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Abstract

Inflammation is the body’s response to injury and infection, and is aimed at 

eradicating the threat and repairing the tissue through the activation of the innate 

and adaptive immune systems. The innate inflammatory response is triggered by a 

surveillance network of broadly specific receptors. It is immediate and pre­

programmed, and involves the activation of phagocytic cells and the release of 

soluble anti-microbial mediators to eradicate infection as quickly as possible. It can 

also promote the subsequent adaptive response. The adaptive inflammatory 

response is regulated by antigen-specific T helper (Th) lymphocytes, and has 

memory to provide immunity against repeat Infection. These two arms of the 

immune system are often activated concurrently and communicate through the 

release of cytokines and chemokines to co-ordinate and regulate an appropriate 

response.

Th cells differentiate into various effector cell types and co-ordinate different 

responses, often directing innate immune cells to carry out effector functions. Th1 

cells produce IFNy and direct responses against intracellular pathogens through 

macrophage activation. Th2 cells produce ÎL-4, IL-5 and lL-13 and are important in 

resistance to parasites through mast cell and eosinophil activation. Th17 cells 

produce IL-17 and are important in sepsis through neutrophil activation. 

Dysregulation of these responses often contributes to the development of disease. 

Autoimmune diseases are characterised by Th1 and/or Th17 inflammation, whilst 

dysregulated Th2 responses result in allergy and asthma. Inflammatory diseases 

are often chronic and debilitating, and current therapies are either ineffective or 

have significant side-effects, so novel inflammatory mechanisms and therapeutic 

targets are required.

ST2L is a member of the IL-1 receptor family that was identified as a surface 

marker for Th2 cells, and is associated with Th2 cell activation and functions, 

although its precise role is unknown. IL-33 is a novel member of the IL-1 cytokine 

family, and has recently been identified as a ligand for ST2L. It promotes Th2 

cytokine release and eosinophil accumulation in  vivo. sST2 is a soluble form of 

ST2L that has broad immunosuppressive activity, although the mechanism is 

unknown. Therefore IL-33 and ST2 are potentially important inflammatory 

mediators, and in this thesis I aimed to demonstrate the role of IL-33 and ST2 in



innate and adaptive inflammation, using murine models of allergic airways disease 

and autoimmune arthritis.

I have shown that IL-33 administered directly to the airways provokes an innate 

Th2 type response in the lung with many characteristics in common with allergic 

airways disease. There was increased production of Th2 cytokines, except IL-4, 

chemokines and eosinophilic inflammation. ST2 gene knockout (ST2'^') mice 

demonstrated this response was dependent on ST2, and SCID mice demonstrated 

that whilst non-lymphoid cells were sufficient to initiate a response, lymphoid cells 

enhanced it. IL-33 exacerbated the effector phase of Th2 allergic airways 

inflammation, with increased eosinophils, Th2 cytokines and chemokines in the 

airway, and increased lymph node responses. ST2^ mice had reduced 

inflammation in the airway, despite normal lymph node responses, suggesting the 

role of IL-33 and ST2 is more important in the tissues. Pilot data also suggested 

that IL-33 exacerbates Th1/Th17 autoimmune collagen-induced arthritis (CIA), 

with increased disease severity and lymph node responses. ST2^ mice had 

reduced disease severity, again despite normal lymph node responses.

in summary, I have demonstrated that in the airway IL-33 is sufficient to induce a 

Th2 type innate response with pathological features similar to asthma. I have also 

shown that IL-33 can exacerbate Th2 mediated airway inflammation, and in 

addition, Th1/Th17 mediated arthritis. Thus it has general pro-inflammatory 

actions, and warrants further investigation to elucidate the mechanisms involved 

and fulfil its potential as a target for future therapeutic intervention.
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1.1. Inflammation In health and disease

Inflammation is the response of the body tissues to any insult, such as infection, 

toxins, trauma, or ischaemia. It is a complex process involving activation of the 

resident tissue cells and recruitment of immune cells from the circulation, co­

ordinated by the release of cytokines and chemokines, with resulting disruption to 

tissue structure and function. The process of inflammation is divided into distinct 

phases. The initial innate response is immediate and antigen non-specific, whilst 

the continued adaptive response is antigen-specific and has memory. Resolution 

of inflammation then aims to restore normal tissue structure and function. There is 

much overlap in these phases, and the same cells and mediators can have 

different roles in each phase. The innate and adaptive immune systems 

communicate throughout to direct the appropriate response to the insult.

The inflammatory process requires tight regulation to ensure an appropriate level 

of response, and then complete resolution. However, when the regulatory 

mechanisms break down chronic inflammation can arise, which leads to 

permanent tissue damage and dysfunction. Many human diseases are the result 

of chronic inflammation, contributing to much morbidity and mortality. Sensitisation 

to an exogenous antigen can result in allergic inflammation, typified by atopy and 

asthma. The immune system can also make inappropriate responses to self 

antigens, resulting in autoimmune disease, such as rheumatoid arthritis (RA). The 

underlying mechanisms of the dysregulation are not completely understood, and 

are likely to be multiple, which is reflected in the lack of effective treatments for 

many diseases. New mechanisms and targets for drug therapy are constantly 

being sought.

Interleukin 33 (IL-33) is a novel cytokine (1) with the potential to play an important 

role in inflammation. In this introduction I will discuss some of the key mechanisms 

of innate and adaptive inflammation, with particular reference to asthma and RA, 

and the possible role of IL-33 and its receptor, encoded by the ST2  gene. This will 

identify this interaction as an important target for further study and potential new 

therapies.
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1.2. Innate inflammation

The importance of the innate Immune system is underlined by the fact that only 

vertebrates have adaptive immunity, so most organisms survive effectively with 

only innate immunity (2). The innate response is immediate and efficient, but has 

no facility for memory. It was originally thought to be non-specific, though it is now 

recognised that a network of broadly-specific receptors is in place to activate the 

inflammatory response. Once activated, the innate response aims to eradicate the 

stimulus (eg an invading organism) quickly and effectively, and if required activate 

and shape the adaptive immune system.

1.2.1. Epithelial defences
The epithelial surfaces of the skin, lung and gut are particularly vulnerable as they 

interface with a constantly changing environment. Epithelial cells are bound 

together by tight junctions to prevent micro-organisms passing between them, thus 

acting as a physical barrier. They are continually turning over, particularly in the 

skin and gut, and breaches are quickly repaired. In the lung, soluble microbicidal 

mediators, such as immunoglobulin A (IgA), enzymes, defensins, surfactant and 

complement are present in the mucus lining layer, which also serves to trap 

particles and micro-organisms and transport them out of the lung via mucociliary 

clearance. As the epithelial surfaces are constantly presented with potential 

threats, and therefore potential immune activation, the regulatory mechanisms are 

particularly tight, and often specific to the site. For instance, alveolar macrophages 

are constitutively suppressed by epithelial bound transforming growth factor p 

(TGF(3)(3), and the gut is able to distinguish between commensal and pathogenic 

bacteria, although the mechanisms for this are less clear.

1.2.2. Sensing and signalling danger
One of the crucial functions the innate immune system must perform is to 

determine when and how to initiate a response. The innate immune system must 

distinguish between self and non-self (4) and/or between danger and non-danger 

(5), through a ubiquitous network of receptors. Non-danger signals, such as self­

antigens, and non-pathogenic commensal bacteria at epithelial surfaces, result in 

tolerance, whilst danger signals from invasion or tissue damage result in 

inflammation. Regulation is tight, particularly at epithelial surfaces, to prevent 

constant activation and tissue damage.
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Sensing of pathogens relies on several principles. Microbes express a number of 

molecules and motifs which are highly conserved due to their critical roles in 

survival. These are termed pathogen associated molecular patterns (PAMPs), 

although they are not strictly limited to, nor do they define, pathogens. A 

complementary set of receptors known as pattern recognition receptors (PRRs) 

are encoded in the germline of organisms, which can bind to PAMPs and initiate 

immune responses. Their specificity is predetermined and often broad, and they 

do not undergo any gene rearrangement or somatic mutation. They fall broadly 

into two categories, those that are membrane associated, and those that are 

cytosolic.

1.2.2.1. ToINike receptors  -  membrane associated PRRs

Toll is a protein involved in dorso-ventral organisation and defence against fungi in 

the fruit fly {D rosoph ila  m elanogaster). Homologous toll-like receptors (TLRs) are 

members of the pro-inflammatory T0II/IL-IR (TIR) family (6)(see section 1.6.2.), 

and have been identified as PRRs in many species, particularly humans and mice 

(7). Ligand binding initiates signalling leading to the activation of NFkB and pro- 

inflammatory gene expression, or type 1 interferon, regulated by TIR adaptor 

proteins (8). They are expressed on a wide variety of cells involved in both innate 

and adaptive immunity, and through modulation of cytokine, chemokine, and 

receptor expression can initiate innate responses (7) and modulate adaptive 

responses (9). Signalling through TLRs can also contribute to human disease (10). 

For instance, immunosuppression in sepsis can arise from TLR2 and TLR4 cross 

tolerance (11), and host DNA in immune complexes may be recognised by TLR9 

and contribute to autoantibody production (12). TLR4 polymorphisms can result in 

hyporesponsiveness to lipopolysaccharide (LPS)(13), which increases 

susceptibility to Gram negative sepsis (14), but protects against atherosclerosis 

(15). Polymorphisms of TLR2 increases susceptibility to Gram positive sepsis (16).

1.2.2.2. NOD-like receptors  -  cytosolic PRRs

Many bacteria and viruses can invade the cytosol directly, thus bypassing 

detection by TLRs, and necessitating a different set of receptors to detect their 

presence and initiate responses. The NOD-like receptor (NLR) family includes 

over 20 members, and has some similarities with the TLR family (17). They all 

have an LRR domain for MAMP recognition, a nucleotide-binding oligomerisation 

domain (NOD), and a third, variable domain for signalling. Of this large family a
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few have been found to have roles in specific diseases. NOD1 and N0D2 

recognise components of peptidoglycan, and activate NFkB. Mutations in N0D1 

are associated with asthma (18), and NODI and N0D2 mutations are associated 

with inflammatory bowel disease (19,20). NOD-LRR and pyrin containing proteins 

(NALPs) recognise a number of bacterial and viral PAMPs, and activate the 

inflammasome caspases 1 and 5 to increase processing and release of the pro- 

inflammatory cytokines IL-1(S and IL-18. Mutations in NALP-3 result in IL-1- 

dependent auto-inflammatory disease, such as Muckle-Wells syndrome (21), 

characterised by recurrent systemic inflammation in the absence of infection.

1.2.3. innate effector mechanisms
Virtually all cells express PRRs, in particular TLRs, and so may be directly 

activated by sensing pathogens or danger. Once danger has been recognised, 

cells of the innate immune system have a number of effector mechanisms 

designed to neutralise and eradicate toxins and micro-organisms, and to shape 

the subsequent adaptive immune response. Whilst a complete review is beyond 

the scope of this introduction, some of the key cells and functions are highlighted 

in table 1.1. In addition, non-immune cells, such as endothelial cells, epithelial 

cells, bronchial smooth muscle cells and fibroblasts express TLRs and cytokine 

receptors, and can be activated to release cytokines and chemokines. Endothelial 

cells can also upregulate adhesion molecules, and epithelial cells produce anti­

microbial proteins such as defensins and surfactant in the lung.
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CELL TYPE MECHANISMS EFFECTS
NEUTROPHIL Phagocytosis

Granule proteins and enzymes 
Reactive oxygen and nitrogen species

Microbial killing

Granule proteins and enzymes Host tissue damage
Cytokines (especially IL-12) Thi cell differentiation
Chemokines Cell migration and activation

MACROPHAGE Phagocytosis
Reactive oxygen and nitrogen species

Microbial killing 
Removal of neutrophils

Chemokines Cell migration and activation
Cytokines
(TNFa, IL-13 and many others)

Cell activation 
T cell differentiation

Antigen presentation (MHCII) T cell activation
EOSINOPHIL Granule proteins and enzymes Parasite killing 

Host tissue damage
Chemokines Cell migration and activation
Cytokines (especially IL-4) Cell activation 

Th2 cell differentiation
Antigen presentation T cell activation

MAST CELL Degranulation (FceRI, FcyRIII, TLRs) Rapid release of preformed mediators

Fiistamine 
Lipid mediators

Increased blood flow and vascular 
permeability
Increased adhesion molecules 
Th2 differentiation 
Bronchoconstriction 
Increased gut motility

Proteases Matrix degradation 
Host tissue damage

Defensins Microbial killing
Chemokines Cell migration and activation
Cytokines
(TNFa, IL-13, IL-4 and others)

Cell activation 
T cell differentiation 
DC maturation

MYELOID DC Phagocytosis Antigen sensing and processing
Antigen presentation (MHCII) 
Costimulatory molecules

T cell activation 
T cell differentiation

Cytokines
(IL-2, IL-4, IL-12 and others)

T cell differentiation 
NK cell activation

Chemokines Cell migration and activation
PLASMACYTOID DC Type 1 interferons 

Cytokines and chemokines
Anti-viral response

NK CELLS Perforin and granzyme
“Missing se lf (detects lack of MHCI)

Tumour lysis 
Infected cell lysis

Cytokines
(IFNy, IL-4, IL-12 and others)

Macrophage activation 
T cell differentiation

NKT CELLS Rapid early cytokine release Cell activation 
T cell differentiation

Table 1.1 Innate effector mechanisms
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1.3 Adaptive inflammation

In contrast to innate responses, adaptive responses are antigen-specific, and 

exhibit memory. Specificity is achieved by the random recombination of genes 

encoding T cell receptors (TCR) and antibodies, and somatic hypermutation of 

antibodies during a response. Memory arises from the sustained presence of 

antigen-specific cells capable of immediate and effective responses if the antigen 

is encountered in the future. There is huge complexity to the processes of T and B 

cell repertoire selection, tolerance to self antigens, antigen presentation, 

lymphocyte activation and maintenance of memory, and in the development of 

different T and B cell subsets. Here I will restrict discussion to the processes of 

CD4"  ̂ helper T cell differentiation and effector function, the key regulatory cells in 

the adaptive response.

1.3.1. CD4* T helper cell differentiation
Naïve CD4‘" T cells are pluripotent progenitor cells (Thp cells), activated by 

recognising antigen presented on MHCII, and differentiating into a range of 

effector cells. The main antigen presenting cells are dendritic cells (DCs), although 

other cells can also play a role. DCs express co-stimulatory molecules and 

cytokines necessary for the complete activation, proliferation and differentiation of 

T cells. The nature of these signals depends on signals received by the DC, such 

as PRR stimulation (especially through TLRs), the type of peptide presented, the 

dose of antigen, and cytokines and chemokines from innate cells in the micro­

environment.

Historically CD4"  ̂ T cells were classified as T h i, releasing IFNy, and Th2, 

releasing IL-4 (22). However in recent years it has become apparent that that this 

is an oversimplification, and other subsets of effector cells and regulatory cells 

have been identified in mice and rats. It is also clear that although it is often 

possible to clearly define terminally differentiated subsets in experimental model 

systems, the reality in vivo  is that these cell types may co-exist in a response, and 

may be present at intermediate stages of differentiation. In addition, there is much 

less evidence that these subsets are so clearly defined in the human immune 

system. Although the cell fate pathways are not yet fully elucidated, some of the 

key effector cells and mediators are outlined in Figure 1.1. It is likely that further 

subsets of effector cells are yet to be identified.
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Figure 1.1 CD4* T effector cell differentiation

Naïve pluripotent CD4+ progenitor T cells (Thp) can develop into a number of functionally distinct T 

effector cells follo\A/ing stimulation by antigen-presenting cells (APCs). T helper 1 (Th1) cell 

differentiation is initiated by interferon y (IFNy), and maintained by IFNy, interleukin (IL)-12 and IL-18. 

Differentiated Thi cells produce the effector cytokines IFNy and IL-2, which promote natural killer
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(NK) cell, macrophage and CD8+ cytotoxic T cell activity against intracellular organisms. Th17 cell 

development is initiated by transforming growth factor (3 (TGFp) and IL-6, and maintained by IL-23. 

They produce IL-17, IL-6 and tumour necrosis factor a (TNFa) and promote neutrophil responses. 

The essential factors initiating Th2 cell development are less well defined, but include thymic stromal 

lymphopoietin (TSLP), lL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF). il-4 

also maintains the Th2 phenotype and is an important Th2 effector cytokine, along with IL-5 and IL- 

13. Th2 cells promote immunoglobulin E (IgE) and cellular (eosinophils, mast cells, basophils) 

responses against extracellular parasites. Th differentiation is a complex multi-step process that is 

not yet fully understood, expression of the lineage specific cross-regulatory transcription factors Tbet, 

RORyt and GATA3 is an irreversible step after which cells cannot be redirected to a different fate. In 

addition to these effector T cell subsets there are also a number of regulatory T cell subsets, the 

differentiation of which is less well understood. A constitutive population of CD25+ regulatory T cells 

(Tregs) matures in the thymus with expression of the transcription factor FoxP3 essential for 

regulatory function. They suppress autoreactive T cell responses through a cell-contact dependent 

mechanism and prevent autoimmunity. Other regulatory T cells can develop in the periphery during 

immune responses under the influence of Tregs. These include Th3 cells and Tri cells which act 

through the release of TGF|3 and IL-10 respectively. Follicular T helper cells (ThFH) are a novel 

subset which promote B cell antibody production through an inducible costimulatory molecule (ICOS) 

dependent mechanism.

1.3.1.1. Th i differentiation

Th1 cells secrete IFNy, and mediate cellular immunity against intracellular 

infection and tumours through activation of macrophages, NK cells and CD8^ T 

cells. Dysregulation of T h i responses can lead to autoimmunity, and destructive 

responses against self antigens, typified by type 1 diabetes mellitus. They may 

also contribute to the pathology of rheumatoid arthritis.

IFNy from antigen presenting DCs and macrophages initiates Th i differentiation 

by inducing the expression of the transcription factor Tbet, which is specifically 

expressed in Th i and not Th2 cells and correlates with IFNy expression (23). Mice 

deficient in Tbet spontaneously develop Th2 inflammation in the airways (24), and 

have severely impaired IFNy expression and T h i responses (25). Tbet induces 

the expression of IL-12R3 (26), exposes the IFNy gene through chromatin 

remodelling (27), and represses Th2 cytokine production (23). As well as being the 

key effector cytokine, IFNy is also important in maintaining the Th1 phenotype.
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This is illustrated by the observation that in  vitro  polarised Th1 cells from IFNy 

deficient mice can be redirected to produce IL-4, whereas wild type Th1 cells 

cannot (28).

11-12 is important in IFNy production in Th1 cells. It induces the expression of the 

IL-18R (29), and IL-18 augments IFNy production, and induces further expression 

of the IL-12R (30). Thus IL-12 and IL-18 together are potent Th i differentiation 

factors. IL-12 and IL-12R deficient mice have weak, but not absent, IFNy 

production and Th i responses (31,32). Thus IL-12 is not an absolute requirement, 

and other factors can replace it. IL-27 and IL-23, other members of the IL-12 

family, can induce proliferation and IFNy production from naïve and memory CD4+ 

cells respectively (33,34), and type 1 IFNs can also induce IFNy expression during 

viral infection (35).

1.3.1.2. Th2 differentiation

Th2 cells mediate humoral Immunity against extracellular parasites, in particular 

helminths, through the production of IgE from B cells, and the release of toxic 

mediators from mast cells, eosinophils and basophils. Thus an environment hostile 

to parasite survival is created, and an inflammatory reaction occurs to limit the 

spread or expel the organism. Dysregulation of Th2 responses results in allergic 

inflammation, such as atopic dermatitis and asthma.

The initiation of Th2 differentiation is less well understood than T h i. It is clear that 

IL-4 is important in commitment to the Th2 lineage, but may come from 

eosinophils, mast cells, NKT cells, or early Th2 cells themselves, rather than from 

antigen presenting cells. Recently it was shown that thymic stromal lymphopoietin 

(TSLP) can induce Th2 cytokine release from mast cells (36), condition DCs to 

differentiate Th2 cells (37,38), and can induce IL-4 expression in CD4* cells to 

promote Th2 differentiation (39). IL-4 induces the transcription factor GATA-3, 

which is present in Th2 cells and not Th i (40). GATA-3 upregulates the 

expression of IL-4, IL-5 and IL-13 as well as Itself (41,42), setting up a positive 

feedback loop. It also suppresses the expression of IFNy and IL-12R(3 (43). Mice 

deficient in IL-4 or IL-4R can still produce Th2 cells, albeit at a lower frequency 

(41,44), and can mount Th2 responses (45-47) so there are other pathways by 

which Th2 commitment can occur. For instance, granulocyte-monocyte colony- 

stimulating factor (GM-CSF) can induce Th2 responses in the absence of IL-4 

(48). The role of IL-33/ST2 in Th2 differentiation is discussed in section 1.6.8.
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1.3.1.3. T h i7 cells

Th17 cells increase neutrophil synthesis in bone marrow through GM-CSF, and 

specifically recruit and activate neutrophils through the expression of IL-17, IL-6, 

and TNFa, and so have an important role in the response to extracellular bacteria 

and in sepsis (49). The transcription factor RORyt is specific to T h i7 cells and is 

not expressed in Th i or Th2 cells (50). They have also been shown to play 

pathological roles in experimental models of autoimmunity, including experimental 

auto-immune encephalitis (EAE) (51), and collagen-induced arthritis (CIA), a 

model of rheumatoid arthritis (52). They appear to be a separate lineage of T cells, 

as they can develop when IL-4 and IFNy are blocked and do not express Tbet or 

GATA3 (53,54). TGF|3 and IL-6 are critical to early commitment to the T h i7 

lineage, enhanced by TNFa and IL-ip , whereas IL-23 is important in maintaining 

differentiated cells (55,56).

1.3.1.4. Follicular T helper cells

Follicular Th cells (ThFH) are a novel subset of CD4^ cells which migrate to the B 

cell area of lymph nodes after stimulation and play a role in supplying 

costimulation to B cells for antibody production through inducible costimulatory 

molecule (ICOS). High levels of ICOS leads to elevated numbers of ThFH, 

increased germinal centre formation, and resulted in autoimmunity (57).

1.3.2. Regulatory I  cells
In addition to pro-inflammatory effector cells, a number of CD4^ cells with 

suppressive functions have been identified. Approximately 5-10% of circulating 

CD4* cells are naturally occurring Tregs with constitutive expression of CD25 (IL- 

2Ra). They do not proliferate after antigen-specific TOR activation, but can 

suppress the activity of polyclonally stimulated effector T cells (58), as well as 

CD8* T cells, B cells and DCs, in a cell-contact dependent manner. Although the 

exact mechanisms are not fully elucidated, they may involve induction of 

apoptosis, cell lysis, and TGF(3 and IL-10 production (59). They play a vital role in 

peripheral tolerance and the prevention of autoimmunity, and are increasingly 

implicated in autoimmune disease and allergy (60,61). Expression of the 

transcription factor forkhead box P3 (F0XP3) is the critical event in the 

development of natural Tregs (62), and in humans, F0XP3 mutation leads to the 

IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) 

syndrome in humans, characterised by autoimmunity (63).
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Naturally occurring Tregs can also induce the development of other regulatory T 

cells in the periphery during a response, such as TGF(3 producing Th3 cells (64), 

and IL-10 producing T ri cells (65). Both of these cell types have been shown to 

suppress both T h i and Th2 responses in vivo (66,67).
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1.4 Asthma

Asthma is a common condition (68), and the incidence has been increasing (69). 

The clinical syndrome of asthma includes episodic wheeze, cough and shortness 

of breath, with increased mucus expectoration. These are the result of largely 

reversible narrowing of the airways caused by inflammation, goblet cell 

hyperplasia, airway hyper-responsiveness (AHR) and remodelling of the airway 

structure (70). Extrinsic (allergic or atopic) asthma, characterised by high serum 

IgE levels, accounts for the majority of patients, and intrinsic (non-atopic) asthma, 

with normal serum IgE, accounts for the rest (71). The pathology seen in both 

extrinsic and intrinsic asthma is similar, and is the result of an endogenous 

inflammatory process with superimposed exacerbations triggered by exogenous 

factors. It is characterised by a Th2 type inflammatory infiltrate consisting of 

lymphocytes, eosinophils, mast cells and sometimes neutrophils. The epithelium is 

denuded in some areas, and shows goblet cell hyperplasia with mucus 

hypersecretion. The airway exhibits remodelling, with subepithelial fibrosis and 

further thickening of the airway wall by smooth muscle hypertrophy (72). Some of 

these changes have been shown to be present even before the onset of 

symptoms (73), and may contribute to susceptibility to airway inflammation.

The innate and adaptive Immune systems are both important in the initiation and 

persistence of inflammation in asthma (see figure 1.2). In addition, structural 

elements of the airway are taking a much more prominent role in initiating and 

establishing inflammation. In this section I will outline some of the key mediators in 

asthma.

1.4.4. T lymphocytes and asthma
1.4.4.1. Th2 cells and cytokines -  key regulators o f inflammation and AHR

Elevated numbers of CD3'^CD4"‘ cells producing IL-4 and IL-5 have been found in 

BAL and bronchial biopsies from asthmatics (74). These have been presumed to 

be T helper (Th) 2 cells, but recent studies have now identified invariant natural 

killer T (INKT) cells, which also express CD3 and CD4 and produce Th2 cytokines, 

in the airway, so there is now some controversy over the exact contribution of 

each. The level of INKT cells in the normal airway has generally been found to be 

less than 1% of T cells, and this is increased in the asthmatic airway in children 

(75) and in adults with moderate to severe asthma, with levels of 10% (76,77) up
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to 60% (78) found in BAL. A further study, however, seems to show little difference 

in iNKT levels in mild to moderate asthma (79). This may reflect the method of 

detection, and the asthmatic phenotype of the patients studied. There is mounting 

evidence, then, that both Th2 cells and INKT cells feature in the asthmatic airway, 

and the relative function of each may help to determine the phenotype seen. 

Functional studies in mice have demonstrated differential roles for both iNKT cells 

(predominant in airway hyper-responsiveness (AHR); see section 1.4.6.2.) and 

Th2 cells (central regulator of inflammation; see below).

Elevated levels of Th2 transcription factors, such as GATA3 (80), have also been 

found in the airway of asthmatic patients, indicating Th2 cells play an important 

role. Adoptive transfer of antigen-specific Th2 cells is sufficient to cause allergic 

airways inflammation and AHR in naïve mice subsequently challenged with 

antigen (81), and absence of T cells abrogates these responses (82). Th2 

cytokines play a key role in airways inflammation and AHR, and often have 

overlapping functions. Whilst Th2 cells probably constitute an important source of 

these, it must be remembered that other sources, such as eosinophils, mast cells 

and NKT cells also contribute, and may particularly play a role in the early stages.
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Figure 1.2 The pathogenesis o f asthma

Allergen is taken up by dendritic cells (DCs) in the lung, which mature into Th2 differentiating DCs 

under the influence of thymic stromal lymphopoietin (TSLP) released from the epithelium in response 

to toll-like receptor (TLR) stimulation. Epithelial cells also produce pro-inflammatory lipid mediators
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such as ieukotriene (LT) B4 and LTC4. After uptake of allergen the DCs migrate to the local draining 

lymph nodes where they initiate T cell differentiation. Th2 cells migrate via the blood to the lung and 

produce interleukin (IL)-4, IL-5 and IL-13, the key regulators of airway inflammation. Natural killer T 

(NKT) cells may also play a role early in the response by producing Th2 cytokines. Th2 cytokines 

promote airway hyper-responsiveness (AHR) and remodelling, and inflammation through eosinophil 

accumulation and production of immunoglobulin (Ig) E and IgA. Eosinophils produce a large number 

of pro-inflammatory cytokines, chemokines and other mediators in the lung, and also contribute to 

tissue damage through the release of proteolytic enzymes. Subsequent inflammation can be 

triggered through allergen binding to IgE on the surface of mast cells, causing degranulation and de 

novo synthesis of mediators. This releases pro-inflammatory cytokines and chemokines, vasoactive 

mediators such as histamine and kinins, and proteolytic enzymes. In addition to Th2 cells, Thi and 

Thi 7 cells may play a role in asthma through the induction of neutrophilic Inflammation. This is 

though to be particularly important in virally-induced exacerbations and in steroid-resistant asthma. 

Regulatory T cells (Tregs) are able to suppress the inflammation seen in asthma through cell- 

contact, transforming growth factor p (TGF(3) and IL-10 dependent mechanisms. Many of the cells 

and mediators involved in the inflammatory response are not limited to the lung tissue itself, but 

migrate or diffuse to the airway surface where they can contribute to epithelial damage.

IL-4 is one of the central mediators of airway inflammation through its Th2 

differentiating properties, and promoting IgE production. IL-4 producing CD4'^ cells, 

probably a mix of Th2 and NKT cells, have been found in BAL, bronchial biopsies 

and blood of patients with established asthma (83,84). IL-4'^' mice have reduced 

airways inflammation and AHR compared to wildtype (85), but whilst adoptive 

transfer of Th2 cells from IL-4'^' mice resulted in less severe airway inflammation 

than Th2 cells from wildtype mice (86), AHR was unaffected (87). Neutralisation of 

IL-4 during sensitisation did reduce AHR (88), and IL-4 administered to the 

airways directly can induce airway inflammation and AHR in mice, even in Rag“̂ “ 

lymphocyte deficient mice, and this effect is absent In IL-4Ra'^‘ mice (89). 

However, IL-4 shares !L-4Ra with IL-13, so this effect may be indirect. Overall, IL- 

4 has a clear pro-inflammatory role in asthma, but its role in AHR may be indirect 

or dispensable.

IL-5 has been found in BAL fluid and serum from asthmatic patients, and its levels 

correlate with CD4'' T cell activation (90,91). The major source of IL-5 in 

established disease is likely to be CD4"^ Th2 and NKT cells (74,78). Its key role is



Chapter 1: 32

in the maturation, recruitment and differentiation of eosinophils (92). In mice, the 

enforced expression of transgenic IL-5 resulted in eosinophilic airways 

inflammation (93), and neutralising IL-5 inhibited both eosinophilia and AHR (94). 

However, although clinical trials of anti-IL-5 showed a marked reduction of 

eosinophils in sputum, there was no improvement in symptoms or AHR (95). In 

another model of transgenic IL-5 expression, this time restricted to the bronchial 

epithelium, AHR was actually reduced, and this effect abolished by anti-IL-5 

antibody (96). Thus the role of IL-5 and/or eosinophils in AHR remains 

controversial. However, IL-5 does appear to play a crucial role in airway 

remodelling, with anti-IL-5 antibodies having a beneficial effect in both mice and 

humans (97,98).

IL-13 shares a receptor chain with IL-4, but has independent and fundamental 

roles in the effector phase of inflammation through modulation of epithelial cells 

and smooth muscle. IL-13 is found in sputum and biopsies from human asthmatics 

(99,100), and is overexpressed in both atopic and non-atopic disease (101). There 

is also a strong link between IL-13 gene polymorphism and asthma (102). 

