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Abstract
The fission yeast DSCl (DNA synthesis control) tianscription factor complex regulates cell 

cycle-specific periodic transcription of a gi'oup of genes at the G l-S phase transition during the 

mitotic cell cycle, by binding to MCB {Mini cell cycle box) sequence elements common to 

their promoters. Included in this group are several genes whose functions are required for the 

onset and progression o f S phase, such as cdc22^ (the large subunit of ribonucleotide 

reductase), cig2^ (the major S phase cyclin) and the DNA replication licensing factors cdcl8^ 

and cd tP . In concert with cyclin-dependent kinase activity, DSCl function is required for 

passage of START and entry into the mitotic cell division cycle. Similar gene expression 

programmes exist in both budding yeast and humans controlled by the SBF/MBF and E2F 

transcription factors, respectively.

Fission yeast DSCl comprises two related DNA-binding subunits, Res Ip and Res2p, 

each bound to a single molecule o f the regulatory CdclOp protein. In addition, the Rep2p 

protein has a transcriptional activator function (replaced by Rep Ip in the meiotic cycle). 

Knowledge about functional aspects of each of the DSCl components has been greatly 

enhanced by genetic and biochemical studies. However, to date, these proteins remain poorly 

characterised at the atomic level, with little known about structure beyond their amino acid 

sequence. The aim of this study was to clone and bacterially express the individual DSCl 

genes, to provide sufficient protein to carry out more detailed biophysical and ftmctional 

studies.

The cdclO^, resl^, res2^' and rep2^ genes, together with the putative meiotic subunit 

r e p t ,  were cloned and overexpressed in E. coli as N-terminal histidine-tagged fusion proteins. 

Inclusion of the His-tag facilitated purification of the proteins by affinity chi omatography.

Each recombinant protein (with the exception of His-CdclOp) was shown to function in vivo', 

ectopic expression of His-resD, His-res2^, H is-rep t  or His-rep2* rescued the cold-sensitive 

lethality of the fission yeast Ares I  mutant strain. Bacterially expressed His-Reslp, FIis-Res2p 

and His-Rep2p were recovered in soluble form, whilst His-Replp and His-CdclOp were 

detergent-solubilised from inclusion bodies. His-Res2p was expressed and purified in yields 

sufficient to undertake biophysical analyses. Both His-Replp and His-CdclOp were solubilised 

and purified fiom inclusion bodies in yields sufficient for structural studies, although initial 

biophysical data suggests that re-folding strategies will be required to obtain active preparations 

of these proteins.

In electrophoretic mobility shift assay experiments, neither His-Reslp nor His-Res2p 

displayed detectable MCB-specific DNA-binding in vitro. Intriguingly, replacement of the His- 

tag with an N-terminal GST-tag conferred detectable MCB-specific DNA-binding upon both 

proteins. These results suggest that efficient DNA-binding requires dimérisation, a property
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that, at least in vitro, is apparently not naturally intrinsic to either Resp protein. Taken together, 

the results presented in this study provide a significant basis with which to undertake future 

structural analyses o f these proteins. The implications of these results for further in vitro studies 

are discussed.

V



Contents
Title..........................................................................................................................  1

Declaration..............................................................................................................  ü

Acknowledgements  ..................................................................................................  iÜ

Abstract...................................................................................................................................  iv

Table of contents......................... .........................................................................................  vi

Index of figures  ........................................................................................................... xii

Index of tables.......................................................................................................................  xiv

Abbreviations......................................................................................................................... xvi

Chapter 1; Introduction________________________
1.1 Introduction......................................................................................  1

1.2 Life cycles and genetics of the budding and fission yeasts  2
1.2.1 A note on nomenclature.......................................................................................  6

1.3 The molecular mechanisms of the mitotic cell cycle...................  6
1.3.1 The molecular mechanisms of the mitotic cell cycle in fission yeast  7

1.3.2 The Gl-S transition.............................................................................................. 7

1.3.3 Onset of S phase...................................................................................................  8

1.3.3.1 Origins of replication.............................................................................  8

1.3.3.2 The origin recognition complex............................................................ 8

1.3.3.3 The mini-chromosome maintenance complex....................................  8

1.3.3.4 SpCdclSp, SpCdtlp and the control o f DNA licensing..................... 9

1.3.3.5 Activation of DNA replication: CDK and DDK................................. 9

1.3.3.6 Prevention of re-replication...................................................................  10

1.3.4 The G2-M transition...........................................................................................  13

1.3.5 Checkpoint controls: DNA integrity.................................................................  13

1.3.6 Mitosis and cytokinesis ......................................................................................  14

1.4 Cell cycle-regulated transcription..................................................  16

1.5 Cell-cycle regulated transcription at the Gl-S transition............  16
1.5.1 G l-S phase-specific transcription in budding yeast........................................  18

1.5.2 The SBF complex.................................................................................................  18

1.5.3 The MBF complex................................................................................................ 19

1.5.4 Functional redundancy in SBF and MBF-dependent gene expression  20

VI



1.5.5 A family of transcription factors...........................................................................  20

1.5.6 The N-terminal DNA-binding dom ain.................................................................. 21

1.5.7 Model for DNA-binding.......................................................................................... 21

1.5.8 Regulation o f SBF and MBF-dependent gene expression..................................  26

1.6 Gl-S phase-specific transcription in fission yeast..........................  28
1.6.1 The DSC 1 complex..................................................................................................  29

1.6.2 A ‘DSCl-like’ complex in m eiosis.......................................................................  29

1.6.3 SpCdclOp.................................................................................................................. 30

1.6.4 SpReslp and SpRes2p.............................................................................................  30

1.6.5 Functional redundancy between SpReslp and SpRes2p....................................  31

1.6.6 Sti'ucture of SpReslp and SpRes2p.......................................................................  32

1.6.7 SpReplp and SpRep2p............................................................................................  34

1.6.8 Regulation of DSCl-dependent gene expression................................................  36

1.7 Gl-S phase-Specific transcription in mammalian cells......................... 39

1.7.1 The E2F and DP proteins.......................................................................................  39

1.7.2 Regulation o f E2F-dependent gene expression.................................................... 40

1.8 Aims of this study..............................................................................  41

Chapter 2; Materials and Methods_____________
2.1 Molecular biology materials...........................................................................  42

2.1.1 Chemicals.............................................................................................................. 42

2.1.2 Enzymes and kits..................................................................................................  42

2.1.3 Molecular weight markers................................................................................... 42

2.1.4 Oligonucleotides...................................................................................................  42

2.1.5 Bacterial media.....................................................................................................  42

2.1.6 Bacterial strains....................................................................................................  42

2.1.7 Bacterial plasmid vectors.................................................................................... 43

2.2 Molecular biology methods.............................................................................  43

2.2.1 Polymerase chain reaction (PCR)....................................................................... 43

2.2.2 PCR using Tag DNA polymerase....................................................................... 43

2.2.3 PCR using VentR DNA polymerase..................................................................  44

2.2.4 Agarose gel electrophoresis................................................................................  44

2.2.5 Purification of DNA fi om bacterial cultures......................................   45

2.2.6 Extraction o f DNA from an agarose gel............................................................ 45

Vll



2.2.7 Restriction digestion............................................................................................  45

2.2.8 Déphosphorylation o f digested plasmid............................................................ 46

2.2.9 Ligations................................................................................................................  46

2.2.10 Cloning o f blunt ended PCR products.............................................................  46

2.2.11 Site-directed mutagenesis by overlap extension............................................. 46

2.2.12 Production o f competent bacterial ce lls .......................................................... 47

2.2.13 Transformation of competent bacteria............................................................. 47

2.2.14 Electophoretic mobility shift assay (EMSA)..................................................  48

2.2.15 Probe preparation............................................................................................... 48

2.2.16 EMSA assay.......................................................................................................  49

2 .3  P r o te in  b io c h e m is t ry  m a t e r i a l s ....................................................   49

2.3.1 Chemicals..............................................................................................................  49

2.3.2 Molecular weight markers................................................................................... 49

2.3.3 Photographic materials........................................................................................  49

2 .4  P r o te in  b io c h e m is t ry  m e th o d s ........................................................................ 49

2.4.1 Growth of bacterial cultures for protein induction........................................... 49

2.4.2 Large-scale protein induction.............................................................................  50

2.4.3 Dialysis of protein sam ples................................................................................  50

2.4.4 Concenti ation o f protein samples....................................................................... 50

2.4.5 Determination o f protein concentration.............................................................  51

2.4.6 SDS-polyacrylamide gel electrophoresis (SDS-PAGE).................................. 51

2.4.7 Immunoblotting using ECL™ (enhanced chemiluminessence)..................... 52

2.4.8 Solutions used in immunoblotting...................................................................... 52

2.4.9 Solutions for Anti-PentaHis-HRP conjugate detection...................................  52

2.4.10 Solutions for Anti-GST-HRP conjugate detection........................................  52

2.4.11 Immunoblotting protocol...........................................    52

2.4.12 Solubilisation of expressed fusion proteins....................................................  53

2.4.13 Purification of GST-tagged proteins................................................    53

2.4.14 Preparation o f bacterial cell extracts...............................................................  53

2.4.15 Column purification of GST-tagged proteins.................................................  53

2.4.16 Purification o f His-tagged proteins.................................................................  54

2.4.17 Prepai ation of bacterial cell extracts...............................................................  54

2.4.18 Column purification of His-tagged proteins...................................................  54

2.4.19 Solubilization o f insoluble proteins from inclusion bodies..........................  54

2.4.20 Mass spectrometric da ta .................................................................................... 55

2.4.21 Circular dichroism.............................................................................................  56

VllI



2.5 Fission yeast materials.................................................................... 56
2.5.1 Fission yeast m edia.............................................................................................  56

2.5.2 Fission yeast strains.............................................................................................. 56

2.5.3 Fission yeast plasmid vectors...................    56

2.6 Fission yeast methods.....................................................................  57
2.6.1 Fission yeast cell culture.....................................................................................  57

2.6.2 Production o f competent fission yeast cells .....................................................  57

2.6.3 Transformation o f competent fission yeast......................................................  57

2.6.4 Induction of gene expression..............................................................................  58

2.6.5 Protein extiaction from fission yeast.................................................................  58

Chapter 3; Molecular cloning and expression of 

individual components of the fission yeast DSCl 

complex
3.1 Introduction......................................................................................  59

3.2 Cloning the resl~̂ , res 2'̂ , repÜ  and rep2^ components of DSCl 62

3.3 Cloning the c d c lO ^  component of D S C l .................................................  65

3.3.1 Site-directed mutagenesis of cdcW '..................................................................  65

3.3.2 Cloning the silently mutated cdclO^ gene into pCR2.1 ®................................. 68

3.3.3 Ligation, transformation and identification of clones.....................................  68

3.3.4 Cloning the silently mutated gene into pET-14b................................  70

3.4 Overexpression of the recombinant proteins............................   72

3.5 Discussion........................................................................................ 79

Chapter 4; Biological activity assays of recombinant 

DSCl proteins in vivo
4.1 Introduction......................................................................................  81

4.2 The fission yeast expression vector pREF....................................  84

4.3 Cloning recombinant His-resl^, His-res2^, His-repÜ and 

His-rep2^ components of D SC l..................................................... 85

IX



4.3.1 Cloning His-resl^, H is -re p t  and His~rep2^ cDNAs into pREP3X..............  85

4.3.2 Ligation, transformation and identification of clones....................    85

4.3.3 Cloning recombinant His-res2^ cDNA into pR E P l........................................  92

4.4 Biological activity assays - rescuing Aresl lethal phenotype  96

4.5 Biological activity assays - rescuing DSCl binding activity .....  lOi

4.6 Discussion........................................................................................ 106

Chapter 5: Biological activity assays of recombinant 

DSCl proteins in vitro
5.1 Introduction......................................................................................  109

5.2 Solubility of the recombinant DSCl proteins...............................  112

5.3 The effect of salt concentration on His-Res2p solubility............. 119

5.4 Biological activity assays - His-Reslp and His-Res2p................ 121

5.5 Cloning of resl^, repÜ  and rep2^.................................................  123

5.6 Co-expression of recombinant DSCl components in E. coli 123

5.7 Cloning resl^ and res2^ cDNAs into pGEX-KG.........................  126
5.7.1 Cloning resE  and res2'^ cDNAs into pCR2,l®................................................  126

5.7.2 Cloning and cDNAs into pGEX-KG............................................. 127

5.8 Overexpression and solubility of GST-Reslp and GST-Res2p... 131

5.9 Biological activity assays - GST-Reslp and GST-Res2p  136

5.10 Discussion......................................................................................  139

Chapter 6; Purification of recombiaant DSCl 

protein
6.1 Introduction......................................................................................  144

6.2 Purification of recombinant His-tag fusion proteins using

the BioC AD® system.......................................................................  146
6.2.1 Purification of His-Res 1 p and His-Rep2p......................................................... 147

6.2.2 Purification o f His-Res2p.................................................................................... 151

X



6.2.3 Identification of protein X and protein Y .......................................................... 156

6.2.4 Protein identification by mass spectiometry....................................................  156

6.3 P u r i f ic a t io n  o f  G S T - R e s l p  a n d  G S T - R e s 2 p ........................................... 162

6.4 P u r i f ic a t io n  o f  H i s - R e p lp  a n d  H is -C d c lO p  f ro m  in c lu s io n

b o d i e s ............................................................................................................................ 165

6.4.1 Solubilisation o f His-Replp and His-CdclOp using N-lauroylsarcosine  165

6.5 I n v e s t ig a t in g  th e  s t ru c tu re  a n d  f u n c t io n  o f  th e  p u r i f ie d  

r e c o m b in a n t  D S C  1 p r o te in s .............................................................................  168

6.6 C ir c u la r  d ic h r o is m ................................................................................................. 169

6.6.1 Secondary structure determination o f His-Replp and His-CdclOp..............  171

6.6.2 CD spectra of His-Rep 1 p and His-Cdc 1 Op.......................................................  171

6.6.3 Assessment of His-Replp and His-Cdc 1 Op stability.......................................  176

6.7 D i s c u s s i o n ..................................................................................................................  179

Chapter 7; General discussion_________________
7.1 I n t r o d u c t io n ...............................................................................................................  181

7.2 S u m m a ry  o f  r e s u l t s ...............................................................................................  182

7.2.1 Chapter 3; Cloning and overexpression............................................................ 182

7.2.2 Chapter 4; Biological activity assays in vivo....................................................  182

7.2.3 Chapter 5: Recombinant protein solubility.......................................................  183

7.2.4 Chapter 5 : Biological activity assays in vitro ...................................................  183

7.2.5 Chapter 6: Purification and analysis of the recombinant DSCl components 184

7.3 F u tu re  e x p e r im e n ta l  w o r k .................................................................................. 185

References....................................................................  iss

Appendices__________________________________
Appendix I: Bacterial and fission yeast stiains...................................................................  208

Appendix II: Oligonucleotides............................................................................................... 210

Appendix III: Plasmid maps...................................................................................................  211

Ilia pET-14b...........................................................................  211

XI



lllb pET-28c..................................    212

IIIc pGEX-KG....................................................................... 213

Illd p R E P l.............................................................................  214

Ille pREP3X ..........................................................................  215

xn



Index of Figures_____________________________
C h a p te r  1

1.1 The life cycle of fission yeast Schizosaccharomyces pom be ......................................  4

1.2 The life cycle of budding yeast Saccharomyces cerevisiae........................................  5

1.3 Model for fission yeast DNA licensing and replication............................................... 12

1.4 Domain architecture o f ScSwi4p, ScMbplp and ScSwibp.........................................  22

1.5A Alignment o f ScMbplp, ScSwi4p, SpReslp and SpRes2p DNA-binding domains 23

1.5B ScMbplp DNA-binding dom ain.................................................................................  23

1.6 Model for ScMbplp DNA-binding................................................................................  24

1.7 Alignment of the ScSwi6p/SpCdcl0p ankyrin domains.............................................. 25

1.8 The MBF and SBF DNA-binding complexes...............................................................  27

1.9 Domain architecture o f SpRes2p, SpReslp and SpCdclOp......................................... 33

1.10A Domain architecture o f SpReplp and SpRep2p......................................................  35

1.1 OB Alignment of SpRep 1 p and SpRep2p........................................................................ 35

1.11 The DSCl DNA-binding complex..............................................................................  38

C h a p te r  3

3.1 Restriction digestion analyses o f the repE-pET-2Sc and re/?2^-pET-28c plasmids 63

3.2 Restriction digestion analyses o f the re^2^-pET-28c and re5i^-pET-28c plasmids 64

3.3 PCR strategy for the site-directed mutagenesis of cdclO^..........................................  66

3.4 Site-directed mutagenesis of cdclO* by PCR amplification........................................  67

3.5 Restriction digestion analysis of the recombinant cdclO^-ipCKlA® plasm id  69

3.6 Restriction digestion analysis of the recombinant cdc70^-pET-I4b plasmid  71

3.7 Overexpression of His-Reslp and H is-R eplp..............................................................  73

3.8 Overexpression of His-Res2p and His-Cdc 1 Op............................................................ 74

3.9 Overexpression o f His-Rep2p.........................................................................................  75

3.10 Immunoblot analysis of overexpressed His-Reslp and His-Res2p..........................  76

3.11 Immunoblot analysis o f overexpressed His-Replp and His-Rep2p.........................  77

3.12 Immunoblot analysis o f overexpressed His-Cdc 1 Op..................................................  78

C h a p te r  4

4.1 Schematic representation o f the PCR reactions for pREP3X cloning........................  87

4.2 PCR amplification of His-repE, His~rep2^ and H is-resE .........................................  88

4.3 Restriction digestion analysis of the recombinant /7/5’-re5'7^-pREP3X plasmid  89

4.4 Restriction digestion analysis of the recombinant M ^-r^7^ -pREP3X plasm id  90

4.5 Restriction digestion analysis of the recombinant iT/5-rep2^-pREP3X plasm id  91

X lll



4.6 Cloning the H is-resE  cDNA into pREPl using Mung Bean nuclease...................  93/4

4.7 Restriction digestion analysis of the recombinant 77/5-re52^-pREPl plasmid  95

4.8 Expression of His-resE  rescues the growth defect of the Aresl mutant at 2 E C   97

4.9 Expression of His-res2^ rescues the growth defect of the Aresl mutant at 2 E C   98

4.10 Expression of His-repE  rescues the growth defect of the Aresl mutant at 2 E C ... 99

4.11 Expression o f His-rep2'^ rescues the growth defect o f the AresJ mutant at 2EC ... 100

4.12 ‘DSCl-like’ complex is detected in Ares2 cells expressing His-Res2p......  103

4.13 ‘DSCl-like’ complex is detected in Ares2 cells expressing His-Res2p...... 104

4.14 ‘DSCl-like’ complex is not detected in Aresl cells expressing His-Reslp  105

C h a p te r  5

5.1 SDS-PAGE analysis of His-Replp solubility..............................................................  114

5.2 SDS-PAGE analysis of His-Cdc 1 Op solubility............................................................ 115

5.3 Immunoblot analysis o f His-Res 1 p solubility.............................................................. 116

5.4 Immunoblot analysis of His-Rep2p solubility...........................................................   117

5.5 SDS-PAGE analysis o f His-Res2p Solubility..............................................................  118

5.6 Effect of salt concentration on the solubility o f His-Res2p........................................  120

5.7 His-Reslp and His-Res2p binding to MCB motifs in vitro ........................................  122

5.8 Co-expression of His-Res2p and His-Rep2p in E. coli................................................  125

5.9 Schematic representation o f the PCR amplifications for pGEX-KG cloning  128

5.10 Restriction digestion analyses of the re5‘7^-pCR2.1® and

re^/^-pGEX-KG plasmids ...........................................................................................  129

5.11 Restriction digestion analyses o f the res2^~pCR2A® and

re.?2EpGEX-KG plasm ids............................................................................................  130

5.12 Overexpression of G ST-R eslp ..................................................................................... 132

5.13 Overexpression o f GST-Res2p.....................................................................................  133

5.14 Immunoblot analysis of GST-Reslp and GST-Res2p............................................... 134

5.15 Immunoblot analysis of G S T ........................................................................................  135

5.16 GST-Reslp and GST-Res2p bind specifically to MCBl DNA in vitro................... 137

5.17 Super-shift EMSA assay o f GST-Reslp and GST-Res2p with Anti-GST antibody 138

C h a p te r  6

6.1 Purification profile for H is-Reslp.........................................................................    148

6.2 SDS-PAGE analysis of His-Reslp from IMAC purification......................................  149

6.3 Immunoblot analysis o f His-Reslp fiom IMAC purification.....................................  150

6.4 Purification profile for His-Res2p................................................................................... 153

XIV



6.5 SDS-PAGE analysis of His-Res2p from IMAC purification......................................  154

6.6 Immunoblot analysis o f His-Res2p from IMAC purification.....................................  155

6.7 Schematic representation o f protein identification by

tandem mass spectrometry.............................................................................................. 158

6.8 Parent ion mass spectrum................................................................................................ 159

6.9 Daughter ion mass spectrum..........................................................................................  160

6.10 Matched peptides from protein X ................................................................................  161

6.11 Matched peptides from protein Y ................................................................................  161

6.12 Purification profile for GST-Res2p.........................................................................  163

6.13 SDS-PAGE analysis o f GST-Res2p from the GSTrap FF 5 ml column............  164

6.14 SDS-PAGE Analysis o f His-Replp solubilised in N-lauroylsarcosine.............  166

6.15 SDS-PAGE Analysis of His-Cdc 1 Op solubilised in N-lauroylsarcosine...........  167

6.16 Nucleic acid contamination o f H is-R eplp .............................................................  172

6.17 Secondary structure determination of His-Rep I p .................................................  173

6.18 Secondary structure determination o f His-Cdc 1 Op............................................... 174

6.19 Unfolding profile o f His-Replp during dénaturation with guanidinium chloride .. 177

6.20 Unfolding profile o f His-Cdc 1 Op during dénaturation with guanidinium chloride 178

XV



Index of Tables______________________________
Table 3.1 rep f  -pET-2%c.......................................................................................................  63

Table 3.2 rep2^-pET-28c.......................................................................................................  63

Table 3.3 res2^-^ET-2%o,.......................................................................................................  64

Table 3.4 re5r-pE T -28c.......................................................................................................  64

Table 3.5 cc/c70EpCR2.1®....................................................................................................  69

Table 3.6 cdclO "-çET-U h ....................................................................................................  71
Table 4.1 H i s - r e s E ................................................................................................ 89

Table 4.2 H i s - r e p E .......................................   90

Table 4.3 /7A-re/?2EpREP3X................................................................................................ 91

Table 4.4 M^-re^2^-pREPl...................................................................................................  95

Table 5.1 re^T-pCRZ-l®.......................................................................................................  129

Table 5.2 re^/EpGEX-KG..........................................................    129

Table 5.3 res2^-pCm .\® .......................................................................................................  130

Table 5.4 re52^-pGEX-KG....................................................................................................  130

Table 6.1 Secondary structure content estimate of His-Replp.........................................  177

Table 6,2 Secondary structure content estimate of His-Cdc 1 Op.......................................  177

XVI



Abbreviations

A adenine

Â angstrom

APC/C anaphase promoting complex/cyclosome

ARS autonomously replicating sequence

ATP adenosine triphosphate

bp base pair

C cytosine

CAP catabolite activator protein

CD circular dicluoism

Cdc, CDC cell division cycle

CDK cyclin-dependent kinase

cm centimetre

dATP deoxyadenosine triphosphate

dCTP deoxycytosine triphosphate

Da dalton

DDK D% 1 -dependent kinase

dH2 0  distilled water

dldC deoxyinosinic-deoxycytidylic acid

DNA deoxyribonucleic acid

DNase deoxyribonuclease

dNTP deoxynucleosidetriphosphate

DP DRTFl protein

DRTFl differentiation-regulated transcription factor 1

DSCl DNA synthesis control 1

DTT dithiothreitol

E2F E2A binding factor

ECL enhanced chemiluminescence

EDTA ethylene diamine tetraacetic acid

EMM Edinburgh minimal media

g gram

G guanine

xv ii



GB glasgow collection number for baeteria

GG glasgow collection number for fission yeast

GO glasgow collection number for oligonucleotides

GST glutathione iS-transferase

GO quiescence

G1 gap 1

G2 gap 2

h hour

His histidine

HRP horseradish peroxidase

IPTG isopropyl p-thiogalactopyranoside

ITC isothermal titration calorimetry

kb kilobasepairs

kDa kilodalton

kV kilovolts

1 litre

LB luria bertani

M molar

M (phase) mitosis

mA milliamp

mM millimolar

Mb megabasepairs

MBF MCB-binding factor

MCB Mlul cell cycle box

MCM mini-chromosome maintenance

mg milligram

min minute

ml millilitre

mRNA messenger RNA

M r relative molecular mass

nm nanometre

NMR nuclear magnetic resonance

nmt no message in thiamine

ORC origin recognition complex

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction

XVlll



PEG polyethyleneglycol

PMSF phenylmethaiiesulfonylfluoride

pRB retinoblastoma gene product

pre-RC pre-replication complex

R restriction point

RNA ribonucleic acid

RNase ribonuclease

rpm revolutions per minute

S (phase) synthesis (phase)

SBF SCB-binding factor

SCB Swi4-Swi6 cell cycle box

SDS sodium dodecyl sulphate

sec second

SPR surface plasmon resonance

T thymine

TBE Tris/Borate/EDTA buffer

TE Tris/EDTA buffer

TEMED N, N, N% N ’-tetramethylethylenediamine

Tris 2~amino-2-(hydroxymethy 1)-1,3 -propanediol

ts temperature sensitive

U units

u v ultraviolet

pCi microcuries

Pg microgram

pi microlitre

pM micromolar

V volts

v/v volume to volume

wHTH winged helix-tum-helix

w/v weight to volume

YE yeast extract

“C degrees Celsius

A deletion

XIX



Chapter 1
Introduction

.ail



1.1 Introduction
The aim of cell division is to distribute a single, complete and accurate copy of the genome to 

each of two daughter cells. The most prominent events in this process are chromosomal 

replication and segregation, hi eukaryotes, the mitotic cell division cycle comprises a highly 

complex series of events, which are precisely regulated and co-ordinated. The entire process is 

typically divided into four phases of the order: G l, S and G2 (collectively knovm as 

interphase), followed by M phase and cellular division. The chromosomes aie replicated during 

S (synthesis) phase and a single copy o f each is then segregated into two identical daughter 

nuclei during M (mitotic) phase, followed by cytokinesis. Two gap phases, G l and G2, 

intercede between these two main processes, allowing time for growth and repair (Alberts et 

al., 1994). During G l, the cell monitors its environment before making the decision to enter 

into S phase. Entry into S phase marks an irreversible decision point, committing the cell to a 

new round of mitotic cell division. Prior to entry into S phase, the cell can undergo alternative 

developmental fates. The G2 phase provides a safety gap, ensuring that DNA replication is 

complete (and any DNA damage has been repaired) and the cell has grown to a sufficient size 

prior to division. Mitosis can be further sub-divided into prophase, metaphase, anaphase and 

telophase. The chromosomes condense during prophase, align in metaphase, separate during 

anaphase, décondense in telophase and are segregated into separate cells following cytokinesis. 

This is the basic pattern of cell division followed by all eukaryotic cells (Alberts et al., 1994).

The molecular mechanisms that are responsible for contiolling the major events o f the 

mitotic cell cycle are widely conserved in evolution, from yeast to man. This has facilitated the 

use o f several diverse organisms, each with their own particular experimental advantages, as 

model systems in cell cycle research. The conservation of many of the salient features has led 

to a unified theory o f eukaryotic cell cycle control (Nurse et al., 1998; Nurse, 2000). This has 

allowed the application o f knowledge gained from more basic systems to higher eukaryotes and 

humans in particular. This is especially relevant with respect to humans, where aberrant control 

of the cell cycle can manifest in potentially letlial conditions such as cancer (Ford and Pardee, 

1999).

Prominent in these investigations have been the budding yeast Saccharomyces 

cerevisiae and the fission yeast Schizosaccharomyces pombe, which have pioneered the 

elucidation of many o f the major cell cycle controls (Haitwell, 1991 ; Nurse et al., 1998).



1.2 Life cycles and genetics of the budding and fission yeasts
Studies in both budding yeast and the distantly related fission yeast have been particularly 

valuable in cell cycle research. Despite being unicellular, both yeasts have most o f the basic 

features that are typical o f more complex eukaryotes, making them excellent model systems for 

studying the eukaiyotic cell cycle (Lew et a l, 1997; Forsburg and Nurse, 1991). Significantly, 

budding and fission yeasts are widely divergent in evolutionaiy tenns and so cell cycle controls 

conserved between these two organisms most likely reflect mechanisms conseiwed throughout 

all eukaryotes (Sipiczki, 2000).

The haploid genomes o f both budding and fission yeasts have been sequenced and are 

similar in size; 12 Mb and 14 Mb, respectively (Goffeau et a l, 1996; Wood et a l ,  2002). The 

budding yeast genome is distributed amongst 16 chromosomes, whereas fission yeast contains 

only 3 chromosomes that are 5.7, 4.7 and 3.5 Mb in size. In budding yeast, cells can grow 

stably in either the haploid or diploid state. The mitotic cell division cycle begins with 

formation o f a growing bud on the parent cell, increasing in size as the cycle progresses. 

Eventually, the bud pinches off producing an initially smaller, though genetically identical, 

daughter cell (Forsburg and Nurse, 1991; Lew et a l, 1997). In contrast, fission yeast cells are 

stable only as haploids, although the transient diploid state can be maintained under appropriate 

conditions. Fission yeast cells grow by increasing length, dividing by septation and medial 

fission. The life cycles o f these two yeast species are summarised in Figures 1.1 and 1.2.

Important advances in cell cycle research have been primarily due to the isolation of 

mutants in both yeasts, which block at specific points or exliibit altered regulation of the cell 

cycle. Cells that have arrested in cell cycle progress, due to mutation o f a gene whose product 

is required for cell cycle progress, are called cell division cycle mutants (Nurse et a l, 1976), 

Mutants with cell cycle defects can be easily distinguished microscopically in both yeasts. In 

fission yeast, cdc mutants continue to grow without dividing, forming elongated cells at the 

non-permissive temperature. Similarly, CDC mutants o f budding yeast are recognised by their 

bud morphology, which is broadly indicative o f the point o f arrest (Hartwell et a l, 1974).

The fission yeast cell cycle has distinct G l, S, G2 and M phases similar to that o f higher 

eukaryotes. In budding yeast, however, many of the common cytological markers of the G2 and 

M phases (i.e. spindle pole body duplication, mitotic spindle formation) appear early in the 

eycle, to allow formation o f the bud and migration o f the nucleus to the bud neck. Budding 

yeast therefore lacks clear definition between the S, G2 and M phases of its mitotic cycle 

(Forsburg and Nurse, 1991).

There are two major control points in both yeasts mitotic cell cycle, one in late Gl called 

‘START’ and the other in late G2 regulating mitotic entry. Similar to higher eukaryotes, 

budding yeast chiefly regulates its cell cycle at the Gl-S transition (Hartwell, 1974). In rapidly



growing fission yeast S phase is normally initiated before the completion of cytokinesis and 

thus the G1 phase is very short. Under these conditions, fission yeast chiefly regulates its cell 

cycle at the G2-M transition where information on cell size and nutrition is monitored 

(MacNeill and Nurse, 1997). This situation is advantageous to a haploid organism as the 

majority of the cycle is spent in possession of two full copies of the genome, which may 

facilitate protection against DNA damage (Forsburg & Nurse, 1991; Humphrey, 2000). Indeed, 

the size control operating at G1 is normally cryptic, only becoming apparent under nutritional 

limitation or in certain cell cycle mutants. In the so-called wee mutants, cells divide before the 

parent has grown to its normal size, thus forming daughter cells that are smaller than normal. 

Consequently, the G1 phase is lengthened to allow cells to reach a critical size before entry into 

S phase (Nurse, 1975; Nurse, 1990).

In both organisms, passage of START and entry into S phase requires prior completion 

of mitosis in the previous cycle and a minimal cell size, in addition to propitious environmental 

conditions. When nutrients are in plentiful supply, cells grow and enter the mitotic cell cycle 

leading to DNA replication, chromosome segregation and the production of two genetically 

identical daughter cells. In the absence of nutrients the cell can undergo either of two 

alternative fates. Cells can exit from the mitotic cycle and accumulate in stationary phase (a 

metabolically dormant state where cells await the return of propitious conditions before 

returning to the mitotic cycle). Alternatively, in the presence o f cells of the opposite mating 

type, conjugation can occur, producing a diploid zygote. In budding yeast, diploid cells are 

stable and can undergo mitotic as well as meiotic division. In contrast, the diploid state in 

fission yeast is short-lived, almost immediately entering meiosis and sporulation.

A control point similar to START exists in mammalian cells, known as the ‘Restriction 

poinf (R), which also corresponds to an irreversible commitment to mitotic division (Pardee, 

1974; Blagosklonny and Pardee, 2002). Similarly, mammalian cells can also exit the cell cycle 

prior to the Restriction point, entering into a quiescent state known as GO. This state is often 

confused with the stationary phase of the two yeasts, which results from nutrient limitation that 

causes cells to accumulate before the size control that operates at START (Bartlett and Nurse, 

1990). Withdrawal from the cell cycle in higher eukaryotes results from the absence of 

mitogenic growth factors (or indeed the presence o f negative regulatory growth factors). 

Consequently, as the cell is not starved of nutrients, it remains metabolically active, albeit at a 

reduced level (Lodish et al., 1995).

In all cells, once START/R is passed the cell is committed to the mitotic cell cycle, until 

it returns to G1 (Forsburg and Nurse, 1991). Passage of the G2 control point and entry into 

mitosis is also dependent on the cell reaching a certain minimum size, as well as prior 

completion o f S phase and repair o f any DNA damage.
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Figure 1.1 The life cycle of the fission yeast Schizosaccharomyces pombe 
Fission yeast cells grow stably as haploids and propagate by mitotic division. In the absence 
of sufficient nutrients cells can exit from mitotic growth and enter into stationary phase. 
Alternatively, in the presence o f cells o f opposite mating type (h and h ) conjugation occurs 
forming a diploid zygote. The diploid state is unstable in fission yeast and proceeds directly 
into the meiotic cycle, producing a zygotic ascus containing four haploid ascospores. In 
favourable conditions the four haploid spores can again re-enter the mitotic cycle. The 
transient diploid state can be maintained if nutrients are re-supplied immediately following 
conjugation. In this case, the diploid cell can undergo diploid mitotic growth until nutrients 
become limiting. Starved diploid cells proceed into the meiotic cycle producing an azygotic 
ascus.
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Budding yeast cells are capable of growth both as stable haploids and diploids.
In the absence of sufficient nutrients cells can exit from mitotic growth and enter into 
stationary phase. Alternatively, in the presence o f cells o f opposite mating type (a and a) 
conjugation occurs forming a diploid zygote. If nutrients are re-supplied, the diploid cell 
enters into the diploid mitotic cycle. However, if starved, diploids cells proceed into meiosis 
and sporulation forming four haploid cells, which can re-enter the mitotic cell cycle under 
favourable conditions.



1.2.1 A note on nomenclature
Throughout this thesis, reference will be made primarily to proteins involved in fission yeast 

cell cycle control. However, in the course o f the discussion, proteins with analogous functions 

in both budding yeast and humans will be referred to. Therefore, in the interest of clarity, 

proteins from different organisms will be distinguished by the following prefixes: Sp 

{Schizosaccharomyces pombe). Sc {Saccharomyces cerevisiae) and Hs {Homo sapiens).

1.3 The molecular mechanisms of the mitotic cell cycle
As described in Section 1.2, in both budding and fission yeasts and mammalian cells, the 

decision to enter a new round of chromosome duplication and cellular division is made at a 

control point in late G1 phase known as START/R. There are two main molecular mechanisms 

responsible for controlling passage through START/R and entiy into S phase, cyclin-dependent 

kinase (CDK) activity and the cell cycle-regulated periodic transcription of genes that are 

essential for S phase onset and progression.

The latter of these two mechanisms, which is centi al to this thesis, is discussed in more 

detail later (Section 1.6). The temporal association of distinct cyclin-CDK complexes, whose 

activities regulate the phase-specific events, primarily control the orderly progression o f the 

cell cycle. In budding yeast a single CDK, ScCdc28p, is the major regulator of the cell cycle. In 

G1 phase ScCdc28p associates with the G1 cyclins ScClnlp, ScCln2p and ScClnSp driving 

passage of START and entiy into S phase, in tandem with the MBF and SBF factors 

responsible for G l-S phase-specific transcription (Section 1.5.1). ScCdc28p then controls the 

onset of S phase and DNA replication in association with the ScClb5p and ScClb6p cyclins, 

whilst the ScClbl-4p cyclins govern the onset and progression o f mitosis (Nasmyth, 1996).

In mammalian cells there is more than one major CDK controlling the cell cycle, with 

HsCdklp, HsCdk2p, HsCdk4p and HsCdk6p the most prominent. Passage of the Restriction 

point and entry into S phase requires HsCdk4p/HsCdk6p-cyclin D and HsCdk2p-cyclin E 

kinase activities and the expression o f several genes under control o f the E2F family of 

transcription factors (Section 1.7). HsCdk2p then associates with cyclin A during S phase and 

G2 whilst HsCdklp-cyclin B drives mitosis (Sherr, 1996).

Similarly to budding yeast, a single CDK, SpCdc2p, drives the cell cycle in fission 

yeast and requires the expression o f several genes under control o f the DSCl complex, the 

focus o f this thesis (Section 1.6). The molecular control mechanisms of the fission yeast mitotic 

cell cycle are described in more detail below. Many of the main regulatory processes are 

conserved throughout evolution and consequently, several of the molecules and mechanisms 

are similar in both budding yeast and higher eukaryotes, and are alluded to where appropriate.



1.3.1 The molecular mechanisms of the mitotic cell cycle in fission yeast

1.3.2 The Gl-S transition
In fission yeast both the SpCdc2p kinase and DSCl-dependent transcription activities are 

required for passage of START and entry into S phase, (Nurse and Bissett, 1981; MacNeill and 

Nurse, 1997). In early G1 phase the mitotic form of SpCdc2p (associated with the SpCdcl3p 

cyclin) predominates, enduring from the previous M-phase (Booher et al., 1989; Moreno et al., 

1989). However, SpCdc2p-SpCdcl3p kinase activity is prohibited at this stage by CDK 

inhibition and cyclin proteolysis (Moser and Russell, 2000). The CDK inhibitor SpRumlp 

plays a major role in cell cycle regulation during G1 phase by binding to and inhibiting 

SpCdclSp. In addition, SpRumlp targets SpCdcl3p for ubiquitin-mediated proteolysis by the 

26S proteasome (Correa-Bordes et al., 1997; Benito et al., 1998).

Ubiquitin-mediated proteolysis plays an important role in the cell cycle, targeting 

proteins for degradation by the 26S proteasome in Gl-S phases and also during mitosis (Stone 

and Gordon, 2003). In mitosis, proteolysis is required for sister chromatid separation (at the 

metaphase to anaphase transition) and the degradation of mitotic cyclins, essential for the exit 

from mitosis (Section 1.3.6). The anaphase-promoting complex/cyclosome (APC/C) is a cell 

cycle-regulated multimeric complex that catalyses the transfer of ubiquitin to target proteins 

(Morgan, 1999; Harper et al., 2002). The APC/C is regulated by the reversible binding of 

activator proteins, which provide substrate specificity. In fission yeast, the SpSlplp and 

SpSte9p proteins are important for APC/C function. SpSte9p only interacts with APC in G l, 

where it targets the mitotic cyclins, SpCdclSp and SpCiglp, leftover fi’om the previous M 

phase. SpSte9p itself is negatively regulated by SpCdc2p-dependent phosphorylation, causing 

dissociation from the APC/C and subsequent degradation (Blanco et ah, 2000).

The combined effects of SpRumlp and APC/C-SpSte9p ensure that any SpCdc2p- 

SpCdcl3p kinase activity remaining from the previous M phase cannot act in G l. This is 

crucial, since inappropriate triggering of mitotic events at this point could induce cells to divide 

with unreplicated chromosomes, leading to aneuploidy.

Meanwhile, during G l, the DSCl complex activates transcription of the major S-phase 

cyclin, SpCig2p (Connolly and Beach, 1994; Obara-lshihara and Okayama, 1994). Initially, 

SpRumlp inhibits SpCdc2p-SpCig2p kinase activity (Benito et ah, 1998). However, the 

SpPuclp and SpCiglp cyclins (both of which are insensitive to SpRumlp) associate with 

SpCdc2p, leading to the phosphorylation and inactivation o f SpRumlp (Martin-Castellanos et 

ah, 2000; Moser and Russell, 2000). Consequently, SpRumlp is degraded allowing SpCdc2p- 

SpCig2p activity to increase, thereby promoting entry into S-phase (Martin-Castellanos et ah, 

1996; Mondesert et ah, 1996; Benito et al., 1998).



1.3.3 Onset of S phase
The molecular mechanisms that regulate DNA replication in eukaryotes are only partly 

understood. However, many of the factors involved are largely conserved, with the result that a 

general picture of the regulation of DNA replication initiation has emerged from genetic and 

biochemical studies in both yeasts and higher eukaryotes (Kelly and Brown, 2000; Lei and Tye, 

2001).

1.3.3.1 Origins of replication
At the onset of S phase, DNA replication is initiated at multiple specific sites throughout the 

genome known as origins of replication (Kelly and Brown, 2000). These cA-acting DNA 

elements have been particularly well characterised in budding yeast, and are known as 

autonomous replicating sequences (ARS) based on their ability to promote the autonomous 

replication of plasmids (Marahens and Stillman, 1992). Budding yeast ARSs are defined by an 

11 bp AT-rich consensus sequence that is distributed over sequence blocks of 100-200 bp 

(Marahens and Stillman, 1992). The sequences defining replication origins in fission yeast and 

higher eukaiyotes are less well defined, although AT-rich regions also appear to be important 

(Okuno et al., 1999; Masukata et al., 2003).

1.3.3.2 The origin recognition complex
In all eukaryotes examined, replication origins are bound by a hetero-hexameric origin 

recognition complex (ORC), which in fission yeast comprises the SpOrplp-SpOrp6p proteins 

(Moon et al., 1999; Chaung et al., 2002). The ORC was originally identified in budding yeast 

based on its ability to bind the well-defined ARS and is widely conserved; analogous 

complexes are found in higher eukaryotes (Bell and Stillman, 1992; Kelly and Brown, 2000). 

Studies in fission yeast have shown that ORC remains bound to chromatin, via SpOrp4p, 

throughout the cell cycle (Lygerou and Nurse, 1999; Chuang and Kelly, 1999). ORC appears to 

function as a scaffold, upon which occurs the ordered assembly of several proteins, culminating 

in the recruitment and activation o f the DNA replication machinery (Brown and Kelly, 2000; 

Lei and Tye, 2001).

1.3.3.3 The mini-chromosome maintenance complex
Tight control over the initiation of DNA replication is crucial to ensure that it occurs only once, 

and at the appropriate time, in each cell cycle. O f particular importance, in this context, is the 

recruitment of the mini-chromosome maintenance complex (MCM) to origins, in a process 

known as DNA licensing. Similarly to ORC, the M CM  genes were originally identified in 

budding yeast, as mutants unable to support the maintenance of mini-chromosomes (i.e. 

replication of plasmids; Tye, 1999). The MCM complex is a hetero-hexamer composed o f the



SpMcm2p-SpMcm7p proteins, all of which share conserved nucleotide binding domains, and is 

widely conserved throughout eukaryotes (Forsburg, 2004). Accessory proteins, which 

themselves are precisely regulated, tightly control the loading o f the MCM complex onto 

origins.

