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Summary

The orexin 1 receptor was identified as an oiphan G protein-coupled receptor (GPCR) in 

1998 (Sakurai et al,  1998). There is great interest in the orexin receptor system since it is 

involved in the control of feeding and energy metabolism (Sakurai et al,  1998), the 

modulation of neuroendocrine function (van den Pol et ai,  1998; Smart, 1999) and the 

regulation of the sleep -wake cycle (Smart, 1999). However not much is known about the 

regulation of the orexin 1 receptor following stimulation. (3-aiTestins bind agonist- 

activated, phosphorylated GPCRs and mediate their desensitisation and intemalisation. 

They may also function as GPCR signal transducers. The aim of this thesis was to 

investigate intemalisation and signalling of the orexin 1 receptor and the involvement of p- 

anestins in these processes.

In HEK293T cells expressing wild type orexin 1 receptor, orexin A stimulation triggered 

p-aiTestin 2 binding to the receptor and co-intemalisation of receptor-p-arrestin complexes 

via clathrin-coated vesicles into acidic endosomes, in a dynamin-dependent manner. 

Moreover, studies of receptor internalisation in wild type, P-arrestin-, Src family kinase-or 

Gq/ii-deficient mouse embryo fibroblasts revealed sequestration of the orexin 1 receptor to 

be p-arrestin-dependent, but G protein-and Src-independent.

Mutational analysis of the orexin 1 receptor demonstrated that high affinity binding 

between the receptor and P-arrestin 2 was conferred by a single cluster of Ser/Thr residues 

at the extreme C-terminus. Although this mutant form of the receptor was no longer able to 

co-intemalise with P-arrestin 2, the pathway and time course of receptor internalisation 

was unaltered.

In CHO cells, orexin A challenge induced rapid receptor phosphorylation which was partly 

mediated by protein kinase A (PKA) and protein kinase C (PKC). Surprisingly the levels 

of phosphorylation were similar for the cluster Cl mutant indicating the principal 

phosphorylation site to be distinct from the cluster of Ser/Thr residues essential for 

agonist-induced recruitment of P-arrestins.

To investigate the signalling pathways elicited by addition of orexin A, mutant forms of 

the orexin 1 receptor unable to stimulate G protein signalling were generated. Activation of 

the orexin 1 receptor caused an increase in ERKl/2 activity by a process depending on an 

intact endocytic pathway since inhibition of endocytosis by concanavalin A or dominant 

negative dynamin resulted in attenuated ERKl/2 phosphorylation. However hyperosmolar 

levels of sucrose had no effect on ERKl/2 activation. In addition, orexin A challenge of
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Src family kinase knock out MEF cells expressing the orexin 1 receptor resulted in 

ERKl/2 stimulation. There was significant difference in the time course of ERKl/2 

phosphorylation upon stimulation of the wild type receptor and the cluster Cl mutant. On 

the other hand, no increase in ERKl/2 phosphorylation could be observed for the mutants 

unable to activate G proteins. Agonist challenge of the wild type receptor also caused 

stimulation of the JNK MAPK pathway. In contrast to the ERKl/2 MAPK pathway 

stimulation of all mutants tested resulted in increased JNK activity. p38 another member of 

the MAPK family was not activated after agonist challenge of the orexin 1 receptor 

excluding an involvement of this MAPK in orexin 1 receptor signalling.

Taken together these results show that a single cluster of hydroxy amino acids within the 

C-terminus of the orexin 1 receptor determines the affinity o f the interaction with p- 

arrestin 2. They also indicate a key role of p-arrestin scaffolding in fine tuning the kinetics |  

of orexin 1 receptor-mediated, G protein-dependent ERKl/2 activation.
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Chapter 1

Introduction



1.1 Orexins

1.1.1 Orexin neuropeptides

Sakurai et al. (1998) identified two novel hypothalamic neuropeptides. Since these 

peptides stimulated food consumption when administered centrally, and their production 

was influenced by the nutritional state of the animal, they were named orexin A and B, 

after the Greek word orexis, which means appetite. At the same time as Sakurai et al, 

(1998) De Lecea and colleagues (1998) used the subtraction cloning method to identify 

hypothalamic peptides. During this process they found two neuropeptides produced from a 

common precursor. Since these peptides are predominantly localised in the hypothalamus 

and their sequence is homologue to secretin, they called the peptides hypocretin-1 and -2. 

Hypocretin-1 and -2  turned out to be identical to orexin A and B, respectively.

Orexin A and B are hypothalamic neuropeptides encoded by a single 130 (rat) and a 131 

(human) amino acid mRNA transcript transcribed into prepro-orexin, which is 

proteolytic ally cleaved to give orexin A and orexin B (Sakurai et a l  1998). Orexin A 

consists of 33 residues with an N-terminal pyroglutamyl residue and C-terminal amidation. 

It also contains four Cys residues forming two disulphide bonds. The primary structure of 

orexin A is identical between human, rat, and mouse (Sakurai et al,  1998). Orexin B, also 

carrying an ami dated C-terminus, has 28 residues and shares 46 % sequence homology 

with orexin A. Mouse and rat orexin B peptides are identical whereas human orexin B has 

two amino acid substitutions compared with the rodent sequences (Sakurai et al,  1998).

1.1.2 Orexin receptors

The orexins activate two closely related G protein-coupled receptors (GPCRs), orexin 1 

receptor and orexin 2 receptor (Figure 1.1). The orexin 1 receptor is the oiphan GPCR used 

to identify and then purify the orexins. The orexin 1 and 2 receptors share 64 % homology 

to each other and are structurally most similar to other neuropeptide receptors like the Y2 

neuropeptide Y receptor, followed by the thyrotropin-releasing hormone receptor, the 

cholecystokinin type-A receptor and the NK2 neurokinin receptor. Both the orexin 1 

receptor as well as the orexin 2 receptor seem to be highly conserved between species 

since 94 % of the amino acids in case of the orexin 1 receptor and 95 % in case of the 

orexin 2 receptor are identical between the human and rat homologue.
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Competitive radioligand binding assays revealed that orexin A binds to the orexin 1 and 

the orexin 2 receptor with high affinity whereas orexin B has a 10-100 fold lower affinity 

and potency for the orexin 1 receptor compared to the orexin 2 receptor. Therefore the 

orexin 1 receptor is selective for orexin A, while the orexin 2 receptor is a non-selective 

receptor for orexin A and orexin B. Binding of these ligands is associated with an increase 

in intracellular calcium concentrations. However, the mechanism involved is still not clear, 

since one group reported mobilisation from intracellular stores (Sakurai et at, 1998) and 

another reported PKC-mediated calcium influx (van den Pol et al., 1998). Furthermore 

Smart et al. (1999) showed that activation of the orexin 1 receptor with orexin A or B 

resulted in a biphasic calcium response. This response consisted of a phospholipase C 

mediated calcium mobilisation from intracellular stores, and a secondary influx of 

extracellular calcium. On the other hand Lund and colleagues (2000) described the orexin 

1 receptor to activate a novel calcium influx pathway from extracellular calcium stores and 

to directly stimulate phospholipase C. They further claimed that these two responses 

converged at the level of phospholipase C where the first response enhances the potency of 

the second one.

Experiments carried out in receptor-transfected cell lines and isolated receptor-expressing 

hypothalamic neurons indicated that the orexin 1 receptor is exclusively coupled to the Gq 

subclass of heterotrimeric G proteins. In contrast the orexin 2 receptor seems to be able to 

couple to Gi/o and Gq (Sakurai et al, 1998; van den Pol et al, 1998; Zhu et al,  2003).

1.1.3 Neuroanatomy of the orexin system

The mRNA for the precursor peptide is synthesised in neurons in the lateral and posterior 

hypothalamic areas and the perifomical nucleus of the adult rat brain (Sakurai et al, 1998; 

de Lecea et al ,  1998; Broberger et al, 1998). The lateral hypothalamus is a region of the 

brain, which has been implicated in feeding, energy homeostasis, arousal and motivated 

behaviour (Bemardis and Bellinger, 1993, Bernardis and Bellinger 1996). This is 

supported by the fact that animals with lesions in the lateral hypothalamus exhibit 

hypophagia, an increased metabolic rate and decreased arousal that frequently leads to 

death by starvation.

Interestingly, orexin neurons also express mRNAs for the orexigenic opioid dynoiphin, the 

appetite stimulating neuropeptide gal an in and the leptin receptor, the latter being a 

hormone produced mainly by adipocytes (Risold et al,  1999; Hakansson et al, 1999).



Neurons expressing melanin-concentrating hormone, also an orexigenic peptide, like 

orexin neurons are found in the lateral hypothalamus. However, orexin and melanin- 

concentrating hormone neurons are distinct and independent neuronal populations within 

the lateral hypothalamic area (Broberger et al, 1998; Elias et al,  1998).

Orexin-containing neurons project from the point of origin to numerous brain regions. The 

limbic system, monoaminergic and cholinergic nuclei of the brainstem and hypothalamic 

sites such as the locus coerulus, the arcuate nucleus, the paraventricular nucleus and the
Ï

dorsal raphe receive particularly strong innervations (Peyron et al ,  1998; Date et al,  1999; I

Nambu et al,  1999). Orexin peptides are unique among hypothalamic neuropeptides as 

they, by directly acting on axon terminals of neuroendocrine cells in the arcuate nucleus, 

can increase the release of the major inhibitory transmitter, y-aminobutyric acid (GABA), 

as well as the major excitatory transmitter, glutamate, which are together regulating 

almost all synaptic activity in the hypothalamus (van den Pol et al,  1998).

In situ hybridisation data confirm that the orexin receptors are expressed in a pattern 

consistent with orexin projections, but that they are differently distributed (Trivedi et al,

1998). The orexin 1 receptor mRNA is highly expressed in the prefrontal cortex, 

hippocampus, paraventricular thalamus, ventromedial thalamus, arcuate nucleus, dorsal 

raphe nucleus and locus coerulus. Orexin 2 receptor mRNA on the other hand is mainly 

expressed in nucleus accumbens, subthalamic and paraventricular thalamic nuclei and 

anterior pretectal nucleus. Apart from the central nervous system, orexin receptor mRNA 

expression has also been reported in the adrenal gland, enteric nervous system and 

pancreas (Malendowicz et al, 1999; Kirchgessner and Liu, 1999).

1.1.4. Involvement of orexin in the regulation of feeding

The localisation of orexin neurons in the hypothalamus, a key site for regulating appetite 

and satiety, indicates an involvment of these two neuropetides in the regulation of feeding.

This hypothesis is supported by the fact that orexin A stimulated food consumption in a 

dose dependent manner within 1 hour, when given intracerebroventricularly in the early 

light phase. Orexin B also increased food intake, but the effect of orexin B did not last as 

long as that of orexin A. Both peptides stimulated food intake significantly less than the 

orexigenic peptide neuropeptide Y (Sakurai et al,  1998). As neuropepeptide Y, orexin A 

also stimulates food intake via activation of opioid receptors (Clegg et al, 2002). The 

physiologic relevance of feeding effects of orexins is further supported by the finding that



central administration of a neutralising anti-orexin antibody significantly and dose- 

dependently suppressed spontaneous feeding in fasted rats (Yamada et al,  2000). Cai and 

co-workers (1999) found that prepro-orexin mRNA was upregulated under conditions of 

prolonged fasting (48 hours) and acute hypoglycemia, but only if food was withheld 

leading them to the conclusion that orexin neurons belong to the glucose-sensitive 

subpopulation of neurons in the lateral hypothalamus that are stimulated by falls in 

circulating glucose and inhibited by signals related to feeding.

The orexigenic effect of orexin A seems to be well established. However the role of orexin 

B in feeding remains controversial. In contrast to Sakurai et al. (1998), Haynes and co­

workers (1999) could not detect any effect of orexin B on feeding whereas Edwards and 

colleagues (1999) saw an effect of orexin B on feeding only on some occasions. The 

enhanced potency of orexin A compared to orexin B suggests that the effect on feeding is 

mediated by the orexin 1 receptor. Using a selective orexin 1 receptor antagonist, SB- 

334867-A (Smart et al,  2001), Haynes et al  (2000) were able to block the orexigenic 

effect of orexin A in male and female rats, thus corroborating the idea that the orexin 1 

receptor mediates the orexigenic response to orexin A and stimulation of the orexin 1 

receptor is necessary for normal feeding. However, since orexin A binds equally well to 

both receptors, an involvement of orexin 2 receptors in feeding cannot be fully excluded.

1.1.5 Orexins regulate the sleep-waking cycle

Orexin neurons send projections to monoaminergic and cholinergic centres controlling 

sleep/wakefulIness in the hypothalamus and brainstem (Chemelli et al,  1999; Peyron et 

al,  1998). A role for orexins in this process was supported by the findings that orexin 

neuropeptide knock out mice have a phenotype that is remarkably similar to the human 

sleep disorder narcolepsy (Chemelli et al,  1999). Similar findings were reported for 

transgenic mice in which orexin-containing neurons are ablated (Haia et al,  2001). In 

addition, Lin and colleagues (1999) found that canine narcolepsy is caused by a mutation 

in the orexin 2 receptor gene. Whereas orexin 2 receptor knock out mice are similarly 

affected with behavioural attacks of non-rapid eye movement (REM) sleep (“sleep 

attacks”) as orexin loiock out mice, they are less severely affected with cataplexy (sudden 

bilateral loss of postural muscle tone triggered by emotions) like attacks (Chemelli et al,  

1999; Willie et al, 2003). Orexin 1 receptor knock out mice on the other hand show 

normal behaviour and exhibit only increased fragmentation of sleep-wakefullness cycles



(Kisanuki et ai,  2000). Orexin 1 receptor and orexin 2 receptor double knock out mice 

have the same phenotype as the orexin knock out mice (Kisanuki et ai,  2000). This 

suggests that loss of signalling through both receptors is necessary for the severe 

narcolepsy obeserved in the orexin knock out mice.

Sleep studies in rats showed that orexin neuron activity is positively conelated with 

wakefullness and negatively with the amount of non-REM and REM sleep (Estabrooke et 

al,  2001) and intracerebroventricular administration of orexin A in rats (Hagan et al,

1999) and central administration of orexin A in wild type and orexin-neuron-ablated mice 

(Mieda et al., 2004) dose-dependently increases wakefullness and suppresses non-REM 

and REM sleep providing further evidence that orexins are involved in the regulation of 

sleep-wakefullness.

Orexins therefore provide a crucial link between energy balance and arousal.

1.1.6 Additional functions of orexin

The widespread distribution of orexin fibres suggests that orexins are likely to participate 

in additional physiological functions apart from feeding and arousal. Threshold doses for 

feeding of orexin A and orexin B when injected into the lateral cerebroventricle of 

conscious, unrestrained rats significantly raised main arterial blood pressure and heart rate. 

The effects were smaller than those observed with a lower dose of angiotensin II, but 

displayed a similar temporal sequence to that of angiotensin II (Samson et al, 1999). 

Another important function of orexins is their involvement in morphine dependence and 

withdrawal. Georgescu and colleagues (2003) observed that a subset of orexin neurons are 

activated by chronic morphine (25 %) and moiphine withdrawal (33%) and only morphine 

withdrawal, but not chronic morphine, induced orexin gene expression. Interestingly, all 

the orexin cells responding to either chronic moiphine or morphine withdrawal also 

express the p-opioid receptor, suggesting a direct mode of action. In the same study orexin 

knock out mice displayed attenuated morphine withdrawal suggesting that orexin neurons 

contribute to physical moiphine dependence and the expression of withdrawal.



1.2 G-protein-coupled receptors (GPCRs)

Physiological phenomena are controlled precisely by different kinds of receptor-dependent 

signalling. The vast majority of these receptors belong to the superfamily of G protein- 

coupled receptors (GPCRs). They form one of the largest protein families with estimates 

that at least 700 members belong to this family in the human genome (Malnic et al, 2004; 

Vassilatis et al., 2003). About 3 % (about 750) of the genes present in a mammalian 

genome encode GPCRs. They act as recognition sites for a wide array of external stimuli 

like neurotransmitters, hoi*mones, lipids, photons, odorants, taste ligands, nucleotides, and 

calcium ions (Bockaert and Pin, 1999). Hence they have been widely studied and agents 

that act on GPCRs, either as agonists or antagonists, are widely used in drug therapy 

(Wilson et al, 1998).

The principal function of GPCRs is to transduce infoiTnation provided by extracellular 

stimuli across the plasma membrane into the interior of the cell. They achieve this by 

interacting with heterotrimeric G proteins and the subsequent regulation of a diverse 

variety of effector systems.

1,2.1 Classification of GPCRs

GPCRs can be classified into four main groups based on sequence similaiity. Family 1 

(rhodopsin-like family) is the largest and contains the odorant receptors of which 339 have 

been identified in humans so far (Malnic et al, 2004). Family 2 (glucagonWIP/calcitonin 

family) comprises 50 GPCRs. Family 3 (metabotropic glutamate/chemosensor family) 

receptors number 17 and family 4 (frizzled/smoothened family) contains 11 members 

(Gether, 2000; Vassilatis et al,  2003). The families are themselves classified into 

subclasses that are defined by sequence similarity, ligand binding properties and functional 

domains (Horn et al ,  1998; Bockaert and Pin, 1999).

Family 1, to which the orexin 1 receptor belongs, is the largest and best characterised out 

of the four families. Sequence alignment of receptors in this class shows approximately 20 

conserved amino acids that are predominantly located within the transmembrane segments. 

These include two Cys residues in extracellulai' loop 2 and the top of transmembrane 

region 3 that form a disulphide bridge necessary for maintaining coiTect receptor 

conformation, the Asp-Arg-Tyr (DRY) motif in the proximal region of intracellular loop 2, 

an Asn/Asp-Pro-X-X Tyr (N/DPXXY) motif in transmembrane domain 7 and a Cys



residue in the C terminal domain. Palmitoylation of the latter results in generation of a 

fourth intracellular loop. Amongst these, the Arg residue that foims part of the conserved 

Asp-Arg-Tyr (DRY) motif is the only residue that is totally conserved within members of 

this family.

Family 1 is further grouped into three subclasses: a, b and c. To class la belong the 

receptors for small ligands such as photons and biogenic amines. It includes rhodopsin, p- 

adrenergic and serotonin receptors and the ligand-binding site is located within the 

transmembrane spanning domains. Class lb comprises receptors that bind peptides such as 

chemokines to the N teiminal region, the extracellular loops and the upper part of the 

transmembrane domains. Finally class Ic includes receptors for glycoprotein hormones 

such as luteinising hormone, follicle stimulating hormone and thyroid stimulating 

hormone. The major characteristic is the large extracellular N terminus involved in ligand 

binding. Apart from the N-teminus the ligand must also bind to at least one of extracellulai' 

loops 1 or 3.

Family 2 GPCRs are the second largest group of GPCRs. They have a similar moiphology 

to the family Ic receptors but exhibit no sequence homology except for the conservation of 

the di sulphide bridge between Cys at the top of transmembrane region 3 and the middle of 

extracellular loop 2. High molecular weight peptides such as glucagon, secretin, VIP- 

PACAP and calcitonin bind to this family of receptors, as does the black widow spider 

toxin a-iatrotoxin (Krasnoperov et al., 1997; Davletov et al., 1998). The receptors have 

long N-terminal regions (>100 amino acids) that contain six conserved Cys residues which 

seem to be involved in the formation of disulphide bridges thus forming a globular domain 

that is suggested to be involved in ligand binding. They also have two conserved Cys 

residues in extracellular loops 1 and 2 and approximately 15 other residues that are 

conserved in all members of this class.

The third family of GPCRs contains the metabotropic glutamate receptors and the Câ  ̂

sensitive receptors as well as recently identified putative taste receptors. (Pin and Bockaert, 

1995). This family also contains the GABAb receptors (Kaupmann et al ,  1997) and a 

group of putative pheromone receptors coupled to the Go protein, termed VRs and Go-VN 

(Bargmann, 1997). Receptors in this family all possess extremely long N terminal regions 

(500-600 amino acids) that are involved in ligand binding and several conserved Cys 

residues in the transmembrane spanning and extracellular regions. Like family 1 and 2 

receptors they have a conserved di sulphide bridge between extracellular loops 2 and 3.
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The fourth family contains the“frizzled” and “smoothened” receptors that are involved in 

embryonic development.

1.2.2 Structural features of GPCRs

Despite the different nature of their ligands and their diverse biological functions, GPCRs 

share many characteristics. They comprise seven domains of 20-25 hydrophobic residues 

in the form of a-helices, which span the plasma membrane. They possess an extracellular 

N-terminus, three extracellular loops (eloop), three intracellular loops (iloop), and an 

intracellular C-terminus. The solution of the crystal structure of rhodopsin in 2000 revealea 

a highly organised heptahelical transmembrane bundle. The crystal structure gave a more 

detailed picture of GPCR organisation and therefore provided an improved model for the 

study of GPCR structure-function relationship (Palczewski et al,  2000).

The N terminus (7-595 residues) varies considerably in size between the GPCRs. The N- 

terminus of the orexin 1 receptor possesses 46 amino acids. This region was suggested to 

play a role in trafficking of the receptor to the plasma membrane and it contains in most 

receptors a consensus Asn-X-Ser/Thr sequence for potential N-linked glycosylation 

(Petaja-Repo et al ,  2000; George et al ,  1986; Hughes et al ,  1997). This motif is absent in 

the orexin 1 receptor indicating that this receptor may not be subject to N-linked 

glycosylation. However, the orexin 1 receptor has three Ser and Thr residues that may be 

O-glycosylated. In some GPCRs but not in the orexin 1 receptor, the N-terminal domain 

also contains Cys residues implicated in protein folding (Green et al ,  1990). As indicated 

in the classification of GPCRs, the N-terminus is also involved in ligand binding in all 

families except the class la.

The next common structural feature are the seven transmembrane spanning domains each 

consisting of 20-25 predominantly hydrophobic amino acids that foim an a-helix. The 

seven helices are thought to be ananged as a tight ring shaped core (Baldwin, 1993; Ji et 

al,  1998) with the hydrophobic amino acid residues facing the lipid bilayer and the more 

hydrophilic residues the core. This barrel shape is achieved by the domains being 

orientated roughly perpendicular to the plane of the membrane in an anti-clockwise 

orientation (Baldwin et al ,  1997). A low-resolution density map of frog rhodopsin also 

indicates that the seven transmembrane helices are packed much more densely on the 

intracellular side of the membrane than on the extracellular one. As a result the area 

enclosed by transmembrane regions 1-7 is about 25 % smaller on the cytoplasmic than on
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the extracellular side of the transmembrane receptor core (Unger et at,  1997). Some of the 

most highly conserved residues amongst GPCRs are several Pro present in transmembrane 

regions 4, 5, 6  and 7. In the orexin 1 receptor they are Prol78, Pro272, Pro313 and Pro355. 

These residues are suggested to introduce kinks into the a-helices, which are thought to be 

important in the formation of the ligand binding pocket and also in allowing flexibility of 

the ligand binding pocket of the receptor.

Studies on GPCRs such as rhodopsin revealed that the switch from the inactive to active 

conformation and the unmasking of the G protein binding site is associated with a change 

in the relative orientation of transmembrane regions 3 and 6 , with a rotation of 

transmembrane region 6  and a separation from transmembrane region 3 (Fairens et al., 

1996; Bourne et al., 1997; Javitch et al., 1997). This conformational change alters the 

orientation of intracellular loops 2 and 3 affecting what constitutes one of the key sites 

involved in G protein recognition and activation (Spengler et at., 1993; Pin and Bockaert, 

1995; Wess, 1997).

At the boundary between transmembrane region 3 and the second intracellular loop is an 

Asp-Arg-Tyr (DRY) motif, which is highly conserved in all family 1 GPCRs. In the orexin 

1 receptor this motif is located between amino acids 143 and 146. However the orexin 1 

receptor contains an additional Trp residue at position 145, which is highly unusual. This 

region together with the membrane proximal region of the second intracellular loop is 

thought to be involved in receptor-G-protein coupling.

The intracellular loops are 10-40 amino acids long. The only exception is the third 

intracellular loop, which can possess more than 150 residues. In the orexin 1 receptor the 

third intracellular loop comprises 59 amino acids. Since these regions are intracellularly 

located they are important for G protein coupling with the second (Wess, 1998), the third 

intracellular loop (Cotecchia et al., 1992), and the C-terminal tail (O'Dowd et at ,  1988) 

being paiticularly important in this regard. Some of these regions have also been 

implicated in determining the selectivity of receptor-G protein coupling. This is supported 

by biochemical studies with hybrid receptors constructed between the vasopressin V2 

receptor, which couples to Gg and the vasopressin Via receptor, which couples to Gq/n. 

Replacement of the second intracellular loop of the V2 receptor with the corresponding 

sequence in the Via receptor resulted in a mutant receptor that effectively coupled to Gq/n 

proteins (Liu and Wess, 1996). Also, about 12 residues which are rich in positively 

charged amino acids at the carboxyl terminal portion of the third intracellular loop are 

implicated in the induction of the high affinity conformation of the receptors, since
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mutations in this region (just below transmembrane region 6 ) can lead to constitutive 

activity of the GPCR (Cotecchia et al ,  1992). The third intracellular loop also contains 

numerous Ser and Thr residues which are potential sites of receptor regulation via 

phosphorylation by kinases such as G-protein-coupled receptor kinases (GRKs), protein 

kinase A (PKA) and protein kinase C isofoims (PKC) (Dohlman et al,  1991; Kobilka, 

1992) implicating this region to be involved in receptor desensitisation and initiation of 

internalisation (see section 1.4 and 1.5). The orexin 1 receptor contains six such hydroxyl 

residues in the third intracellular loop.

On the extracellular loops, the single most important conserved amino acid is a Cys residue 

in extracellular loop 2, which is linked to a second Cys residue at the top of transmembrane 

region 3 by a disulphide bond. These two residues are important for maintaining the 

tertiary structure necessary for ligand binding (Green et a l ,  1990). In the orexin 1 receptor 

these are Cys 119 in transmembrane region 3 and Cys202 in extracellular loop 2 .

The C-terminal domain (12-359 amino acids), which is also part of the intracellular 

receptor surface contains Ser and Thr residues that can be phosphorylated by GRKs and 

second messenger kinases and like the third intracellular loop are involved in receptor 

desensitisation (Bouvier et al ,  1988; Seibold et al ,  1998; Freedman and Lefkowitz, 1996) 

The C-teiminus of the orexin 1 receptor contains 65 amino acids of which 17 are Ser and 

Thr residues. Like most GPCRs the orexin 1 receptor also contains Cys residues (Cys 375 

and Cys376) at the N-terminal region of the cytoplasmic tail, which serve as a site for 

palmitoylation (O’Dowd et al ,  1989; Ovchinnikov et al ,  1998). Palmitate, a 16-carbon 

fatty acid chain, can be linked to Cys residues through a labile, reversible thioester linkage, 

regulation of which can be determined by the activation state of the receptor 

(Wedegaeitner et al, 1995). Insertion of the palmitate into the plasma membrane 

introduces an additional intracellular loop that might affect G protein interaction with the 

receptor (Ganter et al ,  1992; Milligan et al ,  1995). Since this loop has a helical 

conformation it is also referred to as helix 8 . The process of palmitoylation seems to be 

dynamically regulated by receptor occupancy (James and Olsen, 1989) and it appears that 

these Cys residues play a role in regulation of the receptor-G-protein interaction, receptor 

turnover, expression and subcellular localisation (Kennedy and Limbird, 1993; Eason et 

al,  1994).

Additionally the C-teiminal tail might possess sites for interaction with a variety of other 

proteins, which can mediate GPCR signalling, such as PDZ domain-containing proteins
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(Kornau et al ,  1997), Homer/Vesl proteins (Brakeman et al., 1997), and calcyon (Lezcano 

et al., 2 0 0 0 ).

1.3 G-proteins

G-proteins bind to GPCRs and effectors and therefore act as mediators of receptor- 

stimulated effector activation. G-proteins that bind to GPCRs are heterotrimeric consisting 

of an a-subunit (38-52 kDa), which contains the GTP-binding site and intrinsic GTPase 

activity, a p - (35-36 kDa) and a y-subunit (6-10 kDa) (Gilman, 1987). In the GDP-bound 

state, the a-subunit associates with the Py-subunit and forms an inactive heterotrimer that 

is bound to the receptor. Receptor activation leads to confomiational changes within the a- 

subunit and bound GDP is released and exchanged for GTP as the concentration of GTP in 

the cells is much higher than GDP. Once GTP is bound, the a-subunit assumes its active 

conformation and dissociates from the receptor as well as from the Py-subunit. This lasts 

until the GTP is hydrolysed to GDP by the intrinsic GTPase activity of the a-subunit 

(Figure 1.2) (Gilman, 1987; Clapham and Neer, 1993; Neer, 1994). Once GTP is 

hydrolysed to GDP, the a-subunit and Py-complex reassociate, become inactive, and 

return to the receptor.

1.3.1 G protein a-subunit

So far more than 20 different G protein a-subunits have been described corresponding to 

16 gene products divided into four families based upon sequence similarity: Gg, Gj/o, Gq/n, 

and Gi2/i3 - To the Gg family belong Gga and Goifa, which mediate adenylyl cyclase 

stimulation and closing of Câ "̂  channels. The Q a  family includes Gjal~3 which are 

generally involved in the inhibition of adenylyl cyclase and opening of K"*" channels (Jones 

and Reed, 1987), Gt(at and at2) which stimulate cGMP phosphodiesterase (Lochrie et al, 

1985; Tanabe et al,  1985), Go (aoA and aoB) which are involved in Câ  ̂ ion channel 

closure and phosphoinositide turnover (Hsu et al., 1990) and the Ggust and G%proteins. Ggusi 

is expressed in the taste buds and is thought to couple to cGMP phosphodiesterase. G% is 

expressed in neurons and it inhibits adenylyl cyclase (Taussig and Gilman, 1995). The Gq 

family includes Gqa, G^a, G^a, Gi^a and Giea (Strathman and Simon, 1990; Simon et
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al,  1991; Wilkie et al,  1991) and are predominantly coupled to the stimulation of 

phosphoinositide turnover. The last G protein family, the G1 2 /1 3  family, is ubiquitously 

expressed and has been shown to be involved in both the regulation of NaVfk  ̂ ion 

exchange in cells (Hooley et al ,  1996) and the maintenance of the cell cytoskeleton 

through the activation of the small GTPase Rho (Klages et al ,  1999).

Ga-subunits consist of two domains. The first domain is involved in binding and 

hydrolysing GTP to GDP. The second domain buries the bound GTP or GDP in the protein 

core. This domain consists of 5 a  helices sunounding a 6  stranded P-sheet which bind the 

phosphate and the guanine moiety of GTP. There is also a binding consensus site for Mĝ '̂ , 

essential for catalysis, present in the core (Sprang, 1997).

All G protein a-subunits are covalently modified with either palmitate and/or myristate at 

or near the N-terminus implicating the N-terminus in membrane anchorage (Casey, 1994; 

Casey, 1995; Milligan et al, 1995). N-myristoylation occurs in members of the Gj family. 

It is a co-translational modification of the glycine residue at the extreme N-tenninus after 

the removal of the initiating methionine residue (Gordon et al ,  1991). Palmitoylation 

occurs on all G protein a-subunits apart from at. Palmitate is attached through a labile, 

reversible thioester bond to a Cys residue near the N-terminus (Parenti et al ,  1993). Both 

palmitoylation and myristoylation are thought to be involved in membrane association of 

the a-subunit, with palmitoylation providing a stronger interaction with the lipid bilayer 

due to its greater hydrophobicity. It has been reported that palmitoylation-deficient mutants 

of Gsot (which are also not myristoylated) exhibit a markedly decreased capacity to 

associate with the membrane (Wedegaeitner et al ,  1993). The other important role of the 

N-terminus is thought to be to interact with the py-complex. This is supported by the 

finding that Py binding is lost upon mutation or removal of the first 2 0 - 2 1  residues at the 

N-terminus of the a-subunit (Denker et al ,  1992; Navon and Fung, 1987). The C-terminuc 

of the a-subunit seems to be the region important for receptor and effector interaction. 

Proof for this hypothesis is provided by the observation that antibodies, directed against the 

extreme C-terminus of the a  subunits, inhibit receptor-mediated activation of G proteins 

(Simonds et al ,  1989a; Simonds et al,  1989b). In addition, a Pro to Arg mutation, at the 

sixth amino acid from the C-terminus of G^a, has been shown to abolish adenylyl cyclase

activation upon receptor stimulation (Sullivan et al ,  1987).
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1.3.2 G protein Py-complex

The P" and y-subunits form a dimer that only dissociates when it is denatured and is, 

therefore, a functional monomer. At present 6  P and 12 y-subunits have been identified.

