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Abstract
Whole-cell (WCV) and acellular (ACV) pertussis vaccines play an essential role in 

immunization programs for the prevention of the disease pertussis (whooping cough). 

Pertussis toxin (PT), one of the Bordetella pertussis toxins, is a major component in both 

WCV and ACV. The histamine sensitisation test (HIST) is a toxicity test, in mice, used to 

assure the absence of significant residual PT activity in pertussis vaccines. HIST is a lethal 

test and large variations in test performance have been observed. The objective of this 

project was to investigate the gene expression of selected cell lines treated with PT and 

detoxified pertussis toxin (dPT) using microarray technology and, from the expression 

profiles obtained, to identify gene markers of the toxicological effects of PT which may form 

the base to develop an in vitro assay as an alternative to HIST. Two cell types were 

investigated: human umbilical vein endothelial cells (HUVEC) and bronchial epithelial cells 

(NL20). Based on morphological and cytotoxicity studies, the cells were treated with PT and 

dPT at a concentration of 2.5 pg/ml for 6h. The gene expression profiles obtained lead to the 

speculation that PT could play an important role in the induction of the cell-mediated 

immunity (up-regulation of: galectin 3, small inducible cytokine subfamily 20, Thy-1 cell 

surface antigen and CD63 genes) and that PT could also have an important role in the 

induction of vascular permeability (up-regulation of: platelet-derived growth factor, vascular 

endothelial growth factor c) and that the effect may take place at the brain level (up- 

regulation of: glial fibrillary acidic protein, chlorine channel 3, cholinergic receptor). RT-PCR 

study needs further investigation, nevertheless, the I CAM 1 gene (specifically up-regulated 

by PT + TNF-a treatment) may serve as a gene marker of PT toxicity.In addition, data from a 

cell migration study with endothelial cells suggested that PT could be involved in 

anglogenesis. The phenotypic and genomic data presented In this study suggest that, in 

order to develop a replacement for the in vivo HIST control test, an in vitro permeability 

assay with monolayer endothelial cells may be worth investigating.
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1. INTRODUCTION
1.1. Pathogenesis of whooping cough

Bordetella pertussis is a Gram-negative bacterium and the causative agent of 

whooping cough or pertussis. The disease mainly affects young children displaying a 

protracted course that is measured in weeks. It is characterised by the development 

of vigorous paroxysmal coughing, often associated with vomiting and, occasionally, 

with brain damage. At the beginning of the 20̂  ̂ century, pertussis was a major cause 

of infant mortality worldwide. Largely due to immunization, it is presently of less 

consequence in developed countries but continues to be a major child health 

problem in developing nations (Mortimer, 1998).

The introduction of B. pertussis into the respiratory tract is followed by interaction 

with ciliated epithelial cells, likely to be dependent on the bacterial adhesins 

filamentous haemagglutinin (FHA), fimbriae, a 69-kDa protein named pertactin 

(PRN), tracheal colonization factor (TCF) and the serum resistance protein BrkA. 

Expression of these virulence factors is regulated in response to environmental 

stimuli by a two-component regulatory system encoded by the bvg genes (Uhl & 

Miller, 1995). The next step in pathogenesis is thought to be paralysis of the cilia and 

death of ciliated cells, probably mediated by a synergistic effect of tracheal cytotoxin 

(TCT) and lipopolysaccharide (LPS) via induction of interleukin-1 (IL-1) and nitric 

oxide (Flak & Goldman, 1996; 1999). This leads to the inactivation of the mucociliary 

clearance mechanism and may allow the bacteria to remain in the respiratory tract 

although it presumably triggers the severe coughing that is characteristic of pertussis. 

In addition, the expression of other virulence factors such as pertussis toxin (PT) 

(Carbonetti et al., 2003) and adenylate cyclase-toxin (ACT) causes further damage

14



and also interference with immune responses. Depending on the response of the 

patient, the infection will be cleared over time or may progress, in some cases, to 

pertussis pneumonia and possibly death (Preston & Maskeli, 2002).

1.2. Epidemiology and burden of Pertussis disease

The introduction of pertussis vaccines and their subsequent widespread use globally 

have resulted in a reduction in the incidence, morbidity and mortality of this disease 

in many countries (de Melker et al., 1997). However, globally, 20-40 million cases of 

pertussis still occur each year, 90% of which are in developing countries, and there 

are up to 400,000 fatalities each year, mostly in young infants (Forsyth et al., 2004, 

www.WHO.int/vaccines-diseases/pertussisvaccine.shtml). Furthermore, during the 

past several decades, despite high childhood vaccination coverage levels for 

pertussis vaccine, B.pertussls infection has been increasingly recognized worldwide 

as a significant cause of cough illness in adolescents and adults (MMWR, 2005). 

Overall an increased incidence of infant, adolescent and adult pertussis has been 

observed worldwide since the introduction of widespread vaccination. This is of 

concern because adolescents and adults have been identified as a source of 

transmission of pertussis to very young infants who are unimmunized or partially 

immunized and thus more vulnerable to disease-related complications and higher 

mortality. A number of hypotheses have been put forward to explain the observed 

disease resurgence, including waning natural and vaccine-induced immunity and a 

lack of natural boosting, a reduction in vaccine coverage or poor vaccine 

immunogenicity and efficacy and the emergence of new bacterial variants (Caro et 

al., 2005).
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1.3. Bordetella pertussis virulence factors

Understanding the disease, its epidemiology and in developing an optimum vaccine 

has been difficult. Many virulence factors have been purified and characterised at a 

molecular level. They can be grouped into two different categories: the adhesins and 

toxins. The major adhesins include filamentous haemagglutinin (FHA), fimbriae, a 69- 

kDa protein named pertactin (PRN), tracheal colonization factor (TCF) and the serum 

resistance protein BrkA. In addition to the adhesins, Bordetella pertussis produces a 

number of toxins, i.e. pertussis toxin (PT), adenylate cyclase toxin (ACT), 

dermonecrotic toxin (DNT), tracheal cytotoxin (TCT) and endotoxin 

lipopolysaccharide (LPS). The cellular location of those, and some other, virulence 

factors and their mechanisms of secretion are shown in Figure 1.

16



Td
BrkA
Vag8
Bats

FhaB

Fim2, Fim3

Capsule

flmC
usher

FhaC
Periplasm Type III

DNT
yigs

I  TCT'

BvgS ExbD ExbB:yaB

Type I
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Figure 1. Bordetella pertussis virulence factors

Bordetella pertussis is depicted as a Gram-negative organism with inner and outer membranes (IM 
and OM), a periplasm and a capsule. The adhesins Fim, FhaB, pertactin, Tcf, BrkA are shown in blue; 
the toxins PT, ACT, CyaA and DNT are in red, the accessory proteins FhaC, FimB, FimC, Type III, 
Type IV and Type I are in grey; and the regulatory systems BvgA, BvgS and BvgR are in beige. The 
large brown arrows represent the orientation of export and import of virulence factors and 
siderophores, respectively. The thinner brown arrows show the phosphorelay and the regulation circuit 
(Locht et al., 2001).
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1.3.1. Pertussis toxin (PT)

1.3.1.1. structure

Pertussis toxin (PT) is representative of the A-B subunit class of bacterial exotoxins. 

Another member of this group includes cholera toxin (Tamura et al., 1982). The toxin 

comprises an enzymically active A subunit (81) and a B oligomer, made up of 5 

subunits (82-84 and 83-84 dimers connected by 85)(Tamura eta!., 1982; 1983).

1.3.1.2. Gene transcription, protein synthesis and excretion.

The genes encoding the PT subunits 81-85 are called ptxA-E and a number of 

polymorphisms in the genes encoding the 81 and 83 subunits {ptxA and ptxC) have 

been revealed (van Amersfoorth et a!., 2005). The secretion of PT is dependent on 

the expression of several genes called pti (for pertussis toxin liberation). It has been 

reported that the pti genes probably constitute, with the ptx genes, a single 

polycistronic operon, composed of the five ptx genes followed by nine pti genes 

(Baker et a!., 1995; Kotob et a!., 1995; Farizo et a!., 1996). The biogenesis of PT 

includes synthesis of the individual subunits and their transport through the inner 

membrane probably via the 8ec machinery. After cleavage of the signal peptides, the 

toxin is assembled in the periplasm and fully assembled holotoxin is secreted through 

the outer membrane (Farizo et a!., 2000) via a complex secretion apparatus, often 

referred to as a type IV secretion system (Burns, 1999)(8ee Figure 1).

1.3.1.3. Mechanism of action

8everal experimental data suggest that PT entry into target cells follows the 

retrograde transport system. 8ubcellular fractionation experiments showed that PT 

travels to the Golgi complex following receptor-mediated endocytosis (el Baya et al.,

1997). PT may possibly travel all the way to the ER, where it may be activated by the

18



dissociation of S1 from the B oligomer, and then the enzymatically active subunit 

translocates into the cytosol.

1.3.1.4. Pathophysiological effects of PT

The majority of the biological effects of PT are due to the activity of the enzyme 

subunit 81 that transfers an adenosine diphosphate ribose (ADP-ribose) moiety from 

NAD^ to the a-subunits of the G i/o proteins of the family of signal-transducing 

guanine-nucleotide-binding proteins (G-proteins) which are involved in eukaryotic 

signal transduction (Gierschik, 1992). This ADP-ribosylation generally leads to an 

uncoupling of the modified G-protein from the corresponding receptor and the loss of 

effector regulation, ultimately leading to adverse effects on the target cell and 

adverse reactions in the host.

The holotoxin produces a wide range of pathophysiological effects including insulin 

secretion by activation of the islets of Langerhans, p-adrenoreceptor blockadge, 

histamine sensitisation, lymphocytosis, mitogenesis, melanocyte stimulation, T and 

B-lymphocytes stimulation, inhibition of neutrophil chemotaxis and monocyte 

migration (Tamura et a/., 1982; 8ekura, 1985; Munoz, 1985; 1998). On dendritic 

cells, PT and genetically-detoxified PT have been reported to induce interleukin 12 

production (Ausiello etal., 2002).

1.3.1.5. Cell-binding properties of PT and its consequences

Once PT reaches the extrabacterial environment, it can interact with specific 

receptors on host target cells. This binding occurs via the B oligomer. Both dimers 

(82-84, 83-84) of the B oligomer have been associated with the binding process and 

there is evidence of different binding specificities (Nogimori et al., 1986; Witvliet et 

al., 1989).

Studies carried out on the PT holotoxin (A and B oligomers)
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Virtually all mammalian cells that have been studied so far contain PT receptors on 

their surface. However, a distinct universal receptor has not been identified. Rather, 

different cell types may express different PT receptors. Nevertheless, a common 

feature of PT receptors is that they are glycoconjugates, generally sialoglycoproteins 

(Armstrong et al., 1988). in addition, PT can bind to a 43-kDa plasma-membrane 

protein of T lymphocytes and can also bind to CD14 (Zhang et al., 1995; Li & Wong, 

2000). Chinese hamster ovary (CHO) cells contain a 165-KDa glycoprotein at their 

surface recognized by PT or purified B oligomer in a lectin-like manner. Specificity for 

sialidated N-linked oligosaccharide of the protein may be involved in the binding to 

the cell surface receptor (Brennan et al., 1988). The binding properties of PT have 

been studied and used to develop a cellular-based method to investigate its toxicity. 

By binding on the CHO cell surface, PT is responsible for the resulting cell clustering 

in a dose-dependent manner (Brennan etal., 1988). PT binds to a 70-kDa protein on 

human lymphocytes (Clark & Armstrong, 1990). This protein may be related to the 

73-kDa LPS receptor. However, LPS and PT bind different domains of the 73-kDa 

protein (Lei & Morrison, 1993) on the cell surface of murine splenocytes. The toxin 

was also found to induce expression of IL-2-receptor on CD3+ cells and to stimulate 

IL-2 production. PT induced proliferation of both CD4+ and CD8+ T cells and 

stimulates IL-1 production by monocytes in the presence (but not in the absence) of 

accessory cells (Grenier-Brossette etal., 1991).

Studies carried out on the B oiigomer

Studies with the human T-lymphocyte Jurkat cell line have shown that toxoids or the 

purified B subunit of PT bind specifically to a 43-kDa membrane protein (p43) and 

induce synthesis of second messenger. Both toxoids and B subunit are devoid of 

enzyme activity but are as potent as the holotoxin in this action. The p43 may be a
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novel T-cell membrane protein coupled to the CD3-TCR complex signal transduction 

apparatus (Rogers et al., 1990). Among the early events, that occur as a 

consequence of TCR occupancy are increased intracellular [Ca^ ]̂ (Tsien et al., 1982; 

Weiss et al., 1984), efflux (Russell & Dobos, 1983), Cl" influx (Russell & Dobos, 

1983) and the simultaneous production of inositol polyphosphates and diacylglycerol 

(Imboden & Stobo, 1985). B oligomer binding was found to induce expression of IL-2 

receptor on CD3‘̂  cells and to stimulate IL-2 production. PT induced proliferation of 

both CD4‘*' and CDS’*" T cells in the presence of accessory cells. In addition B 

oligomer alone can trigger phospholipase C and tyrosine kinase-dependent signal 

transduction, unrelated to the mechanisms of G| ribosylation events, suggesting an 

important role in cell activation (Wong & Rosoff, 1996).

These events may, in some manner, help to provide the signal for functional 

outcomes of PT actions such as cell proliferation or cell-mediated cytolysis.

1.3.2. Detoxified PT

PT is rendered non-toxic either by chemical or genetic detoxification (di Tommaso et 

al., 1994). The general approach for inactivation of the bacterial antigens present in 

pertussis vaccines has consisted of different chemical treatments, such as with 

formaldehyde, hydrogen peroxide, or teranitromethane (Edwards et al., 1995). 

Formaldehyde treatment is a process widely used in vaccine preparation to inactivate 

toxin molecules such as PT and to stabilize protein components (Sato et al., 1984). 

Formaldehyde reacts mainly with e-amino groups of lysine residues to give an 

unstable product that can then react with a second amino group to form a stable 

methylene bridge. These reactions can occur either between amino acids of the 

same molecule, resulting in internal cross-linking of the protein, or between two 

molecules, resulting in dimerization (di Tommaso et al., 1994). Generally, vaccines
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treated with formaldehyde have proven very effective in inducing protective antibody 

responses, but it has also been reported that formaldehyde treatment could cause 

reductions in antigen processing, binding affinities of raised antibodies and potency 

(di Tommaso et al., 1994; Bolgiano et al., 1999). Also, the reversion to toxin of 

detoxified PT has been observed after mild treatment of PT with formalin and further 

incubation of the formalin-detoxified PT at 37°C for three weeks (Kataoka et al., 

2002). As explained below, chemically-detoxified PT has limitations that have been 

counteracted by the development of genetically detoxified PT.

The feasibility of a genetic approach in the development of new vaccines has been 

demonstrated by the production of genetically-detoxified PT, which has been shown 

to be efficacious in preventing pertussis in infants. Genetic detoxification appears to 

leave intact most of the pathophysiological and immunological effects mediated by 

the B oligomer (Wong & Rosoff, 1996). The mutant B. pertussis strains created by 

homologous recombination, produce PT that contains amino acid substitutions in the 

SI subunit. These mutant forms of the toxin are known as 9K/129G, 13L/129G, and 

261/129G, and all contain the Glu-129-^GIy substitution in addition to Arg9^Lys, 

Arg 1 3 ^ Leu, or Trp-26->lle substitutions, respectively (Pizza et al., 1989). These 

toxin mutants are devoid of any enzymatic activity. PT 9K/129G did not induce 

leukocytosis, nor insulin secretion, nor did it cause death by sensitisation to 

histamine (Nencioni et al., 1990). Other studies have demonstrated that the 

genetically-inactivated PT was also devoid of other toxic properties of the wild type 

PT. For example, as compared to wild type PT, the mutant had greatly reduced 

ability to induce IgE in vitro (Van der Pouw-Kraan et al., 1995) and in vivo (Kosecka 

et al., 1994; Roberts et al., 1995), to induce long-lasting enhancement of nerve- 

mediated intestinal permeabilization and antigen uptake (Kosecka et al., 1994), to
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inhibit IL-1 mediated IL-2 release in EL4 6.1 thymoma cells (Zumbihl et a/., 1995), 

and to inhibit neutrophil migration (Brito et aL, 1997). However, the non-toxic 

properties of PT, such as T-cell mitogenicity, haemagglutination (Nencioni et al., 

1990), platelet activation (Sindt et a!., 1994) and mucosal adjuvanticity (Roberts et 

a!., 1995) were still conserved in the mutant PT.

1.3.3. Adenylate cyclase toxin (ACT)

Adenylate cyclase toxin is a bifunctional protein of 1706 amino acids. The protein 

carries both calmodulin-dependent adenylate cyclase enzymatic and pore-forming 

(e.g. haemolytic) activities (Ladant & Ullmann, 1999). The cyclase domain is located 

at the N terminus of the protein whereas the pore-forming domain is located at the C 

terminus. Once inside the host cell, the protein can express its calmodulin-dependent 

adenylate cyclase activity. By catalysing the conversion of cytoplasmic ATP into 

cAMP, the intracellular level of cAMP increases, which disturbs the normal function of 

the cell (Confer & Eaton, 1982). ACT has been reported to inhibit chemotaxis, 

phagocytosis, superoxide generation in polymorphonuclear leukocytes and to induce 

apoptosis in J774A macrophages (Friedman et a!., 1987; Khelef & Guiso, 1995). In 

addition, ACT has been shown to trigger apoptosis in murine macrophages both in 

vitro and in vivo (Gueirard et ai., 1998). As ACT can modify host defences, it is 

thought that it might play a role in the early stages of the infection.

Adenylate cyclase toxin is a member of the RTX (repeats in toxins) toxin family. 

However, its specific haemolytic activity is rather low compared with that of the other 

members of the family (Bellalou et ai., 1990), suggesting that the main role of the 

haemolytic domain is not to lyse red blood cells, but to deliver the catalytic domain 

into target cells. Also, ACT is synthesised in an inactive form and requires a cytosolic 

palmytoylation of the Lys983 residue by the CyaC protein to express the complete
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cell invasive activity. The palmytoylation is required for the binding and the 

internalisation of the ACT into the target cell (Gray et aL, 1999). Once active, the 

toxin is excreted via a type I system involving accessory proteins called CyaB, CyaD 

and CyaE (Glaser ef a/., 1988)(Figure 1).

1.3.4. Dermonecrotic toxin (DNT)

The dermonecrotic toxin is also called heat-labile toxin as it is inactivated by 

incubation at 56“C for 60 minutes (Livey & Ward law, 1984). This toxin is not secreted 

by the bacteria and its location is intracellular (Cowell et aL, 1979). The toxin has an 

A-B structure with the receptor-binding B subunit at the N terminal and the enzymatic 

active site at the C terminal end. The protein is dermonecrotic, induces splenic 

atrophy and, when injected intravenously in its purified form to a mouse, it is lethal. 

However, its role in the biology of the disease is not clearly understood. At a 

molecular level, DNT causes both deamination and polyamination of Rho protein in 

target cells, affecting its GTPase activity and thereby constitutively activating the 

protein (Masuda et aL, 2000). As it is very difficult to raise antibodies against the 

toxin, it has not been used as a vaccine component.

1.3.5. Lipopolysaccharide (LPS)

Bordetella pertussis LPS resolves as two bands designated A and B, when 

separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS- 

PAGE). Band B is composed of lipid A and a branched-chain core oligosaccharide. 

Addition of a trisaccharide to the band B form creates a larger molecule (LOS, 

lipooligosaccharide), referred to as band A (Harvill et ai., 2000). Unlike the highly 

polymerized LPS in some other bacteria, B. pertussis LPS (or LOS) does not appear 

to protect the bacterium from complement killing. Is has been reported that B.
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pertussis endotoxin may be involved in the whooping cough syndrome by inducing 

NO production and release by tracheal cells, thereby poisoning the activity of 

adjacent ciliated cells (Flak & Goldman, 1999). Monoclonal antibodies to band A LPS 

have been shown to be bactericidal (Shahin et a!., 1994), However, LPS has been 

intentionally removed from the new acellular vaccines because of the potential 

toxicity of the lipid A component. If the toxic lipid A portion of the LPS could be 

separated from the protective portion, this antigen may be safe for vaccine use.

A synergistic effect between LPS and PT has been reported. Indeed, by binding the 

73-kDa protein receptor, LPS and PT increase the production of interleukin 12 by 

dendritic cells. Dendritic cells may represent the link between the innate and the 

adaptive immune response, as shown by secretion of chemotactic proteins and 

regulatory cytokines that attract natural immune effectors and drive specific immune 

responses. Synergy between PT and LPS, in enhancing IL-12 production, might be 

relevant for the mechanisms of vaccine-induced protection of whole-cell vaccines 

(Ausiello et ai., 2002).

A possible synergistic activity between LPS and FHA has also been noted in the 

FHA-associated TNF-a secretion and apoptosis in monocytes. However, unlike E.coli 

LPS which has been associated with release of TNF-a by monocytes, such evidence 

has not yet been found for LPS from B. pertussis (Njamkepo et al., 2000).

As pertussis is not usually a febrile disease, any action of LPS in the natural infection 

may to be localized to the respiratory tract. Nevertheless, its pyrogenicity is relevant 

in the context of vaccines. The reactogenicity of the whole-cell vaccine has been 

attributed to the content of active PT and LPS and hence these require careful 

monitoring (Redhead & Seagroatt, 1986; Gupta et ai., 1988). The World Health 

Organization issued its guidelines for acellular pertussis vaccines in 1988 that
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residual endotoxin content should be tested for by means of the LAL test (Limulus 

amoebocyte lysate) test. First developed by Levin et al, it is highly sensitive and 

depends on clotting of the LAL in the presence of LPS (Levin & Bang, 1964).

1.3.6. Tracheal cytotoxin (TCT)

The tracheal cytotoxin is a low molecular weight glycopeptlde, which is a fragment of 

the Bordetella pertussis peptidoglycan. This toxin destroys ciliated epithelial cells of 

the respiratory tract, probably by inhibiting DNA synthesis and inducing the 

production of interleukin-1 and nitric oxide (Flak & Goldman, 1996). TCT is not 

antigenic and has no identified role in immunity (Cookson et al., 1989). It is 

potentially present in whole-cell vaccines as a degradation product of the 

peptidoglycan but has not been implicated in reactogenicity. TCT is not included in 

formulations of acellular vaccines (Corbel & Xing, 2004).

