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Abstract

Pre-eclampsia (PET) is a multi-system disorder particular to pregnancy. It is characterised 

by widespread endothelial dysfunction, resulting in hypertension due to vasoconstriction, 

proteinuria attributable to glomerular damage and oedema secondary to increased vascular 

permeability. PET has a complex aetiology involving a spectrum of exaggerated 

disturbances in maternal metabolism, potentially resulting from a trigger from the placenta. 

PET shares many risk factors with cardiovascular disease (CVD) and may be associated 

with increased risk of future maternal CVD. The similaiities between the metabolic 

syndrome and PET, has lead to the proposal that PET is metabolic syndrome of pregnancy. 

It is likely that a combination of environmental, genetic and metabolic parameters have a 

role in the aetiology of PET, rather than one specific factor. Although there are abundant 

data on the metabolic pathways and vascular function in the non-pregnant individual, there 

are little such data with respect to pregnancy and PET. The purpose of this thesis was to 

concentrate on PET as a metabolic disorder and to focus on the key mediators involved in 

the metabolic syndrome including PPAR receptors, lipoprotein metabolism, insulin 

resistance and inflammation.

PPARs are a family of nuclear receptors controlling pathways involved in the metabolic 

syndrome including adipocyte differentiation, glucose and lipid homeostasis and fatty acid 

metabolism. Animal and human models have highlighted a role for the PPARs in 

pregnancy. In this thesis, the placental localisation and expression of each of the PPARs 

(a, 5 and y) were determined, in uncomplicated and PET and lUGR pregnancy. The 

PPARs were localised in trophoblasts in each trimester of pregnancy and in PET and 

lUGR, with sparse PPA Ra staining in the 3“  ̂trimester. Specifically, PPARô mRNA and 

protein expression were higher in the 3"̂  ̂compared to the 1®̂ trimester. There were no 

consistent differences in PPAR expression in PET or lUGR placentae compared to 

controls.

Lipid metabolism is a key element of the metabolic syndrome and maternal and fetal lipid 

and lipoproteins were studied in a BMI-matched study of uncomplicated 3̂  ̂trimester 

pregnancies, and pregnancies complicated by PET or lUGR. Paraoxonase (PON-1) activity 

was also determined as a marker of oxidative stress. There was a significantly elevated 

maternal total cholesterol (TC) in PET compared with controls, and maternal PON-1 

activity was significantly lower in PET. In PET and lUGR, there were alterations in fetal 

lipid profile. In PET, there was a significantly elevated concentration of fetal TC,



triglyceride (TG) and an increased fetal cholesterol/high density lipoprotein (HDL) ratio 

compared with uncomplicated pregnancies. In lUGR, elevated levels of fetal TG were 

reported. Fetal PON-1 activity was unaltered between controls, PET or lUGR pregnancy.

The link between insulin resistance and inflammation, components of the metabolic 

syndrome, was studied in PET. Maternal and fetal inflammatory and insulin resistance 

markers in PET, lUGR and uncomplicated control pregnancies were compared. Maternal 

erythrocyte membrane fatty acid composition was also determined as a marker of insulin 

resistance, and results were related to the plasma lipid, inflammatory and insulin resistance 

markers. Finally tissue expression of key genes involved in insulin resistance and 

inflammation was assessed.

Fetal plasma C-reactive protein (GRP) levels were elevated in PET and fetal plasma 

TN Fa levels were increased in lUGR pregnancies compared to uncomplicated control 

pregnancies. In a longitudinal study of erythrocyte membrane fatty acid status, there was a 

reduction of 18:0 and elongase activity and a significant increase in maternal 

docosahexaenoic acid (DHA) with advancing gestation. An increase in total n3 fatty acids 

and delta 9 desaturase activity from the to the 2"*̂  trimester and a reduction in delta 5 

desaturase activity from the to the 2"  ̂trimester were observed. In PET pregnancies, 

there was a significant reduction in average chain length and elongase activity in PET 

compared with healthy controls. There were no differences in any of the fatty acids tested 

between lUGR and controls.

Increased placental leptin mRNA expression in PET was confirmed, and a similar increase 

in leptin expression was observed in lUGR. These data suggest that the tissue source of 

fetal leptin production may be adipose tissue rather than placenta, as there was a non

significant reduction in fetal plasma leptin levels in PET and lUGR despite the observed 

increase in placental mRNA levels. The association of fetal leptin with birth weight centile 

in uncomplicated pregnancies strengthens this proposal. Placental leptin production 

correlated with plasma HDL in uncomplicated pregnancy, suggesting a link between 

placental leptin and fetal lipid stores. The tissue source of maternal plasma interleukin-10 

(IL-10) was suggested to be primaiily from the maternal adipose tissue.

To study the genetic contribution to PET risk, IL-10, leptin and PPARy genotypes were 

assessed in PET and control pregnancies. There was a significant association between the 

PPARy Pro 12Ala and the leptin 3’tet polymorphisms and risk of PET. Maternal PPARy



Pro 12Ala and leptin 3’tet polymorphisms appeared to be associated with some changes in 

inflammatory markers.

In conclusion, these data provide evidence that multiple metabolic alterations occur in PET 

and lUGR, and demonstrate that these changes aie also evident in the fetus. These 

perturbations in fetal lipids and inflammatory markers may be relevant to fetal 

programming of adult vascular disease. Although PPAR expression is unaltered in PET, 

these receptors may still have an influence on the aetiology of the condition through 

genetic effects on metabolism, as the PPARy P12A polymorphism appears to be related to 

increased PET risk. A potential research marker for insulin resistance in PET, elongase 

activity, has been described. Adipose tissue has been highlighted as a potential source of 

inflammatory mediators. It is suggested that multiple interacting metabolic processes are 

involved in the aetiology of PET, and that these processes are directly related to the 

development of CVD later in life. An understanding of the genetic and metabolic 

mechanisms involved in PET may inform strategies for identification and intervention in 

individuals at risk. The work produced by this thesis demonstrates the importance of 

viewing PET as a metabolic disorder rather than searching for a single candidate gene or 

molecule to account for its aetiology.
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1 introduction

Complications of pregnancy, particularly pre-eclampsia (PET) and intrauterine growth 

restriction (lUGR) have been associated with future maternal cardiovascular disease 

(CVD). Pre-eclampsia, characterised by insulin resistance, widespread endothelial damage 

and dysfunction, coagulation defects and increased systemic inflammatory response, shares 

many risk factors with CVD. In this introduction, I will consider the evidence that the 

metabolic changes seen in normal pregnancy and the exaggerated atherogenic-like 

response seen in PET persist post partum and are associated with CVD. In addition, I will 

review the possible underlying mechanisms common to CVD and PET and the potential 

for interventions based on early assessment of cardiovascular risk. Finally, I will discuss 

the potential role in pregnancy of a family of nuclear receptors, the peroxisome proliferator 

activated receptors (PPARs), which are reported to be involved in the metabolic changes 

associated with atherosclerosis.

1.1 Evidence for an association between the metaboiic 

complications of pregnancy and cardiovascular 
disease (CVD) risk

1.1.1 Pregnancy and CVD risk

It is long established that female gender-specific risk factors for CVD include menopause, 

hysterectomy and use of exogenous hormones (Hannaford et al 1997). However, evidence 

is now accumulating to show that pregnancy is associated with an increase in future 

cardiovascular risk in women. Women, parous at index pregnancy, have a twofold higher 

risk of dying from ischaemic heart disease relative to primigravid women (relative risk 

[RR] 2.05; 95%CI 1.19-3.55; p=G.Gl) (Jonsdottir et al 1995). Women who experience an 

uncomplicated pregnancy have a lower risk of CVD in later life, compared with those who 

had complicated pregnancies (Fisher et al 1981).

1.1.2 Pre-eclampsia and CVD risk

Women with hypertensive problems in pregnancy have an increased risk of CVD later in 

life (Croft and Hannaford 1989, Mann et al 1976, Thorogood et al 1992) (Table 1-1). 

Specifically, an history of PET has been shown to increase a woman’s risk of experiencing
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a venous thromboembolic event (van Walraven et al 2003) or haemorrhagic stroke (WHO 

Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception 1996). 

A prospective cohort study of parous women with an history of PET (Hannaford et al

1997), reported a significantly increased risk of hypertensive disease, acute MI, chronic 

ischaemic heait disease, angina pectoris, all ischaemic heart disease and venous 

thromboembolism, compared to parous women with no history of PET (table 1-1). A more 

recent retrospective cohort study of women who had PET during their first singleton 

pregnancy (Wilson et al 2003) demonstrated significant positive associations between 

PET/eclampsia and later hypertension (table 1-1).

Author Disease RR(95% Cl)
Hannaford et al 1997 Hypertensive disease 2.35 (2 .08-2 .65)

Acute MI 2.24(1 .42-3 .53)
Chronic IHD 1.74(1.06-2.86)
Angina pectoris 1.53(1.09-2.15)
All IHD 1.65 (1 .26-2.16)
VTE 1.62(1.09-2.41)

Proportional hazard ratio (95% Cl)
Van Walraven et al 2003 Thromboembolism 2.2 (1 .3 -3 .7 )

Adj. Odds ratio (95% Cl)
Wilson et al 2003 Hypertension 3.98 (2 .82-5.61)

Table 1-1. Maternal history of PET/eclampsia and risk of cardiovascular disease.

Jonsdottir and colleagues (Jonsdottir et al 1995) investigated the potential association 

between hypertension in pregnancy, PET and eclampsia, with increased death rates from 

ischaemic heart disease among eclamptic women and those with PET versus those with 

hypertension alone, in a population-based study with a 16-year follow-up (table 1-2). This 

study suggests that it is the metabolic disturbances associated with PET and not 

hypertension per se that is associated with cardiovascular risk.

In a retrospective discharge data analysis of all singleton first births in Scotland between 

1981 and 1985, with 1 5 - 1 9  years follow up, maternal risk of ischaemic heart disease 

admission or death was associated with PET (adjusted hazard ratio 2.0; C l 1.5 -  2.5)

(Smith et al 2001). h'gens and colleagues (Irgens et al 2001) performed a population based 

cohort study to assess whether mothers and fathers have a higher long-term risk of death, 

particularly from CVD, after the mother has had PET (table 1-2). They observed a 1.65- 

fold higher long-term risk of death from CVD in women with PET in their first pregnancy, 

who delivered at term. However, mothers with PET who were delivered pre-term 

demonstrated an 8 -fold increase in risk of death from the same cause later in life. There
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was no long-term increased risk of death in the fathers from the PET pregnancies 

compared with the fathers from uncomplicated pregnancies. The authors concluded that 

there is a relationship between PET and maternal CVD later in life, especially relevant to 

the subset of women who were delivered pre-term. These latter two studies highlight the 

difficulty in interpreting population studies in the absence of detailed information on the 

time of presentation and severity of PET. There is also an association with preterm 

delivery and vasculai* disease. Davey Smith and colleagues (Davey Smith et al 2000b) 

reported a strong association between preterm delivery and CVD mortality (Table 1-2). 

However, this association did not consider confounding caused by reason for the preterm 

delivery, for example, PET, which may have resulted in an even stronger association with 

CVD.

Author Category Maternal mortality due to 
IHD

Jonsdottir et al 1995 Eclampsia
Pre-eclampsia

2.61 (1 .11-6 .12)“ 
1.90(1.02-3.52)“

Maternal admission or 
mortality due to IHD 
(adjusted hazard ratio)

Smith et al 2001 Lowest birth quintile 
Preterm delivery
Lowest birth quintile, preterm delivery & 
PET

1.9 (1 .5 -2 .4 )
1.8 (1 .3 -2 .5 )
7.0 (3.3 -  14.5)

Maternal mortality due to 
IHD

Irgens et al 2001 Pre-eclampsia
Pre-eclampsia & preterm delivery

1.65 (1.01-2.70)^ 
8.12(4.31-15.33)^

Davey Smith et al 2000b Birthweight (offspring) 
Birth length 
Pondéral index 
Preterm delivery

0.77 (0.65 -  0.50)’’ 
0.85 (0 .73-0 .99)’’ 
0.77 (0.65 -  0.92)’’ 
2 .06(1 .22-3 .47)”

Davey Smith et al 1997 Birthweight (offspring) 2 .00(1 .18-3 .33)'

Davey Smith et al 2000a Birthweight < 2500g (offspring) 7.05 (2 .6 4 - 18.77)”

Table 1-2. Maternal admission or mortality from IHD. 
a=relative risk, b=hazard ratio, c=adjusted relative rate.

The classification of hypertension in pregnancy is confusing. A variety of conditions make 

up the hypertensive disorders of pregnancy and there is not only a lack of knowledge of 

their aetiology, but also a lack of agreement on their nomenclature and classification. To 

compound this confusion, the true diagnosis and therefore the classification, may only be 

evident retrospectively several months after the pregnancy is completed. The clinician, 

faced with the problem during pregnancy must therefore make a provisional diagnosis.
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Here, some form of classification is essential to make diagnoses consistent, to help 

quantify the risk to mother and fetus, and to guide decisions on the patient’s management. 

The lack of an agreed classification and nomenclature has also hampered research in this 

area by preventing comparisons between centres and between countries.

1.1.3 Low birthweight offspring and CVD risk

Previous studies have reported increased rates, ranging from 14 -  28.2%, of small for 

gestational age infants from PET pregnancies, in women who were previously 

normotensive (Lydakis et al 2001, Pietrantoni and O'Brien 1994, Sibai et al 1984). In the 

study by Smith et al (Smith et al 2001), maternal risk of ischaemic heart disease or death 

was associated with delivering a baby in the lowest birth weight quintile for gestational age 

and preterm delivery (table 1 -2 ).

The risks were additive; women with both these characteristics and PET, had a risk of 

hospital admission for ischaemic heart disease or death that was 7 times greater than the 

reference category. Davey Smith and colleagues also demonstrated (Davey Smith et al 

2000b), in a cohort study of 3706 women who gave birth to liveborn singletons, that 

maternal CVD mortality was inversely related to birthweight, birth length and pondéral 

index of the offspring, when adjusted for blood pressure in pregnancy (table 1-2). In 

another study from the same group (Davey Smith et al 1997), investigating the association 

between birth weight of offspring and mortality among mothers and fathers in the West of 

Scotland, mortality from CVD was inversely related to offspring birthweight for mothers 

(table 1-2) and fathers (RR 1.52; 95% Cl 1.03 -  2.17). These findings were unchanged by 

correction for social, environmental, behavioural and physiological risk factors. In a 

prospective observational study, Davey Smith et al (Davey Smith et al 2000a) 

demonstrated a hazard ratio of 7.05 (2.64 -  18.77) for death from CVD among women who 

delivered a baby less than 2500g compared to those delivering babies weighing greater 

than or equal to 3500g, thus confirming the strong relationship between infants’ 

birthweight and mothers’ mortality from CVD (table 1-2). They also described the 

independent risk from preterm delivery as mentioned previously. To what extent these 

latter studies might be confounded by PET in the population is unknown.
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1.2 Pathology of pre-eclampsia

1.2.1 General overview

In order to understand how PET might be linked to future cardiovascular risk it is 

important to consider its pathology. Pre-eclampsia, occurring in 2 - 4 % of pregnancies 

remains one of the leading causes of maternal and neonatal morbidity and mortality in the 

developed world. The only definitive treatment is to deliver the baby and placenta, often 

prematurely in the interests of the baby or the mother. Pre-eclampsia is a multi-system 

disorder. The classical diagnostic criteria of hypertension secondary to vasoconstriction, 

proteinuria due to glomerular endotheiiosis and oedema secondary to increased vascular 

permeability represent only the ‘tip of the iceberg’ of widespread pathology arising from 

endothelial damage and dysfunction. Eclampsia occurs in about 0.1% of pregnancies, and 

cerebrovascular accident (CVA) is the most common cause of death. Pathological findings 

in the brain include eerebral oedema, petechial or gross haemorrhage, small hypoxic, 

ischaemic and perivascular infarcts and arteriolar damage, identified by thrombosis and 

fibrinoid necrosis. The other complications that can arise such as hepatic dysfunction, 

necrosis and haemorrhage; pulmonary oedema and adult respiratory distress syndrome 

(ARDS); and renal failure demonstrate the extent of the pathology. The fetal effects of 

PET, intrauterine growth restriction (lUGR) and iatrogenic prematurity, arise due to 

placental infarction and insufficiency.

Pre-eclampsia is often considered to be a disorder with 2 components. The first component 

is an as yet unidentified signal that arises from the placenta and is associated with either 

defective implantation or large placental mass such as in twin pregnancy or hydatidiform 

mole. The second component is the maternal response to this placental signal (Ness and 

Roberts 1996). The manifestation of the maternal syndrome will depend on maternal 

genotype and phenotype, whieh will influence the maternal response to the placental 

signal. This response involving inflammation, coagulation, and metabolic systems results 

in endothelial cell activation and dysfunction, which characterises PET.

1.2.2 The placental pathology

In normal pregnancy, the spiral arteries of the placental bed undergo a series of 

physiological changes (figure 1-1). They are invaded by the eytotrophoblast (Khong and 

Robertson 1987), which breaks down the endothelium, internal elastic lamina, and
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muscular coat of the vessel, which are largely replaced by fibrinoid material. Virtually 

every spiral artery in the decidua basalis will have undergone these physiological changes 

by the end of the first trimester (Brosens and Dixon 1966). Early in the second trimester, a 

second wave of eytotrophoblast invasion occurs and transforms the myométrial segments 

of the spiral arteries. These physiological changes convert the vessels supplying the 

placenta from muscular end arteries to wide-mouthed sinusoids. The vascular supply is 

thus transformed from a high pressure-low flow system to a low pressure-high flow system 

to meet the needs of the fetus and placenta. Loss o f the endothelial and muscular layers 

render these vessels unable to respond to vasomotor stimuli.

Invasion of tht maternal dm lition by trophofotasts

NyomtCHum

I
OtCidM PbccntM vflH

A rautf «rtcry

Figure 1-1. Invasion by trophoblasts.

Upper panel shows normal early pregnancy with invasion to level of the decidua. Middle 
panel shows invasion to level of myometrium following second wave of trophoblast 
invasion. Lower panel shows inadequate implantation of lUGR and pre-eclampsia. Broken 
lines indicate trophoblast invading blood vessels.
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In pre-eclampsia, only about one-half to two-thirds of the decidual spiral arteries undergo 

these physiological changes (Khong et al 1986), and the conversion of myométrial 

components of the spiral arteries fails to occur (Sheppard and Bonnar 1981). Thus, the 

primary invasion of trophoblast is pai tially impaired and the second wave fails to occur or 

is limited. This results in restricted placental blood flow, which becomes more critical with 

advancing gestation as the demands of the conceptus increases. In addition, the vessels 

maintain their muscular coats and so remain sensitive to vasomotor stimuli (figure 1- 1). 

These changes are not specific to PET and also occur in lUGR without PET.

The typical, though non-specific, vasculai* lesion found in the placental bed in PET has 

been termed 'acute atherosis' because of the presence of foam cells in the damaged vessel 

wall (Labarrere 1988). Acute atherosis is a necrotising arteriopathy chaiacterized by 

fibrinoid necrosis, accumulation of lipid-laden macrophages and damaged cells, fibroblast 

proliferation and a mononuclear cell perivascular infiltrate. Again, it is not specific to PET 

being present in lUGR also. These features are similar to those seen in the atherosclerotic 

plaque (Sattar and Greer 2002). The acute atherosis is associated with endothelial damage 

which can be seen ultrastructurally in the decidua at sites outside the placental bed 

throughout the maternal fetal boundary (Shanklin and Sibai 1989) and this correlates with 

the degree of maternal hypertension. Plasma urate, a marker of disease severity correlates 

with these vascular changes in the placental bed (McFadyen et al 1986). Ischaemia of the 

fetal placenta will occur because of the restricted blood flow and lead to infarcts, patchy 

necrosis and an obliterative endarteritis of the fetal stem arteries (Fox 1988, p. 16-37). 

More recently, it has been suggested that there is incomplete development of the fetal 

placental microvasculature in PET associated with lUGR, which could account for reduced 

perfusion of the fetal placenta seen in this condition (Macara et al 1995).

1.2.3 The maternal metabolic response to pregnancy and pre- 
eclampsia

In normal pregnancy, a degree of insulin resistance, hypeiiipidaemia and an increase in 

coagulation factors develops, along with up-regulation of inflammatory markers (Greer 

1999, Martin et al 1999, Sacks et al 1998). This serves to meet the metabolic demands of 

the growing fetus. However, in PET this normal adaptive metabolic response is greatly 

exaggerated and can lead to gross metabolic disturbance. I will review these vascular and 

metabolic changes seen in normal pregnancy and in PET to highlight the similarities to 

metabolic syndrome.
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1.2.3.1 Vasomotor function

In healthy pregnancy, blood pressure falls reaching a nadir at 20 weeks’ gestation then 

rises again reaching levels consistent with non-pregnant values by term. This reflects the 

marked reduction in total peripheral vascular resistance, which decreases by 25% before 

increasing again in line with the blood pressure (Clark et al 1989, Kirshon and Cotton 

1987) more than counteracting the increase in cardiac output. Plasma volume also expands 

in normal pregnancy by approximately 40% peaking at 24 weeks.

In contrast to the normal pregnant situation, a contracted plasma volume occurs in PET. 

This is associated with an increase in systemic vascular resistance, a normal or reduced 

cardiac output and reduced cardiac preload (Clark and Cotton 1988, Groenendijk et al 

1984). This reflects increased peripheral resistance due to vasoconstriction. Despite 

increases in plasma renin concentration, renin substrate and angiotensin II (All) in normal 

pregnancy, blood pressure falls. This is due to acquired vascular insensitivity to All, 

which is maximal in the second trimester, after which it slowly returns towards the non

pregnant situation (Gant et al 1974) and is associated with down-regulation of A ll 

receptors (Baker et al 1991).

In PET, there is a loss of the acquired insensitivity to All, which antedates clinical disease, 

and an increase in A ll receptors (Baker et al 1991, Gant et al 1974). Ex-vivo studies 

suggest that endothelium dependent vascular relaxation is reduced, so implicating the 

endothelium in the increased vasomotor activity of PET (Ashworth et al 1997). The 

mechanism may be due to disturbance of or damage to key processes relating to vasomotor 

control. The precise changes that occur in the renin-angiotensin system in pregnancy-induced 

hypertension are difficult to determine, owing to methodological problems and the study of 

groups vaiying in disease severity. However, the changes appear to fall into two distinct 

patterns. In late-onset, non-proteinuric disease there is an increase in plasma renin activity 

(Fievet et al 1985, Gallery et al 1980), while AH may be unchanged or increased (Symonds 

and Pipkin 1978, Symonds et al 1975). In early-onset, proteinuric pregnancy-induced 

hypertension, plasma renin activity, A ll and aldosterone are reduced (Fievet et al 1985, 

Karlberg et al 1984, Weir et al 1973). hi contrast to the suppression of the renin-angiotensin 

system seen in severe pregnancy-induced hypertension, atrial natiuretic peptide is increased 

(Fievet et al 1988). This may be a compensatory mechanism for hypertension, a supposition 

suppoited by the direct correlation that exists between blood pressure and plasma atrial 

natriuretic peptide in normal and hypertensive pregnancies (Fievet e ta l 1988). Recent data 

reveal a potential mechanism for the loss of the aquired insensitivity to the pressor agent
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ATT via increased levels of heterodimers between the vasopressor receptor angiotensin II 

type 1 receptor (ATI) and the vasodepressor bradykinin receptor (B2) (AbdAlla et al,

2001). The receptor heterodimers display increased sensitivity toward A ll (AbdAlla et al,

2 0 0 0 ) and are found in platelets and in omental vessels of pre-eelamptic women. 

Furthermore, the AT1/B2 receptor heterodimers are resistant to inactivation by reactive 

oxygen species, which are elevated in PET (AbdAlla et al, 2004). This mechanism may 

provide a plausible explanation for hypertension in pre-eclampsia.

Reduced production of endothelial derived vasodilator prostaglandins, reduced nitric oxide 

production and increased endothelin in PET have been proposed, although the evidence is 

conflicting (Choi et al 2002, Granger et al 2002, Khedun et al 2002, Rowe et al 2003,

Vural 2002). Accurate measurement of these substances or their metabolites is difficult and 

the conflicting evidence may represent methodological difficulties. However, these 

results, which assess a variety of vasomotor agonists, are consistent with endothelial 

damage and/or dysfunction in PET, which is responsible for vasoconstriction and the 

increased peripheral vascular resistance.

1.2.3.2 Coagulation

In normal pregnancy there are increases in the levels of the coagulation factors V, VII,

VIII, von Willebrand Factor (vWF), X and XII (Clark et al 1998b, Stirling et al 1984), an 

increase in plasma fibrinogen and suppression of fibrinolysis (Wiman et al 1984). There is 

a decrease in protein S and activated protein C (APC) resistance may occur in the absence 

of factor V Leiden mutation (Clark et al 1998b, Mathonnet et al 1996). It is likely that this 

state of hypercoaguability may serve to limit life-threatening bleeding at delivery but it 

does mean there is an increased risk of thromboembolism associated with pregnancy.

In PET microvascular thrombi are found in numerous organs including the kidney, liver 

and brain (Arias and Mancilla-Jimenez 1976, McKay 1972). This increased fibrin 

deposition in the maternal vasculature is consistent with excessive activation of the 

coagulation system (Kobayashi et al 1999). Activation of the coagulation cascade occurs 

early in PET and often antedates clinical symptoms. In PET there is increased factor VIII 

activity (Howie et al 1976, Howie et al 1971) and increased vWF levels (Redman et al

1977). Antithrombin, an endogenous inhibitor of coagulation, is reduced in PET and this 

correlates with disease severity (Howie et al 1971, Weiner and Brandt 1982). There is also 

increased resistance to the anticoagulant property of activated protein C (APC) and 

increased levels of prothrombin fragment 1 and 2  and thrombin-antithrombin complex



Vanessa Rodie, 2005 Chapter 1, 38

(TAT) indicating activation of the coagulation cascade (Aznar et al 1986, VanWijk et al 

2002). Tissue plasminogen activator (tPA) is increased in plasma possibly due to 

stimulation of, or damage to, the endothelium (Estelles et al 1998) and there is a 

simultaneous increase in plasminogen activator inhibitors (PAI) 1 and 2 (Estelles et al 

1998). Platelet count is reduced in PET, secondary to a reduced lifespan (Redman et al

1978) and the reduction in platelet count correlates with disease severity (Rakoczi et al

1979). There is also evidence of enhanced platelet activation and increased levels of 

platelet endothelial cell adhesion molecule-1 (PECAM-1) (Roberts et al 1991, Roberts et 

al 1989). In an unselected prospective longitudinal study of pregnant subjects, Clark and 

colleagues demonstrated that women who subsequently developed PET had lower APC 

sensitivity ratios, in the absence of Factor V Leiden, at 7-16 weeks gestation, and that this 

was associated with a 2,95-fold increased risk of PET (Clai’k et al 2001).

1.2.3.3 Lipids

In healthy pregnancy, there is an alteration in lipid profile; a gestational increase of around 

300% in triglyceride (TG) levels, a 25-50% increase in total cholesterol (TC), and 

increases in very low density lipoprotein 1 (VLDLl), VLDL2, high density lipoprotein 

(HDL) and small dense low density lipoprotein (LDL) (Montelongo et al 1992, Sattar et al 

1997b). These alterations in lipid profile are considered to be under hormonal control 

(Julius et al 1994, Walsh et al 1991). Gestational hyperlipidaemia fulfils the physiological 

role of supplying both cholesterol and triglyceride to the rapidly developing fetus (Dugdale 

1986).

In PET, TG levels are further raised especially in the third trimester where median TG 

concentrations are near double those seen in normal pregnancy (Hubei et al 1996, Kaaja et 

al 1995, Sattar et al 1997a). This is reflected in a three-fold higher VLDL-1 and a two fold 

higher VLDL-2 concentration relative to normal pregnancy. A raised low density 

lipoprotein III (LDL-III) concentration (atherogenic, small dense LDL) and lower LDL 

peak particle diameter result from the exaggerated TG rise (Belo et al 2002a, Lorentzen 

and Henriksen 1998, Ogura et al 2002, Sattar et al 1997a). HDL cholesterol levels are 

reduced, probably as a consequence of the increased TG levels. There have been reports of 

an elevated TC level and increased levels of lipoprotein (a) (Wang et al 1998), which 

correlates to disease severity, but this is not observed in all cases (Sattar et al 2 0 0 0 ). 

Hepatic lipase activity has been shown to be elevated in PET and could contribute to 

increased LDLIII concentration (Sattar et al 1997a), via increased TG exchange into LDL, 

followed by hepatic lipase induced lipolysis of the paiticle (Tan et al 1995).
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The abnormal lipoprotein metabolism in PET may be a compensatory response to placental 

insufficiency and an increased requirement to deliver fuel to the placenta (Sattar et al 

1999a). However the marked dyslipidaemia may contribute to endothelial activation and 

dysfunction and to promotion of oxidative stress (Flavahan 1992, Goode et al 1995, Myatt 

and Miodovnik 1999). Raised TG levels may promote endothelial dysfunction directly or 

via an increased proportion of small, dense LDL that is easily oxidised. Alternatively the 

increased Factor V ila and PAI-1 associated with hypertriglyceridaemia (Sattar et al 1999b) 

may influence endothelial function. Oxidised LDL and VLDL-1 promote leukocyte 

adhesion by stimulating endothelial expression of adhesion molecules (e.g. VCAM-1) and 

PAI-1. The marked dyslipidaemia could also contribute to accumulation of lipids within 

the kidney and spiral arteries of the placenta.

PET is also associated with significantly increased free fatty acid (FFA) levels (Sattar et al 

1996), even prior to the onset of clinical manifestations of the disease. FFAs are known to 

be implicated in the development of insulin resistance in muscle and liver, the major 

regulators of systemic insulin sensitivity. Elevated EL-1 and tissue necrosis factor alpha 

(TNFa) in PET can induce adipocyte lipolysis (Chajek-Shaul et al 1989, Feingold et al 

1991), and promote de novo hepatic fatty acid synthesis. These cytokines can further 

impair mitochondrial (3-oxidation and ketogenesis (Memon et al 1992) in subjects with 

PET relative to normal pregnancy. Thus cytokines may be responsible for the lipid and 

lipoprotein disturbance in PET.

1.2.3.4 Inflammation

Normal pregnancy is associated with a generalised maternal inflammatory response (Sacks 

et al 1998). Maternal total white cell blood count increases with gestation, largely 

attributed to neutrophilia (Naccasha et al 2001, von Dadelszen et al 1999) and there is 

activation of neutrophils (von Dadelszen et al 1999) and circulating leukocytes (Sacks et al 

1998). Cytokine levels, intracellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1) are also elevated in healthy pregnancy.

This inflammatory response of pregnancy is exaggerated in PET. Neutrophil activation has 

been implicated in the pathophysiology of PET, for which several potential mechanisms 

have been identified. These include up-regulation of cellular adhesion molecules on the 

endothelial surface, increased generation of TN F-a and endothelial activation from 

hyperlipidaemia (Clark et al 1998a). Greer et al demonstrated that concentrations of 

neutrophil elastase, a specific marker for neutrophil activation in vivo, aie elevated in the
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peripheral circulation of women with PET (Greer et al 1989) and is confined to the 

maternal circulation (Greer et al 1991a). This activation has also been demonstrated in 

lUGR (Johnston et al 1991, Sabatier et al 2000). Furthermore, there are increased numbers 

of elastase-positive neutrophils in the placental bed in PET (Butterworth et al 1991), the 

site where acute atherosis is seen. Recently neutrophil and monocyte activation during 

uteroplacental passage was demonstrated in uterine venous blood from women with PET 

(Mellembakken et al 2002).

Levels of TNFa, IL-6 , VCAM-1, ICAM-1, E-selectin, PECAM-1, selectins P and L (Acar 

et al 2001, Bretelle et al 2001, Carr et al 2001, Greer et al 1994, Lyall et al 1994, Vince et 

al 1995, Zeisler et al 2001) are elevated in peripheral blood in PET. Elevated markers of 

inflammation such as TNFa, IL-2, and CRP (though not independently of BMI) have been 

demonstrated in the F* and early 2"^ trimesters of pregnant women who later develop PET 

(Eneroth et al 1998, Hamai et al 1997, Williams et al 1999, W olf et al 2001). The up- 

regulation of cytokine expression may contribute to the endothelial damage that occurs in 

PET and may explain the mechanism underlying leukocyte activation and endothelial 

adhesion in this disorder (Greer et al 1994).

1.3 Common hypotheses underlying metabolic syndrome 

and PET

There are generally considered to be three main hypotheses regarding the metabolic 

alterations involved in the aetiology of PET, namely endothelial dysfunction and 

activation, insulin resistance and oxidative stress. It is unlikely that these mechanisms are 

independent factors in the aetiology of the disease; rather that they are all related to a 

certain degree, with the degree of each parameter demonstrating inter-patient variation. 

Each hypothesis will be considered sepaiately to demonstrate the metabolic changes in 

PET and to underline their similarities to those changes seen in the metabolic syndrome.

1.3.1 Endothelial dysfunction and activation

In the non-pregnant state endothelial cells release vasodilators, such as nitric oxide (NO) 

and prostacyclin (PGI2), and vasoconstrictors, such as endothelin (ET) and platelet 

activating factor (PAF), for the purpose of blood flow and pressure regulation (Cines et al 

1998). NO promotes vasodilatation and inhibits inflammation, thrombosis and vascular
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smooth muscle cell proliferation (Behrendt and Ganz 2002). Normal pregnancy is 

associated with reduced vascular reactivity and tone (Granger 2002).

Ramsay and colleagues have described an in vivo assessment of endothelial-dependent and 

independent microvascular function using laser Doppler imaging (Ramsay et al 2002).

They reported that obesity in pregnancy, a risk factor for PET, is associated with impaired 

endothelial function, higher blood pressure and inflammatory up-regulation. Similar effects 

in pre-eclamptic women have been demonstrated using pulsed Doppler ultrasonography of 

uterine and brachial arteries of pre-eclamptic women (Takata et al 2002). Knock and 

colleagues (Cockell and Poston 1997, Knock and Poston 1996) described enhanced 

bradykinin-mediated relaxation in ex~vivo subcutaneous resistance arteries in women with 

healthy pregnancy compared with non-pregnant subjects. This enhanced relaxation was not 

present in women with PET. Kenny et al (Kenny et al 2002) demonstrated that small 

myométrial arteries from healthy pregnant women were more responsive to endothelium- 

derived hyperpolarizing factor (EDHF) than similar arteries derived from pre-eclamptic 

pregnancies. Recently, Savvidou and colleagues (Savvidou et al 2003) demonstrated that 

the endothelial dysfunction of PET develops before the clinical manifestation of the 

disease. They reported that women with high resistance placental circulation at risk of 

PET, lUGR or both, have raised concentrations of asymmetric dimethylarginine (ADMA), 

the endogenous inhibitor of endothelial nitric oxide synthase. They concluded that this 

raised ADMA concentration is a potential contributory factor for PET.

Many markers of endothelial dysfunction have been observed in PET. Coagulation 

activation is often manifest weeks to months before onset of the clinical condition 

(Leiberman et al 1988, Weiner 1991, Greer 1999, p. 163-81). The damaged endothelium of 

PET is reflected by elevated levels of PAI-1 (Gilabert et al 1995, Halligan et al 1994) and 

von Willebrand factor (Greer et al 1991b, Redman et al 1977). Endothelial dysfunction in 

PET is indicated by elevated plasma levels of soluble adhesion molecules 

(Chaiworapongsa et al 2002, Lyall et al 1994), which may be elevated before PET appears 

clinically (Krauss et al 1997). However, Johnson and colleagues (Johnson et al 2002) 

recently demonstrated that markers of endothelial cell activation (VCAM, ICAM and E- 

selectin) were elevated in maternal plasma from both pregnancies complicated by PET and 

pregnancies complicated by lUGR, compared to healthy pregnancies. They noted that 

levels of cytokines (TNFa, IL- 6  and IL-8 ) were only elevated in the PET group, 

concluding that endothelial activation is a consequence of abnormal trophoblast invasion, 

but that there are other factors involved in the manifestation of PET, possibly related to 

cytokine release. The diversity of factors contributing to the endothelial dysfunction of
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PET demonstrates the enigmatic nature of PET pathophysiology and emphasizes the 

difficulty in identifying potential mechanistic links.

Endothelial activation in PET results in an exaggerated release of endothelin, thromboxane 

and superoxide, increased vascular sensitivity to the pressor effects of angiotensin II, and 

decreased formation of vasodilators such as nitric oxide and prostacyclin (Granger et al 

2002) by the damaged endothelium. This may lead to an increase in total peripheral 

resistance, despite the increasing plasma volume of pregnancy, and thus, vasospasm and 

hypertension. However recent evidence from a case control study of non-pregnant, 

normotensive pregnant and PET pregnant women, showed that NO production was 

actually increased in the PET group compared to the other groups (Vural 2002). The 

increased formation of the vasodilator NO was considered to be a compensatory response 

to the vasoconstriction and hypertension.

It has also been proposed that poor placental perfusion causing ischaemia, leads to a 

release of factors, such as pro-inflammatory cytokines, from the placenta that provoke 

endothelial activation and dysfunction (Roberts et al 1991, Roberts et al 1989). 

Syncytiotrophoblast microvillous membranes (STEM) (Knight et al 1998, Smaiason et al 

1993), or microparticles (VanWijk et al 2002), released into the maternal circulation in 

increased amounts in PET have been implicated in the aetiology of PET but it is difficult to 

differentiate whether these cell fragments may be a cause or an effect of endothelial 

dysfunction. In vitro studies have shown that perfusion of small arteries from pregnant 

women with STBMs impairs maternal endothelial function (Cockell et al 1997).

1.3.2 Insulin resistance

Normal pregnancy is a state of insulin resistance, with a doubling in fasting insulin 

concentrations. This is likely due to increased production of placental hormones including 

human placental lactogen (HPL), and possibly progesterone and oestrogen (Kirwan et al 

2002, Ryan and Enns 1988). The increased insulin resistance reaches a maximum in the 3"̂  ̂

trimester, and improves following delivery (Buchanan et al 1990, Catalano et al 1993, 

Cousins et al 1980, Kuhl 1991, Yen 1973).

The features of PET - hypertension, endothelial cell dysfunction and lipid alterations are all 

features of the insulin resistance syndrome (Reaven et al 1996), thus insulin resistance may 

play a pivotal role in the development of PET. It has been demonstrated that plasma 

glucose levels after a glucose load are elevated in pregnant women who subsequently
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develop PET (Solomon et al 1994), and that fasting insulin levels are elevated after an oral 

glucose tolerance test in women with established PET (Kaaja et al 1995, Lorentzen et al 

1998). W olf and colleagues demonstrated lower first trimester sex hormone binding 

globulin (SHBG), a negative correlate of insulin resistance, in women who subsequently 

developed PET, compared with those who had an uncomplicated pregnancy (P<0.01)

(Wolf et al 2002). It is notable that not all studies describe a positive relationship between 

insulin resistance and PET. Roberts and colleagues reported an increase in insulin 

sensitivity in women with PET compared to controls and they concluded that there was no 

association between PET and insulin resistance (Roberts et al, 1988). These discrepancies 

may reflect the application of techniques for assessing insulin resistance that may not have 

been validated in pregnancy.

Kirwan et al (Kirwan et al 2002) recently reported that TN Fa is a significant predictor of 

insulin resistance during pregnancy, in a prospective study of women with normal glucose 

tolerance and with gestational diabetes mellitus, emphasising the close relationships 

between insulin resistance and inflammation. It has been shown that both PAI-1 (Meigs et 

al 2 0 0 0 ) and leptin (Segal et al 1996) correlate with insulin resistance in pregnancy, further 

demonstrating a role for insulin resistance in PET. Laivuori reported that leptin levels were 

higher in PET women but that insulin sensitivity showed no direct relationship to leptin 

during the pregnancy. However, leptin and insulin sensitivity correlated directly in PET 

puerperal women compared to puerperal controls (Laivuori et al 2000).

1.3.3 Oxidative stress

Oxidative stress plays a role in the aetiology of atherosclerosis (Heinecke 1998). Similarly 

it is proposed that oxidative stress is a component of PET (Hubei 1999). The oxidative 

stress theory of PET involves the hypothesis that the abnormal placentation and 

dyslipidaemia results in a release of free radicals, par ticularly superoxide anions, and lipid 

hydroperoxides, which damage the vascular endothelium (Hubei 1999). Oxidative stress 

may link the decreased placental perfusion in PET to the maternal response (Ness and 

Roberts 1996, Roberts and Hubei 1999), via direct vascular damage and endothelial 

dysfunction. Sources of reactive oxygen species could be derived from the circulation or 

from the placenta itself. Oxidative stress in the systemic circulation may be explained by 

free radical generation by activated neutrophils or by formation of products of lipid 

peroxidation (e.g. malondialdehyde). Placental derived sources may be oxidised fragments 

of syncytiotrophoblast entering the systemic circulation due to increased placental
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apoptosis (Redman and Sargent 2001) or the production of cytokines, for example TNFa, 

by an hypoxic placenta (Benyo et al 1997).

Markers of oxidative stress and placental function are altered in PET and women 

delivering small for gestational age (SGA) infants. Chappell and colleagues (Chappell et al

2 0 0 2 ) have demonstrated that plasma ascorbic acid concentrations are decreased in both 

the SGA pregnancies and pre-eclamptic pregnancies compared to low risk women. Uric 

acid concentrations were increased only in the PET pregnancies. There was also a trend 

towards higher values of 8 -epi-prostaglandin F 2 a  (a lipid peroxidation marker) in the pre

eclamptic group. Akyol and colleagues (Akyol et al 2000) demonstrated a reduction in 

serum vitamin E levels in pre-eclamptic women.

Of great interest is a pilot intervention study where pregnant women at high risk of PET 

(283 cases) were randomised to placebo or treatment with a combination of vitamin C 

(lOOOmg/day) and vitamin E (400IU/day) (Chappell et al 1999). Placental function was 

improved (Chappell et al 1999) as demonstrated by a decrease in the PAI-l/PAI-2 ratio 

(Cerneca et al 1997, Estelles et al 1998, Shaarawy and Didy 1996). An unexpectedly lai'ge 

decrease in the frequency of PET (17% in the placebo group vs 8 % in the treatment group 

(adjusted odds ratio 0.39; 0.17 -  0.90, p=0.02) was reported. In a follow-up study 

(Chappell et al 2002), indices of placental dysfunction and oxidative stress were measured 

in the same cohort of patients at high risk of PET taking vitamin supplements. These 

women were compared to the cohort at high risk of PET and to the cohort of women at low 

risk for PET, both of whom were not taking supplementation. The placebo group 

demonstrated decreased levels of ascorbic acid, PAI-2 and placental growth factor, and 

increased levels of 8 -epi-prostaglandin F (2alpha), leptin and PAI-1 to PAI-2 ratio 

compared to the low risk group. In the high-risk group receiving vitamin supplementation, 

the levels of the above markers were similar to the values seen in the low risk group. Thus, 

it was concluded that antioxidant supplementation was associated with improvement in 

biochemical indices of the disease. Antioxidants such as ascorbic acid have also been 

demonstrated to improve endothelial dysfunction in women with previous PET (Chambers 

et al 2001). Evidently, these findings need further investigation via large randomised 

controlled trials, but raise the exciting possibility that antioxidants, either dietary or 

pharmaceutical, may have a role in prevention of PET in high-risk patients. It has been 

hypothesised that régulai’ exercise enhances antioxidant enzymes in pregnant women, 

reducing oxidative stress and the incidence of PET, and at the same time promoting a 

healthy lifestyle (Yeo and Davidge 2001).
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1.4 The link between PET and CVD

1.4.1 Pre-pregnancy risk factors for PET and CVD

There is evidence to suggest that the pre-pregnancy state may be the contributing factor for 

the development of future CVD, rather than pregnancy or PET. Non-pregnant women may 

have characteristics of the metabolic syndrome such as hypertension, increased insulin 

resistance, obesity and lipid abnormalities which, combined with the metabolic stress of 

pregnancy, manifest as PET. It is possible that these pre-existing factors may present again 

later in life, this time as CVD, as it is well established that these abnormalities also 

predispose to atherosclerotic disease.

Five to ten percent of pregnancies are complicated by chronic hypertension (Vinatier et al 

1993) and are at increased risk for the development of superimposed PET. Chronic 

hypertension is also a recognised risk factor for the development of CVD.

In the non-pregnant state, activated protein C (APC) resistance secondary to Factor V 

Leiden is associated with the development of PET in pregnancy. The degree of resistance 

to APC also relates to venous thrombosis risk, another risk factor for CVD (Clark et al

2001). In line with the suggested involvement of a hypercoaguable state in the aetiology of 

PET, congenital thrombophilias (Factor V Leiden, prothrombin 202lOA and antithrombin, 

protein C and protein S deficiencies, homozygous MTHFR C677T mutation) and acquired 

thrombophilias (anticardiolipin antibodies and lupus inhibitor) have been associated with 

PET (Alfirevic et al 2002, Arkel and Ku 2001). However an excellent and more recent 

large population-based study with appropriate inclusion criteria, published in conjunction 

with a meta analysis, did not find an association between PET and Factor V Leiden, 

prothrombin G20210A, MTHFR C677T, or platelet collagen receptor a2plC 807T  

(Morrison et al 2002). However, when analysis was restricted to severe PET, there was a 

significant association with Factor V Leiden and with MTHFR C677T homozygotes 

(Morrison et al 2002).

Similarly, it has been suggested that higher serum cholesterol levels before pregnancy 

predict the development of PET (Thadhani et al 1999). Again, alterations in the lipid 

profile have been associated with CVD development. In a retrospective analysis, a relative 

elevation of blood pressure, BMI and lipids in the non-pregnant state were demonstrated as
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features of the metabolic syndrome and were proposed to be important sensitising factors 

contributing to the pathogenesis of PET (Barden et al 1999).

Conditions associated with insulin resistance are also associated with an increased risk of 

PET, and these include polycystic ovarian syndrome (PCOS), increased weight gain and 

obesity (Solomon and Seely 2001). An increased body mass index (BMI) in early 

pregnancy or pre-pregnancy is a recognised risk factor for PET (Sattar et al 2001, Sibai et 

al 1995). Greater waist circumference and higher BMI was noted in subjects who 

developed PET (Sattar et al 2001). Waist circumference predicts CVD risk, and changes in 

waist circumference predict changes in this risk (Han et al 1997, Han et al 1995, Sattar et 

al 2001, Sattar et al 1998b). It is known that abdominal obesity is associated with insulin 

resistance, raised plasma triglycerides and increased sensitivity to lipolysis. This leads to 

an increased supply of free fatty acids to the liver and increased triglyceride and VLDL 

synthesis and could be related to the exaggerated dyslipidaemia of PET, as well as that of 

CVD. It is suggested that the maternal risk of PET increases with the degree of obesity, 

persists after accounting for other confounding demographic factors and is likely to be 

related to the altered metabolic state associated with morbid obesity rather than the PET 

per se (Sebire et al 2001). Insulin resistance is also associated with changes in a number of 

metabolic mediators. Elevated levels of PAI-1 (Abbasi et al 1999), leptin (Segal et al 

1996) and TN Fa (Fernandez-Real et al 1998, Solomon and Seely 2001) are features of 

insulin resistance. These markers are also increased in PET (Solomon and Seely 2001), 

which may support the theory that pre-pregnancy insulin resistance predisposes not only to 

later CVD, but also to PET in the pregnant state.