With exceptions, most Gpy pairs are functional. The yi protein (and all the other y proteins) 

can combine with pi but is unable to pair with p2 . The region on the y-subunit which 

determines this specificity for pi over P2 is located in a 14 amino acid sequence on the y- 

subunit (Spring and Neer, 1994).

All G protein y-subunits are isoprenylated via a stable thioether bond to a Cys residue of a 

“CAAX” motif at the C-tenninus. All y-subunits are covalently modified by the addition of 

the 20-carbon isoprenoid geranylgeranyl or, in the case of the retinal-specific yi, the 15- 

carbon isoprenoid farnesyl (Wedegaertner et al ,  1995). Following the attachment of the ; 

isoprenyl group, the C-terminal three amino acids AAX are proteolytically removed and 

the new C-terminus gets carboxymethylated (Higgins and Casey, 1994). Although non­

prenyl ated y mutants have been shown to form stable dimers with p-subunits, its py-dimers 

are not properly targeted to the plasma membrane and aie therefore found in the cytosol 

(Spiegel et al ,  1991). Prénylation of the y chains is also necessary for binding of py to the 

(%-subunit, receptors and effectors (Casey et aL, 1994).

The interaction of the Gpy with the Ga unit involves binding of the G« N-terminal helical 

domain to the propeller structure of the p-subunit (Lambright et al ,  1996). Upon receptor 

activation and the exchange of GDP for GTP, the G  ̂subunit changes its conformation. As 

a result the a  helical content of the G  ̂subunit is reduced which leads to separation of the 

Py-dimer from the a-subunit (Lambright et al ,  1996).

Several crucial roles have been assigned to the py dimer apart from helping to guide a- 

subunits to the plasma membrane. In addition to increasing the affinity of the a-subunit for 

GDP and thereby promoting the association of GDP-bound a-subunits with ligand- 

activated receptors, the py-subunits are shown to be positive regulators of channels 

(Logothetis et al ,  1987), phospholipase Cp isofonns (Camps et al ,  1992), and adenylyl 

cyclase types II and IV (Tang and Gilman, 1991). They might also act through ras to 

activate mitogen-activated protein (MAP) kinase pathways (Crespo et al ,  1994).
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1.4 GPCR desensitisation

The waning of GPCR responsiveness to agonist with time is called desensitisation and 

represents an important physiological “feedback” mechanism that protects against acute 

and chronic receptor overstimulation. The process of desensitisation is a consequence of a 

combination of different mechanisms. These mechanisms include uncoupling of the 

receptor from its heterotrimeric G protein as a result of receptor phosphorylation (Bouvier 

et ai,  1988; Lohse et al,  1990), the internalisation of cell surface receptors into endosomes 

(Oakley et al,  1999; Anborgh et al, 2000) and the downregulation of total receptor 

number due to reduced receptor mRNA and protein synthesis and the lysosmal and plasma 

membrane degradation of pre-existing receptors (Jockers et al,  1999; Pak et al, 1999). 

These mechanisms all occur over different time frames ranging from seconds 

(phosphorylation) to minutes (endocytosis) to hours (downregulation). Desensitisation can 

either lead to complete termination of the signal as is the case for the visual and olfactory 

systems or to attenuation of agonist potency and maximal responsiveness as observed for 

the p2-adrenergic receptor (Pippig et al,  1995; Zhang et al,  1997; Sakmar, 1998).

The phenomenon of desensitisation can be subdivided into agonist-non-specific 

(heterologous) and agonist-specific (homologous) events.

1.4.1 Heterologous desensitisation

The kinases involved in heterologous receptor desensitisation are second-messenger- 

dependent kinases such as cAMP-dependent protein kinase (PKA) or protein kinase C 

(PKC). This form of desensitisation does not require agonist activation of the receptor. It 

instead depends on kinase stimulation by many different stimuli and therefore receptors 

that have not bound agonist, including receptors for other ligands, can be desensitised by 

the activation of second-messenger-dependent kinases. Phosphorylation of the receptor by 

these Idnases may alter receptor conformation and as a result greatly impair the receptor-G 

protein coupling efficiency in the absence of (3-aiTestins.

Second-messenger-dependent kinases are phosphotransferases that catalyse the transfer of 

the y-phosphate group of ATP to Ser and Thr residues contained within specific amino acid 

consensus sites. They are activated in response to GPCR stimulated increases in 

intracellular messengers such as cAMP, Câ ,̂ and diacyl glycerol and mediate the 

phosphorylation of downstream targets. In addition, these kinases also phosphorylate any
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GPCRs containing an appropiate PKA and /or PKC consensus phosphorylation site within 

their intracellular loops or C-terminal tail domains. For example, the P2-adrenergic 

receptor has two PKA phosphorylation sites, one within the third intracellular loop and one 

within the proximal part of the C-terminus. The first of these two sites is essential for 

receptor coupling to G proteins and is proposed to be the preferred site for PKA 

phosphorylation leading to p2 -adrenergic receptor desensitisation (Bouvier et al,  1988; 

Yuan et al, 1994; Moffett et al,  1996). PKC activation leads to the phosphorylation and 

desensitisation of many Gi- and Gq-linked GPCRs (Diviani et al,  1997; Liang et al, 1998; 

Tmigetal,  1998).

1.4.2 Homologous desensitisation

This is a major cellular mechanism mediating rapid desensitisation of GPCRs. It is agonist- 

specific and involves phosphorylation of activated receptors by G protein-coupled receptor 

kinases (GRKs) ensuring that only those receptors that have been stimulated will be 

desensitised. GRKs phosphorylate GPCRs at several Ser and Thr residues contained within 

the C-terminus (rhodopsin, p2 -adrenergic receptor) or third intracellular loop (m2 

muscarinic acetylcholine receptor). In contrast to second-messenger-dependent kinase 

phosphorylation, GRK-mediated phosphorylation seems not to be sufficient to promote 

desensitisation of many GPCRs on its own but its role is to facilitate the binding of 

cytosolic cofactor proteins named arrestins, which in turn sterically uncouple receptors 

from G proteins (Benovic et al,  1987; Lohse et al,  1990; Pippig et al,  1993) and it is 

therefore the binding of arrestins to the receptor rather than the phosphorylation by GRKs 

that leads to homologous desensitisation of the receptor. Binding of p-arrestins not only 

uncouples receptors from heterotrimeric G proteins but also targets GPCRs for 

internalisation in clathrin coated vesicles (Ferguson and Caron, 1998;) (Figure 1.3). 

Moreover, GRK-mediated phosphorylation of GPCRs proceeds somewhat faster than 

second-messenger-dependent phosphorylation (Roth et al,  1991).

1.4.3 G protein-coupled receptor kinases (GRKs)

There are seven known GRKs each sharing a similar functional organisation with a central 

catalytic domain flanked by an amino-terminal domain that is thought to be important for
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substrate recognition and that contains an RGS-Hke domain, and a variable C-terminal 

domain critical for plasma membrane targetting (Figure 1.4). The presence of a regulator 

of G protein signalling (RGS)-like domain in the N-terminal part of the kinase suggests 

that GRKs may not only regulate GPCR signalling at the receptor level, but also regulate 

the activity of the G protein as well (Carmann et al, 1999; Sallese et al,  2000).

The members of the GRK family can be subdivided into three groups according to 

sequence homology and functional similarity: 1) GRKl (rhodopsin kinase) and GRK7, a 

candidate for cone opsin kinase (Weiss et al, 1998), aie retinal kinases involved in the 

regulation of photoreceptors; 2) GRK2 (P-adrenergic receptor kinase 1 or pARKl) and 

GRK3 (PARK2), which exhibit a more widespread tissue distribution; and 3) the GRK4 

subfamily comprising GRK4, GRK5 and GRK6 . GRK4 is localised primarily to the testes, 

whereas GRK5 and 6  are more widespread expressed.

GRKl-3 are localised to the cytosol in unstimulated cells and upon receptor activation 

translocate to the plasma membrane to phosphorylate their receptor targets. GRKl and 7 

each possess a C-terminal CAAX motif. Light-induced translocation of GRKl from the 

cytosol to the plasma membrane is facilitated by the post-translational farnesylation of this 

site (Inglese et al, 1992). The activity of GRKl can also be regulated by the calcium 

sensor protein recoverin (lacovelli et al, 1999). GRK2 and 3 are not isoprenylated. They 

have an 125 amino acid py-subunit binding domain at the C-terminal, that bears striking 

sequence homology with pleckstrin homology domains (Koch et al, 1993; Touhara et al,  

1994), and their plasma membrane translocation is in part regulated by their association 

with free Py-subunits of G proteins (Pitcher et al, 1992; Boekhoff et al,  1994). The 

translocation of GRK2 and 3 to the plasma membrane is also influenced by binding of 

phosphatidylinositol 4,5-bisphosphate to the C-tei*minal pleckstrin homology domain 

(Pitcher et al, 1995). Recently it emerged that GRK2 activity seems to be also regulated 

by a complex series of phosphorylation events. Phosphorylation of the C-terminus by 

mitogen-activated protein kinase (MAPK) decreases the efficacy of GRK2 toward the 

receptor (Pitcher et al, 1999; Elorza et al, 2000). However GRK2 activity and plasma 

membrane translocation are enhanced in response to Ser phosphorylation by PKC and Tyr 

phosphorylation by c-Src (Chuang et al,  1995; Samago et al ,  1999).

GRK4 subfamily members do not bind Py-subunits, but they share a conserved N-terminal 

phosphatidylinositol 4,5-bisphosphate-binding domain that appeal's to facilitate receptor 

phosphorylation (Pitcher et al,  1996). In the absence of GPCR activation, GRK4, 5 and 6  

exhibit substantial membrane localisation. Both GRK4 and 6  are palmitoylated at C-
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terminal Cys residues and this post-translational modification leads to constitutive 

membrane localisation (Stoffel et al,  1994; Premont et al,  1996; Stoffel et al,  1998). 

Targetting of GRK5 to the membrane is thought to involve the electrostatic interaction of a 

highly basic 46 amino acid domain in the C-terminus with membrane phospholipids 

(Kunapuli et al,  1994). As for GRK2, the activity of GRK5 seems be regulated by a 

complex series of events. The activity of GRK5 is not only influenced by 

autophosphorylation of Ser and Thr residues in the C-terminus but also by the interaction 

with membrane phospholipids (Kunapuli et al, 1994). PKC also phosphorylates GRK5, 

but in contrast to GRK2 this phosphorylation event decreases GRK5 activity (Chuang et 

al,  1996). In addition, calmodulin binds to the N-terminal domain of GRK5. This |

association not only reduces the ability of GRK5 to bind receptor and phospholipids but 

also stimulates autophosphorylation of Ser and Thr residues that are distinct from the ones 

involved in kinase activation, therefore inhibiting kinase activity (Pronin and Benovic,

1997; Pronin et al, 1997; lacovelli et al, 1999).

1.4.4 Other kinases involved in phosphorylation of GPCRs

In addition to serving as substrates for PKA, PKC, and GRK phosphorylation, GPCRs 

have been shown to serve as substrates for phosphorylation by other kinases. The m3 

muscarinic acetylcholine receptor can be phosphorylated by casein kinase la  on the third 

intracellular loop upon agonist stimulation of the receptor (Tobin et a l ,  1997) and this 

phosphorylation could be inhibited by either the expression of a catalytically inactive 

casein Idnase l a  mutant or a peptide corresponding to the third intracellular loop domain 

of the m3 muscarinic acetylcholine receptor (Budd et al ,  2000). Nonetheless the functional 

consequence of casein kinase l a  phosphorylation remains to be fully elucidated since 

receptor mutants lacking the potential casein kinase l a  phosphorylation sites still undergo 

agonist-mediated desensitisation (Budd et al ,  2000). Casein kinase II was shown to 

phosphorylate the thyrotropin-releasing hormone receptor on its C-terminus, a process that 

seems to play a role in receptor internalisation but not desensitisation (Hanyaloglu et al ,

2001). Mutagenesis of Tyr residues in the C-terminus of the jx-opioid receptor caused a 

reduction in agonist-stimulated receptor downregulation (Pak et al ,  1999). Tyr 

phosphorylation has also been described for the bradykinin B% receptor, where it seems to 

be involved in receptor signalling leading to arachidonic acid release (Jong et a l ,  1993).
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1.4.5 Arrestins

Arrestins are a class of soluble proteins that play, together with GRKs, an important role in 

the regulation of GPCR desensitisation, internalisation and resensitisation (Lohse et al, 

1990; Lefkowitz, 1993; Pippig et al,  1993; Ferguson et al,  1996), They are cytoplasmic 

proteins, which, following agonist stimulation, translocate rapidly to the plasma membrane 

in a GRK dependent manner.

GRK mediated phosphorylation on its own is not enough to promote complete inactivation 

of either rhodopsin or the p2 adrenergic receptor. This observation led to the identification 

of a 48 kDa anesting protein in rod outer segments, where this protein, now called visual 

aixestin (S antigen), was demonstrated to bind light-activated rhodopsin (Pfister et al, 

1985). Visual airestin is highly restricted in its localisation. It is a major protein constituent 

of rod outer segments and is localised primarily to the retina with low expression in the 

pineal gland (Smith et al, 1994). Subsequently additional members of this protein family 

have been cloned. Cone arrestin (C-aiTestin or X-arrestin) is another retinal specific 

arrestin, which was found to be about 50 % homologous to visual arrestin (Murakami et 

al, 1993; Craft et al,  1994). C-aiTestin is highly enriched in the retina and pineal gland, 

but is localised primarily within cone photoreceptors in the retina (Craft et al, 1994). A 

visual arrestin-like protein, P-arrestin 1 (P-arrestin), was identified as a cofactor required 

for GRK-mediated p2 adrenergic receptor desensitisation in vitro. It shares 59 % sequence 

homology with visual anestin (Benovic et al,  1987; Lohse et al,  1990). Another nonvisual 

arrestin, p-aiTestin 2 (aiTestin 3), was cloned from bovine brain (Sterne-Marr et al,  1993), 

human thyroid (Rapoport et al, 1992), and rat brain (Attramadal et al, 1992). p-arrestins 

are ubiquitously expressed outside the retina, but are predominantly localised to neuronal 

tissues and the spleen (Attramadal et al, 1992). While P-arrestin 1 appears to be the major 

nonvisual anestin expressed in many tissues (Sterne-Marr et al,  1993), P-anestin 2  is the 

predominant form in the olfactory epithilium (Dawson et al,  1993). The ubiquitous 

expression pattern of P-arrestin 1 and 2  suggest that these proteins have a relativley broad 

receptor specificity in contrast to visual aiTestin and cone anestin. The anestin proteins are 

evolutionarily conserved and are present in all mammals, as well as in Drosophila 

melanogaster and Caenorhabditis elegans.

Additional members of the arrestin family might exist. Partial cDNA clones for D- and E- 

anestin have been described (Craft et al,  1994). However, although the mRNAs for these
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proteins are expressed in a broad range of tissues, it is still debated whether full-length D- 

and E- arrestin actually exist (Craft et al,  1994).

Alternative splice variants for visual aiTestin, P-anestin 1 and P-arrestin 2 exist. Bovine 

visual arrestin is expressed as a protein containing 404 amino acids as well as two 

polypeptide variants. In the first variant the last 35 amino acids are replaced by an Ala 

residue (p44). The second variant lacks residues 338-345 encoded by exon 13 (Yamaki et 

al,  1987; Yamaki et al, 1990; Smith et al,  1994). The p44 form of visual arrestin which is 

localised to the rod outer segment is severalfold more potent in inhibiting the signal 

transduction of rhodopsin compared to the long form leading to the conclusion that the C- 

terminal domain of visual arrestin is not involved in binding to rhodopsin. At least two 

alternatively spliced forms of P-arrestin 1  and 2  are expressed. The variant fonr of p- 

arrestin 1 has an insertion of eight amino acids between amino acids 333 and 334, whereas 

the variant form of P-aiTestin 2 involves the insertion of 11 amino acids between amino 

acids 361 and 362 (Parruti et al,  1993; Steme-MaiT et al ,  1993). However there are no 

reported differences in the functional activity of the p-anestin splice variants.

1.4.6 Involvement of arrestins in GPCR desensitisation

Arrestins bind preferentially to agonist-stimulated and GRK-phosphorylated GPCRs as 

opposed to second messenger kinase-phosphorylated or non-phosphorylated receptors 

thereby physically uncoupling the GPCRs from the G proteins (Lohse et al,  1990; Lohse 

et al,  1992). In vitro translated P-arrestin 1 binds to the m2  muscarinic acetylcholine 

receptor in a phosphorylation dependent manner, with the highest binding observed for the 

agonist-activated phosphorylated form of the receptor (Gurevich et al, 1993). Also in 

vitro, the affinity of P-aivestin for the p2 adrenergic receptor is increased 10-30 fold by 

GRK phosphorylation (Lohse et al ,  1992), and this selectivity is even more pronounced 

for visual arrestin binding to rhodopsin (Gurevich et al,  1995). In the same study Gurevich 

et a l  (1995) found that in contrast to visual an'estin binding to rhodopsin, which is 

absolutely dependent on rhodopsin being light-activated and GRK-phosphorylated, p- 

an'estin 1 and 2  interact substantially with phosphorylated non-activated receptors, as well 

as with agonist-activated non-phosphorylated receptors. This suggests that agonist- 

independent p-arrestin binding might be observed depending on the GPCR isoform studied 

(Anborgh et al,  2000).
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Solution of the crystal structure of arrestin, together with mutagenesis studies, provided 

insight into the mechanism of anestin binding to phosphorylated, light-activated rhodopsin 

(Gurevich et al,  1995; Granzin et al,  1998; Vishnivetskiy et al,  1999; Hirsch et al,  

1999). Mutagenesis studies revealed that with respect to receptor binding visual arrestin 

can be divided into three functional and two regulatory domains (Gurevich et al,  1995) 

(Figure 1.5). The functional domains comprise a receptor activation recognition domain 

(amino acids 24-180), a secondary receptor binding domain (residues 180-330), and a 

phosphate sensor domain (amino acids 163-182). The regulatory domains include an 

amino-teraiinal regulatory domain (residues 1-24) and a carboxyl-terminal regulatory 

domain (residues 330-404). The crystal structure analysis of visual aiTestin supports the 

observations made from the mutagenesis studies. Visual arrestin is comprised of three 

major structural and funtional domains, an N domain (residues 8-180), a C domain (amino 

acids 188-362), that are each constructed from a seven stranded p sandwich, and a C-tail 

(Granzin et al,  1998; Hirsch et al, 1999). The N and C domain are connected by a hinge 

region and the C domain is connected to the C-terminal tail (residues 372-404) by a 

flexible linker. The C-terminus forms various interactions with parts of the N and C 

domains thus maintaining a rigid structure of arrestin. The phosphate sensor domain 

constitutes a polar core that in the basal state is embedded between the N and C domain. 

Residues from the N- and C-teiTninal regulatory domains are also thought to contribute to 

the polar core. Upon receptor binding, the phosphorylated parts of the receptor displace the 

C-terminus in the polar core leading to a movement of the N and C domain relative to each 

other resulting in anestin activation, which allows high affinity binding of aiTestin to the 

receptor (Freedman et al,  1996; Pitcher et al, 1998). This model is consistent with the 

observation that the p44 splice variant of visual anestin demonstrated little selectivity for 

phosphorylated light-activated rhodopsin and that the mutation of polar residues within the 

polar core of visual anestin results in mutants that are able to bind non-phosphorylated 

rhodopsin (Palczewski et al,  1994; Vishnivetskiy et al,  1999). Celver and colleagues 

(2 0 0 2 ) introduced homologous mutations into p-arrestin 1 and 2  and found that these 

mutants bound to the p2 -adrenergic receptor in vitro independent of receptor 

phosphorylation suggesting that the basal conformation of all anestins and the mechanism 

of activation triggering arrestin transition into its high affinity binding state are conserved 

throughout this family. In contrast to visual and cone arrestin, p-anestin 1 and 2 both 

contain a C-terminal 15-18 amino acid clathrin-binding domain.
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1.5 GPCR internalisation

An important aspect of GPCR regulation is the translocation from the cell surface to 

intracellular membrane compartments upon agonist-activation (Figure 1.3) Although 

GPCR internalisation was originally thought to be the principal mediator of receptor 

desensitisation due to the physical separation of the receptor from its effectors (Sibley and 

Lefkowitz, 1985) it could be shown that receptor desensitisation occurs more rapidly than 

receptor endocytosis and the majority of sequestered receptors are phosphorylated and thus 

already desensitised.

1.5.1 Involvement of arrestins in GPCR trafficking

After the initial identification of p-aixestins and their role in GPCR desensitisation, these 

proteins were also found to participate in initiating the internalisation of several GPCRs 

including the p2 -adrenergic receptor. Overexpression of both P-arrestin 1 and p-anestin 2  

alone with the p2 -adrenergic receptor-Y326A mutant augmented receptor sequestration 

even in the absence of GRKs (Ferguson et al., 1996). Moreover, p-aixestins promoted 

internalisation of C-terminal tail truncated P2-adrenergic receptors and mutants lacking 

putative GRK phosphorylation sites and they do so by acting as adaptors that link the 

receptors to clathrin-coated pits. (Ferguson et al, 1996). The relationship between GRK- 

mediated phosphorylation and P-aixestin recruitment is likely different for each GPCR 

subtype depending upon the receptor subtype and the cell type in which it is expressed. For 

example, internalisation of the chemokine receptors CCR-5 and CXCRl in HEK293 cells 

requires overexpression of both GRKs and P-aixestins (Aramori et al ,  1997; Barlic et al.,

1999). In contrast, for the m2 muscarinic acetylcholine receptor only phosphorylation by 

GRKs is important for internalisation but not binding of P-arrestin, depending on the 

cellular environment in which it is expressed (Tsuga et al ,  1994; Schlador and Nathanson, 

1997; Werbonat et al ,  2000). There are also examples of receptors that do not interact with 

either GRKs or P-arrestins and do not internalise upon agonist activation (Jockers et al,

1996).

Both P-arrestin 1 and 2 interact with at least two components of the endocytic machinery: 

clathrin itself and the p2-adaptin subunit of the AP-2 complex (Goodman et al, 1996; 

Laporte et al,  1999). Critical residues mediating the interaction between P-arrestins and
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clathrin have been identified on both proteins. Using site directed mutagenesis, a Glu 

residue (E89) and two conserved Lys residues (K96 and K98) in the clathrin heavy chain 

were identified as being critcal in mediating binding to p-aixestins. The domain of p- 

arrestin involved in binding to clathrin is localised to amino acid residues 373-377 in the 

C-terminus of P-arrestin 2 . Mutation of the residues within this region substantially 

reduced clathrin cage binding without altering binding to phosphorylated receptors 

(Ki'upnick et al, 1997). Visual arrestin, although structurally related to the P-aixestins, 

does not bind to clathrin and therefore also does not promote P2 -adrenergic receptor 

internalisation. Laporte et al, (1999; 2000) showed, that P-arrestins also bind to the p2- 

adaptin subunit of the heterotetrameric AP-2 adaptor complex and that this interaction is 

important for pz-adrenergic receptor internalisation. The heterotetrameric AP-2 complex 

comprises four subunits: two large 100 kDa subunits, called a- and P2-adaptin, one 

medium size subunit of 50 IcDa termed jli2, and one small 17 kDa subunit named o2 

(Kirchhausen, 1999). The p-arrestin 2 domain important for binding to the p2-adaptin 

subunit is localised in the C-terminus downstream of the clathrin-binding domain and 

involves specific Arg residues (R394 and R396). These Arg residues are also present in P- 

aiTestin 1. In vitro binding experiments using the p-arrestin C-terminus, AP-2 and clathrin 

indicate that p-arrestin binds to the p2 -adaptin subunit independently of clathrin-binding 

(Laporte et al,  2000). Furthermore, the interaction between p-arrestin and AP-2 and not 

between p-arrestin and clathrin appears to be important for the initial targetting of 

receptors to coated pits, since P2 -adrenergic receptor-p-arrestin complexes lacking the 

clathrin-binding motif in P-aixestin translocated to coated pits, whereas P2 -adrenergic 

receptor-p-an'estin complexes missing the P2 -adaptin binding site did not (Laporte et al,

2000). p-arrestin 1 also binds and recruits the non-receptor Tyr kinase c-Src to agonist 

activated P2-adrenergic receptors (Luttrell et al ,  1999). The binding of c-Src to p-arrestin 1 

is in part mediated by an interaction between the Src-homology domain 3 (SH3) of the 

kinase and Pro-rich motifs located at residues 88-91 and 121-124 within the N-terminus of 

p-arrestin 1. Interaction between the SHI domain and additional residues located in the N- 

terminal 185 residues of p-anestin 1 also contributes to the binding of c-Src by p-arrestin 1 

(Miller et al, 2000). Activation of P2 -adrenergic receptors causes rapid c-Src-mediated Tyr 

phosphorylation of dynamin, a GTPase implicated in the “pinching o ff’ of clathrin coated 

vesicles from the plasma membrane and ablation of this phosphorylation event hinders 

receptor internalisation (Ahn et al, 1999).
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Following internalisation, GPCRs are either dephosphorylated in endosomes and recycled 

back to the plasma membrane as fully functional receptors, retained in early endosomes or 

targetted to lysosomes for degradation (Anborgh et al, 2000; Li et al,  2000; Seachrist et 

al, 2002) depending on their interaction with P-arrestins (Oakley et al,  2000) (Figure 1.6). 

GPCRs were thus divided into two classes, A and B, on the basis of their internalisation 

properties. Class A receptors, like the P2 -adrenergic receptor, bind preferentially P-arrestin 

2. The receptor and p-arrestin co-localise in clathrin-coated pits at or near the cell surface. 

The complex rapidly dissociates before the GPCR travels to endosomes and is efficiently 

recycled back to the plasma membrane. Class B receptors, such as vasopressin V2 receptor 

and the angiotensin II type lA  receptor, couple to p-aixestin 1 and 2 with equal efficacy 

and co-intemalise with P-arrestin into endosomes. In contrast to the class A receptors, class 

B receptors are not efficiently recycled back to the cell surface (Anborgh et al,  2000; 

Oakley et al, 2000) (Figure 1.7). The factor determining which class a given GPCR 

belongs to seems to be the presence of clusters of Ser and Thr residues in the C-terminus of 

the GPCR (Oakley et al, 2001). Class A GPCRs that dissociate from p-aiTestin near the 

plasma membrane lack such a cluster of Ser and Thr residues, whereas class B receptors 

that co-internalise with P-arrestin into endosomes contain such clusters within the C- 

terminus (Oakley et al,  2001). A chimeric GPCR with the seven transmembrane domains 

of the p2 -adrenergic receptor and the C-terminus of the vasopressin V2 receptor shares 

internalisation properties with the vasopressin V2 receptor. The opposite is true when the 

tail of the P2 -adrenergic receptor is switched to the body of the vasopressin V2 receptor. 

The stability of the receptor-P-aiTestin complex appeal's to deteimine whether a receptor is 

recycled and resensitised (Oakley et al, 2001). An event necessary for resensitisation is the 

dephosphorylation of GRK phosphorylated receptors in early endosomes. A prerequisite 

for the dephosphorylation to take place seems to be the dissociation of P-anestin from 

GPCRs which in turn allows binding of a phosphatase to the receptor. Therefore, class A 

receptors that dissociate from P-anestin at or near the plasma membrane are rapidly 

dephoshorylated and recycled, whereas class B receptors that remain associated with P- 

anestin are slowly dephosphorylated and recycled. In case of the dephosphorylation of the 

P2-adrenergic receptor the phosphatase involved is a membrane associated member of the 

phosphatase 2A family. It has been termed the GPCR phosphatase and, at least in vitro, not 

only dephosphorylates the GRK (but not the PKA-) phosphorylated P2 -adrenergic receptor, 

but also the (%2a-adrenergic receptor and rhodopsin (Pitcher et al,  1995). In vitro the
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phosphatase is only active at acidic pH (Krueger et al,  1997). These findings demonstrate 

that P-arrestins are not only involved in terminating the receptor-G protein coupling but 

also in initiating processes that regulate re-establishment of receptor responsiveness. 

However some diversity exists. The dissociation of P-arrestin from the angiotensin II type 

lA  receptor is not sufficient to allow receptor dephosphorylation indicating that additional 

GPCR-specific determinants may regulate receptor dephosphorylation in endosomes 

(Anborgh et al, 2000). Also for the prostaglandin EP4 receptor, Ser and Thr residues are 

not required for internalisation although the C-terminus is involved (Desai et al, 2000). 

Furthermore, the neurokinin 1 receptor, which co-internalises with P-aixestin, is efficiently 

dephosphorylated, recycles back to the plasma membrane and resensitises (Grady et al, 

1995; McConalogue et al, 1999). Thus additional mechanisms may contribute to the 

control of GPCR trafficking between specific endosomal compartments.

1.5.2 Alternative pathways of GPCR endocytosis

Although clathrin-mediated endocytosis seems to be the prevailing mechanism of GPCR 

internalisation alternative pathways exist. For example, the endothelin type B receptor 

internalises mainly via the caveolae pathway that is dependent on dynamin, but not on P~ 

anestin (Claing et al,  2000; Teixeira et al,  1999). Caveolae, which contain a high 

proportion of detergent-insoluble glycolipid-enriched (DIG) regions of the plasma 

membrane known as rafts (Sargiacomo et a l ,  1993), are non-clathrin-coated 

plasmalemmal vesicles enriched in cholesterol, glycosphingolipids and caveolin proteins. 

Caveolae are thought to be involved in cell surface receptor endocytosis and signal 

transduction as numerous receptors like the m2  muscarinic acetylcholine receptor, the p2 - 

adrenergic-receptor and the bradykinin receptor, as well as G proteins and effectors, are 

present in caveolae (Feron et al, 1997; Dupree et al, 1993; de Weerd and Leeb-Lundberg, 

1997; Anderson, 1998).

Molecules endocytosed via caveolae can then be transported to the cytoplasm, the 

endoplasmic reticulum, the opposite cell surface or caveolae-derived tubular/vesicular 

compartment (Anderson, 1998). Some receptors, like the secretin and the N-formyl peptide 

leceptor, are internalised via a third pathway that does not involve p-arrestin or dynamin 

(Walker et al,  1999; Gilbert et al, 2001). However, the exact mechanism and nature of 

vesicles involved in this pathway is still unknown.

25



1.5.3 Receptor down-regulation

Down-regulation of GPCRs is caused by long-term exposure of the receptor to agonist and 

is characterised by a persistent loss of receptors from cells or tissues. As a result cellulai' 

signal transduction is attenuated over a prolonged period of time. In contrast to the 

processes of receptor desensitisation and internalisation, downregulation is only slowly or 

incompletely reversed after agonist removal. Downregulation is the least understood 

mechanism involved in controlling receptor responsiveness.

In case of the Pz-adrenergic receptor, at least two pathways are involved in the 

downregulation process: one that is agonist-dependent and PKA-independent and a second 

one that is PKA-dependent (Collins et al,  1992; Hadcock et al,  1989). Impairment of 

receptor-G protein coupling results in reduced agonist-mediated downregulation of P%- 
adrenergic receptors which can be partially restored by direct activation of PKA by 

forskolin. Moreover a P2-adrenergic receptor mutant lacking potential PKA 

phosphorylation sites is more slowly downregulated than the wild type receptor. On the 

other hand a mutant lacking the putative GRK phosphorylation sites is downregulated to 

the same extent as the wild type form (Collins et al, 1992; Hadcock and Malbon, 1993; 

Lohse, 1993). Thus long-term agonist exposure and subsequent G protein coupling may 

result in a distinctive phosphorylation pattern or in a particular receptor conformation that 

exposes lysosomal targetting sequences. Apart from the p2-adrenergic receptor, the 

thrombin, thyrotropin and cholecystokinin receptors have also been shown to be sorted to 

lysosomes upon agonist exposure (Hein et al,  1994; Petrou et al,  1997; Tarasova et al,

1997). Moreover there is emerging evidence that some GPCRs are degraded by non- 

lysosomal mechanisms. The V2 vasopressin receptor undergoes ligand-induced proteolysis 

in a non-endocytic pathway involving a plasma membrane-associated metalloprotease 

(Kojro and Fahrenholz, 1995).