Administration of IL-13 alone to mice is sufficient to induce eosinophilia, AHR and 

mucus hypersecretion (89), and blocking IL-13 can reduce these features (103). 

The effects of IL-13 on eosinophil recruitment may be mediated by IL-5 and 

eotaxin, or independently of these (104,105). IL-13'^" mice fail to develop AHR or 

mucus hypersecretion in an allergic airways disease model, despite the presence 

of IL-4, IL-5 and eosinophilic inflammation (106). This perhaps demonstrates most 

clearly the dichotomy between inflammation and AHR, and the importance of IL-13 

in the latter.

Other Th2 cytokines such as lL-9, IL-25 and GM-CSF are also expressed in the 

asthmatic airway, and have been shown to promote either Th2 differentiation or 

effector mechanisms in airways inflammation (107). IL-25 in particular has recently 

been shown to have a potentially important role in asthma. Both IL-25 and its 

receptor, IL-17RB, are upregulated in atopic asthmatic patients (108). It is 

particularly produced by epithelial cells after allergen stimulation (109) and is also 

produced by eosinophils and basophils in the lung (108), and may have a role in 

the initial phases of Th2 polarisation. In naïve mice IL-25 instilled into the airway 

induces a profound increase in lung and BAL eosinophils, and increases in AHR 

(109,110). In addition, it is able to polarise naïve T cells towards the Th2
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phenotype in vitro through a GATA-3 mediated increase in early IL-4 production 

(109). Recent data has also shown that memory Th2 cells express IL-17RB, and 

IL-25 increases their proliferation and cytokine production after they are stimulated 

by anti-CD3 or by TSLP-treated DCs (108), thus demonstrating IL-25 may also 

play a role in promoting established inflammation. A recent study showing that a 

blocking anti-IL-25 antibody can substantially reduce eosinophilic airway 

inflammation in mice, and prevent the development of AHR, indicates It is a 

potentially exciting therapeutic target (111).

1.4.4.2. Thi cells and cytokines -  a biphasic effect mediated by TLRs

Thi cells and cytokines are generally regarded as counter-regulatory to Th2 

responses. Certainly, IFNy or IL-12 given to mice during sensitisation prevents or 

reduces airway inflammation and AHR (112,113), and Tbef^' mice develop 

spontaneous Th2 airway inflammation (24). IL-12 can also reduce inflammation 

and AHR when given during antigen challenge, probably by inducing IFNy 

production from pre-existing T h i, CD8^ and NK cells (113,114). However, T h i 

cells and cytokines can also promote established Th2 airways inflammation. CD4^ 

cells producing IFNy have been found at the same time as CD4^ cells producing 

IL-4 and IL-5 in human asthmatic airways (115), and transfer of T h i cells 

exacerbated established airway inflammation, probably by TNFa release and 

recruitment of neutrophils (81).

The ability of TLRs to translate innate signals into immunomodulatory signals 

allows an explanation for why the timing of Th i type responses may be important. 

Increased exposure to LPS or viral illness early in life protects against atopy and 

asthma, presumably by signalling through TLR4 (116). In established asthma, viral 

infections are the most common cause of an exacerbation, and LPS is present in 

many other triggers of asthma exacerbations, including house dust and cigarette 

smoke. In fact, levels of LPS in house dust correlate better with poor asthma 

control than DERpI, the house dust mite allergen, which does not correlate at all 

(117). These observations are borne out experimentally, as LPS administration 

during antigen sensitisation reduced airway inflammation (118), whereas low 

levels of LPS during antigen challenge increased it (119). Furthermore, inhalation 

of LPS in asthmatic patients caused exaggerated AHR compared to normal 

subjects (120). Thus, LPS appears to prevent sensitisation by biasing towards a
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Th1 response early on, but once Th2 inflammation and AHR are established, the 

Th1/pro-inflammatory response exacerbates them.

Whilst IL-18'^’ mice have enhanced airway inflammation (121), the role of IL-18 in 

asthma can be modulated by other cytokines present in the micro-environment. 

Co-administration with IL-12 reduced airway inflammation and AHR in mice (122), 

but administration of antigen with IL-18 alone induced severe eosinophilic airway 

inflammation after transfer of T h i cells in vivo, possibly dependent on Th i 

production of IL-9 and IL-13, and increased production of IFNy and TNFa (123). 

IL-18 can also induce expression of Th2 cytokines from T cells, NK cells and mast 

cells.

1.4.4.3. Th17 cells and neutrophilic infiammation

A role for T h i7 cells is emerging in mediating steroid resistant asthma, which is 

characterised by predominantly neutrophilic inflammation. CD4^ cells from mice 

lacking Tbet preferentially differentiate into T h i7 cells, and mediate neutrophilic 

airway inflammation (124). In keeping with this, IL-17 mRNA was elevated in 

sputum from asthmatic patients, and correlated with IL-8 and neutrophil levels, 

despite treatment with steroids (125).

1.4.4.4. Regulatory T cells and asthma

The role of regulatory T cells in preventing auto-immune diseases is well 

established, and evidence is accumulating that defective CD4^CD25'' Treg 

expansion may also play a role in allergy (61). Children with asthma or atopy have 

fewer circulating CD4^CD25^ Tregs than normal controls, although interestingly 

those with persistent symptoms had higher levels than those who were well 

controlled, which suggests a possible functional upregulation of Treg function 

(126). CD4"‘CD25"^ Tregs can suppress airways inflammation and AHR in mice, 

through cell-contact or IL-10 dependent mechanisms (127-129).

1,4.5. B cells and Immunoglobulin E
The main role for B cells in asthma is through the production of IgE. An increase in 

total and antigen-specific IgE is one of the hallmarks of atopic asthma, but is not 

essential for AHR or eosinophilic inflammation. IgE production is influenced by Th2 

cytokines, in particular IL-4 and IL-13, although they are not essential (130). Most 

IgE is attached to mast cells in the tissues through the high affinity IgE receptor
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FceRI. Antigen crosslinking of this cell-surface IgE results in degranulation with 

release of mediators of hypersensitivity. The importance of IgE in vivo  is illustrated 

by the successful use of omalizumab, a monoclonal antibody against IgE, in 

improving control of asthma symptoms in those with persistently elevated IgE 

levels (131). Subsequent studies have shown this is not just through a reduction of 

total IgE, but also a reduction in FceRF cells, and reduced infiltration of eosinophils 

and T and B cells (132).

1.4.6. Innate cells and asthma
Innate cells often play a dual role in asthma. They are involved in the initial 

response to allergens/pathogens, and thus set the scene for the subsequent 

response, but they are also co-opted by T cells to carry out the effector functions 

of inflammation. Some of these functions will be summarised below.

1.4.6.1. Dendritic cells

Dendritic cells (DCs) form a network under the epithelium and constantly ingest 

and process inhaled antigen, then mature and migrate to local lymph nodes to 

present it to T cells (133,134). Two main populations of dendritic cell exist within 

the lung, and the activation status and phenotype of the DC will influence whether 

the end result is tolerance or inflammation (135).

Myeloid (m)DCs, expressing MFICI and II and CD11c, generally promote 

inflammation by activating T cells to become effector cells. The presence of a 

danger signal (eg exogenous PAMPs or endogenous mediators) in addition to 

allergen triggers full maturation and migration to the lymph node. A high level of IL- 

6 production allows them to overcome naturally occurring CD4^CD25^ Treg 

suppression of immune activation (136). TSLP is produced by epithelial cells, is 

increased in the airways of asthmatics, and correlates with disease severity (137). 

It conditions mDCs to promote Th2 differentiation through expression of the co­

stimulatory molecule 0X40 ligand (138). T-bet and IL-12 expression in mDCs can 

promote T h i responses in the lung (139,140), which may have some regulatory 

role in Th2 inflammation. The importance of mDCs in  vivo is underscored by the 

observations that transfer of antigen primed mDCs into the airways of naïve mice 

leads to Th2 inflammation after antigen challenge (141), and absence of mDCs 

prevents airways inflammation (142). In addition to their key role in the initiation of 

Th2 responses, there is some evidence that they may play a role in secondary
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tissue responses by producing CCL17 (143), a powerful Th2 cell chemoattractant, 

and presenting antigen to T cells in the lung (144).

In the absence of a danger signal allergens do not induce inflammation, they 

induce tolerance instead. Ovalbumin (OVA) is an experimental allergen which 

induces tolerance to subsequent immunisation if administered alone to the airway, 

but allergic inflammation if administered in the presence of a low dose of LPS 

(119) or an adjuvant such a alum (145). Many clinically relevant allergens, such as 

Der p 1 from house dust mites, are proteolytic enzymes that can directly activate 

DCs to mature (146), whereas others probably become allergens due to the 

presence of exogenous microbial contamination (eg LPS). There is evidence that 

in the absence of danger mDCs do not fully mature and induce Tregs and 

tolerance (147). However, the second main DC subset in the lung, the 

plasmacytoid (p)DC, is probably more important in tolerance to allergens. They 

share expression of MHCI and II and C D IIc  with mDCs, but also specifically 

express 120G8 and PDCA-1. They produce large quantities of anti-viral type 1 

interferons after viral infection, but have also been shown to mature into antigen- 

presenting cells after activation of TLRs on their surface. It is though that the 

balance between mDC and pDC function is important in asthma. In keeping with 

this, induction of pDC differentiation in  vivo  by Flt-3 ligand reduced allergic airway 

inflammation (148), whereas depletion of pDCs from mice breaks inhalational 

tolerance to OVA and allows mDCs to be more immunogenic and induce allergic 

airway inflammation (149). The precise mechanisms are unknown but may be 

related to the immature phenotype, and involve the expression of programmed 

death ligand 1 delivering a negative signal to naïve T cells (149), or pDC 

production of indoleamine-2,3-deoxygenase, which inhibits T cell proliferation and 

airway inflammation (150,151).

1.4.6.2, NKT cells

NKT cells are a novel subset of lymphocytes expressing an invariant T cell 

receptor which recognises glycolipid antigen in the context of CD Id on presenting 

cells, such as epithelial cells. As discussed above, some of the CD4"^ cells 

producing Th2 cytokines in the airway in asthma are likely to be iNKT cells. There 

is some argument over the numbers of iNKT cells seen in asthma, but this may not 

be crucial as iNKT cells are rapid and efficient producers of many cytokines, 

including IL-4, IL-13 and IFNy. Although iNKT cells produce a variety of cytokines
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after activation, repeated activation leads to a predominance of Th2 cytokine 

production, suggesting a possible role in allergic disease (152,153). Mice deficient 

in iNKT cells demonstrated their crucial role in the development of AHR and 

inflammation through the production of IL-4 and IL-13, independent of 

conventional T cells (154,155). In patients with moderate to severe asthma (atopic 

and non-atopic) up to 60% of CD3'*'CD4^ cells in BAL, and almost all the 

CD3'"CD4‘̂  cells in bronchial biopsies, were INKT cells rather than conventional 

Th2 cells (78). They produced large amounts of IL-4 and IL-13, but little IFNy. 

CCR9'^CD4^ INKT cells have also been seen in the blood of asthmatics, and 

numbers decreased after steroid treatment, and In well controlled patients. They 

were found to induce Th2 polarisation of naïve T cells through CCR9 and CD226 

dependent cell contact mechanisms (77). Thus iNKT cells may play both direct 

and indirect roles in IL-4 and IL-13 production, and the asthma phenotype.

1.4.6.3. Eosinophils

Eosinophils are another hallmark of atopy and allergy, and there is a large body 

evidence that not only are they present in the inflammatory process, they cause 

damage to the airways through release of toxic granular proteins, reactive oxygen 

species, and pro-inflammatory lipid mediators (92). They also contribute to its 

chronicity through secretion of T h i and Th2 cytokines (156), and possibly antigen 

presentation to T cells (157), and play a role in remodelling (158). Their role in 

AHR is controversial. Eosinophil deficiency in IL-5^̂  and PHIL mice reduced AHR, 

and reconstitution of eosinophils restored AHR (159,160). However, in humans, 

depletion of eosinophils in the airway by anti-IL-5 had no effect on AHR (95), 

although it must be noted that eosinophil depletion was not complete (161). 

Dissociation of inflammation and AHR is also seen in mice, where the dblGATA 

strain of eosinophil-deficient mice demonstrated that AHR may arise by eosinophil 

independent pathways (158).

1.4.6.4. Mast cells

Mast cells are found in bronchial biopsies in human asthma (162), and 

degranulate after crosslinking of IgE bound to the high affinity FceRI on their 

surface. They rapidly release preformed and newly synthesised pro-inflammatory 

and bronchoconstrictive mediators such as histamine, proteoglycans, serine 

proteases, prostaglandin D2 (PGD2), ieukotriene C4 (LTC4) and platelet 

activating factor (PAF). In addition to mediating this early phase hypersensitivity
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response to allergen, they can promote Th2 differentiation and effector responses 

through Th2 cytokine and chemokine production (163,164) and TNFa production 

(165). However, some models have shown mast cells are not essential for allergic 

inflammation or AHR (166).

Mast cells are present in the submucosa of normal subjects, asthmatic patients, 

and patients with eosinophilic bronchitis -  a disease with a very similar 

inflammatory infiltrate to asthma, but no AHR (167). However, only the asthmatic 

subjects had increased mast cell numbers in the airway smooth muscle, implying a 

close relationship between these two cell types is important in the development of 

AHR in asthma, rather than just eosinophilic inflammation.

1.4.6.5. Neutrophils

Neutrophilic inflammation, which is promoted by TNFa and IL-17, is associated 

with some exacerbations and also different phenotypes of asthma. Including 

severe asthma and steroid resistant asthma (168). The possible role of T h i7 cells 

and IL-17 in neutrophilic airway inflammation has been discussed above. In 

addition, elevated levels of TNFa are seen in BAL and biopsies from asthmatics 

(169), inhalation of TNFa results in AHR and airway neutrophil infiltration (170), 

and treatment with etanercept, a TNFa antagonist, reduced AHR and asthma 

symptoms in a clinical trial (171). Thus there may be an important role for 

neutrophils in certain situations, promoted by Th i 7 cells and/or TNFa.

1.4.7. Structural cells and asthma
1.4.7.1. Epithelial cells

In addition to their role as a barrier, epithelial cells can also play an active role in 

the inflammatory process. Recently it was shown thymic stromal lymphopoietin 

(TSLP) is released after activation of epithelial cells by TLRs and other innate 

signals (36,172), thereby providing a link between innate and adaptive immunity, 

and initiation of inflammation. Overexpression of transgenic TSLP in the epithelium 

results in airway inflammation and AHR (143), and TSLPR deficient mice have 

reduced responses to inhaled antigen (173). Human bronchial epithelial cells have 

also been shown to produce leukotrienes after LPS stimulation, and may therefore 

contribute directly to AHR and inflammation (174).
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A relatively recent concept to develop is that in asthmatic patients the epithelium 

may be more susceptible to damage by viral infection (175,176), or toxins (177), 

and aberrant healing may contribute to the development of asthma (178). This 

may contribute to the early remodelling changes seen, and create an environment 

more susceptible to future infection/damage and inflammation. Whether these 

changes in epithelial function predate inflammation, or are caused by it, remains to 

be elucidated.

1.4.7.2. Smooth muscle and fibroblasts

Smooth muscle hypertrophy, under the influence of cytokines and inflammatory 

cells, contributes to airway thickening and remodelling (179). Structural elements 

have also been implicated in the pathogenesis of asthma by the identification of 

polymorphisms in the A D A M 33  gene (a disintegrin and metalloproteinase 33) that 

are strongly associated with asthma, AHR, and remodelling with a decline in lung 

function (180). Although the exact role of ADAM33 in asthma has yet to be 

elucidated, it is only expressed on smooth muscle and fibroblasts. Both smooth 

muscle cells and fibroblasts also release cytokines and chemokines contributing to 

ongoing inflammation.

1.4.8. Chemokines and asthma
Chemokines and their receptors are key mediators of the coordinated movement 

of cells into inflamed tissues in asthma (181,182), although adhesion molecules 

also play important roles. A full discussion of chemokine biology is beyond the 

scope of this introduction, but I will summarise some of the key concepts. They are 

broadly split into families based on the relative position of conserved cysteine 

residues:

• G-C family: CCL1 to CCL28 binding to CCR1 to CGR10

• G-X-G family: GXGL1 to GXGL16 binding to GXGR1 to GXGR6

• XGL1 and XGL2 binding to XGR1

•  GX3GLI binding to GX3GRI

In addition there are decoy receptors, such as D6, which bind to ligands and are 

internalised without signalling, thus removing them from the tissue. Kinetic 

changes in expression allow for movement of cells into specific sites at specific 

times. Different cell types tend to have specific patterns of chemokine receptors.
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and respond to the corresponding ligands. However, ascertaining which the most 

important interactions are is difficult, as chemokines are promiscuous and can bind 

to multiple receptors, and chemokine receptors can bind multiple chemokines. 

Also, expression in vitro  and in  vivo  may be different. There is a huge amount of 

data from experimental models, much of it examining very specific interactions in 

specific models, and is therefore often conflicting. Some of the key interactions in 

asthma are summarised in table 1.2

CELL RECEPTOR LIGANDS
Th2
Eosinophil 
Mast cell

CCR3
CCL11 (eotaxin) 
CCL24 (eotaxin-2) 
CCL26 (eotaxin-3)

Th2 CCR4 CCL17 (TARCy 
CCL22 (MDCr

Th2 CCR8 CCL1 (TCA-3)^
Th1 CCR5 CCL5 (RANTES)" 

CCL3 (M IP -la f
Th1 CXCR3 CXCL9 (MIG)*" 

CXCL10 (IP-10/

Table 1.2 Chemokines in asthma

thymus and activation regulated chemokine; 2 macrophage-derived chemokine;  ̂T cell activation 

protein 3;  ̂regulated on activation normal T-cell expressed and secreted chemokine; ® macrophage 

inhibitory protein 1a; « monokine induced by IFNy; 10 IFNy inducible protein 10.

Allergic asthma is associated with increased expression of CCR3 on eosinophils 

and CCR4 and CCR8 on T cells (183,184), and they may be expressed during 

different phases of inflammation (185). A role for these receptors is at least partly 

supported by experimental data. The eotaxins are all upregulated during allergen 

challenge (186), and whilst CCR3'^' mice have reduced eosinophils, the effect on 

AHR is variable depending on the involvement of mast cells (187,188). Whilst 

CCR4'^' had no effect on allergic airway inflammation or AHR (189), neutralisation 

of TARC or MDC did (190,191), suggesting that there may be an additional 

receptor for these chemokines. CCR8 and TCA-3 do not appear to play an 

important role in experimental asthma (192). RANTES is increased in the serum of 

patients with asthma, and correlates with severity, whereas IP-10 is reduced (193).
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1.5. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a relatively common inflammatory condition affecting 

up to 1% of the population in the UK (194). It is a systemic autoimmune disease, 

although the clinical features are usually limited to the joints. Chronic inflammation 

of the synovium leads to erosion of cartilage and bone and destruction of the joint. 

This results in pain, swelling, stiffness and joint deformity, with eventual loss of 

joint function. Chronic inflammation may also affect other organs, such as the lung 

and kidneys, and result in systemic features, such as cachexia and depressed 

mood.

Pharmacological treatment has focused on the control of pain and inflammation, 

with the use of non-steroidal anti-inflammatory drugs (NSAIDs), and early use of 

disease modifying anti-rheumatoid drugs (DMARDs) (195). However, these drugs 

have significant toxicity and side effects, and although they may slow down the 

process of joint destruction, they are not completely effective. Thus there is 

significant morbidity and excess mortality in patients with RA, and much focus on 

the inflammatory pathways present to identify new therapeutic targets. Hence 

agents targeting TNFa and IL-1 are being used a number of inflammatory 

diseases, including RA (196).

1.5.1. Autoimmunity in RA
The pathophysiology of RA is complex and heterogeneous (see figure 1.3). There 

is undoubtedly a genetic predisposition, as shown by the association of various 

HLA-DR alleles with RA (197). Other contributor polymorphisms in the gene loci of 

many of the cytokines involved in RA have also been found, and also in the gene 

for peptidyl arginine deiminase IV (PAD I4) (198), which may play a crucial role in 

the development of autoimmunity. Environmental factors have also been shown to 

be important, particularly smoking. Thus in susceptible individuals with the right 

environmental triggers, a pre-clinical phase of autoimmunity can arise. The precise 

mechanisms by which T and B cell tolerance are overcome is not clear. The best 

characterised autoantibodies are against cyclic citrullinated peptides (anti-CCP) 

and other citrullinated proteins, which are more sensitive and diagnostic of RA 

than rheumatoid factors (RFs). Citrullination of self-proteins is carried out by 

PAD 14, rendering them antigenic, and is promoted by smoking in susceptible 

individuals (199). RFs are anti-IgG antibodies that recognise the Fc portion of IgG
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autoantibodies to form immune complexes in the serum, which initiate and 

perpetuate inflammation through the activation of complement and binding to 

FcyRs on inflammatory cells. The mechanism by which this becomes localised to 

the joint is not known, but immune complexes are found prominently in synovial 

fluid, where they contribute to the pro-inflammatory milieu. It is also likely that the 

destruction of cartilage and bone results in the exposure of neoantigens which can 

also trigger autoimmunity.

1.5.2. Chronic synovitis in RA
The synovium is usually scarcely populated with cells, but in chronic synovitis in 

RA there is a marked increase in cellular infiltration and proliferation. There is a 

superficial lining layer comprised of macrophages and synovial fibroblasts, 

overlying an interstitial zone which consists of more of these cells, and also a 

cellular Infiltrate of T cells, B cells, neutrophils, mast cells, NK cells and NKT cells. 

Cytokines, chemokines, immune complexes and complement fragments play a 

key role in activating and regulating this process. Many of these cells and 

mediators are also present in the synovial fluid. The joint is a relatively hypoxic 

environment, and so angiogenesis Is also crucial, mediated by vascular 

endothelial growth factor (VEGF) and fibroblast growth factor (FGF).
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Figure 1.3 The pathogenesis o f rheumatoid arthritis

A preclinical Th1 mediated autoimmune phase arises due to a combination of genetic predisposition 

and environmental factors, resulting in autoantibody production. Rheumatoid factors (RF) and anti- 

cyclic citrullinated protein (aCCP) antibodies are the best characterised of these. These 

autoantibodies form immune complexes which localise to the joint by an unknown mechanism. This
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initiates a chronic inflammatory response in the synovium, which is augmented by the resulting 

tissue hypoxia and angiogenesis. Immune complexes are thought to initiate inflammation through 

activation of macrophages and synovial fibroblasts. Toll-like receptor (TLR) activation by 

endogenous tissue factors or pathogen-associated molecular patterns (PAMPs) may also play a role. 

Macrophages and synovial fibroblasts produce many proinflammatory cytokines. Interleukin (IL)-1 

and tumour necrosis factor (TNF) a act as a positive feedback mechanism, promoting further cell 

activation and cytokine release. B and T cells from lymphoid tissues are also recruited into the 

synovium. Transforming growth factor (TGF) p and IL-6 promote Th17 cell differentiation and IL-17 

release. IL-17 further activates macrophages and synovial fibroblasts, and stimulates dendritic cells 

in the joint to produce IL-23, which maintains the Thi7 cell phenotype, and also IL-12 and IL-18 

which promote Thi responses. Although Thi cells play a role in autoantibody production, their role in 

synovial inflammation is currently not clear. TNFa, IL-1 and IL-17 promote osteoclast maturation in 

the presence of macrophage colony stimulating factor (M-CSF) and receptor activator for NFkB 

ligand (RANKL), which leads to bone resorption. In the presence of immune complexes they also 

stimulate synovial fibroblasts to produce matrix metalloproteinases (MMPs) and other enzymes, and 

neutrophils and mast cells to produce proinflammatory mediators, all of which contribute to cartilage 

destruction. Destruction of bone and cartilage reveals previously hidden self antigens (neoantigens) 

which can provoke further autoantibody production and help to perpetuate the inflammation, 

inflammatory mediators released into the blood also cause systemic symptoms such as fatigue, 

pyrexia, anorexia and weight loss. Regulatory T cells (Tregs) have been shown to suppress joint 

inflammation through IL-10 and TGFp production.

1.5.2.1. T cells In RA

There is a large body of evidence implicating T cells as one of the key regulators 

of RA. In humans they are present in large numbers In the synovium, and MHCII 

alleles are strongly associated with the development of RA. This is backed up by 

the requirement for T cells in many animal models of RA. It was previously thought 

that RA pathology was mediated by Th i cells producing IFNy, TNFa and IL-17. 

However, more recently it has been recognised T h i 7 cells are probably the more 

important effector cell in the joint, it is not clear where T cells become 

differentiated. It may begin in the lymphoid tissues, but the presence of DCs and 

the rich cytokine milieu in the joint would support the expansion of both Th1 and 

T h i7 cells. However, Th i and T h i7 cells can mutually inhibit each other, which 

may further complicate the picture.
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In human RA, Th1 cells expressing IFNy are more prominent in the synovium in 

early disease, then reduce in frequency in established disease (200). IFNy levels 

are also low in the synovium and serum (201). In murine CIA, blockade of IFNy in 

early disease reduced anti-CII antibody levels and disease severity, but 

aggravated established disease (202). Flowever, blocking IFNy and deficiency of 

the IFNyR has also been show to result in earlier disease onset (203), mice 

deficient in IL-12p35 have exacerbated disease (52), and IFNy inhibits 

osteoclastogenesis and bone resorption (204). Thus the role of T h i cells and IFNy 

is not yet clear, but may be more important in establishing autoimmunity than in 

joint pathology.

There is no direct evidence of T h i7 cells in RA synovium, but IL-17 is present in 

the synovial fluid of RA patients and is produced by cells in the T cell area (205). 

In addition, mice deficient in IL-6 (206) and IL-23 (52) are resistant to CIA, and 

both of these are required for T h i7 differentiation. IL-17 is a potent pro- 

inflammatory cytokine with effects on many cell types in the synovium. In 

conjunction with IL-1 and TNFa it can attract and activate synovial DCs through 

increased MIP3a expression in the synovium (207). It drives neutrophil 

accumulation and activation (208), and activates synovial macrophages and 

fibroblasts to produce pro-inflammatory cytokines and chemokines, and tissue 

destructive enzymes such as matrix metalloproteinases (MMPs), as well as pro- 

angiogenic factors. IL-17 is not dependent on TNFa or IL-1 for its arthritogenic 

properties (208,209). In murine models of arthritis, neutralisation of IL-17 (210) 

and IL-17R deficiency (211) both reduce experimental arthritis, whilst 

overexpression of IL-17 exacerbates it (212). Additional cytokines such as IL-22 

and osteopontin from T h i7 cells may also have roles in promoting pro- 

inflammatory cytokine production in the joint. In addition to cytokine production, 

cell-cell contact between T h i7 cells and synovial macrophages and fibroblasts is 

important in promoting their activation, either through receptor-ligand interactions, 

or presentation of membrane-bound cytokines. T h i7 cells are therefore important 

in the induction and persistence of inflammation. They are also involved in bone 

destruction (213).

Naturally occurring Tregs (CD4^CD25^FoxP3^CD62L^) have also been detected in 

patients with RA, although they have reduced suppressive activity (214).
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Treatment with anti-TNFa antibodies overcome this by inducing a distinct subset of 

CD62L Tregs that act through IL-10 and TGF(3 production (215).

NKT cells are also present in RA, and much of the experimental data is conflicting 

(reviewed in (216)). However, on balance it would appear they are protective 

against autoimmunity, and so have a suppressive role in early disease. However, 

activation may exacerbate established disease, probably through the production of 

pro-inflammatory cytokines.

15 . 2. 2.  B cells in RA

An important role for B cells in RA was indicated by the clinical benefit of a B cell 

depleting monoclonal antibody (217). They produce autoantibodies In the joint that 

contribute to immune complex formation, which in turn bind to inflammatory cells 

through FcyR and activate them. They also trigger the formation of germinal 

centres, which results in increased affinity of auto-reactive antibodies, and are 

associated with a poorer outcome. B cell contact with synovial fibroblasts can 

promote pro-inflammatory cytokine and chemokine release, and MMP production 

(218).

1.5.2.3. Synovial macrophages and fibroblasts

As discussed above, synovial macrophages and fibroblasts may be activated by 

cell contact with T h i7 cells, IL-17, and immune complexes. They may also be 

activated by innate signalling through TLRs (219). Thus exogenous bacterial and 

viral PAMPs, and endogenous ligands such as heat shock proteins, could play a 

role initiating and perpetuating inflammation. Once activated they are the key 

source of many of the proinflammatory cytokines and chemokines. They are also 

activated by these cytokines, especially IL-1 and TNFa, and so a positive feedback 

loop is established.

TNFa is one of the key pro-inflammatory cytokines in RA. It is present in most 

synovial biopsies, and up to 70% of patients respond to anti-TNFa therapy. In 

addition to its autocrine activation of macrophages and fibroblasts, it also activates 

neutrophils, endothelial cells and adipocytes to release pro-inflammatory 

mediators, and plays a role in joint destruction. IL-1 has a similar range of actions 

and is a very potent pro-inflammatory cytokine. This is counterbalanced by the 

expression of IL-1RA, and the balance between them may affect the clinical
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outcome (220). 1L-1RA is now also being used clinically in RA, although with less 

success. It is more successful as a treatment for autoimmune diseases caused by 

N A LP 3  mutations and excess IL-1 (3 production (221).

There are many more cytokines and chemokines that also contribute to the rich 

pro-inflammatory milieu established in the joint (222), but for clarity I will only 

mention a few here. IL-6, IL-23 and TGF(3 contribute to T h i7 cell differentiation 

and proliferation in the joint. TGF(3 may also contribute to Treg development and 

repair mechanisms. IL-15 is important for T cell proliferation and survival, but also 

activates neutrophils and promotes B cell differentiation and isotype switching. IL- 

18 is present in the inflamed synovium (223), and IL-18' '̂ mice have reduced 

incidence and severity of CIA (224).

1.5.2.4. Other innate cells in RA

Neutrophils are rapidly recruited into the arthritic joint, and are present in high 

numbers in both the synovium and synovial fluid. They are activated by TNFa, 

immune complexes, and complement fragments to produce cytokines (including 

TNFa, IL-1, IL-6 and IL15), chemokines, prostaglandins, and reactive oxygen and 

nitrogen species which contribute to inflammation In the synovium. Mast cells are 

present in the synovium, and are activated in similar ways to neutrophils. They 

also produce pro-inflammatory cytokines, and in addition protease enzymes, which 

break down matrix, but also activate macrophages. Mast cells produce IL-1 when 

stimulated through FCyRIII, and this may play a role in the initiation of synovial 

inflammation (225). Mast cell deficient mice are resistant to autoantibody induced 

arthritis (226). NK cells are also present in human RA, and release pro- 

inflammatory cytokines (227), but their role is not fully understood.

1.5.3. Cartilage and bone erosion in RA
Inflammation of the synovium triggers a cascade of events leading to cartilage and 

bone erosion. The current aim of treatment is to intervene in the inflammatory 

process as early as possible to avoid the inevitable joint destruction and 

irreversible deformity.