1.4.2 Do the metabolic and coagulation changes persist post
partum?

The metabolic disturbances of PET and atherosclerosis have many common features. 

However, it is important to ascertain whether the changes occurring in PET persist post

partum, increasing the risk of future CVD. In a case control study, formerly pre-eclamptic 

patients had higher systolic and diastolic blood pressures and increased plasma levels of 

vWF, fibrinogen, cholesterol, triglycerides and VLDL than control pregnant women (He et 

al 1999). The elevations in lipids, vWF and fibrinogen all correlated with the degree of 

blood pressure elevation in the index pregnancy. Another case control study of women, 

with similar BMI, approximately seventeen years after index pregnancy found elevated 

fasting insulin and glucose levels in women with a history of PET (Laivuori et al 1996).
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The area under the insulin response curve to a glucose tolerance test was larger in women 

with prior PET. Serum levels of total cholesterol, HDL cholesterol, triglyceride and uric 

acid did not differ significantly between the study groups, but the area under the insulin 

response curve was positively related to triglyceride and systolic blood pressure. Van 

Pampus and colleagues (van Pampus et al 1999) have described significantly higher 

lipoprotein (a) levels in PET women (33%) at least 10 years post pai'tum, compaied to a 

control group (10%). More recently, Sattai* and colleagues (Sattar et al 2003) have 

demonstrated significantly elevated levels of VCAM and ICAM, and higher H bA lC levels 

compared to control subjects, in women with a history of PET up to 1 5 - 2 5  years 

following the pregnancy.

Chambers et al (Chambers et al 2001) demonstrated impaired vascular reactivity in women 

with a history of PET. Pre-eclamptic women had a lower mean flow-mediated dilatation 

than controls, which was improved by ascorbic acid administration in the cases, but not in 

the controls. The pre-eclamptic group also had higher systolic and diastolic blood pressure, 

BMI, waist-hip girth ratio, and total cholesterol to HDL-C ratio, and a higher prevalence of 

hypertension and family history of hypertension. In multivariate regression analysis, the 

relationship between previous PET and impaired flow-mediated dilatation was independent 

of these confounders.

1.4.3 How do we interpret these studies?

The list of predisposing factors for PET include hypertension, diabetes, increased insulin 

resistance, increased testosterone, obesity (Lake et al 1997, Sattar et al 2001), lipid 

abnormalities (Sattar et al 1997a), black race and increased plasma homocysteine 

concentration. Interestingly, these are also risk factors for other endothelial diseases, 

particulai'ly atherosclerosis. There are also notable common features linking established 

PET and atherosclerosis, namely vasomotor dysfunction and hypertension, platelet and 

coagulation activation, endothelial damage, inflammation and metabolic disturbance. This 

serves to highlight the similar pathologies of the two disorders. The ‘atherosclerotic’ lesion 

of PET accumulates in the spiral arteries over a short period of time whereas the 

atherosclerotic lesion in vascular disease develops over decades. However, the features of 

PET are similar to atherosclerotic changes in the vascular bed in the non-pregnant 

population, and may highlight common mediators for underlying mechanisms in both 

diseases.
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The link between PET and CVD may be explained by the presence of pre-pregnancy 

metabolic abnormalities, as discussed in section 1.4.1. Extrapolating from this, it may be 

considered that those women who are destined to develop PET have a pre-existing 

susceptibility to ‘metabolic stress’, either due to pregnancy or simply the ageing process. It 

is this susceptibility to metabolic stress that underlies the link between PET and CVD. 

Alternatively, it may be considered that it is the metabolic abnormalities and endothelial 

damage generated by the onset o f PET that results in a susceptibility to CVD later in life. It 

is likely that the underlying aetiology is a combination of both of these possibilities.

Sattar and Greer have proposed a model where CVD risk changes throughout life (Figure 

1-2) (Sattar and Greer 2002). Immediately after birth and weaning cardiovascular risk is 

low. The risk 'peaks' during pregnancy due to metabolic and vascular changes. This risk 

decreases once more after delivery, but never quite returns to pre-pregnancy levels. Each 

subsequent pregnancy will step up the baseline level of risk so that risk increases with 

parity.

§

I
Population with complicated pregnancy eg pre-eclampsia

 Healthy population
  Threshold for vascular or metabolic disease

Neonatal
life

Pregnancies
+

Middle
age

Age

Figure 1-2. Risk factors for vascular disease are Identifiable during excursions Into the 
metabolic syndrome of pregnancy.

A positive association between parity and coronary heart disease (CHD) risk in women has 

been described in previous studies (Dekker and Schouten 1993, Green et a l  1988, Ness et 

al  1993). In a retrospective cross sectional study, Lawlor and colleagues (Lawlor et al

2003) recently reported a ‘J ’ shaped association between number of children and coronary 

heart disease, with the prevalence lowest among those with two children and increasing 

linearly with each additional child beyond two. An additional child increased the age-
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adjusted odds of coronary heart disease by 30% (odds ratio 1.30; 95% Cl 1.17 -  1.44) for 

women with at least two children. Because adjustment for obesity and metabolic risk 

factors attenuated the association, this group concluded that lifestyle risk factors associated 

with child-reai'ing lead to obesity and thus increased coronary heart disease risk. They 

acknowledged that the biological response of pregnancy, including insulin resistance, 

might have an additional adverse effect (Lawlor et al 2003). As a woman becomes older, 

her cardiovascular risk increases with age and accelerates in the post-menopausal years. 

Potentially some individuals are more susceptible to metabolic stresses than others. Thus a 

woman who suffers from PET may make greater excursions into metabolic disturbance in 

each pregnancy and returns to an increased level of risk compared to normal pregnancies 

thereafter. In later life her phenotypic susceptibility to vascular’ disease results in a faster 

acquisition of vascular risk associated with increasing age, resulting in the premature 

clinical presentation of vascular disease. The model proposed by Sattar and Greer is 

supported by epidemiological studies, demonstrating the link between the metabolic 

disturbances of PET and increased cardiovascular risk (Hannaford et al 1997, Irgens et al 

2001, Jonsdottir et al 1995, Smith et al 2001).

Over the years, there have been many treatments attempted for the control of PET, and yet 

we still have no cure. We can be certain that there are common mechanisms underlying 

both CVD and pregnancy complications, clinically manifest as disturbance in metabolism, 

coagulation and inflammation. The role of insulin resistance in PET provides a possible 

opportunity for intervention via diet and exercise, in the prevention of both PET and future 

CVD. Prevention and clinical management of PET may be much informed by 

atherosclerosis research particularly with respect to lifestyle and diet management. Pre

pregnancy interventions in women at risk of PET may have beneficial effects both on 

obstetric outcome and on CVD risk later in life.

1.5 Peroxisome proliferator-activated receptors

Peroxisome proliferator activated receptors (PPARs) are a family of intracellular ligand 

activated nuclear receptors regulating gene transcription (Schoonjans et al 1996). On 

activation, PPAR receptors heterodimerise with their common nuclear receptor binding 

partner, the retinoid X receptor (RXR) (Torra et al 2001). R X R a and PPARy act 

synergistic ally to regulate gene expression and insulin action (Codner et al 2001). Three 

types of PPAR receptor have been identified; a , y and ô, each differing in their tissue 

distribution. PPARa is expressed in liver, heart, kidney, muscle, retina and vasculai'
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endothelium (Chinetti et al 2001). PPARô (also designated PPARp) is distributed in all 

tissues tested with high expression in placenta and large intestine (Auboeuf et at 1997). 

PPARy has three isoforms; yl,Y2 and 7 3  and is expressed in adipose tissue (Spiegelman

1998), in large intestine and skeletal muscle (Fajas et al 1997, Park et al 1997). PPARa is 

involved in fatty acid metabolism and PPA Ra activation regulates gene transcription of 

products involved in pathways such as fatty acid oxidation (Schoonjans et al 1996). PPAR 

Y is involved in adipocyte differentiation (Schoonjans et al 1996, Spiegelman 1998) and 

insulin action (Kubota et al 1999, Spiegelman 1998) and agonists are used as insulin 

sensitizers. Both PPARa and, to a greater extent, PPARy are implicated in the regulation 

of inflammatory responses (Chawla et al 2001, Claik et al 2000, Tontonoz and Nagy 1999) 

particularly of the macrophage. PPARô is also known to be involved in lipid metabolism 

and inflammation (Chawla et al 2003, Wang et al 2003), as well as kératinocyte 

differentiation and wound healing (Di-Poi et al 2002, Michalik et al 2001). The natural 

ligands for PPARs are not established although 15-deoxy-A(12,14)-prostaglandin J2 and 

some lipids (e.g. polyunsaturated fatty acids) act as PPARy agonists (Kliewer et al 1997). 

The fibrate and thiazolidinedione classes of drugs act as PPARa and PPARy agonists 

respectively (Schoonjans e ta l  1996).

Evidence for a role for the PPARs in pregnancy has emerged from the PPARy and PPARô 

knockout mice. PPARy deficiency interfered with terminal differentiation of the 

trophoblast and placental vascularisation, leading to severe myocardial thinning and death 

(Barak et al 1999, Kubota et al 1999). PPARô was demonstrated to be essential for 

placentation, with the knockout mice embryos dying in parallel to the appearance of an 

abnormal gap in the placento-decidual interface (Barak et al 2002). High PPARÔ 

expression has been demonstrated at implantation sites and in decidual cells in the rat 

uterus (Lim and Dey 2000), and thus PPARÔ may play an important role during 

implantation and decidualisation (Ding et al 2003).

Human studies have also supported a role for PPARô and y in pregnancy. PPARy is 

expressed in human cytotrophoblasts, in a choriocarcinoma cell line (JEG-3) and in fetal 

endothelial cells (Schaiff et al 2000, Waite et al 2000). Using a luciferase reporter gene 

construct in the JEG-3 cell line, it was found that PPARy activation and protein expression 

increased using sera from pregnant women, possibly by a prostanoid or fatty acid 

component (Waite et al 2000). Non-quantitative assessment of PPARa, ô and y and R X R a 

expression has been carried out in cyto- and syncytiotrophoblast cells (Fournier et al 2002,
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Tarrade et al 2001a, Tairade et al 2001b, Wang et al 2002) and in trophoblastic disease 

and hydatidiform molar pregnancies (Capparuccia et al 2002). It is interesting to note the 

report of an index female case from kindred with a dominant negative mutation in human 

PPARy (which is associated with severe insulin resistance and hypertension) with a 

complicated obstetric history (Barroso et al 1999).

Because of the role of PPARs in inflammation, insulin and lipid metabolism and placental 

function, it is possible that they may have a function in the metabolic complications of 

pregnancy. Recent data suggest that PPA R a and y activation decreases atherosclerotic 

progression, by correcting metabolic disorders and also through direct effects on the 

vasculature (Duval et al 2002). PPAR agonists are used as insulin sensitising and lipid- 

lowering agents in the treatment of atherosclerotic diseases. As discussed previously, PET, 

with widespread endothelial damage and dysfunction and increased systemic inflammatory 

response, shares many risk factors with cardiovascular disease. There are potential 

common underlying mechanisms for cardiovascular disease and PET, and there is a link 

between cardiovascular disease risk and other metabolic complications of pregnancy.

There is potential for intervention based on early assessment of cardiovascular' risk, among 

them possible use of the PPAR agonist drugs. PPARs are thus excellent candidate 

molecules that may be implicated in the development of cardiovascular disease pathology.

1.6 Hypothesis and aims

Based on the evidence demonstrating a role for PPARs in normal pregnancy, in the 

metabolic complications of pregnancy and in cardiovascular disease, and based on the data 

linking PET and lUGR with future cardiovascular risk, it was hypothesised that:

PPAR mRNA and protein expression might increase during gestation and be 

compromised in complications of pregnancy with placental pathology such as PET 

and lUGR. Elevated plasma inflammatory and lipid markers in mother and fetus 

would determine disease severity in the latter groups.

Analogous to the relationship between inflammation and the development of 

insulin resistance in type 2 diabetes and CVD, it is proposed that the inflammation 

seen in PET may be related to the development of insulin resistance and the 

metabolic syndrome. Inflammatory and metabolic mediators may be produced by 

the placenta, maternal adipose tissue or both.
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• Higher fasting insulin and triglyceride levels in the maternal plasma in PET 

pregnancies (compared to uncomplicated pregnancies) will result in less 

unsaturated fatty acids in both maternal erythrocyte membranes, and that the 

mother and fetus may be at risk for future development of the diseases of insulin 

resistance, including CVD and PET itself.

• Variation at genes encoding for molecules involved in the metabolic pathways of 

inflammation and insulin resistance may confer susceptibility to development of 

PET.

Thus, the aims of this thesis were four fold;

#

#

To determine the localisation and expression of each of the PPARs in 

uncomplicated pregnancy and in pregnancies complicated by PET and lUGR.

To determine maternal and fetal lipid and lipoprotein concentrations in a cross- 

sectional BM l matched case control study of uncomplicated 3̂  ̂trimester 

pregnancies, and pregnancies complicated by PET or lUGR, to assess disease 

severity and fetal lipid status in these complicated pregnancies. PON-1 activity was 

also determined, as a mai’ker of oxidative stress in these pregnancies.

To determine whether there is an aetiological link between the insulin resistance 

and inflammation seen in PET pregnancies, by compaiing maternal and fetal 

inflammatory markers and markers of insulin resistance in the PET group, with 

those derived from uncomplicated pregnancies. 1 also aimed to determine maternal 

erythrocyte membrane phospholipid fatty acid composition in these pregnancies, as 

a marker of insulin resistance, relating the findings to the plasma lipid and insulin 

resistance markers.

To assess subcutaneous adipose tissue and placental expression of markers of 

inflammation and insulin resistance (inflammatory cytokines, leptin and PPARy) in 

uncomplicated and PET pregnancies, to determine a potential tissue origin.

To look at the contribution of inflammatory, leptin and PPARy genotypes on PET 

risk.
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2 Materials and Methods

2.1 Subjects

2 .1. 1 Cross-sectional study

Twenty-three subjects with PET and 17 subjects with lUGR and their corresponding 

matched controls (n=40) from third trimester (28-40 weeks gestation) uncomplicated 

pregnancies were recruited from the Princess Royal Maternity Hospital, Glasgow. Data 

was normalised using a cohort of 81 maternal and 41 fetal blood samples from 

uncomplicated 3"̂  ̂trimester pregnancies, collected in the same manner. Patient 

characteristics, including booking body mass index (BMl) and mode of delivery, were 

recorded at time of sampling and smoking status recorded as current smoker or non- 

smoker. Patients with suspected fetal anomalies likely to contribute to reduced fetal growth 

were excluded from the study, as were women taking drugs known to affect metabolism. 

PET was defined according to the International Society for the Study of Hypertension in 

Pregnancy criteria, that is, a diastolic blood pressure greater than 110 mmHg on one 

occasion, or exceeding 90 mmHg on repeated readings, with proteinuria of > 0.3g/24 h, or 

2+ proteinuria on dipstick testing, in the absence of renal disease or infection. lUGR was 

defined as having an estimated fetal weight less than the percentile for gestation with 

associated oligohydramnios (amniotic fluid index <5) and/or abnormal umbilical artery 

blood flow on Doppler ultrasound. Local birthweight centiles were used. Cases were 

matched with control subjects for age, parity and BML Maternal and fetal blood, placental 

tissue and subcutaneous adipose tissue were studied (table 2-1). The study was approved 

by the Ethics Committee of Glasgow Royal Infirmary, and all women gave written 

informed consent.

2 .1.2 Longitudinal study subjects and tissue collection

Subjects with uncomplicated pregnancies were recruited from the Princess Royal 

Maternity Hospital, Glasgow, and were studied during routine antenatal visits in the 2"  ̂

and 3̂  ̂trimesters of pregnancy. Patient characteristics were recorded at the first visit. 

Maternal and fetal bloods were collected at time of delivery, as in the cross-sectional study 

(section 2.1.1) (Table 2-1). Samples for the longitudinal study were collected by Dr 

Frances Stewart, for which I am grateful.
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PET PET
control

lUGR lUGR
control

Longitudinal study 
(number of samples 
in each trimester)

Uncomplicated 3̂  
trimester cohort for 
data normalisation

Maternal lipids 23 23 17 17 47 81
Fetal lipids 14 14 11 11 n/a 41
Maternal markers of 23 23 17 17 47 (IL-6 and sCRP) 81
inflammation 
Fetal markers of 14 14 11 11 n/a 41
inflammation 
Maternal PON-1 23 23 17 17 20 53
Fetal PON-1 14 14 11 11 n/a n/a
Maternal SHE G 23 23 17 17 47 81
Fetal SHBG 14 14 11 11 n/a 41
Maternal fructosamine 23 23 17 17 n/a 81
Maternal glucose/ insulin 23 23 17 17 47 63
Fetal glucose/ insulin 14 14 11 11 n/a 29
Maternal RBC FA 23 23 17 17 47 47
analysis
Placenta -  PPAR study 10 10 10 10 n/a n/a
Placenta -  inflammatory 6 6 6 6 n/a n/a
study
Adipose tissue 6 6 6 6 n/a n/a

Table 2-1. Number of samples collected for analysis in each study group.

2.1,3 Archival placental collection

First, second and third trimester placental samples were obtained from an available 

archival collection. The first trimester placentae (n=10) (7-12 weeks gestation) had been 

collected from women undergoing suction termination of pregnancy without pre-treatment 

for social indications. Second trimester placentae (n=10) (1 4 -2 8  weeks gestation) were 

similarly collected after medical termination of pregnancy using mifepristone 600mg orally 

48 hours prior to receiving a Img gemeprost (the synthetic prostaglandin analogue, 16,16- 

dimethyl-?ran^-A^-PGEi methyl ester) vaginal pessary, for social indications. Pregnancies 

known to have an abnormal fetal karyotype were excluded from the study. Third trimester 

placental samples (n=1 0 ) had been collected at time of delivery in the same manner as for 

the cross sectional study (section 2 .1 .1 ).

2,1,4 Genetic study population

All PET and control samples were collected from the same West of Scotland population 

attending the Princess Royal Maternity Hospital (formally Glasgow Royal Maternity 

Hospital) as described in sections 2.1.1 and 2.1.2, and included samples from an archival 

collection, described in detail in Hypertension (Freeman et al 2004). PET was defined as in 

2.1.1, Cases were matched with controls for age and parity (PET n=130 and controls 

n=260).
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2.2 Tissue handling and storage

2.2.1 Placental tissue

First and second trimester placentae were washed in phosphate buffered saline and an 

approximately five-gram sample was fixed in 10% neutral buffered formalin (BDH, Poole, 

UK). Full thickness biopsy sections of third trimester placentae were obtained 

(approximately five grams) at time of delivery from four separate pre-determined areas on 

each placenta, distinct from the umbilical cord insertion, and then samples were 

randomised. These sections were similarly fixed as before. All samples were paraffin- 

embedded for immunocytochemistry (ICC). Samples of and 3"̂  ̂trimester placentae 

were immediately snap frozen in liquid nitrogen and stored at -70 °C for later RNA 

preparation and protein extraction. Frozen samples for RNA and protein preparation were 

not available from 2 "̂  trimester samples.

2.2.2 Adipose tissue

Subcutaneous (SC) adipose tissue (approximately Icm^) was collected from the incision 

site at time of Caesarean section, and washed in phosphate buffered saline. An 

approximately one-gram sample was fixed in 10% neutral buffered formalin (BDH, Poole, 

UK). All samples were paraffin-embedded for immunocytochemistry (ICC). Samples 

were immediately snap frozen in liquid nitrogen and stored at -70°C for later RNA 

preparation and protein extraction.

2.2.3 Biood

Fifty millilitres of blood was collected at time of recruitment, from the antecubital fossa by 

venepuncture into K2EDTA (final concentration 1 mg/ml), sodium citrate (3.2%), lithium 

heparin, fluoride oxalate and plain tubes. None of the samples obtained were taken during 

labour. Blood samples were not drawn under fasting conditions in the PET and lUGR 

patients from the cross-sectional study. Patients presenting with PET or lUGR are often 

admitted on an emergency basis, thus standardised blood sampling after a 1 2 -hour 

overnight fast is not feasible in these groups. Non-fasting will affect maternal plasma 

triglyceride (TG), glucose and insulin levels in this thesis. PON-1 activity is unaffected by 

fasting status. However, it was considered reasonable to observe the non-fasting TG 

values, as we spend most of our time in the non-fasting state. Blood samples were taken
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after a 1 2 -hour overnight fast in the longitudinal study subjects, where samples were drawn 

under fasting conditions in each trimester of pregnancy. Fetal cord blood was obtained at 

time of vaginal delivery or lower uterine Caesarean section, from the umbilical vein. Fetal 

blood was collected into K2EDTA (final concentration 1 mg/ml), fluoride oxalate and 

lithium heparin tubes. Plasma, semm and blood cells were harvested at 5 °C by low speed 

centrifugation, and aliquots of plasma, serum and the buffy coat layer were either used 

immediately or frozen at -70°C until required for use. None of the samples were 

haemolysed.

2.3 Immunocytochemistry

Immunoeytoehemistry (ICC) was performed on paraffin embedded plaeental tissue (10 x 

5pm sections from each placenta; trimester, 3rd trimester, PET& lUGR (n=10 placentae

in each group, controls n=20). Antibodies used, pre-treatment, blocking solutions, and 

primary and secondary antibody dilutions are detailed in Table 2-2. Sections were mounted 

on silane-coated slides, heated to 60°C for 35 minutes, deparaffinised in xylene, and 

rehydrated in a graded alcohol series. Endogenous peroxidase activity was quenched using 

0.5% hydrogen peroxide in methanol. Sections were then washed in phosphate buffered 

saline (PBS) and antigen was retrieved by pre-treatment as in Table 2-2. Following this, 

sections were washed in PBS and bloeked as in Table 2-2, for 30 minutes at room 

temperature. They were then incubated for 16 hours at 4°C with the primary antibody 

diluted as in Table 2-2. Sections were once again washed in PBS then incubated for 30 

minutes with the appropriate biotinylated secondary antibody (all Vector Laboratories), as 

in Table 2-2; all with 5% human serum added. Sections were washed in PBS then 

incubated with avidin DH/ biotinylated horseradish peroxidase H reagent (Vector 

Laboratories) in PBS as described by the manufacturer, for 30 minutes before final 

washing. The antigen was visualised using 1 mg/ml diaminobenzidine tetrachloride 

(Sigma), 0.02% H2O2 in 50mM Tris-HCl, pH 7.6, and the antigen appeared as a brown end 

produet. Sections were counterstained with Harris haematoxylin (Sigma). Small bowel 

tissue sections were used as positive control for each of the PPARs, tonsillai' tissue for 

CD6 8  and placenta for CY-7, CD31 and RXRa. Negative controls included slides 

incubated without the primary antibody and sections incubated with a mouse monoclonal 

antibody against IgG l Aspergillus niger glucose oxidase (Dako Ltd., Buekingharashire, 

UK), an enzyme that is neither present nor inducible in mammalian tissues. PPAR 

antibody specificity was confirmed using competing peptides (xl (0.6|ig/ml) -  x50 

(30|ag/ml)) against which the primary antibody was raised (Santa Cruz). The specificity of
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the other antibodies used, had previously been verified by the manufacturer using enzyme 

linked immunosorbent assay (see data sheets).

Antibody Section type Section 1° antibody 1° antibody Biotinylated 2°
(pre-treatment) blocking

solution
dilution source antibody dilution

PPARa Paraffin 20% rabbit/ 1:350 in 2% Santa Cruz 1:200 rabbit anti
[microwave, 
citrate buffer 
(pH 6.0)]

20% human 
serum

rabbit SC-1985 goat in 2% rabbit 
serum in PBS

PPARÔ Paraffin 20% rabbit/ 1:350 in 2% Santa Cruz 1:200 rabbit anti
[microwave, 
citrate buffer 
(pH 6.0)]

20% human 
serum

rabbit SC-1983 goat in 2% rabbit 
serum in PBS

PPARy Paraffin 20% rabbit/ 1:350 in 2% Santa Cruz 1:200 rabbit anti
[microwave, 
citrate buffer 
(pH 6.0)]

20% human 
serum

rabbit SC-1984 goat in 2% rabbit 
serum in PBS

CY-7 Paraffin 20% horse/ 1:250 in 2% DAKO 1:200 horse anti
[microwave. 20% human horse M7018 mouse in 2% horse
citrate buffer serum serum in PBS
(pH 6.0)]

CD68 Paraffin 20% horse/ 1:50 in 2% Dako 1:200 horse anti
(Trypsin) 20% human 

serum
horse DAKO-

X931
mouse in 2% horse 
serum in PBS

CD31 Paraffin 20% horse/ 1:500 in 2% DAKO 1:200 horse anti
[microwave. 20% human horse M0823 mouse in 2% horse
citrate buffer serum serum in PBS
(pH 6.0)]

RXRa Paraffin 20% goat/ 1:500 in 2% Santa Cruz 1:200 goat anti
(D-20) [microwave, 

citrate buffer 
(pH 6.0)1

20% human 
serum

goat SC-553 rabbit in 2% goat 
serum in PBS

Table 2-2. Antibodies used in ICC

2.4 Northern analysis

2.4.1 RNA preparation and eiectrophoresis

Total RNA was extracted from placenta and adipose tissue using the Trizol ™ method 

aecording to the manufacturer’s instructions (Life Technologies, Paisley, UK). The 

isolated RNA was redissolved in diethylpyrocarbonate (DEPC)- treated distilled water and 

quantified by UV spectrophotometry. The integrity of the RNA was confirmed as being 

free of protein and DNA contamination by having an optical density at 260nm/280nm 

(ratio of >1.8) and by the presence of intact 18s and 28s bands on agarose gels. RNA 

sample loading buffer (Sigma, UK) was added to 10p,g of total RNA and electrophoresis 

carried out in 1.2% agarose gels containing 6 % formaldehyde and 20mmol/L MOPS (lOx 

MOPS is 0.2 mol/L 3-[N~Morpholino] propane-sulphonic acid; 0.05 mol/L Na acetate pH



Vanessa Rodie, 2005 Chapter 2, 58

7.0; 0.01 mol/L NaaEDTA) at 60 volts for 2.5 hours. RNA was transferred overnight onto 

Hybond-N nylon membranes (Amersham Biosciences, Buckinghamshire, UK) in 20 x SSC 

(3 mol/L NaCl; 0.3 mol/L NagCGHsOyiHzO, pH 7.0) and fixed to the membrane by 

ultraviolet irradiation for 40 seconds at 1.2 x 10  ̂microjoules. Membranes were pre

hybridised for 1-2 hours, at 42° C, in 14ml of Ultrahyb™ (Ambion (Europe) Ltd., 

Huntingdon) and then hybridised overnight with the appropriate ^^P-labelled probe 

(Oligolabelling kit, Amersham Biosciences, Buckinghamshire, UK) added to the 

prehybridisation buffer. Fifty nano grams of cDNA or oligonucleotide were labelled by 

random priming.

2,4,2 Probes

The PPARy (1.2Kb) and PPARÔ (1.0 Kb) cDNA probes were purchased from Alexis 

Corporation (Nottingham, UK). Complementary cDNA probes were prepaied as follows; a 

389 base pair region of the R X R a gene, a 492 base pair region of the PPA Ra gene, a 359 

base pair region of the 18s ribosomal RNA gene and a 469 base pair region of the PAI-2 

gene were amplified by polymerase chain reaction (PCR). The forward and reverse primers 

used aie detailed in Table 2-3. PCR products were purified using Wizard PCR Preparations 

DNA purification system (Promega, UK). Nylon filters were washed in 1 x SSC, 0.1%

SDS at 65°C for 20 minutes, then in 0.5 x SSC, 0.1% SDS and if necessary a further wash 

was carried out in 0.1 x SSC, 0.1% SDS at 65°C. Autoradiography was carried out with 

Fuji X-ray film at -70°C for between one and four days.

Gene Forward primer______________________________________ Reverse primer_____________________________________
PPARa 5’-C C A G TA TTTA G G A C G C TG TC C -3’ 5’-AAG TTC TTC AAG TAG GCC TCG-3’

RXRa 5’-AGG AAA CAT GGC TTC CTT CAC CAA G-3’ 5 -GTT TGC CTC CAC GTA GGT CTC GGT C-3’

18s 5’-CAA GTC TGG TGC CAG CAG CCG GGG T-3’ S’-TCA CCT CTA GCG GCG CAA TAC GAA T-3’

PAI-2 S'-AAT ATA TTC GAC TCT GTC AGA AAT A-3’ S’-GCT GGT CCA CTT GTT GAG TTT GTC A-3’

Table 2-3. Northern analysis primers for cDNA probes

2.5 Protein extraction and western biot analysis

2.5.1 Protein extraction and SDS-PAGE

Protein was extracted from placenta and adipose tissue using the Trizol ™ method 

according to the manufacturer’s instructions (Life Technologies, Paisley, UK). Protein (50
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}lg) was mixed with 4 times the volume of 100% acetone, stored for 1 hour at -20°C and 

then ultracentrifuged at 4°C at 13,000rpm for 10 minutes. The supernatant was removed 

and the pellet air-dried. The pellet was mixed with loading buffer (0.5M Tris base, 5.2% 

SDS, 17% v/v glycerol, 8.7% mercaptoethanol, 0.02% Bromophenol Blue, pH 6 .8 ), boiled 

for 3 minutes and loaded onto a 10% SDS-PAGE gel with a 5% stacking gel. A standard 

preparation of Jurkat cell nuclear extract (Santa Cruz, SC-2132) (50|Tg) was used as a 

positive control. After electrophoresis, proteins were transferred to nitrocellulose using 

Hoefer 660 transfer apparatus (Amersham Pharmacia Biotech Inc., UK) according to the 

manufacturer’s instructions. The transfer time was 3 hours, and 0.025% SDS was added to 

the standard buffer.

2.5.2 Western biotting

1° antibody 1° antibody dilution/ duration 2° antibody dilution
PPARa (Santa Cruz Biotechnology 
Inc. (SC)-1985)

1:100/2 hours Anti-goat (SC-2352) 1:5000

PPARÔ (SC-7197) 1:500/ overnight Anti- rabbit (SC-2054) 1:40 000

PPARy (SC-7196) 1:500/ overnight Anti- rabbit (SC-2054) 1:40 000

RXRa (SC-553) 1:200/ overnight Anti- rabbit (SC-2054) 1:40 000

IL-6 (R&D MAB206) 1:200/overnight Anti-mouse (SC-2055) 1:2500

IL-10 (R&D MAB217) 1:200/overnight Anti-mouse (SC-2055) 1:2500

Leptin (OB) (R&D AF389) 1:200/overnight Anti-goat (SC-2352) 1:2500

TNF-a (R&D MAB610) 1:200/overnight Anti-mouse (SC-2055) 1:2500

Table 2-4. Antibodies used in Western analysis.

Western blot antibody optimal concentrations were determined using dot-blot apparatus 

and an antibody dilution series. The PPARy and ô antibodies used initially (SC-1984 and 

SC-1983 respectively) demonstrated significant non-specificity for the PPARs and 

antibody specificity was subsequently obtained using other antibodies from the same 

company (SC-7196 and SC-7197 respectively). Positive controls for PPARs included 

Jurkat nuclear extract and a third trimester placenta from an uncomplicated pregnancy, 

which was known to express high amounts of protein. Recombinant human proteins for IL- 

10 (50ng, R&D 217-IL-025), leptin (lOOng, R&D 398-LP), IL - 6  (lOOng, R&D 206-IL-05) 

and TN Fa (lOOng, R&D 210-TA-050) were used as the appropriate antibody positive 

control. Blots were developed using standaid procedures, with three 15-minute wash steps
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in 0.1% TTBS (10 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 8.0) between each step. 

Blocking time was 1 hour at room temperature; in 10% skim milk-TTBS. Membranes were 

subsequently incubated with primary antibody (table 2-4) in 5% skim milk-TTBS at room 

temperature. After incubation with secondary antibody (table 2-4), for 1 hour at room 

temperature, blots were developed using ECL reagents (Amersham Pharmacia Biotech, 

UK) and were exposed to film for 5 minutes.

2.6 Blood analyses

Plasma was harvested at 5 °C by low speed centrifugation, and aliquots of plasma for lipid 

and lipoprotein measurements were analysed immediately. Plasma total cholesterol, TG, 

VLDL-C, LDL-C and HDL-C measurements were performed by modification of the 

standard Lipid Research Clinics Protocol (Lipid Research Clinics Program. Manual of 

Laboratory Operations. Lipid and lipoprotein analysis, 1975. p. 5) using enzymatic 

reagents for lipid determinations. IL-6 , IL-10, ICAM, VC AM, TNFa, leptin (all R&D 

Systems Inc., USA), SHBG (IBL Immuno-Biological Labs, Hamburg) and insulin 

(Mercodia, Sweden) were performed by commercial ELISA according to the 

manufacturer’s instructions. Highly sensitive CRP (sCRP) was performed using a double

antibody sandwich ELISA with rabbit anti-human CRP (Dako Corp. A/S, Glostrup, 

Denmark, cat. No. A0073) and peroxidase-conjugated rabbit anti-human CRP (DAKO cat. 

No. P0277). The substrate for the colour was 1,2 phenylaminediamine (DAKO cat. No. 

2000) and the standard was human CRP calibrator (DAKO cat. No. X0923). The assay 

participates in the UK NEQAS quality control scheme (Packard et al 2000). Glucose 

analyses were kindly performed by routine biochemistry (Glasgow Royal Infirmary). Fetal 

insulin was kindly analysed by Mr Ian Halsall of the Department of Clinical Biochemistry, 

Addenbrooks, NHS Trust, Cambridge. HOMA analysis was calculated as follows: [fasting 

insulin (mU/L) x fasting glucose (mmol/L)]/22.5 (Conwell et al 2004). Fructosamine 

analysis was performed using a colorimetric assay (Roche Diagnostics Ltd., East Sussex, 

UK), on an IL600 autoanalyser. PON 1 activity and concentration were kindly analysed by 

Dr Mike Mackness of the Clinical Research Division II Medicine, Manchester Royal 

Infirmary. In brief, PONl activity was measured by adding serum to Tris buffer containing 

2 mmol/L CaClz and 5.5 mmol/L paraoxon (0,0-diethyl-0-p-nitrophenylphosphate, Sigma 

Chemical Co). The rate of generation of p-nitrophenol was determined at 405 nm, 25°C, 

with the use of a continuously recording spectrophotometer (Beckman DU-6 8 ) (Mackness 

et al 2001). All samples were run in a single assay.
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2.7 Red blood cell membrane fatty acid extraction and 

derlvatlsatlon

2.7.1 Red blood cell fatty acid extraction

Preparation of a total fatty acid extract from red blood cell (RBC) membranes was 

performed with a modified Folch extraction (Folch et al 1957, Moving et al 1988). Four 

hundred microlitres (400pL) of red blood cells were re-suspended in lOmM TRIS buffer 

(Tris[hydroxymethyl]aminomethane, C4H 11NO3), pH 7, by vortexing in 6 ml Beckman 

Ultraclear Ultracentrifuge tubes (0.5-2.5 inches, part number 344088, Beckman 

instruments, Inc., Palo Alto, CA 94304, USA). Tubes were filled to the neck, and left at 

room temperature for 30 minutes to lyse the RBCs. The tubes were centrifuged in a 

Beckman L8-60M Ultracentrifuge, Type 50.4 rotor, at 49,000 rotations per minute (rpm), 

at 4 °C for 30 minutes. The supernatant was removed to leave the RBC pellet, which was 

then re-suspended by vortexing in 200jaL of distilled H2O and 150|aL was transferred to a 

clean glass screw top tube. Two millilitres (ml) of methanol:toluene (4:1) containing 

heneicosanoic acid (C21H42O2) internal standard (0.2mg C2 iH4 2 0 2 /ml toluene), was added, 

to allow calculation of the absolute fatty acid amounts. While vortexing, 200pL of 100% 

acetyl chloride was added to each tube, and the tubes capped (screw caps) and sealed with 

teflon tape. The tubes were heated at 100 °C for one hour in a heating block. The tubes 

were allowed to cool in cold H2O in a metal rack. Three millilitres (ml) of 10% K2CO3 was 

slowly added to each tube. One hundred microlitres (|iL) of toluene was added. Tubes 

were centrifuged at 3000ipm for 8  minutes at 5 °C. The upper toluene phase was 

transferred to GC vials, and stored at minus 20 °C until ready for injection on the gas 

chromatograph.

2.7.2 Gas chromatography

All analyses were performed in collaboration with Dr Barbara Meyer, University of 

Wollongong, New South Wales, Australia, and gas chromatography was carried out there, 

by myself. The fatty acid constituents of the phospholipids and triglycerides were 

transmethylated by heating as described in section 2.7.1, and the methyl fatty acids (FAs) 

were separated, identified and quantitated on a Shimadzu GC 17A gas chromatograph with 

flame ionisation detection and Class VP software. A 30m x 0.25mm-mm DB-23 fused 

silica capillary column (J&W Scientific, Foison, CA) with a film thickness of 0.25 pm was
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used in conjunction with a Hewlett-Packard 7673B on-column auto-injector. Ultra-high 

purity hydrogen (Commonwealth Industrial Gases, Ermington, NSW, Australia) and air 

were used as a carrier gas at a flow rate of 2mL/min. A temperature gradient programme 

was used with an initial temperature of 150°C, increasing at 20°C/min until 190°C, then at 

5°C/min until 210°C, then at 2°C/min until 230°C and then at 4°C/min until 240°C (final 

time 18.5 min) and with an equilibration time of 1 minute. The total programme time was 

22 minutes. Identification of fatty acid methyl esters was made by comparison with the 

retention times of authentic standard mixtures (Fatty acid methyl ester mixture #189-19, 

product no. L9405, Sigma, Sweden).

2,7.3 Fatty acid data anaiysis

The results were expressed as a percentage of the total fatty acids (12:0, 14:0, 14:ln7, 16:0, 

16:ln7, 17:0, 17:ln7, 18:0, 18:ln6, 18:ln9, 18:ln7, 18:2n6, 18:3n6, 18:3n3, 20:0, 20:ln9, 

20:2n6, 20:3n9, 20:3n6, 20:4n6, 20:3ii3, 20:5ii3, 22:0, 22:ln9, 22:2n6, 22:4n6, 22:3n3, 

22:5n6, 22:5n3, 24:0, 22:6n3, 24:ln9). Identified minor peaks (<0.5% of the total) were 

excluded from the calculation. Three fatty acid indices were derived from the primary data: 

the average degree of fatty acid unsaturation (the unsaturation index; UI), which was 

calculated as the average number of double bonds per fatty acid residue multiplied by 1 0 0 , 

the average chain length and the total percentage of long chain polyunsaturated fatty acids 

(PUFA) with >20 carbon units (C20-22 PUFA). The activity of certain enzymes of fatty 

acid biosynthesis was estimated according to the product precursor ratios of the percentage 

of individual fatty acids. The estimated enzyme activities include; elongase, calculated 

from the ratio of the percentage of 18:0 (stearic acid) to 16:0 (palmitic acid); and the A5 

desaturase, calculated from the ratio of 20:4n-6 (arachidonic acid) to 20:3 n-6 ; the A6  

desaturase, calculated from the ratio of 20:3n6 to 18:2n6; and A9 desaturase, calculated 

from the ratio of 18:1 n-9 (oleic acid) to 18:0 (Pan et al 1995).

2.8 DNA polymorphisms

2.8.1 Preparation of human DNA from blood

Maternal and fetal blood samples were collected in EDTA (1 mg/ml). On ice, 1 - 2  

millilitres (ml) of packed red cells, or the buffy coat layers, were added to 15 ml of lysis 

buffer pH 7.5 [sucrose 0.32M 109.5g/L, 1.58gL Tris-HCL or 1.21g/L Tris base lOmM pH 

7.5, 1.02 g/L MgClz 5mM, lOml/L Triton X-100 1%], and mixed by inversion. The
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samples were centrifuged at 10,000 rpm, for 10 minutes at 4°C, in a JA-17 rotor, in the 

Beckman J2-21 centrifuge. The supernatant was removed completely, and the pellet 

samples returned to ice. The pellets were re-suspended in 2.25 ml re-suspension buffer pH 

8.0 [4.38g/L NaCl 0.075M, 8.93g/L EDTA 0.024M] using a sterile pastette. SDS (10%, 

125pl) and proteinase K 2mg/ml (125pl) were added, and the samples incubated at 37°C 

overnight in a water bath. The incubated solution was transferred to a clean glass ZIO tube 

and 2.5ml of water-saturated phenol was added to each, mixing by inversion. The samples 

were centrifuged at 3000rpm for 10 minutes in a Mistral 3000 centrifuge. The top layer 

was transferred into a clean ZIO tube, using a long bent glass pasteur pipette, and 2.5ml 

chloroform: isoamylalcohol (24:1) was added and mixed by inversion. The layers were 

separated by centrifugation at 3000rpm for 10 minutes, as before, and the top layer 

transferred to another clean ZIO tube. This step was repeated one further time, and the final 

top aqueous layer was transferred to a clean ZIO tube. Sodium acetate 0.25ml [3M, pH 7.0 

- 8.0] and ethanol 5.5ml were added, and the tubes inverted. The resulting DNA pellet was 

transferred to an autoclaved 0.5mL plastic tube, using a sealed glass pipette. The tubes 

were spun in a microfuge using the pulse technique, and any remaining ethanol removed. 

Autoclaved TE buffer pH 7.6, 0.25ml, [1.58g/L Tris-HCL or 1.21 g/L Tris base lOmM, 

0.37g/L ImM EDTA] was added and mixed by pipetting, and the samples left overnight at 

4°C. The optical density of a 1/5 dilution of DNA (50pl DNA in 200|t1 distilled H2O) was 

measured at 260nm and 280nm using a 0.5ml quartz cuvette. The DNA concentration was 

determined using the formula; DNA concentration = OD@260nm x dilution x 50|ig/ml 

DNA. The OD ratio 260/280 was between 1.7 - 2.0. The samples were then stored at - 

20°C.

2,8.2 Genotype analysis

DNA amplification and digestion was performed using the polymerase chain reaction 

(PCR) with the appropriate restriction enzyme (see below).

2.8.2.1 PCR and restriction fragment length polymorphism (RFLP)

The polymerase chain reaction (PCR) was used to detect the C161T at exon 6  of the 

PPARy gene, the P12A in the PPARy-2 isoform-specific exon B of the PPARy gene, the 

G2548A polymorphism of the LEP gene, a tetranucleotide repeat polymorphism in the 3’- 

flanking region of the human leptin gene (Shintani et al 2002), the IL-10 C592A of the IL- 

10 gene, the Q192R in the paraoxonase 1 (PONl) gene and the L55M in the PONl gene.



Vanessa Rodie, 2005 Chapter 2, 64

Primer sequences and the PCR amplification programme were as detailed in table 2-5. The 

amplifications were each performed in an 1 IpL  volume, using IpL  of DNA per sample, 

and the reaction mixtures are described in table 2-6. For each polymorphism, the PCR 

products were digested with the appropriate restriction enzyme (table 2-5), with 

manufacturer’s incubation buffer, 0.4p,L acetylated BSA in the case of Lep G2548A and 

PON L55M, and filtered sterile water in a total volume of 30|dL at 37°C for 3 hours. The 

LEPTET3 polymorphism did not require digestion.

Polymorphism Primer PCR programme Restriction enzyme 
(recognition site)

PPARy C16i-T

PPARy PI 2-A

LEPTET3

IL-10 C592A

PON-1 L55M

Sense 5'-CAA GAC AAC CTO CTA CAA GC-3’ 
Anti-sense 5’-TCC TTG TAG ATC TGC TGC AG-3’

Sense 5’-GCC AAT TCA AGC CCA GTC-3’
Anti-sense 5’-GAT ATG TTT GCA GAC AGT GTA TCA 
GTG A AG GAA TCG CTT TCC G-3’

Leptin G-2548A Sense 5’-TTT CCT GTA ATT TTC CCG TGA G-3’
Anti-sense 5’-AAA GCA AAG ACA GGC ATA AAA A-3’

Sense 5’-AGT TCA AAT AGA GGT CCA AAT CA-3’ 
Anti-sense 5’-TTC TGA GGT TGT GTC ACT GGC A-3’

Sense 5’-GTT CCT CCC AGT TAC AGT CT-3’ 
Anti-sense 5’-CTG TCT TGT GGT TTG GTT TT-3’

Sense 5’-GAA GAG TGA TGT ATA GCC CCA G-3’ 
Anti-sense 5’-TTT AAT CCA GAG CTA ATG AAA GCC-3’

PON-1 Q192R Sense 5’-TAT TGT TGC TGT GGG ACC TGA G-3’
Anti-sense 5’-CAC GCT AAA CCC AAA TAC ATC TC-3’

94°C for 1 niin 
94°C for 30 sec 1 
56°C for 30 sec | 
x34
72°C for 1 min J 
72°C for 5 min
94 for 2 min 
94°C for 15 sec 
64°C for 15 sec 
72°C for 30 sec 
94°C for 15 sec 
62°C for 15 sec 
72°C for 30 sec 
94°C for 15 sec 
60°C for 15 sec 
72°C for 30 sec 
94°C for 15 sec 
58°C for 15 sec 
72°C for 30 sec 
94°C for 15 sec 1 
56°C for 15 sec I 
x25
72°C for 30 sec J 
72°C for 5 sec
95 for 5 min 
94 for 60 sec 1
50 for 60 sec I x30 
72 for 60 sec J 
72 for 5 min 
for 3 min 
94 for 30 sec 1 
64 for 30 sec I x35 
72 for 1 min J 
72 for 10 min 
94 for 5 min 
94 for 15 s e e l  
61 for 15 sec I x34 
72 for 30 sec J 
72 for 5 min 
95°C for 15 sec 1 
55°C for 15 sec I 
x34
72°C for 30 sec J 
72°C for 5 min 
95°C for 15 sec 1 
58°C for 15 sec I 
x34
72 °C for 30 sec J 
72°C for 5 min

4U Eco 721 (MB I 
Fermentas) 
(5’....CACl-GTG,... 
3’)

4U Est UI (New 
England Biolabs, 
Hertfordshire) 
(5’....CG4CG....3’)

6U Hhal (New England 
Bio Labs)
(5’....GCG4c ....3’)

Nil

4U Rsal (Abgene, 
Epsom, Surrey) 
(5’-....G TiA C....3’)

15U Hsp92 II (Promega, 
Madison, WI, USA) 
(5’-CAiTG-3’)

2U Alw 1 (New England, 
Biolabs.)
(5’-GGATC (N)4-i-3’)

Table 2-5. Polymorphisms, primers, PCR programme and restriction enzyme used in RFLP- 
PCR.
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Reaction constituents 
(per sample)

PPARy
C161-T

PPARy
P12-A

Lep - 
G2S48A

LEPTET-3 IL-10
CS92A

PONl-55 P O N l-192

Filtered water 5.5pL 5.3pL 6.6pL 5.5pL 6.6|iL 6.5pL 6.5U/L
lOx Taq polymerase 
buffer
(Bioline 16mM 
ammonium sulphate)

IpL IpL IpL IpL IpL 1 pL IpL

dNTPs Inmol/L Inmol/L Inmol/L Inmol/L Inmol/L 1 nmol/L 1 nmol/L
Primers (forward and 
reverse)

20pmol/L 20pmol/L lOpmol/L 20pmoI/L lOpmol/L 10 pmol/L 10 pmol/L

MgCU 2 mmol/L 3 mmol/L 1.5 mmol/L 2mmol/L 1.5mmol/L 2mmol/L 2nimoI/L
Taq polymerase 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U

Table 2-6. PCR reaction constituents per polymorphism.