1.3.3.4 SpCdclSp, SpCdtlp and the control of DNA licensing
The critical factors for DNA licensing in fission yeast are the SpCdclSp and SpCdtlp proteins, 

homologues o f which exist in budding yeast and higher eukaryotes, ScCdc6p/HsCdc6p and 

ScTahllp/HsCdtlp, respectively (Kelly et al., 1993; Hofmann and Beach, 1994; Lygerou and 

Nurse, 2000; Tanaka and Diffley, 2002). Their presence is essential for loading the SpMcm2p- 

SpMcm7p complex onto origins associated with ORC, thereby licensing DNA for replication 

(Nishitani et al., 2000; Lygerou and Nurse, 2000). SpCdclSp and SpCdtlp associate with 

chromatin independently o f each other, yet act co-operatively to bring about the construction of 

the pre-replicative complex (pre-RC) on origins (Figure 1.3; Lygerou and Nurse, 2000). Both 

proteins are transcribed in late M phase, under the control of the DSCl complex (Baum et al, 

1998; Nishitani et al., 2000). At this point, SpCdclSp levels are kept low by SpCdc2p- 

SpCdc 13p-dependent phosphoiylation and subsequent degiadation (Jallepalli et al, 1997; 

Lopez-Girona et al, 1998). However, as cells exit mitosis and enter G l, the mitotic SpCdc2p- 

SpCdcl3p kinase activity decreases (Section 1.3.2) and accumulation of SpCdclSp ensues 

(Baum et al, 1998; Jallepalli et al, 1997; Lopez-Girona et al, 1998). The combination of 

transcriptional and post-translational controls ensures a sharp increase in SpCdcl8p as cells exit 

mitosis and enter G l, with the presence o f both SpCdcl 8p and SpCdtlp proteins bound to ORC 

facilitating recruitment o f the SpMcm2p-SpMcm7p complex (Nishitani et al, 2000).

1.3.3.5 Activation of DNA replication: CDK and DDK
Following assembly o f the pre-RC, DNA replication is activated by the actions o f two sets o f 

protein kinases, the CDK SpCdc2p-SpCig2p and the DDK (Dip 1-dependent kinase) SpHsklp- 

SpDfplp. The SpCdc2p-SpCig2p kinase is the major S phase promoting CDK in fission yeast 

(Section 1.3.2). The SpHsklp protein is a member of the Cdc7p family o f protein kinases that 

are essential in all eukaryotes for the initiation of DNA replication (Brown and Kelly, 1998). 

Although SpHsklp alone has kinase activity, association with SpDfplp provides substrate 

specificity (Brown and Kelly, 1998; Brown and Kelly, 1999). The abundance o f SpDfplp is 

regulated throughout the cell cycle both transcriptionally and post-transcriptionally (Brown and 

Kelly, 1999).

Although the specific targets of SpCdc2p-SpCig2p are unclear, with respect to 

replication initiation, SpHsklp-SpDfplp can phosphorylate the SpMcm2p-SpMcm7p complex 

in vitro, on SpMcm2p and SpMcm4p (Brown and Kelly, 1998; Lee et al., 2003). In fission



yeast, a sub-complex of the SpMcm-4p -6p and -7p proteins has been shown to possess helicase 

activity in vitro, and it has been proposed that phosphorylation o f the SpMcm2p-SpMcm7p 

complex could activate intrinsic DNA helicase activity, which may be important for DNA 

unwinding at replication forks (Lee and Hurwitz, 2001). SpHsklp-SpDfplp-mediated 

phosphorylation of SpMcm2p is dependent on the association of the DDK with the SpCdc23p 

protein, suggesting an accessory role for this protein in recruiting SpHsklp-SpDfplp to origins 

(Lee et al, 2003). Recent experiments have revealed a further role for SpCdc23p in recruiting 

the ScCdc45p homologue SpSna41p to origins (Gregan et al., 2003).

The recruitment of SpSna41p is likely to be important for loading of DNA polymerase 

a  onto the SpMcm2p-7p complex (Uchiyama et al., 2001). Activation o f DNA replication then 

begins following recruitment o f other components of the replication machineiy (Diffley and 

Labib, 2002). Despite the lack o f clarity regarding specific phosphorylation targets, the CDK 

and DDK activities initiate a chain of events that ultimately leads to establishment of functional 

replication forks (Diffley and Labib, 2002). Following replication, the two daughter DNA 

molecules remain tightly associated in a process called sister chromatid cohesion. This requires 

a number o f factors and can only occur during DNA replication (Section 1.3.6). Cohesion 

occurs at specific sites, including centromeres, and is crucial for mitosis and also important for 

DNA repair. Termination occurs when two replication forks meet and the nascent DNA from 

the two forks is ligated together (Diffley and Labib, 2002).

1.3.3.6 Prevention of re-replication
In addition to functioning as an activator of DNA replication, SpCdc2p-SpCig2p also has a 

negative role in preventing re-initiation from origins following activation (Jallepalli et al., 

1997; Lopez-Girona et al., 1998). This apparently contradictory behaviour is crucial, both to 

ensure proper initiation o f DNA replication and the prevention o f re-replication. Whilst 

SpCdcl 8p accumulates (in late mitosis) as a result of declining SpCdc2p-SpCdcl3p activity, it 

is phosphorylated and targeted for degradation by the rising SpCdc2p-SpCig2p kinase activity, 

in late Gl (Jallepalli et al., 1997; Lopez-Girona et al., 1998). Furthermore, cdclS^ expression 

declines during S phase (Kelly et al., 1993). As a consequence o f this dual control, SpCdclSp 

dissociates from origins, thereby preventing re-initiation at origins that have already fired. 

Consistent with c d t t  transcription being under DSCl control, the expression pattern is similar 

to cdcIS^ (Hofmann and Beach, 1994; Nishitani et al., 2000). The protein levels also fluctuate 

in parallel with SpCdclSp, suggesting that SpCdtlp may also be degraded in a CDK-dependent 

process (Nishitani et al., 2000). Thus, both CDK-dependent proteolysis and cell cycle-regulated 

periodic transcription conspire to ensure that re-initiation is prevented until the following M 

phase has passed. It has recently been shown that the SpCdc2p-SpCdcl3p kinase also plays a

1 0



crucial role in preventing re-initiation by binding to replication origins (via ORC), presumably 

by phosphorylating and inactivating components of the pre-RC (Wuarin et al., 2002).
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Figure 1.3 Model for fission yeast DNA licensing and replication
(A) ORC is bound to origins throughout the cell cycle. At the end of M phase, Cdc 18p and 
Cdtl p are recruited independently to ORC at origins to which Cdc23p binds. (B) Cdcl 8p and 
Cdtlp then recruit the MCM complex, thereby forming the pre-RC. This is known as DNA 
licensing. (C) The SpCig2p-SpCdc2p and SpHsklp-SpDfplp protein kinases then play 
essential roles in triggering the initiation o f DNA replication. SpCdcl 8p and SpCdtlp are 
removed for degradation and SpHsklp-SpDfplp phosphorylates the SpMcm2p-SpMcm7p 
complex, thereby promoting its helicase activity. (D) After activation of these protein kinases, 
additional factors such as SpSna41p are recruited, and origins are unwound. (E) Finally, DNA 
polymerase a, single strand DNA-binding protein (RFA) and primase are recruited and semi­
conservative replication ensues (Adapted from Lei and Tye, 2001).
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1.3.4 The G2-M transition
At the end of G2 phase, when cells reach a critical size, M phase is induced due to increasing 

SpCdc2p-SpCdcl3p kinase activity (Nurse, 1990; Moser and Russell, 2000). Activation of 

SpCdc2p-SpCdcl3p is essential for entiy into mitosis and represents the rate-limiting step 

(Nurse, 1990). After passing START, SpCdc2p is associated with SpCdcl 3p in S phase, 

staying associated throughout the entire length of G2, but activity is kept low by inhibitory 

phosphoiylation on Tyrosine-15 (Y-15), carried out by the SpWeelp and SpMiklp kinases 

(MacNeill and Nurse, 1997). To induce mitosis, SpCdc25p de-phosphoiylates SpCdc2p at Y- 

15. Activation of SpCdc2p-SpCdcl3p is promoted by the activation o f SpCdc25p and the 

SpW eelp inhibitory kinases, SpCdrlp and SpCdr2p (MacNeill and Nurse, 1997).

The mikJ^ gene is under ti’anscriptional contiol of the DSCl complex (Ng et al., 2001). 

Consequently, mikl* mRNA and protein levels increase in S-phase (Baber-Furnari et al., 2000; 

Christensen et al., 2000). This suggests that the presence of SpMiklp in S phase is important 

for maintaining the low SpCdc2p-SpCdcl3p activity during G2 phase (Baber-Furnari et al., 

2000; Christensen et al., 2000). In contrast, SpWeelp levels are constant throughout the cell 

cycle (Moser and Russell, 2000). SpCdc25p appears to be regulated at a translational level, 

since SpCdc25p synthesis is particularly sensitive to reduced translation initiation activity 

(Daga and Jimenez, 1999). This suggests that control of SpCdc25p translation initiation may 

form part o f the mechanism coupling cell growth with cell division (Daga and Jimenez, 1999; 

Kellogg, 2003). Co-ordination of these mitotic inliibitors and activators ultimately leads to an 

increase in SpCdc2p-SpCdc 13p kinase activity, which facilitates the subsequent mitotic events 

(Nurse, 1990; Su and Yanagida, 1997).

1.3.5 Checkpoint controls: DNA integrity
Before a cell can exit G2 phase and enter into mitosis, it must ensure that the genome has been 

fully and faithfully replicated. Two signal transduction cascades (known as checkpoints) 

operate in eukaryotes to ensure that when DNA is damaged or replication peiturbed, normal 

cell cycle progression is delayed (Hartwell and Weinert, 1989). Delayed mitotic entry permits 

completion o f either the replication or repair processes. These control mechanisms are crucial 

to prevent the propagation of potentially genotoxic mutations and cell division with an 

incomplete genome.

The main effectors of the checkpoint pathways are the SpChklp and SpCdslp protein 

kinases, which function in response to DNA-damage and stalled DNA replication signals, 

respectively (Rhind and Russell, 2000; Boddy and Russell, 2001). These signals are sensed and 

relayed by the checkpoint SpRadp proteins, which in turn contiol the kinase activity of 

SpChklp and SpCdslp. Several o f the gene products involved in checkpoint control in fission 

yeast are widely conseived in evolution (Carr and Caspari, 2003).
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In fission yeast, the checkpoint kinases indirectly maintain the inhibitory Y-15 

phosphorylation of SpCdc2p, thereby preventing mitotic entry (Section 1.3.4; Rliind et al., 

2000). Accordingly, the targets of SpChklp and SpCdslp are the SpCdc25p and SpMiklp 

proteins, although the exact mechanisms are unclear (Rliind et al., 2000). Regulation of 

SpWeelp does not seem to be important for checkpoint function (Rhind and Russell, 2001). It 

has been proposed that, in response to DNA damage, SpChklp negatively regulates SpCdc25p 

phosphatase activity (Rhind et al., 2000). Consistent with its role during S phase, SpMiklp 

levels are increased following DNA damage, and therefore may also contribute to the 

checkpoint response by increasing its SpCdc2p Y-15 directed kinase activity (Baber-Furnari, et 

al., 2000). Checkpoint-mediated inhibition o f SpCdc25p and activation of SpMiklp ensures 

that SpCdc2p Y-15 phosphoiylation is maintained, thereby preventing entry into mitosis.

1.3.6 Mitosis and cytokinesis
The major processes that occur during M phase, required to divide the replicated genome 

equally into two cells, are essentially similar in all eukaryotes examined (Alberts et al, 1994).

Mitosis is characterised by a highly complex series o f cytoskeletal and nuclear re­

arrangements, which together achieve chromosome condensation, segregation and cytokinesis 

(Alberts et al, 1994). These events are triggered by the M phase CDK-dependent 

phosphorylation of numerous substi ates. When M phase CDK activity reaches a critical level, 

cells proceed from G2 into mitosis. Conversely, mitotic exit relies on inactivation of this CDK 

activity via ubiquitin-mediated proteolysis o f the mitotic cyclins (Morgan, 1999). Loss of 

mitotic CDK activity is controlled by the actions of the highly regulated APC/C (Section 1.3.2; 

Morgan, 1999; Harper et al., 2002).

In fission yeast, the numerous events of mitosis are brought about by the rise in 

SpCdc2p-SpCdcl3p kinase activity, controlled at the G2-M transition by the action of 

SpCdc25p (Section 1.3.4; MacNeill and Nurse, 1997). SpCdc2p-SpCdcl3p is the major mitotic 

kinase in fission yeast, although more recently additional roles for the Polo, Aurora and NIMA 

kinases have been described (Nigg, 2001).

Preparation for mitosis begins during S phase, when newly replicated sister chromatids 

are joined together by a complex of proteins collectively known as cohesins, and the spindle 

pole body is duplicated (Nasmyth et al., 2000). In fission yeast, the cohesin complex is 

composed o f four proteins, SpPsmlp, SpPsm3p, SpRad21p and SpPsc3p (Hagstrom and 

Meyer, 2003). Cohesion between sister chromatids is required to prevent premature separation 

prior to the onset of anaphase, important in preventing aneuploidy.

Prophase: The onset o f M phase is then initiated by compaction of chromosomes, in a 

process known as condensation. Chromosome condensation is required to re-organize the 

loosely packed interphase assortment into highly compact structures. This is necessary to
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permit attachment of the mitotic spindle to centromeres and allow separation without 

entanglement. A multi-protein complex, known as condensin, effects the necessary changes in 

chromosome structure. In fission yeast, condensin is composed o f an SpCutl4p-SpCut3p 

hetero-dimer associated with SpCndlp, SpCnd2p and SpCnd3p (Hagstrom and Meyer, 2003).

Metaphase: The opposing forces of the mitotic spindles, pulling sister chromatids 

toward opposite poles o f the cell, are counteracted by the maintenance of chromosome 

cohesion. As a result, the sister chromatids align along the metaphase plate. At this point, a 

spindle checkpoint mechanism monitors the attachment of the mitotic spindle to chromosomes, 

delaying anaphase until all chromosomes are properly attached and under tension.

Anaphase: Following bipolar attachment o f the chromosomes to the spindle, anaphase 

begins. During anaphase, cohesion between sister chromatids is dissolved and chromosomes 

are separated. Anaphase onset is induced by the activating phosphorylation of the APC/C, at 

this point associated with SpSlplp. APC/C-SpSlplp facilitates separation of sister chromatids 

by ubiquitylating a protein commonly known as securin. The securin protein is normally 

complexed with a protease separin, which is held inactive in this heterodimeric state (Yanagida, 

2000). It is thought that ubiquitin-mediated proteolysis of securin liberates the separin subunit, 

thereby releasing its proteolytic potential. In fission yeast, SpCut2p and SpCutlp are the 

putative securin and separin proteins, respectively (Yanagida, 2000). The liberated separin 

protease then degrades the cohesins responsible for sister chromatid attachment. Loss of 

cohesion releases the physical tension at the metaphase plate, thereby allowing mitotic spindles 

to elongate, segregating the sister chromatids to opposite poles of the cell.

Mitotic exit (telophase and cytokinesis): Exit from mitosis requires the inactivation 

of mitotic CDK activity. Loss of CDK activity is mediated by the destruction of the mitotic 

cyclins, by ubiquitin-mediated proteolysis (Morgan, 1999). A conserved signalling cascade 

governs the co-ordination o f late mitotic events in both budding and fission yeasts, known as 

the mitotic exit network (MEN) and septation initiation network (SIN), respectively 

(McCollum and Gould, 2001; Bardin and Amon, 2001). The SIN is a GTPase-regulated protein 

kinase cascade, which functions to regulate the initiation o f cytokinesis at the end o f anaphase.
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1.4 Cell cycle-regulated transcription
One of the key mechanisms deployed in controlling the cell cycle is the phase-specific 

regulation o f transcription. Typically, several groups o f genes are co-ordinately expressed at a 

particular period in the cell cycle, commonly corresponding to the phase during which their 

function is required (Breeden, 2003; Mclnerny, 2004). Co-ordinated transcription progiammes 

are dependent on the recognition o f specific c/s-acting DNA sequences in gene promoters, by 

trans-acting proteins. These sequence-specific transcription factors in turn recruit chromatin re­

modelling machines and components o f the general transcriptional apparatus, thereby 

conti'olling tianscriptional initiation (Levine and Tjian, 2003).

It has been proposed that phase-specific transcription programmes may serve to limit 

the functions of particular gene products to a particular point in the cycle at which they are 

required (Breeden, 2003; Mclnerny, 2004). In some cases this may be important for cell cycle 

progression per se. For example, inappropriate expression of a cyclin (or another key cell cycle 

regulator) outwith its normal period o f activity may be deleterious to the cell. However, in the 

majority of cases, a gene may be periodically expressed simply as a means of conserving 

resources. Nevertheless, the fact that phase-specific transcription programmes are a universal 

feature of the eukaryotic cell cycle (being widely conserved from yeast to humans) is indicative 

o f its importance. Recent microarray studies have revealed the extent of this regulatoiy 

mechanism during the cell cycle. In budding yeast, ~800 genes have been identified whose 

transcripts are cell cycle-regulated (Spellman et al, 1998). Similarly, in fission yeast -400 

genes display a cell cycle-periodic increase in their transcription (Rustic! et al., 2004) and in 

human cells approximately 700 genes display a cell cycle-periodic increase in their 

transcription (Cho et al., 2001).

1.5 Cell-cycle regulated transcription at the G l-S  transition
As described previously, START/R marks the point of irreversible commitment to the mitotic 

cell division cycle, requiring propitious conditions and CDK activity (Section 1.2). A key 

function of the CDK at this stage is to activate transcription o f several genes, whose functions 

are required for progression into S phase. Of these genes, perhaps the most salient are the G 1 

and S phase cyclins, which associate with the CDK to allow passage o f START/R and drive 

downstream events. Correct temporal expression o f these genes is, therefore, crucial for correct 

cell cycle progression.

Cell cycle-regulated tianscription at the G l-S phase boundary has been particularly 

well studied in the budding and fission yeast systems. In budding yeast, two DNA-binding 

factors, known as SBF and MBF, are responsible for initiating this co-ordinated programme of 

gene expression (Merrill et al., 1992). In fission yeast, a single MBF-like complex, referred to
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here as DSCT, performs an analogous function (Whitehall et al., 1999). The remarkable 

structural and functional homology shared by the MBF/SBF and DSC 1 systems, suggests that a 

co-ordinated programme of G l-S phase-specific transcription is widely conserved in 

eukaryotes. Regulation of transcription at the Gl-S phase transition has been well documented 

in mammalian cells, under the control of the E2F complex (Dyson, 1998). Although not related 

to either o f the yeast DNA-binding factors at the primary structure level, E2F shares some 

striking similarities and therefore appears to be responsible for regulating the equivalent 

process in humans (Section 1.7).

* DSCl is the traditional name for the Gl-S-regulatory transcription factor complex in fission yeast; however, it is 

now commonly referred to as MBF. Therefore, in this thesis, to avoid confusion during the discussion o f both MBF 

complexes in the fission and budding yeasts, the former is referred to as DSCl whilst the latter MBF,
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1.5.1 Gl-S phase-specific transcription in budding yeast
In budding yeast passage of START and entry into S phase requires the activity o f the 

ScCde28p kinase in assoeiation with the Gl cyclins, ScClnlp, ScCln2p and ScCln3p 

(Nasmyth, 1996; Lew et a l, 1997). The ScClnp-ScCdc28p kinase activities are required for 

passage of START and the early events of the cell cycle: initiation of DNA replication, spindle 

pole body duplication and bud formation (Nasmyth, 1996; Lew et a l ,  1997). Transcription of 

CLNl and CLN2 is phase-specific, peaking in late G l, whereas CLN3 is transcribed earlier, 

peaking at the M-Gl boundary (Ogas et a l, 1991; Mclnerny et a l, 1997; MacKay et a l ,  2001). 

In addition, transcription of the PC Ll and PCL2 cyclins, which may also have a role at 

START, is regulated similarly to CLNl and CLN2 (Espinoza et a l , 1994; Measday et a l,

1994). A large number of genes (>200), in addition to the Gl cyclins (excluding CLN3), have 

been identified, including the CLB5 and CLB6 cyclins required for entiy into S phase, that are 

periodically transcribed in late Gl phase (Epstein and Cross, 1992; Schwob and Nasmyth, 

1993; Spellman et a l, 1998). These genes can be sub-divided into two gioups based on the e x ­

acting regulatory sequence element present in their promoter and their eognate DNA-binding 

factors. Activation o f both o f these transcription factors requires the ScCin3p-ScCdc28p kinase 

activity (Wijnen et a l, 2002).

1.5.2 The SBF complex
The first group of genes, which include the CLNl, CLN2, PC Ll and PCL2 cyclins, contain a 

common 5’ CACGAAA 3’ sequence element in their promoter, known as the ScSwi4p- 

ScSwi6p cell cycle-box (SCB). Transcription of these genes is activated in late G l, dependent 

on the heterodimeric SCB-binding factor (SBF), composed o f the ScSwi6p and ScSwi4p 

proteins (Koch and Nasmyth, 1994; Iyer et a l, 2001).

The first evidence o f a role for the SWI4 and SWI6 gene products in tianscriptional 

regulation was the discoveiy that both were required, together with a repeated promoter 

element (now known as the SCB), for the cell cycle-regulated and START-dependent 

transcription of the HO  endonuclease gene, involved in the mating type switch (Breeden and 

Nasmyth, 1987a). Furthermore, the pleiotropic effects displayed in either swi4 or swi6 mutants 

(which are not seen in ho mutants) and the lethality of the swi4 swi6 double mutant indicated 

that these gene products must function in some other essential cellular process (Breeden and 

Nasmyth, 1987a). The role o f these proteins as transcription factors was confirmed 

subsequently, when they were biochemically identified (in band-shift assays), as components of 

an SCB-specific DNA-binding factor (Andrews and Herskowitz, 1989a; Andrews and 

Herskowitz, 1989b; Taba et a l, 1991).

Both proteins display a modular architecture typical of ti anscription factors (Figure 1.4). 

In the SBF complex, sequence-specific DNA-binding is mediated by an N-terminal domain in
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the 123 kDa ScSwi4p subunit. ScSwi4p also contains centrally located ankyrin-repeat motifs, 

thought to be involved in protein-protein interactions, and a C-terminal heterodimerization 

domain (Andrews and Herskowitz 1989b; Primig et al., 1992; Bork et al., 1993; Sedgwick and 

Smerdon, 1999).

The 92 kDa ScSwi6p protein has no intrinsic DNA-binding capability, instead playing a 

regulatory role, containing distinct N and C-terminal transcriptional activation domains 

(Sedgwick et a l, 1998). ScSwiôp also contains the centrally located ankyrin-repeat motifs and 

heterodimerises with ScSwi4p via their C-termini (Breeden and Nasmyth 1987b; Primig et al, 

1992; Andrews and Moore, 1992; Foord et a l, 1999). Mutational analyses of ScSwi6p indicate 

that the ankyrin-repeat motifs and a leucine zipper region (located in the C-terminal third of the 

protein) are required for DNA-binding by the ScSwi4p/ScSwi6p complex (Sidorova and 

Breeden, 1993). The ankyrin-repeat motifs are dispensable for the association o f ScSwi4p and 

ScSwiôp (Andrews and Moore, 1992).

1.5.3 The MBF complex
A second group of genes are also periodically expressed in late G l, and encode a wide range of 

factors required for S phase, including several proteins necessary for DNA synthesis (Johnston 

and Lowndes, 1992; Koch and Nasmyth, 1994). Although many of these gene products are 

stable throughout the cell cycle, and therefore not rate-limiting, others such as the CLB5 and 

CLB6 cyclins are important for cell cycle progression per se (Epstein and Cross, 1992; Schwob 

and Nasmyth, 1993). Similarly to SBF-regulated genes, this second group are also defined by a 

cx-acting regulatory element common to their promoters. This element has the consensus 

sequence 5’ ACGCGT 3 \  whieh coineidentally conesponds to the Miul restriction enzyme 

recognition site. Thus it is known as the Mlul cell cycle box (MCB), and is both necessary and 

sufficient for the cell cycle-regulated late Gl expression of these genes (McIntosh et al, 1991; 

Lowndes et al, 1991). The MCB motif is bound by the heterodimerie MCB-binding factor 

(MBF), which is composed o f ScSwiôp and ScMbplp (Lowndes et a l, 1991; Lowndes et a l, 

1992b; Dirick et a l, 1992; Koch et a l, 1993; Iyer et a l , 2001). Analogous to SBF, the 

regulatory function is provided by ScSwiôp, whilst the 120 kDa ScMbplp protein provides the 

sequence-specific DNA-binding capability (Dirick et a l, 1992; Koch et a l, 1993). The 

ScMbplp protein resembles ScSwi4p in structure as well as function, consisting of N-terminal 

DNA-binding and C-terminal heterodimerization domains, separated by the centrally located 

ankyrin-repeat motifs (Figure 1.4; Koch et a l, 1993).
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1.5.4 Functional redundancy in SBF and MBF-dependent gene expression
The molecular mechanisms by which SBF and MBF-dependent transcription are regulated are 

complex and not fully understood (Section 1.5.8). The situation is further complicated by the 

apparent functional redundancy between the two systems, as suggested by phenotypic analyses, 

most notably the lethality of mbpl swi4 double mutants, due to inadequate expression of the 

CLNl and CLN2 cyclins (Koch et al., 1993). In contrast, single mutants o f either gene are 

viable, indicating a requirement for the function of at least one complex for cell cycle 

progression (Koch et al., 1993). That some functional overlap should exist is perhaps not 

surprising, given that both systems share several common features. The SCB and MCB 

elements are related in sequence and when present at high eoncentration in vitro, each element 

can cross-compete with the other for complex binding, although SBF and MBF bind 

preferentially to the SCB and MCB elements, respectively (Taylor et al., 2000). In at least one 

case in vivo, Gl-S-regulated transcription is apparently controlled by SBF binding to MCB-like 

motifs, thus indicating an overlap in binding specificity (Partridge et al., 1997).

1.5.5 A family of transcription factors
The ScSwi4p/ScMbplp/ScSwi6p proteins o f SBF/MBF and the SpRes 1 p/SpRes2p/SpCdc 1 Op 

proteins o f the fission yeast MBF-homologue DSCl (Section 1.6) constitute a family of 

transcription factors that share a eommon function and architectural design. The sequence 

homology shared amongst these six proteins locates to three main regions. The N-termini show 

significant similarity at the primaiy structure level, particularly between the ScSwi4p/ScMbplp 

and SpRes lp/SpRes2p proteins, which each harbour DNA-binding domains within this region 

(Figure 1.5). The centrally located ankyrin-repeat motifs are common to all six members, and 

the C-terminal domains required for heterodimerization also show similarity (Figure 1.7). X- 

ray crystailogiaphic analysis of a 36 kDa domain from ScSwiôp, containing the ankyrin 

domain, suggests that intramolecular interactions within this region may allow the N and C 

termini to come into contact (Foord et al., 1999). This may be important for ScSwi4p since it 

has been proposed that C-terminally mediated auto-inhibition o f the N-terminal DNA-binding 

domain is important for its regulation (Baetz and Andrews, 1999).

The 3-dimensional (3-D) structuie o f the N-terminal DNA-binding domain of 

ScMbplp has also been solved by X-ray crystallographic analysis (Xu et al., 1997; Taylor et 

al., 1997). In addition, characterisation o f this same N-terminal fragment o f ScMbplp at the 

atomic level has been enhaneed by NMR studies (McIntosh et al., 2000; Nair et al., 2003).
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1.5.6 The N-terminal DNA-binding domain
The ciystal structure o f the DNA-binding domain of ScMbplp has been solved at 2.1 Â 

resolution, and is shown in Figure 1.5B (Xu et al., 1997; Taylor et al., 1997). This fragment 

corresponds to amino acids 1-124 and reveals a globular molecule consisting of a twisted six- 

stranded anti-parallel P-sheet (pi-p6) with two pairs of a-helices (aA- aB and aC- aD), which 

fold into a motif similar to the winged-helix-turn-helix (wHTH) family o f proteins, including 

HNF3y and the bacterial eatabolite activator protein, CAP (Schultz et al., 1991; Clarke et al., 

1993; Xu et al., 1997; Taylor et al., 1997). Helices aA and aB form the helix-turn-helix motif 

with the hairpin between the p5-p6 strands forming the putative ‘wing’. The pi-p4 and P5-P6 

p-sheets are at right angles to one another, forming a barrel with a hydrophobic core. Several of 

the most highly conserved non-polar residues within the ScMbplp/ScSwi4p/SpResp proteins, 

particularly the aromatic amino acids, are situated within this hydrophobic core (Figure 1.5A). 

The greatest amino acid sequence conservation amongst these proteins is situated within the 

wHTH region (from P3 to p6) whilst C-terminal to this the sequences diverge (Xu et al., 1997; 

Taylor et al., 1997).

1.5.7 Model for DNA-binding
The eonseiwed charged and polar residues of the wHTH all lie on one face of the molecule, 

most notably within the aB helix, thereby forming a positively charged surface and suggesting 

an involvement in DNA-binding. The aB helix has been proposed to be responsible for the 

major sequence interactions, within the major groove of the DNA double helix (Xu et al., 1997; 

Taylor et al., 1997;Taylor et al., 2000; Nair et al., 2003). The P-hairpin (‘wing’) may also make 

contact with the DNA (Figure 1.6). Surprisingly, the non-conserved residues C-terminal to the 

core are required for efficient DNA binding, suggesting that two distinct domains are involved 

in DNA-binding (Taylor et al., 2000; Nair et al., 2003). The sequence homology between the 

ScMbplp/ScSwi4p/SpResp proteins within the DNA-binding domains suggests they all adopt a 

similar fold and thus share a common mode o f DNA-binding. However, the SpResp proteins 

are believed to bind to DNA as dimers, whereas both ScMbplp and ScSwl4p bind to their 

respective recognition sequences as monomers (Section 1.6.6; Taylor et al., 2000). In this 

respect the SpRes lp/SpRes2p proteins might resemble the CAP and E2F/DP proteins, which 

also utilise a similar wHTH fold for DNA-binding (Schultz et al., 1991; Zheng et al., 1999).
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Figure 1.4 Domain architecture of ScSwi4p, ScMbplp and ScSwiôp
A schematic representation of the major domains in ScSwi4p, ScMbplp and ScSwiôp: 
DNA-BD = DNA-binding domain, ANK = Ankyrin repeat domain, H-DMZ = 
Heterodimerization domain, TA -  Transcriptional activation domain, LZ = Leucine 
zipper (note that the N-terminal domain of ScSwiôp does not bind to DNA).
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Figure 1.5
A. Alignment of ScM bplp, ScSwi4p, SpRes Ip and SpRes2p DNA-binding 

domains
Sequence alignment of the N-terminal DNA-binding domains of ScMbp 1 p, 
ScSwi4p, SpRes Ip and SpRes2p. The residue numbers and secondary 
structure elements are annotated for ScMbplp. Identical residues are shown as 
white characters boxed in red with similarity denoted by red characters boxed 
in white. P strands (arrows), a  helices (squiggle) and P turns (TT) are also 
shown. The position of the Glu 56 —» Lys mutation of SpRes Ip is indicated

( ^  - Section 1.6.6). This figure was generated using the ESPript program 
(Gouet et al., 1999).

B. ScM bplp DNA-binding domain
Ribbon diagram of the X-ray crystal structure of the ScMbplp DNA-binding 
domain (Taylor et al., 2000).
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Figure 1.7 Alignment of the ScSwi6p/SpCdcl0p ankyrin domains
Sequence alignment between the members o f the ScSwi6p/SpCdc 1 Op family within 
the ankyrin-repeat region. The residue numbers and secondary structure elements are 
annotated for ScSwiôp. Identical residues are shown as white characters boxed in red 
with similarity denoted by red characters boxed in white. P strands (arrows), a  helices 
(squiggle) and P turns (TT) are also shown. This figure was generated using the 
ESPript program (Gouet et al., 1999).
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1.5.8 Regulation of SBF and MBF-dependent gene expression

Despite the structural and functional similarities displayed by the SBF and MBF systems, it 

appears that distinct mechanisms exist to regulate their shared aim of Gl-S phase-specific 

transcription.

Activation of both SBF and MBF-dependent tianscription at START is dependent on 

the ScCln3p-ScCdc28p kinase activity. Although the precise mechanism by which this occurs 

is unknown, it appears that neither complex is a direct target of the CDK (Wijnen et al., 2002). 

A recent study suggests that the ScCln3p-ScCdc28p kinase may activate SBF-dependent 

transcription indirectly by antagonising an SBF-associated repressor (De Bruin et al., 2004). 

ScCln3p-ScCdc28p-dependent phosphoiylation of the ScWhi5p protein promotes its 

dissociation from SBF, thereby allowing recruitment of the RNA pol II holoenzyme, leading to 

transcriptional activation (De Bruin et al., 2004; Cosma et al., 1999).

Paradoxically, in addition to a positive role in MBF/SBF-dependent transcription, the 

ScCln3p-ScCdc28p kinase seemingly also negatively regulates MBF activity. The ScStblp 

protein has recently been identified as an MBF-associated activator protein (via its interaction 

with ScSwiôp). However, ScCln3p-ScCdc28p-dependent phosphorylation leads to dissociation 

of ScStblp and the consequent down-regulation of MBF-dependent transcription (Costanzo et 

al., 2003). In contrast, repression o f SBF-regulated genes during G2 and M is dependent on the 

ScCIbp-ScCdc28p kinases, which have no apparent effect on MBF-regulation genes (Amon et 

al, 1993). Consistent with this SBF-specific function, it has been proposed that down-regulation 

of SBF activity may occur through the direct interaction of ScSwi4p with the ScClb2p- 

ScCdc28p kinase during G2 and M (Siegmund and Nasmyth, 1996).

The subcellular localisation of ScSwiôp is cell cycle-regulated by phosphorylation. 

Predominantly nuclear during late M and early Gl phases, ScSwiôp becomes largely 

cytoplasmic in S, G2 and early M phases, only re-appearing in the nucleus following 

completion of mitosis (Taba et al., 1991; Sidorova et al., 1995). It has been proposed that 

phosphoiylation of ScSwiôp (on Serine lôO) by the ScClbôp-ScCdc28p kinase, facilitates 

nuclear export, by the kaiyopherin ScMsn5p, thereby resulting in down-regulation o f MBF and 

SBF-dependent transcription (Queralt and Igual, 2003; Gaymonet et ah, 2004). Intriguingly, 

however, the ScMsn5p-mediated export o f ScSwiôp is specifically required for SBF function, 

but not MBF, again highlighting different regulatory properties (Queralt and Igual, 2003).

Nevertheless, the recruitment o f ScSwiôp to the nucleus cannot be solely responsible 

for activating transcription. The SBF complex is bound to target gene promoters in early Gl 

phase, yet transcription occurs only in late Gl (Harrington and Andrews, 1996; Koch et al., 

199Ô). This suggests a subsequent activation event must occur, presumably related to the 

functions of the ScWhi5p and ScStblp proteins mentioned above.
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MBF SBF

ScMbplp ScSwi4p

Figure 1.8 The MBF and SBF DNA-binding complexes
Schematic representations o f the MBF and SBF DNA-binding complexes bound to the 
MCB and SCB sequence elements, respectively. The N and C-termini o f each protein are 
indicated in yellow.
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The SWI4 gene is itself transcribed in a cell cycle-regulated manner, peaking in late M-Gl 

phase, thereby contributing to the temporal activation of SBF in late G1 (McKay et ah, 2001). 

An additional level of control over the SBF complex has also been proposed through regulation 

of ScSwi4p DNA-binding by C-terminally mediated auto-inhibition (Baetz and Andrews, 

1999).

1.6 G l-S phase-specific transcription in fission yeast
In fission yeast, passage o f START and entry into S phase requires the activity of the SpCdc2p 

kinase in association with the G1 cyclins, SpPuclp, SpCiglp and SpCig2p (Fisher and Nurse, 

1995). Transcription of several genes that are essential for S phase onset and progression is cell 

cycle-regulated, peaking in late G1 (e.g. cdclS^ and m ik t) .

In contrast to the situation in budding yeast, where the Gl-S phase-specific transcription 

programme is controlled by two distinct transcription factors (SBF and MBF), fission yeast 

contains only one such factor. The DSCl complex is responsible for controlling the late Gl-S 

phase-specific transcription programme during mitotic cell division. Following isolation o f a 

MCB-specific DNA-binding activity in budding yeast (MBF - Section 1.5.3) a similar DNA- 

binding activity was identified in fission yeast, bound specifically to the MCB elements present 

in the promoter of the cdc22^ gene (Lowndes et ah, 1992a; Maqbool et ah, 2003). The cdc22^ 

gene, which encodes the large subunit o f ribonucleotide reductase, is periodically expressed in 

late Gl-S and contains seven copies of the MCB element in its promoter (Gordon and Fantes, 

1986; Fernandez-Sarabia et ah, 1993; Maqbool et ah, 2003). In addition, the cdclO^ gene 

product was shown to be a component of this factor, shortly followed by the discovery that 

ScSwi6p was also a component of the budding yeast MBF complex (Lowndes et ah, 1992a; 

Lowndes et ah, 1992b). The ammo acid sequence homology between the ScSwi4/6p and 

SpCdclOp proteins, allied to their roles as START-specific transcription factors, indicates that 

the mechanisms governing late G 1-specific hanscriptional control might be conserved in these 

distantly related yeasts (Merrill et ah, 1992).
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1.6.1 The DSCl complex

Similar to the MBF system o f budding yeast, the DSCl complex regulates transcription of 

several genes required for entry into, and onset of, S phase by binding to the MCB elements 

common to their promoters (MacNeill and Nurse, 1997). The transcription o f at least 10 genes 

{cdc22^, cdclS^, cig2^, e d i t ,  ra d 2 l\  suc22^, r a d l f ,  ste9^, m ik f  and cdt2^) required for S 

phase and DNA replication are under the control o f DSCl during the mitotic cell cycle 

(Lowndes et ah, 1992; Fernandez-Sarabia et ah, 1993; Kelly et ah, 1993; Connolly and Beach, 

1994; Hofmann and Beach, 1994; Birkenbihl and Subramani, 1995; Harris et ah, 1996; Parker 

et ah, 1997; Tournier and Millar, 2000; Ayte et ah, 2001; Ng et ah, 2001; Yoshida et ah, 2003; 

Maqbool et ah, 2003). DSCl is composed of at least four gene products: SpCdclOp, SpReslp, 

SpRes2p and SpRep2p and has been widely studied during the mitotic cell cycle (Lowndes et 

ah, 1992; Caligiuri & Beach, 1993; Tanaka et ah, 1992; Zhu et ah, 1994; Miyamoto et ah, 

1994; Nakashima et ah, 1995). In DSCl, the SpReslp and SpRes2p proteins confer sequence- 

specific DNA-binding activity and interact with the regulatoiy SpCdclOp and co-activating 

SpRep2p subunits.

1.6.2 A *DSCl-like’ complex in meiosis

A ‘DSCl-like’ complex has been recently identified, which regulates transcription in the 

meiotic cycle and is composed of at least SpRes2p, SpCdclOp and SpReplp (Cunliffe et ah, 

2004). In addition, microarray analysis has identified -100 genes that aie transcribed 

specifically during late G l-S phase in the meiotic cycle, which also have promoter regions 

enriched for the MCB motif (Mata et ah, 2002).

In this specialised cell cycle, the chromosomes o f a diploid cell aie replicated forming 

homologous pairs (as opposed to sister chromatids in mitosis). During the first cellular division, 

cohesion is maintained between homologous chromosome pairs, allowing the exchange of 

genetic material -  known as homologous recombination (Alberts et ah, 1994). Consequently, 

the first nuclear and cellular division is equationah Each cell, now with diploid genomic 

content, subsequently undergoes a second meiotic division, without intervening DNA 

replication. Four haploid cells (spores in yeast, gametes in mammals) are ultimately produced 

from a single diploid cell (Alberts et ah, 1994). In fission yeast, meiosis is initiated after two 

haploid cells (of opposite mating type) aiTest in Gl phase (pre-START), as a result of nutrient 

depletion (Figure 1.1). These cells then conjugate, forming a transient diploid, which undergoes 

meiotic division to produce a four-spored ascus. This specialised form o f  cell division requires 

re-programming of the mitotic cell, such that it retains many of the factors required for DNA 

replication, whilst additionally producing many specialised meiotic gene products (Lee and 

Amon, 2001). The ‘DSCl-like’ complex regulates transcription of several genes during 

meiosis, some o f which also function in mitotic S phase (e.g. cdc22* and cdcl8*\ whilst others

29



(e.g. the rec^ gene products involved in homologous recombination) have roles that are 

exclusively meiotic (Cunliffe et al., 2004). The genes encoding the SpReslp, SpRes2p, 

SpReplp and SpRep2p proteins were originally identified by genetic suppressor analyses, 

designed to isolate components o f the regulatory pathway required for the ct/c/O-dependent 

passage of START.

1.6.3 SpCdclOp

The cdclO^ gene was first identified as one of two essential genes, whose functions were 

required for passage o f START and commitment to the mitotic cell cycle in fission yeast 

(Nurse et al., 1976; Nurse and Bisset, 1981). Mutants in cdclO^ arrest in Gl and retain the 

ability to conjugate, indicating they cannot traverse START until after the execution of 

SpCdclOp function (Nurse and Bisset, 1981). The cdclO* gene was subsequently cloned by 

rescue of mutant function, and encodes a protein of 85 kDa (Aves et al., 1985). SpCdclOp 

shares striking sequence similarity with the ScSwi6p protein o f budding yeast, specifically 

within the centrally located ankyrin motifs, which are characteristic o f the SpCdclOp/ScSwip 

family of proteins (Aves et al., 1985; Breeden and Nasmyth, 1987b - Figures 1.7 and 1.9).

Similar to the role of ScSwi6p in SBF/MBF, SpCdclOp has no intrinsic DNA-binding 

activity, instead functioning as a regulatory subunit (Zhu et al., 1994; Mcinerny et al., 1995). 

Mutational analyses of SpCdclOp indicate that the C-temiinal region and the ankyrin motifs are 

important for normal function (Reymond and Simanis, 1993). The majority o f cdclO ts 

mutations locate within the ankyrin-repeat region indicating it has an important, although as yet 

undefined, role (Reymond et al., 1992). The C-terminus of SpCdclOp most likely mediates the 

regulatory function, demonstrated by the properties of the cdclO-C4 mutant (Mcinerny et al.,

1995). The SpCdclO-C4p protein product is truncated at the C-terminus, which results in loss 

of the final 61 amino acids. In cdclO-C4 mutant cells, genes that are under DSC l control show 

a loss in periodicity, becoming constitutively transcribed throughout the cell cycle (Mcinerny et 

al., 1995). By analogy with ScSwi6p, the C-terminus o f SpCdclOp may be responsible for 

heterodimerization with the MCB-specific Resp DNA-binding proteins.

1.6.4 SpReslp and SpRes2p

Three different groups cloned the resl'^ gene independently, as a multi-copy suppressor of the 

temperature sensitive cdclO-129 mutant (Tanaka et al., 1992; Marks et al., 1992; Caligiuri and 

Beach, 1993). Concomitantly, SpReslp was biochemically identified as a component o f the 

DSCl band-shift activity present in crude fission yeast protein extracts (Caligiuri and Beach,

1993). The res2^ gene was then cloned, as a multi-copy suppressor of the Isj'esl mutant and 

independently in a genetic screen designed to identity DNA-binding partners of SpCdclOp 

(Miyamoto et al., 1994; Zhu et al., 1994). The demonstration that SpRes2p, together with
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SpCdclOp, bound specifically to MCB elements both in vitro and in vivo, confirmed that, like 

SpReslp, it was a DNA-binding partner o f SpCdclOp (Zhu et ah, 1994),

1.6.5 Functional redundancy between SpReslp and SpReslp

The molecular mechanisms by which DSCl-dependent transcription is regulated, either in the 

mitotic or meiotic cycles, is not fully understood (Section 1.6.8). The situation is further 

complicated by the apparently distinct yet overlapping functions of the two DNA-binding 

proteins, SpReslp and SpReslp. Both SpReslp and SpReslp function during the mitotic cycle 

and display some overlap with respect to these roles. However, SpReslp has an additional 

function in the meiotic cycle, which cannot be assumed by SpReslp.

