sigma-Aldrich Company 

Ltd, Poole, England), was weighed and dissolved in 800 ml distilled water (dHiO) and the pH 

was adjusted to 7.5 using Microprocessor pH meter (HANNA Instrument). The volume was 

adjusted to IL and the solution was stored at 4°C.

IM MgCE

A total of 203.3g MgCfi.bHiO (BDH Chemicals Ltd, Poole, England), was weighed and 

dissolved in 800 ml dHiO. The volume was adjusted to IL and autoclaved. The solution was 

stored at 4°C.

5M NaCl

A total o f 292.2g NaCl (Sigma- Aldrich) was weighed and dissolved in 800ml dHiO. The 

volume made up to IL, autoclaved and stored at 4°C.
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0.5M Ethylene Diamine Tetra Acetic Acid EDTA pHS.O

A total of 93.05g EDTA (Ethylene Diamine Tetra Acetic Acid- Sigma-Aldrich) was weighed 

and made up to 500 ml in dHiO, the pH was adjusted to 8.0, the solution was autoclaved and 

then stored at 4°C.

10% Sodium Dodecyl Sulphate SDS pH7.2

A total o f lOOg SDS (Sodium Dodecyl Sulphate-Sigma-Aldrich) was weighed and mixed with 

800 ml dHiO. The solution was heated to dissolve the SDS, and then the pH adjusted to 7.2. 

The volume was made up to IL and the solution stored at room temperature.

Proteinase K

A total of lOOmg Proteinase K  (Sigma-Aldrich) was dissolved in 25 ml dHzO to give 4 mg 

proteinase K/ml. 500 pi o f this solution was mixed with 500 pi 10% SDS and frozen at -20°C, 

until required.

3M Sodium Acetate solution pH5.2

A total of 204.1 g Sodium Acetate.3H2O (BDH-Limited) was mixed with 350 ml dH2 0  and 

the pH was adjusted to 5.2 with Glacial Acetic Acid. The volume was made up to 500 ml with 

dH2 0 , autoclaved and stored at 4°C.

TBE buffer

A total o f 54g o f Tris-borate and 27.5g boric acid were dissolved in 800ml dH2 0 , 20ml o f 

0.5M EDTA pH 8.0 was added and made up to IL with dIT2 0 . The solution was autoclaved 

and stored at 4°C.
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Phenol; Chloroform: Isoamyl alcohol (25:24:1)

A total of 250 ml equilibrated phenol (Sigma-Aldrich), 240 ml chloroform (Sigma-Aldrich) 

and 10 ml isoamylalcohol (Sigma-Aldrich), were mixed together and stored in a dark bottle at 

4°C, until required.

Chloroform: Isoamy alcohol (24:1)

A total of 240 ml chloroform (Sigma-Aldrich) was mixed with 10 ml isoamyalcohol (Sigma- 

Aldrich) and stored at 4°C until required.

Lysis Buffer

A total o f 109.536g Sucrose (Sigma-Aldrich) and 10 ml IM  Tris-HCl pH7.5 and 5 ml IM  

MgCb were added to dHiO and the volume made up to 990ml. The solution was then 

autoclaved and 10ml of 10% Triton x 100 (Sigma-Aldrich) was added. The buffer was stored 

at 4°C.

Digestion Buffer

A total o f 7.5ml 5M NaCfi and 25 ml 0.5M EDTA (pH8.0) was mixed with dHiO and made 

up 500 ml. The solution was autoclaved and stored at 4°C, until required.

2.3,1.2. DNA Extraction Procedure

DNA Extraction is a routine procedure to collect DNA for subsequent molecular analysis. 

DNA was extracted by using the lymphocyte-rich layer on top o f the red cells after 

centrifugation of anti-coagulated blood (buffy coat). Each thawed buffy coat was added to 50 

ml cold lysis buffer. The tube content were mixed thoroughly several times by inversion o f 

the tubes. Tubes were then stood on ice for 10 minutes and afterward centrifuged for 10 

minutes at 4°C at 800g. The supernatant was discarded and the tubes were blotted on a paper
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towel, the pellet was resuspended and mixed in 5 ml Digestion buffer, then the tubes were 

centrifuged at 800g for 10 minutes at 4°C. The supernatant was discarded and the tubes were 

blotted on a paper towel. The pellet was resuspended and mixed with 4 ml Digestion buffer. A 

1ml Proteinase K solution was added to every sample and incubated in a 56°C water bath for 

24 hours. Then the samples were removed from the water bath and 5 ml equilibrated phenol 

(Sigma-Aldrich) was added and mixed gently to form an emulsion. The samples were left for 

10 minutes, and then centrifuged for 10 minutes at 800g. The clear aqueous layer was 

transferred to 50 ml tubes, where it was remixed gently with phenol: chloroform: isoamyl 

alcohol (25:24:1) and then centrifuged for 10 minutes at 800g. The clear aqueous layer was 

collected and transferred to 50 ml tube. The previous step was repeated. The new aqueous 

layer was transferred to 15 ml plastic tubes where 5ml chloroform: isoamyl alcohol (24:1) 

was added and mixed. Tubes were centrifuged at 800g for 10 minutes. The clear aqueous 

layer was removed to fresh 30 ml plastic tubes containing 1 ml 3M sodium acetate and 12.5 

ml cold ethanol was added. The tubes were inverted several times until the DNA precipitated. 

DNA was removed with a heated sealed pipette and rinsed in 500 pi 70% ethanol in a tube, 

which was allowed to air dry, then placed in a 2ml plastic tube containing 200 pi TE buffer. 

The tubes were then heated at 56°C in a water bath for 1 hour. Lastly, the tubes were gently 

shaken for 2-7 days at 4°C to resuspend the DNA.

2.3.2. Cloning of MHC class II DRBl alleles

2.3,2.1. Solutions and Media 

ERB3- primer solution

A total o f 20pl o f ERB3 at 100 pmol/pl (MWG-Biotech AG) was diluted in sterile distilled 

water to make up a 20 pmol/pl ERB3.

ERB3 primer 5’- CTCTCTCTGCAGCACATTTCCT

46



SRB3- primer solution

A total o f 20pl of SRB3 at 100 pmol/pl (MWG-Biotech AG) was diluted in 80pl sterile 

distilled water to make up a 20 pmol/pl SRB3.

SRB3 primer 5’-CGCTGCACAGTGAAACTC

The primers mentioned above were used for preparation of a Master Mix solution (see section 

2.3.2.2), to amplify a regon lay in chromosome 20 (DRBl EXON II).

1.5% Agarose gel

A total o f 0.750g Seakem® LE Agarose (Cambrex Bioscience, Rockland, Inc. Rockland, ME 

USA) was mixed with 50 ml TBE buffer in a 200 ml Pyrex beaker on a magnetic stirrer 

(Stuart Scientific) which was set at a low level. The beaker was then placed in a microwave 

oven (Zanussi) and heated for 2 minutes at high setting until the TBE and agarose had fully 

dissolved. The beaker was replaced on the magnetic stirrer at the low level setting to cool 

down and 5 pi ethidium bromide was added to the agarose. When the agarose temperature 

reached approximately 55°C, it was poured in a levelled gel-casting tray with the coomb 

removed and any air bubbles which appeared were removed using a needle. At this point the 

comb was put in the gel-casting tray and the gel allowed to set for 30 minutes in the cold 

room (4°C) before use.

X-Gal Solution

Atotal o f lOOmg X-Gal (5 -bromo-4-chloro-3 -indolyl- (3-D- galactosideV LIFE 

TECHNOLOGIES^'^, Paisley, UK) was mixed with 2 ml dimethylformamide (Sigma-Aldrich) 

and stored at -20°C.
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LB agar

A total of 5g LB broth (Lennox L broth, Sigma-Aldrich) and 3.750g Agarose (Seakem® LE 

Agarose- Cambrex Bioscience Rockland, Inc. Rockland, ME USA) was mixed with 250 ml 

dHiO. The solution was autoclaved and allowed to cool in a water bath at 42°C and 125 pi of 

50pg/ml ampicillin (Segma) was added and mixed properly with the solution. 25 ml of this 

mixture was poured into sterile Petri-dishes plate in a sterile condition (the quantity of this 

solution is sufficient for 10  plates).

LB broth

A total o f 5g LB broth (Lennox L broth, Sigma-Aldrich) was mixed with 250ml dH2 0  and 

was autoclaved. The solution was left to cool until it reached 55°C when 125pi o f 50pg/ml 

ampicillin (Segma) was added and mixed with the solution. The solution was kept at 4°C until 

required.

2.3.2.2 Cloning Procedure 

Preparation of PCR reaction

PCR products (DRBl EX 0N 2 allele) were prepared using lamb genomic DNA, as described 

in section 2.3.1.2, Taq polymerase (Qiagen) and Master Mix (MM) solution. PCR master mix 

was prepared in a PCR hood as shown in Table 2.1.
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Table 2.1 MM solutions for MHC Class II DRBl EX 0N 2 genotyping

Reagent Concentration Amount

ERB3 2 0 pmol l.Opl X n+1

SRB3 2 0 pmol l.Opl X n+1

DNTPs 1 Omlmol l.Opl X n+1

AfgCT 2 .0 pi X n+1

lOx BUFFER 5.0pl X n+1

7720 39.8pl X n+1

The M M  solution was Irradiated fo r  fiv e  m inutes in an ultra violet (UV) box.

Taq polymerase 0 ,2 pl X n+1

DNA sample l.Opl per sample

Negative 1.0  pi for negative control

A total of 49pl o f MM was mixed with Ip l DNA and 49pl MM with Ip l H2O for the negative 

control using 0.2ml Eppendorf tubes. Samples were placed in a thermocycler (Gene Amp- 

PCR system2700 Version2.0- Bio systems A&B). The PCR conditions were as follows:

1 cycle pre-PCR 94°C for 6 min

6  HC for 2 min 

72°C for 2min 

35 cycles 94°C for Imin

61°C for 2min 

72.0°C for 2min 

1 Hold 72°C for 15min

1 Hold 4°C for 00
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The reaction products were analysed by 1.5% agarose gel electrophoresis. The comb was 

removed from the gel, and the gel was placed in a tank, then IxTBE buffer was added until 

the gel was covered by approximately 3mm. For each sample, 3pi PCR product was added 

and mixed with Ip l gel loading buffer, which was then loaded into a well. Each gel contained 

a negative control and a lOObp DNA ladder (Invitrogen). The gel was then run at lOOv, until 

the dye font reached the end. The gel was then removed and photographed using a gel 

documentation system (UVI tec) in order to confirm the presence o f the PCR products (DRBl 

EXON II).

TOPO® Cloning Reaction

The PCR products were TOPO® (Invitrogen) cloned into the pCR® 2.1-T0P0®  vector 

(Table 2.2) and chemically competent E. coli cells were transformed with the recombinant 

vector according to the manufacturer’s instruction (TOPO 10 competent cells, Invitrogen).

Table 2.2 TOPO® Cloning Reaction

Reagent Reaction Volume

Fresh PCR product 2.0pl

Salt Solution l.Opl

Sterile Water 2.0pl

TOPO® Vector l.Opl

Final Volume 6.Op

The reaction was mixed gently into 0.5ml microtubes, and incubated at room temperature for 

5 mins. The reaction mixture was placed on ice. A 2pl of the cloning reaction was mixed
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gently with E. coli cells and incubated on ice for 5 mins. The cells were then heat shocked for 

30 seconds at 42°C in a water bath. Immediately the tube was placed on ice. A total of 250pl 

of SOC medium was added to the tube which was tightly capped and rotated horizontally at 

200 rpm at 37°C for 1 hour. 20pl of transformation mixtme was mixed with 30pl of SOC 

medium and spread on prewarmed LB-agar plates containing X-Gal and 50pg/ml ampicillin. 

Plates were incubated overnight at 37°C. Blue and white colonies were obseived the 

following day. A total of 10 white or light blue colonies were isolated and each colony was 

cultured overnight in 3 ml LB broth containing 50pg/ml ampicillin in universal tubes at 37°C 

in an orbital shaker (innova 4000, New Brunswick Scientific) at 225 rpm. Plasmid DNA was 

checked for presence o f the correct insertion by PCR amplification as mentioned previously 

(see section 2 .3.2.2).

