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Abstract

With increased international interest in solar sailing for future scicnee missions
comes the requirement to generate algorithms for effective orbit design,
matoeuvring and control, Previously unexplained seasonal variations in sail
escape times from Earth orbit are explained analytically and corroborated within
a nwmnerical trajectory model, Simple blended sail control algorithins arc
developed which are explicitly independent of tine and provide near-optimal
planetary escape trajectorics, whilc maintaining a safe minimum aititude. It is
also shown that the time umiil escape corresponding to the minimum sail
acceleration requirement for shadow frec Earth cscape is independent of initial

altitude.

Traditional trajectory optimisation methods are compulationally intensive,
requiring significant engineering judgement and experience. A new methed of
blending locally optimal confrol laws is thus developed for more complex
applications. Each contral faw is prioritised by consideration of how cfficiently
it will usc the solar sail and how far cach orbital element is rom its target valie.
The blended, locally optimal sail thrust vector is thus defined to use the sail
elfciently, allowing the rapid generation of near-optimal trajectorics. The
blending method introduced is demonstrated for a complex orbit transfer about
Mereury and (or two planet-cenired station-keeping applications. The new
method is also demonstrated for three different heliocentric scenarios and is
shown to closely match, or even out-perform some existing optimisation
methods. Furthermore, the method is demonsirated as suitable for rapid mission
analysis with an ideal, a non-ideal or optical degradation solar sail force model,
while also providing an excellent initiai guess for other optimisation methods.
The blending algorithms used are explicitly independent of time and as such the

control systems are suitable as on-board sail controllers.
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The reader should note that while symbols may be uscd tor different purposes it will be clear within the
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and it is the geocentric east longitude sub-point of the spacecraft, while # is an efficiency factor or it is the

cylinder shadow angle; the use of each will thus be clear by the context in which it is used,
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I Intreduction

Harnessing the power of the Sun to propel a spacecraft may appcar somewhat ambilious and the observation
that light exerts a force contradicts our evervday cxperiences. However, it is an accepted phenomenon Lhat
the quantum packets of energy which compose Sunlight, that is to say photons, perturb the orbit attitude of
spacecraft through conservation of momentuny; this perturbation is known as solar radiation pressure (SRP),
To be exact, the clectromagnetic energy from the Sun pushes the spacecraft and from Newton’s second law
momentum is transferred when the erergy strikes and when. it i3 reflected. The concept of solar sailing is
thus the use of these quantum packets of cnergy, i.e. SRP, to propel a spacecraft, potentially providing a
continuous acceleration limited only by the lifetime of the sail materials in the space environment. The
momentum carried by individual photons is extremely small. At best a solar sail will experience 9 N of force
per square kilomesre of sail located in Earth orbit, thus to provide a suitably large momentum transfer one
requires the sail to have a large surface area while maintaining as low a mass ag possible. Adding the
impulse due to incident and reflected photous it is found that the idealised thrust vector is directed normal to
the surface of the sail, hence by controlling the orientation of the sail rclative 1o the Sun orbila} angular
momenium can be gained or reduced. Using momentum gained by reflecting these quanium packets of

energy the sail stowly but continuously aceclerates to accomplish 4 wide-range of potential missions.'

1.1 An Historical Perspective

Johannes Kepler in 1619 proposed that comet tails are pushed oulwards from the Sun due to sunlight. "This is
one of the first recorded obsetrvations that light may exett a force; however the mechanism behind such a
force was unclear. In 1690 Christiaan Huygens published “Traité de la Luminére” in which he proposed that
light travelled as a wave, supporied by the observation that two intecsecting beams of light did not bounce off
each other, as would be expected il they were composed of particles. Fourteen years later Isaac Newton
propased the corpuscular theory of light in his 1704 publication “Oprics™, believing that light could not be of
a wave nalure even though in this same work he observed Newton's rings, which were actually an
experimental demonstration of the wave nature of light. In many ways Newton’s optics work appeared lo
contradict that of Huygens, yet it is of interest and somewhat ironic to note that these two early theorices arc
¢ualitatively the same as the curtent electromagnetic and quantum views of light. In 1754 de Marian and du
Fay madc the first attempls to experimentally verify and measure radiation pressurc. These investigations
however proved inconclusive and it wasn’t until the beginning of the 20" century that radiation pressure was
[inzlly demonstrated in the laboratory. In 1873 James Clerk Maxwell predicted the existence of radiation

pressure as a conscyuence of bis unified theory of electromagnetic radiation.?

Apparently independent of
Maxwell, in 1876 Bartoli demonstrated ‘the existence of radiation pressure as a consequence of the second
law of thermodynmamics. Furtherinore, in 1873 Crookes mistakenly believed that he had demonsirated the
existence of radiation pressure using his newly devised radiometer. Even today this device is occasionally

used as a flawed demonstration of radiation pressure even though the paradox was correcily solved by

Maxwell in his 1879 paper “On stresses in rarefied gases arising from inequalifies of temperature”, in the
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Philosophical Iransactions. It is of interest that Crookes radiometer was recently used by Thomas Gold
when he published a note questioning the concept of light pressure and solar sailing.” Gold concluded that
solar sailing would not work as it contradicted the laws of thermodynamics, a curious conclusion given that
the second law of thermodynamics can be used to demonstrate light pressure. Furthermore, Gold neglected
to suitably acknowledge either Reynold’s solution or Maxwell’s more mathematical solution to the paradox.
Moreover, solar radiation pressure has been used in the past to aid the attitude control of varicus space
missions, both in geostationary orbit (GEO) and inlerplanctary space. Most notably, Mariner 10 uscd a small
“kite” (31 cm » 76 cm in area) for manoeuvring by using the pressure of suniight for attilude control. By
using the ballast solar sail for attitude control manocuvring the Mariner 10 project was able to cxtend the
planned life of the mission and increase mission science retarns.® > It is of interest to note that the NASA
websites which discuss the Mariner 10 mission state the solar wind was used to control spacecraft altitude,

This is an extor, it was solar radiation pressure.*

The first experimental verification of the existence of radiation pressure and the verification of Maxwell's
results came in 190G. At the University of Moscow, Peter Lebedew succceded in isolating radiation pressure
using a series of torsion balance experiments.’ Nichols and Full at Dactmouth College, Now Hampshire,
obtained independent verification in 1901.” § Around this period a number of science fiction authors wrote
of spaceships propelied by mirrors, notably the French authors Faure and Graffigny in 1889, However, it
was not until the carly 20% century that the idea of a solar sail was accurately articulated. Solar sailing as an
engineering principle can be traced back to the Father of Astronautics, Konstanty Eduardowicz Ciotkowski
and Fridrikhk Arturovitch Tsander, see Figure 1. '° There is some uncertainty regarding the dates of
Ciolkowski’s writings on the potential use of photonic pressure for space propulsion, However, it is known
that he received a povermment pension in 1920 and continued to work and write about space. It is within the
early part of this peried of his life, in 1921 perhaps, which he first conceived of space propulsion ysing light.
Upon the publication of the works of Herman Oberth in 1923, Ciokkowski’s works were revised and
published more widely, enabling him to gain his due international recognition. Ciotkowski is considered to
be the father of cosmonautics and human spacc flight, his visionary ideas about the future of humanity in
space were glorious and far ahead of their time. Much of Ciotkowski’s work was performed prior to the first
powered flight by the Wright brothers in 1903, although Ciotkowski had designed a monoplane as eatly as
1894, which subsequently few in 1915. In the same year as the Wright brothers’ first flight Ciotkowski
determined correctly that the Earth’s escape velocity, into orbit, was 8 ki s, using the Rocket Equation he
had derived.!" Inspired by Ciolkowski, Tsander in 1924 wrote “For flight in interplanetary space I am

working on the idea of flying, using tremendous mirrors of very thin sheets, capable of achieving favourable

T Gold's article was posted in June 2003 on a web site of “e-print physics archives®
http:arxiv.org/html/physics/0306050 and reviewed by New Scientist, Issue 2402, july 2003.

¥ Purther information can be found at http:/mssde.gsfe.nasa.govmme/tmp/1973-085A htmi,

hitp://pds.ipl.uasa. gov/planets/welcome/m10.him and hitpy//www.jpl.nasa. gov/missions/past/mariner10.html.



http://arxiv.org/html/phvsics/0306050
http://nssdc.gsfc.nasa.gov/nmc/tmp/1973-085A.html
http://pds.ipl.nasa.gov/planets/welcome/mlO.htm
http://www.ipl.nasa.gov/missions/past/marinerlO.html
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Figure 1 Konstanty Eduardowicz Ciotkowski (left, from www.astronautyka.planty.pl) and Fridrikh

Arturovitch Tsander (right, from www.daviddarling.info).

»10

resulls. Today this statement is widely, though not universally, bestowed the credit as the beginning of

solar sailing as an engineering principle.

In 1923 the German rocket pioneer Herman Julius Oberth proposed the concept of reflectors in Earth orbit
(Spiegelrakete, or Mirror rocket) to illuminate northern regions of Earth and for influencing weather
patterns.'? This is a similar concept to that behind the Znamya experiments in the early 1990’s which will be
briefly discussed in Section 1.2. It was this work which caused the works of Ciotkowski to be revised and
published more widely. In 1929 Oberth extended his earlier concept for several applications of orbit transfer,
manoeuvring and attitude control (Spiegelfiihrung, or Mirror guidance) using mirrors in Earth orbit."® This

work has a clear parallel with that of Tsander’s from 1924.

Following the initial work by Ciotkowski, Tsander and Oberth the concept of solar sailing appears to have
remained largely dormant for over thirty years. In the 1950s the concept was re-invigorated and published
once again in popular literature, this time in North America. The first American author to propose solar
sailing appears to have been the aeronautical engineer Carl Wiley, writing under the pseudonym Russell
Sanders to protect his professional credibility." '* In Reference 14 Wiley discusses the design of a feasible
solar sail and strategies for orbit raising in some technical detail. In particular he noted that solar sails could
be “tacked” allowing a spiral inwards towards the Sun. In 1958 Richard Garwin, then at the IBM Watson
laboratory of Columbia University, authored a solar sail paper in the journal Jet Propulsion where he coined

the term “solar sailing”."

Subsequent to the discussion of solar sailing by Garwin, more detailed studies of the orbits of solar sails were

3

undertaken during the late 1950s and early 1960s."® ** For a fixed sail orientation several authors have

shown that solar sail heliocentric orbits are of the form of logarithmic spirals.'®**

A range of applications for
solar sailing have been extensively discussed since the 1960’s, however planet-centred trajectory design has

been largely restricted to escape manoeuvres or relatively simplistic orbit manoeuvring, such as Lunar fly-


http://www.astronautvka.plantv.pl
http://www.daviddarling
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by's or orbit inclination change.” - In the early 1960’s Sands and Fimple investigated planetary escape
trajectories for solar sailing using initially circular orbits and analytical techiniques which necessitated many
simplifying approximations, including a fixed solar position and omilting orbit restrictions such as negative
altitude."™ 2! Fimple uscd a locally optimal energy-gain control strategy, based on the earlier generalised
conclusion by Trving that such a strategy is sufficiently close to the optimal for most low-thrust propulsion

sys.tcms.28

It is also worth noting that Lawden mathematically showed for a low-thrust motor that little
advantage was to be gained by implementation of a more complex thrust program than aligning the motor
thrust with the velocity vector.”® In the late 1970°s this gencraliscd statement about low-thrust propulsion
was shown to held for solar sailing, with an overall efficiency drop of between 1 and 3.5 % for escape from
high Facth orbits.® In 1978 Sackett and Edelbaum presented optimal Earth sub-gscape and orbit transfer
manoceuvres for solar sail propulsion, -using a method of orbit averaging to reduce the number of
compulations needed while still giving-good performance estimates through the solution of a two-point

houndary vatue problem.**

During this work a characteristic rapid increase in orbit eccentricity was poted
in most trajectories and it was found that ofien the optimai solution resuited in a negative altitude perigee
passage. A minimum altitude constraint was not included in the optimisation tool; however a penalty
function was developed to ensure an adequate radius of perigee was maintained throughout the trajectory
without significant loss of optimality. Several papers have since been published discussing the use of solar
sail propulsion for Farth escape using locally optimal techniques and while the inclusion of a rotating sun-
line has become common place, much of the analysis performed continues & make significant
simplifications, such as implemeniing a spherical gravity model or neglecting shadow, 3™ body gravity

effects or even setting minimum perigee values,”™

Recently however, a mare complete Earth escape
trajectory analysis has been pectformed by Leipold, where the above perturbations were inchuded, while
continuing 1o neglect a minimum altitude constraint.”> Nole also that recent work has produced extremal
steering strategics for simulation and optimisation of Earth — Moon (rans{er trajectories using sofar sailing.®
This work resulted in the sclution of a weak stabilily boundary problem and generated realistic orbital

mechanics solutions for the transfer, with the inclusion of all rclevant perturbations,

Early comparisons of solar sailing with chemical and ion propulsion systems showed that solar sails could
match or out perforin these systems for a range of mission applications, though of course the level of
assumed technology status is crucial in such comparisons.”” These early studies explored the fundamental
problems and benefits of solar sailing, but lacked a specific mission to drive detailed analyses and to act as a
focus for future utilisation.! In the early 1970°s the development of the Space Shuttlc and the technological
advances associated with deployable structures and thin films suggested that perhaps solar sailing was ready
to move beyond paper studics.” "*' In 1974 NASA finded a low-level study of solar sailing at the Baitellc
laboratories in Olic which gave positive recommendations for further investigation.”” The Battelle
laboratories recommendations were acted upon at NASA-JPL in an Advanced Mission Concepts Study for
Olfice of Aeronautics and Space Technology (OAST) in FY1976.* During the continuation of the Battelle

laboratories study Jerome Wright discovered a trajectory that would allow a relatively high-performance
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solar sail® to rendezvous with comet Halley at its perihelion in the mid-1980’s by spiralling towards (he Sun
and then changing 1he orbit inclination by almost 180 deg.™ The flight time of four years would allow for a
late 1981 or early 1982 launch, however the required level of performance suggests the study was always
over optimistic. A seven (o eight year mission had been envisaged using solar-electric ion propulsion,
requiring a launch as early as 1977. These positive results prompted NASA-JPL to initiate an engineering
assessment study of the potential readiness ol solar sailing, following which a formal proposal was put to
NASA management on 30 September 1976, At the same time a companion study and technology
development program for Advanced Solar Eleciric Prolusion was inilialed in order to allow it (o be evaluated
as a competitor for the Halley mission. During the initial design study an 800-m per side, three-axis
stabilised, square solar sail configuration was envisaged, Figure 2, but then dropped in May 1977 due to the
high risks associated with deployment of such a massive structure. The design work progressed to focus on a
spin stabilised heliogyro configuration, Figure 2. The hetiogyro concept, which was to use twelve 7.5 km
long blades of film rather than a single sheet of sail film, had been developed by Richard MacNeal and John
Hedgepath. ¥~ *® The helivgyro could be more easily deployed than the square solar sail by simply unrolling
the individual biadcs of the spinning structure, As a result of this design study the snuctural dynamics and
control of the heliogyro wese characterised and potential sail films manufactured and evaluated.™ ™ As a
result of the Advanced Solar Electric Prolusion companion study NASA selecled the Solar Electric
Propulsion {SLEP) system in September 1977 upon ils merils of being a less, but still considerable risk for a
comet Ilalley rendezvous.®® A short timc later the SEP rendczvous mission was also dropped due to

escalating cost estimates.>

1.2  Receant Technology Develapments and Activities

A true solar sail bas yet to fly (as of 10 May 2005), however signilicant sleps have been taken since the
beginning of the 1990°s. Furthermore, the Planctary Society has confirmed a launch eftort schedufed for 31
May 2005 (as of 10 May 2005) in an attempt to fly the first ever solar sail.

On 4 Febroary 1993, under the guidance of Vladimir Syromiatnikov, the Russian Space Regatta Consortium
deployed a 20-m spiuning reflector, Znamya 2.5 shown in Figure 3, following the undocking of Progress M-

40 from the space station Mir.!

Zuamya 2.5 followed Znamya 2, which was also an in-orbit deployment,
Observed from Mir, Znamya 2 and 2.5 showed that spin deployment could be controlled by passive means,
while Znamya 2.5 illuminalcd a spol on the surface of the Barth which would other wise have been in
darkness. Znamya is Russian for banner or flag and the experiment 2.5 was a realisation of the idca first

proposed by Oberth in 1923 as a Spiegelrakete.

In May 1996 NASA’s Special Payloads Division in Goddard Space Flight Centre flew the Spartan mission
207, a large deployable reflector shown in I'igure 3, during the Shuitle mission §1'5-77. The 14-m Inflatable

¥ The comet Halley solar sail had a required characteristic acceleration of > 1 mm s see Reference 50.

Characteristic acceleration will be defined later in Section 1.3.2.
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Figure 2 Comet Halley solar sails. Image credit NASA — JPL.

Antenna Experiment (IAE) was primarily designed as a radio frequency reflector, but the promise of

inflatable technology towards solar sailing was clearly demonstrated despite mission anomalies.>

In Kéln in December 1999 the German space agency, DLR, in association with ESA and INVENT GmbH
deployed a square 20-m solar sail, shown in Figure 4% This deployment now forms the basis for a future
ESA in-orbit deployment demonstration perhaps in early 2006, visualised in Figure 4. Within Europe, to
date, solar sail technology development has been driven forward by DLR with the development of sail boom
technology, shown in Figure 5.°° No comparable or competitive design has been significantly funded to date

(as of 13 April 2005) by any source within Europe.

Currently, NASA is funding the development of two competing solar sail hardware designs, one by Able
Engineering, now part of ATK and the other by L’Garde, both of which underwent 10-m deployment tests in

T i s 57-59
vacuum chambers in mid-2004, as shown in Figure 6.

In April 2005 the ATK sail design underwent a
20-m environmental test using a 2 pm film substrate, also shown in Figure 6. The ATK April 2005 test was
conducted in a large thermal vacuum chamber under ambient space conditions at NASA’s Glenn Research
Center. The sail attitude control system was also tested. The L’Garde sail design is scheduled to be similarly
tested during the summer of 2005 (as of 10 May 2005). The two NASA funded sail concepts will be
developed to technology readiness level (TRL) 6 then one concept will be selected as the preferred NASA
solar sail design. This approach allows NASA to ensure it develops a scaleable technology that can be
demonstrated and provide heritage for future science missions. NASA is also funding other hardware
component development studies and software models, towards the New Millennium Program's Space
Technology 9 Project, ST9.*” ST9 will be a system-level, technology-validation experiment having a launch

date in the 2007 to 2008 time frame.

In August 2004 the Institute of Space and Astronautical Science, ISAS, in Japan deployed two small solar
sails in space from an S-310 sounding rocket, as shown in Figure 7. The long-term aim however of the ISAS
work is not solar sailing, rather the deployment of large structures to enable high-power SEP as part of a
hybrid system working in co-operation with the solar sail. None the less, the technology cross-over and
similarities are obvious for pure solar sailing and the stated short-term aim is the development of solar sail

61 - 66

deployment capability.
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Figure 3 Znamya 2.5, viewed from Mir (left, Image credit Russian Space Regatta Consortium) and the

Inflatable Antenna Experiment, viewed from STS-77 (right; Image credit NASA / L’Garde).

Figure 4 DLR solar sail ground deployment test (left) and visualisation of in-orbit deployemnt test (right).

Image credit DLR.

Figure 5 DLR developed carbon fibre reinforced plastic solar sail booms. Image credit DLR.
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Figure 6 10-m solar sail deployment test performed by L’Garde in the 30-m vacuum chamber at NASA's
Glenn Research Centre, Plum Brook Station (top-left). Able Engineering (now ATK) 10-m sail test in the
15-m vacuum chamber at NASA’s Langley Research Centre (top-right). ATK 20-m sail test in the 30-m

vacuum chamber at NASA's Glenn Research Centre, Plum Brook Station (bottom). Image credit NASA.

Figure 7 ISAS sail deployment on S-310 sounding rocket. Image credit ISAS.
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In addition to the work of government funded agencies several private enterprises are seeking to advance
solar sailing as a viable propulsion system. Most notably among these is the Planetary Society’s COSMOS-1
solar sail, Figure 8, which as stated above is scheduled for launch on 31 May 2005. The COSMOS-1 sail
will be launched from a submerged Russian submarine in the Barents Sea on-board a Volna rocket, a
converted inter-continental ballistic missile (ICBM). The Planetary Society’s COSMOS-1 solar sail is
currently likely to be the first solar sail flight.””

1.3 Solar Radiation Pressure

The observation that light exerts a force contradicts our everyday experiences. However, it is a common
mechanism within the solar system. A prominent example of this is the tail of a comet as noted by Kepler.
Comets have two distinct tails, an ion tail swept by the solar wind and a dust tail swept by solar radiation
pressure. Interplanetary dust is also affected by solar radiation pressure. The Poynting-Robertson effect is a
process whereby dust grains experience a transverse drag as well as radial light pressure."” ** This is due to
the relativistic aberration of light as the dust grains orbit the Sun. The resulting drag then causes dust to very
slowly spiral inwards towards the Sun. In certain conditions the grains spiral close to the Sun causing them
to melt; reducing the ratio of their mass to cross-sectional area. The effect of solar radiation pressure then
greatly increases, sometimes to the extent that light pressure can exceed solar gravity, thus ejecting dust into
interstellar space. Note that this is similar to the Solar Photonic Assist (SPA) trajectory as will be briefly
discussed in Section 1.5.2 and then in much more detail in Section 6. In the current section the physical

description of the momentum transfer process associated with solar radiation pressure will be

Antennas

e L LI L LA ]

Sun

sensor Solar array

Solar sail
blades
(stowed

position)

Attitude control
thrusters

Apogee solid Equipment bay

- rocket kick motor

Figure 8 The Planetary Society’s COSMOS-1 solar sail, annotated CAD model (left) and actual spacecraft
(right). Image credit L. Friedman and the Planetary Society.

** More information can be found at the Planetary Society web-site; http://www.planetary.org/ and at the
COSMOS-1 tracking web-site; http://www.solarsail.org/


http://www.planetary.ore/
http://www.soIarsail.org/
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discussed. Following this discussion, issues such as the standard inverse square law for solar radiation
pressure with solar radius and its limitations at low radii will be examined. Furthermore, solar sail

performance characteristics and different solar sail force models will be discussed.

1.3.1  Electromagnetic and Quantum Descriptions

In the electromagnetic description of light, momentum is transported by electromagnetic waves. The electric
field component of the wave induces a current in the sail, as shown in Figure 9. The magnetic component of
the incident wave generates a Lorentz force, j X B, in the direction of propagation of the wave. The induced
current results in the generation of another electromagnetic wave, which is essentially the reflection of the

incident wave. A wave propagating along the x-axis exerts a force on a current element given as
df = j,B, dxdydz Equation 1

where j, is the current density induced in the surface of the reflector along the z-axis shown in Figure 9. The

ensuing pressure on the current element can then be written as
dP = j,B, dx Equation 2

where dP is defined as the force per unit area. From Maxwell's equations of electrodynamics the current
term in Equation 2 can be replaced by field terms. It can thus be demonstrated that the time average pressure

is given as

2|1 2 1 2 \
dP)=——| =&, E,”" +——B,¢ |dx
( ) I:zso BT J Equation 3

Allowing the energy density for the electric component and magnetic component of the incident wave to be

defined as

U=—¢,E°+—B ion 4
5 %o 24, Equation

Incident Wave

Lorentz Force

Figure 9 Electromagnetic radiation pressure.
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The pressure exerted on a surface of thickness A/ is then obtained by integrating Equation 3

-

The pressure exerted on the surface is given by the total energy density of the electromagnetic wave for a

|

dx Equation 5

perfectly absorbing medium, such that (P) = (U ) :

Consider two plane waves separated by Ax and incident on a surface of area 4, as shown in Figure 10. The
volume between the two waves impinging on the surface is then 4AAx. Further, the spacing between the
waves is equivalent to cAt, where At is the time of travel between the wave fronts. The energy density of the

wave i8 thus

Equation 6

where, AE is the energy contained within the volume element. Additionally, the energy flux across the

surface can be written

1| AE
W= —[—] Equation 7

Incident Wave Front 1

Incident Wave Front 2

Surface Area, A

Ax

Figure 10 Energy density of an electromagnetic wave.
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Therefore,

U=

L Equation 8
C

Thus, for the electromagnetic description of light the radiation pressmre is simply the energy density of the
electromagnetic wave.

Using quanium mechanics radiation pressure can be visualised as momentumn transported by photons

impacting and then reflecting a surface. The term “photon” was coined by Giltbert N. Lewis in a letter to

6.6?’ 68

Waturc magazine, in 192 Fromn Plank’s Law, a plhoton of frequency v will transport the energy

given hy

E=hv Equation 4
Using special relativity the fotal energy of a moving body may be writien as

E* = ”10204 +p202 Equation 10
Since a photon has zero rest mass its energy may be written as

E=pc Equation 11

Using the photon energy defined by Equation 9 and Equation 11, the momentum transported by a single

photon is

. hy Equation 12

The pressure on a body is found through consideratios of the romentum transported by a flux of photons,

At distance » from the Sun the energy flux may be wrilten in terins of the solar luminosity, Ls, and scaled by

the Sun—Earth distance, giving .
2 2
W= ﬁ?{ﬁ] =W, [ﬁ] Equation 13
y r F

2

From Equation 13, the energy AZ transported across a surface of arca A, normal to the incident radiation, in

time Af is given by

AE = WAAt Equation 14
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From Equation 11, the caergy then transports momentum Ap,

AL
<

Ap = Equation 13

The pressure on the surface is thus defined as the momentum transportcd per unit thne, per unil arvea,
such that

Ap
P=—|— ati
A{ At} Equation 16

Accordingly, using Bquation 14 the pressure exerted on the surface due to momentum transport by photons is

w

=— Fquation 17
c

This is the same expression as Equation'8, For a perlectly reflecting surface fhe actual pressure is twice the
value given by Equation 17, as momentum is trans(erred by incident photons and by reflected photons,
following Newton’s sccond law. The salar radiation pressure exerted on & solar sail at the Eartli's mean
distance from the Sun, 1 AU, may now be calculated using Equation 17 and following Reference 1. As the
orbit of the Earth about the Sun is slightly clliptical, solar irradiance at the farth varies by approximately
3.5 % over the year. An avcepted mean value ol the solar constant is 1367.6 J s m™" Thus, the pressure

exerted on a pertectly reflecting solar sail at } AU is taken to be 9.12 x 10"° N m™.

1.3.2  Force on a Perfectly Reflecting Solar Sail

‘The acceleration experienced by a solar sail is a function of the attitude of the sail reflective surface with
respect to the Sun. For a solar sail, as shown in Figure 11, the force exerted on the surface due to incident
photons is given by

1, = PAu, .0, Equation 18

‘I'he reflected photons will exert a force of equal magnitude on the surface, but in the specular reflected

direction, -uy.
. = =PAw, .nhu, Equation 19
Noting, np-u, = 2{w.n)n, the total force exerted on the solar sail is given by

f = 2PA(n, .u)2 n Equation 20
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Using Equation 13 and Equation 17 the total force may be written as

. - 2
= %[R—"J (ui .11)2 n Equation 21
¥

c

The solar sail performance is quantified by the total spacecraft mass per unit area ("/,) and is called the sail
loading.! The sail loading is an important solar sail design parameter, The sail pitch angle is defined as the

angle between the sail normal and the incident radiation, as shown in Figure 11 and Figure 12. Using these

Sail normal, n Sail Cope angic
Thiust, m

Centra-line
angle
Specularly reflected

Reflective radiation, u,

sail film,

of area 4 \

Pitch au‘é]e

Incident
Radiation, n,

|
By
Solar.Dirégtion

P

Figure 11 Incident and reflected components on ideal solar sail,

For Heliocentric Trajectorios;
AxXls Is normal to SunHine and within the orbit-plane

Or,
N For Planet-Centred Trajectories;
4 Axls [s normal to Sun-line and within the orbit plane
of the planet
Normal to orbit plane sall

.
Solar, Direction
-k

Figure 12 Orientation of the sail pitch and clock angles in Sun-sail line reference trame. Note, for
heliocentric trajectories the Sun-sail line reference frame is coincident with the radial, transverse and normal

reference frame of the solar sail,
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definitions the solar sail acceleration may now be wrilten as

2
2 R .
ag = il ll:—"} cos® an Equation 22
c ol r

"The characteristic acceleration is defined as the actual acceleration experienced by the sail al a solar distance
of 1 AU with the sail normal to the Sun, such that o = 0." The characteristic acceleration is a parallel design

parameter to sail loading and may be written as

ag, = _'9[" 12 ?2 | [mm s '2] Lquation 23
¢ olgm

where, an overall efficiency factor is uscd to account for the finite reflectivity of the sail film. Typically the
total solar sail efficiency is of order 0.85 - 0.9.® It is important to note that the efficiency of a sail does not
alter its characteristic acceleration; however it will alter the pliysical dimensions of the sail. The solar sail

acceleration may also be wrillen in terms of the solar gravitational acceleralion as

GMg (o :
a=/j r—zs(r.n)2 R Equation 24

The dimensionless sail parameter £ is defined as the ratio of the solar radiation pressure acceleration to the
solar gravitational acceleration.' This parameter is called the sail lightness number. The solar radiation
pressure acceleration and the solar gravitational acceleration are both assumed to have an inverse square

varialion, thus the lightness number is independont of the Sun-sail distance. Using Ecquation 13, Equation 22

and Equation 24 the solar sail lighiness mumber may be written as

B = g Equatio 25
o
L
o S Equation 26
2rGM sC

The critical solar sail loading parameter, 0'*, is 1.53 gm’z".1 ‘This constant is wnique within our solar system

and is a function of the solar mass and the solar luminosity, which have assumed constant velues. With a
piass per unit area equal to the critical loading paramcter the lightness number is one, however such z sail

loading is an extremely challenging requirement. A more rigorous examination of the effect of radiation

pressure on a surface can be found through Lhe use of radiative transfer methods, as perfonmed in the
textbook by M°Innes.!
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1.3.3  Force on a Non-Perfeetly Reflecting Solar Sail

The assumption that a solar sail is an ideal retlector is clearly not suitable for realistic trajectory design and

mission analysis. LThe sail force can be represented more realistically through consideration of optivs theory;

considering sail reflection, absorption and re-radiation, Several assumptions are made within the optical

force model which compromises its accuracy, including that the sail is perfectly flat. Note however that this
assumption has recently been removed through development of new methodology for the analytical

description of the force and moment generated by a solar sail of arbitrary shape, while continuing to describe

1‘70

the surface optical properties through the optical force model.” To account for the assumptions within the

opticat force model a numerical paramectric force model was developed by JPL for the Halley rendezvous

mission.” ® Note however that both models, theoretical and measured, apply standard optical theory where
non-specular reflections at greater than 6 — 10 deg arc assumed to be of 1o use. A solar sail can however
utilise all the reflected photons no matter what angle they are reflect at, as all reflected photons will exert a
force of some magnitude on the sail surface. Recent work has been performed which shows the assumptions
made within both the {raditional models significantly compromise the results, as reflection is highly
symmetric about the specular line with “reflected force components normal to the specular reflection line

cancetling”.” Note further that the same work concluded an aluminium coated saif under zero tension would

remain 88 % reflective, a reduction in only 2 % from the noininal ideal reflectivity, even if heavily creased.

Sail optical properties and hence the sail force model will vary through the duration of a mission due to
thermal cycles, radiation degradation and so forth.”* =™ The effect of optical solar sail degradation on solar

sail trajectories will be considered in Section 6. Despite the concerns discussed above, the optical force

model will on occasion be used within this dissertation as it is currently as good as any other non-ideal sail
force model in the public domain. Note that use of a non-ideal sail force model within this dissertation ts not

intended to provide a highly accurate model of a real sail trajectory, rather to demonstrate the ability of the

otbit design methods generated in later sections to manage a more complex sail force model. Thus, through
successful utilisation of the optical force model one can demonstrate the ability of the proposed ethods to
adapt to any other complex sail force model, while providing an initial assessment of the effect of a non-ideal
sail. Similarly, the optical solar sail degradation model, which is based on the optical force model, is used to

demonstrate the capabilities of the proposed method while providing an initial assessment of the effect of

optical surface degradation on trajectory design.