PCR products were run in a 2.5% agarose gel containing ethidium bromide (O.lpg/ml), 

along with pBR322 DNA-Mspl digest (New England Biolabs, Inc., Beverly, MA) as a 

molecular weight marker for Lep G2548A, and a lOObp ladder (Gibco BRL, Paisley, UK) 

as a molecular weight marker for the other polymorphisms.

2.8.2 2 Amplification refractory mutation system-PCR

For determination of allelic polymorphisms in the IL-10 promoter gene at positions -1082 

and -819, the amplification refractory mutations system (ARMS)-PCR method was 

employed (Perrey et al 1999). The primer sequences and conditions are demonstrated in 

table 2-7.

IL-10 819 IL-IO 1082

Generic primer (anti-sense) 

Primer C/G sense 

Primer A/T sense 

Internal control primer 1 

Internal control primer 2 

PCR product size

5’-AGG ATG TGT TCC AGG CTC CT-3’ 5’-CAG TGC CAA CTG AGA ATT TGG-3’

5’-CCC TTG TAC AGG TGA TGT AAC-3’ 5’-CTA CTA AGG CTT CTT TGG AG A-3’

5’-ACC CTT GTA CAG GTG ATG TAA T-3’ 5’-ACT ACT AAG GCT TCT TTG GGA A-3’

5’-GCC TTC CCA ACC ATT CCC TTA-3’

5’-TCA CGG ATT TCT GTT GTG TTT C-3’

429bp_____________________________________233bp__________________________________

Table 2-7. ARMS-PCR primers.

The DNA was amplified in an 11 pi reaction. Final concentrations of reagents were 8.5% 

(w/v) sucrose (VWR, BDH, Leicestershire), 200pM each dNTPs (Roche), 1.5mM MgCl2 

(GeneAmp) (Applied Biosystems), IpL  lOX GeneAmp Gold PCR buffer (Applied 

Biosystems), 5 pM specific primer mix (TAGN), 4pM internal control primer mix 

(TAGN) and 1 pM AmpliTaq Gold (Applied Biosystems). The specific primer mix 

consisted of lOpM generic primer and lOpM of one of the two allele-specific primers. The 

internal control primers were used to check for successful PCR amplification. These
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primers amplify a human growth hormone sequence (Aldener-Cannava and Olerup 1994, 

Perrey et al 1999). The PCR reactions were performed for 30 cycles of 15 seconds at 95°C, 

30 cycles of 50 seconds at 59°C and 30 cycles of 45 seconds at 72°C, with an initial 

dénaturation of 1 min at 95°C. Two PCRs were required for each sample (sense and anti

sense). PCR products were run in a 2.5% agarose gel containing ethidium bromide 

(0.1|Xg/ml), along with a lOObp ladder (Gibco BRL, Paisley, UK) as a molecular weight 

marker.

2.9 Quantitative reverse transcription PCR (TaqMan)

RNA was extracted using the Trizol™ method according to the manufacturers instructions 

(Invitrogen, Paisley UK). RNA was treated with DNAse-1 (2U) using DNA-free kit 

(Ambion, Huntingdon, UK, cat. no. 1906). cDNA was synthesised from approximately 

Ipg of RNA using the Superscript First Strand Synthesis RT-PCR kit (Invitrogen, Paisley, 

UK, 11904-018). PPARa, PPARy, IL-6 , IL-10, TN F-a and leptin cDNA were quantitated 

using TaqMan technology on an Applied Biosystems 7900. For normalisation of 

quantitative results, the reference gene 18S was always amplified. The primer probe sets 

for PPARa, IL-6 , IL-10, T N Fa and leptin, and the 18s mRNA control probe were 

purchased from Applied Biosystems (Warrington, UK). The PPARy primer probe set was 

designed in-house (NM_005037), using a 26 base pair region of the PPARy gene as the 

forward primer [GAA ACT TCA AGA GTA CCA AAG TGC AA (exon 1)] and a 27 base 

pair region as the reverse primer [AGG CTT ATT GTA GAG CTG AGT CTT CTC (exon 

2)]. A 30 base pair region was used as the T probe [CAA AGT GGA GCC CTG CAT CTC 

CAC CTT ATT].

For all Applied Biosystems probes, 1.25p.L of 20 x taiget assay or control assay mix was 

added tol2.5jlL  of 2 x TaqMan Mastermix (Applied Biosystems), 10.25|aL deionised 

distilled water and IpL  cDNA. A 1:100,000 dilution of cDNA was required for the 18S 

control, and data is adjusted accordingly. For the PPARy probe, lp.L 5 jliM  Probe T, 0.75pL 

lOjLiM Primer F and 0.75pL lOjiM Primer R was added to 12.5pL of 2x TaqMan 

Mastermix, 9pL deionised distilled water and IpL  cDNA. Serial dilutions of cDNA were 

performed in duplicate for each probe (including 18S) on placental and adipose tissue, to 

determine the optimal dilution to obtain a Ct value of aiound 28-30. The placental tissue 

did not require dilution of the lp.L cDNA stock, except in the case of leptin TaqMan 

analysis, where a 1/10 dilution was used. A 2jlL stock solution of cDNA was required for
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the adipose tissue in all cases, except for the leptin analysis, where once more, a 1 /1 0  

dilution of cDNA was used. Data is adjusted accordingly. The thermal cycler conditions 

were 50°C 2min, 95”C for 10 min, followed by 40 x 95°C for 15 secs and 60°C for Imin. 

Each amplification was carried out in triplicate, and each plate had a deionised distilled 

water control and a no reverse transcriptase control. The cycle threshold (Ct) value 

between samples measured in triplicate was studied, and any outlier (approximately greater 

than or less than 1) eliminated, and the mean value calculated from the remaining 2  values.

The TaqMan assay is based on the 5’ endonuclease activity of the Taq polymerase. Briefly, 

within the amplicon defined by a gene-specific oligonucleotide primer pair, an 

oligonucleotide probe labelled with 2 fluorescent dyes is designed. As long as the probe is 

intact, the emission of a reporter dye (i.e. 6 -carbon-flourescein, F AM) at the 5’-end is 

quenched by the second fluorescence dye (6 -carboxy-tetramethyl-rhodamine, TAMRA) at 

the 3’ end. During the extension phase of the PCR, the Taq polymerase cleaves the probe, 

releasing the reported dye. An automated photometric detector combined with special 

softwaie (ABI Prism 7900 Sequence Detection System, Perkin-Elmer Corp., Foster City, 

CA) monitors the increasing reporter dye emission. The algorithm normalises the signal to 

an internal reference (ARn) and calculates the threshold cycle number ( C t ) ,  when the ARn 

reaches 10 times the standaid deviation (SD) of the baseline. The C t values of target 

relative to the C t of the control gene (18s) can be used to measure relative ‘fold’ difference 

in gene expression between tissues.

2.10 Autoradiograph scanning and statisticai anaiysis

The intensity of the bands on the autoradiographs, for each of the PPARs and for RXRa, 

was compared with 18s in the observational study, and both 18s and PAI-2 in the case 

control study. Ratios determined using the Bio-Rad Multi-Analyst ™/PC version 1.1. 

Western blots were scanned on the same system. Differences in band intensity were tested 

using the Mann Whitney-U test, and data aie presented as medians and interquartile range. 

P<0.05 was considered to be significant. Correlations were performed using Pearson’s 

coefficient of correlation. Differences in TaqMan analyses were also tested using Mann 

Whitney-U test as above. A power calculation demonstrated that there was at least 80% 

power to detect a 50% difference in expression with a standard deviation (SD) of 30%, 

with a sample size of 6  per group (adipose tissue data) and at least 90% power to detect a 

75% difference in expression with a SD of 50%, with a sample size of 10 per group 

(placental data). The Mann Whitney-U test was employed in the case of the tissue data, as
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there was no large comparative dataset from uncomplicated pregnancies, and so data was 

not normalised. Associations of adipose and placental tissue with plasma inflammatory 

markers were determined using the raw unadjusted and uncorrected plasma data to 

correspond with the tissue data. For this reason, differences between these data were also 

calculated using non-parametric tests.

2.11 Statistical anaiysis

2.11.1 Bloods

Blood assay data for lipids (TC, TG, VLDL, LDL, HDL), markers of inflammation (IL-6 , 

IL-10, TN Fa and leptin) and markers of insulin resistance (SHBG) was tested for 

normality using the Ryan-Joiner test for normality in MINITAB 13 (MINITAB, State 

College, PA), using a cohort of 81 maternal blood samples and 41 fetal blood samples 

from third trimester uncomplicated pregnancies (see table 2-1). For fasting parameters 

(HOMA, fasting glucose and insulin), a cohort of 63 fasted samples from the original 81 

maternal samples was used for normalisation, with 29 fetal samples available from these. 

Maternal PON-1 data was tested as above, on 53 available results from the 81 maternal 

samples, but there were only 9 fetal PON-1 values in uncomplicated pregnancy, and so 

these were logged as for the maternal data. Maternal TG, maternal HDL, maternal PON-1, 

maternal VC AM, maternal TNFa, maternal EL-6 , maternal CRP, maternal SHBG, maternal 

fasting insulin and glucose, fetal TC, fetal TG, fetal PON-1, fetal ICAM, fetal IL-6 , fetal 

EL-6/IL-10 and fetal CRP were log transformed to achieve normality. Erythrocyte 

membrane fatty acid data was also tested for normality using the same method, from a 

cohort of 47 third trimester maternal blood samples obtained from the uncomplicated 

longitudinal study. Maternal 14:0, 16:0, 18:0, 18:ln9, 20:0, 20:ln9, 20:2n6, 20:3n3,

20:5n3, 22:3n3, 22:5n6, 24:0, % monounsaturated fatty acids, total n9, n6/n3, A6  

desaturase and A9 desaturase were log transformed to achieve normality. The square root 

of the total n7 fatty acids was used for normality. The data are presented as mean and 

standard deviation, and additionally for log transformed data, geometric mean and standard 

deviation. Statistical support was provided for the repeated measures tests in the fatty acid 

analyses, by Dr Barbara Meyer, University of Wollongong, NSW, Australia. Differences 

were tested for statistical significance using ANOVA or a 2-sample t test for continuous 

variables and Chi-squared test for categorical variables. Correlations were performed using 

Pearson’s coefficient of correlation. Simple regression analysis or ANOVA was used to 

examine the effect of maternal age, BMl, pai'ity, gestational age at sampling and smoking
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status on all blood analyses. Fetal lipid data was adjusted for the effect of mode of 

delivery, and maternal PON-1 was adjusted for the effect of gestational age at sampling 

using the General Linear Model within MINITAB.

2.11.2 DNA polymorphism analyses

For each polymorphism, numbers of individuals of each genotype were counted and allele 

frequencies calculated. Each polymorphism was tested for Hardy-Weinberg equilibrium 

using the Chi-squared test (Falconer and Mackay 1996, p5). Individuals who were 

common homozygotes were termed the referent class for each polymorphism and odds 

ratio (OR) and confidence intervals (Cl) for the development of PET were calculated for 

the heterozygotes and rare homozygotes respectively. P values were calculated by Chi- 

squared test or by Fisher’s exact test when cells had less than 5 individuals.

For comparison of plasma inflammatory markers between genotypes, the heterozygotes 

and rare homozygotes (i.e. rare allele carriers) for PPARy P12A were combined for 

calculations, due to small numbers available. Baseline (first trimester) characteristics and 

plasma levels of inflammatory markers by PPARy PI2A  were tabulated and compared 

between the PET and control groups using 2-sample /-tests for continuous data or chi- 

squared test for categorical data. For the Leptin 3’tet polymorphism, statistical analysis 

was performed using ANOVA, with post-hoc 2-sample /-tests. The majority of the 

inflammatory dataset used for this analysis has been described previously (Freeman et al 

2004). For the purposes of analysis in the present study, transformed data was used if the 

previous data (Freeman et al 2004) demonstrated a skewed distribution. Within a group 

(PET or controls), changes at third trimester over first trimester (baseline) by 

polymorphism were compared using 2-sample /-tests on raw data. Due to small sample 

sizes, data were not adjusted for potential covariates and no adjustments were made for 

multiple comparisons. Mean with SD and associated P values are reported.
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3 Immunolocalisation and the mRNA and protein 
expression of PPARs in placenta

3.1 Introduction

In the Introduction (chapter 1), the role of PPA Ra and y agonists in the treatment of 

atherosclerosis has been discussed. The lipid lowering and insulin sensitising properties of 

these agonists indicate that their mode of action is through alterations in the metabolic 

disturbances associated with CVD. A role for PPARs in pregnancy has also been 

described. As discussed previously, PET, with widespread endothelial damage and 

dysfunction and increased systemic inflammatory response, shares many metabolic risk 

factors with cardiovascular disease. Thus potential interventions in this disorder might 

reasonably be directed at these metabolic disturbances. PPARs are therefore excellent 

candidates as mechanistic agents underlying the metabolic complications of pregnancy and 

are amenable to drug intervention.

Based on the evidence demonstrating a role for PPARs in normal pregnancy, in the 

metabolic complications of pregnancy and in cardiovascular disease, and based on the data 

linking PET and lUGR with future caidiovascular risk, it was hypothesised that PPAR 

mRNA and protein expression might increase during gestation and be compromised in 

complications of pregnancy with placental pathology such as PET and lUGR.

The aim of this chapter was thus to determine the placental localisation and expression of 

each of the PPARs in uncomplicated pregnancy in the first instance, and then to compare 

this localisation and expression with that in pregnancies complicated by PET and lUGR in 

a case control study. The immunocytochemistry and Northern blotting techniques were 

employed in this study, as they are established techniques within our laboratory, and would 

either confirm or refute findings from previous studies using these techniques (Wang et al 

2002). However, quantitative protein expression of the PPARs using western analysis was 

a technique developed specifically for this study. The quantitative real time (RT)-PCR 

mRNA expression of PPA Ra using TaqMan was also developed for this study, as the 

probe used in the Northern blotting did not provide reproducible results. We also have 

confirmation of our PPARy mRNA results using TaqMan in chapter 5. Samples were 

collected from women in the 3̂  ̂trimester of uncomplicated pregnancy and from 

pregnancies complicated by PET or lUGR at the Princess Royal Maternity Hospital,
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Glasgow. These samples were supplemented with samples from an archival collection of 

2"  ̂and 3'^ trimester placentae from uncomplicated pregnancies (TA. Greer, personal 

collection). In the latter group, only data detailing mode of delivery and gestationl age 

were available. The 18S control gene was used in this study, as no variation of expression 

under experimental conditions has been reported (de Leeuw et al 1989, Zhong and Simons 

1999), and consistent levels have been described throughout gestation (Patel et al 2002). 

This control gene attempts to control for cell number, and was considered superior to 

GAPDH, which has previously been used in similar studies as a constitutively expressed 

housekeeping gene. It is likely that GAPDH levels may differ between metabolically active 

cells and quiescent cells. Variation of expression of GAPDH under hypoxic conditions has 

been reported (Zhong and Simons 1999). This is relevant in placental tissue, which is 

relatively hypoxic, and may be exacerbated in pathological conditions of pregnancy, which 

affect the placenta (Held et al 1996, Patel et al 2002). The PAI-2 gene was also used as a 

control gene in the PET/IUGR study, with the aim of controlling for trophoblast cell 

number. PAI-2 is synthesized by the trophoblast and in uncomplicated pregnancy, 

concentrations increase progressively as pregnancy develops. However, levels decrease 

with reduced placental function (Halligan et al 1994). This is relevant to the study of 

metabolic complications of pregnancy, where areas of placenta may be infarcted or 

structurally damaged. Hence expression of genes relative to the expression of PAI-2 may 

correct for increased necrosis in pathological placentae.

3.2 Results

3.2.1 Baseline characteristics

Baseline characteristics for the PET, lUGR and controls are demonstrated in table 3-1. 

There were no demographic data available for the archival collection. PET and lUGR cases 

had significantly earlier gestational ages at delivery and lower placental weights, fetal 

weights and birth weight centiles compared with control subjects.
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Characteristics PET
Case (n=10) Control (n=10) P

lUGR
Case (n=10) Control (n=10) P

Age 29.0 28.5 0.85 31.0 31.5 0.65
(years) 24.8-31.3 23.8-32.0 27.8-33.0 29.5-33.0

BMl 25.5 26.0 0.91 25.0 25.0 0.97
(kg/m^) (22.8-34.0) (23.8-29.3) (20.5-30.5) 20.0-32.5
Primigravidae 8 (80%) 8 (80%) 1.00 5 (50%) 5 (50%) 1.00
n(%)
Smokers 3 (30%) 3 (30%) 1.00 6 (60%) 4 (40%) 0.37
n(%)
Gestation at delivery 35.5 40.5 0.008 36.0 39.0 0.005
(weeks) 34.3-39.3 39.0-41.0 34.0-38.0 38.8-40.3
Vaginal delivery 6 (60%) 7 (70%) 0.64 1 (10%) 1 (10%) 1.00
11 (%)
Placental weight 490 680 0.008 272 635 <0.001
(g) 308-645 588-736 246-417 533-762
Fetal weight 2.61 3.54 <0.001 1.94 3.07 <0.001
(kg) 1.87-2.93 3.33-3.91 1.54-2.07 2.76-3.91
Birth weight centile 10 50 0.009 3 15 0.003

(8 -  34) (30-75) ( 1 - 6 ) (9-65)
Fetal sex 30% male 80% male 0.03 30% male 30% male 1.00
(%) 70% female 20% female 70% female 70% female

Table 3-1. Baseline characteristics for the PET, lUGR and control subjects (n=10 per group).
All values are median and interquartile (IQ) range. Statistical analysis was performed using 
Mann-Whitney U test for continuous variables, and chi-square for categorical variables.

3.2.2 Immunolocalisation of PPARs

3.2.2.1 PPAR localisation in a gestational series of placental 
sections

Placental tissue demonstrated maturation from undifferentiated invading trophoblast 

columns and large stem villi in the trimester, through to formation of outer syncytio- 

and inner cytotrophoblast layers with intermediate and some terminal villi in the 

trimester, to formation of the syncytium with occasional cytotrophoblast cells and many 

terminal villi in the 3'"̂  trimester. Positive and negative control slides are shown in Plates 1 

and 2. In P* trimester placentae, PPARa, 5, y and RX Ra were localised to the cyto- and 

syncytiotrophoblast and invading columns (Plates 3 & 4). Occasional isolated stromal cells 

were stained. In some sections PPARy staining in the cytotrophoblast was greater than that 

in the adjacent syncytiotrophoblast (Plate 4A1 & A2). Back to back staining with 

cytokeratin-7 (CY-7) confirmed that the cells in which PPARs were localised, were of 

trophoblastic origin (Plate 5). Second trimester localisation of PPARa, Ô, y and R X R a was 

similai' to that in the trimester (Plate 6 ). Localisation was predominantly cytoplasmic for 

all of the PPAR antibodies but nucleai' staining was also evident. PPA Ra staining was 

sparse in the 3̂  ̂ trimester (Plate 7) with the majority of staining either stromal or within
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maternal and fetal blood cells. In some sections faint syncytial staining was observed.

Third trimester placentae from uncomplicated pregnancies demonstrated PPARÔ, y  and 

R X R a staining within the syncytium, and localisation within isolated cells in the stroma 

(Plate 7). This distribution was unaltered by mode of delivery (spontaneous or induced 

vaginal delivery, elective or emergency Caesarean section -  data not shown). The isolated 

stromal cells to which PPARa, y  and ô were localised in the 3̂  ̂trimester were potentially 

of macrophage origin. In order to clarify this, we co-localised CD68, a macrophage 

marker, with ‘back to back’ sections localising each of the PPAR isoforms. There was no 

obvious relationship demonstrated between the macrophage marker and the stromal cells 

staining for each of the PPARs (Plate 8). Co-localisation of CD31, an endothelial cell 

marker, with back-to-back sections of the PPARs confirmed endothelial expression of each 

of the PPARs, but could not account for all cells staining within the stroma (Plate 8). It is 

likely that these PPAR-staining stromal cells are of mixed origin.

3.2.2.2 PPAR localisation in PET and iUGR placentae

PPA Ra staining was sparse in third trimester placentae from pregnancies complicated by 

PET and IUGR, as for uncomplicated pregnancies (Plate 9). PPARô and y  and R X Ra were 

localised to the syncytium and cells within the stroma in 3̂  ̂trimester placentae from 

pregnancies complicated by PET or IUGR, similar to findings from uncomplicated 

pregnancies (Plates 10 - 12). However, staining appeai*ed less abundant and highlighted 

numerous very thin ai'eas within the syncytium in the PET and IUGR placentae in contrast 

to sections from uncomplicated pregnancies. Syncytial knots and bridges were also more 

abundant within the PET sections.

It should be noted that the printed Plates shown below aie not truly representative of the 

quality of the ICC sections at time of image analysis, as transfer of the image on to the 

printed page is a common problem encountered.
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3.2.3 PPAR mRNA and protein expression in 7®̂ and trimester 

piacentae from uncompiicated pregnancies

3.2.3.1 PPAR mRNA expression In 1®* and 3’̂'* trimester piacentae

Relative to the 18s control gene, PPARô mRNA demonstrated a 115% higher expression in 

the 3*̂  ̂trimester (PPARô: 18s ratio, median 0.43, IQ range 0.26 -  0.52) compared with the 

P* trimester placentae [0.20 (0.00 -  0.26), p=0.03] (Figure 3-1 & 3-2). There was a trend 

towards a lower placental R X R a mRNA expression in the 3"̂  ̂ trimester [0.72 (0.46-1.19)] 

compared to the F* trimester [1.24 (1.15-1.46), p = 0.05] (figure 3-2). PPARy mRNA 

expression was not different between the F* trimester [1.38 (0.75 -  1.50)] and the 3"̂  ̂

trimester placentae [1.00 (0.66 -  1.15), p= 0 .17] (figure 3-2). As previously reported in the 

literature (Schultz et a l 1999), two transcripts o f P P A R a were demonstrated. One 

transcript was of very low abundance in our placental samples. Relative to the 18S control 

gene, the most abundant P P A R a mRNA transcript in placenta showed similar expression 

in the trimester [0.19 (0.16 -  0.23)] and the 3"̂  ̂ trimester [0.14 (0.11 -  0.25), p = 0.30].

It should be noted that results from this P P A R a probe were not reproducible after the 

above finding and it is thus possible that these results are not robust. Therefore no 

conclusions are drawn from this result.

1 2 3 4 5 6 7 8 9 10 11 12 13

PPARÔ

Figure 3-1. PPAR5 and IBs Northern scan In 1st and 3rd trimesters.
Lane 1 -  positive control (BeWo). Lanes 2-7 - 1*‘ trimester placentae. Lanes 8-13- 3̂ ** 
trimester placentae.
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Figure 3-2. mRNA and protein expression in 1®* and 3'̂ '* trimesters.
Data are presented as median and interquartile (IQ) range. Statistical analysis was 
performed using Mann-Whitney U test. Protein data values are divided by 5 to allow single 
graphic representation.

3.2.3.2 PPAR protein expression in 1®* and 3'̂ ” trimester placentae»rd

PPARÔ protein expression was 205% higher in the trimester [3.94 (2.45-4.68) OD 

mm^] compared to the trimester [1.29 (0.78-2.29) OD mm^, p = 0.04] (Figure 3-2 &3- 

3). PPARy protein expression was higher in the 3'^ trimester [3.95 OD mm^ (1.97-4.86 OD 

mm^)] than the trimester [1.89 (1.22-2.97) OD mm^, p=0.06] but did not reach statistical 

significance. R X R a protein expression was also not significantly different between the 

[1.28 (0.38-4.14) OD mm^] and 3'"̂  trimesters [2.44 (1.40-5.92) OD mm^ p=0.41] (figure 3- 

2). It was not possible to determine PPA R a protein expression, as the bands produced on 

Western analysis were not consistent with the recognised molecular weight within the 

literature.
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80kDa

ôOkDa/PPARÔ

50kDa

Figure 3-3. PPARS Western scan In 1st and 3rd trimesters.
Lane 1 -  Jurkat nuclear cell extract control, Lane 2 -  Standard 3rd trimester placentae 
sample, Lanes 3-6 -  1®* trimester placentae, Lanes 7-10 -  3'̂ ‘‘ trimester placentae, Lane 11 -  
blank.

3.2.4 PPAR mRNA and protein expression in piacentae from 

pregnancies compiicated by PET or iUGR

3.2.4.1 PPAR mRNA expression in PET and uncompiicated third 

trimester pregnancies

PPARÔ mRNA expression was not different in PET placentae compared to placentae from 

uncomplicated pregnancies, relative to both 18S [median 0.53 (IQ range 0.25-0.74) vs 

median 0.71 (IQ range 0.52-0.82), p = 0.09] and PAI-2 [0.81 (0.68-1.20) vs 1.07 (0.91- 

1.21), p = 0.26]. PPARy mRNA expression was not different between PET and 

uncomplicated pregnancies, relative to 18S [1.00 (0.60-1.04) vs 0.69 (0.57-0.80) p = 0.06] 

and PAI-2 [1.00 (0.65-1.37) vs 1.00 (1.00-1.31) p = 0.29]. Similarly, R X R a mRNA 

expression was unchanged in PET compared to uncomplicated pregnancies, relative to 188 

[2.00 (1.46-2.88) vs 1.50 (1.38-2.25) p = 0.31] but was significantly elevated in PET 

placentae relative to PAI-2 [1.29 (0.90-2.13) vs 0.68 (0.42-1.00) p = 0.02] (figure 3-4 and

3-5). W e were unable to determine P P A R a mRNA expression by Northern analysis, as 

indicated in section 3.3.1 (also see discussion).
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R X R a
PET

PAI-2
PET

R X R a
controls

PAI-2
controls

1 2 3 4 5 6 7 8 9  10

Figure 3-4. RXRa and PAI-2 Northern blot In PET and control placentae. 
Lanes 1-10 - n=10 per group.

Receptor:
18S/PAI-2
ratio
(mRNA).

OD/mm^ /5 
(protein)
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PPA R Ô R X R a8
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m R N A  m R N A  P r o t e i n  
( I B S )  (PAI-2)
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( 1 8 8 )  (PAI -2)

m R N A  m R N A  P r o t e i n  
( I B S )  (PAI-2)

□  PET 

^ C o n tro ls

Figure 3-5. mRNA (relative to IBs and PAI-2) and protein expression in PET and control 
placentae.
Data are presented as median and (interquartile) IQ range. Statistical analysis was 
performed using Mann-Whitney U test. Protein data values are divided by 5 to allow single 
graphic representation.
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3.2.4.2 PPAR protein expression in PET and uncomplicated third 

trimester pregnancies

PPARÔ protein expression was not different in PET pregnancies [12.53 OD/mm^ (6.00- 

26.36 OD/mm^)] compared to controls [8.06 OD/mm^ (2.49-28.02 OD/mm^) p = 0.68]. 

PPARy protein expression was not significantly different in PET pregnancies [4.82 (1.71- 

6.93)] compared to controls [3.43 (1.58-6.96) p=0.91], and similarly, R X R a protein 

expression was also not different in PET pregnancies [0.16 (0.09-0.35)] compared to 

controls [0.29 (0.01-0.57) p=0.62] (figure 3-5). PPARa protein expression was not 

determined, as discussed in section 3.3.2 (see discussion).

3.2.4.3 PPAR mRNA expression in IUGR and uncomplicated third 

trimester pregnancies

PPARÔ mRNA expression was not different in IUGR placentae compared to placentae 

from uncomplicated pregnancies, relative to both 18S [median 0.16 (IQ range 0.11-0.23) 

vs median 0.16 (IQ range 0.12-0.21), p = 1.00] and PAI-2 [0.42 (0.25-0.67) vs 0.31 (0.24- 

0.43), p = 0.41]. PPARy mRNA expression was significantly higher in IUGR pregnancies 

relative to 18S [0.42 (0.33-0.70) vs 0.26 (0.19-0.34) p = 0.03], but was not different 

between IUGR and uncomplicated pregnancies relative to PAI-2 [0.68 (0.50-1.03) vs 0.66 

(0.58-0.74) p = 0.97]. R X R a mRNA expression was not different in IUGR compared to 

uncomplicated pregnancies, relative to 18S [0.24 (0.17-0.46) vs 0.23 (0.20-0.31) p = 0.65] 

and PAI-2 [0.50 (0.32-1.00) vs 0.46 (0.28-0.70) p = 0.55] (figure 3-6 and 3-7). We were 

unable to determine PPA Ra mRNA expression by Northern analysis, as discussed 

previously (see discussion).

3.2.4.4 PPAR protein expression in IUGR and uncomplicated third 

trimester pregnancies

PPARÔ protein expression was not different in IUGR pregnancies [14.70 OD/mm^ (6.19- 

31.75 OD/mm^)] compared to controls [13.80 OD/mm^ (4.77-24.14 OD/mm^) p=1.00], 

PPARy protein expression was also not different in IUGR pregnancies [6.04 (0.89-9.55)] 

compared to controls [7.12 (3.59-15.36) p=0.34]. Similarly, R X R a protein expression was
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not different in IUGR pregnancies [0.52 (0.47-1.45)] compared to controls [0.71 (0.44- 

2.09) p=0.52] (figure 3-7). P P A R a protein expression was not determined, as before (see 

discussion).

PPARy
IUGR

I8S
IUGR

PPARy
controls

1 2 3 4 5 6  7 8 9  10

»########
18s 
controls

Figure 3-6. PPARy and 18s Northern blot in IUGR and control placentae. 
Lanes 1-10 - n=10 per group.
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:18s/PAI 
-2 ratio 
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Figure 3-7. mRNA (relative to IBs and PAI-2) and protein expression in IUGR and control 
placentae.

Data are presented as median and IQ range. Statistical analysis was performed using Mann- 
Whitney U test. Protein data values are divided by 5 to allow single graphic representation.
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3.2.5 RT-PCR (TaqMan) analysis of PPARa in placentae from 

pregnancies complicated by PET or IUGR

Using the TaqMan method, PPARa mRNA expression was unchanged in PET placentae 

[PPARa: 18s ratio 2.13 (1.75-2.37)] compared to placentae from uncomplicated 

pregnancies [2.09 (1.63-2.39), p=1.00], and was also not altered between IUGR placentae 

[2.27 (2.10-1.60)] and control placentae [2.10 (1.60-2.71), p=0.21].

3.3 Discussion

This chapter quantitatively measures higher expression of PPARô mRNA and protein in 3̂  ̂

compared to U* trimester placentae, and demonstrates PPARa, 5, y and R X R a localisation 

and expression in human placentae complicated by PET and IUGR. In uncomplicated 

pregnancies, a 100% higher PPARÔ mRNA expression was reported, as was a 200% 

higher PPARô protein expression in the 3*̂  trimester compared to the U' trimester 

placentae. Previously PPARô expression has been described in abundance at implantation 

sites and in decidual cells in the rat uterus, using in situ hybridisation and 

immunohistochemical techniques (Ding et al 2003). Studies of the PPARÔ knockout 

mouse have demonstrated that PPARÔ deficiency results in lethality during mid-gestation 

in over 90% of mouse embryos. PPARô was demonstrated to be essential for placentation, 

with the appearance of an abnormal gap in the placento-decidual interface in knockout 

mice (Barak et al 2002). Together with our own findings, these data indicate that PPARÔ 

transcription and translation play an important role in placental development.

Although it was not possible to determine PPA Ra protein expression between the 

trimesters, PPARa mRNA levels did not differ between trimesters. The presence of 

PPARa has been previously confirmed in human placenta (Wang et al 2002) but this was 

not quantitated. PPARa has not been widely studied in pregnancy, but it has been 

demonstrated that PPARa agonist treatment is associated with alleviation of maternal 

insulin resistance in the pregnant rat (Sugden e al 2003). It is interesting to note that our 

immunocytochemical data is consistent with that of Waite Qt al (Waite et al 2000). 

However, although trophoblast staining appears less in the 3̂  ̂trimester in our study, it is 

apparent that other cell types aie stained positively for PPA Ra in the 3“̂̂  trimester, which 

may account for lack of differences in mRNA expression between the 1®‘ and 3̂ '* trimesters. 

In particular it should be noted that both maternal and fetal blood cells were positive for



Vanessa Rodie, 2005 Chapter 3, 93

PPARa and although care was taken to thoroughly wash the placental tissue before 

freezing, the possibility that changes in maternal and/or fetal blood cell expression of 

PPA Ra may be being detected cannot be excluded. It is recognised that lymphocytes 

express PPA Ra (Jones et al 2002) and PPA Ra is thought to play a role in macrophage 

differentiation (Chinetti et al 1998). It is possible that PPARa may have a role in placental 

differentiation but the reduced PPA Ra localisation in trophoblasts in the 3̂  ̂trimester

might argue against this. PPA Ra is also important in inflammation and lipid metabolism 

and potent 

placentae.

and potentially may have roles in immuno-suppression or fuel metabolism in 3̂  ̂trimester

Using the PET and IUGR samples, it was not possible to obtain bands on Northern analysis 

with either a commercial or in-house PPA R a probe. The PPARa probe worked only once, 

for the U* to 3*̂  ̂trimester samples, despite purchasing different probes. The PCR was 

attempted on four occasions. It was possible to isolate the cDNA from the bands cut from 

the agarose gel, but this technique was also unsuccessful. A re-probing technique was 

involved, and it may be that the mRNA had degraded by the time the a  probe was utilised. 

It is also possible that the initial Northern blotting PPARa result is contaminated and 

therefore cannot be relied upon. It may also be possible that the PPA Ra probe is extremely 

sensitive to environmental and experimental conditions, which were not reproduced. For 

this reason, TaqMan real-time PCR was employed for the measurement of PPARa gene 

expression in placental tissue in these groups. The TaqMan real-time PCR assay centres on 

the detection of a fluorescent signal generated from the cleavage of a target sequence 

specific probe by the Taq polymerase during each cycle of the PCR reaction (Heid et al 

1996, Li et al 2003). As this signal is directly proportional to the PCR product being 

amplified, it permits very precise quantitation of the amount of initial input template.

Using western blotting, bands for PPA Ra were obtained at around 90 kDa molecular 

weight and a Jurkat positive control at the same weight. However, these bands were faint 

despite optimal antibody concentrations, and previous reports on animal models have 

demonstrated PPA Ra protein expression at around 58 kDa (Ibabe et al 2002). It is likely 

that different species and/or tissues may express PPARs with different moleculai' weights, 

and it is possible that PPA Ra has a higher molecular weight in human placenta. However, 

there are no previous reports to confirm this theory, and results were therefore considered 

unreliable, and are thus not reported. It should also be considered that the PPARa antibody 

lacked good specificity. Due to time constraints of this project, it was not possible to 

attempt to determine further whether this was indeed PPARa or another protein (e.g.
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immunoglobulin). However, it may be possible to confirm this by western blotting under 

the same conditions as in this study, using human placenta as before and the Jurkat positive 

control, along with a tissue [e.g. mouse liver homogenates or zebrafish (Ibabe et al 2002)] 

of previously confirmed molecular weight which was not 90kDa. If the rodent liver had a 

band at this predetermined weight and PPA R a placental protein was still around 90 kDa, it 

may be argued with more conviction that this was correct.

The mRNA and protein expression of PPARy and R X Ra at different gestations was also 

quantitatively assessed. R X R a mRNA expression was decreased from the 1®̂ to the 

trimesters; however, this was not confirmed by protein expression. PPARy mRNA was not 

altered between the U* and 3̂  ̂trimesters, and the 109% higher 3̂^̂  trimester protein was not 

significant. As differences in specific PPARy isoform expression were not studied, the 

possibility of differential expression of PPARy isoforms cannot be excluded. Other studies 

of PPARy and RX Ra expression in pregnancy have not been quantitative (Fournier et al 

2002, Tarrade et al 2001a, Tarrade et al 2001b, Wang et al 2002). Data from knockout 

mouse models and human pathological placenta indicates that PPARy plays a role in 

placental development (Barak et al 1999, Capparuccia et al 2002). Capparuccia and 

colleagues (Capparuccia et al 2002) demonstrated that PPARy protein expression is 

unchanged from the to the 3‘̂  trimester. PPARy protein expression and activation are 

dramatically increased by sera from pregnant women (Waite et al 2000). Furthermore, 

exposure of trophoblasts in culture to PPARy agonists is known to stimulate the production 

of placental hormones (Tarrade et al 2001a, Tarrade et al 2001b). In the present study 

PPAR expression but not activation, has been studied. It is possible that as yet unidentified 

factors in pregnant serum, such as oxidised lipids, may act as PPARy agonists. In fact, 

during the writing of this thesis Waite and colleagues (Waite et al 2005) produced data 

suggesting that previously described PPARy activators in serum from pregnant women 

(Waite et al 2000) are significantly reduced in those destined to develop PET, up to 15 

weeks before the onset of symptoms. This group speculate that the loss of PPAR activation 

in PET could account for increases seen in endothelial cell activation and inflammatory 

cytokines.

Placentae from PET and IUGR pregnancies did not demonstrate any clear differences in 

mRNA or protein expression of PPARô, y or R X R a compared to control pregnancies. 

PPAR and RX Ra mRNA expression in PET, IUGR and 3̂  ̂trimester uncomplicated 

control human placentae was analysed, using 18S and PAI-2 as control genes. The 18S 

control gene was used to control for total cell number, while the PAI-2 gene was used with
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the aim of controlling for functional trophoblast. Since in PET and IUGR, placental 

necrosis is evident, we sought to assess mRNA expression relative to placental function. 

PAI-2 is synthesized in high amounts by the 3‘̂  trimester trophoblast but levels decrease 

with reduced placental function (Halligan et al 1994). There were no gross differences 

between the results obtained using either control gene. The lack of distinct down- 

regulation of placental PPARô and y expression in PET and IUGR indicates that 

expression of these genes does not play a specific role in the aetiology of PET or IUGR. 

Again it does not rule out the possibility that activation of these nuclear receptors via 

changes in circulating activator ligands might be changed. We assessed PPAR expression 

in random placental samples from 10 individuals avoiding areas of overt necrosis and our 

measurements of mRNA and protein expression in each group has a coefficient of variance 

(CV) of around 50%. It is possible that gene expression is location-specific within the 

placenta and there are some data demonstrating vaiiability of PPARy expression in 

multiple biopsies from the same individual (Pidoux et al 2004) with a CV of the order of 

30%. A post hoc power calculation using the actual CYs we obtained indicates that we had 

90% power to detect a 75% difference between control and PET groups. Thus we would 

have been unable to detect any smaller differences in expression between groups.

Using immunocytochemical staining with CY-7, cells expressing PPARs were identified to 

be of trophoblast origin. In this study, PPAR receptors were located both in the cytoplasm 

and the nuclei of trophoblasts. Co-existing cytoplasmic and nuclear staining has been 

observed for another member of the PPAR family (PPARa), in macrophages (Chinetti et 

al 1998), but not with other immunocytochemical investigations of placenta (Capparuccia 

et al 2002, Wang et al 2002). Stromal cells, which expressed PPARs at all gestations, were 

less easily identified. It was hypothesised that these cells were Hoffbauer cells of 

macrophage origin. It was not possible to confirm this by co-localisation with CD68, a 

macrophage marker. However, due to the predominantly cytoplasmic localisation of CD68 

and the predominantly nucleai' localisation of the PPARs, visual confirmation of co

localisation on back to back sections was difficult and may be inappropriate given the 

different intracellular localisation of these molecules. Endothelial cells were found to 

express PPARs, although these cells could not account for all of the positively stained 

stromal cells. It is likely that the cells expressing PPARs in the stroma are of mixed origin.

PPAR and R X Ra localisation and expression in human placentae complicated by PET and 

IUGR has not been described prior to this study. These placentae did not demonstrate any 

clear differences in the immunocytochemical localisation of PPARô and y, or RXRa,
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compared with placentae from uncomplicated pregnancies. Capparuccia and colleagues 

(Capparuccia et al 2002) have observed reduced immunocytochemical staining for PPARy 

in two other pathological conditions of placenta, namely trophoblastic disease and 

hydatidiform molai' pregnancies.

Clearly PPARs have widespread roles in inflammation, differentiation and metabolism, 

and therefore it is not surprising that many cell types express PPARs. What is striking 

about the placenta is the distinct pattern of PPAR expression that we have identified. 

Evidence is provided for the first time that PPARô expression is independently regulated 

between the and 3'^ trimester. This suggests that PPARs may have differential 

functional roles in the placenta. PPARô may play a role in mid to late gestation placenta, 

possibly in syncytium formation, fuel metabolism or in the inflammatory response. PPARa 

may have an anti-inflammatory function in the 3'^ trimester, potentially at the 

maternal/fetal interface, although one would expect expression at the syncytium in this 

situation. Because it was observed that PPA Ra is expressed in maternal and fetal blood 

cells, it is possible that the anti-inflammatory functions of PPA Ra could be systemic. 

PPA Ra may also be involved in lipid metabolism and fatty acid oxidation in the 3‘̂  

trimester of pregnancy, when there is an increased demand for the supply of energy to the 

fetus and increased placental transport. Novel evidence is provided, that PPARô, y and 

R X R a protein expression is unaltered in the metabolic complications of pregnancy, in 

particular, PET and IUGR. This suggests that changes in PPAR expression per se may not 

be involved in the pathophysiology of these conditions, although they may have a role via 

activation at the ligand binding level.
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4 Maternal and fetal plasma lipid metabolism and 
paraoxonase-1 (PON-1) activity in PET and IUGR 
pregnancies

4.1 Introduction

4.1.1 Maternal and fetal lipids in PET and IUGR

In the Introduction chapter, the maternal lipid alterations seen in normal pregnancy and in 

those complicated by PET or IUGR, and the potential consequences of this dyslipidaemia 

have been discussed. Placental transport of cholesterol to the fetus is likely via uptake of 

LDL by the LDL-receptor on the maternal side (Schmid et al 2003). Maternal TGs are 

hydrolysed on maternal lipoproteins by lipoprotein lipase and are transported across the 

placenta via fatty acid binding proteins (Haggarty 2002). There are few data regarding fetal 

lipid and lipoproteins throughout uncomplicated pregnancy. In general, fetal cord and 

neonatal plasma lipid levels are reported to be very much lower than those in adults 

(Averna et al 1991, Kilby et al 1998, Neary et al 1995), with a relatively larger proportion 

of cholesterol carried in HDL (Kilby et al 1998, Neary et al 1995) resulting in a lower total 

cholesterol/UDL ratio (Averna et al 1991). HDL cholesterol is not inversely correlated 

with TG as in the adult but is positively correlated with apolipoprotein (apo) C, apo C-II 

and apo CIII (Averna et al 1991). There are no reports of fetal lipid concentrations in PET 

pregnancies. It has been shown that in small for gestational age neonates, there is a high 

triglyceride and low HDL profile, which may result from increased cholesteryl ester 

transferase activity in the neonate (Kaser et al 2001).

Since the placenta can transport both maternal cholesterol and fatty acids to the fetus, it 

was hypothesised that the maternal dyslipidaemia of PET and IUGR would be reflected in 

the offspring. It was proposed that disease severity would be associated with abnormal 

lipid fractions in the mother and her fetus. The aim of this chapter therefore, was to 

perform a cross-sectional case control study of maternal and fetal lipid and lipoprotein 

concentrations in third trimester uncomplicated pregnancies and in pregnancies 

complicated by PET or IUGR. This study was performed in order to confirm previous 

maternal and fetal lipid values reported in normal pregnancies, and to determine for the 

first time, fetal lipid values in pregnancies complicated by PET. Samples were obtained
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from women recruited from the Princess Royal Maternity Hospital, Glasgow, with 

uncomplicated 3̂  ̂trimester pregnancies and pregnancies complicated by PET or IUGR.

4.1.2 Paraoxonase-1 (PON-1) 

4.1.2.1 PON-1 activity and polymorphisms

As an adjunct to the lipid analysis, the activity of paraoxonase-1 (PON-1) in uncomplicated 

pregnancy and in pregnancies complicated by PET or IUGR was studied. Paraoxonase-1 

(PON-1) is a glycoprotein, which in serum is exclusively located on HDL (Durrington et al 

2001). Paraoxonase-1 hydrolyses organophosphate substrates such as paraoxon and most 

likely explains the ability of HDL to metabolise lipid peroxides and to protect against their 

accumulation on LDL (Mackness et al 2002) under oxidising conditions. The paraoxonase 

gene family has three known members, PO N l, PON2 and PON3, located on the long arm 

of chromosome 7 between q21.3 and q22.1 in humans (Primo-Parmo et al 1996). There is 

considerable variation in serum PON-1 activity within and between human populations 

(Diepgen and Geldmacher-von Mallinckrodt 1986, Roy et al 1991), and activity is under 

genetic and environmental regulation. The PON-1 gene has common polymorphisms in the 

coding region (L55M, Q192R), and PON-1 enzyme activity for paraoxon as a substrate, 

includes low paraoxon- and high paraoxon-activity alleles (for example, Q192 and R192 

respectively, and M55 and L55 respectively) (Humbert et al 1993, Mackness et al 1996). 

However, there is also a 40-fold interindividual variation in PON-1 activity, which is 

independent of the genotype (Mackness et al 2002), and this variation persists even within 

genotype groups (Richter and Furlong 1999).