1.3.7. Adhesins

1.3.7.1. Filamentous haemagglutinin (FHA)

FHA plays the dominant role among these attachment factors. FHA is synthesised in 

a 370-kDa precursor form and is then processed to yield a 220-kDa mature protein 

that is both anchored to the bacterial surface and secreted in large amounts into the 

extracellular environment (Locht et al., 1993; Makhov et al., 1994). The maturation 

process of the protein is dependent on an outer-membrane-associated accessory 

protein named FhaC. This protein is able to form channels (Jacob-Dubuisson et al., 

1999) through which FHA is believed to cross the outer membrane (Guedin et al.,

1998). FHA binds to ciliated respiratory epithelial cells and other host cells such as 

local macrophages in a galactose-dependent lectin like manner, mediated by a 

carbohydrate recognition domain (Prasad et al., 1993). FHA also has a RGD
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sequence (Arg-Gly-Asp). The RGD sequence is recognised by two integrins LRI 

(leucocyte response integrin) and CR3 (complement receptor 3) on the surface of 

macrophages (Reiman et a i, 1990).

FHA was found to interfere with phagocytosis by neutrophils. FHA is involved in the 

attachment of the bacteria to white blood cells, however attachment via opsonizing 

antibody is essential for internalization of the bacteria (Weingart & Weiss, 2000). In 

addition, Abramson et al from an in vitro study have indicated that secreted and cell- 

associated FHA elicit proinflammatory and proapoptotic responses in human 

monocyte-like cells and bronchial epithelial cells (Abramson et ai, 2001).

Based on the laboratory study of B. pertussis protective antigens since the early 

1970s, FHA is one of the major components, along with detoxified PT, of acellular 

pertussis vaccines (Sato & Arai, 1972; Sato et a i, 1973; 1974). Clinical studies have 

indicated that vaccines containing PT and FHA are slightly more effective than those 

with PT alone. FHA has not been directly associated with toxicity {Ad hoc group of 

study of pertussis vaccines, 1988).

1.3.7.2. Fimbriae (Flm)

Bordetella pertussis produces fimbriae, also called agglutinogens, since they 

determine the serotype of the strain. Three serotypes are known: 1, 2 and 3. The 

most important are serotypes 2 and 3 conferred by Fim2 and Fim3. Fimbriae are 

composed of two subunits, the major fimbrial subunit, i.e. Fim 2 or 3, and each is 

terminated by a 4 kDa protein, Fim D, which binds to the integrin VLA5 of 

macrophages (Hazenbos et a i, 1995) and to sulphated sugars (Geuijen et a i, 1997) 

which are ubiquitously present in the respiratory tract. Binding of Fim D to VLA-5 

activates GR3, the receptor for FHA, which thereby assures cooperativity between 

fimbrial and FHA binding. Recent studies using epithelial cell lines derived from the
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human respiratory tract have indicated that fimbriae play a role in infection of the 

laryngeal mucosa, whereas FHA is important for colonisation of the entire respiratory 

tract (van den Berg et a/., 1999). Fim 2 and Fim 3 are regarded as important 

immunogens of B. pertussis, responsible for inducing the serotype-specific immunity 

observed in epidemiological studies on whole-cell vaccines (Preston, 1963). They 

stimulate protective immunity in animal models and are required component of 

whole-cell vaccines and some acellular vaccines. They are not known to possess 

toxic activity.

1.3.7.3. Pertactin (PRN) and tracheal colonization factor (TCP)

These two adhesins are described as autotransporters (Finn & Stevens, 1995). They 

are produced as precursor proteins but their biogenesis does not require accessory 

protein activity. Their extracellular location is mediated by their own carboxyl-terminal 

region, which most likely forms a channel in the outer membrane through which the 

amino-terminal moiety is translocated. TCF has been reported to feature substantial 

polymorphism, especially in one of its immunodominant regions (Finn & Stevens, 

1995;Luker et ai., 1995). Both proteins contain proline-rich regions and RGD 

sequences thought to be involved in the adherence of the bacteria to the host tissues 

(Finn & Amsbaugh, 1998), Both proteins are considered to play a major role in the 

colonization of the respiratory tract by B. pertussis (van den Berg et ai., 1999). They 

are not known to exert toxic activity at concentrations produced in vivo. PRN is used 

as vaccine component.

1.3.7.4. Other bvg-reguiated virulence determinants

Two additional autotransporters have been characterized. The first one is called BrkA 

(Shannon & Fernandez, 1999). The protein contains two RGD sequences and two
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potential sites for binding to sulphated glycoconjugates. In addition, BrkA inhibits the 

classical pathway of complement activation and prevents accumulation of deposited 

C4 (Barnes & Weiss, 2001).

The second autotransporter is Vag8. It is a 91 kDa protein homologous to PRN, TCF 

and BrkA and also contains an RGD site. However, it has been reported that a 

mutant strain of B. pertussis defective in Vag8 showed similar patterns with the 

parent strain in terms of colonisation and persisting in the lungs of mice after aerosol 

challenge (Finn & Amsbaugh, 1998).

B. pertussis has been reported to be a capsulated bacterium. Its genome contains a 

complete operon for capsule biosynthesis. However the capsule cannot be observed 

under standard laboratory conditions and the presence of MgS04 seems to be 

required. Taking this information together, it is likely that capsule biogenesis is 

dependent on environmental conditions and is regulated by the bvg genes (Antoine 

et aL, 2000). The capsule could play a major role in the early stage of infection by 

improving the adhesion of the bacteria to the respiratory mucosa or by helping them 

to avoid the innate immune response (opsonization or phagocytosis).

1.4. Immunology

The immune system is composed of two parts: innate and adaptive. Innate immunity 

serves as the first line of defence but lacks the ability to recognize certain pathogens 

and to provide the specific protective immunity that prevents re-infection. Adaptive 

immunity is based on the clonal selection of lymphocytes bearing highly diverse 

antigen-specific receptors, which allows the immune system to recognize any foreign 

antigen. In the adaptive immune response, antigen-specific lymphocytes proliferate 

and differentiate into effector cells that eliminate pathogens. It also generated
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numbers of differentiated memory lymphocytes through clonal section and this allows 

a more rapid and effective response upon re-infection.

1.4.1. Innate immunity

1.4.1.1. The surface barrier.

Some of the defence mechanisms at the body surfaces include:

• The skin can not be penetrated by organisms unless it already has an opening 

(i.e. wound). Bacterial growth is generally inhibited in the surface of the skin by 

the presence of acidic secretions.

• The hair follicles are also involved in growth inhibition of pathogens by the 

secretion of sebum.

• In addition, saliva, tears contain lysozyme that destroys some Gram-positive 

bacteria.

• The stomach is an obstacle as its mucosa secretes hydrochloric acid and protein- 

digesting enzymes that kill many pathogens.

• Mechanically the pathogens are expelled from the lungs by ciliary action, 

coughing and sneezing.

1.4.1.2. Inflammation

Inflammation can be caused by microbial infections, the principle effects include: 

redness, heat, swelling and pain. The outcome of inflammation is the release of 

histamine by mast cells and chemotaxins by damaged cells.

1.4.1.3. Polymorphonuclear neutrophils

These are phagocytes that provide the major defence against bacteria and are the 

first at the site of infection, followed by the wandering macrophages about three 

hours later.
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1.4.1.4. Macrophages

Macrophages are phagocytic cells that are attracted to the site of infection by 

chemokines and cytokines. Macrophages belong to the cells called antigen 

presenting cells (APCs) because, once a macrophage phagocytises a foreign body, it 

places on its surface epitopes that activate other immune cells. Each of the cells in 

the innate immune system binds to antigen using pattern-recognition receptors. 

These receptors are encoded in the germ line of each person. This immunity is 

passed from generation to generation.

1.4.1.5. Natural killer cells

Natural killer cells move in the blood and lymph to lyse cancer cells and virus- 

infected body cells. They are large granular lymphocytes that attach to the 

glycoproteins on the surfaces of infected cells and kill them.

1.4.1.6. Complement

The complement system is a set of plasma proteins that act together to attack 

extracellular forms of pathogens. Complement can be activated spontaneously on 

the surface of certain pathogens (by the alternative pathway) or by antibody binding 

to the pathogen (classical pathway). The pathogen becomes coated with 

complement proteins that facilitate pathogen removal by phagocytes and or by killing 

the pathogen by complement-mediated lysis.

1.4.1.7. Dendritic cells

The dendritic cells are mostly found in the skin and mucosal epithelium, where they 

are referred to as Langerhan's cells. Unlike macrophages, dendritic cells can also 

recognize viral particles as non-self. In addition, they can present antigens via both 

MHO I and MHO II, and can thus activate both CD8^ and CD4^ T-cells, directly.
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1.4.2. Adaptive or acquired immunity

The adaptive immune system allows recognition of a wide range of different 

pathogens and forms a protective memory response. The cells of the adaptive 

immune system that specifically recognise different antigens from pathogens are the 

B and T lymphocytes. Antigens are molecules that induce an immune response 

through the activation of antigen-specific lymphocytes. The specificity of antigen 

recognition is determined by the antigen receptors on B and T lymphocytes.

1.4.2.1. Ce 11-mediated immunity

T-lymphocytes recognize specifically the antigen presented on the surface of the 

APCs cells (that also has “self-antigens”). The T-lymphocytes are then activated and 

become differentiated into: Cytotoxic or killer T cells (CD8^) or Helper T cells (CD4"') 

or memory T cells or suppressor T cells. Memory T cells, on encounter with antigen, 

synthesise cytokines and differentiate into cytotoxic T cells. Migrating through non­

lymphoid tissue, effector memory cells are positioned to provide an immediate 

response following secondary contact with antigen. Suppressor T cells suppress B 

cell antibody production and cytotoxic and helper T cell activity. Cytotoxic (killer) T 

cells eliminate host cells bearing foreign antigen (e.g., host cells invaded by viruses 

and cancer cells)

T-helper cells play a major role in controlling infections. These cells can be divided 

into terminally differentiated T helper 1 (Thi), or T helper 2 (Th2) cells, depending on 

their ability to secrete cytokines. Thi cells secrete INF-y, TNF-(3 and to some extent 

IL-2. Thi cells are implicated in cell-mediated immunity and inflammation by 

stimulating macrophages and recruiting leukocytes. On the other hand, Th2 cells 

secrete IL-4, IL-5, IL-10 and IL-13, activate eosinophils and mast cells, induce the 

production of IgE, and participate in allergic reactions. In addition Th2 cells stimulate
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B lymphocytes and induce antibody-mediated immunity (Lloyd et aL, 2000; Wang et 

aL, 2004).

1.4.2.2. Humoral immunity

An immunocompetent but immature B-lymphocyte is stimulated to maturity when an 

antigen binds to its surface receptors and there is a T helper cell nearby to release 

cytokines. This primes the B cell and it undergoes clonal selection. Most of the B 

cells become plasma cells. Plasma cells produce highly specific antibodies. The 

other B cells become long-lived memory cells. The antibodies may inactivate 

pathogens by, (a) complement fixation (complement proteins attach to pathogen 

membrane and cause pore formation to induce cell lysis), (b) neutralization (binding 

to specifics sites to prevent attachment to host tissues), (c) agglutination (clumping), 

(d) precipitation (forcing insolubility). (Janeway and Travers, 1997)

1.4.3, Immunity to 6. pertussis

Acquired immunity against S, pertussis develops after natural infection and confers 

relatively long-lived protection against subsequent infection, immunization with 

whole-cell vaccines (WCV) and acellular vaccines (ACV) also protect against the 

disease. The identification of immunological correlates of protection against 6. 

pertussis has been a major goal of many clinical studies on pertussis. However, it 

has not been possible to correlate protection with a quantifiable immune response 

against a single protective antigen. Indeed B. pertussis produces a large range of 

toxins and adhesins. These contribute to pathogenesis and many are involved in 

immune protection (Figure 2) or immune subversion.

PT is thought to play an important role in immune subversion by inhibiting the 

chemotaxis of innate immune response cells : natural killer cells, macrophages and 

neutrophils (Spangrude et a!., 1985; Allavena et ai., 1994; Schorr et ai., 1999). TCT
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has also been reported to act as an antichemotactic factor on neutrophils (Torre et 

ai, 1999). ACT is also involved in the subversion of the immune response. ACT is 

known to induce apoptosis of monocytes (Gueirard et ai, 1998), to inhibit intracellular 

killing in macrophages which allows the intracellular survival of bacteria (Masure,

1993) and to inhibit phagocytosis by neutrophils (Weingart & Weiss, 2000). In 

addition, adhesins are involved in the survival of the bacteria in the respiratory tract 

by mediating adherence to ciliated epithelial cells, macrophages and neutrophils. 

Furthermore, following invasion of the respiratory tract, B. pertussis not only binds to 

epithelial cells and multiplies extracellularly but is also taken up by, and survives 

within, macrophages and other cell types in vitro, providing indirect evidence of a role 

for cell-mediated as well as humoral immunity in protection (Mills, 2001).
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Figure 2. Immunity to Bordetella pertussis In a na'iVe host

Immunity to B. pertussis in a naïve host: evidence from the murine respiratory challenge model. (1) 
recognition of bacterial components by cells of the innate and acquired immune system, (2) production 
of soluble mediators and (3) recruitment and activation of effector cells and molecules. When 6. 
pertussis enters in the respiratory tract, the bacteria bind to ciliated epithelial cells (Bassinet et a!., 
2000), but are also recognised and taken up by cells of the innate immune systems, such 
macrophages (MO)(Friedman etal., 1992), dendritic cells (DCs), T cells, natural killer (NK) or natural T 
cells (NT) (Mielcarek et al., 1998). DCs process and present bacterial antigens to T cells. The 
production of IL-12 and IL-18 by innate cells results in the polarization of the T-cell response to the 
Thi subtype. However, early in infection the local Th i response is suppressed due to the effects of IL- 
10 secreted by antigen-stimulated T ri cells or by FHA-stimulated macrophages and DCs (McGuirk & 
Mills, 2000b). NO and the pro-inflammatory cytokines, IL-lp and TNF-a induced by bacterial toxins, 
especially LPS (Loscher et a/., 2000), TCT (Heiss et a!., 1993) and PT (Torre et al., 1996;Ryan et al., 
1998), as well as contributing to bacterial elimination, also mediate local lung pathology and are 
responsible for many of the systemic and neurological consequences of the infection. IFN-y secreted 
early in infection by cells of the innate immune system, and later in infection by Thi cells, stimulates 
recruitment and activation of macrophages and neutrophils and provides help for B cells to secrete 
opsonizing and complement-fixing antibody (lgG2a in the mouse). Opsonized or non-opsonized 
bacteria are taken up by neutrophils and macrophages which are killed by NO or reactive oxygen 
intermediates (Mills, 2001).

1.5. Vaccines
Pertussis (whooping cough) is a highly contagious disease caused by B. pertussis. 

Worldwide, this bacterial agent causes some 20-40 million cases of pertussis and an 

estimated 200 000-400 000 fatalities each year. Although pertussis may occur at any 

age, most cases of serious disease and the majority of fatalities are observed in early

35



infancy. Vaccines are the most rational approach to pertussis control. For several 

decades, inactivated whole-cell vaccines (WCV) have been part of national childhood 

vaccination programmes, dramatically reducing the considerable public health impact 

of pertussis. These vaccines are currently being produced in over 40 countries, 

including many developing countries. Currently, worldwide pertussis vaccination 

coverage is about 80%. Frequent (but usually mild) adverse reactions and a fear of 

rare but serious acute or chronic neurological events associated with WCV  

vaccination have prompted the development of a new generation of pertussis 

vaccines, the acellular (ACV) vaccines. However, despite thorough investigations, 

the link suspected between WCV vaccines and rare cases of permanent neurological 

damage has not been confirmed. The ACV vaccines, which contain one to five 

different components of B. pertussis, have proved to be efficacious, although more 

expensive, and to compare favourably with WCV vaccines in terms of common 

adverse effects. They are now licensed in several countries. At their most effective, 

ACV and WCV vaccines share similar efficacies. Both WCV and ACV are usually 

administered in combination with diphtheria and tetanus toxoids (DTwP or 

DTaP)(Galaska, 1993).

1.5.1. Whole-cell vaccines (WCV)

B. pertussis is grown under conditions that favour expression of the virulent Phase I 

phenotype. Strains are selected to cover agglutinogen serotypes 1, 2 and 3. In some 

cases, a single strain of serotype 1, 2 or 3 is employed but often one or more strains 

are used. The bacterial cells are harvested and inactivated under conditions that 

preserve their protective antigens in antigenic form but eliminate excessive toxicity. 

The conditions of inactivation and detoxification vary according of manufacturers.
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Some use thiomersal in combination with mild heat treatment, others use mild heat 

treatment alone, or formaldehyde treatment in order to produce an inactivated bulk. 

The bulk is further diluted and blended with aluminium-adsorbed diphtheria and 

tetanus toxoids.

Potency and toxicity testing is usually performed at the bulk stage. The only 

internationally accepted potency assay is the mouse intracerebral challenge test. 

Safety testing is focused on the mouse weight gain test (MWGT)(Requirements for 

diphtheria, tetanus, pertussis and combined vaccines, 1990b).

1.5.2. Acellular vaccines (ACV)

The first ACV vaccines were developed in Japan, where such vaccines were licensed 

for immunization of children aged two years or more in 1981, and for infants from the 

age of three months in 1989. The first DTaP combination was licensed in the United 

States in 1991, at first as an alternative to DTwP boosters in children who had 

received their basic DTwP series. Vaccination with ACV, starting at the age of two 

months, is now included in routine childhood vaccination programmes in several 

countries. It is not known whether the duration of protection with ACV vaccines is the 

same as with WCV vaccines.

Acellular vaccines are, by definition, cell-free preparations. Two approaches have 

been used for the processing of the starting material: copurification and individual 

purification of components. In the first approach, vaccine components have been co­

purified in order to concentrate some components and remove others such as LPS. 

The example of this is the Takeda (T) vaccines. T-type vaccines contain more FHA 

and less PT. T-type vaccines contain agglutinogens (fimbriae) and pertactin/or other 

unidentified component(s), in addition to PT and FHA (Kamiya & Nil, 1988).
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The second approach is to purify each component individually. The purified 

components, after detoxification, are blended to produce acellular vaccine bulk. The 

acellular vaccines are usually combined with vaccines against diphtheria and tetanus 

as DTaP vaccines. The Pa part of DTaP-vaccines is usually described by the number 

of characterized protein antigens. One component vaccines (Pa1) contain only 

chemically detoxified or genetically-detoxified PT (Robbins et al., 1993). Two- 

component vaccines (Pa2) contain PT and FHA (Leininger et al., 1997). Three- 

component vaccines (Pa3) contain PT, FHA, and PRN (Shahin et al., 1990). And the 

four to five-component vaccines (Pa4 and Pa5) contain PT, FHA, PRN and one or 

two fimbrial agglutinogens Fim2 and Fim3 (Geuijen et a i, 1996). The degree of 

purification can vary widely depending on the process followed. Due to the chemical 

toxoiding process, acellular vaccines do not have a completely defined chemical 

composition. This means that biological testing is still required to monitor batch-to- 

batch variation. Safety testing is directed towards monitoring specific components, 

especially PT and LOS (Corbel & Xing, 2004).

1.6.3. Vaccine-induced immunities.

Whole-cell vaccine contains endotoxin (LOS), which activates IL-1 (3, TNF-a, IL-12 

and IL-18 production by macrophages and other cells of the innate immune system 

(Loscher et al., 2000). These pro-inflammatory cytokines regulate the selective 

induction of Thi cells from the precursor T cell (Thp). Cytokines secreted by Thi 

cells (INF-y), provide help for opsonizing antibody production and activate 

macrophages and neutrophils to take up and kill intracellular bacteria.

Following priming with acellular cell vaccine, there is a less significant increase in the 

numbers of neutrophils or T-cells in the lung after challenge (McGuirk & Mills, 

2000a). This is explained by the composition of the acellular vaccine that is devoid of
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bacterial toxins that stimulate IL-12 and IL-18 (LOS). However, acellular vaccine 

include components such as FHA which stimulate IL-10 production and consequently 

have anti-inflammatory activity and induce Th2 cells (McGuirk & Mills, 2000b).Th2 

cells provide help for B cells to secrete IgE and murine IgGI, and lgG3 antibodies 

which neutralize toxins and prevent adherence of bacteria in the respiratory tract 

(Mills, 2001).

1.5.4. Comparison of whole-cell and acellular vaccines.

Whole-cell vaccines are considerably less costly than the acellular vaccines. 

Therefore, in most countries, WCV remain the appropriate choice for public health 

immunization programmes. While in terms of severe adverse effects ACV appears to 

be safe, mild to moderate adverse reactions are also less commonly associated with 

ACV than with WCV. Similar high efficacy levels are obtained with the best ACV and 

WCV, but the level of efficacy may vary considerably between the vaccines within 

these two groups. Reliable comparisons of different ACV and WCV, or between ACV 

and WCV, are possible only in studies that are carefully designed for that purpose. 

So far, no trial has had the optimal design to adequately compare different candidate 

antigens, and the choice and number of antigen components of the ideal ACV is still 

debated. WHO endorses the use of ACV vaccines of documented quality in countries 

where pertussis vaccination is not widely accepted because of the reactogenicity of 

WCV. The main impediments to wider use of the ACV are their high price and 

concern about their duration of protection. If these issues can be satisfactorily 

resolved, widespread use of this product will be encouraged in the long term. Areas 

in need of further research include the duration of protection following primary 

immunization with WCV or ACV, interference between ACV and other vaccines when
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used in combination, ability of ACV to induce a side effect, and the epidemiology of 

pertussis in the adult population (immunization, vaccines and biologicals: Pertussis 

vaccine, 2003).