Purification of plasmid DNA

PCR products were purified following the QIAprep® PCR spin miniprep kit protocol 

(QIAGEN, UK). Briefly, the DNA adhered to the filter within the column, separating it from 

all other components of the PCR reaction, which were washed away with various buffer 

solutions. The plasmid DNA was finally eluted in 50pl Elution buffer (EB) (QIAGEN, UK)

Sample preparation for DNA sequence analysis

Cloned fragments were chemically labelled with fluorescent dyes by cycle sequencing to 

facilitate the detection and identification o f the DNA. Cycle sequencing utilizes successive 

rounds o f dénaturation, annealing and extension in a thermocycler to create a linear 

amplification of extension products. More specifically, PCR reactions were performed using 

plasmid DNA samples in a total volume o f 20pl containing 3pi of primers, 4pi lOx buffer, 

7pi sterile water, 2pl DNA and 4pl of Big Dye"^^ Terminator Cycle sequences ready reaction
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(ABI Prism). Samples were prepared in the thermocycler (Gene Amp- PCR system2700 

Version2.0- Bio systems A&B), incorporating 25 cycles of amplification as follows;

25 Cycles 96°C for lOseconds

50°C for 5second 

60°C for 4minutes 

4°C

DNA was then purified by precipitation methods using 16pl o f deionised water and 64pl of 

non-denatured 95% ethanol and kept at room temperature for 15 minutes. Pelleted DNA (200 

g for 20 minutes) was washed in 250pi o f 70% ethanol and re-pelleted (200 g for 10 minutes) 

before all ethanol was removed and dried at 90°C for 1 minute. Template suppression reagent 

(25pi formamide) was then added, and the mixtui'e left at room temperature for 2  minutes. 

The mixtuie was then heated to 95°C for 2 minutes and chilled before loading on the ABI 

PRISM® 3100 Genetic Analyzer.

DNA sequencing

Samples were loaded and run on the ABI PRISM® 3100 Genetic Analyzer (PE Applied Bio 

systems, UK), under standard sequencing conditions for generation of automated sequence 

data. The ABI PRISM® 3100 Genetic Analyzer is a multi-colour fluorescence-based DNA 

analysis system using the proven technology o f capillary electrophoresis with 16 capillaries 

operating in parallel. The Genetic Analyzer is fully automated from sample loading to data 

analysis.

Sequence evaluation

The output was in the form of a chromatogram and a sequence file. The chi'omatogram was 

examined with Chromas software to resolve any ambiguous base assigmnents. The sequence
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file was analysed with the fasta program in genetic Computer Group (GCG) Software to 

search for similarity between the new sequence and existing DRBl sequences which were 

obtained after searching Genbank database and published data. Any sequences which differed 

from existing sequences were confirmed in at least two separate PCR reactions.

2.4. Statistical analysis

For clarity, the relevant statistical analyses are described in each chapter.
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CHAPTER THREE

The distribution of faecal egg counts and 

pasture larval counts in naturally infected sheep
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3.1 Introduction

The number of infective larvae ingested by sheep will depend upon the number of eggs 

deposited by infected sheep, the rate o f development o f eggs to larvae, the larval suivival rate 

and the grazing pattern o f sheep (Stear et al. 1995b). Faecal egg count is widely used to 

assess levels of nematode infection. Pasture larval counts have also been used to determine 

the intensity o f challenge (Boag and Thomas 1971;Stear et al. 1995b).

Lambs are born worm free with little innate resistance to parasite infection. Young lambs are 

exposed to two potential sources on infection, larvae which have overwintered on the pasture 

and those deposited by ewes during the peri-parturient period (Gibson and Gibson 

1973;Leathwick et al. 1995).

As the season progresses, the relative numbers o f the different species changes (Michel 1976) 

and tends to follow a definite trend in dominance. Due to its ability to overwinter (Waller and 

Thomas 1978), Teladorsagia is particularly prevalent in early summer (Reid and Armour 

1972) followed by Trichostrongylus, Cooperia and Haemonchus species (Cornwell 1975). 

Levels of larvae can, however, rapidly increase in response to favourable climatic conditions, 

and eggs deposited at varying times can sometimes reach the infective stage at the same time 

(Thomas and Boag 1973), and this leaves animals exposed to potentially overwhelming 

infection. There tend to be two main waves o f infection over a season, the first in late spring 

and the second in mid-to-late-summer (Thomas and Boag, 1973; Cornwell 1975). The first is 

derived either from overwintered laiwae (Thomas and Boag, 1973) or in combination with 

eggs deposited during the PPR (Michel, 1976) while the second wave is derived from eggs 

deposited by lambs from the initial challenge in the spring (Thomas and Boag, 1972).
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Stear et al (1995) studied the seasonal pattern o f nematode infection in sheep over two 

consecutive years. The mean values for faecal egg counts at monthly intervals between May 

and September showed that egg counts increased from May to June in both years but 

otherwise there was no consistent pattern (Stear et al. 1995b). The same author suggested that 

lambs which experienced a heavier infection earlier in life were more able to resist subsequent 

infection, possibly as a consequence o f more efficient immunological priming. Similar results 

were reported by (Gill 1991), with the progeny o f resistant sires having higher FECs and 

worm burden than controls after primary infection with H, contortus but lower egg counts and 

worm burden following secondary infection.

Variation among months in mean faecal nematode egg count was attributed to differences in 

temperatur e and moisture from year to year, frequency of anthelmintic treatment and stocking 

density and movement (Boag and Thomas 1971). Differences in weather patterns may be 

largely responsible for differences in the infectivity o f larvae at different times of the year and 

also for differences between years (Stear et al. 1996b). In spring, infected ewes often exhibit a 

peri-parturient rise in the output o f parasite eggs and as spring temperatures rise the eggs 

develop to infective larvae.

The acquisition o f new laiwae from pasture in the spring is sensitive to changes in 

enviromnental conditions especially in the UK where weather conditions can vary 

considerably both within the season and between years. Infected lambs contaminate the 

pasture. By late July and August pasture contamination levels rises to become a significant 

threat to lambs (Gettinby et al. 1989). The number of T. circumcincta L3 on herbage increases 

markedly from mid-summer onwards and this is when disease appears, as the eggs deposited 

in the first half o f the grazing season from April to June give rise to lai-vae from July to 

October (Boag and Thomas 1971;Urquhait et al. 1996).
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Anthelmintic use has a strong effect in limiting worm burdens and in particular in controlling 

adult worms. However, eggs have been found in faeces within 14 days after drug treatment 

(McKellar and Marriner 1987). Also lambs from dosed ewes have shown a substantial rise in 

faecal egg count in August and September, while the highest faecal egg counts were reported 

in lambs from undosed ewes in September (Boag and Thomas 1973).

Theoretically, distribution pattern of parasites within host populations can be grouped into 

three broad categories: underdispersion, random and overdispersion (Sreter et al. 1994). A 

number of data support the view that the distribution o f worm number per host is 

characteristically overdispersed within both animal and human population. Parasite 

abundance is measured ultimately by the statistical distribution of parasites between hosts. 

Parasites are characteristically aggregated in their hosts (Shaw and Dobson 1995), this pattern 

can generally be described empirically by the negative binomial distribution. Theoretical 

models have shown that the obsei-ved patchiness in parasite abundance can have important 

consequences for host-parasite population dynamics (Anderson 1978;Grenfell et al. 

1995;Roberts et al. 2000;Smith 2000). The distribution o f parasites may have important 

implications also for the estimation of economic losses due to helminth infections in farm 

animal populations (Barger 1985). The dispersion pattern of parasites is one of the principal 

factors controlling the population dynaics o f helminth infection (Anderson and May 1985). 

Despite the theoretical significance and the important, practical implications o f dispersion 

patterns of helminth parasites in farm animal populations, the number o f parasite frequency 

distributions documented in the literature is limited

(Barger 1985) reported that the relatively low degree o f overdispersion {k == 1.39) may 

mitigate against the extension of selective treatment programmes. Notwithstanding this, the
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degree o f aggregation is high enough to form the basis o f breeding programmes for higher 

resistance to gastrointestinal nematodes (Barger 1989).

The purpose o f this chapter was to describe changes in the mean and distribution of faecal egg 

counts and especially the relationship between mean parasite load and aggregation (inversely 

measured by negative binomial parameter, k) for cohorts of hosts, to identify nematode 

species in the pasture, and also to investigate the seasonal pattern of T. circumcincta infection 

in naturally infected lambs over a three year period.

3.2. Materials and Methods 

3.2.1. Animals

A flock of 758 straightbred Scottish Black face lambs was studied from 2001 to 2003. All 

lambs were from a research farm in East Scotland. Lambs were weaned at four months of age 

and sampled in August, September and October of 2001 to 2003. Anthelmintic treatment was 

given at each sampling either ivermectin (Oramec Drench, Merial Animal Health) or 

levamisole (Nilverm, Schering-Plough Animal Health), which were rotated between years, at 

the dose rates recommended by the manufacturers, which were 7.5mg kg '’ and 5mg kg"’ 

respectively.

3.2.2. Parasitological methods

The parasitological methods are described in Chapter two section 2.1. Briefly faecal egg 

counts were made according to a modified McMaster method with saturated salt solution. 

Each sample was counted on four separate McMaster chambers and each egg counted 

represented 50 eggs per gram. These counts will be referred to as epgl, epg2, epg3 and epg4. 

The dominant nematode on this farm was T, circumcincta.
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Herbage samples were collected from different fields; Lambs were moved around from field 

to another, depends on the field condition. As the field exhausted by grazing lambs, sheep 

were moved to another well-grazed field. To facilitate further analysis, number have been 

given to each field in each month that lambs were grazed, but it is not necessarily to be the 

same field number in the following months or year.

3.2,3. Statistical analyses

Means and ranges were calculated with the means procedure o f the SAS statistical package 

(SAS Institute, Cary, North Carolina, Version 8). Chi-square tests were used to examine the 

goodness o f fit to the negative binomial distribution. The negative binomial distribution has 

often been used empirically to describe the distribution of parasites among individuals 

(Anderson & May, 1992). The distribution is defined by its aritlimetic mean and a shape 

parameter k, which is an inverse index o f the extent o f dispersion; as k  decreases toward zero 

the distribution become more dispersed. The SAS program estimates the parameter k  by 

maximum likelihood (Bliss and Fisher 1953). The relationships among faecal egg counts 

obtained on different dates were estimated by the correlation coefficient using the correlation 

procedure on the SAS statistical package. Egg counts were overdispersed and were 

transformed prior to statistical analysis by taking the logarithm of the egg count plus ten, to 

produce approximately normally-distributed data. Correlation analysis assumes normally- 

distributed data.

3.3 Results

Tables 3.1, 3.2 and 3.3 show the geometric mean faecal egg counts, standard error of the 

mean and range of three successive years o f values obsei*ved in faecal egg counts in August, 

September and October. In 2001 table 3.1 shows that the mean faecal egg count was 363.9 in 

August then rose in September to 408.2, and fell to 278.2 in October. In 2002, the pattern of

59



faecal egg count differed from 2001 (Table 3.2), in August, the mean was 260.4 then 

decreased to approximately 200 and fell slightly in October to 181.6. In August 2003, the 

mean was 150.7, increased to 271.3 in September, and then decreased slightly in October to 

252.7 (Table 3.3). From the above, the mean faecal egg counts in August 2003 were slightly 

less than the two previous years. The range revealed that high counts can occur even in quite 

young animals (for example in August the maximum epg was 2900).

Table 3.1 Eggs per gram (epg) of faeces in lambs sampled in 2001

Date of Number of Mean Std. Error Minimum Maximum
sampling animals of mean
August 240 363.9 26.5 0 2900

September 216 408.2 29.6 0 2388
October 229 278.2 19.1 0 1700

Table 3.2 Eggs per gram (epg) of faeces in lambs sampled in 2002

Date of Number of Mean Std. Error Minimum Maximum
sampling animals of mean
August 248 260.4 26.7 0 3275

September 256 201.1 16.9 0 2550
October 261 181.6 13.4 0 1200

Table 3.3 Eggs per gram (epg) of faeces in lambs sampled in 2003

Date of Number of Mean Std. Error Minimum Maximum
sampling animals of mean
August 254 150.7 26.9 0 5325

September 257 271.3 18.3 0 1875
October 253 252.7 14.5 0 1238

The distribution o f faecal egg counts in each month in each year was positively skewed. 