Activated synovial fibroblasts, neutrophils and mast cells produce matrix degrading 

enzymes, such as MMPs, which begin to break down cartilage and allows local 

influx of cells. Chondrocytes switch to a catabolic state and also produce matrix
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degrading enzymes and pro-inflammatory cytokines, thus speeding up the 

process. IL-1 seems to be the critical cytokine for cartilage damage. Direct 

injection of IL-1 into joints leads to cartilage erosion (228), and cartilage erosion is 

prominent in IL-1RA deficient mice with spontaneous arthritis (228,229). IL-17 

also promotes cartilage loss by TNFa and IL-1 dependent and independent 

pathways (230).

Under physiological conditions there is a balance between bone formation by 

osteoblasts, and bone resorption by osteoclasts. This balance is heavily tipped in 

favour of bone resorption in RA, through inhibition of osteoblast function and 

activation of osteoclast function. Osteoclast deficient mice develop inflammatory 

arthritis, but not bone erosion (231). Osteoclasts at the bone surface adjacent to 

the inflamed synovium are activated to resorb bone (232), which allows invasion of 

the bone by vascularised inflammatory pannus tissue. M-CSF is essential for early 

differentiation of osteoclast precursors into active osteoclasts, and is induced by 

TNFa from synovia! fluid cells and T cells. RANKL is produced by synovial 

fibroblasts and T cells in response to a number of cytokines and pro-inflammatory 

mediators, especially IL-1, TNFa and IL-17. RANKL binds to RANK on the 

osteoclast to induce final differentiation and bone-resorbing activity. RANKL is 

antagonised by osteoprotegerin (OPG), a soluble decoy receptor, which 

completely prevents bone lesions in experimental arthritis (233). There is an 

imbalance between RANKL and OPG in arthritis.

1.6. The role of IL-33 and ST2 in inflammation

The ST2  gene has long been known to encode an orphan receptor of the IL-1R 

family, with functions in innate and adaptive immunity, particularly Th2 responses. 

Recently IL-33 was described as the ligand for this receptor, and as expected was 

found to be a member of the IL-1 family of cytokines, and to have pro-Th2 

functions. I will now discuss some of the features of the IL-1 families of cytokines 

and receptors, and the current evidence for the role of the IL-33/ST2 interaction in 

inflammation.
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1.6.1. The IIL-1 family of cytokines
The IL-1 cytokine family currently consists of 11 members (summarised in table 

1.3; (1,234,235)), found close together on chromosome 2 in humans, except for IL- 

18 on chromosome 11. They share similar nucleotide sequences and protein 

structure, and exert their biological effects by binding to the IL-1R family of 

receptors.

LIGAND INTERACTIONS FUNCTION
(L-1a(IL-1F1) IL-1R1 + IL-1RAcP Cytokine

IL-1RII Decoy receptor
None (intracellular) Transcription factor

IL-1 P (IL-1 F2) IL-1R1 + IL-IRAcP Cytokine
IL-1RI! Decoy receptor

IL-1ra' (IL-1F3) IL-1R1 Cytokine antagonist
IL-18(IL-1F4) IL-18R + IL-1 SAP Cytokine

IL-ISbp"' Cytokine antagonist
IL-1F5 Unknown Unknown
IL-1F6 IL-1Rrp2 + IL-IRAcP Unknown
IL-1F7 IL-18R Unknown
IL-1F8 IL-1Rrp2 + IL-IRAcP Unknown
IL-1F9 IL-1Rrp2 + IL-1RAcP Unknown
IL-1F10 Soluble IL-1R Unknown
IL-33 (IL-1F11) ST2L Cytokine

sST2?" Decoy receptor?
None (intracellular) Nuclear factor

Table 1.3 Members of the IL-1 family o f cytokines

i|L-1 receptor antagonist binds to IL-1R1 with higher affinity than IL-1 a or 11-1(3 but without recruiting 

IL-1RAcp thus does not activate signalling; 2|L-18 binding protein binds to IL-18 to block binding to 

IL-18R; ^putative interaction yet to be directly shown.

1.6.2. The IL-1R family of receptors
The IL-1 family of cytokines bind to members of the IL-1R family of receptors, 

which are part of the TLR/IL-1R superfamily (summarised in table 1.4; (6,236)). 

These are a rapidly expanding group of receptors with wide-ranging effects on 

innate and adaptive immune function. They all share an intracellular signalling 

region (the so-called Toll-IL-IR  (TIR) domain) and similar signalling pathways. 

They are divided into three groups according to the extracellular ligand binding 

portion, or lack of it (see Figure 1.4). The IL-1R family have 3 immunoglobulin 

domains and bind cytokines of the IL-1 family, the TLR group have leucine-rich 

repeats and bind PAMPs and the adaptor group are intracellular and modify the 

signal transduction of these receptors.
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FAMILY RECEPTOR INTERACTIONS FUNCTIONS
Type 1 IL-IR f IL-1q, 11-1 (3, IL-1 ra Cytokine receptor
(IL-1R) IL-1RI1" IL-1a, 11-13 Decoy receptor

IL-18R" IL-18 Cytokine receptor
IL-1RAcp4 IL-1RI Accessory protein
IL.18AP& IL-18R Accessory protein
ST2L'’ IL-33 Cytokine receptor

MyD88 IL-1R/TLR regulation
IL-1Rrp2^ IL-1F6.7, and9 Unknown
SIGIRR® Unknown IL-1R/TLR regulation
TIGIRR" Unknown Unknown
IL-1RAPL* Unknown Unknown
B15R1" IL-13 Antagonist

Type 2 TLR 1-11 PAMPs Danger signals
(TLR) Toll, 18 wheeler Spatzl, Unknown Drosophila proteins

Type 3 MyD88 TLRs and IL-IRs Adaptor
(Adaptors) Mai / Tirap TLRs and IL-IRs Adaptor

TRAM TLRs and IL-IRs Adaptor
TRIP TLRs and IL-IRs Adaptor

Table 1.4 TLR/IL-1R superfamily of receptors

■•Type 1 IL-1 receptor; ^Type 2 IL-1 receptor not signal as it only has a short cytoplasmic tail; 3|L-18 

receptor; 4L-1 receptor accessory protein required for high affinity binding and signalling; ML-18 

receptor accessory protein required for high affinity binding and signalling; ^Membrane bound form of 

ST2, the putative second member of the receptor complex is unknown; ÎL-1 receptor related protein 

2 has no known function; ^Single immunoglobulin IL-1R related protein (237) is a negative regulator 

of IL-1R and TLRs (238,239) expressed in the epithelium of the kidney, lung and gut (240); ^Three 

immunoglobulin IL-1R related protein; IL-1 receptor accessory protein like protein (241); ^®B15R is a 

soluble mediator from the Vaccinia virus with homology to IL-1 R which binds and neutralises IL-ip, 

thus subverting the immune response against it (242).
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^  Ig domain 

I  Leucine rich repeat 

^  Toll/IL-IR domain

I
TIR type 1 

IL1-R Family
TIR type 2 

TLR Family
TIR type 3 
adaptors

Figure 1.4 The TLR/IL-1R famiiy of receptors

1.6.3. IIL-1 family cytokines are pro-inflammatory
There is a huge body of work concerning the roles of IL-1 a, IL-1 (3, and IL-18, and 

their receptors, in inflammation and other processes (reviewed in (243-246)). I will 

give just a brief overview of their key functions.

IL-13 is the main secreted form of IL-1, and despite being only 24% identical, IL-a 

and IL-13 bind to the same receptor, IL-1R1, and have identical biological effects 

(thus referred to collectively as IL-1). IL-1 and IL-18 are expressed to some degree 

by a large variety of cell types depending on the stimuli given. However, in both 

humans and mice monocytes/macrophages are a key source of both secreted IL- 

13 and IL-18. Murine macrophages express IL-1 a as they become activated, and 

secrete it at much higher levels than is found in humans. IL-18 is also produced by 

dendritic cells (247). Epithelial cells of the lung, gut and skin (kératinocytes) 

produce IL-18 and IL-1. Kératinocytes in particular produce a large amount of IL- 

1a in both humans and mice. IL-1 and IL-18 are also found in the central nervous 

and endocrine systems, and so play an important role in linking these with the 

immune system.

IL-1 can affect almost every cell in the body as IL-1R is ubiquitously expressed. 

Whilst its major role is in immunity and inflammation, it also has roles in regulation
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of cell proliferation and differentiation (embryogenesis, tumourigenesis and 

invasion (248)), regulating the hypothalamus-pituitary-adrenal axis (appetite (244), 

sleep (249), temperature (250)), energy metabolism (glycaemic control, lipid and 

protein catabolism), bone resorption (251) and atherosclerosis (252). IL-18 is also 

an important pro-inflammatory mediator, although IL-18R expression is more 

restricted, being predominantly on T h i cells and NK cells, and therefore so are its 

effects. Additionally, it functionally antagonises IL-1 in bone metabolism by 

inhibiting osteoclast function (253), and has anti-tumour activities.

IL-1 is the prototypic proinflammatory cytokine due to its ability to regulate the 

expression of a wide range of mediators. This includes cytokines, chemokines, 

acute phase proteins, adhesion molecules, growth factors, clotting factors and 

enzymes. In fact, many of the actions of IL-1 are through increased inducible nitric 

oxide synthase (iNOS) and NO production, and increased cyclo-oxygenase 2 

(COX-2) and prostaglandin E2 (PGE2) production. Thus IL-1 directly and indirectly 

enhances innate protective mechanisms, T cell function through IL-2 and IL-2R, 

antibody production, haematopoiesis and inflammatory cell infiltration and 

activation.

IL-18 is also a very important pro-inflammatory cytokine, but does not have the 

wide-ranging effects IL-1 has. Many of the biological roles of IL-18 studied thus far 

are dependent on its induction of IFNy from NK cells, T cells and macrophages, 

and their activation to increase NO production, cytotoxic cell functions and 

intracellular microbe clearance. In this respect it shares many functions with IL-12, 

and the two are synergistic because they induce the expression of each others’ 

receptors. IL-12 is essential for Th i polarisation and memory cell production, and 

IL-18 from dendritic cells augments this (247). However, IL-12 and IL-18 together 

can induce more IFNy production from naïve T cells in the absence of antigen than 

its presence (29). These cells do not become memory cells but may have a role in 

innate immunity. A similar phenomenon is seen in the absence of IL-12 but the 

presence of IL-2. In this scenario IL-18 augments IL-4 and IL-13 production in the 

presence of antigen, and therefore Th2 polarisation and atopic inflammation, and 

IL-13 in the absence of antigen, with a potential role in innate inflammation (246).

The functions of IL-33 are in keeping with being a member of the IL-1 family, but 

will be discussed in detail later (section 1.6.8.).
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1.6.4. Regulation of IIL-1 I IL1R family interactions
IL-1 and IL-18 have potent biological effects, and are therefore tightly regulated. 

Regulation occurs at the level of gene expression, and protein translation, 

processing and release from the cell. In addition there are a number of soluble and 

cell-membrane associated factors which can antagonise IL-1 and IL-18 function 

(see figure 1.5). IL-1 in particular is barely detectable in  vivo, but evidence for its 

potency comes from the biological effects detected after injection of only ng/ml 

amounts, despite the constitutive presence of a huge excess of antagonistic sIL- 

Rll in the serum. In addition, administration of IL-Ira is being used clinically to 

rapidly and effectively neutralise IL-1 and induce remission of a number of 

inflammatory diseases (221).

1.6.5. IL-33 is a member of the IIL-1 family of cytokines
The IL-33  gene was identified in 2005 in both humans and mice (1), and had 

previously been identified in humans and mice as NF-HEV, a nuclear factor 

(254,255), and in dogs as DSV27, a gene upregulated in cerebral artery 

vasospasm (256). Unlike most of the other members of the IL-1 family it is found 

on chromosome 9 in humans, and chromosome 19 in mice. The structure of the 

gene in humans and mice is very similar (254).

The nucleotide sequences of murine and human IL-33 share approximately 50% 

homology (254) (see figure 1.4), and of the other family members it is most similar 

to IL-18 (1). Human and murine IL-33 have a predicted 12 3 strand trefoil 

structure, and so are very similar in size and shape to IL-1 a, IL-13, and IL-18. IL- 

13 and IL-18 have no signal peptide and require cleavage by caspase-1 in the IL- 

13 inflammasome before secretion of the active C terminus cytokine moiety (257). 

Similarly, IL-33 has no signal peptide and, at least in vitro, it is cleaved by 

caspase-1 at aa112. This yields a C terminus fragment which when used as a 

recombinant protein was found to be active as a cytokine (1). The in vivo  role of 

caspase-1 cleavage and the mechanism of IL-33 secretion are unknown.
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Figure 1.5 IL-1, IL-18 and IL-33 agonists and antagonists

The IL-1 family of cytokines and their receptors interact in similar ways to allow tight regulation of 

their function. IL-1 binds to IL-1RI and recruits IL-IRAcP resulting in active signalling. This is a very 

potent interaction requiring the presence of only a few receptors, and so is regulated in a number of 

ways: i) binding to the decoy receptor IL-1RII does not result in signalling; ii) IL-Ra is homologous to 

IL-1 (3 and binds IL-1R1 with higher affinity than IL-1p or 11-1 a but does not recruit IL-1RAcp and so 

does not initiate signalling; iii) soluble forms of IL-1RI and IL-1RII bind IL-1 to prevent its interaction 

with the functional IL-1RI receptor on the cell membrane. IL-18 binds to the IL-18R and recruits IL- 

18AP for signalling. IL-18BP binds to IL-18 and prevents its interaction with the receptor. IL-33 binds 

to ST2L and results in signalling. The presence of an accessory protein is predicted, but has not yet 

been found. sST2 and ST2V are splice variants of ST2L that are secreted or membrane associated 

respectively. Possible regulatory interactions are indicated by question marks (?).
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N Terminus H e l ix  1____  H e l ix  2 Tu rn  H e l ix  3

hIL-33 MKPKMKYSTNKISTAKWKNTASKALC— FKLGKSQQKAKEVCPMYFMKLRSGLMIKKEAC 58
mIL-33 MRPRMKYSNSKISPAKFSSTAGERSVPPCKIRRSQQKTKEFCHVYCMRLRSGLTIRKETS 60

• k ' k ^ ' k - k i x ' k ^ ' k i c ' k i ^ i < : ' k i r - k - k ' k ' k : k ' k ' k - k i ^ ' k - k ' k ' k - k ' k ' k ' k ' : k ' k - k - k ' k - k - k ' k ' k - k ' k - k - k - k - k ' k ' k - k - ^ ' k ' k ' k - k - k ' k ' k ' k - k

hIL-33 YFRRETTKRPSLKTGRKHKRHLVLAACQQQSTVECFAFGISGVQKYTRALHDSSITGISP 118
mIL-33 YFRKEPTKRYSLKSGTKH— EENFSAYPRDSRKRSLLGSIQAFAASVDTL SIQGTSL 115

hIL-33 ITEYLASLSTYNDQSITFALEDESYEIYVEDLKKDEKKDKVLLSYYESQHPSNESGDGVD 178
mIL-33 LTQSPASLSTYNDQSVSFVLENGCYVINVDDSGKDQEQDQVLLRYYESPCPASQSGDGVD 17 5

hIL-33 GKMLMVTLSPT— KDFWLHANNKEHSVELHKCEKPLPDQAFFVLHNMHSNCVSFECKTDP 22 6
mIL-33 GKKLMVNMSPIKDTDIWLHANDKDYSVELQRGDVSPPEQAFFVLHKKSSDFVSFECKNLP 235

C Terminus
hIL-33 GVFIGVKDNHLALIKV-DSSENLCTENILFKLSET 270
mIL-33 GTYIGVKDNQLALVEEKDESCN NIMFKLSKI 2 66

Figure 1.6 Amino acid sequences o f human and mouse IL-33

The sequences of human and murine IL-33 (1), GenBank accession numbers AY905581 and 

AY905582 respectively, aligned to show homology (55%). The full-length human protein is predicted 

to be SOkDa, and the murine 29.9kDa. Caspase-1 cleavage takes place at aa112, yielding 2 

fragments. The N terminus fragment contains a homeodomain-like helix-turn-helix (HTH) motif (***) 

required for localisation to the nucleus and its role as a nuclear factor. The 0 terminus is an 18kDa 

IL-1-like cytokine domain (^^ )̂ that is also the sequence used for the recombinant protein.

IL-1 a is quite distinct from IL-13 and IL-18 in that it is largely an intracellular factor 

rather than a cytokine. It is rarely found extracellularly, although it can be 

presented at the cell surface or released from dying cells, where It has identical 

activity to IL-13- It is active without being cleaved and the N terminus region (aa1~ 

115) was found to target it to the nucleus where it may have transcription factor 

function (258,259). The N terminus of IL-33 (aa1-65) was found to contain a 

homeodomain-like helix-turn-helix (HTH) DNA-binding motif and was also found to 

localise IL-33 to the nucleus (254,255), where it may also play a role in 

transcriptional regulation. Thus IL-33 has structural and functional elements in 

common with both IL-13 (C terminus) and IL-1 a (N terminus).
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The expression of IL-33 mRNA at the tissue level is shown in table 1.5 and at the 

cellular level in table 1.6 (summarised from (1,254,255), and is broadly similar to 

IL-1 a, IL-13 and IL-18 combined. The level of expression runs in descending order 

from top to bottom in each table. In contrast to ST2, the expression of IL-33 has 

not been examined in embryogenesis.

Thus IL-33 mRNA is expressed to some extent in virtually every murine tissue, 

although it is highest in the central nervous system (CNS) and at epithelial 

surfaces interacting with the environment (skin, lungs and gut). The major source 

would appear to be activated macrophages and resting dendritic cells, although 

both of these were derived by in vitro  methods. In humans the CNS was not 

examined, but expression was highest in skin and lung tissues. In contrast to mice 

it seemed to be expressed more in tissue cells such as fibroblasts and smooth 

muscle cells.

Expression is seen in murine lymphoid tissues, but not to any significant extent in 

lymphocytes. In keeping with this it is seen mostly in high endothelial venule 

endothelial cells (HEVECs) of human lymphoid tissue, as well as some scattered 

cells in the T and B cell areas, although the specific cell types were not identified. 

Chronically inflamed tissues take on some of the features of lymphoid tissue with 

HEVs surrounded by lymphoid aggregrates, and IL-33 was also found in HEVECs 

of Crohn’s intestine and rheumatoid arthritis synovium. Expression in HEVECs 

was much higher than in other types of endothelial cell, implying a specific role 

here. It should be pointed out that IL-33 protein expression has only been shown 

in the nucleus of HEVECs thus far, so its cellular source as a cytokine is unknown.

LOW MEDIUM HIGH
Mouse Colon Lymph node Spinal cord

Thymus Spleen Brain
Pancreas Lung
Peyer’s Patch Skin (ears)
Heart Stomach
Kidney

Human’ T and B cell areas:
Tonsils
Payer's Patch
Mesenteric lymph node

Table 1.5 Tissue expression of IL-33 mRNA

^Human lymphoid tissue IL-33 protein expressed in the nucleus
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RESTING ACTIVATED
Mouse BM’ derived macrophage - ++++
RT-PCR'" BM derived dendritic cell ++++ "

Epithelial cell + +
Th2 cell +
B cell +
Peritoneal macrophage -

Th1 cell -
Naïve T cell -
L fibroblast -

Human
RT-PCR Dermal fibroblast + +++++

Bronchial smooth muscle +++ +++++
Pulmonary artery smooth muscle +++++
Coronary artery smooth muscle ++++
Bronchial epithelial cell +++
Keratinocyte + ++
Mesanglal cell (kidney) ++
Small airway epithelial cell + +
Lung fibroblast - +
Monocyte derived dendritic cell ” +
Monocyte - +
Mammary epithelial cell +
Renal epithelial cell +
Splenocyte +
Prostate epithelial cell -
Th0/Th1/Th2 cells -
NK cell -
B cell -
Peripheral blood mononuclear cell -

ISH' Tonsillar HEVEC'"''’ +++
Payer's patch HEVEC +++
Mesenteric LN HEVEC +++
Nasal polyp EC" +
Human umbilical vein EC +
Placenta -
Crohn's intestine EC +++
RA synovium EC +++
HeLa epithelial cancer cell line -

Table 1.6 Cellular expression o f IL-33 mRNA

^BM = bone marrow; 2RT-PCR = real-time quantitative PCR; ÎSH = in situ hybridisation; ^HEVEC = 

high endothelial venule endothelial cell; ^Tonsillar HEVEC IL-33 protein expressed in the nucleus; 

GEC = endothelial cell.

1.6.6. ST2 is a member of the IL-1 R receptor family
The ST2  gene was first identified in 1989 as a delayed early cell cycle gene in the 

BALB/c murine fibroblast cell line 3T3 stimulated by serum (260). It has also been 

identified as T1, induced by H a-ras  and v-m os  oncogenes, and serum, in 

quiescent murine NIH 3T3 cells (261,262), and glucocorticoid in proliferating cells 

(262). Homologous ST2  genes have been found in humans (263) (also identified
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as D ER 4  (264)), chicken (265) and salmon (266). The rat homolog is Fit-1, found 

as a Fos-responsive gene of rat fibroblasts (267). In humans it is on chromosome 

2 (268), and in mice on chromosome 1 (269), both closely linked to other members 

of the IL-1 R family.

The human gene structure (270) is shown in Figure 1.7, and the intron/extron 

structure is well preserved between species and other members of the IL-1R 

family (271). As with many members of the 1L-1R family there are a number of 

mRNAs generated from the same gene by differential splicing, resulting in several 

protein products (see Figure 1.5). The product of a short 2.7kb mRNA (272) is 

secreted from cells and is therefore termed soluble ST2 (sST2). It comprises 3 

immunoglobulin domains with a short tail which is homologous to the extracellular 

portions of IL-1R1 and IL-1R2. A longer 5kb mRNA gives rise to ST2L, the 

membrane anchored receptor (273). The 5’ end is identical to sST2, but at the 3’ 

end it has a transmembrane portion and a cytoplasmic tail containing the TIR 

domain, and has homology to IL-1R1 along its length.

Promoters
Haem Non-haem STOP
p - »  r - ^  sST2

■ ■■■ ■ àu
1a 1b 2 3 4 5 5E 6 7 9 10

STOP
sSTL

11

3'

sST2

mRNA
transcription

ST2L

Secreted

Protein
translation

4 5 6

Extracellular

8 9 10 11

TM Intracellular

Amino acids

328 323 556

Figure 1.7 Structure o f the human ST2 gene

The human ST2 gene contains two promoters, specific to haematopoietic or non-haematopoietic 

cells. Exon usage for mRNA transcription is indicated. Exon 5E is only used in ST2V (not shown). 

sST2 is identical to the extracellular portion of ST2L, with the addition of 5 aa’s.
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There are 2 promoters which regulate production of the mRNA. In humans (274) 

and mice (275) the promoters are cell-specific, with the distal promoter dominant 

in haematopoietic cells, and the proximal promoter dominant in non- 

haematopoietic cells. Either promoter can result in production of sST2 or ST2L 

mRNA by differential 3’ processing. The distal promoter is constitutive and serum 

independent (276) and has GATA consensus sites in human and mouse. One of 

these binds GATA-3 with enhanced activity (277), and enforced GATA-3 

expression induced ST2L expression on 004"" cells (278). The proximal promoter 

is growth responsive and interacts with AP-1 and helix-loop-helix transcription 

factors (279). In rats (280) the situation is different, with the distal promoter 

specific to ST2L and the proximal specific to sST2, but both can be used in the 

same cell. The function of these 2 products will be discussed in more detail later.

More recently other variants have been found. ST2V is a truncated form of sST2 

found so far in humans (281) and chickens (265). It uses the stop codon 

containing exon 5E (see Figure 1.5) and therefore has a hydrophobic tail instead 

of the third immunoglobulin domain, which allows it to be anchored in the cell 

membrane. In humans it is expressed mostly in stomach, small intestine and colon 

tissue (282). ST2LV is a form of ST2L found in chickens (265) which has the 

transmembrane portion deleted, and is released as a soluble protein from 

transfected cells. The functions of these are unknown at the moment.

The expression profile of ST2 mRNAs has been more extensively studied than IL- 

33. Tissue distribution is shown in table 1.7, and a summary of the cellular 

distribution in table 1.8.
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HUM AN^ MOUSE""
sST2 ST2L sST2 ST2L

Adult Spleen y y y y
Bone marrow y y
Thymus y y
Lung y y y' f ..
Stomach y y n n
Small intestine y y n n
Colon y y n n
Liver y y n n
Kidney y y n n
Placenta y y n n
Testis y y n n
Brain* y/n n n n
Heart'" y/n y/n n n
Skeletal muscle'" n n n n
Pancreas'" n n n n
Skin (ears)'" y y

Embryo Liver y y
Spleen y y
BM y y
Eye (retina) y n
Bone (osteoblast) y n
Skin (dermis) y n

Table 1.7 Expression of ST2 mRNAs in mouse and human tissues

■'Human data from (270) unless otherwise stated. ^Mouse data from (283) unless otherwise stated. 

3ST2L constitutively expressed in the lung, sST2 only after LPS stimulation (284). ^Brain and heart 

expression found by Li (270), but not by Kumar (285). Expression of sST2 and ST2L in skin only 

after UV irradiation.

Soluble ST2 is widely expressed during embryogenesis, deposited in the 

extracellular matrix of non-haemopoietic tissues (283), and may be an early 

marker of osteogenesis (286). ST2L expression in the embryonic mouse is 

restricted to haemopoietic tissues (283). In the adult mouse both sST2 and ST2L 

are restricted to haematopoietic tissues (283) and to the lung (284). They are 

inducible in the skin by inflammation, but it is not known if this expression is from 

resident or infiltrating cells (285). In contrast, ST2 mRNAs are found almost 

ubiquitously in human tissues (270). It is likely this reflects the presence of 

inflammation within the human tissues at the time of collection.
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MOUSE HUMAN
RESTING ACTIVATED RESTING ACTIVATED

sST2
Cell lines Fibroblast N y y

Alveolar macrophage Y increased
Th2 y increased
Th1 n
B cell n
Non-lymphoid’ Y y

T  Cells Fibroblast N y
Mammary epithelium Y
Bronchial epithelium y Increased
PA endothelium y increased
PA smooth muscle y increased
Lung fibroblast y increased
Alveolar macrophage y increased
Th2 y y

ST2L
Cell lines Fibroblast Y y y increased

HUVEC y increased
Alveolar macrophage Y
Mast cell Y y
Th2 Y y
Th1 N n
B cell N n
Non-lymphoid’ Y y

1“ cells Fibroblast N y n n
Bronchial epithelium n y
PA endothelium y decreased
PA smooth muscle n y
Alveolar macrophage y increased
Astrocyte Y
Tissue mast cell Y
BM mast cell Y
Th2 Y increased / increased
Th1 N n
Natural Killer N
DC N
Monocyte y increased
Macrophage N
Kératinocytes y
B cells N

Table 1.8 Expression o f ST2 mRNAs in various cell types

^Many immortalised cell lines have been found to express sST2 or ST2L, largely non-lymphoid lines. 

2Human Tc2, NK2 and NKT2 cells express ST2L also (287).

The predominant cells expressing ST2L constitutively in mice are mast cells, 

which express high levels of ST2L at all stages of development (288,289). It is 

also found on a murine alveolar macrophage cell line, and in human alveolar
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macrophages (284) and circulating monocytes (290). Importantly, ST2L is a 

specific marker for antigen-experienced T helper type 2 (Th2) cells (291,292) and 

not T h i, which express the IL-18R (293). ST2L also identifies human Th2 cells 

(293), but these cells may need to be activated first (294). It Is also on IL-10 

producing Tregs in mice (295), but not humans (294).

Soluble ST2 is generally only expressed in cells activated by growth or 

inflammatory mediators. It Is expressed in the developing mammary epithelium at 

puberty, but not at terminal differentiation during pregnancy and lactation (296). 

Fibroblasts (297,298), alveolar macrophages (284) and Th2 cells (294) have all 

been shown to release sST2 when stimulated by pro-inflammatory mediators. Low 

level sST2 expression is seen in a number of bronchial and pulmonary artery cell 

types, but this is markedly upregulated after activation (284).

Despite their similarity to the extracellular portion of IL-1R1 neither sST2 nor ST2L 

bind IL-1 a or IL-1p (283). Several putative ligands for ST2L were reported 

(299,300), but did not have any functional relevance in vivo. sST2-Fc bound to 

bone-marrow derived macrophages (293,301), dendritic cells (141) and a 

glioblastoma cell line (300). Human sST2 binds a to B cell myeloma line (302) and 

a monocyte line (303), but the mechanism is unknown. Partly because the ligand 

was unknown there has been some debate over the signalling pathways initiated 

by ST2L. Initial studies indicated that, in common with other IL-1R family 

members, ST2L could activate NF-kB (304), but later studies suggested it did not 

(305). The recent discovery of IL-33 as the natural ligand for ST2L (1) showed 

definitively that ST2L signalling pathways are similar to the other IL-1R and TLR 

family members (see Figure 1.6). However, in some situations ST2L may be a 

negative regulator of TLR signalling ((306); see section 1.6.7.1.)
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Other kinases

Erk-1/2
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Pro-Inflammatory gene expression

Figure 1.8 ST2L signalling pathways after IL-33 ligand binding

The signalling mechanism is very similar to IL-1R1 signalling (reviewed in (6,307)). IL-1 R and IL-18R  

bind IL-1 and IL-18 respectively, but require an accessory protein for signalling. This has not been 

identified yet for ST2L. There are a number of soluble antagonists for IL-1 and IL-18. sST2 may 

perform this role for IL-33, but this has not yet been shown directly. On ligand binding ST2L initially 

interacts with MyD88 through the TIR  domain. This is indispensable for signalling. IRAK, IRAK4 and 

TRAF6 then assemble and activate NF-kB through degradation of IkB. IL-1 R and IL-18R also do this, 

and in addition activate A P -1 . ST2L was previously shown to activate AP-1 when over-expressed or 

stimulated by an anti-ST2 antibody (305). The end result is up-regulation of pro-inflammatory genes 

in the nucleus.
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1.6.7. Innate Immune functions of IL-33 and ST2
Most members of the Toll/IL-IR  superfamily are involved in innate immunity 

through activation of NFkB. Expression of IL-33 and ST2 proteins can occur in 

many structural and immune cells involved in the innate response, as detailed 

above. In a model of innate immunity, treatment of mouse ears by UV irradiation 

causes a marked local inflammatory response in the skin. An increase in ST2 

mRNAs was seen 48hrs later, but it is not known if this is from resident or 

infiltrating cells (285). However, the functional contribution of IL-33/ST2 to innate 

immunity has focused mainly on the role of sST2 and ST2L on macrophage 

function, and the ability of IL-33 to induce a type 2 innate response.