1.5.5 The re-emergence of Pertussis

Studies based on the polymorphisms of genes encoding WCV and ACV components 

found in isolates of B. pertussis in some countries (The Netherlands, France) suggest 

that, within 10-20 years after the introduction of mass vaccination, an adaptive 

response occurred, consisting in clonal expansion of B. pertussis strains, that 

expressed a PT variant distinct from the PT in vaccine strains, (van Loo et a/., 2002a- 

b, Weber et a!., 2001). Such adaptation may have allowed B. pertussis to remain 

endemic despite widespread vaccination and may have contributed to the re- 

emergence of Pertussis in some countries (Mooi et ai., 2001). However, van 

Amersfoorth et al. (2005) characterised 102 B. pertussis isolates from the period 

1998 to 2001 from five European countries (Finland, Sweden, Germany, The 

Netherlands, and France). The isolates were analysed by typing based on variable 

number of tandem repeats (VNTR); by sequencing of the polymorphic genes 

encoding the surface proteins pertussis toxin S I and S3, pertactin, tracheal 

colonization factor and by fimbrial serotyping. In this study, no relation was detected 

between the strain characteristics, including the gene polymorphisms, and 

vaccination programmes. Despite these findings the polymorphisms may have 

implications for the efficacy of both whole-cell and especially acellular vaccines with 

their more limited antigenic repertoire. There is therefore a need for continued 

surveillance and typing of circulating strains and there may be a future need to adjust
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the composition of these vaccines to contain several pertactin and PT types (Mooi et 

a!, 1998).

1.6.6. Potency tests

The intracerebral mouse protection (Kendrick) test is the official potency assay for 

whole-cell pertussis vaccines and is the only test which has shown a correlation with 

protection in children (Kendrick, 1947). Groups of mice are immunized 

(intraperitoneally) with serial dilutions (2.5, 0.5 and 0.1 lU/ml) of the reference 

vaccine and the test vaccine. At 14-17 days after immunization, mice are challenged 

intracerebrally with a specific strain of B. pertussis (18-323). The mice are observed 

for lethal effects over the next 14 days. The potency is estimated in terms of 

International Units by a parallel line assay (Requirements for diphtheria, tetanus, 

pertussis and combined vaccines,WHO Technical Rep rot Series No. 800, 1990a). As 

the conventional intracerebral challenge test proved unsuitable for determining 

potency of acellular vaccines, a modification of this was developed in Japan. It 

increased from 2 weeks to 3 weeks the period between immunization and challenge 

and also a special mouse strain was preferred (Sato, 1996). For several reasons, 

including animal welfare, the use of a challenge route unrelated to the natural mode 

of infection, technical difficulty and reproducibility, it has been suggested that an 

alternative test needs to be developed (Corbel & Xing, 2004).

The use of intranasal or aerosol challenge to produce murine respiratory tract 

infection with B. pertussis has considerable potential value for evaluating the 

protective activity of acellular pertussis vaccines. The end point can be measured by 

comparison of the response to the test vaccine, in terms of bacterial colonisation of
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the mouse lungs, with that to a vaccine of known clinical efficacy or an appropriate 

reference preparation. Although overt symptomatic disease is not elicited in these 

models, several characteristics of the human infection are reproduced, such as 

multiplication and clearance of the bacteria, limitation of infection to the respiratory 

tract, increased severity of infection in young animals, and various systemic 

physiological changes. Recent studies have shown that this may also be a useful 

model for the preclinical assessment of acellular pertussis vaccine (Guiso et a/., 1999; 

Xing et al, 2002a; Corbel & Xing, 2004).

1.5.7, Toxicity tests

1.5.7.1. Whole-cell vaccines

Currently, for control of whole-cell pertussis vaccines, the mouse weight gain test 

(MWGT) is the only test specified by WHO, European Pharmacopoeia (EP) and US 

requirements. It can be considered as a general, non-specific test measuring overall 

toxicity, since a number of B. pertussis toxins may affect the weight gain of mice. 

Correlation of the results of the MWGT with adverse reactions in children has been 

reported (Cohen, 1969; Perkins, 1970). The mechanism of the MWGT is unclear. 

Endotoxin is the main toxic component detected by the test but PT tends to 

counteract the endotoxin-induced weight loss by its insulin-releasing effect (Gupta et 

aL, 1988).

A volume (0.5 ml) of the test vaccine is injected intraperitoneally into a group of 10 

mice. The groups are observed and body weights are recorded on days 0, 3 and 7. 

By comparison with a control group, a vaccine is considered safe when: 1. the total 

weight of the mice from the vaccine group at 3 days after treatment is not less than it 

was at day 0; 2. at the end of 7 days, the average weight gain per mouse in the test
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group is not less than 60% of the control; 3. not more than 5% of the total numbers of 

injected mice die (van Straaten-van de Kappelle et al., 1997).

1.5.7.2. Pertussis toxin

-I

I

PT in its detoxified form is an important component of both whole-cell and acellular 

pertussis vaccines. Safety tests are thus required by regulatory authorities to assure 

the absence of significant residual active toxin or reversion of detoxified toxoid to its 

active form in pertussis vaccines. The histamine-sensitising (HIST) assay and 

Chinese hamster ovary (CHO) cell assay are used widely for this purpose to monitor 

the active PT content of pertussis vaccines (Xing et al., 2002b).

1.5.7.2.1. Histamine sensitisation test (HIST)

PT toxoid is an important component of whole-cell and acellular vaccines and 

regulatory authorities require safety testing of pertussis vaccines in order to confirm

.4
absence of residual pertussis toxin toxicity. The histamine sensitisation test is the 

only test considered by the regulatory authorities to be suitable for this purpose 

(Guidelines for the production and control of the acellular pertussis component of 

monovalent or combined vaccines. 1998; Diphtheria, tetanus, pertussis 

vaccine.2002b). In the histamine sensitisation test (HIST) groups of mice are injected 

intraperitoneally with doses of the test vaccine. Four to five days after injection, 

animals are challenged intraperitoneally with a histamine solution (2mg/0.5ml/dose) 

and the number of mice dying within 24h is recorded. HIST is a lethal test and large 

variations in test performance have been observed and demonstrated to be 

dependent upon such variables as: mouse strain, number, age, injection route and 

challenge route. The HIST is difficult to standardize, its precise mechanism is 

unknown and it must be regarded as a priority for replacement (van Straaten-van de 

Kappelle etal., 1997).
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1.5.7.2.2. Role of PT in the histamine sensitisation test

The exact mechanism of the HIST test is still unknown, but studies have shown that 

vaccination of rats with biologically-active PT decreases diastolic blood pressure and 

enhances histamine-induced decrease in mean arterial blood pressure. This 

histamine sensitisation mainly involved histamine H1 receptors (VIeeming et al., 

2000). In addition, van meijeren etal. (2004a; 2004b) found that PT pre-treatment of 

male Wistar rats reduced maximal noradrenalin- or KCl- induced contraction of 

isolated small mesenteric resistance arteries, decrease sensitivity to noradrenaline of 

isolated rat small mesenteric resistance arteries and did not affect histamine- or 

acetylcholine-induced relaxation. They concluded that PT-induced histamine 

sensitisation is caused by an interference of PT with the contractile mechanisms of 

vascular smooth muscle of resistance arteries which indicates only an indirect role for 

histamine in the histamine sensitisation test.

1.5.7.2.3. CHO cell assay

The CHO cell clustering test is prescribed in the WHO guidelines as a sensitive and 

useful technique for evaluating the detoxification of PT in the process of acellular 

pertussis vaccine production (Arciniega et al., 1998). In this test, the CHO cells are 

treated with a PT reference preparation or vaccine dilutions. After incubation, the 

degree of clustering of the cells is observed and scored under an inverted 

microscope. The highest dilution of the test vaccine showing total cell clustering 

represents the titre. Unfortunately, the CHO-cell assay is not suitable for testing final 

vaccine formulations as the presence of adjuvant causes the death of the CHO cells 

(Gillenius etal., 1985).
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1.5.7.3. LPS

LPS is considered to be the major component of the whole-cell vaccine that induces 

vaccine reactogenesis. LPS does not affect the protective efficacy of the vaccine so 

the component has not been included in acellular vaccines formulations (Chaby, 

1988). However, some types of acellular vaccine (e.g. the co-purifled type) could be 

contaminated by LPS during the purification processes. Therefore, both whole-cell 

vaccines and acellular vaccines must be tested for the presence of LPS. For this 

purpose, the LAL assay, developed by Levin and Bang, is the most appropriate test 

available.

Frederick Bang observed that bacteria caused intravascular coagulation in the 

American horseshoe crab, Limulus polyphemus. In collaboration. Levin and Bang 

(1964) found that the agent responsible for the clotting phenomenon resided in the 

crab's amoebocytes, or circulating blood cells, and that pyrogen (bacterial endotoxin) 

triggered the turbidity and gel-forming reaction enzymatically. The LAL test permits a 

precise measurement of endotoxin content of a given sample. In this test, a volume 

of serial dilutions of the test specimen (1/10 to 1/100,000) and lysate (10 pi) are 

incubated in pyrogen free-tubes. The definition of end point is the formation of a firm 

gel that can be detected by eye or by spectrophotometric measurement of a change 

in a chromogenic peptide substrate. The LAL test is used widely as a simple and 

highly sensitive in vitro method for the detection of endotoxin (Nakagawa et al.,

2002).
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1.6. Cell lines for in vitro studies of the molecuiar 

mechanisms of whooping cough

1.6.1. Bronchial epithelial cell lines BEAS-2B and NL20

Respiratory ciliated epithelium is the primary site of infection of B. pertussis. The use 

of bronchial epithelial cell lines as models for study has improved our understanding 

of the biology of disease.

BEAS-2B, a bronchial epithelial cell line, has been used in various studies of B. 

pertussis. Ishibashi et al have demonstrated that the FHA of B. pertussis up- 

regulates the expression of epithelial ICAM-1 in these cells and that PT impairs this 

response (Ishibashi & Nishikawa, 2002). The same team further demonstrated that 

FHA binds to the integrin VL5 of BEAS-2B cells and induces an RGD-dependent NF- 

kappa B activation, thus leading to the up-regulation of epithelial ICAM-1 expression. 

They also showed that a PT-sensitive G protein may be involved in this signalling 

pathway (Ishibashi & Nishikawa, 2003). Taking this information together, it is possible 

that PT could be involved in the delay of the recruitment and accumulation of 

inflammatory cells at the site of infection. Another study demonstrated that migration 

of peripheral blood mononuclear cells across a monolayer of BEAS-2B cells was 

significantly inhibited by PT. This result implicates a G protein signalling event as an 

important mediator of lymphocyte/monocyte transepithelial migration (Miller & 

Butcher, 1998). It has also been reported that PT can block activation-dependent 

binding of lymphocytes to endothelium in vivo (Bargatze & Butcher, 1993). Belcher et 

ai used microarray technology to investigate the transcriptional response of the 

BEAS-2B cells in response to B. pertussis treatment. The early transcriptional 

response to this pathogen was dominated by altered expression of cytokines, DNA

46



binding proteins and NFicB-regulated genes. Also the bacteria induced mucin gene 

transcription by the epithelial cells. The pathogen counters the innate defence of the 

respiratory tract by using mucin as a binding substrate (Belcher et aL, 2000).

NL20 is an immortalised, human bronchial epithelial cell line (Schiller & Bittner, 

1995). It is an attached cell type and requires growth medium additives to optimise its 

cell proliferation. These additives are insulin, epidermal growth factor, hydrocortisone 

transferrin and non-essential amino acids.

1.6.2. Human umbilical endothelial cell (HUVEC)

Respiratory tract infections caused by B. pertussis are occasionally accompanied by 

severe neurologic disorders and encephalopathies (Mortimer & Edward, 1998). 

Encephalopathy has also been reported in children receiving pertussis vaccination. 

PT (or PTd) is a component of all whole- cell and acellular vaccines (Miller, 1993). Its 

structure and function have been widely investigated but its role in the disease and in 

the toxicity of the vaccine is still not understood. In the pathogenesis of pertussis- 

related neurological disorders, an important effect might be on the integrity of the 

cerebral barrier. The Plexus chorioideus (Pannese et aL, 1994) is composed of 

capillaries. They are overlain by a neatly cuboidal epithelial covering and protrude 

into the lumen of the ventricles in the brain. The cells produce cerebrospinal fluid that 

fills the ventricles of the brain and the lumen of the spinal cord (Pannese et aL,

1994). Bruckener et aL (2003) recently investigated, in the Plexus chorioideus model, 

the role of PT on the epithelial barrier and on the endothelial barrier. They concluded 

that PT does not affect the epithelial barrier but it does modify the morphology of the 

endothelial cells. The permeabilisation of cerebral endothelial monolayers by PT 

proceeds via the phosphokinase C pathway. In addition, Adamson et aL (2002) study 

showed that treatment of brain endothelial cell (EC) monolayers with PT resulted in
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ADP-ribosylation of G-protein a subunits and inhibition (>80%) of lymphocyte 

migration without affecting lymphocyte adhesion. Thus, with regard to the induction of 

encephalopathies as a potential consequence of pertussis infection, which has 

recently been discussed by Donnelly et al. (2001), P I  might exert a dual effect in 

permeabilizing cerebral endothelial barriers mediated by the activity of the ADP- 

ribosyltransferase and, by contrast, mediating an anti-inflammatory effect by 

competitively interfering with leukocyte recruitment (Rozdzinski eta!., 1993).

In order to investigate the eventual binding or toxic effect of PT on endothelial cells in 

this study, HUVEC primary cells (Cambrex CC-2519) will be used as cellular model.

1.7. Microarrays

First described in 1995 (Schena at a!., 1995), DNA microarrays are a powerful tool 

that allows the simultaneous analysis of a large number of nucleic acid hybridization 

experiments in a rapid and efficient fashion. DNA microarrays are based on the 

reverse of the Southern blot technique. Gene-specific oligonucleotide probes are 

immobilized on a membrane or a glass slide and then hybridized against the labelled 

target population of cDNAs (Kurian at a/., 1999)

The applications of DNA microarray technology include the comprehensive analysis 

of multiple gene mutations and expressed sequences with regard to drug design 

(pharmacogenetics), drug side effects (toxicogenomics) and host-pathogen 

interactions.

1.7.1. Advantages and limitations of microarrays

From the recent completion of the sequencing of the human genome (Rogers, 2003) 

and the B. pertussis genome (Parkhill at a/., 2003), microarrays would seem to 

provide a powerful tool to investigate the interaction of the pathogen with its host.
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Established methods of studying gene expression such as Northern blotting and 

quantitative PCR are inherently serial, involving measuring a single gene at a time 

and are difficult to automate. The major advantage of DNA microarrays is that they 

permit simultaneous detection of expression levels for nearly every gene in an
' .té

organism or cell line in one experiment. Further advantages are that microarrays are 

high throughput, versatile and fast.

Microarray technology should allow us to unravel the function of genomic data into 

fundamental biological principles and enable the design of molecularly-defined 

vaccines to target pathogens specific to given human genotypes, and also enable the 

prediction of potential immune responses to a given antigen (Dhiman et al., 2001). 

Nevertheless, DNA microarrays are a new technology that has limitations.

The major limitation of the current technology is the shortcomings of DNA 

management, statistical analyses and cost (Dhiman et al., 2001). Another drawback 

of microarray technology is that it limits the expression studies to the mRNA level.

Ideally, it should be accompanied by analyses at the protein level. Proteomics 

focuses on different steps of the same process: the expression of genetic information 

into functional molecules, cells and organisms. Moreover, proteomics allows the 

detection of inducible modifications (phosphorylation and glycosylation) of the gene 

products, which are not regulated at the transcriptional level (Dhiman etal., 2001).

There are major concerns regarding the sensitivity of detection of mRNA transcripts 

that are in low abundance and the time required for analysis and interpretation of 

data. The most critical concern is whether gene expression profiles for a given 

system are consistently reproducible from study to study and across different 

laboratories. An additional challenge is to define appropriate standards and controls 

within and between institutions (Benes & Muckenthaler, 2003).
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1.7.2. Applications

1.7.2.1. Study of host-pathogen Interactions

The complex interactions between a microbial pathogen and a host are the 

underlying basis of infectious disease. DNA microarrays exploit primary sequence 

data to measure simultaneously transcript levels for every gene that may play a role 

in the host-microbe interactions (Boldrick et al., 2002; Eskra et al., 2003; Galindo et 

al., 2003; Virok et al., 2003). This technology also offers the opportunity to examine 

the global and subtle changes in gene expression in relation to specific stimuli 

(Boshoff et al., 2004).

Belcher et al. (2000) investigated the interaction of the bacterium B. pertussis with 

the bronchial epithelial cell line BEAS-2B. They studied the mRNA differential 

transcription of the cells cultured in presence of the bacteria or in the presence of PT 

by microarray technology. They concluded that the early transcriptional response to 

this pathogen was dominated by altered expression of cytokines, DNA-binding 

proteins, mucin and NF-kB regulated genes. B. pertussis-infected cells exhibited a 

transcriptional profile dominated by a proinflammatory response. A number of 

chemokines were up-regulated: IL-8, GRO-1, GRO-2, GRO-3, MCP-1 and SCYA3. 

These chemokines are neutrophil chemoattractants (Hammond et al., 1995) and 

have been related to lymphocyte or monocyte tissue infiltration (Jinquan et al., 1995). 

In addition, the transcription profile of the cells infected with the bacteria revealed an 

upregulation of genes involved in the NF-kB pathway. TNFAIP3 and, API2 are 

suggestive anti-apoptotic signalling molecules and TRIP, which inhibits NF-kB 

activation, was downregulated. Taken together, these results suggest that the 

bacterium might induce apoptosis of the inflammatory cells (monocytes, neutrophils
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(Khelef & Guiso, 1995)) while sparing the ciliated epithelium on which it survives 

(Belcher etal., 2000).

Microarrays can also be used to investigate the transcriptional profile modification of 

the host by a specific toxin, in order to elucidate the role of a specific virulence factor 

in pathogenesis. Belcher et ai. (2000) used BEAS-2B cells and PT treatment to 

define the role of the ADP-ribosyl transferase activity of PT. Some of the up- 

regulated genes identified were G-protein- or cAMP-regulated, such as those 

encoding matrix metalloproteinase 1, basic fibroblast growth factor and the NaYCI' 

dependent serotonin transporter. Belcher et ai. also concluded that PT or B. pertussis 

up-regulation of genes involved in mucin synthesis and the PT-induced alterations in 

VIP and serotonin signalling could lead to thicker mucus. They demonstrated that B. 

pertussis binds to mucin, suggesting that the pathogen may be manipulating the host 

defences to create a favourable microenvironment for itself.

Another study was carried out by Boldrick et al. (2002) using microarrays to 

investigate the transcriptional profile of human peripheral blood mononuclear cells 

co-cultured with live B. pertussis. This study demonstrated the innate immune 

response induced by the pathogen. They found a preponderance of immune 

activation genes involved in cell-cell signalling, genes whose products participate in 

intercellular immunoregularory signalling pathways, and other proinflammatory 

mediators of the immune response. The most prevalent classes among the 

commonly-induced genes included cytokines [interleukin (IL) la , ILIp, IL6, IL10, 

tumor necrosis factor (TNFa), granulocyte colony stimulating factor (CSF)] and 

chemokines [IL8, macrophages inflammatory protein (MIP)1a, M IPip, MIP2a], as 

well as cell-surface receptors and ligands (CD40 and CD40 ligand, IL2 a receptor). 

The time of incubation of the bacteria with the cells was found to be very important
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because it could lead to contradictory results. For example, genes encoding TNF, 

MIP1p, IL1a and ILip were induced quickly after exposure to either live or killed 

bacteria. However, while the induction of these genes was sustained in PBMCs 

treated with killed bacteria, their transcripts rapidly diminished in the cells exposed to 

live S. pertussis. The ability of live B. pertussis to suppress expression of these 

important antimicrobial genes suggests that active mechanisms are used by the 

bacteria to influence the host response. PT could be responsible for the TNF-a 

suppression. An increase in host intracellular cAMP levels through the actions of PT 

and ACT is a crucial feature of B. pertussis virulence (Katada et a/., 1983). The 

increase of intracellular cAMP could explain the abrogation of the LPS-stimulated 

induction of TNF-a expression (Zidek, 1999).

The chemoattractant effect of IP S  on neutrophils has been studied using 

microarrays. Neutrophils isolated from healthy donors were incubated for 4h in 

presence of LPS from E. coli 0111 :B4. The gene expression of the cells showed that 

IP S  treatment lead to the up-regulation of genes coding for cytokines, chemokines, 

cell growth and interferon response whereas genes involved in cytoskeletal 

regulation were predominantly repressed. These date suggest molecular 

mechanisms by which neutrophils respond to infection and indicate that the 

transcriptional potential of neutrophils is greater than previously thought (Malcolm et 

ai., 2003).

1.7.2.2. Pharmacogenetics and toxicogenomics

Microarrays are powerful tools that have at least three major applications for 

pharmacogenetics. First, they aid in the discovery of new drugs targets. Microarrays 

simultaneously compare expression of thousands of genes in normal versus 

diseased tissue. This allows the identification of genes that are uniquely expressed in
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disease, and which are potential targets for drugs action. The same genes are, in 

principle, also interesting as potential early detection markers for diagnostic 

purposes. Secondly, microarrays are used to clarify molecular mechanisms of drug 

action and to predict drug efficacy and toxicity (toxicogenomics)(Newton et al., 2004; 

Moggs et al., 2004). Toxicogenomics can be defined as identification and 

characterization of molecular mechanisms that lead to the adverse effects of 

xenobiotics on gene expression. Toxicogenomics is based on the fact that most 

relevant toxicological outcomes originate from early changes in gene expression 

(Storck etal., 2002).

The majority of studies are performed on rodents despite the fact that the human 

predictability of standard rodent tests shows only 45% concordance (Johnson et al., 

1990). However, primary hepatocytes are well suited for toxicogenomics studies 

because they display a certain level of metabolic activity and the liver is a major 

stage for toxic events (Waring et al., 2001). In addition, the use of cell culture models 

reduces animal utilization and the need for the synthesis of new compounds on a 

large scale (Baker et al., 2001). Nevertheless, there are a number of limitations using 

in vitro approaches such as the functional differences observed in primary 

hepatocytes relative to the intact liver, the absence of interactions with biological 

entities (eg organs, blood) under in vitro conditions, the difficulty in selecting doses 

and time points which are representative of an in vivo situation (de Longueville et al.,

2003).