The second component of downregulation is reduced receptor synthesis either by reduced 

gene transcription or destabilisation of the mRNA. The latter is the prevailing mechanism 

for the P2 -adrenergic-receptor and the mi muscarinic acetylcholine receptor (Hadcock et 

al,  1989; Lee et al, 1994; Tholanikunnel and Malbon 1997). This process depends on 

PKA suggesting either phosphorylation or induction of a factor participating in selective 

degradation of receptor mRNA. For the p2-adrenergic receptor, an agonist induced receptor 

binding protein ((3 ARB) has been identified, that only binds to P2 -adrenergic-receptor 

mRNA but not to mRNAs encoding the aib-, the pi-, or the Pa-adrenergic receptor, leading
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to dramatic downregulation of pz-adrenergic receptor mRNA (Port et al., 1992; 

Tholanikunnel et al., 1995).

1.6 p-arrestiii regulation and signalling

Cytosolic P-aixestin proteins translocate to the plasma membrane and bind to the receptor 

upon agonist stimulation of the latter. However, the mechanism behind this receptor- 

mediated response is not clear, p-aixestin translocation could either be a passive process 

involving diffusion-dependent interactions with agonist-stimulated phosphorylated 

receptors or a signal driven process. Moreover the function of p-arrestin 1 in GPCR 

sequestration seems to be regulated by a feedback mechanism involving 

phosphorylation/dephosphorylation of the P-aixestin 1 molecule (Lin et al., 1997; Lin et 

al.', 1999). Cytoplasmic P-arrestin 1 is constitutively phosphorylated on Ser412 in the C- 

terminus. Upon recruitment to the plasma membrane by agonist-stimulation of the p%- 

adrenergic receptor, p-aixestin 1 becomes rapidly dephosphorylated. This 

dephosphorylation is required for its function in receptor endocytosis but not for receptor 

binding and desensitisation. Following extracellulai' signal-regulated kinase (ERK) 

activation by receptor endocytosis, ERKs phosphorylate p-arrestin 1 at Ser412 thereby 

inhibiting further receptor endocytosis (Lin et al., 1999). Hence, a S412D P-arrestin 1 

mutant was found to function as a dominant negative mutant of p2 -adrenergic receptor 

endocytosis, whereas it had no effect on receptor desensitisation (Lin et al., 1997). It has
Ialso been suggested that ERK-mediated phosphorylation contributes to the regulation of P- $

arrestin 1/p-adaptin interactions (Lin et al., 1999). Interestingly Ser412 is not conserved in 

P-arrestin 2 . In contrast, P-aixestin 2  was shown to be phosphorylated at Thr382 by casein 

kinase II and becomes dephosphorylated upon P2-adrenergic receptor stimulation. 

However dephosphorylation of P-aixestin 2  does not seem to be involved in receptof 

endocytosis, but appears to regulate the foimation of a large p-arrestin 2 -containing protein 

complex (Kim et ai, 2002).

p-Anestin activity is also regulated by phosphoinositides, particularly IPô (Gaidarov and 

Keen, 1999; Gaidarov et al., 1999). The binding site for the phosphoinositides is located 

between residues 233-251 in p-aixestin 2. Mutation of basic residues within this domain 

reduces the phosphoinositide binding to p-aixestin 2  and produces a p-arrestin mutant
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defective in internalisation of the p2 -adrenergic receptor in COS 1 cells. Furthermore, the 

mutant did not concentrate at clathrin coated pits but was still recruited to the plasma 

membrane upon agonist stimulation of the p2-adrenergic receptor. Thus, phosphoinositide 

binding may be involved in the routing of receptor-P-arrestin complexes to the clathrin- 

coated pits.

In addition to regulating endocytosis of phosphorylated receptors, P-anestins are now 

being appreciated as mediators of GPCR signalling due to the discovery that they can serve 

as adaptor proteins for signalling proteins. As mentioned in section 1.5.1 activation of P~ 

arrestin 1 by the phosphorylated p2 -adrenergic receptor leads to recruitment of active c-Src 

to the receptor. The translocation of c-Src is not only essential for endocytosis, but is also 

implicated in the GPCR-mediated activation of the ERK cascade (Figure 1.8). The ras 

dependent-activation of the ERK 1/2 pathway by many GPCRs requires c-Src kinase 

activity, since c-Src recruitment leads to phosphorylation of She and formation of Shc- 

Grb2 complexes (Luttrell et al, 1996). Hence, inhibiting the interaction between p-anestin 

and c-Src with mutant forms of p-arrestin impairs P2 -adrenergic receptor stimulated ERK 

activation in HEK293 cells and also inhibits receptor internalisation by preventing 

dynamin phosphorylation (see section 1.5.1) (Luttrell et al,  1999). Similar to the p2 - 

adrenergic receptor, activation of the neuroldnin-1 receptor by substance P leads to ERK 

activation by a process involving P-anestin-mediated recruitment of c-Src to the activated 

receptor and expression of either mutant receptor unable to bind p-arrestin or a dominant 

negative form of p-airestin 1 inhibits ERK activation by the receptor (DeFea et al,  2000a). 

In neutrophils stimulation of the chemoldne receptor CXCRl by interleukin- 8  results in the 

formation of complexes containing P-anestin and Hck or Fgr, two members of the Src 

kinase family (Barlic et al,  2000). The formation of these complexes leads to Hck 

activation and the translocation of these complexes to granule-rich regions. In cells 

expressing a dominant negative P-anestin mutant, the interleukin-8 -mediated granule 

release is inhibited, indicating a role for P-anestin-Hck complexes in the trafficking of the 

exocytotic vesicles, but not necessarily in the activation of the ERK pathway. In addition to 

c-Src, other components of the ERK cascade like Raf, a MAPK kinase kinase (MAPKKK), 

and ERK also appear to interact with p-arrestin (Figure 1.9). For example, stimulation of 

the proteinase-activated receptor 2 (PAR2) in KNKR cells causes the formation of 

multiprotein complexes comprising the internalised receptor, p-arrestin 1, Raf-1 and 

activated ERK 1/2 and expression of a truncated form of p-arrestin that inhbibits receptor
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endocytosis blocked ERK activation (DeFea et al,  2000b). Similar results have been 

obtained for the angiotensin II type lA receptor (Luttrell et al,  2001). Receptor activation 

results in formation of complexes consisting of c-Raf-1 as MAPKKK, MEK 1 as MAPKK 

and ERK2 as MAPK. In response to agonist stimulation ERK2 is localised in the same 

endosomes that also contain receptor-p-anestin complexes.

In addition to serving as a scaffold in the ERK cascade, P-anestin 2 also serves as an 

adaptor in the c-jun N-terminal kinase type 3 (JNK3) cascade. In cells, P-anestin 2 

interacts with both JNK3 and Askl, a MAPKKK, to strongly enhance Askl stimulation of 

JNK3, but not of JNKl or 2, via MKK4, a MAPK kinase (MAPKK). MKK4 does not seem 

to directly bind to P-anestin 2 but rather, is recruited to the complex via Askl and/or JNK3 

(McDonald et al,  2000). Askl binds to the N-teixninus of P-anestin 2, whereas JNK3 

binds to an RRSLHL motif in the C-terminus of P-anestin 2 (McDonald et al,  2000; 

Miller et al,  2001). This motif is a consensus MAPK binding site and not present in P- 

anestin 1. So in contrast to the ERK cascade, where both P-anestin 1 and 2 served as 

adaptors, only P-anestin 2 can form a scaffold in the JNK3 pathway. The phosphorylation 

of JNK3 also occurs in response to activation of the angiotensin II type lA  receptor which 

leads to the co-localisation of activated JNK3 and p-arrestin 2 in cytosolic vesicles 

bringing the activity and spatial distribution of this MAPK module under the control of a 

GPCR.

It is thought that the function of P-arrestins as scaffold proteins is to target both ERK and 

INK away from the nucleus and into the cytosol, thus enabling the phosphorylation of non­

nuclear substrates, including other kinases, which can then activate transcription (Figure

1.10). This idea is supported by recent findings concerning the PAR2, where activated 

ERK is retained in the cytosol and fails to promote cellular proliferation (DeFea et al, 

2000).

1.7 Mitogen-activated protein kinase (MAPK) signal transduction 

pathways

The MAPK pathways are amongst the most widespread mechanisms of eukaryotic cell 

regulation. Mammalian MAPK pathways relay, amplify and integrate signals from a 

diverse range of stimuli signalling through diverse receptor families including hormones
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and growth factors such as epidermal growth factor that act through receptor tyrosine 

kinases or cytoldne receptors, vasoactive peptides like angiotensin II acting through 

GPCRs, and transforming growth factor-P-related polypeptides acting through Ser-Thr 

kinase receptors. These pathways are also activated by inflammatory cytokines of the 

tumour necrosis factor family and cellular stresses such as irradiation, heat shock, osmotic 

imbalance, DNA damage, and bacterial products such as lipopolysaccharides. Activation 

of MAPKs by these stimuli controls gene expression, metabolism, cytoskeletal functions 

and other cellular regulatory events. MAPKs therefore participate in the regulation of 

fundamental cellular processes such as proliferation, differentiation, survival, apoptosis 

and migration.

The core module of a MAPK signalling pathway consists of three protein kinases (Figure

1.10). The first kinase of the three-component activation module is a MAPK kinase kinase 

(MAPKKK) (Fanger et al,  1997; Widmann et al, 1999)). Specific MAPKKKs can be 

activated either by phosphorylation by a MAPK kinase kinase kinase (MAPKKKK) or by 

coupling to a small GTP-binding protein of the Ras or Rho family. Other possible modes 

of activation are oligomerisation and subcellular re-localisation. The MAPKKKs are Ser- 

Thr kinases that phosphorylate and activate a MAPK kinase (MAPKK), the next kinase in 

the module, upon activation (Siow et al, 1997). MAPKKs are dual specificity kinases that 

recognise and phosphorylate a Thr-X-Tyr motif in the activation loop of MAPK (Gartner 

et al,  1992). The final kinase in the module is a MAPK which phosphorylates Ser and Thr 

residues on their substrates. Although the vast majority of substrates are transcription 

factors, MAPKs can also phosphorylate other protein kinases, phospholipases, and 

cytoskeleton-associated proteins. This set-up not only provides amplification, but also 

importantly additional regulatory interfaces that allow the kinetics, duration and amplitude 

of the activity to be precisely tuned.

To date, 14 MAPKKKs, 7 MAPKKs and 13 MAPKs have been identified in mammalian 

cells. The MAPKKKs can be divided into four subfamilies. The best characterised is the 

Raf subfamily and comprises B-Raf, A-Raf and Raf-1. The second subfamily, the MEK 

kinases, contains MEKKl to 4. Askl and Tpl2 form the third subfamily. The fourth group 

comprises Mst, Sprk, Muk, Takl and Mos. In case of the MAPKKs, MEKl and MEK2 are 

more closely related as aie MKK3 and MKK6 . The MAPKs can be classified into five 

subfamilies based on sequence homology and different activation by agonists. These are 

the growth factor activated MAPKs; ERK 1 and ERK 2, which contain the signature 

activation sequence Thr-Glu-Tyr, p38, which contains the activation sequence Thr-Gly-
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Tyr, JNKl to 3, which contain the activation sequence Thr-Pro-Tyr, the Erk5 and Brk3/4 

subfamilies. Since the p38 and the JNK subfamilies are activated by cellular stress such as 

exposure to DNA damaging agents, oxidative stress, pro-inflammatory cytokines and 

protein synthesis inhibitors, they are classified as stress-activated protein kinases (SAPK). 

The MAPK gives the name to the pathway that employs it for example the MAPK pathway 

using JNK is called the JNK MAPK pathway.

The combination of 13 MAPKs, 7 MAPKKs and 14 MAPKKKs in mammalian cells 

presents a very complex picture. Certain themes, however, can be detected. The MAPKK 

family represents the smallest group in the module. They ai'e also highly specific for their 

substrate since they not only recognise the linear Thr-X-Tyr activation motif, but also the 

tertiai'y structure of a specific MAPK, thereby effectively restricting their regulation of 

different MAPKs allowing minimal valuation of the MAPKK-MAPK part of the MAPK 

module. In contrast MAPKKKs are able to couple to different MAPKK-MAPK 

combinations. The MAPKKK family represents the highest number of members in the 

MAPK module. The MAPKKKs have regulatory motifs, that are absent in MAPKKs or 

MAPKs. These motifs comprise Pleckstrin homology (PH) domains. Pro-rich sequences 

for binding SH3 domains, binding sites for GTP-binding proteins, leucine-zipper 

dimérisation sequences, and phosphorylation sites for Tyr and Ser-Thr kinases. The large 

number of MAPKKKs allows for diversity of inputs from numerous stimuli to feed into 

specific MAPK pathways.

The MAPKKKs can thus be differentially regulated by a variety of upstream inputs for 

their selective regulation of the MAPKKs. Recent evidence suggests that specificity is in 

part achieved by the use of scaffolding or anchoring proteins to co-ordinate MAPKKK 

binding to specific proteins for upstream inputs as well as specific downstream MAPKK- 

MAPK complexes (Pawson, 1995; Pawson and Scott, 1997).

The major targets for MAPKs and SAPKs are transcription factors and to be able to 

phosphorylate these factors, MAPKs/SAPKs must translocate from the cytoplasm to the 

nucleus, which is normally associated with prolonged stimulation. Using PC12 cells it 

could be demonstrated that the magnitude and duration of the MAPK activation is 

important to determine the physiological outcome. These cells proliferate in response to 

epidermal growth factor and differentiate as indicated by neurite outgrowth as result of 

exposure to nerve growth factor. This difference in response is entirely due to the ability of 

nerve growth factor, but not of epidermal growth factor to cause sustained MAPK 

activation and nuclear translocation (Marshall, 1995).

31



The major point for regulating the duration and magnitude of MAPK activation occurs at 

the level of MAPK itself. The activity of MAPK is controlled by the balance between 

phosphorylation and dephosphorylation events. Since upstream kinases phosphorylate both 

Thr and Tyr residues, dephosphorylation of either by Tyr-specific phosphatases, Ser-Thr 

phosphatases or by dual specificity (Thr-Tyr) phosphatases is sufficient for inactivation.

1.7.1. The ERK MAPK pathway

The best characterised pathway in mammalian cells is the ERK pathway, which consists of 

Ras as G protein, Raf as MAPKKK, MEK as MAPKK and ERK as MAPK (Figure 1.11). 

This pathway includes a number of different MAPKKK, MAPKK and five different 

MAPK defined as ERKl to 5. Out of this group ERKl and 2, with molecular mass of 44 

and 42 kDa respectively, are the most extensively studied.

After stimulation of cells through receptor tyrosine kinases, non-receptor Tyr kinases or 

GPCRs, the small G protein Ras initiates the cascade by recruiting Raf from the cytosol to 

the plasma membrane via the N-terminal regulatory domain of Raf (Koide et al,  1993). 

Although all three Raf isoforms, Raf-1, A-Raf and B-Raf can interact with Ras, only Ras 

binding to B-Raf is sufficient for activation. Raf-1 and A-Raf require additional signals for 

activation (Marais et al,  1997). Activation of Raf-1 involves Tyr phosphorylation by 

membrane bound Tyr kinases including c-Src (Marais et al,  1995). It was also shown that 

Ser phosphorylation by PKC controls Raf-1 kinase activity (Kolch et al,  1991). The Ser- 

Thr kinase Raf phosphorylates and activates MEK, which in turn phosphorylates and 

activates ERK. MEK is a dual Thr-Tyr kinase that phosphorylates ERK at the Thr-Glu-Tyr 

in the activation loop of the catalytic domain. As a consequence of activation, ERK rapidly 

translocates to the nucleus where it is functionally sequestered and can regulate the activity 

of nuclear proteins including transcription factors such as Ets-1, Elk-1 and c-Myc by 

phosphorylation on Ser and Thr residues within a Pro-directed motif. ERK also has 

substrates in the cytosol and can therefore affect gene expression indirectly by activating 

p90‘®̂ (ribosomal S6  kinase) family kinases, which can modify transcription factors and 

histones (Davie and Spencer 2001; Lewis et al, 1998). Other cytoplasmic substrates are 

cytosolic phospholipase A% and the juxtamembrane region of the epidermal growth factor 

receptor (Lin et al, 1993; Seger and Kiebs, 1995). The ERK pathway therefore contributes 

to cellular proliferation, differentiation, cell cycle regulation, and cell survival.
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1.7.2 The JNK MAPK pathway

The JNK MAPK kinase pathway was identified in 1991 and differs from the ERK pathway 

in two characteristics: 1 ) it is activated by cell stress such as ultraviolet radiation, heat 

shock oxidant stress and DNA damaging chemicals (topoisomerase inhibitors) and 2) it 

phosphorylates c-Jun at the N-terminal activating sites rather than the C-terminal inhibitory 

sites phosphorylated by ERK2 (Pulverer et al, 1991; Derijard et al., 1994; Kyriakis and 

Avruch, 1996). This kinase, therefore, was termed c-Jun N-terminal kinase (JNK) or stress- 

activated kinase (SAPK). This pathway consists of a number of different MAPKKKs like 

Askl, Mst, two MAPKKs, MKK4 and 7 and three different MAPKs, JNKl to 3 (Figure 

1.12). JNKl and 2 are ubiquitously expressed, whereas JNK 3 seems to be limited to the 

brain (Yang et al, 1997).

Although JNK was First described as a SAPK, the response of JNK to extracellular ligands 

is far better characterised. JNKs have now been shown to be activated through cell surface 

receptors from different families including the tumour necrosis factor family, GPCRs, 

tyrosine kinase receptors and cytokine receptors (Fanger et al,  1997). JNKs are activated 

by phosphorylation on Thr and Tyr of the Thr-X-Tyr activation motif by either of the dual 

specificity kinases, MKK4 or 7 (Sanchez et al,  1994; Tournier et al,  1997). These are in 

turn activated by MAPKKKs which include Askl, Mukl and Tpl-2 (Wang et al,  1996; 

Hirai et al,  1996; Salmeron et al, 1996). Other signalling proteins that act as upstream 

activators of the JNK pathway are Racl and Cdc42, two members of the Rho family of 

small G proteins (Coso et al,  1995).

To date all the described substrates for JNK are transcription factors including c-Jun, ATF- 

2, Elk-1, p53, DPC4, and NFAT4. As for ERK, JNKs phosphorylate their substrate at a 

Ser/Thr-X-Pro motif. However this sequence on its own is not sufficient to induce 

phoshorylation. An additional docking site is present in c-Jun. Recruitment of JNK via this 

docking site results in increased local concentration of the kinase and directs activity to the 

phosphorylation motif within the N-terminus of c-Jun.

JNK activity has been implicated in the response to cell stress, specifically apoptosis. 

Although JNKs do not seem to be sufficient on their own to induce apoptosis, they are 

necessary for apoptosis to occur in response to growth factor withdrawal, stress, and DNA 

damage (Ham et al, 1995; Chen et al, 1996; Kasibhatla et al,  1998). In some instances, 

however, activation of JNK promotes growth or survival. BAF3, pre-B cells, undergo 

apoptosis in the absence of interleukin 3. Re-addition of interleukin 3 activates JNK, and
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inhibition of JNK activity by expression of a JNK specific phosphatase inhibits interleukin 

3 -induced proliferation, while it has no effect on apoptosis induced by interleukin 3 

withdrawal (Smith et al, 1997). Another example where the JNK MAPK pathway is 

involved in survival rather than apoptosis are T89G glioblastoma cells. In these cells the 

JNK pathway seems to be involved in DNA repair (Potapova et al,  1997).

1.7.3 The p38 MAPK pathway

The p38 MAPKs are a second family of stress-activated protein kinases in mammals. This 

family consists of at least four homologous proteins p38a, p38(3, p38y, and p38ô. Similar 

to JNK, p38 is activated by cellular stresses including ultraviolet radiation, osmotic shock, 

heat shock, lipopolysaccharides, protein synthesis inhibitors and certain cytokines like 

interleukin-1 and tumour necrosis factor a  (Whitmarsh and Davis, 1996). In addition p38 

can be activated through the Gq/M-coupled ml muscarinic acetylcholine receptor, the G,- 

coupled m2  muscarinic acetylcholine receptor, and the Gs-coupled P2 -adrenergic receptor 

Overexpression of Gpy or Gna, but not of Ggtt or G.a can activate p38. Thus depending 

on the GPCR, p38 stimulation is either mediated by the Py-subunit or the a-subunit of the 

heterotrimeric G protein (Yamauchi et al,  1997). Similar to ERK and JNK, the p38 

pathway is organised in a three-kinase architecture consisting of the MAPKKKs TAKl, 

ASKl, SPRK and PAK, the MAPKKs MKK3 and MKK6  and the four different MAPKs 

p38a, P, y, 5 (Figure 1.13).

p38 is activated by dual phosphorylation on Thr and Tyr in the Thr-Gly-Tyr activation 

motif by specific MAPKKs, which are in turn phosphorylated and activated by the 

MAPKKKs listed above. As for JNK, regulation of p38 activation can also occur through 

Racl and Cdc42 (Bagrodia et al,  1995; Zhang et al,  1995). Cdc42 and Racl cannot 

directly activate p38, but do so by activating upstream signalling molecules. For example 

in response to interleukin 1 they activate p38 through activation of a family of Ser-Thr 

kinases called p21-activated kinase (PAK) (Bagrodia et al, 1995).

Substrates for activated p38 are the MAPK-activated protein (MAPKAP) kinases 2 and 3 

which upon activation phosphorylate small heat shock proteins such as 27 kDa heat shock 

protein (Rouse et al,  1994) and the transcription factors ATF2, Elk-1, Chop and Max 

(Raingeaud et al, 1995; Raingeaud et al,  1996; Wang and Ron, 1996; Zervos et al, 1995). 

Max heterodimerises with c-Myc, an ERK substrate, raising the possibility that these 

heterodimers represent a point of integration between the ERK and the p38 cascades.
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Since p38 can phosphorylate many different substrates, it seems plausible that the p38 

signalling pathway affects many different biological functions. To date p38 seems to be 

involved in the production of cytokines in hematopoietic cells (Lee et al,  1994), in 

cytokine-stimulated cellular proliferation (Crawley et al ,  1997), and in apoptosis 

(Whitmarsh and Davis, 1996). However, there are cells where p38 is activated without 

apoptosis just as the case with JNK. In WEHI-231 cells JNK/p38 activation conelates with 

cell survival (Sutherland et al,  1996).

1.8 Project aims

The orexin receptors were shown to bind two peptides produced by the hypothalamus. The 

orexin peptides appear to play key roles in food intake and regulation of the sleep- 

wakefullness cycle. Small molecule regulators of these receptors are thus attracting great 

interest within the pharmaceutical industry. It is therefore surprising that only little is 

known about the regulation of the receptors following agonist stimulation. For that reason 

the aims of this study were (1) to characterise the pathway of internalisation of the orexin I 

receptor, (2) to determine the signalling pathways elicited upon agonist stimulation and (3) 

to identify the molecular determinants within the orexin 1 receptor important for 

internalisation and signalling.
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Figure 1.1: Sequences of the orexin 1 and 2 receptor

Deduced amino acid sequence of the human orexin 1 receptor (oxlR) and the human 

orexin 2 receptor (ox2R). Putative transmembrane (TM) domains are marked, as predicted 

by the PredictProtein server (http://www.embl-heidelberg.de/predictprotein). Gaps 

introduced to obtain optimal alignment are indicated by dashes.
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Figure 1.1

oxlR MEPSATPGAQMGVPPGSREPSPVPPDYEDE-FLRYLWRDYLYPKQYEWVLIAA 52
ox2R MSGTKLEDSPPCRNWSSASELNETQEPFLNPTDYDDEEFLRYLWREYLHPKEYEWVLIAG 60

----- TMl-----------  TM2---------
oxlR YVAVFVVALVGNTLVCLAVWRNHHMRTVTNYFIVNLSLADVLVTAICLPASLLVDITESW 112 
ox2R YIIVFVVALIGNVLVCVAVWKNHHMRTVTNYFIVNLSLADVLVTITCLPATLVVDITETW 120

— ”  *X*lyl3   . — mm—

O x l R  LFGHALCKVIPYLQAVSVSVAVLTLSFIALDRWYAICHPLLFKSTARRARGSILGIWAVS 172 
ox2R FFGQSLCKVIPYLQTVSVSVSVLTLSCIALDRWYAICHPLiyiFKSTAKRARNSIVIIWIVS 180

 TM4-----------  TM5---
oxlR LAIMVPQAAVMECSSVLPELANRTRLFSVCDERWADDLYPKIYHSCFFIVTYLAPLGLMA 232 |
0x2R CIIMIPQAIVMECSTVFPGLANKTTLFTVCDERWGGElYPKiyiYHICFFLVTYMAPLCLMV 2 40

oxlR MAYFQIFRKLWGRQIPGTTSALVRNWKRPSDQLGDLEQGLSGEPQPRGRAFLAEVKQMRA 292 
ox2R LAYLQIFRKLWCRQIPGTSSVVQRKWKPL---QPVSQPRGPGQPTKSRMSAVAAEIKQIRA 298

----------TM6------------  TM7---
oxlR RRKTAKMLMWLLVFALCYLPISVLNVLKRVFGMFRQASDREAVYACFTFSHWLVYANSA 352 
0 X 2R RRKTARMLMVVLLVFAICYLPISILNVLKRVFGMFAHTEDRETVYAWFTFSHWLVYANSA 358

OXlR ANPIIYNFLSGKFREQFKAAFSCCLPGLGPCGSLKAPSP-RSSASHKSLSLQ— SRCSIS 409 
ox2R ANPIIYNFLSGKFREEFKAAFSCCCLGVHHRQEDRLTRGRTSTESRKSLTTQISNFDNIS 418

oxlR KISEHVVLTSVTTVLP 425
ox2R KLSEQVVLTSIST-LPAANGAGPLQNW 44 4
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Figure 1.2; The G protein cycle

Activated receptors (R*) associate with the trimer (a-GDPpy) causing dissociation of GDP 

and binding of GTP to the complex of R* and the trimer in its “empty” state (otePy). This 

induces a conformational change which leads to the dissociation of a-GTP from the 

complex, releasing Py. After GTP hydrolysis, a-GDP reassociates with Py.
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Figure 1.3: Desensitisation and internalisation of GPCRs

After binding of agonist (A) to the GPCR, GRKs phosphorylate residues within the third 

intracellular loop and the C-terminus of the receptor which leads to the recruitment of P- 

arrestins (pARR), which uncouples the receptor from the G protein. GPCRs are then 

targeted for clathrin-mediated endocytosis via recruitment of clathiin and the AP-2 

complex by the P-arrestins (source: Pierce and Lefkowitz, 2001).
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Figure 1.4: Diagrammatic representation of the structure of GRKs 1-7

The amino terminal domain of the GPCR-binding domain of each GRK contains a 

conserved RGS domain. The GRKs are targetted to the plasma membrane via the carboxyl 

terminal domain. GRKs 1 and 7 are famesylated at “CAAX” motifs in their carboxyl 

teimini, whereas GRKs 4 and 6  are palmitoylated at cysteine residues. GRKs 2 and 3 

contain py-subunit binding that exhibits sequence homology to a Pleckstrin homology 

domain and GRK5 contains a stretch of 46 basic amino acids that mediate interactions with 

the phospholipids in the plasma membrane.
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Figure 1.5; Molecular architecture of arresting
The arrestin proteins comprise an amino regulatory domain (residues 1-24), a receptor 

activation domain (residues 24-180), a phosphate sensor domain (163-182), a secondary 

receptor-binding domain (residues 180-330), and a carboxyl terminal domain (residues 

330-404). The white box highlights the clathrin- and P-adaptin-binding domains that are 

only conserved among p-arrestins 1 and 2 .
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Figure 1.5
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Figure 1.6: Receptor fate after internalisation

After internalisation, the clathrin-coated vesicles shed the clathrin-coat very quickly and 

become early endosomes. Receptors can internalise with or without P-arrestin. In the first 

case, the receptors are dephosphorylated in an acidified perinuclear compartment and then 

recycled back to the plasma membrane where they can once again interact with their 

ligands. This process is called resensitisation. Receptors that co-intemalise with P-arrestin 

are either retained in large endosomes and/or targetted for degradation by lysosomes 

(adopted from McDonald and Lefkowitz, 2001).
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R i'S tt i .s il l j ' .iU io ii

\b :J

K V _ i : ,
l ' s i r l . v  r

y I t i k - r a i i s l l w U j i j J i

y
nnNttüUïti © l )L 'H l-4 ï( ]4 ll th H 3

/

I a s i i s i .u iU'



Figurel.7: Class A and class B GPCRs

Class A members preferentially internalise through a P-arrestin 2-mediated pathway, 

whereas class B receptors bind equally well to P-anestin 1 and 2. In the case of class A 

receptors, the receptor interacts with p-arrestin only transiently and P-anestin does not co- 

localise with the GPCR in endosomes and the receptor is resensitised and recycles rapidly. 

For Class B receptors, the p-anestin-GPCR interaction is more stable, and the receptor and 

P-arrestin co-localise in endosomes. In this case the receptor recycles slowly or is 

downregulated (adopted from Pierce and Lefkowitz, 2001).
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Figure 1.8: P-arrestin-dependent recruitment of Src kinases

Binding of P-arrestins to the agonist-stimulated receptors leads to concomittant recruitment 

of Src family tyrosine kinases such as c-Src, Hck, and c-Fgr to the p-arrestin-GPCR 

complex. The signalling events that involve p-arrestin-dependent recruitment of Src 

include the regulation of clathrin-dependent p2-adrenergic receptor endocytosis by tyrosine 

phosphorylation of dynamin (1), Ras-dependent activation of the ERK 1 and 2 MAPK 

cascade and stimulation of cell proliferation by the Pi-adrenergic and neurokinin NKl 

receptors (2), and stimulation of chemokine CXCRl receptor-mediated neutrophil 

degranulation (3) (source: Luttrell and Lefkowitz, 2002).
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Figure 1.9: Role of P-arrestins in the activation and targetting of MAPK

After agonist stimulation of the receptor P-arrestin acts as a scaffold to trigger the 

assembly of a MAPK activation complex. This pool of P-arrestin-bound ERKl/2 is 

subsequently activated. The receptor-P-arrestin-ERK 1/2 complexes are localised to 

endosomal vesicles. Formation of these vesicles prevents nuclear translocation of activated 

ERKl/2 and therefore does not result in stimulation of cell proliferation. Therefore 

activation of ERKl/ 2  by P-arrestin scaffolds might cause the phosphorylation of plasma 

membrane, cytosolic or cytoskeletal ERKl/2 substrates, or it might lead to transcriptional 

activation through the ERK-dependent stimulation of other kinases. The model shows P- 

arrestin scaffolding of the ERKl and 2 MAPK cascade, based upon data obtained with the 

protease-activated receptor 2 and the angiotensin n  type lA  receptor. A similar mechanism 

has been proposed for the regulation of the JNK3 MAPK cascade by the angiotensin 11 

type lA receptor (source: Luttrell and Lefkowitz, 2002).
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Figure 1.10: Schematic overview of MAPK modules

The MAPK module consists of a MAPKKK, MAPKK and a MAPK, MAPKKKs respond 

to a variety of extracellular signals such as growth factors, differentiation factors and 

stress. The activated MAPKKKs then activate one or more MAPKKs. In contrast the 

MAPKKs are relatively specific for their target MAPKs. Once activated MAPKs can then 

phosphorylate transcription factors (for example ATF-2, Chop, c-Jun, c-Myc, DPc4, Elk-1, 

Ets-1, Max, MEF2C, NFAT4, Sap la, STATs, Tal, p53) other kinases (MAPK-activated 

protein (MAPKAP) kinase, S6  kinase), upstream regulators like the epidermal

growth factor receptor (EGFR) and other regulatory peptides such as phospholipase A2. 

These downstream targets then control cellular responses including growth, differentiation, 

and apoptosis.
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Figure 1.10
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Figure 1.11: Components of the ERK MAPK pathway

MAPKKKs, MAPKKs, and MAPKs that can be components of the pathway. RTK, related 

tyrosine kinase;
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Figure 1.11

Growth factor

i
GPCRs, RTKs, etc

i

MAPKKK: Raf-1, A-Raf, B-Raf, Mos,
MEKKl, MEKK2, MEKK3, Tpl2

MAPKK; MEKl, MEK2

MAPK: ERK1,ERK2,



Figure 1.12: Components of the JNK MAPK pathway

MAPKKKs, MAPKKs, and MAPKs that can be components of the pathway
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Figure 1.13: Components of the p38 MAPK pathway

MAPKKKs, MAPKKs, and MAPKs that can be components of the pathway
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Figure 1.13
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Chapter 2

Material and Methods
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2.1 Materials

All reagents employed were of the highest grade available and were obtained from the 

following suppliers.