Cells simultaneously deleted for both resl^  and res2^ are inviable, and overexpression 

o f either gene can rescue the conditional lethality of the cdc l0-129 mutant (Miyamoto et al.,

1994). Furthermore, overexpression o f res2'^ rescues the lethality of cells deleted for r e s t ,  

demonstrating that SpReslp can compensate for the loss of SpReslp mitotic function 

(Miyamoto et al., 1994). Despite a shared mitotic role, the phenotypes o f the âvresl and Aresl 

mutants indicate that only SpReslp functions during meiosis and, moreover, that SpReslp and 

SpReslp act predominantly in the mitotic and meiotic cycles, respectively (Tanaka et al., 1992; 

Caligiuri and Beach, 1993; Miyamoto et al., 1994; Zhu et al., 1994).

Cells deleted for res2^' are viable and display no obvious growth defects during mitotic 

division, yet they are defective in pre-meiotic DNA synthesis and undergo an abnormal meiosis 

(Miyamoto et al., 1994; Zhu et al, 1994). In contiast, cells deleted for r e s t  show no obvious 

defects in the meiotic cycle, yet when dividing mitotically they display severe heat and cold 

sensitivities, arresting pre-START at the restrictive temperature (Tanaka et al., 1992). 

Furthermore, I 'c s t  cannot suppress the meiotic defect of 2sres2 cells (Miyamoto et al., 1994; 

Sturm and Okayama, 1996). In fact, SpReslp levels decrease during meiosis and SpReslp is 

thought to be a repressor o f the sexual pathway (Caligiuri and Beach, 1993; Ayte et al., 1997). 

SpReslp levels increase during conjugation, consistent with its additional meiotic function 

(Miyamoto et al., 1994; Zhu et al., 1994; Ayte et al., 1997).
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1.6.6 Structure of SpReslp and SpReslp

The apparent contradiction that SpReslp and SpReslp have distinct roles yet are functionally 

overlapping, has been explained by analysis of their functional domains.

The r e s t  and r e s t  genes encode 72 kDa and 73 kDa proteins, respectively, which 

display the modular architecture typical of transcription factors. Consistent with an overlapping 

function, SpReslp and SpReslp share striking sequence similarity with each other in their N- 

termini, which include their DNA-binding domains, and the centrally located ankyrin-repeat 

motifs that are characteristic o f the SpCdcl0p/ScSwi6p family o f proteins (Tanaka et al., 1992; 

Caligiuri and Beach, 1993; Miyamoto et al., 1994; Zhu et al., 1994; Ayte et al., 1995; Zhu et 

al., 1997). This sequence similarity extends to include the ScSwi4p/ScMbplp proteins, which 

share a common architectural design, affirming their place as members o f this family of 

transcription factors (Section 1.5.5 and Figure 1.5). As described in Section 1.5.6, the X-ray 

structure of the ScMbp 1DNA-binding domain has been solved (Xu et al., 1997; Taylor et al., 

1997). In contrast, no structural data beyond the amino acid sequence is available for any o f the 

fission yeast members o f this family. The DNA-binding domain of ScMbp Ip, folds into a 

wHTFI motif, which makes sequence specific contacts in the major groove of the DNA 

(Section 1.5.6). Based on the significant sequence homology displayed witliin this region 

between family members, it has been proposed that SpReslp and SpRes2p will also bind DNA 

using this structural motif (Xu et al., 1997; Taylor et al., 1997). In agreement with this, a 

mutation within the SpReslp DNA-binding domain (Glu 56 —> Lys), within the putative 

recognition helix, results in enhanced DNA-binding and, moreover, renders SpReslp 

independent of SpCdclOp (Caligiuri and Beach, 1993; Figure 1.5).

Unlike ScMbp Ip and ScSwi4p, the SpReslp and SpRes2p proteins are believed to bind to 

DNA as dimers (Ayte et al., 1997; Zhu et al., 1997). This resembles the situation for the 

E2F/DP family of proteins, which are responsible for regulating tlie analogous program o f G l- 

S phase-specific transcription in mammalian cells (Zheng et al., 1999). Although not conserved 

in primary structure with any o f the ScSwip/SpResp family proteins, the E2F family of 

transcription factors also adopt a wHTH fold to bind DNA (Zheng et al,, 1999; Section 1.7).

Similarly to the ScSwi6p-ScSwi4p/ScMbplp interaction in budding yeast SBF/MBF, 

SpReslp and SpRes2p interact with SpCdclOp via their C-termini (Ayte et al., 1995; Zhu et al., 

1997). The distinct ftinctional specificities o f SpReslp and SpRes2p, however, are determined 

by their C-termini, m which they display greatest heterogeneity (Figure 1.9; Stunn and 

Okayama, 1996; Zhu et al., 1997; Whitehall et al., 1999). A domain within the C-terminus o f 

SpRes2p confers an as yet undefined meiotic-specific function (Sturm and Okayama, 1996; 

Zhu et al., 1997; Whitehall et al., 1999), In addition, two discrete domains in SpRes2p confer a 

requirement for the transcriptional co-activator subunit, SpRep2p (Sturm and Okayama, 1996; 

Tahara et al., 1998).
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Figure 1.9 Domain architecture of SpRes2p, SpReslp and SpCdclOp
A schematic representation o f the major domains in A SpRes2p - 73 kDa, B SpReslp - 

72 kDa and C SpCdclOp - 85 kDa. DNA-BD = DNA-binding domain, ANK = Ankyrin 
repeat domain, H-DMZ = Heterodimerization domain (note that the N-terminal domain 
of SpCdclOp does not bind to DNA - adapted from Sturm and Okayama, 1996).
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1.6.7 SpReplp and SpRep2p

The r e p t  gene encodes a 53 kDa protein containing a C terminal zinc finger motif, that is 

essential for its function (Sugiyama et ak, 1994). Considerably smaller than SpReplp, the 25 

kDa SpRep2p protein also contains a C terminal zinc finger motif, sharing significant 

homology with SpReplp in this region (Sugiyama et al., 1994; Nakashima et al., 1995; Figure 

1.10). In contrast to SpReslp and SpRes2p, which are both functional during mitosis, SpReslp 

and SpRes2p have distinct meiotic and mitotic functions, respectively (Sugiyama et al., 1994; 

Nakashima et al., 1995). However, resembling the scenario for SpReslp and SpRes2p, genetic 

suppressor analyses indicate that the r e p t  and rep2^ gene products also display some 

functional overlap.

Overexpression of either r e p t  or rep2'^ can rescue the conditional lethality o f the 

cdc l0-129 mutant, the property by which they were cloned (Sugiyama et al., 1994; Nakashima 

et al., 1995). Overexpression of r e p t  rescues the cold sensitive lethality o f cells deleted for 

rep2^, demonstrating that SpReplp can compensate for loss o f SpRep2p mitotic function 

(Sugiyama et al., 1994). The r e p t  gene is not expressed in the mitotic cycle; consequently, 

deletion o f r e p t  has no effect on mitotically dividing cells (Sugiyama et al., 1994). In the 

mitotic cycle lSj'ep2 cells (though viable at 30°C) are cold sensitive and arrest at START at < 

18°C. Conversely, tsrep2 cells show only slight meiotic defects, with the majority o f cells 

successfully completing meiosis. In contrast, hrep l mutants are unable to initiate pre-meiotic 

DNA synthesis and, moreover, are deficient in induction of the cdc22^ transcript (Sugiyama et 

al., 1994; Ding and Smith, 1998; Cunliffe et al., 2004). This behaviour is consistent with a 

suggested role for SpReplp as an activator of DSCl-dependent transcription in the meiotic 

cycle. In agreement with this proposal is the demonstration that SpRep2p acts as a 

transcriptional activator subunit for SpRes2p (Nakashima et al., 1995; Tahara et al., 1998). In 

tsrep2 cells, DSCl-regulated genes are transcribed at lower levels compared to wild type, 

although the periodicity is maintained (Baum et al., 1997). Furthermore, SpRep2p contains 

centrally located SpRes2p binding and C-terminal activation domains, both o f which are 

essential for its function (Nakashima et al., 1995; Taliara et al., 1998). Thus, SpReplp and 

SpRep2p are likely to be activators o f DSCl in the meiotic and mitotic cycles, respectively.
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Figure 1.10
A. Domain architecture of SpReplp and SpRep2p
Schematic representation of the major domains of SpReplp and SpReplp (adapted 
from Nakashima et al., 1995). TA = Transcriptional activation domain, ZF = Zinc 
finger motif. B. Alignment of SpReplp and SpReplp 
Sequence alignment between the SpReplp and SpReslp proteins. The residue 
numbers are annotated for SpReplp. Identical residues are shown as white characters 
boxed in red with similarity denoted by red characters boxed in white. This figure was 
generated using the ESPript program (Gouet et al., 1999).
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1.6.8 Regulation of DSC 1-dependent gene expression

Based largely on genetic evidence (Section 1.6.5), original models proposed that fission yeast 

contained two distinct yet functionally overlapping SpCdcl Op-containing transcription factors, 

analogous to the situation in budding yeast (Miyamoto et al., 1994; Zhu et al., 1994). 

According to this model, a SpReslp-SpCdclOp complex functioned during mitosis, whilst a 

SpRes2p-SpCdcl0p complex acted in meiosis. However, substantial evidence accumulated 

arguing that both SpReslp and SpRes2p functioned together with SpCdclOp in a single mitotic 

DSCl complex.

Analysis of the DSCl band-shift activity produced from fission yeast mitotic cell 

extracts showed it to contain at least SpReslp, SpRes2p and SpCdclOp (Ayte et al., 1997; Zhu 

et al., 1997). Furthermore, SpReslp and SpRes2p can heterodimerize in vitro, dependent on 

SpCdclOp (Zhu et al., 1997) and the DSCl band-shift activity is lost in cells deleted for either 

r e s t  or res2^, suggesting both subunits are required for the complex to form (Ayte et al., 1997; 

Zhu et al., 1997).

The existence of a SpResl p-SpRes2p-SpCdc 1 Op containing complex was confirmed by 

the demonstration that all three proteins were present in the in vivo DSCl complex throughout 

the mitotic cycle (Whitehall et al., 1999). Therefore, a DSCl complex composed o f at least 

SpReslp, SpRes2p and SpCdclOp, controls the mitotic Gl-S phase-specific transcription 

programme in fission yeast (Wliitehall et al., 1999). The stoichiometiy of the complex is 

unknown, although it is most likely heterotetrameric consisting o f one molecule each of 

SpReslp and SpRes2p, each of which bind an SpCdclOp molecule (Ayte et al., 1997; Reymond 

et al., 1993; Figure 1.11).

The levels o f SpCdclOp, SpReslp and SpRes2p remain constant throughout the cell 

cycle and thus it is likely that DSCl is regulated through post-translational modifications 

(Whitehall et al., 1999). In contrast to ScSwi6 p (Section 1.5.8), SpCdclOp is predominantly 

nuclear throughout the cell cycle, and so regulation of sub-cellular localisation is unlikely to 

contribute to DSCl regulation (Reymond et al., 1993; Wuarin et al., 2002). In budding yeast, 

ScCdc28p kinase activity has been shown to play a role in activating SBF/MBF-regulated 

transcription (Section 1.5.8; Wijnen et al., 2002). Similarly, in fission yeast the SpCdc2p kinase 

is required for passage o f START (Nurse and Bisset, 1981). However, to date, there is no 

evidence for the direct involvement o f SpCdc2p in activating DSCl-dependent tianscription 

(Baum et al., 1997; Whitehall et al., 1999). The SpPaslp-SpPeflp kinase apparently plays a 

role in the activation o f SpRes2p, by an unknown mechanism, although the SpPas 1 p-SpPefl p 

kinase may directly phosphoiylate SpRes2p (Tanaka and Okayama, 2000).

Repression o f DSCl-dependent tianscription is mediated, at least in part, by SpCig2p- 

SpCdc2p kinase activity (Ayte et al., 2001). The SpCig2p-SpCdc2p kinase complex binds to 

SpRes2p and phosphorylates SpReslp, causing repression of DSCl-dependent transcription.
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although the mechanics of this are unknown (Ayte et al., 2001). Inti iguingly, SpCig2p itself is a 

transcriptional target of DSCl. Thus a negative feedback loop appears to operate, whereby 

transcription o f SpCig2p leads to increasing SpCig2p-SpCdc2p kinase activity that in turn 

down-regulates DSCl-dependent transcription (Ayte et al., 2001). This model of SpRes2p 

mediated repression is consistent with the expression pattern o f MCB-regulated genes in ceils 

either deleted for or overexpressLng res2^. Overexpression of SpRes2p leads to repression o f 

DSC!-dependent hanscription, whilst A/'cs2 cells show increased levels o f transcription (Baum 

et al., 1997). In contrast, overexpression of SpReslp leads to increased levels o f DSCI- 

dependent transcription, whilst transcription is reduced in cells deleted for r e s t  (Baum et al., 

1997).

37



DSCl

SpCdclOp I SpCdclOp

SpRep2pSpReszp

Figure 1.11 The DSCl DNA-binding complex
A schematic representation of the fission yeast mitotic DSCl DNA-binding complex 
bound to the MCB sequence element. The N and C-termini of each protein are indicated in 
yellow.
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1.7 G l-S phase-specific transcription in mammalian cells
The conservation in both structure and function between the MBF/SBF and DSC 1 systems of 

budding and fission yeasts, suggested that a homologous Gl-S transcriptional control system 

also operates in higher eukaryotes.

In mammalian cells a Gl-S phase-specific transcription programme is also required for 

passage of the Restriction point and entry into S phase, conti’olled by the E2F family of 

transcription factors (Dyson, 1998). Similar to yeasts, several o f the genes that are activated by 

the E2F system encode functions required for DNA synthesis and replication (e.g. 

dihydrofolate reductase, thymidine kinase and the HsCdcbp, HsOrclp and HsMcmp proteins) 

and key cell cycle regulators such as cyclin A, cyclin E and HsCdklp (Ren et al., 2002). 

Furthermore, the TTTCGCGC consensus sequence element that is common to their promoters 

(and bound by the E2F proteins) resembles the MCB and SCB elements (Dyson, 1998). 

Moreover, the E2F proteins utilise a  similar wHTH structural fold for DNA-binding (Zheng et 

al., 1999). Despite these tantalizing parallels, the E2F proteins display no significant amino 

acid sequence homology with any o f the yeast proteins and so although they are responsible for 

regulating an analogous process in higher eukaryotes they are not true structural and functional 

homologues o f the yeast factors.

1.7.1 The E2F and DP proteins
The functional E2F complex acts as a heterodimer comprising one subunit derived from the 

E2F family and one derived from the DP family. In mammalian cells, seven E2F (E2F-1 to 

E2F-7) and two DP (DP-1 and DP-2) proteins have been discovered to date (Trimarclii and 

Lees, 2001; DeBruin et al., 2003). The proteins they encode contain highly conserved DNA- 

binding and dimérisation domains. In addition, the C-termini o f E2Fs 1-5 contain 

transactivation and pocket protein binding domains that are absent in E2F-6/7 and the DP 

proteins (Trimarchi and Lees, 2002; DeBrain et al., 2003). It is thought that the DP subunits 

activate transcription indirectly by enhancing the activity o f the E2F subunit. Little is known 

about the specific properties o f the individual E2Fs, although they have been categorised into 

tliree different subtypes based on both structural and functional properties (Dyson, 1998).

E2Fs 1-3: the activating E2Fs, these proteins activate transcription from E2F responsive genes, 

thereby driving proliferation. These proteins are under cell cycle control with levels peaking at 

G l-S boundary.

E2Fs-4 and -5: In contrast these proteins are constitutively expressed and are particularly 

prevalent in GO cells. They appear to bind to promoters in an inactive conformation, associated
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with pocket proteins and thus are believed to be responsible for transcriptional repression. 

Release of the pocket proteins resumes their ti anscriptional activation potential.

E2Fs-6 and -7: Both of these proteins act as hanscriptional repressors. They each lack the C- 

terminal transactivation and pocket-binding domains and are therefore insensitive to the pRB 

family proteins. However, in contrast to E2F-6 (and all the other E2F and DP family members) 

E2F-7 contains two DNA-binding domains arranged in tandem and lacks the dimérisation 

domain, suggesting it can bind DNA in the absence of a DP partner (DeBruin et al., 2003; 

Logan et al., 2004). E2F-6 is proposed to act as a transcriptional repressor by binding to 

promoters, thereby preventing access by other ‘active’ E2F complexes and can recruit members 

o f the polycomb chromatin re-modelling family to repress chromatin (Stevens and LaThangue, 

2003).

1.7.2 Regulation of E2F-dependent gene expression

The molecular mechanisms by which E2F-dependent hanscription is regulated are complex and 

not fully understood. The most prominent regulator o f E2F-dependent transcription is the pRB 

pocket protein, which binds to and negatively regulates E2F. RB  was the first tumour 

suppressor gene to be cloned and disruption in pRB function is involved in the majority o f all 

human cancers (Weinberg, 1995).

The ability o f pRB to bind E2F is dependent on its phosphorylation state, which is 

controlled by the actions of the Cdks, thereby linking E2F activity to the cell cycle. Each 

member o f the pRB family contains multiple Cdk phosphorylation sites and the 

hyperphosphorylated forms have very low affinity for E2F. pRBs are thought to inactivate E2F 

by physically blocking the C-terminal transactivation domain. pRB can also recruit chromatin- 

remodelling machineiy to promoters (e.g. SWI/SNF proteins, histone deacetylases, histone 

methyltransferases), thereby repressing transcription through changes in chromatin stincture 

(Stevens and LaThangue, 2003).

During GO and early G l phases, pRB is hypophosphorylated and binds to E2F. In 

mammalian cells both positive and negative regulatory growth signals can act during G l, prior 

to the Restriction point (Sherr, 1996). Mitogenic growth factors initiate a signalling cascade, 

which ultimately leads to activation o f the HsCdk4p/6p-cycIin D activities. The activated 

HsCdk4p/6p-cyclin D kinase complexes then phosphorylate pRB, causing its release from E2F. 

Consequently, E2F activates the expression o f several genes whose functions are required for 

passage of the Restriction point and entry into S phase (Dyson, 1998).

Paradoxically, as a result o f its temporal association with pRB family proteins, E2F 

bound to promoters can mediate both transcriptional activation and repression. Attempts to 

explain these conflicting roles have led to classification of E2F complexes in three distinct

40



groups (Dyson, 1998). Firstly, activator complexes correspond to those in which the activation 

domain o f promoter bound E2F is free to stimulate transcription. Secondly, inhibited 

complexes represent those in which the activation domain of promoter bound E2F is blocked 

by pRB family proteins. Finally, an additional category corresponds to the repressor complexes 

in which pRB family proteins recruit and assemble chromatin-remodelling machinery, which 

represses chromatin.

Precisely how E2F activates transcription is unknown, although it can also interact with 

chromatin-remodelling machinery, presumably to reverse the effects o f tlie pRB-mediated 

repression highlighted above (e.g. CBP, recruitment o f HAT activity to promoter) and may also 

directly contact the general RNA polymerase 11 transcription machinery (Stevens and 

LaThangue, 2003).

In addition to pRB-mediated negative regulation, the decrease in E2F activity that is 

required for cells to exit S phase appears to be distinct from pRB-mediated phosphorylation. 

HsCdJk2p-cyclin A can both bind to E2F-1 and phosphorylate DP-1, thereby inhibiting DNA- 

binding activity. As cyclin A is a transcriptional target of the E2F complex, this negative 

feedback is reminiscent o f the action o f SpCig2p upon DSCl activity (Stevens and LaThangue, 

2003; Section 1.6.8).

1.8 Aims of this study
The aims of this study were to produce a stable, reproducible and active source of recombinant 

protein of the components o f the fission yeast DSCl complex, in yields that would allow more 

extensive biophysical, biochemical and functional analyses to be undertaken.

The cloning o f DSCl component genes and their subsequent overexpression in E. coli 

has the potential to produce a reproducible source of protein in yields sufficient (5-10 mg 1̂  

culture) for this purpose, in contrast to their naturally low abundance in fission yeast. Chapter 3 

describes the cloning and expression of DSCl components as His-tagged fusion proteins in E. 

coli. Chapter 4 describes assaying the effects o f His-tags on the activity^ o f each component in 

fission yeast. In Chapter 5 DNA-binding activities are also assayed in vitro, following 

solubilisation of the recombinant proteins. In addition, GST-fusions o f Res Ip and Res2p are 

produced to further investigate the DNA-binding properties in vitro. Finally, in Chapter 6 , 

attempts to purify the individual recombinant components o f DSCl and obtain preliminary 

structural data are described.
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Chapter 2
Materials and methods



2.1 Molecular biology materials

2.1.1 Chemicals
All chemicals used were o f the highest grade available commercially and distilled water was of 

Millipore-Q quality.

Specialised chemicals such as ampicillin, kanamycin, chloramphenicol, protease 

inhibitors (phenylmethanesulfonylfluoride -  PMSF, chymostatin, pepstatin, antipain, leupeptin, 

aprotonin) and NZ amine, were from Sigma. Sephadex G-50, dATP (lOp Ci p f ')  and dldC (1 

mg ml ') were supplied by Amersham Pharmacia Biotech. Ditliiothreitol (DTT) was obtained 

from Melford laboratories Ltd, Suffolk.

2.1.2 Enzymes and kits
All restiiction enzymes, T4 DNA ligase, calf intestinal alkaline phosphatase, dNTPs, Taq DNA 

polymerase and T4 polynucleotide kinase were obtained from Promega. VentR DNA 

polymerase and Mung Bean Nuclease were obtained from New England Biolabs. The 

QIAprep® Spin Miniprep Kit and the QIAquick® Gel Extraction Kit were supplied by 

QIAGEN.

2.1.3 Molecular weight markers
DNA molecular weight marker X (0.07-12.2 kbp) was supplied by Roehe.

2.1.4 Oligonucleotides
Oligonucleotides were designed in the laboratory as required and synthesised by MWG-AG 

Biotech or DNA Technology A/S. All oligonucleotides used in this thesis are listed in 

Appendix II. The aimotation GO refers to the Glasgow lab oligo collection number.

2.1.5 Bacterial media
All strains o f Escherichia coli were grown in Luria Broth (LB; 10 g Bacto-tryptone, 5 g Bacto 

yeast extract and 10 g NaCl per litre, pH 7.5) or NZY^ broth (5 g NaCl, 2 g MgS0 4 .7 H2 0 , 5 g 

yeast extract, 10 g NZ amine per litre, pH 7.5). LB plates were made by adding 7.5 g bacto agar 

to 500 ml LB. All media were autoclaved before use and supplemented with ampicillin (50 pg 

ml''), kanamycin (30 pg ml"') or chloramphenicol (34 pg ml"') where appropriate.

2.1.6 Bacterial strains
All bacterial strains used in this thesis are listed in Appendix I. The annotation GB refers to the 

Glasgow lab bacteria collection number.
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E. coli DH5a: a recombination deficient strain used for the propagation and storage of plasmid 

DNA. Genotype; supEAA A/acU169 (^80/acZAM15) hsdRXl recAX endh l byrA96 thil relKX, 

E. coli BL21 CodonPliis(DE3)“RIL (Stratagene): an all-purpose strain for high-level protein 

expression and easy induction. Genotype: F ompT hsdSiyy mB') doin' T ef gal A,(DE3) endA 

Hte[argU HeY leuW  Cam*̂ ].

2.1.7 Bacterial plasmid vectors

The pET vectors were purchased from Novagen, pCR2.1 was supplied by Invitrogen and 

pGEX-KG was obtained from a laboratoiy stock (Appendix III).

pET“28c: for expression of His-tagged recombinant proteins; the six histidine residues are 

linked to the N-terminus of the cloned gene (kanamycin resistant).

pET-14b: for expression o f His-tagged recombinant proteins; the six histidine residues are 

linked to the N-terminus of the cloned gene (ampicillin resistant).

pCR2.1: for one-step cloning of a polymerase chain reaction product with polydeoxyadenosine 

3’ overhangs (ampicillin resistant).

pGEX-KG: for expression of GST-tagged recombinant proteins; the GST tag is linked to the 

N-terminus of the cloned gene (ampicillin resistant; Guan and Dixon, 1991).

2.2 Molecular biology methods

2.2.1 Polymerase chain reaction (PGR)

P o l y m e r a s e  c h a i n  r e a c t i o n s  w e r e  p e r f o r m e d  u s i n g  e i t h e r  Taq DNA p o l y m e r a s e  o r  V e n t R  DNA 

p o l y m e r a s e .

2.2.2 PCR using Taq DNA polymerase

Standard PCR reactions were carried out in an MWG-Biotech Primus Thermal Cycler in 

0.5ml thin walled PCR tubes with Taq DNA polymerase. A typical 100 pi reaction volume 

contained 10 x Taq buffer at a final concentration of 1 x, 200 pM each of dNTPs, 100 ng 

each of the appropriate primers, 50 ng of DNA template and 2 U of Taq DNA polymerase. 

Annealing temperatures for each reaction were determined empirically.

43



Typical cycle parameters were as follows:

30 cycles

Dénaturation: 95“C for 2 min 

Dénaturation: 95°C for 15 sec

Annealing; 50°C for 30 sec (temperature adapted as appropriate for 

primers)

Extension: 72°C for 1 min (time adapted as appropriate-1 min per 

kb of product)

Extension: 72°C for 5 min

2.2.3 PCR using VentR DNA polymerase

PCR was performed as above with the following modifications. A typical 100 pi reaction 

volume contained 10 x reaction buffer (100 inM KCl, 100 mM (NH4)2S0 4 , 200 mM Tris-HCl 

(pH 8 .8 ), 20 mM MgS0 4 , 1% Triton X-100) at a final concentration of 1 x, 200 pM of each 

dNTP, 100 ng each of the appropriate primers, 50 ng of DNA template and 2 U of VentR DNA 

polymerase. Typical cycle parameters were as follows:

 ̂ 95 °C for 1 min

95°C for 30 sec

20 cycles ^ 58°C for 30 sec (temperature adapted as appropriate for primers)

6 8 °C for 2 min (time adapted as appropriate-1 min per kb of product)

, 6 8  °C for 3 min

The yield and purity of the PCR product obtained was analysed by agarose gel electrophoresis 

(2% (w/v) agarose) and stored at -20°C before and after agarose gel purification.

2.2.4 Agarose gel electrophoresis

The appropriate amount (1 g 100 ml ') o f agarose was dissolved in 1 x TBE (45 mM Tris- 

borate, 1 mM EDTA) and 2-3 pi ethidium bromide added to give slab agarose gels of the 

required percentage, routinely 1-2%. Samples for analysis were diluted 5 fold by the addition of 

6  X loading buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol FF, 0.15% 

(w/v) Ficoll) before being loaded on the agarose gel. These were run at 100 V in 1 x TBE for 

between 40 min - 1 h until the dye front was about 1 cm from the bottom of the gel. Gels were 

then viewed using a UV transilluminator and photographed using E. A. S. Y imaging software.
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2.2.5 Purification of DNA from bacterial cultures

DNA was purified fiom bacterial cultures using the QIAprep® Spin Miniprep Kit supplied by 

QIAGEN. The kit was used as per the manufacturer’s instructions. Briefly, a 5 ml culture 

containing the appropriate antibiotic was inoculated with a single colony from an LB antibiotic 

plate. This was incubated with shaking at 37“C for not more than 16 h. Cells were pelleted at 

10,000 rpm for 5 min and resuspended in 250 pi Buffer PI. Cells were lysed by the addition of 

250 pi Buffer P2 and incubated for 5 min. 350 pi of Buffer N3 was added and the mixture 

centrifuged at 1 0 ,0 0 0  rpm for 1 0  min in a benchtop centrifuge to pellet the cell debris. 

Supernatant was applied to a QIAprep® column and centi'ifuged briefly to allow the DNA to 

bind to the membrane o f the spin column. The column was washed twice, firstly with 0.5 ml 

Buffer PB and then 0.75 ml Buffer PE, before the DNA was eluted in 50 pi nuclease-free 

water. The yield and purity o f DNA obtained was analysed by agarose gel electrophoresis.

2.2.6 Extraction of DNA from an agarose gel

DNA was purified from agarose gels using the QIAquick® gel exfraction kit (QIAGEN) as 

described in the manufacturer’s instructions.

Briefly, DNA was excised from an agarose gel using a sterile sealpel blade. The agarose 

slice was solubilized at 50“C in the appropriate volume of Buffer QG (as supplied). This 

mixture was applied to a spin column and centi'ifuged for 1 min to allow the DNA to bind the 

column. The column was washed with 750 pi of Buffer PE containing 80% (v/v) ethanol. 

Residual ethanol was removed by centrifuging the column for a further 1 min, before eluting 

the DNA in 50 pi Buffer EB (1 mM Tris-HCl, pH 8.5) or nuclease-free water.

The yield and purity o f DNA obtained was analysed by agarose gel electrophoresis.

2.2.7 Restriction digestion

Plasmid DNA and PCR products were routinely digested, prior to ligation, as follows: 5 pi 

DNA was digested with 1 pi enzyme for a single digest (or 1 pi of each enzyme in double 

digests), together with 2 pi o f the appropriate enzyme buffer in a final volume of 20 pi. This 

was incubated at 37”C for 30 min or as otherwise instructed for the enzyme (exceptions were 

Sma\, which required incubation at 25°C for 30 min and Ncoi in which a second aliquot of 

enzyme was added after 15 min due to the short half life of the enzyme).
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2.2.8 Dephosphoi-ylation of digested plasmid

Digested vector was dephosphorylated by the addition of 1 U of calf intestinal alkaline 

phosphatase and incubated at 37°C for a further 30 min. This was routinely carried out to 

prevent self-ligation of digested vector.

2.2.9 Ligations

Purified plasmid DNA was ligated with purified insert DNA at various ratios (1:3, 1:5, 1:7). A 

typical ligation reaction was set up as follows; 1 pi of digested, dephosphorylated and gel 

purified vector was mixed with 5 pi of digested and gel purified insert, 10 x T4 DNA ligase 

buffer (at a final concentration o f 1 x) and 1 U of T4 DNA ligase. Routinely, ligations were 

incubated overnight at 4°C before being transformed into E.coli DH5a competent cells 

following the standard protocol (Section 2.2.13). The resulting colonies were then screened by 

restriction digestion analysis (Section 2.2.7) to confirm the presence of insert DNA.

2.2.10 Cloning of blunt ended PCR products

The TA Cloning® Kit (Invitrogen) was used to clone blunt-ended PCR products as described in 

the manufacturer’s instructions.

2.2.11 Site-directed mutagenesis by overlap extension

The plasmid GB 130 (Appendix I), containing a -2,300 bp fragment representing the 

recombinant cdclO^ gene, was used as a template in the PCR reactions, which were adapted 

fiom a method described in Sambrook and Russell (2001). Four primers (GO 546, GO 459, GO 

547 and GO 548 - Appendix II) were used to introduce a site-specific mutation by overlap 

extension. The primers GO 546 and GO 459 were complementaiy to either end of the cdclO^ 

gene and allowed introduction of Ndel and BamHl sites, respectively, to the 5’ and 3’ ends of 

the PCR fragment. The primers GO 547 and GO 548 were complementary to the cdclO^ gene 

and were designed to introduce a single base pair G to C substitution at position 426 relative to 

the ATG. This introduces a silent mutation Tyrosine (TAG) to Tyrosine (TAG) and removes 

the artificial internal stop codon. The primer pairs GO 547 and GO 548 were necessarily 

complementary to each other and could not be used in the same PCR reaction. Therefore, 

mutation had to be carried out in two stages.

Stage 1 : Primer pairs GO 546/GO 548 and GO 459/GO 547 were used in separate PCR 

reactions to produce 2 different sized fragments. The PCR reaction in this step was carried out 

as described in Section 2.2.3.
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Stage 2: The 2 fragments, each containing the G to C substitution at 426, were gel 

purified and joined together to generate the full-length cDNA in a fusion PCR reaction using 

primers GO 546 and GO 459.

The parameters of the fusion PCR reaction were as follows:

94“C for 1 min

10  cycles

10  cycles

2 0  cycles

94“C for 1 0  sec

50°C for 1 min

6 8 °C for 3.5 min

94"C for 10  sec

58°C for 1 min

6 8 °C for 3.5 min

94°C for 1 min

58°C for 1 min

6 8 °C for 3.5 min

6 8 "C for 7 min

2.2.12 Production of competent bacterial cells

Competent cells were made using the rubidium chloride method.

The appropriate bacterial E. coli strain was streaked onto a minimal LB plate and grown 

overnight at 37°C. A single colony was used to inoculate an overnight 5 ml LB culture. This 

was subcultured into 100 ml LB and giown at 37°C with shaking until the culture reached an 

optical density (OD) of 0.48 at 550 nm. The culture was then chilled on ice for 5 min, before 

centrifugation at 3000 rpm for 10 min at 4°C. The pellet was resuspended in 40 ml Buffer 1 

(100 mM rubidium chloride, 10 mM calcium chloride, 50 mM manganese chloride, 15% (v/v) 

glycerol in 30 mM potassium acetate, pH 5.8). Cells were centrifuged as before and the pellet 

resuspended in 4 ml Buffer 2 (10 mM rubidium chloride, 75 mM calcium chloride, 15% (v/v) 

glycerol in 10 mM 3-[N-morpholino] propanesulfonic acid (MOPS), pH 6.5). The cells were 

divided into 100 pi aliquots and stored at -70°C.

2.2.13 Transformation of competent bacteria

In electro-transformation a BIORAD E. coli puiser was used with a method adapted from the 

BIORAD manual.
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E, coli DH5a cells were routinely used for the propagation and harvesting of 

reeombinant plasmid DNA, and were transformed using the following method. To 50 pi of 

competent bacteria 1-2 pi of the appropriate plasmid DNA was added. The cell-DNA 

suspension was transferred to a pre-chilled 0.2 cm electroporation cuvette and pulsed at 2,5 kV. 

1 ml of SOC (2% Bacto tryptone, 0.5% Bacto yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCb, 10 mM MgSO/t, 20 mM glucose) was added to the cells, which were then transferred to 

microfuge tubes and incubated at 37°C with shaking for 45 min. This mix was plated on an LB- 

agar plate containing the appropriate antibiotic and incubated overnight at 37°C.

E. coli BL21 CodonPlus(DE3)-RIL cells were routinely used for the expression of the 

desired recombinant proteins and transformed using the following method. To 50 pi of 

competent bacteria, 1-10 ng of DNA was added in a pre-chilled microfuge tube. The mixture 

was chilled for 15 min before heat shocking at 42°C for 90 sec and returned to ice. After 2 min 

450 pi of SOC was added and this was incubated at 37°C with shaking for 45 min. This mix 

was plated on an LB-agar plate containing the appropriate antibiotic and incubated overnight at 

37“C.

2.2.14 Electophoretic mobility shift assay (EMSA)

Electophoretic mobility shift assay (EMSA) was as described by Ng et al (2001). This 

technique is also commonly known as the band-shift assay and is referred to using both names 

in this thesis.

2.2.15 Probe preparation

DNA fragments were 5’ end-labelled using T4 polynucleotide kinase (PNK). To 5-10 pg of 

DNA in 5 pi of dH2 0  on ice was added 10 U of T4 PNK in I x T4 PNK buffer, followed by the 

addition of 10 pCi o f [y-^^P] dATP (lOp Ci p f ')  to give a total volume of 8 pi. The reaction 

was incubated at 37°C for 1 h, and the DNA was purified using a Sephadex G-50 column. 

Sephadex G-50 was prepared by adding two volumes of TE and autoclaving. The plunger was 

removed from a 1 ml syringe (Plastipak) and a small wad of siliconized glass wool was used to 

plug the end before the end was placed inside a microfuge tube. Sephadex G-50 was added to 

the syringe; the syringe and microfuge tube were placed inside a 50 ml centrifuge tube and then 

centrifuged at 3000 rpm for 5 min to remove the TE. This was repeated until -0.8 ml Sephadex 

G-50 remained in the syringe. A fresh microfuge tube was then placed at the bottom of the 

syringe and the radiolabelled probe added to the Sephadex G-50 column. This was spun again 

at 3000 rpm for 5 min and the syringe was monitored with a Geiger counter to confirm that 

unincorporated nucleotides had been removed fiom the probe. The purified probe was 

transferred to a fresh screw-top microfuge tube and stored at -70°C.
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2.2.16 EMSA assay

Each mobility shift assay was performed by adding 10 pi of sample buffer (1 M Tris-HCl pH 

7.5, 1 M KCl, 50% glycerol, 100 mM DTT, 100 mM protease inhibitors: chymostatin, 

pepstatin, antipain, leupeptin, aprotonin, 100 mM PMSF, 1 M M gCf) to 20 pg of protein (or as 

otherwise indicated), 1 pg of dldC (1 mg ml ') and 1-2 pi of labelled probe. If required, non­

specific or specific competitor DNA was also added. The samples were incubated for 5 min on 

ice before the addition of each reagent. Analysis of the formation of protein-DNA complexes 

was achieved by electrophoresis o f samples on a 10% acrylamide gel in 1 x TBE buffer (40 

mM Tris-borate, 1 mM EDTA pH 8 ) for 1.5-2 h at 180V. The gel was dried for 1.5 h at 80°C 

and exposed to autoradiography film at -70°C.

2.3 Protein biochemistry materials

2.3.1 Chemicals

Ultra pure imidazole and zinc chloride were purchased from MERCK, BDH. Triton X-100 was 

bought from Fisons, Loughborough. Isopropyl P-thiogalactopyranoside (IPTG) was obtained 

from Melford Laboratories Ltd, Suffolk. Glutathione Sepharose 4B was supplied from 

Amersham Pharmacia Biotech. Glutathione (reduced), NaF and acrylamide:bisacrylamide 

solution were supplied by Sigma. Bradfords Reagent (BIO-RAD protein assay reagent) was 

purchased from BIO-RAD.

2.3.2 Molecular weight markers

The relative molecular mass (subunit M J of proteins separated by SDS-PAGE was determined 

by comparison with low Mr markers (Amersham Pharmacia Biotech, Low molecular weight 

calibration kit for electrophoresis).

2.3.3 Phototgraphic materials

Nitrocellulose and Hyperfilm were purchased from Amersham Pharmacia Biotech. The X- 

Omat 100 processor was supplied by Kodak.

2.4 Protein biochemistry methods

2.4.1 Growth of bacterial cultures for protein induction

A single colony o f transformed BL21 CodonPliis(DE3)-RIL cells was picked from an LB-agar 

antibiotic plate and grown at 37°C with shaking in 5 ml growth media plus the appropriate
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antibiotic for 16 h. A 1 ml aliquot was subcultured into 50 ml growth media plus antibiotic and 

incubated at 37°C with shaking until the ODôoo was between 0.5-1.0. IPTG, at a final 

concentration o f 0.2 mM-1 mM (0.2 mM for 22“C and 15°C inductions or 1 mM for 30°C and 

37°C inductions), was then added and the cultures induced at the required temperature for 

either 3 h (30“C and 37°C inductions) or 16 h (22°C and 15°C inductions). During 3 h 

inductions samples were taken at zero time and then at 1 h intervals to check for 

overexpression. During 16 h inductions samples were taken at zero time and at 16 h. All 

samples were pelleted by centrifugation at 13,000 rpm for 1 rain and the pellets resuspended in 

Laemmli sample buffer (2% (w/v) SDS, 10% (w/v) sucrose, 62.5 mM Tris-HCl, pH 6 .8 , 

Pyronin Y dye) using 10 pi per 0.1 ODeoo units. Cells were harvested by centrifugation at 3,000 

rpm for 15 min and the supernatant discarded. The pellet was then resuspended in 3 ml o f the 

appropriate buffer for purification and stored at -20°C.

2.4.2 Large-scale protein induction

A single colony was picked fiom an LB-agar antibiotic plate and grown at 37°C with shaking in 

10 ml growth media plus antibiotic for 16 h. This was then subcultured into 500 ml growth 

media plus antibiotic and grown at 37°C with shaking until the ODeoo was between 0.5-1.0. 

Protein expression was induced by the addition of 0.2-1 mM IPTG (Section 2.4.1). Induction 

was again carried out for either 3 h or 16 h depending on the temperature used. Samples at zero 

time and at the end of induction were kept for analysis on SDS-PAGE to check that expression 

had occurred as before. Cells were harvested by centrifugation at 8,250 rpm for 15 min in a 

Beckman J2-21 centrifuge using a JA-14 rotor and the supernatant discarded. The pellet was 

then resuspended in 20 ml o f the appropriate buffer for purification and stored at -20°C.

2.4.3 Dialysis of protein samples

Visking tubing was prepared by boiling in 10 mM sodium bicarbonate, pH 8.0, 1 mM EDTA 

for 10 min. This was then rinsed in distilled water before being stored in 100% (v/v) ethanol. 

Tubing was thoroughly rinsed in distilled water before use.

Dialysis of protein took place at 4°C for several hours using multiple changes o f dialysis

buffer.

2.4.4 Concentration of protein samples

After dialysis, protein samples were concentrated by centrifugation in a Ceiitricon Plus-20 

centrifugal concentrator filter (Amicon), with cut off 30,000 Da, according to the 

manufacturer’s instructions.
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2.4.5 Determination of protein concentration

The method of Bradford (1976) was routinely employed. A standard curve was produced using 

known concentrations of BSA. The absorbance of the unknown samples were taken then 

measured at 5 9 5  nm and their concentiation extr apolated from the standard curve.

2.4.6 SDS-poIyacrylamide gel electrophoresis (SDS-PAGE)

The solutions required for SDS-PAGE were as follows:

Acrylamide solution

29.2% (w/v) acrylamide/0 .8 % (w/v) bis-acrylamide.

Resolving gel buffer

10% (w/v) acrylamide, 0.5 M Tris-HCl, pH 8 .8 , 0.1% (w/v) sodium dodecyl sulphate (SDS), 

0.1% (w/v) ammonium persulphate, 0.1% (v/v) N, N, N ', N'-tetramethlethylene diamine 

(TEMED).

Stacking gel buffer

4.5% (w/v) acrylamide, 0.06 M Tris-HCl, pH 6 .8 , 0.1% (w/v) SDS, 0.1% (w/v) ammonium 

persulphate, 0.1% (v/v) TEMED.

Running buffer

25 mM Tris-HCl, pH 8.3, 0.25 M glycine, 1% (w/v) SDS.

Proteins were resolved under denaturing conditions using the method of Laemmli (1970). 

Samples for analysis on SDS-PAGE were resuspended in Laemmli sample buffer to which 1 M 

DTT was added (at a final concentration of 150 mM) prior to boiling for 5 min to ensure that 

all proteins were denatured. A 10 pi aliquot o f each sample was loaded on the gel along with 10 

pi of a low molecular mass marker (Section 2.3.2). Gels were run using the Biorad Mini- 

Protean gel kit system at 400 V for 1 h or until the dye front was approximately 1 cm from the 

bottom of the gel. Gels were then stained in 0.1% (w/v) Coomassie Brilliant Blue, 10% (v/v) 

acetic acid, 50% (v/v) methanol for 1 h and destained in 10% (v/v) acetic acid, 10% (v/v) 

methanol overnight.
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2.4.7 Immunoblotting using ECL ™  (enhanced chemiluminessence)

Anti-PentaHis-HRP conjugate antibody was supplied by QIAGEN and Anti-GST~HRP 

conjugate antibody was supplied by Amersham Pharmacia Biotech. Immunoblotting protocols 

were carried out as detailed in the manufacturer’s instructions.

2.4.8 Solutions used in immunoblotting 

Transfer buffer (10 x) per litre

25 mM Tris-HCl, pH 1.2, 192 mM glycine, 0.02% (w/v) SDS, 20% (v/v) methanol

2.4.9 Solutions for Anti-PentaHis-HRP conjugate detection

Blocking buffer: 10 mM Tris-HCl pH 7.5, 0.1% (w/v) Blocking reagent, 0.1% (v/v) Tween- 

20 .

TBS buffer: 10 mM Tris-HCl pH 7.5.