A desired outcome of expression monitoring in toxicology would be to identify a small 

subset of genes in vitro that would correlate with toxicity in vivo (Cunningham et al., 

2000). To this end, Zhao et al. (2003) have carried out preliminary investigations on 

the gene expression changes in mouse spleen cells induced by WOV, ACV, and
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individual B. pertussis toxins, eg. PT, detoxified PT and LPS using microarray 

technology. The genes that were differentially expressed after pertussis vaccine 

treatment could be classified into a number of functional categories. These included 

cytokines and their receptors, growth factors, transcription factors and other immune 

system proteins (e.g NO, lL-1 receptor, IL-4 and TGF-(33). A number of up-regulated 

genes eg. TNF-19 receptor, pre-B lymphocyte gene-1, metallothionein-1 and B-cell 

receptor-associated protein, could possibly be associated with the toxic mechanisms 

of B. pertussis, involving apoptosis, necrosis, inflammation, inhibition of DNA 

synthesis or oxidative stresses (Zhao Y, 2003).

1.8. Aims of the study

The main aim of this study was the identification of gene markers of PT toxicity using 

the microarray technique, in order to propose in vitro assays based on human cell 

lines as an alternative to the HIST and MWGT. The study had three main goals: 1) 

determination of suitable concentrations of PT for microarray experiments, 2) 

investigation of gene expression of HUVEC and NL20 cells after treatment with PT or 

detoxified PT using the microarray technique, and 3) confirmation of the expression 

of candidate gene using semi-quantitative RT-PGR.
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2. MATERIALS AND METHODS
2.1. Biological reagents

Table 1. Biological reagents.

Preparation (and 
batch number)

Stock
solution

concentration
Composition of stock solution buffer

Pertussis toxin 

(PAC090)
25 pg/ml

NaCI 8  g/L, KCI 0 .2  g/L, Na2HP0 4  1.15g/L, KH2PO4 0 .2 g/L, 

Glycine 3.75 g/L, Lactose 3.75 g/L, Saccharose 3.75 g/L, 

Arginine 3.75 g/L, pH 7.8

Pertussis toxin 

(2133)
85 pg/ml 50% (v/v) Glycerol in distilled water

Pertussis toxin 

(90/518)
20 pg/ml

Trehalose 5 g/L, NaCI 0.25 g/mi,Sodium Monobasic 5 mM, 

Sodium Bibasic 5 mM, pH 7.6

Pertussis toxin 

(JNIH-5)
10 pg/ml

Glucose 30 mg/l, Lactose 30 mg/L, Sucrose 30 mg/L, 

Arginine 30 mg/L, pH 7.7

Chemically 

detoxified PT (2120)
515 pg/ml

NaCI 8  g/L, KCI 0.2 g/L, Na2HP0 4  1.15 g/L, KH2PO4 0.2 

g/L, Glycine 33 g/L, Lactose 33 g/L, Saccharose 33 g/L, 

Arginine 33 g/L, pH 7.8

LPS from B. 

pertussis W28 

(89/670)

25 pg/ml Trehalose 3 g/L

Interleukin 1 beta 

(86/680)
100000lU/mi

Trehalose 3 g/L, human serum albumin 0.5 g/L, isodium 

phosphate buffer 5x10^ mol/L

Tumor necrosis 

factor alpha 

(88/786)

46500 lU/ml Human serum albumin 3 g/L
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2.2. Cell lines and culture conditions.

Jurkat cells (ECACC 88042803), a human leukaemic T cell lymphoblast cell line, 

were grown in RPMI media (Sigma R8758) supplemented with 6% (v/v) foetal calf 

serum (PCS) (Invitrogen 10108-165), 2 mM glutamine (G6392) and 1% (v/v) 

streptomycin- penicillin (Sigma P0781), Cells were passaged every two or three 

days.

SHSY5Y cells (ECACC 94030304), a human neuroblastoma cell-line, were grown in 

MEM/F12 1:1 (Invitrogen 31330-038) supplemented with 15% (v/v) FCS (Invitrogen 

10108-165), 2 mM glutamine and 1% (v/v) streptomycin-penicillin (Sigma). Cells 

were passaged every three days.

NL20 cells (ATCC CRL-2503), epithelial bronchial cells immortalized with SV40 large 

T plasmid, were grown in DMEM/F12 media (Invitrogen) containing 2 mM glutamine, 

3 g/l D-glucose, 3.5 g/L HEPES and supplemented with 5% FCS (v/v) (Invitrogen 

10108-165), 10 ng/ml epidermal growth factor (Sigma E9644), 0.1 mM non-essential 

amino acids (Invitrogen 11140), 5 pg/ml insulin (Sigma 19278), 50 pg/ml gentamycin 

(Sigma G 1272) and 500 nM hydrocortisone (Sigma H6909). Cells were passaged 

every two days.

Human Umbilical Vein Endothelial primary cells (HUVEC) (Cambrex CC-2519) were 

grown in endothelial cell media system (Cambrex CC-3124) supplemented with 

bovine brain extract with heparin, human endothelial growth factor, hydrocortisone, 

gentamycin, amphotericin B (Cambrex CC-3124), foetal calf serum (FCS) 10% (v/v) 

(Invitrogen 10108-165). Cell were used from passages 1 to 6 and grown in 1% 

gelatin-coated (Sigma G1393) tissue culture flasks. Cells were passaged when they 

reached 80% confluence.
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2.3. Cytotoxicity test

Two different cytotoxicity assays were performed in this study, i.e. Alamarblue and 

MTT assays.
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2.3.1. Alamarblue assay

Cells (Jurkat, NL20, SHSY5Y and HUVEC) at 5x10® cells/ml were seeded (45 pi) in a 

96-well plate. Alamarblue dye (lOpI) was added to each well and the plates were 

incubated at 37°C in a humidified atmosphere containing 5% v/v of CO2. After 

incubation for 0, 6, 24 and 48h, cells were treated with serial dilutions of PT, 

detoxified PT (2120) or LPS from B. pertussis W28 (89/670) at concentrations 

ranging from 0, 0.3, 0.6, 1.25, 2.5, 5 to 10 pg/ml. Toxin diluents were included as 

controls throughout the experiments. Cells incubated with medium and FCS alone 

were used as positive controls. The cells were again incubated at 37°C in a 

humidified atmosphere containing 5% CO2. For each cell line the experiment was 

carried out on three different batches of cells. In each experiment the concentrations 

of toxin were investigated in triplicate.

After treatment for 0, 6, 24 and 48 h, the cells were examined for morphological 

changes and the percentages of cell viability were calculated as follows. Alamarblue 

compound is a reduction indicator modified by mitochondrial activity to a compound 

that can be detected using a spectrophotometer. Alamarblue in its reduced form is 

detected at two wavelengths 570 nm (A,1) and 600 nm (X2). Alamarblue dye in a 

testing sample was performed according to manufacturer formula (Alamarblue^"' 

assay U.S Patent No 5, 501, 959);

.... . -, .-I" . . .. ..''vy



The calculation of the % Reduced Is as follow:

X̂  = 570 nm 

X2 = 600 nm

(gqx ^2) (A Xi) “  (sox ^1) (A X2)

% Reduced =   x100

(Gred ^1) (A A.2) — (Gred ^2) (A Xi)

Where:

(sred ^1) = 155,677 (Molar extinction coefficient of reduced alamarblue at 570 nm)

(sred X2) = 14,652 (Molar extinction coefficient of reduced alamarblue at 600 nm)

(sox A-i) = 80,586 (Molar extinction coefficient of oxidized alamarbiue at 570 nm)

(Gox X2) = 117,216 (Molar extinction coefficient of oxidized alamarblue at 600 nm)

(A Xi) = Absorbance of test wells at 570 nm 

(A X2) = Absorbance of test wells at 600 nm

(A’ A.i) = Absorbance of negative control wells which contain medium plus alamarblue 

but to which no cells have been added at 570 nm

(A’ X2) = Absorbance of negative control wells which contain medium plus alamarblue 

but to which no cells have been added at 600 nm

The calculation of the % of cell viability is as follow:

Mean of % reduced (test)

% cell viability = xlOO

Mean of % reduced (control positive for growth)
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2.3.2. MTT assay

The Cell titer96® Non radioactive cell proliferation assay (Promega G4000) was 

used. The assay is based on the cellular conversion of a tétrazolium salt (MTT for (3- 

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium bromide) into a formazan product, 

detected using a spectrophotometer.

Cells at 5x10® cells/ml were treated in a 96-well plate with toxin solutions at 

concentrations ranging from 0 to 10 pg/ml and or with their associated diluents (final 

volume 90 pi) and the plates were incubated at 37°C in a humidified atmosphere 

containing 5% CO2 for 0, 0.5, 3, 6 and 24h. MTT dye (lOpI) was then added to each 

well and the cells were incubated for an additional 1 hour. The solubilisation solution 

was then added to the reaction and the plates incubated for 4 h at 37°C. After 

incubation, morphological changes were observed under a microscope (Olympus 

XS51) and optical density (570 nm) was recorded using a Multiskan® reader 

(Thermo life science MS 200-240).

The calculation of the % of cell viability is as follow:

(Atest ^570 nm)

% of cell viability = ------------------------------- x 100

( A  control positive for growth ?^570 nm)
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2.4. Microarray experiments

2.4.1. Cell treatment

Three different batches of HUVEC cells (biological triplicate) and two different 

batches of NL20 cells (biological duplicate) were used for the following treatment and 

each batch was investigated only one time. See Table 2.

For each cell batch (HUVEC and NL20) three conditions were investigated:

1. Cells at 5x10® cells/ml were treated with medium alone

2. Cells at 5x10® cells/ml were treated with PT ( batch 2123) (2.5 pg/ml)

3. Cells at 5x10® cells/ml were treated with detoxified PT (batch 2120) (2.5 pg/ml)

All the cells were seeded and treated in T175 cell culture flasks and were incubated 

for 6 h at 37°C in a humidified atmosphere that contains 5% CO2. Treated cells were 

harvested and rinsed twice in PBS. See Table 2.

i
I
!
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Table 2. Design of microarray experiments

Cell batches Cell treatments RNA extraction 
samples

Arrays hybridised 
with radioactive 

cDNA

Gene lists (Genes 
differentially 

^expressed by over 2 
fold relative to the 

same gene in control 
 group)_______

HUVEC cells 
batch 1

Cells + medium 1.RNA Control 1 Array Control 1
Cells + PT 2.RNA PT 1 Array PT 1 1.Genes up- 

regulated by PT1
2.Genes down- 
regulated by PT1

Cells + dPT 3.RNA dPT 1 Array dPT 1 3.Genes up- 
regulated by dPT1
4.Genes down- 
regulated by dPT1

HUVEC cells 
batch 2

Cells + medium 4.RNA Control 2 Array Control 2
Cells + PT 5. RNA P T 2 Array PT 2

Cells + dPT 6 .R N A d P T 2 Array dPT 2

5.Genes up- 
regulated by PT2
6.Genes down- 
regulated by PT2
T.Genes up- 
regulated by dPT2 
S.Genes down- 
regulated by dPT2

HUVEC cells 
batch 3

Cells + medium 7.RNA Control 3 Array Control 3
Cells + PT 8.RNA P T 3 Array PT 3

Cells + dPT

9.Genes up- 
regulated by PT3
10.Genes down- 
regulated by PT3

9 .R N A d P T 3 Array dPT3 11.Genes up- 
regulated by dPT3
12.Genes down- 
regulated by dPT3

NL20 cells 
batch 1

Cells + medium 1.RNA Control 1 Array Control 1
Cells + PT 2. RNA PT 1 Array PT 1 1.Genes up- 

regulated by PT 1
2.Genes down- 
regulated by PT1

Cells + dPT S .R N A d P T I Array dPT 1 S.Genes up- 
regulated by dPTI 
4.Genes down- 
regulated by dPT1

NL20 cells 
batch 2

Cells + medium 4.RNA Control 2 Array Control 2
Cells + PT 5.RNA P T 2 Array PT 2 5.Genes up- 

regulated by PT2
6.Genes down- 
regulated by PT2

Cells + dPT 6 .R N A d P T 2 Array dPT 2 7.Genes up- 
regulated by dPT2
8.Genes down- 
regulated by dPT2
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2.4.2. Total RNA extraction

Total RNA extraction was carried out on the treated cells using RNeasy maxi kit 

(Qiagen 75162) according to manufacturer’s instructions. Extracted RNA was then 

treated with 630 Units of DNase 1(114 U/ ĵl Invitrogen 18047-019) for 30 min at 37°C. 

The total RNA was further precipitated for 2 h in the presence of 0.5 M ammonium 

acetate and 2.5 volumes of ethanol 100% (v/v) at -80°C. The RNA pellet after 

centrifugation was washed twice in 70% ethanol and the pellet resuspended in 

RNase free water (Promega). Optical density was measured for each sample at 260 

nm to determine the quantity of RNA. Taking the correlation 1 Azeo unit of ssRNA = 

40 pg/ml H2O, the concentration of RNA sample were calculated. Optical density was 

also measured at 280 nm to allow the calculation of the ratio A260/A280. Samples with 

a ratio <1 . 8  were discarded. According to the design of cell treatments (see table 2) 

a total of nine different RNA samples were extracted from each HUVEC cell culture: 

three different batches of cells treated with medium alone, PT at 2.5 pg/ml, and dPT 

at 2.5 pg/ml. A total of six RNA samples were extracted from NL20 cells: two different 

batches of cells treated with medium alone, PT at 2.5 pg/ml, and dPT at 2.5 pg/ml.

2.4.3. Microarray template

Plastic human 12K microarray (BD biosciences BD Atlas*"' 634811) was used for the 

experiments. This plastic membrane was coated with oligonucleotides representing 

12,000 human genes. Each oligonucleotide was present in duplicate on the plastic 

membrane. Microarray experiments were performed according to the manufacturer’s 

instructions and are briefly described as follows. All the reagents were obtained from 

BD biosciences unless otherwise stated.
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2.4.4. Preparation of cDNA

2.4.4.1. Annealing primers

Total RNA 50|ag /  treatment (a total of 9 for HUVEC cells and 6 for NL20 cells) was 

incubated with 1 pi of random primers, 4 pi of Oligo(dT) primers (Promega, 500 

pg/ml) in a total volume of 16 pi for 10 min at 65°G followed by 10 min at room 

temperature, according to the manufacturer’s protocols (BD biosciences BD Atlas*"' 

plastic human 12K microarray 634811).

2.4.4.2 Reverse transcription

To a 16 pi of annealing mixture from 2.4.4.1, 8 pi of 5x BD powerscript reaction 

buffer, 3 pi dNTP (dATP, dOTP, dTTP and dGTP at 10 mM, Promega), 1 pi of lOx 

DTT, 10 pi (50pCi) of radioactive ®®PdCTP (Amersham BF1005) and 2 pi of reverse 

transcriptase enzyme were added. Reaction mixtures were incubated for 1 h at 42°C 

to synthesise the cDNAs. After this, 4 pi of lOx terminal reaction solution was added. 

Populations of radioactive cDNA were purified by column chromatography, according 

to the manufacturer’s protocols (BD biosciences BD Atlas*"" plastic human 12K 

microarray 634811). Populations of radioactive cDNA were synthesised from RNA 

extracted from cells treated according to the design described in table 2. Therefore, a 

total of 15 populations of radioactive cDNA were synthesised. Nine populations of 

radioactive cDNA were related to the three different batches of HUVEC cells treated 

with medium alone, PT at 2.5 pg/ml, and dPT at 2.5 pg/ml. Six populations of 

radioactive cDNA we are related to the two different batches of NL20 cells treated 

with medium alone, PT at 2.5 pg/ml, and dPT at 2.5 pg/ml.

2.4.4.S Hybridization

Each population of radioactive cDNA was hybridised to an individual plastic 

membrane (BD bioscience 634811). This plastic membrane was coated with
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oligonucleotides representing 12,000 human genes. Each oligonucleotide was 

present in duplicate on the plastic membrane. According to the manufacturer’s 

protocol, radioactive cDNAs were hybridised to one plastic membrane at 60°C 

overnight in the hybridisation buffer (BD bioscience).The hybridised arrays were 

exposed to a phosphorous screen for two weeks at room temperature. The 

radioactive hybridised signals were detected using a Typhoon scanner (Typhoon 

9410, Molecular dynamics). The Typhoon scanner takes a picture of the hybridised 

plastic membrane where one spot corresponds to the expression of one gene. On 

this picture each dark spot corresponds to a radioactive cDNA hybridised to an 

oligonucleotide probe coated on the membrane. Three hybridisation experiments 

were carried out for HUVEC study (related to the three batches studied) and two 

hybridisation experiments were carried out for NL20 study (related to the two batches 

studied). In each experiment, three populations of radioactive cDNA (related to 

treatment design: medium alone, PT 2.5 pg/ml and dPT 2.5 pg/ml) were hybridised to 

three different plastic membranes.

2.4.6, Mlcroarray analysis

2.4.5.1. Template alignment

Using Atlasimage® software (version 2.7, Clontech lab), the image of hybridised 

arrays on each membrane showing the radioactive signals was collected and aligned 

to gene templates. For each array, the signals with discordant or absent results were 

discarded and radioactive intensities of spots were quantified. Therefore the software 

allowed us to make a relation between a spot and the name of the gene investigated 

(according to the template) and also allowed us to have the intensities of a spot 

converted in numbers called raw data. Because each array had two spots for one 

gene, each time an array was hybridised, two sets of data for each gene were
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obtained. The resulting data were then normalized, filtered and analysed using 

GeneSpring® software (version 7, Siiicongenetics).

2.4.5.2. Normalisation and calculation of statistical significance of internai 

controi.

GeneSpring® software was used to analyse the raw data, including normalisation of 

signals using a global normalisation method to subtract the background and the 

statistical significance of the internal replicates. Two-colour normalisations were 

carried out. The measured intensity for each gene was divided by its control channel 

value in sample(s) when less than 100 genes showed signals per region; if the 

control channel value was below 5 then 5 was used instead. If the control channel 

and the signal channel values were both below 5 then no data were reported. When 

more than 100 genes showed signals per region, a Lowess curve was fitted to the 

log-intensity versus log-ratio plot. 20.0% of the data was used to calculate the 

Lowess fit at each point. This curve was used to adjust the control value for each 

measurement. If the control channel value was lower than 10 then 10 was used 

instead. After normalisation, the intensities of the two spots for each gene were 

averaged to give the intensity of a gene. Robustness of the intensity of a gene was 

calculated using a statistical programme (Cross-gene error model) built in to the 

GeneSpring software.

2.4.5.3. Filtering of the data

After normalisation of the results, the data generated were displayed in scatter plots. 

The scatter plot displayed each gene as a dot and placed it in the graph according to 

the signals recorded on the control membrane (X-axis) and the treatment membrane 

(Y-axis). Therefore, the ratio of the expression level was clearly illustrated and up- 

regulated and down-regulated genes were represented according to a colour code
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explained in the Results chapter (e.g. Fig. 7 and 8). At this stage, genes were 

selected, on the basis of expression level, with the aid of filters available in the 

software. Gene filtered must be in agreement with several conditions: 1) The intensity 

of the gene averaged from the two spots (internal control) must be considered robust 

according to the programme, 2) The intensity of the gene must increase or decrease, 

after PT or dPT treatment, by over two-fold relative to the same gene in the control 

group. According to the experiment design shown in table 2, filtered genes were 

classified in gene lists. A total of 12 gene lists were produced for the genes up and 

down-regulated in HUVEC cells treated with PT or dPT in microarray experiment 

numbers 1, 2 and 3 (triplicate). A total of 8 gene lists were produced for the genes up 

and down-regulated in NL20 cells treated with PT and dPT in microarray experiment 

numbers 1 and 2 (duplicate).

2.4.S.4. Reproducibility between microarray experiments.

The Venn diagram option of GeneSpring software allowed analysis of the content of 

the gene lists produced on the scatter plots. The Venn diagram allows the 

comparison of three different gene lists simultaneously. Therefore, genes present in 

more than one list or in one list only can be highlighted. The first part of the analysis 

was based on the number of genes differentially expressed by different treatments 

across the triplicate or replicate experiments for HUVEC or NL20 cells, respectively. 

To investigate the reproducibility between microarray experiments, the percentage of 

similitude across was calculated as follows:

Genes up- or down-regulated by PT or dPT in experiment 1, 2 or 3 x 100 

% of similitude = -------------------------------------------------------------------------------------------

Total of genes up- or down-regulated by PT or dPT in experiment 1, 2 or 3
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2.4.5.5. Selection of candidate genes

The second part of the analysis was to select the genes differentially expressed by 

PT and by dPT. These genes were selected using the Venn diagram of the HUVEC 

results as those up-regulated by PT treatment but not by dPT treatment and present 

in at least two experiments. Ultimately, gene candidates were selected for 

confirmation by RT-PCR.

2.5. Semi-quantitative RT-PCR

2.5.1. Cell treatments

2.5.1.1. PT and detoxified PT treatments on HUVEC and NL20 cells.

The same batches of cells as used in the microarray experiments were treated and 

then RNA was extracted in order to perform microarray and semi-quantitative RT- 

PCR experiments, as described in section 2.4.1.

2.5.1.2. Pertussis toxin and interleukin-1 beta (IL-1 beta) on HUVEC cells.

In an attempt to get closer to in vivo conditions and to increase the sensitivity of 

signal detection, PT treatments in association with IL-1 beta were carried out on 

HUVEC cells. Cells at 5x10® cells/ml were incubated in the presence or absence of 

PT (100 ng/ml) at 37°C in a humidified atmosphere containing 5% CO2. After 

incubation for 18h, the cells were stimulated for 4 h with IL-1 (3 (5 lU/ml) (Sadeghi et 

ai., 2000). Four different groups of cells were treated:

Group 1: for 22 h with medium alone

Group 2: for 18 h with medium alone + for 4 h with IL-lp (5 lU/ml)

Group 3: for 18 h with PT (100 ng/ml) + for 4 h with medium alone

Group 4: for 18 h with PT (100 ng/ml) + for 4 h with IL-1 (3 (5 lU/ml).
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2.5.1.3. Pertussis toxin and tumor necrosis factor alpha (TNF alpha) on HUVEC 

cells.