Figure 3.1 (A, B and C) illustrates the skewed distribution of faecal egg counts of T. 

circumcincta among lambs in August, September and October 2001. Most animals had 

relatively low faecal egg counts, while a few had quite high counts.
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Fig.3.1 Distribution o f faecal egg counts in August (A), September (B) and October (C) 2001. 
In all months the distributions o f egg counts were positively skewed indicated that the 
majority o f lambs had relatively low egg counts while a few lambs had quite high counts.
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Tables 3.4, 3.5 and 3.6 provide the Pearson correlation coefficients that were calculated from 

log-transformed faecal egg counts within each month for August, September and October 

2001. Pearson correlation coefficient were used to compare each count with the other three 

counts on the same faecal preparation from the same animal. All correlations were positive 

and statistically very highly significant {p< 0.001), indicating that the repeatability o f the 

technique was high and suggesting that the technique was relatively precise.

Table 3.4 Correlations among transformed faecal nematode egg counts from 4 month old 
lambs in August 2001.

Log epgl Log epg2 Log epg3
Log epgl -

Log epg2 0.91 -

Log epg3 0.93 0.92 -

Log epg4 0.94 0.91 0.93

f  <0.001

Table 3.5 Correlations among transformed faecal nematode egg counts fi'om 4 month old 
lambs in September 2001

Log epgl Log epg2 Log epg3
Log epgl -

Log epg2 0.90 -

Log epg3 0.91 0.90 -

Log epg4 0.96 0.95 0.97

P <  0.001

Table 3.6 Correlations among transformed faecal nematode egg counts from 4 month old 
lambs in October 2001

Log epgl Log epg2 Log epg3
Log epgl -

Log epg2 0.90 -

Log epg3 0.87 0.90 -

Log epg4 0.93 0.95 0.90

f  <0.001
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Tables 3.7, 3.8 and 3.9 revealed the correlation among transformed faecal egg comits between 

month to month in thi'ee successive years. Most correlations were positive, but not all were 

significant. Table 3.7 shows the correlation o f transformed faecal egg counts in 2001, there 

was a highly significant but weak correlation (r = 0.18, ^  < 0.01) between August and 

October, while there was a very highly significant correlation (r = 0.35, P <0.001) between 

August and September, and between September and October (r = 0.34, P <0.001).

Table 3.8 shows the correlations o f transformed faecal egg counts in 2002. There was a highly 

significant but very weak correlation between August and September (r = 0.12, P  <0.01). 

Counts in September and October showed a very highly significant correlation (r = 0.25, P 

<0.001), while there was no correlation between August and October.

Table 3.9 shows the correlation of transformed faecal egg counts in 2003. There was a very 

weak non-significant correlation between August and September (r = 0.07, P = 0.24). A weak 

but significant correlation (r = 0.11, P <0.05), was found among transformed faecal egg 

counts between September and October. The counts in August and October were weakly but 

highly significantly correlated (r 0.17, f  <0.01).

Table 3.7 Correlations among transformed faecal nematode egg counts from 4 month old 
lambs in 2 0 0 1

August September October
August -

September 0.35*** -

October 0.18** 0.34*** -

< 0 .0 1 . *** P <  0 .0 0 1 .

Table 3.8 Correlations among 
lambs in 2 0 0 2

transformed faecal nematode egg coun

August September October
August -

September 0 .1 2 ** -

October 0 .0 0 0.25*** -

* * ? < 0 . 0 1 .  < 0 . 0 0 1
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Table 3.9 Correlations among transformed faecal nematode egg counts from 4 month old 
lambs in 2003

August September October
August -

September 0.07 -

October 0.17** 0 .1 1 * -

<0.05. <0.01.

Parasite burdens have been generally found to be overdispersed, with the negative binomial 

distribution providing a good empirical description of obseiwed distribution of parasite 

burdens within host populations. In overdispersed distributions, most hosts carry few 

parasites, while a few heavily infected hosts harbour a large proportion o f the total parasite 

population.

Tables 3.10, 3.11 and 3.12 present k  the inverse index o f dispersion for the negative binomial 

distribution and its standard error. The k  values increased in each year indicating, as k is an 

inverse index of overdispersion, that overdispersion decreased from August to October 

through September, in all tliree years (Table 3.10 and 3.11). Most values o f k fell between 

0.56 and 1.09 except in August 2003. Table 3.12 shows that, k was very low (0.199) at this 

time. This low value was probably due to the presence of a very high faecal egg count. 

(5325).

The negative binomial distribution was fitted to the number o f faecal eggs counted. In 

September 2001, faecal egg count samples gave a good fit to the negative binomial, while in 

August and October samples did not provide a good fit to the negative binomial (Table 3.10). 

In 2002, the distribution in September was not compatible with the negative binomial, but the 

other two sets of samples gave acceptable fits (Table 3.11). In 2003, September and October 

faecal egg samples gave a good fit to the negative binomial, but in August the set did not fit to 

the negative binomial (Table 3.12). The reason o f the poor fit of the negative binomial 

distribution will be discussed in more detail later (see chapter four).
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Table 3.10 Index of dispersion when negative binomial distribution were fitted to faecal egg 
counts of sheep sampled in 2001
Date of Index of SE Goodness-of-fit
Sampling dispersion Probability
August 0.615 0.146 0.07
September 0.668 0.141 0.21
October 0.762 0.126 0.01

Table 3.11 Index o f dispersion when negative binomial distribution were fitted to faecal egg 
counts of sheep sampled in 2002

Date of Index of SE Goodness-of-fit
Sampling dispersion Probability

August 0.561 0.154 0.75
September 0.767 0.116 0.08

October 0.772 0.118 0.28

Table 3.12 Index of dispersion when negative binomial distribution were fitted to faecal egg 
counts o f sheep sampled in 2003

Date of Index of SE Goodness-of-fit
Sampling dispersion Probability
August 0.199 0.518 0.00

September 0.767 0.117 0.22
October 1.091 0.085 0.16

Fig.3.2 illustrates the negative binomial distribution in all three years. Chi-square tests were 

used to examine the goodness of fit to the negative binomial distribution
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Fig 3.2 Negative binomial distribution in (A) August 01 and (B) September 01
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Fig 3.2 Negative binomial distribution in (C) October 01 and (D) August 02
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Fig 3.2 Negative binomial distribution in (E) September 02 and (F) October 02
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Fig 3.2 Negative binomial distribution in (G) August 02 and (H) September 02
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Fig 3.2 Negative binomial distribution in (I) October 03
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Pasturel laival counts showed that the overwhelming majority of larvae were T. circumcincta. 

Other larvae such as Nematodirus were observed, but with low counts compared with 

Teladorsagia (Tables 13, 14 and 15).

Table 3.13 Total pasturel larval counts o f third-stage larvae per kilogram-dried herbage 
(13/kdh) in 2001

Teladorsagia Ostertagia Nematodirus Cooperia

August Field 1 12 0 6 0
Field 2 70 0 14 0
Field 3 72 0 18 0

September Field 1 100 130 11 0
Field 2 56 72 40 0

October Field 1 143 55 33 0
Field 2 182 26 52 0

Table 3.14 Total pasturel lai-val counts o f third-stage larvae per kilogram- 
(13/kdh) in 2002

-dried herbage

Teladorsagia Ostertagia Nematodirus Cooperia

August Field 1 81 40 40 20
September Field 1 35 0 53 0

October Field 1 21 0 21 0

Table 3.15 Total pasturel larval counts o f third-stage larvae per kilogram- 
(13/kdh) in 2003

■dried herbage

Teladorsagia Ostertagia Nematodirus Cooperia

August Field 1 55 0 147 36
September Field 1 164 0 185 65

Field 2 142 33 44 0
October Field 1 59 39 78 39

71



3.4 Discussion

This chapter has investigated the changes in the mean and distribution of faecal egg counts in 

lambs of Scottish Blackface sheep following natural infection with gastrointestinal nematodes 

predominantly T. circumcincta.

A longitudinal study o f faecal egg counts was made over tlnee years at monthly intervals 

between August to October. This study has shown that there was no discernible pattern to egg 

counts within each season; each year out o f the three had its own pattern. The results on this 

farm are not strictly comparable with other studies because lambs on this farm were given 

monthly anthelmintic treatment after each collection of faecal samples. However, the 

infection pattern approximates those previously described (Boag and Thomas 1973;Thomas 

and Boag 1972).

The factors that influence these changes in faecal egg counts from month to month and from 

year to year could include grazing management, anthelmintic treatment and differences in the 

weather, especially humidity, which influence the number o f infective larvae ingested by 

lambs and the rate o f development of eggs to laiwae (Stear et al. 1995b).

The mean egg count in October was lower than that in September in each year, which may 

reflect the development o f host resistance (Smith et al. 1985). As such, faecal egg counts may 

be considered to simply be an indicator o f resistance/ susceptibility to parasite infection 

(Bishop et al, 1996). Therefore using the average of several faecal egg counts in selective 

breeding, may offer a desirable and feasible option in assisting in the control of nematode 

infections. However, in other studies the egg count does not always drop from September to 

October (Stear et al. 2005a), therefore differences in the mean egg counts between September
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and October may reflect differences in the number o f infective larvae ingested or differences 

in species composition.

The Pearson product moment correlation coefficients among transformed faecal egg counts 

between August, September and October for the thi'ee years were usually significant but they 

were relatively small. The correlations were significant between August and September in 

2001 and 2002, similar to previous results obtained (Stear et al. 1995b) which indicated that 

the correlations were significant and positive between August and September and not in the 

preceding months. The correlations were significant between September and October for all 

three years. This result means that lambs with high egg counts in September tend to have 

higher egg counts in October.

The negative binomial is perhaps the most widely used distribution to describe theoretical and 

empirical parasite burdens (Gregory and Woolhouse 1993). The frequency distributions of 

faecal egg counts were positively skewed in all nine months from 2001 to 2003, confirming 

that the most situations, egg excretions derived from natural infection in sheep showed an 

aggregated distribution and were consistent with a negative binomial pattern. Negative 

binomial distributions have been fitted to faecal egg counts in sheep (Hunter and Quenouille 

1952), (Donald 1968) (Roberts and Swan 1982). Barger (1985) reported that nematode counts 

for four genera of nematodes also followed negative binomial distributions. However, in the 

present study, some distributions were not compatible with the negative binomial distribution, 

this will be discussed further in chapter four.

A comparison o f the negative binomial k  values (regarded as an inverse measure of the extent 

of overdispersion) showed that the amount o f dispersion decreases as animals become older 

(for example in August 2001 k  = 0.61, and in October k = 0.72); this result agreed with
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(Maizels et a l  1993) who stated the amount o f overdispersion is less in the older populations. 

However, the differences among the k  values in our study were not statistically significant and 

any trends need to be interpreted cautiously. There is a widely cited belief that variation 

decreases as animal mature because immune responses decrease parasite sui-vival (Maizels et 

al. 1993). In contrast, this result disagreed with other studies (Stear et al. 1995b) who reported 

that the amount o f overdispersion increases as animal mature.

However, in August 2003 the k  the inverse index of dispersion was very low indicating that 

egg counts were becoming more aggregated within few animals. This low value of k was 

arises because two o f the lambs had very high faecal egg counts (3125 and 5325 epg). These 

results suggest that a relatively small part o f the flocks are responsible for most of the total 

pasture contamination.
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CHAPTER FOUR 

Variation in faecal egg counts among

populations
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4.1 INTRODUCTION

The previous chapter, and other studies, have demonstrated that faecal egg counts are widely 

used to estimate the relative susceptibility of infected sheep to nematode infection (Bisset et 

al. 2001;Woolaston and Windon 2001). In cool, temperate climates such as the UK, the 

dominant nematode is Teladorsagia circumcincta (Stear et al. 1998), and faecal egg counts 

following natural infection are used to guide selection decisions when breeding sheep for 

nematode resistance. Faecal egg counts following natural infection are very variable both 

within and between sheep populations (Stear et al. 1995b) but several issues remain 

um’esolved. Faecal egg counts in some sheep populations show a good fit to the negative 

binomial distribution while others do not (Stear et al. 1995b). However, the reasons for this 

are unclear. The lack o f consistency hinders the application of general linear mixed models 

for data analysis. The variation among populations has not been quantified yet an assessment 

of variation would assist the design o f selection schemes that use several different farms. 

Further, some populations show much higher levels of variation among animals than others. 

Understanding the reasons for this variation would lead to better characterisation o f resistant 

animals and could help to identify the mechanisms underlying resistance.

Therefore this chapter aims to extend the results o f the previous chapter and the other studies 

by investigating the poor fit of the negative binomial to egg counts in lambs, to quantify the 

variation in faecal egg counts among populations and to examine the soui'ces of this variation.

4.2 MATERIALS AND METHODS

4.2.1 Animals

The sheep came from two upland farms in Scotland; one in west central Scotland and one in 

the Borders region in southeast Scotland. The sheep were all straightbred Scottish Blackface. 