TBS-Tween/Triton buffer: 20 mM Tris-HCl pH 7.5, 500 mM NaCl, 0.05% (v/v) Tween-20, 

0.2% (v/v) Triton X-100.

Anti-PentaHis-HRP conjugate antibody: 20 mM Tris-HCl pH 7.5, 1% (w/v) Non-fat milk, 

0.1% (v/v) Tween-20, 1:2500 dilution o f Anti-PentaHis-HRP conjugate antibody.

2.4.10 Solutions for Anti-GST HRP conjugate detection

Blocking buffer: 20 mM Tris-HCl pH 7.5, 5% (w/v) Blocking reagent, 1% (v/v) Tween-20. 

TBS buffer: as above (Section 2.4.8).

TBS-Tween/Triton buffer: as above (Section 2.4.8).

Anti-GST-HRP conjugate antibody: 20 mM Tris-HCl pH 7.5, 0.1% (v/v) Tween-20, 1:5000 

dilution of Anti-GST-HRP conjugate antibody.

2.4.11 Immunoblotting protocol

SDS-PAGE analysis was performed as described in Section 2.4.6. Proteins were then 

electrophoreticaliy transferred to nitrocellulose using the Biorad Mini-Protean gel kit system at 

50 mA for 2 li in 1 x tiansfer buffer. Staining of the nitrocellulose with the non-fixative dye 

Ponceau S was employed to check the efficiency of protein transfer. This was washed off in 

distilled water and the non-specific binding sites were blocked by immersing the nitrocellulose 

in blocking buffer for 1 h at room temperature with shaking. The membrane was washed twice 

for 10 mill in TBS-Tween/Triton buffer then incubated with diluted HRP conjugate antibody 

solution at room temperature for 1 h. The membrane was again washed in TBS-Tween/Triton
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buffer for 10 min and given a final wash in TBS buffer before detection. The detection step was 

carried out as described in the Amersham protocol for ECL detection. In the dark room, 

autoradiography film was placed onto the membrane and exposed for 30 sec initially before 

developing the film using a Kodak X-omat 100 processor.

2.4.12 Solubilisation of expressed fusion proteins

Fusion proteins were expressed as described previously (Section 2.4.1-2.4.2). The pellets were 

then resuspended in the appropriate volume of lysis buffer and disrupted by 3 passes through an 

automatic French pressure cell (pre-cooled on ice) at 750 or 950 psi for small or large-scale 

preparations, respectively. Protease inhibitors were routinely added to prevent degradation of 

protein. A 100 pi aliquot o f this whole cell extract sample was retained before the remainder 

was centrifuged at 4°C in a Beckman J2-21 centrifuge using a JA-17 or JA-14 rotor for small or 

large preparations, respectively. 1 0 0  pi aliquots o f the supernatant and pellet, resuspended in 

the original starting volume of lysis buffer, were retained. An equal volume of Laemmli sample 

buffer was added to these samples and the solubility o f the recombinant protein viewed by 

SDS-PAGE.

2.4.13 Purification of GST-tagged proteins

GST-tagged proteins were purified using the BioCAD® SPRINT™, Perfusion Chromatography® 

System (PE Biosystems). A GSTrapFF 5 ml (Glutathione sepharose) column was routinely 

used.

2.4.14 Preparation of bacterial cell extracts

GST fusion proteins were expressed as described (Section 2.4.1-2.4.2).

The pellet from a 500 ml bacterial cell culture was resuspended in 20 ml 1 x PBS (140 

mM NaCl, 2.7 mM KCl, 10 mM Na2HP0 4 , 1.8 mM KH2PO4, pH 7.3) and the cells disrupted 

under high pressure using a French Pressure cell at 950 psi. Typically 3 passes were made and 

protease inhibitors added to prevent degradation of protein. The supernatant was clarified by 

centrifugation at 10,000 rpm for 15 min at 4°C in a Beckman J2-21 centrifuge using a JA-14 

rotor.

2.4.15 Column purification of GST-tagged proteins

The column was prepared by equilibrating with 5 column volumes of binding buffer (1 x PBS) 

prior to use. Clarified supernatant was loaded onto the column in 5 ml increments. After 

extensive washing of the column in binding buffer, bound GST-tagged protein was eluted in 

elution buffer (10 mM reduced glutathione in 50 mM Tris-HCl, pH 8.0) and 2 ml fractions
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collected. Elution of the protein was monitored by measuring the absorbance at 280 nm. 

Aliquots of the appropriate fractions were then mixed with an equal volume of Laemmli sample 

buffer and analyzed using SDS-PAGE.

2.4.16 Purification of His-tagged proteins

His-tagged proteins were purified using the BioCAD® SPRINT™, Perfusion Chromatography® 

System (PE Biosystems). A POROS® MC (metal chelate) column (4.6 mm/100 mm) was 

routinely used.

2.4.17 Preparation of bacterial cell extracts

His-tagged fusion proteins were expressed as described (Section 2.4.1-2.4.2). The pellet from a 

500 ml bacterial cell culture was resuspended in 20 ml starting buffer (100 mM NaCl, 0.5 mM 

imidazole in 50mM KH2PO4, pH 7.5) and the cells disrupted under high pressure using a 

French Pressure cell at 950 psi. Typically 3 passes were made and protease inhibitors added to 

prevent degradation o f protein. The supernatant was clarified by centrifugation at 10,000 rpm 

for 15 min at 4°C in a Beckman J2-21 centrifuge using a JA-14 rotor.

2.4.18 Column purification of His-tagged proteins

The column was prepared by loading the imidodiacetate binding sites with zinc ions (0.1 M 

ZnCh, pH 4.5-5) for 25 column volumes and then washing with distilled water followed by 

0.5 M NaCl to remove any excess metal ions. The column was then washed with 5 column 

volumes of elution buffer (100 mM NaCl, 500 mM imidazole in 50 mM KH2PO4, pH 7.5). 

Finally the column was equilibrated with starting buffer (100 mM NaCl, 0.5 mM imidazole in 

50 mM KH2PO4, pH 7.5) before use.

Clarified supernatant was loaded onto the column in 5 ml increments. After extensive 

washing of the column in starting buffer bound His-tagged protein was eluted in a linear 

imidazole gradient (0.5 mM -  500 mM) and 2 ml fractions collected. Elution of protein was 

monitored by measuring the absorbance at 280 nm. After all the protein eluted the column was 

regenerated by washing with 15 column volumes of stripping buffer (50 mM EDTA, 1 M 

NaCl). Aliquots of the appropriate fractions were then mixed with an equal volume of Laemmli 

sample buffer and analyzed using SDS-PAGE.

2.4.19 Solubilization of insoluble proteins from inclusion bodies

The following protocol was adapted from the Protein Folding Kit (Novagen).

After induction in E. coli and overexpression of the desired protein (Section 2.4.1), the 

cells were pelleted as normal and resuspended in 0.1-culture volume of Inclusion body wash
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buffer (10 mM EDTA, 1% (v/v) Triton X-100 in 20 mM Tris-HCl, pH 7.5). Cells were 

disrupted by passage through a French press (Section 2.4.12), and insoluble material pelleted 

by centrifugation at 10,000 rpm for 10 min at 4°C. The pellet was then washed a further twice 

in Inclusion body wash buffer.

Inclusion bodies were resuspended in 50 mM KH2PO4, pH 7.5 (or 150 mM NaF, pH 7.5 

for Circular dichroism experiments) at a concentration of 10-20 mg ml^ and supplemented with 

the appropriate volume of 30% (v/v) N-lauiylsarcosine to give the desired concentration of 

detergent in the buffer, typically 0.1-3% (complete solubilisation was generally achieved with 

0.2% (v/v) detergent). This was incubated at room temperature for 30 min with agitation before 

clarifying any insoluble material by centrifugation at 10,000 rpm for 15 min at 4°C. Samples of 

the supernatant were taken for analysis using SDS-PAGE.

2.4.20 Mass spectrometric data

Mass spectia were recorded in collaboration with Dr. A. Pitt, Sir Henry Wellcome Functional 

Genomics Facility, University o f Glasgow.

Sample preparation

Gel bands were broken into approximately 1 mm cubes and then destained and dehydrated by 

sequential washing with 300 pi of: 25 mM ammonium bicarbonate, 50% 25 mM ammonium 

bicarbonate in acetonitrile and 1 0 0 % acetonitrile, followed by drying in a centrifugal 

evaporator (Univap, Uniscience). Gel slices were re-hydrated in 20 pi of 20 ng mf* trypsin (in 

25 mM ammonium bicarbonate) for 15 min. Additional 25 mM bicarbonate was then added to 

ensure the gel slice was covered and the digest incubated at 37°C overnight. The supernatant 

was removed, acidified by the addition on 1 pi of 5% formic acid and used dhectly for mass 

spectrometry or frozen at -2 0 °C until required. 1 0  pi aliquots of the samples was subjected to 

nLC-MSMS on a QStar Pulsar i electrospray mass spectrometer fitted with a nanospray source 

(Protana), using a 20 micron i.d., 10 micron orifice distally coated electrospray tip mounted in a 

ProADP2 adaptor (New Objective) connected to a nanoflow LC system (EC Packings) with the 

minimum length o f 20 micron i.d. fused silica capillary possible. nLC was performed using a 

0.3 X 5 mm reversed phase trap (PepMap C l 8 , Dionex) and a 75 micron x 15 cm PepMap C l8 

reversed phase column (Dionex) using standaid methodology, with a loading pump flow o f 30 

pi min'^ and a main flow of 200 nl m h f\ Peptides were trapped on the C l8 trap and desalted 

for 5 min before being separated using a 5-40% acetonitrile gradient over 15 min. All solutions 

contained 0.5% formic acid. Mass spectrometric analysis was performed in IDA mode 

(AnalystQS software, Applied Biosystems), selecting the 4 most intense ions for MSMS 

analysis. A survey scan o f 400-1500 Da was collected for 3 sec followed by 3 sec MSMS scans
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of 50-2000 Da using the standard rolling collision energy settings. IDA was triggered for ions 

with charge states 2-4 above a threshold o f 10 counts. Masses were then added to the exclusion 

list for 3 min. Peaks were extracted using the Mascot script (BioAnalyst, Applied Biosystems) 

and automatically exported to the Mascot (Matrix Science) search engine. Data was searched 

against the database using the MASCOT Daemon, with a peptide tolerance of 1.0 Da, an 

MSMS ion tolerance of 0.5 Da allowing for 1 missed cleave and variable methionine oxidation.

2.4.21 Circular dichroism

Circular dichroism (CD) spectra were recorded at 20°C on a JASCO J-810 spectropolarimeter 

(Jasco UK). All spectra were recorded in collaboration with Dr. S. Kelly and Mr. T. Jess in the 

Scottish Circular Dichioism Facility, University o f Glasgow. For CD experiments, purified 

protein samples were routinely prepared in 150 mM NaF, pH 7.5 (Section 2.4.19).

2.5 Fission yeast materials

2.5.1 Fission yeast media

Media used for the propagation o f fission yeast were as described by Moreno et al (1991).

2.5.2 Fission yeast strains

All fission yeast strains used in this thesis are listed in Appendix I. The annotation GG refers to 

the Glasgow lab fission yeast collection number.

2.5.3 Fission yeast plasmid vectors

The pREPl (GB 27) and pREP3X (GB 28) vectors, used for the expression of the His-tagged 

components of the DSCl complex in fission yeast, were obtained fi'om laboratory stocks 

(Appendix III).
- f

pREPl; for the expression o f genes under the control of the nmtl (no message in thiamine) 

promoter (Maundrell, 1993).

pREP3X: for the expression o f genes under the control o f the nm tl (no message in thiamine) 

promoter. Derived from the pREPl vector it contains different restriction sites in the polylinker 

(Forsburg, 1993).
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2.6 Fission yeast methods

2.6.1 Fission yeast cell culture

To resuscitate yeast strains from -70°C glycerol stocks, (maintained in 25% glycerol 75% YE) 

cells were streaked onto complete rich medium (YE) plates (Moreno et ah, 1991). The cells 

were then grown at the permissive temperature (25°C or as otherwise indicated for mutant 

strains) for 2 -3  nights and checked microscopically to ensure no contamination had occurred, 

and that the cells were growing normally. A few individual colonies were then picked and 

streaked onto a YE master-plate, which was incubated overnight at 25°C. The master plate was 

used to replica-plate colonies, using a velvet cloth, onto selective medium to confirm the yeast 

strain genotype. Strains containing plasmids or being used in experiments were propagated in 

EMM supplemented with the appropriate amino acids at a concentration of 100 pg ml’  ̂

(Moreno et al., 1991). Temperature sensitive mutants were incubated at the resti'ictive 

temperature of 21“C to display their mutant phenotype. Cell number per ml o f liquid culture 

was determined from a sample added to Isoton (Becton Dickinson); following sonication cells 

were counted electronically with a Z2 Coulter Counter. A cell count of 1-2 x 10  ̂ cells ml"' 

indicated cells were at exponential phase of growth.

2.6.2 Production of competent fission yeast cells

500 ml o f EMM plus appropriate supplements was inoculated with a 10 ml overnight culture. 

This culture was grown at 25“C until a density of approximately 1 x 10  ̂ cells ml"' was 

obtained. The cells were harvested in 50 ml centrifuge tubes by spinning at 3000 rpm for 5 min 

in a chilled desktop centrifuge. As much supernatant as possible was removed and the cells 

gently resuspended m a total of 100 ml o f ice-cold 1 M sorbitol. The cells were centrifuged as 

before and resuspended in 50 ml ice-cold 1 M sorbitol. This was repeated and the cells 

resuspended in 20 ml ice-cold 1 M sorbitol. Finally the cells were centrifuged and resuspended 

in 1-2 ml ice-cold 1 M sorbitol before being frozen at -70°C in 50 jrl aliquots.

2.6.3 Transformation of competent fission yeast

Aliquots of cells were thawed at room temperature and immediately stored on ice. To 50 pi of 

competent cells 1-2 pi of the appropriate plasmid DNA was added. The cell-DNA suspension 

was transferred to a pre-chilled 0.2 cm electroporation cuvette and pulsed at 2.5 kV. 1 ml of 1 

M sorbitol was then immediately added to the cuvette, the cell suspension returned to the 

microfuge tube and placed on ice. The transformation mixture was then plated out onto 

selective EMM, left to air dry, and incubated at permissive temperature for 3-4 days.
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2.6.4 Induction of gene overexpression

Several fission yeast strains containing the pREPl or pREP3X vectors with the appropriate 

insert were used to overexpress components o f the DSCl complex. Isresl cells (GG 146) 

were transformed with the pREP vector alone (GG 796), His-resl^ (GG 790), His-res2^ 

(GG 802), H is-re p t  (GG 811) or His-rep2^ (GG 817) and Eres2 cells (GG 156) were 

transformed with the pREP vector alone (GG 801) or containing His-res2^ (GG 808); 

Appendix I. The pREP vector series uses the nmtl (no message in thiamine) promoter to 

control expression of the inserted genes. Strains were streaked from glycerol stocks onto 

EMM plates containing the appropriate amino acids for nutritional selection of the plasmid,

with and without thiamine at a concentration of 5 pg p f ' {nmtl promoter ‘o ff)  and growth 

was compared at 30°C and 2 EC. For protein extraction, 5ml cultures were grown to 

saturation at 30°C with the appropriate amino acids with and without 5 pg p f ' thiamine. 

These were used to inoculate 200 ml cultures supplemented with the appropriate amino

acids and 5 pg p f ' thiamine (for nm tl promoter ‘o ff  experiments) or without thiamine (for 

nmtl* promoter ‘on’ experiments), and then grown for 16 h. Protein was then extracted for 

use in EMSA experiments as detailed (Section 2.6.5).

2.6.5 Protein extraction from fission yeast

Protein extraction from fission yeast was as described by Ng et al. (2001).

2 0 0  ml cultures of fission yeast cells, in mid-exponential stage of growth, were prepaied 

and harvested by centrifugation at 5000 rpm for 10 min in screw-cap centrifuge tubes. The cell 

pellet was resuspended in 200 pi of ice-cold lysis buffer (50 mM KCl, 50 mM Tris-FlCl pH 8 , 

25% glycerol, 2 mM DTT, 0.1% Triton X-100, 5 pg of protease inhibitors: chymostatin, 

pepstatin, antipain, leupeptin, aprotonin, 0.2 mM PMSF) in 2 ml screw-capped microfuge 

tubes. The cells were pelleted at 13,000 rpm for 1 min at 4°C in a high-speed microcentrifuge 

and again resuspended in 200 pi o f lysis buffer. Acid washed glass beads (425-600 micron, 

Sigma) were added to just beneath the meniscus and the tubes were chilled on ice for 2-3 min 

before being disrupted using a Ribolyser (Hybaid Ltd, UK) with 1 burst at 40 sec, setting 4. 

The cell debris was pelleted by centrifugation at 13,000 rpm for 5 min at 4°C and the protein 

supernatants were transferred to a fiesh chilled microfuge tube, and clarified by centrifugation 

at 13,000 rpm for 30 min at 4°C. Supernatants were transferred to a fresh chilled microfuge 

tube and 5 pi was removed to determine protein concentration, which was estimated using 

Bradford’s reagent (Section 2.4.5) and the remainder of the protein sample was snap fiozen on 

solid CO2, and stored at -70°C.
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Chapter 3

Molecular cloning and expression of individual 

components of the fission yeast DSCl complex



3.1 Introduction
In both budding and fission yeasts the decision to enter the mitotic cell cycle is made at a point 

in late G1 phase known as START (Forsburg and Nurse, 1991). Passage through START and 

entry into S phase requires CDK activity and the activated transcription of genes that are 

essential for S phase. In budding yeast the transcriptional activation o f these genes is dependent 

on the SBF and MBF transcription factor complexes and in fission yeast the MBF counterpart, 

DSCl (Johnston and Lowndes, 1992).

The SBF complex is composed of an ScSwi6p-ScSwi4p heterodimer, which binds to the 

5’ CACGAAA 3’ sequence in the promoters of several genes to regulate their transcription 

(Breeden and Nasmyth, 1987a; Andrews and Herskowitz, 1989a; Taba et al., 1991). Genes 

regulated by SBF include the G1 cyclins CLNJ, CLN2, PCLl and PCL2 (Johnston and 

Lowndes, 1992; Ogas et al., 1991; Measday et al., 1994; Koch and Nasmyth, 1994) and the HO  

endonuclease gene required for the mating type switch (Nasmyth, 1983; Breeden and Nasmyth, 

1987a).

The MBF complex recognises promoters containing the MCB sequence element 5’ 

ACGCGT 3’ (McIntosh et al., 1991; Lowndes et al., 1991) and is composed of ScSwi6 p in 

combination with ScM bplp (Lowndes et al., 1992b; Dirick et a l , 1992; Moll et a l ,  1992; Koch 

et a l, 1993). Targets for MBF regulation in budding yeast include many genes required for 

DNA synthesis and two late G1 cyclins CLB5 and CLB6 (Johnston and Lowndes, 1992; 

McIntosh et a l, 1991; Epstein and Cross, 1992; Schwob and Nasmyth, 1993). More recently a 

genome wide analysis of the SBF and MBF binding patterns has implicated these two 

complexes in the control of many more genes, some of which are transcription factors 

themselves, implying a greater gene regulatoiy role for these complexes than first thought (Iyer 

et a l, 2001; Horak et a l, 2002), In both SBF and MBF, DNA binding is mediated by, ScSwi4p 

and ScMbplp, respectively (Primig et a l, 1992; Dirick et a l, 1992; Koch et a l ,  1993).

In the distantly related fission yeast the transcriptional activation o f at least ten genes 

{cdc22^, cdcl8^, cig2^, cdtl^, rad2l^, suc22^, radll^, ste9^, mikl^ and cdt2^) required for S 

phase and DNA replication is controlled by the DSCl complex (Lowndes et a l ,  1992a; 

Fernandez-Sarabia et a l , 1993; Kelly et a l, 1993; Connolly and Beach, 1994; Hofinann and 

Beach, 1994; Birkenbihl and Subramani, 1995; Harris et a l, 1996; Parker et a l, 1997; Tournier 

and Millar, 2000; Ayte et a l, 2001; Ng et a l, 2001; Yoshida et a l, 2003). Similar to MBF in 

budding yeast, this complex binds to MCB elements in the promoters of these genes. The 

SpReslp, SpRes2p, SpCdclOp and SpRep2p proteins are all components of this complex 

(Lowndes et a l ,  1992a; Tanaka et a l ,  1992; Caligiuri and Beach, 1993; Miyamoto et a l, 1994; 

Zhu et a l, 1994; Nakashima et a l, 1995) with a role in the meiotic cycle proposed for SpReplp 

in place o f SpRep2p (Sugiyama et a l ,  1994; Cunliffe et a l , 2004). At least three of these
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proteins, namely SpReslp, SpRes2p and SpCdclOp, share close homology to their budding 

yeast counterparts.

A comparison of SBF/MBF/DSCl proteins at the level of primary structure revealed a 

significant degree of homology specifically in their N and C-termini and in two centrally 

located ankyrin repeats. In ScSwi4p and ScM bplp the N-terminus harbours their DNA binding 

capability whilst their C-termini are required for heteromeric complex formation with the C- 

terminus of ScSwi6 p. Similarly, in SpReslp and SpRes2p, the N-terminus contains the DNA 

binding domain and their C-termini bind to SpCdclOp. Common to all six proteins aie the two 

centrally located ankyrin-repeat motifs (Bork, 1993; Sedgwick and Smerdon, 1999). The 

ankyrin repeats, believed to be involved in protein-protein interactions, have been reported to 

be required for interaction with cyclin-CDK complexes (Siegmund and Nasmyth, 1996; Foord 

et al., 1999). Both SpCdclOp and ScSwi6 p also share a putative leucine zipper domain in their 

C termini (Reymond and Simanis, 1993; Sidorova and Breeden, 1993).

Much work has been carried out on these genes and their protein products, both genetic 

and biochemical, in terms o f characterising their biological function (the functional properties 

of these proteins will be discussed in Chapters 4 and 5 of this thesis). In recent years significant 

progress has been made toward elucidating the shucture and function of the ScSwi4p-ScSwi6p- 

ScMbplp family of transcription factors from budding yeast. In contrast, little or no work has 

been carried out to study the 3-D structure of the fission yeast DSCl components and so in 

comparison to their budding yeast homologues, these proteins remain poorly characterised at 

the atomic level.

To date, the 3-D structure o f the DNA-binding domain o f SpMbplp has been 

determined by two independent groups at 2.1 Â resolution using X-ray ciystallograpliy (Taylor 

et al., 1997; Xu et al., 1997), and also more recently using NMR spectroscopy (Nair et al., 

2003). X-ray crystallography was also employed to obtain a detailed structural analysis o f the 

central ankyrin domain of ScSwi6p at 2.1 Â resolution (Foord et al., 1999).

Detailed structural analysis of a protein using methods such as those highlighted above 

requires highly pure, soluble and active preparation in large amounts (5-10 mg). Whilst protein 

purification from the native source is the ideal situation, it can often involve lengthy protocols, 

using several types of chromatography in order to achieve purification to near homogeneity (a 

pre-requisite for detailed biophysical analysis). Furthermore, because many proteins of 

biological interest (and especially cell cycle transcription factors) are present in naturally tiny 

amounts, they are typically recovered in veiy low yields and are therefore not amenable for 

many structural and functional analyses. It is for these reasons that the production of a protein 

of interest is often carried out in a heterologous organism whose molecular mechanisms have 

been specifically engineered to produce a protein in amounts much greater than that available 

from the native source. Indeed, the analysis o f all the budding yeast components of MBF have
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been possible as a result of expression as recombinant proteins in E. coli. The pET system 

(Novagen) is a widely used prokaryotic system for cloning and expressing recombinant 

proteins in E. coli. Target genes are cloned into pET vectors under the control of the tightly 

regulated T7 RNA polymerase promoter and maintained in hosts that lack a T7 RNA 

polymerase gene. Once established in a non-expression host, the plasmid is then transformed 

into a strain engineered to carry a chromosomal copy of the T7 RNA polymerase gene under 

lacUV5 control. Expression of the protein is then chemically induced by addition of IPTG.

The use of this prokaryotic system is not without limitations, as many of the post- 

translational modifications carried out in eukaryotes are unavailable in this host. Alternatively, 

many researchers therefore exploit a eukaryotic host for recombinant protein expression (the 

methylotrophic yeast Pichia pastoris and baculovirus systems are now widely used). 

Nevertheless, it is important to note that the relative success o f each system used for 

heterologous expression must be determined empirically for each individual protein (many 

proteins that do not express at all, or to low levels, in the eukaryotic systems have often been 

successfully expressed in E. coli and vice versa). As precedent for this project, E. coli, as host 

for heterologous protein expression, was successfully applied permitting detailed structural 

information about the budding yeast MBF components.

The aim of this chapter was to clone the components of the fission yeast DSCl 

transcription factor complex and to express them as His-tagged fusion proteins in E. coli. The 

cloning and expression o f these components using the pET system has the potential to provide 

a reproducible source o f recombinant proteins in amounts suitable for use in future functional 

and biophysical studies.
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3.2 Cloning the resl̂ ,̂ res2^  ̂repÜ  and rep2^ components of DSCl
The plasmids used for the cloning of the DSCl components are listed in Appendix I — GB 121 

{ r e p V \GB 23 { r e p 2 '\GB 164 {resT) and GB 160 {resl").

Previously in our laboratory, PCR o f the cDNAs encoding the components o f the fission 

yeast DSCl complex was performed using primers that permitted the addition of N-terminal 

Ndel and C-terminal SamHI restriction sites. These sites were not present in the open reading 

frames of the genes being cloned. The fidelity of the PCR reactions and the integrity of the 

restriction sites at the ends of each gene were confirmed by DNA sequencing after cloning into 

the vector pBC KS^ (MWG-Biotech -  using oligos listed in Appendix II). The presence o f the 

restriction ends, specifically the N-terminal Nde\ site, allowed cloning into the pET-28c vector 

in the correct reading frame with an N-terminal 6 -histidine tag (His-tag). The inclusion of the 

His-tag provides a means o f conveniently purifying the fusion protein by immobilised metal 

ion affinity chromatography (IMAC). This vector also contains the neomycin 

phosphotransferase gene, conferring kanamycin antibiotic resistance to the cloned plasmid.

The plasmids containing the His-tagged cDNAs of the DSCl components were digested 

with Ndel and Bamldl, as was the pET-28c vector to generate compatible cohesive ends for 

ligation. The vector was also treated with calf intestinal alkaline phosphatase to remove the 

phosphate groups exposed by digestion in order to prevent self-ligation (Methods 2.2.7 and 

2.2.8). The products of the restriction digestions were analysed on a 1.5% (w/v) agarose gel and 

bands of the appropriate size excised and purified using the QIAquick® Gel Extraction Kit 

(Methods 2.2.4 and 2.2.6). 5 pi samples were analysed on a 1.5% (w/v) agarose gel to 

determine the amount of DNA retrieved and thus to empirically determine the vector:insert 

ratio to be used in the subsequent ligation. Ligation reactions were carried out as described 

(Methods 2.2.9) and transformed into E. coli DH5a cells the following day (Methods 2.2.13). 

Transformants were then plated on LB-agar plates supplemented with the antibiotic kanamycin 

(30 pg ml"') and incubated at 37°C overnight. Colonies were selected and cultured overnight at 

37°C in 5 ml LB media supplemented with kanamycin (30 pg ml ').

Plasmid DNA was purified from the overnight cultures as described in Methods section

2.2.5 and analysed by restriction enzyme mapping to confirm the presence of an insert of the 

predicted size (Figures 3.1 and 3.2). Potential positive clones were sequenced (MWG-Biotech - 

using oligos listed in Appendix II) to confirm the presence of insert and ensure that the genes 

had been cloned in-frame with the N-terminal His-tag, After confirmation by restriction 

mapping and DNA sequencing, a positive clone for each gene was stored at -70°C in the lab 

bacterial collection: GB 177 {rep N \  GB 191 {rep2^\ GB 178 {res2^) and GB 201 {resF) - 

Appendix I. These clones were then used for the subsequent overexpression o f heterologous 

protein.
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Figure 3.1 Restriction digestion analyses of the r e p l^ - p E T - 2 H c  and -pET-28c 

plasmids

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion o f the rep/-pET-28c plasmid: 1 Ndel-BamHl 2 EcoRl 3 EcoRW.

Digestion of the rep2-pET-28c plasmid: 4 Nde\-BamH\.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised 

for each clone in Tables 3.1 and 3.2.

Enzyme(s) | Number of Fragments Fragment sizes (bp)
Ndel-BamHl | 2 1420,5330 i
EcoRl 3 370,660,5720
E coR y \2 2300, 4450

Table 3.1 rep/ -pET-28c

1 En^m e(s)__________ ! Number of Fragments ( Fragment sizes (bp)
Ndel-BamHl |2 660, 5330

Table 3.2 rep2-pET-28c
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Figure 3.2 Restriction digestion analyses of the res2-pET-28c and res/^-pET-28c 

plasmids

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the res2-pET-28c plasmid: 1 Nde\-BamW\ 2 EcoRI 3 Nco\

Digestion of the res/-pET-28c plasmid: 4 Nde\-BamUl 5 HindWl 6 Xba\

The restriction enzymes used in each digest and the predicted fragment sizes are summarised 

for each clone in Tables 3.3 and 3.4.

[ Enzyme(s) 1 Number of Fragments 1 Fragment sizes (bp)
N d e l - B a m H l 1 ̂ [1970,5330

1 EcoRl 2 1 1530, 5770

N c o l 2 1200, 6100

Table 3.3 rea^2-pET-28c

[ Enzyme(s) 1 Number of Fragments 1 Fragment sizes (bp)
N d e l - B a m H l 2 1 1910, 5330

1-----
H in d lH 1 ^ 1 1370, 5870

X b a l 2 570, 6670

Table 3.4 r e s  I - p E T - 2 S c
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3.3 Cloning the cdclO^ component of DSCl
The recombinant plasmid containing the cdclO' gene cloned into the Ndel-BamHl sites of pET- 

28c (previously cloned in our laboratory) was found to produce a truncated protein product 

upon overexpression. Subsequent DNA sequencing analysis identified an artificial internal stop 

codon as the cause of this truncation. Site-directed mutagenesis was therefore can ied out to 

remove the internal stop site and is outlined below (details o f the site-directed mutagenesis o f 

cdclO" are described in Methods 2.2.11). The site-directed mutagenesis invokes a G to C single 

base pair substitution at position 426 relative to the ATG. This is a silent mutation changing 

TAG (Stop) to TAG (Tyr) since the wild type cdclO^ gene contains a TAT (Tyr) at the 

corresponding codon. The incorporation o f C rather than T, with respect to wild type, at base 

pair 426 was necessary to remove an internal Ndel site.

3.3.1 Site-directed mutagenesis of cdclCP

The plasmid pET-28c containing a 2,304 bp fragment representing the cdclO^ gene cloned in at 

Ndel-BamHl was obtained from a laboratory stock (GB 130: Appendix I) and used as template 

for site-directed mutagenesis. Figure 3.3 provides a schematic representation of the 

mutagenesis reaction and the primers used.

Initially, two separate PCR reactions were carried out using primer pairs GO 546/GO 

548 and GO 547/GO 459, to generate fragments o f approximately 500 bp and 2000 bp, 

respectively. The products obtained from these PCR reactions are shown in Figure 3.4. Both 

products of the predicted size, containing the G to C substitution at position 426 (as introduced 

by the mutagenic primers GO 547 and GO 548) were gel purified (Methods 2.2.6) and analysed 

by electrophoresis on a 1.5% (w/v) agarose gel (data not shown). 0.5 pi of each purified PCR 

product was then used as template in a single fusion PCR reaction using the primers GO 546 

and GO 459. These primers are complementary to either end of the cdclO^ gene in GB130 and 

incorporate the N-terminal Ndel and C-terminal BamHl sites, respectively. All PCR reactions 

were carried out using the VentR DNA polymerase (New England Biolabs). This enzyme has 

extensive 3’ to 5’ exonuclease proofreading activity, thus helping to minimise errors in base 

mis-incorporation.
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Figure 3.3 PCR strategy for the site-directed mutagenesis of cdcIO*

A schematic representation of the primers used in the site-directed mutagenesis of 
cdclO \ A In separate PCR reactions, 1 and 2, two fragments of the target gene 
were amplified. PCR 1 uses primers GO 546 and GO 548, whereas PCR 2 uses 
primers GO 547 and GO 459. B The two overlapping fragments were then used as a 
template in a fusion PCR reaction, 3, with primers GO 546 and GO 459 to produce 
the full-length mutant DNA.
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Figure 3.4 Site-directed mutagenesis of cdcIO *  by PCR amplification

PCR products were analysed on 1.5% (w/v) agarose gels stained with ethidium bromide. The 

1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs. Arrows indicate PCR 

products of the predicted size, from reactions using primer pairs GO 546/GO 548 and 

GO 547/GO 459. The presence of contaminating PCR products in the GO 546/GO 548 reaction 

was due to non-specific priming in early cycles.
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3.3.2 Cloning the silently mutated cdclO^ gene into pCR2.1®

The TA Cloning® Kit (Invitrogen) was used to clone the blunt-ended PCR product from the 

fusion PCR reaction (Methods 2.2.10).

Cloning of PCR products into the pCR2.1® vector is a one-step method that utilises the 

non-template dependent activity o f Tag polymerase to add single deoxyadenosine (A) to the 3 ’ 

ends of PCR products. The linearised pCR2.1® vector contains single 3’ deoxythymidine (T) 

residues, thus allowing efficient ligation of a PCR insert with vector. VentR DNA polymerase 

was used in the PCR reactions to improve fidelity as it has a much lower rate o f base mis- 

incorporation than Tag polymerase due to intrinsic proofreading activity. However, VentR does 

not leave single 3’ A overhangs, and so a necessary extra final step at the end of the fusion PCR 

reaction was to incubate the reaction mix with Tag at 72°C for 10 min.

3.3.3 Ligation, transformation and identification of clones

After treatment with Tag a PCR product corresponding to the approximate size of the cdclO^ 

gene was gel purified, an aliquot analysed on an agarose gel (data not shown) and used in a 

ligation reaction with the linearised pCR2.1® vector. The cloning of the cdclO^ fusion PCR 

product into the pCR2.1® vector and transformation was as described in Methods section 

2 .2 . 10 .

Transformants were plated on LB-agar plates containing 1.6 mg p f ' X-Gal, 50 pg ml"' 

ampicillin and incubated at 37°C overnight. Colonies were selected according to the blue/white 

screening method and white colonies picked and cultured overnight in LB media supplemented 

with ampicillin (50 pg ml"') at 37°C. Plasmid DNA was purified from the overnight cultures as 

described in Methods section 2.2.5 and analysed by restriction enzyme mapping to confirm the 

presence of an insert of the correct size (Figure 3.5). Potential positive clones were sequenced 

(MWG-Biotech - using oligos listed in Appendix II) to confirm the presence of insert and that 

the site-directed mutagenesis was successful. After confirmation by restriction mapping and 

DNA sequencing, a positive clone was stored at -70°C in the lab bacterial collection as GB 313 

(Appendix I).
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Figure 3.5 Restriction digestion analysis of the recombinant -pCR2.1® plasmid

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the c<7c/0-pCR2.1® plasmid: 1 Nde\-Bam\\\ 2 EcoRl.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised 

for each clone in Table 3.5.

Enzyme(s) Number of Fragments Fragment sizes (bp)
N d e \ - B a m H \ 2 1 2300,3930

1 ........
EcoRl 2 1 2400,3830

Table 3.5 cdclO^-pCR2.
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3.3.4 Cloning the silently mutated cdclO^ gene into pET-14b
The plasmid GB 313, containing the cdclO^ fusion PCR product, was digested with Ndel and 

BamHl as was the pET-14b vector to generate cohesive ends for ligation. The vector was also 

treated with calf intestinal alkaline phosphatase, to remove the phosphate groups exposed by 

digestion and so prevent self-ligation (Methods 2.2.7 and 2.2.8). The products of the restriction 

digests were analysed on a 1.5 % (w/v) agarose gel and bands of the appropriate size excised 

and purified using the QIAquick® Gel Extraction Kit (Methods 2.2.4 and 2.2.6). 5 pi samples 

were analysed on a 1.5 % (w/v) agarose gel to determine the amount o f DNA retrieved and thus 

to empirically determine the vector:insert ratio to be used in the subsequent ligation reaction. 

Ligation reactions were carried out as described (Methods 2.2.9) and transformed into E. coli 

DH5a cells the following day (Methods 2.2.13).

Transformants were then plated on LB-agar plates supplemented with the antibiotic 

ampicillin (50 pg ml"') and incubated at 3TC  overnight. Colonies were selected and cultured 

overnight at 37°C in 5 ml LB media supplemented with ampicillin (50 pg ml"').

Plasmid DNA was purified from the overnight cultures as described in Methods section

2.2.5 and analysed by restriction enzyme mapping to confirm the presence of an insert o f the 

correct size (Figure 3.6). Potential positive clones were sequenced (MWG-Biotech - using 

oligos listed in Appendix II) to confirm the presence o f insert and that the gene had been cloned 

in-frame with the N-terminal His-tag. After confirmation by restriction mapping and DNA 

sequencing, a positive clone was stored at -70°C in the lab bacterial collection as GB 314 

(Appendix I). This clone was then used for the subsequent overexpression of heterologous 

protein.
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Figure 3.6 Restriction digestion analysis of the recombinant cdIc/O-pET-14b 

plasmid

Clones containing insert were analysed by restriction mapping. Samples o f each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the -pET-14b plasmid: 1 Nde\-Bam\\\ 2 Pst\.

The restriction enzymes used and the expected fragment sizes produced from each digest are 

summarised for each clone in Table 3.6.

Enzyme(s) Number of Fragments
N d e \ - B a m H \ 2

P s t l 2

Fragment sizes (bp)
I 2300, 4660 

I  2250, 4710~

Table 3.6 cdclOt-pEY-XAh
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3.4 Overexpression of the recombinant proteins
The previously isolated clones, containing insert for each component o f the DSCl complex, 

were then transformed into the E. coli expression strain BL21 (DE3) CodonPlus-RIL and small 

scale protein inductions performed to test for successful overexpression of each protein 

(Methods 2.4.1).

An aliquot o f a 5 ml overnight culture supplemented with either kanamycin (30pg/ml) or 

ampicillin (50 pg ml '), as appropriate, was subcultured into a fresh 50 ml culture and grown 

with shaking at 37°C until the optical density reached - 0 .5  at 600 nm. Expression of protein 

was then induced by the addition of IPTG to a final concentration of 1 mM. Inductions were 

initially carried out at 37°C and 1 ml samples were removed at the point of induction (0 h) and 

at hourly intervals thereafter for 3 h. Samples were then pelleted by centrifugation, resuspended 

in Laemmli sample buffer and analysed by 10% (w/v) SDS-polyacrylamide gel electrophoresis 

and Coomassie blue staining. The results of each recombinant protein induction aie shown in 

Figures 3.7-3.9. Immunoblot analysis was also carried out, using an antibody directed against 

the His-tag, to confirm that the N-terminus was intact (Figures 3.10-3.12).

All five proteins were successfully expressed at 37°C using this system, although His- 

Reslp and His-Rep2p were only observed by immunoblotting. The His-Reslp and His-Res2p 

proteins resolved with a M  ̂approximately 75,000, while their predicted values are 74,604 and 

75,864, respectively. The His-Replp and His-Rep2p proteins resolved with a Mr approximately 

55,000 and 30,000, while their predicted values are 54,781 and 26,831, respectively. The His- 

CdclOp protein resolved with a Mr approximately 90,000 while the predicted value is 87,676. 

Once the proteins had been successfully expressed it was then necessary to test their solubility.

This was achieved by breaking open the bacterial cells, by either chemical or mechanical 

means, to release the protein into the extracellular environment. Insoluble proteins and cellular 

debris are typically removed by centrifugation with any soluble protein being retrieved from 

the supernatant. The discussion of the solubility of these recombinant proteins is delayed until 

Chapter 5 where it is discussed with relevance to the biological activity of the recombinant 

DSC 1 components in vitro.
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Figure 3.7 Overexpression of His-Reslp and His-Replp

His-Reslp and His-Replp were overexpressed at 37°C in BL21 (DE3) CodonPlus-RIL cells by 

induction with 1 mM IPTG. Samples (1 ml) were removed at the point o f induction (0 h) and at 

hourly intervals thereafter for 3 h. Samples were centrifuged and pellets resuspended in 

Laemmli sample buffer (10 pi / 0.1 absorbance unit) then denatured by boiling for 5 min in the 

presence of DTT (150 mM). Samples were then analysed on a 10 % SDS-polyacrylamide gel 

stained with Coomassie brilliant blue. Expression of His-Reslp was not detected by Coomassie 

blue staining under these conditions (the anticipated position of His-Reslp is indicated by the 

arrow). Expression of His-Replp was observed in lanes 1-3 (indicated by the arrow). Molecular 

weight markers are shown (MJ with sizes indicated in kDa.
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Figure 3.8 Overexpression of His-Res2p and His-CdcIOp

His-Res2p and His-CdclOp were overexpressed at 37°C in BL21 CodonPlus (DE3)-RIL cells 

by induction with I mM IPTG. Samples (I ml) were removed at the point of induction (0 h) 

and at hourly intervals thereafter for 3 h. Samples were centrifuged and pellets resuspended in 

Laemmli sample buffer (10 pi / 0.1 absorbance unit) then denatured by boiling for 5 min in the 

presence of DTT (150 mM). Samples were then analysed on a 10 % SDS-polyacrylamide gel 

stained with Coomassie brilliant blue. Expression of His-Res2p and His-CdclOp was observed 

in lanes 1 -3 in both cases (indicated by arrows). Molecular weight markers are shown (MJ with 

sizes indicated in kDa.
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Figure 3.9 Overexpression of His-Rep2p

His-Rep2p was overexpressed at 37°C in BL21 CodonPlus (DE3)-R1L cells by induction with 

1 mM IPTG. Samples (1 ml) were removed at the point of induction (0 h) and at hourly 

intervals thereafter for 3 h. Samples were centrifuged and pellets resuspended in Laemmli 

sample buffer (10 pi / 0.1 absorbance unit) then denatured by boiling for 5 min in the presence 

of DTT (150 mM). Samples were then analysed on a 10 % SDS-polyacrylamide gel stained 

with Coomassie brilliant blue. Expression of His-Rep2p was not detected by Coomassie blue 

staining under these conditions (the anticipated position of His-Rep2p is indicated by the 

arrow). Molecular weight markers are shown (MJ with sizes indicated in kDa.
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Figure 3.10 Immunoblot analysis of overexpressed His-Reslp and His-Res2p

A His-Reslp and B His-Res2p were overexpressed at 37°C in BL21 CodonPlus (DE3)-RIL 

cells by induction with 1 mM IPTG. Samples (1 ml) were removed at the point of induction (0 

h) and at hourly intervals thereafter for 3 h. Immunoblotting was carried out as described 

(Methods 2.4.7-2.4.11) and blots were probed with Anti-PentaHis-HRP conjugate antibody 

(Qiagen) at 1:2500. Expression of His-Reslp and His-Res2p was observed in lanes 1-3 in both 

cases. Molecular weight markers are shown (Mr) with sizes indicated in kDa.
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Figure 3.11 Immunoblot analysis of overexpressed His-Replp and His-Rep2p

A His-Replp and B His-Rep2p were overexpressed at 37°C in BL21 CodonPlus (DE3)-RIL 

cells by induction with 1 mM IPTG. Samples (1 ml) were removed at the point of induction (0 

h) and at hourly intervals thereafter for 3 h. Immunoblotting was carried out as described 

(Methods 2.4.7-2.4.11) and blots were probed with Anti-PentaHis-HRP conjugate antibody 

(Qiagen) at 1:2500. Expression of His-Replp and His-Rep2p was observed in lanes 1-3 in both 

cases. Molecular weight markers are shown (MJ with sizes indicated in kDa.
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Figure 3.12 Immunoblot analysis of overexpressed His-CdclOp

His-CdclOp was overexpressed at 37°C in BL21 CodonPlus (DE3)-RIL cells by induction with 

1 mM IPTG. Samples (1 ml) were removed at the point o f induction (0 h) and at hourly 

intervals thereafter for 3 h. Immunoblotting was carried out as described (Methods 2.4.7- 

2.4.11) and blots were probed with Anti-PentaHis-HRP conjugate antibody (Qiagen) at 1:2500. 