4.1.2.2 Antioxidant PON-1 activity and metabolic disorders

Low plasma PON-1 activity has been demonstrated in oxidative stress-associated processes 

such as dyslipidaemia, diabetes mellitus (Mackness et al 1991), advancing age and 

smoking (Senti et al 2003). These findings are independent of PON-1 genotype. High 

serum cholesterol (Mackness et al 1991) and insulin resistance (Kordonouri et al 2001) are 

associated with decreased PON-1 activity. The metabolic abnormalities associated with 

low PON-1 activity are all components of the metabolic syndrome, which in turn is 

associated with increased mortality from CVD.
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4.1.2.3 Antioxidant PON-1 activity and atherosclerosis

Although PON-1 does not participate in lipid metabolism, it is involved in the development 

of atherosclerotic lesions (Mackness et al 1993), and PON-1 immunoreactivity increases in 

the aiterial wall as atheroma advances (Mackness et al 1997). Because serum PON-1 

hydrolyses oxidised lipids in LDL, PON-1 may inhibit the development of atherosclerosis 

(Aviram et al 2000). The Q alloenzyme of the Q192R PON-1 polymorphism is more 

effieient at protecting LDL from oxidation (Mackness et al 2002), and the R polymorphism 

has been more closely associated with CHD than the Q polymoiphism. Individuals with the 

M allele of the L55M PON-1 polymorphism show lower PON-1 activity compared with 

those who are L-carriers (Leviev and James 2000), and data has shown that MM 

homozygosity is linked to a 3-fold increased risk of first myocardial infarction in men 

compared to those without the M allele (Salonen et al 1999). However, data in the 

literature is conflicting as to whether there is an association between the PON-1 55L allele 

and atherosclerosis (Garin et al 1997, Salonen et al 1999) or not (Area et al 2002,

Sanghera et al 1998). A recent meta-analysis of 43 studies of Q192R and L55M was 

unable to show a strong association between any of the polymoiphisms and CHD (Wheeler 

et al 2004). Data suggest that actual levels of PON-1 activity and concentration may be 

more important in determining the presence of coronary heart disease than PON genetic 

polymorphisms (Mackness et al 2001). When PON-1 activity is measured directly in 

patients with coronaiy he ait disease, it is about half that of disease free controls (Mackness 

et al 1997). It is possible that the lack of conclusive epidemiological evidence for the 

association between PON-1 and CHD is based on the fact that most published studies do 

not take into account individual serum PON-1 levels (Deakin and James 2004).

4.1.2.4 PON-1 activity in pregnancy

There is little information in the literature regarding PON-1 activity in pregnancy. It has 

been demonstrated that maternal serum PON-1 levels aie significantly higher during 

pregnancy, compared with the non-pregnant state (Roy et al 1994). This group also 

demonstrated a correlation between PON-1 and triglycerides (r=0.45-0.60, p<0.001) in 

uncomplicated pregnancy, and maternal PON-1 levels obtained at 28 weeks of gestation 

were negatively correlated with neonatal birth weight (r=-0.3, p<0.05). However, previous 

data using the mouse model suggest that there is a significant reduction in serum PON-1 

activity during pregnancy (Weitman et al 1983). Neonatal PON-1 activity has been shown 

to be lower than that in adults (Chen et al 2003), as humans have only one fourth to one
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third of their adult PON-1 levels at birth (Ecobichon & Stephens 1973). It has been 

suggested that PON-1 levels are low at birth, and plateau between 6 and 15 months of age, 

with high inter-individual variability (Cole et al 2003).

As discussed in the Introduction (1.3.3), oxidative stress has been proposed as a component 

of PET (Hubei 1999). The oxidative stress theory of PET involves the hypothesis that the 

abnormal placentation and dyslipidaemia results in a release of free radicals, particularly 

superoxide anions and lipid hydroperoxides, which damage the vascular* endothelium 

(Hubei 1999, Hubei et al 1989). Increased blood levels of lipid peroxidation products in 

PET have been reported by several authors (Maseki et al 1981, Wang et al 1991).

Because low plasma PON-1 activity is associated with less anti-oxidant potential and 

hence more oxidative stress and production of lipid peroxides, which are features of PET, 

it was proposed that pregnancies complicated by PET or lUGR would demonstrate lower 

PON-1 levels than those seen in uncomplicated pregnancies. The link between PON-1 and 

atherosclerosis might contribute to the further increased risk of cardiovascular disease seen 

in PET. It was considered that these results might be influenced by genotype, as proposed 

for CVD. The preliminary data in pregnancy (Roy et al 1994) was only assessed in 3̂  ̂

trimester levels, so it was hypothesised that PON-1 activity would decrease from 

trimester levels as gestation advanced, in keeping with the increased atherogenic risk of 

pregnancy (Sattar and Greer 2002). Thus the aim of this study was to determine PON-1 

activity, both independent of and related to genotype (PON-1 L55M & PON-1 Q192R) in 

each trimester of uncomplicated pregnancy in order to clarify the modest data in the 

literature, and to determine PON-1 activity, independent of and related to genotype in a 

case control study of PET and lUGR subjects, and corresponding BMI matched controls 

from 3‘̂  trimester uncomplicated pregnancies.

The PON-1 study was performed in collaboration with Dr Mike Mackness (Clinical 

Research Division II Medicine, Manchester Royal Infirmary), who kindly performed the 

assays. Due to small study numbers of subjects with the rare PON-1 alleles, conclusions 

regarding PON-1 activity related to genotype are limited in this study, and results shown 

are therefore purely observational.
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4.2.1 Uncomplicated pregnancies

4.2.1.1 Maternal and fetal lipids in uncomplicated pregnancies

Baseline chaiacteristics for eighty-one subjects from uncomplicated pregnancies are shown 

in Table 4-1.

Characteristics
n=81

Age (years) 28.9 (5.3)
BMI (kg/m^) 27.8 (5.8)
Primigravidae n (%) 44 (54%)
Smokers n (%) 28 (35%)
Gestation at sampling (weeks) 37.3 (2.6)
Vaginal delivery n (%) 53 (65%)
Placental weight (g) 743 (157)
Fetal weight (kg) 3.65 (0.57)
Birth weight centile 56 (31)
Fetal sex n (%) 46 (57%) male

35 (43%) female

TC (mmol/L) 6.02 (0.92)
Log TG (log mmol/L) 0.43 (0.13)

[2.69 (1.35)]
YLDL (mmol/L) 0.74 (0.29)
LDL (mmol/L) 3.81 (0.96)
Log HDL (log mmol/L) 0.16(0.09)

[1.45(1.23)1

Table 4-1. Maternal characteristics and lipid concentrations from uncomplicated 
pregnancies.
All values are mean and standard deviation (S.D.). Log transformed data was used for 
maternal triglyceride (TG) and high-density lipoprotein (HDL), and is presented as mean 
(S.D.) and [geometric mean (S.D.)].

Maternal lipid profiles were not affected by BMI (<25 kg/m^ or >25 kg/m^), smoking 

status or paiity, using univariate regression analysis or ANOVA. Maternal lipid profiles 

were also unaffected by gestational age at sampling (range 32 -  42 weeks). Fetal lipids 

(table 4-2) were available from forty-one of these uncomplicated pregnancies and were 

unaffected by maternal BMI, age, smoking status, gestational age at delivery or fetal 

gender.
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Fetal lipid n=41
Fetal log TC (log mmol/L) 0.20 (0.12)

[1.58(1.32)]
Fetal log TG (log mmol/L) -0.34 (0.26)

[0.46(1.82)]
Fetal HDL (mmol/L) 0.72 (0.19)

Fetal chol/HDL 2.33 (0.62)

Table 4-2. Fetal lipid concentrations from uncomplicated pregnancies.

All values are mean and SD. Log transformed data was used for fetal total cholesterol (TC) 
and triglycride (TG) and is presented as mean (SD) and [geometric mean (SD)].

However, fetal log TC, log TG and HDL levels all differed significantly (ANOVA, 

p<0.001) between types of delivery; emergency lower uterine Caesarean section (LUSCS), 

elective LUSCS, vaginal delivery or assisted delivery (figure 4-1). Emergency LUSCS 

deliveries had the highest fetal log TC, log TG and HDL levels. Placental weight was 

positively correlated with fetal log TC (r=0.37, p=0.02), log TG (r=0.34, p=0.04) (Figure 

4-2A) and TC/HDL ratio (r=0.31, p=0.05) in this group. Maternal TC (r=0.35, p=0.03) 

(Figure 4-2B) and LDL (r=0.36, p=0.02) levels were associated with fetal HDL levels.

4

3.5

3

C " 1 .

0.5

TC
n=41

■  Elective LUSCS 
□  Vaginal delivery
■  Emergency LUSCS
■  Assisted delivery

5 ,
Fetal lipids

HDL
n=41

Figure 4-1. Fetal lipids by mode of delivery.

Raw data is shown. Statistical analysis was performed using a one-way ANOVA, using log- 
transformed data for fetal total cholesterol (TC) and triglyceride (TG). LUSCS-lower uterine 
Caesarean section. Assisted delivery- forceps or Ventouse.
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Figure 4-2. A - Association of fetal log triglyceride (TG, n=41) with placental weight. B -  
Association of fetal high-density lipoprotein (HDL, n=41) with maternal cholesterol (n=81).

Statistical analysis was performed using Pearson’s coefficient of correlation.

4.2.1.2 Maternal and fetal PON-1 activity in uncompilcated 

pregnancies

Baseline characteristics for fifty-three subjects in the third trimester of uncomplicated 

pregnancies, from which samples were available for PON-1 analysis, are shown in Table 

4-3.

Maternal log PON-1 values were not affected by BMI (<25 kg/m^ or >25 kg/m^), smoking 

status or parity, using univariate regression analysis or ANOVA. Maternal log PON-1 

levels were significantly affected by gestational age at sampling within the third trimester, 

with lower log PON-1 levels as gestation advanced (univariate regression analysis, p=0.01, 

(adj) = 9.9%), and data was adjusted accordingly in the PET/IUGR case control study 

using a General Linear Model. There were only 9 fetal log PON-1 values available from 

uncomplicated pregnancies, therefore fetal log PON-1 values remain unadjusted for 

potential confounders and are logged as maternal values. However, because the fetal lipid 

values were clearly affected by mode of delivery, this was checked within the available 

PON-1 samples from these uncomplicated pregnancies. Fetal log PON-1 values were 

unaffected by mode of delivery (n=9, p=0.51, ANOVA). The mean and S.D. for the 9 fetal 

log PON-1 values from uncomplicated pregnancies was 1.35 log nmol/min/ml (0.89 log 

nmol/min/ml), geometric mean 22.38 nmol/min/ml (7.76 nmol/min/ml).
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Characteristics n=53

Age (years) 29.2 (5.48)
BMI (kg/m^) 27.9 (5.3)
Primigravidae n (%) 28 (53%)
Smokers n (%) 19 (36%)
Gestation at sampling (weeks) 37.5 (2.63)
Vaginal delivery n (%) 31 (58%)
Placental weight (g) 748.4 (0.50)
Fetal weight (kg) 3.69 (0.53)
Birth weight centile 56.6 (30.4)
Fetal sex n (%) 30 (59%) male

21 (41%) female
Log maternal PON (log nmol/min/ml) 2.06 (0.33)

[144.82 (2.14)1
Log fetal PON-1 (log nmol/min/ml) ^ 1.35 (0.89)

[22.38 (7.76)1
PON-1 L55M allele frequency Common (L) 0.61

Rare (M) 0.39
PON-1 Q192R allele frequency Common (Q) 0.81

Rare (R) 0.19
Table 4-3. Maternal characteristics, paraoxonase-1 (PON-1) activity and allele frequency 
from uncomplicated pregnancies.

All values are mean and standard deviation (S.D.). Log transformed data was used for 
maternal PON-1, and is presented as mean (S.D.) and [geometric mean (S.D.)]. *n=9 fetal 
samples available.

Mean maternal 3'^ trimester log PON-1 levels [2.06 (0.33) log nmol/min/ml] demonstrated 

a trend towards higher values compared to mean fetal log PON-1 levels [1.35 (0.89) log 

nmol/min/ml, p=0.05] in the uncomplicated group. No difference in maternal PON-1 was 

detected between either the rare homozygote PON-1 55 MM or the L-carriers, or between 

the rai'e homozygote PON-1 192 RR or the Q-carriers. There were no correlations between 

maternal and fetal log PON-1 activities, or between maternal and fetal log PON-1 activity 

and any of the lipid parameters. Specifically, maternal and fetal log PON-1 levels were not 

found to be associated with maternal or fetal log TG or HDL. There were no associations 

between maternal or fetal log PON-1 and placental weight, fetal weight or birth weight 

centiles.

4,2.2 Maternal PON-1 activity in a iongitudinai study of 
uncompiicated pregnancies

Baseline maternal chaiacteristics are shown in table 4-4 for 20 subjects studied in each 

trimester of uncomplicated pregnancy.
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Characteristics n=20

Age (years) 29.1 (5.16)
BMI (kg/m^) 27.3 (6.96)
Primigravidae n (%) 11 (55%)
Smokers n (%) 6 (30%)
Gestation at sampling (weeks) 36.2(1.94)
Vaginal delivery n (%) 17 (85%)
Placental weight (g) 798 (204)
Fetal weight (kg) 3.68 (0.67)
Birth weight centile 58 (39)
Fetal sex n (%) 12 (60%) male

8 (40%) female
PON-1 L55M allele frequency Common (L) 0.78

Rare (R) 0.23
PON-1 Q192R allele frequency Common (L) 0.70

Rare (R) 0.30

Table 4-4. Maternal baseline characteristics and allele frequency for longitudinal study of 
paraoxonase-1 (PON-1) activity, taken in the 1®* trimester.
All values are mean and S.D.

The mean gestations at sampling in the longitudinal study were; T1 12.1 weeks (SD 1.55 

weeks), T2 26.2 weeks (SD 1.07 weeks), T3 35.3 weeks (SD 1.45 weeks). Maternal log 

PON-1 activity was not altered as gestation advanced [T1 2.12 (0.32) log nmol/min/ml, T2 

2.14 (0.31) log nmol/min/ml, T3 2.23 (0.28) log nmol/min/ml, p=0.50] (figure 4-3). 

Maternal PON-1 activity based on genotype throughout gestation is demonstrated in table

4-5. There were no significant differences in PON-1 activity throughout the trimesters 

based on genotype.

Interestingly, in each trimester, lower PON-1 activity was observed in the rare 

homozygotes (MM) for the PON-1 L55M polymorphism, although no statistics were 

performed due to small sample size (Figure 4-4). For the PON-1 Q192R polymorphism, 

PON-1 activity was observed to be higher in the rare homozygotes (RR), although as 

before, statistics were not performed (figure 4-5).
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T1 T2 T3 P
PON-1 55 MM (n=l) 1.86 (*) 1.59 (*) 1.63 (*) *
PON-1 55 L-carrier (n=19) 2.14 (0.32) 2.17(0.29) 2.26 (0.25) 0.40
PON-1 192 RR (n=2) 2.64 (0.04) 2.61 (0.05) 2.59 (0.01) 0.53
PON-1 192Q-carrier(n=18) 2.06 (0.28) 2.09 (0.28) 2.19(0.27) 0.37

Table 4-5. Maternal log paraoxonase-1 (PON-1) activity (log nmol/min/ml) by genotype in 
each trimester of uncomplicated pregnancy.
Statistical analysis was performed using ANOVA. Maternal log PON-1 activity was NOT 
adjusted for gestational age at sampling. *n=1.

n=20 n=20 n=20

2 .6-

2 . 1-

g  E

II
CO

trimester

Figure 4-3. Maternal log paraoxonase-1 (PON-1) activity in each trimester of uncomplicated 
pregnancy. Statistical analysis was performed using ANOVA. Maternal log PON-1 activity 
was NOT adjusted for gestational age at sampling.
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Figure 4-4. Dotplot of differences between paraoxonase-1 (PON-1) activity in PON-1 L55M 
MM homozygotes or L-carriers, in each trimester.
Mean values are demonstrated by lines.
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Figure 4-5. Dotplot of differences between paraoxonase-1 (PON-1) activity in PON-1 Q192R 
RR homozygotes or Q-carriers, in each trimester.
Mean values are demonstrated by lines.
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4.2.3.1 Maternal and fetal characteristics in pregnancies 

compiicated by PET and lUGR

For the analysis of lipids and PON-1 activity in complicated pregnancy, cases were 

matched for age, parity and BMI with controls. Characteristics of the matched groups are 

shown in Table 4-6.

Characteristic PET 
Case 
n = 23

Control 
n = 23

P
IUGR 
Case 
11= 17

Control 
n=  17

P

Age
(years)

29.4 (6.5) 29.7 (6.1) 0.85 29.4 (4.9) 28.3 (5.2) 0.53

BMI
(kg/m^)

27.5 (4.8) 27.8 (4.9) 0.86 24.7 (5.4) 24.8 (5.4) 0.95

Systolic BP 
(mmHg, max)

161(14) 129(17) <0.001 n/a n/a n/a

Diastolic BP 
(mmHg, max)

108 (8.0) 72(12) <0.001 n/a n/a n/a

Primigravidae
n(% )

17 (74%) 13 (57%) 0.22 10 (59%) 11 (65%) 0.72

Smokers
n(% )

5 (22%) 6 (26%) 0.73 11 (65%) 8 (47%) 0.30

Gestation at sampling/ 
diagnosis (weeks)

36.2 (3.2) 39.6 (2.1) <0.001 35.8 (3.2) 39.2 (2.4) 0.001

Gestation at delivery 
(weeks)

36.5 (3.2) 40.0(1.3) <0.001 36.7 (2.8) 39.9(1.4) <0.001

Vaginal delivery 
n (%)

12 (52%) 9 (39%) 0.38 5 (29%) 9 (53%) 0.16

Placental weight 
(g)

516(190) 702 (84) 0.002 330 (100) 686 (91) <0.001

Fetal weight 
(kg)

2.51 (0.77) 3.77 (0.52) <0.001 2.05 (0.50) 3.63 (0.57) <0.001

Birth weight centile 22 (22) 57 (27) <0.001 3(3) 50 (32) <0.001

Fetal sex 
(%)

27% male 
73% female

62% male 
38% female

0.02 40% male 
60% female

81% male 
19% female

0.02

TC
(mmol/L)

6.57(1.14) 5.94 (0.89) 0.04 6.32 (1.07) 5.79 (0.77) 0.11

Log TG 
(log mmol/L)

0.50 (0.14) 
[3.16(1.39)1

0.44 (0.10) 
[2.73 (1.25)1

0.09 0.42 (0.17) 
[2.62(1.47)1

0.40 (0.14) 
[2.48 (1.39)1

0.67

YLDL
(imnol/L)

0.96 (0.41) 0.78 (0.27) 0.09 0.77 (0.46) 0.71 (0.21) 0.62

LDL
(mmol/L)

3.95 (0.81) 3.64 (0.95) 0.23 3.9(1.05) 3.54 (0.82) 0.28

Log HDL 
(mmol/L)

0.19(0.12)
[1.55(1.31)1

0.17(0.09)
[1.50(1.23)1

0.53 0.21 (0.09) 
[1.61(1.24)1

0.18(0.08) 
[1.51 (1.21)1

0.37

Table 4-6. Subject characteristics and maternal lipid profile in pregnancies complicated by 
PET or iUGR.
All values are mean and standard deviation (S.D.). Log transformed data was used for 
maternal triglyceride (TG) and high-density lipoprotein (HDL), and Is presented as mean 
(S.D.) and [geometric mean (S.D.)]. Statistical analysis was performed using 2-sample Mest 
for continuous variables and chi-square for categorical variables.
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None of the PET subjects had received any anti-hypertensive medication at time of 

sampling. Systolic and diastolic blood pressure (BP) was significantly higher in PET 

compared with the control subjects. Women with PET pregnancies (n=23) and women 

with IUGR pregnancies (n=17) had significantly earlier gestational age of delivery than 

those of controls, by a mean of 3.5 and 3.2 weeks respectively (p<0.001 in both groups). 

These subjects also had a significantly earlier gestation of blood sampling, at time of 

recruitment to the study when their condition was diagnosed (p < 0.001 in both groups). 

Offspring from women with PET and women with IUGR had significantly lower birth 

weights (p<0.001 for both groups) and significantly lower birth weight centiles (p<0.001 

for both groups). These groups also had lower placental weights (PET p -  0.002, IUGR 

p<0.001), and significantly different gender distribution (PET p = 0.02, IUGR p = 0.02) 

with more female offspring in the case groups.

4.2.5.2 Maternal lipid profile In PET, IUGR and uncomplicated 

control pregnancies

In PET subjects, there was a significantly elevated maternal TC [mean 6.57 (SD 1.14) 

mmol/L] compared to controls [5.94 (0.89) mmol/L, p = 0.04] (Table 4-6 & figure 4-6). 

There were no significant differences in any of the other lipid fractions in the PET group, 

although a trend towards increased TG levels was observed. There were no significant 

differences in the mean concentrations of TC, TG, VLDL-C, LDL-C or HDL-C between 

the IUGR group and their controls (Table 4-6 & Figure 4-6).

4.2.3.3 Maternal PON-1 activity In PET, IUGR and uncomplicated 

pregnancy

For analysis, all maternal log PON-1 values were adjusted for gestational age at sampling. 

In PET subjects, maternal log PON-1 activity was significantly lower [0.37 (3.16) log 

nmol/min/ml] compared to controls [3.36 (2.04) log nmol/min/ml, p=0.001] (Figure 4-7). 

However, in IUGR subjects, there was no difference between cases [1.97 (0.51) log 

nmol/min/ml] and controls [2.12 (0.62) log nmol/min/ml, p=0.49] (figure 4-7). In PET, the 

reduction in PON-1 activity was preserved for the L-carriers [PET 0.56 (3.27) vs controls 

3.72 (1.29) log nmol/min/ml, p=0.001] and the MM homozygotes were observed to have 

lower PON-1 activity compared to controls [PET -1.44 (0.21) vs controls 2.39 (3.31) log 

nmol/min/ml] based on the L55M polymoiphism (Figure 4-8). However, based on the 

Q192R polymorphism, PON-1 activity was not different between Q-carriers [PET 1.88
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(0.42) vs controls 1.90 (0.34) log nmol/min/ml, p=0.90], and there was only one RR 

homozygote in each group [PET 2.05 vs control 2.01 log nmol/min/ml] (figure 4-8). In the 

IUGR group, there were no differences between PON-1 activity based on L-carrier status 

[IUGR 2.07 (0.42) vs controls 2.21 (0.60) log nmol/min/ml, p=0.51]. Similarly, there were 

no differences between PON-1 activity based on Q-carrier status [IUGR 1.94 (0.19) vs 

controls 2.07 (0.31) log nmol/min/ml, p-0.17] (figure 4-9). In the IUGR control group, for 

the Q192R polymorphism, all subjects were Q-carriers.
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Figure 4-6. Maternal lipids in PET, IUGR and control pregnancies.
Data shown are raw data. All values are mean and 95% confidence intervals. Statistical 
analysis was performed using a 2-sample Mest. Log transformed data was used for 
statistical analysis of maternal triglyceride (TG) and high-density lipoprotein (HDL).
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Figure 4-7. Maternal log paraoxonase-1 (PON-1) activity by role in study.

Maternal PON-1 was adjusted for gestational age at sampling, and data was log transformed 
to achieve normality. Log transformed data is shown to allow graphical representation. All 
values are mean and 95% confidence intervals. Statistical analysis was performed using a 2- 
sample Mest.
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Figure 4-8. Maternal log paraoxonase-1 (PON-1) activity based on genotype (L55M and 
Q192R) in PET and PET controls.

Statistical analysis was performed using ANOVA. Maternal PON-1 was adjusted for 
gestational age at sampling, and data was log transformed to achieve normality. Log 
transformed data Is shown to allow graphical representation.
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Figure 4-9. Maternal log paraoxonase-1 (PON-1) activity based on genotype (L55M and 
Q192R) in IUGR and IUGR controls.

Statistical analysis was performed using ANOVA. Maternal PON-1 was adjusted for 
gestational age at sampling, and data was log transformed to achieve normality. Log 
transformed data is shown to allow graphical representation.
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4.2.3.4 Fetal lipid profile in PET and IUGR and uncomplicated 

pregnancies

There were 14 PET and 11 IUGR fetal samples available from the maternal cohort. The 

fetal venous cord blood concentrations of TC, TG and HDL-C were all significantly lower 

in the fetal group than in their mothers (p<0.001 in all groups). For analysis, all fetal lipids 

were adjusted for the effect of mode of delivery. In the venous cord plasma of pregnancies 

complicated by PET, there was a significantly increased concentration of log TC [mean 

0.36 (SD 0.23) log mmol/L] compared with uncomplicated pregnancies [0.11 (0.15) log 

mmol/L, p=0.003] (Figure 4-10), a significantly increased log TG concentration [-0.21 

(0.32) log mmol/L] compared to controls [-0.49 (0.26) log mmol/L, p = 0.02] (Figure 4-10) 

and a significantly increased cholesterol/HDL-C ratio [3.64 (1.62)] compared with controls 

[1.80 (0.86), p=0.001]. However, there was no difference in HDL-C levels, hi IUGR 

pregnancies, a significantly elevated concentration of log TG [-0.17 (0.35) log mmol/L] 

was noted, compared to the control group [-0.57 (0.10) log mmol/L, p = 0.01] (Figure 4- 

10). There was no difference in TC, HDL-C or the TC/HDL ratio between the groups.
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Figure 4-10. Fetal lipids in PET, IUGR and control pregnancies.
Data shown is adjusted for mode of delivery. All values are mean and 95% confidence 
intervals. Statistical analysis was performed using a 2-sample Mest. Log transformed data 
was used for statistical analysis of fetal total cholesterol (TC) and triglyceride (TG).



Vanessa Rodie, 2005 Chapter 4,115

4.2.3.S Fetal PON-1 activity In PET and IUGR and uncomplicated 

pregnancies.

The fetal PON-1 samples were the same as those used in the fetal lipid cohort. The fetal 

venous cord blood concentrations of PON-1 were not different in the fetal group compared 

with their mothers (p>0.07 in all groups). In PET, there was no significant difference 

between log fetal PON-1 activity between cases [1.55 (0.42) log nmol/min/ml] and 

controls [1.73 (0.53) log nmol/min/ml, p=0.45]. There was also no difference in fetal log 

PON-1 activity in IUGR subjects [1.61 (0.43) log nmol/min/ml] compared to controls 

[1.61 (0.52) nmol/min/ml, p=1.00] (Figure 4-11).
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Figure 4-11. Fetal log paraoxonase-1 (PON-1) activity by role in study.
Data was log transformed to achieve normality, and is unadjusted. Log transformed data is 
shown to allow graphical representation. All values are mean and 95% confidence intervals. 
Statistical analysis was performed using a 2-sample Mest.

With respect to fetal genotype, in PET there was no difference in PON-1 activity based on 

L55M or Q192R genotype when compared with controls (table 4-7). However, small 

sample size must be taken into account when analysing this data.

PET PET control P IUGR IUGR control p
L-carrier 1.55 (0.42) 1.88 (0.40) 0.14 1.61 (0.43) 1.80 (0.36) 0.44
MM * 0.87 N/A * 0.87 N/A
Q-carrier 1.56 (0.44) 1.73 (0.53) 0.49 1.61 (0.43) 1.61 (0.52) 1.00
RR 1.46 * N/A $ H! N/A

Table 4-7. Fetal log paraoxonase-1 (PON-1) activity (log nmol/min/ml) based on fetal 
genotype (L55M and Q192R).

Statistical analysis was performed using ANOVA. *n=0.
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4,2.4 Associations between maternai and fetal lipids and between 

maternal and fetal PON-1 activity.

There were no correlations between fetal and maternal TC, TG or HDL-C in the PET or 

IUGR groups. There was no association between fetal or maternal lipids and fetal 

birthweight or placental weight in any of the groups. Similarly, HDL-C and TG were not 

correlated within any of the fetal groups.

There were no correlations between fetal and maternal log PON-1 activity in the PET or 

IUGR groups. There were no associations between maternal or fetal log PON-1 activity 

and maternal or fetal lipids in the PET group, PET controls or the IUGR control groups. 

There were no correlations between the groups and neither maternal nor fetal log PON-1 

activity was associated with TG or HDL levels in any of the groups. In the PET group, 

there was a positive association between log maternal PON-1 activity and fetal weight 

(r=0.90, p<0.001), birth weight centile (r=0.44, p=0.05) (figure 4-12) and placental weight 

(1-0.74, p=0.002) (figure 4-13A). The latter correlation was not seen in the IUGR group 

(r=0.13, p=0.71) (figure 4-13B) or in the total controls (r=0.31, p=0.09) (figure 4-13C).
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Figure 4-12. Association of maternal log paraoxonase-1 (PON-1, n=23) with birth weight 
centile in the PET group.

Statistical analysis was performed using Pearson's coefficient of correlation, on data 
adjusted for gestational age at sampling.
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Figure 4-13 A, B, C. Association of maternai log paraoxonase-1 (PON-1) with placental 
weight (g) in, A -  PET, B - IUGR and C -  all controls.

Statistical analysis was performed using Pearson’s coefficient of correlation, on data 
adjusted for gestational age at sampling.
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4.3 Discussion

This is the first report to describe fetal lipid concentrations in pregnancies complicated by 

PET. Pre-eclamptic pregnancies demonstrated an elevated fetal log TC concentration, with 

resulting raised fetal TC/HDL-C ratio, and a significantly raised fetal log TG level. With 

respect to IUGR pregnancies, a significantly elevated fetal log TG level has been 

demonstrated. These latter findings are consistent with those of previous studies (Jones et 

al 1999). The marked effects on fetal lipids observed in this study were apparent despite 

the minimal effects on maternal lipids from the same pregnancy, and there were no 

correlations between maternal and fetal lipids in the PET or IUGR groups.

In the present study, lower lipid levels in fetal compared with maternal blood were 

confirmed (Averna et al 1991, Kilby et al 1998, Neary et al 1995), as was the 

predominance of HDL-C. A detailed understanding of lipoprotein metabolism in the fetus 

remains undetermined. It is possible that HDL-C may be involved in the transfer of 

cholesterol from the placenta to the fetal circulation after interaction with the ABCAl 

cholesterol efflux transporter. This is speculative, as to date ABCAl has not been studied 

in detail in the placenta, although it is highly expressed in this tissue (Langmann et al 

1999). Pregnancies were not matched for mode of delivery; it has been suggested 

previously that method of delivery does not affect fetal lipid levels (Lane and McConathy 

1983). However, in the present study of fetal lipids in uncomplicated pregnancies, it was 

demonstrated that fetal lipids were significantly affected by mode of delivery, using 

ANOVA (figure 1) (p<0.001). The lipids levels were highest in possibly the most stressful 

situation -  emergency LUSCS. Thus, all fetal data was adjusted to account for the effect of 

mode of delivery.

Although not significant in this study, a trend was demonstrated towards the maternal 

hypertriglyceridaemia (Hubei et al 1996, Kaaja et al 1995, Sattar et al 1997a) and elevated 

LDL-C levels (Belo et al 2002a, Lorentzen and Henriksen 1998, Ogura et al 2002, Sattar et 

al 1997a) previously reported in PET, compared to control subjects. This study did not 

confirm the previously reported maternal dyslipidaemia of IUGR (Sattar et al 1999a). 

Obesity is associated with dyslipidaemia (Reaven 1988), and abdominal-visceral fat 

correlates with increased plasma levels of triglyceride and reduced HDL levels (Kissebah 

and Kiakower 1994). BMI is a risk factor for PET (Sattar et al 2001) and because of the 

clear influence of BMI on plasma lipids in pregnancy (Ramsay et al 2002), sample groups 

were matched case by case for maternal BMI in this study. Different methods of correction
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for BMI may explain some of the differences between the present observations of maternal 

lipids and those of earlier studies.

This study observed that in uncomplicated pregnancies, median maternal PON-1 levels are 

lower than the non-pregnant UK median (112.Onmol/min/ml vs 215 nmol/min/ml, 

Mackness, personal communication). This may reflect the increased atherogenic risk seen 

in pregnancy (Sattai' and Greer 2002) and may contribute to the proposed association 

between PET and future risk of CVD. These findings are in conflict with those of Roy and 

colleagues (Roy et al 1994) who demonstrated an increase in PON-1 activity in pregnant 

subjects. This discrepancy may again be attributed to different methods of correction for 

BMI, as leanness is associated with increased oxidative capacity. In the study by Roy et al 

cases and controls were reported to have comparable weight and height, although data 

regarding BMI was unavailable for comparison between the 28 week and the 32 week 

groups and BMI calculation was observed to vary by >2kg/m^ between the 28 week 

pregnant group and the non-pregnant group. In the current study, there was no comparison 

with non-pregnant women as there was in the data from Roy and colleagues, therefore 

findings are purely observational with respect to comparisons with the non-pregnant UK 

median.

PON-1 activity remained constant with advancing gestation in the longitudinal study of 

uncomplicated pregnancy, although PON-1 values were significantly reduced by 

gestational age at sampling in the control group from the 3‘̂  trimester. This may indicate 

that in uncomplicated pregnancy PON-1 activity is reduced significantly only in the later 

stages of pregnancy, which may indicate a role in the dyslipidaemia and oxidation seen at 

this stage of pregnancy. Because activity remains constant with advancing gestation 

between the trimesters, PON-1 activity may not play a direct role in the metabolic 

alterations or oxidative stress seen in normal pregnancy as gestation advances but may be 

involved in the long-term increased risk of CVD because of its significant reduction at the 

later stages of the 3‘̂  trimester. Data in the PON-1 PET/control study were corrected for 

the effect of gestational age at sampling, and it is interesting to note that data uncorrected 

for this potential confounder would magnify the reduction in PON-1 activity in PET 

compai'ed with controls.

Although numbers were small, this study was consistent with the observation that being a 

MM homozygote for the L55M PON-1 polymorphism is associated with a trend towards 

lower PON-1 activity when compared to being an L-carrier (Humbert et al 1993). MM 

homozygosity may be associated with increased oxidative stress and potential CVD risk.



Vanessa Rodie, 2005 Chapter 4, 120

The current study also observes that RR homozygosity for the Q192R PON-1 

polymorphism is associated with higher PON-1 activity in the P ' and 2"*̂  trimesters of 

uncomplicated pregnancies (p=0.02 both groups), with a trend towards the same in the 3̂  ̂

trimester (p=0.07). This data supports previous research describing higher PON-1 activity 

in the R-cairiers (Mackness et al 1996) and may indicate that in uncomplicated pregnancy, 

RR homozygosity is related to increased protection from oxidative stress. However, recent 

studies in the non-pregnant state have highlighted a paradox surrounding the Q192R 

polymoiphism and PON-1 activity and risk of CVD. The Q alloenzyme is more efficient at 

protecting LDL from oxidation (Mackness et al 2002), and the R polymorphism has been 

more closely associated with CHD than the Q polymorphism. It is interesting to note that 

although the R allele is considered to confer higher paraoxonase activity, measured using 

paraoxon as a substrate, the Q alloenzyme is more efficient at protecting LDL from 

oxidation. Thus differing substrate specificity of the PON-1 alleles may explain this 

paradox (Davies et al 1996) (Furlong et al 1989).

This is the first report of maternal PON-1 activity in both PET and IUGR pregnancies. In 

PET, a lower maternal PON-1 activity was demonstrated compared to control subjects 

(p=0.001), independent of genotype. This confirms findings published during the time of 

writing this thesis by Kunmi and colleagues (Kumru et al 2004), who have recently 

described significantly lower maternal PON-1 activity, independent of genotype, in severe 

PET compared to uncomplicated pregnancy. This group proposed a role for PON-1 in the 

pathogenesis of PET. Together these findings would support the proposal that oxidative 

stress is a component of PET (Hubei 1999) and that markers of oxidative stress are altered 

in PET (Chappell et al 2002) (Akyol et al 2000). There was no difference in maternal 

PON-1 activity in IUGR pregnancies compai’ed with controls (p=0.49) in this study, which 

may provide further evidence that PON-1 has a role in the pathogenesis of PET via 

oxidative stress rather than placental pathology.

In this study, it was considered that sample sizes in the genotype subgroups were too small 

to draw any firm conclusions and data are purely observational. However, in general, the 

reduction in maternal PON-1 activity seen in PET persisted in both L-carrier and MM 

homozygote groups of the L55M polymorphism but did not persist in the Q-cairiers or RR 

homozygotes of the Q192R polymorphism. There were no differences in maternal PON-1 

activity based on L55M or Q192R polymoiphism in IUGR and no differences based on 

either polymorphism in the fetal group.
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In the PET group, increased PON-1 activity was associated with increased fetal weight, 

birth weight centile and placental weight. These associations were not observed in the 

IUGR and control uncomplicated pregnancies. This may indicate that in a situation where 

the placenta is poorly functioning and there is an abnormal maternal metabolic response, as 

in PET, it is the subjects with highest maternal PON-1 activity who deliver the largest 

babies, as the anti-oxidant properties of PON-1 act to allow optimal placental growth and 

thereby optimal fetal nutrition. This may help to explain why the fetus is small in IUGR, 

where the placenta is also poorly functioning, as the maternal metabolic response does not 

act to provide the fetus with optimal growth. There were no differences observed in fetal 

PON-1 activity between offspring from PET subjects and controls or between offspring 

from IUGR subjects and controls, independent of fetal genotype. In this study, no 

conclusions have been made regaiding the observations of fetal PON-1 activity based on 

genotype as sample sizes are too small. In these observations (see table 4-7), there were no 

rare homozygotes in each of the groups for either one or both polymorphisms. Further 

studies would analyse potential correlations between markers of oxidative stress such as 

isoprostanes and PON-1 activity in pregnancy, and would study the effects of genotype in 

much larger cohorts.

This study has a number of limitations. Non-fasting samples were used to facilitate the 

collection of both maternal and fetal bloods from the same pregnancy, which may affect 

TG levels only. This was particularly pertinent to sampling of our cases where emergency 

delivery (within 24 hours) is common. Similarly, in PET and IUGR studies, it is difficult to 

control for gestational age at sampling and most previous studies have not done this. In this 

group, we found that gestational age at sampling had no significant effect on maternal or 

fetal lipids and therefore we did not statistically adjust the lipid data for gestational age at 

sampling. However, maternal PON-1 activity was affected by gestational age at sampling 

in the trimester samples, and thus data was adjusted correspondingly in the PET and 

IUGR case controls study. In previous reports, authors have either accounted (Kilby et al 

1998, Sattar et al 1997a, Sattar et al 1999a) or not (Belo et al 2002b, Kaaja et al 1995, 

Ogura et al 2002) for gestational age. This may explain some of the discrepancies 

regarding maternal lipids in the literature. One study has demonstrated an effect of fetal 

gender on lipid levels (Loughrey et al 2000) where female neonates have significantly 

lower triglyceride concentrations than males (p<0.001) and non-significant tendencies 

towards higher concentrations of LDL and HDL. However, in our study, fetal gender had 

no influence on fetal lipid profile in the newborns from uncomplicated pregnancies.
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The data obtained supports the hypothesis that maternal lipid alterations in PET and in 

IUGR pregnancies will result in disturbances in the fetal lipids. It is possible that the 

increased supply of maternal lipids in these conditions would result in changes in mass 

lipid transfer across the placenta, leading to the fetal lipid alterations. However, it is 

interesting to note that fetal lipids can be greatly altered by PET and IUGR when their 

mothers’ lipids are minimally changed, and that in our study the pattern of dyslipidaemia 

in the offspring does not match that in the mother. This implies that fetal lipids are not 

determined merely by circulating concentrations of maternal lipid available for placental 

uptake.

The alterations in the fetal lipid profile observed may be due to changes in trans-placental 

transport. The human placenta is known to express lipoprotein receptors in high amounts 

(Jensen et al 1989, Wittmaack et al 1995), and the LDL receptor plays an important role in 

the uptake of maternal plasma lipoproteins for placental steroid metabolism (Stepan et al 

1999). It has recently been demonstrated that human first trimester and term trophoblast 

cells express SR-BI (an HDL receptor), and this could serve as an efficient route for 

supplying cholesteryl esters from maternal lipoproteins to fetal tissues (Wadsack et al 

2003). However, there is a paucity of data explaining how these receptors are regulated 

throughout healthy pregnancy and in pathological pregnancies. Maternal triglyceride does 

not cross the placental barrier, but TG in maternal lipoproteins can be hydrolysed by 

placental lipase and the resulting fatty acids transferred across the placenta by fatty acid 

binding proteins. The up-regulation of these mechanisms might increase fatty acid 

transport across the placenta, thus supplying the fetal liver with substrate for TG synthesis 

(Haggaity 2002, Herrera 2002). On reaching the fetal circulation the non-esterified fatty 

acids can be transported to the fetal liver for triglyceride synthesis (Haggarty 2002).

Pathological or adaptive changes in placental transport may play an aetiological role in the 

fetal lipid alterations in PET and IUGR. Pre-eclampsia and IUGR have devastating effects 

on placental function that might easily influence lipid transport. The changes in fetal lipids 

may be an appropriate physiological response to an adverse in-utero environment. 

Transport mechanisms may be up regulated to compensate for oxidative and structural 

damage to the placenta (Demir et al 1994, Laskowska-Klita et al 2001). Interestingly, 

Stepan and colleagues (Stepan et al 1999) described a significantly higher LDL receptor 

mRNA expression relative to actin in IUGR when compared with term and pre-term 

pregnancies (p<0.05) and explained this as a compensatory mechanism for the lower 

circulating LDL concentrations in women with IUGR. Although we did not find reduced 

TC in mothers with IUGR, we did find an increase in fetal log TC levels from PET
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pregnancies, and increased fetal log TG levels from PET and from IUGR pregnancies. This 

could potentially be due to up-regulation of placental lipoprotein receptor expression or 

activity in PET and IUGR. Changes in placental fatty acid transport could additionally be 

attributed to increases in lipase or fatty acid binding protein activity, once again as a 

compensatory mechanism to supply the fetus with an energy source via increased TG 

levels. It is possible that compensatory mechanisms differ between IUGR and PET. If the 

alterations in fetal lipids ai'e to be ascribed to changes in placental transport then 

correlations between indices of placental function and fetal lipids might be expected. 

Although in the uncomplicated group, placental weight correlated with fetal log TG, log 

TC and the cholesterol/HDL ratio, there was no association between placental weight and 

fetal lipid levels in the PET or IUGR groups. However, placental weight is a relatively 

crude measurement of placental function and more specific markers such as PAI-l/PAI-2 

(Chappell et al 1999) may be useful.

Alternatively, fetal lipids may be altered in PET and IUGR because of an incomplete 

development or immaturity of the biochemical pathways and processes involved in fetal 

TG metabolism. This may be apparent in complicated pregnancies either because of the 

earlier gestational age at delivery or due to a developmental ‘sparing effect’ diverting 

nutrients to key organ development under conditions where growth is restricted. The 

former possibility is inconsistent with the lack of association of fetal lipids with gestational 

age at delivery. It has been reported that small for gestational age have impaired utilisation 

of circulating triglycerides, consistent with peripheral adipose depletion (Jones et al 1999), 

and this may be paiticularly evident in PET and IUGR fetuses especially when growth is 

restricted.

Alterations in fetal lipids in PET and IUGR pregnancies could be attributed to an acute 

fetal stress response due to mode of delivery, or a chronic response secondary to poor 

placental perfusion. Since our fetal lipid findings were adjusted for mode of delivery, it is 

unlikely that the short-term immediate stress of labour or traumatic delivery should 

account for the lipid aberrations seen in our study. Long-term stress may alter fetal 

production of hormones such as cortisol with consequent effects on lipid metabolism. 

Future studies to examine any association between markers of fetal stress and fetal lipid 

levels may be worthwhile.

Although the future impact of altered lipid levels in neonates resulting from PET and 

IUGR pregnancies is unknown, it is interesting to note that neonatal VLDL-C and LDL-C 

concentrations were predictive of levels in the offspring at the age of thirteen (Fonnebo et
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al 1991). In light of the weight of evidence supporting fetal programming and the results 

presented herein, future studies should now investigate lipid and other cai'diovasculai- risk 

factors in offspring from PET pregnancies. It is concluded that fetal lipids are altered in 

pregnancies complicated by PET and IUGR. These findings have potential implications for 

the future cardiovascular health of the offspring and highlight the need for research into 

placental lipid transport in healthy and pathological pregnancy.
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5 Inflammation and insulin resistance in 
uncomplicated pregnancy and in PET and iUGR

5.1 Introduction

In the Introduction (chapter 1), the generalised maternal inflammatory response (section 

1.2.3.4) and state of insulin resistance (section 1.3.2) seen in uncomplicated pregnancy 

have been detailed along with the exaggerated inflammation and insulin resistance of PET. 

Elevated levels of TNFa, IL-6, VCAM-1, ICAM-1, E-, P- and L-selectins and PECAM-1, 

(Acar et al 2001, Bretelle et al 2001, Carr et al 2001, Greer et al 1994, Lyall et al 1994, 

Vince et al 1995, Zeisler et al 2001) in the peripheral blood in PET, along with neutrophil 

activation in the peripheral circulation in PET (Greer et al 1989) and in IUGR (Johnston et 

al 1991) (Sabatier et al 2000) have also been discussed. Elevated GRP levels (though not 

independently of BMI) have been demonstrated in the trimester of pregnant women 

who later develop PET (Wolf et al 2001). Data is conflicting regarding fetal inflammatory 

markers in PET. One study demonstrated no differences in the circulating fetal 

concentrations of ICAM, VC AM and E-selectin between normal pregnancies and 

pregnancies complicated by PET (Krauss et al 1998). Aliefendioglu et al observed 

elevated maternal and fetal sICAM in PET pregnancies compared to controls 

(Aliefendioglu et al 2002). There aie no reports of fetal inflammatory markers in IUGR 

pregnancies.

Four key inflammatory markers will be studied in this chapter; CRP, TN Fa, IL-6 and IL- 

10, along with the hormone leptin and the nuclear receptor PPARy which are associated 

with obesity and insulin resistance.

CRP is an acute-phase reactant marker of inflammation and tissue damage in the body that 

is synthesised by the liver. CRP is considered to act as a scavenger and is responsible for 

the clearance of membranes and their nucleai’ antigens (Du Clos 1996). Levels of CRP 

correlate significantly with features of the metabolic syndrome including indices of 

adiposity, hyperinsulinaemia and insulin sensitivity index, hypertriglyceridaemia, and low 

HDL cholesterol (Festa et al 2000, Forouhi et al 2001, Yudkin et al 1999) which are also 

features of PET. Alterations in CRP levels are predictive of future CYD risk (Packard et al 

2000, Pradhan and Ridker 2002, Ridker et al 2000) and of the development of diabetes in 

middle-aged men, independent of established risk factors (Freeman et al 2002). CRP levels
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are elevated in the seram of obese pregnant women compared with lean subjects (Ramsay 

et al 2002).

TN Fa is a pro-inflammatory cytokine derived from macrophages and lymphocytes 

(Kupfermine et al 1994) and is involved in immunoregulation, modulation of cell growth 

and differentiation, coagulation, endothelial cell function and insulin resistance (Bentier 

and Cerami 1987, 1989, Fasshauer et al 2004, Le and Vilcek 1987). This cytokine is 

elevated in peripheral blood in normal pregnancy and increases from the to the 3*̂  ̂

trimester (Freeman et al 2004). TN Fa is further increased in PET (Vince et al 1995). It has 

been suggested that hypoxia stimulates a 2-fold increase in TN Fa production in villous 

explants from human placenta (Benyo et al 1997). Intermittent perfusion of the placenta 

secondary to reduced trophoblast invasion as in PET, causes increased placental secretion 

of TN Fa and this contributes to the activation of maternal endothelial cells that 

characterise PET (Hung et al 2004). However, recent data from villous explants 

demonstrated no significant increase in protein or mRNA expression of TN Fa from 

normal or PET pregnancies (Benyo et al 2001). Thus there is conflicting evidence in the 

literature to suggest that the increased plasma levels of TN Fa are a result of increased 

placental production in advancing pregnancy and in PET. This conflict may suggest that 

sources other than the placenta contribute to the elevated circulating levels of this cytokine 

(Benyo et al 2001).