1.3.3.1  Optical Solar Sail Yorce Maodel

The total force due to solar radiation pressure may be divided into its component parts and written: as
=1, +f, +1, Equation 27

The main optical properties of the sail film can be defined within the constraint 7 + @ + ¢ =1 . However, since

the iransmission coefficient, 7 is zero on the reflecting side of the solar sail it follows that

d=1-F Equation 28
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The unit vectors shown in Figure 11 can be related using,
W =cosa n+sine ¢ Equation 29
U, = ~cosa n--sina t Equation 30
Combining Cquation 29 and Equation 30 it can be seen that
u, =u—2cosan Equation 31

Initially assuming all incident photons are absorbed by the sail the force exerted on the solar sail is given by

P4 cose.n, Resolving this force inlo normal and transverse components using Equation 29 i is found that
f, = PA(coslce n + cosesing t) Equation 32

A fraction ¥ of the incident photons are now reflected. Of this fraction, another fraction will be specularly

reflected in direction u,, 80 providing a force f,, inn direction -u, given by
1, =—(Fs)PAcosa u, Equation 33

A further fraction of photons are uniformly scatlered from the reflecling surface of the sail due to non-

specular reflection. This component penerates a force f,,, in direction n given by
fu= B;-?'(I—s)PAcosa n Equation 34

The total force due to reflected photons is thus (f, 4}, Using Equation 30 to write the total force in lerms of

the normal and transverse directions yields
f, = PA{[?"scosza + Bf(l - s)?cosa]n ~7Fscosasing t} Lguation 35

Finaily, one must consider photons which have been absorbed and then re-emiited as thermal radiation from

both the [ront and back surfaces of the sail. The emitted power from a unit area of the sail at temperature 7'

is&51 Assuming Lhe sail has vailonn temperature and allowing for the non-Lambertian nature of the front

and back sail surfaces the force due to emission by re-radiation is found to be

4
f, = &TT (gj.Bf - gbBb)n Equation 36
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The sail temperature is obtained from the balance between the thermal input and the thermal output of
(er + &, 0T 4 , a8 shown in Figure 13. The thermal input is given by (l-—?]W cose and since the pressure is

#7. the sail temperature may be written as

. /4
P = (IZV Poosa Equation 37
Gle, + &,

Substituting for the sail cquilibrium temperature,

NEB—Eg,B
£, =PAI -7} L L "2 osan Equation 38
Sf 'i'ﬁ'b

Equation 38 shows that a low emissivity sail backing is required to maximise {he normal force, however the
emissivity of the backing is the only coefficient which can be used fo control the sail temperature. The total

force, due to all components, may thus be written in terms of normal and transverse componeunts as

B!

£, = PA{(] +Fy)oos” @ + B, (1—s)Fcosa+(1- j‘)ir_gfi__"g:"gh cos a-j n Equation 39

f, = PA(1-Fs)cosasina t Equation 40
"The total force vector and magnitude are consequently written as

f=fin Equation 4]

f= (fﬂZ + 57 )"Q Equation 42

Power In = (l - F]W cosex

Power Out = &,&7* "

Back Surface
Front Surface

Power Out = &,57"

TFigure 13 Soflar sail thermal balance.
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The direction of the force, or thrust vector will not be normal to the sail surface as in the ideal [oree model
discussed in Section 1.3.2, The thrust due to absorbed photons is somewhat greater than that due to reflected
photons; therefore the thrust vector is biased towards the dircetion of incident radiation as shown in Figure
11. The angle of the thrust vector relative to the incident radiation is defined by the cone angle, é' The
angle between the thrust vector and the sail normal is the centre-line angle given by

fo

tan g =—— Lquation 43
f]l

An important effect of the centre-line angle for the optical solar sail model is that it limits the thrust vector to
a maximum cone angle of 55.5 deg corresponding to a sail pitch angle of 72.6 deg, for the optical coefficients
given in Table 1. This is in contrast to the ideal solar sail where the thrust vector is always directed normal to
the sail surface and can in principle be directed up to 90¢ deg from the Sun-line. This limitation on the
dircction of the thrust vector poses constraints for some solar sail applications.! Furthermore, application of
the optical surface degradation model in Section 1.3.4 results in a reduction of the maximum conc angle as
will be shown in Section 6.2.5.7 "™ The sail optical parameters derived from the NASA — JPL comet Halley
rendezvous studies are listed in Table 1,"% These are the coefficients which are used within this dissertation
when applying a non-ideal sail forcc modcl and are the initial values used within the optical degradation

model.

1.3.4  Optical Solar Sail Degradation

Spacecraft in the interplanetary environment experience a number of effects due to the Sun: surface charging
(either positive or negative) andfor deep diclectric charging that can result in damaging arcs, UV and
radiation effects on materials, and plasima wake or sheath eftects that could impact experiments or
instruments on the spacecraft (see Section 1.4.3). All surfaces which are exposed to the space environment
are subject to continual degradation from a number of sources. For spar supported solar sails, micrometeorile
impacts will cause only local damage due to the high impact velocities. As the micrometeorite passes though
the sail it creates effective rip-stops; singeing the edges of the hole it is creating. However, for spinning solar
sails the centrifugal tension in the sail [ilm may require the use of rip-stops Lo prevent tear propagation, due
to the additional loads on the sail film. The integration of rip-stops during thc manufacturc process could be
achieved through many different means.' In addition to particulale dumage, solar radiation can degrade
plastics through weakening and reduction of tensile strength, While some work has been performed in this
field much more work remains to be conducted to allow accurate and optimal mission design.” = 7
Furthermore, radiation and particle damage wiil inevitably alter the oplical characteristics of the sail
reflective sucface, this has to date been studied very little though some effort is now being conducted into this

7
area of researcl,™ ™

The initial optical solar sail degradationn (OSSD) model assumes that the optical coefficients do not depend
on the sail temperature; however this is a planmed extension to current work.” The OSSD model also

assumes that the optical coefficients do not depend on the light incidence angle and that no self-healing
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Parameter Symbol Vulue
Reflectivity Coefficient 7 0.88
Specularly Reflected Coefficient s 0.94
Emissivity of Front Surface & 0.05
Emissivity of Back Surface oy 0.55
Non-Lamberlian Cocllicient of Front Surface By 0.79
Non-Lambertian Coefficient of Back Surface B, 0.55

Table 1 Initial optical coefficients for a non-ideal sail.

etfeots oceur in the sail film.”* Letting p be an arbitrary optical coefficient from P, where P reptesents the sot
of optical coefficients defined in Table 1. With OSSD p becomes p(#}, which is a tunction of the solar
radiation dose (SRD). SRD is defied as

()= Iif’cosa dt = W,R*

j‘ cOS
fy

5 dt Equalion 44

L
The OSSD model assumes that p(f) has an exponential form, varying from p(fa) = pg to p(f) = Pa, thus
P(‘): Pt (Po - Pu )exp(— ;bpz(‘ )) Equation 45

where the degradation constant is related to the I{alf-Life SR by
p = 3 Lquation 46

In order to reduce the number of free parameters the initial OSSD mode! introduces a degradation limil,

which together with a single half-life SRD for all p allows the free parameters to be suitably reduced;

explicitly 5 T f‘,Vp «P. Furthermore, the reflectivity of the sail will decrease with time, thus beccoming

more matt, which in-tuon will mean front emissivity increasing with time. The problem thus reduces to

- r{) .
= Equation 47
* " 1td 1
.5'0 .
8o = Equation 48
1+d T

€r, = (1+d )'Sfi; Ecquation 49
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It can also be shown (see Reterence 72) that the optical foree model is least sensitive to the three remaining

optical coefficients in Table 1, thus &y =6y B = B 5By, = an . The variation of the optical cocfficicnts

with solat radiation dose is shown in Figure 14 for a degradation limit of 20 % (i.e. = 0.2) and Hali~Life

SRD of 0.5 W, yr. The effect of OSSD on solar sail trajectory design will be considered in Section 6.

1.3.5 Radiation Pressure with a Finite Solar Disc

The variation of the solar radiation pressure with distance from the Sun can be approximated by an inverse
square relationship, see Beuation 21. However, this assumption breaks down close to the Sun when the finite

angular size of the solar disc nst be considered."®

The modelling of the source of radiation pressure is distinet and independent from the modelling of solar
radiation pressurc force on the sail. Initially asswmue the solar disc to be a Lambertian surface. Thus the
specific intensity is time indcpendent and isofropic across the solar disc and the solar radiation pressure

cxerted on a radially oriented, perfectly reflecting sail can be written as

P(r) =

[T

St §

Tcos® GiQdy , dQ = sing d6 dg Equation 50

G ey D

T
0

Noting geometric symmetry about the azimuth, see Figure 15, and that the specific intensity is independent

of solar distance, Equation 50 reduces to
1
3 4/[ 2 — o — g :
i (’) = “;:“Iu EdE, §—cos0, &, =cos8, Equation 51
<)
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Figurc 14 Varialion of optical coefficients with solar radiation dose.
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Figure 15 Solar radiation pressure due to a finite solar disc.

Performing this integration and substituting for &,

2 P/2

4 R

P(r) = _”10 1l {1 _(_i) } Equation 52
3c r

Which expanding in powers of (Rgs/ r) 2 and for r >> Ry, to the first order gives,

27, [Rs T
P(r)=—10[——5-] +O(Rg /7)* Equation 53
c r

At large solar distances this expansion must match asymptotically with the expression for the radiation

pressure from a distant point source.

2

. 2| L R

P (r) ¥ :lm%](_rs_) Equation 54
S

Comparing Equation 53 and Equation 54 allows the frequency integrated specific intensity to be identified as

Ly

A
" 4n?Rg’

Equation 55
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Substituting {or 1y in Equation 52,

1Y
Pl)=ts_ ;_[ ! __S_J - Equation 56

P(r)=2(r) F(r) Equation 57

3
R
F('.)__._i_ [ RL W 1-11. [_3] Equation 58
s y

A

The lunction #(7) describes the deviation of solar radiation pressure from an inverse square law. F(») attains
a minimum value al » = Ry, where F(Rg) = *. As r — o, F(r) — 1 as the solar disc becomes morc like a
point-source. From Figure 16 it is seen that F(¥} approaches 1 over a scale of order 10 solar radii (0.047 AU)
so that the magnitude of the deviation from an inverse square form is small at large heliocentric distances.
'The deviation from the inverse square approximation is due to photons from the sotar limb striking the sail at
an oblique anglc, whilc photons from (he ceatre of the disc strike aleng the sail normal. At large solar

distances photons trom atl parts of the solar disc are incident along near-parallel rays.’

Solar Distance (R g)
0 5 10 15 20 25 30 35

1 | I
1 3

-
1
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Deviation from Inverse Square Law

0.6 - L e e , , . e
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Solar Distance {AU)

Figure 16 Deviation of the uniformly bright finite disc model ffom an inverse square model.
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A more accurate model of the solar radiation pressure may be obtained by including solar limb darkening in
the functional form of the specific intensity, rather than assuming a uniformly bright disc.' Limb darkening
is an effect due to the specific intensity of the solar radiation field having a direstional dependence.
Empirically sotar limb dackening has a complex functional form, however using an approximate model of the
solar atmosphere an analytic expression for the limb darkening cifcet is obtained by M°Innes.! For the limb
darkened specific intensity it is found that F(Rg) = 0.708, such that the limb darkened solar radiation pressure

deviates less from an inverse square form (han (the pressare from a uniformty bright disc.

1.4  Solar Sail Design

Note from Section 1.6 that this dissertation does not address solar sail hardware design issues; as such the
current section is intended only to provide a context for the work contained within later sections. One of the
key problems in solar sait design is the packing and subscquent deployment of large areas of thin film. The
dimensional expansion ratio between a deployed and stowed solar sail can bo over 100, thus innovative
structural engineering solutions are required. The packing and deployment problem has perhaps been one of
the greatest impeditments to practical solar sail utilisation.' In addition, since the sail is folded for packing,
the reflecting medium of the sail must be mounted on a thin substrate. The presence of a substrate leads to a
fundamental limitation on selar sail performance due to the parasitic mass, defined as the total non-reflective
mass of the solar sail and attached spacecraft, which this substraic represents. The vonventional belie[is thal
the solar sail film must be as flat as possible to maintain as high a rcflectivity as possible, If this is teue then
tension must be applied to the deployed sail, vither by a deployable slruciare, by spin-induced tension or a
combination of both. It is recalled however, from Section 1,3.3 and Reference 71, that this may be a
misconception and that a solar sail could coneeivably be heavily wrinkled and remain suitably reflective. If
this is true then the deployable structure or spin-induced tension is simply required to support the reflective
surface, alfowing it to be oriented such as to dircct the resultant thrust vector, It is immediately clear that this
distinction is of eritical importance, if a sail film can be wrinkled then the structure need only support and not
tension the film, if the film cannot be wrinkled a much heavier structure is required to apply a tension. Once
deployed the sail film must be oriented to direct the solar radiation pressure force for orbit manoeuvring.

Due Lo the large moments of incrtia of solar sails innovative engincering solutions are again required.

1.4.1  Design Parameters

‘The primary design parameter for a solar sail is its characteristic acceleration, or its sail leading which is an
equivalent parameter. These paramcters determine the transfer time to a partienlar (argel object or even
whether a particular class of orbils are possible.) The characteristic acceleration and sail loading are ideal
parameters for discussion of solar sail astrodynamics. Howaever, they arc a function of beth the cfficiency of
the solar sail design and the mass attached to the sail assembly (i.e. the spacecraft on-board). As such thesc

parameters arc less suitable for discussion of solar sail hardware design.

Recall from Section 1.3.2, the characteristic acceleration is defined as the actual acceleration experienced by
the sail al a solar distance of 1 AU with the sail normal to the Sun, such that e = 0. At this distance from the

Sun the magnitude of solar radiation pressure exerted on a pertectly absorbing surtace is 4.56 x 10 N m?,
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Allowing for finite sail efficiency the characteristic acceleration is given by

,o-=

2P .
S Equation 59
o 4

Recall, the efficicncy of a sail does not alter its characteristic acceleration; however it will alter the physical
dimensions of the sail. Tt is for this reason that characteristic acccleration is less suilable for discussion of
solar sail hardware design. Equation 59 is similar (o Equation 23, from Section 1.3.2. The sail efficiency is a
function of the optical properties of the sail film and the sail shape. The total mass of the solar sail can be
split into two components, the sail assembly (composed of the sail film, booms, housing, et cetera) and the
mass attached to the sail assembly (i.c. the spacceraft on-board). Note that often within solar sailing this
spacecraft is referred to as the “payload”,’ thus using payload in the launch vehicle perspective, however
such use can be confusing as typically the payload on a space vehicle is the science instruments.
Consequently, within this-dissertation the terrn payload will not be used to refer to the mass attached to the
sail assesnbly in the form conventionally used, rather one will refer to this as the “spacecraft”. The term
spacectaft is more suitable as it has become clear recently that the optimal form of solar sail system design
would be to make the sail a jettisonable sub-systcm of the spacecrall, thus the sail will normally only be
controllable whilo attached to the spacecraft.’! The term “pavlioad” is thus an anomaly. ‘The characteristic

accelcration of the solar gail may now be wrilten as

a 2yP m, ion 6
= - e , O =——
Se o +(m—“’jp / 1 s Ty Equation 60

The sail assembly loading, defined in Equation 60, is the primary hardware design parameter for a solar sail;

allowing a measurc of the performance ol the sail film and the efficiency of the solar sail structural design.

Using Equation 60 the influence of various design parameters on the solar sail characteristic acceleration can R

be tound. For a fixed sail arca and efficiency Equation 60 becotnes a function of the satl assembly loading
and the payload mass. It can be shown that for large values of o; the solar sail characteristic acceleration is
relatively insensitive to variations in the spacceraft mass.' This is due to the sail film and structural mass
dominating the total mass of the solar sail. Conversely, for a large payload mass, the cbaracteristic
acceleration becomes insensitive to variations in the sail assembly loading,! Hence, a high characteristic
acceleration is only gained if the sail assembly mass and the payload mass are small. Tn othcr words, the
parasitic mass must be minimised in order to maximise sail performance. This is of course a logical

vonclusion, the important trade is thus whether to invest energy in designing an cfficient high performance

solar sail or to invest coergy in developing a low mass miniaturised spacecraft to then be transported by solar

sail. It appears that in-fact each is as important as the other and thus equal emphasis is required to develop

solar sail technology towards flight status.*

14.2 Solar Sail Films

The sail filin reflective layer is supported by a substrate. The substrate is required prineipaliy to allow

handling, folding, packing and deployment. The substrate must be coated with a suitable reflecting malecial
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for efficient photonr: reflection, typically aluminium is currently favoured." 3% 35 57 % 871 A further front
coating, such as Silicon Oxide, may also be required to reduce pre-lannch oxidation of the reflecting surface
with a resultant loss of reflectivity.” © Alternatively a 1JV induced sublimation layer could be added 1o
prevent pre-launch oxidation; such a layer would thus add no mass to the actual solar sail flight mass. The
sail substratc must have sufficient strength so that it does not fail and create tears which may propagate
during deployment or when fully deployed and under tension, if tension is required following deployment,
Furthermore, since the reflective coating on the sail film will not have perfect reflectivity, a fraction of the
incident solar radiation will be absorbed by the substrate. This absorbed energy must be dissipated; this can
be achieved through a thermally emitting rear surface coating. The choice of a suvitable, high emissivity
coaling is yet another design decision. However, it is recalled from Equation 38 that potentially a sail
backing of low emissivily is required (0 maximise the sail thrust normal to the sail surface. Kapton® with a
lront aluminium coating has a rear emissivity of order (.34 which is too low to provide passive thermal
control for inner solar system missions.! Ilowever thin-film chromium, with an emissivily of order 0.64

appears to be a suitable candidate for a rear surface coating.” ®

The sail substrate contributes a significant proportion of the total sail assembly mass, particularly for a large
sail where the sail substrate mass dominates the sail’s parasitic mass breakdown. The production of very thin
films with good mechanical and thermal propertics is thus central to solar sail realisation. There is extensive
industrial experience of the manufacture, coating and handling of thin films for a number of ground and
spacc applications. For example, primary spacecralt insulation is typically provided by multi-layer insulation
(MLI) blankets which are constructed of alternative layers of aluminium coated Mylar® or Kapton™ and a
" (hin net of material such as nylon, Dacron®, Nomex®! or bridal veil.¥ Note however that cuirently the
typical thickness of commercially available thin filins is exccssive for moderate performance solar sails.
Mylar® however is cominetcially available down to a thickness of only 0.9 wm, but has low resistance to
solar UV radiation and so is unsuitable for fong duration exposure without double-sided coatings. Several
thin film materials have been considered as polential sail substrates. The vptimal sail film until recently was
generally considered to be Kapron™." % % Kapton® does not have a melting point as such, however it does
suffer a phasc fransition (glass transision temperaiure) above approximately 680 K.!' A safe, long term
maximum operaling lemperature for solar sail applications is gencrally considered to be between 520 K and
570 X.' 1tis this thermal limit which gives rise to the widely accepted minimun solar radius of 0.25 AU for
solar sailing, although of course this does not take into account the thermal Jimit of the sail booms and other
struciural components, nor does it account for the thermal limits of the attached spacectaft, An all aluminivm
sail film, that is to say one with no subslrate, actually has a very similar minimum solar distance even though
bulk aluminium has & much higher mclting point.** The production of sail film of order 2 wm has been

% Quch thin films are not

recently identified as a key technology requirement of tnid-term solar saifing.
routinely used for large volumc commercial purposes, mainly due to the difficulty in handling during

manufacture. Tn addition to solar sails, other space applications such as solar concentrators and space

1t Mylar®, Kapton®, Nomex® and Dacron™ arc all trade names of E.I. DuPont de Nemours & Co. Although

otte notes that “dacron” (with a small d) is often used as a generic form.




1 Introduction 27

tolcscope Sun shades also require films thinner than commerciatly available Kapton®, To this end NASA
and SRS Technologics have produced Clear Plastic-1 (CP-1) filma down to a gange of order 2 pm. CP-1 [ilm
hias very similar properties to Kapton® film and as such is highly suitable for solar sail applications. CP-1
film is now generally accepted to be the sail film of choice and was used at 3 pm and 2 pm gauge in the 2004

Able Engineering and ATK sail deployment tests respectively, as shown Fignee 6.%

14.3  Space Environmental Effects

The sail may acquire a differential efectric charge betweon the front and rear surfaces due to exposure to UV
radiation and the solar wind.! Surfuce charging and/or dielectric charging typically resuit in arcing which is a
potential source of sail film structural faiture. To prevent electrical discharges from the front surface to the
rear of the sail both surfaces of the sail must be in electrical contact. The sail surfaces must also be grounded
to the spars, stay lines and any clher structarai components. A further consequence of electrical charging is

(hat the sail may form a “bubble” within the solar wind plasma.' Within this region, field and particle

instruments would not be able to obtain accurate measurements.

Prior analysis of the interaction between the sail and local environment is limited, so definitive statemonts are
vnwise. Analysis of prior studies on the interactions hetween the sail and the local environment at 1 AU do
however allow some limited extrapolation. Note however that this work is preliminacy and forms only the
first step of a much larger research program that is currently underway within NASA-JPL; thus many
considerable assumptions are made.®® Garrett and Wang (Reference 86) found the sail to be surcounded by a
plasma sheath within which the potential is positive compared with the ambient plastna and followed by a
separate plasma wake, which is negative relative to the plasma. This structure departs dramatically from a
negativcly charged plate such as might be found in the Earth’s ionosphere on the night side where both the
plate and its negative wake are contiguous. Furthermore, at 1 AU the plasma sheath in the ram side starts at a
distance of ~2 Ap. Notably, the sail size appears to have minimat impact on the plasma sheath, although the
potential in the wake region is significantly different. Garrett and Wang concfuded that although the plasma
sheath at 1 AU extends to a distance of ~50 m in front of the sail, its effects on the solar wind electron
measurement made near the sail surface should be minimal.®® However, the sheath may have some adverse
cffects on solar wind proton measurements made within the sheath. An additional problem may be the
oulgassing/contamination cloud created as the sail approaches the Sum, potentially generating a "pre-sheath”
due to the particles and material around the sail that extends out to at least one characteristic body length
independent of the plasma models, Ne evidence of this has however been found, except for obscrvations
from the Shuttle and other similar cases. Potentially, there is more complex physics than just the solar wind

: . 8
plasma interactions.®’

Consideration ot the effect of the sail on the magnetomeler environmental conditions is even more difficult to
determine. The NASA-JPL study on plasma effects also intends to analyse magnetic ficld "pile-up" in front
of a large sail but as vet this work has not commenced.®® It is thought however that the potential exists for

the oreation of a self-gencrated contamination cloud entrapped around the sail, with perhaps a small
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"magnetosheath” like a comet on the size of the largest dimensions of the sail.”” Clearly, this is a major
source of concern for future space science missions, for cxample the Solar Paolar Orhiter™ {(SPQ) and
Interstellar Heliopause Probe™ (IHP) missions would be significanily enhanced if science data could be
collected while attached to the solar sail. Furthermore, missions such as GeoSail,™ Geostorm™ and other
Non-Keplerian orbi¢ applications require the science data be collected while the sail is attached to the
spacecrafi, therefore if this is not possible such missions become unworkable with solar sail propulsion. This

issue is thus critical to the realisation of solar sail technology for use in real-world science missions.

1.4.4 Salar Sail Structures

During launch the solar sail must be stowed in a small volume consistent with the launch vehicle payload
fairing ot [airing volume allocation, for example the DLR ground test in December 1999 sized the
deployment modulc to fit the Ariane Structure for Auvxiliary Payloads, on Arianc 5 (ASAP-5)."* # Note
however that most future sail missions would not have such stringent launch volumc constraints as the
ASAP-5 systems, instead being constrained to a volume similar to that of, say, a Soyuz-ST launch fairing.*
Following a successful launch the solar sail must be deployed from its stowed configuration, this process
nust be reliable, controllable and predictable. Knowledge of deployable structures in space for applications
such as experimental booms and solar arrays can be adapted and extended for solar sailing.! One such
system is the CoilABLE booms developed by Able Engineering of California, now ATK, which has
significant flight heritage. Triangular elements are joined to longerons to form the truss. Pre-tensioned
diagonal elements store enough potential energy o allow self-deployment, although a lanyard cable attached
to the end of the truss can be used to control the deployment rate via a damper or motor, with the boom tips
rotating during deployment. An alternative form of deployment is from an internally-threaded canister shell
which extrudes the boom. This method allows the boom to be at near-full strength throughout the
deployment and also has a retraction ability, which would aid sail deployment in the event of an anomaly.
These benefits come at the cxpense of a larger stowage volume and heavier booms; however there is no
rotation of the boom during deployment which would enable sail film and booms to be simultaneously
deployed. The CoilABLE booms ypically have a stowed fength of order 1 — 2 % of the final deployed
length and can be scaled to over 100 m in Iength. Ablc Engineering / ATK used the CoilABLE booms during
their sail deployment test in mid-2004 and April 2005, Figure 6.°* * Recall from Figure 5 that DLR has
developed carbon fibre reinforced plastic (CFRP) solar sail booms. The siructure is deployed using the
potential energy stored in the pre-stressed flattened tube, or using a small drive motor for a more controlled
deployment. By using carbon fibre with layers built-up in alternate directions deployable booms can be
manulactured with essentially zero coeffivient of thermal expansion.®® Once the sail is deployed the drive

motor, housings and associated hardware can be jettisoned in order ta reduce the total mass of the system.

In addition to deployable mechanical structures, inflatable structures are an attractive means of reliable

deployment. Inflatable structures have long heen considered for solar concenlrators, antenna reflectors and

truss structures.” ™ "The main benefit of inflatables is the ease and reliability of deployment with few failure

1 see Section 1.5 for further description of mission,
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modes. The structure consists of a thin membrane which is deployed solely by internal gas pressure. Once
the structure begins to deploy the internal gas pressure ensures full deployment and rigidisation. A space
curing resin enclosed between two films in the inflatable membrane can be used to ensure rigidisation
throughout the mission duration. This is the approach taken by L’Garde for the sail deployment demo in
mid-2004, Figure 6. The L’Garde booms build on flight heritage gained from Spartan mission 207, the
IAE, Figure 3.%

1.4.5 Solar Sail Configurations

The essential requirement of any solar sail design is to provide a large, reflective surface with minimal
parasitic mass that can be easily and reliably deployable and manufactured. The choice of sail configuration
is dependent on the mission requirements with many potential configurations available, see Reference 69.
The three primary configurations are the square, disc and heliogyro sails. Initially the heliogyro appears a
very efficient configuration and it was this that led to the square sail being dropped by NASA-JPL during the
comet Halley studies in favour of the heliogyro. However, the square sail had been extensively analysed by
this stage and when later comparison was made on an equal basis the square sail was found to perform
significantly better than the heliogyro.” It was found that very efficient structures could be developed for the
square sail, while the heliogyro needed far more load-carrying members than previously anticipated. The
square sail has also been favoured to-date due to its relative simplicity and ability to provide rapid turn rates,
which are required for efficient planetary escape and capture spirals. It is noted however that the square sail
architecture critically limits the sail performance due to the large parasitic mass required and as such may not
prove suitable for far term mission applications, such as IHP. A schematic diagram of the three identified
primary configurations is shown in Figure 17. It is interesting to note that the solar sail design chosen by The
Planetary Society, Cosmos 1 Project, uses none of these designs. Rather the Cosmos 1 sail is a combination
of all three configurations shown in Figure 17. The Cosmos 1 configuration has eight triangular sails, see
Figure 18, rather than the four in a square sail. This large number of sails gives the appearance of a compact
heliogyro and allows for attitude control through rotation of each sail, or blade, independent of the next,
exactly like a heliogyro. Furthermore, the sail is spin stabilised, like a disc sail, so as to tension the film in
each blade and further reduce parasitic mass. The Cosmos 1 sail is an interesting compromise of the benefits

offered by each design configuration.

Square Sail Heliogyro Disc Sail

Figure 17 Solar sail design concepts, not to scale. Image credit NASA.
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Figure 18 Cosmos 1 Sail (left) and zero-g deployment test of sail (right). Image credit L.Friedman and the

Planetary Society.

1.5  Solar Sail Mission Applications

It is clear that solar sailing is currently undergoing a revival in interest and a renewed drive towards flight
status which could, with the correct will, lead to the realisation of a true solar sail science driven mission
within the decade. In addition to the technology developments of the last 15 years there has been an increase
in the number of potential solar sail mission applications. To give a context of where each mission
application addressed within the dissertation may lie with respect to another, a brief review of potential solar

sail mission applications follows.

1.5.1  Solar Sail Demonstration and Near-Term Mission Applications

The ESA SMART (Small Missions for Advanced Research in Technology) program and the NASA New
Millennium program are specifically designed to flight test new technologies, allowing heritage and
confidence in design for future larger and more expensive missions such as ESA’s Cornerstone Missions.
The New Millennium program has long been established as the most likely development route of solar
sailing within NASA, with solar sailing tendering proposals for ST-5, ST-7 and now ST-9.”""* ST-5 and ST-
7 proposals envisaged Geostorm as the first solar sail mission.” " * The Geostorm mission concept provides
real-time monitoring of solar activity. It would operate sunward of the Earth’s L, point, thus increasing the
warning time for geomagnetic storms. The Geostorm mission is envisaged as an operational spacecraft
providing dedicated solar monitoring and as such is an excellent candidate mission as the required science
instrument mass is low. By imparting a radial outward force from the Sun the solar radiation pressure in
effect reduces solar gravity and allows the L, point to be moved sunward. As sail performance is increased
one can further “reduce” solar gravity and thus provide enhanced solar storm warning.' The conceptually
simple nature of the Geostorm mission is complicated by mission requirements, risk and budget factors and
by the unstable nature of sub-L; orbits. Some recent work on station keeping at sub-L, locations has shown
promise in this area’®”’ and it appears that station-keeping should be possible, although currently the required
sail pointing accuracy is excessive. Due to the newly realised complexity of Geostorm, ST-9 work has

focused on a GEO Disposal Orbit, at GEO plus 300 km, for a sail demonstration mission which would have
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no scientific goals and would instead be designed purely for enginesting purposes.”® Geostorm is now seen
within NASA as a follow on to this initial demonstration mission, which will have validated the ground
generaled results and model predictions. Thus, providing confidenec in the sail systems for the Geostorm
mission, nominally the (irst true solar sail mission as envisaged by NASA in cooperation NOAA and the

United States Department of Defence,

In addition to the development of boom and other sail technologies DR generated the Orbital
Demonsiration of an Innovative, Solar Sail driven Expandabie structure Experiment (ODISSEE) proposal.gg
ODISSEE is intended to fly a 40-m square solar sail in geostationary transfer orbit (G'1'O) as an enginecring
experiment, performing little or no science. However, the mission goal of raising orbit energy, perhaps for a
lunar flyby, is significantly compromised due to the existence of air-drag around perigee (see Section 3.4.5).
DLR have also proposed a series of follow-on solar sail missions, such as Exploration of Near-Earth
Asteroids with a Sailcraft (ONEAS) and IINEAS plus Sample Return (ENEAS<SR)."> % Ifowever, the
problem with such low-energy missions is that they can be performed easily by conventional propulsion for
similar or less cost, It is thus unlikely that such missions will ever feature on a realistic solar sail mission
roadmap. The ESA [unded in-orbit deployment demonstration, visualised in Figure 4 and schieduled for early
2006, is an excellent opportunity to demonstrate the deployment capabilities of a ground matured and
scaleable solar sail concept. An in-orbit deplovment demonstration shouid be a demonstration, not an
experiment, thus it can provide suitable heritage towards future science driven and solar sail enabled
missions by validating ground generated model results. The DLR solar sail development program has stalled
recently due to a lack of funding from the German Federal Government and the OIMSSEE proposal now
seems more distant than ever, Similarly, the in-orbit deployment demo increasingly appears an end in itself
rather than the beginming of a process due to the lack of ground generated data and models, making the in-
orbit deployment an experiment rather than a demonstration. This, coupled with a potential inability to
confidently scale the design up to the very large area and low mass sails required to enable future science
driven missions means that the current planned in-orbit demo may not provide suitable heritage to reduce the

risk of future missions.

Solar sailing is an elegant concept, however it must be pulled forward by mission applicatons at the same
time as it is pushed by technelogy development. A technology is rately adopted within engineering simply
because it s an elegant one. This also holds true for initial Aight tests of solar sailing. Unless such flight
tests provide confidence in the technology and a clear path towards some enabling capability, they will not
perform a uscful function. Thus, the use of low cost sounding rockets, as uscd by ISAS, to test multiple sail
deployment mechanisms during the short period of free-talt allow for several tests ot scaled prototypes at the
samc cost as a single launch to orbit. By spreading the risk over scveral tests the incvitable unforesecn single
point failures of deployment can be identitied prior to flying a tull-scale demonstration mission. The

L it seems that what is

demonstration mission could take many forms, however it was noted by M°Innes
required is a small, low cost and low risk solar sail mission for which there is either no feasible alternative
Jorm of propulsion or alternative aption of comparable cost.” It was thought until recently that Geostorm
provided this mission, however on analysis the concept has proven to be of higher risk than originally

believed. A mission concept however has been proposed recently which meets the requirements identified

Ty
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by M°Innes for a demoustration mission; this mission is called GeoSail and was first proposed in QOctober
2000 by Macdonald and MTnnes.® 1 - 1% GeoSail is motivated by the desire to achieve long residence
times in the Earth’s magnetotail, enabling high resolution statistical characterisation of the plasma in a region
subject to a varicty of external solar wind conditions, This is accomplished by the novel application of a
solar sail propulsion system to precess an cliiptical Earth-contred orbit at a rate designed to maich the rotation
of the gecomagnetic tail, the oricntation of which is along the Sun-Earth line above the night side of the Earth.
Conventional, inertially fixed orbits with an apogee inside the geomagnetic tail will provide less than three
months of science data due to the rotation of the geomagnetic tail with the Sun-Earth line in an inertial
reference frame, [t has been shown that the requirements to precess such orbits by chemical propulsion are
prohibitively large, while electric propulsion significantly curtails the potential mission duration. The
GeoSail orbit designed to achieve these science goals has a perigee located above the planetary dayside at
approximately 11 Ry, corresponding fo alignment with the magnetopause. Apogee is aligned within the
geomagnetic tail reconnection region on the night-side of Earth, at 23 R, A key feature of the GeoSail orbit
is the ability to investigate the near-downstream region over an exiended period. Conventional missions
have achieved extended observation times onty in the deep (ail by cxecuting double-Lunar [ybys to precess
the orbit apse-line. ‘'the utilisation of a smail solar sail allows orbit apse-line precession withoul the
requirement of going as far as the Moon, at approximaicly 60 Rg, thus cnabling cxtended study of this key
region of the near-tail. The level of required gail performance (¢ match the apse-line precession with (he
Sun-Earth line rotation is found to be very similar to the level of performance anticipated for a solar sail
demonstration mission and is less than required for the Geostorm mission. Furthermore, the sail required for
GeoSail can be significantly less complex than the Geostorm sail, as no active station keeping is required.
Tor this reason GeoSail has recently been identified by IISA’s Payload and Advanced Concepts Office (8CI-
A) as a potential solar sailing SMART mission, as it allows lechnology demonstration while also enabling

06
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new and novel science. Trajectory design for GeoSail will be discussed some more in Section 5 of

this dissertalion.