Cells at 5x10® cells/ml were incubated in the presence or absence of PT (100 ng/ml) 

at 37°C in a humidified atmosphere containing 5% CO2. After incubation for 18 h, the 

cells were stimulated for 6 h with TNFa (20 IU/mI)(Bernot et al., 2005). Four different 

groups of cells were treated:

Group 1: for 24h with medium alone

Group 2: for 18h with medium alone + for 6 h with TNFa (20 lU/ml)

Group 3: for 18h with PT (100 ng/ml) + for 6 h with medium alone 

Group 4: for 18h with PT (100ng/ml) + for 6h with TNFa (20 lU/ml).

2.5.2. Total RNA extraction

Extraction of total RNA was carried out on the treated cells as in section 2.4.2.

2.5.3. Semi-quantitative RT-PCR

Total RNA digested with DNAse I (114 U/pl, Invitrogen 18047-019), was diluted in 

RNAse-free water to 2 pg/gene investigated, 1 pg/gene investigated, O.ipg/gene 

investigated and 0.01 pg/gene investigated. Diluted RNA was then reverse- 

transcribed for 90 min at 42°C with 2 pi Oligo(dT) primers at 0.1 pg/pl (Promega) and 

1 pi (200U) of Superscript II RT (Invitrogen 18064-014), 4 pi RT buffer (x5), 1 pi 

dNTPs (Promega, 10 mM) and 2 pi DTT 0.1M (Invitrogen). The resultant cDNA (10 

pl/gene investigated) was used for PCR using a heating step of 94°C for 2 min and 

30 cycles of 1 min at 96°C, 1 min at 52°C and 1 min at 72°C and a final step at 72°C 

for 7 min. The PCR mixture for each gene investigated was 2pl of each primer (10 

pMol/pl), 5 pi of enzyme buffer (xIO), 1 pi MgCb (25 mM), 5 U Tag polymerase 

(Promega M l665). PCR amplification products were electrophoresed in agarose gels
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(1% (w/v) in TBE buffer (x1): Tris 109 g/ml, boric acid 55.6 g/ml, EDTA 9.3 g/mi pH 

8.3) containing ethidium bromide (5% (v/v)).

The mRNA sequences of the genes selected for RT-PCR from the microarray 

analysis were assembled from the NCBI database (National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.aov ). Primers (Invitrogen) were designed based 

on the above sequences using Gene runner 3.05® software (See Table 3). Primers 

for the genes VCAM-I (vascular cell adhesion molecule-1), ICAM-I (intercellular 

adhesion molecule-1) and E-selectin (endothelial adhesion molecule 1) were 

identical to the sequences used by Meagher et al. (1994) (Table 3).
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Table 3. Genes targetted by semi-quantitative RT-PCR.

Genbank
(accession

number)
Gene name

Annealing
temperature

(°C)

Expected
fragment
product

(bp)

Primer sequences

L05515

cAMP response element- 

binding protein mRNA 

(CRE-Bp1)

56 567
5’-CATCACCACTCCCATTCC-3’ and 5’- 

TCTGTGAGTGGTGAGCTG-3’

NM„005567

lectin, gaiactoslde- 

binding, soluble, 3 

binding protein (Galectin 

3)

54 556
5’-CCTGTTCCAGAAGAAGACT-3’ and 5 ’- 

TCTTCGAGCTGTTGGTGTC-3’

NM„016103
GTP-bindIng protein Sara 

(SAR1)
56 552

5’-ACAGTGGTTTCAGCAGTGT-3’ and 5’- 

ATCCAGCGGAAGCCTTCT-3'

NM„000742

Cholinergic receptor, 

nicotinic, alpha 

polypeptide 2 (neuronal) 

(CHRNA)

56 537
5’-TGCTGCTCATCACTGAGAT-3’ and 5'- 

TTCACCGAAGAGTCAGCAT-3'

NM_001383

diphthamide biosynthesis 

protein 2, S. c, homolog­

like 1 (DPH2L1)

56 549
5’-CGGATAGACACTACACAC-3' and 5’- 

ATCCACCTCAGGAAGTAG-3’

NM_002046

glyceraldehyde-3- 

phosphate 

dehydrogenase (GapDH)

58 500
5’-ACCACAGTCCATGCCATCAC-3’ and 5 ’- 

TCCACCACCCTGTTGCTG-3’

NM_001078
vascular cell adhesion 

molecule-1 (VCAM-1)
56 259

5’-ATGACATGCTTGAGCCAGG-3’ and 5'- 

GTGTCTCCTTCTTTGACACT-3’

NM_000201
Intercellular adhesion 

molecule-1 (ICAM -I)
55 237

5’-TATGGCAACGACTCCTTCT-3’ and 5'- 

CATTCAGCGTCACCTTGG-3’

NM_000450

Endothelial adhesion 

molecule 1 (E- 

selectln)

57 254
5’-CTCTGACAGAAGAAGCCAAG-3’ and 5'- 

ACTTGAGTCCACTGAAGCCA-3’
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2.6. Cell migration assay

Migration of the endothelial cells (HUVEC) was examined using a 48-well chemotaxis 

chamber (Neuroprobe AP48) and polyvinylpyrrolidone-free polycarbonate 

membranes with 8-pm pores (Neuroprobe PFB8-50), coated with 6.5 pg/ml 

fibronectin (Sigma F1141)(Figure 3).

HUVEC
Detailed well

T reatment

Upper well 

Membrane 

Lower well

48-well chemotaxis chamber

Figure 3. The 48-weii chemotaxis chamber.

Pertussis toxin (2133) was diluted in phenol red-free endothelium basal medium 

(EBM), containing 1% (w/v) bovine serum albumin (BSA) (Cambrex CC-3129) and 

was then added to the lower chambers at concentrations ranging from 0 to 10 pg/ml. 

EBM with 1% (w/v) BSA was used as a negative control and the medium 

supplemented with 10% (v/v) FCS (Invitrogen 10108-165) or LPS (100 ng/ml) were 

used as positive controls for the experiment. Cell suspensions (50 pi) (1x10® cells/ml) 

in Phenol Red free EBM Medium were added to the upper wells. Four time points (1, 

2, 4 and 6 h) were investigated initially but 4 h was chosen because it gave the 

highest number of migrated cells in the treatment wells. Thus, after incubation for 4 h 

at 37®C in a humidified chamber containing 5% CO2, the membrane was removed 

and placed in methanol for 30 s to fix the cells. The cells were stained in eosin for 60 

s (cytoplasm staining) and then placed in Methyl Thionins (Prod iff. Bra id wood 

laboratories) for a further 60 s (nucleus definition). The membrane was rinsed in PBS 

and the top side of the membrane was wiped using wet tissue in order to remove 

un migrated cells. The number of cells migrated into and through the membrane was

71



counted for, at magnification x 40, in 3 microscopic fields per well under a 

microscope (Olympus XS51).
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3. RESULTS

3.1. Effects of pertussis toxins on mammaiian celis

The aim of the cytotoxic assays was to determine the concentration of toxins and the 

time of incubation that would give a maximal biological effect, but also maintain cell 

viability (in this case not kill more than 20% of the cells) (see section 3.1.2.2). That 

concentration was then used to perform the microarray experiments.

3.1.1. Effects of toxin preparations on cell morphology.

The morphology of cells was monitored at four time points, 0, 6, 24 and 48 h for each 

preparation of PT, dPT and LPS. The concentrations investigated ranged from 0, 0.3, 

0.6, 1.25, 2.5, 5 to 10 pg/ml. Four PT toxin preparations, which differed in 

concentration and buffer system, were tested for their suitability for the assay. Their 

associated buffers were also tested as controls. All the toxins were diluted in the 

culture medium when required. It was noticed that some buffers used for the toxin 

preparations were found to induce the formation of cell aggregates. This 

phenomenon was observed for the buffer used in PT PAC 090, PT 90/518 and PT 

JNIH-5. The buffer used for preparation of PT PAC2133 did not cause this effect. 

Therefore, PT PAC2133 was chosen for subsequent studies. The results are 

presented in Figure 4, which shows the morphologies of four cell lines treated with

2.5 pg/ml of PT. All cell lines were seeded at 5x10® cells/ml and incubated for 6 h at 

37°G in a humidified atmosphere containing 5% of CO2. Untreated (control, medium 

alone) Jurkat cells (Fig. 4 A) were evenly distributed in the field (left). Cells treated 

with PT at 2.5 pg/ml for 6 h were significantly affected, with reduction of cell surface
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and the formation of cell aggregates. For NL20 (Fig. 4 B), SHSY5Y (Fig. 4 C) and 

HUVEC (Fig. 4 D) cells, the untreated cells were generally well spread. Aggregation 

and reduction in surface area was observed in the cells treated with PT at 

concentrations ranging from 2.5 pg/ml (Fig. 4) to 10 pg/ml in a dose dependent 

manner with the highest response obtained at 10 pg/ml (data not shown). Cells 

treated with dPT and LPS, at these same concentration, had morphologies 

comparative to the control cells.

3.1.2. Cytotoxic effects

3.1.2.1. Effect of toxins on cell lines assessed by Alamarblue

The cell viability of four cell lines (Jurkat, NL20, SHSY5Y and HUVEC) treated with 

PT, dPT and LPS was monitored using the Alamarblue technique at four time points 

0, 6, 24 and 48 h. The toxin concentrations tested ranged from 0, 0.3, 0.6, 1.25, 2.5, 

5 to 10 pg/ml. For each toxin, the percentage of viability calculated at all 

concentrations tested was similar at each time point and no killing was observed 

(data not shown). Consequently no dose-dependent effect was observed and it was 

concluded that the test was not suitable for our study
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Figure 4. Morphology of different cell line after incubation for 6 h with or without PT at 2.5 pg/ml.

(A) Jurkat cells treated with PT (right) are more aggregated than in the control (left); (B) NL20 cells 
treated with PT are less spread than in the control; (0 ) SHSY5Y cells treated with PT are less spread 
than in the control; (D) HUVEC primary cells treated with PT are more detached and the surface area of 
the cells is much smaller than in the control.
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3.1.2.2. Effect of toxins on cell lines assessed by MTT.

The cell viability of two cell types (HUVEC and NL20) treated with PT and dPT was 

monitored using the MTT technique at 0, 0.5, 6 and 24 h. The toxin concentrations 

ranged from 0, 1.25, 2.5, 5 to 10 pg/ml. Figures 5 and 6, for HUVEC and NL20 cells 

respectively, show the mean percentage of viability calculated from three 

independent experiments. According to the results illustrated in Fig. 5B and Fig. 6B, 

dPT does not show any marked killing at any time point and at all the concentrations 

tested for both HUVEC and NL20 cells. On the other hand. Figs. 5A and 6A show a 

reduction of the percentage of cell viability when cells were treated with PT. For both 

cell types, the reduction of cell viability showed a dose-dependent pattern, with a 

maximal effect reached with 10 pg/ml of PT. This gave a reduction in cell viability of 

30% for HUVEC and 35% for NL20. Regarding the time course of the killing effect, 

killing was observed within 30 min of incubation. However, the maximum killing effect 

was reached after 6 h for HUVEC cells and 3 h of incubation for NL20 cells.

The aim of the cytotoxicity assay was to determine a suitable toxin concentration for 

use in the microarray experiments. Cells showing modifications caused by PT 

treatment (i.e. morphological changes, cell death) were of interest, but a large 

number of transcriptionally-active cells and consequently not dead cells were 

required. Thus a toxin concentration of 2.5 pg/ml was chosen. This would induce a 

reduction of the cell viability of about 15% for HUVEC and 20% for NL20 after 

incubation for 6 h.
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Figure 5. Cytotoxicity test: Cell titer96® non-radioactive ceii-proiiferation assay on 
HUVEC ceils treated with pertussis toxin (A) or detoxified pertussis toxin (B). Data are 
the mean % viability calculated from three independent experiments and bars 
represent the standard deviations.
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Figure 6. Cytotoxicity test: Cell titer96® non-radioactive ceil-proliferation assay on 
NL20 cells treated with pertussis toxin (A) or detoxified pertussis toxin (B). Data are the 
mean % viability calculated from three independent experiments and bars represent 
the standard deviations.
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3.2. Microarray analysis

HUVEC and NL20 cells, at 5x10^ cells/ml, were treated for 6 h with medium alone 

(control), PT or dPT at a concentration of 2.5 pg/ml. Total RNA was extracted from 

the cells and microarray analysis was performed. The data produced were 

normalised and further analysed. The aim of this project was to identify any potential 

gene markers of toxicity. Therefore, after analysis of the reproducibility of the 

technique, gene lists that were generated for the two toxin preparations were 

compared, to determine genes which were up-regulated after PT treatment only.

3.2.1. Gene list production and experimental consistency

Figs 7 and 8 show scatter plots representing the gene expression profiles of HUVEC 

and NL20 cells, generated using GeneSpring software. On the scatter plot, three 

diagonals are drawn, they symbolize three different sections of the plot, 

encompassing those genes that were up-regulated by at least two-fold (>2, in red), 

those that were unchanged (<2 fold change in yellow) and those that were down- 

regulated by at least two-fold (>0.5 in green). For each experiment (HUVEC: 

Experiments 1, 2 and 3; NL20: experiments 1 and 2) and each treatment (PT or dPT) 

lists of these up- or down-regulated genes were produced. Therefore, a total of 12 

lists for HUVEC and 8 lists for NL20 cells were generated and the numbers of these 

genes are shown In Tables 3 and 4.
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PT dPT

Experiment 1

Experiment 2

Experiment 3

Figure 7. Scatter plots of HUVEC gene expression profiles after PT and dPT 
treatments

Expression profiles were obtained for each of 3 independent experiments (Experiments 
1, 2 and 3) after treatment of HUVEC cells with PT (A, 0  and E) and dPT (B, D and F) at 
2.5 pg/ml for 6 h. On the scatter plot, one dot corresponds to one gene and it is placed 
on the graph according to the signal recorded on the control membrane (X-axis) and on 
the treatment membrane (Y-axis). Colour code is a guide to visualise the differential 
expression level of the genes. Therefore those genes that were >2-fold up-regulated are 
shown in red, genes unchanged are in yellow and genes that were >0.5-fold down- 
regulated are in green. From these scatter plots, the genes for each treatment and each 
experiment with an expression level of 2 or above (Up-regulated genes) and with an 
expression level of 0.5 or below (Down-regulated genes) were selected.
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PT dPT

Experiment 1

Experiment 2

Figure 8. Scatter plots of NL20 gene expression profiles after PT and dPT 
treatments

Expression profiles were obtained for each of 2 independent experiments (Experiments 
1 and 2) after treatment of NL20 cells with PT (A and C) and dPT (B and D) at 2.5 pg/ml 
for 6 h. On the scatter plot, one dot corresponds to one gene and it is placed on the 
graph according to the signal recorded on the control membrane (X-axis) and on the 
treatment membrane (Y-axis). Colour codes are as described in the legend in Figure 7.
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Table 4. Gene lists related to HUVEC microarrays

HUVEC

genes
PT

{Experiment 1)

PT

(Experiment 2)

PT

(Experiment 3)

dPT 

(Experiment 1)

dPT 

(Experiment 2)

dPT 

(Experiment 3)

Up-

regulated
48 179 349 125 53 811

Down-

regulated
77 59 125 215 400 797

Table 5. Gene lists related to NL20 microarrays

NL20 genes
PT

(Experiment 1)

PT

(Experiment 2)

dPT 

(Experiment 1)

dPT 

(Experiment 2)

Up-regulated 471 144 330 548

Down-regulated 114 98 103 343

According to the results presented in Tables 3 and 4, the number of differentially 

expressed genes across different experiments was variable. For instance, the 

number of up-regulated genes among the PT HUVEC microarrays was 

approximately 7-fold higher in experiment 3 (349 genes) compared to experiment 1 

(48 genes). The range of such variation reached a higher level (~15 times) among 

microarrays after dPT treatment: 53 in experiment 2 and 811 in experiment 3. On the 

other hand, the variation is more modest among the down-regulated genes in the 

HUVEC microarrays, 1.6 and 3.7 times for PT and dPT, respectively.

In the experiments with NL20 cells, the variation of gene numbers differentially 

expressed between replicates was low: 3.2 times for genes up-regulated by PT, 1.6
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times for genes up-regulated by dPT, 1.16 times for genes down-regulated by PT 

and 3.3 times for genes down-regulated by dPT.

3.2.2. Reproducibility

The 12 gene lists produced from the HUVEC microarray experiments and the 8 gene 

lists produced from the NL20 microarray experiments were further analysed using 

Venn diagrams (Figs 9,10), an option available on GeneSpring software. In the Venn 

diagram, genes are coloured according to their membership in one or more gene 

lists. By comparing the three gene lists related to up-regulation after PT treatment of 

HUVEC cells (Fig. 9), it can be seen, in the white section, that only two of a total of 

541 up-regulated genes were identified in all three experiments. Taking the total 

number (541) of genes up-regulated as 100%, the percentage of similarity between 

the three experiments can be calculated as 0.37%. No genes were up-regulated in all 

of the three Independent experiments after dPT treatment of HUVEC cells. When the 

lists of down-regulated genes were compared, in Figs 9 C and D, one gene was 

identified as common to all three experiments for PT treatment and 16 genes for dPT 

treatment. Taking the total number (233 for PT treatment and 1234 for dPT 

treatment) of genes down-regulated as 100%, the percentages of similarity between 

the three experiments were calculated as 0.43% and 1.29% for PT and dPT, 

respectively. Thus, none of the triplicates assays identified more than 1.3% of genes 

in common.
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Figure 9. Reproducibility of triplicate microarray experiments with HUVEC ceils.

The figure shows the genes from HUVEC cells that were differentially expressed after 
treatment with PT (A and 0 ) and dPT (B and D) at 2.5 pg/ml for 6h. Up-regulated genes are 
analysed in diagrams A and B and down-regulated genes in C and D. Each Venn diagram 
illustrates selected genes from the scatter plots (Fig 7) for experiment 1 (left circle), 
experiment 2 (right circle) and experiment 3 (bottom circle). The white section represents the 
number of genes differentially expressed and identified in all 3 experiments. The yellow 
section represents the number of genes differentially expressed and present in 2 experiments: 
experiments 1 and 2. The light blue section represents the number of genes differentially 
expressed and present in 2 experiments: experiments 2 and 3. The pink section represents 
the number of genes differentially expressed and present in 2 experiments: experiments 1 and 
3. The others sections correspond to the number of genes differentially expressed and 
present in one experiment only: red (experiment 1), green (experiment 2) and blue 
(experiment 3).
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Fig 10 shows the Venn diagrams analysing the gene lists obtained from the replicate 

NL20 microarray experiments. The white section of (Fig.10, A) shows that 7 genes 

were commonly up-regulated by PT treatment. A total of 608 genes were up- 

regulated by PT, so the percentage of similarity was 1.15%. After dPT treatment 

(Fig. 10, B), 41 genes were commoniy up-regulated by the detoxified toxin. The total 

number of genes down regulated is 837, thus the percentage of similarity was 4.9%. 

The Fig. 10, C and D show the genes down-regulated by PT (C) and dPT (D). For PT 

treatment, only one gene was found in both experiments and, taking 211 as total 

number of genes down-regulated, the percentage of similarity was 0.47%. For dPT 

treatment, 8 genes from a total of 438 were commonly down-regulated and the 

percentage of similarity was 1.8%. Thus none of the replicates analysed had more 

than 5% of genes in common.
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Figure 10. Reproducibility of duplicate microarray experiments with NL20 cells.

The figure shows the genes from NL20 cells that were differentially expressed after 
treatment with PT (A and C) and dPT (B and D) at 2.5 pg/ml for 6 h. Up-regulated genes 
are shown in diagrams A and B and down-regulated genes in C and D. Each Venn diagram 
illustrates selected genes from the scatter plots (Fig 8) for experiment 1 (left circle) and 
experiment 2 (right circle). The bottom circle shows genes investigated in each experiment 
(Total 11856 genes). The others sections correspond to the number of genes differentially 
expressed and present in one experiment only: Pink (experiment 1) and light blue 
(experiment 2).
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3,2.3. Genes of interest

This project was done in an attempt to find a gene marker of toxicity related to 

pertussis toxin treatment of different human cell lines. So far, the gene list contents 

have been analysed as numbers but, for those genes commonly up-regulated or 

down-regulated by PT only, and not by detoxified PT, an analysis of gene function 

was undertaken. From each gene list related to differential gene expression after PT 

treatment, the genes also differentially expressed after treatment with chemically 

detoxified PT in the correspondent microarray experiment were subtracted. The 

resulting gene lists therefore present genes up-regulated or down-regulated by PT 

only.

3.2.3.1. Effect of PT on gene expression of HUVEC cells.

3.2.3.1.1. Up-reguiation 

EXPERIMENT 1/ EXPERIMENT 21 EXPERIMENT 3

Fig. 11 presents in a Venn diagram the genes upregulated by PT treatment only. The 

white section of the Venn diagram corresponds to the gene upregulated by PT only 

and found in all three independent experiments. Only one gene passed the filter and 

this gene is described as encoding the cholinergic receptor, nicotinic, alpha 

polypeptide 2 (neuronal) (Genbank access NM_000742). cDNA clones encoding 

the human neuronal nicotinic acetylcholine receptor alpha 2 were originally isolated 

from thalamus. The deduced 503-amino acid protein contains a signal peptide, 3 N- 

glycosylation sites and 4 transmembrane regions (Elliott ef a/., 1996). This gene has 

been mapped on human chromosome 8 by genomic Southern analysis of 

hamster/human somatic cell hybrid DMAs (Anand & Lindstrom, 1992). This gene 

could be an interesting candidate gene for further study because of its relation to the 

nervous system.
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EXPERIMENT 1/ EXPERIMENT 2

In Fig. 11, three genes up-regulated after PT treatment only and found in 

experiments 1 and 2 are located in the yellow section. Those three genes are:

Lectin, galactoside-binding, soluble, 3 binding protein (NM_005567). The gene 

encodes a 90K serum protein found in a patient suffering from cancer (lacobelli et 

al., 1993). A member of the macrophage scavenger receptor (MSR1) superfamily, 

the protein binds specifically to the human macrophage-associated lectin (LGALS3) 

(Koths eta!., 1993). In addition, the protein stimulates host defence systems, such as 

natural killer cell and lymphokine-associated killer cell activities and can induce the 

secretion of interleukin-2 (Ullrich at a!., 1994). This gene may of an interest because 

of its involvement with the immune system.