Expression of His-CdclOp was observed in lanes 1-3 as indicated by the arrow (basal 

expression was observed in lane 0 h - see text for discussion). Molecular weight markers are 

shown (Mr) with sizes indicated in kDa.
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3.5 Discussion
In this chapter the cloning strategy has been described which allowed the successful and 

reproducible overexpression of the individual components of the fission yeast DSCl complex 

as analysed by SDS-PAGE, followed by Coomassie blue staining and immunoblotting.

High-level expression of the Res2p, Rep Ip and CdclOp components of DSCl as His- 

tagged fusion proteins was achieved as visualised by SDS-PAGE and Coomassie blue staining 

(Figures 3.7-3.8). Upon immunoblot analysis of His-CdclOp some basal expression was seen at 

0 h (Figure 3.12). High-level basal expression can often result in plasmid toxicity causing 

prevention of growth and eventually leading to plasmid loss. However, the low levels of basal 

expression seen with His-CdclOp had no such adverse effects. The overexpression of the His- 

R eslp and His-Rep2p components was achieved at lower levels, such that they were detectable 

only by immunoblotting (Figures 3.7, 3.10 and 3.9, 3.11, respectively). Attempts to optimise 

the expression of all the recombinant proteins made use of alternative E. coli host strains, each 

with subtle molecular differences. Expression of each recombinant protein was tested in E. coli 

BL21 (DE3) pLysS cells. These cells contain a plasmid that provides a source of T7 lysozyme, 

which binds to T7 RNA polymerase, serving to minimise basal transcription. Furthermore, with 

specific regard to overexpression of His-Reslp and His-Rep2p, the BL21Star™ (DE3) strain 

was also tested. The BL21Star™ (DE3) strain carries a mutated RNase enzyme that lacks the 

ability to degrade mRNA. Consequently, mRNAs expressed in this strain are typically more 

stable, resulting in increased protein expression. However, despite the use of these and other 

host stiains, optimal conditions for each recombinant protein were achieved using the BL21 

(DE3) CodonPlus-RIL cells. This observation was attributed to the fact that BL21 (DE3) 

CodonPlus-RIL cells contain extra copies of several IRNA species that are ‘rare’ to E. coli. 

Most amino acids are encoded by more than one codon and each organism has a bias for 

particular codons for certain amino acids. Therefore, in each cell of that organism, the tRNA 

population will reflect the codon bias in the mRNA. As fission yeast proteins were being 

expressed in E. coli, differences in codon usage between the two organisms could result in 

aberrant translation. The tRNAs that are required and abundant in fission yeast might be absent 

or in short supply in E. coli. This can lead to inefficient translation and incoiporation of the 

wrong amino acid as a result o f ‘rare’ tRNA depletion in E. coli. Use of an E. coli strain which 

has extra copies of these ‘rare’ tRNAs engineered on a plasmid can often be used to overcome 

such problems.

The expression of soluble recombinant proteins suggests that they are capable of folding 

into their native or near-native state in E. coli. Production of soluble protein in this case also 

indicates that the presence of the N-terminal His-tag does not affect folding or expression in 

this host.
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The solubility of the recombinant proteins produced in this chapter is discussed in 

Chapter 5 where their activities are analysed by in vitro assay. The following Chapter 4 

discusses the use of fission yeast, the organism from which these proteins are derived, as a host 

to assay the effects of the N-terminal His-tag on their biological activity in vivo.
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Chapter 4
Biological activity assays of recombinant DSCl 

proteins in vivo



4.1 Introduction
Chapter 3 described the cloning o f the fission yeast genes of DSCl components cdclO^, r e s t ,  

res2^, r e p t  and rep2^ into the bacterial expression vector pET-28c (pET-14b for cdclO^), in- 

frame with an N-terminal His-tag. Overexpression of each protein in E. coli has the potential to 

produce sufficient amounts to allow detailed stiuctural analyses, with the addition o f the His- 

tag to facilitate purification by means o f affinity chromatography.

The function of a protein is dictated by its 3-D architecture. Even a single amino acid 

change in the native sequence can dramatically alter protein activity, exemplified in this context 

by the sc tl-b l mutant of r e s t ,  and various point mutants of cdclO^ (Caligiuri and Beach, 1993; 

Reymond et al., 1992). Therefore, as the N-terminal His-tag is naturally absent from these 

proteins, its presence may affect their function. In this chapter therefore, a study was 

undertaken to examine possible effects o f the N-terminal His-tag on the biological activity of 

these proteins when produced in vivo.

Current models predict that the fission yeast mitotic DSCl complex is composed of the 

SpCdclOp, SpReslp, SpRes2p and SpRep2p proteins (SpRep2p is replaced by SpReplp in the 

meiotic cycle). SpCdclOp was the first component of DSCl to be identified (Lowndes et al., 

1992). The identification of the cdclO^ gene product as a physical component of the DSCl 

complex, coupled to the availability of conditional lethal cdclO mutants (Reymond et al., 

1992), allowed the identification o f further DSCl components, through yeast genetic 

suppressor analysis.

SpReslp and SpRes2p were first identified by their genetic interaction with c d c l l t . 

Both proteins were subsequently shown to interact with each other. The r e s t  gene was 

identified as a high copy suppressor o f the cdclO-129 mutant and is required for passage of 

START (Tanaka et al., 1992). In addition, the r e s t  gene could almost completely suppress a 

AcdclO deletion mutant. In contrast, the cdclO^ gene could not rescue cells deleted for r e s t .  

Furthermore, the putative SpReslp protein showed significant homology to both SpCdclOp and 

ScSwi6p and in particular to the DNA binding domain of ScSwi4p. Moreover, the r e s t  gene 

was cloned independently as an extragenic suppressor of the cdclO-129 mutant, and shown to 

be part of the DSCl band-shift activity (Caligiuri and Beach, 1993).

Cells deleted for r e s t  can grow, albeit poorly, at 30°C but show severe heat and cold 

sensitivities, resulting in a lethal phenotype at 36°C and 2VC  (Tanaka et al., 1992; Caligiuri 

and Beach, 1993). The observation that cells deleted for the r e s t  gene could proceed through 

the cell cycle at 30°C prompted the search for a gene redundant in function with r e s t  and 

ultimately to the identification of SpRes2p.

Cloned by its ability to rescue the heat and cold sensitivities of the Aresl mutant, the 

res2^ gene could also effectively suppress the cdclO-129 mutant at restrictive temperature, but

81



unlike r e s t ,  was unable to rescue a AcdclO strain. In conti’ast to r e s t ,  deletion of re s t' 

showed no apparent defects in mitotic growth, although defects in the meiotic cycle indicated 

res2^ may have a major role (Miyamoto et al., 1994). The res2^ gene was also cloned 

independently in a genetic screen designed to identify SpCdclOp binding proteins, and was 

subsequently shown to bind to MCB elements in vitro, m association with SpCdclOp (Zhu et 

a l , 1994).

The r e p t  gene was isolated as an extragenic suppressor of the cdcl 0-129 mutant at 

restrictive temperatme but, like res2^, was unable to rescue a AcdclO mutant. In addition, r e p t  

could effectively suppress the heat and cold sensitivities of the Aresl null mutant. Similar to 

cells deleted for res2^, the Arepl mutant had no apparent mitotic defects, but instead was 

defective in the meiotic cycle (Sugiyama et a l, 1994).

The fact that the r e p t  gene was not expressed in mitosis but could rescue the cdclO-129 

and Aresl mutants, led to the search for a r e p t  like gene acting in mitosis. Consequently, the 

rep2'^ gene was cloned by its ability to rescue the cdclO-129 mutant at restrictive temperature. 

In addition, rep2^ could suppress the heat and cold sensitivities of the Aresl mutant, whereas 

cells deleted for rep2^ were viable at 30“C but showed cold sensitivity at 18°C (Nakashima et 

a l, 1995).

Thus, a common property o f these genes (with the exception o f cdclO^) is their ability to 

rescue the heat and cold sensitivities of a Aresl mutant at 36°C and 2TC , and these properties 

were exploited to assay the biological activity of the recombinant His-tagged proteins. If  the 

His-tag does not affect their function, the recombinant proteins should behave similarly to their 

wild type counterparts in rescuing a Aresl mutant.

A further characteristic of cells deleted for either r e s t  or res2^ is loss of DSCl as 

detected in vitro by band-shift analysis (Zhu et a l, 1997; Ayte et a l ,  1997). The loss o f this 

band-shift activity in strains deleted for either r e s t  or res2'^ can be reconstituted by 

introduction of either the r e s t  or res2~̂  gene on a plasmid, respectively. However, expression 

of the r e s t  or res2^ gene in strains deleted for either res2^ or r e s t ,  respectively, does not 

result in reappearance o f this band-shift activity (Zhu et a l, 1997).

These observations, together with the demonstration that the DSCl complex could be 

super-shifted in band-shift analysis using antibodies specific to either SpCdclOp, SpReslp or 

SpRes2p, was the first evidence to suggest that a single complex containing all three proteins 

existed (Zhu et a l ,  1997; Ayte et a l , 1997). These obsei"vations revised initial proposals that 

suggested that, similar to the role of ScSwibp m the SBF and MBF complexes of budding 

yeast, the SpCdclOp protein o f fission yeast was a common subunit of two distinct DNA 

binding complexes. Earlier models proposed that a SpRes 1 p-SpCdc 1 Op DSCl complex acted 

primarily in the mitotic cycle, whilst a SpRes2p-SpCdcl0p complex behaved similarly in the
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meiotic cycle (Miyamoto et al., 1994; Zhu et al., 1994). The existence of a single fission yeast 

DSCl complex was confirmed by the demonstration that a SpCdcl0p-SpReslp-SpRes2p 

heteromeric complex existed throughout the mitotic cell cycle (Whitehall et al., 1999).

In addition to the genetic suppressor activities mentioned above, the abilities of both 

His-Reslp and His-Res2p to participate in the DSCl complex were assessed. In the case of 

His-Reslp and His-Res2p, the ability of these proteins to participate in a DSCl complex 

produced in vivo can be tested. The SpReplp protein, however, is not expressed during the 

mitotic cycle and so does not form a part of the DSCl complex under these conditions 

(although it is postulated to form part of DSCl in the meiotic cycle; Sugiyama et al., 1994; 

Cunliffe et al., 2004) thus precluding the use of this assay for His-Replp. The SpRep2p protein 

binds to SpRes2p in vitro and both SpReslp and SpRes2p in vivo (Nakashima et al., 1995; 

Sturm and Okayama, 1996). Nevertheless, the DSCl band-shift activity is not lost in a Arepl 

mutant background suggesting that the DSCl complex can still form in the absence of SpRep2p 

(Baum et a l, 1997).

To summarise, the ectopic expression of H is-rest, His-res2^, H is-rep t  or His-rep2^ in 

a Aresl mutant o f fission yeast, allows an in vivo test for gene function via rescue o f a 

conditional-lethal mutant phenotype at restrictive temperature. With respect to H is-re s t  and 

His-res2^, expression o f these cDNAs in both Aresl and Aresl mutants, respectively, should 

allow reconstitution o f the DSCl band-shift activity. These methods were exploited to assay the 

biological activities of recombinant DSCl components.

The aim of this chapter was to clone the recombinant components of the DSCl complex 

into the fission yeast expression vector pREP and using these constructs, assay the effect of the 

His-tag on the biological activities of these proteins in vivo.
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4.2 The fission yeast expression vector pREP
The fission yeast thiamine-repressible expression vectors pREPl and pREP3X were used to 

clone the recombinant DSCl components for the in vivo experiments (Appendix I- GB27 and 

GB28).

In pREP, genes are cloned downstieam of the thiamine repressible n m t t  {not made in 

diiamine) promoter (Maundrell, 1992). As the name suggests, transcription of genes under the 

control of this promoter is regulated by the presence of thiamine. In the absence o f thiamine 

transcription is induced, whereas repression is achieved by addition of 5 pg p f ' thiamine to the 

growth medium. Nevertheless, despite addition of thiamine, transcription from the n m t t  

promoter is often not completely repressed. The ability to switch off transcription depends on 

the cloned gene. For example, many genes under n m t t  control retain their suppressor activity 

despite the presence o f thiamine whereas, at this same dosage, transcription of other genes may 

be switched off (Maundrell, 1992; Forsburg, 1993). Thus, the effect o f expressing a gene under 

n m t t  control, in either the presence or absence o f thiamine, must be determined empirically.

The availability of suitable restriction sites within the multiple cloning region of the 

pREP3X vector allowed cloning o f the H is-rest, H is-rep t  and H is-rept' cDNAs, following 

PCR amplification. In contrast, the His-res2^ cDNA was cloned into the pREPl vector in a 

modified directional cloning procedure, reflecting the suitability of restriction sites present 

within the insert and multiple cloning region o f the vector. Both pREPl and pREP3X are 

derived from the parent pREP vector series and differ in only two restriction sites within their 

multiple cloning regions (pREP3X contains a Xhol site in addition to a Ball site in place of 

Ndel in pREPl).
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4.3 Cloning recombinant His-resl^, His~res2^, His-repl^ and His-rep2^ 

components of DSCl
The recombinant plasmids, containing the H is-rest, His-res2^, H is-rep t  and H is-rept' 

cDNAs, were cloned (Chapter 3) and are listed in Appendix I - GB 177 (H is-rep t), GB 191 

(H is-rep2 \ GB 178 (His-res2^) and GB 201 (H is-rest). These plasmids were used as 

templates in PCR reactions, using primers GO 458 and GO 459, designed to add 5’ Sali and 3’ 

BarnHi restriction sites (upstream of the His-tag and immediately following the stop codon), 

respectively. Addition of these resti'iction sites was necessary to facilitate cloning into the 

pREPSX vector. In contrast, His-res2* cloned into pREPI, due to the presence o f a Sali 

restriction site within the open reading frame of the resT^ gene (Section 4.3.3).

4.3.1 Ciomn^,His-rest^His-rept and His-rep2^ cDNAs into pREP3X
Figure 4.1 provides a schematic representation of the PCR reactions and the primers used. PCR 

reactions were perfoiTned using the VentR DNA polymerase. Conditions for PCR were 

essentially as described with the annealing temperature at 50°C (Methods 2.2.3). PCR products 

of the predicted size were gel purified (Methods 2.2.6) and analysed by electi'ophoresis on a 1.5 

% (w/v) agarose gel (Figure 4.2).

4.3.2 Ligation, transformation and identification of clones
5 pi o f each purified PCR product was digested with Sali and BamHl, as was the pREPSX 

vector, to generate compatible cohesive ends for ligation. The vector was also treated with calf 

intestinal alkaline phosphatase (Methods 2.2.7 and 2.2.8). The products of the restriction 

digestions were analysed on a 1.5 % (w/v) agarose gel and bands of the appropriate size 

excised and purified using the QIAquick® Gel Extraction Kit (Methods 2.2.4 and 2.2.6). 5 pi 

samples were analysed on a 1.5 % (w/v) agarose gel to assay the amount of DNA retrieved to 

determine the vector:insert ratio to be used in the ligation. Ligation reactions were carried out 

as described (Methods 2.2.9) and transformed into E. coli DH5a cells the following day 

(Methods 2,2.13).

Transformants were then plated on LB-agar plates supplemented with the antibiotic 

ampicillin (50 pg ml^) and incubated at 37°C overnight. Colonies were selected and cultured 

overnight at 37°C in 5 ml LB media supplemented with ampicillin (50 pg ml ').

Plasmid DNA was purified from the overnight cultures as described in Methods section

2.2.5 and analysed by restriction enzyme mapping to confirm the presence of an insert o f the 

predicted size (Figures 4.3 - 4.5). Potential positive clones were sequenced (MWG-Biotech -  

using oligos listed in Appendix II) to confirm the presence of insert and fidelity o f the PCR 

reactions. After confirmation by restriction mapping and DNA sequencing, a positive clone for
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each gene was stored at -70“C in the lab bacterial collection: GB 202 (His-repV), GB 343 {His- 

re p l')  and GB 203 (H is-rest)  - Appendix I.
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Ndel BamHl
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ATG
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Ndel
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C
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I
G TCG ACAT
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BamHl

^""^ G A T C C
CCTAGG

Figure 4.1 Schematic representation of the PCR reactions for pREP3X cloning

The white arrow represents the ORFs of the r e s t ,  r e p t  and r e p t  cDNAs cloned into pET28c 

at Ndel-BamH\ sites. The His-tag is boxed in green, the black lines represent pET vector 

flanking sequence and arrows indicate the positions of restriction sites.

A Restriction map representing the Ndel-BamHl fragment of each cDNA cloned into the pET- 

28c vector (Chapter 3). The ATG supplied by the vector is indicated upstream of the His-tag.

B The positions o f the primers used in the PCR reactions are indicated in relation to the 

corresponding sequence o f the pET-28c vector. GO 458 adds a Sal\ site (GTCGAC) upstream 

of the ATG and His-tag. GO 459 includes the BamH\ (GGATCC) site immediately 

downstream of the stop codon.

C A schematic representation of the DNA fragments produced following PCR.
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3054
2036

517/506

Figure 4.2 PCR amplification of H is-rep t, His-rep2* and H is-res t

PCR products were analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and 

viewed under UV illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in 

base-pairs. PCR products o f the predicted size, from reactions using primer pairs 

G0458/G0459 are shown in lanes 1 H is-rep t 2 His-rep2' and 3 H is-re s t. The His-repT 

DNA sequence resolves at the 1636 bp marker (the r e p t  cDNA is 1419 bp long), His-rep2' 

resolves between the 517 bp and 1018 bp markers (the repi' cDNA is 660 bp long) and the 

H is-rest DNA sequence resolves between the 1636 bp and 2036 bp markers (the r e s t  cDNA 

is 1914 bp long).
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Figure 4.3 Restriction digestion analysis of the recombinant H i s - r e s t - p R E P 3 X  plasmid

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the recombinant ///5-re57 ’-pREP3X plasmid: 1 Nde\-BamH\ 2 Sal\-BamH\

3 Hindlll.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised in 

Table 4.1. Fragments marked (*) appear as a result of partial digest.

1 Enzyme(s) Number of Fragments Fragment sizes (bp) I
1 N d e l - B a m H l 4 7600, 700*, 

1900, 800

1 S a B - B a m H l 2 8400,1900

1 H i n d l l l

1 ̂ 7600, 700*,

2200, 500
........  ...

Table 4.1 ///5-mv7^-pREP3X
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Figure 4.4 Restriction digestion analysis of the recombinant H i s - r e p t - p R E F 3 \  plasmid

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the recombinant His-rep t-pR EP3X  plasmid: 1 Nde\-BamH\ 2 Sal\-BamH\

3 HindlW.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised in 

Table 4.2. Fragments marked (*) appear as a result of partial digest.

Enzyme(s) Number of Frf^ments Fragment sizes (bp)
\ N d e l - B a m H l 4 1 7600, 200*, 

1400, 800

S a l l - B a m H l 2 I 8400,1400

I H i n d l l l 4 1 7500, 300*, 

1200,1100

Table 4.2 H is-rep t -pRE?3X
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Figure 4.5 Restriction digestion analysis of the recombinant H is - r e p 2 ^ - p iR E 9 y X  plasmid 

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the recombinant His-rep2^-pKEP3X plasmid: 1 Sal\-Bam\\\.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised in 

Table 4.3

1 Enzyme(s) Number of Fragments 1 Fragment sizes (bp) :
1 S a l \ - B a m H \ 2 ! 8400, 700

.i .

Table 4.3 His-rep2" -pREP3X
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4.3.3 Cloning recombinant cDNA into pREPl
As mentioned, the pREPSX vector was unsuitable for cloning the His-res2^ cDNA, owing to a 

Sail restriction site within the open reading fi'ame of the res2"' gene. Alternatively, the His- 

res2'*' cDNA was cloned into the pREPl vector. The pREPl and pREP3X vectors are 

essentially identical differing only in the restriction sites available within their multiple cloning 

regions. The plasmid containing the His-res2 ' cDNA (GB 178) was digested with Xbal and 

BamHl (which cut upstream of the His-tag and immediately following the stop codon, 

respectively). Importantly, iheXbal enzyme cleaves upstream of an ATG which is 5’ to, and in­

frame with, the His-tag. The inclusion of an ATG is necessaiy due to the destruction of the 

pREPl vector supplied ATG, within the Ndel site, in the subsequent cloning procedure. The 

pREPl vector was digested with Ndel and BamHd and treated with calf intestinal alkaline 

phosphatase, in preparation for ligation. The products o f the restriction digestions were 

analysed on a 1.5% (w/v) agarose gel and bands o f the appropriate size excised and purified 

using the QIAquick® Gel Extraction Kit (Methods 2.2.4 and 2.2.6). 5 pi samples were analysed 

on a 1.5% (w/v) agarose gel, again to allow determination o f the vector: insert ratio to be used 

in the subsequent ligation. The ligation reaction was carried out essentially as described 

(Methods 2.2.9), although in two steps owing to the incompatible Xbal and Ndel restriction 

ends of the insert and vector, respectively. An initial ligation reaction was carried out for 30 

min, to allow the compatible BamHl ends to ligate. 0.5 pi of Mung bean nuclease (an enzyme 

which degrades single stranded nucleotides) was then added to remove the Xbal and Ndel 

overhangs, creating blunt ends. Finally, 0.5 pi of T4 DNA ligase was added to ligate the blunt 

ends (Figure 4.6). Ligation reactions were then transformed into E, coli DH5a cells the 

following day (Methods 2.2.13).

Transformants were plated on LB-agar plates supplemented with the antibiotic 

ampicillin (50 pg ml ') and incubated at 37°C overnight. Colonies were selected and cultured 

overnight at 37°C in 5 ml LB media supplemented with ampicillin (50 pg ml"').

As before; following plasmid DNA purification, restriction enzyme mapping (Figure 

4.7) and DNA sequencing (MWG-Biotech - using oligos listed in Appendix II); a positive 

clone was stored at -70“C in the lab bacterial collection: GB 195 (res2 ̂ ) - Appendix I.
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TAG
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GGATGG
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A

DNA ligase

Figure 4.6 Cloning the His-res2^ cDNA into pREPl using Mung Bean nuclease

The white arrow represents the ORF of the res2* cDNA cloned into pET-28c at Nde\-BamH\ 

(Chapters). The His-tag is boxed in green, the black lines represent pET vector flanking 

sequence and arrows indicate the positions o f restriction sites. The red lines represent pREPI 

vector sequence.

A The plasmid containing the His-res2 cDNA (GB 178) was digested with Xbal and BamHl to 

excise the His-res2 cDNA. The Xbal enzyme cleaves upstream of the pET vector supplied 

ATG, which is in-frame with the His-tag.

B The pREPI vector was digested with Ndel and BamHl. An initial ligation reaction was then 

carried out for 30 min to allow the compatible BamHl ends between the insert and vector to 

ligate.
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TCTAGAC GTATAC

Ndel

ATG
TAG

BamHl
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CCTAGG

Mung Bean 
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D ATG
TAG
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Figure 4.6 Cloning the H is - r e s 2 ^  cDNA into pREPl using Mung Bean nuclease

C Mung bean nuclease was then added to remove the Xbal and Ndel overhangs of the insert 

and vector, respectively. Degradation of the single stranded nucleotides creates blunt ends and 

destroys the pREPl supplied ATG.

D Finally, the blunt ends are ligated by DNA ligase, placing the His-res2 cDNA under nmtl 

control.
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Figure 4.7 Restriction digestion analysis of the recombinant -pREP 1 plasmid

Clones containing insert were analysed by restriction mapping. Samples of each digest were 

analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under UV 

illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

Digestion of the recombinant His-res2^-pKE?\ plasmid: 1 Nde\-Bam\\\ 2  Nco\.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised in 

Table 4.4

E^zyme(s) Number of Fragments Fragment sizes (bp) {
N d e l - B a m H l 2 7600,1900 I

N c o l 2 9100,1200 1
1

Table 4.4 -pREP 1
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4,4 Biological activity assays -  rescuing Nresl lethal phenotype
The lethal phenotype of the dj'esl mutant, at 2 r c ,  can be rescued by expression o f the full- 

length wild type resl^, res2^, repl^ or rep2^ cDNAs (Tanaka et al., 1992; Miyamoto et al., 

1994; Sugiyama et al., 1995; Nakashima et al., 1995). Accordingly, expression of the 

corresponding recombinant cDNAs, each having an N-terminal His-tag, would be expected to 

behave similarly, if the tag does not affect the function of the proteins. Therefore, following 

successful cloning of the recombinant His-resX, His~res2^, His-repP  and His-rep2^ cDNAs 

into the pREP vector each construct was subsequently transformed into the fission yeast àresl 

strain (GG 146 - Appendix I and Methods 2.6.3) and stored at -70°C in the lab fission yeast 

collection, àresl cells were also transformed with the empty pREP vector to act as a negative 

control (GB 28 - Appendix I),

To assess the ability of the His-resX, His-res2'^^ His-repN  and His-rep2"^ cDNAs to 

rescue the cold sensitivity o f a Aresl mutant at 21°C, cells were streaked from -70°C glycerol 

stocks onto EMM plates containing adenine (for nutritional selection of the plasmid), in either 

the presence {nmtl promoter ‘o f f)  or absence {nmtl promoter ‘on’) of thiamine at a 

concentration of 5 pg pf^ (Methods 2.6.4). Rescue of the lethal phenotype of the Aresl mutant 

at 2TC  was compared between strains transformed with //A-re.s7^-pREP3X, //A-re52’̂ -pREPl, 

T/w-rqpT^-pREPSX or 77/5-re/?2 ^-pREP3 Xand the empty pREP vector. In all four cases the 

Aresl mutant was viable at the restrictive temperature, whereas cells containing the empty 

vector were not, indicating the recombinant cDNAs could function in a similar fashion to their 

wild type counterparts (Figures 4.8 - 4.11).
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-pREP3X

pREP3X

Figure 4.8 Expression of H is - r e s l ^  rescues the growth defect of the A r e s l  mutant at 21°C

The Aresl strain (GG 146) was transformed with pREP3X (GG 796) or //w-my7^-pREP3X 

(GG 790). Transformants were allowed to grow at 30°C on EMM + thiamine (5 pg p f '), then 

streaked out onto the same medium and incubated at 21°C for 6 -8  days.
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His-res2^-pK^ P1

pREP3X

Figure 4.9 Expression of H is - r e s 2 ^  rescues the growth defect of the A r e s l  mutant at 21°C

The Aresl strain (GG 146) was transformed with pREP3X (GG 796) or His-res2^-pREPl (GG 

802). Transformants were allowed to grow at 30°C on EMM + thiamine (5 pg p f '), then 

streaked out onto the same medium and incubated at 21°C for 6 -8  days.

98



His-rep I*-pREP3X

pREP3X

Figure 4.10 Expression of H is - r e p  1* rescues the growth defect of the A r e s l  mutant at 21°C

The Aresl strain (GG 146) was transformed with pREP3X (GG 796) or His-repV-pREP'iX 

(GG 811). Transformants were allowed to grow at 30°C on EMM + thiamine (5 pg p f '), then 

streaked out onto the same medium and incubated at 2 TC for 6 -8  days.

99



//iW£/72^-pREP3X

pREP3X

Figure 4.11 Expression of H is - r e p ï"  rescues the growth defect of the Ares/ mutant at 21 °C

The Ares/ strain (GG 146) was transformed with pREP3X (GG 796) or ///s-re/?2"-pREP3X 

(GG 817). Transformants were allowed to grow at 30°C on EMM + thiamine (5 pg p f ’) then 

streaked out onto the same medium and incubated at 21°C for 6 -8  days.
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4.5 Biological activity assays -  rescuing DSCl binding activity
The expression o f either the wild type resl^ or res2^ cDNAs in plasmids has the ability to 

restore in vitro DSCl DNA-binding activity to either l^resl or à.res2 mutants, respectively, that 

is otherwise absent in these strains (Zhu et ah, 1997). Expression of the recombinant His~resP 

or His-res2^ cDNAs in such deletion strains would be expected to give similar results, if the 

tags do not affect their function. Therefore, this assay was used as another way to test the 

activities of the recombinant His-Reslp and His-Res2p proteins.

The electrophoretic mobility-shift assay (EMSA), often referred to as the gel retardation 

or band-shift assay, allows detection of sequence specific DNA/protein interactions in vitro. 

This technique is based on the effect of bound protein(s) on the electrophoretic mobility o f a 

radio-labelled DNA fragment. DNA molecules are naturally negatively charged and therefore 

migrate toward the positive electrode in an electric field. Furthermore, in an acrylamide gel, 

DNA molecules aie separated according to their size, small molecules having the highest 

mobility and vice versa. In addition, protein bound to a particular DNA fragment will further 

retard its mobility. In this assay a radio-labelled DNA fragment (or ‘probe’), of specific 

sequence, is incubated with a protein extract from the cells under investigation. Any protein(s) 

capable of binding to the DNA fragment will form a complex and the DNA/protein mix is then 

electrophoresed on a non-denaturing acrylamide gel. The radio-labelled DNA fragment is then 

visualised by autoradiography and unbound DNA, which runs proportional to its size, appears 

at the bottom of the gel. However, the mobility of any DNA bound by protein is retarded, 

causing a visible ‘band-shift’, relative to the unbound probe. Furthermore, following detection 

o f such a band-shift activity, the specificity of interaction between the DNA fragment and the 

protein(s) can be analysed. For example, in a ‘self-competition’ experiment, addition o f an 

identical (but non radio-labelled) DNA fragment will compete with the radio-labelled DNA for 

protein binding, if  binding is specific to that sequence. Addition o f increasing amounts of such 

‘eold-competitor’ DNA, results in loss of the radioactive signal by titration, and so the band- 

shift is diminished and is no longer visible, following autoradiography.

A more stringent test o f binding specificity is possible using a mutated version of the 

DNA fragment. Indeed, alteration o f as few as one or two base pairs, can result in loss of 

binding, such is the specificity often observed by sequence specific DNA-binding proteins. 

Therefore, such tests of specificity allow distinction between complexes formed by specific and 

non-specific DNA-binding proteins.

The EMSA assay was used to originally identify the DSCl complex in fission yeast 

(Lowndes et al., 1992). In these experiments the DNA fragments used as probes were derived 

from sections o f the cdc22^ promoter, that contain MCB sequences in two clusters, with one 

cluster named MCBl and the other MCB2 (Maqbool et al, 2003). In the following assays a
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DNA probe containing the MCBl cluster was used, and a mutated M CBlm probe was used to 

test specificity. Using protein extracted from h resl cells, transformed with //A-re5 7 ^-pREP3 X, 

His-res2^-^WEP\ or pREP3X, and /S.res2 cells, transformed with H is-rest-pK ^V ^X , His- 

rc52^-pREPl or pREP3X (Appendix I) the ability of His-Reslp or His-Res2p to reconstitute the 

DSCl band-shift activity was assayed.

For protein exhaction, 5 ml cultures were grown to mid-log phase at 30°C, with the

appropriate amino acids, in the presence (for nmtl promoter ‘o f f  experiments) or absence (for

nm tl promoter ‘on’ experiments) o f thiamine (5 pg p f'). Cultuies (200 ml), in the presence or 

absence of thiamine (5 pg p f ') , were then inoculated with the 5 ml pre-cultures and grown for 

16 h. Protein was then extracted for use in EMSA experiments as detailed (Methods 2.6.5). 

Figures 4.12-4.14 show the results of these EMSA assays.

Upon expression o f His-Res2p in àres2 cells a ‘DSCl-like’ band-shift activity, 

comparable to the DSCl complex formed in wild-type extracts, was present. Importantly, this 

band-shift was not observed in àres2 cells alone or lsres2 cells containing empty vector. 

Furthermore, this complex bound specifically to the MCBl element, as judged by self­

competitor analysis and an inability to bind the mutated M CBlm sequence (Figures 4.12-4.13). 

However, this complex did not super-shift using an antibody directed against the His-tag (data 

not shown). In contrast to His-Res2p in Arc«2 cells, a DSCl-like band-shift activity was not 

detected when His-Reslp was expressed in Isresl cells, either in the absence or presence of 

thiamine (Figure 4.14).
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Figure 4.12 ‘DSCl-like’ complex is detected in tsresl cells expressing His-Res2p
EMSA analysis o f protein extracts prepared from wild-type cells (GG 217), t^es2  cells (GG 

156), tsres2 cells transformed with pREP3X (GG 801) or Ares2 cells transformed with His- 

re.$2-pREPl (GG 808). Protein extracts were prepared and incubated with a radio-labelled 

probe derived from the cdc22' promoter (MCBl). To confirm the specificity of the retarded 

complex an excess of unlabelled MCBl probe was added to lane 9, GG 808. The upper arrow 

indicates the position of the putative DSCl complex and the lower arrow denotes unbound 

radio-labelled probe.

1 =  free M C B  1 probe

2 =  w ild -typ e  protein extract + M C B  I probe

3 =  w ild -typ e  protein extract +  M C B l probe

4  =  tSres2 protein extract + M C B  1 probe

5 =  Ares2 : pR E P3X  protein extract + M C B l probe

6 =  àres2  : pR E P 3X  protein extract + M C B  1 probe

7 =  tSres2 : His-res2^-pRE?\ protein extract +  M C B l probe

8 =  /Sres2 : His-res2^-pRE?\ protein extract + M C B l probe

9  =  A res2 : His-res2^-pKEP\ protein extract +  e x c e ss  un labelled  M C B l probe
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Figure 4.13 ‘DSCl-Uke’ complex is detected in tsresl cells expressing His-Res2p

EMSA analysis of protein extracts prepared from wild-type cells (GG 217), tsres2 cells (GG 

156), tvres2 cells transformed with pREP3X (GG 801) or lSres2 cells transformed with His- 

-pREPl (GG 808) grown in either the presence or absence of thiamine. Protein extracts 

were prepared and incubated with a radio-labelled probe derived from the cdc22^ promoter 

(MCBl) or with a probe containing a mutated MCBl (MCBlm) element to check the 

specificity of the retarded complex. The upper arrow indicates the position o f the DSCl 

complex and the lower arrow denotes unbound radio-labelled probe.

1 =  free M C B l probe

2 =  w ild -type protein extract + M C B l probe

3 =  w ild -typ e  protein extract + M C B lm  probe

4 =  tsres2 protein extract + M C B l probe

5 =  àres2 : pR E P3X  protein extract + M C B l probe

6 =  A/-C52 : His-res2^-pKEP\ protein extract (+  th iam ine) + M C B l probe

7 =  àres2  : His-res2^-pKEP\ protein extract + M C B l probe

8 =  tSres2 protein extract + M C B lm  probe

9  -  àres2 : pR E P 3X  protein extract protein extract + M C B lm  probe

\0  = /Sres2 . His-res2^-pKE?\ protein extract ( + thiam ine) + M C B lm  probe  

1 1 =  Ares2 : His-res2^-pKE?\ protein extract + M C B lm  probe
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Figure 4.14 ‘DSCl-like’ complex is not detected in dj-esi cells expressing His-Reslp
EMSA analysis of protein extracts prepared from wild-type cells (GG 217), ISresl cells (GG 

146), Arcs/ cells transformed with pREP3X (GG 796) or Arcs/ cells transformed with His- 

rcs/ -pREP3X (GG 790) or /7/s-rcs2-pREP 1 (GG 802) grown in the presence or absence of 

thiamine. Protein extracts were prepared and incubated with a radio-labelled probe derived

from the cdc22^ promoter (MCBl). Protein extracts prepared from Arcs2 cells (GG 156) and

Arcs2 cells transformed with 7//s-rcs2-pREPl (GG 808) grown in the presence of thiamine 

were incubated with the same probe and with an excess of unlabelled MCBl probe for 

comparison. The upper arrow indicates the position of the DSCl complex and the lower arrow 

denotes unbound radio-labelled probe.

1 = free MCBl probe

2 = wild-type protein extract + MCBl probe

3 = Arcs/ protein extract + MCBlm probe

4 = Arcs/ : pREP3X protein extract + MCBl probe

5 = Arcs/ : ///s-rcs/'-pREP3X protein extract (+ thiamine) + MCBl probe

6 = Arcs/ : ///s-rcs/-pREP3X protein extract + MCBl probe

7 = Arcs/ : ///s-rcs2 -pREP 1 protein extract (+  thiamine) +  MCBl probe

8 = Arcs/ : ///s-rcs2-pREPl protein extract + MCBl probe

9 = Arcs2 protein extract protein extract + MCB 1 probe

10 = lSres2 : ///s-rcs2'^-pREPl protein extract (+ thiamine) + MCBl probe

11 = Arcs2 : ///s-rcs2"^-pREPl protein extract (+ thiamine) + excess un label led MCB 1 probe
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4.6 Discussion
In this chapter a series o f assays have been described, designed to assess the effect o f an N- 

terminal His-tag on the biological activities of the SpReslp, SpRes2p, SpReplp and SpRep2p 

proteins of the fission yeast DSCl complex. To this end, a cloning strategy was designed 

allowing directional cloning of the respective recombinant cDNAs into the fission yeast 

overexpression vector pREP.

The recombinant cDNAs, H is-re s f, His-res2'^, H is-rep t and His-rep2^ were able to 

rescue the cold-sensitivity of a Aresl mutant at 21°C (Figures 4.8-4.11). Notably, this rescue 

was most efficient when cells were grown in the presence of thiamine. As outlined in Section 

4.2, genes under the control of the n m t t  promoter may still be expressed despite the presence 

of the transcriptional repressor thiamine. With respect to His-resl^, His-res2^, H is-rep t  and 

His-rep2^ suppression of the cold-sensitive lethality of a Aresl mutant was possible at levels o f 

transcription achieved in the presence of thiamine. This was not surprising given that the rescue 

o f a Aresl mutant was achieved by expression of the wild-type r e s t  cDNAs from the SV40 

promoter (Tanaka et al., 1992). The level o f ti’anscription from the pREP vector, in the presence 

o f thiamine, is comparable with that seen from an induced SV40 promoter (Forsburg, 1993).

With respect to His-Res2p, reconstitution of a ‘DSCl-like’ band-shift activity has been 

demonstrated upon expression of this protein in a Ares2 mutant (Figures 4.12-4.13). In 

comparison, the DSCl band-shift activity was lost in protein extracts prepared from the Ares2 

strain (Figures 4.12-4.13). This ‘DSCl-like’ band-shift activity was reduced in protein extracts 

prepared from Ares2 cells expressing His-Res2p in the presence of thiamine (Figure 4.13). 

Additionally, this DSCl-like complex bound specifically to the MCBl element, was competed 

by addition of an identical non radio-labelled probe and did not bind to a mutated M CBlm 

sequence. Thus, from these results, it is likely that the ‘DSCl-like’ complex observed in Ares2 

cells expressing His-Res2p is similai'to the wild-type DSCl complex.

In contrast, expression o f His-Res2p in Aresl cells did not reconstitute the DSCl band- 

shift complex nor did expression of His-Reslp Ares2 cells (Figure 4.14 and data not shown). 

Despite expression o f His-Reslp in the Aresl mutant background, a ‘DSCl-like’ band-shift 

activity was not observed (Figure 4.14). Intriguingly, although the DSCl complex was not 

detected in vitro when His-Res2p was expressed in Aresl cells, both the heat and cold sensitive 

lethality of these cells was rescued by expression of this protein from the pRBP vector (Figure 

4.9 this study, and Zhu et al., 1997). Therefore, as suggested by Zhu and co-workers, detection 

of the DSCl complex in vitro does not correlate with loss of transcriptional activity per se.

Nevertheless, the successful reconstitution of the DSCl band-shift in Aresl cells 

expressing SpReslp has been reported (Caligiuri and Beach, 1993) and failure to do so in this 

study may reflect inclusion of the His-tag. The ability of the His-Reslp protein to efficiently
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rescue the cold sensitive lethality o f a Aresl mutant suggests that inclusion of the His-tag does 

not affect function, but rather some other property such as protein stability. For example, levels 

of the His-Reslp protein may be at a level sufficient to rescue the Aresl cells and form an 

active DSCl eomplex in vivo, but this complex cannot be detected in vitro. Indeed, despite the 

efficient rescue of the cold-sensitive lethality of Aresl cells by all of the recombinant proteins 

(indicating they are all expressed and functional) none have been detected by immunoblotting 

using an antibody directed against the His-tag. In addition, a super-shift of the DSCl-like 

eomplex, reconstituted by expression o f /ft'^-re^i ’-pREPl in Ares2 cells, was not detected using 

this same antibody.

The inability to deteet the recombinant proteins, or to super-shift the ‘DSCl-like’ 

complex containing His-Res2p, may be a result of cleavage at the N-tenninus and thus loss of 

the His-tag. The presence o f a thrombin cleavage site immediately downstream of the His-tag 

supports this explanation. However, we are unaware of any fission yeast thrombin 

homologue(s), and given that the cleavage process is a highly specific sequence-dependent 

reaction, a degenerate protease would be unlikely to cleave at this site. Importantly, the use of a 

recombinant protein expression system in fission yeast using tags containing thrombin and 

enterokinase cleavage sites has been reported (Lu et al. 1997). Also, the function o f both 

SpReslp and SpRes2p requires an intact N-terminus (Tanaka et al., 1992; Ayte et al,, 1995; 

Zhu et a l , 1997).

Whilst the His-tag has no apparent effects on the function o f these proteins, the 

incorporation of the tag may affect their stability and expression level, such that they are not 

deteetable by immunoblotting. In addition, with respect to the super-shift experiment, the His- 

tag is at the N-terminus. Given that binding o f both SpReslp and SpRes2p to DNA is mediated 

by their N-termini, it is possible that the His-tag may be masked by interaction with the DNA 

and/or components of the DSCl complex and so is occluded from binding to the monoclonal 

antibody.

Even so (for reasons outlined in Chapter 3), it is our intention to study the structures of 

these recombinant proteins when produced in E. coli. Differences in protein production 

between eukaryotes and prokaryotes, particularly in post-translational modification, are well 

documented (Sudbery, 1996). Such differences may be manifested in alterations of protein 

structure and activity. It is encouraging that the results described in this chapter indicate these 

recombinant proteins can function normally in fission yeast (in comparison to their wild type 

counterparts). As the presence of the His-tag appears to impart no obvious impediment to the 

function of these proteins in vivo, it is likely that its inclusion does not significantly alter their 

structure. Having assessed the effect of the His-tag on the function of these proteins in vivo, in 

the following chapter, the recombinant proteins, when produced in E. coli, are analysed to
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assess their solubility and ultimately their biological activity. As discussed in Chapter 3, the 

expression of soluble recombinant proteins in E, coli suggests they are capable of folding into 

their native or near-native state, and that the tag does not disrupt folding or expression. 

Following production of soluble protein the biological activity of the recombinant protein may 

then be assayed.
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Chapter 5
Biological activity assays of recombinant DSCl 

proteins in vitro



5.1 Introduction
Chapter 4 focused on the analysis o f the biological activity of recombinant DSCl components, 

when produced in vivo. The results of these assays indieated that addition of the N-terminal 

His-tag (required for affinity purification) did not affect the eellular function of these proteins. 

Therefore, it is unlikely that the presence of this tag alters protein structure, to the detriment of 

function.

Detailed structural information is obtained through biophysical studies using techniques 

such as X-ray crystallography, nuclear magnetic resonance (NMR), circular dichroism (CD), 

surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). With the 

exception of SPR, these teehniques require milligram quantities of protein. To obtain sufficient 

quantities of material for such studies, the fission yeast DSCl components have been over­

expressed as His-tagged fusion proteins, using E. coli as a heterologous host. Despite the 

apparent activity of the recombinant His-Reslp, His-Res2p, His-Replp and His-Rep2p proteins 

in vivo, it is still necessary to ensure that these proteins, when produced in vitro, are 

biologically active, as this will be the source for structural analysis.