The interest of SCI-A represents the technology being pulled forward by mission applications, with interest
stemming from a wish to study mission concepts which cannot be performed without solar sailing, that is,
missions which arc enabled by solar sailing, Following an extensive twa-year study of solar sail missiont
applications ranging from inner-planet sample return to a heliopanse probe mission and cven beyond, the
missions which. are enabled or significantly enhanced by solar sailing were identified. These missions are all
high-energy missions and typically require cither very close solar passes, or spend the majority of the mission
within the inner solac system. Thus, for example, while a Jupiter mission is high-energy it is also outer solar
gystem and it was thus found that chemical propulsion was a bettcr option for Jupiter missions than solar
sailing.!” Such results contradict traditional thinking, which believed solar sailing was well suiled to Jupiter
exploration and even for Europa exploration. SCI-A have recently intreduced Technology Reference Studies
{TRS) to focus the development of strategically important technologies of likely relevance to future science
missions. This is accomplished through the study of technologicatly demanding and scientifically interesting
missions, which are not part of the current ESA science programme, The TRS cover a wide range of mission
profiles with an even wider range of strategically important technologies. All TRS mission profiles are based

on small satellites, with miniaturised highly integrated payload suites, launched on a Soyuz Fregat 2-1b.'%
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Science missions are technologically very challenging. It is thus important Lo define and prepare critical
technologies far in advance, ensuring they arce developed in a timely manner and that associated cost, risk and
feasibility of potential future mission concepts can be properly estimated. The TRS are set up to provide a
set of realistic requirements for these technology developments far before specific science missions get
proposed by the scientific community. Through their siudy a set of detailed requirements for technology
devclopment aclivilies can be determined for missions in the mid to far-term. Currently two TRS require the

development of solar sail propulsion, the Solar Polar Orbiter, (SPOYP! '

and the Iuterstellar Heliopausc
Probe (THP)."* 1! These missions will be discussed in Section 1.5.2. It appears that it is these studies and
activities which will now drive forward the development of solar sail technology within Europe, with

GeoSail perhaps providing the first step on the roadmap.

A recently proposed near-term roadmap for solar sailing suggested a potential path from on-orbit deployment
demonsiration Lo the mid-term solar sail missions, such as the Solar Polar Orbiter.* The sear-term road map
is illustrated in ligure 19. ldentifying the technology progression from in-ilight demonstration(s) through
cach mission in turn, the roadmap allows the prior mission tn act as a step towards the next, leading to the
realisation of much more technologicatly complex missions in the futurc. Note, further information on the

Polar Observer mission can be found in References 1 and 82,

1.52  Mid to Far Term Solar Sail Mission Applications

Many of the truly exciting mission concepts which are enabled by solar sail propulsion requirc the
technology to be in a mature state, with beritage gained from carlier demonstralion wnd low-cost scientific
missions such as GeoSail and Geostorm. The mid to far term missions generating the most cmrent interest
within Burope are SPO and IHP respectively, due to the TRS within SCI-A. The primary objective of the
SPO mission is the delivery of a spacecraft into an orbit with inclination close to 90 deg with respect to the
solar equator. The spacecraft orbit should be phased such that once on-station it will remain near to the solar
limb from a terrestrial perspective. The spacecraft should also be positioned on an orbit interior to that of the
Barth’s.? 1% Note the spacecraft will jetlison the sail prior to the beginning of science operations. A 1998
study from NASA-TPL, Solar Polar Sail Mission, also considered the use of solar sail technology to place a

1.1% Y3 This mission has been studied by many authors and

seience payload into a true solar polar orbi
presents an excellent potential mission concept for solar sail propulsion.® ' The SPO mission and its

trajectory design will be discussed some wore in Section 6 of this dissertation.

Several missions to the heliopause and beyond have previously been studied using many different propulsion
systems, 1O UL IS -6 A o dn all propulsion trades the optimal propulsion system depends on the technology
level assumed and the mission constraints imposed. The use of SEP is limited by power and propeliant
availability and as such requires multiple revolutions about the Sun to minimise the gravily losses.”” The
use of nuclear electric propulsion (NEP) necessitates the use of a large launch vchicle as it is difficult to scale
down reactors beyond a minimum mass and volume.'' ''7 Radivisotope electric propulsion (REP) requires
high-afficiency radioisotope power sources of greater than 10 W kg™ and cxtensive thrusting into the outer

1E0, 116

solar system which would likely dilute science returms [rom the mission due o the inleraction ol (he
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engine plume with the local covironment. Following the 'I'RS requirements for the THP mission analysis, it
has been demonstrated that solar sailing is the optimal propulsion system.'” The TRS states that the
spacecraft should rcach 200 AU in 25 years. Furthermore, the sail should be jetlisoned at 5 AU to eliminate
any potential interference caused by the solar sail on the local space environment (recall Section 1.4.3) and
the spacceraft should be delivered to the nose of the heliosphere at latiwde 7.5 deg and longitnde 254.5 deg at
200 AU from the Sun, in the ecliptic coordinate frame. As briefly mentioned in Section 1.3 the high-velocity
salar systcm escape is attained through a very close solar pass often called a Solar Photonic Assist (SPA),
this enables the solar sail to utilise the 1/#? variation of solar irradiance to gain encrgy from the Sun during
the close solar pass.”™ ™ 1% 127 ppe HIP mission and the design of suitable (rajectories will be discussed in

Section 6 of this dissertation.

Other mid to far term solar sail missions of interest include missions to Meroury,? 125 1%

1, 35, 136, 137 38 - 143

outer planet fast

fly-by miissions and Non-Keplerian orbit applications.” Mercury is an attractive
enviromment for solar sailing due 1o the abundance of solar energy so close to the Sun, however the thermal
environment is challenging. Mecreury applications of solar sailing will be discussed in Sections 4, S and 6 of
this dissertation. Quter planet fly-by missions using sofar sailing are attractive, as the fly-by can be

performed very rapidly, however if the fy-by is attained guickly it is likely due to the spacecraft having a

very high encounter velocity, which degrades the mission science returns. Such misvions are not directly

addressed within this dissertation. Non-Keplerian orbit applications are some of the most exotic and exiting
proposed for solar sailing due to the requiremesnt for continnous thrust. However, it is also this requirement
which may pose the primary problem for such missions due to the potentially himited sail pointing
2, 145, 146

stability, coupled with the potential contamination of the local spacc environmenl by the sail as

discussed in Section 1.4.3.% 57 Such issues may mean that solar sailing can only be used to provide a high-
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encrgy orbil which can be maintained with zero thrust; allowing the sail to be jettisoned and the science
phase of e mission 1o begin, for exampls SPO and IHP, Non-Keplerian orbits are not directly addresscd
within this dissertation.

Solar sail propulsion opens up a diverse range of new and exciting mission opportunities. The most
aitractive are the high energy missions which are truly enabled by solar sailing. While some ar¢ clearly high

¥1, 109,112,113

encrgy missions, such as the SPO mission 129131

and Sun-synchronous Mercury orbiter, others do
not 50 obviously belong to this class. For example, GeoSail requires only a moderate performance solar sail.
However, the time integraled acceleration required to precess the orbit apse-line over an extended duration
also places this mission within the high energy class. It should therefore be remembered that the use of a low
or moderate performance solar sail does not constitute a low energy mission if the solar sail is used for an
extended duration. A solar sail development rouie is shown in Figore 20 {from Reference 147) whcre one
sees the required sail area plotted against sail assembly loading for the range of solar sail missions discussed
above. A generalised trend can be scen in Figure 20, where the near-torm sail indssions appear at the top-left
of the plot, such as GeoSail and Geostorm, with more advanced missious appearing at the bottom right, such
as the IHP misston. Missions are denoted as near, mid and far<term missions, Near-term missions are
defined as having an assembly loading of greater than 10 gm™ and sail arca of < £5,000 m® as sail asscmbly
loading increases towards > 30 gm‘z. Mid-term missions are defined as sail assembly loadings of > 5 gm™
and sail areas of < 40,000 m” at 12 gm®, while far-tenn missions have a lower assembly loading bouud of
0.5 gm™ rising to 1 gm™ as sail area approaches 140,000 m?. All points under the far-term curve, such as the
sail required for an Qort Cloud Fly-Through Mission,'® are defined as Bevond Far-Term. Figure 20
considers only the sail size and mass requirements without considering mission complexity, such as high

slew rates or thermal loads. It is therefore required that one takes these factors into account, Table 2

Mid - Term ! Far - Term

6 - _‘____,;9'
bt i SbSR Technalogy Curve

P S N STt e Bayond Ear - Term

T T T 1 F T
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Sail Area {m?)

Figure 20 Solar sail technology development route.' ¥
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Mission a, o5 A

GeoSail 0.10 mms* 35 gm* 1850 m®
Geostorm 031 mms” 15 gm? 6200 m®
Polar Observer (PQ) 0.55 mms> 9 gm? 14000 m®
Solar Polar Observer (SPO) 042 mms? 8§ gm?* 23400 m’
Kuiper Beit / Pluto Mission (KB/F) 0.50 mm s> 6 gm? 16900 m?
Mecreury Orbiler (McO) 025 mms? 10 gm* 7500 m*
High-Energy Small Body Sample Return (SbSR) 0.50 mms? 65 gm? 31000 m’
Intersteliar Ieliopause Probe (III) 1.50 mms? <2 gm? 60000 m?

Table 2 Solar sail mission applications and summaries; sorted in near to far term ordor with nearest first,'"’

sumimaries potential sofar sail mission applications which arc significantly cnhanced or enabled by sail
propulsion and sorts them in near to far term order, with nearest first. Note thal the missions are not simply
sorted in order of increasing sail performance or size. The GeoSail, Solar Polar Qubiler and Interstellar
Heliopause Probe missions are denoted key missions in the near, mid and far-term respectively. While it
would be possible to go directly from one key mission to the next intermediate missions offer risk reduction
assistance, for cxample the Kuiper Belt / Pluto Mission could be an Interstellar Fleliopause Probe precursor

mission, ¥’

1.6 Work Ohbjectives and the Context of this Dissertation

This dissertation will address the following questions and issues:

1. Perform an analytical investigation of planetary escape using solar sail propulsion such as to explain
previously noted but unexplained anomalies; for example, the variation in Earth escape time as a funclion

of the Eartht’s position about the Sun.

2. Investigate, for the first time, the variation in solar sail escape lime from Mercury as a [unction of

Mercury’s position about the Sun.

3. Generate an analytical solar sail trajectory design method which allows the generation of near-optimal
realistic planetary escape trajectories for the first time (trajectories which do not, for example, have

negative altilude phases).

4. Perform a thorough investigation of solar sail Liarth escape trajectories which de not pass through the

Earth’s shadow cone, while using the methods developed for point 3.

3. Develop an analytical solar sail trajectory design method which can rapidly produce complex planet-

centred orbit transfers and station-keeping algorithms for the first time,
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6. Develop an analytical hcliocentric solar sail trajectory design methad which can rapidly produce near-

uptimal solutions (trajectories within 1 — 3 % of optimat).

One of the most time consuminé phases of high-fovel mission analyvsis (where (cehnofogy drivers, mission
time-scale, cosl, et celera, are the issue rather thanm mission specilics) is the trajectory generation and
optimisation phase. To obtain truc-optimal trajcctorics, which fully match the two-point boundary value
problem for transfer and rendezvous, one must use munerical methods and optimal control theory. Optimal
trajectory generation is a complex field and many schemes exist, however these are typically characterised as
being computationally intensive and requiring a good degree of engineering judgement. One such method is
calculus of variations, which forms the basis of the NASA-JPL. VARITOP low-thrust trajectory optimisation
tool, where the control Ilamiltonian is maximised while also satistying the transversality condition.'” Small
changes in the solar sail control profile have a very small effect on the transfer time, such that convergence to
the truc-minimum time solution is often difficudt.”™® ! An initial guess of the co-states must be supplied to
ensure convergence to the optimai solution, however these co-states arc non-infuitive to the inexpericenced
user and the problem is often highly sensitive fo them. For this reason, the calculus of variations based

method is classed as an indirect method.

Alternatively, gradient-based, non-linear programming methads can be used to solve the constrained
parameter optimisation, two-point boundary valuc problem by iteratively sclecting a diserctised thrust cone
and clock angle control history that satisfies the boundary conditions and orbit constraints, while minimising
the transfer time. Such methods are termed direct methods. The sail control angles can be characterised by
laterpolation between a set of discrete points along the trajectory. As the number of optintised parameters is
increased, then the control profile increasingly approximates the true-optimal continuous control profile of
the indirect method. A sigaificant aumber of different direct optimisation methods exist. Multiple-shooting
methods propagate adjacent trajectory segments backwards and forwards in time through an iterative process,
attempting to match esach of the segment boundary states. Another direct parameter optimisation method
uses non-linear programming algorithms such as sequential quadratic programming (SQP) to optimise the
paramcters. Dircet parameter optimisation micthods are reasonably robust but suffer duc to the deterministic,
gradient-based, local-search methods employed.  All local search methods can converge o a local oplimal
solution to a high degree of accuracy. However, an initial guess of the control angles within the region of the
global optimum needs to be provided to ensure convergence to that optimal. IF the initial gucss is poor the
solution will tikely converge to a local rather than global optimal. Such scenarios can be difticult to identify,
leading to locally optimal solutions wrongly being presented as globaily or near-globally optimal.
Alternatively, global search methods negale the requirement for an initial guess of any kind and can in
principle converge on the optimal solution; removing the requirement for an expericnced user. Most global
methods employ stochastic processes which use analogies from the biological and physical world, such as

genetic algorithms or an evolutionary nenrccontroller,”” 1%

" 155 However, the computationsal cost of global
methods can be high and hence prohibitive for assessing potential mission scenarios very rapidly. It is thus
clear that conventional optimisation methods are powerful optimisation techniques, however as the number
of orbit revelutions is increased such methods become incroasingly tme consuming.  As such, for low-thrust

planet-centred trajectories a different approach is required. Similarly, to enable the very rapid generation of
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near-optimal heliocentric solar sail trajectories a new approach is required. Within this dissertation the use of

locally optimal control laws {sometimes called “heuristic control laws™) will be considerad.

1.7  Publication List

As support of the application for the degreo of Poctor of Philosophy this sccticn of the dissertation lists
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2  Lecally Optimal Controi Lavs

The primaty advantage of locally optimal control laws (sometimes called “hewristic confrol laws™) is the
speed which they can be implemented in a trajectory calculation; giving results up to several orders of
magnitude quicker than either dircct or indirect methods. ‘The primary disadvanlage of locally optimal
control laws is the non-optimal nature of the method and resulting sofution. One method of “heuristic”
trajectory gencration is based on Lyspunov feedback control, where a suitable Tyapunov function must be
defined by the mission clesigner.js‘3 -8 Another method of locally optimal control involves the blending of
locaily optimal control laws where the (rajectory is lypically split inio several phases, selected through
engineering judgement. Blending control laws has previously been used for low-thrust orbit transfers where
no consiraint is placed upon the thrust vector oricntation, such as orbit transfers by SEP.' ¥ The use of
blended lucally optimal control laws has also been established for solar sail trajectories by Macdonald and

5-157 Prior blending methods, that is to say those used for SEP

indced is the subject of this dissertation, !
trausfers in Reference 159 and 160, have used optimisation techniques to set the weight function of each
control law; giving the weightings as a function of time from start epoch. Thus, while the individual control
laws are a function of only the orbit elements as will be discussed in Section 2.1, the final blended optimal
force vector is a function of time due to the optimisation process. The approach adopted within this
dissertation is that the weight functions should be independent of time; using the osculating orbit elements to
sot the weight functions of each controi law prior to blending, Defining the weight fiunctions as functions of
only the orbital elements offers several potential benefits. As the sail control angles are a function of only
the osculating elements the control system is able o adjust for small unforeseen orbit perturbations or
perturbations which cannot currently be acourately modeiled due to lack of real-world knowledge, such as
sail wrinkles, Thus, the system should potentially be suitable as an on-boaxd autunomous controller,
significantly reducing the amount of data in the uplink telecom budget with the sail requiring only its corrent
position rather than an entire new set of control angles. This concept was initially proposed by the candidate
in Reference 163 and has since been widely used for solar sail trajectory generation by the
candidate.™ 7 81 109,133 - 135,163 - 167 £, 116 wing this work, from 2001 to the present, Petropoulos in 2003
proposed a similar approach for SEP orhit transfers.'® Petropoulos uses the control laws for SEP orbit

transfers and blends them to gonerate relatively simple transter trajectorics.

The optimality of the blended system depends heavily on the weight functions applicd in obtaining the
blended locally-optimal thrust vector. The method used to generate the weights for planetary escape
trajectories in Section 4 are relatively simple, as only two control laws arc being bicnded. However, in
Section 5 the transfer amdl stalion-keeping {rajectories generaled are much more complex and require the
blending of more than two control laws. Thus, a new control mcthod is dcveloped in order to sct the
weighted imporiance of each of the orbit elements through consideration of multiple criteria. The algorithms
developed in Scetion 3 allow complex planct-centred solar sail transfor trajectorics to be penerated for the
first time. Within Section 6 the aigorithms developed in Section 5 are evolved for use in heliocenuric solar

sail orhit transfers. It is found that the algorithins developed generate heliocentric trajectories which are very
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close to the optimal {rajectory, Discretisation of the localty optimal control law solution can thus be used o

provide an initial guess in order to find the optimal and to help avoid derivation of sub-optimal solutions.

2.1  The Generation of Locally Optimal Contro} Lavs

The rate of change of any orbit element can be calculated; hence a locally optimal control law can be
generated for any orbital clement. Such comrol laws maximise the instantaneous rate of change of the
element and provide the required thrust orientation in analytical form. Tt is important (o note tlhat local

optimality does not guarantee global optimality.
‘The variational equation of the element to be optimally altered is wrilten in the form,

f‘_‘_ =fa, Equation 61
de

whete o represents an arbitrary orbit element, The required relative perturbing loxee, £, on cach of the Radial,
‘I'ransverse and Normal (R?V) axes to maximise the rate of change of ¢ is found as the oricntation of A,.
Maximising the thrust vector along A, maximises the right-hand side of Equation 61 and thus the
instanianeous rate of ¢ is maximised. In order 1o determine the sail control angles which maximisce the sail
thrust along A, it is required to define A, in the same reference frame as the sail control angles. Recall [rom
Figure 12 that the sail control angles arc defincd within the RTA reference frame for a heliocentric solar sail
trajectory, thus no conversion of 3, is required. However, a planel-centred solar sail trajectory does not
define the sail conlrol angles within the RTN reference frame, thus A, must be transposed into the Sun-sail
line reference frame defined within Figure 12. This transformation is performed using standard
(ransformation matrix, and will be discussed in Section 3.4.1.1% 1% ith conversion of A, into the Sun-sail
line coordinate system, where required, the pitch angle of the ideal force vector is defined as the angle

between the Sun-sail line and the ideal force vector, that is to say,

& = arccos(A; ) Equation 62

whercia =[x",x /|3\.‘,| Ay /|1.“| A, /[k,l]z[ﬂﬁ A3 /’{,2]. Note, the derivation of locally optimal controi
laws within this dissertation implicitly assume an ideal sail force model. With the derivation of the pitch
angle of the idead [orce veetor a standard optimisation derivative is used to find the sail orientation which will
maximise {he sail thrust vector along the ideal force vector, Equation 63. '™ The focally optimal sail pitch

angle is thus found directly fron: the Equation 63 and & as

" 2 o~ L 2o
e = —3cosa +\[9cos 2 +8sin” & Tquation 63

4sina

The locally optimal sail clock angle is found directly from the ideal force vector using Equation 64 and docs
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not require optimisation since the sail acceleration magnitude does not depend on the sail clock angle.

A ¥
J = arcco B Equation 64
"A; 5 g /lf

If a negative rate of change of ¢ is desired a negative of the ideal force vector should be used, thus inverting
the ideal force vector orientation prior to application of Equation 61 — Equation 64. The sail thrust vector

then induces a negative rate of change of element o.

2.2  Orbit Elements and Gauss’ Form of the Variational Equations

The classical orbit elements are illustrated in Figure 21, where the illustrated central body is the Earth. The
definition however is independent of the central body, for example, the axis system simply changes to a Sun-
centred inertial reference frame for heliocentric orbits. A further definition of the classical and other orbit

elements can be found in Table 3.

Lagrange’s variational equations are derived for the special case in which the disturbing acceleration is
represented as the gradient of the disturbing function; an unnecessary constraint for the purposes of this
dissertation. The variational equations can instead be derived appropriate to the various choices of
component resolutions of the disturbing acceleration vector; as attributed to Gauss. The derivation of the
variational equations in the Gaussian form can be found in References 168 and 169. The variational
equations of the five classical orbit elements in the Gauss' form, and following Equation 61, are given in

Equation 65 — Equation 69 as

S s [ ] ( esiny )
—= R T N|(l+ecosv Equation 65
dt up

0

Position of Satellite

5
Vemnal Equinox

Figure 21 Orbit elements. Image adapted from a NASA original.
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Paramcter Symbol Definition
Semi-major axis a Half the major axis of an orbit's ellipse.
Semi-minor axis b Half the minor axis ol an orbit's ellipse.
. - 1 ¥
Eccentric Anomaly E =CoS > 1-—
: a
Eccentricity P =fl=b? / al
Inclination i Angle between the orbital plane and a reference plane, typically the
Equatorial plane for Earth -- centred or the Ecliptic plane for
heliocentric. )
Eccentric longitude K =g+
True Longitude L =Q+w+v =w v, abroken angle, measured in the reference
plane from the zero paint to the ascending node and then around
the orhif to the satellite,
Mcan longitude { =@+ M, o broken angle, measuored in the reference plane from the
zero point to the ascending node and then around the orbit.
Mcan Motion n = y/ 2* , the mean motion, or mean angular velucity
Semi-latus reclum p = a(l —e? ), half a chord through the focus and parallel to the conic
scetion directrix.
Orbit radius r Distance from the coordinate system origin, typically coincident
with the centre of the ceatral bedy, to the satcllite.
al1lfp ) )
True Anomaly v =¢os | —| =—1]|, angle from pericentre to the satcllitc,
e\
measured within the orbit plane.
Argument of Pericentre @ Angle from the ascending node to the satellite when at pericentre,
measured within the orbit plane.
Longitude of Ascending Q Angle between line of nodes and the zero point of longitude in the
Node reference plane.
Longitude of pericontie @ =+ @, a broken angle, measurcd in the reference plane from the

zero point to the ascending node and then around the orbit to

pericentre.

Table 3 Definition of orbi elements.
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Equation 67

Equation 68

Equation 69

Equation 65 — Equation 69 can be used to propagate a trajectory with the inclusion of a sixth position fixing

clemeni.

Tho sixth elemont could be the true anomaly, eccentric anomaly, mean anomaly or the true

longitude. However, while a variational equation can be defined for these elements and hence a locally

optimal control law derived, such position fixing locally optimal control laws are meaningless.

Thus,

rendezvous orbits cannot be analytically generated using locally optimal control laws; however they can be

generated by simple trial and error as performed in Reference 160. Equation 65 — Equation 69 will now be

used to generate control laws for the five classic orbit elements, plus conirol laws for the radius of pericentre

and apocentre. The variational equations for radius of pericentre and apocentre are given in Equation 70 and

Equation 71.
@y _da
ar dt

2ae(l - e)siny s

p
Za(l - e](l + ecos v]

P

v

- (cosv + cusE)

Equation 70
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i,—.: = % (1 + e) + a%?-
[ 2:’:!{-.’!1 +e !sin Voo
+-sinv
p Equation 71
=a & & T W] 2a(1 + )t + evos v) + {cos v+ cos E)
H p
- 0 -

Note from Section 3 that the equations of motion are propagated in modilied equinoctial elements; the

control laws will thus be defined in classic orbit elements and modified equinoctial elements.

23  Locally Optimal Semi-Major Axis Confrol Law

The scmi-major axis control law is also known as the energy gain control law as it provides for a locally
optimal variation in the orbit energy. This control law is the most widely used locally optimal control law; it
is often used to generate crude estimates of low-thrust planetary escape trajectories, as will be discussed in
Section 4, Recall from Lquation 61 that one must identify the vector i, from Equation 65, as seen in
Equation 72. Note, , is defined in classical elements and then converted to modified equinoctial elements,
as these are the equations of motion selected in Section 3. The subsequent control laws are also defined in
classical elements and then converted to modified equinoctial elements, The modificd equinoctial elements

wili be discussed and derived in Section 3.2.

esiny Ssinl—gecosL
Ay =| {1 +ecosv) =] 1+(f cos L+ gsin L) Lquation 72
0 0

Ensuring that the vector &, is defined within the Sun-sail line reference frame, and converting it to this frame
if not, as will be discussed in Section 3.4.1, Bquation 72 allows Equation 62 to be used which allows the
locally optimal sail pitch angle to be found using Dquation 63. The locally optimal sail clock angle is found
using Equation 64, Note that the heliocentric use of this control law, along with one for eccentricity,
aphelion radius, inclination and ascending node are derived and illustrated in Reference L. Figure 22 and
Figure 23 show the use of the locally optitmal semi-major axis control faw in an Earth-centred orbit used to
gain and to reduce orbit energy over a 3 day period starting approximately on the vernal equinox of the year
2000, to be exact Tulian Day (1) 2451624.5. The ivitial orbit is circular, with GEQ radius and is placed, as
close as possible, within the ecliptic plane. The sail characteristic acceleration is 1 mm s?; a value used
within the remainder of this section of the dissertation. The trajectory model used is described in Section 3,
No orbit perturbations atc considered, other than sail thrust. The Sua is assumed to be a point source and the
sail is assumed to be an ideal reflector, as discussed in Section 1.3.2. Furthermore, all periods of occulation
are neglected. As defined in Section 3.5 this is denoted as Model 1, Note from Section 3 that the trajectory
model defines the Earth’s position as true-to-date, thus the eccentricity of the Earth’s orbil is implicitly
included within all trajectory caloulations. It is thus critically important that the sail acceleration also be

corrected for the true Sun — sail distance as failure fo do so results in signmificant errors under certain
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scenarios.”® Exclusion of all perturbations allows the behaviour of the orbit elements under the usc of cach
control law to be clearly illustrated. Note from Figure 23 that the use of the locally optimal control law
ensures that the rate of change, i.e. ™y, is always in the desired direction. The results in Figure 23
correspond well with a simplified model used in Reference 1 (pp 156 ~ 159} to illustrate a locally optimal
energy gain control law which is derived by maximising the sail thrust along the velocity vector. Recall, the
semi~-major axis control law is a locally optimal energy gain control law. This correlation of results gives an
initial indication that the basic sail trajectory model is correct, however further modcl validation will be

conducted in Scction 3.

24  Locally Optimal Eccentricity Control Law

[dentifying the vector X, from Equation 66 one obtains Iiquation 73. Ensuring Lhat the vector 2, is defined
within the Sun-sail line reference frame and converting it to this frame if not, as will be discussed in Section
3.4.1, Equation 73 allows FEquation 62 to be used which allows the locally optimal sail pitch angle to be
found using Equation 63. ‘L'he locally optimal sail clock angle is found using Equation 64. Figure 24 and
Figure 25 iliustrate the locally optimal eccentricity control law from the same initial orbit as in Section 2.3
for the eccentricity increase case. The eccentricity decrease case maintains the same initial conditions except
that the eccentricity is increased to 0.1. Note that the eccentricily increase case has an eccentricity of 0.1295
after 3 days, yet the reduction case is unabie to reversc these gains in the same period. This apparent
anomaly is due to the orbit ortentation about the planet, with respect to the Sun, requiring the sail thrust 1o be
directed further from the Sun-line for the reduction case than the increase case as iliustrated by the sail pitch
angles in Figure 24, This inconsistency is unique to the planet-centred solar sail application of iocaily
optimal control laws and does not ocour in heliocentric trajectories. Furthermore, the apparent anomaly
occurs in the radius of pericentre and apocentre control laws as well as the argument ol pericenire

control law.

[fsiuLngcosL]
/fz rg?
| cosy+cos E | = (fcosL+gsi11L)(l+r,’p) J‘\’f?' +g”

c + Equation 73
0 I Vf+g? p

J

sin v ‘

A

% This error mode was identified during the GeaSail mission analysis when determining the effect of various

perturbations on the ability of the sail to track the Sun — Earth line.
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2.5  Locally Optimal Inclination Control Law

Contrasting the semi-major axis and eccenlricity control laws, the rate of change of inclination depends on
only the one perturbing force as shown in Equation 67; the out-of-plane perturbation. Thus, the method used
for locally optimal variation is somoewhat differont. From Equation 67 one sees that a switching refationship
is required in order to maintain the desired sense of rate of change, positive or negative. Vor example, if
cos(v + @) is negative one requires a negative out-of-plane sail force, hence generating a positive rate of

change. One can thus identify the vector &; as,

0 0

Mo y B 0 ; Equation 74
sgufeos(y + ) sgn(M]
T

Ensuring that & is delined within the Sun-sail line reference frame, and converting it to this frame i’ not as
will be discussed in Section 3.4.1, Equation 74 allows Equation 62 to be used which allows the locally
vplimal sail pitch angle to be found using Hquation 63. 'The locally optimal sail clock angle is found using

Equation 64.

Figure 26 and Figure 27 illustrate the locally optimal inclination conirol law from the same initial orbit as in
Scetion 2.3. Notc that the sail pitch angle is fixcd, while the sail clock angle displays a square wave with a
phase difference of m between the inclination increase and decrease contro! laws. Note from Figure 27 that

the usc of this simpic locally optimal control law cnsures that the rate of change, i.e. ¥/, i3 always in the

desired ditection

2.6  Locally Optimal Longitude of Ascending Node Control Law

Similar to the locally optimal inclination control law in Section 2.5, it is recalled from Equation 68 that the
longitude of ascending node is dependent only on the out-of-plane perturbation. Identifying the switching
function one finds Aq as,

0 )
hg —= ¢ = 0 Equation 75
sgn[sms! :fn-: m)] sgn( hsinZ ~; k cosL)

Notc sin i 3 0, as 0 < { <7/,, thus onc can nogleet this paramcter when converting, into madified cquinoctial
elements, Pnsuring that Ag is defined within the Sun-sail line reference frame, and converting it to this frame
if not as will be discussed in Section 3.4.1, Equation 75 allows Equation 62 o be used which allows the
locally optimal sail pitch angle to be fonnd using Equation 63. The locally optimal sail clock angle is found

using Equation 64.
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Figure 28 and Figure 29 illustrate the locally optimal ascending node control law from the samc initial orbit
as in Section 2.3. Note that the sail pitch angle is once again fixed, with the sail clock angle displaying a
squaro wave with a phase difference of m between the increase and decrease conirol laws. Furthermore, a
phase difference of "/, is seen from the inclination controf law discussed in Seclion 2.5. Note from Figure 29
that the use of this simple locally optitnal control law ensures that the rate of change, i.c. Ky is always in

the desired direction.

2.7  Locally Optimal Argument of Pericentre Control Law

It is noted from Equation 65 — Lquation 71 that unlike most other orbit parameters the varialion of the
argument of pericenire depends on the perturbing acceleration along all three RTN axis. Despite this the
locaily optimal control law is derived in a similar manner to other orbit elements. Identifying the vector A,
from Equation 69 one gains Hquation 76. Ensuring that the vector A, is defined within the Sun-saif line
reference frame, and converting il {o this frame if not as will be discussed in Section 3.4.1, Equation 76
allows LCquation 62 to be used which allows the locally optimal sail pitch angle to be found using Equation
63. The locally optimal sail clock angle is found using Fquation 64. Figurc 30 and Figure 31 illustrate the
locally optimal argument of pericentre control law from the same initial orbit as in Section 2,3 but with an
initial eccentricity of 0.5 for both the increase and decrease scenarios. A starting epoch of the year 2000
swmnmer solstice is used for the decrease case, to be precise a Julian date of 2451716.5. Note from Figure 30
that the control angles are now of a much more complex form than the previous control laws, however one
also notes from Figure 31 that the use of this simple locally optimal control law ensures that the rate of

change, i.e. “/,, is always in the desired direction

——CO8V
by, = {l-ﬁ-i]ﬁsmv
p) e

- cotisin(y + w)

Jr

_JeosL-+gsinl
fleg? Fquation 76

r)fsinL—-gcosL
I
p fory

cot[Z arctany 4% + &2 )(h sin L —kuos L)

e f+g?
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2.8  Locally Optimal Radius of Pericentre Control Law
Identifying the vector ).ru from Equation 70 one gains Equation 77, Ensuring that the vector J.," is defined

within the Sun-sail line reference frame, and converting it to this frame if not as will be discussed in Section
3.4.1, Equation 77 allows Equation 62 to be used which allows the locally optimal saii pitch angle to be
found wsing Equation 63. The locally optimal sail clock angle is found using Equation 64, Tigure 32 and
Figure 33 illustrate the locally optimal radius of pericentre control faw from the same initial orbit and

comditions as the increasc scenario in Section 2.7.