The lambs were born in late spring (April and May) and weaned at 3 or 4 months of age. The
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management regime on the first farm has been described previously (Stear et al. 1995b). On 

this farm, the lambs were sampled (faecal and blood samples) every 28 days from 8 to 24 

weeks o f age from 1990 to 1996. Additionally, lambs born in 1992 to 1995 were also 

sampled at 4 weeks of age. All the animals on the first farm were necropsied at 30 or 31 

weeks after the last sample date. All lambs were given a broad spectrum anthelmintic 

(albendazole sulphoxide) according to the manufacturer’s recommendations every 4 weeks 

from 4 to 20 weeks o f age. The animals from the second farm are described in chapter tlnee 

(see section 3.2.1). Each o f the seven cohorts from the first farm consisted of 200 lambs 

while each of the three cohorts from the second farm had approximately 250 lambs. Only 70- 

95% of lambs were sampled on most occasions due to deaths, missing records, lost tags and 

insufficient faeces in the sample. As the four populations sampled at necropsy contained 

fewer lambs than the other populations they were not included in the initial assessment of 

means and variances.

4.2.2 Parasitological methods

The parasitological method is described in chapter two. Briefly faecal egg counts were made 

according to a modifyied McMaster method with saturated salt solution. Each sample was 

counted on four separate McMaster chambers and each egg coimted represented 50 eggs per 

gram. These counts will be referred to as epgl, epg2, epg3 and epg4. The dominant nematode 

on this farm was T. circumcincta. In addition replicate aliquots (to improve the precision of 

the technique) from the same faecal preparation were counted in September 1993, October 

1993, October 1994, and all samples from 1995 onwards. Standard parasitological procedures 

were used at necropsy to identify and count all nematodes present in the abomasum and small 

intestine (Armour et al. 1966;Stear et al. 1998) in lambs from the first farm. The large 

intestine was not examined as the frequency o f anthelmintic treatment would prevent any 

large intestinal parasites surviving to the egg laying stage (Stear et al. 1998).
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4.2.3 Statistical analysis

The SAS suite o f statistical programs version 9.1 was used for all analyses (SAS Institute, 

Cary, N. Carolina). The univariate procedure was used to estimate means, variances, standard 

deviations and ranges for each population sampled on each occasion. When replicate aliquots 

were counted only the first aliquot was used to estimate means, variances and the mean- 

variance relationship. There was an outlying population with a relatively low egg count of 201 

epg but a high variance o f 831,550 epg^. This sample was taken in May 1994 and comprised 

only 88 lambs. All other samples had over 140 animals. This outlying population was 

discarded from further analyses. The distributions o f means and variances were both skewed 

to the right. Gamma distributions were fitted to the data with the Capability procedure in the 

SAS/QC suite of programs. The gamma and lognormal distributions have thi'ee parameters: 

thi'eshold, scale and shape. The thieshold parameter was set to zero while maximum 

likelihood estimates of the scale and shape parameters were calculated iteratively by the 

Newton-Raphson approximation. Goodness o f fit was tested by the Anderson-Darling 

statistic; this test belongs to the quadratic class o f empirical distribution function statistics 

(D'Agostino and Stephens 1986).

The relationship between the mean and variance was estimated by fitting a regression line 

between log transformed variance and log-transformed mean: log(variance) = a  + (3 

^Tog(mean) (Perry 1981;Taylor 1961). This regression was fitted with the GLM procedure in 

SAS. When back-transformed, this gives a power relationship o f the form: variance = a  ̂

mean **b.

Among nematode eggs, only Nematodirus spp. are counted separately. Eggs from the other 

species cannot be distinguished from each other and the results on their eggs are poled. 

Multiple regression with the SAS GLM program was used to examine the relationship

78



between the non-Nematodirus egg count and the number of nematodes present from the five 

most common taxa: Teladorsagia circumcincta, Cooperia spp., Trichostrongylus vitrinus, 

Trichostrongylus axei and Haemonchus contortus.

There is a nonlinear relationship between the number of adult T. circumcincta in the 

abomasum and the number of eggs produced by this species (Bishop and Stear 2000b;Stear 

and Bishop 1999). The egg output depends upon the number o f adult nematodes and their 

mean egg output. The mean egg output is strongly associated with the mean length o f the 

adult female worms (Stear and Bishop 1999). The mean egg output per worm was estimated 

as worm length to the power 0.4 multiplied by 1.12; one was subtracted from the sum. The 

predicted egg output was then calculated by multiplying the total number o f adult worms by 

the mean egg output per worm. The predicted egg count for T. circumcincta was subtracted 

from the obsei-ved egg count to create a residual egg count. Multiple regression was then used 

to examine the relationship between the residual egg count and the number o f nematodes from 

the four taxa: Cooperia spp., T. vitrinus, T  axei and H. contortus. Due to the presence o f 

negative numbers 1000 was added to all residual counts prior to log transformation.

Generalised linear modelling was carried out with the GLIMMIX macro in SAS (Littell et al.

1996).

4.3 RESULTS

Fig 4.1 shows the distribution of mean egg count among the populations sampled from the 

two farms. Each o f the 42 data points is the mean egg count for a particular cohort on one 

farm at a single date. The distribution was right skewed with a mean of 305 and a median of 

255 eggs per gram. The data appeared to follow a gamma distribution (Anderson-Darling 

statistic p > 0.50). Maximum likelihood estimates for the scale and shape parameters were
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163 and 1.89, respectively. The gamma distribution with these parameters has been

superimposed on the histogram (Fig 4.1).

Fig 4.1. The gamma distribution o f mean egg eounts among the populations
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The distribution o f the variances of the egg counts is presented in Fig 4.2. This distribution 

was also right skewed. Most populations had relatively small variances but a small number 

had quite high variances. The median variance was 89890 and the mean variance was higher 

at 162743 eggs per gram^. As with the distribution of means, the distribution of variances 

among the sampled populations appeared to follow a gamma distribution (Anderson-Darling 

statistic p = 0.169). Maximiun likelihood estimates for the scale and shape parameters were 

139462 and 1.05. The gamma distribution with these parameters has been superimposed on 

the histogram (Fig 4.2).
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Fig 4.2 The distribution of egg count variances among the populations
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Regression analysis (Fig 4.3) demonstrated that the variance = 120 * (mean epg) The

95% confidence limits on the scalar term were 39 and 372. Fig 4.3 illustrates this relationship 

between the mean and the variance. The R-square value was 0.84, indicating that variation 

among populations (between the two farms) in their variances largely reflected variation 

among populations in their mean egg counts.
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Fig 4.3 The relationship between transformed egg count mean and variance. Means and 

variances were transformed by taking logarithms to the base 10. The solid line represents the 

regression and the dotted lines represent 95% confidence limits.

Log V ar ia n c e

Log Mean

An additional four populations from farm one were examined at necropsy. Table 4.1 presents 

the mean egg count and variance for these fom' populations as well as the number of species 

present. As the numbers of fourth and fifth-stage laiwae do not influence the egg count they 

have not been included in table 4.1.
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Larvae were found for only T. circumcincta, Cooperia spp. and T. vitrinus. Most fourth-stage 

larvae will be inhibited but a small number may arise from recent infection. In 1992, the 

mean numbers of fourth-stage and fifth-stage larvae in each lamb were respectively 5738 and 

574 for T. circumcincta, 2 and 7 for Cooperia spp. and 4 and 5 for T. vitrinus. In 1993, mean 

numbers o f fourth-stage and fifth-stage lai-vae were respectively 528 and 100 for T. 

circumcincta, 18 and 19 for Cooperia spp. and 1 and 1 for T. vitrinus. In 1994 and 1995 all 

recovered laiwae were T. circumcincta. There were 705 and 31 fourth and fifth-stage laiwae in 

1994 and 3221 and 82 respectively in 1995.

Table 4.1 demonstrates that the variance increased as the egg count increased, in line with the 

previous analysis. The interesting feature o f table 4.1 is that high egg counts and high 

variances are not due to high numbers o f adult nematodes per se but to high numbers of 

species other than T. circumcincta. For example, the lowest egg coimts (87 epg) occurred in 

1992. This year had the second highest total o f nematodes (6860) but over 95% of these were 

T. circumcincta. In contrast, the mean egg counts were much higher in 1993 (317 epg) and 

1994 (494 epg) but the number o f adult nematodes was much lower at 3309 and 2336 

respectively. However, the proportion o f T. circumcincta was lower at 84% in 1993 and 66% 

in 1994. Together, these results suggest that high means and variances in faecal egg counts in 

October at the end of the grazing season are not due to number of nematodes but to the 

presence o f species other than T. circumcincta.
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Multiple regression was used to examine the relationship in these lambs in October between 

the total faecal egg count and the number o f adult parasites of the five taxa {T. circumcincta^ 

Cooperia spp., T. vitrinus, T. axei and H. contortus). Both faecal egg count and adult parasite 

numbers for each species were transformed by loglO(x+l). The initial analysis showed a 

negative relationship (-0.23 + 0.09; p < 0.05) between faecal egg count and transformed 

number o f T. circumcincta and positive relationships between transformed egg count and 

transformed number o f Cooperia spp. (+0.33 + 0.03; p < 0.001) and the transformed number 

of T. axei (+0.15 + 0.07; p < 0.05). The relationships between faecal egg count and the 

transformed numbers o f T. vitrinus and H. contortus were not significant (p=0.21 and p=0.50) 

respectively.

The T. circumcincta egg count was predicted from the number o f adult T. circumcincta using 

previous published methods (Stear et al. 1998). This predicted egg count was then subtracted 

from the actual egg count and the residual egg count transformed by log 10(residual+l 000). 

Multiple regression analysis demonstrated highly significant effects between transformed 

residual egg count and the transformed numbers of Cooperia spp. (+0.07 + 0.01; p < 0.001), 

T. axei (+0.04 + 0.01; p < 0.05) and T. vitrinus (+0.03 + 0.01; p < 0.001). The relationship 

between faecal egg count and the transformed number of H. contortus was not significant 

(p=0.64), possibly because only 8 o f 483 lambs examined were infeeted with this parasite.

Generalized linear modelling with a gamma distribution and a reciprocal link function was 

used to test the relationship between mean egg count and both farms, year and month. Thine 

separate univariate analyses were earned out and each variable was fitted separately as a fixed 

effect. These analyses showed that there were no significant differences in mean egg count 

between the two farms (p=0.455), a nonsignificant and inconclusive result for year (p=0.053) 

and significant differences among months (p=0.024). Egg counts were low in May, rose in
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June, peaked in July, fell in August, remained stable in September but rose again in October 

(Fig 4.4). The highest July mean egg counts occurred in 1993 (572 epg).

Fig 4.4 Egg count means plus standard errors by month o f sampling. Lambs were born in a 3- 

week interval then sampled every 28 days from 1992 to 1995. All lambs were treated with 

anthelmintic at each sample date.
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4.4 DISCUSSION

There was considerable variation among the populations sampled in faecal egg count means 

and variances. The distribution o f means and variances were both skewed. Most populations 

had relatively low means and variances but a small proportion had high means and variances. 

The variance was related to the mean to the power 1.23; this exponent was significantly 

greater than 1.0 and significantly less than 2.0. Analysis of necropsy data suggested that high 

means and variances were not simply due to high intensities of infection but to the presence o f 

species other than T. circumcincta, particularly Cooperia spp. and Trichostrongylus vitrinus.

The contribution of other nematode species to high egg counts is consistent with previously 

published reports on the density-dependent regulation o f fecundity in T. circumcincta (Bishop 

and Stear 2000b). As the intensity o f infection with T. circumcincta increases, an increasing 

number of larvae arrest development while those that do develop into adults produce fewer 

eggs per day. Previously published results hav been used to predict egg output from the 

number of adult parasites (Bishop and Stear 2000b;Stear and Bishop 1999). After subtracting 

this predicted output from the obsei*ved egg count, multiple regression analysis on the 

transformed residual egg counts gave highly significant positive relationships with the 

numbers of Cooperia spp., T. axei and T. vitrinus. Care is needed in interpreting these results 

because the residual egg count is an imprecise estimate of the egg count due to species other 

than T. circumcincta. Nonetheless the conclusion that the egg count is influenced by all 

nematodes present is plausible. Although T. circumcincta is the predominant species, the egg 

count does not necessarily reflect this. Indeed lambs with many adult T. circumcincta 

produce fewer nematode eggs than lambs with moderate infections (Bishop and Stear 2000b)

There was no significant difference in mean egg counts between the two farms sampled. 