GTP-blnding protein Sara (NM_016103). The protein encoded by this gene belongs 

to the Sari -ADP-ribosylation factor family of small GTPases, which govern the 

intracellular trafficking of proteins in coat protein (COP)-coated vesicles (Schekman & 

Orci, 1996). Mutation of this gene has been associated with severe inherited fat 

malabsorption disorders like chylomicron retention disease, Anderson disease or 

Marinesco-Sjogren syndrome (Jones et a!., 2003). This gene may be of interest 

because of its similar enzyme activity (ADP-ribosylation) to pertussis toxin and its 

tissue location (small intestine, liver, muscle and brain).

Diphthamide biosynthesis protein 2, S. cerevisiae, homoiog-like 1 

(NM_001383). The deletion of this gene is a marker of ovarian epithelial 

malignancies. The predicted protein was designated DPH2-like because it shares 

20% amino acid identity with the S. cerevisiae diphthamide biosynthesis-2 protein. 

The exact function of the protein is unknown (Phillips et al., 1996).

Expression of the above genes was further analysed by RT-PCR (See section 3.3).
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EXPERIMENT 1/ EXPERIMENT 3

One gene up-regulated after PT treatment only is present in both experiments 1 and

3. The gene chromosome 20 open reading frame 81 (NM_022760) has no known 

function.

EXPERIMENT 21 EXPERIMENT 3

By comparing the list of genes up-regulated after PT treatment only, generated from 

experiments 2 and 3, 15 genes were identified in both experiments. 

Cyclin-dependent kinase 8 (NM__001260). The protein encoded by this gene is a 

member of the cyclin-dependent protein kinase (CDK) family that has been shown to 

regulate transcription by targeting the CD7/cyclin H subunits of the general 

transcription initiation factor IIH (TFllH)(Akoulitchev etal., 2000).

H2B histone family member B (NM__021063) and member E (NM_003521). 

Histones are basic nuclear proteins that are responsible for the nucleosome structure 

within the chromosomal fibre in eukaryotes. Studies identified genes encoding 

member of the H2B class of histones and designated H2Bb and H2BbE (Aibig & 

Doenecke, 1997).

Tubulin, beta, 4 (NM_006086). Microtubules are constituent parts of a diverse 

variety of eukaryotic cell structures, e.g., the mitotic apparatus, cilia, flagella, and 

elements of the cytoskeleton. The mouse homologue of human beta-4, M-beta-6 is 

expressed primarily in neural tissue (Albig & Doenecke, 1997;Burgoyne et al., 1988). 

In addition, the protein transfected into CHO cells has been reported to decrease the 

microtubule assembly in a dose-dependent manner (Hah et al., 2003).

Glial fibrillary acidic protein (NM_002056). Glial fibrillary acidic protein (GFAP) is 

an intermediate-filament (IF) protein that is highly specific for cells of astroglial
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lineage. Mutations identified in the GFAP gene have been related to the Alexander 

disease which is a rare disorder of the central nervous system (Brenner eta!., 2001). 

LIM domain only 2 (rhombotin-iike 1) (NM_005574). The protein encoded by this 

gene has a central role in hematopoietic development and is highly conserved 

(Yamada etal., 1998).

Tetraspan 3 (NM_005724). This gene encodes a cell surface protein member of the 

tetraspanin family. The protein mediates signal transduction events that play a role in 

the regulation of cell development, activation, growth and motility (Berditchevski, 

2001).

CD36 antigen (NM_005506). The protein encoded by this gene is a lysosomal 

integral membrane glycoprotein. Studies of a similar protein in mice and rats 

suggested that this protein may participate in membrane transportation and the 

reorganization of endosomal/lysosomal compartment (Calvo etal., 1995). 

Proteasome (prosome, macropain) subunit, alpha type, 3 (NM__002788). The 

proteasome is a multicatalytic protease complex that catalyzes an energy-dependent, 

extralysosomal proteolytic pathway responsible for selective elimination of proteins 

with aberrant structures and naturally occurring short-lived proteins related to 

metabolic regulation and cell cycle progression (Akioka et al., 1995). 

High-mobility group (nonhistone chromosomal) protein 2 (NM_002129). Studies 

suggest a role for this protein in facilitating cooperative interactions between cis- 

acting proteins by promoting DNA flexibility (Shirakawa & Yoshida, 1992).

STIP1 homoiogy and U-Box containing protein 1 (NM__005861). The protein 

encoded by this gene positively regulates parkin E3 activity. Parkin E3 is a ubiquitin- 

ligating enzyme involved in autosomal recessive juvenile Parkinsonism (Imai et al.,

2002).
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Histidine triad nucleotide binding protein 1 (U51004). The protein encode by this 

gene is a member of a family of small proteins found in several species that inhibit 

PKC activity in the presence of the 14-3-3 proteins (Pearson etal., 1990). 

Hypothetical protein MGC8721 (NIVI_016127). Unknown function. 

Myeioid/lymphoid or mixed-lineage ieukemia 2 (NM__003482). The use of the 

human cDNA as a probe demonstrated that the gene is interrupted in both infant and 

adult acute myeloid (AML) and lymphoid (ALL) leukemia patients with 11q23 

translocations (Parry ef a/., 1993).

iGF-ll mRNA-binding protein 1 (NM_006546). This gene encodes a member of the 

IGF-II mRNA-binding protein (IMP) family. The protein encoded by this gene contains 

four K homology domains and two RNA recognition motifs. Its function is to regulate 

IGF2 mRNAtranslation (Nielsen etal., 1999).
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Figure 11. Up-regulated genes of Interest selected from 
HUVEC microarray experiments
Venn diagram (left) and table (below). According to a colour 
code, the gene numbers from the diagram are associated with 
their name listed in the table. The gene lists analysed in the 
Venn diagram correspond to the lists of genes up-regulated 
by PT treatment minus the lists of genes up-regulated by 
detoxified PT (dPT) treatment, in experiment 1 (left circle), 
experiment 2 (right circle) and experiment 3 (bottom circle). 
The white section represents the number of genes up­
regulated by PT only and present in all 3 experiments. The 
yellow section represents the number of genes up-regulated 
by PT only and present in 2 experiments: experiments 1 and 
2. The light blue section represents the number of genes up­
regulated by PT only and present in 2 experiments: 
experiments 2 and 3. The pink section represents the number 
of genes up-regulated by PT only and present in 2 
experiments: experiments 1 and 3. The others sections 
correspond to the number of genes up-regulated by PT only 
and present in one experiment only: red (experiment 1), green 
(experiment 2) and blue (experiment 3). Coordinate is the 
location of the gene on the array.

Color
code

CoordI
nate

Genbank 
access n"

Gene name

P19ab3 NM_000742 cholinergic receptor, nicotinic, alpha polypeptide 2 (neuronal)

D17ab7 NM_005567 lectin, galactoside-binding, soluble, 3 binding protein

M21ef2 NM_016103 GTP-binding protein Sara

O01ab4 NM_001383 diphthamide biosynthesis protein 2, s. cerevisiae, homolog-like 1

P15gh5 NM_022760 chromosome 20 open reading frame 81

C01ab4 NM_001260 cyclin-dependent kinase 8

C21gh7 NM_021063 H2B histone family, member B

E04cd6 NM_006086 tubulin, beta, 4

E23ab5 NM_002055 glial fibrillary acidic protein

F05ab7 NM_005574 LIM domain only 2 (rhombotin-like 1)

F06cd5 NM_005724 tetraspan 3

I22ab5 NM_005506 CD36 antigen (collagen type 1 receptor, thrombospondin receptor)-like 2

J11ab8 NM_002788 proteasome (prosome, macropain) subunit, alpha type, 3

K04gh6 NM_002129 high-mobility group (nonhistone chromosomal) protein 2

M03cd6 NM_005861 STIP1 homology and U-Box containing protein 1

M03ef6 U51004 histidine triad nucleotide binding protein 1

M14gh6 NM_003521 H2B histone family, member E

N11ef2 NM_016127 hypothetical protein MGC8721

016cd3 NM_00348 myeloid/lymphoid or mixed-lineage leukemia 2

P05cd6 NM_006546 IGF-II mRNA-binding protein 1
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3.2.3.I.2. Down-regulation

EXPERIMENT 1/ EXPERIMENT 21 EXPERIMENT 3

Fig. 12 presents in a Venn diagram the genes down-regulated by PT treatment only. 

The white section of the Venn diagram corresponds to the genes down-regulated by 

PT only and found in all three independent experiments. None of the genes passed 

this filter.

EXPERIMENT 1/ EXPERIMENT 2

In Fig. 12, two genes down-regulated after PT treatment only and found in 

experiments 1 and 2 are located in the yellow section. Those two genes are:

G protein-coupled receptor kinase 6 (NM_002082). Phosphorylation by receptor- 

specific and second messenger-activated protein kinases is a mechanism for 

regulation of G protein-coupled receptors. G protein-coupled receptors are 7- 

transmembrane domain-containing proteins and are triggered by a variety of signals. 

Gainetdinov et al. (2003) found that GRK6 is expressed in striatal neurons receiving 

dopaminergic input, and that postsynaptic D2/D3 dopamine receptors are 

physiological targets of this kinase.

Brain expressed, X-llnked 1 (NM_018476). This human gene is mapped to the X 

chromosome and has an expression pattern of a spermatogenesis-related gene 

(Yang et al., 2002).

EXPERIMENT 21 EXPERIMENT 3

One gene down regulated after PT treatment was found in experiment 2 and 3: 

CGI-141 protein (NM_016072). This gene encodes the protein Golgi transport 1 

homologue B which has been reported to be positively regulated by 1-kappaB 

kinase/NF-kappaB cascade (Matsuda et al., 2003).
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EXPERIMENT 1/ EXPERIMENT 3

The pink section of the Venn diagram corresponds of the genes down-regulated by 

PT only and commonly found in experiments 1 and 3. None of the genes passed this 

filter.

Figure 12. Down-regulated genes of interest selected 
from HUVEC microarray experiments
Venn diagram (left) and table (below). According to a colour 
code, the gene numbers from the diagram are associated 
with their name listed in the table. The gene lists analysed in 
the Venn diagram correspond to the lists of genes down- 
regulated by PT treatment minus the lists of genes down- 
regulated by detoxified PT (dPT) treatment, in experiment 1 
(left circle), experiment 2 (right circle) and experiment 3 
(bottom circle). The white section represents the number of 
genes down-regulated by PT only and present in 3 
experiments. The yellow section represents the number of 
genes down-regulated by PT only and present in 2 
experiments: experiments 1 and 2. The light blue section 
represents the number of genes down-regulated by PT only 
and present in 2 experiments: experiments 2 and 3. The pink 
section represents the number of genes down-regulated by 
PT only and present in 2 experiments: experiment 1 and 3. 
The others sections correspond to the number of genes 
down-regulated by PT only and present in one experiment 
only: red (experiment 1), green (experiment 2) and blue 
(experiment 3).

Color code Coordinate Genbank access n" Gene name

I08ab4 NM_002082 G protein-coupled receptor kinase 6

P10gh4 NM_018476 brain expressed, X-linked 1

A02ef2 NM_016072 CGI-141 protein

3.2.3.2. Effect of PT on gene expression of NL20 cells.

3.2.3.2.1. Up~regulation 

EXPERIMENT 1/ EXPERIMENT 2

Fig. 13 presents in a Venn diagram the genes up-regulated by PT treatment only. 

The white section of the Venn diagram corresponds to the genes up-regulated by PT
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only and they were identified in both independent experiments. Four genes passed 

this filter;

Leucine zipper, down-regulated in cancer 1 (NM_012317). The protein (LDOC1)
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encoded by this gene is localized to the nucleus and is down-regulated in some 

cancer cell lines. Observations suggest that LD0C1 is a novel regulator of NF-kappa 

p that can affect the TNF-alpha-mediated pathway to apoptosis through inhibition of 

NF-kappa p activation in BxPCS pancreatic cancer cells (Nagasaki etal., 2003). 

Ubiquitin-conjugating enzyme E2 variant 1 (NM_003349). The gene product could 

be involved in poly-ubiquitin chain synthesis (Hershko & Ciechanover, 1998). 

G-protein-coupled receptor 41 (NM__005304). The protein encoded by the gene is 

characterized, in human tissue, as a receptor for short chain fatty acids (Le Poul et 

al., 2003).

Chlorine channel 3 (NM__001829). Studies showed that CLCN3 is an intracellular 

chloride channel. It is also present on synaptic vesicles, where it contributes to their 

acidification (Stobrawa etal., 2001).

EXPERIMENT 1

The pink section of Fig. 13 is related to the genes up-regulated after PT treatment 

only. This gene list was generated from experiment one and contains 311 genes.

In order to present the more relevant genes from this list, the option of GeneSpring 

software named Gene ontology (GO) was used. This software groups genes 

hierarchically into meaningful biological categories. According to the aims of the 

project, only those genes related to cell-cell signalling, host pathogen interaction, 

response to external stimulus or cell recognition were selected. The gene list 

contained 8 genes:



CD44 antigen (M59040). The protein encoded by this gene is a cell-surface 

glycoprotein involved in cell-cell interactions, cell adhesion and migration. It is a 

receptor for hyaluronic acid (HA) and can also interact with other ligands, such as 

osteopontin, collagens, and matrix metalloproteinases (MMPs) (Brown etal., 2005). 

CD63 antigen (NM_001780). The protein encoded by this gene is a member of the 

transmembrane 4 superfamily, also known as the tetraspanin family. This encoded 

protein is a cell surface glycoprotein that is known to complex with integrins. It may 

function as a blood platelet activation marker. Deficiency of this protein is associated 

with Hermansky-Pudlak syndrome (Zhang et al., 2003). The Hermansky-Pudlak 

syndrome (HPS) is an autosomal recessive disorder. It consists of a triad that 

includes the following: tyrosinase-positive oculocutaneous albinism (Ty-pos OCA), 

bleeding diathesis, and systemic complications associated to ceroid-lipofuscin-like 

lysosomal storage disease.

Insulin growth factor binding protein 3 {NM_000598). This gene is a member of 

the insulin-like growth factor binding protein family. The protein binds insulin-like 

growth factor (IGF) I or II. In this form, it circulates in the plasma, prolonging the half- 

life of IGFs and altering their interaction with cell surface receptors (Kiefer et al., 

1991).

Platelet-derived growth factor beta polypeptide (X02811). The protein encoded by 

this gene is a mitogenic factor for cells of mesenchymal origin. Mutations in this gene 

are associated with meningioma (Bolger et al., 1985).

Tumor necrosis factor receptor superfamily (NM__003844). The protein encoded 

by this gene is a member of the TNF-receptor superfamily. This receptor is activated 

by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL) and 

thus transduces a cell death signal and induces cell apoptosis (Pan et al., 1997).
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Thy-1 cell surface antigen {NM_,006288). Thy-1 is the designation for a major cell 

surface glycoprotein characteristic of T cells. A study identify the gene Thy-1 

associated with tumor suppression in the ovarian cell line SKOV-3 (Abeysinghe etal.,

2003).

Vascular endothelial growth factor C (U43142). The protein encoded by this gene 

is a member of the platelet-derived growth factor/vascular endothelial growth factor 

(PDGFA/EGF) family. It is active in angiogenesis and endothelial cell growth, and 

can also affect the permeability of blood vessels (Joukov et al., 1996).

Diphthamide biosynthesis protein 2 (NM_001383). See section 3 2.4.1. Effect of 

PT on gene expression of HUVEC primary cells. Section 3.2.4.1.1. Up-regulation. 

Array 1/2/3.

EXPERIMENT 2

The light blue section of Fig. 13 shows the genes up-regulated after PT treatment 

only. This gene list is generated from experiment two only and contains 125 genes. 

For experiment 2, genes related to cell-cell signalling, host pathogen interaction, 

response to external stimulus or cell recognition were selected. The resulting list 

contained 6 genes:

Adenylate cyclase-activating polypeptide 1 (pituary) receptor type 1 

(NM_001118). This gene encodes type I adenylate cyclase activating polypeptide 

receptor, which is a membrane-associated protein and shares significant homology 

with members of the glucagon/secretin receptor family. This receptor mediates 

diverse biological actions of adenylate cyclase-activating polypeptide 1 and is. 

positively coupled to adenylate cyclase. The type 1 receptor, which is found in the 

hypothalamus, brainstem, pituitary, adrenal gland, pancreas, and testes, has a high

97



affinity only for PACAP (pituitary adenylate cyclase-activating polypeptide) (Ogi et al., 

1993).

B-cell receptor-associated protein BAP29 (NM_018844). The protein encoded by 

this gene could be involved in apoptosis (Strausberg eta!., 2002).

Cholinergic receptor, nicotinic, delta polypeptide (NM__000751). The

acetylcholine receptor of muscle has 5 subunits of 4 different types: 2 alpha and 1 

each of beta, gamma and delta subunits. After acetylcholine binding, the receptor 

undergoes an extensive conformation change that affects all subunits and leads to 

opening of an ion-conducting channel across the plasma membrane (Miyazawa at 

a!., 2003).

Small inducible cytokine subfamily A (Cys-Cys) Member 20 (NM_003250).

CCL20 chemokine encoded by this gene has negligible activity toward neutrophils, 

monocytes, and naive T lymphocytes. However, flu antigen plus IL2 -activated CD4+ 

and CD8+ T lymphoblasts and cord blood-derived dentritic cells responded to both 

forms of CCL20 (Nelson et al., 2001).

Thyroid hormone receptor, alpha (NM_003250).The protein encoded by this gene 

is a nuclear hormone receptor for triiodothyronine (T3)(DeLong et al., 2004).

CD36 antigen-like 2 (NM_005506). See section 3.2.4.1. Effect of PT on gene 

expression of HUVEC primary cells. Section 3.2.4.1.1. Up-regulation. Experiments 

2/3.
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Figure 13. Up-regulated genes of interest selected from 
NL20 microarray experiments
Venn diagram (left) and table (below). According to a colour 
code, the gene numbers from the diagram are associated with 
their name listed in the table. The gene lists analysed in the 
Venn diagram correspond to the lists of genes up-regulated 
by PT treatment minus the lists of genes up-regulated by 
detoxified PT (dPT) treatment, in experiment 1 (left circle) and 
experiment 2 (right circle). The bottom circle shows genes 
investigated in each experiment (Total 11856 genes). The 
white section represents the number of genes up-regulated by 
PT only and present in 2 experiments. The pink section 
represents the number of genes up-regulated by PT only and 
present in experiment 1 only. The light blue section 
represents the number of genes up-regulated by PT only and 
present in experiment 2 only. Genes listed in the table related 
to light blue and pink colours were selected by Genespring 
software as member of the cell-cell signalling, host pathogen 
interaction, response to external stimulus or cell recognition 
gene ontologies.

Color code Coordinate Genbank 
a c c e s s  n °

Gene name

GOIcdS NM 012317 leucine zipper, down-regulated in cancer 1
023cd3 NM 003349 ubiquitin-coniugating enzyme E2 variant 1
G02ab6 NM 005304 G protein-coupled receptor 41
I02ab5 NM 001829 chloride channel 3
021 efi

018ab4

D07ab6

A08ef5

G03cd4

oOlab4

B02cd2

008ef7

Il5ab2

M59040 CD44 antigen
NM 001780 CD63 antigen
NM 000598 insulin-like growth factor binding protein 3
X02811 platelet-derived growth factor beta polypeptide
NM 003844 tumor necrosis factor receptor superfamily
NM 001383 diphthamide biosynthesis protein 2, s. cerevisiae, homolog-like
NM 006288 thy-1 cell surface antigen
U43142 vascular endothelial growth factor C
NM 001118 adenylate cyclase activating polypeptide 1 (pituitary) receptor

J18gh4 NM 018844 B-cell receptor-associated protein BAP29
I22ab5 NM 005506 CD36 antigen-like 2
BlOab3 NM 000751 cholinergic receptor, nicotinic, delta polypeptide
m02cd2 NM 004591 small inducible cytokine subfamilly A (Cys-Cys). member 20
k20gh6 NM 003250 thyroid hormone receptor, alpha
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3.2.3.2.2. Down-regulation 

EXPERIMENT 1/ EXPERIMENT 2

Fig. 14 presents in a Venn diagram the genes down-regulated by PT treatment only. 

The white section of the Venn diagram corresponds to genes down-regulated by PT 

only and found in both independent experiments. None of the genes passed the filter.

EXPERIMENT 1

According to Fig. 14, 77 genes down-regulated after PT treatment only were found in 

experiment 1 (pink section). Using the gene ontology option of GeneSpring software, 

genes related to cell-ceil signalling, host pathogen interaction, response to external 

stimulus or cell recognition were selected. The resulting list contained 6 genes:

Opioid growth factor receptor (NM_007346). The protein encoded by this gene is 

a receptor for opioid growth factor (OGF) which is a negative regulator of cell 

proliferation and tissue organization during development, cellular renewal, cancer, 

wound healing, and angiogenesis (Zagon etal., 2000).

Thyroid hormone receptor interactor 12 (NM_004238). The thyroid hormone 

receptors (TRs) are hormone-dependent transcription factors that regulate 

expression of a variety of specific target genes. They must specifically interact with a 

number of proteins as they progress from their initial translation and nuclear 

translocation to heterodimerization with retinoid X receptors (RXRs), functional 

interactions with other transcription factors and the basic transcriptional apparatus, 

and eventually, degradation (Lee etal., 1995).

Teratocarcinoma-derivated growth factor 3, pseudogene (M96966). The TDGF3 

locus has characteristics of a retrotransposon, including lack of introns and a poly(A) 

sequence (Dono etal., 1991).
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Cancer/testis antigeni (NM__001327). Molecular function and biological process 

unknown (Chen et al., 1997).

Immunoglobin heavy constant epsilon (J00222). This gene encodes 

immunoglobulins of the IgE isotype are responsible for the immediate hypersensitivity 

reactions that occur in diseases such as hay fever, allergic asthma, and anaphalaxis 

(Nishida etal., 1982).