2.1.1 General reagents, enzymes and kits

Amer sham Pharmacia Biotech UK Ltd., Little Chalfont, Buckinghamshire, UK

Glutathione Sepharose™ 4B beads.

BDH, Lutterworth, Leicestershire, UK

Sodium chloride, potassium hydroxide, potassium chloride, glacial acetic acid, ethanol, 

methanol, isopropanol, microscope slides, 2 2  mm coverslips.

Calbiochem, CN Biosciences UK, Nottingham, UK

H89, GF109203X, geneticin sulphate (G418), BAPTA/AM, A23187.

Duchefa, Haarlem, The Netherlands

Yeast extract, tryptone, agar.

Fisher Scientific UK Ltd., Loughborough, Leicestershire, UK

Ammonium sulphate, glycine, HEPES, sucrose, SDS, potassium acetate, potassium di­

hydrogen orthophosphate, calcium chloride, HCl, manganese chloride.

Millipore, Watford, UK

Immobilon Polyvinylidenfluoride (PVDF) membrane

ThermoBioSciences GmbH, Ulm Germany

Oligonucleotides for PCR reactions

Invitrogen Ltd., Paisley, UK

NuPage ® Novex pre-cast bis-tris gels, Xcell Sureblock™ mini-cell gel tank,

XCell II™ blot module, MOPS running buffer.
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Konica Europe, Hohenbrunn, Germany

X-ray film

New England BioLabs, Hitchin, Hertfordshire, UK

Restriction endonucleases.

Pierce, Perbio Science UK Ltd., Tattenhall, Cheshire, UK

Supersignal® West pico chemoluminescent substrate

Promega UK Ltd., Southampton, UK

Restriction endonucleases, Pfu polymerase, Wizard™ Plus SV Miniprep kit.

Qiagen, Crawley West Sussex, UK

QIAquick gel extraction kit, PCR purification kit.

Roche Diagnostics Ltd., Lewes, East Sussex, UK

Complete™ protease inhibitor cocktail tat 

serum albumine (fraction V), hygromycin.

Complete™ protease inhibitor cocktail tablets, 1 kb DNA ladder, T4 DNA ligase, bovine

Sigma-Aldrich Company Ltd., Poole, Dorset, UK

Agarose, sodium hydroxide, DTT, di-sodium orthophosphate, Tris, EDTA, EGTA, ATP, 

bromophenol blue, rubidium chloride, NP-40, Triton X-100, DMSO, glycerol. Tween 20, 

ethylene glycol, paraformaldehyde, ampicillin, DMEM (powder), Protein G-Sepharose, 

ethidium bromide, concanavalin A, gelatine (bovine, 2% solution), bovine serum albumin 

(essentially globulin-free), MOPS, forskolin, nystatin, filipin III, sodium tartrate, 8 - bromo- 

cGMP, Ficoll (Type 400), xylene cyanol FF, BCA, cupric sulfate, sodium carbonate, 

sodium hydrogen carbonate, sodium deoxycholate, sodium flouride, magnesium sulfate 

heptahydrate, PMSF, (3-glycerol phosphate, benzamidine, apigenin, thyrotropin-releasing 

hormone.

Whatman International Ltd., Maidstone, UK

3 mm-filter paper
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2,1.2 Tissue culture plastic ware and reagents

Costar, Cambridge, MA., USA

15 ml and 50 ml centrifuge tubes, 5 ml, 10 ml and 25 ml pipettes, 25 cm  ̂and 75 cm'̂  tissue 

culture flasks, 60 mm and 100 mm dishes, 6  and 24 well plates, cryovials and cell scrapers.

Gibco BRL, Life Technologies Ltd., Paisley, UK

Lipofectamine™ transfection reagent, Optimem-I, L-glutamine (200 mM), NBCS, 

Versene, DMEM without sodium pyruvate.

Sigma-Aldrich Company LTD., Poole, Dorset, UK

DMEM, 0.25 % trypsin-EDTA, poly-D-lysine, MEM alpha modification with 

ribonulceosides and deoxyribonucleosides, PBS.

2.1.3 Radiochemicals

-r

PerkinElmer Life Sciences Inc., Boston, MA, USA

[̂ P̂] orthophosphoric acid (285.5 Ci/mg), ATP (ŷ P̂) (3000Ci/mmol)

2.1.4 Antisera

Amersham Pharmacia Biotech UK Ltd., Little Chalfont, Buckinghamshire, UK

Goat anti-mouse IgG-HRP conjugate 

Donkey anti-rabbit IgG-HRP conjugate 

Donkey anti-sheep IgG-HRP conjugate 

CypHer 5 Anti-VS V-G antibody

Cell Signaling Technology, Inc., Beverly, MA, USA

Phospho-p44/42 MAP Kinase (Thr 202/Tyr 204) antibody (rabbit polyclonal IgG) 

p44/42 MAP Kinase antibody (rabbit polyclonal IgG)

Phospho-p38 MAP Kinase (Thrl80/TyiT82) antibody (rabbit polyclonal IgG) 

p38 MAP Kinase antibody (rabbit polyclonal IgG)
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Molecular Probes, Eugen, Oregon, USA

Alexa ™ 594 goat anti-mouse IgG conjugate 

Alexa ™ 488 goat anti-mouse conjugate

Roche Diagnostics Ltd., Lewes, East Sussex, UK 

Anti-HA antibody (clone 12CA5)

Anti-VSV-G antibody (clone P5D4)

A sheep polyclonal anti-GFP antibody was generated in house.

2.2 Buffers

2.2.1 General buffers

PBS (lOx)

137 mM NaCl

2.7 mM KCl

1.5 mM KH2PO4

This was dissolved in deionised water and the pH adjusted to 7.4 with HCl.

RIPA+ (Ix)

25 mM HEPES pH 7.5

75 mM NaCl

0.5 % Triton X-100

0.25 % sodium deoxycholate (C2 4H3 9O4 NaHiO)

0.05 % SDS 

10 mM NaF 

5 mM EDTA 

10 mM Na2HP0 4  

5 % (w/v) ethylene glycol
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TBS (lOx)

0.2 M Tris 

1.37 M NaCl

This was dissolved in deionised water and the pH adjusted to 7.6 with HCl.

Krebs Ringer Buffer (Ix)

120 mM NaCl 

25 mM HEPES

4.8 mM KCl

1.2 mM KH2PO4

1.2 mM MgS0 4 7 H20

1.3 mM CaClz

This was dissolved in deionised water and the pH adjusted to 7.4 with NaOH.

Laemmli Buffer (2x)

12.6 mM Tris 

20 % (w/v) glycerol 

100 mM DTT 

12 % SDS

0.01 % (w/v) Bromophenol Blue

This was dissolved in deionised water and the pH adjusted to 6.8 with HCl.

2.2,2 Molecular Biology Solutions

TAE buffer (50x):

2 M Tris

5.7 % glacial acetic acid 

50 mM EDTA

DNA Loading Buffer (6x)

0,25 % bromophenol blue 

0.25 % xylene cyanol FF 

15 % Ficoll (Type 400)
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Liquid Broth (LB)

0.5 % Yeast extract, 1 % tryptone, 1 % NaCl

This was dissolved in deionised water and then autoclaved at 126 °C.

2.3 Molecular Biology Protocols

2.3.1 LB ampicillin agar plates

This has basically the same composition as LB with 1.5 % (w/v) agar added. The solution 

was autoclaved and then left to cool before adding ampicillin to a final concentration of 50 

/xg/ml. The still liquid agar was poured into 100 mm dishes and allowed to solidify at room 

temperature. LB agar plates can be stored at 4 °C for up to 3 weeks without ampicillin 

losing any of its activity.

2.3.2 Preparation of competent bacteria

The uptake and expression of foreign DNA into K Coli is known as transfoimation. The E. 

Coli strain, which was DH5a in this case, has to be made competent before transfoimation 

in order for the bacteria to be able to take up and express the plasmid vectors containing a 

particular cDNA insert. Competent E. Coli cells are made using the following procedure.

Solution 1

30 mM potassium acetate (CH3COOK)

10 mM RbCL 

10 mM CaClz 

50 mM MnCb 

15 % (w/v) glycerol

This was dissolved in deionised water and the pH adjusted to 5.8 with 100 mM acetic acid. 

The solution was filter-sterilised and stored at 4 °C.
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Solution 2

10 mM MOPS pH 6.5 

75 mM CaCl2 

10 mM RbCl2 

15 % (w/v) glycerol

This was dissolved in deionised water and the pH adjusted to 6.5 with HCl. The solution 

was filter-sterilised and stored at 4 °C.

DH5a cells were streaked out on an LB agar plate with no antibiotics and grown overnight 

at 37 °C. A single colony was picked and cultured in 5 ml LB at 37 °C overnight. The 5 ml 

culture was then added to 100 ml of fresh LB and grown until the optical density at 550 nm 

was 0.48. After chilling the culture on ice for 5 min the cells were spun at 3000 rpm (1811 

X g) for 20 min at 4 °C in sterile 50 ml tubes. After resuspending each pellet in 20 ml of 

solution 1 the cells were again chilled on ice for 5 min and then spun as before. Finally 

each pellet was resuspended in 2ml of solution 2 and chilled on ice for a further 15 min. 

The cells were aliquoted and stored at -80 °C.

2.3.3 Transformation of competent bacterial cells with plasmid DNA

100 jji\ of competent cells were incubated on ice with 10-100 ng of plasmid DNA for 15 

min. The mix was then heat shocked for 45 sec at 42 °C and placed back on ice for a 

further 2 min prior to addition of 900 [j l \ of LB. The cells were then allowed to recover by 

incubation at 37 °C for 1 hr in a shaking incubator. 200 fxl of this mix was spread out on a 

LB agar ampicillin plate and the plates incubated at 37 °C overnight. Transformed colonies 

were selected and cultured overnight at 37 °C in 5 ml LB containing 50 /xg/ml ampicillin.

2.3.4 Preparation of plasmid DNA

2.3.4.1 Miniprep

Plasmid cDNA was prepared using the Promega Wizard™ Plus SV Miniprep purification 

system. A 5ml culture of transformed cells was grown overnight at 37 °C as described 

before. 1.5-3 ml of the culture was spun at 13000 rpm and the pellet resuspended in 250 /xl 

of resuspension solution (50 mM Tris-HCl pPI 7.5, 10 mM EDTA, 100 /xg/ml RNase), 

followed by lysis with 250 /xl of lysis solution (0.2 M NaOH, 1 % SDS). The resulting
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lysate was neutralised with 350 /xl of neutralisation solution (4.09 M guanidine 

hydrochloride, 0.76 M potassium acetate, 2.12 M glacial acetic acid, pH 4.2) to precipitate 

any unwanted chromosomal DNA. This was removed by centrifugation and the resulting 

supernatant was transferred to a DNA purification column. The column was washed twice 

(once with 750 /xl and then with 250 /xl) with column wash solution (60 mM potassium 

acetate, 10 mM Tris-HCl pH 7.5, 60 % ethanol). Finally the cDNA was eluted from the 

column with 50 /xl of sterile water.

2.3.4.2 Maxiprep

To achieve a larger scale of purified DNA the Qiagen Plasmid Maxi system was used. A 5 

ml culture of transformed bacteria was grown as before only this time the culture was used 

to inoculate a 100 ml LB culture. After shaking for 16 hr at 37 °C, the culture was spun at 

4000 ipm (3220 x g) and 4 °C for 30 min. The bacterial pellet was resuspended in 10 ml of 

chilled buffer PI (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 /xg/ml RNase A) and lysed 

with 10 ml buffer P2 (200 mM NaOH, 1 % SDS). The lysate was neutralised with 10 ml of 

cooled buffer P3 (3.0 M potassium acetate pH 5.5). While the sample was spinning at 4000 

rpm (3220 x g), the Qiagen-tip 500 column was equilibrated with 10 ml of buffer QBT 

(750 mM NaCl, 50 mM MOPS pH 7.0, 15 % isopropanol). The supernatant was poured 

into the column, the column washed with 60 ml of buffer QC (1.0 M NaCl, 50 mM MOPS 

pH 7.0, 15 % isopropanol) and the DNA eluted by adding 15 ml of buffer QN (1.25 M 

NaCl, 50 mM Tris-HCl pH 8.5, 15 % isopropanol). The DNA was precipitated by adding

10.5 ml of isopropanol and the mixture centrifuged at 15000 rpm (27216 x g) for 30 min in 

a cooled centrifuge. The resulting pellet was washed with 5 ml of 70 % ethanol and then 

allowed to air dry. Finally the DNA was re-dissolved in 0.5-1.0 ml of sterile water.

2.3.5 DNA quantification

The concentration of DNA in a given sample was determined by measuring the absorbance 

at 260 nm (A2 6 0) of a 1:50 dilution of the DNA sample. It was assumed that 1 absorbance 

unit was equivalent to 50 /xg/ml of double stranded DNA. The purity of DNA was 

determined by measuring the absorbance at 280 nm (Aiso)* A ratio of approximately 1.7 of 

A2 6 0/A2 80 was considered to be sufficiently pure for use.
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2.3.6 Digestion of DNA with restriction endonucleases

To subclone DNA fragments into plasmid vectors, the DNA needed to be digested by 

restriction endonucleases. The digests were set up using the conditions recommended by 

the manufacturer. Briefly, 1 /xg of DNA was digested in 10 /xl of a buffered solution 

containing 1 unit of the appropriate enzyme for a minimum of 2 h at 37°C.

2.3.7 DNA gel electrophoresis

Digested DNA fragments were separated and analysed using agarose gel electrophoresis. 

Samples were prepared by addition of 6x loading buffer to a Ix final concentration. DNA 

fragments between 0.4 and 5 kb were separated on a 1 % (w/v) agarose gel containing 0.5x 

TAE buffer and 2.5 mg/ml ethidium bromide. The gels were run at 100 mA in horizontal 

gel tanks, containing 0.5x TAE buffer. To analyse the sepaiated DNA fragments ultraviolet 

light was used. The size of the bands was assessed by comparison with a 1 kb ladder. To 

excise fragments for gel purification a sterile scalpel blade was used.

2.3.8 DNA purification from agarose gels

To purify DNA fragments from agarose gels the Qiagen QIAquick gel extraction kit was 

used. The excised DNA fragments were dissolved in QIAquick buffer QG followed by 

addition of isopropanol. The solution was loaded onto a QIAquick purification column, 

washed with an ethanol based wash solution (PE) and finally the DNA eluted from the 

column with sterile water.

2.3.9 DNA ligations

T4 DNA ligase was used to ligate vector DNA with a desired cDNA insert or inserts. For 

each ligation, a vector:insert ratio of 1:2 was used. Reactions were performed in a total 

volume of 10 /xl containing enzyme buffer and 1 unit of T4 DNA ligase. The mixture was 

incubated for 3-5 h at room temperature. The ligation mixtures were transformed into 

competent bacteria as described in 2.3.2.
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2.3.10 Polymerase chain reaction (PCR)

PCR reactions were routinely performed in a total volume of 100 /xl containing 20 ng of 

DNA template 0.2 mM dNTPs (dATP, dCTP, dGTP, dTTP), 0.2 /xg of sense and antisense

primers, 1 x thermophilic buffer (20 mM Tris-HCl pH 8.2, 10 mM KCl, 6 mM (NH4 )2 S0 4 ,

2 mM MgCl2 , 0-1 % Triton X-100, 10 /xg/ml BSA) and 2 units of Pfu DNA polymerase. 

The reactions were canied out on an Eppendorf Mastercycler gradient. The reaction 

mixtures were initially heated to 95 °C for 5 min before the start of the first cycle.

PCR Cycles:

Dénaturation 

95 °C, 1 min 

95 °C, 1 min

Annealing 

60 °C, 1 min 

60 °C, 1 min

Extension 

72 °C, 2min 

72 °C, lOmin

Cvcle

30

1
i

2.4 Construction of orexin 1 receptor cDNAs

All primers are listed in Figure 2.1

2.4.1 N-terminal tagged constructs

A human //mx/Z/Z-FLAG-orexin 1 receptor-X/ic>Z in pcDNA3 had been generated 

previously in the laboratory and was used as a template to synthesise the N-terminal HA- 

or VSV-G-tagged constructs. To generate the N-terminal tagged forms of the receptor, 

advantage was taken of the fact that the orexin 1 receptor has an Aflll site at aa 330-331, 

therefore making it unnecessary to amplify the whole receptor cDNA. FLAG-orexin 1 

receptor was amplified from the N-terminal FLAG region to the Aflll site using the Hindlll 

sense primers VSV-oxlR or HA-oxlR and the anti sense primer oxlR  3. This replaced the 

FLAG-tag with either a VSV- or an HA tag. The PCR product as well as the FLAG-orexin 

1 receptor were digested with Hindlll and Aflll and the original insert removed by gel 

extraction as described in 2.3.8. The resulting PCR fragment was ligated into the vector.
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2.4.2 C-terminal truncations

The FLAG-orexin 1 receptor 394 and 378 truncations had been previously generated in the 

laboratory. Human orexin 1 receptor in pcDNA3 was amplified by PCR using the forward 

primer oxlR 1 and the Xhol reverse primer oxlR389 or oxlR374, This introduced a stop 

codon in the position immediately following the desired new C-terminus. The PCR 

products, the FLAG-orexin 1 receptor 394 and 378 constructs and the HA-orexin 1 

receptor were digested with Aflll and Xhol and the PCR fragments inserted into the vector 

as before.

All C-terminal tails of the generated truncation mutants are listed in Figure 2.2.

2.4.3 C-terminal mutations

2.4.3.1 Cluster mutants 

Cluster C l (aa 418-422)

This mutant was generated by amplifying the orexin 1 receptor in pcDNA3 with the sense 

primer oxlR 1 and the Xhol antisense primer oxlRCl. This mutated Thr 418, 421 and 422 

and Ser 419 to Ala. The PCR product and HA- or VSV-G-orexin 1 receptor in pcDNA3 

were digested with Aflll and Xhol and the PCR fragments inserted into the vector as 

previously described.

Cluster C2 (aa 393-396) and Cluster C1C2

These were generated using a method called overlap PCR as described in Figure 2.3. In the 

first round of PCR orexin 1 receptor in pcDNA3 was amplified with the forward primer 

oxlR 1 and the reverse primer oxlR 3. At the same time, but in separate reactions the 

orexin 1 receptor DNA was also amplified with the sense primer oxlRC2 and the Xhol 

antisense primer oxlR 5 or oxIRCl to synthesise the C2 or C1C2 mutant, respectively. In 

the next round of PCR, the different PCR products were used as templates to generate a 

PCR product with a N-terminal Aflll site and a C-terminal Xhol site and also the desired 

mutations using the forward primer oxlR 1 and the Xhol reverse primer ox IR 5 or 

oxIRCl. This mutated the Ser/Thr residues within these regions to Ala. The PCR products 

and HA- or VSV-G-orexin 1 receptor in pcDNA3 were digested with Aflll and Xhol and 

the PCR fragments inserted into the vectors as before.

All C-teimini of the cluster mutants are given in Figure 2.2.
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2.4.3.2 Single and double point mutants within Cluster C l

Orexin 1 receptor in pcDNAS was amplified with the sense primer oxlR 1 and one of the 

following Xhol anti sense primers: oxlRT418A, oxlRS419A, oxlRT421A, oxlRT422A, 

OX1RT418/S419A, oxlRT418/T421A, oxlRT418/T422A, oxlRS419/T421A,

OX1RS419/T422A or oxlRT421/T422A. This mutated the indicated Ser and/or Thr 

residues to Ala. The resulting PCR products and HA- or VSV-G-orexin 1 receptor in 

pcDNAS were digested with Aflll and Xhol and the PCR fragments inserted into the 

vectors as described in 2.4.1.

All sequences of the C-terminus of the single and double point mutants are described in 

Figure 2.2.

2.4.4 12 loop mutants

These constructs were generated using the overlap PCR strategy as previously described. 

Orexin 1 receptor in pcDNAS was amplified with the Hindlll forward primer VSV-oxlR 

and the reverse primers oxlRI148E-L152D, oxlRI148E, or oxlRL152D. At the same time 

the template was amplified with the sense primers oxlRI148E-L152D, oxlRH48E, 

OX1RL152D, and the antisense primer oxlR 3. In the next round the two different PCR 

products were utilised as templates and amplified with the Hindlll forward primer VSV- 

oxlR and the reverse primer oxlR 3. The PCR products and orexin 1 receptor in pcDNAS 

were digested with Hindlll and Aflll and the resulting PCR fragments inserted into the 

vector as before.

All sequences of the i2 loop mutants are listed in Figure 2.4.

2.4.5 HA-orexin 1 receptor Cl/C2-eYFP

A Hindlll-oxQxm 1 receptor-AofZ-eYFP-VhoZ construct in pcDNA3 had been previoulsy 

generated in the laboratory. To generate orexin 1 receptor Cl-eYFP, HA-orexin 1 receptor 

DNA was amplified by PCR with the forward primer oxlR 1 and the Notl reverse primer 

oxIRCl Notl (noTAG). In case of orexin 1 receptor C2-eYFP, HA-orexin 1 receptor C2 

DNA was used as template and amplified by PCR with the forward primer oxlR 1 and the 

Notl reverse primer oxlR Notl (noTAG). This removed the stop codon of the orexin 1 

receptor mutants. The PCR product was digested with Aflll and Notl. Since the eYFP 

sequence contained an Aflll restriction site, it was necessary to digest the HA-orexin 1
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receptor with Hindlll and Aflll and the orexin 1 receptor-eYFP construct with Hindlll and 

Notl. In a two way ligation the Aflll-Notl PCR fragment and the Hindlll-Aflll receptor 

fragment were ligated in frame into the vector containing eYFP as described before.

2.5 GST fusion protein preparation

2.5.1 Preparation of protein

Colonies of transfoimed XL 10 Gold E. Coli bacteria were picked and grown overnight in 

20 ml of LB broth containing 100 /xg/ml of ampicillin. The next morning this culture was 

added in a 1:30 dilution to 200 ml of LB broth containing 100 /xg/ml of ampicillin. This 

culture was grown until an ODeoo of 0.2 was reached and then induced with 0.5 mM IPTG 

for another 3 h. Afterwards the culture was spun for 15 min at 6000 rpm (5524 x g) and 

and 4 °C to pellet the cells. 1 ml samples that were taken prior to IPTG addition and after 

the 3 h incubation, were spun at 14000 rpm (20817 x g) and the pellet resuspended in 100 

/xl of Laemmli buffer.

The pellet of the large culture was resuspended in 9 ml GST extraction buffer and frozen 

on dry ice. The sample was quickly thawed and sonicated three times for 30 sec each at 60 

kHz using a probe sonicator. 1ml of 10 % Triton X-100 was added and the sample rotated 

for 40 min at 4 °C. The lysate was centrifuged for 15 min at 6000 rpm (5524 x g) and 4 °C 

and the supernatant transfeiTed to a sterile 50 ml tube containing 300 /xl of washed (three 

times with TE-buffer) Glutathione Sepharose'*'  ̂ 4B beads. The sample was spun on a 

rotary wheel for 1 hr at 4 °C. The mixture was centrifuged for 5 min at 900 rpm (163 x g) 

at 4°C and the glutathione Sepharose® 4B gel washed three times with TE-buffer. After 

the last washing step the pellet was resuspended in 300 /xl TE-buffer and stored at 4°C.

TE-buffer

10 mMTris (pH 7.4)

0.1 mM EDTA
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GST extraction buffer

500 mM HEPES (pH 7.4) 2 ml

4 M NaCl 1.7 ml

0.5 M (3-glycerol phosphate 2.5 ml

IM Na pyrophosphate 0.1 ml

0.25 M EDTA 0.4ml

10 % (v/v) glycerol 5 ml

IM DTT 0.25 ml

100 /xg/ml benzamidine 0.5 ml

0.2 M PMSF 0.5 ml

2.5.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE)

The samples were diluted in Laemmli-buffer and boiled for 5 min at 95 °C and resolved on 

NuPage® Novex pre-cast bis tris gels from Invitrogen. The NuPage® system is based 

upon a bis-tris-HCl buffered (pH 6.4) polyacrylamide gel, containing a separating gel that 

operates at pH 7.0. Gels with a polyacrylamide concentration of 4-12 % achieved the best 

separation of the proteins of interest and hence were mostly used. To run the gels 

NuPage® MOPS SDS running buffer was used. The gels were run at 200 V in the Xcell 

Sureblock™ mini-cell gel tank, also supplied by Invitrogen.

2.6 Routine cell culture

2.6.1 Cell growth

The cell lines used in this study were Human Embryonic Kidney T (HEK293T) cells, 

Mouse Embryonic Fibroblasts (MEF), Chinese Hamster Ovary (CHO) cells. Each cell line 

was grown in monolayers in 75 cm  ̂ tissue culture flasks. The cells were incubated in a 

humified atmosphere of 95 % air/5 % CO2 at 37 *̂ C.
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Cell line Medium Supplements

HEK293T DMEM 2 mM L-glutamine, 10% NBCS

MEF DMEM 2 mM L-glutamine, 10% FBS,

CHO MEM a  modification 2 mM L-glutamine, 10 % NBCS

with ribonucleosides

2.6.2 Cell subculture

Cells were grown till confluency and passaged using a sterile 0.25 % trypsin-EDTA 

solution. The medium was aspirated from the cells and 2 ml of trypsin solution was added. 

After all the cells had detached from the surface of the tissue culture flask, 8 ml of medium 

was added to stop the reaction. The cells were resuspended by mixing them gently and the 

cell suspension was split into flasks or dishes as required.

2.6.3 Coating of plates with poIy-D-lysine or gelatine

The poly-D-lysine was diluted with sterile water to make a 1 mg/ml stock solution. The 

gelatine was already in solution and just warmed prior to use. Tissue culture plates or 

coverslips were washed twice with either the poly-D-lysine solution or gelatine and then 

left to dry before cells were added.

2.6.4 Transient transfections

Lipofectamine™ was used according to the manufacturer's instructions to transiently 

transfect plasmid DNA into HEK293T or CHO cells.

For transfection of cells in 10 cm dishes, the cells were grown to 60-80 % confluency and 

5-10 /xg of DNA at a concentration of 0.1 /xg//xl in sterile water was used for each dish. A 

typical transfection was as follows:

Tube 1 Tube 2

DNA 50-100 /xl

Optimem-1 500-550 /xl 570 /xl

Lipofectamine™ - 30 /xl
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The DNA and Lipofectamine™ solutions were mixed and incubated for 30 min at room 

temperature. In the meantime the medium on the ceils was removed and the cells incubated 

in Optimem-1 for 30 min at 37 °C. Then 4.8 ml of Optimem-1 was added to the DNA- 

Lipofectamine™ mixture and, after aspirating Optimem-1 from the cells, the mixture was 

added gently to the cells. After an incubation of 3-5 h at 37 °C, the transfection solution 

was removed and 10 ml of media added. The next day the cells were either used for 

experiments directly or split into 6 well plates and used the following day.

For transfection of cells on coverslips in 6 well plates, the same protocol was followed 

with the exception that 1 fig of DNA/well was used. Also the ratio of 

Lipofectmine™:Optimem-1 was not 1:19 but 1:29.

Tube 1 Tube 2

DNA 10 /xl

Optimem-1 90 /xl 96.7 /xl

Lipofectamine™ - 3.3 /xl

The two solutions were mixed and incubated as described before. 800 /xl of Optimem-1 

was added to the mixture and the resulting solution added to the appropriate well. After 3-5 

h, the solution was aspirated and replaced by 2 ml of medium. 24 h after the transfection 

the cells were fixed and and viewed using confocal microscopy.

2.6.5 Transient transfections using the Amaxa Nucleofactor^'^

This was performed according to the manufacturer's instructions. The cells were detached 

from the flask with trypsin and 5x10  ̂to 2x10^ of cells were spun at 1000 rpm (201 x g) for 

5 min. The pellet was resuspended in 100 /xl of pre-warmed Nucleofactor™ Solution and 

mixed with 5 /xg of DNA. The sample was transferred into an Amaxa certified cuvette and 

the cuvette inserted into the machine. After nucleofecting the cells with the appropriate 

program, 500 /xl of medium was added to the cells. The cells were transferred to a single 

well of a 6 well plate and used 24 h after transfection.

Solution Program

CHO cells T H14

MEF cells V T20
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2.7 Protein Biochemistry

2.7.1 Protein determination by BCA assay

To deteimine the protein concentration in cell lysates bincinchoninic acid (BCA) and 

copper sulphate solutions were used. Proteins reduce Cu(II) ions to Cu(I) in a 

concentration dependent manner. BCA is a highly specific chromogenic reagent for Cu(I), 

forming a puiple complex with an absorbance maximum at 562 nm. The absorbance is 

directly proportional to the protein concentration. The protein concentration was 

determined using known concentrations of BSA solutions as standard (0.2-2 mg/ml).

Reagent A Reagent B

1 % (w/v) BCA 4 % CUSO4

2  % (w/v) NazCOs

0.16 % (w/v) sodium tartrate (C4H4 0 6 Na2 2 H2 0 )

0.4 % NaOH 

0.95 % NaHCOs 

pH 11.25

One part reagent B was added to 49 parts reagent A. 200 /xl of this solution was added to 

10 /xl of each protein sample/standard in a 96 well plate. The absorbance was read after 

incubation at 37 °C for 30 min.

2.7.2 Preparation of samples for SDS gel electrophoresis

2.7.2.1 Whole cell lysates

Cells from 6 well plates were washed twice with ice cold PBS and then lysed using 500 /xl 

of RIPA+ buffer supplemented with 1 x Complete™ protease inhibitor cocktail solution 

following the appropriate drug treatment. After incubation of the lysates on a rotating 

wheel for 1 h at 4 °C, the insoluble material was removed by a 10 min centrifugation at 

14000 rpm (20817 x g) and 4 °C. The supernatant was transferred to a fresh tube and the 

protein determined by BCA assay as described in 2.6.1. The samples were diluted to a 

concentration of 1 mg/ml, then mixed 1:1 with Laemmli buffer and boiled for 3 min at 95 

°C before loading onto SDS-PAGE gels.

66



2,12.2 Immunoprécipitation of samples

They were prepared as described for the whole cell lysates. But instead of diluting the 

extracts to 1 mg/ml, the extracts were equalised after the BCA assay. The protein of 

interest was immunoprecipitated from each sample by incubation with 20 /xl of protein G- 

Sepharose and the appropriate antibody (2 /xg anti-GFP, 1 /xg HA, 1 /xg anti-VSV-G) in 

100 /xl of 2 % BSA (virtually globulin-free) in RIPA+ for at least 1 h at 4 °C. The immune 

complexes were isolated by centrifugation at 14000 rpm (20817 x g) for 1 min, washed 

twice with 1 ml RIPA+ containing 0.2 M ammonium sulphate and once with RIPA-f alone. 

The proteins were eluted from the beads by incubation with 50 /xl Laemmli buffer 

overnight at room temperature. The eluates were then loaded onto SDS-PAGE gels.

2.7.2.3 Co-immunoprecipitation of orexin 1 receptor and p-arrestin-2-GFP

Following addition of agonist, the stimulations were stopped by addition of the membrane 

permeable and reversible cross-linker dithiobis[succinimidylpropionate] (DSP) (Sigma, 

Gillingham, Dorset, U.K.) at a final concentration of 2 mM. The cells were then incubated 

under gentle agitation at room temperature, washed twice with 50 mM Tris-HCl pH 7.4 in 

PBS to neutralise unreacted DSP, lysed in 0.5 ml of 50 mM HEPES pH 7.4, 50 mM NaCl, 

10 % (v/v) glycerol, 0.5 % (v/v) NP-40, 2 mM EDTA, 100 /iM Na3V0 4 , supplemented 

with 1 X Complete™ protease inhibitor cocktail solution and clarified by centrifugation. 25 

pi aliquots of whole cell lysates were removed and mixed with an equal volume of 2 x 

reducing loading buffer. To isolate P-aiTestin 2-bound orexin 1 receptor, 500 pg of each 

lysate was incubated with 20 pi of protein G-Sepharose in 100 pi buffer containing 5 % 

BSA (virtually globulin-free) and 2 pg anti-GFP antibody. Immunoprécipitation was 

performed for 12-16 h at 4 °C. Immune precipitates were washed 3 times with glycerol 

lysis buffer and eluted in 1 x reducing loading buffer for 15 min at 45 °C. Proteins were 

resolved on SDS-PAGE.