To date, the fission yeast DSCl components have been poorly characterised in terms of 

3-dimensional sfructure. These studies have been limited to secondary structure predictions 

based on sequence alignments and homology with their budding yeast counterparts. Significant 

information has been obtained regarding the domain architecture of these proteins, revealing 

the regions that are important for their funetion. Mueh o f this information has been obtained 

through the in vivo analysis of mutated, truncated and hybrid proteins. In addition to this, 

studies of in vitro translated and bacterially expressed proteins have also contributed to 

understanding about their functions.

Analysis of truncated and mutant SpCdclOp proteins in vivo has indicated that the 

central ankyrin repeats and C-terminal region are important for function. The C-terminal region 

o f SpCdclOp has been implieated in protein-protein interactions with itself and/or SpReslp 

(Reymond and Simanis, 1993). The majority of cdclO temperature sensitive mutants contain 

lesions that map to either the central ankyrin repeats, or within the C-terminus (Reymond et al., 

1992), and the C-terminally ti uncated SpCdclO-C4p mutant, displays increased MCB-regulated 

gene expression in vivo, implying an important regulatoiy function for this region (Mclnerny et 

al., 1995). Together, these results define important roles for both the centrally located ankyrin 

repeats and the C-terminus of SpCdclOp.

The CdclOp protein is unable by itself to bind to MCB-DNA in vitro (Zhu et al., 1994; 

Ayte et al., 1995). However, it is required for the MCB-specific DNA binding of both SpReslp 

and SpRes2p. EMSA analysis using in vitro translated protein has revealed that SpReslp 

cannot bind MCB-DNA in the absence o f SpCdclOp, although SpRes2p does so very weakly
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(Zhu et al., 1997). In eontrast, bacterially expressed SpReslp binds specifically to MCB-DNA 

on its own, although this was dependent on an N-terminal fusion partner (Ayte et al., 1995; 

Ayte et al., 1997). Both SpReslp and SpRes2p share significant homology in their N-termini 

and in the centrally located ankyrin repeats, but diverge in their C-terminal region. Whilst 

SpReslp and SpRes2p can functionally substitute for each other with respect to their mitotie 

roles, SpReslp is unable to mimic the meiotic role of SpRes2p (Sturm and Okayama, 1996).

Analysis of hybrid proteins, generated by fusing together different domains of SpReslp 

and SpRes2p, has revealed that the functional specificity of both SpReslp and SpRes2p is 

dictated almost entirely by their C-terminal region (Sturm and Okayama, 1996; Zhu et al., 

1997). The meiotic-specific funetion of SpRes2p lies within this C-terminal region in addition 

to a domain required for interaction with SpRep2p (Sturm and Okayama, 1996). Similarly, 

yeast two-hybrid analysis has revealed the domains responsible for the transcriptional 

activation and SpRes2p-binding activities of SpRep2p (Tahara et al., 1998). Binding assays 

have shown that bacterially expressed GST-Rep2p binds to in vitro translated SpRes2p 

(Nakashima et al., 1995; Sturm and Okayama, 1996). SpRes2p binds to bacterially expressed 

GST-Res2p, GST-CdclOp and GST-Reslp in vitro, whereas SpReslp binds only GST-Res2p 

and GST-CdclOp, but not GST-Reslp (Ayte et al., 1997). Notably, however, there have been 

no reported studies on the SpReplp protein, either in vivo or in vitro, and as such the functional 

properties and domain architecture of this protein remain poorly characterised.

Using the EMSA technique, the ability (and therefore the biological activity) of 

bacterially produced His-Reslp and His-Res2p to bind to MCB elements in vitro can be 

assayed. The biological activity o f bacterially produced His-CdclOp may be similarly assayed, 

following successful co-expression with either His-Reslp or His-Res2p. In contrast, assay of 

the biological activity of both SpRepl and SpRep2p is not so facile. The absence o f any GST- 

fusions of these DSCl components precludes binding assays with bacterially expressed His- 

Rep2p or His-Replp. The ability of either protein to participate in an in vitro band-shift 

complex with either His-Reslp and/or His-Res2p may be assessed. Indeed, following 

expression and/or eo-expression o f the respective DSCl components it might be possible to 

reconstitute a recombinant DSCl complex in vitro. An in vitro reconstituted complex has the 

potential to provide an ideal model system for structural and functional studies.

In order to assess the biological activity of the recombinant DSCl components they 

must firstly be solubilised following suecessful overexpression. For experimental analysis o f a 

protein it is essential that, following release from the cell, it be released into a solvent in which 

it is stable. Upon release from its native environment, a protein is exposed to foreign conditions 

and agents that may cause irreversible damage. The nature of the solvent is therefore critical. 

Exposure to proteolytic enzymes, oxidising agents or extremes o f temperature and pH can all 

have adverse effects on the native structure of a protein. Also, due to the multiple acid-base
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groups present in the amino acid side-chains, the structure and thus solubility of a protein will 

also depend on the ionic composition/polarity o f the solvent. As a result, proteins are routinely 

dissolved in buffer solutions, effective over a pH range at which the protein is stable. The 

addition of protease inhibitors and reducing agents can help to maintain the integrity o f a 

protein in solution and procedures o f protein preparation and purification are routinely carried 

out on ice, as many proteins are thermally labile.

The unique 3-D arrangement of the constituent amino acids of a protein dictates its 

physieochemical properties. Thus, the optimal eonditions in which a protein is both soluble and 

stable, following release into the extracellular milieu, must be determined empirically. With 

respect to heterologous expression systems, the host strain and growth conditions can equally 

affect the ability to obtain soluble protein following overexpression. For example, the choice of 

host strain can affect the folding, and thus structure, of the protein expressed. Manipulation of 

induction conditions can affect the rate and level of protein synthesis that in turn can affect 

solubility. Consequently, the preparation o f soluble recombinant protein can often be one o f the 

lengthiest stages in a purifieation stiategy.

The aim of this chapter, therefore, was to assay the biological activity o f the 

recombinant DSCl components when produced in vitro. Following successful overexpression 

(Chapter 3), the solubility o f each protein is discussed followed by a series of experiments 

designed to test their in vitro biological activity using EMSA,
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5.2 Solubility of the recom binant DSCl proteins
The successful eloiiing and overexpression o f the full-length recombinant His-tagged DSCl 

component polypeptides (His-Reslp - 75 kDa, His-Res2p - 75 kDa, His-Replp - 55 kDa, His- 

Rep2p - 30 kDa and His-CdclOp - 90 kDa), in E. coli has been described in Chapter 3. For 

experimental analysis, these recombinant proteins must be both soluble and stable following 

release from bacteria.

Lysis of E. coli cells is routinely achieved by sonication, enzymatic lysis or mechanical 

disruption. The mechanical disruption method was favoured for this work, using a French 

Pressure appaiatus. The French Press was chosen as it was extremely reproducible and the most 

convenient method available, particularly when managing large volumes of bacterial culture. 

The solubility of all proteins described in this chapter was routinely assessed (Methods 2.4.12). 

Following overexpression, cells were harvested by centrifugation and the pellet re-suspended in 

an appropriate volume of lysis buffer. Cells were then disrupted by passage through an 

automatic French pressure cell. Subsequently, an aliquot of this whole cell extract, together 

with samples of supernatant and pellet (obtained following centrifugation), were analysed by 

SDS-polyacrylamide gel electrophoresis. The solubility of each protein was determined by 

comparing the ratio present in the supernatant/pellet, following Coomassie blue staining or 

immunoblotting.

As discussed previously, the ability to produce soluble protein is dependent on multiple 

factors. Several parameters were altered in an attempt to aehieve optimal conditions for the 

production of soluble protein, for each of the recombinant DSCl components. Despite 

manipulation of lysis buffer eomposition (i.e. pH, salt concentration and buffer salt) no 

significant change was obseiwed, with respect to the solubility o f His-Reslp, His-Replp, His- 

Rep2p or His-CdclOp. Consequently, these proteins were routinely dissolved in 50 mM 

KH2PO4, pH 7.5 (the optimal buffer conditions achieved). Figures 5.1-5.4, therefore allow a 

comparison of soluble protein production under 4 different induction eonditions. Figures 5.1,

5.2 and 5.5 show the solubility o f His-Replp, His-CdclOp and His-Res2p following 

overexpression at different temperatures as viewed by Coomassie blue staining. Figures 5.3 and 

5.4 show the solubility of His-Reslp and His-Rep2p at different temperatures as viewed by 

immunoblotting. Immunoblot analysis of both His-Reslp and His-Rep2p was necessary due to 

the low expression level of these proteins (Chapter 3).

His-Reslp was detected in the soluble fraction at 37°C (Figure 5.3 B) whereas His- 

Rep2p was completely insoluble following induction at this temperature (Figure 5.4 B). Both 

His-Reslp and His-Rep2p were partially soluble at all other temperatures tested (Figures 5.3 

and 5.4). The fact that expression of these latter two proteins was detectable only by 

immunoblotting (under all conditions tested) reflects their low level of expression. Such low-
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level expression may account for detection of both proteins in the soluble fraction, under most 

conditions tested. However, the low yield of these proteins imposes resti'ictions on their use for 

detailed structural work although the observation that at least 50% of these proteins were 

soluble was encouraging. In contrast, the high levels of protein obtained following 

overexpression of His-Replp and His-CdclOp may contribute to their insolubility. High-level 

overexpression o f proteins can result in the physiological solubility limit o f the cell being 

exceeded. Both of these proteins were insoluble and appeared in the pellet under all of the 

conditions tested (Figures 5.1 and 5.2).

Figure 5.5 shows that at 15°C, approximately 100 % of His-Res2p was recovered in the 

supernatant. Importantly, the ability to produce soluble His-Res2p was not solely reliant on 

manipulation of the growth conditions. In addition, the nature of the lysis buffer was crucial. 

Indeed, the production o f soluble His-Res2p highlights the delicate balance o f conditions 

required to obtain soluble protein (Section 5.3). Even so, assuming that this protein is correctly 

folded and active, following a scaling up in the process, structural studies should now be 

possible.
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Figure 5.1 SDS-PAGE analysis o f His-Replp solubility

His-Replp was overexpressed in BL21 CodonPlus (DE3)-R1L cells for 3 h at either 30°C (A) 

or 37°C (B) by induction with 1 mM IPTG. Alternatively overexpression was carried out at 

15°C (C) or 22°C (D) by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the 

point of induction (0 h). The bacterial culture was then centrifuged, the pellet resuspended in 5 

ml lysis buffer, and cells lysed by French pressure disruption. This whole cell extract (W) was 

then separated into soluble (S) and insoluble (P) fractions by centrifugation. The pellet was 

resuspended in 5 ml lysis buffer. The 0 h samples were centrifuged, the pellets resuspended in 

Laemmli sample buffer (10 p.1/0.1 absorbance unit) and denatured by boiling for 5 min in the 

presence o f DTT (150 mM). Samples (1 ml) of the whole cell extract, the soluble fraction and 

the resuspended pellet were diluted with an equal volume of Laemmli sample buffer and 

similarly denatured. Samples were then analysed on a 10% SDS-polyacrylamide gel stained 

with Coomassie brilliant blue. Molecular weight markers are shown (MJ with sizes indicated in 

kDa.
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Figure 5.2 SDS-PAGE analysis of His-CdclOp solubility

His-CdclOp was overexpressed in BL21 CodonPlus (DE3)-RIL cells for 3 h at either 30°C (A) 

or 37”C (B) by induction with 1 mM IPTG. Alternatively overexpression was carried out at 

15°C (C) or 22°C (D) by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the 

point o f induction (0 h). The bacterial culture was then centrifuged, the pellet resuspended in 5 

ml lysis buffer, and cells lysed by French pressure disruption. This whole cell extract (W) was 

then separated into soluble (S) and insoluble (P) fractions by centrifugation. The pellet was 

resuspended in 5 ml lysis buffer. The 0 h samples were centrifuged, the pellets resuspended in 

Laemmli sample buffer (10 p.1/0.1 absorbance unit) and denatured by boiling for 5 min in the 

presence of DTT (150 mM). Samples (1 ml) of the whole cell extract, the soluble fraction and 

the resuspended pellet were diluted with an equal volume of Laemmli sample buffer and 

similarly denatured. Samples were then analysed on a 10% SDS-polyacrylamide gel stained 

with Coomassie brilliant blue. Molecular weight markers are shown (MJ with sizes indicated in 

kDa.
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Figure 5.3 Immunoblot analysis of His-Reslp solubility

His-Reslp was overexpressed in BL21 CodonPlus (DE3)-R1L cells for 3 h at either 30°C (A) or 

37°C (B) by induction with 1 mM IPTG. Alternatively overexpression was carried out at 15°C 

(C) or 22°C (D) by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the point of 

induction (0 h) and at 3 h or 16 h. The bacterial culture was then centrifuged, the pellet 

resuspended in 5 ml lysis buffer, and cells lysed by French pressure disruption. This whole cell 

extract (W) was then separated into soluble (S) and insoluble (P) fractions by centrifugation 

and samples (1 ml) taken. Samples from 0 h and 3 or 16 h were centrifuged, the pellets 

resuspended in Laemmli sample buffer (10 p.1/0.1 absorbance unit) and denatured by boiling for 

5 min in the presence of DTT (150 mM). All other samples were diluted with an equal volume 

of Laemmli sample buffer and similarly denatured. Samples were then analysed by 

immunoblotting as described (Methods 2.4.7-2.4.11). Blots were probed with Anti-PentaHis- 

HRP conjugate antibody (Qiagen) at 1:2500. The positions of molecular weight markers are 

indicated (MJ in kDa.
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Figure 5.4 Immunoblot analysis of His-Rep2p solubility

His-Rep2p was overexpressed in BL21 CodonPlus (DE3)-R1L cells for 3 h at either 30°C (A) 

or 37°C (B) by induction with 1 mM IPTG. Alternatively overexpression was carried out at 

15°C (C) or 22°C (D) by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the 

point o f induction (0 h) and at 3 h or 16 h. The bacterial culture was then centrifuged, the pellet 

resuspended in 5 ml lysis buffer, and cells lysed by French pressure disruption. This whole cell 

extract (W) was then separated into soluble (S) and insoluble (P) fractions by centrifugation 

and samples (1 ml) taken. Samples from 0 h and 3 or 16 h were centrifuged, the pellets 

resuspended in Laemmli sample buffer (10 pl/0.1 absorbance unit) and denatured by boiling for 

5 min in the presence of DTT (150 mM). All other samples were diluted with an equal volume 

of Laemmli sample buffer and similarly denatured. Samples were then analysed by 

immunoblotting as described (Methods 2.4.7-2.4.11). Blots were probed with Anti-PentaHis- 

HRP conjugate antibody (Qiagen) at 1:2500. The positions of molecular weight markers are 

indicated (Mr) in kDa
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Figure 5.5 SDS-PAGE analysis of His-Res2p Solubility

His-Res2p was overexpressed in BL21 CodonPlus (DE3)-RIL cells for 3 h at either 30°C (A) or 

37°C (B) by induction with 1 mM IPTG. Alternatively overexpression was carried out at 22°C 

(C) or 15°C (D) by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the point of 

induction (0 h) and at 3 h or 16 h. The bacterial culture was then centrifuged, the pellet 

resuspended in 5 ml lysis buffer, and cells lysed by French pressure disruption. This whole cell 

extract (W) was then separated into soluble (S) and insoluble (P) fractions by centrifugation 

and samples (1 ml) taken. Samples from 0 h and 16 h were centrifuged, the pellets resuspended 

in Laemmli sample buffer (10 pi / 0.1 absorbance unit) and denatured by boiling for 5 min in 

the presence o f DTT (150 mM). All other samples were diluted with an equal volume of  

Laemmli sample buffer and similarly denatured. Samples were then analysed on a 10% SDS- 

polyacrylamide gel stained with Coomassie brilliant blue. Molecular weight markers are shown 

(Mr) with sizes indicated in kDa.
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5.3 The effect of salt concentration on His Res2p solubility
Lysis buffer composition plays a crucial role in determining both the solubility and stability of 

a protein following release from the cell. Attempts to enhance the solubility of His-Replp and 

His-CdclOp were refractory to manipulation of both growth and lysis buffer conditions. In 

contrast, His-Res2p was significantly affected. Initial attempts to obtain soluble His-Res2p, 

following overexpression at 37°C or 30°C, coupled with a screening of different lysis buffer 

conditions, were unsuccessful. A small amount of His-Res2p was retrieved in the supernatant 

following overexpression at 22”C and overexpression at 15°C yielded significantly more 

soluble protein and manipulation of lysis buffer composition enhanced this further.

Following overexpression at 15°C, the concentration o f salt in the lysis buffer proved 

pivotal in the ability to obtain soluble His-Res2p, following release from the cell. In lysis 

buffers containing > 0.3 M NaCl (such concentrations of salt are routinely used in buffers due 

to the requirements of purification procedures), His-Res2p was almost exclusively present in 

the insoluble pellet (Figure 5.6 B and C). In contrast, reduction or complete removal of the salt 

concentration had a profound effect (Figure 5.6 A and D). In buffer solutions with either no or 

minimal salt (< 0.1 M NaCl), His-Res2p was completely soluble (although a minute amount is 

present in the pellet at 100 mM NaCl). In contrast, even a slight increase to 300 mM NaCl 

resulted in approximately 100% o f expressed protein becoming insoluble; a similar effect was 

observed following lysis in buffers containing IM  NaCl.

The solubility o f His-Res2p was extremely sensitive to salt concentration. This serves as 

an excellent example o f the sensitivity o f a protein to its immediate environment. The 

sensitivity of His-Res2p to high NaCl concentration has implications for the purification of this 

protein and is discussed in Chapter 6.
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Figure 5.6 Effect of salt concentration on the solubility of His Res2p

His-Res2p was overexpressed at 15°C in BL21 CodonPlus (DE3)-RIL cells by induction with 

0.2 mM IPTG. Samples (1 ml) were removed at the point of induction (0 h) and at 16 h. The 

bacterial culture was then centrifuged, and the pellet resuspended in 5 ml lysis buffer; (A) 

50mM KH2PO4 , pH 7.5; (B) A + IM NaCl; (C) A + 0.3M NaCl and (D) A + O.lMNaCl. Cells 

were then lysed by French pressure disruption. The whole cell extract (W) was separated into 

soluble (S) and insoluble (P) fractions by centrifugation and samples (1 ml) taken. All samples 

were centrifuged, the pellets resuspended in an equal volume o f Laemmli sample buffer and 

denatured by boiling for 5 min in the presence of DTT (150 mM). Samples were then analysed 

on a 10% SDS-polyacrylamide gel stained with Coomassie brilliant blue. Molecular weight 

markers are shown (Mr) with sizes indicated in kDa.
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5.4 Biological activity assays -  His-Reslp and His-Res2p
Both SpReslp and SpRes2p, when produced in vitro, can bind specifically to MCB elements in 

vitro as detected by EMSA. Detection of both SpReslp and SpRes2p MCB-specific DNA- 

binding complexes was dependent on co-expression with SpCdclOp, although SpRes2p alone 

could bind very weakly (Zhu et al., 1994; Zhu et al., 1997).

The ability o f the bacterially produced His-Reslp and His-Res2p proteins to bind MCB 

elements in vitro was tested. Soluble extracts from E. coli cells, expressing either His-Reslp or 

His-Res2p (Methods 2.4.1 and 2.4.12), were incubated with a radio-labelled DNA probe and 

used in EMSA experiments. The DNA probe was identical to that detailed in Chapter 4 and 

contained the MCBl cluster derived from the cdc22'^ promoter (Maqbool et al., 2003). The 

mutated M CBlm probe was again used to test specificity. Despite repeated attempts, binding of 

either His-Reslp or His-Res2p to MCBl DNA using the EMSA was not detected under these 

conditions (Figure 5.7).

However, as mentioned above, binding o f either SpReslp or SpRes2p to MCB DNA in 

vitro was reportedly dependent on and/or enhanced by, the presence o f SpCdclOp and so co­

expression of His-CdclOp with His-Reslp or His-Res2p was also attempted. It is possible that 

these proteins may associate in a co-translational manner in vivo. Therefore, co-expression with 

His-CdclOp in E. coli might replicate this scenario since association of proteins as folding 

intermediates can increase stability and thus, successful co-expression has the potential to 

enhance protein solubility.
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Figure 5.7 His-Reslp and His-Res2p binding to MCB motifs in  v itro

EMSA analysis o f protein extracts prepared from E. coli BL21 (DE3) CodonPlus-RIL cells 

transformed with pET-28c (GB 7), His-resl -piET-2^Q (GB 201) or His-res2 -pET-2%c, (GB 

178). Protein extracts were prepared and incubated with a radio-labelled probe derived from the 

cdc22^ promoter (MCBl). To test the specificity o f protein binding to the MCB sequence a 

probe containing a mutated MCBl element (MCBlm) was included (lanes 3, 6, 7, 10, 11, 14 

and 15). A protein extract from wild-type fission yeast cells (GG 217) was incubated with 

MCBl and forms the characteristic DSCl band-shift (lane 2). The upper and lower arrows on 

the left indicate the positions of the fission yeast DSCl complex and unbound radio-labelled 

probe, respectively.

1 =  free M C B l probe

2 =  w ild -type protein extract + M C B l probe

3 =  w ild -type protein extract + M C B lm  probe

4  and 5 =  His-resT-pET-2%c protein extract + M C B l probe

6 and 7 =  His-resr-pEY-2%c protein extract +  M C B lm  probe  

8 and 9  =  His-res2^-pEY-2%c protein extract + M C B l probe  

10 and 11 =  His-res2^-pE\-2%c protein extract + M C B lm  probe  

12 and 13 =  pE T -28c  protein extract +  M C B l probe  

14 and 15 =  pE T -28c  protein extract + M C B lm  probe
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5.5 Cloning of resl^^ repl^ and rep2
To ensure that two proteins are co-expressed from separate plasmids in the same E. coli cell, 

there must be selection for both plasmids. Both resV  and res2' were cloned into the 

kanamycin resistant pET-28c vector, whereas cdclO' was cloned into the ampicillin resistant 

pET-14b (Chapter 3). The pET-14b plasmid is essentially identical to pET-28c, containing an 

N-terminal His-tag upstream of Ndel-BamHl multiple cloning sites. However, in contrast, pET- 

14b contains the p-lactamase gene, conferring ampicillin resistance. The cloning o f resHiresT^ 

and cdclO' into plasmids with different antibiotic resistance markers allows phenotypic 

selection of co-transformants. Further to such studies using His-CdclOp, co-expression between 

other DSCl components was investigated. To this end, resl ' was cloned into pET-14b to allow 

co-expression studies with Res2p. In addition, repE  and rep i' were cloned into pET-14b to 

facilitate co-expression studies with these proteins.

Cloning of these cDNAs into pET-14b was performed as described previously (Chapter 

3, section 3.2). Clones containing insert were analysed by restriction enzyme mapping and 

DNA sequencing (MWG-Biotech -  using oligos listed in Appendix II) and a positive clone for 

each gene was stored at -70°C in the lab bacterial collection: GB 299 {resE), GB 289 {repE') 

and GB 310 irep2^') -  Appendix I.

Following optimisation o f conditions, each clone was successfully over-expressed in the 

BL21 (DE3) CodonPlus-RIL strain. The expression levels and solubility were comparable to 

that achieved when these same cDNAs were expressed from the pET-28c vector: both His- 

Reslp and His-Rep2p were detectable only by immunoblot and were soluble, whereas His- 

Replp was detected by Coomassie blue staining and was insoluble (data not shown).

5.6 Co-expression of recombinant DSCl components in E, coli
Following co-transformation (Methods 2.2.13) into BL21 (DE3) CodonPlus-RIL cells and 

small-scale protein inductions, the ability o f two proteins to co-express was determined by 

Coomassie blue staining or immunoblottmg, following SDS-PAGE.

Upon testing different combinations of DSCl components, only co-expression of His- 

Res2p with His-Rep2p was detected: only His-Res2p was visualised by Coomassie staining 

whereas both proteins were detected by immunoblotting (Figure 5.8).

Unfortunately, despite successful co-expression, incubation o f a soluble crude protein 

extract from His-Res2p/His-Rep2p co-expressing cells with MCBl did not produce a 

detectable band-shift as detected by EMSA (data not shown). In addition, mixing o f crude 

soluble extracts containing His-Reslp and His-Res2p was tested. Furthermore, reconstitution of 

the DSCl band-shift complex following mixing o f crude His-Reslp and His-Res2p bacterial 

supernatants with fission yeast protein extracts prepared from their respective deletion mutants
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(His-Res2p to hresl  and His-Reslp to bresl cells) was attempted. However, using either of 

these approaches, no MCB-specific DNA-binding activity was detected (data not shown).

Neither bacterially expressed His-Reslp nor His-Res2p appeared able to bind MCB- 

DNA in vitro. Despite successful expression of soluble His-Rep2p, the lack o f a definitive 

assay has precluded the assignment of activity to this protein. Due to the insoluble nature of 

both His-CdclOp and His-Replp, these proteins have been refractory to similar analysis.

In contrast, the bacterial expression of a biologically active Res Ip protein has been reported 

(Ayte et al., 1995). A GST-Reslp fusion protein was shown to bind specifically to MCB 

elements in vitro. The DNA binding ability o f this recombinant protein was attributed to 

SpReslp homodimerisation, artificially promoted by the GST moiety. Accordingly, it was 

reasoned that the inability o f either His-Reslp or His-Res2p to bind MCB-DNA might reflect 

the self-dimerisation potential of these proteins in vitro. It is possible that the soluble His- 

Reslp and His-Res2p proteins are correctly folded but cannot homodimerise, thus precluding 

DNA-binding. An investigation was undertaken to assess the ability o f Res Ip and Res2p to 

bind specifically to MCB DNA, when bacterially expressed as GST fusion proteins. The 

production of both SpReslp and SpRes2p as GST-fusion proteins will also allow assay o f His- 

Rep2p via binding assays.
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Figure 5.8 Co-expression of His-Res2p and His-Rep2p in E . c o l i

His-Res2p and HisRep2p were co-expressed at 15°C in BL21 CodonPlus (DE3)-RIL cells by 

induction with 0.2 mM IPTG. Samples (1 ml) were removed at the point of induction (0 h) and 

at 16 h. The bacterial culture was then centrifuged, the pellet resuspended in 5 ml 50mM 

KH2 PO4 , pH 7.5 and cells lysed by French pressure disruption. The whole cell extract (W) was 

separated into soluble (S) and insoluble (P) fractions by centrifugation and samples (1 ml) 

taken. Samples from 0 h and 16 h were centrifuged, the pellets resuspended in Laemmli sample 

buffer (10 pl/0.1 absorbance unit) and denatured by boiling for 5 min in the presence o f DTT 

( 150 mM). All other samples were diluted with an equal volume of Laemmli sample buffer and 

similarly denatured. Samples were then analysed on a 10% SDS-polyacrylamide gel stained 

with Coomassie brilliant blue. Immunoblotting was carried out as described (Methods 2.4.7- 

2.4.11 ) and blots were probed with Anti-PentaHis-HRP conjugate antibody (Qiagen) at 1:2500. 

The positions o f molecular weight markers are indicated (Mr) in kDa.
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5.7 Cloning resÜ  and res2^ cDNAs into pGEX-KG
The r e s t  and res2^ cDNAs (Appendix I; GB 201 and GB 178, respectively) were amplified by 

PCR using primer pairs GO 464/GO 466 i r ^ s t )  and GO 465/GO 466 {rest"). Primers GO 464 

and GO 465 were designed to add a 5’ Sma\ restriction site immediately upstream of the ATG 

of r e s t  and res2^, respectively. Primer GO 466 adds a 3’ Xho\ restriction site downstream of 

the stop codon of each cDNA. Addition o f these restriction ends was necessary to facilitate 

directional cloning into the pGEX-KG vector, in-frame with an N-terminal GST-tag.

Figure 5.9 provides a schematic representation of the PCR reaction and the primers 

used. All PCR reactions were carried out using the VentR DNA polymerase (New England 

Biolabs).

5.7.1 Cloning r e s t  and res2* cDNAs into pCR2.1®
Following PCR amplification, each reaction mix was incubated with Taq polymerase at 72°C 

for 10 min to allow cloning into the linearised pCR2.1® vector. The cloning o f PCR products 

using the TA Cloning® Kit (Invitrogen) has been described previously (Chapter 3, Section 

3.3.2-3.3.3). Use of the TA Cloning® Kit, as an intermediate cloning step, was necessary due 

to the difficulty in digesting the Smal and Xhol restriction ends present at the end of a PCR 

product (reshiction enzymes often require substantial flanking sequence around their 

recognition site to digest efficiently). Following cloning into the TA vector, the cDNAs can 

then be easily excised for cloning into pGEX-KG.

Plasmid DNA was purified from overnight cultures (Methods 2.2.5) and analysed by 

restriction enzyme mapping to confirm the presence of an insert o f the correct size (Figures 

5.10A and 5.11 A). Potential positive clones were sequenced (MWG-Biotech -  using oligos 

listed in Appendix II) to confirm the presence of insert and the fidelity of the PCR. A positive 

clone for both r e s t  and res2^ was stored at -70°C in the lab bacterial collection (Appendix I - 

GB 300 and GB 302).
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5.7.2 Cloning r e s t  and res2^ cDNAs into pGEX-KG

The plasmids GB 300 {rest') and GB 302 {res2 t were digested with Smal and Xhol as was the 

pGEX-KG vector to generate cohesive ends for ligation. The vector was also treated with calf 

intestinal alkaline phosphatase (Methods 2.2,7 and 2.2.8). The products of the restriction 

digests were analysed on a 1.5 % (w/v) agarose gel (Figures 5.10A and 5.1 lA) and bands of the 

appropriate size excised and purified using the QIAquick® Gel Extraction Kit (Methods 2.2.4 

and 2.2.6). 5 pi samples were analysed on a 1.5 % (w/v) agarose gel to determine the 

vector; insert ratio to be used in the subsequent ligation reaction. Ligation reactions were carried 

out as described (Methods 2.2.9) and transformed into E. coli DH5a cells the following day 

(Methods 2.2.13). Plasmid DNA was purified from overnight cultures (Methods 2,2.5) and 

analysed by reshiction enzyme mapping (Figures 5.1 OB and 5.1 IB) and DNA sequencing 

(MWG-Biotech -  using oligos listed in Appendix II) to confirm cloning was in-frame with the 

N-terminal GST-tag. A positive clone for both G ST -rest and GST-res2^ was stored at -70°C in 

the lab bacterial collection (Appendix I - GB 309 and GB 318, respectively).
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Figure 5.9 Schematic representation of the PCR amplifications for pGEX-KG cloning

The white arrow represents the ORFs of the r e s t  and rest' cDNAs cloned into pET 28c at 

Nde\-Bam\\\. The His-tag is boxed in green, the black lines represent pET vector flanking 

sequence and the position o f restriction sites are indicated by arrows.

A Restriction map representing the Nde\-Bam\\\ fragment of each cDNA cloned into the pET- 

28c vector (Chapter 3).

B The positions o f the primers used in the PCR reaction are indicated in relation to the 

corresponding sequence o f the pET-28c vector. GO 464 and GO 465 add a Sma\ site 

(CÇCGGG) immediately upstream of the ATG of r e s t  and resl"', respectively. GO 466 

includes the pET-28c Xhol (CTCGAG) site downstream of the stop codon.

C A schematic representation of the DNA fragments produced following PCR.
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5.10 Restriction digestion analyses of the -pCR2.1® and -pGEX-KG plasmids

Clones containing insert were analysed by restriction mapping. Samples of each digest (5 pi) 

were analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under 

UV illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

A Digestion of the rc5/CpCR2.1® plasmid: 1 EcoK\ 2 Sma\-Xho\.

B Digestion of the rgj:/-pGEX-KG plasmid: 1 Hind\\\ 2 Sac\.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised 

for each clone in Tables 5.1 and 5.2.

Enzyme(s) Number of Fragments Fragment sizes (bp) {
E com 2 3900,1900

Sma\-Xho\ 2
.

3900,1900

Table 5.1 rt?5/'-pCR2.l'

Enaq^me(s) Number of Fragments F rom en t sizes (bp)
HindVW 2 5600,1300

Sac\ 2 5200,1700

Table 5.2 rea / -pGEX-KG
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5.11 Restriction digestion analyses of the -pCR2.1® and rex2 -pGEX KG plasmids

Clones containing insert were analysed by restriction mapping. Samples of each digest (5 pi) 

were analysed on a 1.5% (w/v) agarose gel stained with ethidium bromide and viewed under 

UV illumination. The 1 kb DNA ladder is shown (M) and sizes are indicated in base-pairs.

A Digestion of the -pCR2.1® plasmid: 1 EcoRI 2 Sma\-Xho\.

B Digestion of the -pGEX-KG plasmid: 1 Sal\ 2 EcoK\.

The restriction enzymes used in each digest and the predicted fragment sizes are summarised 

for each clone in Tables 5.3 and 5.4. Fragments marked (*) appear as a result of partial digest.

Enzyme(s) 1 Number of Fragments 1 Fr%ment sizes (bp)
EcoRl 1 ̂ 3900,2000*,

1500,500

S m a \ - X h o \ 2 3900, 2000

Table 5.3 -pCR2.l‘

Eng^me^) Number of Fragments ! Fragment sizes (bp)
S a i l

1
2 5200,1700

EcoRl 2 5400,1500

Table 5.4 -pGEX-KG
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5.8 Overexpression and solubility of GST-Reslp and GST-Res2p
As described for the His-tagged recombinant proteins (Chapter 3 and this Chapter), in order to 

obtain optimal conditions for the overexpression and solubility of both GST-Res 1 p and GST- 

Res2p, several E, coli expression strains were tested, together with a variety of growth and lysis 

buffer conditions. As before, the E. coli expression strain BL21 (DE3) CodonPlus-RIL gave 

optimal results for both recombinant proteins, following transformation with the clones 

containing the G ST -rest and GST-res2^ cDNAs. Small-scale protein inductions were carried 

out to test for successful overexpression o f each protein (Methods 2.4.1 and 2.4.12). Aliquots 

of the induction at 0 h and 3 h or 16 h together with samples of the whole cell extract (W), 

supernatant (S) and pellet (P) were then analysed by SDS-PAGE and the solubility o f each 

protein determined by viewing after Coomassie blue staining or immunoblotting. Figures 5.12 

and 5.13 show the overexpression and solubility of GST-Reslp and GST-Res2p at different 

temperatures as viewed by Coomassie blue staining. The GST-Reslp and GST-Res2p proteins 

resolve with a Mr approximately 98,000 (GST is a protein with a Mr value of 26,000). Figure 

5.14 shows immunoblot analysis of the overexpression and solubility of GST-Reslp and GST- 

Res2p. For comparison, overexpression of the GST moiety alone is similarly depicted in Figure 

5.15.
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Figure 5.12 Overexpression of GST-Reslp

GST-Reslp was overexpressed at 30°C (A) or 15“C (B) in BL2I CodonPlus (DE3)-R1L cells 

by induction with 1 mM or 0.2 mM IPTG respectively. Samples (1 ml) were removed at the 

point of induction (0 h) and at 3 h or 16 h. The bacterial culture was then centrifuged and the 

pellet resuspended in 5 ml 1 x PBS. Cells were lysed by French pressure cell disruption. This 

whole cell extract (W) was then separated into soluble (S) and insoluble (P) fractions by 

centrifugation and samples (1 ml) taken. Samples from 0 h and 3 h were centrifuged, the pellets 

resuspended in Laemmli sample buffer (10 p.1/0.1 absorbance unit) and denatured by boiling for 

5 min in the presence of DTT (150 mM). All other samples were diluted with an equal volume 

of Laemmli sample buffer and similarly denatured. Samples were then analysed on a 10% 

SDS-polyacrylamide gel stained with Coomassie brilliant blue. Molecular weight markers are 

shown (Mr) with sizes indicated in kDa.
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Figure 5.13 Overexpression of GST-Res2p

GST-Res2p was overexpressed at 30°C (A) or 15°C (B) in BL21 CodonPlus (DE3)-R1L cells 

by induction with 1 mM or 0.2 mM IPTG respectively. Samples (1 ml) were removed at the 

point of induction (0 h) and at 3 h or 16 h. The bacterial culture was then centrifuged and the 

pellet resuspended in 5 ml 1 x PBS. Cells were lysed by French pressure cell disruption. This 

whole cell extract (W) was then separated into soluble (S) and insoluble (P) fractions by 

centrifugation and samples (1 ml) taken. Samples from 0 h and 3 h were centrifuged, the pellets 

resuspended in Laemmli sample buffer (10 pl/0.1 absorbance unit) and denatured by boiling for 

5 min in the presence of DTT (150 mM). All other samples were diluted with an equal volume 

of Laemmli sample buffer and similarly denatured. Samples were then analysed on a 10% 

SDS-polyacrylamide gel stained with Coomassie brilliant blue. Molecular weight markers are 

shown (Mr) with sizes indicated in kDa.
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Figure 5.14 Immunoblot analysis of GST-Reslp and GST-Res2p

GST-Reslp (A) and GST-Res2p (B) were overexpressed at 15°C in BL21 CodonPlus (DE3)- 

RIL cells by induction with 0.2 mM IPTG. Samples (1 ml) were removed at the point of 

induction (0 h) and at 16 h. Each bacterial culture was then centrifuged and the pellets 

resuspended in 5 ml 1 x PBS. Cells were lysed by French pressure cell disruption. The whole 

cell extracts (W) were then separated into soluble (S) and insoluble (P) fractions by 

centrifugation and samples (1 ml) taken. Samples from 0 h and 16 h were centrifuged, the 

pellets resuspended in Laemmli sample buffer (10 pl/0.1 absorbance unit) and denatured by 

boiling for 5 min in the presence o f DTT (150 mM). All other samples were diluted with an 

equal volume of Laemmli sample buffer and similarly denatured. Samples were then analysed 

on a 10 % SDS-polyacrylamide gel stained with Coomassie brilliant blue. Immunoblotting was 

carried out as described (Methods 2.4,7-2.4.11) and blots were probed with Anti-GST-HRP 

conjugate antibody (Amersham) at 1:2500. The positions of molecular weight markers are 

indicated (Mr) in kDa.
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Figure 5.15 Immunoblot analysis of GST

GST was overexpressed at 15°C in BL21 CodonPlus (DE3)-RIL cells by induction with 0.2 

mM IPTG. Samples (1 ml) were removed at the point of induction (0 h) and at 16 h. The 

bacterial culture was centrifuged and the pellet resuspended in 5 ml 1 x PBS. Cells were lysed 

by French pressure cell disruption. The whole cell extract (W) was separated into soluble (S) 

and insoluble (P) fractions by centrifugation and samples (1 ml) taken. Samples from 0 h and 

16 h were centrifuged, the pellets resuspended in Laemmli sample buffer (10 pl/0.1 absorbance 

unit) and denatured by boiling for 5 min in the presence of DTT (150 mM). All other samples 

were diluted with an equal volume of Laemmli sample buffer and similarly denatured. Samples 

were then analysed by immunoblotting as described (Methods 2.4.7-2.4.11). Blots were probed 

with Anti-GST-HRP conjugate antibody (Amersham) at 1:2500. The positions of molecular 

weight markers are indicated (Mr) in kDa.
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5.9 Biological activity assays - GST-Reslp and GST-Res2p
Bacterially expressed GST-Reslp bound specifically to MCB elements in vitro (Ayte et a l, 

1995). Accordingly, the EMSA technique was employed to assay the biological activity o f the 

recombinant GST-Reslp and GST-Res2p proteins.

Recombinant GST-Reslp and GST-Res2p were individually overexpressed at 15°C 

(Section 5.8) and recovered in the supernatant fraction. Soluble protein extracts (Methods 

2.4.14) were incubated with a radio-labelled MCBl DNA probe and used in EMSA 

experiments as described (Methods 2.2.14 - 2.2.16). The results o f this assay are shown in 

Figure 5.16. Incubation of either GST-Reslp or GST-Res2p with MCBl produced a co- 

migratory band-shift activity. In contrast, this band-shift activity was absent from extracts of 

GST alone incubated with M CBl. Both the GST-Reslp and GST-Res2p band-shift activities 

were specific to the MCBl element, as judged by competition analysis and an inability to bind 

the mutated M CBlm sequence. Notably, both of these band-shifts were of a greater mobility 

than the DSCl band-shift formed in wild-type fission yeast extracts, consistent with the 

absence of SpCdclOp, SpRep2p and SpRes2p or SpReslp, respectively. In addition, the 

presence o f the GST-tag, in both GST-Reslp and GST-Res2p containing complexes, was 

confirmed by a super-shift following addition o f an anti-GST antibody (Figure 5.17).
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Figure 5.16 GST-Reslp and GST Res2p bind specifically to M CBl DNA in  v itro

EMSA analysis of protein extracts prepared from E. coli BL21 (DE3) CodonPlus-RIL cells 

transformed with pGEX-KG (GB 159), -pGEX-KG (GB 309) or G ST-rest-pG EX-

KG (GB 318). Protein extracts were prepared and incubated with a radio-labelled probe derived 

from the cdc22^ promoter (MCBl). To check the specificity o f the retarded complex an excess 

of unlabelled MCBl probe was added (lanes 6 and 9) or a probe containing a mutated MCBl 

(MCBlm) element (lanes 4, 7 and 10) or an excess o f unlabelled MCBlm (lanes 11 and 12). A 

protein extract from wild-type fission yeast cells (GG 217) was incubated with MCBl and 

forms a characteristic DSCl band-shift for comparison (lane 2). The upper and lower arrows on 

the left indicate the positions of the DSCl complex and the unbound radio-labelled probe, 

respectively. The arrow on the right indicates the GST-Reslp and GST-Res2p band-shifts.

1 = free MCBl probe
2 = wild-type protein extract + MCBl probe
3 = pGEX-KG protein extract + MCBl probe
4 = pGEX-KG protein extract + MCBlm probe
5 = GST-rest-^GEX-KG protein extract + MCBl probe
6 = -pGEX-KG protein extract + excess unlabelled MCB 1 probe
7 = GST-rest-pGEX-KG protein extract + MCBlm probe
8 = G5'7’-re52'-pGEX-KG protein extract + MCBl probe
9 = G5"T-re.$2-pGEX-KG protein extract + excess unlabelled MCBl probe
10 = G.5T-rgj2-pGEX-KG protein extract + MCBlm probe
11 = GiST-rê /'̂ -pGEX-KG protein extract + excess unlabelled MCBlm probe

12 = GST-res2" -̂pGEX-KG protein extract + excess unlabelled MCBlm probe
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Figure 5.17 Super-shift EMSA assay of GST-Reslp and GST-Res2p with Anti-GST 

antibody

EMSA analysis of protein extracts prepared from E. coli BL21 (DE3) CodonPlus-RIL cells 

transformed with pGEX-KG (GB 159), pG ST-rest (GB 309) or pGST-res2^ (GB 318). Protein 

extracts were prepared and incubated with a radio-labelled probe derived from the cdc22^ 

promoter (MCBl). Protein extracts mixed with probe were incubated with various dilutions of 

an anti-GST antibody prior to loading on a 2% SeaPlaque: 1% agarose gel. A protein extract 

from wild-type fission yeast cells (GG 217) was incubated with MCBl and forms a 

characteristic DSCl band-shift for comparison (lane 2). The upper and lower arrows on the left 

indicate the positions of the DSCl complex and the unbound radio-labelled probe, respectively. 

The green arrow indicates the super-shifted GST-Res2p complex.