KH domain containing, RNA binding, signal transduction associated 1 

(NM_006559). The protein encoded by this gene (SAM68) is a tyrosine- 

phosphorylated, Src-associated protein in mitotic cells. The protein SAM68 binds to 

DNA and mRNA SAM68 and may have a role in cell cycle control, particularly at the 

G1/S transition (Barlat et al., 1997).

EXPERIMENT 2

According to Fig. 14, 69 genes down regulated after PT treatment only are found in 

experiment 2 (light blue section). Using the gene ontology option of GeneSpring 

software, genes related with cell-cell signaling, host pathogen interaction, response 

to external stimulus or cell recognition were selected. The resulting list contains 4 

genes:

Solute carrier family 6 (NM__004211). The amino acid glycine is a major inhibitory 

neurotransmitter in the spinal cord, brainstem, and retina, where it exerts its effects 

on the strychnine-sensitive glycine receptors (Morrow et al., 1998).

CD79A antigen (Immunoglobulin-associated alpha) (NM_001783). The B 

lymphocyte antigen receptor is a multimeric complex which includes the antigen- 

specific component, surface immunoglobulin (Ig). This gene encodes the Ig-alpha 

protein of the B-cell antigen component (Reth, 1992).

101



Integrin, alpha 4 (L12002). integhns are heterodimeric integral membrane proteins 

composed of an alpha chain and a beta chain. Alpha 4 combines with beta 1 (ITGB1) 

on T-cells to form the integrin very late (activation) antigen 4 (VLA-4) that can bind to 

the extracellular matrix molecules fibronectin or thrombospondin, and is also a ligand 

for the cell surface molecule vascular cell adhesion molecule 1 (VCAM-1) 

(Cunningham etal., 2002).

Lymphocyte cytosolic protein 2 (NM_005565). The protein encoded by this gene 

plays a positive role in promoting T cell development and activation as well as mast 

cell and platelet function (Motto etal., 1996).
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Figure 14. Down-regulated genes of Interest selected 
from NL20 microarray experiments
Venn diagram (left) and table (below). According to a 
colour code, the gene numbers from the diagram are 
associated with their name listed in the table. The gene 
lists analysed in the Venn diagram correspond to the lists 
of genes down-regulated by PT treatment minus the lists 
of genes down-regulated by detoxified PT (dPT) 
treatment, in experiment 1 (left circle) and experiment 2 
(right circle). The bottom circle shows genes investigated 
in each experiment (Total 11856 genes). The white 
section represents the number of genes down-regulated 
by PT only and present in 2 experiments. The pink 
section represents the number of genes down-regulated 
by PT only and present in experiment 1 only. The light 
blue section represents the number of genes down- 
regulated by PT only and present in experiment 2 only. 
Genes listed in the table related to light blue and pink 
colours were selected by GeneSpring software as 
member of the cell-cell signaling, host pathogen 
interaction, response to external stimulus or cell 
recognition gene ontologies.

Color code Coordinate Genbank 
access n°

Gene name

1 FOScdT NM_00734 opioid growth factor receptor

1 K05gh1 NM_00423 thyroid hormone receptor interactor 12

O04ef7 M96956 teratocarcinoma-derived growth factor 3, pseudogene

O03ab6 NM_00132 cancer/testis antigen 1

E15ef1 J00222 immunoglobulin heavy constant epsilon

b04cd6 NM_00655 KH domain containing, RNA binding, signal transduction

f14cd4 NM_00421 solute carrier family 6 j
p03ab5 NM_00178 CD79A antigen (immunoglobulin-associated alpha) |

e19ef7 L I2002 integrin, alpha 4 |

j15cd7 NM_00556 lymphocyte cytosolic protein 2 |

3.3. RT-PCR

All cDNAs were produced by semi-quantitative RT-PCR as follow explained: Total 

RNA samples from control and toxin-treated cells, were diluted and reverse 

transcribed using OligodT primers. The resulting cDNAs were then used for PGR 

amplification with specific primers (Table 3), depending on the gene under 

investigation. In each experiment, the glyceraldehyde-3-phosphate dehydrogenase
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(GapDH) gene was used as an internal control. For each experiment, the amount of 

signal was recorded and normalised with reference to the signal obtained for the 

housekeeping gene. Ratios of level of expression were calculated from the lowest 

amount of RNA that gave a signal.

3.3.1. HUVEC cells

3.3.1.1. Confirmation of microarray results by semi-quantitative RT-PCR

From the HUVEC microarray experiments, four genes candidates were selected as 

potential markers of PT toxicity. The cholinergic receptor gene (OHRNA) was found 

to be up-regulated specifically by PT in three independent experiments. Three other 

genes were selected because, at the time that primer design was performed, 

microarray results were available only in duplicate. Therefore, these genes showed 

specific up-regulation by PT in experiments 1 and 2. They were: galectin 3 binding 

protein (galectin 3), diphthamide biosynthesis protein 2 homolog-like 1 (DPH2L1) and 

SAR1a gene homolg 2 (SAR1). A further gene investigated in RT-PCR experiments 

was the cAMP response element-binding protein (CREBpI) gene. This gene was 

reported to be specifically up-regulated by the enzyme activity of PT in a microarray 

study carried out on BEAS-2B cells (Belcher et al., 2000). This gene was used in 

order to attempt to reproduce published data, where a different microarray protocol 

had been used.

The aim of the semi-quantitative RT-PCR experiments was to confirm the data 

obtained by the microarray techniques. Fig. 15 shows agarose gels of PCR 

amplification products that were generated from three different sets of RNA samples 

related to experiment 1-3. The ratios of expression level were calculated for each 

gene amplified and are presented in Table 6. From the three independent 

experiments (experiments 1, 2 and 3), only RT-PCR performed from RNA samples
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from experiment 2 showed signals at the expected size for four of the targetted 

genes: CREBpI, Galectin 3, DPH2L1 and S A R I However, all the ratios of the 

expression level were less than 2: 1.79, 1.87, 1.97 and 1.39 for CREBpI, Galectin 3, 

DPH2L1 and SARI respectively. Taking into account that a) only one of the three 

cDNA preparation gave significant signals and b) ratios of expression level calculated 

from microarray experiments 1, 2 and 3 were (0; 0; 0) for CREBpI, (2.56; 15.8; 0) for 

Galectin 3, (5.9; 2; 0) for DPH2L1, (9.3; 2.4; 2.3) for CHRNA, and (2.52; 53.3; 0) for 

SARI. Therefore we concluded that the data produced using the microarray 

technique could not be confirmed by RT-PCR.
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experiment 1 Control PT 2.5 pg/ml Control PT 2.5 |.ig/ml

RNA ng 2 1 0.1 0.01 I 2 1 0.1 0.01

CREBpI 

DPH2L1

SARI

2 1 0.1 0.01 2 1 0.1 0.01

Galectin 3

CHRNA

GapDH

ControlControl PT 2.5 i^g/mlPT 2.5 pg/ml

Galectin 3

CHRNADPH2L1

GapDHSARI

experiment 2

experiment 3 Control

RNA^g 2 1 0.1 0.01

CREBpI

DPH2L1 

SARI

PT 2.5 pg/ml

2 1 0.1 0.01

Control ! PT 2.5 pg/ml

2 1 0.1 0.01 • 2 1 0.1 0.01

Galectin 3

CHRNA

GapDH

Figure 15. Semi-quantitative RT-PCR products from genes as possible markers of PT toxicity 
from HUVEC microarray experiments.

Total RNA was extracted from HUVEC cells (5x10® cells/ml) that had been treated with PT (2.5 
|jg/ml) for 6h. Total RNA was diluted (2, 1, 0.1 and 0.01|jg/gene) and reverse transcribed into cDNA. 
Then PCR was carried out using primers to specifically amplify 6 genes; CREBpI, Galectin 3, 
DPH2L1, CHRNA, SARI and GapDH. After 30 cycles of amplification and a final step of elongation at 
72°C for 7 min, the PCR products (Control and PT treatment) for each gene tested, were loaded in a 
1.2% agarose gel containing ethidium bromide and electrophoresed for 1 h. Three sets of RT-PCR  
products are presented in Fig. 15. They correspond to RNA used for microarray experiments 1-3. 
Only RT-PCR products from experiment 2 showed signals at the expected size (~ 500 bp) for the 
gene candidate CREBpI, Galectin 3, DPH2L1 and SA R I. The lowest amounts of RNA samples that 
gave detectable signals were used for calculation of the expression of genes relative to the control 
group (See Table 5). GapDH gene was used as an internal control.
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Table 6. Comparative analysis of expression level ratios obtained by 
microarrays and semi quantitative RT-PCR on HUVEC and NL20 cells

Cell
type

Experiment
type

T reatment CREBpI Galectin
3

DPH2L1 CHRNA SARI ICAM-
1

VCAM-
1

E-
selectin

Ê
X

ii
PT 2.5 pg/ml 6 h 
experiment 1 0 2.56 5.9 9.3 2.52 0 0

PT 2.5 pg/ml 6 h 
experiment 2 0 15.8 2 2.4 53.3 0 0

PT 2.5 pg/ml 6 h 
experiment 3 0 0 0 2.3 0 0 0

PT 2.5 pg/ml 6 h 
experiment 1 0 0 0 0 0

PT 2.5 pg/ml 6 h 
experiment 2 1.79 1.87 1.97 0.6 1.39

PT 2.5 pg/ml 6 h 
experiment 3 0 0 0 0 0

PT 100ng/ml 18 
h + IL1 beta (5 
lU/ml) 4 h

0 0 0 0 0 0.7 0.2 0.6

PT 100 ng/ml 18 
h + TNF alpha 
(20 lU/ml) 6 h • 0 0 5 1.5 1.3

!
z

II
PT 2.5 pg/ml 6 h 
experiment 1 0

PT 2.5 jjg/ml 6 h 
experiment 2 0

PT 2.5 pg/ml 6 h 
experiment 1 0

PT 2.5 pg/ml 6 h 
experiment 2 0.91

The ratios of gene expression relative to controls are given as numbers. When no signal was recorded by microarray 
or RT-PCR assessments 0, was recorded in the table. If the gene was not investigated in the experiment the box was 
coloured in grey. The amount of signal for each band in the gels was measured and normalised according to the 
signal for the GapDH gene. Finally, the lowest amounts of RNA samples that gave detectable signals, were used for 
calculation of the expression of genes relative to the control.
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3.3.1.2. Effect of PT and IL-1 p on HUVEC cells.

In an attempt to get closer to in vivo conditions and to increase the sensitivity of

signal detection, PT treatments in association with IL-1 beta were carried out on

HUVEC cells. Four different groups of cells were treated:

Group 1: for 22 h with medium alone

Group 2: for 18 h with medium alone + for 4 h with IL-ip (5 lU/ml)

Group 3; for 18 h with PT (100 ng/ml) + for 4 h with medium alone

Group 4: for 18 h with PT (100 ng/ml) + for 4 h with lL-ip (5 lU/ml).

Fig. 16 shows results obtained from a semi-quantitative RT-PCR carried out on total 

RNA extracted from HUVEC cells treated for 18 h with PT (100 ng/ml) and further 

stimulated with IL-1 p (5 lU/ml) for 4 h. Genes investigated in this experiment were 

the five genes selected as potential markers of PT toxicity: CREBpI, Galectin 3, 

DPH2L1, CHRNA and SARI. No signal was detected for 4 genes: CREBpI, Galectin 

3, CHRNA and SARI (Fig. 16). Signals at the expected size were observed for the

DPH2L1 gene. RNA samples from the control Group 2 (medium only + IL-1 p)

showed signals for an amount of RNA of 2 and 1 pg. On the other hand, RNA 

samples from Group 4 (PT+lL-1 p) showed signals for an amount of RNA of 1 pg only 

(See Figure 16 a). The signal was not consistent for all the RNA amounts tested; 

therefore the ratio of expression level could not be calculated (Table 6). Taking this 

information together, PT treatment in association with IL-1 p stimulation did not 

induce an up-regulation of gene expression of the candidate genes tested.
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Control + 
II -1 R

PT + IL-1 P Control + 
II -1 R

RNA^g 2 1 0.1 0.01 2 1 0.1 0.01 2 1 0.1 0.01

PT + IL-1P

2 1 0.1 0.01

CREBpI

DPH2L1

SARI

Galectin 3

CHRNA

GapDH

Figure 16 a. Seml-quantltatlve RT-PCR products of selected genes expressed by HUVEC cells 
after treatment with PT and IL-1 p

Total RNA was extracted from HUVEC cells (5x10® cells/ml) that were untreated or had been treated 
with PT (100 ng/ml) for 18 h and further stimulated with IL-1 p (5 lU/ml) for 4 h. Total RNA was diluted 
(2, 1, 0.1 and O.OIpg/gene) and reverse transcribed into cDNA. Then, PCR was carried out using 
primers to specifically amplify six genes: CREBpI, Galectin 3, DPH2L1, CHRNA, SARI and GapDH. 
After 30 cycles of amplification and a final step of elongation at 72°C for 7 min, the PCR product 
(Control media + IL-1 p stimulation and PT treatment + IL-1 p stimulation) for each gene tested, were 
loaded in a 1.2% agarose gel containing ethidium bromide and electrophoresed for 1h.

A second semi-quantitative RT-PCR experiment was carried out in order to 

investigate the effect of PT treatment in association with IL-1 p stimulation on the 

gene expression of five genes. The results of this experiment are illustrated in Fig. 16 

b. Two of the genes were candidate for markers of PT toxicity: Galectin 3 and 

DPH2L1. The other three genes code for adhesion molecules: ICAM-1, VCAM-1 and 

E-selectin. Neither of the candidate genes for toxicity showed signals at any RNA 

amount tested, thus confirming that PT treatment, in association with IL-1 p 

stimulation, at the time points and concentrations used, did not induce an increase in 

gene expression.

The genes ICAM-1, VCAM-1 and E-selectin show signals at the expected size (-250  

bp). The three genes encoding adhesion molecules were amplified at 1 and 0.1 pg of 

RNA samples for ICAM-1 and E-selectin and at 1 to 0.01 pg of RNA sample for 

VCAM-1 (See Figure 16 b). The amount of signal for each band was recorded and 

normalised with the signal recorded for the GapDH gene. The value obtained for the
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lowest amounts of RNA samples after PT+IL-1 p (Group 4) treatment were divided 

by the value obtained for the lowest amounts of RNA sample from the control+lL-1 p 

(Group 2). Table 6 presents the ratios of expression levels calculated. The ratios are 

0.7, 0.2 and 0.6 for ICAM-1, VCAM-1 and E-selectin respectively. The amounts of the 

signal produced by amplification of GapDH are lower for PT+lL-1 p treatment than for 

the controls + IL-1 p. Thus, data produced in this experiment show an apparent 

down-regulation of gene expression.

110



Control + i PT + IL-1 p Control + i PT + IL-1 p
II -1 R II -1 R

RNA ng 1 0.1 0.01 1 1 0.1 0.01 1 0.1 0.01 1 1 0.1 0.01

Galectin 3

ICAM-1

E-selectIn

DPH2L1

VCAM-1

GapDH

Figure 16 b. Seml-quantltatlve RT-PCR products of further selected genes expressed by HUVEC 
cells after treatment with PT and IL-1 p

Total RNA was extracted from HUVEC cells (5x10® cells/ml) that were untreated or had been treated 
with PT (100 ng/ml) for 18 h and further stimulated with IL-1 p (5 lU/ml) for 4 h. Total RNA was diluted 
(1, 0.1 and O.OIpg/gene) and reverse transcribed into cDNA. Then the PCR was carried out using 
primers to specifically amplify six genes: Galectin 3, DPH2L1, ICAM-1, VCAM-1, E-selectin and 
GapDH. After 30 cycles of amplification and a final step of elongation at 72°C for 7 min, the PCR 
product for each gene tested, were loaded in a 1.2% agarose gel containing ethidium bromide and 
electrophoresed for 1 h.

3.3.1.3. Effect of PT and TNF a on HUVEC cells.

For the same purpose as for IL-1 p treatment (3.3.1.2), PT treatments in association 

with TNF a were carried out on HUVEC cells. Four different groups of cells were 

treated:

Group 1 : for 24h with medium alone

Group 2: for 18h with medium alone + for 6 h with TNFa (20 lU/ml)

Group 3: for 18h with PT (100 ng/ml) + for 6 h with medium alone 

Group 4: for 18h with PT (100ng/ml) + for 6h with TNFa (20 lU/ml).

Figure 17 shows the results obtained from a semi-quantitative RT-PCR carried out on 

total RNA extracted from HUVEC cells treated for 18 h with PT (100 ng/ml) and 

further stimulated with TNF a (20 lU/ml) for 6 h. Five genes were investigated in this 

experiment, two of them were candidate genes as markers of PT toxicity: Galectin 3
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*1

and SAR1. Three other genes encode adhesion molecules: ICAM-1, VCAM-1 and E-
::

selectin. No signal was detected for the two gene candidates of PT toxicity: Galectin 

3 and S A R I. Therefore, it was concluded that PT treatment in association with TNF a  

stimulation did not increase the sensitivity of the signal detection of the candidate 

genes tested in this experiment.

ICAM-1, VCAM-1 and E-selectin genes showed signals at the expected size (-250  

bp) (Fig. 17). The E-selectin gene was amplified at 1 pg of RNA sample in the 

treatment groups 1, 2, 3 and 4. The gene was also amplified at 0.1 pg of RNA 

sample in the group 4. The ICAM-1 gene was amplified at 1 pg of RNA sample in the 

groups 1, 2, 3 and 4. The gene was also amplified at 0.1 pg of RNA sample in group

4. The VCAM-1 gene was amplified at 1 pg of RNA sample in groups 1, 2, 3 and 4.

The gene was also amplified at 0.1 pg of RNA sample in groups 2 and 4. The 

amplification product observed at 0.1 pg of RNA sample in the group 1 was not at the 

expected size (259bp). Ratios of expression levels were calculated for these three 

genes between the normalised signals obtained for the treatment PT+TNF a  (Group 

4) and the treatment TNF a  alone (Group 2). The ratios reported in Table 6 are 5, 1.5 

and 1.3 for ICAM-1, VCAM-1 and E-selectin genes respectively. Thus, the treatment 

of PT in association with TNF a  stimulation seems to increase the expression level of 

the ICAM-1 gene in HUVEC cells.
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RNA ng

E-selectin

ICAM-1

GapDH

Control

1 0.1 0.01

T N F -a PT

1 0.1 0.01 1 0.1 0.01

PT + TNF-a

1 0.1 0.01

VCAM-1

Galectin 3

SARI

Figure 17. Seml-quantltatlve RT-PCR products of selected genes expressed by HUVEC 
cells after treatment with PT and TNF a

Total RNA was extracted from HUVEC cells (5x10® cells/ml) that were untreated or treated 
with PT (100 ng/ml) for 18 h and further stimulated with TNF a  (20 lU/ml) for 6 h. Total RNA 
was diluted (1, 0.1 and 0.01 pg/gene) and reverse transcribed into cDNA. Then the PCR was 
carried out using primers to specifically amplify six genes: E-selectin, ICAM-1, V-CAM-1, 
Galectin 3, SARI and GapDH. After 30 cycles of amplification and a final step of elongation at 
72°C for 7 min, the PCR product for each gene tested, were loaded in a 1.2% agarose gel 
containing ethidium bromide and electrophoresed for 1 h.

3.3.2. NL20 cells

At the time that the RT-PCR experiments were started, the result of only one 

microarray experiment on NL20 cells were available. The number of genes 

specifically up-regulated by PT treatment was 471 and thus the selection of suitable 

candidate genes was difficult. Gene candidates had to be chosen and further 

analysed. The cAMP response element-binding protein (CREBpI) had been 

reported to be specifically up-regulated by the enzyme activity of PT in a microarray 

study carried out on BEAS-2B cells (Belcher et a/., 2000). Therefore only one gene, 

CREBpI, was investigated in order to try to reproduce published data that had been 

obtained using a different microarray protocol.
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Fig. 18 shows agarose gels of the PCR amplification products generated from two 

different sets of RNA samples related to experiments 1 and 2. Primers were used to 

specifically amplify the CREBpI and GapDH (housekeeping) genes. From the two 

independent experiments (experiments 1 and 2), only the RT-PCR performed from 

RNA samples related to microarray 2 showed signals at the expected size for the 

CREBpI gene. The ratio of expression level was calculated for the lowest amount of 

RNA sample that gave a signal and is presented in Table 6. This ratio was 0.91. 

Thus, there was no evidence that the CREBpI gene was up-regulated by PT 

treatment of NL20 cells and the results obtained in the Belcher et al (2000) study 

could not be confirmed.

experiment 1 

experiment 2

Control

CREBpI GapDH

RNA^g 5 2.5 1.25 0.626 i 5 2.5 1.25 0.625 5 2.5 1.25 0.625 ! 5 2.5 1.25 0.625

PT 2.5 fig/ml

CREBpI GapDH

Figure 18. Semi-quantitative RT-PCR products of the CREBpI gene expressed by NL20 ceiis 
after treatment with PT.

Total RNA was extracted from NL20 cells (5x10® cells/ml) that were untreated or had been treated 
with PT (2.5 ijg/ml) for 6 h. Total RNA was diluted (5, 2.5, 1.25 and 0.625 pg/gene) and reverse 
transcribed into cDNA. Then the PCR was carried out using primers specific for the CREBpI gene. 
After 30 cycles of amplification and a final step of elongation at 72°C for 7 min, the PCR products 
were loaded in a 1.2% agarose gel containing ethidium bromide and electrophoresed for 1 h. Two 
sets of RT-PCR products are presented in Figure 18, they correspond to RNA used for 
experiments 1 and 2. Only experiment 2 RT-PCR products show signals at the expected size 
(-500  bp) for CREBpI. The lowest amounts of RNA samples that gave detectable signals were 
used for calculation of the expression of genes relative to the control group. GapDH was used as 
an internal control.