Elevated maternal plasma and amniotic fluid levels of TN Fa have also been associated 

with IUGR (Heyborne et al 1992), although there is debate in the literature as to whether 

inflammatory mediators ai'e elevated in maternal plasma in IUGR. It is possible that these 

ar e not elevated because there is no maternal metabolic response to this condition, or there 

is no release of ‘factor X ’ from the placenta or because there is a degree of maternal 

resistance to its effects (Johnson et al 2002). Activated adipocytes may provide an 

additional source of TN Fa (Mohamed-Ali et al 1998) in uncomplicated pregnancy and in 

pregnancies complicated by PET or IUGR. This adipose production may account for the 

lack of increase of this cytokine from the E‘ to the 3'^ trimester after correction for BMI 

(Freeman et al 2004), as it is recognised that adipose tissue of obese individuals expresses 

increased amounts of TN Fa compared to the adipose tissue from lean subjects (Fried et al 

1998, Hotamisligil et al 1993). Human T N F-a inhibits human leptin secretion by cultured 

human adipocytes collected from the subcutaneous fat of pregnant women, suggesting an 

autocrine or paracrine regulation of leptin secretion in human adipose tissue in vivo 

(Yamaguchi et al 1998).
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IL-6 is an inflammatory cytokine that is involved in cell-to-cell signaling within the 

immune system and is produced by many cell types including macrophages, adipocytes 

and skeletal muscle (Greenberg and McDaniel 2002, Kishimoto 1989). This cytokine also 

has a role in glucose and insulin metabolism (Fernandez-Real et al 2000, Senn et al 2002, 

Stouthai'd et al 1996). IL-6 is elevated from the to the 3̂  ̂trimester in women who later 

develop PET (Freeman et al 2004, Vince et al 1995) although adjusting for BMI and 

smoking status attenuated the latter observation. IL-6 protein (Jauniaux et al 1996) and 

mRNA (Stephanou et al 1995) are present in cyto- and syncytiotrophoblast cells in Ê  

trimester trophoblast cells. Synthesis has also been documented in the normal human 

placenta (Kameda et al 1990) and term placenta has been shown to spontaneously secrete 

IL-6 in vitro (Turner et al 2002). However, the hypoxia that stimulated an increase in 

T N Fa production from villous explants had no effect on IL-6 production in human 

placentae (Benyo et al 1997). Further, as for TN Fa, data from villous explants 

demonstrated no significant increase in protein or mRNA expression of IL-6 from normal 

or PET pregnancies (Benyo et al 2001). In fact, IL-6 production has been shown to 

decrease in placental explants from PET pregnancies (Kauma et al 1995), and Yin and 

colleagues (Yin et al 1998) demonstrated that although plasma IL-6 levels increase in 

pregnant hypertensive patients compared with normotensive women, placental mRNA 

expression was reduced. This data may suggest that placental production of IL-6 does not 

account for the increase in plasma IL-6 in PET, and maternal adipose tissue may be 

considered as another source (Mohamed-Ali et al 1998). Several in vivo studies have 

revealed that IL-6 is secreted from subcutaneous adipose tissue in the non-pregnant state 

(Mohamed-Ali et al 1997, Orban et al 1999). Adipose tissue of obese individuals expresses 

increased amounts of IL-6 compared to the adipose tissue from lean subjects (Fried et al 

1998), and high circulating levels of EL-6 and T N Fa are found in patients with 

hyperinsulinaemia. It is important to note that elevated levels of IL-6 and leptin have been 

reported in obese pregnant women (Ramsay et al 2002).

IL-10 is an anti-inflammatory cytokine and a natural immuno-suppressant of TN Fa 

(Edwards-Smith et al 1999). IL-10 is a Th2 cytokine, which acts as a potent inhibitor of Th 

1 effector mechanisms (Fiorentino et al 1989, Fiorentino et al 1991, Mosmann 1994). It is 

predominantly expressed in B-lymphocytes, and is involved in the terminal differentiation 

of B cells into plasma cells. IL-10 exhibits predominantly inhibitory effects on 

inflammatory reactions (Lalani et al 1997). A predominance of IL-10 and other Th2 

cytokines has been suggested to be compatible with a successful pregnancy (Lin et al

1993). Human plasma IL-10 is increased from the E‘ to the 3̂  ̂trimester in uncomplicated
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pregnancy (Freeman et al 2004). However, there is debate in the literature as to whether 

this cytokine is reduced in the serum of PET subjects hence contributing to the 

inflammation associated with this disease (Benian et al 2002, Freeman et al 2004,

Hennessy et al 1999). Human placental tissue from uncomplicated pregnancies has been 

shown to express IL-10 (Bennett et al 1997, Bennett et al 1999, Cadet et al 1995, Roth et 

al 1996). Placental expression of IL-10 has been shown to increase in healthy pregnancy 

with gestation, but is down-regulated at term and after parturition, perhaps demonstrating 

the inflammatory nature of labour (Hanna et al 2000). Human term placental tissue 

expresses high levels of IL-10 mRNA suggesting that cells that produce IL-10 and that are 

associated with the placenta may play a role in preventing rejection of the fetal allograft by 

the mother (Cadet et al 1995). IL-10 has been highlighted as a regulator of placental 

morphogenesis, acting to retard expansion of the placental labyrinth and to modify the 

architecture of the maternal blood sinuses (Roberts et al 2003). Reduced decidual IL-10 

mRNA expression has been described in association with IUGR (Hahn-Zoric et al 2002) 

and reduced placental IL-10 levels have been observed in PET (Hennessy et al 1999) and 

in cultured trophoblast cells from PET pregnancies as determined by ELISA (Rein et al 

2003). This is consistent with the theory that IL-10 has an important anti-inflammatory 

role at the maternal-fetal interface in pregnancy and is reduced in situations of impaired 

placentation (Marjono et al 2002). However, data are conflicting. Rinehart and colleagues 

have demonstrated an increase in placental production of IL-10 mRNA in PET (Rinehart et 

al 1999). To date there have been no studies of IL-10 production by subcutaneous adipose 

tissue in uncomplicated pregnancy or pregnancies complicated by PET or IUGR.

Leptin is a hormone produced abundantly by adipose tissue (Ogawa et al 1995, Zhang et al

1994) and is involved in energy and the regulation of metabolism. Its role in the regulation 

of food intake and body weight by acting as an endocrine signal to the hypothalamus is 

clearly established (Friedman and Halaas 1998). Leptin is also produced by the placental 

trophoblast (Masuzaki et al 1997) and high circulating levels occur during pregnancy, 

predominantly secondary to placental production, but also secondary to up-regulation of 

adipose leptin production and production of leptin-binding proteins (Anderson and Ren 

2002). Maternal serum leptin levels are elevated in normal pregnancy, especially in the 2"^ 

trimester, then rapidly decrease and return to normal after delivery when the influence of 

the placenta is removed (Anderson and Ren 2002, Hardie et al 1997). It has been proposed 

that production of leptin by the placenta may play a role in the regulation of placental and 

fetal growth (Masuzaki et al 1997). It has recently been demonstrated in a longitudinal 

prospective case-control study that serum leptin concentrations were significantly higher in 

PET compared to low-risk women, after correction for BMI (Chappell et al 2002). Leptin



Vanessa Rodie, 2005 Chapters, 129

has been shown to be significantly higher in PET and obese pregnant subjects compared to 

lean pregnant women (Ramsay et al 2002) and leptin levels correlated independently with 

both CRP and fasting insulin levels. Thus leptin may be a marker of insulin resistance in 

pregnancy. Both plasma leptin levels and placental leptin mRNA aie higher in women with 

PET (Laivuori et al 2000, Mise et al 1998) and fall to normal after delivery. In contrast, 

Bersinger and colleagues (Bersinger et al 2002) found no differences in leptin levels from 

healthy term and PET placental extracts using ELISA. Jakimiuk and colleagues (Jakimiuk 

et al 2003) have demonstrated that placental leptin mRNA production correlates with cord 

blood concentrations of leptin, and growth restricted fetuses at term have been shown to 

have significantly lower cord blood concentrations of leptin than appropriately grown 

fetuses for gestation. Because leptin is expressed abundantly in the adipose tissue, lower 

cord blood concentrations of leptin in growth restricted fetuses compared with 

appropriately grown fetuses may suggest that adipose tissue is a major source of fetal 

leptin production (Pighetti et al 2003).

The nuclear receptor PPARy is also involved in energy, the regulation of metabolism and 

insulin action as well as inflammation. A role for PPARs, both in the non-pregnant via 

effects on inflammation and insulin resistance, and also in healthy and complicated 

pregnancies has been discussed in Chapter 3.

Both the placenta and maternal adipose tissue produce markers of inflammation and insulin 

resistance and data suggest that elevations in these markers seen with advancing gestation 

and in PET may not simply be secondary to increased placental production, but possibly 

due to up-regulation in adipocytes. Since BMI is a risk factor for PET, it is proposed that 

changes in IL-6, TN Fa, IL-10 and PPARy expression in PET could be secondary to 

increased fat mass or to a more ‘active’ adipose tissue in addition to, or instead of, 

increased placental production (figure 5-1). Another potential source of cytokines is 

lymphocytes, but this material was not available in the present study. As it is well 

established that increases in maternal plasma leptin levels in pregnancy are predominantly 

secondar y to placental production, placental leptin was examined as a positive control. It is 

expected that placental production of leptin will be increased in PET and/or IUGR 

compared to controls.
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Figure 5-1. Proposed production of inflammatory and insulin resistance mediators in 
uncomplicated pregnancy and in PET.

The aims of this chapter were;

To determine plasm a levels of maternal and fetal inflammatory markers and

markers o f insulin resistance (IL-6, IL-10, CRP, T N Fa, leptin) in 3"̂  ̂ trimester
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uncomplicated pregnancies and in pregnancies complicated by PET or IUGR in a 

case control study.

• To determine mRNA expression of IL-6, IL-10, TNFa, PPARy and leptin in human 

placenta (n=6 per group) and maternal subcutaneous adipose tissue (n=6 per group) 

mRNA, using quantitative real-time PCR (TaqMan) from uncomplicated, PET and 

IUGR pregnancies in a case control study.

* To determine protein expression of these inflammatory and insulin resistance 

markers using western analysis.

To determine any associations between tissue expression and corresponding plasma 

levels of each of the inflammatory markers or markers of insulin resistance, in 

order to highlight potential tissue sources of production. PPARy tissue values were 

compared with plasma HDL, TG and the inflammatory markers as surrogate 

markers of PPARy function.

5.2 Results

5.2.1 Plasma analyses

5.2.1.1 Maternal and fetal plasma Inflammatory markers In 

uncomplicated pregnancies

Baseline characteristics for eighty-one subjects from uncomplicated pregnancies are shown 

in table 4-1, as for the plasma lipids. Plasma inflammatory markers for these 81 subjects 

are demonstrated in table 5-1 below.

Maternal VC AM, TN Fa and IL-10 were not related to maternal age, BMI (<25 kg/m^ or 

>25 kg/m^), smoking status, parity or gestational age at sampling (range 32-42 weeks), 

using linear regression analysis or ANOVA. However, maternal ICAM was associated 

with smoking status (p=0.006, r^=8.6%) (figure 5-2) and gestational age at sampling 

(p=Q.03, r^=5.1%). Maternal log IL-6 was associated with gestational age at sampling 

(p<0.001, r^=16.8%) and maternal log CRP was associated with BMI (p=0.001, r^=12.3%) 

(figure 5-3). Maternal log leptin was also associated with maternal BMI (p<0.001, 

r^=18.6%) (figure 5-4) and paiity (p=0.003, r^=9.6%).
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Inflammatory markers n=81

Log VCAM 2.57 (0.08)
(log ng/mL) [371.54(1.20)]
ICAM (ng/mL) 187.03 (59.66)
Log TN Fa 0.32 (0.22)
(log pg/mL) [2.09 (1.66)]
Log IL-6 0.32 (0.22)
(log pg/mL) [2.09(1.66)]
IL-10 (pg/mL) 1.37 (0.90)
IL-6/IL-10 3.61 (10.05)
Log CRP 0.60 (0.40)
(log mg/L) [3.98 (2.51)]
Log Leptin (ng/mL) 1.43 (0.29)

[26.91 (1.95)]

Table 5-1. Maternal Inflammatory markers from uncomplicated pregnancies.
All values are mean and standard deviation (S.D.). Log transformed data was used for 
maternal VC AM, TNFa, IL-6, CRP and leptin, and is presented as mean (S.D.) and [geometric 
mean (S.D,)].
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Figure 5-2. Maternal ICAM levels by smoking status.

Data is presented as mean and 95% Cl. Statistical analysis was performed using linear 
regression analysis.
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Figure 5-3. Association of maternai body mass index (BMI) with maternai log CRP. 
Statistical analysis was performed using linear regression analysis.
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Figure 5-4. Association of maternal body mass index (BMI) with maternal log leptin. 

Statistical analysis was performed using linear regression analysis.
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Fetal inflammatory markers (table 5-2) were available from forty-one of these 

uncomplicated pregnancies, and were unaffected by maternal BMI, age, smoking status, 

gestational age at delivery or gender, except fetal leptin which was associated with 

maternal BMI (p=0.04, r^=8.9%). Maternal BMI and fetal birth weight centile were weakly

correlated in this cohort (r=0.27, p=0.02).

Fetal plasma n=41
Fetal VCAM (ng/mL) 834.1 (215.2)
Fetal log ICAM 2.13(0.13)
(log ng/mL) [134.09(1.35)1
Fetal T N Fa (pg/mL) 2.89 (1.57)
Fetal log IL - 6 0.75 (0.44)
(log pg/mL) [5.62 (2.75)1
Fetal IL-10 (pg/mL) 1.93 (1.96)
Fetal log IL-6/IL-10 0.59 (0.47 ) 

[3.89 (2.95)1
Fetal log CRP -1.35 (0.43)
(log mg/L) [0.04 (2.69)1
Fetal log Leptin (log ng/mL) 0.87 (0.46) 

[7.41 (2.88)1

Table 5-2. Fetal inflammatory marker concentrations from uncomplicated pregnancies.
All values are mean and standard deviation (S.D.). Log transformed data was used for fetal 
ICAM, IL-6, IL-6/IL-10, CRP and leptin, and is presented as mean (S.D.) and [geometric mean 
(S.D.)].

However, all fetal inflammatory markers apai't from IL-10 and leptin differed significantly 

(ANOVA, p<0.007) between types of delivery; emergency lower uterine Caesarean section 

(LUSCS), elective LUSCS, vaginal delivery or assisted delivery (figure 5-5). IL-10 

demonstrated a trend towards differing by mode of delivery (p=0.08).

Babies delivered by emergency LUSCS had the highest levels of ICAM, TNFa, IL-10, 

CRP and leptin. Fetal log ICAM was positively correlated with fetal weight (r=0.39, 

p=0.01), placental weight (r-0.50, p=0.001) (figure 5-6) and birth weight centile (r=0.36, 

p=0.03) in this group. Fetal log leptin was positively correlated with fetal weight (r=0.70, 

p<0.001), birth weight centile (r=0.59, p<0.001) and placental weight (1-O.6 O, p<0.001) 

(figure 5-7).
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Figure 5-5. Fetal inflammatory markers (n=41) by mode of delivery.
Raw data is shown. Statistical analysis was performed using a one-way ANOVA, using log- 
transformed data for fetal ICAM, IL-6, CRP and leptin. Data are presented as mean and SD. 
LUSCS-iower uterine Caesarean section. Assisted delivery- forceps or Ventouse.
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Figure 5-6. Association of fetal log ICAM with placental weight.
Statistical analysis was performed using Pearson’s coefficient of correlation.
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Figure 5-7. Association of fetal log leptin with placental weight and birth weight centile. 
Statistical analysis was performed using Pearson’s coefficient of correlation.
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Fetal TN Fa was also associated with placental weight (i-G.37, p=0.02). Maternal log 

VCAM was positively correlated with fetal weight (r-0.33, p=0.004), placental weight 

(1-0.35, p=0.003) (figure 5-8) and birth weight centile (r=0.22, p=0.06).
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Figure 5-8. Association of maternal log VCAM with placental weight. 
Statistical analysis was performed using Pearson’s coefficient of correlation.

Fetal TN Fa was significantly elevated in male offspring [2.12 (2.40) pg/mL] compared to 

female offspring [1.20 (0.32) pg/mL, p=0.01]. This observation was related to mode of 

delivery as there were no differences in T N Fa levels in female offspring based on mode of 

delivery (p=0.48, ANOVA). There were no female offspring delivered by emergency 

LUSCS (see figure 5-5). There was a significant difference in the male values based on 

mode of delivery with the significant difference being elevated T N Fa levels in those 

delivered by emergency LUSCS (17%) as demonstrated in figure 5-5.

5.2.1.2 Maternal and fetal characteristics in pregnancies 

complicated by PET and iUGR

For the analysis of plasma inflammatory markers in complicated pregnancy, cases were 

matched for age, parity and BMI with controls. Characteristics of the matched groups are 

shown in table 4-6 as this is the same dataset as that for the plasma lipid analyses. 

Consequently, maternal characteristics are the same as those described in Chapter 4, 

section 4.2.3.1.
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We have demonstrated that in our control population, maternal ICAM is affected by 

smoking status and gestational age at sampling, maternal IL-6 is affected by gestational 

age at sampling and that maternal leptin and CRP are affected by BMI. For this reason, 

data presented have been corrected for these confounders by adjustment in a General 

Linear Model. In our population, fetal VCAM, log ICAM, TNFa, log IL-6, log IL-6/IL-10 

and log CRP levels were all significantly affected by mode of delivery (figure 5-5) and so 

data adjusted for mode of delivery are reported.

5.2.1.3 Maternal inflammatory profile in PET, IUGR and 

uncomplicated control pregnancies

Plasma inflammatory markers in PET, IUGR and controls are demonstrated in table 5-3.

PET
Case 
n = 23

Control 
n = 23

P
IUGR 
Case 
n = 17

Control 
n =  17

P

Log VCAM 2.58 (0,07) 2,56 (0,07) 0,28 2,50 (0,08) 2,55 (0,07) 0,05
(log ng/mL) [380(1.17)] [363 (1,17)] [316 (1.20)] [355 (1,17)]
ICAM 152(73,8) 221 (169,0) 0,10 203 (92,9) 226 (125,0) 0,57
(ng/mL)
Log TNF (log pg/mL) 0,30 (0.20) 0.40 (0,25) 0,14 0,38(0,31) 0.44 (0,20) 0,51
TNF geom. mean
Log IL6 (log pg/mL) 0.63 (0.81) 0,43 (0,37) 0.28 0,42 (0,51) 0,38 (0,37) 0,80
IL6 geom mean
ILIO 3,99 (7,46) 1,56 (0,74) 0.15 1,59(1,57) 1.91 (1,42) 0,55
(pg/mL)
1L6/1LI0 ratio 2,58 (2,36) 4,06 (8.07) 0,42 2,08 (0,90) 1,74 (0,93) 0,29

Log CRP 0.74 (0,82) 0,54 (0,60) 0,34 0,74 (0,60) 0,47 (0,52) 0,16
(log mg/L) [5,50 (6,61)] [3,47 (3,98)] [5,50 (3,98)] [2,95 (3,31)]
Log leptin 1,62 (0,42) 1.48(0,44) 0,27 1.31 (0.64) 1,39(0,51) 0,67
(log ng/mL) [41,7(2,63)] [30,2 (2,75)] [20.4 (4,37)] [24,6 (3,24)]

Table 5-3. Maternal plasma inflammatory markers in pregnancies complicated by PET or 
IUGR.

All values are mean and standard deviation (S.D.). Log transformed data was used for 
maternal VCAM, TNFa, IL-6 and CRP, and Is presented as mean (S.D.) and [geometric mean 
(S.D.)]. Results are independent of maternal age, smoking status, BMI, parity and 
gestational age at sampling. Statistical analysis was performed using 2-sample Mest.

In PET subjects, plasma levels of maternal inflammatory markers were similar to those 

found in controls (Table 5-3). In the IUGR group, there was a lower maternal log VCAM 

of borderline significance [2.50 log ng/mL (0.08 log ng/mL), geometric (geom.) mean 

316ng/mL (1.20 ng/mL)] compaied to control subjects [2.55 log ng/mL (0.07 log ng/mL), 

geom. mean 355 ng/mL (1.17 ng/mL), p=0.05].
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5.2.1.4 Fetal inflammatory profile in PET, IUGR and 

uncomplicated pregnancies

The fetal cord blood concentrations of VCAM and IL-6 were significantly higher than in 

their mothers’ blood (p<0.001 both groups). There was a trend towards higher fetal TN Fa 

compared with maternal TN Fa (p=0.09). Maternal plasma concentrations of CRP and 

ICAM were significantly higher compared with the fetal concentrations (p<0.001 both 

groups). IL-10 levels were not different between maternal and fetal samples. For analysis, 

all fetal plasma inflammatory markers with the exception of IL-10 and leptin were adjusted 

for the effect of mode of delivery using a General Linear Model. In the venous cord serum 

of pregnancies complicated by PET (n = 14), fetal log CRP was significantly elevated [- 

LOO log mg/L (0.58 log mg/L), geom. mean 0.10 mg/L (3.80 mg/L)] compaied to controls 

[-1.63 log mg/L (0.64 log mg/L), geom. mean 0.02 mg/L (4.37 mg/L), p=0.01]. There were 

no other differences in fetal inflammatory markers between cases and controls (figure 5-9). 

In IUGR pregnancies (n = 11), a significantly elevated concentration of fetal TN Fa [3.01 

pg/mL (1.19 pg/mL)] was noted, compared to the control group (n = 11) [2.04 pg/mL 

(0.59 pg/mL), p = 0.03] (figure 5-10). There were no differences in fetal VCAM, log 

ICAM, log IL-6, IL-10, EL-6/IL-10 ratio, CRP or leptin between the groups.
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Figure 5-9. Fetal inflammatory markers in PET (n=14) and control (n=14) pregnancies.
Data shown Is adjusted for mode of delivery for all except IL-10 and leptin. Leptin values are 
adjusted for maternal BMI. All values are mean and 95% confidence intervals. Statistical 
analysis was performed using a 2-sample Mest. Log transformed data was used for 
statistical analysis of fetal ICAM, IL-6, CRP and leptin.



Vanessa Rodie, 2005 Chapters, 141

1 7 0 0 -

1200-

_!

g  7 0 0 -

2 0 0 4

IUGR IUGR

Fetal VCAM control

200-

15CM

£  100-  D)

5 0 -

P=0.86

IUGR

Fetal ICAM

IUGR
control

6 -

5 -

4

3 4

2

1

P=0.03

IUGR

Fetal TNF-alpha

IUGR
control

4 0 -

3 0 -

20-

10-

0 -

P=0.06

IUGR

Fetal IL-6

IUGR
control

3 4

2 -

0 4

P=0.88

IUGR

Fetal IL-10

IUGR
contrd

0 .1 5

0 .1 0 4

0 ,0 5

O.OOh

P=0.56

IUGR IUGR

Fetal C R P control

Fetal leptin
control

60
P=0.064 0 -
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Figure 5-10. Fetal Inflammatory markers in IUGR (n=11) and control (n=11) pregnancies.
Data shown is adjusted for mode of delivery for all except IL-10 and leptin. Leptin values are 
adjusted for maternal BMI. All values are mean and 95% confidence intervals. Statistical 
analysis was performed using a 2-sample Mest. Log transformed data was used for 
statistical analysis of fetal ICAM, IL-6, CRP and leptin.
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5.2.1.5 Associations between maternal and fetal plasma 

Inflammatory markers

There were no correlations between fetal and maternal VCAM, ICAM, TNFa, IL6 or ILIO 

in the combined control group. However, in this group, fetal leptin correlated with 

maternal plasma leptin levels (r=0.62, p=0.002) (figure 5-11). In controls, maternal log 

leptin was associated with placental weight (r“ 0.39, p=0.03) and fetal log leptin correlated 

with placental weight (r=0.59, p<0.001), birthweight centile (p=0.58, p=0.005) (figure 5- 

12), and fetal weight (r=0.61, p=0.003). This data confirms the results in the larger cohort 

(n=81) demonstrated in figure 5-7.
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Figure 5-11. Association of maternal log leptin with fetal log leptin in control subjects. 

Statistical analysis was performed using Pearson’s coefficient of correlation.
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Figure 5-12. Association of fetal log leptin with birth weight centile in controls. 
Statistical analysis was performed using Pearson’s coefficient of correlation.

In the PET group, there were no correlations between fetal and maternal VCAM, ICAM, 

TNFa, IL6, ILIO or leptin. Specifically, although fetal CRP levels were significantly 

increased in PET pregnancies, fetal CRP was not associated with maternal CRP or with 

fetal weight, birthweight centiles or placental weight in this group.

In the IUGR group, although maternal VCAM was reduced in IUGR pregnancies, maternal 

VCAM was not associated with fetal VCAM levels or with fetal weight, birthweight 

centiles or placental weight. There were no other correlations between maternal or fetal 

inflammatory markers in this group. However, in this group, maternal log IL6 correlated 

with fetal weight (r=-0.70, p=0.004) (Figure 5-13). This association was not seen in the 

PET (r=0.11, p=0.63) and control groups (r=0.04, p=0.78) (figure 5-13). There was no 

correlation between maternal log IL-6 and birth weight centiles (r=-0.11, p=0.70) in the 

IUGR group.
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Figure 5-13. Association of maternal log IL-6 and fetal weight in IUGR group, showing lack 
of association in the PET and control groups.

Statistical analysis was performed using Pearson's coefficient of correlation.

5.2.2 Tissue analyses

Baseline characteristics for 6 PET subjects, 6 IUGR subjects and 12 corresponding 

controls are shown in table 5-14. Cases and controls were matched for age, parity, BMI 

and smoking status.

Characteristic PET IUGR
Case (n=6) Control (n=6) P Case (n=6) Control (n=6) P

Age 29.0 30.0 1.00 28.0 29.5 0.87
(years) (27.0-33.5) (27.0-33.0) (26.8-33.0) (27.0-32.3)
BMI 25.5 26.0 0.75 27.5 27.5 1.00
(kg/m^) (23.0-30.3) (24.8-30.3) (24.0-35.5) (23.8-35.5)
Primigravidae 5 3 0.22 3 4 0.56
n(% ) (83%) (50%) (50%) (67%)
Smokers 1 2 0.51 3 2 0.56
n(% ) (17%) (33%) (50%) (33%)
Gestation at 34 39.5 0.05 35.5 40.0 0.02
sampling (weeks) (32-35) (37.3-41.0) (32.8-37.8) (39.0-41.0)
Gestation at delivery 34 39.5 0.05 35.5 40.0 0.02
(weeks) (32-35) (37.3-41.0) (32.8-37.8) (39.0-41.0)
Placental weight 334 695 0.05 285 741 0.005
(g) (299-413) (50.5-763) (248-417) (645-800)
Fetal weight 1.63 3.75 0.04 1.82 3.78 0.005
(kg) (1.25-2.12) (2.92-4.38) (1.47-2.00) (3.40-4.38)
Birth weight centile 3 60 0.03 3 77.5 0.007

(2.5-15) (38-86) (1-7.8) (40-86.3)
Fetal sex 17% male 50% male 0.22 50% male 67% male 0.56
(%) 83% female 50% female 50% female 33% female

Table 5-4. Subject characteristics in pregnancies complicated by PET or IUGR and controls.

All values are median and interquartile (IQ) range. Statistical analysis was performed using 
Mann-Whitney U test for continuous variables, and chi-square for categorical variables.
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In comparison to the larger cohort of women with complicated pregnancies and their 

controls (table 4-6), this subset is comparable and was considered to be a good 

representation of the larger group, with similar characteristics in each group.

5.2.2.1 Leptin mRNA expression in subcutaneous adipose tissue 

and placentae from pregnancies complicated by PET or 
IUGR

In PET subjects, relative to the 18s control gene, there were no differences in subcutaneous 

(SC) adipose tissue mRNA expression of leptin between cases [leptin: 18s ratio, median 

2805 (IQ range 2188-5792)] and controls [leptin: 18s ratio, median 2836 (IQ range 1388- 

3813), p=0.47]. However, placental mRNA expression of leptin was significantly elevated 

[median 18315 (IQ range 3385-32060)] compared to control subjects [median 1369 (IQ 

range 430-4211), p=0.03] (figure 5-14).

Similarly, in IUGR, there were no differences detected in SC adipose tissue expression of 

leptin between IUGR cases [median 2918 (IQ range 1654-6160)] and controls [median 

3034 (IQ range 1935-3813), p=1.00]. However, placental mRNA expression was 

significantly higher [median 9663 (IQ range 4080-16979)] than in controls [median 857 

(IQ range 273-2034), p=0.005] (figure 5-14).
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Figure 5-14. Leptin:18s ratio in adipose and placental tissue of PET, IUGR and control 
subjects (n=6 per group).

Statistical analysis was performed using Mann-Whitney U-test, and data is presented as
median and IQ range. All values are xIO .
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In control subjects, leptin expression related to 18s, appears to be within a similar range in 

both placenta and adipose tissue (figure 5-14).

S.2.2.2 PPARy mRNA expression in SC adipose tissue and 

piacentae from pregnancies compiicated by PET or IUGR

Subcutaneous adipose tissue mRNA expression of PPARy was not different between PET 

cases [PPARy: 18s ratio, median 574 (IQ range 368-918)] and controls [median 505 (IQ 

range 433-824), p=0.69], nor between IUGR cases [median 401 (IQ range 220-512)] and 

controls [median 490 (IQ range 291-824), p=0.34] (figure 5-15).

In PET, relative to the 18s control gene, placental mRNA expression of PPARy was not 

different between cases [PPARy: 18s ratio, median 71 (IQ range 32-322)] and controls 

[median 54 (IQ range 27-82), p=0.34]. In IUGR, there was a trend towards elevated 

placental PPARy expression in cases [median 152 (IQ range 55-594)] compared with 

controls [median 33 (IQ range 21-109), p=0.07] (figure 5-15).

Related to the 18s gene, PPARy expression appears to be greater in adipose tissue 

compared to placental tissue (figure 5-15).
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Figure 5-15. PPARy: 18s ratio in adipose and placental tissue of PET, IUGR and control 
subjects (n=6 per group).
Statistical analysis was performed using Mann-Whitney U-test, and data is presented as
median and IQ range. All values are xIO .
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5.2 2.3 TNFa mRNA expression in SC adipose tissue and

placentae from pregnancies complicated by PET or IUGR

There were no differences in SC adipose tissue mRNA expression of TN Fa between PET 

cases [TNFa: 18s ratio, median 24 (IQ range 16-36)] and controls [median 47 (IQ range 

36-55), p=0.09]. There were also no differences in placental mRNA expression of TN Fa 

between PET subjects [median 50 (IQ range 24-97)] and controls [median 122 (IQ range 

64-162), p=0.17] (figure 5-16).

In IUGR, there were no differences detected in either SC adipose tissue [IUGR median 37 

(IQ range 8-81) vs control median 49 (IQ range 42-77), p=0,69] or placental [IUGR 

median 87 (IQ range 51-166) vs control median 122 (IQ range 64-151), p=0.69] mRNA 

expression of TN Fa between cases and controls (figure 5-16).

Related to 18s, TN Fa tissue expression appears greater in the placenta than in the adipose 

tissue in all groups (figure 5-16).
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Figure 5-16. TNFa:18s ratio In adipose and placental tissue of PET, IUGR and control 
subjects (n=6 per group).
Statistical analysis was performed using Mann-Whitney U-test, and data is presented as
median and IQ range. All values are x10 .



Vanessa Rodie, 2005 Chapter 5, 148

S.2.2.4 IL-6 mRNA expression in SC adipose tissue and placentae

from pregnancies complicated by PET or IUGR

In PET, there were no significant differences between SC adipose tissue mRNA expression 

of IL-6 between PET subjects [IL-6:18s ratio, median 9 (IQ range 3-17)] and controls 

[median 16 (IQ range 7-35), p=0.23]. Similarly, placental mRNA expression of IL-6 was 

not significantly different between PET cases [median 14 (IQ range 4-24)] and control 

subjects [median 11 (IQ range 5-17), p=0.87] (figure 5-17).

In IUGR, there were also no significant differences detected in adipose tissue [IUGR 

median 4 (IQ range 2-24) vs control median 15 (IQ range 7-30), p=0.13] or placental 

[IUGR median 18 (IQ range 5-29) vs control median 8 (IQ range 3-15), p=0.30] mRNA 

expression between cases and controls (figure 5-17).

Related to 18s, both adipose and placental tissue expression of IL-6 appear similar in all 

groups (figure 5-17).
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Figure 5-17. IL-6:18s ratio in adipose and placental tissue of PET, IUGR and control subjects 
(n=6 per group).
Statistical analysis was performed using Mann-Whitney U-test, and data is presented as
median and IQ range. All values are xIO .
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S.2.2.5 IL-10 mRNA expression In SC adipose tissue and

piacentae from pregnancies complicated by PET or IUGR

No differences were detected between SC adipose tissue expression in PET [IL-10:18s 

ratio, median 55 (IQ range 33-78)] compared with controls [median 72 (IQ range 58-85), 

p=0.23], or between the placental mRNA expression of IL-10 in PET [median 12 (IQ 

range 9-16)] compared with controls [median 22 (IQ range 10-32), p=0.23] (figure 5-18).

In IUGR, there were no significant differences in SC adipose tissue mRNA expression 

between IUGR subjects [median 88 (IQ range 19-168)] and controls [median 71 (IQ range 

58-116), p=0.94], or in placental IL-10 mRNA expression between cases [median 16 (IQ 

range 14-46)] and controls [median 18 (IQ range 10-32), p=0.81] (figure 5-18).

Tissue expression of IL-10 appears to be higher in adipose tissue than in placental tissue, in 

all groups (figure 5-18).
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Figure 5-18. IL-10:18s ratio In adipose and placental tissue of PET, IUGR and control 
subjects (n=6 per group).

Statistical analysis was performed using Mann-Whitney U-test, and data is presented as 
median and IQ range. All values are xIO .
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S.2.2.6 Associations between adipose, placental and plasma
levels of inflammatory markers in PET, lUGR and controls.

In the combined control groups (n=7 different samples), adipose tissue expression of IL-10 

was associated with maternal plasma IL-10 levels (r=0.96, p<0.001) (figure 5-15). This 

was not demonstrated in the PET or lUGR groups (figure 5-19).
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Figure 5-19. Association of adipose IL-10 and maternal plasma IL-10 levels in controls. 
Statistical analysis was performed using Pearson’s coefficient of correlation.

There were no other correlations between adipose expression of the inflammatory markers 

and their corresponding maternal plasm a levels in the controls. In the combined control 

group, there were no correlations between adipose expression of leptin and T N Fa, or 

between adipose or placental expression of T N F a  or leptin and plasma levels of TN Fa.

In the combined control group, placental PPARy expression correlated positively with fetal 

HDL levels (r=0.92, p=0.004) (figure 5-20). There was a trend towards a negative 

correlation between placental PPARy expression and maternal HDL levels (r=-0.70, 

p=0.08) (figure 5-20). Placental PPARy expression also correlated with fetal plasma IL-10 

(r=0.82, p=0.002).
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Figure 5-20. Association of placental PPARy expression with maternal and fetal plasma HDL 
levels.
Statistical analysis was performed using Pearson’s coefficient of correlation.

Placental leptin production was associated with fetal plasma HDL levels (r=0.80, p=0.03) 

(figure 5-21). There were no other correlations between placenta or adipose expression of 

inflammatory markers and corresponding fetal plasma levels.
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Figure 5-21. Association of fetal plasma HDL levels with placental leptin expression in 
controls.
Statistical analysis was performed using Pearson’s coefficient of correlation.
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In the PET group, there were no correlations between adipose tissue expression of the 

inflammatory markers and their corresponding plasma levels. Similarly, none of the 

placental inflammatory markers were associated with their corresponding plasma levels. 

Specifically, in PET, placental leptin was not associated with plasma levels despite the 

increases seen in placental leptin production. In the PET group, adipose IL-6 mRNA 

correlated with adipose IL-10 mRNA (r=G.96, p=0.002) (figure 5-22).
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Figure 5-22. Association between IL-6 and IL-10 adipose tissue expressions in PET. 

Statistical analysis was performed using Pearson’s coefficient of correlation.

In PET, there were no correlations between adipose or placental tissue expression of 

inflammatory markers or leptin, and corresponding fetal plasma levels. In lUGR, there 

were no correlations between adipose or placental tissue expression of the inflammatory 

markers or leptin and their corresponding plasma levels.
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5.2.3 Protein expression of markers of inflammation and insulin 

resistance in placentae from pregnancies complicated by 

PEToriUGR

W ithin the timescale lim itations of my thesis, I was unable to confirm adipose and placenta 

mRNA results with protein quantification of the inflammatory and insulin resistance 

markers by western analysis in this study. Using the methods described in Chapter 2 

(2.5.2), which was a successful working technique in the PPAR study (Chapter 3), all 

recombinant protein positive controls and molecular weight markers were demonstrated in 

the films, but none o f the samples were visible (figure 5-23). Further work using tissue 

homogenates and ELISA detection is underway.
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Figure 5-23. IL-6 protein expression from placenta and adipose tissue - an example of 
unsuccessful western analyses.
Note +ve control, but no band for any of the samples. MM = molecular weight markers, lane 
1 -  positive control (lOOng recombinant IL-6), lane 2 -  placental tissue 50|xg, lane 3 -  
placental tissue lOOgg, lane 4 -  adipose tissue 50pg, lane 5 -  adipose tissue lOOpg.
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PPARy western results were obtained using our previous method (chapter 3). There were 

no correlations between the PPARy western results and the PPARy mRNA results, using 

the combined groups (n=24, r=-0.15, p=0.58) (figure 5-24).
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Figure 5-24. PPARy mRNA versus protein expression in combined groups (PET, lUGR and 
controls).
There was no overall association demonstrated. Statistical analysis was performed using 
Pearson’s coefficient of correlation.

5.3 Discussion

This chapter confirms the established relationship between maternal BMI and 

inflammation, demonstrated by the association of maternal CRP levels with BMI (figure 5- 

3). This is the first report to describe fetal cord plasma inflammatory markers in 

pregnancies complicated by lUGR. An increase in fetal plasma TN Fa levels in lUGR 

pregnancies and an increase in fetal CRP levels in PET compared to control subjects was 

observed, despite minimal alterations in maternal inflammatory markers in these 

conditions. The reduction in maternal VC AM in lUGR is small and of borderline 

significance and may therefore not be of any physiological relevance. However, it is 

interesting to note that in the uncomplicated pregnancy group, increasing levels of 

maternal VC AM were associated with increasing fetal weight, placental weight and birth 

weight centiles, suggesting that there may be a connection between maternal plasma 

VC AM levels and offspring size. With the exception of IL-10 and leptin, all fetal 

inflammatory markers differed based on mode of delivery. However, the elevated levels of 

fetal CRP in PET and TN Fa in lUGR were independent of this effect. In this study, the
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previously observed maternal inflammatory changes were not reproduced. This is likely 

due to the careful matching of the groups for BMI, the similar smoking status in both cases 

and controls and the adjustment for confounders such as gestational age at sampling in the 

present study.

Fetal CRP levels were not correlated with maternal values suggesting that this is a 

predominantly fetal response to PET. In fetal cord blood, the increase in the acute phase 

reactant CRP in PET pregnancies may be secondary to a compensatory increased 

production by the fetal liver in response to a ‘stressful’ in-utero environment. This increase 

may also be attributed to the placental pathology seen in this condition, as the uterine 

vasculature does not undergo adequate physiological remodelling in PET and reduced 

placental perfusion may result in a generalised production of placental and fetal cytokines. 

Alternatively, the elevated fetal CRP in PET may be a response to short-term stress in the 

3'^ trimester due to the maternal metabolic deregulation seen in PET, explaining why this 

response is confined to offspring from PET pregnancies.

The increased fetal plasma TN Fa seen in lUGR pregnancies may also be attributed to the 

placental dysfunction, either resulting from increased placental production or from 

increased fetal systemic production in response to the abnormal placentation. A lack of 

association between maternal and fetal plasma TN Fa levels supports this. Increased levels 

of fetal T N Fa in offspring from lUGR pregnancies may be a result of longer-term in-utero 

stress leading to increased production of this cytokine. It is possible that the increased 

levels of fetal T N Fa in lUGR is a chance observation, although the concomitant borderline 

increase in fetal plasma IL-6 levels would aigue against this. One might speculate that the 

inflammatory responses are different in PET and lUGR because the degree of stress 

experienced by the fetus is different. Perhaps lUGR fetuses are exposed to a chronic long

term stress throughout pregnancy whereas PET fetuses respond to a more acute stress in 

the 3‘̂* trimester as the maternal clinical syndrome develops. In this study, there were no 

differences in either placental or adipose production of TN Fa between lUGR and controls. 

Trophoblast cells are known to produce TN Fa (Hunt et al 1996) and although placental 

TN Fa mRNA production was not significantly increased in PET or lUGR, its expression 

was higher in the placenta than the adipose tissue in all groups. However, these data 

suggest that the increased fetal plasma TN Fa in lUGR pregnancies may originate from 

another source. It is recognised that there is neutrophil activation in the peripheral 

circulation in lUGR and PET (Johnston et at 1991, Sabatier et al 2000). It may be possible 

that activated macrophages within the placental bed or the fetal circulation, which are
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known to produce T N Fa (Wang and Walsh 1996), are responsible for the elevation of fetal 

T N Fa demonstrated in response to the in-utero environment in lUGR.

A negative relationship was demonstrated between maternal plasma IL-6 levels and fetal 

weight in the lUGR group, which was not seen in PET or uncomplicated pregnancies. The 

association between increasing levels of maternal plasma IL-6 and decreasing fetal weight 

in lUGR pregnancies may be interpreted as an effect of increasing maternal insulin 

resistance on fetal weight as has been suggested previously (Hattersley and Tooke 1999) 

rather than an inflammatory response. In common with the discrepant results within the 

literature (Al-Othman et al 2001, Benyo et al 1997, Benyo et al 2001, Kauma et al 1995, 

Yin et al 1998), we found no difference in tissue IL-6 expression in lUGR and PET and no 

clear tissue source of IL-6 was demonstrable. This indicates that both the adipose and 

placenta may produce this cytokine in a complex interrelated manner in pregnancy and 

peripheral activated lymphocytes may also contribute.

Adipose tissue appeared to produce more IL-10 per cell in all groups studied based on the 

IL10:18s ratio, compared to placental tissue in this study (see figure 5-18) suggesting that 

adipose is indeed the predominant tissue source of this anti-inflammatory cytokine in 

pregnancy, as hypothesised. In the control group, adipose IL-10 expression correlated with 

plasma IL-10 levels, which strengthens the suggestion that adipose tissue is the primary 

source of plasma IL-10 in uncomplicated pregnancies, although this association was not 

evident in pregnancies complicated by PET or lUGR. This may indicate that although 

adipose tissue produces IL-10 in all pregnancies, there is no relationship with the plasma 

levels in the complicated pregnancies because the complex maternal metabolic interactions 

result in overall lower plasma levels of a cytokine involved in reducing inflammation, 

specifically IL-10, as suggested by figure 5-19. We observed no differences in placental 

IL-10 mRNA expression between cases and controls. In PET pregnancies, adipose IL-6 

and IL-10 expressions were directly related (figure 5-22). This may reflect the more 

‘active’ state of the adipose tissue in PET leading to a general increase in production of 

adipocyte-derived cytokines, whether pro- or anti-inflammatory. Previous reports have 

suggested a reduction in placental IL-10 expression in PET or lUGR pregnancies (Hahn- 

Zoric et al 2002, Hennessy et al 1999), or conversely an increase in placental IL-10 

expression in PET (Rinehart et al 1999).

This study confirms the relationship between maternal BMI and plasma leptin levels 

(Ramsay et al 2002). This relationship, described by Ramsay and colleagues (Ramsay et al

2002) (1-0.73, p<0.005), indicates that although a large percentage of maternal plasma
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leptin is produced by the adipose tissue, there could potentially be other sources. Fetal 

leptin was reduced in PET and lUGR, although this failed to reach statistical significance 

(p=0.05 and p=0.06 respectively). However, this was observed despite increased placental 

mRNA expression of leptin in these conditions. This suggests that placenta is not the main 

source of fetal leptin, and is supported by previous data suggesting that growth restricted 

fetuses have lower cord blood concentrations of leptin than appropriately grown fetuses for 

gestation (Jakiraiuk et al 2003). Since PET and lUGR fetuses are small in this study and 

are thus likely to have small adipose tissue depots, these data would be consistent with 

fetal adipose tissue being the main source of fetal leptin, as has been previously proposed 

(Pighetti et al 2003) (see figure 5-25 below). In the control group, fetal leptin levels are 

correlated with birth weight centile and fetal weight, which would be consistent with this 

hypothesis. An association between maternal and fetal leptin levels was observed in the 

present study, in uncomplicated pregnancy, and this would be consistent with a ‘fatter’ 

mother resulting in a correspondingly fatter baby and thus adipose mass would be 

correlated. This is supported by the weak correlation between maternal BMI and birth 

weight centile in the cohort under study (r=0.27, p=0.02). These anthropometric measures 

are inadequate measures of adipose mass and further studies on maternal determinants 

(including fat mass) of neonatal body composition are required. It should be noted that 

there are in vitro data indicating that over 90% of leptin synthesised in the placenta may be 

delivered to the maternal circulation (Linnemann et al 2000).

The present data has confirmed previous literature demonstrating that there is an increase 

in placental leptin mRNA expression in PET (Laivuori et al 2000) and lUGR (Lepercq et 

al 2003) pregnancies compared with controls. The observed increase in placental leptin 

production in PET and lUGR may be a response intended to provide the fetus with 

adequate ‘fuel’ supplies, despite the abnormal placentation seen in these situations. A 

relationship between both placental leptin mRNA expression and placental PPARy mRNA 

expression with fetal plasma HDL levels was also observed within the group of 

uncomplicated controls. This is interesting because it suggests a link between leptin and 

PPARy in the placenta and fetal lipid stores. It has been observed in the literature that 

leptin induces the HDL receptor SR-BI in mouse liver (Lundasen et al 2003) and also 

induces the system A amino acid transporter in human placental villous fragments (Jansson 

et al 2003). It could be speculated that placental leptin up-regulation in PET and lUGR is a 

compensatory mechanism in order to optimise nutrient transfer in these conditions of 

placental insufficiency (figure 5-25).
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Figure 5-25. Proposed mechanisms for maternal and fetal leptin production and relation to
plasma HDL, in PET and uncomplicated pregnancies.
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The discovery of leptin receptors in the placenta (Bodner et al 1999) suggests that leptin 

could function through autocrine or paracrine mechanisms. PPARy has important roles in 

lipid metabolism but has not yet been directly linked to up-regulation of transport 

mechanisms in the placenta. The negative correlation between placental PPARy mRNA 

expression and maternal plasma HDL in the control group might suggest the involvement 

of this nuclear receptor in placental lipid transport.