1 =  free M C B  1 probe

2 =  w ild -typ e  protein extract + M C B  1 probe

3 =  pG E X -K G  protein extract +  M C B l probe

4  =  pG E X -K G  protein extract +  M C B l probe + A n ti-G ST  (1 :1 )

5 =  -pG E X -K G  protein extract t M C B l probe

6  =  GST-resI-pGEX-KG  protein extract + M C B  1 probe + A n ti-G ST  (1 :1 )

7 =  GST-rest-pGEX-KG  protein extract +  M C B l probe +  A nti-G ST  (1 :2 )

8 =  /  -pG E X -K G  protein extract + M C B l probe +  A n ti-G ST  (1 :5 )

9 =  -pG E X -K G  protein extract +  M C B l probe + A nti-G ST  (1 :1 0 )

10 =  GST-rest-pGEX-KG  protein extract  ̂ M C B l probe + A n ti-G ST  (1 :5 0 )

11 =  GiST-re52^-pGEX-KG protein extract +  M C B l probe

12 =  GST-res2"^-pGEX-KG protein extract + M C B l probe +  A n ti-G ST  (1

13 =  GST-res2^-pGEX-KG protein extract +  M C B l probe + A n ti-G ST  (1

14 =  -pG E X -K G  protein extract t M C B l probe + A n ti-G ST  (1

15 =  G 5T -re52L pG E X -K G  protein extract +  M C B l probe + A n ti-G ST  (1

16 =  GST-res2^-pGEX-KG protein extract + M C B l probe + A n ti-G ST  (1

1)
2) 

5) 
10) 

5 0 )
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5.10 Discussion
In this chapter, attempts to obtain soluble recombinant protein, following overexpression of 

His-Reslp, His-Res2p, His-Replp, His-Rep2p or His-CdclOp in E. coli, have been described. 

Following this, a series of assays have been described to determine the biological activity of 

these soluble recombinant proteins when produced in vitro.

The ability to obtain a soluble protein, following release from the cell, can be dependent 

on several factors. With respect to heterologous protein production, not only must the 

conditions within the cell be suitable, facilitating efficient translation and protein folding, but 

also the protein must then be recovered and maintained in a solvent in which it is stable. 

Accordingly, a series o f growth and lysis buffer conditions were screened, in attempts to 

recover each of the recombinant proteins in a soluble form.

The major advantage o f heterologous expression systems is for the production of 

substantial quantities o f recombinant protein. This is often counterbalanced by the affect that 

such high levels can impose on solubility. Indeed, recombinant protein may comprise >50% of 

total cell protein, and this can result in the formation of insoluble aggregates. Expression at 

lower temperatures, in combination with a reduced concentration of inducing agent, can often 

aid in the production of soluble protein (Schien and Noteborn, 1988). It has been suggested that 

lowering the induction temperature can slow down the rate o f translation. In turn, the amount of 

protein that accumulates in a given time is reduced and as a result, the protein has more time to 

fold correctly, helping to prevent formation o f insoluble aggregates.

Initial attempts to obtain soluble protein following overexpression of the His-tagged 

proteins at 37°C were unsuccessful, with the exception of His-Reslp. Given that the expression 

of His-Reslp was at a relatively low level (detectable only by immunoblotting), the partial 

solubility of this recombinant protein at this, and indeed all temperatures tested may reflect this 

observation. Similarly, His-Rep2p (also detectable only by immunoblot analysis) although 

completely insoluble at 37°C, appeared in the supernatant following expression at 30°C, 22“C 

or 15°C. Conversely, both His-Replp and His-CdclOp were present in the insoluble fraction 

under all conditions tested, perhaps reflecting higher expression levels. These proteins may 

therefore be present as inclusion bodies, which can form for several reasons. The recombinant 

protein may require post-translational modification and/or molecular chaperones in order to 

fold correctly. In addition, the high levels of protein expressed within the cell may account for 

dense packing and aggregation (Lilie et al., 1998).

Even so, inclusion bodies can often be a useful source of pure protein. The solubilisation 

and purification o f both His-Reslp and His-CdclOp from inclusion bodies is discussed in detail 

in Chapter 6.
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In contrast the solubility of His-Res2p increased significantly following induction at 

15°C for 16 h. The ability to produce soluble His-Res2p was not solely dependent on finding 

the appropriate induction conditions, but was equally reliant on the composition o f the lysis 

buffer. Using the variant solubility o f His-Res2p in buffers o f different salt concentration as an 

example, one of the many parameters that can dramatically affect the solubility of a protein has 

been highlighted. Furthermore, the apparent insolubility of His-Res2p in NaCl concentrations 

> 300 mM has important consequences for the purification of this protein (discussed in Chapter 

6).

Following production of soluble His-Reslp (albeit at low levels) and His-Res2p, these 

recombinant proteins were assayed for biological activity. Crude soluble extracts from E. coli, 

expressing either His-Reslp or His-Res2p, were incubated with a radio-labelled MCB probe. 

However, an in vitro MCB DNA-binding activity was not detected with either o f these proteins 

using this technique.

Co-expression o f His-CdclOp with either His-Reslp or His-Res2p was attempted. 

Unfortunately, co-expression of either protein with His-CdclOp proved unsuccessful, in terms 

o f detectable protein (either His-Reslp or His-Res2p were detected but not His-CdclOp by 

Coomassie blue staining or immunoblotting). In addition, co-expression of either His-Reslp or 

His-Res2p with each other and with His-Replp or His-Rep2p was tested. Association o f these 

proteins might facilitate MCB-specific DNA binding of the His-Resp subunits in the absence of 

His-CdclOp. However, although co-expression o f His-Res2p/His-Rep2p was detected, and both 

of these proteins were present in the soluble fraction (as determined by immunoblotting -  

Figure 5.8), use o f this protein extract did not yield detectable MCB binding in vitro.

These observations suggest that neither bacterially produced soluble His-Res 1 p or His- 

Res2p has DNA-binding activity. There are a number of possible explanations why the His- 

tagged Resp proteins cannot bind to DNA in vitro. The His-tag, present at the N-terminus of 

these proteins, may prevent proper folding and therefore occlude DNA-binding. To counter this 

possibility the presence of a His-tag at either the N- or C-terminus had no adverse effect on the 

specific DNA-binding properties of bacterially expressed ScSwidp or ScMbplp (Taylor et al., 

2000).

With respect to the results observed with His-Reslp, it has been reported that in vitro 

translated SpReslp cannot bind to MCB DNA, in the absence of SpCdclOp (Ayte et al., 1995). 

Similarly, the MCB-specific DNA binding activity o f in vitro translated SpRes2p was 

dependent on co-expression with SpCdclOp, although a weak band-shift activity was detected 

with SpRes2p alone (Zhu et al., 1997).

The inability to co-express either His-Reslp or His-Res2p with His-CdclOp has 

precluded a definitive analysis o f the dependency o f these proteins upon His-CdclOp, for their 

DNA-binding activity in vitro. Using His-Res2p alone, no MCB specific band-shift activity
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was detected. Pertinent to this result, Zhu and co-workers previously reported an inability to 

detect a MCB-specific DNA-binding complex by EMSA with in vitro translated SpReslp, 

using three different MCB containing probes (Zhu et al., 1994). Therefore, the ability of 

SpReslp alone to bind to MCB DNA in vitro may not be straightforward.

Intriguiiigly, it has been shown that C-terminal truncation of in vitro produced SpReslp 

enhances MCB-specific DNA-binding. The C-termini of SpReslp and SpReslp are responsible 

for binding to SpCdclOp (Ayte et al., 1995; Zhu et a l, 1997). The fact that only a weak band- 

shift was detected with SpReslp alone, and that this was markedly increased by the presence of 

SpCdclOp, suggested that in the absence o f SpCdclOp, the ability o f SpReslp to bind DNA is 

compromised (Zhu et a l, 1997).

In agreement with this observation, analysis of the ScSwi4p protein in vitro suggests 

that, in the absence o f ScSwi6p, the C-terminus of ScSwi4p is involved in contact with the N- 

terminal DNA-binding domain. This has led to the proposal that control of DNA-binding in 

ScSwi4p may be mediated, at least in part, through intramolecular auto-inhibition, in the 

absence of ScSwibp (Baetz and Andrews, 1999).

Given the extensive sequence homology between the SpRes 1 p/SpReslp and ScSwi4p 

proteins at the N and C-termini, it is tempting to suggest that such a mode of DNA-binding 

regulation may be conserved. It is perhaps relevant that the co-expression experiments o f Zhu 

and co-workers utilised in vitro translated protein made in rabbit reticulocyte lysates and so it is 

possible that the DNA-binding activity exhibited by these proteins reflects a requirement for 

post-translational modification that only occurs in eukaryotes.

Arguing against this, bacterially expressed SpReslp has been shown to bind specifically 

to MCB DNA by EMSA. This band-shift activity was attributed to the artificial homo­

dimerisation o f SpReslp imparted by the GST moiety (Ayte et a l ,  1995). Further evidence for 

this was demonstrated by the MCB-specific binding of SpReslp when fused at its N-terminus 

to the Epstein Barr Virus ZEBRA domain, a protein with intrinsic dimérisation potential (Ayte 

et a l, 1997).

Such results have led these authors to attribute the apparent inability o f SpReslp to bind 

DNA in vitro, to homodimerisation potential. SpReslp can homodimerise in vitro, in a 

SpCdclOp-dependent manner (Zhu et al. 1997). Both SpReslp and SpReslp are believed to 

form heterodimers in the mitotic DSCl complex in vivo (Ayte et a l ,  1997; Whitehall et a l , 

1999).

This suggestion prompted an investigation to determine if GST-Reslp and GST-Reslp 

could bind specifically to MCB DNA, in contrast to the His-tagged isoforms. Following 

cloning into a GST expression vector and successful overexpression of soluble protein, the 

ability o f GST-Reslp and GST-Reslp to bind specifically in vitro to MCB DNA was assayed. 

In accordance with the results o f Ayte and co-workers, GST-Reslp produced a MCB-specific
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band-shift complex. Notably, expression of SpReslp as a GST-fusion protein also conferred 

MCB-specific DNA-binding. Both DNA-binding activities were co-migratory (a slightly 

stronger complex was detected with GST-Reslp -  most likely reflecting the higher level of 

expression of this protein). The presence of the GST-tag in each band-shift complex was 

confirmed following super-shift analysis, using an anti-GST antibody (Figure 5.17).

The fact that E. coli is capable o f producing biologically active GST-Reslp and GST- 

Reslp (in terms of MCB-specific DNA binding), indicates that post-translational modification 

is not essential for the DNA-binding activity o f these proteins in vitro. Furthermore, although 

the band-shift activities are MCB-specific, the artificial dimérisation imparted by the GST 

moiety may confer this DNA binding capability. Indeed, if  this were found to be true, then the 

inability of His-Reslp or His-Reslp to bind DNA might reflect the monomeric nature of these 

proteins in vitro. If either homo- or heterodimerisation in vitro is dependent on SpCdclOp 

(outwith artificial means), then the His-Resp proteins may not be inactive per se. The soluble 

nature of these proteins suggests that they may be correctly folded and so analysis o f these 

proteins may still be worthwhile.

It should be noted that in all assays using GST-Reslp and GST-Reslp, crude soluble 

protein exti'acts were used. As is apparent from both Coomassie blue staining and 

immunoblotting, these extracts contain a heterogeneous population of both GST-Reslp and 

GST-Reslp proteins. In both cases the band-shift was reliant on the presence of either GST- 

Reslp or GST-Reslp (no specific complex was detected using extracts fiom E. coli expressing 

the GST-tag alone). Nevertheless, the possibility that MCB-specific DNA-binding is conferred 

by C-terminally truncated, rather than full-length, GST-Reslp or GST-Reslp molecules cannot 

be excluded. Such an explanation would correlate with relief o f C-terminal mediated auto- 

inhibiton. The smeared appearance of the band-shift complex in both cases indicates such 

heterogeneity and has been noted by Ayte and co-workers (Ayte et al., 1995).

Despite the apparent MCB-specific DNA binding capacity o f GST-Reslp and GST- 

Reslp, a more definitive answer regarding the DNA-binding properties of these proteins 

requires further analysis. A more direct analysis toward answering these questions necessitates 

purification of these proteins. Firstly, with respect to GST-Reslp and GST-Reslp, purification 

of full-length protein will allow determination of the nature of the DNA-binding activity. Is the 

MCB-specific DNA-binding activity generated by full-length GST-Res 1 p/GST-Reslp, or 

instead C-terminally truncated isoforms? In addition, thrombin cleavage o f the GST-tag and 

purification of the resultant Reslp and Reslp proteins will allow separation of the effects of the 

GST-tag on DNA-binding. The presence o f the GST-tag may stabilise these proteins and allow 

them to fold correctly. In contrast, the artificial homo-dimerisation imparted by the GST moiety 

may be required for DNA-binding.
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Similarly, there are un-resolved issues over the results of the in vitro assays with both 

His-tagged Reslp and Reslp. Thrombin cleavage of the His-tag from purified His-Reslp and 

His-Reslp will allow separation of the effects of the His-tag, if any, on DNA-binding. 

Purification of these proteins and recovery in sufficient amounts will provide valuable material 

for use in biophysical studies allowing an analysis of the structure of these proteins. O f 

particular interest will be a comparison of the His-tagged and GST-tagged isoforms. In 

addition, purification of the GST-Resp proteins described in this chapter will allow an analysis 

o f the activity o f His-Replp using in vitro binding assays.

In the following chapter the purification of these recombinant proteins is described, to 

permit detailed functional, and ultimately structural, analyses.

143



Chapter 6
Purification of recombinant DSCl proteins



6.1 Introduction
Chapter 5 focused on analysis of the biological activity of recombinant DSCl components, 

when produced in vitro. These experiments showed that, when bacterially expressed as GST- 

fusion proteins, both R eslp and Reslp bound specifically to MCB containing DNA in EMSA 

assays. In contrast, their respective His-tagged isoforms displayed no such detectable DNA- 

binding activity. Similar assays using His-Replp were inconclusive and both His-Replp and 

His-CdclOp were insoluble following overexpression. This precluded in vitro assays using 

either of these latter two proteins.

As discussed in the previous chapter, analysis of these results has raised several issues 

regarding the behaviour o f the recombinant GST-Resp and His-Resp proteins in vitro. 

Specifically, with respect to both GST-Reslp and GST-Reslp, the nature of the protein 

responsible for MCB-specific DNA-binding has still to be fully resolved. In vitro DNA-binding 

assays employed crude soluble bacterial extracts, containing a heterogeneous mix of both full- 

length and truncated GST-Resp proteins. The effect(s) of the GST moiety upon DNA-binding 

requires further investigation, particularly with regard to in vitro homodimerisation and so the 

His-tagged isoforms o f  R eslp and R eslp merit further analysis. The inability of the His-Resp 

proteins to bind MCB-DNA in vitro may reflect an inability to homodimerise. Removal o f the 

His and GST moieties will allow separation of the effect of these tags, if any, upon the 

behaviour o f these proteins in vitro.

Detailed analysis of a protein requires it is free of any contaminants that may interfere 

with or influence its activity. In order to obtain a greater understanding o f the behaviour of 

these recombinant proteins in vitro, purification must be undertaken. Purification o f either 

GST-Reslp or GST-Reslp will also allow in vitro binding assays with His-Replp. Importantly, 

recovery of protein in sufficient yield and purity will also provide valuable material for detailed 

structural studies.

The purification o f a protein from the many macromolecular compounds within a cell 

can often be a formidable task, particularly if  it is present in low abundance. In addition, the 

protein may exist in several different isoforms within the cell. Such micro-heterogeneity can be 

problematic when attempting to obtain a homogeneous preparation, required for detailed 

structural studies. As discussed in Chapter 3, biophysical analyses require large amounts of 

pure and active protein that are often extremely difficult to obtain from the native source. 

Overexpression of proteins of interest, as recombinants with fusion tags in bacteria, often 

simplifies purification and increases yield.

Expression o f a protein with a fusion tag is primarily useful for purification purposes; in 

some cases expression, solubility and stability may also be enhanced. The highly specific 

binding properties o f the fusion tag can be exploited in affinity chromatography, providing a
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relatively straightforward means o f purification (generally applicable to any protein containing 

the tag). Inclusion o f a genetically engineered protease recognition sequence at the C-terminus 

of the tag allows cleavage either during or after purification. The bacterial overexpression and 

solubility of each o f the fission yeast DSCl components, with an N-terminal His-tag, has been 

described previously (Chapter 3, Section 3.4). Both Reslp and R eslp have also been bacterially 

expressed as N-terminal GST-fusions (Chapter 5, section 5.8). Both the pET-28c and pGEX- 

KG vectors contain thrombin cleavage sites immediately C-terminal to their His and GST-tags, 

respectively.

The glutathione -S-transferase enzyme has a subunit Mr of 26 kDa, and is frequently used 

as an N-terminal fusion partner in recombinant protein studies. GST-fusion proteins can then be 

purified based on their affinity for glutathione (Smith and Johnson, 1988). Similarly, fusion of 

a 6-Histidine-tag to the N or C-terminus o f a protein affords a simple means o f purification by 

exploiting the affinity o f histidine for transition metal ions (Porath et al., 1975; Smith et al., 

1988). In both cases, the fiision proteins can then be purified, following binding to their 

respective ligands (immobilised on a chromatographic support), by mass-action competitive 

binding. Elution is achieved by addition o f reduced glutathione for GST-fusions, whereas 

imidazole competes with His-tagged proteins.

Ideally, for purification using these methods, the protein should be in soluble form. Even 

so, recoveiy of pure and active protein from insoluble aggregates is not unprecedented. Both 

His-Replp and His-CdclOp were insoluble under all conditions tested, which prevented assay 

of their activities in vitro. The presence o f insoluble proteins in inclusion bodies, however, 

often provides a convenient and straightforward means of obtaining pure protein in high yield 

(Carrio and Villaverde, 2002). The material present within inclusion bodies frequently 

represents mis-folded aggregates o f protein. Accordingly, recoveiy of active protein from 

inclusion bodies routinely involves re-folding, which can often be an extremely complex 

process. Even so, several proteins purified from inclusion bodies have been found to obtain 

significant secondary and tertiary structure, with some displaying significant activity (Carrio 

and Villaverde, 2002). Purification o f His-Replp and His-CdclOp from inclusion bodies has 

the potential to provide a reproducible source o f active protein in high yield.

In this chapter, purification of the recombinant DSCl components is described with 

view to more definitive functional analyses in vitro. Following purification, attempts to obtain 

preliminary structural data for these proteins are described.

145



6.2 Purification of Recombinant His-tag fusion proteins using the 

BioCAD® system
Cloning, overexpression and solubility o f the recombinant His-tagged DSCl components has 

been described previously (Chapters 3 and 5).

The His-Reslp, His-Res2p and His-Rep2p recombinant proteins were purified from 

large-scale bacterial cultures by the method of Immobilised Metal ion Affinity 

Chromatography - IMAC (Porath et al., 1975; Smith et al., 1988) using the BioCAD® 

SPRINT™ Perfusion Chromatography® system (Methods 2.4.16-2.4.18). This is a fully 

automated purification system that employs a pre-programmed purification protocol. The 

ultraviolet (UV) elution profile is monitored at 280 nm, and can be plotted against a choice of 

parameters (e.g. % elution buffer, pH and conductivity).

In IMAC, a metal chelating group (typically imidodiacetate; CH2N(CH2C02')2) is 

immobilised on a hydrophilic chromatographic support. The imidodiacetate groups chelate 

transition metal ions, allowing the remaining co-ordination sites to interact with proteins. The 

type o f metal ion used can affect the binding strength, with copper providing tightest binding 

(Cu^^ > Ni^^ > Zn^^ > Co^^). Proteins bind to these metal co-ordination sites through their 

surface amino acids, in particular histidine. Thus, proteins with a high availability of histidine 

residues (i.e. high affinity for transition metal ions) bind to the column, whilst other proteins 

elute during washing steps. Therefore, fusion of a 6-histidine tag to a recombinant protein 

provides an efficient handle for purification by this method. The active group in histidine, 

involved in binding to the metal co-ordination sites, is imidazole. Elution o f bound protein is 

therefore achieved through mass action competitive binding, by a gradient of increasing 

imidazole concentration. Following initial trial purifications (e.g. using cobalt or nickel) the 

optimal conditions for binding and elution were achieved using zinc.
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6.2.1 Purification of His-Reslp and His-Rep2p
Large-scale protein induction, preparation of clarified supernatant and preparation of the 

metal chelate column for purification, were carried out as described (Methods 2.4.17 and 

2,4.18). Clarified supernatant was manually injected onto the POROS MC column in 5 ml 

aliquots, in the presence of Starting buffer. Elution of bound protein was achieved by an 

increasing linear gradient o f imidazole (0.5 mM-500 mM), and was monitored by observing the 

absorbance profile at 280 nm plotted against % elution buffer; 2 ml fractions were collected 

automatically.

The results depicted in Figure 6.1 represent a typical purification run for His-Reslp, as 

recorded by the BioCAD® system. A single sharp peak in absorbance was initially observed, 

encompassing fractions ~6 to 9, followed by a gradual decline that levelled off around fraction 

20. Samples of peak fractions were taken and analysed by SDS-PAGE and Coomassie blue 

staining, or immunoblotting using an antibody directed against the His-tag (Figures 6.2 and 6.3, 

respectively). The majority o f protein, corresponding to the approximate Mr o f His-Reslp 

(75 kDa), eluted in fr actions 8 and 9, with faint bands of similar size visible in fractions 10 

through 14. The sharp peak seen in Figure 6.1 correlated with the major bands detected in 

fractions 8 and 9 following Coomassie blue staining. However, immunoblot analysis of these 

same fractions indicated that a single protein corresponding to the expected size of His-Reslp 

was present in fractions 10-14 only (Figure 6.3 - a faint band of the expected size was also seen 

in fraction 9; fraction 14 is not shown on the blot). These results, indicated that the major peak 

observed was not consistent with elution of His-Reslp and was most likely due to non-specific 

binding o f E. coli protein(s). Instead, His-Reslp appeared to elute in the shoulder to the right o f 

this major peak, with the amount of Flis-Reslp retrieved following purification by this method 

being veiy low (Figure 6.2).

Similar results were obtained for His-Rep2p (data not shown). Manipulation of 

chromatography conditions had no significant effect on protein yield. A scale-up in the process 

was carried out in an attempt to maximise the amount of protein loaded, but was similarly 

ineffectual. The inability to purify appreciable amounts of His-Reslp or His-Rep2p was, 

therefore, attributed to the low levels at which these proteins were overexpressed. Attempts to 

increase the expression levels of these proteins have been described previously (Chapter 3, 

Section 3.4). The results presented represent the optimal conditions achieved to date. The 

inability to purify His-Reslp or His-Rep2p in significant amounts has implications for the 

future functional and structural study o f these proteins.
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Figure 6.2 SDS-PAGE analysis o f His-Reslp from IMAC purification

His-Reslp was overexpressed in BL21 CodonPlus (DE3)-RIL cells for 16 h at 15°C by 

induction with 0.2 mM IPTG. The bacterial culture (routinely 500 ml) was then centrifuged, the 

pellet resuspended in 20 ml lysis buffer, and cells lysed by French pressure disruption. The 

soluble fraction was obtained following centrifugation and loaded onto the column in 5 ml 

aliquots. Peak fractions were collected automatically and samples (100 p.1) taken. All samples 

were diluted in an equal volume o f Laemmli sample buffer and denatured by boiling for 5 min 

in the presence of DTT (150 mM). Samples were then analysed on a 10% SDS-polyacrylamide 

gel stained with Coomassie brilliant blue. Molecular weight markers are shown (MJ with sizes 

indicated in kDa. The arrow indicates the expected position o f full-length His-Reslp and 

numbers above each lane correspond to the fraction numbers indicated on the BioCAD® trace 

(Figure 6.1).
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Figure 6.3 Immunoblot analysis of His-Reslp from IMAC purification

The peak fractions shown in Figure 6.2 were also analysed by immunoblot analysis. Following 

SDS-PAGE and transfer to nitrocellulose, the blot was probed with Anti-PentaHis-HRP 

conjugate antibody (Qiagen) at 1:2500. The positions of molecular weight markers are 

indicated (MT in kDa. The arrow indicates the expected position o f full-length His-Reslp. A 

sample of the His-Reslp supernatant loaded onto the column is shown (lane S) and numbers 

above each lane correspond to the fraction numbers indicated on the BioCAD® trace (Figure 

6 . 1).
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6.2.2 Purification of His-Res2p
Large-scale protein induction, preparation o f clarified supernatant and preparation of the metal 

chelate column for purification, were carried out as described (Methods 2.4.17 and 2.4.18). 

Loading of supernatant and elution were carried out as described previously for purification o f 

His-Reslp (Section 6.2.1) and 2 ml fractions collected automatically. The results depicted in 

Figure 6.4 represent a typical purification run for His-Res2p, as recorded by the BioCAD® 

system. A single peak in absorbance was observed, encompassing fractions ~6 to 13, that 

peaked at fractions 9-10 and reached its nadir around fraction 17. Samples of peak fractions 

were taken and analysed by SDS-PAGE and Coomassie blue staining, or immunoblotting using 

an antibody directed against the His-tag (Figures 6.5 and 6,6, respectively). The majority of 

protein, corresponding to the approximate Mr o f His-Res2p (75 kDa), eluted in fractions 7 

through 13, as viewed by Coomassie blue staining, coincident with the major peak in 

absorbance (compare Figures 6.4 and 6.5). Immunoblot analysis o f these same fractions 

detected a single protein corresponding to the expected size of His-Res2p; a faint band o f the 

expected size was also seen in fraction 9 (Figure 6.6). These results indicated that the major 

peak in absorbance was consistent with elution of His-Res2p.

Purification of recombinant His-Res2p using this method yielded significant amounts o f 

protein (typically 5-10 mg 1"̂ culture). Despite such a successful yield, the purity was 

compromised. A single contaminating protein was consistently observed to co-purify with His- 

Res2p, in all peak fractions analysed. This contaminant protein was ~ 60 kDa in size as viewed 

by Coomassie blue staining (compare with Figure 5.1 Chapter 5, for approximate size). In 

contrast to His-Res2p, this protein was not detected by immunoblotting using anti-His 

antibody.

In an attempt to remove this impurity, ion-exchange chromatography was attempted. 

This technique separates proteins by exploiting differences in ionic binding strength. The 

requirement for high salt concentrations in buffers used in this technique was complicated by 

the insolubility o f His-Res2p in NaCl concentrations >100mM (Chapter 5 Section 5.3). 

Following IMAC, dialysis of eluted protein into ion-exchange buffers frequently resulted in 

protein precipitation, precluding use of this technique.

The inability to detect the contaminant protein following immunoblot analysis, with 

anti-His antibody, demonstrated that this protein did not contain the N-terminal His-tag that 

was present in full-length His-Res2p. It was therefore assumed that the co-purifying protein 

was either from E. coli, bound non-specifically to the column (or to His-Res2p), or 

alternatively an N-terminally degraded product of His-Res2p (missing the His-tag).

Close examination of the immunoblot analysis o f His-Res2p purification revealed a 

small protein of approximately 20 kDa (Figure 6.6). It was therefore possible that this 

represented the N-terminal His-tag ‘fragment’ missing from the ‘truncated’ contaminant
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protein. In order to identify the contaminant and confirm that the 75 kDa protein was His- 

Res2p, mass spectrometric analysis was undertaken. In the following section, the 75 kDa 

protein assumed to be His-Res2p is referred to as protein X and the co-purifying 60 kDa 

contaminant as protein Y.
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Figure 6.5 SDS-PAGE analysis o f His-Res2p from IMAC purification

His-Res2p was overexpressed in BL21 CodonPlus (DE3)-R1L cells for 16 h at 15°C by 

induction with 0.2 mM IPTG. The bacterial culture (routinely 500 ml) was then centrifuged, the 

pellet resuspended in 20 ml lysis buffer, and cells lysed by French pressure disruption. The 

soluble fraction was obtained following centrifugation and loaded onto the column in 5 ml 

aliquots. Peak fractions were collected automatically and samples (100 p.1) taken. All samples 

were diluted in an equal volume of Laemmli sample buffer and denatured by boiling for 5 min 

in the presence of DTT (150 mM). Samples were then analysed on a 10% SDS-polyacrylamide 

gel stained with Coomassie brilliant blue. The molecular weight markers are shown (Mr) with 

sizes indicated in kDa. The upper arrow indicates the expected position o f full-length His- 

Res2p and the lower arrow indicates the position of the co-purifying protein. Numbers above 

each lane correspond to the fraction numbers indicated on the BioCAD® trace (Figure 6.4).
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Figure 6.6 Immunoblot analysis o f His-Res2p from IMAC purification

Peak fractions (7-12) from the purification were collected and samples taken. Samples were 

then analysed on a 10% SDS-polyacrylamide transferred to nitrocellulose and blotted with 

Anti-PentaHis-HRP conjugate antibody (Qiagen) at 1:2500. The positions of molecular weight 

markers are indicated (Mr) in kDa. The arrow indicates the expected position o f full-length His- 

Res2p. A sample of the His-Res2p supernatant loaded onto the column is shown (lane S) and 

numbers above each lane correspond to the fraction numbers indicated on the BioCAD® trace 

(Figure 6.4).
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6.2.3 Identification of protein X and protein Y
The identity of proteins X and Y, purified by IMAC in section 6.2.2, were confirmed by mass 

spectrometric analysis. Protein identification by mass spectiometry was carried out in the Sir 

Henry Wellcome Functional Genomics Facility (University o f Glasgow) using standard 

methodology (Methods 2.4.20). A brief overview of this technique and its application to protein 

identification is described.

6.2.4 Protein identification by mass spectrometry
Mass spectrometry is a highly accurate and sensitive analytical technique used for measuring 

molecular weight. The molecular masses of proteins, and other biomolecules, can be accurately 

determined to within 0.01% of their total molecular weight (Pitt, 1996). Mass spectrometric 

analysis is achieved through the initial generation o f gas phase ions o f the molecule o f interest, 

followed by analysis o f the mass to charge (m/z) ratio o f these ions. A mass spectrometer is 

essentially composed o f three main parts: a source, in which ions are generated from the 

substance to be analysed; an analyser, in which ions are separated according to their mass; and 

a detector, in which a signal produced from the separated ions is transmitted to a data system 

where it is recorded in the foim of a mass spectrum. There are several variations o f this 

technique, primarily differing in the types of ionisation source and analyser used.

The application o f mass spectromefry to biochemical analysis is particularly 

advantageous for protein identification by peptide sequencing, using tandem mass spectrometry 

(MS/MS). An MS/MS instrument typically contains two analysers separated by a collision cell. 

The first analyser is used to select sample ions according to their mass to chai’ge (m/z) ratio. 

These selected (or ‘parent’) ions are then passed into the collision cell where they are 

fragmented by collision with gas molecules. The fiagment (or ‘daughter’) ions are then 

analysed by the second analyser, again according to their m/z ratio. This technique is of 

particular use for generating peptide sequence information since the daugliter ions (i.e. 

fragmented peptide) derive from a specifically selected parent ion (i.e. intact peptide), allowing 

information dependent on the amino acid sequence of the peptide to be obtained (Sheehan, 

2000).

A schematic diagram, representing the process of protein identification using MS/MS is 

shown in Figure 6.7. The protein to be analysed must firstly be digested by a protease (e.g. 

trypsin). This generates peptides that are characteristic to the digest pattern o f that protein. 

Clean up and separation o f fiagments in a digest mixture (e.g. by chromatography) prior to 

delivery into the source, allows the sequential analysis of individual peptides. Each o f these 

peptides is then introduced into the mass spectrometer and, following ionisation, analysed 

(‘weighed’) to produce a mass spectrum. Analysis of the mass spectra produced from the intact 

peptides (known as a peptide mass fingerprint), can be used to search an on-line database in an
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attempt to identify the protein. In addition, subsequent selection of specific parent ions and 

passage into the collision cell (where they are fragmented) produces a daughter ion mass 

spectrum. As fragmentation generally occurs by breaking of one of the peptide bonds in the 

molecule, a set o f fragments is generated where the difference in mass between the fragments 

can be used to deduce the amino acid sequence. Consequently, the database search using 

MS/MS ion data is more specific, as it contains primary structure information. Protein 

identification is ultimately accomplished using complex computer algorithms that compare the 

experimental data (i.e. peptide molecular weights from the digested protein and/or MS/MS ion 

data from one or more o f these peptides^, with values calculated from a comprehensive primaiy 

structure database. The Mascot computer program searches primaiy structure databases for 

proteins matching the experimental data (www.matrixscience.com). A probabilistic scoring 

algorithm is then applied allowing proteins to be ranked in order of closest match. The absolute 

score reflects the fit o f the theoretical and experimental data, and is typically reported as - 

10*logio(P), where P is the probability. Thus, a low probability (that the experimental and 

calculated data match is random) is reflected in a high score (e.g. a P value of 10'^° becomes a 

score o f 200). Furthermore, the significance o f a match is measured against a threshold score, 

calculated for a random hit against a given database using the search parameter set chosen for 

the individual search. The threshold has a default setting of 5%, such that, scores below the 

threshold have a > 5% probability that the match is random. Conversely, scores above the 

threshold have a < 5% probability that the match is random.

Mass spectral data from proteins X and Y was used in a Mascot search. In both cases the 

top scoring protein was Res2p from S. pombe, with protein scores o f 239 and 160, for X and Y 

respectively (the tlueshold value was 74). These scores represent the probability of a random 

match of approximately 1 in 10̂  ̂ and 1 in 10 ,̂ respectively. Therefore, it was concluded that 

protein X (approx. 75 kDa) was full-length His-Res2p whereas the co-purifying protein Y 

(approx. 60 kDa) was an N-terminally truncated product of FIis-Res2p. This was backed up by 

the absence from the dataset for the ti’uncated form of some N-terminal peptides identified in 

the full-length transcript. The number o f peptides matched and % sequence coverage o f Res2p, 

from the database search using experimental data from proteins X and Y, are shown in Figures 

6.10 and 6.11, respectively. Figures 6.8 and 6.9 depict chromatographic and mass spectral data 

obtained from analysis of protein X and are shown as examples. Similar data was retrieved 

from analysis of protein Y (data not shown).
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MAPRSSAVHV
VQIGAHEKVQ
KQKKPSVRGR
PASPNALLSP
NSVIDDDGHT
GQVLELLQST
LVNIiQDSNGD
QSNSNASHSA
RANRLKQDTL

AVYSGVEVYE
GGYGKYQGTW
RGRKPSSLSS
NDNTIKPVEE
SLHWACSMGH
lYAVDTNGQS
TSLLIAARNG
FSFSGISPAI
NEISRTYQEL

IFDLERSLKP
ASRKKDTLYI

HTSLSISFPS
RKLYEELGID

CFIKGVSVMR
VPFQRGVDLA
STLHSVNEKQ
LGMLEAPLDK
lEMIKLLLRA
IFHHIVQSTS
AMDCVNSLLS
ISPSCSSHAF
TFLQKNNPTY
DFLKKEDGLS
DTVNSYRRLI

RRRDSWLNAT
TKYKVDGIMS
PN SSISPT IE
YEESLLDFFL
NADIGVCNRL
TPSKVAAAKY
YNANPSIPNR
VKAIPSISSK
SQSMENLIRE
LNNDFKKPAC
AMSCGINPED

QILKVADFDK
PILSLDIDEG
SSMNKVNLPG
HPEEGRIPSF
SQTPLMRSVI
YLDCILEKLI
QRRTASEYLL
FSQLAEEYES
AQETYQQLSK
NNVTNSDEYE
LSLEILDAVE

PQRTRVLERQ
KAIAPKKKQT
AEEQVSATPL
LYSPPPDFQV
FTNNYDCQTF
SIQPFENW R
EADKKPHSLL
QLREKEEDLI
RLLIWLEARQ
QLINKLTSLQ
EALTREK

Figure 6.10 Matched peptides from protein X
The amino acid sequence o f SpRes2p is shown above with matched peptides 
from the MS/MS ion data search of protein X, shown in red. Sequence 
coverage was 43% and 38 peptides were matched. The daughter ion mass 
spectrum of the peptide underlined (QDTLNEISR) is shown in Figure 6.9B.

MAPRSSAVHV
VQIGAHEKVQ
KQKKPSVRGR
PASPNALLSP
NSVIDDDGHT
GQVLELLQST
LVNIiQDSNGD
QSNSNASHSA
RANRLKQDTL
IFDLERSLKP
ASRKKDTLYI

AVYSGVEVYE
GGYGKYQGTW
RGRKPSSLSS
NDNTIKPVEE
SLHWACSMGH
lYAVDTNGQS
TSLLIAARNG
FSFSGISPAI
NEISRTYQEL
HTSLSISFPS
RKLYEELGID

CFIKGVSVMR
VPFQRGVDLA
STLHSVNEKQ
LGMLEAPLDK
lEMIKLLLRA
IFHHIVQSTS
AMDCVNSLLS
ISPSCSSHAF
TFLQKNNPTY
DFLKKEDGLS
DTVNSYRRLI

RRRDSWLNAT
TKYKVDGIMS
PNSSISPTIE
YEESLLDFFL
NADIGVCNRL
TPSKVAAAKY
YNANPSIPNR
VKAIPSISSK
SQSMENLIRE
LNNDFKKPAC
AMSCGINPED

QILKVADFDK
PILSLDIDEG
SSMNKVNLPG
HPEEGRIPSF
SQTPLMRSVI
YLDCILEKLI
QRRTASEYLL
FSQLAEEYES
AQETYQQLSK
NNVTNSDEYE
LSLEILDAVE

PQRTRVLERQ
KAIAPKKKQT
AEEQVSATPL
LYSPPPDFQV
FTNNYDCQTF
SIQPFENW R
EADKKPHSLL
QLREKEEDLI
RLLIWLEARQ
QLINKLTSLQ
EALTREK

Figure 6.11 Matched peptides from protein Y
The amino acid sequence o f SpRes2p is shown above with matched peptides 
from the MS/MS ion data search of protein Y, shown in red. Sequence 
coverage was 33% and 23 peptides were matched.
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6.3 Purification of GST-Reslp and GST-Res2p
Cloning, overexpression and solubility o f the recombinant GST-Reslp and GST-Res2p 

proteins has been described previously (Chapter 5 Sections 5.7-5.8). GST-Reslp and GST- 

Res2p were purified from large-scale bacterial cultures by affinity chromatography using the 

BioCAD® SPRINT™ Perfusion Chromatography® system, attached to a GSTrap FF 5 ml 

column (Methods 2.4.13-2.4.15).

Large-scale protein induction and preparation of clarified supernatants for purification 

were carried out as described (Methods 2.4.2 and 2.4.14). Clarified supernatant was manually 

injected onto the GSTrap FF 5 ml column in 5 ml aliquots, in the presence o f 1 x PBS. Elution 

of bound protein was achieved by addition of elution buffer (containing 10 mM reduced 

glutathione), and was monitored by obseiwing the absorbance profile at 280 nm; 2 ml fractions 

were collected automatically.

The results depicted in Figure 6.12 represent a typical purification run for GST-Res2p, 

as recorded by the BioCAD® system. A single peak in absorbance was observed, encompassing 

fractions ~ 6 to 8. Samples o f peak fractions were taken and analysed by SDS-PAGE and 

Coomassie blue staining (Figure 6.13). The majority o f protein, corresponding to the 

approximate M  ̂ of GST-Res2p, eluted in fractions 7 and 8 with a faint band o f similar size 

visible in fraction 9. Indeed, the peak seen in Figure 6.10 correlated with the major bands 

detected in fractions 7 and 8 following Coomassie blue staining. Therefore, these results 

indicated that the major peak in absorbance was consistent with elution o f GST-Res2p.

Despite the majority of GST-Res2p being present in the supernatant fraction, the yield 

following purification was poor. Similar results were obtained upon purification of GST-Reslp 

with even lower yield (attributed to the lower expression levels observed with this protein, in 

comparison to GST-Res2p - data not shown).
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Figure 6.13 SDS-PAGE analysis of GST-Res2p from the GSTrap column

GST-Res2p was overexpressed in BL21 CodonPlus (DE3)-RIL cells for 16 h at 15°C by 

induction with 0.2 mM IPTG. The bacterial culture (routinely 500 ml) was then centrifuged, the 

pellet resuspended in 20 ml lysis buffer, and cells lysed by French pressure disruption. The 

soluble fraction was obtained following centrifugation and loaded onto the column in 5 ml 

aliquots. Peak fractions were collected automatically and samples (100 pi) taken. All samples 

were diluted in an equal volume of Laemmli sample buffer and denatured by boiling for 5 min 

in the presence o f DTT (150 mM). Samples were then analysed on a 10% SDS-polyacrylamide 

gel stained with Coomassie brilliant blue. Molecular weight markers are shown (MJ with sizes 

indicated in kDa. The arrow indicates the expected position o f full-length GST-Res2p. The 

whole cell extract (W), soluble (S) and insoluble (P) samples are shown and numbers above 

each lane correspond to the fraction numbers indicated on the BioCAD® trace (Figure 6.12).
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6.4 Purification of H is-Replp and His-CdclOp from inclusion bodies
As described previously, both His-Replp and His-CdclOp were insoluble following 

overexpression in E. coli under all conditions tested (Chapter 5, Sections 5.2 and 5.10). 

Consequently, this prevented assay of their biological activity in vitro. In addition, with regard 

to His-CdclOp, this also had implications for the in vitro assays of His-Reslp and His-Res2p 

(Chapter 5, Sections 5.6 and 5.10).

High-level overexpression of recombinant proteins in E. coli can often result in the 

formation of inclusion bodies. Inclusion bodies are thought to contain aggregates of mis-folded 

protein. Although the protein may contain the correct primaiy structure, proper folding (and 

hence full biological activity) may require post-translational modification and/or molecular 

chaperones (Lilie et al, 1998). The accumulation of a recombinant protein in inclusion bodies 

can nevertheless have a number of advantages: primarily, accumulation of high levels of 

protein in a very pure form. Native protein can be recovered following solubilisation of 

inclusion bodies in denaturing solvents or detergents, followed by re-folding/re-naturation and 

so the solubilisation and purification o f His-Replp and His-CdclOp from inclusion bodies was 

attempted.

6.4.1 Solubilisation of His-Replp and His-CdclOp using N-lauroylsarcosine
Solubilisation o f both His-Replp and His-CdclOp was based on the adaptation o f a technique 

described in the Novagen protein folding kit. Attempts to solubilise both proteins were made in 

a range of detergents, with greatest success found with buffers containing N-lauroylsarcosine. 

This is an anionic detergent that has been reportedly successful in solubilising proteins from 

inclusion bodies to their native or near native state, without affecting biological activity 

(Frangioni & Neel, 1993).

His-Replp and His-CdclOp were overexpressed in E. coli as described (Methods 2.4.1). 