Zaegl - e)sin v o
—siny

P
2a(1 - )1 +ecosv) —{cosv +cosE)
lp )
P

(fsinL—gcosL

(-7 7)

1

1-f* g’

Jritg?

Equation 77

2[1 \[f +g J(l+fcosL+gsmL)m foosLigsinL

3 3 cos &
1-f—g 12 g

2.9  Loeally Optimal Radius of Apoecnire Control Law

Identifying the vectord, from Bquation 71 one gains Equation 78. Ensuring that the vector A, s defined

within the Sun-sail line reference frame, and converting it to this frame if not as will he discussed in Section
3.4.1, Equation 78 allows Equation 62 to be used which allows the locally optimal sail pitch angle to be

found using Equation 63. The locally optimal sail clock angle is found using Equation 64. Figure 34 and

Figure 35 illustrate the locally optimal radius of apocentre conitol law from the same initial orbit as in
Seotion 2.8.
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2,19 Blending Control T.aws

The blending of control laws is accomplished by initially calculating the vector A4, in the Sun-sail line
reference {rarue for cach control law to be blended; obtaining a separate unit vector for each control law. The

blended vecior is thus computed as,

> Wohy
r

A, m—r— Equation 79
b Z w, 1
a

- A . .
where o once again represents each orbit element. Froma , rather than ., , one can directly definc & using

Equation 62 which allows the locally optinal blended sail pitch angle to be found using Equation 63. The
locally optimal blended sail clock angle is found using Equation 64. The optimality of the blended system
depends heavily on the woight functions applied in gaining the blended locally optimal thrus¢ vector, that is
to say &, As already stafed the blending procedure ountlined for sclar sail applications uses the orbital
elements to define the weight of cach control law, rather than defining each weight as a [unction of time from
the start epoch as traditionally performed.'™ " ' The methods of weight fanction definition developed within

this dissertation are discussed in Sections 4 — 6.
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3  Solar Sail Trajectory Model

In order to investigate the use of locally optimal control laws a special perturbations type problem was
formulated. Special perturbations allows the position and velocity conditions of a body at a given epoch to
be propagated over 4 small time interval; accounting for all the forces on fhe body during this interval, using
the equations of motion. This caleulation can be performed by one of a variety of methods, enabling the new
positions and vclocitics at the end of the time interval to be found., A second computation using the new
positions and velocities enables the process to be carried forward through another time interval, Dach
computation is called a step and in theory the numerical integration can be continued as long as desired. In
reality rounding errors are introduced and the accuracy of any caleulation decrcases with every step. A
polential, partial, solution to this error is to work with more significant fgures than required such that the
finaf rounding error does not influence the calculation when rounded (o {he required number of significant
figures, Additionally, the error can be further alleviated by the use of as large a time step as possible during
each calculation step, thus minimising the number of oceasions on which the solution is rounded. Both of
these alleviating methods are taken in all calculations in this dissertation to minimise the etror of presented
solutions and the error of afl results presenicd is verified negligible with respect to the given number of
significant figures. It can be shown that the probable error of a double integral is 0.1 1247, where n is the

1m

number of integration steps. That is io say, after numerically integrating the second-order (x, y, z)

equations of motion through 100 steps there is an even odds chance that the rounding error is smaller than

112.4 in units of the last decimal.'®

Reforence 171 also shows that the mean crror of the osculating elements
of a body obtained by nymerically integrating the Lagrange planefary equations, which are 1™ order, will be
proportional w n'?, except the mean orbital longitude (or whatever position fixing element is selected) wherc

the mean error is again proportional to 0™ as this is a result of a double integral.

Perhaps the most straightforward method of determining the position and velocity of a budy is to direotly
integrate the equations of motion in rectangular coordinates as first performed for a space body in 1908 by
Cowell and Crommetin.'” ' The intogration formulas used by Cowell and Crommelin were actually first
given by Carl Friedrich Gauss. Cowell and Crommelin formulated their equations in rectangular coordinates
and integrated them numerically by means of a multi-step algorithim. Since the publication of the paper by
Cowell and Crommelin the use of the {erm Cowell’s method hes become ambiguous, within nwnerical
analysis texts “Cowell-type methods™ refer to multi-step algorithms similar to those vsed in the original
paper.'®  However, in celestial mechanics the term “Cowell’s method” refers to the formulation of the
equations in a rectangular coordinate system and the subsequent integration using any technique whatsoever,

148,

for cxample by Runge-Kntta formulae.'™ ' '™ Sych a method is good for scenarios where the disturbing

force or acceleration is of the same or fligher order as that due to the central body, as the method does not.

distinguish between the two.'®®

This however is also the primary disadvantage as a large number ol
significant figures have to be cartied due to the large central foree torm, requiring many more time steps

when the distutbing force or acceleration is small elso a significant loss of acouracy ocours.'® As a solar sail

provides only a small perturbing acceleration the Cowell type model is not ideal for solar sail trajectory
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propagation as the perturbing acceleration is often an order of magnitude (or more) lower than the central
body accoleration. This is particularly true in the planetary escape and other complex mmiti-revolution
trajectories which this dissertation focuses on. Notc however that Cowell’s method has been adopted

recently for solar sail trajectory caleulations, including Earth escape, however no justification was provided.”

If only the differential accelerations rather than the tolal acceleration are integrated considerable accuracy can
be obtained with a larger time interval whon the disturbing force or acceleration is small. This method is
known. as Encke’s Mcthod, however it was actlually liest proposed two years before Encke’s work became
known by Bond and Bond of Harvard University in 1849195 165 11 1y 4 first approximation an orbit is a
conic-scetion, this assumplion is at the nucleus of Encke’s method. Integrating the diffcronce betwecen the
primary acceleration and the perturbing acceleration implies a reference orbit must be employed, along which
the body would move in the absence of any pecturbations. The integration gives the difference betwceen the
real coordinates and the conic-section coordinates. The conic-section otbit is an osculating orbit, thus at the
epoch of osculation the differences vanish. As time from the initial epoch increases so the difference
batween the real coordinates and the conic-section coordinates increases, until it becomes neeessary to derive
a ncw osculating orbit. If a new osculating orbit is 1ot derived the various accelerations will grow in
magnitude and the process becomes cumbersome. The process of scleeting 2 new conic orbit from which to
calculate deviations is called “rectificaiion of ife orbit”.'® Following rectification of the orbit the initial
conditions for the deviation vector differential equation are again zcro and the only non-zero acceleration is
the disturbing acceleration. The error in determining the position and velocity of the osculating orbit is
subject only to round-off errors and is independent of the integration fechuique vsed."® The acouracy of
caloulation of the deviation from the osculating orbit is limited by both round-off and fruncation errors, The
integrated quantities are small with respect to the osculaling quantities and have little effect on the
determination of the true orbit as before the errors become significant a new osculating orbit is selected
through the process of rectification. The main advantage of Encke’s method is the larger integration intervals
which can be adopted compared to Cowell’s method. However, the computational cost of a single Encke
integration slep is much greater than that of a Cowell step. The greater computational cost per step is
typically more than compensated for by the larger step size. Encke’s methed has many applications, for
example orbit determination ol highly eccentric comets, such as the analysis performed by Encke on a comet
later to be named after him. The method can also be used to analyse orbits in arth — Moon space, where the

Moon is taken as a perturbing hody.

When propagating a near-Earth satellite it has been shown that the inclusion of the first-order effects of Harth
oblateness in the reference orbit greatly improves the Encke method by increasing both the interval between
rectifications of the reference orbit and the accuracy of the integration compared with the classic Encke
method.'™ Tt has also been shown that the calculation time for the integration of the mation of four or more
bodies can be reduced by an order of magnitude by comparison to the original Encke method if the reference
orbit is taken to be a combination of several Keplerian orbits.'™® It is thus clear that the Encke method is
optimised when the reference osbit is known and remains very clese to the real evolving orbit for a
significant period. 1t should also be noted that there is no necessity that the position and velosity in the

reference orbit at any desired time be calculated from analytical expressions,'® The Encke type model is
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well suited to solar sail (rajeclory calculations and would form a valid base on which to build a solar sail
trajectory model. However, the use of Variation of Parameters was selected for this dissertation as many of
the lraditional disadvantages of this system havc been climinatced by cither advances in thecory or
computaiional capabilities, Variation of Parameters also allows the analysis to be performed directly in
terms of orbil clements and thus the use of locally optimal control laws is much simplified. Initiafly,
variation of parameters may appear more problematical to implement than Encke’s method, however it has
some advantages when the perturbing acceleration is quite small. One of the primary differences is that the
Encke reference orbit is constant until rectitication occurs, however in variation of parameters the reference

otbit is continuously changing and may thus be regarded as a form of Encke’s method.'®

3.1 Variation of Parameters

This method is also called the “variation of orbital elements” or the slightly paradoxical “variation of
constants”, reforring to the integration constants. In 1782 Lagrange completely developed for the first time
the method of variation of parameters while studying the elliptical motion of comets, Lagrange’s planetary
equations (see Section 2.2} can be analytically integrated, as in the method of General Perturbations, or they
can be integrated numerically step by step, with the new clemeats at the end of each step being used in the
computation of the next step.  Since Lagrange first introduced his planctary cquations, where the rates of
change of the osculaling clements of a planet’s orbit are given in terms of the elements of that planet and of
the plancts disturbing its heliocentric orbit, various attempts have been made to overcome some of the scrious
problenms associated with the method. Some of the advantages of the variation of parameters method are that
it is strictly a perturbation method and as such bypasses the ceniral-body acceleration. For moderate
perturbations the differentials of the elements are small and as such a larger step size can be used than in a
reclangutar coordinate method where the central-body acceleration must be calculated each step.
Furthermore, the integration immediately exhibits the behavionr of the elements which is beneficial for the
application of locally optimal control laws. Among the perceived disadvantages of the method is the more
complicated nature of the right-hand side of the equations compared to those of the rectangular coordinates
cquations of motion, including the presence of sine and cosine terms. Additionally, the need o solve
Kepler’s equation, the break-down of the equations when orbit eccentricity is zero ot one, or otbit inclination
is zero, and the fact that the cquations arc usuaily given in elliptical elemenis and are thus inapplicable to
parabolic, hyperbolic or rectilinear orbits are traditionally perceived disadvantages.'® The disadvantages
above regarding computational difficulties offset some of the benefits of a larger time-step than a Cowell
type model, however such issues can be minimised with modem computing capabilities and prudent
programmiing. As the orbit eccentricity drops towards zero the position of the apse becomes indeterminable,
see Equation 69, similarly as the inclination drops te zero the ascending node becomes indeterminable, sec
Equation 68. The obvious solution is thus to definc the orbit through a change in variables, for example
nating symmetries one can apply standard transformations to make a change of variable from Keplerian to

Delaunay variables.!”’

Similarly, the solution of Kepler's cquation can be avoided by changing (he
independent variable from time to a position fixing element, such as true or eccentric anomaly or the

truc li:mgit'uclc;.168
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3.2 Non-Singular Elements and the Equations of Motion

To derive variational equations which are non-singular one must find combinations of the classical elements
which do not depend on either the line of nodes or the apsidal fine. Adding the variational equations for Q
and @ (Equation 68 and Equation 69) one finds the resulting equation displays no singularity at

zero inclination,

: — pcosv

%?- P [R N ] (p 1 r)sin v Equation &0 =

nabe ; ..
ersin(a +v) tané

Noting,

y . pcosv —2re

—— =R (& T N] -(p+ r)sin v Equation 81

dr a‘en 0

the variational equations for @ and A can thus be added to obtain an equation which also removes the

singularily due to zero eccentricity,

_{’epcosv +_2_r
’L\bia-{—b) az

é‘:;:nq---l—[.f{ 1 N KM)

. L b(a A b) Equation 82
r sin(a} + V) tan %Z
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As Fquation 82 is a function of the true anomaly, which is referenced to pericentre, Turther development is

thus required. Kepler’s equation can be written in the augmented form of Equation 83,

l=w+M=w+L~esinkE

= (zo‘ +£ } +esinw cos(m + K ) -~ @ COS @ sin (fa + E‘) Lquation 83

Note that the orbit radius may be written as shown in Equation 84.

pL
1+esinwsinl +~ecos@cos L

r= a(l —esinwsinK —ecos@cos K) = FEquation 84
Lrom Kepler’s equation, Equation 83, and the equation of an orbit, Equation 84, note that the eccentricity
equivalent term and the longitude of pericentre equivalent term only appear in the combinations esing and

ecosw. These functions are thus selected to replace ¢ and @ respectively. L'ollowing a similar process, and
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writing the argument of latitude in terms of the true longitude one can select {tan ', sin Q) and (tan 7, cos Q)
to replace Q and £, This element set is referred to as “equinociial elements.1™ The equinoctial elements are
non-singular except for rectilinear orbits and when i = n. This element set was in-fact first introduced by
Lagraage in 1774 for his study of secular variations, Lagrange used ¢ rather than it,, however the inclusion of
the half-angle simplifies the resulting Gaussian equations of motion and allows the use of Allan’s expansion

of the geopotential, if desived.'”

32.1 Maodificd Equinoctial Elements

Employing a ‘fast variable’ (phasc angle) as the sixth or position fixing clement allows a regular perturbation
technique to be used, with the fast variable as the independent variable. It thus becomes logical to modify the
equinoctial elemenis by choosing (rue longitude in place of mean anomaly as (he position fixing elemeunt.
Furthermore, by replacing the semi-major axis with the semi-latus rectum one obtains a set of orbit elements
which are non-singular for atl orbits excluding ; = n; however this singularity can be handled by an
appropriate re-definition,'®  The “medified equinoctial elements” are thus defined in Dquation 85 (o
Fquation 90,'!

p= a(l . ez) Equation 85
/ =ecos{m =) Equation 86
g =esin(@+ Q) Tquation 87
f = tan % cos{2 Hquation 88
k = tan % sin2 Equation 89
L=0+atv Equation 20

The auxiliary (positive} variables are defined in Equation 91 to [quation 95, noting that Equation 93 is

simply the orbit radius.
g% =1+ B2 k2 Equation 91
w=11 fcosl +gsinL Equation 82
¥y =

Equation 93

T
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r=vi?+k? Equation 94

at=p2 k2 Equation 95

'The modified equinoctial elements equations of motion in the Gauss’ forin are found to reduce to

0
dp 2
—p:—pJE[R T N] 1 Equation 96
dt w{u 0
o - wsin L
72: J%’:;[R T NJi {wilcosL+ s Equation 97

|- (hsin L —kcosL)g

e ) —Wcos L
% = \E —[r 7 N|l {w+l)sinL+g Equation 98
! | (hsin L~ kcosL)f

0
ih 52 ;
(c_k- = J% E;[R T N ] 0 Equation 99
4 | cos I3
1h 2 O
/ 2
ik = J*T‘ 2“? [R T N ] 0 Equation 100
a | sin L,

0

2
dL Ip 1
E:,mp[%) + -‘E—w[R T N] 0 Equation 101

e _(k sin L —kcos L)

Notice, when the disturbing acceleration is zero Equation 96 - - Equation 100 equal zero, while Equation 101
reduces to the angular momentum term. The validity of Equation 96 - Equation 101 was demonstrated in

Reference 181; although typographical errors are present in the equations of motion presented in Reference

181 these errors have since been correcied. '™

3.2.2  Transformation from Modified Equinoctial Elements to Classical Elements

The inverse transformation of Equation 85 — Equation 90 are obtained as,

a=-——"— Equation 102
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e= —\ffz +g?
i=2 arctan(r] = 2arctan[v Bk ]

Q= arctan[-}i]
i

tan{e + Q) = %

M= arctan(-g—] - arctm{-f-c-)
f h
= I — arctan| =
1 4 ar L,taﬂ[ f }

Using Equation 102 — Equation 108 one can derive the following identities which are useful in the derivation

of the locally optimal control laws in Section 2,

_ feosLi-gsinL

Vgt

COosv

fsinL—goosL

siny =

cos!.)=-"(1
7

sinQ =£

Equation 103

Hquation 104

Liquation 105

Equation 106

Lquation 107

Exjuation 108

TGguation 109

Equation 110

Equation 111

Equation 112

Equation 113

Equalion 114

Equation 115
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sin @ _gh-fk
= Equation 116
Ty flag? 4
hcost. +ksinf, .
cos(a) + u) = hoosl vksin', Lquation 117
T
. hsin . —kvos/, )
sm(w + v) = huinl —keos], Hquation 118

T

3.2.3  ‘Cransformation from Moedified Equinoctial Elements to Cartesian Form

Using the relationships outlined in Section 3.2.2 one can define Carfesian state vectors in modified

equinoctial elements as,

lcos L +a? cosk+ 2hirsin L
r= —%— sin L — o sin L + 2hk cos L Equation 119
$ 2(hsin Z — k cos L)

| [ a? sinL+sin L—2hkcosL+g -2 fhk+a’g
v=——r #1542 cos L~ cos L~ 2hk sin £, — f+2ghkva’f Equation 120
P —2(!: cos.+ksinf.+ fh +gk]
Note that it is also possible to compute the inverse iransformation; however the true longitude can only be

defined to within a multiple of 2 and thus the reference epoch must be known to resolve its actual value,”™

3.3  Numerical Integration

Numerical integration methods can be divided into either the single-step or multi-step class. The difference
between these two methods is well iflustrated in Reference 168, However, one can summarise the difference
by noting that a single-step method is a sclf-starting method which only uses data from Lhe beginning of the
current step in the caleulation of the variable values at the end of the step. Furthermore, changing the step-
size to match a defined error criterion poses no difficuities, allowing the interval step-size to casily be halved
or doubled., The primary difficulty with a single-slep method is that if the equations are non-linear, such as
Lagrange’s planetary equation of motion, then it may become a lime-consuming and unwieldy process to
caloulate the higher order terms of the expansion.'® A multi-step method allows larger interval step-sizes to
be adopted even when the higher order terms of the cxpansion arc calculated. However, the law of
diminishing returns sets in. Furthermore, stability considerations mean that it is wise to keep the order below
double ﬁgul‘cs.lﬁﬂ A multi-step procedure involves fewer computations than r single-step method, correct to
the same order, subject to the constraint ot not being, selt-starting and that special procedures are required to
half or double the step-size. Therefore multi-step methads are best suited to scenarios where the step-size
changes can be removed or minimised, such as almost circular orbils or when the equations have been

regulariscd. Within this dissertation the equations of motion are propagated using an explicit, variable step
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size Runge-Kutta (4, 5) formula, the Dormand-Prince puir; a single-step method.™  Relative and absolute

error tolerances of 10 and 102 are set for planct-centred and Sun-cenired calculations respectively.

34 Orhit Perturbations

An vnperturbed trajsctory can be propapated using Equation 96 — Bquation 101, thus by culculating the
perturbing force on each of the RTV axis a solar sail trajectory can be propagated by considering the sail
thryst & perturbation. Similarly, the .inclusion of third body gravity cflcets and other relevant orbit
perturbations can be included within the trajectory model. The sail thrust perlurbation is denoted the
“orimary” perturbation, thus models with only the sail thrust perfurbation included are referred 1o as
“unperturbed”’. The inclusion of orbit perturbations is intended to demonstrate the abilily of the trajectory
design methods developed in fater chapters to cope with non-idcal scenarios, rather than to actually provide

definitive answers to the effects of such perturbations.

344 Solar Sail Thrust

3.4.1.1  Ideal Model

The orientation of the solar sail conirol angles, which define the sail normal, are given in Figure 12. The sail
control angles are defined within the R7V reference frame for helincentric trajectories, thus the sail normai
vector given in Equation 121 can be directly applicd to Equation 22 (page 15) to find the sail thrust vector for

input into the equations of motion in Equation 96 — Equation 101,

COS X

n=|sinesing Liquation 121
sin @ cosd

Il the sail is in a planet-centred trajectory then the normal vector orientation given by Equation 121 must be
transformed into planet-centred RYN axis, that is to say, the same coordinate system as the equations of
motion. This transformation is performed in two steps and assuming the Sun-sail line is coincident with the
Sun-planet line; the first step converts the thrust vector orientation into planct-centred incrital coordinates,
the second then converts from planet-centred inertial coordinates into RN coordinates. The transformation
from planct~cenired incrtial (for instance, Earth-centred inertial) to Sun-line coordinates is performed as a
rotation about the x-axis through the obliquity of the ecliptic and (hen a rotation about the new z-axis through

an angle measured from the first point of Aries to the planet. The transformation matrix is thus found to be,

[ cos@ sinQcose sindsinc
Oyun =[T]0EC_, =|-sin¢ cosdcoss cosdsing Oy Equation 122
0 —~ging cosé

The transformation from Sun-line coordinates to planet-centred inertial coordinates is thus simply the inverse

of the transformation matrix given in Byuyation 122.
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The transformation from Earth-centred inertial (FCI) to RTN coordinates is a standard transformation
matrix.’®* Application of Equation 122 and Equation 123 to Equation 121 gives the ideal sail thrust vector in
the sume coordinates as the equations of motion are defined, allowing the sail thrust effect to be incorporated

into the trajcctory model using Equation 22 (page 13).

Oggy = [3! ] Oy
" cos{a + v)eos Q —sin(ew+ v)cosisin&2  cos{w-+v)sin{2+sin{e+v)cosicosQ  sin(w+v)sini
=|- sin(a: + v]cosﬂ - cos(a) + V]COS isinf) - sin(w + v]sinﬂ + cos(a: + v)cosi cos2 cos(a: + v)sim‘ Oy
sinisin £ —sinicos2 cosi

Equation 123

The implementation of the solar sail force model was validated through comparison with analytical
expressions for the effect of solar radiation pressure on spacecraft and by comparison with previously
published work as iflustrated in Figure 23.17% 6% (98,167, 174, 185

3.4.1.2 Non-Ideal Muodel

The orientation of the sail conirol angles define the sail thrust vector orientation and magnitude using
Equation 39 — Equation 42 for a non-ideal sail; the sail optical parameters required by these Equations are
detailed in Table 1. Note the degradation model discussed in Section 1.3.4 may also be applied to these
coelficients. FEquation 22 cannot be used as the direction of the force vector will not be normal to the sail
surface, as discussed in Scetion 1.3.3 and illustrated in Figure 11. Equation 43 gives the centre-line angle for
the sail thrust vector, which thus allows the sail cone angle to be defined. Recall, the cone angle is the angle
from the Sun-line to the sail thrust vector. With the direction and magnitude of the sail thrust defined
following Section 1.3.3.1 it becomes a simple matter of ensuring the vector is defined within the same
reference lrame as the equations of motion prior to applying the sail thrust vector to them. The conversion
from Sun-line coordinates through planet-centred inertial coordinates to RTA coordinates follows that outline
in Section 3.4.1.1. Note that the sail acceleration input to the coding for a non-ideal sail with the optical
parameters defined in Table 1 is refated to the characteristic acceleration by an efficiency factor, #, of
0.908156. The efticiency factor is due to non-perfect sail retlectivity at zero pitch, This distinction will be
noted where required throughout the later sections such as to maintain a consistent definition of

characteristic acceleration,

3.4.2  Occulation of Sunlight

Kuowledge of any period of sunlight occulation is imperative during solar sail trajectory design. Assuming
no secondary propulsion system is included within the spacecraft design no thrust is available for either orbit
manoeuvring or attitude control during periods of shadow passage. The shadow model considers both umbza
and peaumbra shadow conditions, as illustrated in Figure 36, The theory is presented for Earth shadow, with
the position vectors given in a geocenlric {rume; however the theory is easily extended to any other planet or

to lunar shadow were position vectors are planet-cenired or Selenocentric respectively. Note that while

noipeeT P
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Figure 36 Shadow conditions. Not to scale.

sunlight occulation could potentially exist for heliocentric trajectories it is at no time included within the

heliocentric model and as such shadow effects are only ever considered within planet-centred trajectories.

The shadow parameter is defined as,

fexn
g=_
|"h|

Sgn(l' Ty ) Equation 124

Within this analysis the coordinate system used is geocentric, thus r is the orbit radius from the shadow
casting body, the Earth, while ry, is the radius of the spacecraft from the Sun. The critical shadow parameters

for umbra and penumbra, respectively, are
¢ =|r|siny,, Equation 125
Sp= |r| siny , Equation 126
The umbra and penumbra shadow angles, shown in Figure 36, are found to be,
V. =n+6, Equation 127

Wp=n+6, Equation 128
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where 77 is found by,

1.O2R, .
— Equalion 129

n= al‘csin[
i

Nole that the cylinder shadow angle is found using the radius of the Earth plus 2 % to accoumt for the Earth’s
atmosphere; this correction fuclor must be adjusted for each body considered. The umbra and penumbra

cone angles, required in Equation 127 and Equation 128 are,

. [Rg+R
g, = arcsm[—SR—E] Equation 130

<

[ Re — R
g, = arcsu{—sR—“:] Equation. 131

e

Thus, the shadow condition is defined through comparison of the critical shadow parameters with the shadow
parameter, as detailed in Tablc 4. If the sail is in the umbra then the sail acceleration is set at zero. If the sail
is in the penumbra the amount of visible sunlight is determined by linear interpolation of the shadow
parameters and the sail acceleration is scaled accordingly, linear interpolation can be used due to the very

narrow nature of the penumbra.

3.43  Third-Body Gravity Effects

The equations of motion in Equation 96 — Equation 101 model the spacecraft trajectory in a 2-body scenario;
however Newton’s law of universal gravitation states that all bodies exert a gravitational pull on cach other,
Most objects can be neglected from trajectory calculations due to the very small magnitude of the force
which they exert, however in certain scenarios such simplifications cannot be made. For exampie, in Earth
otbit the Moon and the Sun can exert a force of similar, or greater, magnitude to that of a solar sail. The

force of n bodies on the spacecraft can be written as,'”?

GZm (l ‘ |IJ! Equation 132
I — X vy

Parameter Condition Shadow Coandition

0<¢=¢, Inumbra

- In penumbra
bsl> gl In fulf sunlight
c<0 In full sunlight

Table 4 Shadow definition criteria by parameter comparison.
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Thus, if the vectors r and r; are given in, say, £CI coordinates then the perturbation on the spacecraft is also
given in £C/ coordinates; requiring the perfurbation vector be converted into R7ZN coordinates using

Equation 123,

The implementation of third-body gravity effects into the trajectory model was validated through comparison
with analytical solutions to the problem. Using Lagrange’s planetary equations (Fquation 65 -- Fquation 69)
analytical expressions for the secular variation of orbit eccentricity, inclination, ascending node and argument

of perigee can be determined in terms of directional cosines of the disturbing body."* **7

3.4.4 Planctary Oblatencss Effcets

The selected non-singular elements allow for the usc of Allan’s expunsion of the geopotential,' however
several other models are available, including a model that gives the geopotential entirely in terms of non-

singular orbital elements."*

While accuracy of model and model integrity ave of great impoztance, recall that
the trajectory calculations within this dissertation are intended to demonstrate a trajectory design method and
not create highly accurate sail trajectories, as would be required in a real-mission. As such the geopotential is
modelled using a standard spherical harmouic representation due fo the speed of calculation that this

-,
method auow,s'lﬁﬁ, 169, 174, 184, 187

‘T'he use of perturbation equationy of motion means the Earth’s geopotential function is modelled with only

the high order terms, The peopotential function is,

D7, 4, 2) Zc [—‘i] EP{u)

r!-l

. ZZ[ ] P j{S’“ sinmA)-+ Cl 005[’"'%)]

n=1 wm=1

Eguation 133

where,

2hsinL —kcosL
( = R )) | Bquation 134

d= arcsin[ )

5

The gravitational harmonic coefficients are taken from thc Earth Gravity Model 1996 (EGM 1996), the
model uses an 18%18 matrix for the harmonic coefficients.”** The partial derivatives of the geopotential

function are,

or i

@__1 ﬁ]i R ”(né-i)i((f’” cosmd -+ S, sin ml}P”’ () tion 135
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e _(p i R i“ (C”' cosmA + S" sinmA | PP (i) — mtan B (u)) Faquation 136
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(Q(]) . N R Hon
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A ¥ r
n=2 m=0

Thus, the disturbing accelerations in ECI coordinates can be found to be,

%= 120 - i x—!/ L _ob ¥ Equation 138
3 &r' or },Esz -f—y2 8;:!! Lx?. +y2 EY) q

( l7d) i 1 )

1 &b z o o
y= - + X Equation 139
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Equation 140

. [1 a<p]z+ 1/x2 +y? 5(1)1
z= Z i

ror »? @;é)

Finally, the geopotential disturbing function accelerations are found by transformation of this vector into the
geocentric satellite RTV reference frame, using Equation 123. The Earth’s non-spherical perturbations were
modelled using an adapted subroutine taken from Reference 184 and similar to the third-body gravity effects
the implementation was validated using analytical approximations generated from Lagrange’s planetary

168, 169,

equations. 74 157 Note that at Mercury the reciprocal of flattening is over eighteen times that of Earth,

with 5 J, vatue of only 60x10°. Thus Mercury oblateness is modelled using only the ./, coefficient.

Following validation of the coding of each individual perfurbation discussed above (Sections 3.4.1 —3.44) a
further all inclusive test was performed. The trajectory simulation results presented in Reference 102 were
generated using a commercial trajectory calculation software (ool which allows the combined effects of the
orbit perturbations examined in Sections 3.4.1 — 3.4.4 {o be analysed, The results gencrated in Reference 102
were thus reproduced by the candidate in Reference 163 using the methods discussed within this disscrtation

as further validation of implementation.

3.4.5 Planetary Atmosphere Effects

The atmosphere of a body results in acrodynamic forces on any other body which passes close enough to it.
‘The principle aerodynamic load is typicaily due to drag, acting in the opposite sense to the spacecraft motion
and resulting in a reduction in orbit energy. Spacecraft also experience an aerodynamic lift effect; however
this is normally small and hence neglected,'® '™ " %7 Aerodynamic forces are difficult to snalyse for
conventional spacecraft and even more difficult for a class of spacecraft which has never flown, for instance
a solar sail. The aimosphere is a dynamic phenomenon which is influcnced by many paramelters, such as

solar activity, latitude, attifude, atmospheric rotation and tides, the diurnal bulge and seasonal
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168, 169, 174, 187 pacalling once again that the trajectory calculations within this dissertation are

variations.
intended to demonstrate a trajectory design method and not create highly accurate sail (rajectories,
atmospheric loads are not included in any trajectory model within this dissertation due to the difficulties
outlined above. As such, a brief analysis is presented to quantify the limiting effect atmospheric drag would
have on solar sail {rajectories. Modelling the atiosphere as a free molecular flow and the solar sail as a rigid

plate, the lift and drag coelficients, for a fal plale in a hypersonic flow, are,

C, = 2sin” ey cosa, Equation 141

Cp =2 sin® « P Equation 142
where &, is the pitch of the sail with respect to the hypersonic flow. As would be expecled the maximum
atmospheric drag occurs when a; = "/,, when the sail is face-on to the flow; at maximum drag the sail
experiences no lift force. Note the definition of pitch used within this short sub-section differs from that used

for sail pitch within the rest of this dissertation.

Assuming a circular orbit and that Cp is approximately 2, that is to say the drag cocfficient of a flat plate, the

maximum drag pressure on the plate is,
1 5 2 .
Dyax :EP‘-’ Cp=pv Lquation 143
For a given sail loading the maximum drag acceleration for a given orbit radius is,

2
Ddag = ot {AJ = Equation 144

Assuming a uniform, mean density profile based on the hydrostatic equilibrinm of an isothermal attmosphere,

the atmospheric density can be approximated as a funclion of altitude as,

Liquation 145

where g, =7.25 x 1o kg m?, the reference density, 4, = 140 km, the reference altitude and 77, = 11,127 km,
the reference density scale height. 1'igure 37 gives the maximum atmospheric drag for a given altitude over a
range of solar activity levels. Note that the pertwrbation is a strong function of solar activity, which is
modulated in an 11-year cycle. At periods of low solar activily the atmospheric drag and sail acceleration
balance at ~ 430 km, as shown in Figure 37. At mean solar activity the balance points rises to ~ 560 km and
on up (o ~ 940 km al high aclivily periods. A sale mean allitude is above 800 km, although al times ol solar
maximum this may double, Furthermore, it is noted that at no time can a solar sail he expected to survive at

an altitude similar to that of the International Space Station (ISS) as the atrmospheric drag would render the
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sail uncontrollable. Similar analysis shows that at Mars the minimum solar sail altitude is ~ 300 km, while at

Venus it is ~ 900 kin,

34.6  Solar Wind and Other Forces

The solar wind would be expected to exert a small force due 1o the momenlum ransported by particles within
it. At high solar wind speeds the mean proton number density at Earth is of order 10% m™, with a wind speed
of order 700 km s, The solar wind pressure cxerted on the solar suil can thus be estimaied from the
transported momentum, 1t can he shown that a solar wind pressure of order 107 N m™ is obtained, which is
nearly 10 less than the direct solar radiation pressure cxerted on the sail at 1 AU.! Tho solar wind is thus of
negligible effect when it comes to trajectory design, however it is an important periurbation when

considering attitude control as it has a significant accumulative effect on sail attitude,

First order relativistic effects are proportional to the ratio of the sofar sail velocity to the speed of light;
typically once again this is of order 10 and can be neglected.! For solar sails in planetary orbit the
secondary pressure due to radiation scattered from the planet is also small, typically at least three orders of
magnitude less than that due fo the direct solar radiation pressure. Although it should be noted that above the
sub-solar point of Mercury the reflected radiation can be significantly larger than at other plancts, No

account is taken as to the effect of reflected vadiation,

3.5  Trajectory Model Names

For simplicity of reference each of the trajectory models used within the dissertation have been given a name
in Table 5. Note that the central body of each model is not included as the central body shouid be obvious

from the context in which the model is used.
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Figure 37 Effeot of Barth’s atmosphere on a solar sail at a range of altiludes and solar activitics.
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Name

Deseription

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Unperturbed solar sail trajectory model. Ideal sail force model and a point source Sun, All

periods of occulation are neglected. The sail — Sun distance is corrected for the true distance.