2.7.3 Western blotting

Following SDS-PAGE as described in 2.5.2, the proteins were electrophoretically 

transfeiTcd onto a PVDF membrane at 30 V for 1-2 h in transfer buffer (0.2 M glycine, 25 

mM Tris, 20 % (v/v) methanol) using the XCell II™ blot module (Invitrogen). The 

membranes were blocked with 5 % (w/v) fat free milk in TBS/0.1 % (v/v) Tween 20 for 1 

h at room temperature. The membranes were then incubated with the appropriate primary

67



antibody in blocking buffer overnight at 4 °C. After removing the primary antibody and 

washing the membranes 4 times for 5 min each with TBS/0.1 % (v/v) Tween 20, the blots 

were treated with the required HRP-conjugated secondary antibody in blocking buffer for 1 

h at room temperature. After repeating the washing, the reactive proteins were visualised 

by enhanced chemiluminescence and exposure onto photosensitive film. For Western blot 

analysis the following antibody dilutions were used:

1° Antibodv Dilution 2° Antibodv Dilution

Anti-VSV-G 1:5000 Anti-mouse IgG 1:5000

Anti-HA 1:5000 Anti-mouse IgG 1:5000

Anti-MAPK 1:1000 Anti-rabbit IgG 1:2000

Anti-P-MAPK 1:1000 Anti-rabbit IgG 1:2000

Anti-p38 1:1000 Anti-rabbit IgG 1:2000

Anti-P-p38 1:1000 Anti-rabbit IgG 1:2000

Anti-GFP 1:10000 Anti-sheep IgG 1:10000

2.8 Assays

2.8.1 Confocal laser scanning microscopy

Cells were observed using a laser scanning confocal micrsocope (Zeiss LSM 5 Pascal) 

using a Zeiss Plan-Apo 63 X 1.40 NA oil immersion objective, pinhole of 20 and 

electronic zoom 1 or 2.5. The GFP and eYFP were excited using a 488 nm argon laser and 

detected with 505-530 band pass filter. The Alexa™ 594 label, TAMRA-orexin A ligand 

and RFP were excited using a 543 nm helium/neon laser and detected with a 560 long-pass 

filter. To visualise the CypHer 5-labelled anti-VSV-G antibody, the cells were excited 

using a 633 helium/neon laser and detected with a 590 long-pass filter. The pictures were 

manipulated with Universal Imaging MetaMorph software.

2.8.1.1 Fixed cell work 

Receptor-eYFP and p-arrestin-RFF

Cells transiently transfected and grown on glass coverslips were washed 3 times with PBS 

and fixed for 10 min at room temperature using 4 % paraformaldehyde in PBS/5 %
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sucrose, pH 7.4. After a further three washes with PBS, coverslips were mounted on 

microscope slides with 40 % glycerol in PBS.

Immunostaiiiing for VSV/HA-orexin 1 receptor

Immunostaining was performed essentially according to the protocol of Cao et al. (1999). 

Cells were plated onto coverslips and transfected after 24 h with the appropriate constructs. 

After a further 24 h, the medium was changed for 20 mM BEPES/DMEM containing 2.5 

jUg/ml of anti-HA/VSV-G- antibody and incubated for 40 min at 37 °C in 5 % CO2 . Where 

required, to give a final concentration of 0.5 /xM agonist, 20 mM HEPES/DMEM 

containing orexin A was added and incubated for 30 min at 37 °C in 5 % CO2 . Coverslips 

were washed 3 times with PBS and then cells fixed with 4 % parafoiTnaldehyde in PBS/5 

% sucrose for 10 min at room temperature followed by three more PBS washes. Cells were 

then permeabilised in 0.15 % Triton X -100/3 % nonfat milk/PBS (TM buffer) for 10 min at 

room temperature. The coverslips were subsequently incubated with an Alex a™ 594 goat 

anti-mouse secondary antibody at a dilution of 1:400 (5 jttg/ml), upside down on 

Nescofilm, for 1 hr at room temperature; washed twice in TM buffer and 3 times with PBS. 

Finally, coverslips were mounted onto microscope slides with 40 % glycerol in PBS.

Immunostaining for VSV-G-orexin 1 receptor using the CypHer 5 labelled antibody

The antibody labelling was carried out basically as described in Adie et al. (2002). Cells 

were seeded onto coverslips the day before use and transfected with the different 

constructs. 24 h later the cells were washed twice with Krebs-Ringer buffer (KRB) at room 

temperature and then incubated with CypHer 5-labelled anti-VSV-G antibody at a 

concentration of 20 pg/ml for 30 min at room temperature in the presence of the different 

inhibitors. After this time orexin A was added to the cells and incubated for 30 min at 

37 °C in 5 % CO2 . Coverslips were washed 3 times with KRB and fixed with 4 % 

paraformaldehyde in PBS/5 % sucrose for 10 min at room temperature followed by 3 more 

washes with KRB. Then the coverslips were mounted onto microscope slides with 40 % 

glycerol in PBS.

2.8.1.2 Live cell work

When examining live cells, cells grown on coverslips were kept in a Sodium/HEPES 

buffer (130 mM NaCl, 5 mM KCl, 1 mM CaCE, 1 mM MgCE, 20 mM HEPES, pH 7.4).
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The temperature was maintained at 37 °C throughout the duration of the experiment. For 

agonist stimulation 0.5 fiM orexin A was added in the Sodium/HEPES buffer.

2.8.2 In vivo phosphorylation assays

Agonist dependent phosphorylation of the different receptor constructs was determined by 

in vivo phosphorylation assays. CHO cells stably or transiently expressing the orexin 

receptor constructs were split onto poly-D-lysine coated 6 well plates. The following day 

the growth medium was removed from the cells and replaced by phosphate-free DMEM. 

After a 1 h incubation at 37 °C, the medium was changed to medium supplemented with 

0.2 mCi/ml [̂ P̂] orthophosphate for 90 min. Cells were then treated with 0.5 /xM orexin A 

for periods ranging from 30 sec to 10 min, or with 50 fxM forskolin, 1 [xM PMA, 10 jiM 

A23187 or 100 /xM 8-bromocyclic GMP for 5 min. To assay kinase inhibition, cells were 

treated with 10 /xM H89, 5 (xM GF109203X or 1 jxM B APT A/AM for 30 min prior to 

agonist exposure. To terminate the reactions the cells were placed on ice and washed 3 

times with ice cold PBS. Then the cells were solubilised for receptor immunoprecipiation 

with the anti-HA or -GFP antibody as detailed in 2.6.2.2. After separation of the 

immunoprecipitated receptor constructs by SDS-PAGE, the gels were dried and the 

labelled proteins visualised by autoradiography. The resulting bands were 

densitometrically quantified.

2.8.3 JNK-MAPK assay

HEK293T cells were plated in 6 well plates and 24 h later transiently transfected with the 

different cDNAs as described in 2.5.4. Another 24 h later, the cells were washed once with 

KRB and then serum starved for 1 h at 37 °C. After stimulating the cells with 0.5 /xM 

orexin A, 500 /xl of lysis buffer (20 mM Tris-HCl (pH 7.6), 0.5 % NP-40, 250 mM NaCl,

3 mM EDTA, 3 mM EGTA, 1 mM PMSF, 1 mM DTT) was added to the cells, the cells 

lysed for 5 min on ice on a shaking platform and finally scraped off. The lysate was cleared 

by a centrifugation step of 5 min at 14000 rpm (20817 x g) at 4 °C. The supernatant was 

transferred to a fresh tube and the protein determined by BCA assay as described in 2.6.1. 

Equal amount of protein was added to 20 /xl of GST-cJUN/glutathione beads and the 

samples rotated for 1 h at 4 °C. The samples were then washed twice with 200 /xl lysis 

buffer, twice with 200 /xl kinase buffer (20 mM HEPES (pH 7.4), 20 mM (3-
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glycerophosphate, 10 mM MgClz, 1 mM DTT, 250 /xM sodium orthovanadate) and 

resuspended in 40 /xl kinase reaction mix (560 /xl kinase buffer, 5.6 /xl 2 mM cold ATP,

2.8 /xl hot ATP (3000 Ci/mmol)). After incubating the samples for 20 min at 37 °C, the 

samples were centrifugated for 1 min at 14000 rpm (20817 x g), the supernatant removed, 

the beads resuspended in 30 /xl Laemmli buffer and heated for 5 min at 95 °C before 

loading onto SDS-PAGE gels. Finally the gels were stained with Coomassie-blue, dried 

and the labelled proteins visualised by autoradiography.

2.8.4 WST-1 cell proliferation assay

This colometric assay for the quantification of cell proliferation is based on the cleavage of 

the tétrazolium salt WST-1 to formazan by mitochondrial dehydrogenases in viable cells. 

An expansion in the cell number leads to an increase in the overall activity of 

mitochondrial dehydrogenases, which is directly conelated to the amount of formazan dye 

formed.

HEK293T cells were transfected with the different cDNAs as described in section 2.6.4, 24 

h later cells were seeded into 96 well plates at a density of 0.5 x 10"̂  cells/well in 100 p,l 

medium containing the indicated stimuli and incubated at 37 °C. Another 24 h later the 

WST-1 reagent was added at a dilution of 1:10 and the cells incubated for 1-4 h at 37 °C 

before measuring the absorbance at 450 nm. The light absorbance of the medium 

containing all factors but no cells was determined and subtracted from the absorption 

readings with cells.
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Figure 2.1; Primers used to generate the various cDNA fragments using PCR
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Figure 2.1

Primer Sequence Restriction
site

Direction

oxlR389 CAT ATT CTC GAG TCA AGG GGC CTT GAG AGA G A7/ol antisense
OX1R374 CAT TCT CGA GTC AGG AGA AGG CAG CCT TAA AC Xho\ antisense
0x1 R 3 CAA GGA CAA GGA CTT GTG GGC GGC GGC GGC GCG GGG ACT AGG GGC 

CTTC
antisense

VSV-oxlR G AT AAG CTT AAA GCC ACC ATG TAC ACC G AT ATC GAA ATG A AC 
CGC CTT GGT AAG GAG CGC TCA GCC ACC CCA G

HintRW sense

HA-oxlR ATA TAA GCT TAA AAT GTA TCC CTA CGA CGT CGC CGA TTA TGC GGA 
GCC CTC AGC CAC CGC AG

H in dm sense

oxIR 1 AAG TGA AGC AGA TGC GTG CAC GGA GGA AGA CAG sense
0x1 RCl GTT ATT CTC GAG TCA GGG CAG CAC TGC GGC GAC GGC GGC GAG CAC 

CAC ATG CTC AGA GAT TTT GG
Xhol antisense

0x1 RC2 GAA GGC CCC TAG TCC CCG CGC CGC CGC CGC CCA CAA GTC CTT 
GTC CTT G

sense

oxlR 5 GTT ATT CTC GAG TCA GGG CAG CAC TGT GGT GAC GCT GGT G Xhol antisense
0X1RT418A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGT GAC GCT GGC GAG 

CAC CAC ATG CTC AGA GAT TTT GG X hol antisense

OX1RS419A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGT GAC GGC GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GG

Xhol antisense

OX1RT421A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGC GAC GCT GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GG Xhol antisense

OX1RT422A GTT ATT CTC GAG TCA GGG CAG CAC TGC GGT GAC GCT GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GO Xhol antisense

OX1RT4187T421A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGC GAC GCT GGC GAG CAC 
CAC ATG CTC AGA GAT TTT GG X hol antisense

OX1RT418/T422A GTT ATT CTC GAG TCA GGG CAG CAC TGC GGT GAC GCT GGC GAG CAC 
CAC ATG CTC AGA GAT TTT GG

Xhol antisense

OX1RS419/T421A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGC GAC GGC GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GG

Xhol antisense

OX1RS419/T422A GTT ATT CTC GAG TCA GGG CAG CAC TGC GGT GAC GGC GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GG Xhol antisense

OX1RT421/T422A GTT ATT CTC GAG TCA GGG CAG CAC TGC GGC GAC GCT GGT GAG CAC 
CAC ATG CTC AGA GAT TTT GG Xhol antisense

OX1RT418/S419A GTT ATT CTC GAG TCA GGG CAG CAC TGT GGT GAC GGC GGC GAG CAC 
CAC ATG CTC AGA GAT TTT GG Xhol antisense

oxlRI148E-L152DP GAC CGC TGO TAT GCC GAG TGC CAC CCA GAT TTC TTC AAG AGC ACA 
GCC sense

OX1RI148E-L152DR GGC TGT GCT CTT GAA CAA ATC TGG GTG GGA CTC GGC ATA CCA GCG 
GTC

antisense



Figure 2.1 continued

Primer Sequence Restriction
site

Direction

OX1RI148EF

OX1RI148ER

OX1RL152DF

ox!RL152D R

oxlRCl Notl (noTAG) 
oxlRNotl (noTAG)

GAC CGC TGG TAT GCC GAG TGC CAC CCA CTA TTG TTC AAG AGC ACA 
GCC
GGC TGT GCT CTT GAA CAA TAG TGG GTG GCA CTC GGC ATA CCA GCG 
GTC
GAC CGC TGG TAT GCC ATC TGC CAC CCA GAT TTG TTC AAG AGC ACA 
GCC
GGC TGT GCT CTT GAA CAA ATC TGG GTG GCA GAT GGC ATA CCA GCG 
GTC
GTT ATT GCG GCC GCG GGC AGC ACT GCG GCG ACG GCG GCG AG 
GTT ATT GCG GCC GCG GGC AGC ACT GTG GTG ACG CTG GTG

N oil

N otl

antisense

antisense

antisense
antisense



Figure 2.2: List of the different C-terminal constructs of the orexin 1 receptor

The orexin 1 receptor constructs were generated by PCR as described in section 2.4.
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Figure 2.2

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TSVTTVLP 425 full length

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPR SS 394 stop

362 SGKFREQFKAAFSCCLPGLGPCGSLKAP 389 stop

362 SGKFREQFKAAFSCCLP 378 stop

362 SGKFREQFKAAFS 374 stop

3 62 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
AAVAAVLP C l mutation

3 62 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRAAAAHKSLSLQSRCSISKISEHV VL 
TSVTTVLP C2 mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRMAAHKSLSLQSRCSISKISEFIVVL 
AAVAAVLP C1C2 mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
ASVTTVLP T418A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TAVTTVLP S419A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TSVATVLP T421A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TSVTAVLP T422A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
AAVTTVT.P T418/S419A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
ASVATVLP T418/T421A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
ASVTAVLP T418/T422A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISK1SEPIVVL 
TAVATVLP S419/T421A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TAVTAVLP S419/T422A mutation

362 SGKFREQFKAAFSCCLPGLGPCGSLKAPSPRSSASHKSLSLQSRCSISKISEHVVL 
TSVAAVLP T421/T422A mutation



Figure 2.3: Schematic representation of the overlap PCR strategy

For details see text
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Figure 2,3
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Figure 2.4; Overview of the different :2 loop mutants of the orexin 1 receptor

The orexin 1 receptor i21oop mutants were generated by PCR as described in section 2.4.
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Figure 2.4

DRWYAICHPLLFKSTARRAFGS

DRWYAECHPDLFKSTARRAFGS

DRWYAECHPLLFKSTARRAFGS

DRWYAICHPDLFKSTARRAFGS

i 2 loop 

I148E-L152D

I148E

L152D



Chapter 3

Regulation of Orexin 1 Receptor Internalisation by P-Arresting
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3,1 Introduction

Once GPCRs are activated by agonist, their responsiveness to further stimulation becomes 

modulated (Ferguson and Caron 1998). Three distinct mechanisms have been identified so 

far which serve to attenuate the response of GPCRs to stimulation: phosphorylation, 

internalisation and down-regulation. Many GPCRs are desensitised within seconds to 

minutes after ligand binding. This process is mediated by phosphorylation of the receptor 

by G protein-coupled receptor kinases (GRKs) and/or the second messenger Idnases, PKA 

and PKC. This phosphorylation promotes binding of P-arrestin to the receptor. The 

consequence of this interaction is a reduction in coupling of the receptor to the G-protein. 

p-aiTestins also serve as adaptors to target the desensitised receptor to clathrin-coated 

vesicles for internalisation. The clathrin-coated vesicle is pinched off from the plasma 

membrane by dynamin, a GTPase (Van der Bliek et at,  1993). The non-receptor tyrosine 

kinase c-Src plays an important role in this process since tyrosine phosphorylation of 

dynamin by this kinase is required for dynamin mediated GTP hydrolysis and consequently 

for receptor internalisation (Ahn et al., 1999; Ahn et al., 2002). Finally prolonged receptor 

stimulation leads to an overall decrease in receptor number by tai'getting receptors to 

lysosomes.

Two classes of GPCRs can be distinguished according to their internalisation properties 

(Oakely et ah, 1999; Pierce and Lefkowitz, 2001). Class A receptors like the p^-adrenergic 

receptor bind preferentially p-airestin 2 over P-arrestin 1. The receptor dissociates from p- 

arrestin at or near the plasma membrane and internalises alone into endosomes. Class B 

receptors like the vasopressin V2 receptor bind p-arrestin 1 and P-aiTestin 2 equally well. 

Also the receptor and P-arrestin co-internalise into endocytic vesicles. The C-temiinal tail 

of the GPCR and more precisely clusters of Ser and Thr residues within this region seem to 

be important to determine into which class a certain GPCR fits (Oakley et al, 2001). 

Switching the C-terminus of the P2 -adrenergic receptor with the C-terminus of the 

vasopressin V2 receptor created a receptor-chimera with the internalisation properties of 

the vasopressin receptor and vice versa. Also these clusters of Ser and Thr residues have 

only been identified in class B receptors so far. The human orexin 1 receptor appears to 

belong to the class B since it interacts with high affinity with P-aixestin 1 and 2 and also 

co-internalises with both p-arrestin 1-GFP and P-arrestin 2-GFP into intracellular vesicles 

following addition of orexin A (Evans et al,  2001).
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GPCRs can also internalise independently of clathrin via caveolae (Dupree et al,  1993). 

Caveolae are detergent-insoluble plasmalemmal vesicles enriched in cholesterol, 

sphingolipids and caveolin, a structural coat protein. They are small, flask shaped 

specialised microdomains formed through oligomerisation of caveolin (Schnitzer et al, 

1995; Rothberg et al, 1992). These dynamic structures are able to internalise and this 

process is regulated by vesicle budding, fission, docking and fusion.

In this chapter a detailed analysis of the mechanism of orexin 1 receptor internalisation was 

performed. Firstly differently tagged forms of the wild type orexin 1 receptor were created 

and their interaction with P-arrestin 2 directly monitored by confocal microscopy. After 

examining internalisation of the wild type receptor C-terminally tagged with eYFP in 

Gq/Gii knock out cells, C-terminal truncated and mutated forms of the orexin 1 receptor 

were generated and the effects on receptor internalisation and P-arrestin 2 interaction 

examined using again confocal microscopy. Phosphorylation studies of the different forms 

of the receptor were also canled out to firstly examine which kinases are involved in 

agonist-stimulated receptor phosphorylation and secondly to check whether the interaction 

between the receptor and P-aixestin 2 is governed by agonist-mediated phosphorylation. To 

investigate an involvement of casein kinase II in the internalisation process, the cells were 

transfected with the wild type receptor and p-aixestin 2 and pre-treated with apigenin, a 

casein kinase II inhibitor, before addition of the agonist and the receptor distribution 

observed under the confocal microscope. Finally, to determine the pathway of 

internalisation of the wild type receptor and a C-terminal mutation, the different forms of 

the receptor were either expressed in p-arrestin or Src knock out cells, co-expressed with 

dominant negative dynamin or the cells pre-treated with inhibitors of internalisation before 

agonist stimulation and the effects monitored by confocal microscopy.

3.2 Expression and internalisation of the orexin 1 receptor constructs with P-arrestin 

2-GFPor -RFP

The various orexin 1 receptor constructs were generated by PCR as described in 2.4. It has 

been published that the orexin 1 receptor co-intemalises with p-arrestin in response to 

orexin A (Evans et al, 2001). To examine whether the alterations introduced by PCR had 

any effect on this interaction, the cDNAs were transiently co-expressed with either p- 

an'estin 2-GFP or -RFP in HEK293T cells and confocal analysis used to visualise the
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interaction of the orexin 1 receptor and P-anestin 2. To label the untagged orexin 1 

receptor, the cells were stimulated with 0.5 juM 5 and 6-carboxytetramethylrhodamine 

(TAMRA)-labelled orexin A for 30 min. This made it possible to observe co­

internalisation of the receptor, having bound the labelled ligand, and P-aixestin 2-GFP into 

punctate intracellular vesicles (Figure 3.1) since merging of the pictures corresponding to 

TAMRA-orexin A (red) and P-aixestin 2-GFP (green) resulted in the vesicles being stained 

in yellow, indicating overlapping distributions of the two signals (Figure 3.1). As this form 

of the agonist is membrane impermeable, the receptor had to be expressed at the plasma 

membrane prior to addition of the agonist to be labelled.

In unstimulated cells, the immunostaining of the orexin 1 receptor tagged with the HA- 

epitope sequence at the N-terminus indicated it to be expressed at the plasma membrane 

and P-arrestin 2-GFP localised in the cytoplasm (Figure 3.2 a). This form of the receptor 

also internalised in response to addition of 0.5 /xM orexin A for 30 min and again co­

localised in intracellular vesicles with co-expressed p-anestin 2-GFP (Figure 3.2 b).

Prior to agonist stimulation the orexin 1 receptor C-terminally tagged with eYFP was 

located at the plasma membrane and p-airestin 2-RFP in the cytoplasm (Figure 3.3 a). 

Addition of 0.5 /xM orexin A for 30 min also caused internalisation of the orexin 1 

receptor-eYFP (Figure 3.3 b). Co-expression of this construct with P-anestin 2 tagged with 

RFP from Anemonia sulcata at the C-terminus again indicated the interaction and 

intracellular co-localisation of these two proteins following agonist stimulation (Figure 3.3 

b).
The N-terminally tagged VSV-G orexin 1 receptor was highlighted with a novel, pH- 

sensitive, cyanine dye termed CypHer-5 linked to an anti-VSV-G antibody. The advantage 

of using this dye was that only internalised receptors were highlighted, as this dye only 

fluoresces when in an acidic environment (pKa = 6.1). Stimulation of the receptor with 0.5 

/xM orexin A for 30 min caused red fluorescence in an intracellular punctate pattern 

(Figure 3.4 b). P-anestin 2-GFP also internalised into intracelluai' vesicles upon agonist 

stimulation (Figure 3.4 b). These results confinned that the receptor and p-arrestin 2-GFP 

were co-internalised into acidic endosomes because merging of the individual red and 

green signal resulted in vesicles being stained in yellow. It was not possible to visualise the 

receptor at the plasma membrane (Figure 3.4 a), but since the antibody-conjugated dye 

cannot cross the plasma membrane, it can be concluded that this form of the receptor was 

trafficked conectly to the plasma membrane.
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3.3 Internalisation of the orexin 1 receptor in Gq/Gn double knockout cells

To test whether internalisation of the orexin 1 receptor is G q / G n  dependent, the receptor C- 

terminally tagged with eYFP was transiently expressed in EF88 cells. These cells are 

derived from fibroblasts isolated from the embryo of a G q / G n  double knockout mouse 

(Stevens Qt al, 2001; Liu et al., 2002). The orexin 1 receptor-eYFP fusion protein was 

expressed at the plasma membrane in the absence of agonist (Figure 3.5 a). Addition of 0.5 

/xM orexin A for 30 min caused internalisation of the receptor (Figure 3.5 b). Lack of 

expression of Gq/Gn therefore did not prevent agonist-induced internalisation of the orexin 

1 receptor-eYFP construct in these cells confirming that agonist-induced internalisation of 

the orexin 1 receptor is independent of G q / G n  signalling.

3.4 Expression and internalisation of the orexin 1 receptor C-tail mutants with P- 

ar res tin 2-GFP

To determine whether the C-terminus of the orexin 1 receptor is important for binding P~ 

anestin 2 as described for the 5- and K-opioid receptors (Gen et al., 2001) or the 

angiotensin II type lA  receptor (Oakley et al., 2001), a PCR based strategy was used to 

generate orexin 1 receptor C-tail truncations by introducing a stop-codon at the desired 

position in the C-terminus of the receptor as described in 2.4 and Figure 2.1. These 

constructs were also HA-epitope tagged at the N-teiminus (2.4). To show that each cDNA 

construct was translated, into a truncated protein, HEK293T cells were transiently 

transfected with the different truncation constructs and the protein expression determined 

by Western blot analysis. Immunodetection of the different truncations via the N-terminal 

HA-tag confirmed that each cDNA construct was translated into a truncated protein of the 

expected size (Figure 3.6).

Confocal analysis was used to visualise the location of the immunostained orexin 1 

receptor truncations and P-aixestin 2-GFP in transiently transfected HEK293T cells. Prior 

to agonist stimulation, the immunostained receptor tmncations were expressed at the 

plasma membrane whereas P-arrestin 2-GFP was localised in the cytoplasm (Figures 3.7 a, 

c, e, g). Stimulating the cells for 30 min with 0.5 /xM orexin A caused each of the truncated 

forms to internalise (Figures 3.7 b, d, f, h). However co-expressed P-aixestin 2-GFP 

interacted only very transiently with the truncated forms of the receptor since the cellular 

distribution of p-aixestin 2-GFP was basically unchanged by addition of orexin A (Figures
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3.7 b, d, f, h). For that reason the internalised receptor was labelled red on a green 

background and no yellow staining could be observed indicating that there was no 

detectable co-internalisation of the truncated forms of the receptor and P-arrestin 2.

To further define the region of the orexin 1 receptor C-terminus which is involved in the 

interaction with P-arrestin 2, two clusters of hydroxy amino acids located at positions 393- 

396 (cluster C2) and 418-422 (cluster C l) were mutated to Ala residues individually or 

together (C1C2) by PCR (2.4 and Figure 2.1) since such clusters of hydroxy amino acids 

have been suggested to be important binding sites for P-arrestins (Oakley et ah, 2001). 

These mutants also earned a N-terminal HA-tag. Each of the cluster mutants was 

transiently co-transfected with P-arrestin 2-GFP in HEK293T cells and visualised by 

confocal microscopy. In unstimulated cells, all three cluster mutants were expressed at the 

plasma membrane and P-anestin 2-GFP in the cytoplasm (Figures 3.8 a, c, e). Mutation of 

the three Ser residues in cluster C2 had no effect on the interaction of the receptor with p- 

arrestin 2-GFP. This mutant behaved essentially as the wild type as it co-intemalised with 

P-arrestin 2-GFP into punctate vesicles after being stimulated with 0.5 jxM orexin A for 30 

min as indicated by the yellow staining (Figure 3.8 b). By contrast, alteration of all four 

hydroxy amino acids in cluster Cl to Ala greatly reduced translocation of P-airestin 2-GFP 

from the cytoplasm to the plasma membrane. The receptor internalised without p-airestin- 

2-GFP since the receptor was stained in red on a green background (Figure 3.8 d). The 

form of the receptor carrying both sets of mutations (cluster C1C2 mutant) showed the 

same staining pattern as the cluster Cl mutant after addition of agonist (0.5 /xM orexin A, 

30 min). Therefore this mutant was also unable to co-internalise with P-arrestin 2-GFP in 

response to orexin A (Figure 3.8 f).

To investigate whether a particular hydroxy amino acid in cluster Cl is important for co­

internalisation of the orexin 1 receptor and P-anestin 2, each of these four amino acids was 

individually modified to Ala by PCR (2.4 and Figure 2.1). Again these constructs were 

tagged with the HA-epitope at the N-terminus. The expression pattern of these constructs 

transiently co-transfected with P-anestin 2-GFP into HEK293T cells was analysed by 

confocal microscopy. Without agonist stimulation all four immunostained receptor mutants 

were localised at the plasma membrane whereas p-anestin 2-GFP was expressed in the 

cytoplasm (Figures 3.9 a, c, e, g,). Agonist-mediated co-internalisation with P-arrestin 2- 

GFP was not abolished by any of these single point mutations because stimulation with 0.5 

/xM orexin A for 30 min resulted in yellow staining of intracellular punctate vesicles
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(Figures 3.9 b, d, f, h). Since mutating any single hydroxy amino acid in cluster Cl had no 

effect on the interaction of the receptor and p-anestin 2, further mutations carrying all of 

the possible combinations in which two of the four hydroxy amino acids in this cluster 

were mutated to Ala and also having a N-terminal HA-tag were produced by PCR (2.4 and 

Figure 2.1). Again in the absence of agonist these mutants were expressed at the plasma 

membrane and P-anestin 2-GFP in the cytoplasm when transiently transfected in 

HEK293T cells as assessed by confocal microscopy (Figures 3.10 a, c, e, g, i, k). In 

contrast to the single point mutants, changing any two residues within cluster Cl 

eliminated detectable co-intemalisation of P-anestin 2-GFP and any of these forms of the 

receptor in response to 0.5 jxM orexin A for 30 min (Figures 3.10 b, d, f, h, j, 1). For all the 

double mutants, cells in the field were observed in which a small amount of p-aixestin 2- 

GFP moved to the plasma membrane (Figures 3.10 b, d, f, h, j, 1). However, unlike in 

equivalent experiments with the wild type orexin 1 receptor the majority of the P-arrestin 

2-GFP seemed to remain in the cytoplasm.

3.5 Internalisation studies of the wild type orexin 1 receptor and the cluster C l 

mutant

The agonist-stimulated sequestration of the HA-tagged receptors transiently co-transfected 

with P-arrestin 2-GFP in HEK293T cells was monitored by visualisation of the 

immunostained receptor using the confocal microscope. Cells grown on glass coverslips 

were incubated with 0.5 pM orexin A for time points ranging from 0-15 min and then 

labelled with anti-HA antibody and fixed before examination by confocal microscopy. The 

wild type receptor was expressed at the plasma membrane whereas p-aixestin 2 displayed a 

cytosolic expression pattern in unstimulated cells (Figure 3.11). After stimulation with 

orexin A for 2 min, the receptor was distributed at the plasma membrane in a punctate 

pattern and p-arrestin 2 translocated to the same vesicles at the plasma membrane 

containing the receptor, since these vesicles were stained in yellow. This re-distribution 

reflects the recruitment of P-arrestin 2 to the agonist-occupied orexin 1 receptor and the 

accumulation of receptor-P-arrestin complexes in clathrin-coated pits. After 5 min most of 

the receptor-p-an'estin 2 complexes could be seen in intracellular vesicles and this was 

even more pronounced after 10 min of agonist stimulation (Figure 3.11). Exposure of the 

receptor to agonist for 10 min seemed to already result in maximum receptor sequestration, 

since most of the HA-labelled receptors were removed from the plasma membrane at this
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point and also no difference in receptor internalisation and P-aixestin co-localisation could 

be detected between the 10 min and the 15 min time point (Figure 3.11). The observed 

overlapping pattern of redistribution of the receptor and p-anestin 2-GFP is indicative of 

the stable formation of receptor-P-arrestin 2 complexes that remain associated during 

endocytosis. A similar result concerning the time course of receptor internalisation could 

be obtained for the cluster Cl mutant. However p-anestin 2 did not translocate to the 

receptor but instead stayed in the cytosol as the receptor was stained red on a green 

background throughout the course of the experiment, suggesting that the receptor p- 

anestin complex dissociates at or near the plasma membrane (Figure 3.11).

3.6 The C l mutant binds P-arrestin 2 less well than the wild type orexin 1 receptor

To prove biochemically that the cluster Cl mutant binds p-anestin 2 with lower affinity 

compared to the wild type receptor, the ability of each form of the receptor to recruit P- 

anestin 2 upon agonist stimulation was investigated in co-immunoprecipitation studies 

using the reversible, membrane permeable, cross-linker dithiobis[succinimidylpropionate] 

(DSP). Therefore P-anestin 2-GFP was co-expressed in HEK293T cells with VSV-G 

tagged forms of either the wild type or the cluster 01 mutation of the orexin 1 receptor, p- 

an'estin 2-GFP was immunoprecipitated with anti-GFP antiserum, samples resolved by 

SDS-PAGE and probed for the presence of forms of the receptor by immunoblotting to 

detect the VSV-G epitope. As shown in Figure 3.12 the wild type receptor as well as the 

cluster Cl mutant could be co-immunoprecipitated with p-aixestin 2-GFP even without 

prior stimulation with orexin A. However orexin A (0.5 fxM, 30 min) induced an increase 

of the wild type orexin 1 receptor in the P-arrestin 2-GFP immunoprecipitates, whereas no 

increase of the cluster Cl could be detected under the same conditions.