1.6.7.1. ST2 modulates macrophage function

In addition to fibroblasts, alveolar macrophages produce sST2 when stimulated by 

LPS or pro-inflammatory cytokines (284). sST2 has been shown to bind to 

monocytes/macrophages by an unknown receptor, resulting in downregulation of 

LPS-induced pro-inflammatory cytokine release (284,301,303,308). LPS can even 

increase the binding of sST2 to macrophages (301). Treatment with sST2 in vivo  

can reduce LPS-induced acute lung injury (284) and endotoxic shock (301), and 

ischaemic reperfusion injury in the intestine (308) and liver (309). Anti-ST2 

antibodies caused an increase in endotoxic shock mortality (301). In the ALI model 

the peak level of sST2 in BALE occurred after peak inflammatory cytokine release, 

in keeping with the role of sST2 as a regulatory mechanism to limit innate 

inflammation. The exact mechanism of action of sST2 is not yet clear, but there 

does appear to be a direct effect through binding to a cell-surface receptor, as well 

as potentially sequestering the ligand for ST2L. Downstream events may include 

downregulation of TLR1 and TLR4 expression (301,309), reduced IkB degradation 

and NFkB nuclear translocation (303), and increased IL-10 expression (308).

Alveolar macrophages and monocytes expresses ST2L constitutively (284,290), 

and levels are upregulated by activation. In contrast BM-derived macrophages do 

not express ST2L at all (301). When co-transfected with IL-1R or TLR4, ST2L was 

able to down regulate signalling by sequestering MyD88 and Mai and preventing 

NF-kB activation (306). This is in stark contrast to ST2L activating NFkB when 

bound by IL-33, but may reflect the fact that this is an artificial system where ST2L 

may be acting without a natural ligand or accessory receptor, whereas IL-33 

signalling was investigated in mast cells naturally expressing high levels of ST2L
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(1). However, these results do indicate ST2L could also act as a negative regulator 

of innate immunity. In keeping with this, macrophages from ST2" '̂ mice produced 

more pro-inflammatory cytokines in response to TLR2, 4 and 9 stimulation than 

wildtype (306). Endotoxic shock can be prevented by pre-treatment with a sub- 

lethal dose of LPS (endotoxin tolerance), thought to act in several ways to reduce 

the severity of inflammation and mortality. ST2" '̂ resulted in increased LPS- 

induced pro-inflammatory cytokines in vivo and loss of endotoxin tolerance, 

although mortality from LPS shock was not affected (306). It is not clear if these 

results could be in part due to the loss of sST2 regulation also. Similar to 

endotoxin tolerance, pre-treatment with TLR2 agonists can protect against 

peritonitis-induced shock. ST2 mRNA was upregulated in the spleens on mice with 

tolerance to TLR2 ligands (310), though it is not clear if this is sST2 or ST2L 

mRNA, or both.

Overall there is no doubt that sST2 and ST2L may be powerful modulators of 

innate inflammation, but the respective roles of each, and in particular the possible 

antagonistic or direct actions of sST2 remain to be elucidated. ST2L may be 

involved in the transition from innate to adaptive immunity, as inhibiting TLRs 

tends to predispose to Th2 responses. The role of IL-33 in these models has not 

yet been examined.

1.6.7.2. IL-33 induces a systemic type 2 innate response

Structurally, IL-33 has much in common with the prototypic pro-inflammatory 

cytokines IL-1 a, IL-1 (3 and IL-18, although thus far there is very little functional 

information on IL-33. Schmitz et al (1) used recombinant IL-33 to induce a potent 

type 2 innate response in mice. This was characterised by an increase in type 2 

cytokines and total IgE and IgA in the serum, eosinophils in the blood, and an 

increase in eosinophils and mucous producing Goblet cells at mucosal surfaces in 

the lung and gut. Although they also demonstrated IL-33 activates NFkB through 

binding to ST2L on mast cells in  vitro, the cellular source of IL-33 and the 

responding cells in  vivo  are not known, and it has not yet been confirmed that IL- 

33 acts through ST2L in vivo.
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1.6.8, Th2 immune functions of IL-33 and ST2
The main focus of research on the ST2  gene has been its role as a marker for Th2 

cells, and its potential role in the initiation of Th2 responses, and in Th2 effector 

mechanisms. This evidence is summarised below.

1.6.8.1. ST2 is expressed in CD4* Th2 cells

A number of studies have demonstrated ST2  gene expression preferentially in 

CD4‘̂  Th2 cells. For instance, Th2 cell lines, and not Th1, express ST2L (292,302), 

and while naïve 004"^ cells do not express ST2L (311,312), it has been 

established as a cell surface marker distinguishing Th2 cells from T h i or Th17 in 

mice (291,292,313) and humans (293). However, the situation is not as simple as 

this.

In vitro  studies have shown that ST2L is specifically a marker of well-differentiated 

antigen-experienced Th2 cells. The haemopoietic cell promoter for ST2 contains a 

number of GATA binding sites and ST2L expression is increased by GATA-3 

binding (277), and over-expression of GATA-3 results in naïve CD4^ cells taking 

on a CD44'^'CD45RB'°CD62L'° antigen-experienced phenotype (278). E x vivo  it is 

on cells with the CD4"'CD62L'° phenotype, and which co-express IL-4 and IL-5, 

and not IFNy (291,314). The percentage of cells expressing ST2L in  vitro  

increases with every round of antigen stimulation under Th2 polarising conditions 

whether polyclonal (311), or antigen-specific (315). Initially IL-4 and IL-10 are 

produced, then ST2L and IL-5 expression increase in parallel.

ST2L expression is influenced by other factors. Cytokines such as TNFa, IL-1, IL- 

4, IL-5 and IL-6 all increase expression of ST2L in  vitro, and IFNy decreases it 

(311,312). IL-13 has no effect (311). However, ST2L expression is not dependent 

on these, as it is expressed at normal levels in IL-4'^" (291,312,316), IL-10'^' (291) 

and IL-4/13'^' (48) mice. Although it is expressed in IL-5'^‘ mice, it is only at one 

third of the level seen in wildtype mice (291), suggesting a link between IL-5 and 

ST2L regulation (see section 1.6.8.4.).

Antigen dose also influences ST2L expression. In neutral in  vitro  culture conditions 

a lose dose of antigen resulted in increased ST2L expression and IL-4 production, 

whereas at high doses, ST2L expression was reduced and IFNy was produced 

(312). However, in  vivo  ST2L'" cells are found in the highest number at the site of
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inflammation, such as the footpad in L m a jo r (317), the lung in airways 

inflammation (141,318) and S m anson i (314) then with reducing frequency in 

draining, then distant, lymph nodes.

Thus although ST2L is a marker for Th2 cells, it is not a marker for all Th2 cells, 

and in humans is only expressed in activated Th2 cells, which can also produce 

sST2 (294).

1.6.8.2. ST2 is expressed in Th2 effector cells

As previously mentioned, mast cells are the major expressers of ST2L in mice, 

and an important Th2 effector cell, rapidly releasing pro-inflammatory mediators 

after degranulation by IgE binding. ST2L has also been found on human type 2 

CD8'" cytotoxic T cells, NK cells, and NKT cells (287,293). ST2  expression in other 

Th2 effector cells such as eosinophils or basophils has not yet been 

demonstrated.

1.6.8.3. ST2 modulates Th2 inflammation

Apart from its presence on Th2 cells and effector cells, there is further evidence 

that ST2  is expressed in and may play a role in Th2 responses. For instance, 

sST2 is elevated in the serum of mice with allergic airways disease very early in 

the response (3 hours), before even mRNA is detected (6 hours), and preceding 

the peak of Th2 cytokines (24 hours). There is also a second peak at 36 hours 

(319). ST2L expression on CD4^ cells increases in acute airways inflammation 

(318) and in a model of chronic asthma (320). ST2 mRNAs are increased in rats 8 

hrs after induction of contact hypersensitivity (321). The opposite is true for T h i 

responses, where ST2  expression is suppressed. Overexpression of IP-10, a T h i 

chemokine, induces a T h i response and reduces ST2L^ cell numbers in airway 

inflammation by 60% (322).

However, although the expression of ST2  has been shown in experimental Th2 

diseases, assessing its function requires manipulating its expression or function 

directly. There are a number of approaches that have been taken to assess the 

role of sST2 and ST2L in modulating Th2 immune responses:
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a) Polyclonal antibody serum inducing complement lysis

A polyclonal anti-ST2 antibody caused complement-induced lysis of ST2L'^ cells in 

vitro. When given to BALB/c mice susceptible to L m a jo r through a dominant Th2 

response this induced healing through a shift towards a Th1 response (292). It is 

likely this is through loss of Th2 cells, as mast cells do not play a prominent role in 

the response to L m ajor. It could also be due to lysis of cells binding sST2 at their 

surface (eg macrophages). Neither of these possibilities can be discounted, but 

these results do demonstrate that cells expressing ST2L (or binding sST2) have 

an important role in Th2 responses.

b) Non-lytic monoclonal antibodies

In vitro  crosslinking of ST2L on Th2 cells with a non-lytic anti-ST2 monoclonal 

antibody promotes proliferation and cytokine production (311) via the JNK pathway 

(305), suggesting that ligation of ST2L in vivo may be important in Th2 cell 

activation.

In vivo  monoclonal anti-ST2 has been shown to reduce allergic airways 

inflammation induced by adoptive transfer of either Th2 cells (291) or antigen- 

pulsed dendritic cells (141), and virally induced Th2 airway inflammation, but not 

Th i (323). In each of these models anti-ST2 was used to putatively block 

interaction of ST2L with its ligand, but cell activating properties cannot be 

excluded.

c) ST2-FC fusion protein

An sST2-Fc fusion protein has also been used to block ST2L function by 

sequestering the presumptive ligand. However, it must be remembered that sST2- 

Fc has been shown to bind to a number of cells, including macrophages, B cells 

and dendritic cells, and may have functions independent of ST2L. Nevertheless, 

administration of sST2-Fc has been used successfully to modulate Th2 responses. 

In vitro  there was a reduction in cytokine release from polarised antigen-specific 

Th2 cells, no effect on T h i cells, and ThO cells had reduced IL-4 and IL-5, and 

increased IFNy (315). In vivo  there was a reduction in Th2 airway inflammation 

(141,291,315) but not T h i (315). In addition, sST2-Fc was found to boost the Th2 

response and pathology seen in carbon tetrachloride (CCD-induced hepatic 

fibrosis, dependent on CD4"' cells and IL-4Ra (IL-4 and IL-13 signalling) (324).
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Thus sST2-Fc may have both pro- and anti-Th2 actions, the mechanisms of which 

may be different depending on the circumstances.

d) transgenic overexpression o f sST2

Over-expression of sST2 by gene transfer resulted in reduced allergic airways 

disease (319) and although it did not prevent a Th2 response it did reduce the 

number of IL-5 secreting cells in N  bras iliens is  infected lungs (325).

e) ST2 gene disruption

The ST2  gene has been knocked out in several different ways, all on the T h i 

dominant C57BI/6 background (325-327). In general, the phenotype seen is not a 

dramatic one. As with overexpression of sST2, ST2'^' did not reduce the Th2 

response, but did reduce the number of IL-5 secreting cells in N  brasiliens is  

infected lungs (325). There was reduced primary granuloma formation, but not 

secondary, in lungs challenged with S m anson i eggs (326).

1.6.8.4. ST2 and IL-5 regulation appear to be linked

A number of lines of evidence point to the fact that ST2  and IL -5  gene expression 

are linked, more so than with any other Th2 cytokine. Both ST2  and IL-5  genes 

contain GATA binding sites and are regulated by GATA-3, the archetypal Th2 

transcription factor (41,277). In fact, in vitro  all ST2L"^ cells produced IL-5, although 

not all IL-5 producers were ST2L^ (314). In IL-5“̂ “ mice the amount of ST2L 

expression was much reduced (291) whilst in ST2'^' mice the number of IL-5 

producing cells was reduced (325). In vivo ST2‘ ‘̂ mice and ST2-Fc transgenic mice 

both have lower levels of IL-5 in N  brasiliens is  infection although all other 

responses are normal (325). Both ST2L^ and ST2L Th2 cells were found in L 

m ajor, with ST2L^ cells producing most of the IL-5 (328), and correlating with non­

healing lesions (317).

1.6.8.5. ST2 may have a negative regulatory role in Th2 responses

Virtually all studies that have demonstrated a role for ST2 in Th2 inflammation 

have focused on a pro-inflammatory function. However, a very recent study has 

shown that ST2 may play a role as a negative regulator of Th2 function (329). This 

study showed that ST2‘ '̂ mice developed worse allergic airways inflammation than 

ST2^^^ mice. It went on to demonstrate a key role for ST2 in regulating T cell 

function in this model. Th2 cells from ST2‘ ‘̂ mice produced more cytokines in  vitro
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than ST2^^^, and transfer of ST2'^' Th2 cells resulted in worse allergic airways 

inflammation than transfer of ST2^^^ Th2 cells, even in lymphocyte deficient Rag'^' 

recipient mice. This is supported by the finding that T cells from the ST2'^ mice 

produced significantly higher levels of cytokines, particularly Th2 cytokines, than 

cells from ST2'' '̂" mice when stimulated by antigen, or polyclonally with anti-CD3 

and anti“CD28 antibodies (data not shown). Thus S T2  may act as a “brake” on 

cytokine production, although the mechanism is unknown.

I.6.8.6. ST2 is not essential for Th2 responses

Just as it has been shown that Th2 responses can develop in the absence of IL-4 

(45-47), some studies have shown that blocking ST2  function or ST2'^‘ does not 

affect Th2 responses. Interfering with ST2L signalling during L m a jo r infection 

using a non-lytic anti-ST2 mAb or sST2-Fc did not affect Th2 differentiation, the 

frequency of ST2L"^ or ST2L- cells, or the non-healing nature of the lesion (330). in  

vitro  naïve T cell function, and Th1 and Th2 polarisation were unaffected by ST2" "̂, 

as were mast cell development and function (326,327). There was no difference in 

eosinophilic ain/vay inflammation (327), outcome of N  bras iliens is  infection 

((325,327)), or secondary granuloma formation in response to S m anson i eggs 

(326). Mice expressing high levels of an sST2-Fc transgene also cleared N  

brasiliens is  normally (325).

Interestingly, even in these models where disease outcome was unaffected, there 

were detectable differences in Th1/Th2 cytokine production. It was noted that the 

percentage of IL-5 producing cells in the lungs of N  bras iliens is  infected mice was 

reduced in both ST2^ and sST2-Fc transgenic mice, with a corresponding 

reduction in BAL eosinophilia (325), and that draining lymph nodes from the lungs 

of mice with 2° S m anson i granulomas produced less IL-4 and IL-5 (326). in 

addition, CD4^ cells from L m a jo r infected mice with disrupted ST2 signalling were 

more responsive to IL-12 and produced more IFNy (330). Whilst these provide 

further evidence of the link between ST2 and Th2 function, it was not sufficient to 

materially alter the course of the infection. It is likely that given the importance of 

Th2 responses to parasite clearance there will be a number of back-up 

mechanisms by which they can arise, particularly under strong stimulation.
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1.6.8.7. IL-33 and Th2 responses

Whilst it stimulates the release of Th2 cytokines from in vitro  polarised Th2 cells 

(1), IL-33 has not yet been shown to play a role in established Th2 responses, but 

given its potent type 2 innate inflammatory properties it is likely it will play a role in 

differentiation to Th2 responses, and/or in the Th2 effector response.

1.6.9. Thi or Th17 autoimmune functions of IL-33 and ST2
Although there has been less work on the role of ST2  and IL-33 in Th1 responses, 

there is evidence of a potentially important regulatory role. IL-33 is expressed in 

the nucleus of HEVs from Crohn’s bowel and RA synovium, although its function 

there is unknown (255). Experimentally, ST2-Fc is highly effective in blocking the 

induction and disease progression of the Th1/Th17 mediated CIA model in DBA/1 

mice (331). ST2" "̂ exacerbated a streptozocin-induced T h i model of autoimmune 

diabetes (332).

1.6.10. IL-33 and ST2 in human disease
Soluble ST2 expression can be detected by ELISA (333) in a number of different 

human diseases, and often correlates with seventy. However, a definite 

pathological role has yet to be identified.

1.6.10.1. Elevated sST2 in innate inflammation and trauma

Patients with sepsis have a markedly elevated serum sST2 compared to normal 

subjects (334). Trauma or abdominal surgery also elevated sST2 levels, but not by 

as much (334). Serum sST2 is elevated after cardiac surgery (335) and in cardiac 

muscle under strain (336), and is a predictor of mortality or the need for transplant 

in patients with heart failure (337). It is also elevated by myocardial ischaemia 

(336,338) and correlates with the rise in creatine kinase and the fall in left 

ventricular function (337), and can predict mortality after myocardial infarction 

(338). Subarachnoid haemorrhage (SAH) leads to an inflammatory reaction in the 

subarachnoid space, and can precipitate a systemic inflammatory syndrome. 

Cerebrospinal fluid has higher elevated levels of sST2 than the serum following 

SAH, implying it is being released locally (339). Thus sST2 is released after 

several very different triggers of innate inflammation.
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1.6.10.2. Elevated sST2 in Th2 inflammation

Serum sST2 is elevated in a number of human diseases with significant Th2 

pathology. It is elevated in stable atopic asthmatics, and a further rise during 

exacerbation correlated well with the severity (340). Serum and BAL sST2 were 

elevated in acute eosinophilic pneumonia, and returned to normal after successful 

treatment with corticosteroids (341). Serum sST2 was also elevated in patients 

with an exacerbation of interstitial pulmonary fibrosis (342). In addition, the ST2  

gene may have a role to play in the susceptibility to atopic inflammation. 

Functional SNP polymorphisms have been found in the promoter of the ST2  gene, 

and are associated with atopic dermatitis. High risk polymorphisms resulted in 

increased promoter activity and were associated with an increase in serum sST2 

and total IgE (343).

1.6.10.3. sST2 and Th i inflammation

Elevated sST2 was found in the serum of some patients with autoimmune 

diseases including systemic lupus erythematosis, RA, Wegener’s granulomatosis 

and Behcet’s disease (344). However, the numbers were rather small, and not all 

patients had sST2 present, so larger studies are needed to see if this correlates 

with disease severity.

1.6.10.4. sST2 and malignancy

CD4+ cells isolated from malignant effusions expressed more ST2  mRNA, and the 

effusion fluid contains more sST2, than patients with effusions secondary to TB or 

heart failure (345). ST2L expression could be used to distinguish mycosis 

fungoides lesions from skin lesions of adult T-ceil leukaemias (346), and also to 

distinguish anaplastic large cell lymphoma from other lymphomas (347). Soluble 

ST2 is also an indicator of low risk of recurrence in lymph node negative breast 

cancer (348). Thus ST2  expression can have significant implications for planning 

treatment and predicting survival. As well as being a marker for some kinds of 

tumour, ST2  could also play a functional role. Levels of ST2  expression were 

found to be low in a human glioblastoma cell line and tumour samples (349). 

Transfecting sST2 into the cell line reduced the ability of the cells to proliferate 

when not anchored, and suggests that sST2 can influence tumour growth and 

survival. ST2  expression occurs in osteogenic osteosarcoma, and inhibiting it in 

these cells abrogated the formation of osteoid by these tumours, indicating a role 

for ST2 in osteoblast differentiation (350).
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1.7 Hypothesis

On the basis of the current evidence I hypothesise that the 1L-33/ST2 axis has 

important pro-inflammatory roles in different types of inflammation, and therefore is 

potentially an important target for modulation of Immune responses.

1.8 Aims

In order to test this hypothesis I will demonstrate that:

1. IL-33 initiates an innate immune response in the lung in the absence of

antigen

2. IL-33 is dependent on ST2  gene expression for its pro-inflammatory

effects

3. IL-33 may have role in asthma, a Th2 driven allergic disease, using murine

allergic airways disease as a model.

4. IL-33 may have a role in rheumatoid arthritis, a Th1/Th17 driven

autoimmune disease, using murine collagen-induced arthritis as a model.

These studies will Identify IL-33 as a novel target for therapeutic intervention in

many different types of inflammation and human diseases.
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Chapter 2

Materials and Methods
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2.1. Buffers and Reagents

Solutions/buffers and reagents used in all experiments are listed in appendix 1 

(solutions/buffers) and appendix 2 (reagents).

2.2. Mouse Strains

All mice were housed in University of Glasgow Biological Services facilities 

according to United Kingdom Home Office regulations, with free access to food 

and water. Severe combined immunodeficient (SCID) mice were kept in filter top 

cages with sterilised food and water. All experiments were undertaken in the same 

facility under project licence 60/3119. I held personal licence number 60/9140. The 

strains of mice used and their sources are summarised in Table 2.1.

STRAIN GENETIC MODIFICATION SOURCE
BALB/c None Harlan Olac
BALB/c ST2 gene knockout Prof Andrew Mackenzie 

University of Cambridge
BALB/c SCID Harlan Olac
DBA/1 None Harlan Olac
DBA/1 ST2 gene knockout Bred at University of 

Glasgow

Table 2.1 Strains of mice used in experiments 

2.2.1. Commercially available mice

Wildtype BALB/c (H-2^), SCID mice (C.B-17 on the BALB/c background) and 

DBA/1 (H-2^) mice were purchased from Harlan Olac (Bicester, Oxon, UK).

2.2.2. ST2 gene knockout mice
In some experiments I used mice which had the ST2  gene disrupted to delete the 

majority of exons 4 and 5 (326). In homozygotes this results in ST2 knockout mice 

(ST2'/-) no expression of either soluble ST2 or ST2L. BALB/c ST2^ mice had 

previously been obtained from Professor Andrew Mackenzie, BBRC, University of 

Cambridge.
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2.2.3. Breeding DBA/1 ST2  ̂ mice
The BALB/c strain is resistant to arthritis so in order to carry out these experiments 

ST2^ mice on the susceptible DBA/1 background were required. Female BALB/c 

ST2 "̂ mice were mated with male DBA/1 mice to produce ST2^^' heterozygous Fi 

mice. Female Fi heterozygotes were identified by polymerase chain reaction 

(PCR) and backcrossed for 7 further generations with wildtype male DBA/1 mice. 

Male and female Fg heterozygotes were mated and ST2^ homozygote offspring 

used to set up breeding pairs.

2.2.3.I. Screening for ST2 gene expression by PCR

Mice to be used in breeding were identified as wildtype (ST2^ "̂ )̂, heterozygous 

(ST2+/-) Qp homozygous (ST2'^ ) for the disrupted ST2 gene by polymerase chain 

reaction (PCR). The same method was used in both BALB/c and DBA/1 strains as 

the gene disruption was the same. All techniques were performed using gloves 

and guaranteed DNAase/RNAase free plasticware.

a) DNA extraction

All centrifugations were at 14000rpm at 4°C. Tail tips were digested overnight at 

55°C in 0.5 ml tail lysis buffer. The tail digest was mixed with 0.5ml 

phenol/chloroform/isoamyl alcohol and centrifuged for 5 minutes. The top layer, 

containing the DNA, was decanted into a fresh eppendorf taking care not to disturb 

the protein layer (see Figure 2,1).

DNA layer

Protein

Debris

Figure 2.1 Extracted DNA is In the top buffer iayer

This was mixed with 0.5ml chloroform and centrifuged for 5 minutes. The top DNA- 

containing layer was decanted again and 0.8ml of ice cold 100% ethanol was 

added, mixed well, and left at -20°C for 20 minutes for the DNA to precipitate. This 

was centrifuged for 15 mins, the supernatant was poured off, and 0.5ml of ice cold
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70% ethanol added to the DNA pellet. This was centrifuged again for 15 minutes, 

and the supernatant poured off. The pellet was air-dried for 25 mins at 55°C in a 

vacuum-dryer, and resuspended in 50pl water for injection. The DNA was stored 

at 4 ”C until PCR was performed for genotyping.

b) Polymerase Chain Reaction for ST2 gene disruption

Reaction buffer (19pl) and sample DNA (Ip l) were mixed in PCR tubes. DNA 

samples from mice known to be ST2‘̂ "̂ or ST2^ were used as positive

controls. Pure water (1pl) was used as a negative control. PCR was performed 

using the following protocol:

1. 1 cycle 94°C 3 minutes

2. 30 cycles 94°C 45 seconds

60°C 30 seconds

72'C 90 seconds

3. 1 cycle 72°C 10 minutes

4. Stored at 4°C until run on DNA detection gel

c) DNA detection gei

The samples were mixed with 5pl loading buffer, run on a 2% agarose gel with 

0.005% ethidium bromide for 30 mins at lOOmV in TAE buffer, then viewed under 

ultraviolet (UV) light. A DNA sample ladder was used to estimate the size of the 

bands detected. Primers 1 and 3 amplified the 500 base pair (bp) wildtype band, 

and primers 2 and 3 amplified the 200bp disrupted ST2  band (see appendix 2, 

table 1 for primer sequences). An example of the gels obtained is shown in Figure

2 .2 .
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Figure 2.2 A DNA detection gel as viewed under UV light

I  = DNA ladder

2 - 7  = Samples. All heterozygous in this example

8 = ST2+/- heterozygous control

9 = ST2+/+ wildtype control (500bp)

10 = ST2 /- homozygous control (200bp)

I I  = Negative control (no sample DNA)

DNA from the tail-tips of mice to be used in breeding was amplified by PCR, run on a 2% agarose 

gel with 0.005%  ethidium bromide, and then viewed under UV light to illuminate the resulting bands.

2.3. Cell culture

Cells were always handled under sterile conditions, and were washed in sterile 

wash medium by centrifuging at 1400rpm for 5 mins at 4°C unless otherwise 

stated. Live cells were counted in a Neubauer haemocytometer (Weber Scientific 

International Ltd, UK) using an aliquot diluted with a 0.1% (w/v) solution of trypan 

blue to stain non-viable cells. The number of live cells in 25 central squares was 

counted and the number of cells per ml calculated using the following formula:

Cells/ml = count x dilution factor xIO^

All cells were cultured at a final concentration of 1x10® per ml in complete RPMI 

medium, and at 37°C in a 5% CO2 atmosphere. Additional antigens for cell 

restimulation were added to cell culture where indicated
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2.3.1. Cytokine and chemoklne production
To assess lymphocyte synthetic function cells were cultured in flat-bottomed 24 

well culture plates (Nunc, Roskilde, Denmark) for 96 hrs. The supernatant was 

then removed and frozen at -20°C until further analysis.

2.3.2. Proliferation assay
To assess lymphocyte proliferation cells were cultured in triplicate for 72 hrs in 

round-bottomed 96 well tissue culture plates (Nunc, Roskilde, Denmark). Tritiated 

(®H)-thymidine (15kBq in lOpI sterile wash medium) was added for the last 8 hrs of 

culture. Cells were harvested onto glass fibre filter paper (Wallac, Milton Keynes, 

UK) using a 295-0054 Betaplate 96 well harvester (Wallac). ®H-thymidine 

incorporation was measured using a Matrix 96 Direct Beta Counter (Wallac). All 

procedures were performed according to local radiation safety guidelines.

2.4. IL-33 Purification

Recombinant human and murine interleukin (rh and rmlL)-33 were produced and 

purified within the department by Dr Damo Xu. Briefly, IL-33 cDNA was cloned 

from IL-1 stimulated human or murine fibroblasts by real time (RT)-PCR using 

specific primer pairs (see appendix 2, table 2 for sequences). The sequence- 

confirmed IL-33 cDNA was inserted into expression vector PQE (Quiagen) and 

fused with a His-tag before being transformed into Escherich ia  co ii strain M15. The 

IL-33 protein was induced by IPTG and purified by Ni-NTA affinity chromatography 

(Quiagen). The IL-33 was then run through a polymyxin B column to remove 

endotoxin. The purity of IL-33 was more than 97% by SDS gel, and endotoxin 

levels were less than 0.01eu/ug of protein Limulus Amoebocyte Lysate QCL-1000 

pyrogen testing (Biowhittaker).

2.4.1. Testing the bioactivity of IL-33
Peripheral lymph nodes were removed from naïve BALB/c ST2^ '̂  ̂ and ST2‘ '̂ mice 

(Figure 2.3). A single cell suspension was created by crushing the lymph nodes 

gently through Nitex mesh (Cadisch, UK), washing them twice, resuspending in 

5ml complete medium and filtering again through Nitex to remove debris. The cells 

were counted and kept on ice until plated out for cell culture. T lymphocytes were 

stimulated using plate-bound anti-CD3 with or without IL-33. Flat-bottomed 24 well



Chapter 2; 80

cell culture plates were coated by incubating with 200pl of 2pg/ml anti-CD3 in 

sterile PBS at 37°C for 3 hours. The wells were washed twice with complete 

medium before adding the cells at 1x10® cells/ml. IL-33 was added at 10ng/ml to 

some wells. All conditions were cultured in triplicate for 3 days and supernatants 

collected for analysis.

The bioactivity of IL-33 was confirmed by measuring the increase in IL-5 

concentration by enzyme-linked immunosorbent assay (ELISA). Batches of IL-33 

with similar bioactivity were used in experiments. Specificity was confirmed by 

culture with ST2"^" cells, where no increase in IL-5 production was seen with the 

addition of IL-33 (Figure 2.4).
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Figure 2.3 Murine lymphoid organ anatomy

1 Cervical 6 Sub-carinal (retrocardiac)

2 Mediastinal 7 Spleen

3 Axillary 8 Mesenteric

4 Brachial 9 Inguinal

5 Thymus 10 Popliteal

Adapted from the National Institute of Allergy and Infectious Diseases (part of the National Institute of Health) website: 

http://www.niaid.nih.gov/Dir/services/animalcare/MouseNecropsy/lymph.html

http://www.niaid.nih.gov/Dir/services/animalcare/MouseNecropsy/lymph.html
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Figure 2.4 Testing the bioactivity o f IL-33

Lymph node T cells were stimulated with anti-CD3 with or without IL-33 for 3 days. Culture 

supernatants were harvested and the concentration of IL-5 measured by ELISA. Results are the 

means ± SD of triplicate assay wells.

2.5. Murine models of human diseases

As discussed in the introduction, asthma and RA are complex multi-factorial 

diseases, with heterogeneity of genetics, pathophysiology, severity and response 

to treatment. The underlying mechanisms are not yet fully elucidated, and much 

research remains to be done. Although the study of human subjects is essential to 

guide research and translate experimental findings into clinically applicable data, it 

is limited by a number of factors. Firstly, it is usually only possible to study people 

who already have established disease, and so it is difficult to elucidate initiating 

factors. In addition, it can be almost impossible to separate the effects of just a 

single factor from many other confounding factors. Legal, ethical and safety 

considerations also restrict the amount and type of tissue that can be studied, 

often limiting the scope of investigation to snapshots of processes involved, rather 

than dynamic studies.

Therefore, much important work has been performed using in vivo animal models 

of disease. In particular the mouse has been used extensively for a number of 

reasons. On a practical level mice are not endangered, and a number of
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genetically well characterised in-bred strains are readily available. There is also an 

extensive commercially available “toolbox” of immunological agents with which to 

carry out investigations. The mouse immune system is well studied and 

understood, and is similar to human in many regards. The mouse genome can be 

manipulated to selectively knock out or amplify factors of interest in order to 

assess their functional importance. Any tissue can be examined in detail at a 

number of time points, allowing exploration of dynamic processes, and 

experiments can be controlled to isolate the effect of a single factor at a time.