Cells were harvested by centrifugation and the pellet resuspended in an appropriate volume of 

inclusion body wash buffer. Inclusion bodies were isolated following cell disruption and 

centrifugation as described (Methods 2.4.19). Subsequently, aliquots of the whole cell extract, 

supernatant and pellet (obtained following centrifugation), were analysed by SDS- 

polyacrylamide gel electrophoresis. The solubility of each protein was estimated by visual 

comparison o f the amounts present in supernatant and pellet fractions, following Coomassie 

blue staining. Figures 6.14 and 6.15 show the results obtained following solubilisation and 

purification o f His-Replp and His-CdclOp, respectively, from inclusion bodies using 

N-lauroylsarcosine. Both proteins were approximately 100% soluble in buffer containing 0.3% 

(w/v) N-lauroylsarcosine.
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Figure 6.14 SDS-PAGE analysis of His-Replp solubilised in N-lauroylsarcosine

His-Replp was overexpressed in BL21 CodonPlus (DE3)-R1L cells for 3 h at 37'C by 

induction with 1 mM IPTG. Samples (1 ml) were removed at the point o f induction (0 h) and at 

3 h. The bacterial culture was then centrifuged, the pellet resuspended in 5 ml Inclusion body 

wash buffer, and cells lysed by French pressure disruption. This whole cell extract (W) was 

then separated into soluble (S) and insoluble (P) fractions by centrifugation and samples (1 ml) 

taken. The pellet was washed extensively in Inclusion body wash buffer prior to resuspension 

in 50 mM KH2 PO4 , pH 7.5, supplemented with either 0.1% (v/v) or 0.3% (v/v) 

N-lauroylsarcosine. Following agitation and centrifugation and an aliquot o f supernatant taken 

for analysis. Samples from 0 h and 3 h were centrifuged, the pellets resuspended in Laemmli 

sample buffer (10 pl/0.1 absorbance unit) and denatured by boiling for 5 min in the presence of  

DTT (150 mM). All other samples were diluted with an equal volume of Laemmli sample 

buffer and similarly denatured. Samples were then analysed on a 10% SDS-polyacrylamide gel 

stained with Coomassie brilliant blue. The arrow indicates the expected position o f full-length 

His-Replp. Molecular weight markers are shown (Mr) with sizes indicated in kDa.
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Figure 6.15 SDS-PAGE analysis of His-CdclOp solubilised in N-lauroylsarcosine

His-CdclOp was over-expressed in BL21 CodonPlus (DE3)-R!L cells for 3 h at 37°C by 

induction with 1 mM IPTG. Samples (1 ml) were removed at the point o f induction (0 h) and at 

3 h. The bacterial culture was then centrifuged, the pellet resuspended in 5 ml Inclusion body 

wash buffer, and cells lysed by French pressure disruption. This whole cell extract (W) was 

then separated into soluble (S) and insoluble (P) fractions by centrifugation and samples (1 ml) 

taken. The pellet was washed extensively in Inclusion body wash buffer prior to re-suspension 

in 50 mM KH2PO4 , pH 7.5, supplemented with either 0.1% (v/v) or 0.3% (v/v) N- 

lauroylsarcosine. Following agitation and centrifugation an aliquot o f supernatant was taken for 

analysis. Samples from 0 h and 3 h were centrifuged, the pellets resuspended in Laemmli 

sample buffer (10 pl/0.1 absorbance unit) and denatured by boiling for 5 min in the presence of 

DTT (150 mM). All other samples were diluted with an equal volume of Laemmli sample 

buffer and similarly treated. Samples were then analysed on a 10% SDS-polyaciylamide gel 

stained with Coomassie brilliant blue. The arrow indicates the expected position o f full-length 

His-CdclOp. Molecular weight markers are shown (Mr) with sizes indicated in kDa.
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6.5 Investigating the structure and function of the purified 

recombinant DSCl proteins
Attempts to purify His-Reslp, His-Rep2p, GST-Reslp and GST-Res2p were unsuccessful in 

that both yield and purity were unsatisfactory. In contrast, purification of His-Res2p, His- 

Replp and His-CdclOp yielded amounts sufficient to allow detailed structural analyses to be 

undertaken. However, the issue o f whether these latter thiee recombinant proteins were 

biologically active remained unresolved.

Following purification o f these proteins, attempts were made to recover them in buffer 

solutions more appropriate for biophysical analyses. With respect to His-Res2p, the high 

concentration of imidazole present in the elution buffer had to be removed. Similarly, the level 

o f N-lauroylsarcosine may have to be reduced or removed to permit structural studies o f His- 

Replp and Flis-CdclOp. Buffer exchange is routinely achieved by dialysis, involving multiple 

changes of buffer through a semi-permeable membrane with a molecular weight cut-off, or 

centrifugation using a centricon tube (Methods 2.4.3-2.4.4). Using either approach, all three 

proteins frequently precipitated despite attempting a variety of conditions (e.g. temperature) 

and buffers. In addition, thrombin cleavage of His-Res2p was unsuccessful despite 

manipulation of cleavage conditions. Unfortunately, due to time constraints, studies using 

purified His-Res2p and His-CdclOp in band-shift assays were not initiated. Nevertheless, initial 

attempts to obtain structural information from His-CdclOp and His-Replp were undertaken.
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6.6 C ircular dichroism
Detailed structural information from a protein is typically obtained from high-resolution 

techniques such as X-ray crystallography and NMR spectroscopy. Both of these techniques 

require significant amounts of material (several tens of mg) and results are rarely rapidly 

obtained. Indeed, for successful X-ray analysis crystals must be produced that diffract 

sufficiently to permit structural detail at the atomic level. Typically, this may take several 

weeks, months or even years to achieve. Furthermore, in NMR, full structural determinations 

are limited to small proteins of maximal molecular weight ~ 30 kDa.

In contrast, circular dichroism (CD) studies require significantly less material (1-2 mg 

ml'^ or less) and results are rapidly obtained (typically within a few hours). Despite these 

advantages, this is a lower resolution technique and so detailed structural information is not 

generally obtained from CD spectra. However, the secondary structure content of a protein can 

be empirically determined. Perhaps the most valuable use of CD is in the study of protein 

folding and protein-protein, protein-nucleic acid and protein-ligand interactions.

CD is a spectroscopic technique that involves measurement of the differential absorption 

of the left and right circularly polarised components of plane-polarised light. Upon passage 

through an optically active sample, one of these components (i.e. left or right) will be absorbed 

to a greater extent than the other (as a result of the asymmetric nature of chiral molecules). 

Consequently, subsequent recombination o f these eomponents generates elliptically polarised 

light. The occurrence of ellipticily is called circular dichroism. CD spectra are recorded in a 

spectropolarimeter where the differential absorption of left and right circularly polarised light is 

detected and converted into units of ellipticity, 0  (degrees cm^ dmof^).

CD measurements can be performed in two main spectral regions, the far-UV region 

(240-180 nm) and the near-UV region (320-260 nm). In the far-UV region the principal 

absorbing species is the peptide bond and so the CD spectrum is sensitive to the main chain 

conformation. The common secondary structure motifs, a-helix, [3-sheet and P-turn exhibit 

distinct CD spectra in this region, therefore CD studies can be used to estimate the secondaiy 

structure content o f a protein. In addition, random coil, representing regions of a protein that do 

not encompass the major secondary structural motifs, can be identified as it absorbs in a region 

similar to that of p-sheet (Kelly and Price, 2000).

Several computer progi ams are available to estimate the secondary structure content of a 

protein from the properties o f its CD spectra (Provencher and Glockner, 1981; Sreerama and 

Woody, 1993). Experimental CD values are compared to a database containing CD spectra of 

proteins whose structures have been solved by X-ray diffraction. Using this approach, a 

secondary structure content estimate of the protein is obtained. The validity of these estimates 

can then be compared/contrasted with previous known data. Therefore, CD spectra can provide
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low-resolution (yet reliable) secondaiy structural information on a protein. In the near UV 

region the environment o f aromatic amino acids such as tryptophan, tyrosine, phenylalanine 

and cystinyl groups can be detected. In a folded protein the side chains of these amino acids are 

likely to be placed in a chiral environment, thus giving rise to spectra that can provide a 

fingerprint of the tertiaiy structure of the protein.

In this section, CD was used to determine the secondary structures o f His-CdclOp and 

His-Replp. In addition, the stability and unfolding characteristics o f both proteins were 

investigated, by monitoring changes in their CD spectra following dénaturation in increasing 

concentrations of guanidinium chloride.
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6.6.1 Secondary structure determination of His-Replp and His-CdclOp
His-CdclOp and His-Replp were solubilised and purified from inclusion bodies as described in 

Section 6.4.1. Specifically for CD measurements, inclusion bodies were solubilised in 50 mM 

KH2PO4, 150 mM NaF pH 7.5, supplemented with 0.1% (v/v) N-lauroylsarcosine. The lower 

amount of 0.1% (v/v) N-lauroylsarcosine was preferred (to 0.3%) as the sample was of greater 

purity in this preparation and a minimal amount of detergent was more suitable for CD studies. 

CD specfroscopy was carried out in the Scottish Circular Dichroism Facility, University of 

Glasgow, using standard methodology (Methods 2.4.21). In all cases, the CD spectrum was 

obtained following subtraction o f the baseline (buffer only) spectrum from the sample 

spectrum.

6.6.2 CD spectra of His-Replp and His-CdclOp
Purified His-Replp (0,24 mg ml"’) and His-CdclOp (0.22 mg mf^) were prepared for CD 

analysis as described above. An initial CD scan revealed that there was a significant level of 

nucleic acid contamination in both protein preparations. Nucleic acids display distinct CD 

spectra in the near UV region and therefore interfere with any signal produced from the protein. 

Consequently, analysis o f His-Replp and His-CdclOp in the near-UV region was not possible. 

An example of the nucleic acid contamination of His-Replp is shown in Figure 6.16. 

Furthermore, analysis of these proteins in the far-UV region was only permitted down to a 

lower wavelength limit of 180 nm due to the poor signal to noise ratio. Figures 6.17 and 6.18 

show the CD spectra obtained for His-Replp and His-CdclOp, respectively. Secondary 

structure estimates were calculated using the CONTÎN procedure (Provencher and Glockner, 

1981) and are displayed in Tables 6.1 and 6.2 for His-Replp and His-CdclOp, respectively. 

These results indicate that the majority of detergent solubilised full-length His-Replp consists 

of a-helix (-78%), with -17%  p-sheet/turn and the remaining - 6 % as random coil. For 

detergent solubilised full-length His-CdclOp the majority o f the protein consists of p-sheet/tum 

(-40%), with -30%  a-helix and the remaining -30%  as random coil.
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Figure 6.16 Nucleic acid contamination of His-Replp
CD spectrum incorporating both near and far-UV regions shows nucleotide contamination of 

His-Replp. Measurements were recorded in a quartz cell of path length 0.02 cm, containing 

purified His-Replp (0.24 mg ml"') in 50 mM KH2PO4, 150 mM NaF pH 7.5, supplemented 

with 0.1% (v/v) N-lauroylsarcosine.
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Figure 6.17 Secondary structure determination of His-Replp
The far-UV scan of His-Replp. Measurements were recorded in a quartz cell of pathlength 0.02 

cm, containing purified His-Replp (0.24 mg mf^) in 50 mM KH2PO4, 150 mM NaF pH 7,5, 

supplemented with 0.1% (v/v) N-lauroylsarcosine.
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Figure 6.18 Secondary structure determination of His-CdclOp
The far-UV scan of His-CdclOp. Measurements were recorded in a quartz cell of pathlength 

0.02 cm, containing purified His-CdclOp (0.22 mg ml'^) in 50 mM KH2PO4, 150 mM NaF pH 

7.5, supplemented with 0.1%(v/v) N-lauroylsarcosine.
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Secondary 
Structure Element

Total 
Protein %

a-helix 77.4

p-sheet 2.1

p-turn 14.8

Random coil 5.8

Table 6.1 Secondary structure content estimate of His-Replp
The secondary structure content of recombinant His-Replp was estimated from analysis of the 

far-UV CD spectra using the CONTIN procedure (Provencher and Glockner, 1981).

Secondai*y 
Structure Element

Total 
Protein %

a-helix 29.6

P-sheet 20.7

p-turn 20.9

Random coil 28.8

Table 6.2 Secondary structure content estimate of His-CdclOp
The secondary structure content o f recombinant His-CdclOp was estimated from analysis o f the 

far-UV CD spectra using the CONTIN procedure (Provencher and Glockner, 1981).
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6.6.3 Assessment of His-Replp and His-CdclOp stability
The stabilities of His-Replp and His-CdclOp were also assessed, following chemical 

dénaturation with guanidinium chloride (GdmCl). Purified His-Replp (0.24 mg ml"’) and His- 

CdclOp (0.22 mg mf^) samples were prepared in increasing guanidinium chloride 

concentrations as described (Methods 2.4.22).

The unfolding of His-Replp and His-CdclOp in GdmCl was monitored by changes in 

far-UV CD and expressed in terms o f % total change o f this parameter occurring between 0 M 

and 6  M GdmCl. The unfolding o f His-Replp and His-CdclOp as monitored by CD is 

presented in graphical form in Figures 6.19 and 6.20, respectively.

From the appearance o f the graph shown in Figure 6.19, it appears that there is a 

biphasic unfolding event occurring. An initial major unfolding event takes place between 0 and 

0.5 M GdmCl, followed by an apparent stabilisation until the GdmCl concenti’ation is increased 

to approximately 2 M. From this point onwards, a second unfolding event begins that ends at 6  

M. Similarly, the unfolding o f His-CdclOp follows a biphasic pattern. The initial unfolding 

event takes place between 0-2 M GdmCl. The second event occurs sharply between 2 M and ~ 

3 M and perhaps a third event may be occurring between 3 M and 6  M (Figure 6.20).

176



120

100

a>

4 0

20

G dm Cl  (M)

Figure 6.19 Unfolding profile of His-Replp during dénaturation with guanidinium 

chloride

Purified His-Replp (0.24 mg m l ’) was incubated at room temperature in increasing 

concentrations o f GdmCl: 0 M, 0.5 M, 1 M, 2 M, 3 M, 4 M and 6  M prior to measurement. The 

CD changes were expressed relative to the total change observed between 0 M and 6  M 

GdmCl. CD was measured as change in ellipticity (0) at 222 nm.
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Figure 6.20 Unfolding profile of His-CdclOp during dénaturation with guanidinium 

chloride

Purified His-CdclOp (0.22 mg ml ') was incubated at room temperature in increasing 

concentrations o f GdmCl: CM, 0.5M, IM, 2M, 3M, 4 M and 6 M prior to measurement. The 

CD changes were expressed relative to the total change observed between 0 M and 6 M 

GdmCl. CD was measured as change in ellipticity (0) at 222 nm.
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6.7 Discussion
The aim of this chapter was to purify the bacterially overexpressed recombinant fission yeast 

DSCl components. Following on horn the results discussed in Chapter 5, several unresolved 

issues required further investigation. The initial aim of purification was to obtain protein with 

which to carry out further in vitro functional assays. In addition, purification of protein of 

sufficient yield and purity would allow the initiation of structural studies.

Unfortunately, both the yield and purity o f His-Reslp and His-Rep2p were 

unsatisfactory, following purification by IMAC. This was attributed to the low level 

overexpression of these proteins in E. coli. Attempts to increase the overexpression level have 

been discussed previously (Chapter 3 Section 3.4). A scaling up o f the purification process 

neither improved yield nor purity.

In contrast, the yields of the GST-Resp proteins obtained following overexpression in E. 

coli were significantly greater, and it was anticipated that purification would provide large 

amounts of protein. Disappointingly, neither GST-Reslp nor GST-Res2p was purified in 

suffieient amounts, following affinity purification on an immobilised glutathione column. Due 

to time constraints, the optimisation o f purification of these proteins has not been fully 

investigated and as such, the results presented represent preliminary data. Reasons for poor 

recovery may include steric hindrance of the GST moiety, by intramolecular interactions with 

the attached Resp protein. It should be noted that in both cases, DNA sequeneing has confirmed 

that the GST-tag was in-frame with the cDNA. These results were particularly frustrating, 

given that several interesting and potentially informative experiments, regarding the in vitro 

DNA-binding behaviour of these proteins, relied on their purification.

The most favourable case was in purification of His~Res2p. This protein was 

reproducibly purified in large amounts following IMAC (5-10 mg f '  culture). Despite 

eonsistent co-purification with a -60,000 Da protein, subsequent mass spectrometric analysis 

identified this protein as an N-terminally truncated product of His-Res2p (Section 6.2.3). 

Unfortunately, recovery of purified His~Res2p, in buffers suitable for structural studies, 

frequently resulted in precipitation. Indeed, initial attempts to obtain CD specfra from this 

protein were unsuccessful, primarily due to precipitation. Intriguingly, the specfral studies 

displayed a high level of nucleic acid contamination in purified samples of His-Res2p. This 

was despite the fact that both DNAase and RNAase were routinely used in purification 

procedures. Given that this protein is a DNA-binding protein its association with nucleic acids 

is not surprising. Precipitation of His-tagged proteins purified by IMAC has also been noted 

elsewhere and attributed to contamination with Zn^^ ions from the chromatography column 

(Lindner et ah, 1992). However, despite addition of EDTA, precipitation continued.
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His-CdclOp and His-Replp were solubilised from inclusion bodies, using the anionic 

detergent N-lauroylsarcosine. The yield and purity of these proteins was sufficient to initiate 

structural studies. Similarly to His-Res2p, dialysis into more suitable buffers routinely resulted 

in precipitation and aggregation o f protein. Nevertheless, CD studies were initiated on His- 

CdclOp and His-Replp, as this technique was somewhat tolerant to the presence of low levels 

of detergent. Initial CD spectra o f these proteins also revealed a significant level of nucleic acid 

contamination; this precluded near-UV analysis o f these proteins and imposed restrictions on 

the far-UV studies. Far-UV CD spectra were obtained for both proteins permitting secondary 

structure content estimations and stability studies were initiated by monitoring unfolding 

following dénaturation in increasing concentrations of guanidinium chloride. The results o f the 

CD studies using these proteins should be treated with caution, as neither o f these proteins has 

been shown to be active in vitro. It is highly likely that to obtain these proteins in their fully 

native state, re-folding will be necessary. The results obtained here serve as an example o f the 

type o f initial structural information that can be rapidly obtained following successful 

purification.

Structure-function studies o f proteins need large amounts of material. The ability to 

obtain sufficient amounts requires the development of efficient and reproducible methods for 

overexpression and purification of the proteins o f interest. As exemplified in this (and previous 

chapters) development o f such protocols requires considerable investigation. The necessity to 

produce large amounts o f protein for such studies can frequently result in aggregation and 

precipitation as has been the case with His-Res2p. Assuming that the problem of precipitation 

can be overcome, structural studies may then be initiated given the yield and purity o f this 

protein obtained, following purification by IMAC.

With respect to His-Reslp, His-Rep2p and the GST-Resp proteins, optimisation of 

purification must be addressed in order to provide sufficient material for further study. Several 

experiments o f significant interest, with purified GST-Resp proteins could then be addressed. 

In summary, due to time constraints, the results presented within this chapter provide a basis 

for further study.
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Chapter 7

General discussion



7.1 Introduction
In both budding and fission yeasts, the highly related MBF/SBF and DSCl transcription factor 

complexes are responsible for controlling the Gl -S phase-specific gene expression programme 

essential for passage through START and entry into a new round of mitotic cell division. 

Similarly, in humans, a Gl-S phase-specific gene expression programme exists that is also 

essential for passage through the Restriction point and entry into mitosis. In contrast to the two 

yeast systems, the B2F transcription factor family of proteins bear no significant resemblance to 

any of the yeast proteins at the amino acid sequence level.

In budding yeast, MBF and SBF are heterodimeric transcription factors composed of the 

single sequence-specific DNA-binding protein subunits, ScMbplp and ScSwi4p, respectively, 

combined with the common regulatoiy subunit ScSwi6 p that is present in both complexes. 

Fission yeast DSCl is believed to exist as a heterotetramer, consisting of two distinct yet 

related sequence-specific DNA-binding proteins, SpReslp and SpRes2p, each of which binds 

to a single molecule o f the regulatoiy SpCdclOp protein. The budding yeast and fission yeast 

proteins constitute a family o f related transcription factors that share eonsiderable homology, 

located to three main regions. All six proteins possess the centrally located ankyrin-repeat 

motifs, whose primary function is unclear, but may be involved in both protein-protein 

interactions and in affording flexibility. The ScMbplp/ScSwi4p and SpReslp/SpRes2p proteins 

also share considerable homology witliin their N-terminal DNA-binding regions, whilst 

ScSwi6 p and SpCdclOp do so in their C-termini. To date, structural studies on this family of 

transcription factors have been limited to the budding yeast proteins; specifically the DNA- 

binding domain of ScM bplp and ankyrin repeat domain o f ScSwi6 p (Xu et al., 1997; Taylor et 

al., 1997; Foord et al., 1999). In contrast, no structural data beyond the amino acid sequence 

level is available for any o f the fission yeast members of this family. Thus, successful cloning 

and expression of the fission yeast DSCl components will provide an invaluable resource for 

detailed structural and functional studies.
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7.2 Summary of results

7.2.1 Chapter 3: Cloning and overexpression
In Chapter 3 the cloning strategy was described, which allowed the successful and reproducible 

overexpression of the individual components of the fission yeast DSCl complex in E, coli. 

Site-directed mutagenesis was employed to remove an artifieial internal stop codon within the 

cdclO^ open reading frame.

Each of the individual components of the DSCl complex: cdclO^, resl'^, res2'", r e p t  

and rep2* was cloned into the pET-28c vector (pET-14b for cdclO^) in-ffame with an N- 

terminal 6 -histidine tag (to facilitate purification by affinity chromatography) and successfully 

expressed following induction at 37°C. High-level expression o f the Res2p, Rep Ip and CdclOp 

components of DSCl as His-tagged fusion proteins was achieved as visualised by SDS-PAGE 

and Coomassie blue staining (Figures 3.7-3.8 ). Overexpression o f His-Reslp and His-Rep2p 

was achieved at lower levels, such that they were detectable only following immunoblot 

analysis (Figures 3.7, 3.10 and 3.9, 3.11).

7.2.2 Chapter 4: Biological activity assays in vivo

Chapter 4 described the use o f fission yeast (the organism from which these proteins originate) 

as host to assay the effects o f die N-terminal His-tag upon the biological activity o f each o f the 

recombinant proteins in vivo.

To this end, the cloning strategy was described that facilitated expression of the His- 

resl^, His-res2^, His-repï" and His~rep2^ cDNAs in fission yeast from the pREP vector. Due to 

time constraints (primarily the lengthy site-directed mutagenesis protocol), His-cdclO^ was not 

cloned into the pREP vector and so the ability o f His- cdcH f to function in vivo was not 

determined.

The biological activity o f each recombinant protein was assayed following expression in 

the Aresl mutant background. The wild type resl^^ res2^\ r e p t  and rep2^ genes can each 

suppress the cold-sensitive phenotype o f this strain (Tanaka et al., 1992; Miyamoto et al,, 1994; 

Sugiyama et al., 1994; Nakashima et al., 1995). Similarly, the His-resl^, His-res2^, H is-rep t  

and His-rep2^ cDNAs each suppressed the cold-sensitive lethality of Aresl cells when 

ectopically expressed (Figures 4.8-4.11). The biological activities o f His-Reslp and His-Res2p 

were also assayed following expression in AresJ and Ai^es2 mutant backgrounds. Ectopic 

expression o f res and res2~̂  in AresJ and Ares2 cells, re-constitutes the characteristic DSCl 

band-shift activity that is otherwise lost in these mutant strains (Zhu et al., 1997; Ayte et al., 

1997). A ‘DSCl-like’ band-shift activity was observed in Ares2 cells upon ectopic expression 

o f His-res2^ (Figures 4.12-4.13). Surprisingly, no ‘DSCl-like’ band-shift activity was detected
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when H is-re s t  was expressed in /St'esl cells (Figure 4.14). That each recombinant protein was 

able to rescue the cold-sensitive lethality o f the /Aresl mutant suggested that the His-tag 

imposed no impairment to function in vivo.

7.2.3 Chapter 5: Recombinant protein solubility
In Chapter 5, attempts to obtain soluble recombinant protein, following overexpression of His- 

Reslp, His-Res2p, His-Replp, His-Rep2p or His-CdclOp in E. coli, were described. Following 

this, a series of assays were outlined to determine the biological activity of these bacterially 

expressed proteins.

A range of expression and lysis buffer conditions were tested to optimise the amount and 

solubility of each recombinant protein. Both His-Reslp and His-Rep2p were retr ieved in the 

soluble fraction under most conditions tested, although yields were low (Figures 5.3-5.4). The 

ability to produce soluble His-Res2p was dependent on both induction conditions and the 

nature of the solvent. Approximately 100% of His-Res2p was retrieved in soluble form 

following expression at 15°C and importantly, release into lysis buffer containing < 100  mM 

NaCl (Figures S.5-5.6). Despite analysis under a range of conditions, both His-Replp and His- 

CdclOp were retrieved as insoluble aggregates following release from the cell (Figures 5.1-5.2) 

and so biological activity assays using either of these two proteins were precluded.

7.2.4 Chapter 5: Biological activity assays in vitro

Following production of soluble His-Reslp and His-Res2p, these recombinant proteins were 

assayed for biological activity in vitro using the EM SA technique. In this study, neither His- 

Reslp nor His-Res2p (obtained in crude soluble E. coli extracts following overexpression) 

produced a detectable MOB DNA-binding activity when incubated with a radio-labelled MOB 

probe (Figure 5.7).

Failure to detect DNA-binding with either of these proteins may have been due, at least 

in part, to the absence of CdclOp, since in vitro DNA-binding by either protein is dependent on 

CdclOp, although weak Res2p DNA-binding has been reported alone (Ayte et al., 1995; Zhu et 

al., 1997). The insoluble nature of His-CdclOp in this study prevented such analyses and so an 

alternative strategy employed co-expression studies in an attempt to circumvent this problem. 

Unfortunately, co-expression of either His-Reslp or His-Res2p with His-CdclOp proved 

unsuccessful in terms of detectable protein. In addition, co-expression of either His-Reslp or 

His-Res2p with each other and with His-Replp or His-Rep2p was tested, reasoning that 

association of these proteins might facilitate MCB-specific DNA binding o f the Resp subunits, 

in the absence of CdclOp. Although co-expression of His-Res2p/His-Rep2p was detected, and 

both of these proteins were present in the soluble fraction (as determined by immunoblotting -  

Figure 5.8), use of this protein extract did not yield detectable MCB binding in vitro. Mixing of
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either His-Reslp or His~Res2p with fission yeast protein extracts prepared from Aresl or Ares2 

cells, respectively, were similarly ineffectual. To summarise, neither bacterially produced 

soluble His-Reslp nor His-Res2p showed detectable DNA-binding activity in vitro, in the 

absence of CdclOp.

Previous studies have indicated that in the absence of CdclOp, at least in vitro. Res Ip 

requires artificially mediated homodimerisation in order to exhibit MCB-specific DNA-binding 

(Ayte et al., 1995). It had been shown previously that bacterially expressed Res Ip as a GST- 

fiision protein could bind specifically to an MCB DNA probe in in vitj'o band-shift assays 

(Ayte et al., 1995). In this study, both Res Ip and Res2p were subsequently cloned and 

expressed as N-terminal GST-fusion proteins to investigate dimerisation-dependent MCB- 

specific DNA-binding in vitro, in comparison to the His-tagged isoforms. Hence, the cloning 

strategy was described, which allowed the successful and reproducible overexpression of the 

Res Ip and Res2p components o f the fission yeast DSCl complex in E. coli as N-terminal GST- 

fusion proteins. Each protein was successfully overexpressed in soluble form following 

induction at 15“C (Figures 5.12-5.14). Furthermore, both GST-Reslp and GST-Res2p, in 

contrast to the His-tagged isoforms, bound specifically to MCB DNA in band-shift assays 

(Figures 5.16-5.17).

7.2.5 Chapter 6: Purification and analysis of the recombinant DSCl components
Following the solubility studies and in vitro activity assays carried out in Chapter 5, 

purification o f the recombinant DSCl components and initiation o f structural analyses were 

described in Chapter 6 . The solubilisation and purification o f His-Replp and His-CdclOp from 

inclusion bodies was also described. The aims of this chapter were twofold; firstly, to obtain 

pure protein of sufficient yield and purity with which to carry out further in vitro functional 

analyses and secondly, to allow the initiation o f structural studies.

Unfortunately, both yield and purity o f His-Reslp and His-Rep2p were unsatisfactory, 

following purification by IMAC (Figure 6.2). This was attributed to the low-levels o f these 

proteins produced following overexpression in E. coli. Despite attempts to increase expression 

levels and scale-up the purification, the amounts retrieved following purification were 

insufficient to pursue structural studies.

In contrast, the yields of GST-Reslp and GST-Res2p obtained following overexpression 

in E. coli were significantly greater, and it was anticipated that purifieation would provide 

sufficient amounts of material with which to instigate structure/function studies. Frustratingly, 

however, neither GST-Reslp nor GST-Res2p was retrieved in sufficient yield or purity, 

following affinity purification (Figure 6.13). Due to time constiaints, optimisation o f the 

purification procedure for these proteins has not been fully investigated and as such, the results 

presented represent preliminaiy data.
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HiS"Res2p was reproducibly expressed and purified in high yield (5-10 mg l ' culture). 

Initial observations noted the continued presence of a ‘contaminant’ protein species of Mr 

approximately 60 kDa, although this was subsequently identified as a N-terminally degraded 

product of His-Res2p, by mass spectrometric analysis (Figures 6.4-6.11). Unfortunately, 

recovery of purified His-Res2p, in buffer solutions suitable for structural studies, frequently 

resulted in precipitation. Initial attempts to obtain CD spectral data from this protein were 

unsuccessful, primarily due to precipitation. The spectral studies showed a high level of nucleic 

acid contamination in purified samples o f His-Res2p. This was despite the fact that routine 

measures (e.g. use of both DNAase and RNAase) were employed to prevent this problem.

Both His-Replp and His-CdclOp proteins were refractory to manipulation of induction 

and solvent conditions, although each protein was ultimately solubilised and purified from 

inclusion bodies, using the anionic detergent N-lauroylsarcosine in yields that were sufficient to 

initiate structural studies (Figures 6.14-6.15). Similarly to His-Res2p, however, dialysis into 

more suitable buffers routinely resulted m precipitation and aggregation of protein. Initial CD 

spectra of these proteins also revealed a significant level of nucleic acid contamination (Figure 

6.16). Nevertheless, CD studies were initiated on His-CdclOp and His-Replp, as this technique 

is tolerant to low levels o f detergent. The results of these CD studies demonstrated that each 

protein had significant secondary structure and were at least partially folded (Figures 6.17-6.20 

and Tables 6 .1-6.2). Given that both proteins required detergent solubilisation, it is highly 

likely that to obtain these proteins in their fully native state, re-folding strategies are required.

7.3 Future experimental w ork
The aim of this work was to provide a stable reproducible and active source o f recombinant 

components of the fission yeast DSCl complex in sufficient yield and purity to allow detailed 

structural and functional analyses. Whilst significant steps have been taken toward this ultimate 

goal, several key issues require further investigation.

Importantly, this study has demonstrated that bacterially expressed Res Ip and Res2p are 

biologically active, in terms of MCB-specific DNA-binding activity, when expressed as N- 

terminal GST-fusion proteins. This indicates that post-translational modification is not essential 

for the DNA-binding activity o f these proteins in vitro. This had been demonstrated previously 

for GST-Reslp (Ayte et al., 1995). Initial attempts to purify these proteins in sufficient yield 

for further analyses, specifically structural studies, proved unsuccessful. Future work would 

therefore concentrate on optimising the purification of these two proteins to provide a 

convenient source o f pure protein with which to undertake detailed biophysical analyses.

In contrast, no such DNA-binding activity was detected with either o f the His-tagged 

Resp proteins. Previous studies reported that the MCB-specific DNA-binding activity o f in
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vitro translated Res Ip and Res2p was dependent on co-expression with CdclOp, although a 

weak band-shift activity could be detected with Res2p alone (Ayte et ah, 1995; Zhu et ah, 

1997). In this thesis, the inability to obtain soluble His-CdclOp protein (or to co-express either 

His-Reslp or His-Res2p with His-CdclOp) has prevented a definitive analysis o f the 

dependency of these proteins upon CdclOp for in vitro DNA-binding activity. Even so, this 

study has demonstrated the solubilisation o f His-CdclOp from inclusion bodies, although it is 

likely that the production of active His-CdclOp protein from this source will require re-folding. 

If this can be achieved, then the issue of His-Reslp and His-Res2p DNA-binding activity may 

be more fully investigated.

O f particular interest is why the GST-Resp proteins should exhibit MCB-specific DNA- 

binding activity, yet the His-Resp proteins do not. Clearly such differences may reflect the 

different N-terminal tags. It is possible that this may be due to a tag-mediated protein folding 

effect with the His-Resp proteins, presumably, unable to fold into their native tertiary structure, 

in contrast to their GST-tagged isoforms. However, the soluble nature o f both His-Reslp and 

His-Res2p suggests this would be unlikely. It has been demonstrated in this study that His- 

tagged Res Ip and Res2p are able to function in vivo. Perhaps a more obvious explanation for 

the difference in DNA-binding activity between these fusion proteins lies in the intrinsic 

dimérisation potential o f the GST-tag. In contrast to the His-tagged proteins, GST-fusion 

proteins are expressed as homodimers.

As discussed in Chapter 5, Res Ip and Res2p are believed to bind to DNA as 

heterodimers in vivo and Res Ip and Res2p can homo-dimerise in vitro in a Cdcl Op-dependent 

manner (Ayte et al., 1997; Zhu et al., 1997; Whitehall et al., 1999). Thus, it is highly likely that 

the difference in activity displayed by the GST-Resp and His-Resp proteins reflects intrinsic 

dimérisation potential. However, this conclusion cannot be reached solely from the results 

presented in this study, and require further investigation to be proved.

The GST-Resp fusion proteins used in band-shift assays herein were obtained from 

crude soluble bacterial extracts (Figure 5.16). Whilst the majority of protein in these extracts 

was full-length GST-Reslp or GST-Res2p, they were not homogeneous and so it could not be 

determined whether DNA-binding was mediated by full-length, or C-terminally truncated GST- 

Resp molecules. Importantly, C-terminally truncated Res2p molecules show enhanced DNA- 

binding in vitro, and the highly related ScSwi4p protein displays C-terminally mediated auto­

inhibition of DNA-binding (Zhu et al., 1997; Baetz and Andrews, 1999). Thus, it is tempting to 

speculate that the inability o f the His-Resp proteins reflects an inability to homo-dimerise 

and/or C-terminally mediated inhibition, in the absence of CdclOp.

In order to further resolve these issues, pure preparations of full-length GST-Resp fusion 

proteins must be obtained for use in DNA-binding assays. Initial attempts to do this were 

described in Chapter 6 . Due to time eonstraints the conditions for purification have not been
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optimised. Thrombin cleavage of each tag could be employed in order to separate the effects of 

the respective tags upon DNA-binding activity. O f particular importance will be assay o f the 

ability of each protein to bind DNA in the absence of GST-mediated dimérisation.

In this respect, the His-Resp fusion proteins merit further analysis. Full-length His- 

Res2p has been successfully over-expressed and purified in high yield, providing a valuable 

resource for structural studies. Importantly, to date, this represents the first member o f this 

family of transcription factors to have been produced intact and in yields sufficient to permit 

detailed biophysical analyses. As discussed above (and in Chapter 5) the apparent inactivity of 

either His-Resp protein may not simply be due to mis-folded but rather due to an inability to 

homo-dimerise in vitro. So, whilst a reproducible source of pure His-Res2p in high yield has 

been produced, final optimisation of the stability o f this protein requires further investigation. 

Specifically, protein precipitation has proven to be a frequent and frustrating problem following 

attempts to study this purified recombinant protein. Assuming that the problem of precipitation 

can be overcome, structural studies may then be initiated. Similarly, following optimisation of 

the GST-Resp purifications, structural analyses should be possible. Comparative studies with 

His-Res2p, for example using CD, will be of particular interest. In addition, the purified GST- 

R eslp and GST-Res2p may also be utilised for pull-down assays with the His-tagged DSCl 

components.

In future studies it may be worthwhile to investigate the use o f alternative heterologous 

hosts for the expression of the recombinant DSC 1 component proteins. Eukaryotic hosts such 

as the methylotrophic yeast Pichia pastoris and insect cells are now more commonly in use. In 

particular, exploitation of these systems may be required to produce sufficient amounts o f His- 

R eslp and His-Rep2p, which have been unattainable in E. coli. Ultimately following 

optimisation and extension of much of the work presented in this study, the long-term goal of 

reconstituting an in vitro DSCl complex should be possible providing an invaluable resource 

for future investigation into the structure and function of these components.
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Appendix III: Vector maps

pET-14b so()ucnco tarKtmarks
T7 prooioiC) C'lO-CnZ
T7 ti’aiisciipUon start (145
Hls'Tag coding sw|i)c)icc 554-571
Multiple cloning sites
(AWd-1 -BatiiH 1) 510-52G
T7 icnninalor 404-450
pBR.12Z origin 2845
b/ii coding 5c(|ucncc 3000-4403

EcoR !(4669) 
Apo I(-1GB9) 
eta  1(24) 
Hind 111(29)

Pst 1(3921)

Ëam1105 1(3675)

HglE 11(3369)

AlwN 1(3199)

Bpul 102 1(458) 
BamH l(Sin) 
Xho 1(515) 
Ndo 1(522) 
Nco 1(580) 
Xba 1(610) 
Bgl 11(677) 
SgrA 1(710)

Aal 11(4593) 
Ssp 1(4460) NIIB 1(229)

Sea 1(4156)

Pvu 1(4046)

pET-14b
(4671 bp)

Bom 1(1667)
M s g  1(1754)

BpulO 1(1889) 
Bsg 1(1943)

Spll 1(874) 
ECON 1(934) 

' Sal 1(959) 
PshA 1(1024)

Eag 1(1247) 
NfU 1(1282) 

[-ApaB 1(1360) 
' BspM 1(1302)

BspLUH 1(2783)
Aft 111(2783)

Sap 1(2667)
Bsti 107 1(2554)

BsaA 1(2535)
Tlh111 1(2520)

BsniB ((2424) 
Pvu (1(2374)

B g lII TT prompter ^

a g a t c t c q a t c c c g c g a a a t t a a t a c(î a c i c a c t a t a g g g a g a c c a c a/icgotttcccT c t a g a a a t a a t t t t g t t t a a c t t t/i a o m «gaq a
N c o  I Hlit-TaB Wrfo I X h o  I B m irH  I

TATACCATGGCCAGCACCCATCATCATCATCATCACAECAOCQOCCTOGTaCCCCGCCSCACCCATATCCTCfiAGOATCCGOCTGCTAACAAAGCCCGA 
ha-tB(y3»r3«rH)«H)BH)gH(«H[EHIsSBrSBr(ilyL«uVa[ProÂr^)v3<irH)«H»tU»uQluA«pPrpA[oA[oAAnLvi»A(QArg

Spun02 ( ' thmmbin* T7 terminator___
AAGGAAGCTGAGTTGECTGCTGCCACCq(:TGABCAATAA'cTAQCÂfAACCCCnGGGECCtCTAAACttfi'GTCTTGAGGGGTTTTTin LygO ) uA I oO I uLeuA 1 nA I «AI aTh^  I qO ) uGÏnÉnd

T7 torm!na(qr primer 009337-3

pET-14b clonmg/expression region

Appendix Ilia: Plasmid map of the pET-14b cloning and expression vector
The pET-14b vector carries an N-terminal His-tag sequence followed by a thrombin cleavage 

site and unique restriction sites are shown on the circle map. The cloning/expression region of 

the coding strand transcribed by T7 RNA polymerase is shown in more detail in the box 

(Adapted horn www.novagen.com).
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pETZe#(t) MqWMK# landHMfks
T7 proinoler 370-380
T7 transcrli)tloii start 369
niS'Tag coding sequence 270-287
T7*Tag coding sequence 207-239
Multiple cloning sites 
(/7,ih ))11-A7ioI) 158-203
Hls'Tag coding sequence 140-157
T7 terminator 26-72
t a d  coding sequence 773-1852
pBR322 origin 3286
Kan coding sequence 3995-4807
n  origin 4903 5358

Tlie maps for pET-28b{-r) and pET-28c(-r) 
are the same as pET-28a(+) (showm) with 
the foliowing exceptions: pET-2Bb(+) is a 
53G8bp plasmid; subtract Ibp from each site 
beyond BimAi I at 198. pET-28c(+) Is a 
5307bp plasmid; subtract 2bp from each site 
beyond BuirM I at 198.

D ra 111(5127)

X h o  1(15») 
Not 1(165) 
E#g 1(1*6) 
Hind ltkl73) 
Sat 1(179)
S ac  1(160)
EOOR 1(192)
BamH 1(198) 
Nh* 1(231) 
Nda 1(238) 
Nco 1(2*6)

X b a 1(335)
W  ll('ioi)

SgrA 1(442) 
Sph 1(593)

Mitl i(!123) 

Bci 1(1137)

B p u 1 1 0 2  i(80)

Pvu 1(4425)
sgf 1(4425) -

S m a  i(4300)

Cia 1(4117)
B stE  ii(1304) 

^A pa 1(1334)

N ru 1(4003)

pET-28a(+)
(5369bp)

BsSlt li(1534)
EC0RV (1373)
H p a  i(1029)

E co 5 7  i(3772) 

AlwN 1(3040)

B s s S  1(3397)

B sp L U II 1(3224)
S a p  1(3100) 
B s t1 1 0 7  l(2DB5) 

T t h i n  1(2000)

PsIlA  1(19®))

Bgt 1(2107) 
F s p  1(2205) 

P sp S  11(2230)

T7 promoter prîrrK̂  #G934W
pET upstream primar #69214-3-„S9ÜL . TOW..

AGATCTCGArCCCeCOMATTAATACSACTCACTATAGGG5AATTGTGASCCGATAACAATTCCCCTCTAGAAATAATTT7BTTTAACTTTAASAAGGA0A 
N c o \ HI««T.g JVjfeL j M L .  T7-T*B

TATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCQGCCÎGQTecCGCSCGeCAGCCATATGGCTAGCAÎGACÎSGTGSACAGCAA 
HBtB)v3«r0erHl«HHil1HiHlsHi8lH B3ar3TGlY l-»uV olProArgaiy3»rH l«t1»tA io3arR«tTt^rB lvQ [¥SiaG ln 

E a g  I thromWa
  aamHieooRi Sac I Sail HWIII N o l l  X h o  I___________________
ATCCGTCGCGOATCCBAATTCGAGCKCGTCGACAAOCTTGCOGCCGCACTCQAGCAeCACCACCACCACCACTQASATCCSGCTGCTAACAAAOCCC pET-a8o(*) 
MstG i yArgG 1 yS arG  I uPheG I ut-euA rgA rgG  InA loC ysG lyA rgT lirA rgA  to P ro P ro F ro P ro P ro L * u A rg S « rG  I yCyaOncl

...CGrCSGGATCCGAATTCGAGCTCCCTCGACAAGCTTeCBGCCGCACTCCAGCACCACCACCACCACCACTGAGATCCGGCTeETAACAAAGCCC 

.. .GiyArgA»pProAinS*r8«i'3«rVQlA«pLy*L*uAI<JAIaA)oLBu0iuHlaHI*HlaHliH1»l1l»En(1

...GGTCOQATCCOAATTCOAGCTCCQTCOACAAQCTTGCGSCCGCACTCBAGCACCACCACCACCACCACTGAQATCCGeCTGCTAACAAAGCCC 

.. .GivArql leArqt ieArqAtoProS«rThrSBrLBuArqPrQH)A3wrSBrThrTt)rThrTt)rT0rThPGIul leAroLBwLeuThrLvaPro..
flpul102t _________________ T7lTmtn«tPf_________

GAAAGGAAGCTGAGTTGGCTGCTOCCACC0CTOAGCAATAACTAGCAÎAACCCCItCCGGCCTCTAAACCGGtCT1OAGGGGTTTTTTG

pET-28k>(*

T7 lemlnalof primer #50337-3

pET-28a-c{+) cloning/expression region

Appendix Illb: Plasmid map of the pET-28a~c(+) cloning and expression vector

The pET-28a-c (+) vectors carry an N-terminal Hls-Tag®/thrombin/T7-Tag® configuration 

plus an optional C-terminal His-Tag sequence. Unique restriction sites are shown on the circle 

map. The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is 

shown in more detail in the box (Adapted from www.novagen.com).

2 1 2

http://www.novagen.com
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Ndel/Sall/BamHI/Smal

Hindlll

Sûcl
•EcoRIPst I 

Hindlll-

p R E P l
induced; EMM 
repreoacd: EMM + S u g /m l 
th ia m in e

EcoRI

Hindi

Appendix Illd: Plasmid map of the pREPl cloning and expression vector

The pR E P l vector is derived from  the original pREP series by addition o f  a N del site 

adjacent to the Sail site (A dapted from  M aundrell, 1993).

214



Xhoi/Sal I/BamH I/Sma I
Hindi 

P s tu
H indlll

EcoRI

Hindi

Sad
EcoRI

pREP3X
induced: EMM 
r e p r e sse d : EMM + 5 u g /m l  
th ia m i ne

EcoRI

Appendix Hie: Plasmid map of the pREP3X cloning and expression vector
The pREP3X vector is derived from the original pREP3 series by addition o f a Xhol polylinker 

between the Ball and Sail sites; this deletes the ATG within the polylinker, destroys Ball and 

recreates Sail (Adapted from www-rcf.usc.edu/~forsburg).
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