3.7 Phosphorylation of the wild type orexin 1 receptor and the cluster mutants

Since alteration of hydroxy-amino acids in the C-terminus of the orexin 1 receptor 

abolished co-internalisation of the receptor with p-arrestin 2, it seemed appropriate to 

investigate whether phosphorylation of the orexin 1 receptor regulates the interaction 

between the receptor and P-anestin 2. The first step was to examine whether the wild type 

form of the receptor becomes phosphorylated upon agonist stimulation. Therefore a stable
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CHO cell line stably expressing the wild type HA-orexin 1 receptor which had been 

generated previously at GlaxoSmithKline was used. Figure 3.13 shows the phosphorylation 

of the receptor over time. The receptor seemed to be already maximally phosphorylated 

after stimulation with 0.5 (xM orexin A for 1 min as the level of phosphorylation did not 

increase any further for the duration of the experiment. In the absence of agonist, a basal 

level of phosphorylation was detectable. The mechanism of phosphorylation was further 

investigated using either protein kinase inhibitors (10 p.M H89, 5 pM GF109203X, 10 jxM 

BAPTA/AM) or activators (50 fxM forskolin, 10 pM A23187, 5 pM PMA, 100 pM 8- 

bromo-cGMP). BAPTA/AM, GF109203X and H89 modestly decreased the agonist- 

mediated receptor phosphorylation (Figure 3.14). On the other hand forskolin, A23187 and 

PMA were found to induce phosphorylation of the receptor whereas 8-bromo-cGMP had 

no effect on the level of phosphorylation (Figure 3.14). Taken together these results 

indicate that agonist-mediated phosphorylation of the receptor may, in pait, be mediated by 

PKC and PKA, whereas PKG does not seem to be involved. To determine whether there 

was a difference in phosphorylation levels between the different receptor constructs, CHO 

cells were transiently transfected with C-terminally eYFP-tagged wild type, cluster Cl or 

C2 mutant forms of the receptor using the Amaxa system (2.5.5) to achieve high 

transfection efficiencies. After equalising the protein concentration for the 

immunoprécipitation step, a small amount of protein was loaded on a SDS-PAGE gel and 

the receptor expression of each construct determined by Western blot analysis (Figure 3.15 

a). Figure 3.15 b depicts the level of phosphorylation for each construct before and after 

stimulation with 0.5 fxM orexin A for 5 min. In the absence of agonist, a basal level of 

phosphorylation was evident for each foim of the receptor and after agonist stimulation 

each receptor construct became phosphorylated to a similar extent. The average fold 

induction for each construct was approximately 2.1 ± 0.6 for the wild type receptor, 1.7 ± 

0.34 for the cluster Cl mutant and 1.6 ± 0.44 for the cluster C2 mutant (Figure 15 c) 

indicating that additional sites are involved in agonist-mediated phosphorylation of the 

orexin 1 receptor.

3.8 Involvement of casein kinase II in receptor internalisation

The data from section 3.7 indicated that second messenger kinase activation was involved 

in agonist-mediated phosphorylation of the wild type receptor, but that additional kinases 

also played a role in this process. Casein kinase II phosphorylation of three consensus sites
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within the C-terminal tail of the thyrotropin-releasing hormone receptor was shown to 

mediate agonist-stimulated coupling of P-anestin to the receptor (Hanyaloglu et al, 2001). 

To examine the possible involvement of casein kinase II-mediated phosphorylation in the 

internalisation of the orexin 1 receptor, HEK293T cells were transiently transfected with 

HA-orexin 1 receptor and p-aixestin 2-GFP. Following incubation with 80 /xM apigenin, a 

casein kinase II inhibitor, for 30 min the cells were treated with agonist (0.5 (xM orexin A 

for 30 min) and the distribution of the receptor and P-arrestin 2 visualised by confocal 

microscopy. In unstimulated cells the receptor was expressed at the plasma membrane and 

p-aiTcstin 2-GFP displayed a diffuse cytosolic distribution (Figure 3.16 a). In response to 

agonist, the receptor and P-arrestin 2 co-internalised into endocytic vesicles as indicated by 

the yellow staining (Figure 3.16 b). Pre-treatment of the cells with apigenin did not abolish 

co-internalisation (Figure 3.16 c), suggesting that casein kinase II does not play an 

important role in agonist-mediated phosphorylation and sequestration of the orexin 1 

receptor.

The thyrotropin-releasing hormone receptor was used as positive control. The receptor 

tagged with VSV-G at the N-terminus was co-transfected with P-aixestin 2-GFP into 

HEK293T cells and the receptor labelled by immunostaining with anti-VSV-G antibody. 

The receptor was expressed at the plasma membrane and internalised in response to 

treatment with 1 pM thyrotropin-releasing hormone into intracellular vesicles (Figure 3.17 

a, b). An overlapping pattern of redistribution of P-anestin 2-GFP from the cytosol to 

intracellular vesicles was observed since the vesicles exhibited a yellow colour (Figure

3.17 a, b). In contrast to the orexin 1 receptor, incubation of the cells with 80 [xM apigenin 

completely inhibited agonist-mediated receptor internalisation but had no effect on the 

recruitment of P-anestin 2 to the activated receptor as the plasma membrane was labelled 

yellow (Figure 3.17 c). In contrast to the orexin 1 receptor where casein kinase II does not 

seem to be involved in internalisation, casein kinase II appears to be important for 

internalisation of the thyrotropin-releasing hormone receptor but not for coupling of P- 

arrestin to the stimulated receptor.

3.9 Internalisation of the orexin 1 receptor wild type and the cluster C l mutant in p- 

arrestin knock out cells

To investigate if there was a difference in the dependence of the wild type receptor and the 

cluster Cl mutant on p-anestin for internalisation both constructs, fused to eYFP at the C-
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terminus as described in 2.4, were transiently transfected into either wild type or P-arrestin 

1 and 2 double knock out mouse embryonic fibroblast (MEF) (Kohout et al,  2001). 

Confocal microscopy revealed that in unstimulated wild type or knock out cells both 

receptor constructs were expressed at the plasma membrane (Figures 3.18 a, b, c, d). After 

treatment of the cells with 0.5 /xM orexin A for 30 min the wild type receptor as well as the 

cluster mutant was internalised into punctate vesicles in the MEF wild type cells (Figures

3.18 a, b). By contrast addition of orexin A did not cause internalisation of either receptor 

form in the p-anestin null cells (Figures 3.18 c, d). To show that the double knock out cells 

were fully functional, P-anestin 2-RFP was transiently co-transfected with either the wild 

type or Cl eYFP-tagged foixns of the orexin 1 receptor. Prior to agonist stimulation both 

forms of the receptor were expressed at the plasma membrane and P-arrestin 2-RFP in the 

cytoplasm (Figure 3.19 a, c). Each foim of the receptor internalised in response to 

challenge with 0.5 /xM orexin A for 30 min (Figure 3.19 b, d), demonstrating that 

reconstitution with P-anestin 2 was sufficient to restore receptor internalisation. In the case 

of the wild type receptor, P-anestin 2 co-internalised into intracellular vesicles, whereas 

there was no discernable movement of P-anestin 2 when co-expressed with the cluster Cl 

form of the receptor. Hence the wild type orexin 1 receptor as well as the cluster Cl mutant 

internalise in a P-anestin-dependent manner.

3.10 Effects of inhibitors of clathrin-mediated endocytosis or caveolae on agonist 

mediated internalisation of the orexin 1 receptor constructs

Internalisation of receptors via the clathrin-mediated pathway can be blocked in different 

ways. The plant lectin concanvalin A binds to carbohydrate moieties on the cell surface 

thereby interfering with receptor endocytosis but not with ligand binding or receptor 

signalling (Pippig et al,  1995; Luttrell et al,  1997). Hypertonic sucrose impaires clathrin- 

mediated internalisation by causing abnormal clathrin polymerisation into empty micro­

cages on the plasma membrane (Heuser and Anderson, 1989). Since caveolae are 

characterised by high levels of cholesterol, their function can be disrupted by cholesterol 

chelating agents such as nystatin and filipin (Okamoto et al,  2000) or methyl-p- 

cyclodextrin (MPCD) (Foster et al,  2003).

To explore the pathway of internalisation of the wild type and cluster Cl mutant of the 

orexin 1 receptor forms of these receptors N-terminally modified by PCR to express the 

VSV-G epitope tag (2.4 and Figure 2.1) were transiently co-transfected with p-arrestin 2-
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GFP in HEK293T cells and the effects of the different inhibitors on internalisation 

visualised by confocal microscopy. In response to addition of CypHer-5 tagged anti-VSV- 

G antibody followed by addition of 0.5 /xM orexin A for 30 min the wild type orexin 1 

receptor internalised and many of the intracellular vesicles containing the receptor 

appeared yellow due to the presence of both the receptor and p-arrestin 2-GFP (Figure 3.20 

a). By contrast, in cells expressing the cluster Cl mutant and P-arrestin 2-GFP, the 

intracellular vesicles appeared red (Figure 3.20 b). This indicates that these vesicles are 

indeed acidic, as the CypHer-5 antibody only fluoresces at acidic pH, but that p-aixestin 2- 

GFP did not co-internalise with the cluster Cl mutant. Pre-treatment of the cells with 0.4 

M sucrose for 30 min blocked internalisation of the wild type orexin 1 receptor and the 

cluster Cl mutant in response to agonist (Figure 3.20 c, d). However, the presence of 

sucrose did not prevent translocation of P-aixestin 2-GFP into punctate vesicles at the 

plasma membrane indicating that receptor signalling is not affected by hypertonic sucrose 

concentrations. The only difference between the wild type and the mutant form of the 

receptor was in the amount of P-aixestin 2-GFP being translocated to the plasma 

membrane. Whereas there was hardly any p-arrestin 2-GFP localised in the cytoplasm after 

activation of the wild type orexin 1 receptor, much of the cellular p-aixestin 2-GFP was not 

translocated following stimulation of the cluster Cl mutant, again confirming the 

interaction of p-aixestin 2-GFP with the cluster Cl mutant to be much more transient than 

with the wild type form of the receptor. The staining also showed that the sites of 

interaction of both forms of the orexin 1 receptor and P-aixestin 2-GFP at the plasma 

membrane were not acidic since no red signal could be detected. Treatment of cells 

expressing these foixns of the orexin 1 receptor with 0.25 mg/ml concanavalin A for 30 

min prior to addition of the CypHer-5-labelled anti-VSV-G antiserum resulted in a subtly 

different pattern for the wild type orexin 1 receptor. Although P-arrestin 2-GFP was 

translocated to the plasma membrane its distribution remained even rather than punctate 

(Figure 3,20 e). Again, there was no indication that the receptor was able to enter into an 

acidic environment in the presence of concanavalin A because the CypHer-5 bound to the 

receptor remained dark and non-fluorescent (Figure 3.20 e). Also, no red fluorescent signal 

was obtained for the cluster Cl mutant when orexin A was added following pre-treatment 

with 0.25 mg/ml concanavalin A (Figure 3.20 f). Again a substantially smaller fraction of 

the P-aixestin 2-GFP was translocated to the plasma membrane compared to the wild type 

receptor (Figure 3.20 f).
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Pre-incubation of cells with either 50 /xg/ml nystatin (Figure 3.20 g, h) or 5 /xg/ml filipin 

(Figure 3.20 i, j) for 30 min before stimulation with 0.5 fxM orexin A for 30 min had no 

effect on the interaction of p-arrestin 2-GFP with either form of the receptor or 

internalisation of the wild type orexin 1 receptor or the cluster Cl mutant. In both cases the 

staining pattern was the same as observed in cells stimulated with agonist alone. These 

data suggest that neither form of this receptor internalises to any significant extent in 

response to orexin A via cholesterol-rich, detergent-insensitive, domains.

3.11 Involvement of c-Src and dynamin in receptor internalisation

The results in 3.10 indicate that the orexin wild type receptor and the cluster Cl mutant 

internalise in clathrin-coated vesicles. To further compare the pathways of internalisation 

of the wild type and the Cl mutant either form of the receptor tagged with VSV-G at the 

N-temiinus was expressed alone or co-expressed with N272 dynamin, which lacks the 

complete GTP-binding domain (Werbonat et al,  2000) in HEK293T cells. 24 h after 

transfection the cells were stimulated with 0.5 jjM orexin A for 30 min at 37 °C. The 

immunostained receptors were visualised by confocal microscopy. In cells expressing 

either form of the receptor on its own, the receptor internalised into intracellular vesicles as 

illustrated by the loss of fluorescence from the plasma membrane and a concomitant 

increase of the fluorescent signal in intracellular vesicles upon agonist exposure (Figure 

3.21 a). In contrast, co-expression of dominant negative dynamin (Figure 3.21 b) 

completely abolished internalisation of both forms of the receptor since the antibody- 

stained receptor stayed at the cell surface.

To test the role of Src family kinases in internalisation of the orexin 1 receptor, the eYFP- 

tagged wild type receptor and the cluster Cl mutant were transiently co-expressed with (3- 

arrestin 2-RFP in Src family kinase knock out (SYF) MEF cells. These cells were derived 

from Src, Yes and Fyn triple knock out embryos (Klinghoffer et al,  1999). In the absence 

of agonist the wild type receptor was localised at the plasma membrane and P-arrestin 2- 

RFP in the cytosol (Figure 3.22 a). Incubation of the cells with 0.5 |LtM orexin A for 30 min 

induced internalisation of the receptor into endosomes. p-arrestin 2 translocated to the 

same vesicles as indicated by the yellow staining (Figure 3.22 b). Similar results were 

obtained for the cluster Cl mutant (Figure 3.22 c, d). However, in contrast to the wild type 

receptor, stimulation of the cluster Cl mutant did not result in any detectable movement of 

p-aiTGStin 2-RFP from the cytosol to intracellular vesicles (Figure 3.22 d). Therefore the
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orexin 1 receptor wild type as well as the cluster Cl mutant seem to internalise via 

clathrin-coated pits in a process depending on dynamin but not c-Src activity.
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Figure 3.1: Visualisation of orexin 1 receptor internalisation using fluorescently

labelled agonist

HEK293T cells were transfected with the human orexin 1 receptor and P-arrestin 2-GFP. 

24 h post-transfection cells were challenged with TAMRA-labelled orexin A (0.5 pM) for 

30 min. TAMRA-labelled orexin A was shown to have low nM potency in internalisation 

experiments. Cells were then fixed and images taken with the confocal microscope. The 

distribution of the orexin 1 receptor (i), p-arrestin 2-GFP (ii) and a composite of these 

images (iii) are shown. The images are representative of two further experiments.
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Figure 3,2: N-terminally HA-tagged orexin 1 receptor internalises and co-localises

with p-arrestin 2-GFP after agonist stimulation

HEK293T cells transiently transfected with the N-terminally HA tagged orexin 1 receptor 

and p-anestin 2-GFP were immunostained with anti-HA antibody prior to agonist 

stimulation. Images were taken of unstimulated control cells (a) and cells treated with 0.5 

jiM orexin A for 30 min (b). The distribution of the orexin 1 receptor (i), p-arrestin 2-GFP 

(ii) and a composite of these images (iii) are shown. The images are representative of two 

further experiments.
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Figure 3.3: Orexin 1 receptor C-terminally tagged with eYFP co-localises with p-

arrestln 2-RFP after agonist challenge

Both constructs were transiently expressed in HEK293T cells and the cells fixed 24 h after 

transfection. The distribution of the orexin 1 receptor-eYFF (i) and p-arrestin 2-RFP (ii) 

was visualised by confocal microscopy in unstimulated cells (a) and cells challenged with 

0.5 /xM orexin A for 30 min (b). An overlay of these pictures (iii) is also shown. Similar 

results were gained in two further experiments.

92



Figure 3.3

receptor p-arrestin 2 merge



Figure 3.4: N-terminally VSV-G-tagged orexin 1 receptor internalises and co-

localises with P-arrestin 2-GFP after agonist stimulation

N-terminally VSV-G-tagged orexin 1 receptor and P-arrestin 2-GFP were co-expressed in 

HEK293T cells. The surface receptor was immunostained with CypHer-5 labelled anti- 

VSV-G antibody, Confocal images of unstimulated cells (a) and agonist-treated cells (b) 

(0.5 (xM orexin A for 30 min) were taken. The distribution of the orexin 1 receptor (i), p- 

aiTestin 2-GFP (ii) and a composite of these images (iii) are shown. Similar results were 

obtained in two further independent experiments.
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Figure 3.5: The orexin 1 receptor internalises in the absence of Gq/Gn

EF88 cells were transiently transfected with the orexin 1 receptor-eYFP. The cells were 

subsequently challenged with vehicle (a) or orexin A (0.5 |xM, 30 min) (b). Receptor 

distribution was then visualised by confocal microscopy. Similar observations were made 

in two further experiments.
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Figure 3.6: The C-terminally truncated orexin 1 receptor cDNAs are translated

into truncated proteins

The HA-orexin 1 receptor wild type and the C-terminal truncations were each expressed in 

HEK293T cells. 24 h after transfection the cells were lysed. 20 fig protein of each sample 

was loaded on a 4-12 % Bis Tris gel, the proteins subsequently transferred onto a PVDF 

membrane and the different forms of the receptor detected by incubating the membranes 

with anti-HA antibody. A representative blot from three different experiments is shown.
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Figure 3.7: C-terminal truncation of the orexin 1 receptor prevents interaction with

p-arrestin 2 but not agonist-induced internalisation

The C-terminal truncations (N-terminally tagged with HA) of the orexin 1 receptor 394 

stop (a, b), 389 stop (c, d), 378 stop (e, f) and 374 stop (g, h) were transiently co-expressed 

with P-anestin 2-GFP in HEK293T and after 24 h the receptor visualised by staining with 

anti-HA antibody. Images were taken of cells prior to stimulation (a, c, e, g) and after 

stimulation with 0.5 /xM orexin A for 30 min (b, d, f, g). The distribution of the orexin 1 

receptor (i), P-arrestin 2 (ii) and a composite of these images (iii) are shown. The images 

aie representative of two further experiments.
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Figure 3.7 continued
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Figure 3.8: A single cluster of hydroxy amino acids within the C-terminus allows

CO -internalisation of the orexin 1 receptor and P-arrestin 2

The cDNAs for HA-orexin 1 receptor cluster C2 mutant (a, b), cluster Cl mutant (c, d) and 

cluster C1C2 mutant (e, f) were co-expressed with P-arrestin 2-GFP in HEK293T cells. 24 

h after transfection the surface receptors were immunostained with anti-HA antibody. 

Confocal images were taken of unstimulated cells (a, c, e) and of cells treated with 0.5 (jlM 

orexin A for 30 min (b, d, f). Shown are confocal visualisations of the receptor 

immunofluorescence (i) and the p-arrestin 2-GFP fluorescence (ii). Co-localisation of the 

receptor with P-arrestin 2 is indicated in the overlay (iii). This result was confirmed in two 

further experiments.
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Figure 3.9: Mutation of any individual amino acid in cluster C l has no effect on the

co-localisation of the orexin 1 receptor and p-arrestin 2 after agonist 

challenge

All HA-orexin 1 receptor single point mutants (T418A: a, b; S419A:c, d; T421A:e, f; 

T422A:g, h) were co-transfected with P-arrestin 2-GFP into HEK293T cells. The different 

forms of the receptor were labelled with anti-HA antibody and the distribution of the 

receptor (i) and P-arrestin 2 (ii) and the overlay of the two signals (iii) in cells prior to 

stimulation (a, c, e, g) and after stimulation (0.5 fxM orexin A, 30 min) (b, d, f, h) 

examined by confocal microscopy. This experiment was repeated twice.
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Figure 3.10: Double point mutations in cluster C l of the orexin-1 receptor disrupt 

co-internalisation of the receptor with P-arrestin 2

The six different N-terminally HA-tagged double point mutants of the orexin 1 receptor 

(T418/S4I9A: a, b; T418/T421A:c, d; T418/T422A:e, f; S419/T421A:g, h; S419/T422A:i, 

j; T421/T422A:k, 1) were transiently transfected into HEK293T cells with p-arrestin 2- 

GFP. The different forms of the receptor were visualised by immunostaining with anti-HA 

antibody. The cells were either treated with vehicle (a, c, e, g, i, k) or with 0.5 /xM orexin 

A for 30 min (b, d, f, h, j, 1). The distribution of the orexin 1 receptor (i), P-arrestin 2 (ii) 

and a composite of these images (iii) are shown. The confocal images shown are 

representative for a set of three experiments performed.
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Figure 3.10 continued
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Figure 3.11: Time course of the agonist-mediated internalisation of the orexin 1 

receptor wild type and C l cluster mutant

HEK293T cells were co-transfected with plasmids containing the cDNA for p-arrestin 2- 

GFP and the cDNA for the HA-wild type or the HA-Cl cluster mutant. The different forms 

of the receptor were stained with the anti-HA antibody and visualised with the confocal 

microscope. The cells were stimulated with 0.5 /xM orexin A as indicated. The distribution 

of the orexin 1 receptor (i), P-anestin 2 (ii) and a composite of these images (iii) are 

shown. This result was confirmed in two further experiments.
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Figure 3.11 continued
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Figure 3.12: p-arrestin 2-GFP co-lmmunoprecipitation with agonist-activated wild 

type and cluster C l mutant

VSV-G-tagged forms of the wild type (WT) and cluster Cl mutant (Cl) orexin 1 receptor 

were transiently co-expressed with P-arrestin 2-GFP in HEK293T cells. 24 h post 

transfection the cells were stimulated with vehicle or 0.5 |iM orexin A for 15 min. 

Following addition of 2 mM dithiobis[succinimidylpropionate] (DSP), p-arrestin 2-GFP 

was immunoprecipitated using anti-GFP antiserum and the samples resolved on SDS- 

PAGE. P-aiTestin 2-GFP and forms of the receptor bound were monitored by 

immunoblotting with anti-GFP and anti-VSV-G antisera respectively. The data shown is 

representative of two independent experiments.
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Figure 3.13: Agonist induced phosphorylation of the orexin 1 receptor

CHO cells stably expressing HA-orexin 1 receptor were labelled with Following 

stimulation of the receptor with 0.5 p,M orexin A as indicated, the receptors were then 

immunoprecipitated. Dried gels were analysed by autoradiography. Data shown are 

representative from a single experiment, which was repeated three times.
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Figure 3.14: Effects of second messenger kinases on phosphorylation of the orexin 1

receptor

CHO cells stably expressing HA-orexin 1 receptor were pre-treated for 30 min with 

vehicle, 10 pM H89, 10 pM BAPTA/AM or 5 pM GF109203X prior to stimulation with 

0.5 pM orexin A for 5 min. Other samples were incubated with 0.5pM orexin A, 50 pM 

forskolin, 5 pM PMA, 10 pM A23187 or 100 pM 8-bromo-cGMP for 5 min at 37 °C and 

the receptors immunoprecipitated with anti-HA antibody. Representative autoradiographs 

of the immunoprecipitated receptors are shown. Similar results were produced wdth two 

further experiments.
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Figure 3.15: Agonist induced phosphorylation of the cluster mutants

CHO cells were transiently transfected with orexin 1 receptor wild type, HA-Cl or -C2 

mutant C-terminally tagged with eYFP using the Amaxa nucleofection system. 24 h post­

transfection the cells were labelled with ^̂ P prior to agonist stimulation (0.5 pM orexin A, 

5 min). The receptors were purified by immunoprécipitation using an anti-GFP antibody 

and resolved on SDS-PAGE. Representative autoradiographs of the immunoprecipitated 

receptors are shown (a). To assess the expression level of each receptor by Western Blot 

analysis equal amounts of cell lysate were loaded on a SDS-PAGE and the PVDF 

membrane probed with anti-GFP antibody (b). Similar results were obtained in two further 

experiments. Quantification of receptor phosphorylation is expressed as fold over basal (c). 

The data shown represent the mean ± SD of 5 independent experiments.
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Figure 3.16: Effect of casein kinase II inhibiton on orexin 1 receptor internalisation

Transiently transfected HEK293T cells co-expressing (3-arrestin 2-GFP and HA-orexin 1 

receptor were plated on coverslips and the receptor labelled with anti-HA antibody. The 

cells were untreated (a) or stimulated with 0.5 /xM orexin A for 30 min following 

incubation of the cells for 30 min with vehicle (b) or 80 /xM apigenin (c), fixed and 

analysed with confocal microscopy. The distribution of the receptor (i), P-arrestin 2 (ii) 

and a composite of these images (iii) are shown. The confocal images shown are 

representative for a set of three experiments performed.
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Figure 3.17: Involvement of casein kinase II in internalisation of the thyrotropin- 

releasing hormone receptor

The thyrotropin-releasing hormone receptor N-terminally tagged with VSV-G was co­

transfected with P-anestin 2-GFP into HEK293T cells. The receptor was visualised by 

immunostaining with anti-VSV-G antibody. Confocal images of untreated cells (a), cells 

treated with 1 /xM thyrotropin-releasing hormone for 30 min (b), and of cells incubated 

with 80 /xM apigenin for 30 min prior to addition of thyrotropin-releasing hormone (c) 

were taken. Shown are visualisations of the receptor immunofluorescence (i) and the p- 

anestin 2-GFP fluorescence (ii). Co-localisation of the receptor with P-arrestin 2 is 

indicated in the overlay (iii). This experiment was repeated twice.
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Figure 3.18: Internalisation of the orexin 1 receptor wild type and the cluster C l 

mutant is p-arrestin dependent

The C-terminally eYFP-tagged form of the orexin 1 receptor wild type (a, c) and the HA- 

Cl mutant (b, d) were individually expressed in wild type MEF cells (a, b) and p-arrestin 1 

and 2 knock out MEF cells (c, d). The distribution of the different forms of the receptor 

were visualised by confocal microscopy prior (i) and after (ii) agonist challenge (0.5 pM  

orexin A, 30 min). Similar confocal images were obtained in two further experiments.
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Figure 3.19: Internalisation of the orexin 1 receptor wild type and the cluster C l

mutant in MEF knock out cells can be reconstituted by co-transfecting 

p-arrestin 2

The orexin 1 receptor-eYFP (i) wild type (a, b) and HA-Cl mutant-eYFP (c, d) were co­

transfected with p-arrestin 2-RFP (ii) into p-arrestin 1 and 2 knock out MEF cells. 24 h 

after transfection confocal images were taken of unstimulated cells (a, c) and cells 

challenged with 0.5 pM  orexin A for 30 min (b, d). A composite of the individual pictures 

is also displayed (iii). Similar confocal images were obtained in two further experiments.
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Figure 3.20: Disruption of co-internalisation with P-arrestin 2 does not alter the 

pathways of agonist-induced internalisation of the orexin-1 receptor

VSV-G~orexin 1 receptor wild type (a, c, e, g, i) or cluster Cl mutant (b, d, f, h, j) were 

transfected into HEK293T cells along with P-arrestin 2-GFP. The receptors were then 

incubated for 30 min with anti-VSV-G-antibody labelled with CypHer-5 in the presence of 

vehicle (a, b), sucrose (0.4 M) (c, d), concanavalin A (0.25 mg/ml) (e, f), filipin (5 pg/ml) 

(g, h) or nystatin (50 pg/mY) (i, j). Subsequently orexin A was added (0.5 pM, 30 min) and 

the cells visualised. The distribution of the orexin 1 receptor (i), P-arrestin 2 (ii) and a 

composite of these images (iii) are shown. These results were confirmed in two further 

experiments.
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Figure 3.20 continued
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Figure 3.21: Internalisation of the orexin 1 receptor wild type and the cluster C l 

mutant is dependent on dynamin

The VSV-G-wild type and the VSV-G-Cl mutant form of the receptor were transiently 

transfected into HEK293T cells either alone (a), or with dominant negative dynamin (b). 

24 h post-transfection the cells were stimulated with 0.5 pM orexin A for 30 min. After 

immunostaining the receptor with the anti-VSV-G antibody, confocal images were taken to 

visualise the receptor distribution. Similar results were obtained in two further 

experiments.
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Figure 3.22: c-Src is not required for internalisation of the orexin 1 receptor wild 

type and the cluster C l mutant

The orexin 1 receptor-eYFP (i) wild type (a, b) and HA-Cl mutant-eYFP (c, d) were co­

transfected with p-arrestin 2-RFP (ii) into SYF cells using the Amaxa nucleofection 

system. 24 h after transfection the cells were stimulated with vehicle (a, c) or with 0.5 pM  

orexin A for 30 min (b, d) and confocal images taken. A composite of the individual 

pictures is also displayed (iii). Similar confocal images were obtained in two further 

experiments.
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3.12 Discussion

In the present chapter the role of the orexin 1 receptor C-terminus and (3-aiTestin 2 in the 

agonist-mediated internalisation process was evaluated. The orexin 1 receptor became 

phosphorylated and recruited p-arrestin 2  to the plasma membrane upon agonist activation 

and internalised in a p-anestin- and clathrin-dependent fashion. The receptor- P-anestin 

complex did not dissociate at the plasma membrane and was intemalised into endosomes. 

The molecular determinants that stabilised the receptor- p-airestin complex appeared to be 

a motif of three Thr and one Ser residue located at the extreme C-terminus of the orexin 1 

receptor as substitution of these residues with Ala resulted in a form of the receptor that 

bound to P-arrestin 2  with lower affinity compared to the wild type receptor. This form did 

not co-internalise with P-arrestin 2  into acidic endosomes, but instead dissociated from p- 

aixestin 2 at or near the plasma membrane. However this cluster Cl mutant still 

intemalised via clathrin-coated pits in a process dependent on P-arrestin.

It was shown that the orexin 1 receptor binds to and co-internalises with P-aiTestin 1 and 2 

in response to stimulation with orexin A (Evans et al., 2001). Previous studies have 

indicated that multiple receptor determinants in the cytoplasmic loops and the carboxyl 

terminus are involved in anestin binding (Raman et al,  1999; Puig et al,  1995; Nakamura 

et al ,  2000). In agreement with these findings truncation of the C-tail of the orexin 1 

receptor diminished the ability of the receptor to tightly bind to and to co-internalise with 

P-aiTestin 2  upon agonist stimulation, but did not prevent orexin A-mediated internalisation 

of the orexin 1 receptor. It is noteworthy that similar truncations in the C-terminus of the 

thyrotropin-releasing hormone receptor not only ablated P-amestin binding, but moreover 

inhibited receptor internalisation (Groarke et al,  2001; Hanyaloglu et al,  2001). 

Furthermore, like the parathyroid hormone receptor (Vilardaga et al,  2001), orexin 1 

receptor sequestration does not appear to require G protein activation, since the eYFP 

tagged form of the orexin 1 receptor still endocytosed in response to agonist in Gq/n knock 

out cells.

The orexin 1 receptor contains a significant number of hydroxy amino acids within its C- 

teiminus as is the case for many members of the rhodopsin family of GPCRs. These 

residues when organised in clusters are reported to provide high affinity binding sites for 

P-arrestin upon agonist stimulation of class B GPCRs (Oakley et al,  2001).

Although there are two such clusters of Ser/Thr residues present in the C-terminus of the 

orexin 1 receptor, one is at the extreme C-terminus (Cl aa 418-422) and one further
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upstream (C2 aa 393-396), only the cluster Cl at the extreme C-terminus seems to provide 

key interactions for P-aiTestin binding, since substitution of the Ser/Thr residues with Ala 

resulted in a receptor unable to bind to P-aixestin 2  with high affinity and to co-intemalise 

in a complex with P-arrestin 2 in response to agonist challenge. On the other hand 

concerted mutation of the Ser/Thr residues in cluster C2  did not alter interaction with P- 

aiTestin 2 significantly. However, in contrast to findings indicating a significant degree of 

conservation in the relative position of these clusters within the C-terminus of the 

vasopressin V2, the neurotensin 1 and the oxytocin receptors, the cluster Cl of the orexin 1 

receptor does not fulfil these criteria (Oakley et al,  2001). Further mutational analysis 

indicates that no single residue within cluster Cl is the key docking site for p-arrestin, but 

that p-aiTcstin binding requires the presence of any three residues within this cluster. 