Disadvantages are that mice do not naturally develop asthma or arthritis, and so 

any disease model will be artificial. Also there remain important differences 

between human and murine immunity (reviewed in (351)) which means caution 

must be taken when applying murine findings to human disease. Despite these 

shortcomings, murine models have been invaluable in studying specific aspects of 

the inflammatory processes seen in asthma and arthritis, which can then be 

applied to humans for further study.

2.5.1. Murine allergic airways disease
The advantages and disadvantages of using mice to model asthma have been 

extensively debated and reviewed (352-356). Although none of the many models 

in use has all the hallmarks of human asthma, many features are present: a 

peribronchial and perivascular inflammatory infiltrate rich in eosinophils and 

lymphocytes, a Th2 cytokine bias, mucus hypersecretion, Increased serum IgE, 

and changes in airway physiology. However, in addition to differences in immune 

function, mice have structurally and functionally different airways to humans, with 

fewer bronchial divisions, more bronchial-associated lymphoid tissue (BALT) and 

smooth muscle present only in the larger airways. Therefore, some key features of 

human asthma are not easily modelled or measured, in particular AHR and 

chronic inflammation (357).

2.5.1.1. Designing a murine model o f asthma

A number of different approaches have been used to model asthma, including 

active sensitisation and challenge, transfer of antibody, transfer of allergen-specific 

lymphocytes and transient gene transfer (354). It should be remembered that 

differences in models can result in variable results even when studying the same 

phenomenon.
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As I was most interested in studying the acute allergic response to an allergen I 

used a short sensitisation and challenge protocol in BALB/c mice using ovalbumin 

(OVA) as the allergen, adapted from Stock et al ((128); Figure 2.5). This type of 

model is widely used and gives reproducible results. The following factors were 

taken into account when considering what model to use:

a) Mouse strain

Strains of mice differ in their ability to exhibit various features of asthma. AFIR is 

best demonstrated in A/J mice although it is also seen in BALB/c mice. BALB/c 

mice are pre-disposed to make strong Th2 type inflammatory responses, and have 

been shown to exhibit greater allergic airways inflammation than other strains.

b) Aliergen and adjuvant

Various allergens have been used, including live organisms (fungi, parasites), 

complex proteins (from house dust mites and cockroaches) and simple proteins 

with or without adjuvants (OVA with alum). I used sterile chicken OVA as the 

model allergen as simple proteins give a reliable effective dose and reproducible 

response. Live organisms and complex proteins can vary widely in the response 

elicited even in congenic mice. Simple proteins alone do not stimulate strong 

responses so an adjuvant is given to boost the response. In this case I used alum 

as it also induces a Th2 type response (145).

c) Route and timing o f administration

Active sensitisation and challenge mimics the events happening after allergen 

challenge in human asthma, albeit over a much shorter time-scale. Systemic 

sensitisation (intraperitoneal (IP)) followed by local challenge (intranasal (IN)) 

given from 7 days up to several weeks afterwards has been shown to give the 

optimal degree of allergic airways inflammation. In pilot experiments I found a 

single sensitisation and a single challenge 7 days later were sufficient to induce 

allergic airways disease, whilst 3 consecutive challenges gave maximal 

inflammation (data not shown). Flowever, the dose of OVA and the number of 

challenges given could be varied to increase or reduce the level of inflammation.
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2.5.1.2 Allergen sensitisation

All mice, Including negative control groups, were sensitised on day 1 with 100pg of 

OVA in 100pl of sterile PBS mixed with 100pl of 2% alum injected 

Intraperitoneally. The same sensitisation protocol was followed in all experiments.

2.5.1.3 Allergen chaiienge

The mice were anaesthetised using 250-350pl of avert!n injected IP. Once they no 

longer withdrew from whisker stimulation they were challenged with either 2pg or 

10pg of OVA in 30pl sterile PBS IN. PBS alone was used as a negative control. 

Where indicated rmlL-33 was added to the OVA or PBS and administered at the 

same time. The mice were placed in a warm box until they recovered 

consciousness, and supplementary oxygen given if required. Mice were 

challenged either 3 times (days 9, 10 and 11) or twice (days 9 and 11). The 

optimum dose and number of challenges were determined by pilot experiments 

(see section 4.2 for data).

t IP Sensitisation

Day 1

OVA lOOfjg 
+ Alum

t t t
D9 (DIO) D ll

OVA 2 -  lOgg 
+ /-  2gg mlL-33

Cull

IN Challenge i

Figure 2.5 A murine modei of aliergic airways disease

Mice were sensitised to OVA by IP injection on day 1, with alum used as a Th2 adjuvant. The 

airways were challenged with IN OVA on days 9 - 1 1 .  Where indicated rmIL-33 was given IN at the 

same time as OVA. Mice were culled 24 hours after the final challenge and various tissues collected 

for analysis.
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2.5.1.4 Tissue harvesting

The mice were culled 24 hours after the last challenge by anaesthetising with 

SOOpI avertin IP, and then exsanguination to collect serum. Various tissues were 

then harvested and analysed.

a) Serum

The chest wall was opened and blood withdrawn from the right ventricle using a 

1ml syringe and 23 gauge needle. It was then centrifuged at 14000rpm at 4°C for 

30 mins, and the serum decanted and stored at -20°C until analysed.

b) Bronchoaiveoiar lavage

The trachea was exposed by dissection of the superficial neck structures and 

cannulated using a 1ml syringe with a 23 gauge needle. The needle was sheathed 

in plastic tubing (0.58mm ID, 0.78mm OD; VWR International) extending 1~2mm 

from the end to prevent the needle passing through the posterior wall of the 

trachea. The needle was held in place by blunt forceps to effect a seal. The lungs 

were inflated carefully with 800pl PBS and the fluid withdrawn after 10 seconds. 

This process was then repeated with a fresh 800pl aliquot of PBS and the two 

aliquots pooled and kept on ice until further processing. Total cell counts were 

performed as described (section 2.3). After removal of cells for differential cell 

counting (see below), the remaining BAL fluid was centrifuged at 1400rpm for 5 

minutes at 4°C and the supernatant frozen at -20°C until analysed.

c) Differential cell count

In order to determine the relative frequency of different cell types 5x10"̂  cells were 

removed from the BAL and spun onto a slide at 300rpm for 6 mins using a 

Cytospin (Thermo Shandon, Cheshire, England). The resulting cytopreps were air- 

dried then fixed in methanol for 10 minutes. They were stained by the 

Romanovsky method using Rapi-Diff II and coverslips fixed in place with DPX. 

Macrophages, eosinophils, neutrophils and lymphocytes were identified using 

standard morphological criteria under xlOO oil immersion microscopy, and the 

relative frequency of each was determined by counting 400 consecutive cells. The 

number of cells per ml in the original BAL was then calculated from the total cell 

count. Squamous epithelial cells were often seen, but were not included in the 

analysis. The slides were blinded and randomised before counting to eliminate any
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bias. Figure 2.6 shows examples of these cell types as seen under x40 

microscopy.

50 |im

»

Figure 2.6 Leukocytes seen in mouse bronchoaiveoiar lavage fluid

This figure represents the standard morphology of various leukocytes seen in mouse 

bronchoaiveoiar lavage fluid at x40 magnification.

1 = macrophage -  mononuclear \A/ith pale foamy cytoplasm

2 = eosinophil -  multi-lobed or ring nucleus with eosinophilic cytoplasm

3 = neutrophil -  multi-lobed nucleus with pale cytoplasm

4 = lymphocyte -  mononuclear with very little cytoplasm 

The insert shows ciliated squamous cells at the same magnification.
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d) Draining lymph nodes

The heart and lungs were removed en bloc from the chest cavity and the 

mediastinal and subcarinal draining lymph nodes (DLNs) draining the lung were 

removed into ice cold wash medium and kept on ice. A single cell suspension was 

created by crushing the lymph nodes gently through Nitex, washing them twice, 

resuspending in 5ml complete medium and filtering again through Nitex to remove 

debris. The cells were counted and kept on ice until plated out for cell culture. 

Cells were cultured with or without 1 mg/ml OVA for both proliferation and 

cytokine/chemokine cultures.

e) Lung histology

The heart/lung block was removed intact and the trachea cannulated. The lungs 

were inflated with 1ml 10% neutral buffered formalin (NBF), the trachea tied off 

using cotton thread, and then the whole block immersed in 10% NBF for at least 

48 hrs. The lungs were mounted in paraffin blocks, and 6pm sections stained with 

haematoxylin and eosin (H&E; kindly performed by Mr. Roderick Ferrier, 

Department of Pathology, Western Infirmary, Glasgow). Sections were examined 

at X20-100 magnification and peribronchial and perivascular inflammation 

assessed.

Scoring svstem

There is no single validated scoring system for allergic airway inflammation seen 

in mice. I used a semi-quantitative system to assess the degree of eosinophilic 

infiltration seen (see Figure 2.7):

0 No eosinophils

1 Eosinophils make up less than 10% of total infiltrate or total

infiltrate is <20 cells

2 Eosinophils make up 10%-50% total infiltrate

3 Eosinophils make up more than 50% total infiltrate

A total of 10 fields were scored for each mouse. Each field had to contain both a 

bronchus and a vessel in close proximity. The average field score for each mouse 

was calculated, and then the results expressed as the mean score for each group. 

All scoring was performed on slides which had been blinded. In some experiments
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the scoring was validated by a second blinded observer to ensure inter-observer 

agreement. The results obtained were the same.

A) Score 0 B) Score 1

D) Score 3Score 2

Figure 2.7 Lung histoiogy from allergic airways inflammation

Shown here are examples of different grades of allergic airways inflammation in BALB/c mice using 

the experimental protocol described.

2.5.2. Murine collagen-induced arthritis
As with asthma, there is no single model which exactly mimics human RA, 

although various models have been developed which can exhibit some of the 

cardinal features of human disease, such as auto-antibody production, chronic 

synovitis and joint destruction, and even systemic features (vasculitis, interstitial 

pneumonitis, and subcutaneous nodules) (229,358-362).



Chapter 2: 90

2.5.2.1. Designing a model of rheumatoid arthritis
A model of antigen-specific collagen-induced arthritis (CIA) was used, which 

shares many of the immunological and pathological features of human RA 

(reviewed in (362)). The response to collagen is well categorised, and it has been 

widely used both in studying the pathogenesis of disease, and in testing novel 

therapeutics. It depends on both T and B cell immunity, resulting in a Th1/Th17 

type response with production of arthritogenic antibodies.

The mice are immunised intradermally (ID) with heterologous collagen type-11 (Oil) 

and an adjuvant, and the response boosted by IP challenge with Oil (see Figure 

5.1). The following factors were taken into consideration when designing the 

model:

a) Mouse strain
Susceptibility to arthritis is linked to the expression of certain MHC-class II 

molecules. Most commonly used strains of mice, including BALB/c (H-2^), are 

resistant to arthritis. However, DBA/1 mice (H-2'^) are highly susceptible to arthritis 

(362). Other genetic factors, such as variability in cytokine expression also play a 

role. As we only had ST2^ mice on the BALB/c background, this necessitated 

breeding this trait onto the DBA/1 background (see section 2.2.3.).

b) Antigen and adjuvant
Cll was used as the antigen as the anti-CII !gG2a antibodies produced cross-react 

with mouse Cll in the joint, and activate complement there, thus localising the 

systemic response to cause joint pathology. DBA/1 mice will respond to chicken, 

bovine, porcine and human Cll. I used bovine Cll as it is widely used, results in a 

high incidence of disease and gives reproducible results.

Collagen alone will not induce arthritis. Co-administration of Complete Freund’s 

Adjuvant (CFA) biases towards a Th i type response, and is essential for the 

production of arthritogenic antibodies. The amount of antibody produced depends 

on the concentration of M ycobacte rium  tubercu los is  present in the CFA (363). 

Recently, high doses were even shown to induce arthritis in strains previously 

thought to be resistant to CIA (364).
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2.5.22. Antigen immunisation
I used a commercially available reagent kit (Chondrex) which contained both 

bovine Cll (2mg/ml in 0.05M acetic acid) and CFA.

a) Emulsion preparation
An emulsion of Cll and CFA was produced by mixing equal volumes of each in a 

small universal on ice to prevent denaturing. This was best achieved by rapidly 

drawing up and ejecting the mix using a 1ml syringe. The emulsion was 

considered stable when a drop remained as a solid clump and did not dissipate 

when placed on the surface of water.

b) Collagen injection
On day 1 the mice were anaesthetised using halothane, and a single ID injection 

of 50pg Cll in 50pl emulsion (1 mg/ml) was made at the base of the tail using a 1 ml 

syringe with a 27 gauge needle. The mice develop a local skin reaction with 

ulceration at the injection site.

c) Boosting the response
The response was boosted on day 21 by mixing equal volumes of Cll and sterile 

PBS, and then injecting 50pg Cll in 50pl PBS (1 mg/ml) IP.

d) Treatment with rmlL-33
The effect of rm IL-33 on the severity of arthritis was assessed. Where indicated 

mice were treated by injecting 0.8pg rm IL-33 in 200pl sterile PBS IP for 5 

consecutive days starting on day 21.
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2.5.2.3. Footpad measurements
The thickness of the front and rear footpads was measured using callipers on day 

21, as a baseline, and then every 1-2 days following this. The increase in footpad 

thickness was calculated from the baseline measurements. The clinical score for 

each footpad was also assessed using the following criteria:

Score
No inflammation 0

Red toes or footpad 1
Red, swollen footpad 2

Loss of function (limping) 3

The incidence of disease and the average increase in footpad thickness and total 

clinical score per mouse were calculated for each group. Only those mice which 

developed disease were included in clinical score and footpad analysis.

2.5.2.4. Tissue harvest
At various time points after boosting, the immune response was assessed by 

culling the mice by neck dislocation, and harvesting the draining lymph nodes, 

spleens and joints.

a) Lymph node and spleen cultures
The popliteal DLNs and spleens were harvested (see Figure 2.3) and pooled for 

each group. They were kept on ice until single cell suspensions were prepared (as 

in section 2.5.1.5.d). In addition, the red blood cells from spleens were lysed after 

the first wash using 1ml of Red Cell Lysis buffer for 1 minute, then washing a 

further two times. Cells were cultured at 1x10®/ml in complete medium with 

lOOpg/ml bovine Cll for cytokine/chemokine production and proliferation.

For use in culture bovine Cll was dissolved in sterile 0.05M acetic acid at 4 “C 

overnight on a rotating mixer to give a concentration of 2mg/ml. This was then 

dialysed twice against 2 litres of PBS using dialysis cassettes. The resulting 

solution of Cll in PBS was kept at -20“C until use. It was used in culture at 

100pg/ml. For consistency the same batch of Cll was used in all experiments. 

Chondrex Cll was not used in culture as it tended to precipitate out and form large 

gel-like structures in culture medium, therefore Cll from Sigma was used.
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2.6. Administration of IL-33

In some experiments I used IL-33 alone to demonstrate its biological effects on the 

innate immune system. Recombinant IL-33 was produced as described previously 

(section 2.4) and administered as described below.

2.6.1. Intraperitoneal administration of IL-33
Recombinant IL-33 (human or murine) was injected IP for 7 days, at a dose of

O.Spg per mouse in 200pl sterile LPS-free saline (see Figure 3.1).

2.6.2.1. Tissue harvest
Mice were culled by neck dislocation 24 hours after the last injection, and various 

tissues harvested. Serum, BAL and lungs were collected and processed as 

described previously (section 2.5.1.5.), and in addition peritoneal wash and 

spleens were also collected.

a) Peritoneal Wash
The peritoneum was instilled with 6ml sterile LPS-free PBS using a 10ml syringe 

and 21 gauge needle. This was then withdrawn after 10 secs and kept in a 

universal on ice until processing. The total cell count was performed, and 5x10"^ 

cells removed for cytospin and differential count as described for BAL fluid (section 

2.5.1.5.c). The remaining sample was centrifuged at 1400rpm for 5 mins at 4°C to 

pellet the cells, and the supernatant kept at -20“C until further analysis.

b) Spleen harvest
The spleen was removed and kept in ice cold wash medium until processing. 

Spleens were weighed, then a single cell suspension prepared (see section

2.5.2.4.) Differential counts were performed on cytospins of 5x10^ cells as 

described for BAL fluid (see section 2.5.1.5.c).

2.6.2. Intranasal administration of IL-33
IN administration of rm IL-33 was undertaken in a similar fashion to OVA challenge 

in the airway inflammation model (see section 2.5.1.4.). Mice were anaesthetised 

using 250-350pl avertin IP, and then 2pg of rm IL-33 in 30pl sterile LPS-free PBS 

was given IN. Mice were allowed to recover in a warm box with supplemental 

oxygen if required. This was done for 7 consecutive days (see Figure 3.8).
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2.6 2.1. Tissue harvest
Mice were anaesthetised 24 hours after the final dose with SOOpI avertin, culled by 

exsanguination and tissues harvested. Serum, BAL, peritoneal wash, spleens and 

lungs were all processed as previously described (sections 2.5.1.5. and 2.6.2.1).

2.7. Enzyme-linked immunosorbent assay

Enzyme linked immunosorbent assays (ELISAs) were used to determine the 

concentration of cytokines, chemokines and antibodies in serum, BAL, peritoneal 

wash and cell culture supernatants. All ELISAs were carried out in flat-bottomed 

96 well Immulon 4 assay plates (Thermo Labsystems, Franklin, USA) using 0.05% 

Tween-20 in PBS for washing. Analysis was performed on an MRX-II microplate 

reader (Dynex Technologies, UK) running Revelation software v1.5, and sample 

values calculated from the standard curves generated (see Figure 2.8).

A) ELISA protocol 1 B) ELISA protocol 2

C) Immunoglobulin ELISA D) Multiplex

3.500

3 000

2000

1 500

1 000

0.000

-1 000

0.100 10.000 1000.000

ng/ml

Figure 2.8 Standard curves for ELISA and multiplex
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2.7.1. Cytokine and chemokines
Most cytokines and chemokines were measured using commercially available 

capture and detection antibody pairs, each recognising discrete epitopes. 

Recombinant murine cytokines and chemokines were used to create doubling 

dilution (1:2) standard curves on each plate. All samples were applied in triplicate 

where possible, and diluted 1 : 5 - 1 :1 0  where concentrations were above the limit 

of the standard curve. The protocol followed depended on the source of the 

antibody pairs.

2.7.1.2. Protocol 1 -  BD sourced antibodies and standards
Unless otherwise indicated, a volume of 50pl per well was used for all stages, 

antibodies, standards and samples were diluted in ELISA assay buffer A, and all 

incubations were at room temperature.

Cytokine
Capture

Antibody
(ftg/ml)

Detection
Antibody
(ng/ml)

Top
standard
(ng/ml)

IL-4 2 2 10
IL-5 4 4 10
IFNy 1 0.5 40

Table 2.2 BD sourced antibodies and standards

Plates were coated with the capture antibody overnight in ELISA coating buffer A 

at 4°C. They were then washed twice and non-specific binding blocked by 

incubating the plates at 37°C for 1 hr with 200pl ELISA assay buffer A. The plates 

were washed twice before applying the samples and standards, which were 

incubated for 2 hrs, and then the plates washed 4 times. The detection antibody, 

conjugated to biotin, was added and incubated for 1 hr, washed 4 times, then 

plates incubated with extravidin-peroxidase (1:1000) dilution for 30 mins. The 

plates were washed 6 times, and 100pl 3’3’5’5’-tetra-methylbenzidine (TMB) 

substrate added to each well. The plates were incubated for up to 30 mins in the 

dark and then colour development measured at 630nm.
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2.7.1.3. Protocol 2 -  R&D Systems sourced antibodies and standards
Unless otherwise stated a volume of lOOpI per well was used, and antibodies, 

standards and samples were diluted in ELISA assay buffer B. All incubations were 

at room temperature.

Cytokine
Capture

Antibody
(ng/ml)

Detection
Antibody
(pg/ml)

Top
standard
(ng/ml)

lL-13 4 0.3 2
IL-13 4 0.2 2.5

Eotaxin-1 0.8 0.4 0.5
Eotaxin-2 2 0.075 4

TCA-3 2 2 1
TARC 2 0.2 1

Table 2.3 R&D Systems sourced antibodies and standards

Plates were coated with the capture antibody overnight in ELISA coating buffer B. 

They were then washed twice and non-specific binding blocked by incubating the 

plates for 1 hr with 300pl ELISA blocking buffer. The plates were washed twice 

before applying the samples and standards, which were incubated for 2 hrs, then 

the plates washed 4 times. Eotaxin-2 detection antibodies were diluted in ELISA 

assay solution B with the addition of 2% heat-inactivated normal goat serum. The 

others were diluted as normal. The biotinylated detection antibody was incubated 

for 2 hrs, the plates washed 4 times, and 100pl streptavidin-peroxidase (1:1000) 

added and incubated for 20 mins. The plates were washed 6 times, and the TMB 

substrate added and incubated for 20 mins in the dark. The reaction was stopped 

using lOOpI stop solution and colour development measured at 450nm with a 

570nm correction filter.

2.7.2. Immunoglobulins
Total IgE and IgA, and antigen-specific IgE, IgGI and lgG2a were measured using 

commercially available antibodies, kits and standards (R&D Systems). Standards 

were available for total IgE and IgA only, and were used at doubling dilutions in 

duplicate. Antigen-specific Igs were measured by comparing OD values directly. 

All samples were applied in triplicate where possible. Unless otherwise indicated a 

volume of 100pl per well was used, incubations were at room temperature, and 

antibodies, standards and samples were diluted in ELISA assay buffer A.
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2.7.2.1. Total IgE
Total IgE was measured using a commercially available mouse anti-lgE kit. The 

concentrations of antibodies and avidin-horseradish peroxidase (HRP) varied 

according to batch and were used as recommended by manufacturer (typically 

1:250). Plates were coated with the capture antibody overnight in ELISA coating 

buffer B at 4°C. They were then washed twice and non-specific binding blocked by 

incubating the plates for 1 hr with 2G0pl ELISA assay buffer A. The plates were 

washed twice before applying the standard (starting at 100ng/ml) and samples at 

1:10 -  1:50 dilution. Samples and standards were incubated for 2 hrs, then the 

plates washed 4 times. The biotinylated detection antibody and avidin-HRP were 

added at the same time and the plate incubated for 1 hour. The plates were 

washed 6 times, and 100pl TMB substrate added. The plates were incubated for 

30 mins in the dark, and then the reaction stopped using lOOpI stop solution. The 

colour development was measured at 450nm with a 570nm correction filter.

2.7.2.2. Total IgA
Total IgA was measured using a commercially available antibody pair and purified 

monoclonal mouse IgA as a standards. Plates were coated with the capture 

antibody (2pg/ml) overnight in ELISA coating buffer B at 4°C. They were then 

washed twice and non-specific binding blocked by incubating the plates for 1 hr 

with 200pl ELISA assay buffer A. The plates were washed twice before applying 

the standard (starting at 1000ng/ml) and samples (BAL 1:10 -  1:50; peritoneal 

wash 1:20 -  1:100; serum 1:1000 -  1:5000). Samples and standards were 

incubated for 2 hrs, then the plates washed 4 times. The biotinylated detection 

antibody (2pg/ml) was added and the plate incubated for 1 hr. The plates were 

washed 4 times, and extravidin-peroxidase (1:1000) added and incubated for 30 

minutes. The plates were washed 6 times and lOOpI TMB substrate added for 30 

mins in the dark. The reaction was stopped using lOOpI stop solution and colour 

development was measured at 450nm with a 570nm correction filter.

2.7.2.3. Antigen-specific IgE
Antigen-specific IgE was measured using components of the total IgE kit. Plates 

were coated overnight with lOpg/ml OVA in ELISA coating buffer B at 4°C. They 

were then washed twice and non-specific binding blocked by incubating the plates 

at 37°C for 1 hr with 200pl ELISA assay buffer A. The plates were washed twice 

before applying the samples. No standards were available. Samples were diluted
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to 1:50, applied in duplicate in doubling dilutions, and incubated at room 

temperature for 2 hrs. The remainder of the protocol was identical to the total IgE 

kit.

2.7.2.4. Antigen-specific lgG1 and lgG2a
Antigen-specific IgGI and lgG2a were measured using commercially available 

anti-mouse IgGI and lgG2a antibodies conjugated to biotin (R&D Systems). 

Plates were coated with overnight with lOpg/ml OVA in ELISA coating buffer B at 

4 “C. They were then washed twice and non-specific binding blocked by incubating 

the plates at 37°C for 1 hr with 200pl ELISA assay buffer A. The plates were 

washed twice before applying the samples. No standards were available. Samples 

were diluted to 1:250 -  1:500 for IgGI and 1:25 -  1:50 for IgG2a, and applied in 

duplicate. Tripling (1:3) dilutions were used for IgGI and doubling (1:2) dilutions 

for lgG2a. The samples were incubated for 2 hrs, then washed 4 times. 

Biotinylated detection antibody was added at 1:1000 for IgGI and lgG2a and 

incubated for 1 hour. The plates were washed 4 times, and extravidin-peroxidase 

(1:1000) added for 30-60 mins. The plates were washed 6 times, and then lOOpI 

of TMB substrate added for 30 mins. The reaction was stopped at this point using 

lOOpI stop solution, and the plates analysed at 450nm with 570nm correction.

2.8. Multiplex Bead Analysis: Cytokines and Chemokines

Where indicated cytokines and chemokines in serum, BAL or culture supernatants 

were analysed using BioSource Multiplex Bead Immunoassays analysed on a Bio- 

Rad Bioplex analyser. Extensive instructions were provided with the kit used and 

followed closely (BioSource Mouse Cytokine Twenty-Plex -  measuring FGF, 

VEGF, GM-CSF, IFNy, TNFo, IL-1a, IL-1|3, IL-2, IL-4, IL-5, IL-6, IL-10, IL- 

12p40/p70, IL-13, IL-17, IP-10, KG, MCP-1, MIG, MIP-1a). The number of samples 

measured with one kit was doubled by diluting out the reagents to half the 

concentration using the recommended BioSource Mouse Extracellular Protein 

Buffer Reagent kit. This did not affect the sensitivity of any of the assays. A 50pl 

sample was sufficient, but where possible all assays were performed in duplicate.

The principle is similar to that of ELISAs, being a solid phase sandwich assay. 

Briefly, capture antibody coated beads were applied to the wells, and then the
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plates incubated with standards and samples for 2 hrs. During this time analytes 

bound to the capture antibodies on beads with a defined spectral property specific 

to each analyte. After washing, biotinylated detection antibodies were added for 1 

hr, and the plates washed again. Streptavidin conjugated to the fluorescent protein 

R-Phycoerythrin (RPE) was then added for 30 mins and the plates washed a final 

time. The Bio-Rad Bioplex then analysed the amount of fluorescence on each type 

of bead to determine the concentration of each analyte from the standard curves 

generated (see Figure 2.8).

The advantages of this method are that the sensitivity and range of values over 

which reliable concentrations are measured is greater than with ELISAs, and that 

multiple cytokines and chemokines can be measured from the same sample.

2.9. Statistics

All experiments were performed at least twice to ensure reproducibility of results. 

To compare different groups, data from individual mice are presented as means 

with standard error of the mean (SEM). For normally distributed data Student’s 2 

sample f-test was used to calculate p values, and for skewed data the Mann- 

Whitney U test was used (Minitab Statistical Software, Minitab Inc., State College, 

PA, USA). A p value of 0.05 or less indicates statistical significance.

2.9.1. Power Calculations
Power calculations were worked out using Minitab, with a significance level of 0.05 

and a power value of 0.95.

2.9.1.1. Allergic airways inflammation
From previous experience a difference in eosinophilia of 10% was thought to 

represent a physiologically significant change, with a standard deviation of 5%. 

Using Minitab this gave a minimum group size of 8 mice (Figure 2.10A).

2.9.1.2. Collageminduced arthritis
From previous experience a difference in clinical score per mouse of 3 would be 

regarded as significant, with a standard deviation of 2. Using Minitab this gave a 

minimum group size of 13 (Figure 2.1 OB).
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A) Allergic Airways Inflammation

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + difference 

Alpha = 0.05 Assumed standard deviation = 5

Sample Target Actual 

Difference Size Power Power

10 8 0.9500 0.9602

B) Collagen-Induced Arthritis 

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + difference 

Alpha = 0.05 Assumed standard deviation = 2

Sample Target Actual

Difference Size Power Power

3 13 0.95 0.956112

Figure 2.9 Power caicuiations from Minitab
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Chapter 3

The role of lL-33 in innate inflammation
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3.1, Introduction

IL-33 is a novel cytokine which binds to and signals through ST2L. Current 

knowledge of its in  vivo  function is limited to C57BI/6 mice, where systemic (IP) 

administration of human IL-33 over 7 days induced many of the features of a 

systemic Th2 effector response in naïve mice (1). In keeping with the known 

functions of ST2L, there was an increase in Th2 cytokines, total IgA and IgE, and 

systemic eosinophilia, with pathological changes seen in the lung and gut. Thus 

the IL-33/ST2L interaction can result in innate Th2 type eosinophilic inflammation.

Administration of IL-4 or IL-13 directly to the airways results in many of the 

features of asthma, including eosinophil accumulation, mucus hypersecretion and 

AHR, independent of antigen (89,103). IL-33 mRNA is expressed constitutively in 

murine lung tissue, and in human bronchial and pulmonary artery smooth muscle 

and resting bronchial epithelial cells (1). There are also cells constitutively 

expressing ST2L in the lungs, mainly mast cells (288). Pro-inflammatory signals 

can induce ST2  expression in macrophages (284), and sST2 release from 

fibroblasts (285).

I hypothesised that administration of IL-33 to the airways of mice would result in 

innate Th2 type inflammation in the absence of antigen. Our lab had produced 

recombinant murine IL-33, and I would be using BALB/c mice to examine the role 

of IL-33 in inducing an innate inflammatory response by analysing the local and 

systemic effects of both intraperitoneal and intranasal routes of administration. By 

using ST2^ mice I confirmed that the response seen was dependent on 

expression of the ST2  gene, and by using SCID mice, which lack lymphocytes, I 

began to elucidate the cell types that may be involved.

3.2. The effects of rhIL-33 are not strain specific
As there is very limited published data on the use of recombinant IL-33 as a 

reagent, the first step was to demonstrate that the systemic effect of human IL-33 

is not specific to C57BI/6 mice. The in vivo effects in BALB/c mice were confirmed 

by following a similar protocol to Schmitz et al (1) and injecting 0.8pg of rhIL-33 IP 

for seven consecutive days (Figure 3.1). Tissues were collected for analysis the 

day after the final injection. A dose of 0.8pg was chosen as Schmitz had shown
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that 0.4pg was sufficient and we wanted to ensure an adequate dose to see a 

response.

Cull 
Day 8

rTTTTTT J
Day 1

Intraperitoneal 
200pl sterile PBS 

± 0.8pg rh IL-33 or rm IL-33

Figure 3.1 Intraperitoneai administration of IL-33
Recombinant human (rh) and murine (rm) IL-33 were produced as described and 0.8jjg injected 

intraperitoneaily in 200pl sterile PBS for 7 consecutive days. The day after the last injection the mice 

were culled and spleens, peritoneal wash, serum, BAL and lungs harvested for analysis.