This study has a number of limitations. A power calculation was performed in this study, 

which demonstrated that there was at least 80% power to detect a 50% difference in 

expression with a standaid deviation (SD) of 30%, with a sample size of 6 per group. In the 

analyses, SDs were higher than 30% indicating that this study was underpowered. 

Extending the placental and adipose tissue studies may produce more robust data with 

smaller standard deviations. Maternal SC adipose tissue was obtained at time of Caesarean 

section on the assumption that this tissue would provide inflammatory data reflecting the 

long-term maternal state. However, it may be more prudent to collect visceral adipose 

tissue as this may provide data on the longer-term inflammatory state of the mother and 

further studies should be performed to comp ai e present results with those of the visceral 

fat. There were no results available to report regarding the protein expression of the 

inflammatory markers and insulin resistance mediators in this study. It is possible that a 

different method of protein extraction or concentration may achieve improved results. The 

Trizol method was used in this study, with acetone precipitation for the concentration of 

protein, and was a success for the larger PPAR molecules. The cytokines, however, are 

smaller molecules and thus results may be obtained by using tissue homogenate in buffer 

with a protease inhibitor ‘cocktail’ to extract the cytokine proteins. There was no 

association between mRNA and protein expression of PPARy in the combined groups in 

this study. This may be due to small numbers studied and results may be more robust if 

separate groups were studied in greater numbers. However, this result demonstrates the 

importance of performing western analyses on our tissue. In this study, each placenta was 

sampled in a random fashion, as in chapter 2, section 2.2.1. It was considered that multiple 

biopsies taken in a systematic fashion and then randomised would be warranted in view of 

the highly variable cytokine expression demonstrated within a single placenta (Benyo et al

2001).

From this data, which concentrates on very complex interrelated metabolic interactions, it 

is speculated that the key change observed in this study is an apparent elevation of 

placental leptin in PET and lUGR. It is also proposed that up-regulation of placental leptin
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might lead to increased placental nutrient transport. The data presented suggest that fetal 

plasma levels of leptin aie derived from adipose tissue and that further studies of maternal 

and offspring fat mass are required. Future studies on the placental and SC adipose 

expression of leptin related to plasma leptin and other peripheral blood markers of 

inflammation and insulin resistance may help to understand the role of pregnancy in 

aetiology of cardiovascular disease. It may also be prudent to examine visceral adipose 

tissue expression of such markers as these may provide data on more long-term changes in 

metabolism.



161

6 Erythrocyte membrane fatty acid status in 
heaithy, PET and lUGR pregnancies

6.1 Introduction

Essential fatty acids and their longer chain more unsaturated derivatives play a major role 

in maternal nutrition and fetal development during pregnancy. The n6 fatty acids [e.g 

arachidonic acid (AA, 20:4n6)] have strong pro-inflammatory effects and the n3 fatty acids 

[e.g eicosapentaenoic acid (EPA, 20:5n3)] are less active or even exhibit anti-inflammatory 

effects. The essential fatty acids a-linolenic acid (18:3n3) and linoleic acid (18:2n6), are 

unsaturated long carbon chain molecules that are obtained mainly from plants as mammals 

are unable to introduce double bonds into the n3 or n6 positions (Dyerberg 1986). These 

essential fatty acids (EFAs) aie metabolised by chain elongation and desaturation to long 

chain polyunsaturated fatty acids (PUFAs) containing 20 or more carbon atoms in their n6 

(e.g AA) and n3 families [e.g., EPA and docosahexaenoic acid (DHA, 22:6n3)] (figure 6- 

1). The endogenous synthesis of DHA from a-linolenic acid is a slow process (Li et al 

1999a) although it has been suggested that women may posses a greater capacity for a - 

linolenic acid conversion than men (Burdge and Wootton 2002). Desaturases are key 

enzymes in the regulation of unsaturated fatty acid biosynthesis. The A6-desaturase 

enzyme is involved in the bioconversion of 18:2 into 18:3 and 24:4 into 24:5 in the n6 

series, and of 18:3 into 18:4 and 24:5 into 24:6 in the n3 series (Voss et al 1991). The A5- 

desaturase enzyme is involved in the last step of AA biosynthesis from dihomo-y-linolenic 

acid (20:3n6) (Rodriguez et al 1998) (figure 6-1). Both A5 and A6-desaturases are highly 

dependent on nutritional and hormonal factors (Brenner 1989, p.45-79).
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Figure 6-1. Major polyunsaturated fatty acids in the n-8 and n-3 classes.
Chemical formulae are shown for each of the fatty acids. Derived from Borkman et al 
(Borkman et al 1993).

Little consistent information is available with respect to the course o f maternal fatty acid 

status during uncomplicated pregnancy. Few comparable studies have been conducted in 

terms o f study design and populations observed and often only a few select fatty acids 

(FAs) are reported. Maternal nutritional requirements are increased during pregnancy and 

n3 polyunsaturated fatty acids (PUFAs) are required for energy and for accretion by the 

fetus (Makrides and Gibson 2000). Studies have demonstrated lower relative amounts o f 

long chain polyunsaturated fatty acids (LCPUFAs) (A1 et al 1995, Holman et al 1991, 

Rump et al 2001) throughout gestation. Montgomery and colleagues (Montgomery et al

2003) have shown that maternal plasma and erythrocyte DHA status is maximal in mid

trimester and declines to term. A1 and colleagues (A1 et al 1995) described an increase in 

total amounts o f FAs during pregnancy with relative reductions in A A and DHA, despite a
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temporai'y increase until 18 weeks’ gestation in the latter. This group also observed that 

maternal DHA, an important component of the developing fetal central nervous system, 

decreases not only with gestation but also with parity and is significantly lower in 

multigravid women than primigravidae at 16, 22 and 32 weeks of pregnancy and after 

delivery (A1 et al 1997). However, this reduction with parity is no longer apparent at 1- 

year post-partum (van den Ham et al 2001), indicating normalisation within this time in the 

maternal plasma and erythrocyte membranes. The reduction of certain fatty acids during 

pregnancy may highlight a role for supplementation of fatty acids during pregnancy for 

optimal fetal development.

The maternal LCPUFA status during pregnancy is critical in determining essential fatty 

acid status in the newborn (Connor et al 1996, S attar et al 1998a, van Houwelingen et al 

1995). Comparison of the LCPUFA concentration in the maternal and fetal plasma indicate 

a much higher concentration of AA and DHA in all the major lipid classes in the fetal 

compared to the maternal blood (Berghaus et al 2000, Haggarty 2002, Hoving et al 1994, 

Otto et al 1997). Ruyle and colleagues also showed lower levels of 18:2 and 18:3n3 FAs 

in fetal plasma and erythrocyte membranes compared to maternal (Ruyle et al 1990). The 

essential fatty acids a-linoleic acid (18:2n6) and linolenic acid (18:3n3) are important for 

optimal growth (Innis 1991, Rump et al 2001). These fatty acids are converted to 

LCPUFAs such as DHA and AA. All of the n-3 and n-6 fatty acids required by the fetus 

for development have to cross the placenta (Haggaity 2002). It has been demonstrated in a 

Dutch birth cohort (Rump et al 2002) that umbilical cord blood phospholipid y-linolenic 

acid and dihomo-y-linolenic acid concentrations are negatively related to insulin 

concentrations, body fatness, pro-insulin and leptin at 7 yeais of age. High insulin 

concentrations were found in children with a low birth weight and a low y-linolenic acid 

concentration at birth.

All fatty acids can be transported across the lipid bilayer of the syncytiotrophoblast by 

simple diffusion and partition (Haggarty 2002). The fatty acid transport protein FAT/CD36 

and the fatty acid binding protein FATP, which facilitate the placental transfer of the fatty 

acids, have been identified on both the microvillous and basal membranes of the placenta 

(Campbell et al 1998a). A placenta-specific protein p-FABPpm has also been 

demonstrated on the microvillous membrane only (Campbell et al 1998a). This placenta- 

specific protein has higher affinities and binding capacities for AA and DHA compared 

with linoleic acid and oleic acids, unlike FATP and FAT/CD36 (Campbell e ta l 1998b). 

There are also cytoplasmic binding proteins, H-FABP and L-FABP, within the

___



Vanessa Rodie, 2005 Chapter 6, 164

syncytiotrophoblast (Campbell et al 1998a). Because there are fatty acid binding proteins 

on both the basal and microvillous membranes of the placenta, transport is bi-directional 

between the maternal and fetal circulations (Haggaity 2002). The increase in surface area 

and blood flow along with the appearance of the terminal villi with advancing gestation are 

associated with an increase in fetal fat deposition (Haggarty 2002). There are multiple 

mechanisms by which the placenta could generate the observed LCPUFA gradient between 

the maternal and fetal circulation. These include selectivity by placental lipases for the 

release of LCPUFAs from TG, placental synthesis of AA and DHA resulting in higher 

concentrations of these LCPUFAs in the fetal circulation and metabolism of fatty acids 

within the fetus itself. These fatty acids may not be available to the placenta for re-uptake 

in esterified form if lipase activity and lipoprotein receptors are only found on the 

microvillous membrane (Haggaity 2002). The placenta may regulate its own fatty acid 

substrate supply via the action of placental leptin on maternal adipose tissue (Haggarty

2002).

Studies are conflicting with regard to the maternal and neonatal FA status in pregnancies 

complicated by PET or lUGR. Studies of PET and lUGR pregnancies often omit the effect 

of important confounders such as BMI. Leanness is associated with increased oxidative 

capacity and unsaturation of membranes in skeletal muscle. So by not controlling for BMI, 

these studies may have produced conflicting results regarding FA status. It has been 

demonstrated that maternal serum phospholipids have higher proportions of AA in PET 

subjects compared to controls (Ogburn et al 1984). It has been suggested that high intakes 

of PUFAs in the first half of pregnancy may independently increase the risk for PET 

(Clausen et al 2001). One prospective study has shown that in pregnancy-induced 

hypertension (PIH), altered essential fatty acid status in the form of higher levels of DHA 

in umbilical plasma phospholipid was a late phenomenon (beyond 32 weeks’ gestation and 

post-paitum) and concluded that these changes were not likely to be involved in the 

pathogenesis of the disease (A1 et al 1995). Another group described an increase in 

unsaturation of maternal serum phospholipids and concluded that this might aid placental 

transfer of LCPUFAs (van der Schouw e ta l  1991). Both groups described a relatively 

unaltered neonatal essential fatty acid status in offspring born to mothers with PIH. Some 

studies have reported reduced levels of LCPUFAs in the umbilical vessels in PET 

compared to normotensive women, and have attributed this to the abnormal placentation 

and insufficiency seen in this condition (Velzing-Aarts et al 1999). Lower concentrations 

of essential fatty acids have been described in the erythrocyte membranes, plasma 

phospholipids and walls of the umbilical artery of low birth weight neonates (Crawford et 

al 1989). In addition, fetal growth restriction has been associated with an increase in
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ai'achidonic acid in placenta and in umbilical artery, and this was significantly higher in 

asymmetric than symmetric fetal growth restriction (Matorras et al 2001). However, once 

again, data is conflicting. Some studies have reported a reduction in DHA concentration in 

the umbilical vein of growth restricted fetuses (Felton et al 1994), whereas others have 

described higher concentrations of DHA in the basal membrane of the placenta in these 

growth restricted fetuses (Powell et al 1999), and some have demonstrated no alteration in 

AA or DHA in cord in small for gestational age infants (Percy e ta l 1991). Interestingly, 

recent data has shown a negative correlation between birth weight and eicosapentaenoic 

acid (EPA) concentrations (Grandjean et al 2001). Experimental evidence also suggests 

that a high intake of n-3 PUFA may cause a reduction in fetal birth weight in rats (Clarke et 

al 1988, Olsen ef of 1990).

Because maternal fatty acid status is considered to decline during pregnancy, there is much 

interest in dietai'y intervention. Dietary n3 fatty acid supplementation is known to reduce 

the incidence and severity of inflammatory disorders, cardiovascular diseases and some 

cancers (Rose 1997, Suchner and Senftleben 1994) by decreasing the production of 

prostaglandin E 2 (PGE2) (Hamilton et al 1999). Numerous studies have observed the 

effects of fatty acid supplementation in pregnancy on the maternal and fetal erythrocyte 

membrane fatty acid (EMFA) composition. For example, fish oil supplementation with n-3 

fatty acids (56% DHA and 28% EPA) from 20 weeks of pregnancy is an effective means 

of enhancing n-3 fatty acid status of both mothers and neonates (Dunstan et al 2004), with 

a concomitant reduction in AA status. Recent work (Montgomery et al 2003, Sanjurjo et al

2004) has shown that DHA supplementation (200 mg/d) in the last trimester of pregnancy 

results in an increase in maternal plasma levels of DHA, although Sanjurjo and colleagues 

could not demonstrate a corresponding increase in the fetus (Sanjuijo et al 2004). One 

group has demonstrated that supplementation with DHA (33 or 133 mg from eggs) from 

24-28 weeks’ gestation until delivery, in a mostly black population, actually increases 

duration of gestation when DHA intake was increased during the last trimester. 

Interestingly, de Groot et al have demonstrated that supplementation with a-linolenic acid 

from 14 weeks’ gestation until delivery neither prevented the decreases in maternal plasma 

DHA and AA concentrations nor promoted neonatal plasma DHA and AA status (de Groot 

et al 2004). It is possible that any additional DHA produced from the supplemented a - 

linolenic acid is transferred directly to the fetus and is thus not evident in maternal plasma. 

There have been indications in the literature that high intakes of n3 LCPUFAs during 

pregnancy may increase birth weight and duration of gestation (Holland et al 2001), in 

contrast to experimental evidence suggesting a reduction in intrauterine growth with a high
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intake of n-3 PUFA (Clarke et al 1988, Olsen et al 1990). With respect to complicated 

pregnancy, results of randomised clinical studies suggest that ii3 LCPUFA 

supplementation during pregnancy does not affect the indices of PIH and PET (D'Almeida 

et al 1992, Onwude et al 1995). As for the effects of supplementation on fetal FA status, 

some studies have found a beneficial effect of n3 PUFA supplementation on fetal FA status 

(Agostoni et al 1995, Birch et al 1998, Carlson et al 1996, Makrides et al 1995), whereas 

others have reported no effect (Auestad et al 1997, Innis et al 1997, Jensen et al 1997, 

Nielsen and Jensen 1997).

Insulin resistance is a metabolic disturbance that is central to the development of a variety 

of prevalent diseases including non-insulin dependent diabetes mellitus (NIDDM), various 

dyslipidaemias, adult obesity, hypertension, heart disease (Bjorntorp 1991, Reaven 1988, 

1993) and the metabolic complications of pregnancy, in particular pre-eclampsia (PET). 

The state of insulin resistance seen in uncomplicated pregnancy and also in PET was 

discussed in the introduction (Chapter 1, section 1.3.2).

The euglycaemic clamp is considered by many to be the gold standard for determining 

insulin sensitivity (Saccomani et al 1996). However, this test is labour intensive and 

difficult to perform in pregnant subjects and this has lead to the use of simpler methods of 

measuring insulin sensitivity. There are no validated measures of insulin resistance for use 

in pregnancy. Previous studies have employed fasting glucose and insulin levels or levels 

after glucose administration as indicators of insulin sensitivity (Solomon and Seely 2001) 

and have projected results based on non-pregnant data. Insulin resistance has been 

estimated by the calculation of the homeostasis model assessment (HOMA) index of 

insulin resistance despite this test being validated only in the non-pregnant state (Matthews 

et al 1985). It is often difficult to obtain fasting samples in pregnancy studies, especially in 

PET or lUGR, where patients are often admitted on an emergency basis for immediate 

delivery. For these reasons, this and other studies often aim to observe other potential 

measures of insulin sensitivity in the pregnant state.

Insulin is an important regulator of serum sex hormone binding globulin (SHBG) 

concentration that works by inhibiting its synthesis in hepatocytes. Low SHBG levels are 

associated with increased insulin resistance and hyperinsulinaemia (Bartha et al 2000, 

Haffner 1996). SHBG has been suggested as a useful diagnostic tool for evaluating insulin 

resistance and cardiovascular risk (Pugeat et al 1996). In non-pregnant subjects, SHBG 

correlates inversely with glucose tolerance (Goodman-Gruen and Barrett-Connor 1997), 

insulin levels (Haffner et al 1988) and insulin resistance as determined by the
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euglycaemic-hyperinsulinaemic clamp (Sherif et al 1998). Two prospective studies have 

demonstrated that reduced SHBG levels are associated with increased risk of future type II 

diabetes in otherwise healthy women (Haffner et al 1993, Lindstedt et al 1991). Pregnant 

women with gestational diabetes have lower SHBG levels than healthy controls (Bai'tha et 

al 2000). In uncomplicated pregnancy, SHBG levels rise steadily until the 3̂^̂  trimester 

reaching a peak that is 4-6 times that of non-pregnant values (Kerlan et al 1994, O'Leary et 

al 1991, W olf et al 2002). It has been demonstrated that first trimester SHBG levels are 

significantly lower in nulliparous women who subsequently develop PET compared with 

normotensive women, and that this association between early pregnancy insulin resistance 

and development of PET is strengthened in lean compared to obese women (Wolf et al 

2002). SHBG values aie reliable in the non-fasting state (Key et al 1990) and exhibit 

minimal diurnal variation (Hamilton-Fairley et al 1995).

Insulin resistance and adult obesity are associated with relatively low proportions of 

polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA), in muscle 

membrane structural lipid. Skeletal muscle plays a major role in insulin-stimulated glucose 

uptake and whole body energy expenditure (Helge et al 1998). Studies in both animal and 

human models have shown a relationship between skeletal muscle membrane structural 

lipid (phospholipid) and measures of insulin resistance (Borkman et al 1993, Storlien et al 

1991, Vessby et al 1994). A higher percentage of more saturated fatty acids (FAs) in 

muscle membrane phospholipid is associated with insulin resistance, whereas a higher 

percentage of long-chain polyunsaturated fatty acids (LCPUFAs) is associated with insulin 

sensitivity (Baur et al 1999).

It has been demonstrated that erythrocyte membrane fatty acid (EMFA) composition is a 

reasonable index of muscle DHA, total n-3 PUFA and the n-3/n-6 PUFA ratio (Baur et al 

2000). Similarly, for a range of fatty acids (16:0, 18:2n-6, 20:4n-6, 20:5n-3, and 22:5n-3), 

EMFA composition has been shown to have close associations with that of muscle 

membranes (Felton et al 2004). This group also demonstrated relationships between 

EMFA concentrations and insulin sensitivity; highly insulin sensitive male subjects 

(measured using the intravenous glucose tolerance test [IVGTT]), had decreased EMFA 

concentrations compared with normal/low insulin sensitivity subjects, and A6 and A5 

desaturase activities were higher and lower respectively, compared with low/normal 

insulin sensitivity subjects (Felton et al 2004). However, Di Maiino and colleagues (Di 

Maiino et al 2000) have shown that compared with erythrocyte membranes, muscle 

membranes show a significantly higher proportion of omega-6 polyunsaturated fatty acid 

(P < 0.001) and lower saturated fatty acid (P <0,001), monounsaturated fatty acid (P <



Vanessa Rodie, 2005 Chapter 6, 168

0.001), and omega-3 PUFA (P < 0.001). From these results, this group concluded that 

erythrocyte and muscle membrane phospholipid fatty acids are significantly different, and 

that data on muscle membranes could not be extrapolated on the basis of measures of 

erythrocyte phospholipid fatty acid composition.

In this current study, EMFA concentrations were used to identify individual fatty acid 

status. Skeletal muscle biopsies were considered too invasive for use in pregnancy and as 

discussed earlier, there are no validated tests of insulin sensitivity in pregnancy. Although 

there is controversy regarding whether EMFA concentrations are indicative of skeletal 

muscle fatty acid status, it was considered that the red blood cells would at very least 

provide us with an indication of overall fatty acid status and allow us to compare maternal 

and fetal values.

The hypotheses were 3-fold;

1. That plasma markers of insulin resistance, inflammation and dyslipidaemia would 

increase with advancing gestation and be further exaggerated in pregnancies 

complicated by PET and/or lUGR.

2. That there would be a reduction in LCPUFAs as pregnancy advanced and an 

increase in a saturated fatty acid profile, again further exaggerated by PET and/or 

lUGR.

3. That changes seen in fatty acid status throughout gestation or in complicated 

pregnancy would relate to the plasma markers of insulin resistance, inflammation 

and dyslipidaemia.

Thus the objectives were;

• To determine maternal plasma markers of insulin resistance (fasting insulin,

glucose and HOMA where fasting samples were available in the longitudinal study, 

and SHBG, non fasting insulin, glucose and HOMA where fasting samples were 

not obtained in the case control study), inflammation (ICAM, VC AM, IL-6, IL-10, 

CRP) and dyslipidaemia (TC, TG, VLDL, LDL, HDL) in a prospective 

longitudinal study of each trimester of uncomplicated pregnancy (n=47 each group) 

and in a case control study of pregnancies complicated by PET (n=23) and lUGR 

(n=17).
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• To determine the availability of EMFAs in the prospective longitudinal study 

group, as an observational study of the fatty acid status throughout gestation in 

normal pregnancy, and to determine the availability of the EMFAs in the case 

control study of pregnancies complicated by PET, a recognised state of insulin 

resistance (Sattar and Greer 1999), or by lUGR, where the maternal response to 

abnormal placentation is absent.

• To relate the plasma mai'kers of insulin resistance, inflammation and dyslipidaemia 

to any changes observed in EMFAs in both study groups.

6.2 Results

6.2.1 Uncomplicated pregnancy.

6.2.1.1 Maternal characteristics in uncomplicated pregnancies

Baseline characteristics for forty-seven subjects from uncomplicated pregnancies are 

shown in table 6-1.

Using third trimester values, maternal log 14:0 (p=0.03, r^=8.9%), log 20:0 (p=0.02, 

r^=10.2%), 22:4n6 (p=0.03, r^=7.7%), log 24:0 (p=0.02, r^=9.3%) and 24:ln9 (p=0.01, r^= 

2.1%) were significantly associated with maternal BMI (univariate regression analysis). 

Maternal 18:3n6 (p=0.03, r^=8.0%) and 22:5n3 (p=0.04, r^=6.7%) were associated with 

maternal age (univariate regression analysis). Maternal 22:0 (p=0.03), total n3 (p=0.006) 

and log ii6/n3 (p=0.002) were affected by smoking status (ANOVA). Maternal log 20:3n3 

(p=0.03) was affected by parity, maternal log 22:5n6 (p=0.02, r^=9.0%) and 22:6n3 

(p=0.05, r^=6.2%) were affected by gestational age at sampling, and maternal log 20:ln9 

was affected by pai'ity (p=0.03) and gestational age at sampling (p=0.02, r^=10.0%), all 

tested using univaiiate regression analysis or ANOVA. For statistical analysis, all data was 

adjusted for these effects using a general linear model in the PET, lUGR and control study, 

and for all effects except for gestational age at sampling in the longitudinal study. Mai'kers 

of inflammation and lipids were adjusted as previously (Chapters 4 & 5) in both studies. 

Maternal log glucose was adjusted for the effect of maternal age and gestational age at 

sampling, and log insulin for gestational age at sampling, using the fasting subjects within 

the same cohort used for the inflammatory and lipid data previously described (n=61).
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6.2.2 Longitudinal study

6.2.2.1 Maternal characteristics in a longitudinal study.

The forty-seven subjects studied in each trimester of uncomplicated pregnancy are the 

same cohort as that used for the data normalisation in section 6.2.1.1, and baseline 

characteristics are thus demonstrated in table 6-1.

G.2.2.2 Markers of insulin resistance, inflammation and 

dysiipidaemia in a longitudinal study.

All subjects were within normal glucose control as demonstrated by a fructosamine test, 

thus excluding any latent diabetes. In uncomplicated pregnancy, log SHBG (p<0.001), 

fasting log glucose (p=0.003), fasting log insulin (p<0.001) and HOMA (p=0.003) were all 

significantly increased as gestation advanced. Similaiiy, log IL-6 (p=0.002) was increased 

as gestation advanced, although log sCRP was unchanged (p=0.64). Maternal TC, log TG, 

VLDL and LDL were all significantly increased with advancing gestation (p<0.001 in all 

groups). However, log HDL was unchanged (p=0.72) (table 6-2).

G.2.2.3 Maternal EMFA profile in a longitudinal study.

For observational purposes, all erythrocyte membrane fatty acids tested in each trimester 

are shown in table 6-3.
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Characteristic N=47
Age (years) 28.7 (5.0)
BMI (kg/m^) 28.4 (6.1)
Primigravidae n (%) 24(51%)
Smokers n (%) 18 (36%)
Gestation at sampling (weeks) 35.3 (1.34)
Gestation at delivery (weeks) 40.0(1.60)
Vaginal delivery n (%) 37 (79%)
Placental weight (g) 770.0 (184.7)
Fetal weight (kg) 3.63 (0.59)
Birth weight centile 56.7 (33.2)
Fetal sex 20 female (43%)
n(% ) 27 male (57%)

Table 6-1. Maternal characteristics from uncomplicated pregnancies (data normalisation 
cohort and longitudinal study group).
Data shown are mean and S.D.

1®‘ trim ester 
(n=47)

2‘'‘* trim ester 
(n=47)

3"'* trim ester 
(n=47)

P

Log SHBG 2.31 (0.09) 2.41 (0.10) 2.41 (0.06) <0.001
(log nmol/L) [204.17 (1.23)] [257.04 (1.26)] [257.04(1.15)1
Fasting log glucose 0.66 (0.11) 0.73 (0.09) 0.72 (0.08) 0.003
(mmol/L) [4.57 (1.29)] [5.37 (1.23)] [5.25 (1.20)1
Fasting log insulin 1.22 (0.37) 1.54 (0.35) 1.57 (0.36) <0.001
(log mU/L) [16.60 (2.34)] [34.67 (2.24)] [37.15 (2.29)1
HOMA 5.59 (7.29) 11.89 (10.53) 13.02(12.50) 0.003

Log IL-6 (log pg/mL) 0.06 (0.33) 0.14(0.27) 0.27 (0.24) 0.002
[1.15(2.14) [1.38 (1.86)1 [1.86(1.74)1

Log CRP (log mg/L) 0.67 (0.44) 0.66 (0.44) 0.59 (0.40) 0.64
[4.68 (2.75)] [4.57 (2.75)] [3.89 (2.51)1

TC (mmol/L) 4.59 (0.76) 5.90 (0.89) 6.06 (0.94) <0.001
Log TG (log mmol/L) 0.11 (0.16) 0.36 (0.14) 0.45 (0.14) <0.001

[1.29(1.45)] [2.29(1.38)1 [2.82(1.38)1
VLDL (mmol/L) 0.40 (0.23) 0.68 (0.28) 0.78 (0.30) <0.001
LDL (mmol/L) 2.77 (0.68) 3.78 (0.80) 3.89 (0.90) <0.001
Log HDL (log mmol/L) 0.14 (0.08) 0.15 (0.08) 0.13(0.09) 0.72

[1.38 (1.20)1 [1.41 (1.20)1 [1.35(1.23)1

Table 6-2. Markers of insulin resistance, inflammation and dysiipidaemia in a longitudinal 
study of uncomplicated pregnancies.

Statistical analysis was performed using repeated measures ANOVA, and data is presented 
as mean and S.D. Log transformed data was used for maternal SHBG, glucose, insulin, IL-6, 
CRP, TG and HDL, and is presented as mean (S.D.) and [geometric mean (S.D.)].
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Fatty acids 
(% total)

trimester
(n=47)

2”'* trimester 
(n=47)

3*̂ '' trimester 
(n=47)

P

12:0 0 0 0 !)!
14:0 0.61 (0.27) 0.63 (0.30) 0.62 (0.26) 0.94
14:ln7 0.00 (0.03) 0.02 (0.10) 0.01 (0.05) 0.49
16:0 21.86 (2.19) 22.03 (2.41) 22.14(1.39) 0.69
16:ln7 0.86 (0.23) 1.01 (0.27) 0.99 (0.23) 0.006
17:0 0.35 (0.19) 0.31 (0.22) 0.33 (0.21) 0.80
17:ln7 0.04 (0.11) 0.04 (0.11) 0.07 (0.13) 0.40
18:0 15.71 (1.41) 14.78(1,47) 14.48(1.27) <0.001
18:ln6 0 0 0
18:ln9 14.46(1.72) 14.82 (2.08) 14.79(1.67) 0.59
18:ln7 0 0 0 *
18:2n6 8.58(1.05) 8.69(1.58) 8.90 (0.92) 0.45
18:3n6 0.16(0.17) 0.11 (0.15) 0.11 (0.14) 0.15
18:3n3 0.19(0.15) 0.33 (0.20) 0.29 (0.18) 0.001
20:0 0.72(0.14) 0.70 (0.19) 0.62 (0.14) 0.006
20:ln9 0.60 (0.13) 0.65 (0.24) 0.56(0.12) 0.09
20:2n6 0.38(0.16) 0.41 (0.22) 0.41 (0.17) 0.34
20:3n9 0 0 0 *
20:3n6 1.83 (0.41) 2.03 (0.51) 1.95 (0.43) 0.11
20:4n6 13.67 (2.52) 12.72 (2.23) 12.84(1.45) 0.07
20:3n3 0.20 (0.23) 0.19 (0.22) 0.16(0.20) 0.25
20:5n3 0.80 (0.45) 0.85 (0.46) 0.71 (0.41) 0.32
22:0 1.72 (0.41) 1.56(0.35) 1.49 (0.37) 0.01
22:ln9 0.17 (0.24) 0.14(0.24) 0.17 (0.23) 0.80
22:2n6 0.04 (0.15) 0.01 (0.07) 0.01 (0.05) 0.66
22:4n6 2.70 (0.75) 2.68 (0.79) 2.84 (0.70) 0.53
22:3n3 0.37 (0.32) 0.39 (0.27) 0.41 (0.33) 0.73
22:5n6 0.54 (0.22) 0.67 (0.22) 0.68 (0.20) 0.003
22:5n3 2.01 (0.41) 2.01 (0.49) 2.07 (0.31) 0.66
24:0 3.20 (0.71) 3.30 (0.52) 3.28 (0.54) 0.51
22:6n3 3.29 (0.92) 3.79 (0.97) 3.85 (0.69) 0.004
24:ln9 4.92 (0.75) 5.12(0.98) 5.21 (0.80) 0.23
% saturated FAs 46.47 (3.66) 45.61 (2.90) 45.31 (2.28) 0.16
% monounsaturated FAs 20.44 (1.74) 21.19(1.86) 21.16(1.64) 0.06
% PUFAs 33.10(4.23) 33.21 (3.88) 33.51 (2.41) 0.85
Total u9 FAs 19.42(1.62) 19.97 (1.73) 19.94(1.53) 0.18
Total u7 FAs 1.03 (0.29) 1.22 (0.38) 1.21 (0.32) 0.006
Total n6 FAs 27.00 (3.68) 26.45 (3.07) 26.82 (2.11) 0.67
Total u3 FAs 6.14(1.22) 6.78(1.27) 6.69(0.91) 0.02
% unsaturated FAs 53.54 (3.66) 54.39 (2.90) 54.69 (2.28) 0.16
UI 147.95 (16.66) 148.92 (16.28) 149.56 (10.54) 0.87
Average CL 18.56(0.17) 18.56(0.21) 18.58 (0.15) 0.85
C20-22 FAs 29.25 (4.09) 29.08 (4.49) 29.01 (3.07) 0.95
Total n6/n3 4.54 (0.93) 4.04 (0.80) 4.07 (0.59) 0.004
Delta 5 desaturase 7.79 (1.94) 6.58 (1.63) 6.94(1.70) 0.004
Delta 6 desaturase 0.20 (0.04) 0.25 (0.28) 0.20 (0.05) 0.23
Delta 9 desaturase 0.93 (0.13) 1.02 (0.19) 1.04 (0.14) 0.003
Elongase 0.65 (0.05) 0.61 (0.08) 0.59 (0.04) <0.001

Table 6-3. All fatty acids tested (%) in each trimester of uncomplicated pregnancy.
Raw data is shown, and statistical analysis was performed on log transformed data for 12:0, 
14:0, 16:0, 17:0, 17:1n7,18:0, 18:1n9, 20:0, 20:1 n9, 20:2n6, 20:3n3, 20:5n3, 22:2n6, 22:3n3, 
22:5n6, 24:0, %monounsaturated FAs, total n9, total n6/n3, delta 6 and delta 9 desaturases. 
Statistical analysis was performed on square root of total n7. Statistical analysis was 
performed on data independent of maternal age, BMI, smoking status, parity, as described 
in section 6.2.1.1.Statistical analysis was performed using repeated measures ANOVA, and 
data are presented as mean and S.D. FA = fatty acid, Ui = unsaturation index (the average 
number of double bonds per fatty acid residue multiplied by 100), CL = chain length.
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Of paiticular interest, 18:0 was significantly reduced with advancing gestation [T1 15.71

(1.41), T2 14.78 (1.47), T3 14.48 (1.27)%, p<0.001, repeated measures ANOVA], and this 

difference was most notable in early pregnancy, between the 1®̂ and 2"^ trimesters 

(p=0.002) (figure 6-2).

The results show that 12:0, 18:ln6, 18:ln7 and 20:3n9 values are negligible in each 

trimester of uncomplicated pregnancy. The % a-linolenic acid (18:3n3) was significantly 

different between the trimesters [T1 0.19 (0.15), T2 0.33 (0.20), T3 0.29 (0.18)%, p=0.001, 

repeated measures ANOVA], with a peak value in the 2"  ̂trimester, and the significant 

difference between 1®̂ and 2"^ trimesters (p<0.001) (figure 6-3).

In this longitudinal observational study, EPA (20:5n3) was not significantly altered as 

gestation advanced [T1 0.80 (0.45), T2 0.85 (0.46), T3 0.71 (0.41)%, p=0.32), repeated 

measures ANOVA]. However, DHA (22:6ii3) significantly increased as gestation 

advanced [T1 3.29 (0.92), T2 3.79 (0.97), T3 3.85 (0.69)%, p=0.004, repeated measures 

ANOVA], with the significant increase seen between the 1®‘ and 2"^ trimesters (p=0.01), 

and thereafter demonstrating a plateau between the 2^  ̂and 3'^ trimesters (p=0.75) (figure 

6-4).

The n6 fatty acid, AA (20:4n6) was not significantly altered as gestation advanced in 

uncomplicated pregnancy [T1 13.67 (2.52), T2 12.72 (2.23), T3 12.84 (1.45)%, p=0.07, 

repeated measures ANOVA].

The percentage of saturated FAs (p=0.16), monounsaturated FAs (p=0.06), unsaturated 

FAs (p=0.16), polyunsaturated FAs (PUFAs) (p=0.85), the unsaturation index (UI) 

(p=0.87) and the total percentage of the C20-22 FAs (p=0.95) were not altered 

significantly as gestation advanced. Similarly, the percentage of the total n6 FAs was not 

altered with advancing gestation (p=0.67). However, the percentage of the total n3 FAs 

was altered significantly between the trimesters [T1 6.14 (1.22), T2 6.78 (1.27), T3 6.69 

(0.91)%, p=0.02], with a significant increase from the 1®‘ to the 2"^ trimester (p=0.02) 

(figure 6-5), and the total n6/n3 ratio was consequently significantly altered as gestation 

advanced [T1 4.54 (0.93), T2 4.04 (0.80), T3 4.07 (0.59)%, p=0.004].



Vanessa Rodie, 2005 Chapter 6, 174

# P<0.001
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Figure 6-2. % 18:0 (stearic acid) in each trimester of uncompiicated pregnancy (n=47 per 
trimester).
Statistical analysis was performed on log transformed data, using repeated measures 
ANOVA (*) between the trimesters, with post hoc Students Mest C) on 1®* vs 2"̂  trimester, 
and is shown as mean and 95% Cl. * = outlier.
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Figure 6-3. %18:3n3 (a-linolenic acid) in each trimester of uncomplicated pregnancy (n=47 
per trimester).

Statistical analysis was performed using repeated measures ANOVA {*) between the 
trimesters, with post hoc Students Mest (̂ ) on 1®* vs 2"'* trimester, and is shown as mean 
and 95% 01. *= outlier.
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Figure 6-4. % 22:6n3 (DHA) In each trimester of uncomplicated pregnancy (n=47 per 
trimester).

Statistical analysis was performed using repeated measures ANOVA (*) between the 
trimesters, with post hoc Students Mest O  on 1®̂ vs 2"̂  trimester, and is shown as mean 
and 95% Cl. *= outlier.
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Figure 6-5. % total n3 F As in each trimester of uncomplicated pregnancy (n=47 per 
trimester).

Statistical analysis was performed using repeated measures ANOVA (̂ ) between the 
trimesters, with post hoc Students f-test O  on 1®* vs 2"'* trimester, and is shown as mean 
and 95% 01. *= outlier.
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The ratio of 20:4n6/20:3n6, used to estimate delta 5 desaturase activity, was significantly 

altered with advancing gestation [T1 7.79 (1.94), T2 6.58 (1.63), T3 6.94 (1.70), p=0.004], 

with a significant reduction in activity from the 1̂ ‘ to the 2"  ̂trimester (p=0.02) (figure 6-

6). Delta 9 desaturase activity was also altered throughout the trimesters (T1 0.93 (0.13),

T2 1.02 (0.19), T3 1.04 (0.14), p=0.003], with a significant increase in activity in the 2"  ̂

trimester compared to the (p=0.01). Elongase activity (18:0/16:0 ratio) was significantly 

reduced as gestation advanced [T1 0.65 (0.05), T2 0.61 (0.08), T3 0.59 (0.04), p<0.001], 

with a significant reduction in the 2"^ trimester compared with the 1®̂ (p=0.003) (figure 6-

7).
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Figure 6-6. % 20:4n6/20:3n6 (delta 5 desaturase activity) in each trimester of uncomplicated 
pregnancy (n=47 per trimester).
Statistical analysis was performed using repeated measures ANOVA (*) between the 
trimesters, with post hoc Students f-test (̂ ) on 1®̂ vs 2"̂  trimester, and is shown as mean 
and 95% Cl.



Vanessa Rodie, 2005 Chapter 6, 177

T<0.001

0.9 -

0.8 -

0.7 -
o
cd

0.6 —oCO
0.5

0.4 -

0.3 -

P=0.003

Trimester

Figure 6-7. % 18:0/16:0 (elongase activity) in each trimester of uncomplicated pregnancy 
(n=47 per trimester).

Statistical analysis was performed using repeated measures ANOVA {*) between the 
trimesters, with post hoc Students f-test (̂ ) on 1®* vs 2"*̂  trimester, and is shown as mean 
and 95% Cl. = outlier.

G.2.2.4 Associations between markers of insuiin resistance, 
inflammation and dysiipidaemia and EMFA profiles in 

uncomplicated pregnancy.

Because a large number of individual fatty acids are reported, it was decided to use <0.005 

as a level of significance for discussion, to limit chance associations.

6.2.2Â.1 1̂  ̂trimester

There were no significant correlations (p<0.005) between maternal plasma markers of 

insulin resistance, dysiipidaemia or inflammation and the fatty acids in the trimester.
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6.2.2.4.2 2"^ trimester

In the 2"^ trimester, maternal plasma CRP correlated negatively with 18:0 (r=-0.43, 

p=0.003) (figure 6-8).
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Maternal log CRP (log mg/L)

Figure 6-8. Association between maternal log CRP and % 18:0 (stearic acid) in the 2 
trimester.
Statistical analysis was performed using Pearson’s coefficient of correlation, on log 
transformed data for 18:0.
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TG levels were negatively associated with elongase activity (r=-0.50, p=0.001), and

r=0.54,
p<0.0010.3 
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positively correlated with delta 9 desaturase activity (r=0.54, p<0.001) (figure 6-9).

Figure 6-9. Association between maternal log TG and delta 9 desaturase activity
(18:1n9/18:0) in the 2"'* trimester.
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Statistical analysis was performed using Pearson’s coefficient of correlation, on log 
transformed data for delta 9 desaturase.

There were no significant correlations between markers of insulin resistance and fatty acids 

in the 2"^ trimester.

6,2.2,4.3 3’'̂  trimester

Fasting insulin correlated with 22:6n3 (DHA) (r=0.39, p=0.008) (figure 6-10) in the 3 

tiimester.
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Figure 6-10. Association between maternal fasting log insulin and DHA (22:6n3) in the 3rd 
trimester.
Statistical analysis was performed using Pearson’s coefficient of correlation.

Maternal TG levels were associated with the total percentage of monounsaturated F As 

(r=0.61, p<0.001) and delta 9 desaturase activity (r=0.67, p<0.001) (figure 6-11), and 

correlated negatively with elongase (r=-0.45, p=0.002).
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Figure 6-11. Association between maternal log TG and delta 9 desaturase activity 
(18:1n9/18:0) in the 3rd trimester.
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Statistical analysis was performed using Pearson’s coefficient of correlation, on log 
transformed data for delta 9 desaturase.

There were no associations between any of the F As and the inflammatory markers or 

between the EPA/AA ratio (as an inflammatory index) and the inflammatory naarkers in 

the 3'^ trimester.

6.2.3 PET and lUGR case control study. 

6.2.3.1 Maternal characteristics in pregnancies complicated by 

PET and iUGR.

For the analysis of complicated pregnancy, cases were matched for age, parity, BMI and 

smoking habit with controls. Characteristics of the matched groups are as for the lipid and 

inflammatory data, shown in table 4-6, in section 4.2.3.1.

6.2.3.2 Markers of insulin resistance, infiammation and 

dysiipidaemia in PET, iUGR and control subjects.

Markers of inflammation and dysiipidaemia in PET and IUGR pregnancies are 

demonstrated in chapters 4 (section 4.2.3.1, table 4-11) and 5 (section 5.2.1.2, table 5-3).

To summarise, there were no differences in markers of inflammation in PET compared 

with controls, and maternal cholesterol levels were significantly elevated in PET (p=0.04). 

In IUGR, there were no differences in lipids between cases and controls, and there was a 

trend towards reduced maternal log VC AM in IUGR (p=0.05). Although samples were not 

taken under fasting conditions in this group, in PET and controls, there were no differences 

in log SHBG [PET 2.40 (0.12) vs controls 2.45 (0.14), p=0.21], log glucose [PET 0.81 

(0.23) vs controls 0.73 (0.19), p=0.24], log insulin [PET 1.16 (0.94) vs controls 1.28 

(0.87), p=0.68] and HOMA [PET 10.6 (19.1) vs controls 10.4 (19.1), p=1.00]. Similarly, in 

IUGR and controls, there were no differences in log SHBG [IUGR 2.39 (0.14) vs controls 

2.40 (0.12), p=0.69], log glucose [IUGR 0.71 (0.12) vs controls 0.78 (0.15), p=0.14] and 

HOMA [IUGR 3.49 (3.34) vs controls 8.20 (10.20), p=0.11]. However, there was a trend 

towards reduced log insulin in IUGR subjects [0,91 (0.53)] compared to controls [1.37 

(0.69), p=0.05) (Table 6-4). All subjects were in normal glucose control as demonstrated 

by a fmctosamine test.
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PET
n=23

Controls
n=23

P IUGR
n=17

Controls
n=17

P

Log SHBG 2.40 (0.12) 2.45 (0.14) 0.21 2.39 (0.14) 2.40 (0.12) 0.69
(log nmoI/L) [251.19(1.32)] [281.84(1.38)1 [245.47 (1.38)1 [251.19(1.32)1
Log glucose 0.81 (0.23) 0.73 (0.19) 0.24 0.71 (0.12) 0.78 (0.15) 0.14
(log mmol/L) [6.46(1.70)1 [5.37 (1.55)1 [5.13 (1.32)1 [6.03(1.41)1
Log insulin 1.16(0.94) 1.28(0.87) 0.68 0.91 (0.53) 1.37 (0.69) 0.05
(log mU/L) [14.45 (8.71)1 [19.05 (1.55)1 [8.13(3.39)1 [23.44 (4.90)1
HOMA 10.60(19.10) 10.60(19.10) 1.00 3.49 (3.34) 8.20(10.20) 0.11

Table 6-4. Markers of insulin resistance in PET, IUGR and control pregnancies.

Statistical analysis was performed using Student's t-test, and data is presented as mean 
and S.D. Log transformed data was used for maternal SHBG, glucose and insulin and is 
presented as mean (S.D.) and [geometric mean (S.D.)].

6.2.3.S Maternal EMFA profile in PET, IUGR and uncomplicated 

pregnancies.

For observational purposes, all erythrocyte membrane fatty acids tested in the trimester 

are demonstrated in table 6-5.

Results demonstrate that 12:0, 18:ln6, 18: In? and 20:3n9 fatty acids are negligible, as in 

the longitudinal study cohort. Flowever, in this arm of the study, in PET, IUGR and 

controls, 14:ln7, 22:ln9 and 22:2n6 fatty acids were also negligible.