Similar results concerning the flexibility in the C-terminal sites that are involved in high- 

affinity P-arrestin binding were obtained for the CC chemokine receptor 5 and the foimyl 

peptide receptor (Huttenrauch et al,  2002; Bennett et al,  2001). In contrast, interaction 

between the A2 B adenosine receptor and P-aiTestin, is mediated by a single Ser residue in 

the receptor C-terminal tail (Matharu et al,  2001). Since substitution of the residues in the 

cluster Cl with Ala only abolished high affinity binding of P-atxestin 2 to the receptor, 

other binding sites that are able to promote a transient interaction between the receptor and 

P-aixestin must exist. A possible site could be provided by the highly conserved DRY 

motif that is loeated at the bottom of transmembrane helix 3 of the rhodopsin-like 

receptors. This motif has been shown to play a key role in interactions between P-arrestins 

and the CC chemokine receptor 5 (Huttenrauch et al, 2002) or the N-formyl peptide 

receptor (Bennett et al ,  2000). In case of the Di dopamine receptor it is the third 

intracellular loop that serves as the P-aixestin binding domain (Kim et al, 2004).

The affinity of interactions between GPCRs and p-anestins also dictates the rate of 

receptor dephosphorylation, recycling, and resensitisation (Oakley et al,  1999). Thus high 

affinity binding of P-anestin to the receptor results in a slow reeycling rate. It might 

therefore be infeixed, that, although there was no obvious difference in the time course of 

internalisation, the cluster Cl mutant recycles and resensitises more quickly than the wild 

type form. Whether this is true for the orexin 1 receptor still remains to be shown.

The current concept of GPCR internalisation involves agonist-stimulated receptor 

phosphorylation by both second messenger-dependent protein kinases and GRKs. This in 

turn promotes binding of arrestins thereby targetting the receptor for endocytosis (Pitcher
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et ah, 1998; Bunemann et al,  1999). Agonist-induced phosphorylation has been 

demonstrated in numerous GPCRs including the P2-adrenergic, the ml and m2 muscarinic 

acetylcholine, the vasopressin V2 and the ATi and AT% angiotensin receptors (Haga et al, 

1996; Richardson et a l  1993; Inn amor ati et al,  1997; Oppermann et al ,  1996). The orexin 

1 receptor was rapidly phosphorylated in response to agonist treatment. PKA and PKC are 

implicated in the phosphorylation process since inhibition of either kinase leads to a small 

decrease in the phosphorylation signal. In addition, stimulation of either kinase directly, 

caused receptor phosphorylation, but not to the same extent as treatment of the receptor 

with the agonist. However, although PKA and PKC seem to be involved in the agonist- 

mediated phosphorylation of the orexin 1 receptor, other kinases are the major players in 

this event with GRKs being possible candidates. Other kinases that have been reported to 

phosphorylate GPCRs in response to agonist include casein kinase la , which 

phosphorylates the m3 muscarinic acetylcholine receptor (Budd et al,  2000), and casein 

kinase II in case of the thyrotropin-releasing hormone receptor (Hanyaloglu et al, 2001). 

However inhibition of casein kinase II activity had no effect on p-arrestin binding and 

internalisation of the orexin 1 receptor, ruling out an involvement of casein kinase II in 

these events. The ability of different kinases to phosphorylate the orexin 1 receptor could 

have implications for the signalling and internalisation of the receptor. For example, 

phosphorylation of the p2-adrenergic receptor by PKA switches its predominant coupling 

from Gs to Gi (Zamah et al,  2002). Similar results were reported for the mouse 

prostacyclin receptor (Lawler et al,  2001). In case of the Pradrenergic receptor, PKA- and 

GRK-mediated phosphorylation can trigger agonist-induced desensitisation and 

internalisation, but the pathway is primarily determined by the kinase that phosphorylates 

the receptor i.e., PKA-mediated phosphorylation directs internalisation via a caveolae 

pathway, whereas GRK-mediated phosphorylation directs it through clathrin coated pits 

(Rapacciuolo et al,  2003).

The orexin 1 receptor cluster Cl and cluster C2 mutants were also phoshorylated in 

response to agonist to almost the same extent as the wild type form of the receptor. These 

findings are in agreement with recent reports concerning the human prostaglandin E2 

receptor, subtype EP4. In this receptor the principal phosphorylation site is distinct from 

the cluster of Ser/Thr residues essential for agonist-induced recmitment of p-arrestin 1 

(Neuschafer-Rube et al,  2004). However, other studies do exist where these clusters of 

Ser/Thr residues clearly served as primary sites for agonist-dependent receptor 

phosphorylation. Mutation of these residues in the neurotensin-1 receptor resulted in a
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mutant form of the receptor that only became phosphorylated to 5 % in response to agonist 

compared to the wild type receptor (Oakley et al,  2001). Another example is the 

complement 5a anaphylatoxin receptor. A phosphorylation-deficient mutant of this 

receptor was still able to bind loosely to P-aixestin 2, but phosphorylation of two Ser 

residues in the C-terminus was neccessary to promote firm association with P-anestins 

(Braun et al, 2003). Similar observations were made for the parathyroid hormone receptor 

(Vilardaga et al,  2002).

Although receptor phosphorylation and subsequent P-anestin binding are clearly important 

for receptor desensitisation and internalisation there is now growing evidence that not all 

GPCRs utilise this mechanism. Recent reports indicate that not all effects of kinases on 

GPCR desensitisation involve phosphorylation of the receptor. For example attenuation of 

the metabotropic glutamate receptor 1 by GRK is phosphorylation-independent (Dhami et 

al,  2002). It has also been shown, that the parathyroid hormone receptor internalises in a 

phosphorylation independent manner (Malecz et al,  1998) and in case of the luteneising 

hoimone/choriogonadotropin receptor an Asp residue in the third intracellular loop confers 

high affinity binding to P-an'estin in the absence of phosphorylation (Mukheijee et al,  

2002). Also, the N-formyl peptide receptor still internalised in the absence of P-anestin in 

P-arrestin knock out cells (Vines et al,  2003). The m l, m3 and m4 muscarinic 

acetylcholine receptors are further examples of GPCRs that sequester independently of P~ 

arrestins (Lee et al,  1998).

As mentioned above, ablation of the C-terminus or mutation of the cluster Cl did not 

prevent agonist-induced internalisation of the orexin 1 receptor. Despite the reduced 

affinity for P-anestin 2  of the cluster Cl mutant compared to the wild type receptor, 

studies using a MEF cell line, which lacks P-anestin 1 and 2, clearly demonstrated that 

internalisation of both forms of the receptor was dependent on P-anestin. Furthermore, the 

internalisation pathway of the orexin 1 receptor in HEK293T cells seemed not to be 

affected by the reduced affinity for p-anestin 2. Treatment with hyperosmotic sucrose to 

disrupt the clathrin coat at the plasma membrane effectively inhibited endocytosis of the 

orexin 1 receptor. In contrast, inhibitors of caveolar endocytosis, such as filipin or nystatin, 

had no major effect on the endocytosis of this receptor and comparable results were 

obtained for the cluster Cl mutant. It is noteworthy that alternate pathways for 

internalisation in HEK293 cells exist. Endocytosis of the 5-hydroxytryptmaine 2A receptor 

is dependent on dynamin, but independent of p-arrestin (Gray et al,  2001; Bhatnagar et 

al,  2001). Also in the presence of dominant negative inhibitors of clathrin-mediated
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endocytosis, the angiotensin II type lA  receptor internalises via a pathway that does not 

depend on p-arrestin and dynamin (Zhang et al,  1996). Furthermore there is strong 

evidence that p-arrestins target the wild type orexin 1 receptor and the cluster Cl mutant to 

clathrin-coated pits in a dynamin-dependent manner as co-expression of each form of the 

receptor with a dominant negative mutant of dynamin resulted in complete inhibition of 

internalisation of the receptor. However both foims of the receptor still intemalised in Src- 

deficient MEF (SYF) cells. These results are in contrast to previous findings concerning 

the internalisation of the P2 -adrenergic receptor. Agonist challenge led to rapid recruitment 

of activated c-Src to the receptor, with P-aixestin 1 serving as adaptor protein. As a 

consequence, dynamin became phosphorylated and thereby activated in a c-Src-dependent 

manner and co-expression of a c-Src kinase dead mutant did indeed block dynamin 

phosphorylation and receptor endocytosis (Miller et al,  2000; Luttrell et al,  1999; Ahn et 

al,  1999). The different results described above might be due to the fact that the 

experiments were earned out in different cell lines. Consequently the experiments should 

be repeated in HEK293 cells using for example, siRNAs to knock out the different 

proteins. Interestingly, internalisation of the p2-adrenergic receptor was blocked in SYF 

cells (Huang et al,  2004).

In conclusion, it could be demonstrated that the orexin 1 receptor internalised in clathrin- 

coated vesicles in a p-aixestin- and dynamin-dependent, but G protein- and c-Src- 

independent manner. Also high affinity binding between the receptor and p-arrestin 2 is 

confetxed by a single cluster of Ser/Thr residues in the extreme end of the C-teixninus and 

substituting the residues within this cluster with Ala transforms the receptor from a class B 

to a class A GPCR.
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Chapter 4

Regulation of Orexin 1 Receptor Signalling by |3-Arrestin 2
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4.1 Introduction

The principal action of GPCRs is to transmit information about the extracellular 

environment to the interior of the cell. This is achieved through binding of a ligand to the 

receptor, which induces or stabilises an active conformation of the receptor allowing 

activation of an associated G protein. As a result of this interaction a receptor can influence 

a variety of effector systems. Upon activation the G protein a  subunit dissociates from the 

PY subunit and each subunit may regulate distinct signalling pathways. The G protein a  

subunits can be divided into four families based upon sequence similarity: as, which 

activates adenylyl cyclase and therefore protein kinase A (PKA); ai, which inhibits 

adenylyl cyclase; aq, which activates phospholipase CP (PLCP) and thus protein kinase C 

(PKC); and a l2 , which regulates the Na'̂ /H'̂  antiporter and the Rho-dependent fonnation 

of actin stress fibres. The Py subunits have been shown to be positive regulators of K -̂ 

channels, certain adenylyl cyclase isoforms, PLCP, phospholipase A2 (PLA2), 

phosphoinositide 3-kinase, and p-adrenergic receptor kinase (Clapham and Neer, 1993).

A wide variety of GPCRs are also able to activate MAPKs such as ERKl and 2 and in 

some cases thereby effect a mitogenic response (van Biesen et al,  1996a; Gutkind, 1998). 

The mechanism by which GPCRs mediate activation of ERKl and 2 have been extensively 

studied and Gi-, Gq-, and Go-mediated pathways have been described (van Biesen et al, 

1996a). In case of the Gi-mediated signals, MAPK activation is generally earned out by the 

PY subunits, which results in the activation of a c-Src family tyrosine kinase followed by 

the subsequent tyrosine phosphorylation of the same downstream adaptor proteins used by 

receptor tyrosine kinases (Scheme 1) (van Biesen et al, 1996a; Gutkind, 1998).

GPCR Gpy Tyr kinase —> She Grb2-mSos Ras —> Raf MEK MAPK

Scheme 1

The activation of MAPK by the p2 -adrenergic receptor, which couples to Gg, involves the 

PKA-dependent switch of p2-adrenergic receptor coupling to Gi rather than to Gg (Daaka et 

al,  1997). There are also reports implicating the G protein a  subunit in the stimulation of 

the MAPK pathway. The m l muscarinic acetylcholine receptor and the platelet-activating 

receptor were shown to be able to couple to Go and activate MAPK in a pathway
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depending on G^a, but not on Ras activation (Van Biesen et ah, 1996b), ERKl/2 

activation mediated by the calcium-sensing receptor requires Gi2 0 t-coupling (Holstein et 

al ,  2004). Moreover a  subunits of G12 /13 promote stress fibre formation and cellular 

transformation through another family of small GTP-binding proteins, the Rho-family 

(Buhl et al,  1995; Fromm et al,  1997). Recent evidence suggests that GPCRs linked to the 

Gq family of G proteins can also activate signalling routes through the a  subunit that are 

dependent on the functional activity of Rho (Fromm et al,  1997; Mao et al, 1998). 

However, GPCRs can activate MAPK through an additional mechanism that involves P- 

arrestins and depends on endocytosis (Daaka et al ,  1998; Barlic et al,  2000). Activation of 

the P2 -adrenergic receptor results in rapid translocation of P-amestin 1 coupled to c-Src to 

the activated receptor at the plasma membrane (Luttrell et al,  1999). The same could be 

shown for the Gq/n-coupled neurokinin-1 receptor (DeFea et al ,  2000b). In addition to 

interacting with c-Src family tyrosine kinases, P-aixestins were recently shown to directly 

interact with both MAPK and Raf-1 in response to the activation of the protease-activated 

receptor 2 (DeFea et al,  2000a).

P-arrestins not only play a role as adaptor proteins in the ERK pathway, but also in the 

other groups of MAPKs: JNKs and p38 protein kinases. McDonald et al  (2000) could 

show that P-arrestin 2 could be co-immunoprecipitated with INK 3 and that stimulation of 

the angiotensin II type lA  receptor activated JNK3 and triggered the co-localisation of P- 

arrestin 2 and active JNK3 to intracellular vesicles. Moreover p-arrestin 2 seems to be 

critically involved in CXCR4-mediated chemotaxis by increasing activation of the p38 

MAPK pathway via ASKl (Sun et al,  2002).

In the previous chapter it was shown, that internalisation of the orexin 1 receptor was 

dependent on P-aixestins, dynamin and clathrin and that changing the receptor affinity for 

p-anestin had no obvious effect on internalisation. The aim of this chapter was to examine 

the relative contributions of G proteins and P-anestins to the activation of the different 

MAPK pathways. Therefore 12 loop mutants deficient in G protein signalling were 

generated and firstly the effects of these mutations on P-aixestin binding and internalisation 

examined by confocal microscopy. Afterwards to assess whether and by what mechanism 

the orexin 1 receptor stimulates the ERK 1/2 MAPK pathway the wild type form of the 

receptor as well as the 1 2  loop and the cluster mutants were transiently transfected into 

HEK293T cells and the activation of ERK 1/2 in response to orexin A determined by 

examining the levels of kinase phosphorylation. In addition, the wild type receptor was
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expressed in Gq/u and also in P-aixestin 1/2 deficient MEF cells to investigate the relative 

importance of each pathway in orexin A mediated-ERKl/2 activation. To study the 

involvement of receptor endocytosis in MAPK activation, HEK293T cells transiently 

expressing wild type orexin 1 receptor were pre-treated with sucrose and concanavalin A 

before addition of orexin A. Also CHO cells stably expressing the wild type receptor were 

co-transfected with dominant negative dynamin. To investigate whether Src plays an 

important role in ERK 1/2 activation, the wild type receptor was expressed in Src-deficient 

cells and the effect on ERK 1/2 activation assessed. Also the rate of cell proliferation in 

response to stimulation of the wild type and the cluster Cl mutant receptor was 

determined. Finally the implications of receptor stimulation, either of the wild type or the 

cluster and 12 loop mutants, on JNK and p38 MAPK activation was investigated, by 

examining the levels of kinase activity or phosphorylation, respectively.

4.2 Internalisation of the 12 loop mutants

Stimulation of GPCRs by ligand binding leads to activation of downstream signalling 

cascades. To determine the involvement of G proteins and |3-aiTestins in transmitting the 

signal from the activated receptor to the downstream targets, G protein activation deficient 

mutants were generated. It was reported that mutation of hydrophobic residues in the 12 

loop of the ocib-adrenergic receptor and the histamine HI receptor abolishes agonist- 

mediated signal transduction by eliminating receptor-mediated activation of G proteins 

(Greasley et al,  2001; Carrillo et al,  2003). Based on these studies the following 

constructs of the orexin 1 receptor were generated as described in section 2.4.4: orexin 1 

receptor-I148E, -L152D and -I148E-L152D. To detect any effect these mutations might 

have on receptor internalisation, the different forms of the receptor N-terminally tagged 

with VSV-G were co-expressed with P-arrestin 2-GFP in HEK293T cells and sequestration 

of the immuno-labelled receptor visualised by confocal microscopy. In the absence of 

agonist, all three 1 2  loop mutants were expressed at the plasma membrane whereas P- 

anestin 2 exhibited a cytosolic distribution (Figure 4.1). The L152D orexin 1 receptor co­

internalised with p-aiTestin 2 in response to agonist-stimulation (0.5 pM orexin A for 30 

min) since the intracellular vesicles were stained yellow. However neither the I148E nor 

the I148E-L152D form of the orexin 1 receptor translocated from the plasma membrane 

into the cell after addition of 0.5 pM orexin A for 30 min. Moreover, there was little 

indication of interaction with P-aixestin 2  as no movement of p-airestin 2  was detectable
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(Figure 4.1). This suggests that these i2 loop mutants did not internalise because they failed 

to bind p-arrestin since receptor internalisation was shown to be G protein independent but 

P-aixestin-dependent (sections 3.3 and 3.9). In addition, calcium signalling studies 

performed by Laura Ormiston showed that the stimulation of the L152D mutant with 0.5 

pM orexin A, as for the wild type receptor, caused elevation of intracellular [Câ ]̂ levels 

when co-expressed with Gan in the Gq/Gn knock out, EF8 8  cells. On the other hand the 

I148E and the I148E-L152D mutant were not able to elevate intracellular [Ca ”̂̂] levels 

(Figure 4.1 a). Hence I148E and I148E-L152D, but not L152D orexin 1 receptors seem to 

be impaired in G protein activation.

4.3 Activation of the ERK MAPK cascade by the different forms of the orexin 1 

receptor

To assess the importance of G protein-coupling and P-arrestin binding in activation of 

ERK 1/2 by the orexin 1 receptor, the wild type receptor, the cluster Cl and the 1 2  loop 

mutant forms, N-terminally tagged with VSV-G, were transiently expressed in HEK293T 

cells. The next day the cells were stimulated with 0.5 pM orexin A for 0-30 min. After 

lysis of the cells with RIPA buffer, the amount of ERK 1/2 phosphorylation was assessed 

by Western-blotting using phospho-specifc ERKl/2 antibodies. Although the wild type and 

the cluster Cl mutant were both able to stimulate the production of phosphorylated forms 

of ERKl/2 in response to orexin A, clear differences in the longevity of the signal were 

noted. Phosphorylation of ERKl/2 was maintained for a significantly longer period in cells 

expressing the wild type orexin 1 receptor compared to those expressing the cluster Cl 

(Figure 4.2). On the other hand the I148E mutant was unable to activate ERKl/2 during 

the duration of the experiment (Figure 4.2). The cluster C2 mutant and the L152D mutant 

displayed a similar pattern of ERKl/2 activation compared to the wild type receptor, 

whereas the activation pattern stimulated by the I148E-L152D resembled the results 

obtained for the I148E mutant (data not shown).

To determine that the results described above were not due to lack of receptor expression, 

different amounts of the various receptor constructs tagged with VSV-G at the N-terminus 

were transiently transfected into HEK293T. 24 h after transfection, the cells were 

stimulated for 5 min with 0.5 pM orexin A before lysis with RIPA buffer. In the case of 

the wild type receptor, at low receptor expression levels the amount of detectable receptor 

was correlated to an increase in orexin A-mediated ERKl/2 activity. However, at a certain
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receptor concentration, maximal ERKl/2 activation was achieved and irrespective of the 

expressed amount of receptor, no further gain in ERKl/2 activity could be detected (Figure 

4.3). One of the functions of signalling cascades is to amplify the signal from the receptor. 

Therefore orexin A-mediated phosphorylation of ERKl/2 was detectable even when the 

receptor was not (Figure 4.3). Similar results were obtained for the cluster Cl, the cluster 

C2 and the L152D mutant of the receptor. The higher the amount of expressed receptor the 

higher the increase in ERKl/2 activity (Figure 4.3 and data not shown). In contrast, 

stimulation of the I148E and the I148E-L152D mutant only caused a modest increase of 

ERKl/2 activity above the basal level no matter the amount of receptor expressed (Figure 

4.2 and data not shown).

Since stimulation of the i2 loop mutants I148E-L152D and I148E failed to elicit any 

detectable movement of p-arrestin 2 to the plasma membrane (Figure 4.1), the inability of 

the i2 loop mutants to activate ERKl/2 could also be due to the fact that these mutants did 

not activate p-airestins. Therefore to corroborate that activation of ERKl/2 by the orexin 1 

receptor depends on G protein and not on P-aixestin, MEF wild type cells, MEF P-arrestin 

1 and 2 knock out cells and MEF Gq/n knock out (EF 8 8 ) cells were transiently transfected 

with wild type orexin 1 receptor using the AMAXA nucleofection system. Following 

agonist stimulation (0.5 |LiM orexin A, 5 min) the cells were lysed and the protein 

extracted. The amount of activated ERKl/2 was determined by immunoblotting using a 

phospho-specific ERKl/2 antibody. As depicted in Figure 4.4 A, MEF wild type cells 

expressing the orexin 1 receptor displayed a significant increase in phosphorylated ERKl/2 

in response to orexin A. Similar levels of ERKl/2 phosphorylation were observed in p- 

arrestin 1 and 2  knock out cells. In contrast stimulation of the orexin 1 receptor in a Gq/i i 

null background (EF8 8  cells) did not cause any detectable phosphorylation of ERKl/2 

above basal. Therefore EF8 8  cells were incubated with 1 pM PMA to demonstrate that 

ERKl/2 can be further activated in these cells (Figure 4.4 B). It is noteworthy that the 

basal level of ERKl/2 phosphorylation was elevated in these cells compared to the wild 

type cells. The reasons behind this observation are not clear. Taken together these findings 

indicate that G protein but not p-an'estin coupling of the receptor seems to be essential for 

ERKl/2 activation by the agonist-stimulated orexin 1 receptor. However the time course of 

activation looks as if it is influenced by the ability of the receptor to bind to p-arrestins 

with high affinity.
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4.4 Cell proliferation in response to activation of the wild type orexin 1 receptor and 

the cluster C l mutant

p-aixestins are reported to facilitate GPCR-stimulated ERKl/2 activation by functioning as 

scaffolds. As a functional consequence of the cytosolic retention of phospho-ERKl/2, 

ERKl/2-dependent cell proliferation is hindered since ERKl/2 re-localisation to the 

nucleus appears to be an important step for cell cycle re-entry (Tohgo et at, 2002; Tohgo 

et al,  2003; Brunet et al,  1999).

To determine whether the stability of the receptor-p-aixestin interaction and the sustained 

phosphorylation of ERKl/2 mediated by the wild type orexin 1 receptor had any 

consequence on orexin A-induced cell proliferation, HEK293T cells were transiently 

transfected with VSV-G-orexin 1 receptor wild type or cluster Cl mutant cDNAs. The 

cells were plated in 96 well plates 24 h post-transfection and incubated for another 24 h in 

the absence of foetal bovine serum and orexin A, the presence of 10 % foetal bovine serum 

or the presence of 10 % foetal bovine serum and 0.5 fxM orexin A. The preliminary results 

shown in Figure 4.5 indicate that the wild type foixn of the receptor failed to elicit any 

detectable proliferative response to orexin A, whereas the cluster Cl mutant displayed a 

small, but significant increase in cell proliferation above that produced by FBS. It is 

therefore possible that activation of the wild type orexin 1 receptor results in retention of 

activated ERKl/2 in the cytosol whereas a small fraction of phospho-ERKl/2 seems to be 

able to translocate to the nucleus in response to activation of the cluster Cl mutant. 

However this is only a suggestion at this point and still needs to be proven experimentally.

4.5 Effects of inhibitors of endocytosis on orexin 1 receptor-mediated ERKl/2 

phosphorylation

The fact that many GPCRs undergo ligand-induced endocytosis via a clathrin/dynamin- 

mediated process has led to the assumption that MAPK activation depends on receptor 

endocytosis (Lefkowitz 1998). However it has emerged in the meantime that the 

requirement of receptor endocytosis for MAPK activation is not universal since several 

receptors have been shown to activate MAPK independently of internalisation (DeGraff et 

al,  1999; Le et al, 1999; Whistler et al,  1999). To examine whether receptor endocytosis 

was required for activation of ERKl/2 by the orexin 1 receptor the effects of three different 

inhibitors of orexin 1 receptor sequestration, hypertonic sucrose, concanavalin A and
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dominant negative dynamin, were determined. HEK293T cells were transiently transfected 

with the orexin 1 receptor and the cells pre-treated with 0.45 M sucrose for 30 min before 

addition of orexin A (0.5 pM) for 5 min. Figure 4.6 shows that hypertonic sucrose had no 

effect on the levels of ERKl/2 activation by the orexin 1 receptor. In contrast incubation of 

the cells with 0.25 mg/ml concanavalin A for 30 min prior to agonist challenge (0.5 pM 

orexin A, 5 min) inhibited orexin 1 receptor-mediated ERKl/2 activation by 76 % ± 8  

(Figure 4.6). Co-expression of N272 dynamin in CHO cells stably expressing the HA- 

orexin 1 receptor also blunted the ERKl/2 response to orexin A (0.5 pM for 5 min) (Figure 

4.7). Similar to concanavalin A, dominant negative dynamin reduced ERKl/2 

phosphorylation by 71 % ± 5. Taken together, these data suggest that an intact endocytic 

pathway is required for receptor-mediated activation of ERKl/2.

4.6 Involvement of Src in ERK MAPK activation by the orexin 1 receptor

The mechanism by which GPCRs activate the MAPK pathway seems to depend on the 

receptor and cell type. Some of these activation pathways involve tyrosine kinases (Dikic 

and Blaukat, 1999). To investigate the role of Src in signalling of the orexin 1 receptor, the 

VSV-G tagged orexin 1 receptor was transiently transfected into SYF cells using the 

Amaxa nucleofection system. Treatment of the cells with 0.5 pM orexin A for 5 min led to 

increased activity of ERKl/2 (Figure 4.8). Therefore the orexin 1 receptor seems to 

activate ERKl/2 by a mechanism that does not involve Src family tyrosine kinases.

4.7 Activation of the JNK MAPK pathway

Another group of MAPKs are the JNKs, which are also refeixed to as SAPKs since they 

can be activated by environmental stress such as UV light and hyperosmotic shock and 

also by cell surface receptors inlcuding tyrosine kinase receptors, cytokine receptors and 

GPCRs. GPCRs can activate JNK not only through G proteins but also through P-anestin 2 

(Marinissen and Gutkind, 2001)

To determine whether stimulation of the orexin 1 receptor leads to activation of JNKs and 

if so by what pathway, the cDNAs encoding the wild type form, the cluster Cl and the 

three different i2 loop mutants were transiently transfected into HEK293T cells. Following 

addition of 0.5 pM orexin A for 0-60 min and 0.3 M sorbitol for 30 min as positive control, 

the cells were lysed and the activity of JNK measured in an in vitro Idnase assay using a
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GST fusion protein containing c-Jun as substrate which is phosphorylated by JNK on 

Ser63 and Ser?3. Figure 4.8 shows that stimulation of the wild type orexin 1 receptor with 

agonist for 30 min caused maximal activation of JNK, which was maintained for another 

15 min after which the level of kinase activity started to decline. None of the mutants 

tested displayed any significant activation of JNK above basal during the time course of 

the experiment (Figure 4.9 and data not shown).

To detemiine whether the results described above are caused by problems in achieving 

high enough receptor expression, HEK293T cells were transiently transfected with 

different amounts of the various cDNAs and the cells then incubated with 0.5 pM orexin A 

for 30 min. Figure 4.10 (and data not shown) illustrates that stimulation of any form of the 

receptor resulted in activation of JNK. Moreover the amount of active JNK appeared to be 

dependent on the receptor expression levels. Unfortunately, the lysis buffer used was not 

strong enough to extract the receptor and therefore it was impossible to determine the 

amount of receptor present in the individual samples. Therefore the results depicted above 

are inconclusive and might be explained by the fact that receptor expression levels were 

indeed too low.

4.8 Activation of the p38 MAPK pathway

p38 protein kinases are the third group of MAPKs and like the JNKs they too belong to the 

class of SAPKs. Although they are also activated by environmental stress they are 

regulated by different MAPKKKs and p38 can be turned on independently of JNK 

(Derijard et al, 1995; Raingeaud et al ,  1996). Just as for the ERK MAPK pathway GPCRs 

can induce p38 kinase activity. Depending on the GPCR this activation can be mediated by 

the py-subunit complex or the a-subunit of heterotrimeric G proteins (Yamauchi et al,  

1997). As for the ERKl/2 and JNK pathway there are reports implicating p-aixestin 2 in 

playing a crucial role in the activation of this kinase pathway by GPCRs (Sun et al,  2002). 

The same cell lysates used to measure ERKl/2 activation (section 4.3) were probed with a 

phospho-specific p38 antibody to examine p38 stimulation. No foixn of the receptor tested 

showed any detectable activation of p38 under the same conditions where ERKl/2 were 

clearly activated (Figure 4.11 A and data not shown). To rule out any problems with the 

experimental set up the cells were stimulated with 250 ng/ml anisomycin for 5 min as 

positive control. Phospho p38 could be detected under these conditions proving the 

experimental procedure to be working (Figure 4.11 B).
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Figure 4.1: Internalisation of the i2 loop mutants with p-arrestin 2

HEK293T cells were transiently co-transfected with plasmid DNA encoding VSV-G- 

orexin 1 receptor I1488E, -L152D, or -I148E-L152D and P-arrestin 2-GFP. 24 hr later the 

cells were stimulated with vehicle (panel 1, 3 and 5) or 0.5 pM orexin A (panel 2, 4 and 6) 

for 30 min in the presence of anti-VSV-G antibody and visualised under the confocal 

microscope following permeabilisation and addition of the Alexa 594 secondary antibody. 

The distribution of the orexin 1 receptor (i), P-arrestin 2 (ii) and a composite of these 

images (iii) are shown. Each image depicts a representative confocal microscopic image 

from one of three separate experiments.

Figure 4.1 a: Elevation of intracellular [Ca  ̂ ] levels by the i2 loop mutants

N-terminally VSV-tagged forms of the 12 loop mutants of the orexin-1 receptor were 

transfected along with Gan into Gaq/Gan knock-out EF88 cells. The effect of 0.5 pM 

orexin À on intracellular [Câ ]̂ was then recorded in individual cells. Data are pooled 

from 6 cells expressing each construct.
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Figure 4.2: Time course of orexin A-induced ERKl/2 activity

A. HEK293T cells transiently expressing the wild type orexin 1 receptor, the Cl mutant, or 

the I148E mutant N-terminally tagged with VSV-G for 24 h were serum starved for 2 hr 

and then stimulated with 0.5 p.M orexin A for the indicated times. ERKl/2 activity was 

then detected using phospho-specific anti-ERKl/2 antibodies (P-ERKl/2). Expression 

levels of ERKl/2 were monitored using antibodies directed against total population of 

ERKl/2 (ERKl/2). This experiment was repeated twice with a similar result each time.