3.2.1. IP rh IL-33 induces a systemic Th2 effector response in BALB/c mice
Similar to C57BI/6 mice (1), treatment with IP rh IL-33 increased spleen weight 

(Figure 3.2A), reflecting an increase in total splenocytes, and increased the 

percentage of eosinophils in the spleen (Figure 3.2B). In keeping with the rise in 

eosinophil numbers, serum lL-5 was markedly elevated (Figure 3.2C). In contrast 

to C57BI/6 mice, serum IL-13 was undetectable, as was IL-4. Other serum 

cytokines were either undetectable (IL-1(3, IFNy) or unchanged (IL-6, IL-10, IL-12).

3.2.2. IP rhlL-33 induces Th2 pathology in the lung
In C57BI/6 mice IP rh IL-33 induced pathological changes at distant mucosal sites, 

with perivascular eosinophilic infiltrates, goblet cell hyperplasia and mucus 

hypersecretion in the lung (1). Although perivascular eosinophilia was also a 

feature in BALB/c mice, there was no goblet cell hypertrophy or mucus 

hypersecretion (no data shown). This is in keeping with the lack of IL-13 (89).
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Figure 3.2 IP rhlL-33 is biologically active in BALB/c mice

BALB/c mice were given O.Spg rhlL-33 IP for 7 days and tissues harvested. (A) Individual spleens 

were weighed. (B) Spleens were pooled, a single cell suspension prepared, and the percentage of 

eosinophils determined by differential cell counts of cytopreps. (C) The concentration of serum IL-5 

was determined by sandwich ELISA. The results shown are means ± SEM {n=5;*p<0.05,

***p<0.001).

3.3. Murine IL-33 has the same effects as human IL-33

Having established that human IL-33 activity is not restricted to C57BI/6 mice, I 

also needed to demonstrate that recombinant murine IL-33 has the same effect in 

mice as human IL-33, and is therefore just as useful, and more appropriate, as a 

reagent. In addition, I wanted to confirm that the activity of IL-33 is dependent on 

expression of the ST2  gene. To achieve both these aims rm IL-33 was 

administered systemically to BALB/c ST2"̂ ^̂  and ST2^ mice using the same 

protocol as before (figure 3.1). As the figures will indicate IL-33 had no effect in 

ST2‘ ‘̂ mice, so for simplicity the results are not discussed here.

3.3.1. IP rm IL-33 induces a systemic Th2 effector response
rm IL-33 increased the weight of the spleens (Figure 3.3A) and the percentage of 

eosinophils (Figure 3.3B) by the same amount as rh IL-33. In addition a rise in the 

percentage of neutrophils (Figure 3.3C) was also seen that had not occurred with 

rh IL-33 in either C57BI/6 or BALB/c mice.

The serum cytokine profile was very similar to that seen after rh IL-33. In keeping 

with the rise in eosinophil numbers, IL-5 was markedly increased (Figure 3.4A),
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but again no IL-13 or IL-4 were detected. Other cytokines were either undetectable 

(IL-1|3, IFNy, IL-6, IL-10) or unchanged (IL-12).

As eosinophils, and other inflammatory cells, Infiltrated tissues distant from the 

injection site the levels of chemokines were also examined in serum. Both eotaxin- 

2 and TARC (Figures 3.48 and 3.4C) were elevated, although the rise in eotaxin-2 

was not quite statistically significant (p=0.056). Eotaxin-1 levels were not 

increased by rm IL-33.

Serum total IgA was unaffected by rm IL-33, but total IgE was increased two-fold 

(data not shown).

3.3.2. IP rm IL-33 induces Th2 pathology in the lung
In keeping with the effect of rh IL-33 in C57BI/6 mice and BALB/c mice, rm IL-33 

induced a Th2 response in the lungs when given IP. A few eosinophils were seen 

perivascularly, at a similar level to that seen with human IL-33 (data not shown). 

There was no change in the BAL cell numbers (Figure 3.5A), and virtually all the 

cells were macrophages, with no eosinophils seen at all. There was, however, an 

increase in BAL IL-5 (Figure 3.5B) and some of the chemokines (eotaxin-1 and 

TARC; Figures 3.50), albeit not statistically significant.

A) Spleen weight B) Spleen eosinophils C) Spleen neutrophils
450 

400 

r.350 
I  300 

,S> 250 §I 200

.2 150 

^  100 

50 

0 m
ST2+/+ ST2V- ST2+/+ ST2-/- 

PBS PBS IL-33 IL-33

16

14
SS 
^  12

I  10
I 8

ST2+/+ ST2V- ST2+/+ ST2-/- 
PBS PBS IL-33 IL-33

ST2+/+ ST2-I- ST2+/+ ST2-/- 
PBS PBS IL-33 IL-33

Figure 3.3 IP rmlL~33 increases spleen size and ceiiuiarity

BALB/c mice were given 0.8pg rm IL-33 IP for 7 days and tissues harvested. (A) Individual spleens 

were weighed. Spleens were pooled, a single cell suspension prepared, and the percentage of (B) 

eosinophils and (C) neutrophils determined by differential cell counts of cytopreps. The results 

shown are means ± SEM (n=2-4; ***p<0.001).
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Figure 3.4 iP rmiL~33 increases serum IL~5 and chemokines
BALB/c mice were given 0.8pg rm IL-33 IP for 7 days and tissues harvested. Serum cytokines and 

chemokines were measured by sandwich ELISA; (A) IL-5 (B) eotaxin-2 (C) TARC. The results 

shown are means ± SEM (n=2-4; *p<0.05, **p<0.01).
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Figure 3.5 IP rmlL-33 induces Th2 pathology in the lung
BALB/c mice were given 0.8pg rmlL-33 IP for 7 days and tissues harvested. (A) H&E stained lung 

sections were examined for eosinophilic inflammation. (A) Cell counts, (B) IL-5 and (C) chemokines 

were measured In BAL fluid. The results shown are means ± SEM (n=2-4).
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3.3.3. IP rmlL-33 Induces a local Th2 effector response In the peritoneum
Having shown that IP injection of IL-33 causes a systemic inflammatory response 

it seemed logical to examine the peritoneal fluid to determine the extent of the 

local inflammatory response.

Cells in the peritoneal wash of PBS treated mice consisted almost exclusively of 

macrophages. After rm IL-33 administration there was an influx of inflammatory 

cells into the peritoneal cavity (Figure 3.6A). This consisted of eosinophils,

neutrophils and macrophages (Figures 3.6B, 3.6C and 3.6D). There were

proportionally more eosinophils, with an 80-fold increase (0.48 ± 0.48% to 39 ±

4.2%, p<0.001). Neutrophils increased 4-fold (0.85 ± 0.12% to 3.62 ± 1.84%, NS), 

and the percentage of macrophages decreased (98.2 ± 0.12% to 56.6 ± 3.6%, 

p<0.001). Very few lymphocytes were seen in PBS and rm IL-33 groups.

Very high levels of IL-5 were seen in the peritoneal wash after rm IL-33 treatment 

(Figure 3.7A). An increase in IL-13 was also seen (Figure 3.7B), which had not 

been seen in serum. Other cytokines were unchanged (IL-10) or undetectable (IL-

4. IL-ip, IL-6, IL-12, TNFa and IFNy).

As there had been a large influx of eosinophils and other inflammatory cells, 

chemokine levels were also examined. Eotaxin-1, eotaxin-2 and TARC (Figures 

3.7C, 3.7D and 3.7E) were increased, although the increase in TARC was not 

quite statistically significant (p=0.055).

IgA levels in the peritoneum were increased almost ten-fold in the rm IL-33 treated 

group (Figure 3.7F), although serum levels were not affected (data not shown).
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Figure 3.6 IP rmlL-33 increases the peritoneal inflammatory ceil infiltrate

BALB/c mice were given 0.8pg rm IL-33 IP for 7 days and tissues harvested. (A) Total cell numbers 

in the peritoneal wash were counted. Differential cell counts were performed on cytopreps to 

determine the percentage of each cell type present, and the absolute number of (B) eosinophils, (C) 

neutrophils and (D) macrophages calculated. The results shown are means ± SEM (n=2-4; *p<0.05,

**p<0.01).
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Figure 3.7 IP rmlL-33 increases peritoneal cytokines, chemokines and IgA

BALB/c mice were given 0.8pg rm IL-33 IP for 7 days and tissues harvested. Levels of cytokines, 

chemokines and IgA were determined by sandwich ELISA; (A) IL-5 (B) IL-13 (C) eotaxin-1 (D) 

eotaxin-2 (E) TARC and (F) IgA. The results shown are means ± SEM (n=2-4; *p<0.05, **p<0.01,

***p<0.001).
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3.4. IL-33 initiates innate Th2 type eosinophiiic 

infiammation in the lungs of wildtype and SCID mice

In the previous section I showed that rm IL-33 directly induced a strong local Th2 

type response when injected intraperitoneaily. Since both IL-33 and ST2 are 

expressed in the lung, I hypothesised that rm IL-33 given directly to the lungs 

would also induce a local Th2 type response.

The possible dosing schedule for IN IL-33 was investigated in initial pilot 

experiments. A dose response was seen over the range of 0.1 -  2pg per mouse, 

but doses above 2pg were not examined (Figure 3.8A). A single dose of 2pg rm IL- 

33 was sufficient to induce a measurable cytokine (IL-5 at 24 hours), chemokine 

(eotaxin-2 and TARC at 24 hours) and cellular (macrophages at 96 hours, 

eosinophils at 120 hours) response in the BAL (Figure 3.88), but had no effect in 

ST2^ mice (Figure 3.8C).The strength of the response was increased by repeated 

dosing for up to 7 days (results presented In this chapter), but dosing beyond this 

was not examined. Had more rmlL-33 been available it would have been ideal to 

extend these studies to higher doses and over longer periods at both low and high 

doses to more thoroughly investigate the in  vivo  biological function of IL-33, but 

the limiting factor was the rate it could be produced, purified and tested in the lab.

Therefore BALB/c mice were given 2pg intranasal rmlL-33 for seven consecutive 

days and tissues harvested to analyse the response (Figure 3.80). In order to 

make preliminary studies of which cell types might be important in the response 

SCID mice, which lack lymphocytes, were also used.
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Figure 3.8 intranasal administration of IL-33

Recombinant murine IL-33 was produced as described and given intranasally (IN) in 30p! sterile 

PBS. (A) Doses of 0 to 2pg/ml were given over 7 consecutive days and the mice culled on day 8. (B) 

A single dose of 2|jg/ml was given and the mice culled at various time points thereafter. (C) A single 

dose of 2pg/ml was given to ST2^/+ and ST2-/- mice and the mice culled at 24 hours (for cytokine 

analysis) or 120 hours (for eosinophil counts), in all experiments BAL fluid was collected and cell 

counts, cytokines and chemokines measured as described (n=3). (D) To investigate the effects of IL- 

33 in the airway more fully 2pg/ml was given for 7 consecutive days and the mice culled on day Band 

serum, BAL and lungs collected for analysis.

3.4.1. IN rmlL33 induces a Th2 type response in the airway
IN administration of rm IL-33 increased BAL total cell counts (Figure 3.9A) in both 

wildtype and SCID mice. Analysis of the cell types involved revealed a similar 

pattern in wildtype and SCID mice. However, the magnitude of the cellular infiltrate 

was 10-fold less in SCID mice. The infiltrate consisted mostly of eosinophils 

(Figure 3.98), although macrophages (Figure 3.9C) and neutrophils (Figure 3.9D) 

were also increased. Lymphocytes were seen at only very low levels and were not 

increased by mlL-33. The dominant cell in the BAL changed from virtually 100% 

alveolar macrophages In PBS challenged mice, to being over 70% eosinophils in 

wildtype and 40% in SCID mice.

The pattern of cytokines and chemokines in the BAL was also similar in wildtype 

and SCID mice, with the main difference again being the magnitude of the 

response. IL-5 and IL-13 were increased ten fold more in wildtype than SCID mice 

(Figure 3.1 OA and 3.1 OB). IL-10 was just detectable in both groups receiving rm IL- 

33, but there was no difference between wildtype and SCID mice. Other cytokines
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were either undetectable (GM-CSF, IFNy, IL-1a/p, IL-2, IL-4, IL-6, IL-12, and IL- 

17), or didn’t change (TNFa), with rm IL-33.

Eotaxin-1, eotaxin-2, TARC and MIP-1a (figure 3.10C-F) were increased in 

wildtype mice, and less so in SCID mice. IP-10, KC, MCP-1 and MIG were not 

detectable in either.
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Figure 3.9 IN rmlL-33 increases BAL cell counts

BALB/c wildtype and SCID mice were given 2pg rm IL-33 IN for 7 days and tissues harvested. (A) 

BAL total cells were counted. Differential counts were performed on cytopreps and the number of (B) 

eosinophils, (C) macrophages and (D) neutrophils calculated. The results shown are means ± SEM 

(n=5; **p<0-01,***P<0.001).
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Figure 3.10 IN rmlL-33 Increases BAL cytokines and chemokines

BALB/c wildtype and SCID mice were given 2pg rmlL-33 IN for 7 days and tissues harvested. BAL 

cytokines and chemokines were measured by sandwich ELISA or Multiplex; (A) IL-5 (B) IL-13 (C) 

eotaxin-1 (D) eotaxin-2 (E) TARC (F) MIP-1a. The results shown are means ± SEM (n=5; *p<0.05,

**p<0.01).

3.4.2. IN rm IL-33 induces eosinophilic inflammation in the lung
Both wildtype and SCID mice treated with rm IL-33 exhibited marked eosinophilic 

inflammation in histological lung sections (Figure 3.11A-D), with larger airways 

affected more than smaller airways. The inflammatory response in wildtype mice 

appeared worse, with greater total number of cells, more eosinophils, and more 

areas of inflammation per section. The eosinophils tended to be more perivascular 

than peribronchial in both. The lung eosinophil score (Figure 3.11 E) was increased 

markedly in both WT and SCID mice. Unfortunately the score was not sensitive 

enough to pick up a statistically significant difference as the WT group scored at 

the top of the scale on every section, and so the score is probably an 

underestimate. There appeared to be an increase in goblet cells in both, but much
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more prominent in wildtype in keeping with the increased levels of IL-13. However, 

to assess goblet cells more accurately these sections would need to be stained 

specifically for mucus, for example using periodic acid Schiff (PAS) stain.

3.4.3. IN rm IL-33 increases BAL but not serum IgA
Treatment with IN rmlL-33 did not increase serum IgA levels (Figure 3.12A). 

However, as with IP rmlL-33 there was a marked increase in local IgA, this time in 

the BAL fluid (Figure 3.12B). As expected no IgA was detected in SCID mice as 

they do not possess B cells. IgE levels were not examined in BAL.

3.4.4. IN rmlL33 induces a systemic Th2 type response
Both IP and IN routes of administration resulted in evidence of a systemic 

response. IN rm IL-33 induced a doubling in mean serum levels of total IgE (Figure 

3.13A), although this did not quite reach significance (p=0.06). Serum IL-5 (Figure 

3.13B) was increased, and this time serum IL-13 (Figure 3.13C) was also 

increased. A similar pattern was observed in SCID mice, but the magnitude was 

much less. The difference between wildtype and SCID was did not quite reach 

significance (p=0.06 for both IL-5 and IL-13). Other cytokines were either 

undetectable (GM-CSF, IFNy, IL-1a/(3, and IL-2) or not affected by rm IL-33 (IL-6, 

IL-10, IL-12, IL-17, and TNFa).

IN rm IL-33 resulted in a slight, but not significant, increase in many serum 

chemokines (eotaxin-2, TARC, IP-10, KC, MCP-1, MIG, and MIP-1a) but there 

was no difference between wildtype and SCID mice. Interestingly, rm IL-33 induced 

an increase in serum eotaxin-1 only in SCID mice (Figure 3.13D).
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Figure 3.11 IN rmlL-33 Induces eosinophilic airway Inflammation

BALB/c wildtype and SCID mice were given 2pg rm IL-33 IN for 7 days and tissues harvested. H&E 

stained lung sections were examined for eosinophilic inflammation; (A) WT PBS (B) SCID PBS (C) 

WT rmlL-33 (D) SCID rm IL-33. (E) The lung eosinophil score was assessed as described (n=5).
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Figure 3.12 IN rm IL-33 Increases BAL IgA

BALB/c wildtype and SCID mice were given 2pg rm IL-33 IN for 7 days and tissues harvested. The 

concentration of IgA in (A) serum and (B) BAL was measured by sandwich ELISA. The results 

shown are means ± SEM (n=5; ***p<0.001).
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Figure 3.13 IN rmlL-33 Increases serum IL-5, IL-13, eotaxln-1 and IgE

BALB/c wildtype and SCID mice were given 2pg rmlL-33 IN for 7 days and tissues harvested. The 

concentration of (A) IgE, (B) IL-5, (C) IL-13 and (D) eotaxin-1 were measured by sandwich ELISA. 

The results shown are means ± SEM (n=5; **p<0.01).

3.5. Discussion

In this chapter I have demonstrated that:

1. IL-33 has the same functions in BALB/c and C57BI/6 mice

2. Murine and human IL-33 have the same systemic effects

3. IL-33 induces local innate inflammation

4. IL-33 activity is dependent on ST2  gene expression

5. IL-33 can initiate innate Th2 inflammation in the lung

6. SCID mice have reduced lung inflammation compared to wildtype in 

response to IL-33

I will discuss each of these findings in more detail.
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3.5.1. IL-33 has the same functions in BALB/c and C57BI/6 mice
The systemic effects of human IL-33 in C57BI/6 and BALB/c mice are very similar. 

In both there is an increase in spleen weight and eosinophil counts consistent with 

the rise in serum IL-5, which is vital for eosinophil maturation (reviewed in (365)) 

and mobilisation from the bone marrow (366). C57BI/6 mice were shown to have 

perivascular eosinophil infiltration and goblet cell hyperplasia in the lung, whereas 

BALB/c mice had perivascular eosinophil Infiltration, but airway goblet cell 

hyperplasia was absent. This is consistent with the lack of IL-13 in the serum and 

the essential role of IL-13 in mucus production (89). A local rise In IL-13 was seen 

with IP and IN administration, and there was a rise in serum IL-13 after IN IL-33, 

so the reason for the lack of serum IL-13 after IP IL-33 in BALB/c mice is 

unknown.

Laboratory mouse strains vary in their response to biological stimuli and this is 

particularly true when studying factors involved in Th1/Th2 regulation. For 

instance, C57B1/6 mice have a T h i biased immune response to the parasite 

Leishm ania  m ajor, and quickly clear infection, whereas BALB/c mice have a 

predominantly Th2 response, and quickly succumb (367). The fact that both mice 

have such similar responses to IL-33 is important for 2 reasons. Firstly, 1 will use 

BALB/c mice to study the role of IL-33 in antigen-specific allergic airways 

inflammation (see Chapter 4), so to allow direct comparison it was necessary to 

use BALB/c mice to study innate inflammation. Secondly, this is evidence of the 

wider applicability and relevance of these effects, as they are not restricted to one 

strain.

3.5.2. Murine and human IL-33 have the same systemic effects
I went on to show that murine IL-33 has a very similar systemic effect to human IL- 

33 when given IP to BALB/c mice. The response is dominated by a rise in serum 

IL-5 associated with an increase in spleen size and eosinophil numbers. In 

addition a rise in spleen neutrophils was seen. LPS can induce a neutrophilic 

response, but no neutrophil rise was seen in ST2'^' mice implying this is a genuine 

IL-33 dependent phenomenon, and not due to LPS contamination. Serum IgE was 

also seen to rise. This was attributed to a rise in IL-4 in G57BI/6 mice (1), although 

as with BALB/c, no IL-4 was detected in serum. C57BI/6 mice had shown an 

increase in mRNA expression of IL-4, -5 and -13 in various tissues, but this was 

not examined in BALB/c mice. Perivascular eosinophilic inflammation was seen
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with both human and murine IL-33, but no serum IL-13 or goblet cell hyperplasia, it 

is not clear if this is a generalised effect in all tissues, or if tissues with mucosal 

surfaces (the lung and the gut) are specifically affected. Further work examining 

other tissues is required. Thus the effect of recombinant murine IL-33 in BALB/c 

mice is consistent with the biological activity of human IL-33 in BALB/c and 

C57BI/6 mice. These results indicate that not only is the amino acid sequence and 

structure conserved between species, but also the likely biological function.

In order to investigate the mechanisms by which eosinophils infiltrate the 

pulmonary tissue I also measured the level of chemokines in the serum and found 

eotaxin-2 and TARC to be elevated. Eotaxin-2 is a potent factor attracting 

eosinophils across the endothelium (368) by binding to CGR3. This transmigration 

is increased in the presence of IL-5, through eosinophil activation, and also in the 

presence of IL-1p, through endothelial cell activation. In this model it may be a 

combination of a direct effect of the IL-1 (3-like IL-33 absorbed into the circulation 

acting on endothelial cells, and an indirect effect of IL-5 on circulating eosinophils. 

TARC acts through CCR4 (369), which is not expressed on eosinophils, but is 

present on airway CD3* T cells (370) and on human CD4* iNKT cells (371), and is 

thought to be a major factor in the maintenance of Th2 dominance in asthma. 

There is likely to be a lot of overlap between these two subsets, it is not known 

whether any of these cells are found in the infiltrate. The cellular targets and 

source of cytokines and chemokines are unknown.

3.5.3. IL-33 Induces local Innate Inflammation In the peritoneum
Having shown that IL-33 results in a systemic Th2 type response after IP 

administration, it was logical to examine the extent of local inflammation in the 

peritoneum. Treatment with IL-33 resulted in a massive influx of inflammatory 

cells, mostly eosinophils, but also neutrophils and macrophages. In keeping with 

this a large amount of IL-5 was found, and there was a marked increase in 

eotaxin-1 and -2, both of which are powerful eosinophil chemoattractants through 

binding to CCR3.

Neutrophils also express CCR3 and migrate in response to eotaxin-1 (372), which 

may explain the presence of some neutrophils in the peritoneum. However, it is 

not clear why human IL-33 did not attract neutrophils into the peritoneum, whereas 

murine IL-33 did. One possibility is contamination of the murine IL-33 with LPS or
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another pro-inflammatory bacterial product, but the fact that ST2^ mice did not 

have neutrophils in the peritoneum would argue against this, and suggests it is a 

genuine IL-33 mediated phenomenon. A further possibility is that the native murine 

IL-33 likely has different binding affinity for murine ST2, and therefore the 

downstream response generated may differ slightly. Further work examining the 

structure and kinetics of the IL-33 / ST2 interaction, and differential downstream 

signalling of human and murine IL-33, would be required to investigate this.

Macrophages were also elevated in the peritoneum. They express CCR4, which is 

thought to be important for their innate immune functions (373), so the elevated 

peritoneal levels of TARC, which acts via CCR4, would explain why IL-33 

attracted macrophages into the peritoneum.

Mast cells are thought to constitute up to 5% of cells recovered from the 

peritoneum, but can be difficult to identify and purify. IL-33 has recently been 

shown to have a role in mast cell maturation and activation (374-376), but mast 

cells were not identified in the peritoneum after IL-33 treatment. However, I did not 

use any mast cell specific stains, nor any indirect measures of mast cell 

accumulation and function, such as tissue myeloperoxidase levels, so it may still 

be that mast cells play an important role in the peritoneal inflammation induced by 

IL-33. There was also a large increase in peritoneal IL-13, and it is possible that 

this reflects the presence of mast cells, as they have been shown to produce IL-13 

after IL-33 stimulation even in the absence of IgE (377). Mast cells mature in the 

tissues, and the immature forms found in the blood are not active, which may 

explain why IL-13 is found at much higher levels in the peritoneum than the serum.

IgA levels were also markedly elevated in peritoneal fluid. It is not known if this is 

due to non-specific capillary leak of plasma proteins, including IgA, into the 

peritoneum, or IL-5 induced up-regulation of production by peritoneal B1 

lymphocytes (378).
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3.5.4. IL-33 activity Is dependent on ST2 gene expression
All of the measures of inflammation, both systemic and local, were also examined 

in ST2“̂“ BALB/c mice, but were all negative, implying that these effects of IL-33 

are dependent on ST2  gene expression. This is important for a number of 

reasons.

As discussed in the introduction (section 1.6), the IL-33  and ST2  genes are 

expressed in various cells and tissues either constitutively or induced by pro- 

inflammatory mediators. IL-33 has been shown to bind to and signal through ST2L 

on the cell surface, and result in Th2 type inflammation in mice. ST2'^‘ mice and 

exogenous sST2 administration have been shown to modulate immune responses 

(306,315,331). Therefore IL-33 seems to play a role in initiating and regulating 

immune responses by acting as a cytokine. More recently IL-33 has been found 

intracellularly in the endothelium of chronically inflamed tissues, where it may 

function as a nuclear factor rather than a cytokine (255), and independent of ST2  

expression. However, its role in the nucleus is unknown. As the present results are 

ST2  dependent they are in keeping with the role of IL-33 as a cytokine.

Human and murine IL-33 have only 55% homology at the amino acid level (1), 

therefore it is possible that the effects seen with human IL-33 are due to cross­

reaction with a different receptor in vivo. It is also possible that both human and 

murine IL-33 could bind to an additional receptor other than ST2L. Also, rh and 

rm IL-33 were both produced from transfection into E  co li which may result in the 

presence of pro-inflammatory contaminants. For instance, low doses of LPS have 

been shown to predispose to a Th2 type antigen-specific response in the airway 

(119). it is therefore possible that recombinant IL-33 could be processed as an 

antigen and a low dose of contaminating LPS bias towards a Th2 type antigen- 

specific response. These confounding possibilities are excluded by the negative 

results seen on ST2" '̂ mice.

Taken together these results further validate the use of rh and rm IL-33 for use as 

biological reagents, by demonstrating they have almost identical roles in different 

strains of mice, dependent on ST2  gene expression. Initial studies of ST2  gene 

function were hampered by the lack of a known ligand until it was found to be IL- 

33, and so some of the data presented were inconsistent or conflicting. This likely 

reflects not just differences in the model systems used, but also drawbacks in the
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approaches taken. In some experiments ST2^, lacking both ST2L and sST2, were 

used to define the role of ST2L. No conclusions can be reached about the relative 

contributions of each when both are lacking, and the effects seen after the loss of 

a receptor such as ST2L do not necessarily mirror the effects seen when that 

receptor is stimulated by ligand binding. In other experiments anti-ST2 antibodies 

or recombinant sST2 were used to block ST2 function, but a stimulating action 

either through ST2L or via another receptor could not be excluded. In addition, 

recombinant sST2 was conjugated to the Fc portion of lgG1 for purification 

purposes. Not only is this is a physically large molecule that could have steric 

hindering effects, it could be effective through binding to FcyR receptors, which 

are known to have potent immunomodulatory properties (reviewed in (379)). The 

identification of IL-33 as the ligand for ST2L opens up the potential to use 

recombinant IL-33, IL-33 gene knockout mice, and anti-IL-33 antibodies as 

reagents to confirm and extend previous results.

3.5.5. IL-33 can Initiate innate Th2 inflammation In the lung
As mentioned in the introduction to this chapter, administration of IL-4 or IL-13 

directly to the airways results in many of the features of asthma. Since IL-33  and 

ST2  are expressed in the lung, I hypothesised that IL-33 would induce an innate 

Th2 type response.

Administering IL-33 to the airways of mice did induce a strong Th2 type response 

with accumulation of inflammatory cells in the BAL dominated by eosinophils, but 

also including neutrophils and macrophages. In keeping with this, eotaxin-1 and -2 

were elevated, as were TARC and MIP-1a. MIP-1a binds to CCR1, and is 

important in transendothellal migration of most inflammatory cells, but particularly 

monocytes/macrophages (380). IL-5 and IL-13 were also elevated in the BAL, as 

they both had been in the peritoneal wash, but IL-4 was not seen. No change in 

serum IgA was seen, but IgA was elevated in BAL. This could be due to capillary 

leak, but most IgA in bronchial secretions is the result of active transport into the 

lumen (381). Eosinophilic inflammation was also seen peribronchially and 

perivascularly, with goblet cell hyperplasia of the epithelium.

in addition a systemic Th2 type response was also seen. IL-5 and IL-13 were 

elevated in serum after IN IL-33, which was in contrast to the IP route of 

administration, where only IL-5 was elevated. In C57/BI6 mice both IL-5 and IL-13
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were elevated in serum after IP IL-33 (1). It is not clear why this difference occurs 

between IN and IP IL-33. The levels of IL-13 in BAL and in the peritoneal wash 

were similar. The level of IL-13 in serum after IN IL-33 was actually slightly higher 

than in BAL, suggesting that the IL-13 may be produced in perivascular cells, or 

even at distant sites, such as lymphoid tissues or the liver.

Total serum IgE was also found to be elevated. Interestingly the severity of asthma 

correlates better with an increase in total IgE rather than antigen-specific IgE 

(382).

Therefore, like IL-4 and IL-13, IL-33 can also induce many features of asthma 

independent of antigen, although which of these effects are direct, and which are 

through induction of cytokines such as IL-5 and IL-13 is not known. IL-25 has also 

been shown capable of inducing profound eosinophilic airway inflammation in 

naïve mice, also through increased IL-5, IL-13, eotaxin-1 and eotaxin-2, but also 

with the addition of increased IL-4 (109,110). In both these cases (IL-33 and IL-25) 

the pathological changes seen are very similar to those seen after direct instillation 

of IL-13 (89), which suggests these cytokines are acting upstream to induce IL-13 

production. Further work is needed to elucidate the hierarchy of cytokine release 

and function in the allergic airway, and so determine the relative contribution of 

each.

3.5.6. SCID mice have reduced lung inflammation compared to wildtype
An almost identical response was seen in SCID mice as with wildtype mice, but 

ten-fold less in magnitude. SCID mice (383) have a lack of B and T lymphocytes, 

due to a defect in VDJ recombination of antigen receptors (384). However, other 

immune cell lineages are unaffected and function normally. In fact, they have 

increased numbers of some cells such as NK cells (385). Therefore the response 

to IL-33 must be largely, but not entirely, dependent on a lymphocyte subset. It 

seems unlikely that the effect of IL-33 was due to an effect on mainstream 

lymphocytes as they require antigen priming first, although this data does not 

exclude this possibility as there may be a population of pre-existing primed T cells 

in the naïve wildtype mice. However, SCID mice also lack iNKT cells (38), The 

possible role of INKT cells in innate and adaptive inflammation has been 

discussed in more detail in Chapter 1. Of relevance here is that although they are 

constitutively present in the lungs in only small numbers (386), they can express
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large amounts of cytokines immediately after activation, which can occur in the 

absence of antigen (387,388). In addition, repeated stimulation results in 

predominantly Th2 cytokine release (152). NKT2 cells have been shown to 

express ST2L (287) Therefore it is possible the innate effects of IL-33 in the lung 

are mediated by this subset of cells, which are increasingly shown to play major 

roles in autoimmunity, allergy, tumour immunity and response to infections 

(reviewed in (389)). The residual inflammation that occurs in SCID mice must be 

due to other non-lymphoid cells expressing ST2L in the lung, the most likely 

candidate being mast cells, which can produce Th2 type cytokines when 

stimulated. It may be that these are in fact the first cells to respond in wildtype 

mice, in which case iNKT or other lymphocytes may simply amplify the response. 