114



3.4. Cell-migration study

A study was carried out in order to investigate the potential effect of PT on 

endothelial cell migration. A chemotaxis chamber was used for this purpose. This 

was composed of 48 wells, each of them separated into two by a porous membrane 

coated with fibronectin (6.5 pg/ml). Cells seeded in the upper well were in contact by 

capillarity with the contents of the lower well. PT solutions at 2.5 pg/ml or 10 pg/ml, 

medium alone (negative control), LPS ICO ng/ml or PCS 10% v/v (positive controls) 

were added to the culture medium in the lower wells. After incubation for 4 h, the 

cells that had migrated into or through the membrane were counted and the ratios of 

counts in the treatment groups to that in the negative control group were calculated 

to allow comparison (Table 6). The ratios between the number of migrated cells in 

the positive (LPS or PCS) and the negative control were also calculated. According to 

the results presented in Table 6, LPS seems to be the most appropriate positive 

control for the cell-migration assay. In 7 of a total of 8 experiments, there was a 

marked difference between the LPS control and the negative control. With the PCS 

control, 2 out of 4 experiments did not show a difference from the negative control. 

Therefore, for interpretation of the results, data from the experiments which used 

LPS as positive control, and the ratios of positive/negative >1 were taken into 

consideration (Table 6). For PT treatment groups at concentrations of 10 pg/ml and 

2.5 pg/ml, there were 6 out of 7 assays that showed the ratios to be >1 (1.8-2.9) and 

>1 (1.7-2.5), respectively. However, there was no clear dose-response either within 

the same assay or between assays (Table 6). The coefficient of variation for the 

assays were calculated. The coefficient of variation (CV%) is the standard deviation 

divided by the mean, and the result is given as a percentage. It should also be noted
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that the assay variability was large; the CV% for the ratio of positive/negative was 

43.9. Further optimisation of the assay conditions is needed. Nevertheless, the 

preliminary results indicated that PT at the concentrations used could induce the 

migration of endothelial cells after incubation for 4 h.

Table 7. Comparison of numbers of HUVEC cells migrating in response to PT 

treatment

Name 
of the 
assay

Cells
migrated

in
negative
control

Cells 
migrated in 

positive 
control

Ratio
positive/
negative
controls

Cells 
migrated 
In PT 10 

pg/ml

1 21.3 56.8 (LPS) 2.6 63
2 17.9 8.4 (LPS) 0.5 3
3 20 25 (LPS) 1.2 18
4 8 10 (LPS) 1.2 15
5 11 30 (LPS) 2.7 30
6 6 13 (LPS) 2.2 15
7 4 15 (LPS) 3.7 10
8 22.5 32.5 (LPS) 1.4 40
9 70 80 (PCS) 1 58
10 37 51 (PCS) 1.4 25
11 71 70 (FCS) 1 34
12 9 14.4 (FCS) 1.6 6.8

Ratio PT Cells Ratio PT
10 pg/ml / migrated 2.5
negative In PT 2.5 pg/ml /
control pg/ml Negative

control

HUVEC cells (5x10 cells) were placed in the upper wells of the chemotaxis chamber. The bottom wells 
of the chamber contained 4 different treatments: negative control (Medium alone), PT at 10 pg/ml, PT at 
2.5 pg/ml and positive controls (LPS at 100 ng/ml or PCS at 10% solutions). The upper and lower wells 
were separated by a porous membrane containing 8 pm pores to allow cell/treatment contact and 
migration. Cells were incubated for 4h. The table shows the number of cells that migrated into or through 
the membrane after staining. Ratios between treatments were calculated to allow comparison. If the 
positive/negative control ratio was <1, the data of the experiment were coloured in grey and not taken into 
account for interpretation. Ratios calculated by dividing the number of migrated cells in the negative 
control by the number of migrated cells in the treatment are presented for PT 10 pg/ml and PT 2.5 pg/ml. 
In these two columns when the ratio was >1, the box was coloured in red and when the ratio <1, the box 
was coloured in green.
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4. DISCUSSION

Pertussis vaccines are commonly used both in the UK and worldwide for the prevention 

of the disease pertussis (whooping cough). Two types of pertussis vaccines, the whole­

cell pertussis vaccines (WCV) and acellular pertussis vaccines (ACV), are 

recommended by WHO. The Histamine Sensitisation Test (HIST) is a test required by 

the European Pharmacopoeia and the WHO for the quality control of pertussis 

vaccines (European Pharmacopoeia 1997, pp 1305-1307, WHO Technical Series, 

Forty-seventh Report: pp57-76. 1998). It is designed specifically to control the toxicity 

of pertussis toxin (PT) in these vaccines. HIST is a lethal challenge test on animals 

and large variations in test performance have been observed. The procedure has 

proved very difficult to standardise. This often leads to a requirement for repeat tests 

and large numbers of animals are being used by vaccine manufacturers and control 

laboratories.

The aim of the present study was the identification of gene markers of pertussis toxin 

toxicity using the microarray technique, in order to develop in vitro assays based on 

human cell lines as an alternative to the HIST. The study had three main goals:

1) determination of a suitable concentration of PT for microarray experiments,

2) investigation of gene expression of HUVEC and NL20 cells after pertussis toxin 

and detoxified pertussis toxin treatments using the microarray technique,

3) confirmation of the expression of gene candidates using semi quantitative RT- 

PCR.

Four cell lines were initially studied with the Alamarblue assay in order to detect a 

cytotoxic effect of PT, The alamarblue assay did not show any killing on the cells at 

all the concentrations tested (from 0 to 10 pg/ml). This lack of killing effect was not
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expected and aggregation of the cells observed by morphological study did suggest 

that the toxin was having some effect. Therefore, another widely used cytotoxic 

assay, the MTT assay, was preferred, and did reveal a cytotoxic effect of PT on cell 

lines. The reason for the discrepancy between the two cytotoxicity assays was not 

clear and should perhaps be investigated further.

From the four cell lines initially studied, Jurkat, SHSY5Y, NL20 and HUVEC cells, two 

were chosen to carry out further experiments. Indeed, it would be difficult to perform 

a comparative study on microarray experiments on four cell lines treated with two 

different toxin preparations (PT and dPT toxoid). The NL20 cell line (human bronchial 

epithelial cells) was chosen because bronchial epithelial cells could give valuable 

information cell responses of located cells at the initial site of infection of B. pertussis 

and also it could give valuable information on the direct cytotoxic effect of PT at the 

level of gene expression. The second cell type chosen was the HUVEC primary cells 

(human umbilical vein endothelial cells) because primary cells are sampled directly 

from humans and their responses are supposed to reflect closely human body 

reactions. Also HUVEC cells were chosen because they could give valuable 

information of the role of PT in the induction of encephalopathy, on endothelial cell 

migration and endothelial cell permeability.

In addition to selection of cell type, toxin preparations had to be chosen too. From the 

morphological study, cell aggregates were observed after PT treatment. In this study, 

toxin and corresponding buffer preparations were investigated and it was observed 

that aggregate formation could be due to the buffer used for the toxin preparation. 

Indeed some concentrations of toxin in the stock solution were low (e.g. 10 pg/ml), 

therefore the stock solution of the toxin, in some cases, had to be used neat which 

resulted in a very high concentration of salt in the cell medium and this presumably
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was responsible for inducing the aggregation of the cells. Consequently, PT 

preparation 2133 at a stock solution concentration of 85 pg/ml was chosen for further 

experiments (MTT, Microarray, RT-PCR and cell migration). This was the only 

preparation without any aggregation effect due to the corresponding buffer.

MTT cytotoxicity experiments showed that PT induced cell death in HUVEC and 

NL20 cells at a concentration of 1.25 pg/ml (10% cell death) with a maximum effect 

observed at 10 pg/ml (30% cell death). Bruckener et al., (2003) used morphological 

observations on brain capillary endothelial cells in an in vitro system and reported 

that PT at a concentration up to 1 pg/ml for several days did not result in obvious 

detrimental or toxic effects. However, concentrations of PT exceeding 2 pg/ml were 

reported to be lethal for the cells but the percentage of killing was not specified in the 

report. Our findings also suggested that PT at the concentration of 2.5 pg/ml was 

cytotoxic, causing approximately 20% of cell death. An initial goal of this study was to 

try to establish a concentration of active PT that would not greatly affect cell viability 

but, hopefully, would cause maximal changes, e.g. in gene expression, that could be 

detected by in vitro techniques such as microarray analysis. However, it was difficulty 

to achieve this because a relatively high concentration of PT was needed to reach 

the sensitivity required by the in vitro system used in the present study. It is also 

possible that cultured cells in vitro were not at an optimal condition for PT receptor 

binding and thus the cells would have a much reduced sensitivity to the toxic effects 

of PT. A receptor for PT on all cell types has not yet been identified. The first 

hypothesis is based on the report that PT recognizes sialoglycoproteins on Jurkat 

cells (Armstrong et al., 1994), pancreatic b cells (el Baya et al., 1995) and Chinese 

ovary cells (Brennan et al., 1988). In addition, PT is able to bind glycolipids 

harbouring terminal sialic acids (Hausman & Burns, 1993). It is possible that HUVEC
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and NL20 cells have only a limited amount of sialoglycoproteins on their surface or 

that the glycoproteins structure could have been disturbed under the in vitro 

condition. Trypsin is an enzyme used in cell culture to detach the cells from the 

growing surface. The cells are treated with this enzyme for only a few minutes but 

such a treatment can also lead to deterioration of cell surface receptors when 

incubated for too long. Trypsin cleaves peptides on the C-terminal side of lysine and 

arginine amino acid residue. The enzyme could have indirectly damaged the 

structure of the glycoprotein on the target cell and therefore affected the binding of 

PT on the cell surface receptor.

Another possible explanation for the low sensitivity of the cells in vitro to PT may be 

related to the property of PT binding to the complement receptor 3 (CD11b/CD18). 

Complement receptor 3 is known to be the binding site of the ACT toxin 

(Guermonprez et a!., 2001) and FHA haemagglutinin (Reiman et a!., 1990). Studies 

carried out on macrophage cells (U937) indicated that PT also bound to 

CD11b/CD18 receptor (van’t Wout et a!., 1992; Wong et a!., 1996; Wong & Luk, 

1997). The distribution of complement receptors on the surface of HUVEC cells has 

also been investigated, and it was found that the cells expressed complement 

receptor 1 and 4 but not complement receptor 3 (Langeggen et a i, 2002). No study 

has yet shown that NL20 cells have the complement receptor 3 on their cell surface. 

It may be that the cells examined in the present study do not have the receptor so far 

reported for PT.

The present study showed that a detoxified pertussis toxin preparation, which has a 

cross-linked B oligomer, had no cytotoxic effects on any of the cells at any 

concentration tested. It appears therefore that both intact B oligomer and A subunit 

are required to cause morphological modification of the cells or cell death.
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In this study, microarray technology was used to investigate the gene expression 

profiles of NL20 cells (human bronchial epithelial cells) after PT treatment in order to 

identify gene markers of PT toxicity on the cell type located at the initial site of 

infection. In addition, gene expression of endothelial cells (HUVEC) was also 

investigated in order to identify gene markers of pertussis toxicity on endothelial cells. 

Based on the results of the MTT cytotoxicity study, cells were treated with PT at 2.5 

pg/ml for microarray experiments. It has been previously reported that cells treated 

with a cytotoxic agent for 4 h would respond to the stress by a burst of gene 

expression (Regnstrom et al., 2003). During these 4 h the number of transcribed 

genes is high, which may cause the expression profile to be very difficult to analyse. 

In addition, based on the MTT cytotoxicity assay, 20% killing was observed after 30 

min of incubation of the cells in presence of the toxin. This killing, observed after a 

short time of incubation, could perhaps have been an artefact caused by disturbing 

the environment of the cells. Also, significant morphological changes were observed 

from 6 h of incubation. Therefore, according to 1) the report of instability of gene 

expression from 0 to 4 h of incubation by Regnstrom et al. (2003), and 2) our 

observation of morphological changes from 6 h (section 3.1.1), an incubation time of 

6 h was chosen for treatment of the cells in microarray experiments.

In this study, it was shown that the number of differentially-expressed genes could 

vary greatly between experiments, which indicates a limitation of the microarray 

technique (van der Spek et al., 2003). The robustness of the internal control was 

checked but further statistical analysis on the reproducibility between experiments 

could have been done. A large number of microarray protocols are available and 

several different softwares can be used to achieve microarray analysis. Therefore it
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is very important to spend time on the design of the experiment. In this present study 

the protocol followed was based on studies already published (Zao et al., 2005). The 

protocol followed seems suitable for the questions that we asked but further care on 

quality controls should have been taken. Great care must be taken from the very first 

steps of the investigation, such as cell treatment. A very large number of cells are 

required to obtain the amount of RNA needed to run a microarray experiment. It is 

therefore possible that, in manipulating large number of cells, variations between 

experiments on the basic cell culture protocols (cell counting, time outside incubator, 

toxin preparation batches etc...), were made leading to consequent differences in the 

gene expression profiles. At the RNA extraction level, standardised protocols were 

followed and quality controls were made by electrophoresis. However, RNA 

dénaturation could have occurred between the time of the quality control and the time 

of experiment. Regarding the microarray protocol itself, microarray is a succession of 

very sensitive steps and very low technical variations in the synthesis of the 

radioactive cDNA, batch of radioactive the state (first, second or third use) of the 

membrane coated with oligonucleotides, hybridisation step or even rinsing step can 

be a source of variation. To counteract the poor reproducibility, a microarray 

experiment should ideally be composed of three biological replicates and each 

biological replicate should be composed of three technical replicates. But the amount 

of data produced this way and the cost of the experiment involved led us to perform 

three biological replicates each with only one technical replicate.

For further experiments, in addition to taking care in every step prior to microarray 

analysis, microarray quality controls should be added as explained below. There are 

three levels at which quality control may be warranted: the probe level, the gene level 

and the array level. Poor probe quality means poor quality of one particular gene
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expression measurement on one particular array. It is recommended that all of the 

following criteria should be considered, and to eliminate or impute any spot that fails 

any of them: visual inspection of the image file, spot size, weak signal, large relative 

background intensity. Poor gene quality means poor quality of the expression 

measurement for a single gene across all arrays. The tests of poor probe quality 

consist of checking the poor hybridization and printing, doing probe quality control 

based on duplicate spots and eliminating genes with low variance. Poor array quaiity 

means poor quality of all spots on one particular membrane. Four indicators are 

available to assess an array quality and, if the array does not pass on these 

indicators, the array must be redone rather than risk polluting the good data available 

on the other arrays. The first indicator is the number of spots on the array excluded 

due to poor quality. This number must not be more than 30%. The second indicator 

of overall array quality is the ratio of the average of the foreground intensities of the 

spots on the array, and the average of the background intensities of the spots on the 

array. This ratio must have a relatively large value. The third indicator is a very low 

variance of intensities on the control and treatment membranes. The last indicator of 

array quality is the number of saturated pixels (e.g. if more than 2% of the spots on 

the array have more than half of their pixels saturated). Regarding the overall 

microarray analysis, further experiments should strictly follow these five steps: 1) 

Normalisation 2) Filter 3) Check for robustness 4) Combine the results and 5) 

Statistical analysis.

Keeping in mind the iimitation exposed, we think, however that resuits produced in 

this study could give valuable indicators of PT toxicity. To our knowiedge, no study 

has reported using microarray analysis to investigate the role of PT on HUVEC 

primary cells. One study using a PCR approach showed that pre-treatment of
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HUVEC with PT up-regulated mRNA ievels and surface expression of ICAM-1 

induced by TNF-a (Bernot et a i, 2005). Our PCR results (expression level ratio of 

TNF-a+PT treatment/TNF-a treatment = 5) with HUVEC cells treated with PT and 

TNF-a were in agreement with these previous findings. It would be interesting in the 

future to perform microarray analysis of PT+TNF-a treated endothelial cells and TNF- 

a treated endothelial cells and to compare the gene expression profiles. If the up- 

regulation of the I CAM 1 gene, specifically by PT+TNF-a treatment, could be 

confirmed by microarray analysis or real time RT-PCR, the I CAM 1 gene may serve 

as a gene marker of PT toxicity.

Some genes, i.e. Gaiectin 3, SAR 1, CHRNA and DPH2L1, identified from the 

HUVEC microarrays as possibly up-regulated, were further analysed using semi- 

quantitative RT-PCR. However, positive signals for those genes were obtained in 

only one RNA sample. The expression ratios observed in the microarray experiments 

could not be clearly confirmed. The RT-PCR experiment results suggested that I CAM 

1 could be down-regulated (expression level of 0.7) by PT + IL1 p treatments. 

Unfortunately, the experiment was not repeated and the down-regulation of the gene 

observed in Fig. 16b might have been caused by a lower amount of RNA in the 

reaction with the RNA samples related to PT + IL1 p treatment compared with the 

other samples, and not by any direct effect of the treatment on gene expression. The 

conditions for RT-PCR should be further optimised and the use of a sensitive real­

time PCR could be considered.

Similarly, there have been no microarray studies reported on NL20 cells. 

Nevertheless, the role of PT on epithelial cells has been investigated on BEA8-2B 

cells (Belcher et al., 2000), a bronchial epithelial cell line which is comparable to 

NL20 cells. Belcher et al. concluded that the quantity and quality of respiratory
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secretions were altered by the ADP-ribosyl transferase activity of PT. However, none 

of the 33 differentialiy-expressed genes identified by Belcher et al was found to be 

altered in the present microarray study. The CREb1 gene that was found to be up- 

regulated 37 times compared to the control in their study was included in the present 

RT-PCR experiment. A signal for this gene was detected in only two experiments and 

the ratios of the expression levels were 1.79 and 0.9 for HUVEC and NL20 cells, 

respectively. The variability of the results between Belcher et al and our study may 

be explained as follows: a) different cell types b) the origin and activities of the toxins 

used c) the concentration and the time of incubation of the toxins and d) the different 

microarray techniques. The low number of genes up-regulated after PT treatment 

was noted both by Belcher et al and in our study which may allow speculation that, in 

vivo, PT activity might involve interaction with other S. pertussis virulence factors (i.e. 

IPS , FHA).

In the present study on NL20 cells, PT appeared to up-regulate several genes: TNF- 

a, leucine zipper down-regulated in cancer 1 and the gene encoding the B-cell 

receptor-associated protein, associated with apoptosis. ACT and FHA, two of the 

virulence factors of 6 . pertussis have been reported to induce apoptosis of 

macrophages (Khelef & Guiso, 1995; Abramson et al., 2001), but PT has not been 

reported to have a direct involvement in apoptosis. PT has been implicated in up- 

regulation of TNF-a in peripheral blood cells (Boldrick et al., 2002), whereas no 

evidence of B. pertussis-induced apoptosis on BEAS-2b cells was found (Belcher et 

ai., 2000). Therefore TNF-a upregulation by PT may play a minor role in the induction 

of apoptosis or act as a proinflammatory cytokine, to enhance the cell-mediated 

immune responses. This hypothesis could be supported by up-reguiation of gaiectin 

3, small inducible cytokine subfamily 20, Thy-1 cell surface antigen and CD63 genes
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that, according to the literature, are related to induction of immunological responses 

and were up-regulated with PT treatment in the present study.

The present data also indicate a possible function of PT in altering endothelial 

permeability (by the finding that genes for platelet-derived growth factor, vascular 

endothelial growth factor c were up-regualted). Few of the genes up-regulated by PT 

treatment (glial fibrillary acidic protein, chlorine channel 3, cholinergic receptor) are 

known to be linked to the brain area and the function of those genes could have an 

indirect relation with brain damage though to be caused by PT or with a direct effect 

on vascular permeability leading eventually to brain encephalopathy. Some of these 

genes involved in endothelial permeability were also up-regulated in NL20 ceils. 

Although it has been reported that PT does not affect the epithelial barrier, PT has 

been known to modify the morphology of endothelial cells (Bruckener et al., 2003). In 

addition, although our findings need further investigation, results suggest that PT 

could induce endothelial cell migration. If PT could modify angiogenesis at the brain 

level, it could eventually, in this way, be involved in encephalopathy. In previous 

studies, it had been speculated that B. pertussis might increase cerebral vascular 

permeability (AmieI, 1976). In addition, induction of experimental autoimmune 

encephalomyelitis (EAE) by PT has been suggested to be due to an increase in 

vascular permeability (Ben Nun et ai., 1997), possibly resulting in histamine- 

sensitisation (Yong et al., 1993). Therefore, it could be that PT induces effect on the 

endothelial cells leading to the permeabilization of the vascular vein tissues.

The potential of a permeability assay as an in vitro replacement for the HIST test 

should be explored. As PT induces the migration of the endothelial cells, it could 

increase the permeability of an endothelial monolayer. In vitro assays developed to 

investigate the permeabilization of endothelial monolayers are well established. One
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such assay consists of the growth of endothelial cells to form a monolayer and, after 

treatment (eg. with PT), the monolayer resistance is assessed. This technique is 

called TEER for trans-endotheiial electrical resistance. The second technique 

available consists of the growth of endothelial cells on an insert until confluence of 

the cells is reached. And then, after treatment, the intercellular permeability is 

assessed by the compartmental exchange of Dextran-FITC. The signal is recorded 

on 24-weli plates by fluorescent spectrophotometry. This test could be easily 

standardised, fairly rapid is (3 to 4 days) and requires only standard laboratory 

equipment. In order to develop a permeabilization assay as a control test for 

pertussis vaccines, a few points would need to be investigated further: a) the dose 

response to PT and to different vaccine preparation b) the effect of different 

components of the vaccine (LPS, FHA, AIP0 4  etc...) on the permeabilization of the 

cells c) reproducibility of the assay and d) validation of the assay by international 

study.

Another potential function of PT is to induce hypoglycaemia by enhancing secretion 

of insulin by pancreatic islets (el Baya et al., 1995). Interestingly, the present results 

from the microarray study could suggest that PT-treated cells might counter balance 

the effect by upregulating genes that increase blood glucose levels (adenylate 

cyclase-activating polypeptide receptor type 1 and insulin growth factor binding 

protein 3).

In conclusion, this study has shown that PT induces cell death only at high 

concentrations. At lower concentrations, PT induces migration of endothelial cells 

and may consequently play a role in angiogenesis. This study also provides valuable 

findings for the further investigation of gene regulation in cells after PT treatment. 

The analysis of the gene expression profiles altered by PT treatment may generate
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gene candidates as potential markers for developing an in vitro toxicity test for PT. 

The results suggest a potential function of PT in the permeabilization of endothelial 

cells monolayers. Therefore, a permeabilization assay as a candidate replacement 

for the HIST test should be explored.
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