B. ERKl/2 phosphorylation is expressed as % of the maximum P-ERKl/2 signal in each 

experiment and represents the mean ± S.E.M. from four separate experiments, p  < 0.05.
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Figure 4.3: Activation of ERKl/2 by the different receptor mutants

HEK293T cells were transfected with the indicated amounts of plasmids for VSV-G- 

orexin 1 receptor wild type, -Cl cluster mutant, -I148E. The cells were serum starved for 2 

hr and stimulated with 0.5 pM orexin A for 5 min. Activation of ERKl/2 was evaluated by 

immunoblot analyses using anti-phospho specific ERKl/2 antibodies (P-ERKl/2). To 

show equal loading, membranes were stripped and reprobed with antibody against total 

ERKl/2 (ERKl/2). Similar results were obtained in two further experiments.
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Figure 4.4: Activation of ERKl/2 by the orexin 1 receptor is G protein-dependent

A, MEF wild type cells, MEF P-arrestin 1 and 2 knock out cells and MEF Gq/n knock out 

cells (EF88) were transiently transfected with VSV-G-orexin 1 receptor. Following serum 

starvation for 2 h the cells were stimulated with 0.5 pM orexin A for 5 minutes and whole 

cell lysates prepared. B, EF88 cells transiently transfected with VSV-G-orexin 1 receptor 

were serum starved for 2 h and stimulated for 5 min with 1 pM PMA. Activation of 

ERKl/2 was measured by immunoblot using a polyclonal rabbit antibody specific to the 

phosphorylated form of ERKl/2 (P-ERKl/2). To show equal loading, membranes were 

stripped and reprobed with antibody against total ERKl/2 (ERKl/2). The data shown are 

representative of three independent experiments.
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Figure 4.5: Effect of the stability of receptor-p-arrestin binding on orexin A-

stimulated cell proliferation

HEK293T cells transiently expressing VSV-G-orexin 1 receptor wild type or Cl mutant 

were incubated for 24 h in media without FBS (NS), in media containing 10 % FBS (FBS) 

and media containing 10 % FBS and 0.5 pM orexin A (orexin A) prior to determination of 

cell proliferation using the WST-1 reagent (section 2.8.3). Results are expressed as -fold 

increase relative to cells stimulated with media in the absence of any additions. The 

experiments were performed in triplicates and independently repeated three times.
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Figure 4.6: Effect of concanvalin A and sucrose on ERKl/2 activation by the orexin

1 receptor

A, HEK293T cells transiently expressing VSV-orexin 1 receptor were serum starved for 2 

h and pre-treated with 0.45 M sucrose or 0.25 mg/ml concanavalin A for 30 min before 

addition of 0.5 pM orexin A for 5 min. Activation of ERKl/2 was determined using 

phospho-specific ERKl/2 antibodies (P-ERKl/2). Expression levels of ERKl/2 were 

monitored using antibodies directed against total population of ERKl/2 (ERKl/2). B, The 

levels of P-ERKl/2 were quantified and normalised to the P-ERKl/2 signal induced by 

orexin A. The graphs shown represent the mean ± S.E. of three independent experiments.
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Figure 4.7: Involvement of dynamin in orexin 1 receptor mediated ERKl/2

activation

A, CHO cells stably expressing HA-orexin 1 receptor were transiently transfected with 

vector or N272 dynamin and grown for 24 h. Cells were serum starved for 2 h and then 

treated or not with 0.5 pM orexin A for 5 min. The activation of ERKl/2 was determined 

by immuno-blotting with a phospho-ERKl/2-specific antibody. To check for equal protein 

loading, membranes were stripped and reprobed with total ERKl/2 antibody. The 

expression level of the receptor was assessed by Western blot analysis of the same samples 

using anti-HA antibody. B, The effect of N272 dynamin on orexin A-induced ERKl/2 

activation was determined by normalising the P-ERKl/2 signal to the response induced by 

orexin A in cells transfected with vector. Data shown are the mean ± S.E. of three 

independent experiments.
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Figure 4.8: Src-family tyrosine kinases are not required for orexin A-mediated

ERKl/2 activation

SYF cell were transiently transfected with VSV-G-orexin 1 receptor using the Amaxa 

nuclefection system. 24 h later the cells were deprived of serum for 2 h and treated with 

vehicle or 0.5 pM orexin A for 5 min. Whole cell lysates were prepared and the activation 

of ERKl/2 measured by immunodetection using a phospho-ERKl/2 antibody. To show 

that similar amounts of cell lysates were used in each lane, membranes were stripped and 

reprobed with a total ERKl/2 antibody. This experiment was repeated twice.
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Figure 4.9: Time course of JNK MAPK activation by the orexin 1 receptor

Insert, HEK293T cells transiently expressing the different forms of the orexin 1 receptor 

N“terminally tagged with VSV-G were serum starved for 2 h and stimulated with 0.5 pM 

orexin A or 0.3 M sorbitol for the indicated times. Reactions were stopped using lysis 

buffer and JNK MAPK activity determined by an in vitro kinase assay (section 3.5). 

Diagram, graphic representation of the data after normalising the phospho-c-jun levels to 

total c-jun. Similar results were obtained in three further experiments.
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Figure 4.10: Activation of JNK MAPK by the orexin 1 receptor

HEK293T cells were transfected with the indicated amounts of the VS V-wild type orexin 1 

receptor, -Cl mutant, -I148E mutant, -L152D mutant, or -I148E-L152D mutant and serum 

starved for 2 hr before addition of 0.5 pM orexin A for 30 min. As positive control the 

cells were treated with 0.3 M sorbitol. The reaction was terminated by addition of lysis 

buffer and JNK MAPK activity was measured by the phosphorylation of substrate GST-c- 

jun that was detected by autoradiography as described in section 2.5. Data are 

representative of three experiments.
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Figure 4.10
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Figure 4.11: Activation of p38 MAPK by the orexin 1 receptor over time

A, HEK293T cells were transiently transfected with expression vector encoding the 

different forms of the orexin 1 receptor tagged with VSV-G at the N-terminus. After serum 

starving the cells for 2 h 0.5 pM orexin A was added for the times indicated. 5, HEK293T 

transiently expressing VSV-G-orexin 1 receptor wild type were serum starved for 2 h and 

incubated with 250 ng/ml anisomycin for 5 min. The cells were solubilised and extracts 

were subjected to immunoblotting by using anti-phospho-p38 MAPK antibodies (P-p38) to 

evaluate the activation of p38. After stripping and blocking, the same blots were reprobed 

with anti-p38 antibodies to check for total protein content (p38). Results are representative 

of three independent experiments.
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4.9 Discussion

The role of (3-arrestins in agonist-mediated receptor desensitisation and internalisation, by 

uncoupling the receptor from heterotrimeric G proteins and thereby targetting it for 

endocytosis, has been well established. However evidence has been accumulating to 

indicate that p-arrestins also function as adaptors, localising signalling proteins to ligand 

activated GPCRs and initiating additional p-arrestin-dependent signalling events. Thus, p- 

aiTestins appear not only to be involved in termination of GPCR activity, but also in the 

initiation of GPCR signalling. The finding that P-aiTestins can interact directly with 

enzymatic effectors such as Src family tyrosine kinases (DeFea et al, 2000 b; Miller et al, 

2000; Luttrell at al, 1999) as well as components of the ERKl/2 (Luttrell et al,  2001; 

Tohgo et al ,  2002) and JNK3 (McDonald et al,  2000; Scott et al,  2002; Miller et al,

2001) MAPK modules suggests that P-arrestins may serve in a variety of signalling roles. 

GPCRs are able to employ several distinct mechanisms to activate the ERKl/2 cascade 

(Pierce et al, 2001). For example the erythropoietin receptor stimulates ERKl/2 via a Gi 

protein py-subunit-initiated pathway (Guillard et al,  2003) and the Gg-coupled serotonin 

receptors 5-HT4(b> and 5-HT7(a) activate ERKl/2 in a PKA-dependent manner (Norum et 

al,  2003). The neurokinin 1 receptor on the other hand activates ERKl/2 by p-arrestin- 

dependent mechanisms (DeFea et al, 2000a). To delineate the pathway of ERKl/2 MAPK 

activation by the orexin 1 receptor, i2 loop mutants unable to activate G proteins were 

created and the ability of the wild type, the cluster Cl mutant and also of the i2 loop 

mutants to regulate ERKl/2 activation was compared. Stimulation of the 12 loop mutants 

I148E and I148E-L152D with agonist did not cause any detectable translocation of p- 

arrestin to the plasma membrane or internalisation of the receptor. The L152D mutant on 

the other hand behaved in a similar fashion to the wild type receptor. These findings 

together with the Ca data show only the I148E and I148E-L152D mutants but not the 

L152D mutant to be impaired in G protein activation. The wild type orexin 1 receptor, the 

L152D mutant as well as the cluster Cl and C2 mutants were able to activate ERKl/2 in 

response to agonist challenge. However, stimulation of the wild type receptor, the L152D 

and the cluster C2 mutant resulted in prolonged phosphorylation of ERKl/2 compared to 

the cluster Cl mutant. Moreover preliminary results indicate that the cluster Cl mutant was 

weakly, but significantly mitogenic, whereas the wild type receptor failed to elicit a 

detectable mitogenic response. However, more experiments need to be carried out to 

support this observation. These results coixespond well with recent findings showing that
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G protein-independent and p-aixestin-dependent activation of ERKl/2 by the angiotensin II 

type lA  receptor does not induce nuclear translocation of ERKs and therefore no 

proliferation, and the activated ERKs phosphorylate only their cytoplasmic targets (Luttrell 

et al, 2001; Seta et al,  2002; Tohgo et al,  2002). Interestingly P-arrestin 1 and GRK2 

belong to the cytoplasmic targets of ERKl/2 (Lin et al,  1999; Pitcher et al,  1999; Elorza 

et al,  2003). In both cases, phosphorylation exerts an inhibitory effect on protein function. 

So the P-arrestin-ERK complexes might provide a negative feedback mechanism to control 

GPCR singalling. It is also noteworthy that the extent of P-aixestin-bound ERK activation 

seems to be regulated by the stability of the receptor-P-arrestin complex which in turn is 

controlled by the presence of clusters of Ser/Thr residues within the receptor C-terminus 

(Tohgo et al,  2003). However the situation might be yet more complicated due to the fact 

that P-anestin I and 2 seem to have reciprocal effects on ERKl/2 activation by the 

angiotensin II type lA  receptor (Ahn et al,  2004), In this context it might be interesting to 

see whether the same is true for the orexin 1 receptor as this receptor is clearly able to 

interact with both p-arrestin proteins (Evans et al,  2001).

In contrast to the wild type orexin 1 receptor, the L152D, the cluster Cl and the cluster C2 

mutant, the i2 loop mutants I148E and I148E-L152D were unable to cause any significant 

activation of ERKl/2. This could be due to a few factors. Firstly these mutants were shown 

to be unable to activate G proteins. Secondly these mutants did not internalise in response 

to agonist challenge and thirdly they did not cause translocation of P-arrestin from the 

cytosol to the plasma membrane. Inhibition of orexin 1 receptor endocytosis using 

hypertonic sucrose, concanavalin A or N272 dynamin indicates that the clathrin-mediated 

internalisation pathway is not required for receptor-stimulated activation of ERKl/2, sincq 

N272 dynamin and concanavalin A attenuated ERKl/2 phosphorylation, whereas 

hypertonic sucrose had no effect, indicating that internalisation via caveolae might play a 

role. These findings are somewhat surprising since the orexin 1 receptor was shown to 

internalise via clathrin coated-vesicles. A scenario is possible where receptor 

internalisation per se is not important for ERKl/2 activation, but an intact internalisation 

pathway is. This hypothesis is supported by reports suggesting that dynamin-regulated 

endocytosis of MAPKK, rather than activated receptors, is a critical step in the MAPK 

activation cascade (Kranenburg et al,  1999). Similar findings were described for the 

thyrotropin-releasing hormone receptor with the difference that ERKl/2 phosphorylation 

required clathrin- and not caveolae-dependent endocytosis (Smith et al,  2001). Receptor 

endocytosis has also been shown to be important for stimulation of the ERK MAPK
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cascade by the Ô-opioid receptor (Ignatova et al, 1999) and the ml muscatinic 

acetylcholine receptor (Vogler et a l  1999). In case of the calcium sensing receptor 

ERKl/2 activation is dependent on dynamin- and P-anestin-independent receptor 

internalisation (Holstein et al,  2004), whereas ERKl/2 stimulation by the m3 muscarinic 

acetylcholine receptor is independent of receptor internalisation since concanavalin A and 

cytochalasin did not ablate signalling of the receptor to ERKl/2 (Budd et al,  1999). It is 

also noteworthy that in the case of the gonadotropin-releasing hormone receptor, disruption 

of lipid rafts by removal of cholesterol leads to a loss of receptor-mediated ERKl/2 

activation and constitutive localisation of the receptor to lipid rafts was shown to be 

necessary for signalling of the receptor to ERKl/2 (Navratil et al, 2003). Maybe the 

orexin 1 receptor like the gonadotropin-releasing hormone receptor is similarly localised in 

such membrane microdomains. However more experiments are needed to study the 

possible involvement of caveolae in orexin 1 receptor-mediated ERKl/2 activation.

In agreement with recent findings for the p2-adrenergic receptor (Huang et al,  2004) 

stimulation of the orexin 1 receptor expressed in SYF cells resulted in activation of 

ERKl/2. Hence in MEF cells Src family kinases do not seem to be essential for orexin 1 

receptor-mediated stimulation of ERKl/2.

To determine whether ERKl/2 activation by the orexin 1 receptor was mediated by G 

proteins, p-anestins or both, the orexin 1 receptor stimulated activation of ERKl/2 in MEF 

wild type cells, P-aixestin 1 and 2 knock out cells and in Gq/n knock out cells was 

investigated. Agonist challenge of the orexin 1 receptor resulted in phosphorylation of 

ERKl/2 in MEF wild type and P-anestin 1 and 2 knock out cells, but not in Gq/n knock 

out cells. This contrasts with studies for the angiotensin II type lA  receptor reporting that 

ERKl/2 is activated by p-anestin- and G protein-dependent pathways (Wei et al, 2003). 

Therefore in case of the orexin 1 receptor p-aixestins seem to play an important role in the 

modulation G protein-dependent activated ERKl/2 by prolonging activation.

In addition to acting as an adaptor protein in the ERKl/2 MAPK pathway P-arrestin 2 has 

also been shown to function as a scaffold to enhance signal transmission to the MAPK 

JNK3 therefore effectively bringing the MAPK activity under the control of the 

angiotensin II type lA  receptor (McDonald et al, 2000). Moreover specific residues in the 

C-tenninus of P-arrestin 2 are involved in the assembly of the multiprotein complex that 

contains JNK3 (Miller et al,  2001). However, GPCRs can also stimulate JNK MAPK in a 

pathway that involves G proteins. In case of the cholecystokinin B receptor addition of
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gastrin leads to the activation of the JNK pathway by a mechanism involving certain 

protein kinase C isoforms and Src family kinases (Dehez et al., 2002). Similar results were 

obtained for the gonadotropin-releasing hormone receptor (Levi et al ,  1998). Stimulation 

of the wild type orexin 1 receptor resulted in JNK activation, which was maximal after 30 

min of agonist addition. JNK kinase was also activated in response to agonist challenge of 

the cluster Cl and the i2 loop mutants. Unfortunately, the time course of JNK activation 

could not be determined for these mutants. These results indicate JNK activation to be 

independent of G proteins and receptor endocytosis. However an involvement of p- 

arrestins cannot be ruled out. Although the i2 loop mutants did not cause translocation of 

P-arrestin 2 from the cytosol to the plasma membrane in response to orexin A, p-aixestins 

might still be activated in these cells. In support of this theory is the finding that G protein 

activation does not seem to be necessary for the binding of p-arrestin to the activated 

receptor since the orexin 1 receptor was shown to internalise in Gq/n knock out cells. 

Therefore it could be possible that p-arrestins were not able to bind to the receptor at the 

plasma membrane because these mutants did not release G proteins once bound. Hence 

additional experiments are necessary to examine whether P-aixestins ai'e involved in 

activation of JNK MAPK in response to the orexin I receptor. One possibility would be to 

determine the activation of JNK MAPKs by the orexin 1 receptor in P-arrestin 1 and 2 

knock out cells.

p38 is another member of the family of MAPKs, that was shown to be activated in 

response to stimulation of GPCRs. For example addition of the GPCR agonist thrombin to 

vascular smooth muscle cells causes activation of p38 MAPK (Ghosh et al,  2002). 

Furthermore stimulation of the CXCR4 chemokine receptor resulted in activation of p38 

MAPK in a pathway dependent on P-arrestin 2 (Sun et al,  2002). However none of the 

constructs of the orexin 1 receptor tested caused any significant increase in p38 MAPK 

activation hence excluding an involvement of the MAPK pathway in the signalling of the 

orexin 1 receptor.

In summary, the present chapter demonstrates that stimulation of the orexin 1 receptor 

results in ERKl/2 phosphorylation by a mechanism depending on G-protein activation and 

an intact endocytic pathway, but not necessarily receptor sequestration. Although P- 

arrestins did not seem to be directly involved in the stimulation of ERKl/2 by the receptor, 

they seem to play an important role in controlling the time course and spatial distribution 

of ERKl/2 activity. Furthermore agonist challenge of the orexin 1 receptor also caused
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activation of the JNK MAPK cascade whereas no effect on the p38 MAPK pathway could 

be observed.
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Final discussion

GPCRs transduce extracellular signals that modulate a wide variety of biological processes 

including neurotransmission, taste, smell and hormonal control. Agonist activation of most f 

GPCRs is quickly followed by receptor desensitisation. Rapid desensitisation is a result of 

receptor phosphorylation by GRKs or second messenger-dependent kinases. This 

phosphorylation event promotes the interaction with P-arrestins thereby uncoupling the 

receptor from its cognate G protein (Ki'upnick and Benovic, 1998). P-anestins also target 

GPCRs for endocytosis via clathrin-coated pits by binding to components of the 

internalisation machinery such as clathrin and the clathrin adaptor AP2 (Goodman et al,

1996; Laporte et al,  2000). Two classes of GPCRs can be distinguished on the basis of 

their internalisation properties. Class A receptors, for example the P2~adrenergic receptor, 

prefer binding to P-anestin 2 over P-anestin 1. The receptor and P-aixestin co-localise in 

clathrin-coated pits at or near the plasma membrane and rapidly dissociate upon 

internalisation. Class B receptors like the vasopressin V2 receptor on the other hand have

no preference for P-anestin 2 over p-anestin 1. The receptor and P-arrestin form stable 

complexes that can be found in endosomes. The factor determining into which class a 

given GPCR fits seems to be clusters of hydroxy residues within the receptor C-terminus. 

Studies conducted in recent years indicate that P-anestins may not only be involved in the 

termination of GPCR signalling but also function as adaptor proteins coupling GPCRs to 

alternative, G protein-independent signalling pathways. The finding that P-anestins can 

interact with different signalling proteins such as Src kinases (Luttrell et al,  1999) and 

components of the ERKl/2 (DeFea et al,  2000a) and JNK3 (McDonald et al,  2000) 

MAPK cascades suggests that p-anestins may be involved in a variety of signalling 

pathways.

The aim of the present thesis was to investigate the involvement of P-aixestins in the 

regulation of orexin 1 receptor internalisation and signalling. Orexins are of therapeutical 

interest as they play a pivotal role in the regulation of the sleep-wake cycle, energy 

metabolism and neuroendocrine function. They also seem to be involved in influencing 

arterial pressure and other cardiovasculai’ factors. In addition these neuropeptides are 

implicated in neurodegeneration and nociceptive processing. However little is known 

about the cellular mechanisms underlying these effects.

Stimulation of the orexin 1 receptor with orexin A resulted in trafficking of p-arrestin 2 

from the cytosol to the plasma membrane and co-intemalisation of these two proteins via
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clathrin-coated pits into acidic endosomes. In addition internalisation of the orexin 1 

receptor was shown to be G protein independent, as the receptor still internalised in Gq/n 

mouse embryonic knock out cells. Furthermore addition of agonist caused rapid receptor 

phosphorylation in a process partly mediated by PKC and PKA.

Mutational analysis of the orexin 1 receptor C-terminus identified a cluster of hydroxyl 

residues consisting of three Thr and one Ser residue in the distal portion of the carboxyl 

tail, Thr4I8, Ser419, Thr421, and Thr422 (cluster Cl), that was responsible for high 

affinity interaction between the receptor and P-arrestin 2. Disruption of this cluster by 

replacing any two of the four hydroxyl residues with Ala ablated co-internalisation of the 

receptor and p-arrestin 2 into acidic endosomes in response to orexin A. However in 

contrast to recent studies that describe these clusters of hydroxyl residues to serve as 

primary sites of receptor phosphorylation upon agonist challenge (Oakley et al,  2001), 

there was no detectable difference in the phosphorylation levels of the wild type receptor 

and the cluster Cl mutant after addition of orexin A. Similar findings were reported for the 

human prostaglandin E2 receptor, subtype EP4 (Neuschafer-Rube et al,  2004).

Although mutation of the Ser/Thr residues in cluster Cl to Ala abolished co-intemalisation 

of the receptor and P-arrestin 2, it had no effect on the endocytic pathway. Internalisation 

of the wild type receptor and the cluster Cl mutant was ablated in P-arrestin 1 and 2 mouse 

embryonic fibroblast knock out cells. Moreover pre-treatment of the cells with either 

hypertonic sucrose or concanavalin A blocked receptor endocytosis whereas filipin or 

nystatin had no effect. Also co-expression of dominant negative dynamin (N272 dynamin) 

with either form of the receptor inhibited receptor sequestration. However receptor 

internalisation seemed to be independent of Src family kinases. Taken together these 

results indicate that the wild type receptor as well as the cluster C l mutant internalised via 

clathrin coated pits in a dynamin- and P-arrestin-dependent, but Src- and G protein- 

independent manner.

Stimulation of the orexin 1 receptor also lead to activation of the ERK MAPK cascade in a 

pathway depending on endocytosis since pre-treatment of the cells with concanavalin A or 

CO-expression of N272 dynamin reduced orexin A-induced phosphorylation of ERKl/2. 

Similai' observations were reported for the P2-adrenergic receptor and the m l muscarinic 

acetylcholine receptor (Pierce et al,  2000; Vogler et al,  1999). Surprisingly, hypertonic 

sucrose did not inhibit ERKl/2 activation. These results imply that a caveolae-mediated 

internalisation pathway is required for orexin A-stimulated ERKl/2 activation but not 

necessarily clathrin-mediated receptor endocytosis. Results obtained in MEF P-arrestin 1
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and 2 knock out cells support this idea, since ligand stimulation of the orexin 1 receptor 

activated ERKl/2 while receptor internalisation was blocked in these cells. As described 

for the p2-adi'energic receptor (Huang et al,  2004) ERKl/2 stimulation by the orexin 1 

receptor was independent of Src family kinases. However, in contrast to the orexin 1 

receptor internalisation of the p2~adrenergic receptor was impaired under these conditions. 

Since dynamin seemed to be required for receptor sequestration as well as orexin A- 

mediated ERKl/2 activation, an additional mechanism to activate dynamin apart from the 

one described for the p2-adi*energic receptor depending on Tyr phosphorylation by c-Src 

(Ahn et al, 1999) must, at least in MEF cells, exist. An alternative explanation could be 

that the orexin 1 receptor internalises via a different pathway independent of dynamin in 

SYF cells. Additional experiments ought to be cai’ried out to test which scenario is true. 

Similai' levels of ERKl/2 activation in response to orexin A could be observed for the 

cluster Cl mutant. However phosphorylation of ERKl/2 was significantly longer when the 

wild type orexin 1 receptor was stimulated compared to experiments performed with the 

cluster Cl mutation. In addition preliminary observations imply that activation of the 

cluster Cl mutant in the presence of FBS resulted in a small mitogenic response. No 

increase in cell proliferation could be detected for the wild type orexin 1 receptor under the 

same conditions. This could be due to the fact that orexin A stimulation results in the 

generation of a functionally distinct cytosolic pool of activated ERKl/2. Similar findings 

have been reported for the angiotensin II type lA  receptor showing that over-expression of 

(3-arrestins facilitates the angiotensin-stimulated activation of ERKl/2 MAPK activity 

implicating P-anestins as being a major component in ERK MAPK activation (Tohgo et 

al,  2002). However binding of P-anestins to ERKl/2 inhibits ERK-dependent 

transcription as ERK coupled to p-anestins is retained within the cytosol (Tohgo et al,

2002). One role of cytosolic retention of activated ERKl/2 could be to target ERKl/2 to 

cytoplasmic substrates involved in the regulation of GPCR signalling such as P-anestin 1 

and GRK2 (Lin et al ,  1999; Pitcher et al,  1999; Elorza et al,  2003). Though, additional 

experiments need to be canied out to test whether this is also the case for the orexin 1 

receptor.

In contrast, ERKl/2 did not become activated in response to agonist challenge of mutant 

forms of the orexin 1 receptor unable to activate G proteins. This observation is supported 

by experiments carried out in Gq/n and P-anestinl/2 knock out cells showing, that ERKl/2 

phosphorylation was dependent on G protein activation and independent of p-arrestins. 

This is inconsistent with findings described by Seta et a l  (2002). They have recently
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reported that a mutant form of the angiotensin II type lA  receptor impaired in G protein 

coupling was still able to induce ERKl/2 activation.

In addition to activation of ERKl/2, stimulation of the orexin 1 receptor also led to 

phosphorylation of JNK MAPKs by an unknown mechanism. The p38 MAPK on the other 

hand did not seem to play a role in orexin 1 receptor signalling.

In summary, the orexin 1 receptor, a class B GPCR, co-intemalised rapidly with P-arrestin 

2 in response to agonist into acidic endosomes via clathrin-coated pits in a p-arrestin- and 

dynamin-dependent, but G protein- and Src-independent manner. Mutation of a cluster of 

Ser/Thr residues at the extreme C-terminus (cluster C l) of the receptor transformed the 

orexin 1 receptor to a class A GPCR unable to co-intemalise with P-arrestins. Orexin 1 

receptor stimulation led to activation of the ERK MAPK cascade and this activation was 

dependent on G protein activation and an intact endocytic pathway but not on Src, p- 

arrestin or receptor internalisation. Although without effect on the internalisation pathway, 

the C-terminally mutated form of the orexin-1 receptor was unable to sustain 

phosphorylation of ERKl/2 to the same extent as the wild type receptor. These studies 

indicate that a single cluster of hydroxy amino acids within the C-terminal seven amino 

acids of the orexin 1 receptor determines the sustainability of interaction with P-arrestin 2. 

They also imply that P-arrestins by serving as adaptor proteins play an important role in 

defining the kinetics and spatial distribution of orexin 1 receptor-mediated, G protein- 

dependent ERK MAPK activation.

The findings described in this thesis coixelate well with the literature. The current model of 

GPCR desensitisation and internalisation involves receptor phosphorylation and P-arrestin 

binding in response to agonist, p-arrestin then targets the receptor to clathrin-coated pits 

for sequestration and pinching off of the vesicles from the plasma membrane is regulated 

by dynamin. C-terminal clusters of Ser/Thr residues in the neurotensin-1 receptor, the 

oxytocin receptor and the angiotensin II type IA receptor were shown to promote the 

formation of high affinity receptor-p-aixestin complexes that remain associated during 

endocytosis. Mutation of these residues to Ala abolished co-internalisation of the receptor 

and P-aiTestin (Oakley et al,  2001). The observation, however, that these sites did not 

serve as primary agonist-stimulated phosphorylation site in the orexin 1 receptor is more 

unusual. Studies on the vasopressin V2 and the p2-adrenergic receptor suggest that the 

stability of the receptor-p-arrestin interaction also determines the mechanism and 

consequences of ERKl/2 activation (Tohgo et a l  2003). Stimulation of the vasopressin V2 

receptor resulted in cytoslic retention of phospho-ERKl/2 and failed to elicit a detectable
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mitogenic response. A chimeric receptor generated from the N-terminus of the vasopressin 

V2 receptor and the C-terminus of the p^-adrenergic receptor caused greater nuclear 

translocation of activated ERKl/2 and a weak, but significant proliferative response. In 

contrast to the results obtained for the orexin 1 receptor they observed a more persistent 

ERKl/2 activation in case of the chimeric receptor compared to the wild type receptor. It is 

noteworthy that prolonged MAPK activation in pseudopodia during protease-activated 

receptor-2-induced chemotaxis seemed to be associated with a p-anestin-dependent 

scaffold (Ge et al,  2003). So far no reports exist implicating caveolae-mediated 

endocytosis in GPCR-dependent MAPK activation.

One problem encountered throughout the work of this thesis was the low receptor 

expression levels and the lack of appropriate stable cell lines. Viral transfection systems 

might be able to solve this problem.

Further research is required to define, in more depth, the sequestration and signalling of the 

orexin 1 receptor elicited by addition of orexin A. It would be interesting to find out 

whether there are any differences in the recycling and resensitisation rate between the wild 

type form of the orexin 1 receptor and the cluster Cl mutant. Also the time course of 

internalisation was determined by visualising stained receptors using the confocal 

microscope. This method might not be sensitive enough to detect small differences. In this 

regard the recent development of a radiolabelled antagonist, [H^]-SB-674042, to the orexin 

1 receptor should be of great benefit (Langmead et al, 2004). Moreover the discovery of 

the tritiated antagonist allows pharmacological examination of the different forms of the 

orexin 1 receptor. It would also be of interest to investigate the additional sites in the 

receptor that are involved in the low affinity binding to p-arrestins and to examine the role 

of agonist-mediated phosphorylation in this context.

Additional experiments need to be earned out to determine the importance of the different 

endocytic pathways, clathrin versus caveolae, in the activation of the ERKl/2 cascade. 

Although in MEF cells an intact endocytic pathway seems to be sufficient for ERKl/2 

phosphorylation it is not clear whether orexin 1 receptor sequestration is involved in 

signalling to the ERKl/2 MAPK cascade in other cell types. Also the experimental proof 

that P-an'estins serve as adaptor proteins in the orexin 1 receptor-mediated ERKl/2 MAPK 

cascade is still outstanding. Therefore co-immunoprecipitation experiments should be 

performed examining the effects of orexin A on binding of ERKl/2 to p-anestins and on 

phosphorylation of bound ERKl/2 and to determine whether there are any differences 

between the wild type receptor and the cluster Cl mutant. Additionally the cellular
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distribution, cytosol versus nucleus, of phospho-ERKl/2 after stimulation of either from of 

the receptor ought to be investigated. Another way of examining whether high affinity .i;
binding of p-arrestins to the receptor has a functional consequence on ERKl/2 activation 

would be to measure ERK 1/2-dependent transcription using an Elk-1-driven luciferase 

reporter system. Furthermore the cell proliferation experiments should be repeated after | 

serum starvation and ideally/preferentially on cells stably expressing either from of the 

receptor. It is also noteworthy that recent reports indicate p-arrestin 1 and 2 to have 

reciprocal effects on ERKl/2 activation (Ahn et ai,  2004). In theory, the wild type 

receptor should bind both P-arrestin proteins with the same affinity as it belongs to class B, 

whereas the cluster Cl mutant, a class A GPCR, should prefer p-arrestin 2 over 1. 

Therefore it would be very interesting to see what the implications are for the two different 

forms of the receptor.

The internalisation and signalling behaviour of GPCRs seems to depend in many cases on 

the cellular environment in which they are expressed. Consequently the experiments 

carried out in MEF knock out cells should be repeated in HEK cells, ideally stably or 

inducibly expressing the receptor, using for example siRNA technology to knock out the 

individual proteins.

It was previously reported that P-arrestin 2 is necessary for p2 -adrenergic receptor and 

vasopressin V2 receptor ubiquitination thereby targetting the receptors for degradation 

(Shenoy et al,  2001; Martin et al,  2003). Binding of p-arrestin to the receptors itself 

requires ubiquitination of P-aixestin by E3 ubiquitin ligase, Mdm2. Stimulation of the P2 - 

adrenergic receptor, a class A GPCR, resulted in transient p-arrestin ubiquitination 

whereas activation of the vasopressin V2 receptor, a member of the class B, caused stable 

P-arrestin ubiquitination. Moreover the time course of p-arrestin ubiquitination and 

deubiquitination correlates with its receptor association and dissociation, respectively 

(Shenoy et al,  2003). It might therefore be intriguing to examine the ubiquitination status 

of the orexin 1 receptor wild type, cluster Cl mutant and P-arrestin in response to receptor 

activation and to determine if this has any functional consequence on the degradation of 

either form of the receptor. P-arrestins were also shown to be regulated by sumoylation 

(unpublished observations). Small ubiquitin-related modifier (SUMO) is the best 

characterised member of a growing family of ubiquitin-related proteins. However in 

contrast to ubiquitination, sumoylation does not appear to mark proteins for degradation.

The data available indicates a role of SUMO in the regulation of protein-protein 

interactions and /or subcellular localisation. Virtually nothing is known about the function
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of P-arrestin-sumoylation in the control of GPCR function. Hence, it might be exciting to 

study the effects of sumoylation on the signalling of the orexin 1 receptor. Furthermore, 

Hilairet and co-workers (2003) provided evidence for cross-talk between the orexin 1 

receptor and the cannaboid receptor CBl indicating heterodimerisation to play a role in the 

regulation of orexin 1 receptor function. Future work should be carried out to identify 

additional binding partners of the orexin 1 receptor and to determine their effects on orexin 

1 receptor signalling.

In this thesis only preliminary data was obtained regarding the activation of the JNK 

MAPK cascade in response to orexin A. More studies need to be undertaken to identify the 

mechanisms underlying this signalling pathway and its implications. The P-arrestin 1 and 2 

knock out cells might provide a useful tool to examine whether P-an'estins are involved in 

activation of JNK MAPK in response to the orexin 1 receptor.
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