Further work is needed to define precisely which cells respond directly to IL-33, 

and which are activated indirectly.

The one aspect of the response where SCID mice did not have a reduction in the 

outcome measured was the serum level of eotaxin-1, which was increased quite 

markedly. The reason for this is not clear. It may be that SCID mice show different 

kinetics in the response to IL-33, and had we looked at other time points the 

pattern of release in both WT and SCID mice would be apparent. However, given 

that all other measures were reduced this seems unlikely. It is possible that other 

mediators we have not examined may also be increased in SCID mice and 

account for the increase in eotaxin-1. For instance, IL-25 can be produced by 

activated mast cells (390)), and when instilled into the airways can induce eotaxin- 

1 expression (110). Further studies are required to elucidate the downstream 

mechanism of actions of IL-33 in both WT and SCID mice.

3.6. Conclusions

In this chapter I have demonstrated that IL-33 has the same functions in BALB/c 

and C57BI/6 mice and that murine and human IL-33 have the same systemic 

effects. I have shown that regardless of the route of administration IL-33 initiates a 

local and systemic type 2 innate inflammatory response that is dependent on ST2  

expression. The local response in the lung shares many features of asthma, and 

experiments with SCID mice suggest that both lymphoid and non-lymphoid cells 

may have an important role in the innate response triggered by IL-33.
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Having shown that IL-33 may have a role in innate immunity, in the following 

chapters I will demonstrate the potential role of IL-33 in modulating established 

Th2 (Chapter 4) and Th1/Th17 (Chapter 5) antigen-specific immune responses.



128

Chapter 4

IL-33 and ST2 In allergic airways disease
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4.1. Introduction

In Chapter 3 I demonstrated that rmIL-33 administered directly to the airways in 

the absence of antigen could elicit an innate Th2 type effector response. This 

effect was dependent on the presence of the ST2  gene products, in particular 

ST2L, the receptor for IL-33. Th2 type responses in the airway play a vital role in 

the initiation and persistence of asthma. Previous investigations into the role of the 

ST2  gene demonstrated that serum sST2 is elevated in exacerbations of asthma 

(340). In murine models of OVA-induced Th2 airway inflammation, ST2L and sST2 

are expressed in acute and chronic disease (318,320) and inhibition of ST2L 

function, by blocking antibodies or sST2-Fc decoy receptors, reduced airway 

inflammation (141,291,315). This suggests a pro-inflammatory role for ST2L. In 

contrast to these findings, studies of OVA-induced Th2 airway inflammation using 

two strains of ST2 ''" mice have demonstrated no effect with C57BI/6 mice (327) or 

enhanced inflammation with BALB/c mice (329). Thus the roles of ST2  gene 

products and IL-33 still require considerable clarification in allergic airways 

disease.

To investigate this we prepared rm IL-33 as the physiological ligand for ST2L, and 

used ST2^ mice on the Th2-dominant BALB/c background. The experiments 

described in this chapter relate to the induction of allergic airways inflammation in 

BALB/c mice, and the effect of IL-33 in the effector phase by administering rm IL- 

33 into the airways during allergen challenge. I used ST2"^ mice to confirm the 

specificity of action of IL-33 in this model.
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4.2. Intranasal administration of IL-33 exacerbates 

allergic airways inflammation

Allergic airways disease was Induced in BALB/c mice as described in the materials 

and methods (section 2.5.1). In pilot experiments I determined the optimal dose of 

OVA and number of challenges in 872""^^ and ST2^ mice. The response in ST2’ '̂ 

mice was similar to ST2^^"', but at a lower level. With 3 IN doses of OVA the airway 

cellular response followed a dose response up to 50pg per mouse, but the 

percentage of eosinophils in the BAL did not increase above lOpg (Figure 4.1 A). 

In ST2^^^ and ST2^ mice a single dose of lOpg OVA was sufficient to induce a 

small but measurable airway response, and the kinetics were similar (Figure 4.1 B). 

In ST2+/+ mice 2 doses were sufficient to induce a strong airway response, 

whereas in ST2^ mice 3 doses were required (Figure 4.10).

The results shown here are representative of two experiments performed using the 

optimised protocol for mice (Figure 4.1 D). This protocol was designed to

elicit a moderate amount of airway inflammation, thus allowing any exacerbating 

effects of rm IL-33 to be apparent. The dose of rm IL-33 used was the same as for 

inducing innate eosinophilic airway inflammation (section 3.4). These results 

demonstrate that rm IL-33 administered to the airways at the same time as OVA 

during allergen challenge exacerbates allergic airways inflammation.
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Figure 4.1 Administration of iL-33 in aiiergic airways infiammation

In all allergic airway disease experiments ST2+/+ and ST2-/- BALB/c were sensitised on day 1 by IP 

injection of 100pg OVA in 100pl sterile PBS and lOOpl of 2% alum. (A) Allergic airway inflammation 

was induced by IN instillation of 30pl sterile PBS containing 2.5 to 50pg OVA on days 9,10 and 11 to
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determine the optimum dose to induce eosinophilic inflammation. (B) An IN dose of 10pg per mouse 

was administered on 1 (day 9), 2 (days 9 and 11) or 3 (days 9,10, and 11) occasions to determine 

the optimum number of allergen challenges. (C) A single IN dose of lOpg was administered and the 

airway response monitored to determine the kinetics of the response. BAL total and differential cell 

counts were performed as described in the materials and methods. (D) An optimised model of 

aiiergic airway inflammation was obtained with 2pg OVA ± 2pg rm IL-33 on days 9 and 11. Mice 

challenged with PBS or rmlL-33 alone were used as negative controls. Mice were culled 24 hours 

after the second challenge, and serum, BAL, lungs, and draining lymph nodes were obtained for 

analysis.

4.2.1. IL-33 exacerbates the inflammatory infiltrate in the lung
Following OVA sensitisation, airway challenge with OVA elicited typical 

peribronchial and perivascular eosinophilic inflammation, epithelial shedding and 

goblet cell hyperplasia. Challenge with rm IL-33 in the absence of antigen was 

able to induce a similar level of inflammation, and the combination of OVA and IL- 

33 was synergistic, producing a profound inflammatory response (Figure 4.2). A 

similar pattern was observed for the immunological parameters measured below.

4.2.2. IL-33 exacerbates inflammation in the airway lumen
Following OVA sensitisation, subsequent airway challenge with OVA or IL-33 

significantly increased the BAL eosinophil, macrophage and neutrophil cell counts, 

and the concentration of cytokines and chemokines (Figure 4.3). These increases 

were markedly enhanced following challenge with a combination OVA and IL-33.

IL-5 and IL-13 were each increased above control by a similar amount in mice 

given OVA or IL-33, and the combination produced a marked increase (Figure 

4.4A-B). The concentration of IL-4 was increased by OVA challenge, but not by IL- 

33, and the combination of OVA and IL-33 only increased IL-4 slightly (Figure 

4.40). Other cytokines were either undetectable (GM-CSF, IFNy, IL-2, IL-12, 

TNFa, IL-1a, IL-1(3 and IL-17) or unchanged (IL-10).

Eotaxin-1, eotaxin-2 and TARC were increased by OVA or IL-33 challenge alone, 

and more so by the combination of both (Figure 4.4D-F). Monocyte chemotactic 

protein 1 (MCP-1) and MIP-1 a were also increased, but not significantly, by the 

combination of OVA and IL-33. Other chemokines were either undetectable (TCA- 

3, IP-10, MIG) or unchanged (KG).
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4.2.3. IL-33 increases the antigen-specific recall response
The effect of IL-33 on the antigen-specific cell-mediated immune response was 

examined by restimulating freshly isolated DLN cells with OVA in vitro. Lymph

node cells from sensitised but not challenged mice (PBS group) proliferated in

response to OVA, and this was increased in the groups of mice challenged with 

either OVA or IL-33. The group challenged with a combination of OVA and IL-33 

had greater proliferation (Figure 4.5A), and also exhibited a high level of 

spontaneous proliferation ex vivo  (Figure 4.5B).

The pattern of IL-5 production by lymph node cells was the same as that seen in 

BAL, with a small increase from mice treated with OVA or IL-33, and a marked 

increase with the combination (Figure 4.6A). This effect was even more marked for 

IL-13 production, where mice treated with OVA or IL-33 did not produce any 

increase above control, but the combination did (Figure 4.6B). IL-4 production was 

increased in mice given OVA, but not those given IL-33. IL-10 was not increased 

in either the OVA or IL-33 groups. However, IL-4 and IL-10 production were both 

increased markedly in mice given OVA and IL-33 (figure 4.6C-D). IFNy and IL-12 

were at the bottom of the assay detectable limits, and were unaffected by IL-33.

The production of chemokines eotaxin-1, eotaxin-2 and TCA-3 by lymph node 

cells was unaffected by IL-33, however TARC was increased by OVA or IL-33, and 

enhance by the combination of both (Figure 4.6E).

4.2.4. IL-33 increases Th2 cytokines and chemokines in serum
IL-5 is a potent stimulator of eosinophil maturation and mobilisation from bone 

marrow. Although just detectable in mice given OVA or IL-33, serum IL-5 was 

increased by the combination (Figure 4.7A). The other key cytokines in this 

experiment (IL-4, 13, and IFNy) were not detectable in serum

OVA or IL-33 increased the levels of eoataxin-1, eotaxin-2 and TARC (Figure 

4.8B-D) in the serum, and IL-33 was able to enhance the effect of OVA. TCA-3 

was not detected.
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Figure 4.2 iL-33 increases the infiammatory ceii infiitrate in the iungs

H&E stained lung sections were examined by light microscopy and eosinophils identified by 

morphological criteria. (A) The extent of peribronchial and perivascular inflammation was scored as 

described. Data are means ± SEM (***p<0.001, n=7). Photos show representative sections from 

mice challenged with (B) PBS, (C) rmlL-33, (D) OVA and (E) OVA + rmlL-33.
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Figure 4.3 IL‘33 increases BAL ceii counts

BAL total and differential cell counts were performed as described in the materials and methods. 

Airway challenge with OVA and rm IL-33 resulted in increased (A) total cells, (B) eosinophils, (C) 

macrophages, (D) neutrophils and (E) lymphocytes, compared to OVA or IL-33 alone. Data are 

mean ± SEM (n=8; *p<0.05, **p<0.01, ***p<0.001).
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Figure 4.4 IL-33 Increases BAL cytokines and chemokines

BAL supernatants were harvested and stored at -20°C until cytokines and chemokines were 

measured by sandwich ELISA or multiplex. Airway challenge with OVA and rmlL-33 resulted in 

increased (A) IL-5, (B) IL-13, (C) IL-4 (D) eotaxin-1, (E) eotaxin-2 and (F) TARC compares to OVA or 

IL-33 alone. Data are means ± SEM (n=8; *p<0.05, **p<0.01, ***p<0.001).
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Figure 4.5 IL-33 Increases proliferation of DLN cells

Thoracic lymph nodes draining the airways (DLN) were harvested and single cell suspensions 

obtained. Cells were cultured in 96 well plates in (A) medium alone or (B) with 1 mg/ml OVA for the 

recall response. For the last 8 hours of culture ^H-thymidine was added and incorporation into cells 

measured at 96 hours by betascintography. Lymph node cells from mice challenged with OVA and 

rm IL-33 had increased (A) antigen-specific and (B) spontaneous proliferation compared to OVA or 

IL-33 challenge alone. Data are means ± SEM (n=8; **p<0.01, ***p<0.001).
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Figure 4.8 iL-33 increases DLN cytokine and chemoklne production

Thoracic lymph nodes draining the airways (DLN) were harvested and single cell suspensions 

obtained. Cells were cultured in 24 well plates with 1 mg/ml OVA for the recall response. 

Supernatants were harvested at 72 hours and frozen at -20°C until cytokines and chemokines were 

measured by sandwich ELISA or multiplex. Lymph node cells from mice challenged with OVA and 

rm IL-33 had increased (A) IL-4, (B) IL-5, (C) IL-13, (D) IL-10 and (E) TARC compared to OVA or IL- 

33 challenge alone. Data are means ±  SEM (n=8; *p<0.05, **p<0.01, ***p<0.001).
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Figure 4.7 IL-33 increases serum levels o f cytokines and chemokines

Serum was harvested and stored at -20°C until cytokines and chemokines were measured by 

sandwich ELISA or multiplex. Airway challenge with OVA and rm IL-33 resulted in increased IL-5 (A), 

eotaxin-1 (B), eotaxin-2 (C), and TARC (D), compared to challenge with OVA or IL-33 alone. Data 

are means ± SEM (n=8; *p<0.05, **p<0.01, ***p<0.001).
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4.3. Exogenous IL-33 has no effect on airways 

Inflammation In ST2 ' mice

In order to demonstrate that the effect of IL-33 in enhancing OVA-induced airways 

inflammation was specific, and depended on ST2L, the experiments above were 

repeated using BALB/c ST2'^‘ mice. Again pilot experiments were used to optimise 

the model in terms of the dose of OVA used for airway challenge, and the results 

shown are representative of two repeat experiments (figure 4.8). The dose of OVA 

and the number of challenges were higher than those used in examining rm IL-33 

in ST2^^^ mice in order to generate a similar level of baseline inflammation for 

comparison, and so any exacerbating or ameliorating effect of rm IL-33 would be 

apparent. In addition this protocol was used to compare ST2^^^ and ST2'^“ mice 

directly, as with lower doses and fewer challenges the ST2^ mice made very little 

response, and did not differ significantly from PBS negative controls.
Cull 

Day 12

f Sensitisation
Day 1 

Intraperitoneal

Challenge

Day 9 Day 10 Day 11 

Intranasal

j

OVA + 2% Alum 1. PBS
2. OVA

Figure 4.8 Administration of IL-33 in allergic airways inflammation in ST2 ' 
mice
On day 1 BALB/c mice were sensitised by IP injection of 100pg OVA in 100pl sterile PBS and 100pl 

of 2% alum. Allergic airway inflammation was induced by IN instillation of 30pl sterile PBS containing 

10pg OVA ± 2pg rmlL-33 on days 9 ,10  and 11. Mice challenged with PBS or rmiL-33 alone were 

used as negative controls. Mice were culled 24 hours after the second challenge. Serum, BAL, 

lungs, and draining lymph nodes were obtained for analysis as described in the materials and 

methods.
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Airway challenge with OVA in ST2'^' mice elicited eosinophilic inflammation and 

increased BAL IL-5 concentration similar in character to that seen in wildtype mice 

(Figure 4.9). In the ST2^ mice IL-33 administration did not enhance any features 

of airway inflammation, and there was no difference in any cellular or mediator 

variables from BAL, serum or lymph node cell restimulation with the addition of IL- 

33. This demonstrated that the presence of ST2L was specific and critical for the 

effects of IL-33 described in the experiments using wild-type mice above.
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Figure 4.9 iL-33 has no effect on airway inflammation in ST2 " mice
H&E stained lung sections were examined by light microscopy and eosinophils identified by 

morphological criteria. The extent of peribronchial and perivascular inflammation was scored as 

described. BAL total and differential cell counts were performed as described in the materials and 

methods. BAL supernatants were harvested and stored at -20“C until cytokines were measured by 

sandwich ELISA Airway challenge with OVA and rmlL-33 resulted in no increase in (A) tissue 

eosinophil score, (B) total BAL cells, (C) BAL eosinophils, or (D) BAL IL-5 compared to OVA or IL-33 

alone. Data are means ± SEM (n=5; ***p<0.001).
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4.4. ST2  ̂ reduces allergic airways inflammation

It was noted that a higher dose of OVA given more often was required to elicit a 

similar level of inflammation as seen In wildtype mice, suggesting that in contrast 

to recent findings (329), ST2^ in BALB/c mice may result in reduced airways 

inflammation in our model. To test this hypothesis, wildtype and ST2^ mice were 

directly compared using the same protocol (figure 4.8). The results shown are 

representative of 3 repeat experiments.

4.4.1. ST2 ̂  reduces the inflammation In lung tissue and the airways
ST2^ mice had a reduced eosinophilic infiltrate compared to wildtype (Figure 

4.1 OA). BAL celluiarity was also decreased (Figures 4.10B-D), which was largely 

due to a reduction in eosinophils, but also some reduction in macrophages. 

Neutrophils and lymphocytes were present at low levels, but there was no 

difference between the groups.

There was a small, but not significant, reduction in BAL IL-4, whereas IL-5 was 

markedly reduced (Figure 4.11A-B). No difference in IL-13 was seen, although 

basal levels were already quite low. IFNy and GM-CSF were not detectable.

The chemokines eotaxin-1, eotaxin-2 and TARC were all reduced in BAL (Figure 

4.11C-E). MIP-1a was also reduced, but not significantly, in ST2^ mice. Other 

chemokines were unchanged (KC) or undetectable (IP-10, MCP-1, MIG and TCA- 

3).

No cytokines or chemokines were detectable in the serum.

4.4.2. ST2'̂ ' has no effect on the antigen-specific recaii response
Mixed lymph node cells from ST2'^' mice did not proliferate any less than wildtype 

in response to OVA restimulation (Figure 4.12A). The production of Th2 cytokines 

(Figure 4.12B-D) was unaffected by ST2^, as was chemokine production (eotaxin- 

1, eotaxin-2 and TARC). IFNy and GM-CSF were undetectable.
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Figure 4.10 Eosinophilic inflammation and BAL ceil counts are reduced in 

STZ'- mice

(A) H&E stained lung sections were scored for eosinophilic lung inflammation as described. BAL total 

and differential cell counts were performed as described in the materials and methods. Airway 

challenge with OVA in ST2^ mice resulted in decreased (B) total cells, (0) eosinophils, and (D) 

macrophages compared to challenge with OVA in ST2+/+ mice. Data are means ± SEM (n=8; 

*p<0.05, **p<0.01,***p<0.001).
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Figure 4.11 BAL cytokines and chemokines are reduced in S T 2  " mice

BAL supernatants were harvested and stored at -20°C until cytokines were measured by sandwich 

ELISA. Airway challenge with OVA in ST2-/- mice resulted in decreased (A) eotaxin-1, (B) eotaxin-2, 

(C) TARC compared to wildtype mice. Data are means ± SEM (n=8; *<p<0.05, **p<0.01,

***p<0.001).
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Figure 4.12 No reduction in DLN cytokine production in ST2' '̂ mice

Thoracic lymph nodes draining the airways (DLN) were harvested and single cell suspensions 

obtained. Cells were cultured in 24 well plates with 1 mg/ml OVA for the recall response. 

Supernatants were harvested at 72 hours and frozen at -20°C until cytokines were measured by 

sandwich ELISA or multiplex. Lymph node cells from ST2-/- mice had (A) no difference in 

proliferation, (B) slightly decreased IL-5 (NS), but no difference in (0) IL-13, or (D) IL-4. Data are 

means ± SEM (n=8).



Chapter 4: 146

4.5. Discussion

In this chapter I have demonstrated that:

1. IL-33 exacerbates OVA-induced allergic airway inflammation

2. IL-33 alone can induce airway inflammation in sensitised mice

3. The effect of IL-33 in airway inflammation is dependent on ST2  

gene expression

4. ST2“'“ mice have reduced airway inflammation

I will discuss each of these points below in more detail.

4.5.1. IL-33 exacerbates OVA-induced allergic airway inflammation
When given at the same time as OVA challenge, intranasal IL-33 was able to 

exacerbate the effector phase of allergic airway inflammation. An increase In all 

inflammatory cells, but particularly eosinophils, was seen in the airway lumen 

(BAL) and in the tissues, although the actual pathology was similar to OVA alone. 

These pathological changes are likely to be mediated through IL-5 and IL-13, and 

the Th2 chemokines eotaxin-1, eotaxin-2 and TARC, all of which were increased 

in BAL and/or serum. Of note, however, IL-4 production was not significantly 

affected. The cells on which IL-33 acts, and therefore the source of these 

cytokines and chemokines, are unknown. I have already shown that IL-33 can 

induce an innate type 2 response, and it may be that ST2L expression on cells 

such as mast cells (288), macrophages (284) or even NKT cells plays a role. 

However, antigen sensitisation and challenge increases the expression of ST2L on 

Th2 cells (318), and so IL-33 may increase Th2 cell responses directly.

In keeping with this, mixed lymph node cultures from mice that received OVA and 

IL-33 proliferated spontaneously, and had increased proliferation after OVA 

restimulation in vitro. Increased levels of IL-5, IL-13 and TARC were seen, and in 

contrast to BAL, IL-4 and IL-10 production were also increased. Whether these 

increases were due to increased cell numbers, or increased production from 

individual cells, is unknown. It is notable that IL-33 was able to exacerbate 

inflammation despite a large increase in IL-10, which plays an immunosuppressive 

role in asthma (391).
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4.5.2. IL-33 alone can induce airway inflammation in sensitised mice
It was noticeable that IL-33 given to mice previously sensitised to OVA resulted in 

a very similar response to rechallenging with OVA. I have previously shown that 

IL-33 can induce an innate type 2 response in the lung. Pilot experiments as part 

of that work showed that, although a single dose of IN IL-33 could induce 

detectable levels of eosinophils in the BAL of some mice, at least 3 doses were 

required to elicit a significant increase in BAL eosinophils in all mice (data not 

shown). Even then the numbers seen were not as high as in these experiments. 

Therefore, although the innate effects of IL-33 may be contributing, possibly 

through the initiation and localisation of the response to the lung, the pre­

sensitisation of the mice seems important. Since sensitisation and challenge 

increases the expression of ST2L on Th2 cells, it is possible that IL-33 could 

directly activate Th2 cells in the absence of further antigen.

In contrast to the previous study by Schmitz et al (1), who showed systemic IL-33 

induces expression of IL-4 and IL-5 mRNA, IN IL-33 alone did not induce the 

expression of IL-4 protein in the BAL, serum or in DLN cultures, whereas it 

induced as much IL-5 as OVA did. This is in keeping with previous evidence that 

IL-33/ST2L plays a particular role in IL-5 expression. However, in combination with 

OVA, IL-33 did induce an increase in IL-4, particularly in DLN cultures, which 

suggests this is an indirect mechanism, and relies on enhancement of antigen- 

specific responses. This echoes the effect of IL-18 discussed in the introduction, 

where IL-18 can augment IL-4 and IL-13 in the presence of antigen, but only IL-13 

in its absence (29).

4.5.3. The effect of IL-33 in airways inflammation is dependent on ST2
As with the innate response, IL-33 had no effect on airway inflammation either 

alone, or in combination with OVA, in ST2-/- mice. Thus the effects seen are not 

due to adjuvant effects of contaminants such as LPS, and are dependent on the 

binding of IL-33 to ST2L.

4.5.4. ST2  ̂ reduced airway inflammation
Here I have demonstrated that ST2-/- mice have a reduced histology score and a 

reduction in eosinophils and macrophages in the BAL, mediated by a reduction in 

BAL IL-5 and Th2 chemokines. Proliferation and cytokine production from DLN 

was largely unaffected, which is in contrast to the pronounced effect of IL-33 on
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DLN cells. Whilst this partly reflects the differences seen when modulating either a 

receptor or its ligand, it probably also reflects the fact that other compensatory 

mechanisms may be acting due to the redundancy seen in inflammatory cytokine 

networks. What it does highlight is the important role of IL-33/ST2L in eosinophil 

accumulation in the lung, through upregulation of IL-5, eotaxin-1 and eotaxin-2.

These result are in contrast with the recent report from Mangan et al (329), who 

showed that ST2-/- in BALB/c mice resulted in an increase in eosinophils in BAL, 

and a reduction in macrophages. They did not find a reduction in BAL IL-5, 

although they also showed no change in other BAL cytokines, or DLN cytokine 

production. This may reflect differences in the model, and that other mechanisms 

may have been able to overcome, or even overcompensate for, the loss of ST2.

It is interesting to note that Mangan et al (329) showed that IL-33 mRNA is 

upregulated in lung tissue after antigen challenge, and IL-33 may be one 

mechanism by which the Th2 effector response can be promoted. However, other 

mechanisms must also be important, as IL-33 does not appear to induce IL-4 

protein expression, and ST2-/- mice can still develop allergic airways inflammation.

When interpreting this data the presence of confounding factors must not be 

underestimated. There are many unknown variables in the interactions of IL-33, 

ST2L and sST2. I have not taken into account the expression of sST2 seen in 

airways inflammation in mice (319), and in asthma exacerbations in humans (340), 

and how it may interact with IL-33 and ST2L to modulate inflammation. The 

drawback of using ST2-/- mice is that both ST2L and sST2 are lost, so it is difficult 

to distinguish between their relative roles in inflammation.

4.6. Conclusions

In this chapter I have demonstrated that IL-33 exacerbates the effector phase of 

allergic airways inflammation, and that this is dependent on ST2  expression. I 

have also demonstrated that ST2-/- results in a reduction of allergic airways 

inflammation. Together these results highlight the importance of IL-33/ST2L in 

eosinophil accumulation in the tissues.
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Having examined the role of IL-33 in innate and allergic Th2 inflammation, in the 

next chapter I will investigate its potential role in autoimmune Th1/Th17 

inflammation.
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Chapter 5

IL-33 and ST2 in collagen-induced arthritis



Chapter 5: 151

5.1. Introduction

In the previous chapters I have shown that IL-33, a novel member of the IL-1 

family of cytokines, can induce an innate type 2 response, and can exacerbate the 

effector phase of an established Th2 response. The other IL-1 family members, IL- 

1 and IL-18, are pleiotrophic pro-inflammatory cytokines (243,245), and in addition, 

IL-18 has been shown to enhance both Th i and Th2 responses, depending on the 

circumstances (246,392).

Rheumatoid arthritis is an autoimmune inflammatory condition primarily affecting 

the joints. Initially characterised as a Th1 disease, it is becoming clear that T h i7 

cells mediate the effector phase of inflammation and joint destruction 

(205,208,213). TNFa and IL-1 have a prominent role in both inflammation and 

bone erosion, and inhibiting these is currently being targeted as a therapeutic 

option in the clinic .(215,221).

I hypothesised that the pro-inflammatory functions of IL-33/ST2 would not be 

restricted to Th2 type Inflammation. I therefore examined the role of IL-33/ST2 in 

CIA, a model of Th1/Th17 autoimmune arthritis. The data presented in this chapter 

represents pilot experiments performed to investigate this hypothesis. I induced 

CIA in the susceptible DBA/1 strain of mice and administered IP rmIL-33 during 

the effector phase, which exacerbated disease. I also induced CIA in ST2^ DBA/1 

mice, which had been bred in-house, which ameliorated disease.

5.2. IP rmlL-33 exacerbates CIA

CIA was induced as described in the materials and methods. The dose of rmlL-33 

used was the same as for inducing an innate type 2 response, and it was felt that 

5 subsequent doses after antigen boosting on day 21 would be sufficient, as in 

previous work even a single IP dose had measurable effects. Mice were culled at 

early (day 26), middle (day 31) and late (day 38) time points after rm IL-33 

administration to investigate the kinetics of the response (figure 5.1).
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Figure 5.1 A murine model o f collagen-induced arthritis

Mice were immunised intradermaily at the base of the tail with 50|jg bovine collagen type II (Cll) in 

complete Freund’s adjuvant (CFA) on day 1, and the response boosted on day 21 with 50pg Cll in 

PBS intraperitoneally. Where indicated 200pl sterile PBS ± 0.8pg mlL-33 was given intraperitoneally 

for 5 consecutive days from day 21. Footpads were measured using callipers every 1-2 days from 

day 21, and the clinical score of each paw assessed at the same time. Mice were culled at various 

times during disease development and draining lymph nodes, spleen and ankle joints harvested to 

assess the immune response.

5.2.1. IL-33 exacerbates disease severity of CIA
Treatment with rm IL-33 did not increase the number of mice that developed 

arthritis (Figure 5.2A), which was close to 100% in both groups. However, it did 

Increase the average clinical score per affected mouse (Figure 5.2B). When this 

was examined further it became apparent that the number of affected paws per 

mouse was increased (Figure 5.3A), and also the thickness of the swelling (Figure 

5.3B). The clinical score per affected joint was not increased as loss of function 

was rarely seen (Figure 5.3C).
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5.2.2. IL-33 increases early spleen proliferation
The proliferation of mixed splenocyte cultures was increased at the early time 

point, and this was increased in the IL-33 group (Figure 5.4A). At later time points 

there was very little proliferation in either group. The proliferation of mixed DLN 

cells gradually increased at each time point, but there was no difference between 

the groups.

5.2.3. IL-33 Increases cytokine production in spleen and DLN
Treatment with IL-33 induced an early burst of cytokine production by mixed 

splenocyte cultures (Figure 5.4B). IL-17, TNFa, IL-12, and IFNy were all increased 

at the early time point compared to the untreated group. IL-17 production was 

sustained at a higher level at the late time point in the IL-33 group, but there was 

no difference in the other cytokines at this time point. In contrast, mixed DLN 

cultures from the IL-33 treated group produced higher concentrations of lL-17, 

TNFa, and IL-12 at the later time point (Figure 5.4C), but there was little difference 

at the early time point. IL-5 production was also increased at the early and late 

time points in spleen and DLN cultures respectively (Figure 5.5).

Of the other cytokines measured in culture supernatants, IL-lp , IL-4 and IL-10 

were undetectable, and IL-6 was unaffected by IL-33 treatment. No difference was 

seen between IL-33 treated and untreated mice in serum levels of cytokines or 

collagen specific IgGI and lgG2a.
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Figure 5.2 iL-33 increases the severity o f Ci A

Arthritis was induced in mice as described. (A) The incidence of arthritis was determined as the 

percentage of the group which had developed arthritis in at least one paw, and was unaffected by 

treatment with IL-33 (n = up to 20 mice per group). (B) The total clinical score of each mouse with 

disease was assessed, with the maximum being 12. Treatment with IL-33 increased disease 

severity. Results are expressed as mean ± SEM (n = up to 20; **p<0.01, ***p<0.001).
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Figure 5.3 IL~33 Increases the number o f diseased paws

Arthritis was induced in mice as described. Treatment with IL-33 increased (A) the number of arthritic 

paws per mouse and (B) the amount of swelling in arthritic paws. (C) The clinical score per individual 

paw was not significantly affected (n= up to 20; **p<0.01, ***p<0.001).
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Figure 5.4 IL-33 increases proliferation and cytokine production
Arthritis was induced in mice as described. Mice were culled at day 26 (early), day 31 (middle) and 

day 36 (late) and DLN and spleens harvested. Single cell suspensions were restimulated with Cll 

and proliferation and cytokine production measured. Treatment with IL-33 increased (A) early 

splenocyte proliferation (B) early splenocyte cytokine production and (0) late DLN cytokine 

production (X = not analysed). Statistics were not performed on in vitro analyses as organs from 

each group were pooled prior to preparation for cell culture.