As for Model 1, but with consideration of occulation due to the central planet and its natural
satellites as discussed in Section 3.4.2. This model is used only in planet-centred trajectories

within this dissertation.

Perturbed solar sail trajectory model; modelling the perturbattons discussed in Sections 3.4.3
(natural satcllites and Sun only) and Section 3.4.4. Occulation due to the central-body and its
natural salellites are included. ‘The Sun is modelled as a uniformly bright finite disc as discussed

in Section 1.3.5. ‘This model is used only in planet-centred trajectories within this dissertation,

As for Model 1, but will: « non-ideal sail.

As for Model 1, but with the Sun modclled as a uniformly bright finite disc as discussed in

Section 1.3.5. This model is used only in Sun-centred trajectories within this disssrtation,
As for Model 3, but with a non-ideal sail. Once again this is cxclusively planet-centred.

As for Model 4, but with optical surface degradation modelled following Section 1.3.4.

Table 5 Description of trajectory models.
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4  Planctary Escape Using a Selar Sail and Locally Optimal Control Laws

With the increased intercst in solar sailing from the science comumnunity (sec Scction 1.5) it becomes
necessary to clarify previons anomalies observed in mathematical models and climinate previous
simplifications in order to aid future analysis of solar sailing missions. It has been noted that slight
variations, up to 7 %, exist for ISarth escape times depending on the launch date. However, no adequate
explanation has been offered for the presence of this variation.®®** The number of eclipse events or the rate
of energy gain by the sail have both been suggested as possible explanations. It is noted in Reference 33 that
the variation appears to fall as sail acceleration increases. However, it is hypothesised in Reference 35 that
an increase in sail accelcration may extenuate the variation, presunably as a greater proportion of the much
shorter trajectory will now be in shadow, Furthermore, it has been noted that for geocentric spiral {rajectories
to both the hnar distance and a sub-escape point, the time ol [light lends to be minimum for orbits within the
ecliptic plane. It will be shown in this section that these two factors arc related by the derivation of an
optimal inclination for solar sail manoeuvring and that the effect is amplified at low seil accelerations, thus

solving the anomaly.'® 1%

A simple, autonomous solution to the problem of planetary escape will then be developed through the use of
blending different tocally optimal control laws. The use of blended control allows for a mote realistic set of
orbit goals to be detined than just simple energy gain. For example, a minimum pericentre altitude can be
set, thus ensuring the sail remains above the upper-atmosphere ot to expedite the sail orbit out of this region
and then maintain so thereafter. Following the generation of algorithms to provide safe planetary escape
trajectories; Earth escape trajectories without Earth occultation of the sail are examined. This is a potentially

heneficial scenario for attitude control, thermal and other sub-gystem design.

4.1  Optimal Inclination for Planet-Centred Selar Sailing

Using u difterent derivation of the locally optimal energy-gain steering law to that in Section 2.3, the rate of
energy variation is shown to be related to both the sail acceleration and the orbit inclination; thus confirming
the presence of a theoretically optitmal inclination. The time until Barth escape is then investigated over a
range of sail accelerations and inclinations wsiug Model 1, in order to corroborate the effect of orbit
inclination and consequently time of year on escape duration. The effect of introducing Rarth-eclipse is
investigated, using Model 2, in order to understand and cuantily the efiect this may have on escape times

throughout the year.

In order o derive the locally optimal energy gain control law, following Reference 33, the definition of a Sun
— Vector coordinatc systcin is required; the system is illustrated in Figure 38. The origin of the Sun ~ Vector
coordinate system is defined as the spacecraft centre-of-mmass and aligns the positive X, axis with the
instantaneous direction of the Sun. The Z,, axis is defined as the cross product of the velocity vector and
the Sun unit vector; with the Y., axis completing the right-hand Cartesian coordinate system. Thus the Z

axis velocily component is always zero in the Sun — Vector coordinate system. The sail clock angle is taken
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from the Yg,, axis towards the projection of the sail normal into the plane defined by the Yy, and Z,,, axis,

as seen in Figure 38. The sail normal vector, within the Sun — Vector coordinate system, is described as,

cosa

n=|sinacosd Equation 146
sin @ sin &

Note Equation 146 differs from Equation 121 due to the different definition of the coordinate system.
Furthermore, when the velocity vector and the Sun unit-vector are parallel this coordinate system is not

defined, thus the system is used only for the development of theory and not for orbit propagation.

Using the Sun-Vector coordinate system and following Reference 35 the function to be maximised is

defined as,
Fla,6)=a,.v Equation 147

where, v = [v, v, v.]. Assuming a circular Earth orbit the sail acceleration vector is defined as

a, =a, (n.Xlml )2 n , combining this with Equation 146 the sail acceleration vector is obtained as,

cosa

8, =a, cos’ a| sinacoss Equation 148

sin@sind
From the definition of the coordinate system recall that the Zy,, axis velocity component, v., is zero, thus,

Fla,6)= as, (vx cos’ a + v,y cos® asin @ cosd ) Equation 149

A
va}
“v

Sail Normal, n
Plane containing

Y. and Z,,,

Velocity
Vector, v

Figure 38 The Sun-Vector Coordinate System, with the plane normal to X, illustrated.
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Forming the first derivatives with respect to o and § gives the conditions for a turning point of the function.

aF(a,d)

Y; =—dg Vy cos? rsin @sin & =0 Equation 150
@ =—a, [va cos? asina + v, €OS 5(2 cosrsin® & - cos’ a)]: 0 Tiquation 151
- 2

Rearranging Equation 151, with cos’a # 0 or a0 and cos & = 0 or 6 =90 deg, 270 deg, and v 0 gives,

3 3y, tana 1 .
g, ttan“ o+ ———— =0 Equation 152
¢ 2vycosd 2

Solving for o and J [rom Equation 152 and Eguation 150 respectively,

2
3y 1 3y
oy, = arctan| ~——F— 4 Jo | ¥ Equation 153
L2 4v, cosd 2 {41’), cos cS'J quation
O = arcsin(()):b ) =0deg., §, =180deg. Equation 154

As obtained in Reference 35, Equation 153 and Equation 154 have two solutions. Lquation 153 allows the
optimal sail pitch angle to be found for the special case where v, = 0. This angle is ofien quoted in literature

as the optimal fixed sail pitch angle.

o =

opt = 35.264 deg. Equation 155

1
arctan| £ ——
( V2 ]

The solulion for the sail clock angle, Equation 154, states that an optimal steering law is achieved if the sail
normal vector, the velocity vector and the Sun vector are all within the same plane, The Sun vector and the
velocity veotor orientations cannot be altered or optimised. Therefore, the optimal condition defined by
Hquation 154 can be achieved only by aligning the sail normal vector within the plane defined by the other

vectors, thus requiring a fixed sail clock angle of 0 or 180 deg.

Recall from Scction 2.3 that the rate of change of semi-major axis depends only on the radial and transverse
perlurbing accelerations and not on the out-of-plane acceleration. It therefore follows that in order to
maximise the rate of change of semi-major axis, and hence orbit energy, the sail force should ideally be
oriented entirely within the orbit planc. However, the orbit-plane and the plane defined by the velocity and
Sun vectors are coincident only if the sail orbit Hes within the ecliptic plane. When the sail orbit is outside
the ecliptic plane an angle exists between the orbit plane and the velocity/Sun vector plane. Thus it is not

always possible to maximise the sail force within both required planes at all times. In order to ensure the




4  Planetary Escape Using a Solar Sail and Locally Optimal Control Laws 8o

local maximum rate of energy change, the sail force vector is optitnised such that the maximuom sail (oree is
directed along the orbit velacity vector. Recall, the sail pitch angle is found wsing a standard optimisation
process given in Equation 63 (page 42). If the orbit-plane is not coincident with the ecliptic plane Equation
63 rotates the sail normal vector out of the orbit-plane towards the plane defined by the velocity and Sun
vectors, hence generaling an out-of-orbit-plane force. As noted, the rate of change of semi-major axis
depends only on the orbit perturbations within the plane of motion and hence the geuneration of an out-of-
plane sail force reduces optimality. Thus, the optimal orbit inclination is defined such that the plane of

motion is coincident with the ecliptic plane.

The definition of the ecliptic plane as the optimal planc for solar sail in-planc orbit manocuvring allows us to
explain the apparent scasonal variation of sail escape times from Earth orbit. A 7 deg orbit inclination at the
northern hemisphere winter solstice results in an orbit inclination of 16.4 deg from the ecliptic plane.
However, at the northern hemisphere stnmer solstice the inclination to the ecliptic is now 30.4 deg. ‘I'hws,
the increased inclination with respeet to the ecliptic plane should result in a greater out-of-orbit-plane force
and hence an increased escape time for a June/Iuly launch, as found in References 33 and 34. As the sail
acceleration is increased the difference between escape time for June and December lannch should decrease,
as the nnmber of orbits uniil escape is reduced, hence minimising the effcot of the out-ofeplane sail force.
The defined optimal inclination holds true for the locally optimal variation ol any orbil clement or parameter
where the rate of change is dependent on only the in-plane perturbing forces, these include cecentricity,

radius of pericenire and radius of apocentre.

4.2  Earth Escape Time, Sail Characteristic Acceleration and Orbit Inclination

Initially Model 1 is used to allow the nature of the relationship between oshit inclination and sail efficiency fo
be seen withont the background effects generated by orbit perturbations. Farth shadow is then infroduced
through application of Model 2 to provide a comparison, as sail propulsion efficiency is reduced for orbits
within the ecliptic plane, due to the large fraction of time spent in Barih’s shadow.” Such a reduction in sail
efficiency could be expected to influence the escape times, hence altering the optimal inctination, However
this is shown not to be true. Tigure 39 shows the time vntil cscape from GEO radius for a range of sail

characteristic accelerations, from 0.15 mm s to 2.0 mm g*

, using the semi-major axis controfler exclusively.
It is seen that for sail characteristic accelerations of 0.75 mm s and greater that the minimum escape time
corresponds to an orbit inclination within the ecliptic plane, as predicted. The minimum is visible on the
surface plot as a groove on the otherwise reasonably smooth surface. Ilowever, for sail characteristic
accelerations below 0.75 mm s~ the minimum is not evident, though the orbits near the optimal inclination
do tend to be the quickest to escape. This breakdown is due to the relatively low level of sail acceleration
compared to local gravity and as a result the optimal inclination effect is lost during the high nember of orbit
revolutions required to pain escape energy. The breakdown in the predicted relationship between sail
perfunnance and orbit inclination is reflected by the much more irrepular nature of the surface plat at low sail
accelerations. Note from Figure 39 that the irregular surface continues into higher sail characteristic
accelerations for inclinations between 45 deg and 90 deg. 'The reason for this anomaly remains unclear and

no satisfactory explanation could be derived, however calculation error was eliminated as a possible cause.

As the orbit inclination inereases from zero to e the angle between the orbil plane and the plane defined by
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the Sun/velocity vectors decreases to zero, hence the optimal inclination, As incliration then continucs to
increase to 2g, this angle increases symmeetrically with # < e, This symmelry is reflected in the time until
escape, seen by taking a section through Figure 39 at characteristic acceleration 0.75 mm 2, as shown in
Figure 40. As the inclination continues to increaso it is seen in Figure 40 that the time until escape continues
to rises until the orbit inclination reaches 180 deg. Furthermore, note a change in orbit inclination can be as
influential on escape time as a modest increase in sail characteristic acceleration of up to .25 mm s this is
an important consideration that should be taken into account in the early stages of any solar sail planet-
cenired mission analysis. Figure 39 and Figure 40 show the exact relationship between sail performance and
arbit inclination amd clearly shows an optimal sail inclination of i = &. However, when passing (hrough the
Earth’s shadow cone no propulsion is provided and sail propulsion efficiency has been shown to be lower for
arbits within the ccliplic plane. 3 Therefore, while the basic orbital mechanics suggests an inclination within

the ecliptic plane 10 be oplital, the intcoduction of Earth shadow could be expected to alter this,

Fipurc 41 shows the time until cscape from GEO radius for a range of sail characterislic accclerations from
0.15 mm g7 to 2.0 mumn s~, using Model 2 and the semi-major axis controller exclusively. Figure 41 shows
that shadow does not alter the optimal inclination, with the surface channel still visible at { = &. Fowever, it
is also noticed that the time until escape is increased for orbits near to the ecliptic plane due o the presence
of shadow in this region. Figure 41 shows the surface to be much more uneven than before, with the surface
remaining irregular up to much higher sail characteristic avcelerations, The irregular surface structure has
been noted in the shadow free case to be an indicator that the relationship between orbit inclination and sail
performance is starting to breakdown, Note once again however that a change in orbit inclination can still be
as influential on cscape timc as an increase in sail characteristic acceleration. Furthermore, the symmetrical
nature of sscape time about the ecliptic plane is now much more visible than in Figure 39 and the increase in

cscapc times for increasing orbit inclination can once again be scen.

As sail characteristic acceleration is increased it is seen in Figure 42 the difference between escape time at
optimal inclinalion and worst-case inclination is conflirmed (o [all. This iy analogous 0 the scasonal variation
in Earth escape times found previously and confirms that this variation reduces as sail performance

is increased.

At Meroury the obliquity of the ecliptic is 0.01 deg, hence the optimal inclination with respect 1o the planets
equator is { = 0.01 deg. However, due to the proximity of the optimal inclination to zero, a reduced
inclination scan is presented in Figare 43 using Model 1 and the semi-major axis controller exclusively to
escape from a 1000 km circular orbit. Additionally, Mercury’s highly ecceatric orbit, e = 0.2056, results in a
largo variation in solar flux and hence sail acceleration through the Hermian year, thus Figure 43 shows data
for two start epoclis, corresponding to Mercury perihielion and aphetion passage. Figure 43 shows once again
the effect of inclination on escape time, with i = g clearly optimal. Once more it is also seen that the
relationship breaks down at low sail characteristic accelerations, where the number of orbit revolutions prior

to escape is much larger than for the high sail characteristic accelerafions.
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Figure 39 Solar sail escape time from GEO radius, without shadow effects.
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Figure 40 Section through Figure 39 corresponding to sail characteristic acceleration 0.75 mm s versus

inclination, without shadow effects.
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Figure 43 Mercury escape time from 1000 km altitude circular orbit using Model 1. Start epoch coincident

with Mercury perihelion passage (—) and aphelion passage (— —) both shown.

The two start epochs used in Figure 43 show an interesting anomaly of trajectory manoeuvres at Mercury

when using solar sail propulsion. Note for ay, = 0.15 mm s™ the aphelion start epoch reaches escape twelve
days quicker than the periticlion start epoch, however for a, = 1.0 mm s it is seen that the aphelion start

epoch is now seven days slower than the perihelion start epoch. Thus, one cun say for low sail churacleristic
accelerations an aphelion start epoch provides cscape conditions quickest, yet for high sail characteristic
acceleration a perihelion start epoch provides escape conditions quickest. This relationship will now be

examined in further detail,

4.3  Mercury Escape Times through the Hermian Year

Figure 44 shows the distance of Mercury from the Sun through one full orbit revolution of 88 days along
wilh the associated solar radiation pressure. From Figure 44 it 1s clearly seen hat solar radiation pressure
and hence sail acceleration arc maximum at Mcrcury perihelion, sugpgesting sail cscape trajectorics should be

of minimun duratien during Mereury periliclion passage.

Using Modcl 1 and the scmi~-major axis controller exclusively, Mercury escape times were calculated for a
fixed initial orbit inclination ol 0.01 deg. The calculation slart epoch was incremented in one-day intervals
from 01 January 2015 (JD 24570323.5) for 115 days, thus the timc intcrval corresponds cxactly to that used in
Figure 44. Perihelion passage occurs at day 20.86 with aphelion passage 44 days later at day 64,84, while the
Hermian year is compieted on day 108.83. Figure 45 shows the escape time from a 500 km altitude circular

orbit, The titme until escape varies with start date in a sinnsoidal fashion, with period equal to one Hermian



4  Planetary Escape Using a Solar Sail and Locally Optimal Control Laws 91

year. The variation corresponds to the shape of the SRP distribution through the orbit period of Mercury as
would be expceted. However, it is also noted from Figure 45 that both the contour piot and surface plot are
very jagged, with spikes in escape time up to 10 — 50% greater than the mean surface value. These spikes are
a unique chatacteristic of solar sail propulsion and are caused by the inability of a solar sail to gain orbit
energy while travelling towards the Sun. Hence, if a sail falls just short of escape energy as it reaches the
maximum distance from the Sun it must then completc a half revolution about the planet before gaining the
required orbit escape encrgy. However, a small increase in sail performance will resolt in the sail acquiring

escape cncrgy just before this maximum turning point and time until escape thus appearing much reduced.

Note in Figure 45 the escape time for a low characteristic acceleration sail has maximum just after Mercury
perihelion passage, yet for high sail characterislic accelerations the maximum has migrated through the orbit
to aphelion passage. Similarly, the minimum escape time for a low characteristic acceleration sail is just
after aphelion passage, yet for high sail characterislic accelerations it has migrated to perihelion. The
migration of maximum and minimum escape times is shown in Figure 46 for a sclection of initial altitudes.
Figure 46 shows the day numiber ftom Mercury perihelion passage plotted against sail characteristic
acceleration. The start date of the maximum duration escape trajectory tends towards Mercury aphelion
passage as sail characteristic acceleration is increasedd.  Similarly, the start date of the shortest escape
trajectory tends towards Mercury perihelion passage as sail charscleristic acceleration is mereased. Thus

explaining the apparent anomalous situation [ound in Figure 43.
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Figure 44 Mercury’s heliocentric orbit radius though Hermian year {top) and the associated solar radiation

pressure over the same period (bottom).
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Figure 45 Escape time from ecliptic 500 km circular orbit at Mercury, a, = 0.15 mm s”to 1.05 mm s?, in

0.1 mm s increments, from the top. Surface plot corresponds to same data as contour plot.
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Figure 46 Launch date of maximum (— —) & minimum {(—) escape time (rajectories, through Hermian year,
iop. Time until escape of maximum & minimum trajectories, botlom. Initial altitudes of 125 km; 1000 km;
2000 kin,

Finally, the duration between minimum and maximum escape times was esamined and is shown in Figure
47. The difference between maxinmun and minimuin decreases as the sail characteristic acceleration is
increased. However, it is noted that even at low sail characteristic accelerations the difference is less than 44
days. Moreover, if the shortest escape trajectory is longer than 44 days then the difference between

maximum and minimun tends (0 be much smaller. That is, a maximum diffexrence can be identified at the
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point when the minitaum escape duration is just below one half an orbit revolution of Mercury about the Sun
and tends to be equal to approximately 24 days. Thus, while the variation in escape time is substantial
throughout the Mercury orbit, the optimal start epoch for an escape trajectory to minimisc Iulian Day at point

of escape is independent of launch date,

44  Near-Optimal Earth Escape with Minimum Altitude Consiraint

Using only the semi-major axis control law it is found that the orbit eccentricity tends to rapidly increase
during the final few orbits prior {o escape, resulting in a corresponding rapid decrease in perigee altitude,
Due to the nature of solar sail propulsion it is possible to gain energy for only half an orbit, as the sail travels
away from the Sun. Thus, if the sail is slightly below the energy required 1o escape &l the end of (his haif
orbit, the sail requires another pass of the planet prior to cscape. If the radius of perigee is less than the
radius of the planet this will result in a collision with the planet, as bas been seen in previous work by the

candidate (and others), where a negative altitude was noted prior to escape.’m

1t follows that the locally
optimal strategy used should be altered such that negative altitudes no longer become passible; in effect one
wishes ta set a minimum. radivs of periges. Thus, Farth escape using the semi-major axis conirol law
{Section 2.3) blended with the radius of pericentre control law (Section 2.8) is considered. It is possible to
obtain planetary escape through usc of only the pericentre controller, thus assuring a positive allitude is
maintained thronghout. This however would result in a greatly increased escape iime due to the inefficiency
of the pericenire controller in paining orbit energy. The most advantageous strategy is to use the semi-major
axis control law to gain orbit energy whenever possible and ta use the pericenire control law only when it is

absolutely required.
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Figure 47 Difference between minimum & maximumn duration escape against sail characteristic acceleration.
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Recall from Section 2 that the approach adopted within this dissertation is that the weight functions should be
independent of time, thus using the osculating orbit elements to set the weight functions of each control law
prior to blending. Accordingly, Equation 156 to Equation 158 show the weight of cach control law as a
function of the radius of pericentre only. As the pericentre drops towards undlesirable values the pericentre
controller becomes more prominent than the energy-gain controller and as pericentre increases the energy
gain controller becomes more prominent. Furthermore, in order to ensure a rapid changeover between the
control laws a sct of exponential weight functions are employed. A rapid changeover between controllers is
degirable in this scenaric due to the rapid nature of pericentre decrease towards the end of the escape
trajectory. In a more general sense a difficulty encountered inn generating transfer trajectories with more than
ohe control law is that the controller can become stuck in a dead-band region, where it is cauglt between the
selection of each control law and the orbit elements alter very little. This characteristic however can be
turned into an advantage, where blended control laws have been used to generate station-keeping algorithms

for potential [uture solar sail missions, such as GeoSail and a Mercury Sun-Synchronous Orbiter as wilt be

discussed in Section 5.

Wy
W, =exp To Equation 156

2500

W, = i
5, W Equation 157

-
W, :[TP—Q.SJ Equation 158

The weight functions detined in Equation 156 to Equation 38 were tound using engineering judgement,
expetience of the system and some trial and error. Note that the units used Equation 156 to Equation 158 are

metres. The ratio of W, / W, against instantancous altitudu of perigee is illustrated in Figure 48 where it is
P

scen that large values of #, result in the semi-major axis control law dominating the blending process.

Similarly, small values of 7, result in the pericentre control law dominating the blending process.

4.4.1  Initial Orbit Selection

Low cost launch options are somewhat limited and tend to place the spacecraft into a prohibitive orbit for
solar sail performance, due to Earih’s steep gravity-well, short orbil periods that require rapid slew
manoeuvres and the residual upper atmosphere. [Towever, for completeness it is necessary to consider non-
optimal initial orbits due to parallel applications in orbit about other planetary bodies, such as a Mercury

sample return mission.'” - %%

Barth escape from high energy orbits is however of practical interest, for
example a piggyback launch opportunity to a 72-hr Earth orbit with a fiture science mission, similar to the
INTEGRAL' spacecraft, with a perigee altitude of 10 000 km well above the upper atmosphere would

provide an attractive initial orbit for solar sail operations. It was found however that even such high-energy
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Figure 48 Ratio of W,.P : W, against instantancous altitnde of perigee.

orbits can have a rapid reduction in perigee and could still traverse the upper atmosphere. Four potential
options are presented as initial orbits for solar sail Earth escape; the first is from GTO, the second is from
GEQ, the third a 1000 km altitude polar orbit and the fourth is a 72-br Earth orbit with a perigee altitude of
10 000 km. The four potential orbits cover a wide range of imitial conditions and (hus provide a

comprehensive test case for the control algorithms and weight functions presented.

442 Escape from GTO

GTO has been identified by many studies as a potential starting orbit for solar sail missions, particularly by
the DLR ODISSEE concept.” GTO is laken to be similar (o the original ASAP-5 delivery orbit, giving a
perigee altitude of 560 km.®® Note that Ariane 5 lavnches to GTO have in actual fact used a range of perigee
altitudes from 241 km up to 1167 km. with the perigee altitude typically set at over 600 km in recent GTO
launches, for example the SMART-1 perigee was 667 km aftitude, At 560 km altitmde the solar sail will
expericnce air drag and aeradynamic torque; as such the blended sail control law is altered so that when the
sail altitude is below 1000 km the sail is continually slewed to maintain a minimum drag, edge on, profile to
the atmosphere. This minimum profile approach will have the additional benefit of significantly reducing
gravity gradicnt cffects across the sail surface, which will aid attitude control system design. The sail moves
through the atinosphere with noegligible acrodynamic loading on the sail structore and allows GTO to be
considered as a realistic initial orbit, although it should be noted that sail slew rates are required to be high
due to the short orbit period. This addition to the sail control strategy is adopted only for GTC escape
trajectories; lowever it would be valid for any high eccentricity orbit with pericentre inside the upper regions

of the planetary atmosphere, such as a Molniya otbit. Furthermore, with this moditication to the control

strategy the exclusion of atmospleric effects from Model 3 and Model 6 becomes a reasonable
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simplilication. A midnight launch places the payload on an orbit with a Sun-pointing apogee. The midnight
option is considered along with the non-standard midday launch, which places the payload on an orbit with a
Sun-pointing perigee and a prolonged shadow event at each orbit apogee. An ASAT launch would be an
auxiliary payload and the G'I'O orbit alignment, along with perigee altitude, would be defincd by the primary
payload requirements. It was found that standard midnight launches result in the sail striking the Earth
before escape for all sail accelerations above 0.3 mm s~ when the semi-major axis controiler is used
exclusively. This is shown at the left hand side of Figure 49 where the escape duration drops to zero days,
indicating an Barth collision; this convention is held for all trajcctorics within the remainder of Section 4.
The midday launches however do not repeat this when using the single controller. Insiead it is found that
Barth collision oceurs only for high sail characteristic accelerations, once the total number of orbit
revolutions prior to escape is small. From Figure 49 it is seen that when the blended controller, described
above and by Equalion 156 to FEquation 158 is used the trajectory no fonger strikes the planet for either the
midday or midnight launch options, Comparison of the blended control law with the energy gain control law
shows only a small increase in escape time for midday launches as a result of raising and then maintaining
petigee altitude above the upper atmosphere. Thus, one concludes that the inclusion of the additional steps
taken to reduce aerodynamic loads on the szil have had negligible impact on sail escape performance, yet has
a potentially significant impact on reducing sail loads. Model 6 was used to produce Figure 49. Note (hat
due to the method of sail performance input to the model, the sail acceleration denoted in Figure 49 is related

to the sail characteristic acceleration by an efficiency factor, i, of 0.908156, as defined by Table 1.
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Figurc 49 GTO cseape limes for midnight (—) and midday (-~} launch using das . control only and blending

controllers for midnight () and midday (- - —) launch.
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Sclecting the specific case of a sail acceleration of 2.0 mm s (characteristic acceleration 1.816 mm s2) one
can examine in detail the behaviour of the control laws and the eftect of the weight functions, using Model 6.
The result of the controller is visualised in Figure 50 and Figure 51, where it is seen that the single coniroller
aliows the orbit to enter the forbidden region on the semi-iatus rectum - eccentricity plot, corresponding to a
minimum altitude of 200 km. The blended controller realises it is approaching this region and acts to avoid
it, hence safely navigating the solar sail towards the target region and Earth escape. Note from Tigure 5! the
weight of pericentre steadily decreases through the trajectory to day number 20 when it begins to rise again

to counter the reduction in perigee radins.

4.4.3 Escape from GEO

GEQ represents perhaps the most attractive initial orbit, with a large orbit radivs well outside the steep
gravity well and air drag associated with LEO. Furthermore it is attainable at relatively low cost as a Delta

1V auxiliary payload on the Secondary Attach Mounting (SAM).'?' 1%

It has been assumed previously that the issues of air drag and aerodynamic torque on a solar sail need not be
considered for an escape spiraf beginning at GEQ."”' However, it has been found that this assumption breaks
down for the locally optimal energy gain control law at high sail characteristic accelerations when the
number of orbils until escape is low, causing a rapid variation in eccentricity and hence pericenire altilude
during the short escape spiral, It is thus required that one use the blended control law. 1t is also found that
the low perigee passages occurs just prior to a reduction in the number of orbits required for escape, as seen
in Figure 52. Moadel 6 was usced to produce Figure 52 which shows the required time until escape from GEO
against sail acceleration with the Lypical exponential drop-off rate clearly visible, corresponding well wilh
previous work®®  Similar to Figure 49, the sail acceleration denoted in Figure 52 is related to the sail

churacieristic acceleration by an efficiency Factor, », 01 0.908156.

It is noted in Figure 52 that the exponential drop-off in the required time until escape from GEQ is mixed
wilh a short period oscillation, seen as maximum and minimum within the exponential curve. Bach
maximuim corresponds to a reduction by one in the number of orbits required to reach escape energy. This
jagged curve s a unique charvacieristic of solar sail propulsion caused by the inability of a solar sail o gain
orbit energy while iravelling towards the Sun, as discussed in previous sections. In reality the exact locations
ol lhese spikes in escape lime would be difficult to predict and henee take advantage of, or conversely insure
against encountering, due to trajectory model uncestainties, caleulation ctrors and launch date uncertainties.
Thus, such maximum and minimum would make advanced mission planning awkward, as the cxact cscape
epoch would be difficult to predict. Therefore, ensuring escape for an optimal planetary transfer trajectory

would be problematic and hence require a margin in the planetary escape phase of the mission.

It is seen in Figure 52 that when the sail acceleration is low both controllers provide almost identical resnlts,
and up to an acceleration of 3 mm s the escape times are similar. At no time does the blended controller

allow the sail to pass below the 1000 km altitude limit.
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Figurc 52 Escape time [rom GEO using “/, coutrol only (--) and blended control (—). Qrbit revolutions

prior to escape indicated.

Figurc 53 shows Lhie escape time using the blended sail control in Model 1 and Modcl ¢ where it is scen that
the blended sail control law is able to adjust the sail orientation with respect to time, thus correcting for a
different set of perturbations from those within the original design scenario, Note that within Figire 53 the
sail acceleration equals the sail characteristic acceleration for Model 1, while the efficiency factor of
0.908156 must be used to find the characteristic acceleration for Model 6 duc (o (he non-ideal sail model
definition used within this section. The ability of the control system to adapt in the presence, or absence, of
perturbations originally considered is due to the nature of the individual control kaws, where the desired sail
orientation is defined by the current orbital elements and not by a stored data filc as would be required if
attempting to follow a true-optimal trajectory. Thus, if the sail is not where it was originally predicted to be,
then the on-board system automatically adjusts, correcting for the unforescen perturbation while maintaining
the near-optimal nature of the original trajectory. This sclf-correciing lealure of the control system offers the
potential to reduce the required uplink telemetry, as only the current sail statc vectors are required, rather

than an entire new set of control angles.

44.4  Escape from 1000 km Polar Orbit

A high polar orbil within the LEO environment can be achieved as a dedicated low cost launch, for example
through use of a Pnepr launcher,'®* or the new Arlanespace Vega launcher.'”® Several advantages have been
identificd which could make this an attractive option for future sail missions. However, as many problems as

benefits would exist, as such escape from a 1000 km polar orbit would be a sipnificant engineering
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¥ The potential parallel applications at other planets however require that the control system be

132 -

challenge.
able to safely guide the sail to escape [rom such a fow energy orbil, 135 Note that the control strategy
documenied within this section was successfully adapted, by re-tuning Equation 156 to Equation 158, in
References 133 to 135 for Mercury capture and escape irajectories as part of a snmple refurm mission study.
Escape times [rom a 1000 kin polar orbit are shown in Figure 54, whete the initial orbit normal is aligned
with the Earth-Sun line and calculation start cpoch set at Vemal Equinox. Model 6 was used to produce
Figure 54, with the sail characteristic acceleration related to the sail acceleration by # = 0.908156. 1t is seent
that the semi-majot axis controller causes the sail trajectory to intersect the Larth for most sail accelerations
in the range 1 mm s to 2 mm s~ The blended control system is able to steer the sail to escape without Earth
collision. Additionally, it is found that the escape times are within 5 % of the semi-major axis control times,
except close to the region when this controller breaks down and safe escape times tend towards 10 % longer
in duration. The weights given in Equation 156 1o Equation 158 were once again used for this escape time
scan; however an additional condition- was added such that the semi-major axis controller was used
exclusively if eccentricity was less than 0.07 and perigee altitude was greater than 500 km. This additional
condition was fownd to improve optimality which was compromised due to the low initial orbit energy both
at Farth and at Mercury. Note in Figure 54 the escape time for an acceleration of 0.1 mm s was found to

exceed five years, thus maintaining calculation accuracy made calcuniation of escape time prohibitive.

Escape Time (days)

Sail Acceleration (mm 5'2)

Figure 53 GEO escape using blended sail control in Model 1 (--) and Model 6 (—).
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Figure 54 Escape times from a 1000 km polar orbit, for “/y, (-} and blended (—) controllers,

445  Escape from 72-hw Earth Orbit

Earth escape using solar sail propulsion is a significant techuological challenge; however escape from a large
Earth orbit is much less challenging due (o the long orbit period and the proximity to escape ensrgy provided
by the launch vehicle. This scenario is probably the only realistic near to mid-term option for an Earth
cscape {rajectory using solar sail propulsion. To investigate this type of escape trgjectory the INTEGRAL
launch orbit is selected, defined as 10 000km x 153000 km x 51.6 deg.!””