Of interest, there was a trend towards increased % 14:0 in PET compared with controls 

[PET 1.13 (0.33) vs controls 0.94 (0.33)%, p=0.05] (figure 6-12), and also in % 16:0 

[29.73 (3.58) vs 27.37 (4.63)%, p=0.05] (figure 6-13) and 18:ln9 [16.73 (2.55) vs 15.23

(2.41)%, p=0.05] (figure 6-14).
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Fatty acids PET PET
Controls

P IUGR IUGR
Controls

P

(% total) (n=23) (n=23) (n=17) (n=17)
12:0 0 0 * 0 0 $
14:0 1.13(0.33) 0.94 (0.33) 0.05 0.96 (0.40) 1.04 (0.32) 0.89
14:ln7 0 0 0 0 *
16:0 29.73 (3.58) 27.37 (4.63) 0.05 26.57 (3.40) 28.02 (3.68) 0.25
16:ln7 1.31(0.55) 1.04 (0.42) 0.07 1.15(0.55) 1.03 (0.46) 0.48
17:0 0.43 (0.28) 0.48 (0.22) 0.80 0.49 (0.22) 0.48 (0.22) 0.30
17:ln7 0.07 (0.15) 0.10(0.17) 0.59 0.08 (0.16) 0.10(0.16) 0.74
18:0 19.33 (4.00) 20.61 (4.08) 0.28 22.01 (8.07) 20.71 (3.44) 0.73
18:ln6 0 0 * 0 0 *
18:ln9 16.73 (2.55) 15.23 (2.41) 0.05 14.65 (2.67) 15.31 (2.16) 0.39
18:ln7 0 0 * 0 0
18:2n6 7.00(1.33) 6.79(1.78) 0.65 6.38 (1.55) 6.97 (2.04) 0.35
18:3n6 0.11 (0.16) 0.10(0.15) 0.85 0.10(0.15) 0.16(0.17) 0.25
18:3n3 0.26 (0.23) 0.31 (0.34) 0.54 0.25 (0.19) 0.35 (0.18) 0.13
20:0 0.77 (0.22) 0.84 (0.31) 0.67 0.96 (0.46) 0.84 (0.29) 0.46
20:ln9 0.55 (0.23) 0.42 (0.29) 0.90 0.39 (0.26) 0.37 (0.26) 0.46
20:2n6 0.10(0.19) 0.12(0.20) 0.76 0.13(0.21) 0.10(0.16) 0.48
20:3n9 0 0 * 0 0 4:
20:3n6 1.41 (1.10) 1.16(0.54) 0.33 1.09 (0.62) 1.07 (0.40) 0.90
20:4n6 5.77 (2.85) 6.46 (3.81) 0.49 6.47 (3.11) 6.42 (3.63) 0.96
20;3n3 0.65 (0.47) 0.49 (0.30) 0.79 0.46 (0.33) 0.50 (0.28) 0.80
20:5n3 1.65 (0.71) 1.82 (0.60) 0.85 1.56 (0.94) 1.70 (0.53) 0.37
22:0 0.09 (0.23) 0.24 (0.57) 0.27 0.31 (0.98) 0.07 (0.14) 0.36
22:ln9 0 0 * 0 0 ÎÎ*'
22:2n6 0 0 * 0 0
22:4n6 0.93 (0.73) 1.37 (0.98) 0.10 1.25 (0.79) 1.22 (0.88) 0.92
22:3n3 0.11 (0.16) 0.14(0.19) 0.79 0.13(0.19) 0.12(0.15) 0.45
22:5n6 0.10(0.17) 0.13(0.21) 0.27 0.14(0.18) 0.19(0.21) 0.60
22:5n3 0.53 (0.50) 0.81 (0.67) 0.12 0.78 (0.63) 0.79 (0.69) 0.94
24:0 4.45(1.40) 5.35 (2.14) 0.14 5.97 (2.72) 4.94(1.59) 0.26
22:6n3 1.53(1.05) 1.98(1.30) 0.34 1.96(1.66) 2.03(1.41) 0.96
24:ln9 5.24(1.12) 5.70(1.39) 0.22 5.75 (2.08) 5.48 (1.29) 0.63
% sat 58.04 (6.26) 57.86 (7.76) 0.93 59.20 (9.61) 58.16(7.27) 0.73
% mono 22.83 (2.73) 21.49 (2.71) 0.11 21.07 (3.63) 21.28 (2.67) 0.73
% poly 19.13(6.06) 20.63 (7.94) 0.47 19.73 (8.01) 20.54 (7.66) 0.77
Total n9 F As 21.30 (2.73) 20.21 (2.99) 0.20 19.69 (3.80) 20.02 (2.80) 0.65
Total n7 FAs 1.53 (0.63) 1.28 (0.47) 0.36 1.38(0.61) 1.26 (0.56) 0.55
Total n6 FAs 14.85 (4.83) 15.59 (6.57) 0.67 15.06 (5.70) 15.56 (6.57) 0.81
Total n3 FAs 4.28(1.40) 5.04(1.69) 0.11 4.97 (2.59) 4.67(1.50) 0.66
% unsat 41.96(6.26) 42.14(7.76) 0.93 40.80 (9.61) 41.84(7.27) 0.73
UI 87.75 (23.54) 94.93 (30.56) 0.38 93.30 (33.57) 91.82 (28.46) 0.89
Average CL 18.02 (0.23) 18.21 (0.30) 0.02 18.24 (0.28) 18.14(0.25) 0.27
€20-22 16.38 (4.23) 18.81 (6.46) 0.15 19.01 (5.58) 17.91 (5.25) 0.56
Log n6/ii3 3.72(1.47) 3.15 (0.96) 0.07 3.44(1.58) 3.13(0.90) 0.52
Delta 5 5.29 (2.94) 5.66 (2.31) 0.65 6.21 (2.37) 6.14(2.56) 0.94
Delta 6 0.19(0.17) 0.16(0.07) 0.31 0.15(0.08) 0.15(0.08) 0.27
Delta 9 0.92 (0.25) 0.78 (0.23) 0.10 0.74 (0.24) 0.77 (0.18) 0.51
Elongase 0.59 (0.14) 0.69 (0.14) 0.03 0.76 (0.33) 0.67 (0.09) 0.29

Table 6-5. All fatty acids tested (%) in PET, IUGR and control pregnancies.

Raw data is shown, and statistical analysis was performed on log transformed data for 12:0, 
14:0,16:0,17:0,17:1n7,18:0,18:1n9, 20:0, 20:1 n9, 20:2n6, 20:3n3, 20:5n3, 22:2n6, 22;3n3, 
22:5n6, 24:0, % monounsaturated F As, total n9, total n6/n3, delta 6 and delta 9 desaturases. 
Statistical analysis was performed on square root of total n7. Statistical analysis was 
performed on data independent of maternal age, BMI, smoking status, parity, as described 
in section 6.2.1.1. Statistical analysis was performed using ANOVA, and data are presented 
as mean and S.D. FA = fatty acid, Ul = unsaturation index, CL = chain length.
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Figure 6-12. % 14:0 FA in PET (n=14) and control (n=14) pregnancies.
Raw data is shown, presented as mean and 95% Cl, and statistical analysis was performed 
using Students t-test on log transformed data.
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Figure 6-13. % 16:0 (palmitic acid) FA in PET (n=14) and control (n=14) pregnancies.
Raw data is shown, presented as mean and 95% Cl, and statistical analysis was performed 
using Students t-test on log transformed data.
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Figure 6-14. % 18:1n9 (oleic acid) FA in PET (n=14) and control (n=14) pregnancies.
Raw data is shown, presented as mean and 95% Cl, and statistical analysis was performed 
using Students t-test on log transformed data.

In the PET group, the average chain length was significantly reduced compared with 

controls [PET 18.02 (0.23) vs controls 18.21 (0.30)%, p=0.02] (figure 6-15). Similarly, 

elongase activity was significantly reduced in PET compared with controls [PET 0.59 

(0.14) vs controls 0.69 (0.14)%, p=0.03] (figure 6-16).
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Figure 6-15. % average chain length (CL) in PET (n=14) and control (n=14) pregnancies.
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Raw data is shown, presented as mean and 95% Cl, and statistical analysis was performed 
using Students t-test. * = outlier.
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Figure 6-16. Elongase activity (18:0/16:0) in PET (n=14) and control (n=14) pregnancies.
Raw data is shown, presented as mean and 95% 01, and statistical analysis was performed 
using Students t-test. * = outlier.

There were no differences in any of the fatty acids or indices tested, between IUGR 

pregnancies and controls.

6.2.S.4 Associations between markers of Insulin resistance, 

Inflammation and dysiipidaemia and EMFA profiles PET, 
IUGR and control subjects.

The fatty acids studied in this section were those that were altered in the PET group (14:0, 

16:0, 18:In9, average chain length and elongase activity), and those that demonstrated 

associations with plasma markers in the 3*̂  ̂trimester longitudinal study group (22:6n3, % 

monounsaturated FAs, delta 9 desaturase activity and elongase activity).
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In the PET group, maternal TC and LDL were negatively associated with elongase activity 

(r=-0.46, p=0.03 and r=~0.50, p=0.02 respectively) (figure 6-17). No other associations 

were observed.
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Figure 6-17, Association between maternal LDL and elongase activity (18:0/16:0) in the PET 
group.
Statistical analysis was performed using Pearson’s coefficient of correlation.

In IUGR pregnancies, there were no correlations between any of the markers of insulin 

resistance, inflammation or dysiipidaemia and the fatty acids tested.

Similarly, in the combined control group (n=40), there were no correlations between any of 

the markers of insulin resistance, inflammation or dysiipidaemia and the fatty acids tested.

6.3 Discussion

This chapter has produced descriptive evidence of the EMFA profile as gestation advances 

in a large cohort of uncomplicated pregnancies, independent of potential confounders such 

as maternal BMI, smoking status, parity and gestation at sampling. Data in this study 

suggest fasting markers of insulin resistance (glucose, insulin and HOMA) are increased as 

gestation advances, and that the acute inflammatory marker of inflammation, IL-6, is 

elevated with advancing gestation. Increases in TC, TG, VLDL and LDL are also 

demonstrated with advancing gestation. These data support the recognised dysiipidaemia, 

state of inflammation and insulin resistance seen in uncomplicated pregnancy (see
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introduction). In this study, SHBG levels were increased from the to the 2^^ trimester, in 

agreement with previous data (Kerlan et al 1994, O'Leary et al 1991, W olf et al 2002).

It has been demonstrated in this study that the percentage of log 18:0 was reduced as 

pregnancy advanced. Because the fetus requires the maternal transfer of LCPUFAs, this 

depletion in the saturated FA 18:0 may be secondary to its utilisation in order to produce 

more of these LCPUFAs for optimal fetal development. An increase in the amount of a - 

linolenic acid (18:3n3) from the to the 2"^ trimester was also demonstrated. This n3 FA 

is important for fetal growth and greater levels in mid-trimester are likely to be secondary 

to improved dietai'y intake in this study group, which consequently allows increased 

conversion to DHA (22:6n3) for placental transfer to the fetus. In this study, an increase in 

the production of DHA was observed from the to the 2"  ̂trimester, with a plateau in 

production thereafter. This data supports the mid-trimester peak in production noted by 

Montgomery and colleagues (Montgomery et al 2003) in a prospective study of maternal 

blood samples taken at 15 and 28 weeks and at delivery. The early increase in maternal 

DHA is likely to indicate mobilisation of maternal stores to facilitate preferential transfer 

to and accumulation by the fetus (A1 et al 1995). However, this data does not support 

previous findings, suggesting that production actually decreases thereafter until term (A1 et 

al 1995, Montgomery et al 2003). However, the mean gestation at sampling in the 

trimester in this study was 35.3 weeks (see table 6-1), and it is possible that placental 

transfer to the fetus is not maximal until later in the 3'^ trimester, when a decline would 

then be noted in DHA. Different methods of correction for BMI may account for this 

difference in pattern of maternal DHA in the 3‘̂  trimester; Montgomery and colleagues 

(Montgomery et al 2003) used subjects ‘similai' in anthropometry’ but did not adjust for 

BMI, as was carried out in the present study. Similarly, in the study by A1 et al, subjects 

were not matched for BMI. At very least, the ‘plateau’ demonstrated in DHA in the 3‘̂  

trimester in this study indicates that maternal levels cannot be sustained and that fetal 

accretion occurs at the expense of maternal stores of DHA. Although production of AA 

(20:4n6) was not significantly altered as gestation advanced, a trend towards a reduction in 

the 2"^ trimester compared to the trimester was noted [T1 13.67 (2.52) vs T2 12.72 

(2.22), p=0.06j. This data supports the previous findings of A1 and colleagues (A1 et al 

1995) who demonstrated relative reductions in AA during pregnancy, and indicates 

placental transfer to the fetus.

The total percentage of all saturated FAs, unsaturated FAs, monounsaturated FAs and 

PUFAs were unchanged during uncomplicated pregnancy. This overall balance in EMFA 

status as pregnancy advances may indicate that production of precursor FAs is altered to
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counteract any reductions in FAs that are secondary to the placental transfer to the fetus, 

thereby keeping the overall state relatively stable. This may also indicate that, in our study 

group, maternal intake of essential FAs is adequate to prevent observed declines in PUFAs. 

In this West of Scotland population, an increase in total n3 FAs was observed between the 

and 2"^ trimesters, which may be interpreted as a maternal response to the inflammatory 

state of advancing gestation, to provide the n3 beneficial functions within the vascular 

system, as an anti-inflammatory mediator and to provide the fetus with n3 FAs.

In this population, elongase activity was observed to decrease with advancing gestation, 

reflected in the reduction in 18:0 production from 16:0. A generalised reduction of 

elongase would result in reduced proportions of long chain and polyunsaturated fatty acids. 

This down-regulation of an enzyme involved in the addition of carbon atoms would result 

in a shorter-chain and more saturated fatty acid profile and may be considered to reflect the 

state of insulin resistance seen with advancing gestation. Delta 9 desaturase activity 

increased from the U' to the 2"^ trimester, which may be a response to the reduction 

observed in 18:0, via a maternal metabolic drive to produce more LCPUFAs by converting 

18:0 to the more unsaturated 18:ln9. A reduction in delta 5 desaturase activity was 

demonstrated in the 2"^ compared with the trimester of pregnancy. This could be a 

consequence of reduced availability of the relatively unsaturated precursors of the delta 5 

desaturase enzyme, secondary to the reduced elongase activity. Again, this may reflect the 

insulin resistant state of advancing gestation.

One of the limitations of this study is the uncertainty regarding the optimal time at which 

to compai'e erythrocyte membrane fatty acid composition with plasma markers of insulin 

resistance. In this study, plasma samples were compared with membrane composition in 

the same trimester, although it may be prudent to consider examining plasma values in one 

trimester with erythrocyte membrane composition at the subsequent trimester (or vice 

versa), as there will inevitably be some delay in the influence of the plasma values on the 

membrane composition. For example. W olf and colleagues (Wolf et al 2002) found a 

relationship between 1®‘ trimester SHBG levels and the development of PET in the 3̂^̂ 

trimester. In this study, repeated tests were performed on the individual samples, and a p 

value of <0.005 was considered significant in the longitudinal study, to reduce the 

possibility of chance associations. However, it must be considered that these two 

limitations may have an influence on the reported associations. For example, in the 

trimester, an increase in the inflammatory marker CRP was related to a reduction in 18:0. 

This finding may be related to chance but could also be inteipreted as a result of an 

increased production of longer chain more unsaturated fatty acids, which seems counter
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intuitive. This result may also simply indicate that in the 2"  ̂trimester, 18:0 is a poor 

indicator of inflammation in the pregnant state. However, increasing TG levels were 

associated with a reduction in elongase activity. This is an interesting result as the 

recognised dysiipidaemia of pregnancy is evident by the 2"  ̂trimester and this increase in 

TG levels is associated with a reduction in an enzyme that may be considered to be 

associated with increased insulin sensitivity. It may be considered also, that elongase is a 

reasonable marker of insulin resistance and dysiipidaemia in the 2̂ ^̂  trimester of 

pregnancy. Elongase was not correlated with HOMA levels in the 2"^ trimester, which may 

highlight the problems associated with measures of insulin resistance in pregnancy, but 

which may also be related to the aforementioned uncertainty of timing of comparisons.

One might speculate that a better comparison may be made between 2"*̂  trimester HOMA 

levels and 3̂  ̂trimester elongase activity. A systematic examination of relationships 

between plasma markers and fatty acids between the trimesters is yet to be performed.

The positive association between maternal fasting insulin levels and the anti-inflammatory 

n3 FA DHA in the 3'"̂  trimester is another counter-intuitive finding, as it is recognised that 

insulin resistance is associated with relative reductions in PUFAs including DHA in the 

non-pregnant state, as discussed in the introduction. From this data, it is possible that this 

relationship is not easily demonstrable in erythrocyte membranes in pregnancy, or that it is 

simply associated with small sample size. The lack of association between the FAs and 

inflammatory markers may suggest that FA status is not a good predictor of inflammation 

in the 3‘̂  trimester of pregnancy. The correlations between TG and increasing proportions 

of monounsaturated fatty acids and a reduction in elongase activity further demonstrates 

the dysiipidaemia of pregnancy reflected in fatty acid status.

In the case control study of pregnancies complicated by PET or IUGR, an elevation of the 

relatively saturated fatty acids 14:0, 16:0 and 18:ln9 was demonstrated in PET, as 

proposed. This is likely to reflect the exaggerated state of insulin resistance seen in PET 

and it should be considered that these fatty acids might be useful as markers of insulin 

resistance in the 3‘̂  trimester of pregnancy. It is interesting to note that, although not 

significant, 16:0 and 18:ln9 were increased from the to the 2"^ trimester in the 

longitudinal study. These findings further support the suggestion that these fatty acids 

might identify subjects at increased risk of the complications of exaggerated insulin 

resistance in pregnancy, in particular PET, and may suggest that the changes are already 

demonstrated in the maternal erythrocyte membranes by the 2"^ trimester. The significant 

reduction in average fatty acid chain length seen in PET may indicate decreased production 

of the intermediate fatty acids from which the beneficial LCPUFAs are produced.
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Therefore, average chain length may be considered to be a good marker for insulin 

resistance (Baur et al 1999). Similarly, the reduction in elongase activity demonstrated in 

PET suggests an accumulation of saturated fatty acids in the membranes of these subjects. 

Interestingly, elongase is significantly reduced with gestation in uncomplicated pregnancy, 

and thus its activity may be considered as a good marker for PET, related to insulin 

resistance. The erythrocyte lifespan is approximately 90 days, and therefore elongase could 

be considered to be a good research tool for PET risk, reflecting the insulin resistance 

status of the previous trimester.

As well as the previously discussed limitations, in this study, PET and IUGR subjects were 

not fasted at time of blood sampling and therefore HOMA was unreliable as a marker for 

insulin resistance. SHBG was used in this group as a mai'ker of insulin resistance as values 

are know to be reliable in the non-fasting state (Key et al 1990). However, we were unable 

to demonstrate any significant changes in SHBG levels between either PET or IUGR 

pregnancies and their controls. Although an association between first trimester SHBG 

levels and PET independent of BMI has been described (Wolf et al 2002), and SHBG 

correlates inversely with insulin resistance in the non-pregnant state (Sherif et al 1998), it 

is possible that more accurately matching for BMI will have some influence on SHBG 

variation between PET and control pregnancies because of the effect of obesity on insulin 

sensitivity. However, it should also be considered that the samples were obtained between 

35.8 and 39.6 weeks’ gestation for the PET, IUGR and controls (table 4-6), and it has been 

observed that 37 weeks’ gestation is a time when the physiological insulin resistance of 

normal pregnancy peaks and thus may reduce the difference in SHBG levels between 

normotensive and PET women. It is also important to note that studies of dietary fat and 

erythrocyte FA composition confirm that erythrocyte FA content may accurately reflect 

dietary fat intake for the preceding seven days (Romon et al 1995) or longer (von Schacky 

et al 1985). Therefore, differences in this study and in others may be reflected in the 

different diets consumed by the differing populations. It is also important to note that 

because data is expressed as % of total fatty acids in this and in other studies, an increase 

in one fatty acid will cause one or more of the others to decrease by default, which may 

make it difficult to interpret the driving source of such alterations.

In summary, this chapter has demonstrated the fatty acid profiles of pregnant women 

throughout gestation in our population and in pregnancies complicated by PET or IUGR. It 

has been possible to highlight elongase activity as a potential research marker for PET, via 

insulin resistance, demonstrable by the 2"^ trimester in the non-fasting state. This marker 

may adequately reflect the fatty acid status of the preceding trimester. Further work should
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be directed towards prospective observations of the fatty acids and enzyme activities, 

relating them to diet and the development of such disease states. Erythrocyte membrane 

fatty acid status is a controversial marker in the literature for state of insulin resistance, and 

it is known that adipose tissue obtained by needle biopsy is also an informative method for 

obtaining data on fatty acid profiles from humans (Cunnane et al 1999). Further work is 

underway to observe differences in FA status from different tissues within the same 

population, including SC adipose, umbilical cord and placenta.
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7 The contribution of genetic variation at genes 
coding for inflammatory mediators to the risk of 
PET

7.1 Introduction

For many years, a genetic contribution to PET onset has been considered, and it is 

recognised that the condition is likely to develop through an interaction of maternal, fetal 

and environmental factors (multi-factorial inheritance). A family clustering effect is 

apparent in PET. In women who had been eclamptic, the rate of PET was found to be 

higher in sisters (37%), daughters (26%) and granddaughters (16%) than in daughters-in- 

law (6%) (Chesley and Cooper 1986). A maternal susceptibility locus for PET has been 

reported on chromosome 2 (Arngrimsson et al 1999, Moses et al 2000). Many studies have 

observed the contribution of variation at different genes to the risk of PET although with 

no clear conclusions (Arngrimsson et al 1993, Currie et al 2002, Lachmeijer et al 2001, 

Livingston et al 2001). The association between PET and risk of CVD may be secondary 

to maternal genetic factors which are not only linked to PET but also CVD (Irgens et al 

2001). Primigravidity is a recognised risk factor for PET, although the mechanisms for this 

are not cleai' (Roberts and Cooper 2001). The protective effect of a previous pregnancy 

does not exclude a potential paternal genetic contribution to PET risk. As discussed in the 

introduction chapter, PET is characterised by defective placental implantation, and because 

the placenta is fetal in origin, it may be hypothesised that paternal genes are involved in 

placental development (Haig 1993). Polymorphism studies have highlighted both a 

maternally and paternally transmitted genetic predisposition to PET (Zusterzeel et al 1999, 

Zusterzeel et al 2002). Current literature would suggest that the causes of PET are 

heterogeneous, and there seems to be both a maternal and a paternal genetic predisposition 

to the condition, although the mode of inheritance is not known.

Because of the role of PPARy in adipocyte differentiation, glucose and lipid homeostasis, 

insulin resistance and trophoblast differentiation, it is clearly a candidate gene for cause or 

association for the metabolic complications of pregnancy, especially pre-eclampsia (PET). 

The PPARy gene is located on chromosome 3p25 (Beamer et al 1997), and has been 

cloned and characterised (Fajas et al 1997). Variations of the PPARy gene may affect the 

function of PPARy (Valve et at 1999). A number of genetic variants in the PPARy gene 

have been identified. Although the tissue distributions vary for different PPARy isoforms,
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they are all expressed in adipose tissue and regulate adipocyte differentiation (Fajas et al 

1997, Flier 1995, Tontonoz et al 1994, Wang et al 1999). PPARy polymorphisms include 

the highly prevalent Pro 12Ala polymorphism in PPARy2, which is associated with reduced 

transcriptional activity of PPARy in vitro and a 25% reduced risk for type 2 diabetes, 

probably mediated by increased insulin sensitivity in response to free fatty acids (Stefan et 

al 2001, Stumvoll and Haring 2002). The Pro 12Ala mutation is the result of a CCA-to- 

GCA (Proline to Alanine) missense mutation in codon 12 of exon B of the PPARy gene. 

This exon encodes the NHa-terminal residue that defines the adipocyte-specific PPARy2 

isoform. The Pro/Ala genotype has also been associated positively (Beamer et al 1998,

Cole et al 2000, Lindi et al 2001, Meirhaeghe et al 2000, Valve et al 1999) and negatively 

(Deeb et al 1998) with obesity measures, although some studies have reported no such 

associations (Evans et al 2000, Hara et al 2000, Mancini et al 1999, Mori et al 1998).

Evans and colleagues (Evans et al 2000) observed that healthy male patients who were AA 

homozygotes had significantly higher serum leptin concentrations (p=0.001), but they 

concluded that variation in the PPARy gene is unlikely to play a major role in the 

development of morbid obesity, despite the strong genetic component of risk of becoming 

obese (Chagnon et al 1997). Beamer et al found that the A allele of the P12A 

polymorphism was associated with a higher BMI in obese American Caucasians (Beamer 

et al 1998). Another group (Lindi et al 2001) has shown that the A allele is associated with 

a tendency to gain weight over time, in Finnish non-diabetic subjects in a 10-year follow- 

up study. It has been considered that inconsistencies in the literature regarding the 

association with obesity may be explained by the finding that the A allele was associated 

with lower BMI in non-obese subjects and higher BMI in obese subjects (Ek et al 1999). 

Because the natural ligands for the PPARy receptor may include fatty acids, another 

possibility is gene: nutrient interaction; evidence has indicated that BMI is higher in A 

allele carriers than in P homozygotes when dietary polyunsaturated: saturated fat ratio is 

low (Luan et al 2001). It has been reported that the Pro 12Ala substitution in PPARy2 is 

associated with lower lipoprotein lipase activity in vivo, thus providing a new target for the 

analysis of coronary artery disease (Schneider et al 2002).

The silent C161T substitution at exon 6 of the PPARy gene is associated with raised 

circulating leptin levels in obese individuals (Meirhaeghe et al 1998). The C l6 IT base 

change has also been associated with a reduced risk for coronary artery disease, 

particularly evident among patients of CT heterozygosity (p = 0.0045) (Wang et al 1999). 

Since PPARy agonists promote trophoblast differentiation and such cells increase leptin 

secretion, PPARy may be an important signal for fuel supply to the fetus. A reduction in
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PPARy transcription and its target genes may be pait of the molecular mechanism to 

accelerate maternal fat catabolism to meet fetal nutritional demands in late gestation, via 

elevations in fasting insulin levels (Krempler et al 2000). The observations that the C161T 

polymoiphism of the PPARy gene is associated with raised leptin levels in obese 

individuals (Meirhaeghe et al 1998) and that leptin and PPARy mRNA levels correlate in 

adipose tissue of obese subjects (Krempler et al 2000) confirm that PPARy is an important 

regulator of leptin production in non- pregnant individuals and that PPARy mRNA 

expression is inversely associated with cardiovascular risk factors. The relationship 

between PPARy activation and leptin secretion has not been studied in pregnancy.

The association of leptin with inflammation and fasting insulin levels has been discussed in 

Chapter 5. This data, along with the observations in the literature that leptin levels increase 

with gestation and are elevated further in PET independent of BMI (introduction, chapter 

5), indicates that variation at the genes encoding for leptin may be considered as candidate 

genes for PET risk. The leptin gene is located on chromosome 7q31. The link between 

elevated serum leptin and obesity, a known risk factor for PET, has also been discussed 

previously. Recently a common polymorphism in the promoter region of the leptin gene 

(G2548A), which influences leptin expression and therefore also influences adipose 

secretion levels of the hormone has been described (Heo et al 2002, Hoffstedt et al 2002). 

Mutations in the leptin gene are associated with defective leptin production and severe 

obesity in both animal models (Zhang et al 1994) and humans (Montague et al 1997, 

Strobel et al 1998). The G2548A genetic variant in the 5’ region of the leptin (LEP) gene is 

associated with a difference in BMI reduction following a low calorie diet in overweight 

women (Mammes et al 1998), and has also been associated with extreme obesity in women 

(Li et al 1999b). Raised leptin levels have also been associated with an increase in blood 

pressure in the animal model (Casto et al 1998, Dunbar et al 1997, Shek et al 1998), 

independent of obesity. The direct effect of leptin on blood pressure (Casto et al 1998, 

Dunbar et al 1997, Shek et al 1998) and on obesity makes it a potential candidate gene for 

hypertension and cardiovascular disease. The highly polymorphic tetranucleotide repeat 

polymoiphism in the 3’-flanking region of the leptin gene (leptin 3 ’tet) has been shown to 

have a marginal effect on obesity (Shintani et al 1996) and to be associated with 

hypertension independent of obesity (Shintani et al 2002), with a higher frequency of I/I 

genotypes in hypertensive subjects. To date, these polymorphisms have not been studied in 

PET.
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The inflammatory marker IL-IO may be reduced in the serum of PET subjects thereby 

contributing to the inflammation associated with the disease (Conrad et al 1998, Ellis et al 

2001, Hennessy et al 1999) as discussed in Chapter 5, making this another potential 

candidate gene for PET risk. The IL-10 gene is located on chromosome Iq31-q32. The 

promoter regions of the IL-10 gene contains three biallelic polymorphisms at positions -  

1082 (A/G), -819 (T/C) and -592 (A/C) base pairs from the transcription start site, which 

produces three different haplotypes, GCC, ACC and AT A (Crawley et al 1999, Edwards- 

Smith et al 1999, Turner et al 1997b). These mutations are associated with a reduction in 

IL-10 protein in concanavalin A-stimulated peripheral blood mononuclear cells (Turner et 

al 1997b). The polymoiphism at nucleotide position -1082 is thought to have an influence 

on IL-10 plasma levels (Lauten et al 2002). Patients homozygous for the IL-10 G allele 

have been shown to express high IL-10 plasma levels (Edwards-Smith et al 1999). IL-10 

genotype has been associated with liver, heart and renal transplant rejection (Bathgate et al 

2000, Middleton et al 1998, Sankaran et al 1999, Turner et al 1997a) and IL-10 gene 

promoter polymorphisms have been implicated in evaluating the severity of several 

inflammatory diseases (Crawley et al 1999, Helminen et al 1999, Mozzato-Chamay et al 

2000).

The aims of this study were;

• To study variation at genes encoding for molecules involved in the metabolic 

pathways of inflammation and insulin resistance i.e. IL-10 (A-1082G, C-819T, C- 

592A), leptin (G-2548A, and 3’ tetranucleotide repeat) and PPARy (C161T and 

Pro 12Ala), which may confer susceptibility to development of PET. A case 

(n=130) control (n=260) study was performed, and cases were matched for age, 

paiity and BMI.

• To determine whether any of the polymorphisms that affect PET risk in our 

population aie associated with maternal plasma levels of markers of inflammation 

in PET or controls, in baseline 1®̂ trimester bloods (n=34) and in 3‘̂  trimester 

bloods (n=56).

• To determine whether the polymoiphisms affect any short-term pregnancy-induced 

changes in the plasma inflammatory markers (L* to 3̂  ̂trimester change) in PET 

and controls (n=34 per group).
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# To determine whether the polymoiphisms, which affect PET risk in our population 

affect any of the maternal plasma inflammatory markers 20 years after the index 

pregnancy in PET or controls (n=36 per group).

7.2 Results

7.2.1 Genetic predictors of PET

As discussed in the methods chapter (section 2.1.4), PET and control samples were 

collected from the same West of Scotland population attending the Princess Royal 

Maternity Hospital (formally Glasgow Royal Maternity Hospital) as described in sections

2.1.1 and 2.1.2, and samples were supplemented from an archival collection, described in 

detail in Hypertension (Freeman et al 2004). The different sample numbers in each arm of 

this study is due to the combination of different study groups. No data regarding booking 

blood pressure is demonstrated in the combined group (table 7-1), as there was insufficient 

data available due to the combination of the different study groups.

Maternal baseline characteristics are reported in table 7-1. Cases and controls were 

matched for age and paiity. PET cases had higher BMI and fewer smokers than controls, 

and offspring from PET pregnancies had significantly lower birth weight centiies 

compared to controls.

Characteristic PET Controls P
(n=130) (n=260)

Age (yrs) 26.6 (5.9) 26.6 (5.8) 0.92
BMI (kg/m^) 25.3 (4.5) 23.9 (4.2) 0.01
Primigravidae n (%) 107 (82.3%) 213(81.9%) 0.93
Smokers n (%) 25 (19.2%) 88 (33.8%) 0.003
Birth weight centile 30.7 (27.8) 50.7 (29.9) <0.001

Table 7-1. Subject characteristics in PET and controls.
Statistical analysis was performed using Students f-test for continuous data and chi-square 
test for categorical data. Data is presented as mean and S.D.

The allele frequencies for IL-10 A-1Q82G, IL-10 C-189T, IL-10 C-592A, Leptin G-2548A, 

Leptin 3’tet, PPARy C l6 IT and PPARy Pro 12Ala polymorphisms within the control 

group, are shown in table 7-2.
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Polymorphism Controls (n=260)
IL-10 A-1082G Common (G) 0.56

Rare (A) 0.44
IL-10 C-189T Common (C) 0.77

Rare (T) 0.23
IL-10 C-592A Common (C) 0.78

Rare (A) 0.22
Leptin G-2548A Common (G) 0.52

Rare (A) 0.48
Leptin 3’tet Common (II) 0.58

Rare (I) 0.42
PPARy C161T Common (C) 0.87

Rare (T) 0.13
PPARy Pro 12Ala Common (P) 0.89

Rare (A) 0.11

Table 7-2. Allele frequencies of each polymorphism in the control group.

Genotype frequencies in the total group, cases and controls were in Hai’dy-Weinberg 

equilibrium for each of the polymorphisms and are shown in table 7-3. Examples of each 

polymoiphism PCR gel are shown in figure .

Frequency Number (%)
Case Control

Univariate Analysis
Odds Ratio Confidence Interval P-value

IL-10 A -10820
GO 43 (34) 87 (34) 1.00 referent value
AG 55 (43) 110(43) 1.01 0 .62-1 .65 0.96
AA 29 (23) 57 (22) 1.03 0 .58 -1 .83 0.92

IL-10 C-819T
CC 81(64) 157 (61) 1.00 referent value
CT 39 (31) 84 (33) 0.90 0 .57 -1 .43 0.66
XT 6(5) 17(7) 0.68 0 .2 9 -  1.80 0.44
IL-10 C-592A 
CC 83 (65) 161 (62) 1.00 referent value
CA 40 (31) 83 (32) 0.93 0 .59 -1 .48 0.77
AA 5(4) 14(5) 0.69 0 .24 -1 .99 0.49
Leptin G-2548A 
GG 38 (30) 71 (28) 1.00 referent value
AG 61 (48) 122 (48) 0.93 0 .57 -1 .54 0.79
AA 28 (22) 63 (25) 0.83 0 .4 6 -1 .5 0 0.54

Leptin 3’tet
II/II 27 (21) 93 (36) 1.00 referent value
I/II 73 (57) 113(44) 2J3 1.32-3.74 0.002
I/I 28 (22) 53 (21) 1.82 0 .97-3 .41 0.06

PPARy C I6IT
CC 89 (71) 194 (75) 1.00 referent value
CT 34 (27) 62 (24) 1.20 0 .73-1 .95 0.47
TT 3 G 4 ) 2 (0.8) 3.27 0 .54 -19 .9 0T5*

PPARy Pro 12 Ala
PP 98 (78) 203 (78) 1.00 referent value
AP 23 (18) 57 (22) 0.84 0 .49 -1 .44 0.88
AA 4(T 2) 0(0) N/A N/A 0.012*

Table 7-3. Genotype frequencies and univariate analysis of IL-10, leptin and PPARy 
polymorphisms in cases and controls.
Statistical analysis was performed using a chi-squared test apart from * Fisher’s Exact test.
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IL-10 592

851 bp 
61 Ibp 
469bp

240bp

CC CT L PA PP AA

Leptin G2548A

241 bp 
180bp

Leptin tet’3

Class 11 22 Ibp 
197bp

Class I 145bp 
121bp

L AA AG GG I/II II/II I/II II/II I/II I/I I/I

IL-10 1082 IL-10 819

1C 429bp

1C 429bp 

258bp

IC 429bp

IC 429bp

L AG AA GG L CT CC TT

Figure 7-1. Examples of each genotyping PCR gel. 10 = internal control for ARMS PCR.
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Using univariate analysis, the leptin 3’ tetranucleotide repeat (leptin 3’tet) and the PPARy 

Prol2A la were found to be significantly associated with the development of PET (table 7- 

3). Cartiers of the small repeat size of the leptin 3’tet polymorphism were 2.2 times more 

likely to develop PET (95% confidence interval 1.32 -  3.74, p=0.002). Homozygotes for 

the A allele of the PPARy Pro 12Ala polymorphism were at increased risk of developing 

PET (p=0.012) with all of the AA homozygotes being in the PET group.

7.2.2 Baseline maternal plasma Inflammatory markers in reiation 

to the PPARyPro12Aia and Leptin 3 ’tet poiymorphisms in 

PET and controis

7.2.2.1 Subject characteristics

First trimester inflammatory markers were available in a subset of 34 individuals per group 

from the larger cohort in 7.2.1 (Table 7-1), and baseline characteristics aie shown in table 

7-4.

Characteristic PET Control P
(n=34) (n=34)

Age (years) 27.7 (4.47) 28.2 (4.35) 0.66
BMI (kg/m^) 26.0 (4.33) 24.3 (4.59) 0.15
Booking BP (systolic, mmHg) 113(10) 110(12) 0.36
Booking BP (diastolic, mmHg) 69 (9) 66(10) 0.11
Gestation at sampling (weeks) 10.7 (2.2) 10.4 (2.3) 0.57
Smokers n (%) 7 (21%) 16 (47%) 0.03
Primigravidae n (%) 23(62% ,) 24 (71%) 0.79
Birth weight centile 34.7 (28.0) 51.2 (33.5) 0.03

Table 7-4. Subject characteristics in PET and controls in 1®‘ trimester study.
Statistical analysis was performed using Students Mest for continuous data and chi-square 
test for categorical data. Data is presented as mean and S.D. BP = blood pressure.

There were no differences in age, booking BMI, gestation at sampling, booking systolic or 

diastolic blood pressure or parity. As expected, the PET group had significantly fewer 

smokers (p=0.03) and offspring had significantly lower birth weight centiies at delivery 

(p==0.03). Subject characteristics were similar to those in the larger cohort (table 7-1).
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7,2.2.2 Pro12Ala PPARy polymorphism and 1®̂ trimester maternal

plasma inflammatory markers.

Because the Ala homozygotes were uncommon, all analyses were conducted comparing 

Pro homozygotes with Ala allele carriers.

There were no significant differences in first trimester maternal plasma levels of ICAM,

VC AM, IL“6, IL-10, T N Fa or CRP in common homozygotes (PP) or rare-allele carriers 

(PA/AA) in either PET or control groups (tables 7-5 and 7-6).

PET group PA/AA PP P
(n=6) (n=26)

ICAM (ng/mL) 200.3 (28.0) 197.8 (94.2) 0.91
VCAM (iig/mL) 310.0 (82.1) 284.6 (62.8) 0.50
IL-6 (pg/mL) 1.35 (0.35) 1.69 (2.32) 0.92
TN Fa (pg/mL) 1.47(1.15) 1.41 (1.05) 0.70
IL-10 (pg/mL) 1.28(1.03) 1.88(1.74) 0.63
CRP (mg/L) 4.56 (3.30) 4.00 (3.85) 0.15

Table 7-5. Baseline maternal plasma inflammatory markers in common homozygotes and 
rare-allele carriers of the Pro12Ala PPARy polymorphism, in PET.
Statistical analysis was performed using Students f test, on log transformed data for IL-6, 
TNFa, IL-10 and CRP, and data are presented as mean and SD.

Control group PA/AA PP P
(n=12) (n=21)

ICAM (ng/mL) 212.8 (73.8) 180.0 (51.1) 0.19
VCAM (ng/mL) 310.8(78.7) 283.1 (51.4) 0.29
IL-6 (pg/mL) 1.06 (0.57) 1.31 (0.87) 0.31
TN Fa (pg/mL) 1.34 (0.86) 2.53 (2.65) 0.60
IL-10 (pg/mL) 1.05(1.29) 2.19(1.74) 0.15
CRP (mg/L) 2.79 (2.58) 3.30 (2.69) 0.73

Table 7-6. Baseline maternal plasma Inflammatory markers in common homozygotes and 
rare-allele carriers of the Pro12Ala PPARy polymorphism, in controls.

Statistical analysis was performed using Students f test, on log transformed data for IL-6,
TNFa, IL-10 and CRP, and data are presented as mean and SD.
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7.2.2.3 Leptin 3’tet polymorphism and trimester maternal
plasma inflammatory markers.

There were no significant differences in first trimester maternal plasma levels of ICAM, 

VCAM, IL-6, IL-10, TN Fa or CRP in common homozygotes (IFII), heterozygotes (IFII) 

or rare homozygotes (FI) in the PET group (table 7-7).

PET group FI FII IFII P
(n=4) (n=22) (n=8)

ICAM (ng/mL) 284.00 (220.84) 192.09 (42.76) 168.25 (25.44) 0.06
VCAM (ng/mL) 268.75(120.51) 296.59 (58.15) 271.88 (51.13) 0.55
IL-6 (pg/mL) 1.45 (0.55) 1.81 (2.52) 1.34 (0.47) 0.96
TN Fa (pg/mL) 2.05 (2.12) 1.31 (1.13) 1.98 (0.77) 0.28
IL-10 (pg/mL) 2.60 (2.09) 1.60(1.69) 1.94(1.24) 0.46
CRP (mg/L) 4.35 (2.49) 4.16(4.16) 4.06 (2.57) 0.64

Table 7-7. Baseline maternal plasma inflammatory markers in common homozygotes, 
heterozygotes and rare homozygotes of the Leptin 3’tet polymorphism, in PET.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL- 
10 and CRP.

However, in the control group, first trimester levels of maternal plasma VCAM were 

significantly different between the groups (p=0.04) (table 7-8 and figure 7-1); maternal 

VCAM was significantly higher in FI allele carriers compared with IFII allele carriers 

(p=0.05, post hoc students t test).

Control group FI FII IFII P
(n=4) (n=20) (n=9)

ICAM (ng/mL) 163.00 (27.76) 195.00 (66.30) 198.00 (62.22) 0.61
VCAM (ng/mL) 366.25 (54.98) 285.50 (46.96) 277.78 (79.97) 0.04
IL-6 (pg/mL) 1.43 (0.85) 1.24 (0.87) 1.11 (0.59) 0.78
T N Fa (pg/mL) 1.80(1.58) 1.79 (2.03) 2.91 (2.86) 0.69
IL-10 (pg/mL) 1.87(1.97) 1.66(1.45) 2.09 (2.16) 0.90
CRP (mg/L) 3.52 (3.43) 3.57 (2.79) 1.94(1.58) 0.70

Table 7-8. Baseline maternal plasma inflammatory markers in common homozygotes, 
heterozygotes and rare homozygotes of the Leptin 3’tet polymorphism, In controls.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL-
10 and CRP.
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Figure 7-2. Maternal plasma VCAM levels In PET and control subjects, in common 
homozygotes, heterozygotes and rare homozygotes of the Leptin 3’tet polymorphism.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL- 
10 and CRP.

7.2.3 Third trimester maternal plasma Inflammatory markers In 

relation to the PPARyPro12Ala and Leptin 3 ’tet 

polymorphisms In PET and controls

7.2.3.1 Subject characteristics

Third trimester inflammatory markers were available in a subset of 56 individuals per 

group from the larger cohort in 7.2.1 (Table 7-1), and baseline characteristics are shown in 

table 7-9.

Characteristic PET Control P
(n=56) (n=56)

Age (years) 28.37 (5.40) 28.61 (5.300 0.81
BMI (kg/m^) 26.78 (4.58) 25.48 (5.09) 0.17

Booking BP (systolic, mmHg) 133 (27) 118(17) 0.001
Booking BP (diastolic, mmHg) 83(18) 68(11) <0.001
Gestation at sampling (weeks) 34.40 (5.05) 32.18 (4.29) 0.01
Smokers n (%) 11 (20%) 22 (39%) 0.03*
Primigravidae n (%) 39 (70%) 41 (73%) 0.68*
Birth weight centile 29.6 (26.2) 51.6 (31.9) <0.001

Table 7-9. Subject characteristics in PET and controls in 3'̂ *' trimester study.

Statistical analysis was performed using Students f-test for continuous data and chi-square 
test for categorical data*. Data is presented as mean and S.D.
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There were no significant differences in maternal age, booking BMI, or parity. Gestation at 

sampling, which was performed immediately prior to delivery, was significantly later in 

the PET group (p=0.01). Booking systolic and diastolic blood pressure was significantly 

elevated in the PET group (p=0.001 and p<0.001 respectively). As expected, the PET 

group had significantly fewer smokers (p=0.03) and offspring had significantly lower birth 

weight centiles (p<0.001). Again, subject characteristics were similar to those in the larger 

cohort (table 7-1).

7.2.3.2 Pro12Ala PPARy polymorphism and 3rd trimester maternal 

plasma inflammatory markers.

In the PET group, maternal plasma CRP levels were significantly higher among the rare 

allele carriers (PA/AA) than in the common homozygotes (p=0,04) (table 7-10 & figure 7- 

2). There were no other significant differences in plasma inflammatory markers in this 

group (table 7-10).

PET group PA/AA PP P
(n=14) (n=43)

ICAM (ng/mL) 198.9 (32.3) 199.9 (66.2) 0.94
VCAM (ng/mL) 343.0 (73.1) 315.9 (76.7) 0.25
IL-6 (pg/mL) 3.51 (3.30) 4.05 (4.76) 0.90
TN Fa (pg/mL) 2.02 (0.68) 2.30 (2.18) 0.59
IL-10 (pg/mL) 4.22 (8.96) 2.59(1.78) 0.86
CRP (mg/L) 7.27 (6.28) 6.41 (6.04) 0.04

Table 7-10. Third trimester maternal plasma inflammatory markers in common homozygotes 
and rare-allele carriers of the Pro12Ala PPARy polymorphism, in PET.
Statistical analysis was performed using Students f test, on log transformed data for IL-6, 
TNFa, IL-10 and CRP, and data are presented as mean and SD.
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Figure 7-3. Maternal plasma CRP levels in PET and control subjects and controls, in 
common homozygotes and rare allele carriers of the PPARy Pro12Ala polymorphism.
Statistical analysis was performed using Students f test, on log transformed data for IL-6, 
TNFa, IL-10 and CRP.

In the control group, maternal plasm a IL-10 levels were significantly reduced among the 

rare allele carriers (PA/AA) compared with the common homozygotes (p=0.02) (table 7-11 

& figure 7-3). There were no other significant differences in plasma inflammatory markers 

in this group (table 7-11).

Control group PA/AA PP P
(n=16) (n=41)

ICAM (ng/mL) 209.1 (74.3) 173.8 (43.6) 0.09
VCAM (ng/mL) 331.2 (73.4) 310.6 (89.7) 0.39
IL-6 (pg/mL) 1.93 (0.97) 2.75 (3.56) 0.66
T N F a  (pg/mL) 2 .13(1 .46) 2.99 (2.98) 0.74
IL-10 (pg/mL) 1.53 (1.34) 2.50 (2.22) 0.02
CRP (mg/L) 2.99 (2.06) 3.90 (3.48) 0.49

Table 7-11. Third trimester maternal plasma inflammatory markers in common homozygotes 
and rare-allele carriers of the Pro12Ala PPARy polymorphism, in controls.
Statistical analysis was performed using Students f test, on log transformed data for IL-6,
TNFa, IL-10 and CRP, and data are presented as mean and SD.
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Figure 7-4. Maternal plasma IL-10 levels in PET and control subjects, in common 
homozygotes and rare allele carriers of the PPARy Pro12Ala polymorphism.
Statistical analysis was performed using Students f test, on log transformed data for IL-6, 
TNFa, IL-10 and CRP.

7.2.3.3 Leptin 3’tet polymorphism and 3rd trimester maternal 

plasma inflammatory markers.

In the PET group, there were no significant alterations in maternal plasma inflammatory 

markers in different allele carriers of the leptin 3 ’tet polymorphism (table 7-12).

PET group FI FII IFII P
(n=13) (n=3I) (n=12)

ICAM (ng/mL) 194.83 (51.81) 192.62 (49.59) 219.30 (84.09) 0.42
VCAM (ng/mL) 354.42 (67.32) 309.31 (75.51) 308.55 (83.62) 0.18
IL-6 (pg/mL) 3.03(1 .31) 4.56 (5.47) 3.01 (2.71) 0.48
T N F a (pg/mL) 2.53(1 .90) 2.05 (2.13) 2 .70(1 .01) 0.12
IL-10 (pg/mL) 4.29 (9.26) 2.76(1 .92) 2.31 (1.81) 0.42
CRP (mg/L) 7.70 (6.46) 7.04 (6.37) 4.98 (4.93) 0.35

Table 7-12. Third trimester maternal plasma inflammatory markers in common 
homozygotes, heterozygotes and rare homozygotes of the Leptin 3’tet polymorphism, in 
PET.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL- 
10 and CRP, and data are presented as mean and SD.