Chapters: 157

400

350

300

g  250

3  200

o  150 
a

100

50

0

Spleen

□ lL-33

120

100

§

80 - 

60

z
Q  40 

20 

0

DLN

Early Middle Late Early Middle Late

Figure 5.5 IL-33 increases IL-5 production
Arthritis was Induced in mice as described. Mice were culled at day 26 (early), day 31 (middle) and 

day 36 (late) and DLN and spleens harvested. Single cell suspensions were restimulated with Cll 

and IL-5 measured by sandwich ELISA. Treatment with IL-33 increased IL-5 production in (A) spleen 

and (B) DLN cultures. Statistics were not performed on in vitro analyses as organs from each group 

were pooled prior to preparation for cell culture.
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5.3. ST2  ̂ mice have reduced severity of CIA

CIA was induced in DBA/1 ST2^ mice using the same protocol as before (Figure 

5.1). ST2^ '̂  ̂ littermates were used as the control group. Unfortunately, the number 

of mice available from the breeding programme was below the number required to 

reach significance according to the power calculation, but there was a definite 

trend towards a reduction in disease severity. The experiment was repeated and 

the same results obtained.

ST2''^^ and ST2^ littermates developed a similar incidence of arthritis (2/3 and 3/4) 

respectively (Figure 5.6A). However, ST2'^' mice developed less severe disease, 

with a reduction in clinical score per affected mouse (Figure 5.68). The number of 

arthritic paws per mouse was reduced (Figure 5.7A), and also the thickness of the 

swelling (Figure 5.78), but the clinical score per arthritic joint was not (Figure 

5.7C).

No significant difference was seen in DLN or spleen proliferation, or in TNFa, IL-6, 

or IL-12 production (Figure 5.8A and 8). IL-1 [3 and IFNy were not detected, and IL- 

17 was not measured.
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Figure 5.6 ST2'̂ ' mice have reduced severity of CIA
Arthritis was induced in mice as described. (A) ST2'/- did not affect the incidence of arthritis (n=3-4). 

(B) The total clinical score of each mouse with disease was assessed, with the maximum being 12. 

ST2-/- reduced disease severity. Results are expressed as mean ± SEM (n=3-4). No statistics were 

performed due to the small number of mice available.
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Figure 5.7 ST2'̂ ~ mice have fewer diseased paws
Arthritis was Induced in mice as described. ST2-/- mice had (A) decreased arthritic paws per mouse 

and (B) reduced swelling in arthritic paws. (C) The clinical score per individual paw was not 

significantly affected (n=3-4). No statistics were performed due to the small number of mice 

available.
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Figure 5.8 IL-33 increases proliferation and cytokine production
Arthritis was induced in mice as described. Mice were culled at the peak of disease severity {day 40) 

and DLN and spleens harvested. Single cell suspensions were restimulated with collagen and (A) 

proliferation and (B) cytokine production measured. Statistics were not performed on in vitro 

analyses as organs from each group were pooled prior to preparation for cell culture.
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5.4. Discussion

The pilot data in this chapter indicates that IL-33 may exacerbate CIA, whilst ST2‘ '̂ 

may ameliorate disease. Specifically, neither IL-33 nor ST2^ affected disease 

incidence, but IL-33 Increased the number of arthritic joints per affected mouse, 

and the amount of joint swelling per arthritic paw, whilst ST2'^‘ reduced these 

measures.

An increase in cytokines known to play Important roles in arthritis was seen. Whilst 

some of the increased cytokine production seen in splenocytes could be due to 

increased proliferation and numbers of cytokine producing cells, there was no 

increased proliferation in DLN. Of particular interest were the marked increase in 

IL-17 and TNFa from the DLN cells. Therefore IL-33 could exacerbate arthritis 

indirectly through the induction of TNFa and IL-17. Both of these play crucial roles 

in the initiation and persistence of joint inflammation, and in cartilage and bone 

erosion. However, it is unknown exactly where the inflammatory cytokine came 

from and whether IL-33 induces these cytokines directly or indirectly. It was also 

interesting to note that, in contrast to IL-33, ST2  ̂ seemed to have little effect on T 

cell function. This is similar to the results seen with allergic airway inflammation.

IL-5 was elevated by IL-33 treatment, which is in keeping with previous data in the 

allergic airway model, and in the literature, that IL-33/ST2 modulates IL-5 

production. It is of note that IL-33 can induce IL-5 production even despite the 

ongoing Th1/Th17 response. The possible functional relevance of this unknown, 

although elevated Th2 cytokines (IL-4 and IL-13) are part of the pattern of 

cytokines found in the synovial fluid in very early synovitis (393) which predict 

progression to RA.

5.5. Conclusions

Overall, although this preliminary data suggests that the function of IL-33/ST2 

plays a role in CIA, and therefore may be important in diseases other than those 

mediated by Th2 type inflammation, these studies need to be repeated with 

sufficient numbers to ensure robust biological and statistical significance, and the 

analysis extended to elucidate possible mechanisms of action.
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Chapter 6

General Discussion
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6.1 Summary of Results

The hypothesis on which the work in this thesis is based was that the novel 

cytokine IL-33 and ST2, its receptor, have an important pro-inflammatory role in 

regulating innate and adaptive inflammation. The data generated demonstrates 

that this hypothesis is valid.

In Chapter 3 I established the use of rm IL-33 as a useful reagent for investigating 

the in  vivo functions of IL-33 and ST2. I went on to show that IL-33 induces local 

and systemic type 2 inflammation dependent on the expression of ST2. Direct 

administration of IL-33 to the airways resulted in eosinophilic airway inflammation, 

and pathological changes similar to asthma, mediated by elevated IL-5, IL-13, 

eotaxin-1, eotaxin-2 and TARC. Experiments with SCID mice revealed that innate 

and/or structural cells are sufficient to initiate this response, but lymphocytes 

greatly enhance the response. The exact cell types involved were not identified.

In Chapter 4 I showed that IL-33 administered with antigen at the time of airway 

challenge exacerbated Th2 mediated allergic airway inflammation, including both 

local tissue effector responses and DLN T cell responses. In addition, IL-33 

induced allergic airway inflammation in pre-sensitised mice in the absence of 

further antigen challenge. Both of these effects were dependent on ST2 

expression. ST2^ mice developed less severe inflammation in the airways despite 

having normal T cell recall responses.

In Chapter 5 I presented pilot data that raise the intriguing possibility that IL-33 and 

ST2 do not just modulate type 2 responses. IL-33 exacerbated the severity of CIA, 

and enhanced DLN T cell responses, whilst ST2'^‘ mice had reduced disease 

severity, without affecting DLN T cell responses. However, these data need to be 

confirmed using appropriate numbers of mice to ensure robust biological and 

statistical significance.

This series of experiments clearly demonstrate that IL-33 and ST2 play an 

important role in inflammation. Figure 6.1 summarises some of the known and 

hypothetical interactions that could be involved in the IL-33/ST2 axis, and the 

possible outcomes.
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6.2 Unanswered questions

A number of key questions arise from this work, which are discussed in more 

detail below:

1. Which cells express IL-33 and ST2 expressed in vivo

2. Is IL-33 a cytokine, a nuclear factor, or both?

3. How do IL-33 and ST2 interact?

4. How can ST2L both enhance and suppress inflammation?

5. What role do IL-33 and ST2 play in Th2 cell function?

6. What role might IL-33 and ST2 play in inflammatory diseases?

6,2.1. Which cells express IL-33 and ST2 in vivo?
in  vitro  studies and cDNA libraries have shown IL-33 and sST2 are expressed in 

epithelial and dendritic cells, and also in activated fibroblasts and macrophages, 

with sST2 also released from Th2 cells, in  vitro studies and animal models have 

shown ST2L is expressed on mast cells and some macrophages, and is inducible 

on Th2 and other type 2 lymphoid cells. However, very little is known about which 

cells express IL-33, ST2L and sST2 at the protein level in humans. Identifying the 

cellular source of IL-33 and sST2 and the target cells expressing ST2L will be of 

paramount importance in characterising the in vivo roles of each. A number of 

techniques could be employed to do this. Surgically removed tissues could be 

examined for mRNA expression by real-time quantitative PGR or in-situ 

hybridisation, and protein expression analysed using immunohistochemistry, and 

in particular laser scanning cytometry, to label IL-33 and ST2L/sST2 in tissues 

using monoclonal antibodies. Expression in specific cell types could be analysed 

by digesting tissues, co-staining with antibodies to cell-specific markers, and 

sorting cells by flow cytometry into purified populations for further analysis and 

functional studies .

I have not directly examined ST2L expression and response to IL-33 at the cellular 

level, but the data in SCID mice suggest that lymphoid cells, possibly NKT cells, 

are the key cell in the response triggered by IL-33. However, even though SCID 

mice lack lymphoid cells, there remains a population of non-lymphoid cells, 

probably mast cells and/or macrophages, that can mount a response after IL-33
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stimulation. The precise contribution of each remains to be confirmed by repeating 

these experiments in mice specifically lacking NKT cells (eg mice) or mast

cells (eg Kit-W-sh mice). In the context of adaptive inflammation, IL-33 may play a 

role in the effector response, also through mast cells and macrophages, but it may 

also be able to directly activate pre-sensitised Th2 cells in the absence of further 

antigen, and enhance antigen-specific activation.
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Figure 6.1 The possible role of IL-33 and ST2 In Inflammation
This diagram illustrates some of the possible sources and downstream effects of IL-33 and ST2 

signalling. IL-33 mRNA is expressed in many cells types, and is upregulated by pro-inflammatory
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cytokines and PAMPs. The protein has thus far only been identified in the nucleus of endothelial 

cells, so in order to act as a cytokine it may be released from the cell when it is damaged, or it may 

be actively secreted by an as yet unidentified mechanism. ST2L and IL-1 RAcP comprise the cell 

surface receptor for IL-33, which activates NF-kB through a MyD88 dependent mechanism. ST2L 

can also sequester MyD88 to downregulate TLR and IL-1R signalling. Soluble (s)ST2 is also 

released from many cells following activation by cytokines or PAMPs, and has been shown to bind to 

IL-33 and reduce the subsequent inflammatory response by preventing its interaction with ST2L/IL- 

1 RAcP. sST2 can also bind to an unknown factor on the cell surface which is induced by TLR 

signalling, and can then downregulate TLR signalling. The overall outcome of IL-33 signalling or 

ST2L/sST2 modulation of TLR signalling is a shift towards Th2 type responses. The exact 

downstream effects depend on which cell the IL-33/ST2 axis is acting. IL-33 may act on Th2 cells to 

potentiate differentiation and increased Th2 cytokine release. In addition, it may be that IL-33 can 

induce the differentiation of Th2-like cells that preferentially produce IL-5 and IL-13. 11-33 may 

activate mast cells to release cytokines, and there may also be a role in activating NKT cells to 

produce Th2 cytokines. The effector cytokines released (IL-4, IL-5 and IL-13) can then have pro- 

allergic effects. Thus IL-33 may play a role in modulating immune responses by tipping the balance 

in favour of Th2 responses. ST2L/sST2 may also play a direct role in innate, Thi and T h i7 

responses in the absence of IL-33 by modulating the activation of macrophages and other cells 

through TLRs and IL-1R.

6.2.2. IL-33: cytokine, nuclear factor or both?
One of the features of the members of the IL-1 family is that they do not have a 

leading sequence. Therefore, most proteins of the family are located in the cytosol 

or nucleus. However, the proteins can be processed via caspase I digestion and 

released through a non-classical pathway upon inflammatory stimulation (257). IL- 

33 has many structural and functional elements in common with IL-1 a, which is 

usually present in the nucleus and acts as a nuclear factor, but can act as a 

cytokine by binding to IL-1R when released from the cell. This can occur if cells 

are damaged or lysed, and also by presentation at the cell surface or secretion. 

Due to the lack of an effective antibody and ELISA, the expression and location of 

IL-33 at protein level has not yet determined. IL-33 protein expression has 

currently only been seen in the nucleus of HEVECs from human lymphoid and 

chronically inflamed tissue (255), where it may have a role in transcriptional 

regulation, although its precise function is unknown. In contrast, although IL-33 

has not yet been directly identified extracellularly in  vivo, functional data in this
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thesis and from Schmitz et ai (1) clearly define a role for IL-33 as a cytokine 

promoting type 2 inflammation. Under resting conditions IL-33 may function as a 

nuclear factor, but at epithelial surfaces may act as a “danger signal” released 

either after cell damage or stimulation by pro-inflammatory signals. Cells 

expressing ST2L (macrophages and mast cells) would then be ideally placed to 

initiate an immediate innate response. The pro-inflammatory cytokines and 

chemokines released could then attract other immune cells and induce further 

expression of ST2L, and IL-33 may subsequently play a role in Th2 differentiation 

and effector function.

The downstream effects of IL-33 in these experiments involve the induction of pro- 

inflammatory cytokines and chemokines, and the influx of immune cells. Indirect 

effects as a result of initiating inflammatory cascades may explain how IL-33 can 

modulate Th2 and other types of inflammation. Many of these effects of IL-33 are 

also shared by Th2 cytokines, and this redundancy makes it difficult to ascertain 

which are the most important factors in vivo. Investigation of the functions of IL-33 

and ST2 in gene knockout mice, particularly IL-4" '̂, IL-5" “̂ and IL-13"̂ ', and in cell 

deficient mice, particularly mast cells and NKT cells, will be important in identifying 

which cells and mediators are vital at which stage. It is possible that some of the 

effects of Th2 cytokines are mediated through IL-33 expression.

6.2.3. Interactions between IL-33 and ST2
Like the most members of the family (236), IL-33's function could be regulated by 

its own soluble receptor, and it is interesting to note that sST2 has been 

upregulated in several inflammatory conditions, including sepsis (334), tissue 

ischaemia (336,338), Th2 diseases (340,341) and autoimmunity (344). IL-33 and 

sST2 are often expressed by the same cell types after the same stimuli. Although 

it has not yet been shown, sST2 is likely to bind to IL-33 and act as a soluble 

decoy receptor. Thus, as with IL-1 and IL-1Ra (220), the activity of IL-33 may be 

regulated by release of IL-33 or sST2 in different amounts or at different times, 

even by the same cell. IL-33 binds to ST2L in vitro  (1), and I have shown here that 

both the innate and adaptive in vivo  functions of exogenous IL-33 are dependent 

on ST2 expression. As ST2'^‘ mice lack both ST2L and sST2, I cannot exclude a 

role for sST2 in these explaining these data, as it has been shown to bind to an 

unknown surface ligand, and have downstream effects on TLR and cytokine 

expression (284,301,303,308). However, this also raises the possibility that, like



Chapter 6: 170

IL-1 a, IL-33 may be associated with the cell surface and bind to ST2L through cell­

cell contact, and sST2 could also interfere in this interaction.

6.2.4. ST2L has pro- and anti-inflammatory effects
One of the paradoxes of ST2L function has been that on mast cells and Th2 cells 

it is involved in activation, whereas in macrophages it is suppressive of TLR 

function. The molecular mechanism involved in these disparate effects of ST2L is 

currently unknown. It may be explained through the common use of MyD88 in 

signalling. When IL-33 binds to ST2L it can then signal through MyD88 to have 

pro-inflammatory actions via NFkB (1). However, the suppressive function on 

TLRs and IL-1R is mediated by ST2L sequestering MyD88 and preventing 

signalling (306). Thus the role of ST2L in the resting state, in the absence of IL-33, 

may be to limit TLR activation. ST2L expression is increased by TLR and pro- 

inflammatory cytokine signals, and could represent a mechanism to regulate 

inflammation. Interestingly TLR signalling generally favours Th i type responses, 

whereas previous studies and the data here demonstrates that IL-33/ST2L 

generally results in Th2 type inflammation, so crosstalk between T h i and Th2 

driving signals can occur in the same cell. This field requires further investigation.

6.2.5. IL-33 and ST2 in Th2 cell function
6.2.5.1. T cell activation
ST2L is established as a marker for some Th2 cells (291,292,328), but its function 

in Th2 responses is unknown. It has been noted that ST2L CD4* cells are most 

closely related to the site of infection or inflammation (141,291,292,314,317,318), 

and are less frequent at distant sites such as lymph nodes, perhaps suggesting 

they are important effector cells. In Chapter 4 I demonstrated that IL-33 induces 

allergic airway inflammation in pre-sensitised mice without further antigen 

stimulation, so ST2L expressing Th2 cells may be directly activated through ST2L. 

However, as has recently been shown in asthma, it cannot be excluded that at 

least some of these cells are NKT cells, which have also been shown to express 

ST2L. One way of distinguishing the relative roles of NKT and Th2 cells would be 

to give IL-33 to mice which lack lymphocytes (SCID mice) and have been 

selectively reconstituted with NKT and/or Th2 cells from OVA sensitised mice.

A recent report (329) showed that in vitro  polarised Th2 cells express more IL-5 

than wildtype Th2 cells, suggesting ST2L plays a suppressive role in Th2 cells.
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Apparently in keeping with this ST2^ mice with allergic airways disease had 

greater numbers of eosinophils in the BAL, despite normal DLN T cell responses 

in vivo. This data is in contrast to the observation that ST2L expression is 

associated with increased IL-5 expression both in vitro  and in vivo  

(291,314,325,328), and with my data which shows ST2^ mice have fewer 

eosinophils in BAL, mediated by lower IL-5 and chemokine levels. The reason for 

the discrepancy is unknown. As we were both using the same strain of ST2"̂ ' mice, 

with the same ST2 gene disruption, the difference may lie in the model or the 

technique for counting eosinophils.

6.2.5.2. T cell differentiation
IL-33 may be ideally placed to be an important factor in influencing Th2 cell 

differentiation. It is particularly expressed in tissue cells at or near epithelial 

surfaces, where Th2 responses are important in parasite responses. It may be 

released early in the response as a danger signal which alerts the immune system 

to mount a Th2 response. It is also expressed in dendritic cells, so could also 

directly influence T cell differentiation at the time of antigen presentation. Naïve T 

cells express very little ST2L, but as the Th2 phenotype becomes more 

established ST2L expression increases. Also, as ST2 deficiency has no effect on 

the IL-4-dependent Th2 cell differentiation (325-327), IL-33 is perhaps more 

important in maintaining the Th2 cell phenotype rather than their development.

Another intriguing possibility is that IL-33/ST2L could influence T cells to 

differentiate along a non-classical Th2 pathway. Effective Th2 type responses are 

usually generated via an IL-4-dependent pathway (394), although they can occur 

in the absence of IL-4 (46,395) by undefined mechanisms. Subsequently GM-CSF 

was found to generate Th2 responses in the airway in the absence of IL-4 (48). In 

the data presented here IL-33 preferentially induced IL-5 and IL-13 and was 

unable to directly induce IL-4 expression, even in pre-sensitised mice. The 

existence of Th2-like cells, expressing IL-5 and IL-13, and not IL-4, has been 

shown in various models of parasite infection and allergy (45-47,145,318,395), 

and it may be that ST2L is a marker for these cells, and IL-33 a factor in their 

development. Thus IL-33 may be a differentiating factor for a specific subset of 

Th2 cells. It remains to be seen whether these cells represent a novel subset with 

unique effects.
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6.2.6. What role might IL-33 and ST2 play in inflammatory disease?
6.2.6.1. Asthma
The current results suggest that IL-33 plays a critical role in asthma, since all the 

key cells involved in asthma pathogenesis express ST2L. Therefore, the increased 

inflammatory response in allergic airway inflammation induced by IL-33 is likely to 

be due to multiple mechanisms. As discussed above, IL-33 may play a role in 

directly and indirectly activating Th2 cells and effector cells in the tissues or DLNs. 

However, ST2 ''' had little effect on DLN T cell recall responses, suggesting ST2L, 

and therefore IL-33, plays a more important role in the local response. Whether 

this represents ST2L on Th2 cells or effector cells is unknown. Although the role of 

IL-33 in T cell differentiation was not studied, it is possible that the increased 

inflammation is due to increased presence of a subset of Th2-like cells expressing 

increased IL-5 and lL-13.

Eosinophilia plays an important role in asthma pathogenesis. I found that the main 

effect of IL-33 is inducing eosinophilia by at least two mechanisms. It may have a 

role in the generation of eosinophils via enhancing IL-5 production. In support of 

this, ST2^ mice produced less IL-5 and developed a reduced eosinophilia in 

allergic airway inflammation. IL-33 may also promote the recruitment of 

eosinophils by inducing chemokine expression. Mast cells are another key cell in 

asthma which release pro-inflammatory cytokines and mediators, importantly, 

ST2L is highly expressed by most mast cells, our preliminary data suggest that IL- 

33 is capable of inducing inflammatory cytokine secretion and degranulation of 

mast cells (unpublished result). Thus, IL-33 is a novel pathogenic factor and 

should be a new therapeutic target.

6.2.6.2. Rheumatoid arthritis
IL-33 exacerbated footpad disease in CIA, and ST2^ reduced it. Similar to allergic 

airways disease, T cell recall responses were normal in ST2^ mice, suggesting 

that loss of ST2, and therefore IL-33, is more important in the tissues. CIA is 

thought to be a Th1 and/or Th17 mediated disease, so it seems unlikely this 

reflects a loss of ST2 from Th2 cells. Therefore innate effector cells are probably 

the more important target for IL-33 in rheumatoid arthritis. The pro-inflammatory 

effect of IL-33 in CIA is likely to be mediated indirectly through macrophages, and 

perhaps even mast cells, which have been shown to play an important role in 

initiating joint pathology (225).
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6.3 Conclusions
In conclusion, I have presented data in this thesis that suggests IL-33 and ST2 

play crucial roles in initiating and regulating innate, allergic and autoimmune 

inflammation, and is therefore a valid target for further research into the 

mechanisms by which it can diverse modes of inflammation. It also identifies it as 

a potential therapeutic target in a wide range of human diseases.

6.3.1. Future Work

IL-33 biology
Initial investigations into the biology of IL-33 in the lung were constrained by the 

rate at which rm IL-33 could be produced, purified and tested in the lab during the 

project. If more rm IL-33 and more time had been available it would have been 

possible to extend the studies of the effect of IL-33 in the airway. In particular a 

more detailed analysis of the effects of single and multiple applications over a 

range of doses in various compartments, such as BAL, lung parenchyma and 

serum, would allow elucidation of possible downstream mechanisms of action of 

IL-33. In order to determine how relevant these doses are it will be necessary to 

detect physiological levels of human IL-33 in vivo  in tissues such as BAL, lung and 

serum.

Lung biology
In this work I have made a detailed analysis of airway (BAL), systemic (serum) and 

lymph node responses involved in lung inflammation. However, had the timescale 

of this project allowed I would like to have extended the analysis of the 

parenchymal compartment, thus linking the systemic and airway responses. This 

could include lung digests to examine the levels of cytokines and chemokines 

within the lung itself, and levels of eosinophil cationic protein (ECP) would also 

give an indirect measure of the degree of eosinophilic inflammation. Flow 

cytometry would allow a more accurate direct quantification of the cells comprising 

the inflammatory infiltrate. It would also be useful to further characterise the 

pathology by using histological stains specific for goblet cells and mast cells, as 

these were difficult to confidently identify just using the H&E stain. In addition, 

indicators of mast cell function, such as tryptase levels in tissues, could be 

measured. Using laser scanning cytometry would also have allowed identification 

of specific lymphocyte subsets (T cells, NKT cells) in the lung.
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In the studies presented in this thesis I have focussed on the inflammatory 

response in the lung. However, it is also relevant to study the changes in airway 

physiology that may also occur in the presence of allergic type inflammation. I 

have performed preliminary studies measuring Penh, an indirect measure of 

changes in airway resistance (and thus AMR) in and ST2^ mice. These

studies were performed in a different model of airway inflammation carried out 

over a longer period of time, and so the results may not be applicable here. 

However, they do demonstrate that ST2  ̂ mice develop the same level of AHR as 

ST2+/+ mice, despite having reduced eosinophilic inflammation (Kewin P et al, 

unpublished data). This dissociation of inflammation from AHR is in keeping with 

previous data that showed anti-IL-5 can profoundly reduce eosinophils numbers, 

but has no effect on AHR (95).

Joint biology
The data presented in Chapter 5 largely represents pilot data, partly because there 

were many difficulties encountered in the breeding programme, resulting in a long 

delay in mice being available. Had time allowed I would have liked to have 

repeated these studies with larger groups of mice to confirm the results seen. This 

would also allow a more detailed analysis of the response by looking at different 

time points, and also by giving IL-33 at different times to see when it is most 

effective. It would also be important to analyse the pathology in the joints in detail 

to see which cells and mediators are involved in the inflammatory lesion.

Priority areas for further work
I have already alluded to possible avenues of further investigation, but outlined 

below are some specific areas of research that are current priorités for furthering 

our understanding of the biology of IL-33 and ST2:

• Development of further reagents to enable analysis of IL-33, such as anti- 

IL-33 antibodies for neutralisation or detection, IL-33 transgenic and 

knockout mice, and specific sST2 and ST2L knockout mice

• Identification of the in  vivo  source of IL-33 as a cytokine, and its mechanism 

of secretion from the cell

• Identification of the cellular target of sST2 and the mechanism of its 

downstream effects
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• Elaboration of the signalling mechanisms used by ST2L and how they 

interact with and influence other IL-1R family member and TLR function

• Investigation of the role of IL-33 in T cell differentiation by in vitro  studies of 

the factors required to differentiate IL-5 and IL-13 producing Th2 like cells

• Confirmation of these cells as a distinct entity by adoptive transfer into 

immunodeficient mice and demonstrating they can initiate immune 

responses.
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Appendix 1: Buffers and solutions

buffers stored at room temperature unless otherwise stated.

2% Agarose gel:

Avertin:

2g agarose 
100ml TAE buffer
Heat in microwave until clear and boiling
Add 5|jl ethidium bromide (0.005%) and mix gently
Pour into gel tray with comb and allow to cool

3g 1,1,1 tribromoethanol 
3ml amyl alcohol 
Store at 4°C
Dilute 1:40 in PBS before use

Complete medium:

ELISA assay buffer A:

500ml RPMI medium
50ml heat-inactivated foetal calf serum
5m! penicillin/streptomycin
5ml L-glutamine
0.5ml 2-mercaptoethanol

+ 25mM HEPES for cultures from CIA experiments

10% heat-inactivated foetal calf in PBS 
pH 7.4
Made fresh and stored at 4“C

ELISA assay buffer B: 1% bovine serum albumin in PBS 
pH 7.4
Made fresh and stored at 4°C

ELISA coating buffer A:

ELISA coating buffer B:

ELISA blocking buffer:

70% Ethanol:

500ml distilled water 
4.2g NaHCOs 
pH to 8.4

500ml distilled water 
4.2g NaHCOs 
1.78g NazCOs 
pH 9.5
Stored at 4°C for up to 1 month

1% bovine serum albumin in PBS 
5% sucrose 
0.05% NaN3 
made up in PBS

7 parts 100% ethanol 
3 parts distilled water

FACS buffer: 2% foetal calf serum in PBS 
Store at 4 ”C
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PCR loading buffer: 

PBS x10:

PCR reaction buffer

TAE buffer:

Tail lysis buffer:

3H-Thymldine:

1% Trypan blue stock:

Wash medium:

Per sample
lOx PCR buffer 2pl
MgCl2 (50mM) Ipl
dNTPs (lOmM) 0.5pl
Taq DNA polymerase 0.5pl
Pure water 13pl
Primer 1 (10OD) 0.5pl
Primer 2 (10OD) 0.5pl
Primer 3 (10OD) 1pl

10mM Ir is  pH 8.0 
50mM EDTA 
lOOmM NaCi 
0.5% SDS

+ 500pg/ml proteinase K added at the time of use

37 MBq 3H-Thymidine (in 1ml sterile saline)
Dilute to 25ml with sterile wash medium 
Store sterile at 4°C in an approved area

0.2g trypan blue crystals 
20ml distilled water
Dilute 1:10 and filter through Nitex before use

500ml RPMI Medium 
5ml penicillin/streptomycin 
Store at 4°C
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Appendix 2: Reagents

Primer 5’............. 3'
Primer 1 TTG GCT TCT TTT AAT AGG CGC
Primer 2 OTA TCA GGA CAT AGO GTT GGG TAG G
Primer 3 TGT TGA AGG GAA GAG GTT AGG

Table A1 Primers used for ST2 PCR
All primers were obtained from Sigma, diluted to 10OD with pure water, and stored at -20°C until use

Primer 5'............. 3'
Human GGGATGGATGAGAGGAATTTGAGGTAT

GAGATGTGTAAGTTTGAGAGAGGTTAA
Mouse GGGATGGAGTTGAGTTTTAAGAGAGTG

GAGATGTTTAGATTTTGGAGAGGTTA

Table A2 Primers used for IL-33 RT~PCR
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Reagent Supplier Use
All inorganic saits Sigma-Aldrich Buffers and solutions
Aii antibodies and standards Becton-Dickinson (BD) 

R&D Systems
ELISA

Agarose DNA detection
2% Ai hydrogel (alum) Brentag Biosector Mouse sensitisation
Amyl alcohol Sigma-Aidrich Mouse anaesthesia
Bovine coilagen type li Sigma-Aldrich Ceii culture
Bovine coiiagen type ii 
+ Complete Freund’s Adjuvant

Chondrex Induction of CIA

Bovine serum albumin Sigma-Aldrich ELISA
DPX Sigma-Aidrich Coverslip fixation
EDTA Sigma-Aldrich Tail lysis buffer
Ethidium bromide Sigma-Aidrich DNA detection
Ethanol (100% molecular biology grade) Sigma-Aldrich DNA extraction
Extravidin-peroxidase Sigma-Aldrich ELISA
Foetal calf serum (FCS) Flarlan Cell culture, ELISA
L-glutamine Invitrogen Cell culture
Goat serum invitrogen ELISA
■^Fl-thymidine Amersham Life Sciences Proliferation assay
2-Mercaptoethanol Sigma-Aldrich T cell culture
dNTPs (lOmM) PCR reaction mix
Ovaibumin (OVA; fraction V) Sigma-Aldrich Sensitisation and challenge in 

allergic airways disease 
Cell culture

PCR buffer (lOx) PCR reaction mix
Phosphate buffered saline (PBS) invitrogen Cell culture
Penicillin invitrogen Cell culture
Phenol/chloroform/isoamyi alcohoi (25:24:1) Sigma-Aldrich DNA extraction
Proteinase K Sigma-Aldrich Tail lysis buffer
Pure water for injection DNA extraction
Rapi Diff ii Cytoprep staining
Red cell lysis buffer Sigma Cell culture
RPMI medium invitrogen Cell culture
SDS Tail lysis buffer
Streptavidin-peroxidase ELISA
Streptomycin invitrogen Cell culture
Sucrose Sigma-Aldrich ELISA
Taq DNA polymerase PCR reaction mix
TMB Insight (KPL) ELISA
1,1,1-tribromoethanol Sigma-Aldrich Mouse anaesthesia
Tris Tail lysis buffer
Trypan blue Cell counting
Tween-20 Sigma-Aldrich ELISA washing

Table A3 Reagents and suppliers
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