On investigation ol sofar sail escape times [rom the INTEGRAL orbit using only the semi-major axis control
law it is found that at no time did the trajectory intersect the planet. However, as indicated by Figure 55 it is
seen that there are regions where the trajectory comes close o the npper atmosphere. This is shown in Figure
55 where one sees the gap in escape times between the semi-major axis conirol and blended control. Model
6 was used to produce Figure 55, with the sail characteristic acceleration related to the sail acceleration by #
= 0.908156. The blended sail control is normally within 5 % of the semi-major axis control, except in the
range of sail accelerations between 2.9 mm s™ and 3.8 mm s where relative escape times rises to as much as
35 %. This range of apparently poor escape trajectories corresponds to the number of complete orbits until
cscape dropping from two to one and the associated rapid increase in orbit eccentricity which causes the sail

to pass close to, or through, the upper atmosphere.
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Figure 55 Escape times from a 72-he Earth orbit with a porigee altitude of 10 000 km, for Aoy () and

blended (—) controlfers.

4.5  Earth Escape without Shadow

As a solar sail passcs through a planet’s shadow cone the solar flux over the sail surface drops to zero; as
does (he lhrust. Henco a scoondary attitude coutrol system may be required during shadow passage. This
secondary system could take any of the standard forms,*™ '® however alt of these would increase system
mass and correspondingly decrease sail performance. Additionally, shadow events will impart severe
thermal loads on the sail systems that will dynamically excite the structure, thus stressing the sail and
requiring heavier booms and/or thicker 1ilin coatings which [urther degrade sail performance. Eclipse will
also causc large charging swings. Tt is thus attractive to be able to gencrate planetary escape trajectories that
avoid planctary occultation of the sail — Sun-line, Such a scenario would potentially enable a reduction in

sail assembly loading and a corresponding increase in sail acceleration or payload capability.

Using the blended control algorithms cutlined in Equation 156 to Equation 158 and Model 1, the required
sail characteristic acceleration for escape from an Earth polar orbit at a range of altitudes was found, as
shown in Figure 56. The initial orbit is defined similar to that used in Section 4.4.4 such that the inilial orbit
normal is aligned with the Earth-Sun line and calculation start epoch is set at the Vernal Equinox. The orbit
model utilised only considers perturbations due to the sail throst; the introduction of othier perturbations such
as gravitational harmonics or a more realistic sail force model significantly prolongs calculation time and
from experience typically alters escape time by between three and five percent. Furthermore, it has been

shown in Section 4.4.3 (Figure 53) that the confrol system can correct for perlurbations not included in the

Ny
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original design strategy. The sail charactetistic acceleration at each altitude was incremented in steps of 0.01
mm s until an escape trajectory was achieved without any shadow events, the initial altitude was then
increased by 50 km and the process repeated, In Section 2.6 (page 52) a locally optimal control law for the
variation of the ascending node angle was presented. It was found however that introducing this into the
blending equations prodoced an unnecessary complication within the control system, producing much slower
escape times due to the tendency of this controller to cancel out any encrgy gain over the orbit period.
Hence, only the locally optimal control laws used in Section 4.4 and blended through Equation 156 to

Equation 158 are utilised in this section.

'The required sail characteristic acceleration for a range of initial altitudes from 800 km to 25 000 km is
shown in Figure 56. It is seen that an exponential increase in sail characteristic acceleration is required as
aftitnde is decreased in order to maintain a shadow free escape trajectory. This exponential curve is
analogous to the well documented exponentiat reduction in escape time as initial altilude is increased for a
given sail performance or the exponential reduction in escape time for a given altitude as sail characteristic
acceleration is increased, as scen in several figures within Section 4.4, The corresponding escape time for a
shadow free trajectory from each altitude is shown in Figure 57. As would be expected from the exponential
curve of required sail characteristic acceleration in Figure 56, the minimum sail performance escape time for
shadow free trajectories is essentially independent of initial altitude; as the required sail characteristic
acceleration varies exponentially thus maintaining a constant escape time. The mean escape time was found
to be 141.46 days, the standard deviation in the escape time data is 6.1 days. In Reference 35 a single
shadow-fiee Earth escape trajectory is produced using a locally optimal radius of apocentre control law. The
initial altitnde of this trajectory was 20 000 km, for an ideal sail with no orbit perturbations and a
characteristic acceleration of 0.85 mm s, From Figure 56 it is seen that this point is above the presented
curve and hence the two results correspond well. Furthermore, the trajectory presented in Reference 35 has

an escape time of 146 days, which corresponds with Figure 57.

In order to quantify the true effect of neglecting all orbit perturbations other than sail thrust, the single case of
escape from 20 000 km using Model 6 was investipated. Figure 56 indicates the ideal sail characteristic
acceleration required is approximately 0.8 mm s however accounting for orbit perturbations and
introducing a non-ideal sail model the input sail acceleration is increased (0 0.85 mm s, giving an aclual sail
characteristic acceleration of 0.772 mm s~. The escape trajectory is thus caleulated for these initial
conditions as seen in Figure 58, where the escape trajectory is viewed in a fixed Sun-axis reference framc
looking from the Sun towards the Earth. 1t is seen from Figure 58 that al no time does the trajeclory pass
behind the Earth and hence no terrestrial shadow events are recorded. This result is verified by analytical
analysis of Earth, Sun and spacecraft position vectors and including a 2 % addition to the Earth’s radius;
accounting for the increase in shadow size due to the atmosphere as discussed in Section 3.4.2. Figure 59
shows the orbit inclination and ascending node angles. It is seen that the ascending node angle initially
increascs slowly for the first 100-days, before then rapidly increasing for the final 40-days prior to escape on

day 141. Note that the minimum altitude of this trajectory is 2397.2 km, on the 116" day of the trajectory.
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Figure 56 Minimum required sail characteristic acceleration for shadow tree Earth escape from a polar orbit.
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5  Planet-Centred Orbit Transfers Using a Solar Sail and Locally Optimal Con¢rol Laws

The use of a solar sail in planetary escape trajectories was thoroughly investigated in Section 4, where a
potential solution to the problem of naintaining 2 minimum altitude during Farith escape was demonstrated.
"This section foliows on by considering the use of a solar sail for planet-centred transfers and station keeping.
In Section 4 the weight functions were defined by a series of simple exponential relationships. However, in
attempting to create a more complex and robust control system for orbit transfers and station keeping
applications il is required o evolve the derivation and calculation of the weight functions. The use of locally
optimal control laws for solar sailing is (bus further developed through the formation of a new control
method which caleulates the weights to be used in the blending of the individual control laws to provide
near-optimal results, The new contral method will then be demonstrated for use in a complex orbit transfer
at Mercury where the main constraints are thermal and not transfer duration, which can be considered

135- 85 'I'he control method

secandary in many solar sail applications at Mercury as will be discussed next.
will also be used for station keeping and investigation of how such a method could enhance the science

return of previously proposed planetary solar sail missions.

5.1  Planet-Centred Orbit Transfers Using a Solar Sail

The generation of solar sail planet-centred arbit transfers are perhaps of limited purpose. For instance,
fengthy Earth escape spirals at the beginning of a heliocentric mission shouid be eliminated by he launch
vehicle whenever possible. Tf however the sail is the primary form of propulsion then during a
reconnaissance or sample and return mission the sail must be utilised to correctly deliver the science payload
to the target orbit about the destination body. Much priot work that has claimed to generatc capturc

130, 133 - i35
Such an

trajectories has simply been escape trajectories integrated over a negative time-gpan.
approach does however provide a suitable approximation to obtain the required timescale of any capture

trajectory and is thus suitable for carly mission analysis studies.

Only a few solar sail planet-centred orbit transfers have been previously published due primarily to the
significant difficulty of gencrating trajectories which are optimised over numerous revolutions. A
rudimentary transfer from GTO to the original GeoSail mission orbit of 10 x 30 Earth radii was generated by
the candidate using locally optimal control laws.'® The transfer trajectory in Refercnce 163 is not included
as part of this dissertation. A recent doctoral thesis used extremal steering strategies for simulation and
optimisation of Earth — Moon transfer trajectories using solar sailing.® This work resulted in the solution of
a weak stability boundary problem and-generated realistic transfer trajectories from GTO to a bound lunar
arbit. One of the few other published planet-centred solar sail transfer trajectories; other than lunar flybys

which are not actual orbit-to-orbit transfers, was in a 1977 study "

This study developed a numerical
algorithm to calculate optimal planet-centred trajectories. However, only one orbit-to-orbit transfer was
generated as it was found that the algorithm required a very good initial guess before a solution was found

and that eccentricity convergence was difficult when the target ecceniricity was low. Perhaps with hindsight
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one can now speculate that this is due fo the anomaly discussed in Section 2.4 and that a different Farth —
Sun — 8ail orientation may have provided a solution. Transfer to sub-escape points presented no convergence
difficulties; however orbit transfers were much more difficuit and the authors were unable to generate more

than one complcte trajectory within the timeframe of the study.

It is the experience of the candidate that while planet-centred orbit transfers are of only limited purpose,
when they are requited the primary cost function is seldom time. For example, (he primary cost function for
sail operations at Mercury is typically thermal and avoidance of passage near the sub-solar point. During a
recent Meroury Sample and Return mission study it was found that the sucface thermal conditions were such

133-135 1t was also found that the

that a lander could only survive at key specific times of the Hermian ycar.
vptimal Earth — Mercury transfer and subsequent capture spiral resulted in arvival of the lander ai an
inappropriate time for landing. Thus, it is required that the lander wait in Mcrcury orbit until the surface
thermal conditions are suitable, The optimal orbit for the sail to enter while waiting lor the suiface
conditions (o become suitable was found to be the Mercury-forced sun-synchronous orbit, hence minimising

thermal loads on the sail and its systems, > ' - 13

Thermal requirements thus necessitate an orbit-to-orbit
transfor from the Sun-synchronous orbit to the low-circular ncar-polar orbit for deployment of the lander.
The primary cost function of this transfer is not time, as the arvival time is fixed and the transfer is

necessitated by a need to wait for the correct surface conditions.

5.2  Accessibility and Deficit Rlending

The Accessibility and Deficit (A"D) blending mcthod secks to give each individual control law a rclative
importance prior to defining the tinal weight functions and thus the blended centrol vector. The deficit of
cach element from the final target value is considered. Additionally, the efficiency or accessibility of any
atteinpt to alter an orbital element is considered, thus avoiding incfficient use of the sail, such as in prolonged

periods of high pitch.

The Deticit score is found not by consideration of cach element’s valuc, but instcad by estimation of the time
required 1o altain the target value using the locally optimal control law, By computing A, the locally optimal
pitch and clock angle for control law o can be found. With the locally optimal pitch and clock angles
caloulated the sail perturbation vector in the Sun-line reference frame can be determined using Equation 121,
Thus, using Equation 122 and Hquation 123, the sail thrust vector is converted into sail RTN axis in order to
caloulate %/, the rate of change of element 0. Note that to find "/, the magnitude of the sail perturbation
veelor is corrected due to the locally optimal sail pitch angle following Equation 22, With knowledge of the
locally optimal rate of change of element o, the current value of ¢ and the target value of o, it becomes a
simple malter to estimate the time required fo attain the target value assuming a constant rate of change.
Repeating this process for eack control law being blended allows one to normalisc the time required with
respect to the largest time. Thus, each control law gainy a score between zero and one for the corresponding
deficit, with zero meaning the element has attained its target valuc and one that it is the furthest, or has the
greatesl deficit, from its target value. Note that this assessment assumes an ideal sail force model. However,
in Scetion 6 this assumption will be removed for heliocentric (rajectories by using the same force model to

set the deticit score as is used for orbit propagation.
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The doficit of an clement can appear excessively high if (he corresponding locally optimal pitch angle is high,
which resuits in a low ratc of change and thus gives a high deficit score to an element which will poorly
utilisc the sail. Thus, one should also consider the accessibility of control law @ by consideration of the

corresponding optimal pitch angle. Recall from Equation 22 thal as the pitch angle is increased the

corresponding sail acceleration drops off as the cosine squared of the pitch angle. The accessibility scotc is

found by calculating the cosine squared of the optiinal pitch angle for cach contrel law and normalising with

respect to the largest. Hence, the control law which best utilises the sail thrust gains a scorc of one, while the

most ineflicient gains a low, but not necessarily zero, score.

Using the A"D blending method the weight functions are thus based not only on need but aiso on an
opportunistic Jevel. The deficit score gives the highest score (o the element furthest from its target value,
while the accessibility score gives priority to the element which most efficiently uses the sail. The
combination of the two scores provides the weighted relevance of each control law. However, the method of
combining the two scores must itself be carcfully considered and rationalised. Multiplying the Accessibility
and Deficit scores results in a low total score if cither score is low. It has however been found that if an
element has low accessibility for a given dircelion of change, say negative, this is because the orbit alignment
about the planet and with respect to the Sun is typically close to optimal for the opposite dircction of change,
as discussed in Section 2.4, As a result of this, if an element has low accessibility and high deficit then
multiplication of the two scores results in an increase in the deficit. 1t is thus found that even though the
accessibility is low one cannot totally ignore the clement. Addifion of the two scores rcsults in a low
accessibility and high deficit scenario receiving a moderate score and was thus found 1o offer a better

solution. The final A"D score is thus found by addition of the two individual scores.

‘The final weight functions are found by multiplying an individual element A'D score by a constant. For
example, as will be seen later, the GeoSail mission primary requirement is to rotate the orbit argument of
pericentre, Thus an additional importance is placed on this element and it is multiplied by a larger constant.
Elements which arc not being blended are multiplied by zero o remove them from consideration, while
elements of lesser importance are multiplied by smaller constants. The use of constants allows the control
system to be finc tuned to increase optimality and essentially reduces the trajectory optimisation problem
from finding the cone and clock angle control history to finding a small set of constants, Thus, the
optimisation process has only a few data points to delcrmine which then in-turn determine the sail control
angle history for the best-casc trajectory, rather than the optimiser trying o find several hundreds of data
points as traditionally performed in helioceniric trajectorics, or thousands of data points as would be reyuired
in planci~contred trajectories. The selection of appropriate constants is intuitive and typically follows the
mission goals, such as seen for the GeoSail mission. However, engineering judgement (or automation)
allows a more rapid convergence towards the most Lavourable solulion. If i is unclear which orbital

clements should be focused on, an initiai guess can be obtained by wtilising the A"D scores only, prior to then

introducing the constants in order to improve optimality,
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53  Mercury-Forced Sun-Synchronous Orbits

The close proximity of Mercury to the Sun means that cven a relatively modest level of seil performance can
provide a significant thrust. Mercury has a reciprocal of flattening over eightcen times that of Earth, with a
J; value of only 60 x 10°% although the rcciprocal of flattening is often mislakenly quoted as being infinite.
Thus, once in orbil aboul Meroury it is not possible to create a natural sun-synchronous orbit; a supplemental
thrust is rcquired to replace the oblateness utilised at Earth. Leipold, et al showed that this supplemental
thrust could be provided by a modest solar sail in a highly elliptical polar orbit, consequently ailowing the

35,129 - 131 Ag guch the thermal

spacecraft to maintain station at or near to the solar terminator of Mercury,
lvading due to reflection and re-radiation from Mercury’s surface is significantly reduced, while the severe
thermal cycling encountered by numerous passes through the shadow cone is also eliminated. It is
considered that the optimal remote sensing orbit places the spacecratt at a small offset from the solar
lerminator, rather than directly overhead as the low Sun angles near the terminator on the dayside of the
planet allow greater topographic discrimination in near-constaut illumination conditions. Finally, duc to
Mercury’s rotational and orbital period 3:2 resonance, the Sun-synchronous polar orbit allows complete
surface covetage in only 88 days. Ifowever, due to the optimal orbit offset from the solar terminator it is

necessarv to remain in orbit for 176 days te acquire full surface visual coverage.

Recreating the trajectories published by Leipold, et al it is found that the orbit is an unstable equilibrium. It
has been shown previously that the ascending node angle cannot be varied without also altering the argument

: 196, 197
of pericentre angle. "

It was similarly noted by Leipold, ct al that the argument of pericentre experienced
a long period oscillation due to the sail thrust vector. Over short timescales the small variation in argument
of pericentre results in onty small variations in semi-major axis and cecentricity. However as the argument
of pericentre rcaches the peaks and troughs of its long period oscillation, the nominal pericentre altitude of
200 kim varies as low as 70 km and rises as high as 400 km, prior to collision with the Hormian surface.
Collision typically occurs around 100 to 140 days [rom the inilial stact epoch, depending on initial
conditions, It thus becotnes clear that while the optimal science orbit has a very low pericentre, one requires

either an active sail to achieve this, as will be discussed later, or an initially greater altitude,

The allowed Sun-synchronous orbits for a given sail characteristic acceleralion can be determined through
analysis of the variational eqguation of motion of the ascending node angle, as given in Equation 68.
l‘ollowing Leipold et al one can integrate Equation 68 over an orbit period, assuming inclination, semi-latus
rectum and argument of pericentre are constant over the orbit period.”' Further, the sail orientation is
assumed constant over one orbit revolution and is dirccted normal o the orbil plane. That is to say, « = 0 deg
for orbits along the terminator and a = 10 deg for orbits offsel from the terminator by 10 deg. Changing the

integration variable from timc to true anomaly allows the derivation of Ecuation 159.
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The precession of the nade can thus be determiined using the orbit period as,

Q=N dv Fquation 160

2 .

Ju [] - eZ] _[ 7 sinfw+v)
2;'2'\/;; sini Y=o (14 ecos V)S
Cxtending the analysis performed by Leipold et al in Reference 131 one can generate contours of the
potential Sun-synchronous orbits for a given sail acceleration or offset angle from the solar terminator, thus
enabling rapid assessment of different potential scenarios. Analysis of Bquation 160 with o = "/, or *%, and

setting { = /4, such that sin / =1, allows the derivation of Equation 161 as

—2
cosv

27
a= J dv Bquation 161
2::9,/— k

i+cwbv

The required rate of change of ascending node angle for a Sun-synchronous orbit is found to be the specific
angular momentum of Mercury with respect to the Sun divided by the square of the Mercuty ~ Sun distance.
Thus, the required rate of change of ascending node angle varies from 1.28 x 10 rad s 0 5.57 x 107 rad 5!
depending on Mercury’s position. Note however that as Mercury orbits the Sun the sail acceleration varics
as the inverse square of the solar distance, thus the induced rate of change of ascending node will vary
similarly, as required. Thus, no alteration in the orbit is required during the Hermian year as was also found

by Leipold, et al."**

Solving Equation 161 for a given eccentricity allows the corresponding semi-major axis for any given sail
acceleration level to be determined. lor example, the orbit defined previously by Leipold, et al for atilisation
within a future science mission was for a sail witl characteristic acceleration 0.25 mim s™ at zero offset from

the solar terminator,'® - 13!

Pericentre altitude was defined as 200 km and apocentre altitude is quoted as
“approximately 6350 km>. 1t is found that the actual idealised value is 6293.63 km for such a scenario.
Bxtending the analysis for a sail characteristic acceleration of 0,25 mm s Figure 60 shows a plot of
pericentre altitudes versus apocentre altitndes for a range of solar texminator offset angles. Above a 50 deg
offset angle froin the solar terminator the orbit begins to intersect the shadow cone; recall that for an orbit
offset from the solar terminator one requires to maintain the sail [orce vector normal w the orbit plane and as
such the fixed sail pitch angle equals the nominal offset angle. Figure 61 shiows a plot of pericentre altitudes
versus apocentre altitudes for a range of sail accelerations and orbits with solar terminator olffscl angles of 0
deg and 10 deg; note that the 0.25mm s contours correspond to the ¢ deg and 10 deg contours shawn in
Figure 60. Figure 61 shows that the increased sail characteristic acceleration allows for the apocentre 1o be
lowered for a given pericentre value, while the increase in solar terminator offset angle requires an increase
in apocentre altitude for a given pericenire value. Note [urther that the orbits defined in Figure 60 and Figure

61 correspond to the required actual thrust vector and have not been corrected for an imperfect sail surface.
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Figure 60 Pericentre versus apocentre contours for ¢, = 0.25 mm s7 forced Sun-synchronous orbits, at a
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Figure 61 Pericentre versus apocentre contours for orbit planes at 0 deg (left line within each pair) and 10 deg

(right line within each pair) offset from solar terminator at a range of sail characteristic accelerations,
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For a fixed sail orientation an increased pericentre altitude of 500 km is selected; noting that Leipold, et at
first suggested a pericentre altitude of 600 km before fater reducing this to 200 km.'® The sail orbit is
displaced from the terminator by 10 deg. I'rom Equation 161, Figure 60 and Vigure 61 the required apocentre
altitude is found to be 7109.9 km, for a sail characteristic acceleration of 0.25 mm s* Note that the sail
characteristic acceleration is fixed at 0.25 mm s for the remainder of this section when discussing sail
operations at Mercury. Utilising Model 3 the trajectory is propagated over a 180 day period for a forced Sun-
synchronous orbiter with pericentre over the northemn geographical pole. A start epoch at 05 Fuly 2010 gives
an initial ascending node angle of 54.5 deg. The ascending node angle varies from this initiai value to 360
deg and back up to approximately 54.5 deg after one Hermian vear, The rate of change of ascending node
varies throughont the Hermian year, as cxpccted, thus maintaining a separation angle from the solar
terminator of approximately 10 deg. The orbit inclination remains within 10.45 deg and ~0.27 deg of
90 deg, similarly thc argument of pericentre varics minimally, It is found that both the pericentre and
apocentre altitudes vary considerably from the initial values quoted. Large variations could potentially
impact the science goals of the mission and as such active sail control could patentially be used to minimise
pericentre altitude variation, while also lowering the pericentre altifude. Such an active sail control sysiem
will be discussed in Section 5.3.2. The 180 day propagation described above lerminates on 01 January 2011
with the corresponding orbiter position elements defined in Table 6, Note that the final pericentre altitude is
361 km above its nominal vatue while apocentre is below its nominal valuc, thus giving a much morc circular
orbit, Inclination and argument of pericentre arc both close to their nominal vaiues, while the ascending node

angle places the orbiter ground track approximately 10.3 deg alicad of the solar terminator.

The elements detined in Table 6 will now be used as starting conditions for an orbit transfer to a south-pole
pericentre orbit. Such a transfer would potentially enable high-resululion mapping of the entire surlace of
Mercury with a single spacecraft. Note that Leipold, et al proposed using two spacecraft for

such coverage.'3®

Orbit Element o Value Unit
Semi-Major Axis 6258.2 km
Heeentricity 0.47 -
Altitnde of Pericentre 861.2 km
Altitude of Apocentre 6775.8 km
Inclination 90.26 deg
Argument of Pericentre 89.84 deg
Ascending Node 75.11 deg
True Anomaly 228.44 deg

Table 6 Orbit elements after 18Q day forced Sun-synchronous orbit.



5 Planct-Centred Orbit Transfers Using a Solar Sail and Locally Oplimal Control Laws 114

$3.1  Transfor between Sun-Synchronous Orbits Using A"D Blending

A direct transfer from a north-pole pericentre o a south-pole pericentre forced sun-synchronous orbit is
relatively simple. The argument of pericentre and ascending node angles must be rotated through 180 deg,
while the nominal value of all the other ¢lements remains unaltered. However, a direct and simple transfer
would require the orbiter to pass directly over the sub-solar point and through the planetary shadow cone.
The transfer orbit is thus optiniised such that the orbiter does not pass through the plaactary shadow cone at
any point. The primary optimisation cost fuuction hence becomes spacecraft thermal constraints rather than a
niinimum time transfer. Using the orbit elements in Table 6 as the initial conditions for the orbit transfer, the
target elements are defined in Table 7. Several potential slrategies can be adopted to climinate plunetary
shadow from this transfer. The ascending node angle could be rotated very rapidly or the orbit velocity could
be reduced to approximately zero aand then the direction reversed on & parabolic orbit al a large orbit radius.
This second option however would require the orbit energy to approach zero and would require a very high
level of navigation accuracy. Altematively, the adopted strategy was to raise the orbit cnergy and circularise
the orbit, allowing the planet to rofate rapidiy beuneath the orbiter. The use of a circular orbit also simplifies
the transfer, as the argument of periccntre can be selectcd as eccentricity rises again, rather than actmally
rotating the orbit through 180 deg. The targeting of a continually varying ascending node adds an additional
complication to the optimisation process. It is found however that the A" blending method handles such a

condition weli.,

The transfer trajectory is splil inlo eight phases and propagated using Model 3. The first phase of the
trajectory taises the orbit cnergy using. the scmi-major axis control law exclusively for approximately 27
days. Subsequent phases have similar intermediate aims, which all coniribute towards the final complete
trajectory. For example, the purpose of the second phase is the reduction of eccentricity to zero, while also
targeting an ascending node value which aligns the orbit correctly for passage of the ascending node / Sotar
terminator offset angle through 90 deg, when avoidance of the shadow cone is critical. The constant by

which the A"D score is multiplied is determined by the relative importance of each element during that

Orbit Element Value Unit
Semi-Major Axis 6244.65 lan
EBccenfricity 0.53 -
Altitude of Pericentre 500.0 km
Altitude of Apocentre 7109.9 km
Inclination 90.00 deg
Argument of Pericentre 2700 deg
Ascending Node (L4 -+ 10% + 180° from N-pole value deg
Trie Anomaly 228.44 deg

Table 7 Target orbit elements tor forced Sun-synchronous orbit with south-pole pericentre.

R
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particular phase of the trajectory, hence in phase 2 the eccentricity and right ascension angle have high
constants and the semi-major axis constant is low. Additionaily, at ceriain times the target eccentricity is set
to zero, rather than that given in Table 7. This was found to reduce transfer time which while not the primary
cost function of the transfer remains of critical importance. Furthermore, at certain times the control laws are
not aliowed to automaticaily determine which direction they should be driving the orbit; instead they are
forced to always increase a certain element irrespective of current and target values, For example, the
ascending node angle is always increased and never decreased. This has a slightly different effect from
altering the target value, as the A°D score is affected in a different way but is done for similar reasons.

Selection of such sirategies is through engineering judgement.

Analytical analysis of Mercury, Sun and spacecraft position vectors can be used to confirmn the entire transfer
trajectory is shadow free. Recall from Section 3.4.2 the spacecratt shadow parameter is defined in Equation
124, thus using Equation 126, Equation 128, Equation 129 and Equation 131 the critical shadow parameter

for penumbra conditions is defined as,

RM R.S' — RM

p= Il sin{arcsiu[WJ + arcsin[ﬂﬂ Equation 162
o

Note in Equation 162 the radius of Mercury is not altered by an atmospheric constant as in Equation 129,
since Mercury has only a very tenuous atmosphere. The analysis concentrates on penumbra shadow as this
ensures the sail remains within full sunlight at all times. 1f the magnitude of the spacecratt shadow parameter
is greater than the magnitude of the penumbra critical shadow parameter then the spacecraft is in complete
Sun light on the night-side of the planet and if the shadow parameter is less than zero then the spacecraft is
on the dayside of Mercury and thus in complete Sun-light, as discussed in Section 3.4.2. Post-processing the
spacecraft shadow parameter output vector from the trajectory analysis one can remove the terms which
correspond to the spacecraft being on the day-side of the planet. Figure 62 shows the penwmbra critical
shadow pavameter through the transfer trajectory when on the planctary night-side. I is scen that at all times
when the spacecraft is on the night-side of the planet the spacecraft shadow parameter is greater than the

pcnumbra critical shadow paramctcr, thus confirming the trajectory is entirely shadow free.

Figure 63 shows the orbit argument of pericentre and inclination angles, which are shown to converge with
their target valucs, whilc the right ascension angle is seen to tetminate 10 deg ahead of the sclar terminator.
Finally, Figure 64 shows the altitude of pericenire and apocentre throughout the 142.3 day trajectory. Note
the orbit eccentricity peaks at day 30, prior to an cxtended period where cecontricity is very low, which
corresponds with the rapid vaciations in argument of pericentre angle in Figure 63. Figure 64 shows that both
pericentre and apocentre converge well with the target values; with all the orbit elements reaching

convergence with ‘T'able 7 values on day 142 of the simulation.

"
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The transfor trajcctory crcated using A'D blending requires numerous rapid sail slew manoeuvres.
Furthermore, the time optimality of the transfer at approximately 142 days is difficult to evaluate. However,
recall that this was not the primary cost function of the transfer. The transfer (rajectory is constrained by
spacecraft thermal considerations and is verified as being shadow free. Tt is thus possible to generate a
shadow fiee transfer trajectory between a north-pole pericentre forced Sun-synchronous orbit and an
equivalent south-pole pericentre orbit. Moreover, one can state that the use of A"D blending has enabled

such a transfer to be generated much easier than would be possible with conventional optimisation tools.

5.3.2  Forced Sun-Synchironous Orbit with Active Sail Control Using A"D Blending

Onc of the significant attractions of using a solar sail to generate a forced Sun-synchronous orbit is the lack
of sail control requirements. ‘t'he sail pitch angle is constant at all times through the orbit and as such sait
attitude control could be maintained by mostly passive methods. If the sail were used to deliver the payload
into Mercury orbit then an active sail control system would be required for thc Earth — Mercury transit and
the capture spiral. However, if the sail is delivered to Mercury by a chemical, eleclac or combination of
systems then it could be deployed in Mercury orbit, allowing a relatively small, simple and low cost solar sail
1o be utilised. Such an approach would appcear to be the best approach for a near-term, Jow to medium risk
mission, as sail capture manoeuvres typicaily require a high sail slew rate capability and increase mission
risk. It is worth noting however that sail deployment alter being stowed for so long in space may present
vnique and complex design issues. ‘I'he polar nature of the target orbit in this Sun-synclironous scenario

allows a fixed sail pitch of arctan(]f’\rz}, the optimal fixed sail pitch angle as derived by Equation 155 in

r
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Section 4.1, to be utilised while spinning the sail clock angle through 360 deg each orbit. Such a fixed piich
caplure trajectory can actually be accomplished in a marginally shorter time than the locally optimal steering

strategy requircs. Both fixed pitch and locally oplimal trajectories are shadow firee.

The primary requirement of an active sail control system for a forced sun-synchronous orbit is clearly that the
asconding node angle is rapidly rolated. It is therefore logical to investigate the use of the ascending node
control law exclusively. The conirol law autonomously selects whether to increase or decrease the ascending
node anglc bascd on the current and target values. It was found however that the variation of pericentre and
apocentre allilude through a single Hermian year is considerably more than the fixed sail pitch scenario over
two Hermian years. This is a direct resuit of an increase in the amplitude of the long period oscillation of the
argument of pericentre, as discussed earlier. It was also tound that the right of ascension angle follows the
solar terminator much more poorly as a direct result in the substantial variations in orbit size and shape. Tt is
also noted that the inclination angle vacies by as mwuich as -+5 deg and -6 deg from the nominal value of 90
deg. Xt is thus evident that an active sail control system must consider more than just the right ascension

control law due to the unstable nature of the orbit.

It is found that in the fixed sail pitch scenario the orbit offset from the solar terminator is not a constant,
instead varying from plus ten degrees, the nominal value, to as low as +3 deg and as high as +14 deg from
the terminator. With such wide variations in the offset angle the surface illumination conditions would not
be constant. Thus it is required that the active sail control system provide a much more constant solar
terminator offset angle and hence a much more constant surface illumination angle. [t was also mentioned
carlier that an active sail control system could potentially allow a reduction in pericentre altitnde. Such a
reductlion increases surface resolution imaging for science data. Accordingly, an active saif control systein
for a forced Sun-synchronous orbit is beneficial if it provides an improvement in swrface illumination
consistency and an increase in surface imagc reselutions, without any adverse effects on other orbit elements
and parameters. During the fixed sail pitch scenario the offsct angle from the solar terminator, the orbit
eccentricity and seini-major axis cach vary considerably. It is thus logical that when first attempting to
generate an active sail control law one would attempt to contro} only these orbit elements. It was found
however that when one controls only these elements that the orbit inclinailion and argument of pericentre vary
significantly more than in the fixed sail pitch scenario, primarily due to the coupling in the out-of-plane
perturbation lerms. As a result of these initial findings it is apparent that an active sail control system must
control orbit size and shape, while also considering the exact orbit plane location rather than just its

ascending node angle.

When propagating station-keeping trajectories using the A"D blending method the sail pitch angle is set at
given discrete time-steps; typically these time steps are equal to or less than a quarter of the nominal orhit
period. The pitch and clock anglc are set by the cwrent orbital elements without any forward-looking
considerations through the duration of the time-step. The use of discrete time-steps has two objectives;
primarily in the forced Sun-synchronous scenario it is implemented in order to reduce computation costs, as
the variablc step-size integrator has a tendeney to lake very small step sizes when the current and target

elements are close together. By fixing the sail pitch for a given period of time the integrator can propagate
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the orbit, while maintaining calculation accuracy without readjusting the sail at very small time-steps. Note
that although the sail pitch is set in discrete time-steps the integrator is still variable step-size and typically
takes many steps during each discrete pitch angle setting, The use of discrete sail pitch angle settings also
has the effect of removing the potential requirement for multiple large angle slews in a very short period of
tine. Furthermore, if the discrete settings are suitably far apart the time required to slew the sail between
scttings can become significantly shorter than cach discrete pitch time step; hence sail slew rate effects arc
minimised within the trajectory simulation. Such a scenario is investigated in Section 5.4 where A'D

blending is applied to station-keeping of the GeoSail trajectory.