Similarly, in the control group, there were no significant alterations in maternal plasma 

inflammatory markers in different allele carriers of the leptin 3 ’tet polymorphism (table 7- 

13).



Vanessa Rodie, 2005 Chapter 7, 206

Control group FI FII IFII P
(n=9) (n=29) (n=19)

ICAM (ng/mL) 177.35 (45.13) 182.30 (47.83) 190.93 0.83
VCAM (ng/mL) 309.57 (39.31) 314.66 (85.93) 323.61 (101.29) 0.92
IL-6 (pg/mL) 2.98 (2.48) 2.06(1.54) 3.01 (4.72) 0.48
TN Fa (pg/mL) 1.63 (0.77) 2.60 (2.55) 3.50 (3.20) 0.36
IL-10 (pg/mL) 1.70(1.68) 2.46 (2.39) 2.12(1.65) 0.26
CRP (mg/L) 3.71 (3.15) 3.75 (3.62) 3.45 (2.46) 0.83

Table 7-13. Third trimester maternal plasma inflammatory markers in common 
homozygotes, heterozygotes and rare homozygotes of the Leptin 3’tet polymorphism, in 
controls.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL- 
10 and CRP, and data are presented as mean and SD.

7.2.4 First to third trimester changes in maternal plasma

Inflammatory markers In relation to the PPARyPro12Ala and 

Leptin 3 ’tet polymorphisms In PET and controls 

7.2.4.1 Subject characteristics

First and third trimester samples were available for plasma inflammatory markers in 34 

individuals, using the same subset as that used for the first trimester (baseline) study in 

section 7.2.2.1, and thus demographics are the same as those in section 7.2.2.1 and table 7- 

4.

The difference between F ‘ and 3‘̂  trimester values of each of the inflammatory markers 

was calculated by subtraction of the trimester sample from the 3̂  ̂trimester sample.

7.2.4.2 Pro12Ala PPARy polymorphism and 1®* to 3rd trimester 

changes in maternal plasma inflammatory markers.

In PET subjects, the change in IL-6 from the F ‘ to the 3̂  ̂trimester demonstrated a trend 

towards increased levels in the common homozygotes (PP) compared to the rare allele 

carriers (PA/AA) (p=0.05) (table 7-14 and figure 7-4).
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PET group PA/AA PP P
(n=6) (n=28)

ICAM (ng/mL) 9.7(17.6) 4.0 (75.5) 0.73
VCAM (ng/mL) -23.3 (43.9) 9.2 (89.0) 0.21
IL-6 (pg/mL) 0.52 (0.66) 1.51 (2.10) 0.05
T N Fa (pg/mL) 0.52 (0.46) 0.74(1.51) 0.53
IL-10 (pg/mL) 0.43(1.29) 0.85 (1.85) 0.53
CRP (mg/L) 0.83 (4.69) 1.63 (5.67) 0.73

Table 7-14. Maternal plasma inflammatory marker changes from the 1®* to the 3̂ ** trimester in 
common homozygotes and rare-allele carriers of the Pro12Ala PPARy polymorphism, in 
PET.
Statistical analysis was performed using Students f test on raw data, and data are presented 
as mean and SD.
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Figure 7-5. Maternal plasma IL-6 levels in PET and control subjects, in common 
homozygotes and rare allele carriers of the PPARy Pro12Ala polymorphism.
Statistical analysis was performed using Students f test.

In the control group, there were no significant differences in F* to 3"̂  ̂trimester changes in 

the plasma inflammatory markers based on the PPARy Pro 12Ala polymorphism (table 7- 

15).

Control group PA PP P
(n=12) (n=22)

ICAM (ng/mL) -14.5 (38.5) 2.2 (38.1) 0.24
VCAM (ng/mL) -10.0 (71.8) -24.8 (82.7) 0.60
IL-6 (pg/mL) 0.46 (0.59) 0.17(1.36) 0.41
TN Fa (pg/mL) 0.60(1.28) 0.73(1.86) 0.81
IL-10 (pg/mL) 0.69 (0.96) 0.71 (1.73) 0.97
CRP (mg/L) 0.15(1.49) 0.33 (3.77) 0.85

Table 7-15. Maternal plasma inflammatory marker changes from the F* to the 3̂ ** trimester in 
common homozygotes and rare-allele carriers of the Pro12Ala PPARy polymorphism, in 
controls.
Statistical analysis was performed using Students f test on raw data, and data are presented
as mean and SD.
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7.2.4 3 Leptin 3’tet polymorphism and 1®* to 3rd trimester changes

in maternal plasma inflammatory markers.

Ill PET subjects, changes in IL-10 levels from the F* to the 3'^ trimester differed 

significantly between the groups (p=0.02, ANOVA) (table 7-16); the difference was most 

notable between the FI allele carriers [-1.38 (1.84) pg/ml] and the FII carriers [1.15 (1.43) 

pg/ml, p=0.08, post hoc students t test].

PET group FI FII IFII P
(n=4) (n=22) (n=8)

ICAM (ng/mL) -54.50(147.71) 6.00 (31.60) 27.75 (77.65) 0.13
VCAM (ng/mL) 16.25 (127.17) -0.23 (87.13) -0.63 (27.57) 0.93
IL-6 (pg/mL) 2.13(1.78) 0.88(1.14) 1.99 (3.23) 0.25
TN Fa (pg/mL) -0.03 (0.53) 0.76 (1.60) 0.79 0.77
IL-10 (pg/mL) -1.38 (1.84) 1.15(1.43) 0.81 (1.75) 0.02
CRP (mg/L) 3.63 (5.36) 1.55 (5.22) 1,09 (6.86) 0.75

Table 7-16. Maternal plasma inflammatory marker changes from the F* to the 3̂  trimester in 
common homozygotes, heterozygotes and rare homozygotes of the Leptin 3’tet 
polymorphism, in PET.
Statistical analysis was performed using ANOVA on raw data, and data are presented as 
mean and SD.

In the control group, there were no significant differences in F  ̂to 3̂  trimester changes in 

the plasma inflammatory markers, based on the Leptin 3’tet polymoiphism (table 7-17).

Control group FI FII IFII P
(n=4) (n=20) (n=9)

ICAM (ng/mL) 0.50 (36.42) 0.10(43.19) -14.67 (28.90) 0.63
VCAM (ng/mL) -73.75 (34.25) -7.00 (76.80) -22,78 (89.86) 0.30
IL-6 (pg/mL) -0.20 (0.99) 0.38 (1.38) 0.18(0.50) 0.71
T N Fa (pg/mL) -0.65 (1.54) 0.86(1.80) 0.89(1.14) 0.23
IL-10 (pg/mL) 0.93 (0.92) 0.69 (1.62) 0.66 (1.49) 0.96
CRP (mg/L) -1.43 (1.82) 0.38 (3.80) 0.75(1.18) 0.50

Table 7-17, Maternal plasma inflammatory marker changes from the F* to the 3*̂  ̂trimester in 
common homozygotes, heterozygotes and rare homozygotes of the Leptin 3’tet 
polymorphism, in controls.
Statistical analysis was performed using ANOVA on raw data, and data are presented as
mean and SD.
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7.2.5 Inflammatory markers 20 years after pregnancy In relation to 

the PPARy Pro12Ala and Leptin 3 ’tet polymorphisms In PET 

and controls

7.2.5.1 Subject characteristics

Subject index pregnancy characteristics for the long-term study are shown in table 7-18. 

Cases and controls were selected to match, as a group, for current age and parity. All 

women at index pregnancy were primigravid, and no differences were observed in booking 

BP between cases and controls. PET women at index pregnancy had significantly higher 

BMI, lower birth weight centile, higher gestational age at sampling and lower gestational 

age at delivery. At recall, there were no significant differences in age, time since index 

pregnancy, BMI, parity or smoking status.

Characteristic PET Controls P
(n=36) (n=36)

Index pregnancy characteristics
Index age (yrs) 24.86 (5.39) 24.86 (3.90) 1.00
Booking BMI (kg/m^) 23.09 (3.92) 21.30(1.68) 0.02
Booking BP (systolic) 124(15) 119(15) 0.20
Booking BP (diastolic) 81(2) 76(11) 0.08
Primigravidae n (%) 36 (100%) 36 (100%) n/a
Gestation at sampling (weeks) 14.09 (4.24) 10.44 (4.91) 0.01
Smokers n (%) 9 (25%) 10 (27.7%) 0.79
Birth weight centile 36.0 (32.7) 58.6 (33.2) 0.009
Gestation at delivery (weeks) 35.44 (3.61) 39.11 (2.96) <0.001

Recall characteristics
Current age (years) 44.75 (6.00) 44.64 (3.22) 0.92
Time elapsed since index pregnancy (years) 19.89 (3.11) 19.66 (3.87) 0.78
Current BMI (kg/m^) 27.00 (4.69) 26.00 (3.65) 0.32
Parity n (%) 1 9 (25%) 10 (28%) 0.79

2 15 (42%) 16 (45%)
>2 10 (28%) 10 (28%)

Smokers n (%) 8 (22%) 5 (14%) 0.36

Table 7-18. Subject characteristics for long-term study.
Statistical analysis was performed using Students f-test for continuous data and chi-square 
test for categorical data. Data is presented as mean and S.D.
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7.2.S.2 Pro12Ala PPARy polymorphism and maternal plasma

inflammatory markers 20 years after pregnancy.

In the PET group, there were no significant differences in any of the maternal plasma 

inflammatory markers, based on PPARy Pro 12Ala genotype, 20 years remote from 

pregnancy (table 7-19).

PET group PA/AA PP P
(n=5) (n=29)

ICAM (ng/mL) 427.0 (235.0) 357.0(133.0) 0.55
VCAM (ng/mL) 363.2 (85.4) 421.0(152,0) 0.25
IL-6 (pg/mL) 3.18(3.85) 2.62 (2.49) 1.00
TN Fa (pg/mL) 0.88 (0.50) 1.26(1.00) 0.32
IL-10 (pg/mL) 0.78 (0.43) 1.30(1.40) 0.43
CRP (mg/L) 2.54 (4.28) 3.22 (4.51) 0.55

Table 7-19. Maternal plasma inflammatory markers in PET group by PPARy Pro12Ala 
polymorphism, 20 years remote from index pregnancy.
Statistical analysis was performed using Students f test, on log transformed data for IL-6, 
TNFa, IL-10 and CRP. Data are presented as mean and SD.

In the control group, maternal plasma ICAM levels were significantly increased in the 

common homozygotes (PP) compared with the rare allele carriers (PA/AA) (table 7-20 and 

figure 7-5). Otherwise, there were no significant differences in maternal plasma 

inflammatory markers, based on PPARy Pro 12Ala genotype, 20 years remote from 

pregnancy.

Control group PA/AA PP P
(n=5) (n=30)

ICAM (ng/mL) 217.2 (40.5) 282.0(124.0) 0.04
VCAM (ng/mL) 387.7 (68.3) 337.6 (89.2) 0.20
IL-6 (pg/mL) 3.10(2.32) 1.84(1.02) 0.33
T N Fa (pg/mL) 0.76 (0.20) 1.13 (0.78) 0.07
IL-10 (pg/mL) 1.10(0.49) 2.93 (8.96) 0.49
CRP (mg/L) 1.95 (2.11) 1.64(1.78) 0.90

Table 7-20 Maternal plasma inflammatory markers in controls, by PPARy Pro12Ala 
polymorphism, 20 years remote from index pregnancy.
Statistical analysis was performed using Students f test, on log transformed data for IL-6,
TNFa, IL-10 and CRP. Data are presented as mean and SD.
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Figure 7-6. Maternal plasma ICAM levels in PET and controls, based on Pro12 Ala genotype, 
20 years remote from pregnancy.
Statistical analysis was performed using Students f test, and data are presented as mean 
and SD.

7.2.5.S Leptin 3’tet polymorphism and maternal plasma 

inflammatory markers 20 years after pregnancy.

In the PET group, maternal plasma VCAM levels differed significantly between the 

different genotypes (p=0.03, ANOVA) (table 7-21 & figure 7-6). The greatest difference 

was between the FI genotype and the FII genotype (p=0.11, post hoc Students t test). 

Maternal plasma TN Fa levels were also significantly different between the groups 

(P=0.03, ANOVA) (table 7-21 & figure 7-7). In this case, TN Fa levels were highest 

among the FI genotype, and the greatest difference was noted between the FI and the IFII 

genotype (p=0.06, post hoc Students t test).

PET group FI FII IFII P
(n=7) (n=21 ) (n=6)

ICAM (ng/mL) 321.6(116.9) 399.7 (123.2) 306.1 (241.9) 0.27
VCAM (ng/mL) 529.0 (221.8) 367.9 (92.7) 432.9(128.8) 0.03
IL-6 (pg/mL) 2.94 (3.11) 2.76 (2.77) 2.22 (2.05) 0.81
TN Fa (pg/mL) 2.04(1.74) 1.06 (0.46) 0.73 (0.38) 0.03
IL-10 (pg/mL) 2.30 (2.51) 0.94 (0.54) 0.98 (0.73) 0.31
CRP (mg/L) 5.33 (7.08) 2.26 (3.15) 3.52 (4.35) 0.33

Table 7-21 Maternal plasma inflammatory markers in PET, by Leptin 3’tet polymorphism, 20 
years remote from index pregnancy.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL-
10 and CRP. Data are presented as mean and SD.
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Figure 7-7. Maternal plasma VCAM in PET and controls, by Leptin 3’tet polymorphism, 20 
years remote from index pregnancy.

Statistical analysis was performed using ANOVA and data are presented as mean and SD.
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Figure 7-8. Maternal plasma TNFa in PET and controls, by Leptin 3’tet polymorphism, 20 
years remote from index pregnancy.

Statistical analysis was performed using ANOVA and data are presented as mean and SD.
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In the control group, there were no significant differences in maternal plasma 

inflammatory markers between genotypes, based on the Leptin 3’tet polymorphism, 20 

years remote from pregnancy (table 7-22).

Control group FI FII IFII P
(n=8) (n=14) (n=12)

ICAM (ng/mL) 227.0 (70.7) 307.2 (155.5) 267.7 (89.7) 0.32
VCAM (ng/mL) 328.88 (75.50) 368.93 (107.02) 329.43 (72.36) 0.45
IL-6 (pg/mL) 2.01 (1.77) 2.31 (1.44) 1.65 (0.78) 0.33
T N Fa (pg/mL) 1.38(1.44) 1.16(0.38) 0.83 (0.20) 0.13
IL-10 (pg/mL) 1.23 (0.59) 1.40(1.43) 5.17(14.13) 0.86
CRP (mg/L) 1.06(1.56) 1.58(1.40) 2.35 (2.27) 0.21

Table 7-22 Maternal plasma inflammatory markers in controls, by Leptin 3’tet polymorphism, 
20 years remote from index pregnancy.

Statistical analysis was performed using ANOVA, on log transformed data for IL-6, TNFa, IL- 
10 and CRP. Data are presented as mean and SD.

7.3 Discussion

The main findings of this study were an association between the leptin 3’ tetranucleotide 

repeat, and the PPARy Pro 12Ala with the development of PET. Carriers of the small repeat 

size of the leptin 3’tet polymorphism (FII) were 2.2 times more likely to develop PET 

(95% confidence interval 1.32-3.74, p=0.002). This data is in agreement with findings of a 

small study (n=40 PET, n=39 controls) produced within another population, which were 

published during the writing of this thesis (Muy-Rivera et al 2004). Homozygotes for the 

A allele of the PPARy Pro 12Ala polymorphism were at increased risk of developing PET 

(p=0.012), all AA homozygotes being in the PET group. There were no strong associations 

between the presence of the IL-10, PPARy C 16 IT or leptin G2548A polymorphisms and 

PET risk.

This study demonstrates an increased PET risk with the PPARy Pro 12 Ala mutation (Pro to 

Ala). The frequency of the A A genotype was markedly higher in patients with PET than in 

the normotensive pregnant subjects. It is possible that in pregnancy, the P12A 

polymorphism is associated with reduced transcriptional activity of PPARy, in keeping 

with the in vitro data (Stumvoll and Haring 2002). However, this is not consistent with the 

observed reduced risk for Type 2 diabetes secondary to increased insulin sensitivity (Stefan 

et al 2001), independent of BMI. It has also been shown that the P12A genotype has no 

effect on trimester plasma inflammatory markers although in the 3̂  ̂ trimester, around 

the time of PET manifestation, there was an association between Ala 12 allele carriers and 

increasing levels of CRP in the PET group. The mechanisms by which the PPARy Ala 12
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allele could contribute to PET risk are unknown. However, this association may suggest a 

link between A-allele carriers and inflammation in increasing risk of PET in our 

population. CRP is an acute phase reactant and thus it is possible that subjects with the 

P12A mutation demonstrate an exaggerated 3*̂  ̂ trimester acute inflammatory response to 

pregnancy, which manifests as PET. Based on this theory, in A-allele carriers, 

development of PET through the inflammatory effects of PPARy rather than its insulin 

sensitising function may account for the increased PET risk despite reduced Type 2 

diabetes risk as discussed previously. However, the AA genotype has been associated both 

positively (Beamer et al 1998, Cole et al 2000, Lindi et al 2001, Meirhaeghe et al 2000, 

Valve et al 1999) and negatively (Deeb et al 1998) with obesity measures, and since BMI 

is a recognised risk factor for PET, adiposity may also account for the associations. For 

example, the relationship between the A allele and elevated BMI in an American 

population (Beamer et al 1998) may account for the association between A allele carrier 

status and increased risk of PET in the present study, via increased adiposity or related to 

weight gain in pregnancy. The evidence that BMI is higher in A allele carriers than P 

homozygotes when the dietary polyunsaturated: saturated fat ratio is low (Luan et al 2001), 

is important in this West of Scotland population who are known to have a diet high in 

saturated fat. This dietary association may also account for increased PET risk related to A 

allele carrier status in our PET study group. In this study, it should be considered that 

results might be affected by BMI differences between groups. The effects of the P12A 

polymorphism on adipose tissue metabolism should be studied further in both lean and 

obese pregnant subjects because of this variation based on BMI. Results in this study show 

that the association between A-allele carriers and increased CRP levels in PET is no longer 

apparent 20 years remote from pregnancy, suggesting that this genetic influence may not 

be important in CVD risk and may not explain the association between PET and CVD risk.

In this study, the genetic association of a microsatellite polymorphism in the leptin gene 

(leptin 3’tet) with PET was studied. The frequency of the class Fclass II genotype was 

markedly higher in patients with PET than in the normotensive pregnant subjects 

(p=0.002), and the FI genotype demonstrated a trend towards increased frequency in the 

same group (p=0.06). Previous data suggests that there is an increased association of the FI 

genotype with hypertension in the non-pregnant subject, which is independent of obesity 

(Shintani et al 2002). Support is given to this suggestion by a report on transgenic skinny 

mice, which described that chronic hyperleptinaemia lead to a significant elevation of BP 

without obesity (Aizawa-Abe et al 2000). In the present study, BMI differed between case 

and control groups. However, if the association between the FI genotype and high blood
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pressure is independent of adiposity in the non-pregnant state, then obesity may not 

account for the link between the leptin gene polymorphism (in particular, I-allele carrier 

status) and increased risk of PET. However, this leptin polymorphism may still confer 

increased susceptibility to obesity, which could account for the associations with PET risk. 

Other metabolic parameters, including inflammation, insulin resistance and 

hyperleptinaemia may be considered as links between the FII allele carrier status and PET. 

To investigate the role of inflammation as a possible connection in the association of the 

leptin gene polymorphism with PET, maternal plasma markers of inflammation were 

studied in the and 3"̂  ̂trimesters. In PET, circulating levels of the anti-inflammatory 

mai'ker IL-10 were reduced from the to the 3̂  ̂trimester in subjects with the FI genotype 

(p=0.02), whereas in the FII and IFII carriers, IL-10 levels increased with advancing 

gestation. This result, not observed in the control group, may indicate a role for 

inflammation based on I allele carrier status in the development of PET. Interestingly, in 

subjects 20 years remote from a PET pregnancy, circulating levels of VCAM and TN Fa 

were significantly different based on Leptin 3 ’tet genotype. The VCAM levels were 

significantly reduced in the group who had PET (the FII group) compared with the other 

genotypes. This may indicate that in subjects at increased risk of PET, leptin genotype has 

little influence on vascular function remote from pregnancy. In the PET group, 20 years 

after the index pregnancy, TN Fa levels also differed between the different genotypes, with 

highest circulating levels in the FI group. This finding may indicate a role foi- 

inflammation based on genotype in both PET and CVD, via the effects of TNFa. Because 

of the reports on the direct effects of leptin on blood pressure (Aizawa-Abe et al 2000, 

Casto et al 1998, Shek et al 1998), future work should concentrate on comparisons of 

circulating leptin levels based on genotype in PET. The leptin 3’tet polymorphism is 

located in the 3’-untranslated region of the leptin gene, and this polymorphism may also 

affect the expression of the leptin gene, perhaps influencing potential cA-acting regulatory 

elements. Differences in local expression of the leptin gene could account for the 

association with PET, and further studies are required to clarify this possibility.

The association of leptin and PPARy polymorphisms with risk of developing PET is 

potentially very important. As with all genetic association studies, it is essential to confirm 

the observation in an independent study population, a limitation of the present study. 

Associations within one population are subject to the confounding effects of environmental 

factors. However, our group have arranged to analyse, blind, a PET and control collection 

from an American population, in collaboration with Dr Carl Hubei, Magee W omen’s 

Research Institute, University of Pittsburgh. Should these results be confirmed, these data
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would strengthen the hypothesis that there is a role for the leptin and PPARy genes in the 

aetiology of PET. Case-control studies such as this one are at risk of producing false 

positive results due to differences in ethnicity, as allele frequencies of many genes differ 

markedly between racial groups (Plummer and Morgan, 2003 p225-235). However, by 

collaborating with the Pittsburgh group, this issue is addressed, as the latter population has 

an approximately 20% black population, which is significantly different to our completely 

Caucasian dataset. Genetic studies aie consistently performed on limited study numbers 

and lack statistical power. The small number of observations regarding rare homozygotes 

for the Pro 12Ala variant may also limit analyses. Genotyping of greater numbers of 

samples is required to confirm our findings. However, this is an understudied population, 

which adds strength to this study.

In summary, this work describes the potentially very important association between P12A 

PPARy and leptin 3’tet polymorphisms in PET risk. These associations may exert their 

influence via metabolic effects rather than on PET development directly and demonstrate 

an attractive target for studies on the metabolic mechanisms of PET. Inflammation may 

play a role in the development of PET based on PPARy genotype through transcriptional 

activity of this nuclear receptor but future studies should concentrate on associations with 

obesity, P12A genotype and pregnancy, in order to establish the role of adiposity. 

Furthermore, the reported association between PPARy P12A substitution and lower 

lipoprotein lipase activity in vivo (Schneider et al 2002) should be analysed more closely, 

perhaps looking at plasma lipid levels based on P12A genotype which may provide another 

potential mechanism for the metabolic effects of PPARy on PET risk. The leptin 3’tet 

polymorphism may exert its effect on PET through local expression of the leptin gene or 

though control of circulating levels of leptin, and further population based studies should 

concentrate on these possibilities.

In conclusion, the P12A and leptin 3 ’tet polymorphism may have a role in the aetiology of 

the metabolic abnormalities associated with the development of PET. Further genetic 

research may lead to the identification of women at high risk for PET who may 

subsequently be targeted for appropriate antenatal care, and may ultimately provide insight 

into the prevention of the condition.
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8 Discussion

Pre-eclampsia is a multi-system disorder particular to pregnancy and is characterised by 

widespread endothelial damage and dysfunction, resulting in hypertension due to 

vasoconstriction, proteinuria attributable to glomerular damage and oedema secondary to 

increased vascular permeability. Despite a decline in severe morbidity associated with 

hypertensive disorders of pregnancy in developed countries, little progress has been made 

towards the understanding of the pathophysiology, prediction and prevention of PET over 

the last 40 years. Hypotheses regarding such pathophysiology include inflammatory 

disease, endothelial derived factors, placental ischaemia, genetic predisposition, and 

immune response (Brosens 1977, Redman et al 1999, Roberts e ta l  1989). It is recognised 

that PET and lUGR are conditions that have complex underlying mechanisms involving a 

spectrum of exaggerated disturbances in maternal metabolism, and that the trigger for PET 

comes from within the placenta as the condition is resolved with delivery. Furthermore, 

PET shares many risk factors with CVD and recent data suggests that PET may be 

associated with future maternal CVD (Irgens et al 2001, Sattar and Greer 2002).

Studies into PET often concentrate on the role of a single molecule, surrogate risk marker 

or candidate gene in the aetiology of the condition. For example, recent studies have 

focused on the proposed increase in placental production of the soluble fms-like tyrosine 

kinase 1 (sFltl) receptor (Maynard et al 2003), which captures free vascular cell 

endothelial growth factor (VEGF, an angiogenic growth factor) and have proposed that this 

receptor may be involved in the development of PET. Such studies have proposed that 

strategies designed to normalize circulating free VEGF levels might be expected to halt 

progression of the disease (Luttun and Carmeliet 2003). However, much less attention is 

focused on the relationship between the proposed factors and the metabolic complications 

arising in the mother and, because of the multi-factorial nature of PET, it seems more 

likely that a combination of multiple factors underlies the condition. Although there is 

abundant data concerning the metabolic pathways and vascular function in the non

pregnant individual, there is little such data with respect to pregnancy and PET. This would 

indicate that research should focus on the combination of metabolic aberrations that occur 

in this condition.

This thesis has concentrated on the hypothesis that PET is a ‘metabolic syndrome’ that 

develops in pregnancy. PET shares many risk factors with CVD and the similarities 

between the metabolic syndrome (a range of metabolic abnormalities associated with
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insulin resistance) and PET has lead to the proposal that PET is in fact metabolic syndrome 

of pregnancy. The list of predisposing factors for PET such as obesity, dyslipidaemia and 

hypertension, are also risk factors for other endothelial disorders ineluding CVD. Women 

are more likely than men to have multiple risk factors for coronary heart disease (Lewis et 

al 1998), and for these reasons this thesis has concentrated on key mediators involved in 

the metabolic syndrome, in relation to PET, including PPAR receptor expression, 

lipoprotein metabolism, insulin resistance, inflammation and genes involved in PET risk.

PPAR receptor expression is interesting in relation to the metabolic complications of 

pregnancy as this family of nuclear receptors control some of the pathways involved in the 

metabolic syndrome, including adipocyte differentiation, the regulation of glucose and 

lipid homeostasis, fatty acid metabolism and insulin action. Animal and human models 

have highlighted a role for the PPARs in pregnancy. PPARy (Barak et al 1999, Kubota et 

al 1999) and PPARô (Barak et al 2002, Ding et al 2003) are involved in placentation, and 

PPARa, 5 and y and R X R a expression have been demonstrated in cyto- and 

syncytiotrophoblast cells (Fournier et al 2002, Tarrade et al 2001a, Tarrade et al 2001b, 

Wang et al 2002), in trophoblastic disease and hydatidiform molar pregnancies 

(Capparuccia et al 2002), and in a choriocarcinoma cell line (JEG-3) and in fetal 

endothelial cells (Schaiff et al 2000, Waite et al 2000). The results of this thesis have 

confirmed the localisation of PPARs within the placenta, in uncomplicated pregnancies 

and those complicated by PET or lUGR, and have demonstrated that PPARô expression is 

up-regulated between the and 3̂  ̂trimester indicating a role for this nuclear receptor in 

placental development. More importantly, evidence is provided that PPARô, y and RX Ra 

expression is unaltered in PET and lUGR, suggesting that changes in total placental PPAR 

expression are not involved in the pathophysiology of these conditions. However, it must 

be considered that the present study concentrated on the expression of these receptors and 

did not observe receptor activation or ligand binding within the placenta. It is possible that 

activation of these nuclear receptors via changes in circulating activator ligands might be 

altered in PET or lUGR, as suggested recently by Waite and colleagues (Waite et al 2005). 

This may be an interesting area of future research, as it is recognised that some lipids and 

fatty acids (e.g. polyunsaturated fatty acids) (Kliewer e ta l 1997) act as PPARy agonists. It 

is possible that as yet unidentified factors in pregnant serum, such as oxidised lipids, may 

act as PPARy agonists. For these reasons, PPARs may still have a role in PET or lUGR in 

the production of the metabolic derangements seen in these conditions, rather than via 

altered expression.
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In chapter 4, the relationship between maternal and fetal plasma lipid metabolism and 

paraoxonase-1 (PON-1) activity was observed in PET and lUGR pregnancies. Despite the 

minimal alterations in maternal lipid profile in the complicated pregnancies in this chapter, 

I agree with the general hypothesis that demonstrates an increased atherogenic lipid profile 

in PET. However, my data suggests that these clear changes previously described may be 

in some way related to adiposity as subjects were matched strictly in the present study for 

BMI. However, this is difficult to assess as other factors including disease severity, 

populations studied and small study numbers may play a role. Larger cohorts with control 

groups adequately matched for BMI should attempt to address whether this dyslipidaemia 

is related to obesity or an independent factor.

The fetal lipid profile described in this chapter is more interesting and novel. It has been 

hypothesised that maternal metabolic disturbances may result in similar alterations in the 

fetus. These changes in fetal metabolism may be short-term in-utero alterations in response 

to the altered placental transfer of maternal nutrients, although it should also be considered 

that these metabolic aberrations might persist in the long-term. Barker and colleagues have 

suggested that fetal adaptation to inadequate intra-uterine nutrition, secondary to either 

reduced placental function or inadequate maternal diet, results in a physiological 

programming of the fetus. This may result in insulin resistance and the metabolic 

syndrome to compensate for the sub-optimal intra-uterine environment although this 

compensatory effect may ultimately result in an increased risk of coronary heart disease 

later in life (Bai’ker 1994). Low birth weight is also associated with insulin resistance, 

hypertension, and non-insulin-dependent diabetes (NIDDM). Since low birth weight has 

been associated with an increased risk of coronary heart disease in both mother and 

offspring in adult life (Barker et al 1989, Eriksson et al 1999, Leon et al 1998), it is likely 

that there is a common underlying mechanism. It has also been proposed that genetically 

determined insulin resistance results in impaired insulin-mediated growth in the fetus as 

well as insulin resistance in adult life (Hattersley and Tooke 1999) and that low 

birthweight and cardiovascular disease may be different manifestations of the same 

insulin-resistant genotype. It has been considered that the abnormal vascular development 

during fetal life is a result of genetic insulin resistance, which is also responsible for the 

increased risk of hypertension and vascular disease (Hattersley and Tooke 1999). If fetal 

growth restriction at birth is used as a surrogate for poor intra-uterine fetal growth, it may 

be postulated that maternal or fetal metabolic par ameters, including dyslipidaemia or 

insulin resistance, may affect fetal growth. Catalano and colleagues have described a 

vicious circle of maternal insulin resistance and obesity and subsequent increased risk of 

the offspring developing adolescent obesity and type 2 diabetes, as a result of fetal
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macrosomia or overgrowth (Catalano et al 2003). However, despite these hypotheses, no 

specific mechanisms regarding fetal metabolic disturbances in relation to maternal 

metabolism have been developed, and so the fetal lipid data produced in this chapter 

provides important progress in the fetal origins of adult disease and have potential 

implications for the future cardiovascular health of the offspring.

I have also provided evidence in this thesis to suggest that the anti-oxidant PON-1 has 

reduced activity in pregnancies complicated by PET, which supports the theory that 

oxidative stress plays a role in the aetiology of this condition as well as in atherosclerosis. 

That I have reported an association between PON-1 activity and increasing fetal weight, 

birth weight centiles and placental weight in the PET group alone, adds support to the 

theory that the maternal metabolic response supports optimal fetal nutrition and 

development in the face of abnormal placentation and dyslipidaemia. Together these data 

suggest that PON-1 plays a role in the ‘metabolic syndrome’ that is PET and strengthens 

the proposed association between PET and CVD.

The inflammatory mediators involved in the maternal metabolic alterations seen in healthy 

pregnancy and pregnancies complicated by PET and lUGR are discussed in chapter 5. It is 

widely recognised that in normal pregnancy a systemic inflammatory response is evoked 

and it is proposed that PET arises in response to an extreme response with 

decompensation. Despite this, in the context of this thesis, the maternal inflammatory 

response was only minimally altered in complicated pregnancies compared with 

uncomplicated controls. Once again, it is proposed that the effect of adiposity may account 

for such extensive maternal inflammation demonstrated in PET pregnancies within the 

literature, as adipocytes are complex metabolically active cells, which release 

inflammatory mediators into the maternal circulation. Most previous research has not taken 

BMI into account when analysing such data and adiposity itself is a major risk factor for 

PET. However, as for the lipid data, it is conceded that there is some degree of exaggerated 

maternal inflammatory response in PET and that the lack of alteration in this study may be 

secondary to disease severity or sample size. However, the key finding within this chapter 

is the fetal inflammatory responses seen in offspring from mothers with PET or with 

lUGR, despite the minimal maternal metabolic changes. Once more, the fetal response 

may be attributable to intra-uterine adaptation and programming or to a genetic pro- 

inflammatory state, and has implications for the future health of not only the mother but 

also her child. However, it must also be considered that the fetal inflammatory responses 

seen in PET and lUGR are related to a stress response secondary to poor placentation, and 

it is proposed that longer-term in~utero stress in lUGR results in elevated fetal levels of
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TNFa, while a short-term, more acute 3rd trimester stress response to maternal metabolic 

aberrations results in elevated levels of fetal CRP in PET. The main observation of these 

two chapters was that maternal metabolic derangement is associated with fetal metabolic 

derangement although this has not been studied mechanistically. Further work into this 

relationship may provide insight into the effect of the fetal situation in the development of 

CVD.

Data produced in this thesis indicates that adipose tissue may be the main source of fetal 

leptin. The associations reported between the tissue and plasma metabolic parameters 

suggest that placental expression of leptin may have an effect on lipid transport to the 

fetus. These results highlight the benefits of studying global metabolic maternal and fetal 

parameters of plasma and tissue in PET and lUGR rather than concentrating on specific 

molecules or markers, which may be potentially related to these conditions.

The features of PET, including hypertension, dyslipidaemia and endothelial cell 

dysfunction, are all features of the insulin resistance syndrome (Reaven et al 1996) seen in 

atherosclerosis. The lack of validated measures of insulin resistance in pregnancy is 

discussed in chapter 6. Not only are tests such as the euglycaemic clamp, fasting insulin, 

glucose and HOMA calculation not validated in the pregnant state, but also they are 

difficult to perform within a realistic clinical situation. For example, fasting samples are 

often difficult to obtain in pregnancy, and this problem is exacerbated in emergency 

situations such as PET or lUGR when a first presentation may be associated with 

immediate need for delivery. This presents problems in obtaining good markers of insulin 

resistance for use in the reseai’ch setting, and in interpreting such data. Important research 

over the last decade has demonstrated an association between insulin resistance and 

skeletal muscle and erythrocyte membrane fatty acid lipid composition. I have proposed 

that this metabolic association may be extended to include PET, and was interested in the 

erythrocyte membrane fatty acid composition as a potential research marker of PET, via 

effects on insulin resistance. The erythrocyte itself has a lifespan of approximately 90 days, 

and it was considered that the fatty acid composition might provide a reasonable index of 

insulin resistance from the preceding trimester.

It was demonstrated in this study, that there was an increase in the more saturated fatty 

acids 14:0 and 16:0 in red blood cell membranes in PET compared with uncomplicated 

pregnancy. This work also provides evidence that elongase enzyme activity is reduced 

throughout gestation in uncomplicated pregnancy and is reduced in PET compared to 

uncomplicated pregnancy as hypothesised. These findings all demonstrate a shorter-chain.
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more saturated erythrocyte membrane fatty acid profile in PET, which may be interpreted 

as increased insulin resistance. This is a particularly important finding as it may highlight 

elongase activity as a potential reseai’ch marker of insulin resistance in the pregnant non

fasting state. I was able to report a comprehensive erythrocyte membrane fatty acid profile 

within the longitudinal and cross sectional studies, including the proportions of all of the 

fatty acids produced throughout pregnancy, including those that are negligible. This work 

provides a firm basis on which future research may build. This study agrees with the 

general pattern of the main fatty acids reported in the literature in uncomplicated 

pregnancy, in particular DHA and AA, and also demonstrates a relationship between 

maternal plasma triglyceride levels and a reduction in elongase activity. This relationship 

strengthens the suggestion that elongase may be a good marker for the metabolic 

aberrations of pregnancy, including dyslipidaemia and insulin resistance, beyond the F ‘ 

trimester.

There is no doubt that there is a familial component to the development of PET. Large 

epidemiological studies have demonstrated that there is an increased risk associated with 

first-degree relatives of affected women. Many trials involving genome-wide screening 

and identification of candidate genes have been performed, but these tend to concentrate on 

genes involved in regulation of blood pressure and placentation. Recently, more attention 

has been directed at the study of genes involved in the underlying processes involved in 

PET, including inflammation and endothelial activation. In this thesis, I have observed 

PET risk associated with genes involved in the maternal metabolic processes, which have 

an aetiological role in PET, and which are also involved in the pathophysiology of CVD. 

The PPARy Pro 12Ala and C161T polymorphisms were studied because of the function of 

PPARs in regulation of metabolism and adipocyte differentiation, and their relationship to 

CVD and the metabolic syndrome. The IL-10 genes, A-1082G, C-819T and C-592A were 

examined because of the relationship between inflammation and PET and CVD, and the 

leptin 3’tet and G2548A polymorphisms were observed due to the association of leptin 

with metabolic regulation and energy. It has been reported in this work that the PPARy 

Pro 12Ala and the Leptin 3’tet polymorphisms predict PET risk within our population. 

These associations are interesting because the link between PET risk and genes involved in 

metabolism give strength to the theory that PET is the metabolic syndrome of pregnancy. It 

is also important to realise that these genes are involved in prediction of type 2 diabetes 

and CVD risk, further highlighting the relationship between PET and CVD. However, it is 

important to confirm genetic studies within a secondary population. Similarly, it should be 

remembered that the role of these genes in PET is unclear. It is not known whether the
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PPARy Pro 12 Ala polymorphism affects the amount of PPARy expressed or whether it is 

function of the receptor that is altered. It seems likely that a polymorphism found within 

the coding area of such a gene would exert its effect on the way in which the receptor 

functions. However, if the polymorphism affects, for example, ligand binding at the 

receptor, then the expression of the receptor is not as important as its ability to function in 

conditions such as PET and lUGR. Further work into PPARy receptor function may help to 

clarify the role of the polymorphism, possibly looking prospectively at macrophage 

function with respect to PPARy ligand binding and adipocyte lipolysis in trophoblast 

culture studies in relation to genotype.

The leptin 3’tet polymorphism was also associated with PET risk in this study. Maternal 

plasma leptin levels are increased in uncomplicated pregnancy, possibly secondary to 

placental production or increased adipose production. This is most likely a physiological 

response in pregnancy to control placental and fetal growth and to regulate energy and 

metabolism. In this study, maternal leptin genotype is assessed and therefore placental 

derived leptin is irrelevant as this is fetal in origin. If maternal leptin genotype were of 

importance, one would assume that it is related to maternal adipose leptin production. As I 

have previously suggested, maternal leptin by its association with maternal BMI may 

mediate risk of PET.

I have suggested previously that placental leptin may have an important role in increasing 

placental transport of lipids. In this case, the fetal leptin genotype would be of paramount 

importance. To some degree, maternal genotype will reflect fetal genotype and it is 

possible that a weak association of maternal genotype with risk of PET may be reflecting a 

stronger association with fetal genotype. It is unknown whether the maternal or fetal 

genotype is paramount for the development of PET. Ideally, both genotypes should be 

measured in conjunction. The leptin 3’tet polymorphism is located in the 3’flanking region 

of the gene, and therefore does not directly affect the leptin coding region. However, 

regulatory elements in adjacent areas may well affect gene transcription rates or 

alternatively the leptin 3’tet polymorphism may be in linkage dysequilibrium with an 

unknown gene that also affects PET. It is important to note the potential effects of both of 

these polymorphisms on obesity, and the link between adiposity and PET risk. Further 

work would confirm these findings in a larger population, precisely matched for BMI.

The metabolic consequences of PET and perhaps lUGR affect both mother and offspring, 

in the short and long term. The data produced in the context of this thesis aims to 

concentrate on these conditions as multi-system metabolic syndromes, rather than
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employing the reductionist approach of studying one molecule or gene, which is 

inappropriate for multi-factorial disease. The results produced provide robust data based on 

an attempt to reveal the underlying systemic abnormality that results in the abnormal 

maternal response. The three main hypotheses regarding the development of metabolic 

disturbance include insulin resistance, endothelial dysfunction and oxidative stress. 

However, it is unlikely that these mechanisms will function independently, rather that they 

form a complex group of inter-related processes, governed phenotypically by an 

underlying genetic influence. For example, conditions associated with insulin resistance, 

including polycystic ovarian syndrome (PCOS) and obesity, are also associated with an 

increased risk of PET and CVD later in life. This suggests that insulin resistance may be 

considered a reasonable marker of PET, but as for the metabolic syndrome, it is not known 

whether the insulin resistance is the cause of these conditions or an effect of the altered 

metabolic state associated with another underlying pathology, for example, obesity.

Recent data from Sattar and Greer (Sattar et al 2003) suggests that the link between PET 

and CVD may be explained by the presence of pre-pregnancy metabolic mediators, and it 

has been proposed that advancing age or even pregnancy stimulates a metabolic stressor, 

which steps up the baseline level of risk of CVD. The data produced within this thesis has 

attempted to study the overall effects of these potential ‘metabolic stressors’ and to 

describe possible markers for these metabolic changes, for example via fatty acids and 

enzyme activities involved in their metabolism. This is a particularly sound example, as 

these molecules and enzymes are not simply static molecules, but provide a metabolic 

‘picture’ of the preceding three months. I have preliminary data, not included in this thesis, 

to suggest that fatty acid changes in the mother may have an effect on those of the fetus, 

and this data implicates insulin resistance in maternal and fetal metabolic abnormalities.

Why is this work relevant to the expanding field of PET research? The metabolic 

syndrome, CVD and PET are all associated with obesity, a major health problem within 

Western society. There is abundant evidence regarding the effects of obesity on 

metabolism, and these effects are similar although perhaps less obvious in metabolic 

complications of pregnancy. As the obesity epidemic increases, so does the incidence of 

deranged metabolic function and CVD risk, and considering the similarities, the incidence 

of PET seems sure to follow suit. Metabolic derangement not only affects maternal 

cai'diovascular health, but is also likely to have long-term implications for the offspring. 

This thesis presents robust data highlighting obesity-related problems in pregnancy and 

provides insight into potential preventative measures, protecting the future health of the 

nation. Identification and modification of pre-pregnancy risk factors, such as obesity, may
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aid the primary prevention of PET. If insulin resistance underlies PET, then one may 

contemplate pre-pregnancy or antenatal therapy with such interventions as lifestyle advice 

or even insulin sensitising agents. Metformin is an insulin sensitising agent used 

commonly in the treatment of PCOS and results demonstrate an associated increase in 

fertility in this cohort (Barbieri 2003). More recently, the insulin sensitising PPARy 

agonists are being employed for this condition, and results on incidental fertility are sure to 

be reported in due course. I have provided evidence that PPARs may have a role in 

placental function, and it should be considered that PPARy agonists might be used for the 

primary prevention of the underlying insulin resistance of PET in the future. Based on my 

thesis, other such therapies might include dietary fish oils, with recent interest in this area 

of research increasing. Furthermore, as oxidative stress is linked to the metabolic syndrome 

and to PET, ongoing large multi-centre anti-oxidant trials in PET may produce interesting 

results for potential therapeutic measures.

This thesis should stimulate future work into the effects on the offspring delivered of 

mothers with the metabolic complications of pregnancy, in particular PET and lUGR, 

providing valuable information regarding the future health and CVD risk of our society. 

Such data should include anthropometric measures to help elucidate further the 

associations between birth characteristics and subsequent risk of CVD. The content of this 

thesis reports important data regarding maternal fatty acid status, and large prospective 

adequately powered clinical trials should now be conducted, concentrating on possible 

predictive capacity of 1st and/or trimester fatty acids or enzyme activities for the 

development of PET. It may be interesting to examine the relationship between erythrocyte 

fatty aeid composition and that of other tissues, in particular, adipose tissue which is 

implicated in PET and CVD. Similarly, this thesis reveals the paucity of data regarding 

placental lipoprotein transport, and provides data which suggests that transfer of lipids 

across the placenta may be altered in the metabolic complications of pregnancy, which 

may in turn have implications for the future health of the offspring. Studies should now 

concentrate on demonstrating the mechanisms of placental transport of lipids, and any 

alterations in these mechanisms in pregnancies complicated by PET. It may also be prudent 

to consider conducting larger population studies on PON-1 activity in PET, based on 

genotype, in an attempt to determine whether PON- activity alone is more important than 

genotype related alterations. Finally, it was not possible to determine protein expression of 

placental and adipose inflammatory mediators within the time scale of this work, and it 

seems important to follow-up on this, as no direct correlation was noted between available 

protein expression of placental PPARy and TaqMan data which may be related to the small
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groups studied. Because of the problems encountered during the western analyses, it was 

considered that the molecular weights of the inflammatory marker proteins may be too 

small to use Trizol extraction, and it may be necessary to use placental homogenates or 

ELISA methods to further develop a successful technique.

In conclusion, this data provides further evidence that multiple metabolic alterations occur 

in PET and DJGR, and demonstrates that these changes are not only confined to the mother 

but are also evident in the fetus. These perturbations in fetal lipids and inflammatory 

markers may be relevant to fetal programming of adult vascular disease. Although PPAR 

expression is unaltered in PET, these receptors may still have an influence on the aetiology 

of the condition through genetic effects on metabolism, as the PPARy PI2A  polymorphism 

appears to be related to increased risk. A potential research marker for PET, elongase 

enzyme activity, has been described and this has its action via insulin resistance. Adipose 

tissue has been highlighted as a potential source of inflammatory mediators, and further 

large studies should examine the adipocytes of women with PET to determine the origin of 

elevated fatty acids and leptin levels. It seems likely from this data that multiple interacting 

metabolic processes are involved in the aetiology of PET and that these processes are 

directly related to the development of CVD later in life. An understanding of the genetic 

and metabolic mechanisms involved in PET may inform strategies for identification and 

intervention in individuals at risk. Metabolic disorders have mulitfactorial origins in which 

both genetic and environmental factors are thought to be involved (Kahn 1994), and work 

produced by this thesis demonstrates the importance of looking at PET as a metabolic 

disorder rather than searching for a single candidate gene or molecule to account for 

aetiology.
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