However, the mean egg counts varied with the month of sampling. Egg counts rose to a peak
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in July then declined before rising again in October. A similar bimodal pattern with slightly 

earlier timings was reported previously for untreated lambs (Thomas and Boag 1972). This 

study was carried out under commercial conditions with regular anthelmintic usage; therefore 

the values observed each month represent independent infections and are not influenced by 

pre-existing infections derived from previous months.

The decline from the first peak has been explained by the onset of immunity in iambs (Stear 

et al. 1999b). However, part o f the peak could be contributed by time-dependent variation in 

other nematodes such as Cooperia spp. Necropsies of large numbers o f infected iambs at 

regular intervals during the grazing season are needed to clarify the contribution made by 

different species o f nematodes.

Faecal egg counts in sheep are not particularly well-described by the negative binomial 

distribution (Stear et al. 1995b) this lack o f fit is surprising because the negative binomial 

distribution is a flexible distribution that is widely used to describe parasite distributions 

among hosts (Bliss and Fisher 1953;Hunter and Quenouille 1952). The poor fit of the negative 

binomial distribution may be explained by the observation that several nematode species 

contribute to the egg count. The dominant nematode is T. circumcincta but other species can 

contribute to the egg count. If  each species egg counts follow a negative binomial 

distribution, the combined distribution would not conform to a negative binomial (Grafen and 

Woolhouse 1993). In addition, males have higher egg counts than females and this too could 

lead to departures from the negative binomial distribution (Stear et al. 1995b).

There was a strong relationship between the mean and the variance for egg counts. This 

relationship followed Taylor’s power law (Taylor 1961). Taylor’s power law has been used 

previously in a subset o f these data (Stear et al. 1998). Then the regression line was drawn



through the origin but visual examination (Fig 4.3) of the larger data set analysed here 

suggests that an intercept was more appropriate. Estimating the slope o f the regression line is 

subject to error (Boag et al. 1992;Perry 1981) because both the mean and variances are 

estimates o f the true values. However, there is no agreement on the best way to avoid this 

problem (Sokal and Rohlf 1995). A coefficient o f 1 is consistent with a Poisson distribution 

and implies a square root transformation while a coefficient of 2  implies a logaritlrmic 

transformation is most appropriate. Here the estimate lies between 1 and 2, implying that 

neither transformation is ideal.

Taylor’s Power law has been widely used to describe the relationship between variability in 

population size and mean abundance of a species over space and time (Anderson et al. 

1982;Keeling 2000). Taylor (1961) considered the scalar to be o f less importance than the 

exponent, which generally lies between 1 and 2. Mathematical modelling suggested that the 

value o f the exponent was determined by relative magnitude of birth, death, immigration and 

emigration rates (Anderson et al. 1982)while others argued that negative interactions among 

species interactions could produce exponents between one and two (Kilpatrick and Ives 

2003).

In conclusion, faecal egg counts vary in naturally infected sheep and mean egg counts vary 

among different populations and among the same population sampled at different times. The 

variance was largely determined by the mean and high means are not necessarily due to high 

intensities of infection but probably reflect the contribution of species other than T. 

circumcincta.
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CHAPTER FIVE 

THE RELATIONSHIPS BETWEEN IgA 

ACTIVITY AGAINST THIRD-STAGE 

LARVAE OF T. CIRCUMCINCTA, FAECAL 

EGG COUNTS AND GROWTH RATE OF 

SCOTTISH BLACKFACE LAMBS
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5.1 Introduction

Breeding for resistance to infection is one of the major foci of research in veterinary 

parasitology. Due to the emergence o f anthelmintic resistance in parasite populations, non- 

chemotherapeutic methods are being investigated to control T. circumcincta infection (Beh 

and Maddox 1996). A detailed understanding of the immune mechanisms involved in 

resistance to infection will lead to more sustainable methods of control and in particular will 

aid in the identification of resistant animals.

Young lambs appear to be unable to control worm burdens (Stear et al. 1996b). Sheep 

regulate worm length before they regulate worm numbers (Seaton et al. 1989). The only 

mechanism to have been consistently associated with reduced worm length is the local IgA 

response (Smith et al. 1985;Stear et al. 1995c). The strength o f the association between IgA 

and parasite fecundity led to hypothesis that the specificity and activity o f local IgA was the 

major mechanism regulating the fecundity of T. circumcincta (Stear et al. 1996b) and a major 

mechanism of resistance to infection in lambs (McCririe et al. 1997;Stear et al. 1995b;Stear et 

al. 1997;Strain and Stear 1999). The most important manifestation o f immunity in growing 

lambs is the control o f worm grovrth, which causes a reduction in worm fecundity (Stear et al.

1997).

The response to selection could be improved by the use of additional markers. There are a 

wide variety of potential markers and perhaps the most useful is the IgA response to fourth- 

stage laiwae. Following both deliberate and natural infection, individuals with increased 

amounts of IgA specific for fourth-stage laiwae have shorter worms and lower egg counts 

(Stear et al. 1995c). This association appears so strong and consistent that IgA may be more 

useful than faecal egg counts as a marker o f susceptibility to infection. In addition, there is an
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association in cattle between increased abomasal IgA responses and reduced egg production 

by O. ostertagi (Claerebout and Vercruysse 2000).

Antibody against L3 antigens tends to reflect both the level o f challenge and the innate ability 

of the individual to respond whereas, antibodies against L4 and adult stages of the nematode T. 

colubriformis tend to reflect the presence o f the nematode in the gut (Douch et ah 1996)

There is a close correlation between the degree of retardation of the parasites and the total IgA 

response (Smith et ah 1985). They suggested that IgA can block enzymes essential for the 

normal feeding mechanisms o f the laiwae. This adds to the suggestion that IgA acts on 

parasite growth through reducing its ability to feed. Results from several New Zealand trials 

have indicated that antibody levels (particularly IgGl) to excretory/secretory antigens o f L3 

nematodes such as Trichostrongylus colubriformis may be a phenotypic marker. Levels o f 

antibody against L3 antigens are also independent of on-farm drenching strategies (Douch et 

ah 1996).

A comparison of IgA responses to third-stage, fourth-stage and adult T. circumcincta 

indicated the strongest association with reduced worm length, with increased responses to 

fourth-stage larvae (Stear et ah 1995c). The responses to third-stage larvae were correlated 

with the responses to fourth-stage larvae (Sinski et ah 1995a). IgA activity against fourth 

stage larvae probably is the best phenotypic marker, but recovering fourth-stage larvae 

requires killing sheep. Third-stage larvae can be recovered from faecal cultures, making 

responses to third-stage larvae cheaper and easier to measure and killing animals can be 

avoided. There appear to be very few studies that have examined IgA activity against third- 

stage larvae as a phenotypic marker for resistance in naturally infected sheep.
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The present investigation was undertaken to determine the relationships between IgA 

activities against third-stage larvae o f T. circumcincta, faecal egg counts and growth rate of 

Scottish Blackface Iambs and to explore whether plasma IgA activity against third stage 

larvae could be used as indicator trait for resistance or susceptibility in sheep.

5.2 Materials and Methods

5.2.1 Animals

Seven hundred and fifty nine, naturally-infected six-month old Scottish Blackface lambs were 

sampled for blood and faeces in October 2001, 2002 and 2003.

5.2.2 Parasitological methods

The parasitological methods are described in Chapter two

5.2.3 ELISA assays

Parasite specific host plasma IgA activities to infection were measured by simple indirect 

ELISA as described in Chapter two.

5.2.4 Statistical analysis

The Univariate program in the SAS package (SAS Institute, Cary, NC, USA) was used to 

estimate the means and variances o f faecal egg counts in October 2001 to 2003. The 

association between IgA activity, faecal egg counts and growth rate was estimated by 

corteiation coefficient using the correlation procedure in the SAS statistical package. Egg 

counts were transformed prior to statistical analysis by taking the logarithm of the egg count 

plus 1 0 .
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5.3 Results

IgA activity against an extract of third-stage larvae was measured using an indirect ELISA 

and expressed as a percentage o f a standard value. Fig. 5.1 shows the regression between 

replicate measurements o f IgA activity in October 2001. The two measurements were carried 

out to evaluate the repeatability between ELIS As with the same samples on different dates. 

The regression shows that the two measurements gave similar results. The correlation 

between the first and the second run was positive and very highly significant (r = 0.80, p  < 

0.001).
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Fig. 5.1 Regression between replicate measurements of IgA activity against third-stage larvae.

The distribution o f IgA activities against third-stage larvae was positively skewed in each 

year; most lambs had relatively low values but some lambs had quite high values. Fig.5.2 

shows the distribution of IgA activity against Lg o f T. circumcincta as measured by simple 

indirect ELISA in the lambs sampled in October 2001, 2002 and 2003.
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Fig. 5.2 Distribution of plasma IgA activity against third stage larvae of T. circumcincta 
measured by simple indirect ELISA in naturally infected lambs during 2001(A), 2002(B) and 
2003(C)

Table 5.1 shows the number of animals, mean IgA activity, standard error of mean, minimum 

and maximum value observed in October 2001, 2002 and 2003. The mean plasma IgA 

activity was 0.11 in October 2001, 0.09 in October 2002 and 0.19 in October 2003. Mean IgA 

activity varied among years but the standard errors are quite small. The mean IgA optical 

density indices ranged from 0-1.02 in 2001, 0-1.24 in 2002 and 0-1.12 in 2003.

Table 5.1 Mean and standard error of IgA activity against third-stage laivae of T. 
circumcincta in 2001, 2002 and 2003
Date of Number of Mean of Std. Error Minimum Maximumsampling animals IgA activity of mean
October 2001 236 0.108 0.008 0.000 1.02
October 2002 261 0.091 0.007 0.000 1.24
October 2003 262 0.186 0.000 0.000 1.12
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Table 5.2 shows the mean faecal egg count in October 2001, 2002 and 2003 was 278.2, 181.6 

and 252.7 respectively.

Table. 5.2 Eggs per gram of faeces in lambs sampled in 2001, 2002 and 2003
Date of 
sampling Mean Std. Error of Mean Minimum Maximum

October 2001 278.2 19.1 0 1700
October 2002 181.6 13.4 0 1200
October 2003 252.7 14.5 0 1238

Table 5.3 provide the Pearson correlation coefficients that were calculated from log- 

transformed faecal egg counts within each year in October 2001 (r = 0.014, /? = 0.826), 2002 

(r = - 0.091,/? = 0.147) and 2003 (r = 0,067,/? = 0.286) against the log. transformed optical 

density indices of IgA activity. The results confirm that there was no signiticant correlation 

between faecal egg counts and IgA activity against third-stage larvae.

Table 5.3 Correlations between transformed faecal egg counts and IgA activity in 2001, 2002 
and 2003

Log epg Oct 2001 Log epg Oct 2002 Log epg Oct 2003

IgA activity 0.014 -0.091 0.067

Table 5.4 shows that there was no significant correlation between IgA activity and growth 

rate at 24 weeks old lambs for the years 2001 (r = - 0.079, p  = 0.248), 2002 (r = - 0.143, p  = 

0.021) and 2003 (r = - 0.042,/? = 0.503)

Table 5.4 Correlations between growth rate at 24 weeks old lambs and IgA activity in 2001, 
2002 and 2003

weight in 2001 weight in 2002 weight in 2003

IgA activity -0.079 -0.143 -0.042
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5.4 Discussion

Plasma IgA activity was measured against third-stage laivae o f T. circumcincta in naturally 

infected sheep, using a simple, indirect ELISA. The results show that the distribution of 

plasma IgA activity against third-stage larvae in all lambs was positively skewed with the 

majority of lambs having relatively low activity but a minority lambs had quite high activity 

(Fig 5.2). The distribution is similar to the distribution of IgA activity against fourth-stage 

larvae o f T. circumcincta (Strain et al. 2002). Serum IgA is dimeric in ruminants and in 

experimental studies almost totally derived from the gastrointestinal tract (Sheldrake et al. 

1984). These results suggest that plasma IgA activity against third-stage larvae may provide a 

window on local IgA responses in sheep.

No attempt has been made to quantify the amount o f IgA in plasma samples. The optical 

density depends upon the amount o f IgA present and the avidity and affinity o f IgA for the 

component of the antigen preparation. As the antigen preparations were complex mixtures, 

any attempt to estimate absolute antibody concentrations would have been tedious and prone 

to error (Sinski et al. 1995). The mean optical density indices of plasma IgA activity did not 

show large differences among the values in the three years.