The use of active sail control to generate a forced sun-synchronous orbit at Mercury allows the pericentre
altitude to be significantly lowered. It was found that pericentre could be taken below 100 kn and easily
maintained within a narrow range of altitudes, However it was felt that altitudes below 100 kin were
undesirable, partly for science data acquisition and that in order to maintain very low pericentre values within
safe bounds it was required to relax conirol of other orbit elements. As such the nominal forced Sun-
synchronous orbil bas as a 100 kin pericentre altilude and a 7500 km apocentre altitude, with ground track
displaced 10 deg alicad of the solar terminator. Using the constants detailed in Table 8 the final weight
functions utilised to gain a forced Sun-synchronous orbit at Mercury with A“D blending sctting sail pitch and
clock angle once per hour are gained. [t was found that the control method had a tendency to bring the
ascending node angle 10 deg ahiead of the terminator and then allow it to drift backwards, before then acting
to relurn it towards the nominal value. As a result the average offset angle from the solar terminator tended
ta be less than 10 deg. Therefore the target ofiset angle was set at 10,25 deg, forcing the ascending node
ahcad of ils nominal value and then allowing it to drift backwards through the nominal value, hence gaining
an average offset angle much closer (¢ the nominal, as seen in Figure 65. It is also scen in Figurce 65 that the
offset angle is maintained within very tight bounds at certain times of the Hermian year, for example in days
0 to 20 and 80 to 100 the offsct angle is maintained with & 0.2 deg. Yot at other times the offset angle spikes
at values as much as 0.5 deg away from the nominal. Such evenis are tound to correspond to Mercury's
perihelion passage and the significantly increaged levels of solar radiation pressure acting on the sail. The
ability of the A"D blending method to maintain orbit control during such large fluctuations in orbit
perturbations itlustrates ihe adaptive nature of the control system, Recall from Figure 44 that the solar
radiation flux varics from four times the valuc at Earth, at Mcrcury aphclion, to just over ten times at
Mereury perihelion, a variation of 250 % in orbit perturbation magnitude during cach Hermian year. Note
that the maximum recorded sail pitch angle during the active sail control trajectory was 70 deg, thus while the

active sail provides excellent orbit control it would require an agile sail.

Figure 65 shows the offset angle from the solar terminator for a fixed sail pitch angle ol 10 deg and for active
sail control. As stated earlier, it is seen that the fixed pitch sail has a much larger variation in offset angle
than an actively controlled sail, which thus provides a much more consistent level of surface illumination for
science data acquisition. Fipure 66 shows the displacement of periherm and apoherm from their nominal
values for fixed sail pitch and an active sail control. The active sail significantly reduces variation in orbit
size and shape, with pertherm varying by 40 km and apoherm by less than 100 km. Hence the active sail

control would provide a much more constant surface resolution during science data acquisition. A final
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consideration with the use of an active sail control system is that it should not adversely affect the orbit
elements that were previously noted to vary little with a fixed sail control system. It was found that both the
fixed sail pitch and active sail contral systein result in only very small variations in inclination and argument

of pericentre.

Parameter Constant factor on A"D score
Ecoentricity 8

Scmi-Major Axis 6

Inclination 20

Argument of Pericentre 4

Ascending Node 35

Radius of pericentre = Radius of apocentre 0

Table § Constants by which A"D scares arc multiplicd to gain final weight functions during forced Sun-

synchronous orbits with active sail control.

14

—%
nN

-
=

&

3 P
N,
\,

Actiy
cOo

[}

E

Cffset Angle from Solar Terminator (deg.)

2 i i i i i i j
0 . 20 40 80 80 100 120 140 160 180
Days from Start Epoch

Figure 65 Orbiter/solar terminator offset angle, fixed and active sail control,
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Figure 66 Displacement of periherm and apoherm from nominal values, fixed and active sail control.

54  GeoSail Qrbit Control Using A™D Blending

The use of active sail control for forced Sun-synchronous orbits ai Mercury has been shown to significantly
improve orbit uniformity, as illastrated in Figure 66. The short orbit period however neccssitates many rapid
sail slew manoeuvres. Conversely the GeoSail mission utilises a much larger orbit, with a rominal period of
just over four days. The GeoBail mission concept is discussed in Section 1.5, The A™D blending method for
aclive sail control is considered within the GeoSail mission for a similar purpose to that for which it was
considered within the Mercury forced Sun-synchrotious orbiter mission. That is to say, while the GeoSail
orbit is a more naturally stable scenario an active sail control system is considered (o maintain a more precise
orbit than would otherwise he attained by a fixed sail pitch scenario, with the corresponding oscillations in
orbit elements. Additionally, it is considered whether the application of a fixed upper limit to the sail pitch
angle can be implemented. The imposition of an upper pitch angle means (hat one can expect much smaller
sail slew angles between discrete sail pitch seltings. It also simplifies spacecraft design if the solar aspect
angle is more constant. Setting the duration of cach discrete sail pitch augle as one day, just under a quarter
of the nominal orbit period, it was found that using a single set of constants on the A”D scores good otbit
control could be maintained down to an upper pitch angle of 15 deg. Reduction of the maximum pitch to 10
deg was found to be overly restrictive and the control system required an increase in sail performance. ‘The

required sail acceleration is determingd by consideration of the orbit size and shape as defined in Reference

2

102; the required sail characleristic acceleration is 0.0999 mm s
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Model 6 is used within the remainder of this section. Using the constants detailed in Table 9 the final weight
functions utilised to generate a GeoSail: orbit with active sail control are obtained. Note that the factor by
which the argument of perigee is multiplied by is much larger than the other control laws. The value of cach
factor reflects the importance of the orbit element, Similar to the Mercury forced Sun-synchronouvs orbit one
finds it is beneficial to target the primary orbital clement, the argument of perigee, ahead ‘of the nominat
value. Thus, the argument of perigee is targeted 0.2 deg ahead of the Farth-Sun line. The maximum sail
pitch angle allowed is 15 deg; thus if the blended locally optimal pitch angle is greater than 15 deg the pisch
angle is set as 15 deg, with the clock angle allowed to take any value between 0 deg and 360 deg, Similar to
the Mercury forced Sun-synchronous scenario, the sail control angles are set by consideration of only the
current orbit elements and no forward-looking considerations are taken. Figure 67 shows the displacement of
perigee and apogec from the nominal values of eleven and (wenly-three Barth radii respectively, for tho fixed
sail pitch and active sait control scenarios. It is found that the active sail control scenario using A™D biending
to select the sail control angles reduces the variation in orbil periges and apogee, thus providing a much more
consistent orbit shape and size. The radivs of perigec is seen in Figure 67 to be centred on a value of
approximately 10.8 Earth radii, rather than the nominal value of 11 Carth radii. If desired the target perigee
could be raised to 11.2 Earth radii, thus:the orbit would shift towards the nominal GeoSail orbit in a similar
manuct to that used for aceurate largeling of the argument of perigee. Note however that this is a magnetotail
science mission and as such the primary science reguircment is for accurate control of apogee and the

argument of perigee thus no such adjustineat was adopted.

Figure 68 shows the variation in the angle between the Harth-Sun line and the orbit major axis for a fixcd and
active sail. Note that the orbit major axis and Earth-Sun line vary by as much as 3 deg for a fixed sail pitch,
whilc the A"D blending method reduces this variation to less than 1 deg. Finally, Figure 69 shows the sail
control angles generated by the A"D blending method for the GeoSail scenario with active sail control
Typically the sail pitch angle is 15 deg with the clock angle rotating the sail thrust vector either left or right
of the orbit major-axis. As such the maximum required sail slew angle between discrete sail pitch settings is
30 deg; however alse note that on occasion the sail does not move for as much as three to five days. The
technology requirement for sail slew capabilities in an active sail mission scenario arc thus defined as 30 deg
in 1,25 — 2.5 hrs, that is to say in 5 — 10 % of the duration of each discrele sail sefting. The time Jor each
slew manocuvre is thus significantly less than the duration of each discrete set of control angles, GeoSail is a
demonstration class mission and as part of an extended mission active sail comlrol using A"D blending could

be demonstrated over and above the basic solar saif demonstration capabilitics of the GeoSail mission.
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Parameter Constant factor on A"D score
Radius of pericentre 35

Radius of apocentre 25

Semi-Major Axis 2

Argument of Pericentre 170

Eccentricity = Inclination = Ascending Node 0

Table 9 Constants by which A"D scores are multiplied to gain final weight functions during GeoSail

trajectory with active sail control.
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Figure 67 Displacement of perigee & apogee from nominal values, fixed and active sail control.
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6  Heliocentric Orbit Transfers Using a Solar Sail and L.ocally Optimal Control Laws

This section evolves the contrel method developed in Section S to allow the rapid generation of heliocentric
trajectories for cither, top-level analysis of mission concepts where only a neas-optimal trajectory is required,
or for generation of near-opfimal trajectories as initial gucsses for further optimisation by, for example, a
Scquential Quadratic Programming (SQP) algorithm. The use of locally optimal control taws has previously
been stated as a means of finding an initial guess for optimisation algorithms.” ** However, little work has
been presented as to the validity of such claims. A recent paper used the lacally optimal energy
gain/reduction control law to generate solar system escape trajectories which for high-perforinance sails were
relatively close to those produced using complex optimisation procedures.'™ ‘I'his work however struggled
to produce near-optimal cscape trajectories when the sail performance was lowered and the trajectory became
more complex. 1t is also noted that for a high performance sail the solar system escape trajectary is relatively
simple; hence the adopted method within Reference 198 would be expected to approximate the

globat optimal.

Enitially the algorithms used to blend the control laws will be modified in-order to improve their effiviency.
The new A"'D algorithms will then be used to analyse three dilfferent heliocentric solar sail mission scenarios,
where the results will be comparcd with similar results generated wsing & SQP method and an evolutionary

neurncontroller, TnTrance, 37 154 199200

6.1  A"D Score Evolution

In Section 5 the A"D blending method is used for planet-centred trajectories, thus when caleulating the deficit
score of each clement Equation 122 and Equation 123 must be applied. As a result when blending many
elements, as in Sections 5,3.2 and 5.4, the calculation of the deficit score can be a computationally intcusive
phase of cach trajectory step. Conscguently in Section 5.2 the deficit score is found through application of an
ideal solar sail force model. However, within this section Equation 122 and Bquation 123 need not be
applied as the Sun-sail line reference frame is coincident with the RTNV reference frame. The deficit score is
thus evolved such as to be defined through the application of the same sail force model used to determine the
sail thrust vector. The assumption of an ideal sail when deriving the conirol Jaws now no longer

compromises the control law efficiency when a non-ideal sail force model is vsed.

6.2  Interstellar Heliopause Probe

The core of an Interstcllar Heliopause ’robe mission was outlined in Section 1.5.2, Recail that the IHP
mission is a TRS; as such the mission requirements within this dissertation follow the TRS requircments.
These state that the spacecraft should be delivered to latitude 7.5 deg and longitude 254.5 deg at 200 AU
from the Sun, in the ecliptic coordinate frame, that is to say the nose of the heliosphere. The spaccerafl

should reach a solar distance of 200 AU in 25 years or less.!% '!! Recall further from Section 1,5.2 that the
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sail should be jeltisoned by the spacecraft al 5 AT to eliminate any potential interference caused by the solar

sail on the local space environment, %%

Solar radiation flux drops off as (1/?), thus a solar sail becomes increasingly ineffective at large solar
distances. Equally, solar sails become increasingly effective at low solar radii. Tt was thus realised by Sauer
that a closc approach of thc Sun by a solar sail would allow sufficicnt velocity to be gained to rapidly cscape
the solar system. Such a manoeuvre is often termed a Solar Photonic Assist (SPA).%> 1% 126127 The ogic
behind a SPA trajectory is that the perihelion velocity, for a fixed perihelion radius, increases as the aphclion
radius is increased. Thus, the required energy change to gain escape velocity trom a fixed perihelion radius
is minimised for ever increasing aphelion radius. However, the gradient of increase in perihelion velocity is

reduced as aphelion radivs is increased, as shown in Equation 163,

#

-1
2 .
v, = _.U 1_{1+ ’_ﬂ—l Equation 163
?

It is thus clear that at perihelion passage the instantancous aphelion radiug should be maximiscd, henee
miniinising the required enetgy change for solar system escape and maximising the solar system Lyperbolic
cxcess velocity. However, if the radius of aphelion passage is too large the sail will spend a prolonged period
within the inner solar system and the total irip time to 200 AU will be increased. Thus, an oplimal aphelion
passage radius must exist, above which the extra hyperbolic excess velocity gained throngh an increased
aphelion radius will not compensate sufficiently for the extra time spent in the inner salar system. The
optimal aphelion radius will increase as the target solar radius is increased. It has already bheen shown that
the optimal aphelion radius is reduced as sail performance is increased.!™

In Section 1.4.2 it is discussed how close a solar sail can approach the Sun and that thc traditionally accepted
minimum radius is approximately 0.25 AU, set through consideration of the thermal bounds of the sail [ilm
substrate. However, recall also from Section 1.4.2 that the real thermal limit {8 set by constraints on not only
the saif film but also on the booms, other sail components and the therinal constraints of the spacecrall
attached ¢o the sail. A thermal Limit of 0.25 AU will be adopted for most trajectories within this sub-section,
however as A'D blending enabies rapid generation of near-optimal trajectories the impact on ttip time of
varying the thermal limit will also be considered. Similarly, the effect of a non-ideal sail will be analysed
through the use of Modei 4, while a uniformly bright finite solar disc will be considered through the use of
Madel 5 and optical surface degradation considered through use of Model 7. Finally, removing the minimum
radius bound and replacing it with a temperature boundary will be considered as has previously been
performed by Dachwald in Reference 137 and 154. Note that some work has been conducted previously
using this non-ideal sail force model for rendezvous trajectories and for Ileliopause trajectories,” 1 199-203
Thereby it was found that flight times arc up to 5 % and on occasion up to 10 % longer for the non-ideal sail

force model.

REL
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The first phase of a SPA trajectory, for high-performance sails, is the increase of orbit eccentricity. It was
found that by using the eccentricity locally optimal control law the break-point between a single and dual-
loop trajectory could be identified as shown in Figure 70, generated using Model 1 and Model 4 which are
used uniess otherwise stated within the remainder of this section on HIP trajectories. The trajectory was
propagated from Earth departure until the first peribelion passage for a range of sail characteristic
accelerations. Tt was found the miniinum characteristic _accclcratiou for a singlc loop trajectory with thicrmal
limit 0.25 AU is 1.5 mm s, for an ideal sail. A characteristic acceleration below 1.5 mm s requires a dual
SPA lor an ideal sail with thermal limit 0.25 AU. For a non-ideal sail the break-point rises o 1.6 mm s7, as
shown in Fipure 70. It was found that even though a characteristic acceleration below the break-point can
escape the solar system without touching the minimun radius, the trip time to 200 AU is reduced if a second
revolution about the Sun is added to bring the final solar pass down to the minimum bound. In the same way,
if the characteristic acceleration is reduced sufficiently a third revolution is required to attain the minimum

allowed radius and to minimise the trip time to 200 AU.

6.2.1 Minimmum Performance Single I.oop Trajectory with Tdeal Sail

Having established the minimum characteristic acceleration required for an ideal sail with thermal limit ¢.25
Al $o reach 200 AU with a single SPA is 1.5 mm 5% now consider a two-dimensional scenario; allowing
rapid quantification of the problew in hand prior to introducing an inclination change to the trajectory design.
Initially, the trajectory was gencrated using only the eccentricity control law. However, this results in a
minimum radius of less than 0.25 AU. The trajectory was thus split into two phases, an cceentricity increase
phase and an energy gain phase, with the first finishing after 639.6 days. The second phase uses the semi-

major axis control law to raise orbit energy in a locally optimal manner, with the sail being jettisoned at
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5 AU. When the controller is switched from eccentricity to semi-major axis the instantaneous radius of
perihelion increases unlil perihelion passage. I is thus a simple matter of iteration (o [ind the correct swiich
poial to match the correct minimum radivs. This initial trajectory was found to reach 200 AU in 22,96 years
and is shown as the left most data point in Figure 71. The aphelion passage of this trajectory occunred
at 2.50 AU

To [ind the best-case 2D trajectory the aphelion passage radius must be varied. Using A"D blending one can
introduce the locally optimal pericentre control law to reduce the aphelion passage radius or the setni-major
axis locally optimal control law to increase the aphelion passage radins. Il was found that an increased radivs
was required. Phase | thus changes from the eccentricity control law only, to setting the eccentricity congtant
on the A"D score as otie and semi-major axis constant as the values shown in Figure 71. Note that Figure 71
is not constrained to the target longitude and is instead for a fixed Earth departure date of 03 Janwary 2030,
approximately at Earth perihelion passage. It was found that the most favourable 2D trajectory to 200 AU,
with minimum radius 0.25 AU, using an ideal sail with characteristic acceleration 1.5 mm s has an aphelion
passage ol approximately 2.83 AU and reaches 200 AU in 22.73 years. Note that the instantancous aphelion
vatue at perihelion passage is 10.7 ATU. Figure 71 also shows the velocity of the spacecralt at 5 A, the sail
jettison point, where it is noted that the spacecraft is travelling at 10.50 AU yr' in the most favourable
trajectory. One can increase this velocity to 10.51 AU yr* by increasing the aphelion passage to 2.90 AU.
However, this increases the trip time to 200 AU. Similarly, one can reduce the velocity at 5 AU to 16.25 AU
yr! by setting the aphelion passage at 2.5 AU. Tt is found that this trajectory is faster than the 2.83 AU
trajectory to a solar radius of 125 AU, showing that the optimal aphelion passage radius increases in line with

the target solar radius.
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Using Figure 71 one can now consider the introduction of inclination to the trajectory design, recalling that
the target point has latitude 7.5 deg in the ecliptic coordinate [rame. It is immediately clear that the change of
inclination is low and thus a high performance sail would be expected fo easily impart such an anglc change,
This angle change should clearly be regulated and as such the best-case trip time was generally found if the
inclination equalled its target value at the end of phase 1 of the {rajectory, L.e, immediately prior to the
beginning of the energy gain phase. This is a reasonably logical finding. Tncreasing the inclination during
the energy gain phase results in a less than optimal encrgy gain as the thrust vector is pulled out of the planc
of the velocily veetor, thus it cannot be entirely directed in the same sense, Similarly, if the inclination is
increased rapidly it results in a reduction of the instantaneous aphelion radius at perihelion passage, thus
reducing the spacecraft velocity at 5 AU when the sail is jettisoned. Using a start epoch of 03 January 2030
an initial analysis of 3D trajectories to match the THP requirenments sugpested that the optimal aphelion
passage wonld increase to just over 3 AU. However, it was found that the velocity at 5 AU would likely
remain very similar to the 2D case, with trip time also varying only slightly. A start epoch of 03 Januacy
gives an azimuth of order 230 deg at 200 AU. It is thus required that one rotates the orbit by approximately
25 deg to reach the nose of the heliosphere at 254.5 deg. The EHarth rotates 25 deg in approximately
24.5 days, assuming a circular Earth orbit, Thus, the optimal Earth departure date is estimated as 27 — 28
Jaunuwary 2030, Using this ostimate a launch window analysis was porformed for a 1.5 mm s™ ideal sail, with
a thermal limit of 0.25 AU. It was found that for 4 given launch date the spacecraft azimuth at 200 AU could
be varied by increasing or decreasing the aphelion passage radius, a larger azimuth being gained by
increasing the aphelion passage radius. Thus, for a4 given launch date there s an optimal aphelion passage
radius which will send the spacecraft to the correct azimuth at 200 AU and by varying the launch date the
required aphelion passage radius and thos the trip lime are varied, generating a lauoch window scan. I8 was
found that the best launch date for a 1.5 mm s ideal sail, with thermal limit 0.25 AU, was 26 T annary 2030.
Trip time to 200 AU is 23.17 years, with a spacecraft velooity of 10.47 AU yr't at 5 AU. The best open
azimuth 2D trip time found was just over 5 months (< 2 %4) shorter than the 3D trajectory, with the velocity

at 5 AU being very similar.

The lavnch date scan iz shown in Figure 72 from 23 January 2030 until 01 February 2030, with a maximum
azimuth error at 200 AU of £ 0.2 deg. Furthcrimorg, it is noted that the inclination / atitndce convergence is
within 10" deg for all three-dimensional IHP frajectories within this dissertation. The launch date scan
should repeat with a 1 year period, although small variations may occur due to the variation of the Earth’s
orbit with time. From Figure 72 it is noted that a delay from 26 January until 01 February results in an

increase in trip time of 80 days, or 1 %.

The radius of aphelion passage is plotted against trip time and velocity at 5 AU in Figure 73, where it is scen
that thc most favourable radius of aphclion passage is approximately 3.14 AU. The data points in Figure 72
map onto the data points in Figure 73, with 23 January at the right-hand side and 01 February on the lefi-
hand side. The constants applied to the A'D scores are mapped onto the data poinis in Figure 73; the
constant of eccentricity is not given as it was held constant at one. I'he constant of inclination has been

rounded to two decimal places within Figure 73,
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The 26 January trajectory from Figure 72 is shown in Figure 74, with. the corresponding sail control sngles
ghown in Figure 75; note the conc angle equals the pitch angle as this solution is (or an ideal sail. Note from
Figure 75 that the maximum sail pitch angle is 81 deg. However, it is seen that this maximum oceurs as a
short discontinuity in an otherwise smooth profile. The discontinuity in sail pitch angle is due to the
miniroum radius bound and does not represent the ncar-optimal nature of this trajectory as will be seen in
Section 6.2.5 when optical solar sail degradation is considered. T'he belief that optimal control angle profiles
wilt always be smooth is an inaccuracy if restrictions such as mininmm radius arc placed on the lrajectory.
Previously generated solutions within the public domain have used short coast-arcs to avoid a radius below
(he minimum allowed value; Figure 75 strongly suggests that coast arcs arc sub-optimal for this scenario of
SPA trajectory and perhaps for other SPA trajectory scenarios. The size of the discontinuity illustrates how
much of an effect the radius boundary is having on the trajcctory. A large discontinuity means the trajectory
would ideally pass much closer to the Sun, while a small discontinuity means the trajectory would ideally

only pass a short distance closer to the Sun.

The constants applied to the A®D scores for the 26 January trajectory in phase 1 (duration 9774 days) were,
eccentricity cqual 1, semi-major axis equal 0.54 and inclination equal 0.35602, with the second phase using
the locally optimal semi-major axis control law exclusively. The inclination constant is found iteratively,
such as to match the inclination to the target value as close to the end of phase 1 as possible. The variation in
the weight values through (he trajectory are shown in Figure 76. 1t was found that the sail ouly just reached
the minimum perihelion hound as shown in Figure 77, thus confirming that 1.5 mm 2 is indeed the
minimun ideal sail characteristic acceleration for a single SPA trajectory. From Figure 77 it is seen that the
inclination reaches its target value significantly before the SPA, allowing the sail to concentrate on gaining
orbil energy. If the sail is used beyond 5 AU only a small reduction in trip time is obtained. This is shown in
Figure 72 for a launch on 01 February where a saving of 1.75 % is made. This cotresponds with prior
results.'™* Furthermore, modelling the Sun as a uniformly bright finite disc (using Model 5) altered the trip
time to 200 AU by less than a fifth of a day.

To guantify the optimalily of the A'D blending method the best-case trajectory can be compared with
independently generated trajectories -using a SQP method and an evolutionary ncurocontroller,

137,154,192. 20 The yume sail characteristic acceleration, thermal limit and sail force model was used

InTrance.
in these methods, with the sail being jettisoned at 5 AU, Bach scenario begins with an Farth departore C; of
zero. The vplimal duration of the SQP generated trajectory, using 201 controi nodes, is shown in Figure 72,
where it is secn that the optimal luunch date was tound to be 01 Tebruary, giving a (rip time of 24.07 vrs,
2.79 % longer than the equivalent A'D trajectory on 01 Febrnary., The SQP frajectory passes through
aphelion al a radius of 2 AU, compared with the A"D blending aphelion of 2.7 AU. Furthermore, the
spacecraft has a velocity of only 9.7 AU yr'! at sail jettison, compared with 10.16 AU yr'! using AD
blending. It is interesting to note that the maximum pitch of the SQP gencrated control profile is 90 deg and
that the inclination does not reach its target value until after perihelion. The sub-optimal nature of the SQP

trajectory is troubling, especially the post-perihelion change of inclination. However it is proposed by the
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candidate that cither this trajeclory iy a local optital, which seems unlikely given the simple nature of the
search space or more likely is due to the uniform spacing of the nodes, such that the rapid perilielion passage
is not captured well. This however can only partially explain the sub-optimal nature of the SQP solution and
not the post-perihelion inclination change. Thus, to quantify the optimality of the A"D blending method only
fhe InTrance results can be used. The evolutionary neurocontroller, InTrance, is discussed in detail in
Reference 137, 154, 199 and 200. Notc that this method docs not require an initial guess to converge to an
optimal solution and can thus be left to run unsupervised. To maintain consistency the InTrance {rajectory
start epoch was fixed as 01 February 2030, thus allowing the sub-optimal nature of both the SQT and A"D
resutts to be found. Tt is seen in Figure 72 that the InTrance optimal trip time to 200 AU is 22.81 years,
which is 7 months shorter than the equivalent A"D trajectory and over 15 months shorter than the equivaicnt
SQP result. Furthermore, the In'l'rance solution has a velocity at 5 AU of 10.51 AU yr”), which is [aster than
the A™D trajectory and partly explains the faster trip time. The InTrance trajcctory has an aphelion passagc
ol 2.90 AU, which is greater than the A®D trajectory and fucther explains the improved irip time., Onc can
thus conclude that the A"D blending method has generated a trajectory to within 2.5 % of the best solution
found, while the SQP method has generated a trajectory which ig 5.25 % slower than the best solution. It is
noted that the reduction of the trajectory from a 402-dimension SQP solution, i.e. 201 nodes of pitch and 201
nodes of clock, into a 2-dimension A"D solution, that is to say finding the optimal weight of semi-major axis
and inclination, with the eccentricity weight fixed, results in a significant reduction in computational effort.
Tor example, if the solution is discretised every ten steps the A"D method would have 10? solutions, while
the SQP method has 10™” solutions, thus the computational effort is reduced by the order of 10, Note the
InTrance method optimises over many more nodes than the SQP solution, thus Inlrance is significantly more

compuiationally intensive than either SQP or A'D.

6.2.2  Minimum Performance Single Loop Trajectory with Non-Ideal Sail

Recall from Figure 70, it was estimated that a non-ideal sail, with a thermal limit of 0.25 AU, requires a
characteristic acceleration of 1.6 mm s? to optimally reach 200 AU with a single SPA. This scenario was
thus investigated to demonstrate the capability of A"D blending to cope with a more complex sail force
model. Ifigure 78 shows a plot of open azimuth trip time to 200 AU against radius of aphelion passage, with
constant of semi-major axis and inclination used in plase 1 also shown. Start epoch is set at 03 January
2030. Qnce again, the constant of eccentricity was equal to 1 at all times during phase one, The trajectories
were split into the same two phases as the previous scenario, with the inclination once again matching its
target value at the end of phase one. The minimum time trajectory comstants used in phase 1 were
eccentricity equat to 1, semi-major axis equal to 0.30 and inclination equal o 0.44437, with the semi-major
axis controller used exclusively in phase two. Tt is shown in Figure 78 that the minimum trip time found was
23.164 years, which is similar to the time found for an ideal sail with characteristic acceleration 1.5 mm s2,
as was discussed above. It is interesting to note that the minimum time trajectory from Figure 78 has a set of

very similar weight function plots as those shown in Figure 76.
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Figure 78 3D, open azimuth, trip timc to 200 AU against radius of aphelion passage, and constant of semi-

major axis controller in phase 1, with constant of inclination also shown.

The control angles for the minimum time trajectory from Figure 78 arc shown in Figure 79. Note thaf the
cone angle is no longer equal to the pitch angle as this scenario was caiculated using Model 4, Ongce again it
is noticed that the pitch angle plot is very smooth, with only a smail discontinuity of & deg at the end of phase
one, giving a maximum pitch angle of less than 67 deg. The very small size of the discontinvity shows how
little an effect the minimum radins has on this trajectory. No cruise phase was found to be required for this
trajectory once again suggesting thal such phases are sub-optimal, contradicting previous

69, 114, 126, 127, 20

assumptions. 1 Note that no attemnpt to verify the optimality of this trajectory was made using

SQP methods or InTrance,

6.2.3 A Dual-Loop Scenario

Having estabiished that the A™D blending method is capable of gencrating trajectories with an ideal and non-
ideal sail force model the characteristic acceleration is now reduced to 1 mm s?, allowing investigation of
dual loop trajectories. It was found that low velocity solar system escape could be achieved with a singlc
SPA with this level of sail performance. Thus, the first revolution of the irajectory must be used oaly to
obtain a suitable position for the close solar pass which will provide a fast solar system escape. Note that it is
exactly this scenario which previous attempts o use locally optimal methods to produce solar system escape

trajectories have struggled with and typically produced very sub-optinal resulis, '

Launch was fixed at 03 January 2030 and no attempt was made to consirain the spacecraft azimuth at

200 AU as this was [ound in the ideal sail scenario above to alter trip time by less than 1.3 %; thus allowing
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Figure 79 Conitrol angles used for most favourable trajectory to 200 AU in Figure 78,

the near-optimal trajectory to be rapidiy identified. Initially an ideal sail and a 2D trajectory are assumed,
such that, for example, the launch vehicle has provided the required declination prior to separation of the
payload stack and sail deployment. The first aphelion passage radius can be made large, however as the first
perihelion canntot be much less than 0.5 AU (from Figure 70) this results in an even larger second aphelion
passage if escape can be avoided and a long trip time until the close solar approach. This is the problem
faced in previous attempts to use locally optimal methods to produce solar system escape teajectories.””® The
first aphelion passage is thus minimised by applying the locally optimal perihelion reduction control law,
with passage occurring in 100 days at radius 1.05 AU, At this point the instantaneous perihelion is 0,65 AU,
The scoond phase of the trajeetory targets the second aphelion passage radius, much as during the first phase
of the single revolution trajectories previously discussed. A third phase is thus used as the energy boost
phase during the second perihelion passage, where once again only the semi-major axis controller is vsed.
The second phase of the trajectory is thus the key phase, with the constant of ecceniricity fixed at one and the
constant of pericentre increased to reduce the second aphelion passage radius, or (the constant of semi-major
axis increased to increase it. Note that even if the instantancous radius of perihelion is below the mindmumn
allowed value the control law continues to reduce it as the third phase of the trajectory ensures the actual
radius never drops below the minimum allowed value. A trade of radius of second aphelion passage versus
time to 200 AU and velocity at 5 AU is seen in Figure 80, Using the spacecraft velocity at 5 AU it can be
shown that making the assumption of constant velocity between 5 AU and 200 AU is a significant

simplification which typically underestimates the total trip time by as much as 2.5 vyears, or up to 10 %.
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Furthermore, it is found that the most favourablo radius of the secand aphelion passage is different if this
assumnption is made. Thus, such an approximatioa is invalid at all times. Figure 80 shows that assuming
coustant velocity from 5 AU gives a best-case 200 AU trip time of 25,7 years, for an ideal sail with

characteristic acceleration 1 mm s and a thermal limit of 0.25 AU; the trip time is truly 28.2 years.