IgA activity in the serum was dependent upon IgA activity in the abomasum and also the 

number o f adult nematodes present in the abomasums (Sinski et al. 1995a). In addition, there 

was a strong positive relationship between responses to third-stage and to fourth-stage laivae. 

The correlation coefficients ranged from 0.60 to 0.79 (P < 0.001) for parasite-specific IgA, 

which showed that sheep with strong responses to third-stage larvae tended to have stronger 

responses to fourth-stage larvae. Correlated results for the same animals could be due to the 

existence of some shared, or similar, antigens in the different laival stages. Correlations 

between responses do not necessarily imply similar amounts of antibody. Positive conelations
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merely imply that animals that gave higher-than-average responses in the first test gave 

higher-than-average responses in the second test.

So far little work has been done to measure the plasma IgA activity against third-stage larvae 

o f T. circumcincta in naturally infected lambs. . The present result suggests that IgA activity 

against third-stage larvae as a possible marker o f resistance to nematode infection in sheep 

could be used rather than forth-stage laivae but more research is needed. The experimental 

results did not reveal any correlations between faecal egg counts or IgA activity against third- 

stage larvae. In contrast animals with increased IgA activity against fourth-stage larvae had 

lower faecal egg counts (Strain et al. 2002). Therefore IgA activity against fourth-stage laivae 

is probably a better marker o f nematode resistance than IgA activity against third-stage larvae.

Other results reported weak correlations between IgA responses to third (r = - 0.155) and 

fourth-stage (r ~ -0.176) larval extracts and egg counts (Henderson 2002) . The reasons for 

the differences are unknown but may be due to differences in exposure to nematode infection 

or nutrition. Unfortunately the results came from lambs on commercial farms and could not be 

investigated further. However, further trials considering different breeds and age groups o f 

lambs at different periods of years at different environmental conditions should be considered.

There were no significant correlations between weight gain at 24 weeks old lambs and IgA 

activity during 2001, 2002 and 2003. There appear to be no previous published studies that 

have reported the relationship between IgA activity and growth rate.

More research is necessary to examine the relationship between nematode resistance and IgA 

activity against third-stage larvae. Further experiment would require necropsy o f large 

numbers of naturally infected animals.
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6.1 Introduction

The control of nematode infection in ruminants relies mainly on the management of grazing 

and use of anthelmintic agents. However, grazing management systems are often impractical 

and expensive to implement, whereas frequent use o f anthelmintics leads to problems such as 

rising resistance of parasites to drugs and increasing public concern about chemical residues 

in animal products and the environment (Sangster 1999).

Breeding sheep for increased nematode resistance would reduce the cost o f anthelmintics and 

minimise the effect of internal nematodes on production. The difficulty o f including nematode 

resistance in breeding programmes is mainly due to the difficulty of measuring nematode 

resistance itself. Thus, nematode resistance is recorded and included in breeding programmes 

tlnmigh correlated traits; the most widely used being faecal egg count (FEC). This trait is 

costly to measure and can be misleading if  anthelmintics have been given (Dominik 2005).

There are various other indicator traits that may be used to assess genetic resistance. In 

addition to faecal egg counts these indicator traits include immunoglobulin A (IgA) activity, 

eosinophil counts, pepsinogen activity and fructosamine concentration (Stear et al. 

1995d;Stear et al. 1999a;Strain et al. 2002). One approach for the selection of individuals with 

superior resistance to GI nematodes is identification of the genomic loci responsible for the 

genetic variation in host (Dominik 2005). If resistance is under the control of many genes, all 

with small effects (polygenic), it is unlikely that a single genetic marker will be valuable in 

identifying resistant animals. However, if  resistance is due to the effect o f a single gene or the 

actions o f only a few genes of moderate or large effect, a suitable marker is more likely to be 

detectable (Kahn et al. 2003).
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The mapping of Quantitative Trait Loci (QTL) is the first step towards the identification of 

genes and causal polymorphisms for traits o f importance in agriculture and human medicine 

(Seaton et al. 2002).

A number of studies have identified QTLs for resistance to gastrointestinal nematodes in 

sheep (Beh et al. 2002;Coltman et al. 2001a;Diez-Tascon et al. 2002;Janssen et al. 2002). In 

addition, research into nematode resistance has also been undertaken in mouse models and 

serves as a model for internal nematode resistance in sheep (Behnke et al. 2003).

Divergent sheep selection lines resistant or susceptible to nematode parasites were used to 

find that a QTL for resistance was localized in chromosome 3, and mapped to about a 5 cM 

region (Diez-Tascon et al. 2002). A gene located in this region codes for interferon gamma 

(IFN-y) and is a putative candidate gene for resistance to nematode parasites (Diez-Tascon et 

al. 2002). In Australia (Beh et al. 2002) found a QTL for resistance to T. colubriformis in 

Merino sheep on chi'omosome 6.

Statistical analysis in Rhonschaf sheep showed significant associations between faecal egg 

count and the markers OarCp73, DYM Sl and BM1815 (Janssen et al. 2002). The DYA gene 

(belonging to the class lib subregion o f the major histocompatibility complex MHC) is 

closely linked to the microsatellite D YM Sl, and is a possible candidate gene for resistance to 

T. circumcincta and Haemonchtis contortus in sheep (Buitkamp et al. 1996;Janssen et al. 

2002).

The D RBl locus lies within a QTL region on chromosome 20 which is a putative candidate 

due to its role in immunity (Zinkernagel and Doherty 1979). Polymorphisms at the D RBl 

locus o f the MHC Class II are associated with resistance to T. circumcincta in Scottish
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Blackface sheep (Schwaiger et a l ,  1995). In particular 6-month old animals with the G2 allele 

had FEC 58 times lower then animals with the most common (I) allele.

The purpose of this chapter is to firstly identify QTL associated with nematode resistance 

which segregate in Scottish Blackface lambs using the FEC and immunoglobulin A (IgA) 

activity as indicator traits for host resistance and response to infection. Secondly it is to 

demonstrate the relationship between MHC class II DRBl microsatellite polymorphism and 

allele sequences.

6.2 Material and Methods

6.2.1 Animals

A total of 789 straightbred Scottish Blackface lambs, comprising 9 half-sib families ranging 

from 23-141 individuals, were studied over a thi'ee-year period (2001-2003) and all were of 

known parentage. The complete pedigree contained 4847 animals with records dating back to 

1986.

The lambs were born outside and were continually exposed to natural mixed nematode 

infection by grazing. Lambs were kept in two groups each year with the group being 

representative of the field grazed. Husbandry procedures followed standard commercial 

practice.

6.2.2 Parasitological methods

The parasitological methods have been described in Chapter two, section 2.1. Briefly faecal 

egg counts were made according to a modified McMaster method with saturated salt solution. 

Each sample was counted on four separate McMaster chambers and each egg counted
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represented 12.5 eggs per gram. These counts will be referred to as epgl, epg2, epg3 and 

epg4.

6.2.3 ELISA assays

The ELISA methods for detection of IgA activity in third-stage larvae have been described in 

Chapter 2 section 2.2.3.

6.2.4 Molecular biology

The experimental procedures for DNA extraction and cloning and sequencing of MHC Class 

II DRBDmvQ been described in Chapter two.

6.2.5 Genotyping and map construction

All animals were genotyped using microsatellite markers. This typing was carried out by a 

commercial company Agresearch Ltd in New Zealand using DNA supplied by us. Eight 

chromosomes were examined; they were chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. These 

regions were chosen because o f previous reports of QTL for nematode resistance 

(cliromosomes 3 and 20) and lamb performance traits such as growth rate or meat quality. 

Each region contained between 9 and 34 markers. All sires were genotyped for all markers 

across each region. The markers used for specific chi'omosomes have been described in the 

figures 6.1 and 6.2. Offspring were subsequently genotyped for markers which were 

heterozygous in their sire. In total 139 markers were genotyped. Relative marker locations 

were established by creating a linkage map (Davies et al. 2005) for each chromosome using 

Cri-map (Green et al. 1990).
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6.2.6 Data Analysis

Data analysis began with an assessment o f the distribution of the traits. All traits were 

transformed prior to further analysis. FEC measurements were subjected to a log 

transformation /«(trait + x) where x is a constant used to avoid zero values. Typically x = half 

the measurement increment for the trait, however some results are sensitive to the value o f x, 

and the impact of other values was also investigated. IgA data were transformed using a 

cubed root transformation. These transformations successfully reduced the skewness o f these 

traits, resulting in approximately normally distributed data.

For the QTL analysis, the traits analysed were IgA activity, FEC at weeks 16, 20 and 24 for 

Strongyles as well as an average animal effect that is described below. A restricted maximum 

likelihood algorithm, ASREML (Gilmour et al. 1996) fitting an animal repeatability model 

(i.e. ignoring genetic effects), was used to create an average effect for each animal for 

Strongyles FECs. This effect was an average effect across time as FEC was measured at 3 

time points. This animal model also fitted fixed effects; year, management group, sex, type 

(twin or single) and day o f birth (fitted as continuous effect). The average effect was 

calculated from the transformed FEC data.

Heritability estimates were calculated using ASREML (Gilmour et al. 1996). An animal 

model, including all known pedigree relationships (4847 animals), was fitted. This included 

the fixed effects of year, management group, sex, type (twin or single) and day of birth (fitted 

as a continuous effect).

6.2.7 Estimation of QTL Position

QTL analyses were performed using regression techniques implemented by QTL Express 

(Seaton et ai. 2002). Briefly we used a two-step procedure for QTL mapping, by firstly 

determining the Identity-By-Descent (IBD) probabilities at specific chromosomal locations
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from multiple marker data, and secondly fitting a statistical model to the observations and 

IBD coefficients. The probability of inlieriting a particular sire chromosome at a particular 

position was calculated for each offspring at IcM  intervals (Knott et al. 1996). Phenotypes 

were then regressed upon the conditional probability that a particular haplotype is inherited 

from the sire, along each chromosome, fitting fixed effects o f year, sex, litter size, 

management group and day of birth (fitted as a covariate). For each regression an F-ratio of 

the full model including the inheritance probability versus the same model without the 

inheritance probability was calculated across families, the location of the QTL was indicated 

by the largest F-value.

6.2.8 Significance Thresholds

The 5% chi'omosome-wide threshold was determined for each chromosome by permutation 

testing (1000 permutations) (Churchill and Doerge 1994). A 5% genome-wide threshold was 

then obtained by applying the Bonferroni comection (Knott et al. 1996)

P  genome-wide ~  1 “  (1 ~ Pchromosoine-wide)

Where n is the number of chromosomes. The genome-wide threshold is based on the 

assumption that by chance 0.05 significant results would be expected per genome analysis.

6.2.9 Confidence Intervals

For each QTL estimate that was significant at the 5% chromosome-wide level confidence 

inteivals were calculated using the bootstrap method (Visscher et al. 1996). 1000 samples 

with replacement were used to estimate 95% confidence intervals. Bootstrap samples were 

created by sampling with replacement N  individual observations. An observation consists o f a 

marker genotype and phenotype.

106



6.2.10 Size of QTL Effects

The proportion of phenotypic variance explained by the QTL was calculated using:

Phenotypic proportion = 4 (1- MSfun / MSreduced)

Where MS is the residual mean square from the regression analysis (Knott et al. 1996). By 

dividing this phenotypic value by the heritability, estimated using ASREML, The proportion 

o f genetic variance explained by QTL can be calculated. As these results came from a half-sib 

analysis it was necessary to adjust the genetic proportion (GP) value to account for the 

proportional reduction in phenotypic variance expressed within sire families:

Adjusted GP = GP (1 -hW  4)

The resulting value is an estimate of the size of the effect of the QTL, i.e. the proportion of 

total additive genetic variance that is explained by the QTL.

6.3 Results

Table 6.1 demonstrates the microsatellite polymorphism of the second exon o f the MHC- 

class II D RBl, their length and sequences. A total of 19 different alleles were identified and 

17 alleles could be distinguished on the basis o f their length (Table 6.1). Sequence analysis of 

the DNA samples confirmed new sequences o f the exon 2 of the DRB1 gene associated with 

microsatellite lengths of 498bp, 500bp, 512bp, 568bp and 572bp. However, some of the 

microsatellite alleles differ in their length, but appear to have the same sequences in the 

coding region (E&F), (I&K), (N&O) and (T, U and V). While a number of alleles have the 

same length of microsatellite but have different sequences in exon 2 (G1&G2) and (H1&H2).
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Table 6.1 Sequences, Gene bank accession number and size of microsatellite alleles at DRB 

locus in naturally infected Scottish Black face lamb.

Microsatellite allele Size (bp) Sequence(Gene bank 
accession number)

A 416 abO17231

B 476 abO17228

C 480 ab017214

D 484 U00216

E 498 y035-l ^

F 500 y035-l

G l 512 y082-5 *

G2 512 abO17206

HI 522 af036562

H2 522 U00206

I 526 y 10248

K 534 y 10248

L 546 abl7230

M 556 ab 17205

N 568 y072-2 *

O 572 y072-2

T 800 ab01720

U 800 ab01720

V 800 ab01720

* New sequences identified
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Table 6.2 represents the Summary statistics for the traits of FEC and IgA activity in Strongyle 

FECs ranged from 0 to 5325. Strongyle FECs were considerably larger in August than in 

both September and October. IgA activity ranged from 0 to 1.24 with a standard deviation of 

0.19.

Table 6.2 Summary statistics o f the FEC and IgA activity

Trait Age
(weeks)

Number of 
observation

Mean Maxi.''^ Transformed
means

Transformed
standard
deviation

IgA
Activity

24 757 0.13 1.24 0.42 0.21

Strongyle
FEC

August

16 740 256 5325 4.85 1.28

Strongyle
FEC

September

20 721 288 2550 5.19 1.12

Strongyle
FEC

October

24 741 236 1700 5.12 1.02

The minimum value for each trait was zero

Heritability estimates for all traits are shown in Table 6.3. They ranged fromO.ll for epg in 

September to 0.50 for epg in August. The FEC heritability estimates are somewhat varied, as 

heritability estimates calculated with a restricted maximum likelihood algorithm are sensitive 

to data transformations. IgA activity appears to have a low heritability o f 0.18 in this study. 

However there is a strong maternal effect.
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Table 6.3 Heritabilities of FEC and IgA activity

Trait Heritability (h^) Standard Error

Strongyle FEC August 0.50 0.12

Strongyle FEC September 0.11 0.07

Strongyle FEC October 0.21 0.09

Strongyle Average Animal Effect 0.23 0.09

IgA Activity 0.18 0.09

Significant QTL are shown in Table 6.4. The QTL analysis found putative QTL on 

clu'omosomes 3 and 20. These were associated with both Strongyle FEC traits and IgA. 

Clu’oinosome 3 indicated a QTL associated with Strongyle FEC average animal effect at 150 

cM. This QTL was significant at the 5% chromosome-wide threshold (Table 6.3).

Table 6.4 QTL significant at 5% chromosome-wide significance level o f FEC and IgA 
activity

Trait Chromosome Position
(cM)

F
ratio

5%
cliromoso
me-wide

Tlu'cshold

5%
Genome-

wide
Tlu’eshold

95%
Confidence

Intei-val

IgA
Activity

3 118 2.48 Z48 2.96 36-189.5

Strongyle
Average

3 150 2.59 2.44 2.96 0-205

Animal
Effeet
Strongyle
FEC
October

20 10 2.64 2.44 2.96 0-59

IgA
Activity

20 40 2.90 2.45 2.96 1-65

The QTL accounted for 37% of the genetic variance (Table 6.5).
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Table 6.5 Proportions of variation attributable to QTL effect of FEC and IgA activity

Trait Clu'omosome Heritability Phenotypic
proportion

Genetic
proportion

Strongyle 
FEC October

3 0.21 0.08 0.37

Strongyle 
Average 
Animal Effect

20 0.23 0.08 0.31

IgA Activity 20 0.18 0.10 0.51

IgA Activity 3 0.18 0.08 0.41

The position 118cM on chi'omosome 3 (Fig.6.1) had a significant QTL for IgA activity at the 

5% chi'omosome wide thi'eshold (Table 6.4). The size o f the QTL effect was 41% (Table 6.3). 

On chromosome 20 a QTL was observed for Strongyle FEC October at lOcM. This QTL 

occurred at or the inverted MHC region and it aceounted for 31% o f the genetic variance. 

Indications of a QTL were obseiwed for IgA activity at 40cM on the same chromosome (Fig. 

6.2). This QTL was significant at the 5% chromosome-wide threshold (Table 6.4) and the size 

of the QTL effect was 0.51 (Table 6.5). This QTL is in the region that contains the classical 

MHC loci.

I l l



.E1
0Û

Ï
Pu

(U
B
g0

1
_o
'a,
3
IOcj
U
a
\d
ob
PÛ

F BM2830

BMS772

BM6433
BMS124
BM8230

TEXAN1

CSRD11

: KD103 
: BMC100

293

ILSTS42
BM827

BMS256

Li.

BMS710
CO in

c\i
in in

o
o

(N



i
â  

I

Ph

0<N
1 
g

I
<4 -1O

o,
3

fO
J

I
Gx
(N
vd
ob

Pu

Où

Oû

C/ü

MCMA23

HH56

BM1818

BP34

TGLA38
CSRD22

OLADRB 
DRB1

BM1815

CP73 

MCMA36

DYA

INRA132

co
lO
cvi

C\J m
o



6.4 Discussion

In this study tlii'ee new sequences have been identified at the MHC class II DRBI gene of 

Scottish Blackface sheep. The sequencing o f the MHC class II DRBI alleles is an essential 

step for understanding the genetic basis o f resistance to gastrointestinal nematode infection 

and other diseases that affect sheep, as MHC polymorphism has been related to genetic 

resistance to T. circumcincta (Schwaiger et al. 1995). The new sequences in this chapter are 

Y035-1, Y082-5 and Y072-2, which were associated with microsatellite lengths of 498bp- 

500bp, 512bp and 568bp-572bp respectively.

There was evidence for QTL on 2 clu'omosomes for various FEC traits and IgA activity. The 

QTL identified on these two clnomosomes are close to regions linked to immune function. 

The QTL on chromosome 3 associated with IgA activity is very close to that for Interferon 

gamma (IFN-y). This could be a possible candidate gene for nematode resistance. IFN-y has 

an impoi-tant role in the regulation o f the immune response to pathogens (Urban et al. 

1996;Wakelin 1996). IFN-y is a cytokine which is secreted by Thl immune cells. IFN-y 

activates macrophages which then become more phagocytic i.e. they are more capable of 

killing intracellular pathogens and have increased ability to present antigens. Previous 

evidence for QTL associated with parasitic infection on chromosome 3 in the region o f IFN-y 

has been reported in several studies. Paterson et al (2001) suggested a QTL in the interval 

IFN-y -  BMS1617 for a multispecies parasite challenge in Romney sheep divergent selection 

lines. Evidence for a QTL associated with T. circumcincta was reported in Soay sheep, again 

close to IFN-y (Coltman et al. 2001a) and a QTL for Trichostrongylus colubriformis was 

observed in Merino sheep divergent selection lines in the IFN-y region (Beh et al. 2002). 

These QTL are very close in position to the QTL identified in this study and they come from 

diverse breeds that were challenged with different species of nematodes. QTL that occur in
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different breeds and confer resistance to multiple species o f parasites are likely to be of 

widespread use in animal breeding.

In sheep, the Major Histocompatibility Complex (MHC) is found in 2 regions of chromosome 

20. The QTL found on chromosome 20 in this study are very close to the two MHC regions. 

These regions could contain possible candidate genes as the MHC consists o f a group of 

closely linked genes involved in antigen presentation to the vertebrate immune system. The 

primary immunological function o f MHC molecules is to bind and ‘present’ antigenic 

peptides on the surfaces of cells for recognition by the antigen-specific T-cell receptors of 

lymphocytes. The MHC region has been suggested as a region for putative QTL in previous 

studies (Buitkamp et al. 1996;Schwaiger et al. 1995;Stear et al. 1996a).

Significant associations between microsatellite polymorphism in D RBI and FEC have also 

been observed in primitive Heather head sheep (Charon et al. 2002). Thi'ee QTL were 

reported in a Rlionschaf flock for haematocrit level (CP73), IgL level (DYM Sl) and FEC 

(BM1815) after an artificial challenge with K  contortus (Janssen et al. 2002). This result for a 

similar clnomosomal region from a different breed with a different parasite and different trait 

measurements supports the view that one or more QTL for nematode resistance exist within 

or around the ovine MHC.

Sizes of the QTL effects calculated in this study are very large for some of the traits. This may 

be due to the fact that the heritability estimates are quite low and also are very sensitive to the 

data transformation used; therefore the estimate o f the proportion of genetic variability may 

be less precise than the phenotypic estimate. As it was necessary to investigate the effects of 

the transformations on the heritability estimates, the effect on QTL locations was also 

considered. However, the regression techniques used in QTL mapping were not sensitive to
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the transformation. In particular, the positions o f the QTL were essentially identical 

irrespective of the transformation used, and the F ratio was only slightly affected. The 

relatively imprecise estimate o f the genetic variance could have led us to overestimate the 

proportion of genetic variance accounted for by the QTL.

In conclusion, this study has provided evidence for QTL linked to parasitic infection and 

immune response on two chi'omosomes. These chiomosomes have potential candidate 

genes/regions that have been previously shown to influence immune function. The results of 

this study confirm that parasite resistance is under genetic control and provides results that 

could help to select sheep for increased resistance to parasitic infection.
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CHAPTER SEVEN

GENERAL DISCUSSION
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Nematode infection threatens the health and welfare of livestock and compromises the 

efficiency o f livestock production. Nematodes are possibly the major disease challenge 

facing ruminants (Perry and Randolph 1999). They are ubiquitous and have a major impact on 

all production areas (Urquhait et al. 1996). Essentially all grazing animals are infected.

Many different species of nematodes are pathogenic and they differ in their natural history, 

epidemiology and pathology (Urquhart et al. 1996). The mixture o f species differs among 

different climates and much unnecessary confusion has been caused by the incautious 

extrapolation o f results from one production system to another. In the UK, the dominant 

nematode is Teladorsagia circumcincta but most animals are infected with a mixture of 

species, including Nematodirus spp., Cooperia spp. and Trichostrongylus spp.

Nematodes cause disease but perhaps their major economic impact is the reduction in growth 

o f young lambs (Coop et al. 1977). The severity o f disease and the loss of production depend 

upon the intensity of infection, immunity o f the host and its relative nutritional status (Coop 

and Kyriazakis 2000;Stear et al. 2003). The intensity o f infection is influenced by the weather 

and management factors such as stocking rate, frequency of anthelmintic treatment and the 

number of times animals are moved to less contaminated pastures(Coop and Kyriazakis 

2000). Host immunity is strongly influenced by genetic factors but also depends upon age, 

nutrition and history o f exposui'e. Relative nutritional status depends not only on past and 

current diet, especially protein intake (Coop and Kyriazakis 2000) but also upon the intensity 

o f infection.

Efficient and healthy livestock production demands the control of nematode infection. 

Current control measures rely upon anthelmintic treatment but are tlii'eatened by tbe 

widespread evolution of drug-resistance in parasite populations (Bartley et al. 2004). A
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variety of potential control methods have been advocated including vaccination (Knox et al. 

2003), supplementary feeding (Coop and Kyriazakis 2000), and biological methods such as 

the use o f nematophagous fungi and species o f grass that prevent nematode infection (Waller 

and Faedo 1996). Selective breeding o f sheep for resistance to nematode production is an 

attractive, sustainable method o f nematode control (Bisset et al. 2001;Eady et al. 2002;Stear et 

al. 2001a).

The exploitation of host genetic variation using faecal egg count (FEC) in commercial sheep 

breeding programmes, is a well-established breeding practice in New Zealand (‘WorrmFEC’) 

and Australia (‘Nemesis’). Research in the UK has shown that genetic correlations between 

the faecal egg counts arising from different nematode taxa are close to 0.5 (Stear, personal 

communication). A positive genetic correlation o f 0.5 suggests that selection for resistance to 

nematodes confers resistance to other species, not necessarily present at the time of sampling. 

Also, in the periparturient ewe, FEC is moderately heritable (Bishop and Stear 2001b;Morris 

1998;Woolaston 1992) and genetically correlated with resistance in the lamb (Morris 1998). 

This means that additional benefits accrue from reduced pasture contamination and decreased 

larval challenge with indirect benefits on health and performance (Bishop and Stear 2003).