To quantify the optimality of the A"D blending method for this 2D dual loop trajectory consider a 2D
trajectory propagation from perihelion, at 0.25 AU to 200 AU using the locally optimal energy gain control
law to a radius of 5 AU, where the sail is then jettisoned. It is found that if eccentricity is equal to one at
0.25 AU the time from sail jettison, at § AU to 200 AU is approximately 23.4 years, with a velocity of 9.2
AU yr! at § AU. Notice however in Figure 80 that the velocity at 5 AU peaks at almost 9.3 AU yrt. It is
found in fact that the sail has already passed through the point of escape prior to the SPA at 0.25 AU for
trajectories with velocity at 5 AU above 9.2 AU yr''. The trajectory represented by the right most point in
Figure 80 has an eccentricity of 1.016 at closest solar approach. It was found that an eccentricity of {.105
was required to reduce the trip time from sail jettison 10 200 AU to just over 21 years, with a velocity at
5 AU of almost 10 AU yr', At least such a trajectory would be nceded to match the requirements defined for
the THP TRS using an ideal sail with characteristic acceleration 1 mm s and a minimum radius of 0.25 AU.
Thus, a trip time of 25 years with this level of performance seems impossible as the time required to position
such a sail prior to the SPA would be much greatér than 4 years. Note in Figure 80 the time to saii jettison
varies from 3.15 to 6.66 years, increasing in linc with the radius of the sceond aphelion passage. Using (he
0.25 AU to 200 AU trajectory propagation findings, one concludes that the best-case trip time found, at
28.2 vears, is likely near-optimal,
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Introducing inclination change to the dual loop trajeciories significantly increases the complexity of the
analysis as it is difficult to logically quantify when it is optimal to have inclination atlain its target value,
such as to allow concentration on energy gain, Generally, it was found that the inclination need not have
attained its target value prior to the beginning of the final phase, the locally optimal energy gain phase,
though it should have priot to the second SPA. The first of the three phases once again uses the locally
optimal pericentre reduction contral law. However, it now also uses the inclination increase control law. It
was lound that by setiing the constant of pericentre to one and varying the inclination constant the time to
aphelion passage was ninimised for constant of inclination equal to 0.23, for both an ideal and non-ideal sail.
Similar to the 2D teajectory, the second phase beging at the first aphelion passage, at radius 1.05 AU and
inclination 1.19 deg after 97.4 days, for an ideal sail and radius 1.06 AU, inclination 1.14 deg and 106.4 days
for a non-ideal sail. The first phase is fixcd independent of the minimum thermal bound, which will be
varied to quantily ils cffeol lor an ideal and non-ideal sail. It was found that the best way to optimise the
second phase was to set the semi-major axis or pericontre constant as fixed and then allow the inclination
constant to vary such that following the third phase the time to 200 AU was minimised for that value of semi-
tnajor axis or pericenire constant.  Following Ihis the constant of semi-major axis or pericentre was varied
slightly and then the process of inclination constant refinement repeated to lind & new minimum (rip time.
The constant of scmi-major axis or pericentre was altered depending on the value of the new ininimum
found, until the best-case trip time was determined for each minimum radius considered. Once again, the
eccentricity conslant was set to 1 during phase two. Such a process is more time consuming than the single
loop trajectories previously presented, however the process remains very rapid. For example, the non-ideal
scenurio in Figure 78 and Figure 79 took approximately 2% hours to produce all the data points presented,
however the actual minimum time trajectory was found in less than 1 hour, By comtrast the non-ideal
scenatio in Figure 81 and ¥Figure 82 for thermal Limit 0.25 AT required several hours to find. Recall that
these trajectories require the user to manually alter the constants applied to the A"D score and if this process
was automated the time required to generate a solution would be reduced by perhaps an order of tagnitude
or more. Trip time to 200 AU with an ideal and non-ideal sail ot characteristic acceleration 1 nym s is
shown in Figure 81, along with the corresponding velocity at 5 AU for each of the most favourable
trajectories found. It is seen from Figure 81 that the mosi favourable 0.25 AU limited trajectory is only
11 days longer than the most favourable 2D trajectory foumd in Figure 80. Note also that a non-ideal sail
typically adds in the region of 5 % to the ideal sail trip time, as was found in Reference 137. A minimum
solar radius of less than 0.2 AU is required 1o reduce the non-ideal sail trip time to less than 25 years, as
required for the IHP TRS. Figurc 82 shows the radius of the 2" aphelion passage cotresponding to the
trajectories shown in Figure $1, along with 1he constants used for each during phase two, noting that in
addition to the constants given in Figurc 82 the constant of cecentricity is fixed at 1. Similar to the 2D
trajectories, if the instantaneous radius of perihelion is below the minimum allowed value the controller
continues to reduce it, with the third phase of the (rajectory ensuring the actual radius never drops below the
minimum allowed value. Note that the gradient of the non-ideal curve in Figure 82 for the A™D results is less
than that of the idcal sail, while the InTrance results also show a crossover. The minimum time trajectory for
a 0.25 AU thermally limited non-idezl sail is shown in Figure 83, where once again it is nated that this is an
open azimuth trajcctory. The corresponding sail control angles are seen in Figure 84, where one notes that

the pitch angle plot is relatively smooth except for a significant discontinuity at the end of the second phase,
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where the pitch angle jumps by almost 30 deg (0 71 deg, the highest pitch angle required during the
trajectory. No cruise phase was found to be required for this trajectory, again suggesting that such phases are
sub-optimal. Thc weights gencrated using A"D blending and the constants [rom Figure 82 are shown in
Figure 85. Note the spike in inclination weight prior to the first perihelion passage (day 261) where the

inclination rapidlly increases (see Figure 86), illustrating the opportunistic natuwre of A"D blending,

Finally, Figure 86 confirms that the inclination has once again reached its final value prior (o the second SPA
and that the first perihelion passage ocours at 0.5 AU, which corresponds well with the estimale given in
Figure 70. Though not shown in Figure 81 the minimum trip times gencrated using SQP with an ideal sail, at
0.20 AU and 0.25 AU thermal limit, were found to be 6 % and 3 % longer respectively than the exactly
equivalent A™D result. Figure 81 and Figure 82 show the near-equivalent results generated using In'T'rance.
Note at this stage that the method of constraint definition used within InTrance does not atflow for an
elevation constraint to be set without an azimuth constraint. Rather, within InTrance the azimuth and
elevation are constrained and the launch date remains open, where it was fixed within the A"D analysis. This
distinction is a small but bothersome factor as it means that the In'[rance resulis in Figure 81 and Figurc 82
cannot be stated as exactly equivalent, only near-equivalent. Recall from eatlier that the change from a fixed
launch date to open launch date resulted in an increase in trip time of approximately 1.3 %, using A"D. Thus,
s0 long as the TnTrance solution is less than 1.5 % ditferent from the A"D solution it can be assmned the A"D
solution is near-optimal. I was found that the trip times in Figure 81 gonerated using [n'{rance are mostly
slower than the near-equivalent A"D solution. However, all are within 1 % except for the non-ideal sail
scenario with minimum radius 0.20 AU, which is 1.21 years or 4.4 % slower. No explanation for this

variation was found or is offered, however it is clear that the A"D solution tust be near-optimal.
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6.2.4 Temperature Limited Trajectories

Trajectories to 200 AU which use the sail film temperature to constrain (he trajectory rather than a minimum
radius are considered. This approach was first employed by Koblik, et al for the generation of solar sail

. , ) .
transfer trajectories o near-Sun orbits, 2 -2

This approach is in some respects more realistic since the sail
temperature is a function of the solar aspect angle, however it does assume that the sail booms and other
systems can survive such a close solar approach. Note that this technique could in-principle be used with a
more advanced sel of temperature consiraints based a complete thermal model of the spacecraft. Three
scenarios were recently considered using InTrance in Reference 137, with sait film temperature limited to
200, 240 and 280 deg Celsivs; these results are reproduced in Iligure 87, In Reference 137 the sail is not
jettisoned at 5 AU; rather it is used all the way to 200 AU, Furthermore, the trajectories have an
mnconstrained azimuth and clevation at 200 AU. Once again these variations make direct comparison
difficult between A"D and InTrance. However, it is noted that an open azimuth/elevation InTrance (rajectory
with a characteristic acceleration of 1.5 nun s and using an ideal sail all the way to 200 AU has a trip time
ol 22.248 years, for a thermal limit 01 0.25 AU. Approximatcly 2.9 % faster than the cquivalent constrained
start date, elevation, open azimuth trajectory generaied using A"D. It is of interest to note that the completely
mconstrained InTrance selution hag final fnclination 12.93 deg and does not remain within the ecliptic plane
as one may expect. One concludes that if the temperature limited trajectories are within 3 % of the InTyance
trip times they are near-optimali. It is found that the 200 °C temperature limit A"D trajectory is actuatly very
marginally faster (0.04 %) than the ln'lrance trajectory, while the A"D trajectory is marginally sfower
(0.25 %) than InTrance trajectory for the 240 °C temperature limited scenario. The A"D blending 280 °C
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limited result is 1.26 % slower than the [n'['rance result, however this is significantly within the error margin
discussed above. Figure 87 shows the sail’s escape velocity at 200 AU (vﬂ = J;Z - 2‘:z/r) , where it is scen

that both A"D and InTrance provide very-similar solutions.

6.2.5  Trajectories with Optical Surface Degradation

Havivg demonstrated the ability of the A"D blending method to cope with a non-ideal sail force model and
produce neat-optimal results for both single and dual loop trajectories, the eoffects of optical surface
depradation, as discussed in Section 1.3.4, are now considered using Model 7. A sail characteristic
acceleration of 1.75 wm s was selected for this analysis, which gives a zero degradation trip time to 200 AU
ol 21.74 years. Notc that the trajectories within this section have a fixed minimum radius of 6.25 AU, a
Half-Life Solar Radiation Dosc of 0.5 W, yr and a [ixed start epoch of 03 January 2030. The trajectories
within this section have not been validated using cither InTrance or SQI methods, however extrapolating the

results from prior seclions one can assume the results to be very near-optimal,

Figurc 88 shows the trip Lime 0 200 AU for d = 0 to 0.30. Note that up to ¢ = 0.2 the trip time increase due
10 degradation is exactly linear. At d = 0.25 and 0.3 the trip time does not fit the expected linear trip time
relationship due to the sail continuing to increase orbit inclination beyond (he point where effort would be
better spent gaining orbit energy. TFurthiermore, at d = 0.30 the sail is unable to reach the minimum radius

boundary and thus unable to fully take advantage of the close solar pass. It is thus clear that increasing the
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degradation limit results in a change in the structure of the trajectory such that the minimum radius begins to
increase from 0.25 AU to the point where it will become necessary for the sail fo perform a dual loop
trajectory rather than a single loop. The value of d at which this trend begins will vary according to the
characteristic acceleration; at 1.75 mm s™ the critical value of d is 0.3, while at £.6 mm s the critical value is
of o is 0.05. TFigure 89 shows the radius of aphelion passage increases by approximately 1 AU as the
degradation limit is increased from zero to 30 %. This represents a signilicant change in trajectory structure
and hence a significantly different set of design rcquirements for both the tclecommunications and therinal
systems on the spacecraft while attached to the sail, requiring carclully consideration during the initial
spacecraft design phases. Note the radius of aphelion passage pradient is at no time linear, although it is
approximately conslant. Figure 90 shows the velocity of the spacecraft al sail jettison is decreasing in an
approximatety linear manner, however the time to sail jettison much more closely matches the shape of the
radius of aphelion passage relationship. I is thus notable that given all these relationships are only
approximately linear that the trip time to 200 AU is exactly linear for 0 <4 <£0.2. Figwe 91 shows the value
of optical coctficients at sail jettison and the total SRD variation with degradation limit. Note from Figure 91
that the total SRD for 4 = 0.3 is not as large as expected due to the increased value of the minimum solar
approach radius vet the degradation of cocflicients remains almost constant due to the increased trip time
to S AU.

Figure 88 — Figure 91 quantily the general trends associated with optical surface degradation; these can be
further cxamined however by analysis of the orbit paramcters throughout cach best-case trajectory found.
Figure 92 shows the most favourable trajectory plot for each degradation limit. Note that a change in
degradation limit for a fixed start epach significantly changes the final spacecraft azimuth at 200 AU which
would significantly impact mission science objectives. In Figure 92 it is seen that the SPA occurs at the
same physical location independent of the degradation limit as the argument of pericentre is not varied from
trajectory to trajectory. However, the time of each SPA is seen o vary by as much as 1% years in Figure 93,
It is also seen in ligure 93 that the inclination has attained its final value significantly before the SPA for
0<d<0.2 Atd=025the inclination reaches 7.5 deg just prior to the SPA, while at d = 0.3 this does not
occur until after the SPA.

Duc to the low poinling accuracy of a solar sail it was identified previcusly that an X-band, or lower, low or
medium gain antenna is required for Earth — spacecraft communications when attached to the sail.''! Thus,
the maximum slant range of this telecommunications system is a key mission driver. Tigure 94 shows the
slant range of thic spacecraft up to sail jettison. It is seen that the slant range during the second aphelion
passage is altered by as much as 1.5 AU, It is also seen that between d = 0.1 and 4 ~ 0.2 the slant range of
the second aphelion passage becomes larger than during the first aphelion passage. The slant range at sail
jettison is seen in Tigure 94 to be maximum for the d = 0 case and to vary by as much as 1.75 AU with sail

degradation.

The sail control angles used in each best case trajectory are illustrated in Tigure 95 where it is noted that the
maximum pitch angle of each trajectory is similar, yet the maxinmum cone angle decrease in-line with the

degradation limit increase. Furthermore, the size of the discontinuity within each trajectories control angle
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profile in Figure 95 decreases as ¢ increases, until at d = 0.3 there is no discontinuity as the trajectory is no
fonger limited by the minimum radius value, Thus, the size of the discontinuity is dircetly related to the
impact the minimum radius setting has on the lrajectory. Figure 96 shows the variation of the optical
coefficients over the first 4 years of trajectorics shown Figure 92, where it is seen that the bulk of the
degradation occurs during the close solar pass. It is thus logical to assume that multipte close solar passes
would have an adverse effect on the quality of the optical surface and should be aveided when designing
such trajectories. Figurc 97 further underlines the effect of each SPA on the optical surfaces by clearly

showing that the bulk of the Total SRD accurs during the SPA,
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Figure 97 Variation of total SRD over first 4 years of trajectories shown in Figure 92,

6.3  Earth - Mercury Transfer

The generation of an Earth -- Mercury transfer trajectory allows an excellent case study for A"D blending,
wilh ample trajectories available within the literature for comparison. Due (o the proximity of Mercury to the
Sun fhe required sail characteristic acceleration is much lcss than that uscd for 200 ATJ missions. However,
as a result of the low acceleration an Earth — Merowry transfer becomes a multi-revolution transfer which
increases the computational difficulty, cspecially for traditional optlimisation techniques. Maintaining
consistency with Section 5.3 a characteristic acceleration of 0.25 mm s7? is assumed for the Carth - Mercury
transter, using Model 1. It was found that using A"D blending the transfer should be split inlo two phases,
the lirst conicentrating on lowesing the semi-major axis, the second on increasing orbit ecceniticity and
inclination to match those of Mercury. The first phasc is 753.3 days in duration, with the second requiring a
further 298.3 days. The constants used on the A°D scores are detailed in Yable 10 and illustrated in Figure
98, where il is noted that during the first phase despite inclination having the lowest constant in Table 10 at
the crossing of the minor-axis it dominates the eccentricity weight. Tt is also of interest to note that the plot
of weight values is now much more complex than Figure 76 and Figure 85 which illustrate the trajectories to
200 AU, Note that if an element is not listed in Table 10 then the weight is set to zero and the elcment is not
considered within the trajectory design. Using the constants given in Table 10 the resultant orbit radius,
semi-major axis, perthelion and aphelion are plotted in Figure 99, where it i3 noled that the semi-major axis
rate of change is approximately linear throughout the 1051.6 day transfer and that the semi-major axis and

ceeentricity obtain good convergence with the target values of Mercury. Note this is not a rendezvous

teajectory, rather an orbit-to-orbit transfer which can be used to rapidly oblain the approximate minimum
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rendezvous transfer time. A plot of the transfer is shown in Figure 100, where the change of semi-major

axis, eccentricity and inclination is shown. From Figure 100 it is seen that the orbit inclination remains fow

until the semi-major axis has been reduced, thus allowing the inclination to be intcreased more rapidly due to

the shortened orbit period. The sail control angtes generated by the A"D blending algorithms are shown in

Figurc 101, where the oscillatory nature of the control angle profile is seen. Figure 101 also shows the

control angle history for a 51 node SQP generated Earth — Mercury transfer.'”® ~'*° The SQP generated

transfer duration is 1041 days, that is to say, 10 days or less than 1 % shorter than the transfer generated by

A"D blending. Note the SQP result was the best found in the literature and is thus used as the refercnce

point. The SQP generated transter is a Mercury rendezvous trajectory, note however that the control angles

generated using A"D blonding arc very similar to those generated using SQP aud as such would provide an

excellent initial guess towards such a local optimisation method.

Parameter Constant in Phase 1 Constant in Phase 2
Lceentricity 0.290 0.455
Semi-Major Axis 1.000 0.000
Radius of Pericentre 0.000 0.865
Inclination 0.250 0.530

Tabie 10 Coustants used during Earth — Mercury Transfer.

0 200 400

Figore 98 Weights used durinyg Earth — Mercury Transfer.

600
Time (days)

800 1000




6  Heliocentric Orbit Transfiers Using a Solar Sail and Locally Optimal Control Laws 152

1.0€

o
0

o
)

o
"‘]

Distance (AU)

o
o))

Radius of Perihalion

0.5  Mercury's Aphelion - 5
0.4 Mercury’s Semi-Major Axis .
' ' N
Mercury's Perihetion .
0‘ 3 " e e b A AR RIS B 6 R EEAR SN BRI SR YN Sy g s xak
0 200 400 600 800 1000

Time (days)

Figure 99 Orbit radivs and semi-major axis plot for an Farth — Mercury transfer.

8- :
Target:
7. Conditions -
6\ { N
3 S
g \,
§" o
23l N
S 1 Initial BN,
E 2 : \\m..'
N . .
) AN
(N 5%\,‘ |
4] NP " W -N"EB-
D .
0,05 N Thmeod TS T RN
0.1 g
0.16 ) IS
0.2 BEEEEES 0
Eccentricity Semi-Major Axis (AU)

Figure 100 Diagram of &, ¢ and { during Earth — Mercury transfer, with projection into axis also shown.




6  Tleliocentric Orbit Transfers Using a Solar Sail and Locally Optimal Control Laws 153

60 R i B I r :

\

~~ A"D Blending
0 | 1 | ] |
)] 200 400 600 800 1000
Time {days)
360 R : : . :
@270, |
K=

x
S 180 .
O
sap ™~ A"D Blending
0 1 1 1 1 L
° 0 200 400 600 800 1000
Time {days)

Figure 101 Control angles for the Earth — Mereury transfer, A"D blending (—) and SQP (— +-) generated

angles both shown.

6.4  Solar Polar Orbiter I'ranster with a Gravity-Assist

‘Ihe core of a Solar Polar Orbiter (SPO) mission was outlined in Section 1.5.2, from where it is recalled that
the SPO mission is another of the ESA TRS. The target solar polar orbit is defined by the direction of the
solar poles. The solar equator is inclined at 7.25 deg to the ecliptic plane, with a right ascension of ascending
node angle of 75.8 deg plus 1.4 deg for every century from J2000. Thus, the desired polar orbit is inclined at
82.75 deg with an ascending node of 255.8 deg + 0.014 deg yr™' from J2000, within a standard ecliptic planc
relerence frame.”' Analysis of Sunspot motion has revealed that the direction of the solar poles is less weil
defined than indicated above, however these values are acceptable as mean values for the purpose of this
analysis.”®® Spacecraft orbit phasing with respect to Earth must be carefully considered such as to position
the SPO near to the solar limb as seen from Earth, allowing observation of the corona along the Sun-Earth
line. Maintaining this alignment eliminates solar conjunctions and hence loss of telemetry. It is thus
necessaty that the spacecraft orbit is in resonance with Harth’s orbit about the Sun. Potential target solar
orbits are defined as circular with radius N%® AU, for {nteger values of N. The baseline mission uses N =3,
giving a target solar radius of 0.48 AU. Using A"D blending a solar sail, gravity assist combination transfer

trajectory is considered.

Multiple gravity assists within the inner solar system tend to be protonged in duration and can be limited in
launch window frequency, especially it considering non-resonant combinations. 1t is therefore anticipated

that any benefit over a non-gravity assist scenario will occur through use of a single gravity assist
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manoeuvre, probably at Venus; allowing for a perihelion inside the Venusian orbit. Use of a Mars or Earth
fly-by would result in a high aphelion, which is detrimental to solat sailing, Furthermore, it is envisaged that
sail deployment will commence only after the final gravity assist due to guidance difficulties with such a
large structure and inaccurate pointing control. The delayed deployment of the sait will avoid the need for
accurate sail navigation and control during the gravity assist. However, it does necessitate an autonomous
sail deployment at a slant range of approximately 0.6 AU. Using a Soyuz Frepat 2-1b launch from Kourou
one can consider a vast range of potential solar orbits post-Venus fly-by. Note however that the orbit
aphelion is restricted to 0.73 — 0.74 AU, set by the position of Venus. It is possible to acquire a posi-Venus
orbit peribelion of 0.48 AU, However, it is found that when trying to circularise the orbit, prior to the
inclination raising phase of the (rajectory, maintaining a minimum solar approach radius of 0.48 AU
significantly extends the mission duration. It was thus found that increasing the post-Venus orbit perilelion
reduced nission duration, At a periliclion of 0.48 AU the maximum planc-change duc to the Venusian fly-by
with a Soyuz vehicle is approximately 16 deg. Howover, as one raises perihelion one can also increase the
planc change magnitude. It was found that thc maximum possible plane change magnitude at Venus fly-by
for a Soyuz Fregat 2-1b launch from Keourou was 18,5 deg. However, this reduces the mission lavuch
window size to one day. 1t was found that for a sail characteristic acceleration of {.40 mm 57, the adopted
performance level for this analysis, the post-Venusian perihelion orbit should be approximately 0.5 — 0.6 AU,
depending on the fly-by conditions. Additionally, it is noted that in this range of perihelion values the orbit
inclination can be maintained at 18 deg, with a suitably long launch window. The Venusian fly-by provides
the sail deploynient orbit with an ascending node angle fixed by the position and nature of the gravity assist
manoeuvte, The ascending node angle can be altered by altering the post-Venusian orbit perihelion, thus in
order to ensure a suitable ascending node angle one must vary the radius of perihelion. It is thus highly
ualikely that the optimal perihelion for a single Venus fly-by scenario will be the same as during preceding
or subsequent launch windows and may even change slightly within a launch window. It is however of
interest that the ascending node angle was always found to be within close proximily of the required value

for a true solar polar orbit and as such a launch window occurs every Venus opportunity.

An initial orbit of 0.73 AU % 0.52 AU % 18 deg was identified for a launch opportunity in December/January
of 2016/2017 which approximately aligned the post fly-by orbit ascending node angle with the required solar
polar orbit fiy-by angle. The launch window is shown in Figure 102. 1t was noticed that during the orbit
inclination cranking phase of the trajectory the ascending node angle tends to drift forwared by approximately
2 — 3 deg, thus rather than aim the post fly-by ascending node angle exactly to match the required solar polar
value it was found that trip time was minimised by aiming the ascending node angle slightly low. The Jaunch
window for this opportunity lasts from 27 December 2016 until 08 January 2017; with a maximum allowed
launch mass of 650 kg and a maximum launch Cs of 35.5 km? s, as shown in Figure 102. Selecting the first
available launch opportunity within the window a 2883 km Venus fly-by is performed 142 days later, on 18
May 2017, placing the un-deployed solar sail on a 0.73 AU X 0.52 AU x 18 deg orbit. The post fly-by

ascending node angle is 253.34 deg, which is approximately 2.5 deg below the required solar polar value.

Tollowing sail deployment the primary trajectory goal is to circularise the orhit at 0.48 AU, During orbit

circularisation it was found that the orbit inclination can be increased slightly with no adverse effect on the
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circwlarisation goal. During circularisation the trajectory is split into two phases, with the constants wsed on
the A"D scores given in Table 11 resulting in a circular orbit of 0.48 AU with inclination 22.32 deg after
195 days; 337 days after launch. Phase one reduces the semi-major axis of the posl-Venus orbit and lasts for
137 days, while the second phase has duration 38 days and circulavises the orbit. The combination of the
A"D score and conslants in Table 11 are shown in Figure 103 with the resulling A"D generated sail control
aagles shown in Figure 104, It is noted that the control angle profile is refatively smooth except for the step
change at day 137, which corresponds to the end of phase one. Following the circularisation of the orbit at
0.48 AU and inclination 22,32 deg the locally optimal inclination increase control law is used to “crank” the
orbit,

The increase in orbit inclination throughout the entire sail trajectory is shown in Figure 105. 1t is noted that
(he inclination is slowly increased through fo day 195, where the exclusive use of the locally optimal increase

of inclination controler begins a much morc rapid change. Figure 105 also shows the variation of ascending
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Figure 102 SPO launch window opportunities duting December 2016 — January 2017 (-~ ) and

corresponding launch C; (—).

Parameter Constant in Thase 1 Constant in Phase 2
Lecentricity 7000 1.0

Semi-Major Axis 1.00 0.55

Inclination 0.25 0.57

Table 11 Constants used during circutarisation of orbit.
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node anglc following sail deployment. Reeall that the ascending node has a target value of 255.8 deg + 0.014
deg yr™* from J2000, noting that this trajectory is arriving at the polar orbit in approximately the middte of
2021 the target ascending node angle is thus approximately 256.1 deg. Figure 105 shows four potential sail
jettison points, where the orbit inclination, in the ecliptic reference, is greater than 60 deg and the orbit
element target conditions have been met. The four points correspond to heliographic inclinations 72.8 deg,
79.0 deg, 85.2 deg and 91.4 deg. However, it is found ihat (he first two points are unsuitable as following
sail jettisonn the Earth would not have a continucus, uninterrupted view of the SPO spacecraft as the
spacecraft - Earth — Snun angle periodically deops below 10 deg. The third and fourth points do provide
continuous, uninterrupted communications capability and are thus suitable termination points. The first
suitable sail jetlison point ocours 1245.6 days after sail deplovment, or 4.16 years afler launch. The second
suitable sail jettison point occurs 4.52 years after launch. If a true and exact solar polar orbit is required
further optimisation of the final 10 — 15 deg of this second point would be required to identify the correctly
phased transfer orbit. However, from A'D blending one can estimate the transfer time as 4.5 years from
Iaunch 10 an exact solar polar orbit, a reduction of approximately half a year from a trajectory without a
Venus gravity assist.?’ Assuming passage directly over the solar pole is not required, as seems likely, and a
heliographic inclination of approximately 85 deg is suitable, one can thus estimnate the SPO transfer time,
using a Venus gravity assist as 4.2 years, with an idcal sail (i.c. Model 1) with characteristic acceleration

2

0.4 mm s”. the SPO trajectory [rom sail deployment through to the second viable sail jettison point is

shown in Figure 106.

0 50 100 150 200
Days from Fiy-by

Figure 103 Weights nused during circularisation of orbit.
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Figure 106 SPO trajectory from sail deployment following Venus gravity assist.
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7 Conelusions and Further Work

The work obieciives of this dissertation were outlined in Section 1.6, where six qucstions and issues were
listed as requiring investigation for completion of the thesis. The six points are reprodnced below along with

the relevant findings and conclusions.

1. Perform an analytical investigation of planetary escape using solar sail propulsion such as to explain
previously noted bul uncxplained anomalies; for example, the variation in Earth escape time as a function

of the Earth’s position about the Sun.

It has been shown in Sections 4.1 and 4.2 that variation of orbital elements, where the rate of
change is a function only of the radial and transverse sail acceleration, is optimally induced by
a solar sail operating within the ecliptic plane. It was further demonstrated that Earth shadow
does not alter this optimal configuration despite a drop in sail propulsive efficiency. The
derivation and corroboration of the ecliptic plane as the optimal orbit orientation explains a

prior anomaly identified within the literature but not previously explained.

2, Tnvestigate, for the first time, the variation in solar sail cscape time from Mercury as a function of

Mercury’s position about the Sun.

An apparent anomaly over the optimal time of the Henmian year to begin an escape trajeclory
was investigated and clarified in Section 4.3. Tt was found that low performance sails have a
minimum escape duration when the trajectory begins at Mercutry’s aphelion, with the sail
passing through the point of escape close fo perihelion. As the sail performance is increased
the optimal start date to minimise the escape duration migrates from aphelion passage towards
perihelion passage. Turthermore, to minimise the Julian Day at escape the optimal strategy

was found to never require a period of delay in the statt epoch.

3. Generate an analytical solar sail trajectory design method which allows the generalion of near-optimal
realistic planetary escape trajectories for the first time (trajectories which do not, for example, have

negative altitude phases).

A method of blending locally optimal control [aws was presented in Section 4.4 which
maintains the near-optimal nature of the locally optimal energy gain controller, while also
insuring a safe minimum altitude through use of a pericentre control law. The algorithims
presented are explicitly indcpendent of time and have been shown capable of adapting to

different perturbations from those included within the original design scenario. Thus, the

control algorithms are polentially suitable as an autonomous on-board controller,
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4. Perform a thorough investigation of solar sail Earth escape trajectories which do not pass through the

Earth’s shadow cone, while using the methods developed for point 3.

The required sail characteristic acceleration to escape from a polar orbit without Earth
eccullation of the sail/Sun line was investigated in Section 4.5. It was shown that the required
sail characteristic acceleration increases exponentially as initial altitude is decreased. It was
also seen that the time until escape comresponding to the minimum sail acceleration
requirement was largely independent of initial altitude, with an approximate duration of 141.5

days.

5. Develop an analytical solar sail trajectory design method which can rapidly produce complex planet-

centred orhit transfers and station-keeping algorithms for the first time.

A new method of assessing the relative importance of orbit elements during solar sail fransfer
and station-keeping manceuvres has been intraduced in Section 5.2, allowing rapid generation
of trajectories by blending locally optimal control laws. The Accessibility and Deficit, A"D,
blending method considers both an orbital clement’s variation from its target value and how
well that orbital clement will use the sail thrust prior to caleuiating a score for the element.
A'D blending directs the blended localty optimal force vector such that it avoids prolonged
periods of high sail pitch settings, which are an imefficient use of the sail, thus increasing

sail efficiency.

The A'D biending mcthod has been demonstrated for generation of a comnplex orbit transfer at
Mercury in Section 5.3.1, where the primary constraint of the fransfer was thermal rather (han
time. The transfer trajectory rolates argument of pericentre by 180 deg, while continually re-
{argeting towards a ncw ascending node final value, which is initially rotated 180 deg from the
lrajectory’s starting ascending node value. The trajectory is verified shadow free and all orbit
clements converge well with the targel values. The use of A"D blending allows the generation

of such a transfer trajectory in a mwuch more rapid fashion than would be possible with

conventional optimisation technigues.

Furthermore, A"D blending has been demonstrated to act as an excellent solar sail station-

keeping aigorithm in Scctions 5.3.2 and 5.4, capable of adjusting to significant variations in
otbit perturbation magnitude. Siiilar to Section 4, the control method demonsirated is capable
of providing the sail conirol angles in real-time, based solely on the current spacecraft state-

vectors. ‘I'hus, making A"D blending suitable as a potential autonomous on-board sail

control system.
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6. Develop an analytical helioceniric solar sail trajectory design method which ean rapidly produce near-

optimal solutions (trajectories within 1 — 3 % of optimal).

The A°D blending method has been demonsirated for generation of sail trajectories to 200 AU
in Section 6.2, where it was repeatediy shown that A"D generated trajectories were very similar
in duration to thc optimal transfer time found using an evolulionary ncurocontrofler.
Furthermore, the A'D generated trajectories were consistently more efficient than sequential
guadratic programming, SQP, generated trajectories. A'D blending has been shown able to
design a solar sail irajectory using a non-ideal sail force modei and to restrain the trajectory

bascd on either a minimum radius or maximum temperature. The A"D blending rcsults clearly

demonstrate that a non-ideal sail will require a characteristic acceleration of approximately

1.5 mm s to reach 200 AU in 25 years, assuming no optical surface degradation,

An Earth - Mercury trajectory was presented in Seciion 6.3 to demonstrate the capability of
A"D blending when attempting to find planet — to — planet {ranster trajectories. It was found
that the A™D blending gencrated trajectory duration was within 1 % of the SQP generated
trajectory and that the control angle profiles were closely matched. Thus, A"D blending can
provide a very good rapid assessment of such a mission scenario, or provide an excellent initial

gucss for further optimisation as part of a detailed mission analysis.

It is concluded that A"D blending is a highly efficient method for the rapid generation of
heliocentric trajectories, reducing the trajectory optimisation problem from finding the cone
and clock angle control history, to finding a set of constants. Thus, in the Earth-Mercury
transfer trajectory where the SQP method had to optimise 102 data points (51 nodes of pitch
and 51 nodes of clock) the A"D method reduces the problem to only 6 data points, split evenly
over two trajectory phases; a significant reduction in computational effort. Furthermore, the
200 AU trajectories simplify the equivalent SQP problem from 42 data points, to 4 data points
for the dual loop (rajectories and only 2 data points for the single loop trajectories; a reduction
in computational effort of many orders of magnitude. It is highly likely thal forther effort 10
optimise the constants would reduce the sub-optimal nature of the solutions. However, the
cnrrent manual nature of the optimisation process hinders this. A’D blending allows swift and
accurate mission analysis while aiso providing an excellent initial guess to other

optimisation methods.

The work documented within this dissertation could be extended in many ways. Two principle areas of

future work are:
+ Automation of the selection of the constants which are applied to the A"D scores.

¢ Extension of the A"D blending inethod to other low-thrust propulsion methods, such as

cleciric propulsion.
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By automating the sclection of constants which are applicd to the A"D scores onc could cxpect to obtain a
much more rapid trajectory generation method, as discussed in Section 6.2.3. Automation is however not a
simple matter, as the automatic sclection of trajectory phases conld prove troublesome.  Assuming this can be
solved, either through automation or the user optimising several individual phases per trajectory, then the
sub-optimal naturc of the results would likely be reduced. The method of automatically selecting the
constants which are applied to the A"D scores requires study and it would be rash to propose a suitable
method without detailed study of the options. 1t is logical however that application ol a global optimiser
would be a best-case solution, as this would remove the requirement on the user to provide an initizl guess of
the constants. Furthermore, if a global optimiser such as an evolutionary neurocontroller was applied then it
may be possible for the neurccontroller-to leam where is best to split a trajectory into each of the required

phases, thus through expericuce the system will become increasingly automated.

Extension of A"D blending to other low-thrust propulsion methods would require careful consideration, as
the propeliant used must now also be considered. Thus, thrust-arcs must be introduced through analysis of
the variational equations of motion to ensure that the engines only thrust when they will have a suitably large
impact on the orbit elements. Similarly, the engines should not be rapidly urned on and off. This is
analogous to the current Accessibitity component of the A"D score, however development would be required.
It is considered by the candidate that development of’ A"D blending to reaction low-thrust methods should
initially be performed independent of the automation of the solar sail method, In other words the initial
reaction low-thrust trajectories should be generated by a manual process, as performed within this
dissertation for solar sailing. Thus, ensuring the methods simplicity is maintained prior to automation, rather

than relying on computational effort to replace simplicity.
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