In Australia, the different mix of nematodes means that FEC are a better marker of nematode 

resistance than in the UK. Egg counts show a linear relationship with the number of adult 

nematodes in Australian conditions (Roberts and Swan 1981). A similar linear relationship is 

assumed to exist in New Zealand but detailed information is lacking. The relationship is more 

complex in Scottish lambs (Bishop and Stear 2000b). Lambs infected with high numbers of 

adult nematodes can have lower egg counts than more lightly infected contemporaries (Stear 

et al. 1998). One consequence o f this complex relationship in Scottish sheep is that a selection 

scheme based solely on egg counts will make slower progress than comparable schemes
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elsewhere. Even so, alternatives to FEC are routinely used in New Zealand (parasite specific 

antibody responses) and in Australia (haematocrit values).

There are several markers for nematode resistance in naturally infected Scottish sheep that 

may offer greater responses to selection. They also appear cheaper and more convenient for 

farmers than egg counts. These markers are both phenotypic and genetic. The phenotypic 

markers include plasma IgA activity (Strain et ai. 2002), pepsinogenaemia (Stear et al. 

1999a), fructosamine concentrations in the plasma (Stear et al. 2001b) and eosinophilia (Stear 

et al. 2002a). The genetic markers include the major histocompatibility complex (Schwaiger 

et al. 1995;Stear et al. 2005b) and the interferon gamma region (Coltman et al. 2001c).

Phenotypic indicators have been investigated on a number of occasions and consistently show 

moderate to strong heritabilities in commercial conditions. For example, IgG specific to 

Trichostrongylus colubriformis (Douch et al. 1995b); plasma IgA activity against larval stages 

o f T. circumcincta (Strain et al. 2002), pepsinogenaemia (Stear et al. 1999a), fructosamine 

concentrations in the plasma (Stear et al. 2001c) and eosinophilia (Stear et al. 2002a). (Davies 

et al. 2005) reported that these indicator traits were genetically correlated with worm size and 

fecundity.

Quantitative trait loci (QTL) for nematode resistance have been detected in New Zealand, 

Australia, Kenya, US and Europe, including UK, France, Italy and Spain. QTL for FEC occur 

on chi'omosome 1 for T, colubriformis (Beb et al. 2002;Diez-Tascon et al. 2002), chromosome 

3 for T. colubriformis (Beh et al. 2002), and mixed natural infection in New Zealand 

(Paterson and Banks 2001), and the UK (Coltman et al. 2001b;Davies et al. 2005), 

chromosome 6 for T. colubriformis (Beh et al. 2002), cln^omosome 14 Nematodirus (Davies et
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al. 2005), and chromosome 20 (mixed natural infection in the UK (Buitkamp et al. 

1996;Schwaiger et al. 1995;Stear et al. 1996a;Stear et al. 2005b).

In summary, genetic variation in many aspects o f host resistance to nematodes is well 

documented. Several phenotypic markers exist. There has been considerable success in QTL 

detection, and two QTL on chromosomes 3 and 20 have been confirmed in several 

independent studies. All these traits can be assayed from a single blood sample. If  the blood 

sample taken is also used for further genetic and physiological screening (e.g. for resistance to 

scrapie, and potentially, for resistance to footrot), then multiple testing o f blood samples may 

well prove to be the most economically efficient route to assess genetic resistance to several 

diseases.

The puipose of this thesis was to examine several of these markers in more detail. Chapters 3 

and 4 examined faecal egg counts. Chapter 3 looked at the repeatability o f egg counts from 

the same faecal sample and from samples taken at monthly intervals. The replicate counts 

from the same sample gave high repeatabilities but the samples taken four weeks apart were 

much more weakly correlated. Therefore multiple samples will improve the estimates of 

genetic merit but multiple samples may be difficult to obtain under commercial conditions.

Faecal egg counts generally but not always followed a negative binomial distribution. The 

results from chapter 4 suggested that the deviation from the negative binomial was a 

consequence of multiple species contributing to the egg count. Understanding the distribution 

of egg counts is important for parametric analyses that require specific known distributions 

The distribution of mean egg counts across populations was similar to a gamma distribution. 

Gamma distributions are overdispersed and this distribution indicates that most populations 

have relatively low mean counts but a small proportion of populations have relatively high

121



egg counts. Modem selection schemes will involve multiple farms and again knowledge of 

the mideiiying distribution is required for meaningful data analyses.

Chapter 5 looked at the distribution o f IgA activity against third-stage laiwae of T. 

circumcincta. Published results for IgA activity have mainly dealt with fourth-stage lai-vae. 

To obtain fourth-stage laivae it is necessary to sacrifice lambs and this is prohibitively 

expensive for large scale commercial testing. Third-stage larvae offer a much simpler 

alternative and the response to third and fourth-stage larvae are correlated (Sinski et al. 

1995b). The results showed that the distribution of IgA activity was overdispersed but more 

work is necessary to determine the best-fitting distribution. Log-transformation offers a 

simple method for data analysis. There was no phenotypic relationship between IgA activity 

and faecal egg counts or growth rate. However, faecal egg counts are not a gold standard for 

parasite resistance as they show a complex relationship with worm number and fecundity 

(Bishop and Stear 2000b). More research is necessary to examine the relationship between 

nematode resistance and IgA activity against third-stage larvae. Perhaps the most suitable 

experiment would require necropsy o f large numbers of naturally infected sheep.

The final chapter examined the DRBI locus o f the major histocompatibility complex which 

has already been shown to be associated with resistance to nematode infection (Paterson et al. 

1998;Schwaiger et al. 1995). The results showed that there were at least 14 alleles in the 

Scottish Blackface population. To our knowledge this is the first comprehensive description 

of variation at this important locus in any livestock population. Further research is now 

needed to determine the full length sequences o f these alleles and to compare variation with 

other populations such as the human.
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Linkage analysis demonstrated a relationship between IgA activity and a region on 

clii'omosome 20 close to DRBI. There was also a relationship between faecal egg count and a 

region on cliromosome 20 tbat contained the other inverted part of the major 

histocompatibility complex. More research is needed to determine whether these regions 

contain the same or two distinct QTL. Further research should concentrate on fine-mapping 

these gene(s).

In conclusion, this thesis has examined some of the determinants of resistance to nematode 

infection at both the genetic and phenotypic levels. Selective breeding is already taking place 

on a small number o f commercial farms. The research reported here will help to advance that 

process by providing better understanding o f the genetic and phenotypic markers. The work 

detailed in this thesis has further increased our understanding of the complex host/parasite 

relationship, and has confirmed that selective breeding, using the various phenotypic and 

genetic markers studied, is possible.
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This SAS program provides means, variances and k values for the distribution of faecal egg 
counts.

filename augSOOl dde
'excel|L :\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepgl30801.xls!r3cl :r242clF;

data onea;
infile aug2001 missover;
input iamb $ epgl epg2 epg3 epg4 nem l nem2 neni3 nem4 elm $ mon $; 
if  epgl = . then delete; 
epgaug = sum(epgi,epg2,epg3,epg4)/4; 

epgaugct =(4*epgaug)/50; 
if  mon = 'mon ' then mon = 'F; else mon ='0'; 
if  eim = 'eim ' then eim = '1'; else eim -O '; 

run;

proc univariate plot normal; 
var epgaug ;

proc genmod; 
model epgaugct =/ dist = nb 

link = log Irci;
run;

filename sep2001 dde
'excel IL : \Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepg100901 .xls ! r3 c 1 :r221 c 11 ';

data oneb;
infile sep2001 missover;
input lamb $ epgl epg2 epg3 epg4 nem l nem2 nem3 nem4 eim $ mon $; 
if epgl = . then delete; 
epgsep = sum(epgl,epg2,epg3,epg4)/4; 
if mon = 'mon ' then mon = 'F; else mon -O '; 
if  eim = 'eim ' then eim = 'F ; else eim -O '; 

epgsepct =(4’̂ epgsep)/50; 
proc univariate plot normal; 
var epgsep;

proc geimiod; 
model epgsepct =/ dist = nb 

link = log Irci;
run;

filename oct2001 dde
'excel|L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepg081001 .xls ! r3c 1 :r23 Ic lF ;

data onec;
infile oct2001 missover;
input lamb $ epgl epg2 epg3 epg4 nem l neni2 nem3 nem4 eim $ mon $;
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if epgl = . then delete; 
epgoct = sum(epgl,epg2,epg3,epg4)/4; 
if  mon = 'mon ' then mon = '1'; else mon -O '; 
if  eim = 'eim ' then eim = T ; else eim -O '; 
epgoctct =(4*epgoct)/50; 

run;

proc univariate plot normal; 
var epgoct;

proc genmod;
model epgoctct =/ dist = nb 

link = log Irci;
run;

filename aug2002 dde
'excel|L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepgl30802.xls!r3cl:r252clF;

data twoa;
infile aug2002 missover;
input lamb $ epgl epg2 epg3 epg4 nem l neni2 nem3 nem4 eim $ mon $; 
if  epgl = . then delete; 
epgaug = sum(epgl,epg2,epg3,epg4)/4; 

epgaugct =(4*epgaug)/50; 
if  mon ^  'mon ' then mon = '1'; else mon -O '; 
if  eim = 'eim ' then eim = '!'; else eim -O '; 

run;

proc univariate plot normal; 
var epgaug ;

proc genmod; 
model epgaugct =/ dist = nb 

link = log Irci;
run;

filename sep2002 dde
'excel|L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepg090902.xls!r3cl :r258cl 1';

data twob;
infile sep2002 missover;
input lamb $ epgl epg2 epg3 epg4 nem l nem2 nem3 nem4 eim $ mon $; 
if  epgl =" , then delete; 
epgsep = sum(epgl,epg2,epg3,epg4)/4; 
if  mon = 'mon ' then mon = 'F; else mon -O '; 
if  eim = 'eim ' then eim = 'F; else eim -  O'; 

epgsepct =(4*epgsep)/50; 
proc univariate plot normal; 
var epgsep;

126



proc gemnod; 
model epgsepct =/ dist = nb 

link = log Irci;
run;

filename oct2002 dde
'excel|L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepg071002.xls !r3 cl :r264cl 1';

data twoc;
infile oct2002 missover;
input lamb $ epgl epg2 epg3 epg4 nem l nem2 nem3 neni4 eim $ mon $; 
if  epgl = . then delete; 
epgoct = sum(epgl,epg2,epg3,epg4)/4; 
if  mon = 'mon ' then mon = T '; else mon -  O’; 
if  eim = 'eim ' then eim = '1'; else eim -  O'; 
epgoctct =(4*epgoct)/50; 

run;

proc univariate plot normal; 
var epgoct;

proc genmod; 
model epgoctct =! dist = nb 

link = log Irci;
run;

filename aug2003 dde
'exceljL:\Clinicai Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepgl80803.xls!r3cl:r256cl 1';

data tlii'eea;
infile aug2003 missover;
input lamb $ epgl epg2 epg3 epg4 nem l nem2 nem3 nem4 eim $ mon $; 
if  epgl = . then delete; 
epgaug = sum(epgl,epg2,epg3,epg4)/4; 
epgaugct ==(4*epgaug)/50; 
if  moil = 'mon ' then mon -  '1'; else mon -O '; 
if  eim = 'eim ' then eim = T ; else eim -  O'; 

run;

proc univariate plot normal; 
var epgaug ;

proc genmod; 
model epgaugct =/ dist ^  nb 

link = log Irci;
run;

filename sep2003 dde
'excel[L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepgl50903.xls!r3cl :r259cl 1';
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data tlii'eeb;
infile sep2003 missover;
input lamb $ epgl epg2 epg3 epg4 neml nem2 nem3 nem4 eim $ mon $; 
if epgl = . then delete; 
epgsep = sum(epgl,epg2,epg3,epg4)/4; 
if mon = 'mon ' then mon '1'; else mon -O '; 
if  eim = 'eim ' then eim — '1'; else eim -  O'; 

epgsepct =(4*epgsep)/50;

proc univariate plot normal; 
var epgsep;

proc genmod; 
model epgsepct =/ dist = nb 

link == log Irci;
run;

filename oct2003 dde
'excel|L:\Clinical Studies\FAMP\Teladorsagia\EC\Egg 
counts\bbepg180803 .xls !iT c 1 :r25 5c 11 ' ;

data thi'eec;
infile oct2003 missover;
input lamb $ epgl epg2 epg3 epg4 nem l nem2 nem3 nem4 eim $ mon $; 
if  epgl = . then delete; 
epgoct = sum(epgl,epg2,epg3,epg4)/4; 
if  mon = 'mon ' then mon = 'F; else mon -O '; 
if  eim = 'eim ' then eim — 'F; else eim — O'; 
epgoctct =(4*epgoct)/50; 

run;

proc univariate plot normal; 
var epgoct;

proc genmod; 
model epgoctct =/ dist = nb 

link = log Irci;
run:
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